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Abstract

Introduction:Cerebral small vessel disease (SVD) is common in patientswith cognitive

impairment and neurodegenerative diseases such as Alzheimer’s and Parkinson’s. This

study investigated the burden of magnetic resonance imaging (MRI)-based markers of

SVD in patients with neurodegenerative diseases as a function of rare genetic variant

carrier status.

Methods: The Ontario Neurodegenerative Disease Research Initiative study included

520 participants, recruited from 14 tertiary care centers, diagnosed with various neu-

rodegenerative diseases and determined the carrier status of rare non-synonymous

variants in five genes (ABCC6, COL4A1/COL4A2, NOTCH3/HTRA1).

Results: NOTCH3/HTRA1 were found to significantly influence SVD neuroimaging

outcomes; however, the mechanisms by which these variants contribute to disease

progression or worsen clinical correlates are not yet understood.

Discussion: Further studies are needed to develop genetic and imaging neurovascular

markers to enhance our understanding of their potential contribution to neurodegen-

erative diseases.
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2 DILLIOTT ET AL.

1 INTRODUCTION

Cerebral small vessel disease (SVD) represents a group of patholo-

gies with heterogeneous etiology that affect the small arteries, veins,

and capillaries of the brain’s vascular system.1 Notably, SVD most

commonly leads to vascular cognitive impairment and dementia in an

aging population. Additionally, SVD is associated with several markers

that are quantifiable on structural magnetic resonance imaging (MRI),

including white matter hyperintensities (WMH), MRI-visible perivas-

cular spaces (PVS), and lacunes.2 These observable neuroimaging

features have been reported in various neurodegenerative diseases,

including Alzheimer’s disease (AD), mild cognitive impairment (MCI),

amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and fron-

totemporal dementia (FTD), as well as in cerebrovascular disease

(CVD),3–10 all of which are represented in the Ontario Neurodegen-

erative Disease Research Initiative (ONDRI). These diagnoses were

selected based on their high prevalence within the aging population

as well as the high rates of neuropsychological dysfunction reported

in these patient populations. As the cases of dementia increase world-

wide, one of the key objectives of ONDRI is to accurately identify the

individuals at risk of developing dementia,with andwithout comorbidi-

ties with other neurodegenerative and/or neurovascular disorders, at

an earlier stage. Therefore, these diagnoseswere selected to alignwith

this objective.

Previously, several rare nonsynonymous variants had been asso-

ciated with vascular neuroimaging markers in various neurodegen-

erative diseases via linkage analyses and candidate gene sequencing

of patient cohorts.11–17 Specifically, five genes that were previously

associated with SVD and vasculopathy include ATP Binding Cassette

Subfamily C Member 6 (ABCC6), Collagen Type IV Alpha-I (COL4A1),

Collagen Type IVAlpha-II (COL4A2), High-Temperature Requirement A

Serine Peptidase 1 (HTRA1), and Notch Receptor 3 (NOTCH3). Under

normal conditions, ABCC6 encodes a protein that aids in the trans-

portation of molecules across the cell membrane; however, when

mutated, it can cause arterial calcification and pseudoxanthoma elas-

ticum, an autosomal recessive disease primarily affecting the con-

nective tissue in the skin, retina, and cardiovascular system, and

more recently the gene has been associated with increased ischemic

strokes.18,19 COL4A1 and COL4A2 encode for collagen chain pro-

teins that combine and together play a critical role in supporting

the basement membranes of human vasculature.20 Autosomal domi-

nantCOL4A1mutations causeCOL4A1-related SVD,which presents as

early strokes and brain cysts,21 whereas autosomal dominant COL4A2

mutations cause intracerebral hemorrhage and SVD, which result in

neural degeneration.22 NOTCH3 encodes a transmembrane protein

receptor critical for the survival and function of vascular smooth mus-

cle cells; however,whenmutated it is associatedwith amonogenic form

of SVD commonly known as cerebral autosomal dominant arteriopa-

thy with subcortical infarcts and leukoencephalopathy (CADASIL).17

Similarly,HTRA1 encodes a protein involved with cell signaling, muscu-

loskeletal development, vascular maturation, and protein degradation;

however, when mutated it is associated with a phenotype similar to

CADASIL, known as cerebral autosomal recessive arteriopathy with

RESEARCH INCONTEXT

1. Systematic Review: Burden of white matter hyperinten-

sities, perivascular spaces, and lacunes were quantified

in a study examining 520 participants diagnosed with

Alzheimer’s disease, mild cognitive impairment, amy-

otrophic lateral sclerosis, Parkinson’s disease, frontotem-

poral dementia, or cerebrovascular disease. Carrier sta-

tus of rare non-synonymous variants in ABCC6, COL4A1,

COL4A2, HTRA1, and NOTCH3 was determined for each

study participant, and multiple regression models were

used to estimate effects across theneuroimagingmarkers

as a function of variant carrier status.

