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Abstract 

Background Neuropsychiatric symptoms (NPS) are a core feature of most neurodegenerative and cerebrovascular 
diseases. White matter hyperintensities and brain atrophy have been implicated in NPS. We aimed to investigate the 
relative contribution of white matter hyperintensities and cortical thickness to NPS in participants across neurodegen‑
erative and cerebrovascular diseases.

Methods Five hundred thirteen participants with one of these conditions, i.e. Alzheimer’s Disease/Mild Cognitive 
Impairment, Amyotrophic Lateral Sclerosis, Frontotemporal Dementia, Parkinson’s Disease, or Cerebrovascular Disease, 
were included in the study. NPS were assessed using the Neuropsychiatric Inventory – Questionnaire and grouped 
into hyperactivity, psychotic, affective, and apathy subsyndromes. White matter hyperintensities were quantified using 
a semi‑automatic segmentation technique and FreeSurfer cortical thickness was used to measure regional grey mat‑
ter loss.
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Results Although NPS were frequent across the five disease groups, participants with frontotemporal dementia had 
the highest frequency of hyperactivity, apathy, and affective subsyndromes compared to other groups, whilst psy‑
chotic subsyndrome was high in both frontotemporal dementia and Parkinson’s disease. Results from univariate and 
multivariate results showed that various predictors were associated with neuropsychiatric subsyndromes, especially 
cortical thickness in the inferior frontal, cingulate, and insula regions, sex(female), global cognition, and basal ganglia‑
thalamus white matter hyperintensities.

Conclusions In participants with neurodegenerative and cerebrovascular diseases, our results suggest that smaller 
cortical thickness and white matter hyperintensity burden in several cortical‑subcortical structures may contribute to 
the development of NPS. Further studies investigating the mechanisms that determine the progression of NPS in vari‑
ous neurodegenerative and cerebrovascular diseases are needed.

Keyword White matter hyperintensities, Cortical thickness, Neuropsychiatric symptoms, Neurodegenerative disease, 
Cerebrovascular disease

Background
Neuropsychiatric symptoms (NPS) (such as depression, 
anxiety, apathy, psychosis, and disinhibition) are com-
monly reported in neurodegenerative and cerebrovas-
cular diseases [1]. Their high frequency and increased 
severity are associated with higher patient distress, 
increased caregiver burden, and higher rates of institu-
tionalised care [2, 3]. Moreover, the frequency of NPS 
varies across the various neurodegenerative and cerebro-
vascular disease. Affective symptoms like anxiety and 
depression are more prevalent in Alzheimer’s disease 
(AD) and vascular dementia (VaD) [4–7]. Apathy is most 
commonly reported in AD and frontotemporal demen-
tia (FTD), and associated with functional impairment 
and disease progression [8, 9]. But the pattern of apathy 
presentation differs such that AD-related apathy is indic-
ative of depression, cognitive dysfunction, and conver-
sion from amnestic mild cognitive impairment (aMCI) 
to AD [10, 11], whilst FTD-related apathy is associated 
with measures of social cognition and executive dysfunc-
tion [11–13]. Moreover, the apathy symptoms observed 
in FTD have also been reported in ALS with behavioural 
variant FTD (bvFTD) [14, 15]. In Parkinson’s disease 
(PD), depression and anxiety are also present in addi-
tion to apathy, fatigue, sleep disturbances, and psychosis 
[16, 17]. Since the manifestation of NPS likely represents 
brain abnormalities and may reflect progression of dis-
ease, it is important to recognise the neural basis of NPS 
in neurodegenerative and cerebrovascular diseases.

Regional brain changes have been implicated in 
NPS in neurodegenerative and cerebrovascular dis-
eases [5, 12, 15, 18–23]. Symptoms of apathy, anxiety, 
and depression reported in aMCI have been linked to 
smaller cortical thickness and volume in the frontal, 
temporal, and parietal regions [5, 19, 21]. In PD, lower 
frontal lobe volume was related to affective, psychotic, 
and apathy symptoms [22], whilst a smaller cortical 
thickness and volume of the frontotemporal, insular, 

and limbic regions was related to apathy and disinhi-
bition in FTD and ALS [12, 15, 23]. In cerebrovascular 
disease (CVD), appetite/eating behaviour, depression, 
and apathy has been associated with smaller hippocam-
pal, middle, and posterior cingulate volumes [24–26]. 
Although these studies suggest that NPS, particularly 
affective, apathy, and psychotic symptoms are most 
frequently associated with grey matter alterations in 
the fronto-subcortical circuitries, white matter lesions 
such as white matter hyperintensities (WMH) have also 
been implicated in NPS [27–32].

WMH have traditionally been attributed to either 
cerebrovascular disease [33], ageing [34], or neuroin-
flammatory processes [35]. In most neurodegenera-
tive diseases, they are attributed to small vessel disease 
(SVD) [33]. However, these assumptions are being 
questioned as there is increasing evidence that non-
vascular pathology such as tau-mediated secondary 
demyelination or microglial dysfunction may also con-
tribute to WMH in neurodegenerative diseases [36]. In 
the context of presumed vascular origin, WMH in the 
frontal, parieto-occipital, and basal ganglia areas have 
been related to psychotic symptoms in AD [27]. Fur-
thermore, greater WMH load (particularly in the fron-
tal lobe) has been associated with greater delusions, 
hallucinations, anxiety, apathy, and depression in both 
AD and VaD [28–32, 37], as well as severe apathy and 
night time behaviour in FTD [37], and depression in PD 
with dementia [38].

Whilst changes in brain thickness, volume, and WMH 
burden have been associated with NPS, not many studies 
have investigated their contributions to NPS across mul-
tiple neurodegenerative and cerebrovascular diseases. 
This limitation may be partly due to the lack of transdi-
agnostic datasets, as previous research have focused on 
analyses within a single disease [39] or multiple diseases, 
mainly consisting of VaD, AD/MCI, and mixed dementia 
[31, 40], occasionally PD and FTD [30, 37], and none on 
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ALS. Thus, the aims of the present study were to compare 
the frequency of NPS across multiple neurodegenerative 
and cerebrovascular diseases and to determine its rela-
tionship with WMH burden and cortical thickness across 
all cohorts. We hypothesised that all cohorts would dis-
play high frequency of NPS, particularly in participants 
with FTD and it will be associated with both WMH bur-
den and a smaller focal cortical thickness.

Methods
Participants and study design
Study participants were enrolled as part of Ontario Neu-
rodegenerative Disease Research Initiative (ONDRI), a 
multi-centre, multiple assessment, longitudinally obser-
vational study conducted in nine tertiary care academic 
medical centres in Ontario, Canada. Detailed inclusion 
and exclusion criteria for each diagnostic cohort (dx) 
are reported elsewhere [41, 42]. Briefly, AD/MCI par-
ticipants met National Institute on Aging Alzheimer’s 
Association criteria for probable or possible AD, or aMCI 
[43, 44]; ALS participants met El Escorial World Federa-
tion of Neurology diagnostic criteria for possible, prob-
able, or definite familial or sporadic ALS [45]; the latest 
criteria were used for possible or probable bvFTD [46], 
for agrammatic/non-fluent and semantic variants of pri-
mary progressive aphasia (nfvPPA and svPPA) [47] and 
possible or probable progressive supranuclear palsy (PSP) 
and corticobasal syndrome (CBS) [48]; PD participants 
met criteria for idiopathic PD defined by the United 
Kingdom’s Parkinson’s Disease Society Brain Bank clini-
cal diagnostic criteria [49]; and CVD participants had 
experienced a mild or moderate ischemic stroke event 
(documented on MRI or CT) 3 or more months prior 
to enrolment in compliance with the National Institute 
of Neurological Disorders and Stroke-Canadian Stroke 
Network vascular cognitive impairment harmonisation 
standards [50]. The study was approved by each partici-
pating institution’s Research Ethics Board and performed 
in accordance with the Declaration of Helsinki. All par-
ticipants provided informed consent and subsequently 
underwent clinical evaluation and MRI, in addition to 
the other assessments as part of the full ONDRI protocol 
described elsewhere [41]. The current project only used 
data from the baseline evaluation.

Measures
Neuropsychiatric symptoms (NPS) assessment
The Neuropsychiatric Inventory-Questionnaire (NPI-Q) 
was used to assess NPS observed in dementia [51]. Spe-
cifically, the study partners completed a questionnaire, 
where they indicated the presence and severity (mild, 
moderate, and severe) of 12 common NPS. This ques-
tionnaire also measured the level of distress (on a 5-point 

scale) the NPS caused the study partner. A total NPI-Q 
severity score was the sum of all the individual symp-
tom severity scores and the total NPI-Q study partner 
distress score was the sum of all the individual symptom 
study partner distress scores. For the current study, we 
classified the symptoms into four neuropsychiatric sub-
syndrome groups in accordance with the European Alz-
heimer’s Disease Consortium [52], and the score for each 
subsyndrome was the sum of all the symptom severity 
scores in the subsyndrome: hyperactivity subsyndrome 
(agitation/aggression, euphoria/elation, irritability/labil-
ity, disinhibition, and aberrant motor behaviour); psy-
chotic subsyndrome (hallucinations, delusions, and night 
time behaviours); affective subsyndrome (depression/
dysphoria and anxiety); and apathy subsyndrome (apa-
thy/indifference and appetite/eating).

Global cognitive and functional assessments
Global cognitive function was evaluated using the Mon-
treal Cognitive Assessment (MoCA) on all participants 
[53] for which the total score was adjusted for educa-
tional attainment, and they were rated on instrumental 
activity of daily living (iADLs) and activity of daily living 
(ADLs) by their study partners [54].

Vascular risk factors
Participants were considered to have vascular risk factors 
if they reported to have received a diagnosis of hyperten-
sion, diabetes, and/or high cholesterol during medical 
history interview in addition to smoking history. Fur-
thermore, we created a total measure of vascular risk fac-
tors burden per participant by counting the occurrences 
where they indicated a diagnosis of hypertension, diabe-
tes, and/or high cholesterol, and having ever smoked for 
3 or more months.

MRI acquisition
MRI scans were acquired using 3 Tesla MRI systems. 
MRI protocols details are published elsewhere [55, 56] 
and harmonised with the Canadian Dementia Imaging 
Protocol (CDIP) [57]. Briefly, the structural MRI used 
in this specific analysis of ONDRI data included the fol-
lowing sequences: high-resolution three-dimensional 
T1-weighted, interleaved proton density, T2-weighted, 
and T2 fluid-attenuated inversion recovery.

Image processing
White matter hyperintensity estimation
A detailed description of ONDRI structural processing 
pipeline methods has been described elsewhere [56]. 
Briefly, ONDRI’s neuroimaging platform used previ-
ously published and validated methods [58–64] and 
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outputs were further subjected to comprehensive qual-
ity control measures from ONDRI’s neuroinformatics 
platform [65]. The final output of the neuroimaging 
pipeline produced a skull-stripped brain mask with 
segmented voxels comprising normal appearing white 
matter, normal appearing grey matter, ventricular and 
sulcal cerebrospinal fluid, deep and periventricular 
lacunes, perivascular spaces, cortico-subcortical stroke 
lesion, periventricular WMH (pWMH), and deep 
WMH (dWMH). The 10 tissue classes were further 
combined with ONDRI’s 28 regional parcellation to 
create 280 distinct brain regions [56].