2. Interpretation: We observed a significant influence of

rare variants in HTRA1 and NOTCH3 on neuroimaging

markers of cerebral small vessel disease in a variety of

neurodegenerative disease patient cohorts.

3. Future directions: Our study highlights the importance

of genetic analysis in understanding the development of

vascular injury and the potential contribution to neu-

rodegenerative disease, yet future work must determine

the biological mechanisms of these associations and their

influence on downstream clinical outcomes.

subcortical infarcts and leukoencephalopathy (CARASIL).23 Although

the compendium of SVD-associated genes continues to grow, these

five largely remain a consensus of the most well-established genes of

interest.24

The primary aim of this study was to examine the burden of MRI-

based SVD markers (WMH, PVS, and lacunes) as a function of carrier

status of non-synonymous, rare genetic variants of interest in a sam-

ple of patients with neurodegenerative diseases that are represented

in the ONDRI study. In light of these previous findings in genetics and

neuroimaging, we hypothesized that carrying rare genetic variation in

SVD-associated genes described would contribute to greater burdens

of SVDmarkers in both neurodegenerative disease and CVD patients.

2 METHODS

2.1 Participants

ONDRI recruited 520 participants from14 tertiary care centers across

Ontario, Canada, each of whom had passed preliminary screening.

Every participant was previously diagnosed with one of five neurode-

generative diseases: (1) AD; (2) amnestic MCI; (3) ALS; (4) FTD; (5)

Parkinson’s disease (PD); or (6) cerebrovascular disease (CVD) with

or without cognitive impairment. Detailed inclusion/exclusion crite-

ria, demographics, and cohort characteristics of the ONDRI study

were published previously.25,26 Briefly, the prevailing consensus-based
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DILLIOTT ET AL. 3

clinical diagnostic criteria at the time of enrollment for each ONDRI-

focused disease were implemented at each tertiary clinic: AD/MCI

patients met National Institute on Aging–Alzheimer’s Association cri-

teria for probable or possible ADorMCI, where amnesticMCI patients

were tracked annually to ensure accurate characterization of the

cohort25; PD patients met the criteria for idiopathic PD defined by

the UK’s Parkinson’s Disease Society Brain Bank clinical diagnostic

criteria; ALS patients met El Escorial World Federation of Neurology

diagnostic criteria for possible, probable, or definite familial or sporadic

ALS; FTD patients included possible or probable behavioral variants

of frontotemporal degeneration, agrammatic/non-fluent and semantic

variants of primary progressive aphasia, and possible or probable pro-

gressive supranuclear palsy. The CVD cohort comprised of individuals

who experienced mild to moderate acute ischemic stroke, transient

ischemic attack, or subcortical infarction, at least 3 months prior to

enrollment, in compliance with the National Institute of Neurologi-

cal Disorders and Stroke and the Canadian Stroke Network vascular

cognitive impairment harmonization standards. Evidence of stroke

required clinical imaging confirmation; however, individuals with large

vessel occlusive infarction causing severe neurological deficits were

excluded. Additionally, the AD/MCI patients’ MRI scans were assessed

by a neuroradiologist to exclude individuals with non-AD-related

causes for cognitive impairment. Ethics approval was obtained from

the Research Ethics Board at each participating site. All participants

provided written, informed consent.