For the purpose of this study, we combined both 
pWMH and dWMH volumes. This was derived by 
extracting brain parcellations that intersected with WMH 
segmentation and adding them to create 5 regional 
WMH volumes: frontal, parietal, temporal, occipital, 
and basal ganglia/thalamus (BGT). Each regional WMH 
volume was brain volume corrected using supratento-
rial total intracranial volume (ST-TIV) and log trans-
formed + small constant to achieve normal distribution:

Corrected and transformed regional WMH vol-
ume = log((x / STTIV) + 0.0001); where x = uncor-
rected and untransformed regional WMH volume.

Cortical thickness estimation
All scans were processed using the stable version of 
FreeSurfer (FS) (Linux FSv6.0). Details of FreeSurfer 
pipeline have been previously described [66, 67]. Briefly, 
the standard reconstruction steps included skull strip-
ping, WM segmentation, intensity normalisation, sur-
face reconstruction, subcortical segmentation, cortical 
parcellation, and thickness. A modified FreeSurfer pipe-
line was used that incorporated ONDRI’s skull stripped 
and lesion masks to decrease overall failure rates in par-
ticipants with significant atrophy and SVD [68].

Cortical thickness was measured as the distance 
between the GM and WM boundaries (WM surface) to 
GM and CSF boundaries (pial surface) on the cortex in 
each hemisphere. We extracted the 68 cortical thickness 
regions from the Desikan-Killany atlas for further regres-
sion analyses [69].

Statistical analyses
Statistical analyses were conducted using R (v 3.4.1) 
and figures generated using ggplot2 package [70]. One-
way ANOVA was used to determine group differences 
on age, education, MoCA score, ADLs, iADLs, NPI-Q 
total severity, and NPI-Q caregiver distress. Chi-square 
test was performed to look for group differences in sex, 
history of vascular risk factors, and frequencies of NPS 
across groups. One-way MANOVA was conducted to 

determine group differences on hyperactivity, psychotic, 
affective, and apathy subsyndromes. Sex differences in 
frequencies of NPS were performed using chi-square or 
Fisher’s exact tests where appropriate. Group differences 
on ST-TIV adjusted log transformed regional WMH vol-
umes was analysed using one-way MANCOVA, whilst 
controlling for age. Bonferroni post hoc correction was 
used where applicable. We ran a linear regression to 
examine the association between total vascular risk fac-
tors burden and log transformed ST-TIV corrected total 
WMH load, adjusted for age and sex.

Elastic net models and partial least square correlation
The two approaches that we used to determine the rela-
tionships between neuropsychiatric subsyndromes, 
cortical thickness regions, and lobar WMH volumes 
have been described in details elsewhere [71]. Firstly, 
we employed a univariate approach with elastic net 
(LASSO + ridge penalised regression) which is a sparse 
(LASSO) and penalised (ridge) procedure that suppresses 
coefficients to zero and helps identify the best subset of 
explanatory variables for a dependent variable [72, 73]. 
Each elastic net model consisted of neuropsychiatric 
subsyndrome ~ sex + age + MoCA + 68 cortical thickness 
regions + 10 lobar WMH. Alpha was set to equals 1 which 
was the elastic net penalty parameter for LASSO and we 
used glmnet’s internal cross-validation to search over the 
lambda parameter (ridge). Using a repeated train-test 
procedure, 75% of the data was used for internal cross-
validation to identify the lambda parameter with k-folds 
equals 10, whilst the remaining 25% were used to test 
the model and report the lambda values with the mean 
square error (MSE). The above steps were repeated 500 
times to construct a consensus of variables with the low-
est MSE from the test step. We identified all models from 
the 500 repeats where a lambda value corresponded to 
the lowest MSE approximately 5% of the time. That is, 
models corresponding to lambda values that appeared 
approximately 25/500 times were retained, and those var-
iables saved. We preserved the sex-by-dx distribution of 
the entire sample for the repeated splits.

Secondly, a multivariate approach with partial least 
square correlation (PLSc) was used to model the relation-
ship between all four neuropsychiatric subsyndromes 
and the independent variables (sex, age, MoCA, corti-
cal thickness regions, and lobar WMH volumes). Two 
resampling methods were used to help identify which 
components to interpret (permutation) [74–76], and to 
identify which variables were the most stable contribu-
tors to the components (bootstrap) [74, 77, 78]. We also 
preserved the sex-by-dx distribution of the entire sample 
for resampling.
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Table 1 Demographic, clinical, and neuroimaging characteristics across diagnostic groups

η2 = Partial Eta Squared V = Cramer’s V

AD Alzheimer’s disease, ADLs Activities of daily living, ALS Amyotrophic lateral sclerosis, BGT Basal ganglia/thalamus, CVD Cerebrovascular disease; FTD Frontotemporal 
disease, iADLs instrumental activities of daily living, MCI Mild cognitive impairment, MoCA Montreal Cognitive Assessment, NPI-Q Neuropsychiatric Symptoms 
Inventory Questionnaire, PD Parkinson’s disease

AD/MCI 
(N = 126)
Mean (SD)

ALS 
(N = 40)
Mean (SD)

FTD 
(N = 52)
Mean (SD)

PD 
(N = 140)
Mean (SD)