2.2 Gene sequencing and variant prioritization

Of the 520 participants recruited by ONDRI, 519 had a blood sample

collected, and genomic DNA was extracted from them as previ-

ously described.27 All participant DNA samples were then sequenced

with the custom-designed next-generation sequencing (NGS) gene

panel, ONDRISeq, which covers the exonic regions of 80 genes,

each previously associated with a neurodegenerative disease or SVD

phenotype.28 Briefly, all genomic DNA samples were sequenced using

ONDRISeq on the Illumina MiSeq Personal Genome Sequencer (Illu-

mina, San Diego, CA, USA). A custom bioinformatics pipeline was

subsequently used to process the FASTQ files and produce a variant

calling format (VCF) file and binary alignment map (BAM) file for each

participant.27,29

Generated VCF files for each ONDRI participant were anno-

tated using VarSeq® (Golden Helix, Bozeman, MT, USA). Annotations

included sequence ontologies, minor allele frequencies (MAFs) from

the Genome Aggregation Database (gnomAD; version 3.1), in silico

prediction scores from Combined Annotation Dependent Depletion

(CADD, version 1.3), and ClinVar pathogenicity classifications. The

variant data were then filtered to include only those within genes

on ONDRISeq that had been previously associated with SVD or neu-

rovasculopathy, namely, ABCC6, COL4A1, COL4A2, HTRA1, NOTCH3,

SAMHD1, and TREX1. Of the variants in these genes, we identi-

fied those considered non-synonymous, including missense variants,

frameshift insertions or deletions, non-frameshift insertions or dele-

tions, nonsense variants, and splicing variants. Variants were further

prioritized to identify those most likely to be deleterious, first by iden-

tifying those considered rare in the general population (MAF < 0.01,

gnomAD version 3.1), then by selecting variants with a CADD score ≥

20 (top 1% of deleterious variants in the human genome)30 or variants

that had been classified as pathogenic or likely pathogenic in ClinVar.

All prioritized variants are hereafter referred to as “non-synonymous,

rare variants of interest.” The genes SAMHD1 and TREX1 were elim-

inated from further analysis, as no non-synonymous, rare variants of

interest were identified in SAMHD1 and only two non-synonymous,

rare variants of interest were identified in TREX1, each carried by only

a single ONDRI participant.

Based on the similar molecular pathways and disease associa-

tions of the genes under study and to preserve statistical power due

to our modest sample size, rare, non-synonymous variants of inter-

est identified in COL4A1 or COL4A2 were binned, as were variants

of interest identified in NOTCH3 or HTRA1. Participants carrying a

non-synonymous, rare variant of interest in at least one of ABCC6,

COL4A1/COL4A2, or NOTCH3/HTRA1 were considered variant posi-

tive, while those not carrying a variant in at least one a gene bin were

considered variant negative.

All ONDRI participants were also assessed for the APOE genotype

using the ONDRISeq data by extracting calls for the APOE variants

rs429358(CT):p.Cys130Arg and rs7412(CT):p.Arg176Cys and map-

ping to the respective genotype, as previously described.31 Any partic-

ipant carrying at least one copy of either the ε2 or ε4 genotype were

considered APOE variant positive, as both variants have been previ-

ously shown to increase the presence of SVDmarkers, includingWMH

burden.32–34

2.3 Neuroimaging

Of the 520ONDRI study participants, 513 had usable 3 TeslaMRI that

included the following sequences: three-dimensional (3D)T1-weighted

(T1), interleaved proton density and T2-weighted (T2), and T2-fluid

attenuated inversion recovery (FLAIR). Imaging protocol details were

publishedpreviously.35 AllMRI imageswere evaluated to ensure excel-

lent imaging quality by a medical biophysicist (R.B.) and for clinical

incidental findings by a licensed neuroradiologist (S.S.). Neuroimaging-

based markers for cerebral SVD (WMH, PVS, lacunes) were quantified

using ONDRI’s standardized image-processing pipeline36 in compli-

ance with the STRIVE criteria.2 Following initial segmentation, PVS

and lacunar counts were generated using a 3D, six-connected voxel

connectivity contour segmentation algorithm.37

2.4 Statistical analyses

Of the 513 ONDRI participants with usable 3 Tesla MRI and 519

ONDRI participants that underwent genetic testing, 512 had both

imaging and genetics data available. However, two participants’

imaging segmentation failed quality control of the aforementioned
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4 DILLIOTT ET AL.

TABLE 1 Participants in ONDRI carrying non-synonymous, rare variants of interest in CVD-associated genes.

Cohort

Sample

size

ABCC6 variant
positive

COL4A1/COL4A2
variant positive

HTRA1/NOTCH3
variant positive

ONDRI 510 27 (5.3%) 28 (5.5%) 42 (8.2%)

AD/MCI 126 5 (4.0%) 8 (6.3%) 8 (6.3%)

ALS 38 1 (2.6%) 2 (5.3%) 3 (7.9%)

FTD 52 1 (1.9%) 3 (5.8%) 3 (5.8%)

PD 139 6 (4.3%) 10 (7.2%) 15 (10.8%)

CVD 155 14 (9.0%) 5 (3.2%) 13 (7.9%)

Abbreviations: AD/MCI, Alzheimer’s disease/mild cognitive impairment; ALS, amyotrophic lateral sclerosis; CVD, cerebrovascular disease with or without

cognitive impairment; FTD, frontotemporal dementia; ONDRI, Ontario Neurodegenerative Disease Research Initiative; PD, Parkinson’s disease.

image-processing pipeline, resulting in a final ONDRI total cohort size

of 510 used in our analyses.

Multiple regression models were used to estimate effects across

the three neuroimaging-based markers of SVD (PVS, lacunes, and

WMH) as a function of carrier status of rare, non-synonymous vari-

ants of interest in each of the gene bins (ABCC6, COL4A1/COL4A2,

and HTRA1/NOTCH3) and of disease cohort (AD/MCI, ALS, FTD, PD,

CVD),while also accounting for interactions between the genebins and

disease cohort.

The individual coefficient estimates were used to determine the

extent to which predictor variables contributed to each neuroimag-

ing metric. We applied negative binomial generalized linear models

for the outcome variables that were counts, namely, PVS counts and

lacune counts, whereas we applied Gamma log distribution general-

ized linear models for the continuous variable of WMH volume. All

multiple regression models were adjusted for age, sex, supratentorial

total intracranial volume (head size), smoking history, andAPOE carrier

status.

To maximize statistical power based on our modest sample sizes,

participants diagnosed with AD and participants diagnosed with MCI

were binned into a single AD/MCI cohort. Participant disease cohorts

were transformed using a weighted effect coding with the wec R

package version 0.4-1,38 which adjusts the point of reference for the

dataset to be the sample mean of all participants, regardless of cohort.

However, one cohort needed to be excluded from the model coding

to avoid statistical redundancy. As the ALS cohort was reported to

have the least amount of SVD pathology anecdotally, it was chosen as

the remainder cohort. The model was rerun using FTD as the omitted

cohort to obtain coefficient estimates for the ALS cohort that could be

included in the visualizations of the results.39

To adjust for multiple comparisons, corrected p values were cal-

culated using the Benjamini–Hochberg false discovery rate (FDR)

method.40 Significance for the multiple regression models was then

measured at an alpha level of 0.05.

Statistical estimates were calculated using R statistical software

version 3.6.041 in R Studio 1.1.463, and data visualization was per-

formed using the ggplot2 R package version 3.3.s.42

3 RESULTS

3.1 Study participants and variant prioritization

In total, after quality control evaluation, genomic and neuroimaging

data were available for 510 ONDRI participants (AD/MCI = 126,

ALS = 38, FTD = 52, PD = 139, CVD = 155), of which 104 car-

ried a non-synonymous, rare variant of interest in at least one of

the genes: ABCC6, COL4A1, COL4A2, HTRA2, NOTCH3 (Table 1). Of

the genes examined in this study, 14 unique variants were found in

ABCC6, 11 unique variants were found in COL4A1, nine unique vari-

ants were found in COL4A2, six unique variants were found in HTRA1,

and21uniquevariantswere found inNOTCH3 (Supplemental Table S1).

All variants identified were of heterozygous zygosity. HTRA1/NOTCH3

non-synonymous, rare variants of interest were found at the great-

est frequency in the full ONDRI cohort, with the highest proportion of

carriers in the PD cohort. Four participants were found to carry rare

variants in multiple gene groupings, including two participants diag-

nosed with CVD carrying rare variants in ABCC6 and NOTCH3, one

participant diagnosed with PD carrying rare variants in ABCC6 and

HTRA1, and one participant diagnosed with FTD carrying rare variants

in COL4A2 and NOTCH3. Demographic and whole-brain volumetric

comparisons of the ONDRI participants carrying a non-synonymous,

rare variant of interest in a SVD-associated gene to non-carriers are

displayed in Table 2.

Using multiple regression models, we assessed the contribution of

variant carrier status in ABCC6, COL4A1/COL4A2, or NOTCH3/HTRA1;

disease cohort; and the two predictor variables to the neuroimaging

volumetrics PVS count, lacune count, and WMH volume. Including an

interaction term between disease cohort and variant carrier status

within the model allowed us to determine the influence of carrying a

non-synonymous, rare variant of interest on participant neuroimaging

volumetrics in each individual ONDRI disease cohort. Supplementary

Figure S1 displays the magnitude of difference in the neuroimaging

volumetrics of participants carrying non-synonymous, rare variants of

interest in ABCC6, COL4A1/COL4A2, and NOTCH3/HTRA1 in compar-

ison to non-carriers across the full ONDRI cohort, as well as in each
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DILLIOTT ET AL. 5

TABLE 2 Demographics andwhole-brain volumetrics frommagnetic resonance imaging comparison of ONDRI participants carrying and not
carrying non-synonymous, rare variants of interest in a CVD-associated gene.