CVD 
(N = 155)
Mean (SD)

Effect size η2/V F/χ2, p-value

Age (years) 71.03 (8.16) 61.98 (8.74) 67.81 (7.12) 67.94 (6.34) 69.35 (7.36) η2 = 0.09 F(4,508) = 12.18, 
p < 0.001a

Sex (F:M) (% F) 57:69 (45.2) 16:24 (40.0) 19:33 (36.5) 31:109 (22.1) 49:106 (31.6) V = 0.18 χ 2 (4) = 17.11, 
p = 0.002

Education (years) 15.23 (3.08) 13.83 (2.88) 13.89 (2.73) 15.49 (2.73) 14.69 (2.88) η2 = 0.04 F(4,508) = 5.09, 
p = 0.001b

MoCA total score 22.67 (2.99) 25.46 (2.83) 21.48 (3.96) 25.84 (2.57) 25.29 (2.99) η2 = 0.22 F(4,507) = 12.18, 
p < 0.001c

ADLs 98.15 (4.59) 87.50 (13.95) 87.58 (15.65) 96.56 (7.34) 98.32 (5.42) η2 = 0.19 F(4,483) = 27.92, 
p < 0.001d

iADLs 85.28 (17.29) 78.27 (21.67) 60.99 (27.70) 89.73 (14.06) 91.13 (14.21) η2 = 0.21 F(4,474) = 32.05, 
p < 0.001e

Vascular risk
factors, n (% yes)

 Hypertension 34 (64.2) 10 (71.4) 19 (70.4) 47 (69.1) 113 (83.7) V = 0.19 χ 2 (4) = 10.46, 
p = 0.036

 Diabetes 25 (34.2) 2 (10.5) 8 (27.6) 13 (19.1) 34 (26.2) V = 0.14 χ 2 (4) = 6.69, 
p = 0.159

 High choles‑
terol

58 (79.5) 12 (63.2) 27 (93.1) 57 (83.8) 121 (93.1) V = 0.24 χ 2 (4) = 17.94, 
p = 0.001

 Smoking 67 (53.2) 22 (55.0) 28 (53.8) 58 (41.4) 84 (54.2) V = 0.11 χ 2 (4) = 6.37, 
p = 0.173

NPI-Q Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)
 NPI‑Q total 
severity score

3.67 (3.96) 3.08 (3.68) 8.08 (6.24) 3.51 (3.92) 3.16 (3.88) η2 = 0.11 F(4,469) = 14.00, 
p < 0.001f

 NPI‑Q car‑
egiver distress 
score

4.12 (5.01) 3.74 (5.29) 9.00 (9.18) 4.05 (5.69) 3.55 (5.34) η2 = 0.07 F(4,461) = 8.28, 
p < 0.001g

Neuropsychiatric 
subsyndromes

Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE)

 Affective 0.81 (0.11) 0.70 (0.18) 1.35 (0.16) 0.86 (0.10) 0.57 (0.10) η2 = 0.04 F(4,486) = 4.46, 
p = 0.002 h

 Apathy 0.86 (0.11) 0.76 (0.19) 2.14 (0.17) 0.76 (0.11) 0.68 (0.10) η2 = 0.11 F(4,486) = 14.53, 
p < 0.001i

 Hyperactivity 1.49 (0.18) 0.98 (0.31) 3.41 (0.27) 0.86 (0.17) 1.27 (0.16) η2 = 0.12 F(4,486) = 17.09, 
p < 0.001j

 Psychosis 0.48 (0.10) 0.43 (0.16) 1.39 (0.15) 1.01 (0.09) 0.60 (0.09) η2 = 0.08 F(4,486) = 10.45, 
p < 0.001k

Regional WMH 
(mm3)†

Adjusted mean 
(SE)

Adjusted mean 
(SE)

Adjusted mean 
(SE)

Adjusted mean 
(SE)

Adjusted mean 
(SE)

 Frontal 1508.59 (296.13) 1792.83 (535.23) 1797.59 (455.46) 1957.33 (277.74) 3744.89 (263.99) η2 = 0.08 F(4,507) = 10.37, 
p < 0.001l

 Parietal 1090.54 (335.25) 1942.71 (605.93) 1401.15 (515.62) 1715.61 (314.43) 3748.51 (298.86) η2 = 0.09 F(4,507) = 13.19, 
p < 0.001m

 Occipital 655.97 (74.45) 750.73 (134.57) 599.54 (114.51) 759.25 (69.83) 900.43 (66.37) η2 = 0.02 F(4,507) = 2.19, 
p = 0.069

 Temporal 525.24 (94.64) 644.06 (171.05) 599.86 (145.56) 664.23 (88.76) 1245.17 (84.37) η2 = 0.07 F(4,507) = 9.57, 
p < 0.001n

 BGT 82.59 (24.51) 69.62 (44.30) 118.05 (37.69) 181.31 (23.99) 267.43 (21.85) η2 = 0.09 F(4,507) = 12.55, 
p < 0.001 o
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Results
Participant demographic and clinical characteristics
A total of 513 participants (AD/MCI (N = 126), ALS 
(N = 40), FTD (N = 52), PD (N = 140), and CVD (N = 155)) 
with available baseline MRIs were included in this analy-
sis. In the FTD group, 21 (40.4%) were diagnosed with 
bvFTD, 8 (15.4%) were diagnosed with nfvPPA, 4 (7.7%) 
were diagnosed with svPPA, 16 (30.8%) were diagnosed 
with PSP-Richardson syndrome, and 3 (5.8%) were diag-
nosed with CBS. Participants’ demographic and clini-
cal characteristics are displayed in Table  1. All groups 
differed in terms of age, education, sex, MoCA, ADLs, 
iADLs, hypertension, and high cholesterol.

Results after Bonferroni post hoc correction showed 
that there were significant differences across all five dx 
groups on four lobar WMH volumes adjusting for age, 
with the CVD group showing the highest lobar WMH 
volumes (Table  1). There was a significant associa-
tion between total vascular risk factors and WMH load 
(β = 0.176; p < 0.001; CI = 0.094–0.244), i.e. having a larger 
number of vascular risk factors burden was related to 
increased WMH load after adjusting for age and sex.

NPS across dx groups
Although NPS were common across the five disease groups, 
participants with FTD had the highest frequencies (Table 2; 
Fig.  1). Agitation, anxiety, apathy, appetite, disinhibition, 

a  ALS < AD/MCI ( p < 0.001), FTD ( p = 0.002), PD (p < 0.001), and CVD ( p < 0.001); PD < AD/MCI ( p = 0.007)
b  FTD < AD/MCI ( p = 0.047) and PD ( p = 0.007); ALS < PD ( p = 0.014)
c  AD/MCI < ALS, PD, and CVD ( p < 0.001); FTD < ALS, PD and CVD ( p < 0.001).
d  ALS < AD/MCI, PD, and CVD ( p < 0.001); FTD < AD/MCI, PD, and CVD ( p < 0.001)
e  ALS < PD ( p = 0.003) and CVD ( p < 0.001); FTD < AD/MCI, ALS, PD, and CVD ( p < 0.001)
f  FTD > AD/MCI, ALS, PD, and CVD ( p < 0.001)
g  FTD > AD/MCI, PD, and CVD ( p < 0.001), FTD > ALS ( p = 0.001)
h  FTD > CVD (p < 0.001)
i  FTD > AD/MCI, ALS, PD, and CVD (p < 0.001)
j  FTD > AD/MCI, ALS, PD, and CVD (p < 0.001)
k  FTD > AD/MCI, ALS, and CVD (p < 0.001); PD > AD/MCI (p = 0.001), ALS (p = 0.020), and CVD (p = 0.011)
l  CVD > AD/MCI and PD ( p < 0.001); CVD > ALS (p = 0.004)
m  CVD > AD/MCI, ALS, and PD ( p < 0.001); CVD > FTD ( p = 0.001)
n  CVD > AD/MCI ( p < 0.001), ALS ( p = 0.002), FTD ( p = 0.013), and PD ( p = 0.005)
o  CVD > AD/MCI ( p < 0.001), ALS ( p = 0.003), and FTD ( p = 0.023); PD > AD/MCI ( p < 0.001)

† Controlled for age

Table 1 (continued)

Table 2 Frequency of NPS across groups

AD Alzheimer’s disease, ALS Amyotrophic lateral sclerosis, CVD Cerebrovascular disease, FTD Frontotemporal disease, MCI Mild cognitive impairment, 
NPS Neuropsychiatric symptoms, PD Parkinson’s disease
‡ Trending
*** p < 0.001
** p < 0.01
* p < 0.05

NPS, n (% yes) AD/MCI ALS FTD PD CVD χ 2, p-value

Delusions 10 (8.7) 1 (2.5) 7 (13.7) 4 (2.9) 11 (7.6) χ 2 (4) = 9.12, p = 0.058‡

Hallucinations 5 (4.3) 1 (2.5) 2 (3.9) 13 (9.5) 3 (2.1) χ 2 (4) = 9.33, p = 0.053‡

Agitation/aggression 33 ( 28.2) 9 (22.5) 20 (39.2) 24 (17.4) 37 (25.5) χ 2 (4) = 10.54, p = 0.032*

Depression/dysphoria 38 (32.5) 15 (37.5) 18 (36.0) 52 (37.7) 38 (26.2) χ 2 (4) = 4.98, p = 0.289

Anxiety 30 (25.6) 7 (17.5) 24 (47.1) 30 (21.7) 22 (15.2) χ 2 (4) = 22.94, p < 0.001***

Euphoria/elation 6 (5.1) 2 (5.0) 8 (15.7) 4 (2.9) 5 (3.4) χ 2 (4) = 14.03, p = 0.007**

Apathy/indifference 44 (38.3) 11 (27.5) 28 (56.0) 32 (23.2) 33 (22.8) χ 2 (4) = 26.43, p < 0.001***

Disinhibition 27 (23.1) 3 (7.5) 22 (44.0) 17 (12.3) 21 (14.5) χ 2 (4) = 31.62, p < 0.001***

Irritability/lability 44 (37.9) 9 (22.5) 30 (58.8) 38 (27.5) 55 (38.2) χ 2 (4) = 19.48, p < 0.001***

Aberrant motor behaviour 15 (12.8) 5 (12.8) 16 (31.4) 7 (5.1) 12 (8.3) χ 2 (4) = 27.68, p < 0.001***

Appetite/eating abnormalities 32 (28.1) 16 (41.0) 29 (56.9) 38 (27.5) 33 (22.8) χ 2 (4) = 23.79, p < 0.001***

Night time behaviour 26 (22.8) 10 (26.3) 28 (54.9) 73 (52.9) 49 (34.0) χ 2 (4) = 33.38, p < 0.001***
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euphoria, irritability, aberrant motor behaviour, and night-
time behaviours were significantly different across the 
groups (Table  2; Fig.  1). Depressive symptoms were the 
most common symptom across all the groups (Table  2). 
Table 3 shows the group comparison results for significant 
NPS.