Descriptor Total cohort Variant carriers Variant non-carriers Effect size

Sample size 510 95 415

Demographics

Sex (male:female) 341:169 61:34 280:135 2.7e-2

Age (yr) 68.6 (7.7) 69.0 (7.2) 68.6 (7.9) 4.0e-4

Education (yr) 14.9 (2.9) 15.0 (2.8) 14.9 (3.0) 4.0e-4

MoCA 24.4 (3.4) 24.9 (3.2) 24.3 (3.4) 4.1e-3

Modified Rankin score 1.4 (0.9) 1.3 (0.8) 1.5 (0.9) 4.9e-3

Whole-brain volumetrics

Supratentorial intracranial volume (cc) 1.3e6 (1.4e5) 1.2e6 (1.5e5) 1.3e6 (1.4e5) 3.0e-4

Normal-appearing whitematter (cc) 4.1e5 (6.6e4) 4.0e5 (6.7e4) 4.1e5 (6.6e4) 2.2e-3

Normal-appearing graymatter (cc) 5.5e5 (5.5e4) 5.4e5 (6.0e4) 5.5e5 (5.4e4) 2.0e-4

Sulcal cerebrospinal fluid (cc) 2.5e5 (6.0e4) 2.5e5 (6.3e4) 2.5e5 (6.0e4) 2.0e-5

Ventricular cerebrospinal fluid (cc) 4.1e4 (2.3e4) 4.0e4 (2.2e4) 4.1e4 (2.3e4) 0.0

PeriventricularWMH (mm3) 5.6e3 (8.4e3) 7.5e3 (1.1e4) 5.2e3 (7.5e3) 1.2e-2

DeepWMH (mm3) 6.5e2 (9.8e2) 7.3e2 (1.0e3) 6.3e2 (9.7e2) 1.4e-3

APOE 𝜺2 or 𝜺4 carriers 222 44 178 2.7e-2

Note: Values in table representmean (standard deviation). Effect sizes were calculated using eta squared of an ANOVAmodel. A large effect size is defined as

>0.8, whereas a small effect size is defined as<0.2. All effect sizes reportedwere considered small.

Abbreviations: APOE, apolipoprotein E;MoCA,Montreal Cognitive Assessment;WMH, whitematter hyperintensities; yr, years.

individual disease cohort. To best illustrate these comparisons, disease

effects were removed.

3.2 Associations between ABCC6, COL4A1, and
COL4A2 and SVD burden

Carrying a non-synonymous, rare variant of interest in ABCC6 or

COL4A1/COL4A2was not found to significantly influence ONDRI par-

ticipants’ PVS counts, lacune counts, or WMH volume across the full

ONDRI cohort (Supplemental Tables S2 and S3). Similarly, carrier sta-

tuses of rare variants of interest in ABCC6 or COL4A1/COL4A2 were

not significantly associated with SVD markers in either the individual

neurodegenerative disease cohorts or the CVD cohort.

3.3 Associations between HTRA1 or NOTCH3 and
SVD burden

In contrast, carrying a non-synonymous, rare variant of interest in

NOTCH3/HTRA1 was found to significantly influence brain imaging

outcomes both across the full ONDRI cohort and within specific diag-

nostic cohorts (Table 3).More specifically, carriers of non-synonymous,

rare variants of interest in NOTCH3/HTRA1 displayed significantly

higher WMH volumes, agnostic of participant diagnosis (p = 4.92e-

03, FDR: p = 1.82e-02; Figure 1A). Further, in participants diagnosed

with CVD, carrying a rare variant of interest in NOTCH3/HTRA1 was

associated with significantly increased WMH volume, although the

result was no longer significant following multiple testing correc-

tions (p = 4.94e-02, FDR: p = 1.30e-01; Figure 1B). No associations

of interest were observed between NOTCH3/HTRA1 variant status

and WMH volume in any of the individual neurodegenerative disease

cohorts.

Interestingly, the directions of association of non-synonymous, rare

variant of interest carrier status in NOTCH3/HTRA1 were not uniform

across the disease cohortswith respect to lacune count and PVS count.