Comparing neuropsychiatric subsyndromes across 
groups showed that hyperactivity, apathy, and affective 
subsyndromes were highest in FTD compared to other 
groups, whilst psychotic subsyndrome was high in both 
FTD and PD (Table 1; Fig. 2).

Sex differences in frequencies of NPS
Figure 3 shows the sex comparisons of the frequency 
of individual NPS across the entire sample. Over-
all, a significantly higher number of males exhibited 
irritability (39.2% vs 29.7%, p = 0.038, χ2 (1) = 4.28) 
and nighttime behaviours (43.0% vs 29.0%, p = 0.003, 
χ2 (1) = 8.97) than females, respectively. The fre-
quency of other NPS was not significant between 
sexes.

In participants with AD/MCI, depression was significantly 
higher in females (42.3% vs 24.6%, p = 0.042, χ2 (1) = 4.12) 
than males, whilst irritability was significantly higher in 
males (48.4% vs 25.0%, p = 0.009, χ2 (1) = 6.69) than females.

In participants with FTD, the following NPS were sig-
nificantly higher in males than females: delusions (21.9% 
vs 0.0%, p = 0.037, Fisher’s exact test), depression (46.9% 
vs 16.7%, p = 0.033, χ2 (1) = 4.56), apathy (68.8% vs 33.3%, 
p = 0.015, χ2 (1) = 5.86), and nighttime behaviours (65.6% 
vs 36.8%, p = 0.046, χ2 (1) = 3.99).

Lastly in participants with PD, the following NPS were 
significantly higher in males than females: depression 
(42.1% vs 22.6%, p = 0.048, χ2 (1) = 3.88), apathy (28.0% vs 
6.5%, p = 0.012, χ2 (1) = 6.29), and nighttime behaviours 
(58.9% vs 32.3%, p = 0.009, χ2 (1) = 6.84). No sex differ-
ences were observed for CVD and ALS.

Relationship amongst neuropsychiatric subsyndromes, 
cortical thickness regions, and WMH volumes
All cases with complete data across the five dx and 
variables of interest, i.e. sex, age, cortical thickness 

Fig. 1 Frequency of neuropsychiatric symptoms (NPS) in various neurodegenerative and cerebrovascular diseases. Notes: AD, Alzheimer’s disease; 
ALS, amyotrophic lateral sclerosis; CVD, cerebrovascular disease; FTD, frontotemporal disease; MCI, mild cognitive impairment; PD, Parkinson’s 
disease
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regions, and lobar WMH, were used for both the elastic 
net and PLSc analyses (N = 490). Table 4 represents the 
distribution of males and females per dx. For these 490 
participants, the mean age = 68.67, median age = 68.78, 
min/max age = 40.12/87.80; the mean MoCA = 24.40, 
median MoCA = 25.00, min/max MoCA = 13.00/30.00.

Elastic net models
The psychotic subsyndrome model produced eight 
lambda values that occurred greater than or equal to 
5% of all resamples (i.e. >  ~ 25/500). Table  5 shows the 
results for the psychotic subsyndrome models. One large 
lambda value (1000) occurred 70/500 times which was 
the full sample of data that produced an intercept only 
model. The other seven lambda values occurred a total of 
200 out of 500 times and all values were generally in the 
same range (0.057–0.072). All lambda values produced 
the same variables for selection in the full sample: age, 
sex (female), MoCA, left hemisphere precuneus thick-
ness, and right hemisphere (isthmus cingulate thickness, 
pars-triangularis thickness, and BGT WMH). Left pars-
orbitalis, left posterior cingulate, and right caudal ante-
rior cingulate thickness did not appear across all models.

Table 6 shows the results for the apathy subsyndrome 
models. The apathy subsyndrome model produced seven 
lambda values that occurred greater than or equal to 
5% of all resamples (i.e. >  ~ 25/500). The seven lambda 
values occurred a total of 264 out of 500 times, and all 
values were generally in the same range (0.066–0.095). 
All lambda values produced the same variables for selec-
tion in the full sample: age, MoCA, left hemisphere (ros-
tral middle frontal and frontal pole thickness), and right 
hemisphere (entorhinal, middle temporal, pars-opercu-
laris, and pars-triangularis thickness). Note sex (female), 
left hemisphere (cuneus thickness, transverse tempo-
ral thickness, and frontal WMH), and right hemisphere 
(isthmus cingulate, transverse temporal, and medial 
orbitofrontal) occurred less frequently across all models.

The affective subsyndrome model produced eight 
lambda values that occurred greater than or equal to 
5% of all resamples (i.e. >  ~ 25/500). Table  7 shows the 
results for the affective subsyndrome models. One large 
lambda value (1000) occurred 89/500 times which was 
the full sample of data that produced an intercept only 
model. The other five lambda values occurred a total of 
257 out of 500 times and all values were generally in the 
same range (0.047–0.066). All lambda values produced 
the same variables for selection in the full sample: age, 
sex (female), sex (male), MoCA, left hemisphere (lateral 
occipital thickness, lateral orbitofrontal thickness, lingual 
thickness, pericalcarine thickness, posterior cingulate 
thickness, and occipital WMH), and right hemisphere 
(caudal anterior cingulate thickness, pars-triangularis 
thickness, temporal pole thickness, and BGT WMH). 
Also note, left superior temporal thickness, right middle 
temporal thickness, and right parietal WMH occurred 
but not in all models.