Although variant status was not associated with lacune counts or PVS

counts agnostic of disease cohort compared to variant non-carriers

(Figures 2A and 3A, respectively), variant carriers diagnosedwith CVD

displayed a significantly greater number of lacunes (p= 9.93e-03, FDR:

p = 3.29e-02; Figure 2B) and PVS (p = 5.93e-04, FDR: p = 2.77e-

03; Figure 3B). Similarly, NOTCH3/HTRA1 variant carriers diagnosed

with AD/MCI displayed significantly greater number of lacunes than

non-carriers, but the result was not significant following multiple

testing corrections (p = 4.35e-02, FDR: p = 1.25e-01; Figure 2B).

In contrast, NOTCH3/HTRA1 variant carriers diagnosed with PD dis-

played significantly fewer lacunes than non-carriers (p = 1.38e-02,

FDR: p = 4.45e-02; Figure 2B), while carriers diagnosed with FTD dis-

played significantly fewer PVS, but again this result was not significant

following multiple testing corrections (p = 2.35e-02, FDR: p = 7.04e-

02; Figure 3B). No additional significant associations were identified

between non-synonymous, rare variant of interest carrier status in

NOTCH3/HTRA1 andbrain volumetric outcomes in anyof the individual

disease cohorts.
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DILLIOTT ET AL. 7

F IGURE 1 Whitematter hyperintensity (WMH) volume in theONDRI participants carryingNOTCH3/HTRA1 rare, non-synonymous variants
compared to variant negative participants. (A)WMHvolumes compared to head size volume inONDRI participants that carried a rare,
non-synonymous variant in eitherNOTCH3 orHTRA1 and those that did not. (B)WMHvolumes compared to head size volume of participants
within each disease cohort of ONDRI that carried a rare, non-synonymous variant in eitherNOTCH3 orHTRA1 compared to those that did not. P
values are presented for the interaction term of disease status and variant status from themultivariate regression analysis that modeledWMH
volume as a functionNOTCH3 orHTRA1 variant carrier status, disease cohort, and interactions between the two predictor variables, as well as
adjustment for head size, age, smoking history, and APOE ε2 or ε4 variant status. To avoid statistical redundancy, the ALS cohort was not coded in
the regressionmodel. ST_TIV, supratentorial total intracranial volume.

4 DISCUSSION

Herewe investigated the burden ofMRI-based SVDmarkers, including

lacunes, PVS, andWMH, in neurodegenerative disease patients carry-

ing non-synonymous, rare variants in genes previously associated with

cerebrovascular neuroimaging features – ABCC6, COL4A1, COL4A2,

HTRA1, andNOTCH3. It is well established that neurodegenerative dis-

eases, which are characterized by neuronal cell loss, display strong

genetic components likely driving disease pathology.43,44 However, in

recent years it has become increasingly more accepted that the course

and manifestation of neurodegenerative diseases are also influenced

by concurrent/comorbid cerebrovascular injury. In some cases, SVD

may drive a neurodegenerative phenotype, as is the case with vascular

dementia, whereas in other cases SVDcan exist as a concurrent pathol-

ogy or act as one of many contributors to disease presentation, such

as in AD and PD.45–47 In either scenario, it must be recognized that

theremay be unique genetic factors that can drive SVDmarkers, which

thereforemayalsohave relevance in neurodegenerativedisease risk or

features.

We determined that across all neurodegenerative disease and CVD

patients, non-synonymous, rare variant carrier status in ABCC6 or

COL4A1/COL4A2 did not significantly influence lacune count, PVS
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8 DILLIOTT ET AL.

F IGURE 2 Lacune counts in ONDRI participants carryingNOTCH3/HTRA1 rare, non-synonymous variants compared to variant negative
participants. (A) Distribution of lacune counts in ONDRI participants that carried a rare, non-synonymous variant in eitherNOTCH3 orHTRA1
compared to those that did not. (B) Distribution of lacune counts in each of the participants within each disease cohort of ONDRI that carried a
rare, non-synonymous variant in eitherNOTCH3 orHTRA1 compared to those that did not. P values are presented for the interaction term of
disease status and variant status from themultivariate regression analysis that modeled lacune count as a functionNOTCH3 orHTRA1 variant
carrier status, disease cohort, and interactions between the two predictor variables, as well as adjustment for head size, age, smoking history, and
APOE ε2 or ε4 variant status. To avoid statistical redundancy, the ALS cohort was not coded in the regressionmodel. Indicated P values are
uncorrected for multiple testing. Neg, variant negative; Pos, variant positive.

count, or WMH volume. In contrast, across all neurodegenerative dis-

eases, non-synonymous, rare variant carrier status in NOTCH3/HTRA1

was associated with higher WMH volumes. Yet the influence of vari-

ants in these genes had varying effects across the neurodegenerative

diagnoses with respect to lacune and PVS counts. While carriers of

NOTCH3/HTRA1 variants diagnosed with CVD displayed a greater

number of lacunes and PVS than non-carriers, carriers diagnosed

with PD displayed significantly fewer lacunes than non-carriers, which

is discussed further in what follows. Altogether, our results suggest

that genetic influence on SVD markers in neurodegenerative disease

patients is not only gene-specific but potentially disease-specific as

well.