Lastly, Table  8 shows the results for the hyperac-
tivity subsyndrome models. The hyperactivity sub-
syndrome model produced seven lambda values that 

Table 3 Group comparison results for significant NPS

Comparisons calculated according to Fisher’s exact test

AD Alzheimer’s disease, ALS Amyotrophic lateral sclerosis, CVD Cerebrovascular 
disease, FTD Frontotemporal disease, MCI Mild cognitive impairment, NPS 
Neuropsychiatric symptoms, PD Parkinson’s disease
†  Did not survive correction for multiple comparisons (0.05/10 = 0.005)

NPS P-value

Agitation
 FTD (39.2%) > PD (17.4%) 0.003

Anxiety
 FTD (47.1%) > PD (21.7%) 0.001

 FTD (47.1%) > ALS (17.5%) 0.004

 FTD (47.1%) > CVD (15.2%)  < 0.001

 AD/MCI (25.6%) > CVD (15.2%) 0.043†
Apathy
 FTD (56.0%) > PD (23.2%)  < 0.001

 FTD (56.0%) > ALS (27.5%) 0.001

 FTD (56.0%) > CVD (22.8%)  < 0.001

 AD/MCI (38.3%) > PD (23.2%) 0.013†
 AD/MCI (38.3%) > CVD (22.8%) 0.009†
Appetite
 FTD (56.9%) > AD/MCI (28.1%)  < 0.001

 FTD (56.9%) > PD (27.5%)  < 0.001

 FTD (56.9%) > CVD (22.8%)  < 0.001

 ALS (41.0%) > CVD (22.8%) 0.026†
Disinhibition
 FTD (44.0%) > CVD (14.5%)  < 0.001

 FTD (44.0%) > PD (12.3%)  < 0.001

 FTD (44.0%) > ALS (7.5%)  < 0.001

 AD/MCI (23.1%) > PD (12.3%) 0.030†
 AD/MCI (23.1%) > ALS (7.5%) 0.036†
Euphoria
 FTD (15.7%) > PD (2.9%)  < 0.001

Irritability
 FTD (58.8%) > PD (27.5%)  < 0.001

 FTD (58.8%) > ALS (22.5%)  < 0.001

Aberrant motor behaviour
 FTD (31.4%) > CVD (8.3%)  < 0.001

 FTD (31.4%) > PD (5.1%)  < 0.001

 AD/MCI (12.8%) > PD (5.1%) 0.042†
Night time behaviours
 FTD (54.9%) > AD/MCI (22.8%)  < 0.001

 PD (52.9%) > ADMCI (22.8%)  < 0.001
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occurred greater than or equal to 5% of all resamples 
(i.e. >  ~ 25/500). The seven lambda values occurred a 
total of 281 out of 500 times and all values were gener-
ally in the same range (0.144–0.190). All lambda values 
produced the same variables for selection in the full 
sample: MoCA, left hemisphere (rostral anterior cingu-
late, superior temporal, and insula thickness), and right 
hemisphere (caudal anterior cingulate thickness, lateral 
orbitofrontal thickness, medial orbitofrontal thickness, 
pars-triangularis thickness, and temporal pole thickness). 
Left fusiform thickness and right BGT WMH were less 
frequent across all models.

PLSc
The PLSc produced four components that explained: 
87.07% (component 1), 6.69% (component 2), 4.09% 
(component 3), and 2.16% (component 4) of the variance. 
The p-values for the four components using permutation 
were as follows: 0.0004 (component 1), 0.1496 (compo-
nent 2), 0.0236 (component 3), and 0.1092 (component 
4). Although we visualised components’ 1 and 2, we 
only reported on component 1 due to its large variance 
and very low permutation p-value. All neuropsychiatric 
subsyndromes were in the same direction with apathy 
showing the highest amount of variance on component 

1 (Fig.  4). Psychotic and affective subsyndromes were 
not stable contributors to component 1 (Table 9). Many 
predictor variables (i.e. age, sex, MoCA, and cortical 
thickness) were also stable contributors to component 1 
(Table  10), and they go in the opposite direction as the 
neuropsychiatric subsyndrome scores (see Fig.  5), thus, 
indicating a negative correlation between dependent and 
predictors variables (e.g. cortical thickness). Although 
there were many stable predictors, it was important to 
highlight those that regularly appeared in the elastic net 
results: sex (female), MoCA, and right hemisphere pars-
triangularis and anterior cingulate. They were some of 
the strongest contributors to component 1. Moreover, 
the relationship of the participants with regard to the 
latent variables was shown in Fig. 6 and coloured by their 
corresponding dx. With the exception of a few FTD par-
ticipants, most of the dx were clustered together. This 
reflects the homogeneity in the neural correlates of NPS 
amongst the study participants and suggests a disease 
spectrum.

Discussion
In this study, we sought to compare NPS rates across 
multiple neurodegenerative and cerebrovascular diseases 
and determine the relative contribution of white matter 

Fig. 2 Cluster bar graph showing group differences on neuropsychiatric subsyndromes. Notes: AD, Alzheimer’s disease; ALS, amyotrophic lateral 
sclerosis; CVD, cerebrovascular disease; FTD, frontotemporal disease; MCI, mild cognitive impairment; PD, Parkinson’s disease
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lesion load and cortical thickness to NPS. The major find-
ings included (1) NPS were common across all diseases 
which was consistent with the literature and (2) a smaller 
focal cortical thickness was significantly associated with 
NPS subsyndromes across all disease groups. Moreo-
ver, although there was a significant association between 
WMH burden and NPS subsyndromes in the univariate 
analyses, it was not maintained in the multivariate analy-
ses signifying that across these diseases, focal atrophy 
contributed more to NPS.