In our neurodegenerative disease cohort, rare genetic variants

in HTRA1 or NOTCH3 exerted the greatest influence on markers of

SVD. As previously described, heterozygous pathogenic variants in

NOTCH3 are causative for CADASIL, while homozygous pathogenic

variants in HTRA1 are causative for CARASIL, with both phenotypes

sharing similar features, such as recurrent ischemic attacks, migraines

with aura, cognitive decline and dementia, and hallmark WMH.17,16,48

Within our cohort, there were more rare, non-synonymous variants

reported in NOTCH3 than in HTRA1 (n = 21 and n = 6, respectively),

and indeed, all HTRA1 variants reported were in the heterozygous

state. Yet, heterozygous variants in HTRA1 had been previously

associated with cerebral SVD but of lesser severity than CARASIL,

accounting for their inclusion in our analyses.49–51 Similarly, many

of the variants in NOTCH3 that we identified were not considered

typical of CADASIL pathogenicity, as theywere not cysteine-modifying

or located within an epidermal growth factor-like repeat; however,

previous studies suggested that these atypical NOTCH3 variants

might contribute to a CADASIL phenotype of milder severity or to

more generalized SVD.52–54 Therefore, while we are not suggest-

ing that the HTRA1 or NOTCH3 rare variants identified herein are

causing CARASIL or CADASIL, respectively, as confirmed by clinical

assessment of our study patients, our results do suggest that the
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DILLIOTT ET AL. 9

F IGURE 3 Enlarged PVS counts inONDRI participants carryingNOTCH3/HTRA1 rare, non-synonymous variants compared to variant negative
participants. (A) Distribution of PVS counts in ONDRI participants that carried a rare, non-synonymous variant in eitherNOTCH3 orHTRA1
compared to those that did not. (B) Distribution of PVS counts in each of the participants within each disease cohort of ONDRI that carried a rare,
non-synonymous variant in eitherNOTCH3 orHTRA1 compared to those that did not. P values are presented for the interaction term of disease
status and variant status from themultivariate regression analysis that modeled PVS count as a functionNOTCH3 orHTRA1 variant carrier status,
disease cohort, and interactions between the two predictor variables, as well as adjustment for head size, age, smoking history, and APOE ε2 or ε4
variant status. To avoid statistical redundancy, the ALS cohort was not coded in the regressionmodel. Indicated P values are uncorrected for
multiple testing. Neg, variant negative; Pos, variant positive.

identified non-synonymous, rare variants identified may contribute to

cerebrovascular injury in subjects, potentially acting as a contribut-

ing factor to neurodegenerative disease risk or modifying clinical

presentation and progression.

Specifically, we observed an association between NOTCH3/HTRA1

non-synonymous, rare variant carrier status and greaterWMHvolume

across the entire neurodegenerative disease cohort. The association

was unsurprising based on the striking hallmark of WMH in both

CADASIL and CARASIL. Additionally, a recent analysis of >200,000

participants who self-reported as healthy from the UK Biobank iden-

tified a significant association between NOTCH3 genetic variation and

increased WMH volume, as well as ultrastructural damage to white

matter.55 Notably, an association was also observed between HTRA1

or NOTCH3 variants and increased WMH volume in the CVD cohort;

however, this result did not pass multiple testing corrections, and

therefore, we believe it is unlikely for it to fully account for the asso-

ciation observed across the entire cohort and that the variation is still

influencing SVD markers across the neurodegenerative diseases as

well. What remains to be determined is how the influence of HTRA1

or NOTCH3 variants on WMH volume may contribute to neurode-

generative disease risk, presentation, and progression, particularly

due to the complex relationship between cerebrovascular injury and

neurodegeneration.

In contrast to the WMH analysis, NOTCH3/HTRA1 variant carrier

status had variable effects on lacune and PVS count across the neu-

rodegenerative disease cohorts. Interestingly, only the CVD cohort

displayed an association between genetic variation inNOTCH3/HTRA1

and PVS count, demonstrating a significant positive association, sug-

gesting that the genes have an influence onPVSonly in individualswith

a classical CVD phenotype.

As described, the PD cohort displayed the highest proportion of

HTRA1/NOTCH3 variant carriers. In fact, a previous gene-based rare

variant association analysis by our group identified a significant enrich-

ment ofNOTCH3 rare variants in thePDcohort,29 which led to an initial
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10 DILLIOTT ET AL.

investigation of the contribution of these variants to SVD features

in only the PD patients.56 Using a Bayesian approach, we identified

a doubling of WMH volume in PD patients carrying NOTCH3 vari-

ants compared to variant negative patients. Additionally,NOTCH3 rare

variation was associated with significantly increased lacune volumes.

Yet, we did not observe an association between HTRA1/NOTCH3 vari-

ant status and lacune count in the PD patients in the current analysis

that passed multiple testing corrections. These seemingly contradic-

tory findings highlight a current gap in the clinical-scientific literature

regarding the wide variation in definition of lacunes and the differ-

ences between lacunar counts versus volumes, size criterion, etiology

of infarction, and future cavitation.57,58 Given these issues and the dif-

ficulty of assessing the precise etiological origins (eg, lipohyalinosis vs

ostium/branch disease), theONDRI study’s neuroimaging group imple-

mented a multimodal imaging-based criterion for the segmentation of

subcortical lacunar infarcts, defined as regions that are hypointense on

T1, hyperintense on T2, and appearing with a hypointense central core

with a hyperintense rim on T2 FLAIR.36 They are differentiated from

PVS, which are isointense to gray matter on proton density, tend to be

smaller in diameter, and are more linear depending on the orientation

of the vasculature.2 Together with our previous results, this suggests

that, although the variant carriers do not have a greater number of

lacune counts than non-carriers, the lacunar volumes that are present

in the carriers tend to be much more substantial in size, potentially

resulting in greater clinical consequences.

Rare genetic variants in ABCC6, COL4A1, and COL4A2 did not

account for SVD markers in neurodegenerative disease patients in

our study. Of note, only heterozygous variants were observed in the

studied genes across our participants. Typically, a homozygous vari-

ant is required to cause the phenotype associatedwith ABCC6, namely,

pseudoxanthoma elasticum, although there have been reports of het-

erozygous variants in the gene causing a milder vascular disease.59,60

Yet these cases are rather uncommon, and, due to both the subtlety of

the influence of heterozygous ABCC6 variation and ourmodest sample

sizes,wemight not havebeen able to detect their phenotypic influence.

Further, pathogenic variants within COL4A1 and COL4A2 are most

associated with hemorrhagic stroke61–64; however, individuals in the

ONDRI cohort were documented to have experienced mild to moder-

ate ischemic stroke, and thosewith hemorrhagic strokewere excluded.

Again, this likely limited the number of variant carrierswithin our study

and, therefore, the ability to detect associations between the collagen

chain genes andmarkers of SVD.

In addition to the limitations imposed by our modest sample sizes

described earlier, which might have increased the incidence of results

that did not survive multiple testing corrections, the presented work

was also inherently limited by focusing upon rare variation, which nat-

urally resulted in fewer variant positive patients to analyze.However, it

is generally accepted that variants that are less common in the general

population will have a greater likelihood of higher phenotypic effects.

Further, our study lackedanormative sample todeterminewhether the

observed associations were specific to neurodegenerative and CVD

cohorts, or whether similar results would have been observed in a

healthy elderly population. Finally,wedidnot further analyze theeffect

of the SVD-associated genes on clinical outcomes or co-morbid vascu-

lar risk, again due to the limited powerwithin our study. These analyses

will be important for future investigations using larger sample sizes.

The mechanisms by which rare variants in SVD-associated genes

– such as HTRA1 and NOTCH3 – may contribute to cerebrovascu-

lar injury in neurodegenerative disease patients and how that injury

may influence progression of neurodegeneration remain to be deter-

mined. Yet, our findings highlight the importance of comprehensive

genetic study in understanding the development of SVD markers and

the potential contribution to neurodegenerative disease, particularly

in light of recent literaturehighlighting thevalueof clinical genetic test-

ing in cases of cerebral SVD and neurological phenotypes that present

with features of SVD. Our results suggest that variants in these genes

indeed alter the burden of MRI-based SVD markers in a variety of

neurodegenerative disease patients and demonstrate that potential

downstream effects on clinical correlates, pathogenesis, and disease

progressionmust be further explored.
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