We observed that participants with FTD had higher 
rates of agitation, anxiety, apathy, appetite changes, delu-
sions, disinhibition, euphoria, irritability, aberrant motor 
behaviour, and nighttime behaviours than the other 

Fig. 3 Frequency of neuropsychiatric symptoms (NPS) by sex across the entire sample

Table 4 Demographics and summary for all elastic net and PLSc 
analyses

Mean age = 68.67, Median age = 68.78, Min/Max age = 40.12/87.80

Mean MoCA = 24.40, Median MoCA = 25.0, Min/Max MoCA = 13.00/30.00

PLSc Partial least square correlation, AD Alzheimer’s disease, ALS Amyotrophic 
lateral sclerosis, CVD Cerebrovascular disease, FTD Frontotemporal disease, MCI 
Mild cognitive impairment, PD Parkinson’s disease

N = 490 Female Male

ADMCI 52 65

ALS 16 23

FTD 19 32

PD 31 107

CVD 46 99
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neurodegenerative or cerebrovascular groups. This is 
consistent with other research that showed that FTD was 
associated with higher rates of NPS than other neurode-
generative diseases [79–83]. This finding may be related 
to the early alterations in the fronto-subcortical struc-
tures seen in FTD that are responsible for various behav-
ioural functions [79]. Such alterations are often observed 
in bvFTD which accounted for 40% of our FTD and are 

present at early stages [46, 84]. As expected, nighttime 
behaviours were significantly higher in PD with a trend 
for higher hallucinations in that group. This is consist-
ent with the literature wherein visual hallucinations and 
sleep disorders are more common in PD and Dementia 
with Lewy Bodies (DLB) [85–87]. Psychotic symptoms 
are strong indicators of PD and DLB although DLB 
patients were excluded from our study [88–90].

Table 5 Psychotic subsyndrome analyses

Row names indicate variables selected, column names indicate the lambda parameter and how many times out of 500 repeats that the lambda parameter had the 
lowest mean square error for our repeated cross-validation. Values in the cells are coefficients from the full data sample for the corresponding selected variables (rows) 
under the penalisation parameter (columns)

MoCA Montreal Cognitive Assessment, LH Left hemisphere, RBGT WMH Right basal ganglia/thalamus white matter hyperintensities, RH Right hemisphere

1000
(70/500)

0.0692
(22/500)

0.0724
(29/500)

0.0631
(35/500)

0.0832
(23/500)

0.0575
(32/500)

0.0661
(28/500)

0.0603
(31/500)

(Intercept) 0.757 3.505 3.254 3.974 2.455 4.402 3.745 4.193

Age 0  − 0.010  − 0.009  − 0.011  − 0.007  − 0.012  − 0.010  − 0.012

Sex(female) 0  − 0.209  − 0.200  − 0.226  − 0.172  − 0.241  − 0.217  − 0.233

MoCA TOTAL 0  − 0.006  − 0.005  − 0.008  − 0.001  − 0.009  − 0.007  − 0.009

LH PARS‑ORBITALIS THICKNESS 0 0.153 0.111 0.230 0.000 0.302 0.192 0.267

LH POSTERIOR CINGULATE THICKNESS 0  − 0.040  − 0.031  − 0.056 0.000  − 0.071  − 0.048  − 0.064

LH PRECUNEUS THICKNESS 0  − 0.115  − 0.091  − 0.160  − 0.019  − 0.201  − 0.138  − 0.181

RH CAUDAL ANTERIOR CINGULATE THICKNESS 0  − 0.021  − 0.008  − 0.045  − 0.000  − 0.066  − 0.033  − 0.056

RH ISTHMUS CINGULATE THICKNESS 0  − 0.090  − 0.082  − 0.104  − 0.048  − 0.118  − 0.097  − 0.111

RH PARS‑TRIANGULARIS THICKNESS 0  − 0.292  − 0.258  − 0.356  − 0.155  − 0.414  − 0.325  − 0.386

RBGT WMH 0 0.116 0.104 0.129 0.075 0.144 0.121 0.137

Table 6 Apathy subsyndrome analyses

Row names indicate variables selected, column names indicate the lambda parameter and how many times out of 500 repeats that the lambda parameter had the 
lowest mean square error for our repeated cross-validation. Values in the cells are coefficients from the full data sample for the corresponding selected variables (rows) 
under the penalisation parameter (columns)

MoCA Montreal Cognitive Assessment, LH Left hemisphere, LF WMH Left frontal white matter hyperintensities, RH Right hemisphere

0.0661
(25/500)

0.0832
(28/500)

0.0794
(50/500)

0.0955
(28/500)

0.0759
(40/500)

0.0724
(38/500)

0.0871
(55/500)

(Intercept) 8.188 7.115 7.338 6.430 7.550 7.767 6.893

AGE  − 0.017  − 0.013  − 0.014  − 0.010  − 0.014  − 0.015  − 0.012

Sex(female)  − 0.030 0.000  − 0.006 0.000  − 0.013  − 0.019 0.000

MoCA TOTAL  − 0.059  − 0.054  − 0.055  − 0.051  − 0.057  − 0.058  − 0.053

LH CUNEUS THICKNESS  − 0.042 0.000 0.000 0.000 0.000  − 0.013 0.000

LH ROSTRAL MIDDLE FRONTAL THICKNESS  − 0.494  − 0.450  − 0.460  − 0.405  − 0.470  − 0.478  − 0.439

LH FRONTALPOLE THICKNESS  − 0.097  − 0.055  − 0.065  − 0.018  − 0.074  − 0.082  − 0.043

LH TRANSVERSETEMPORAL THICKNESS  − 0.080  − 0.017  − 0.034 0.000  − 0.051  − 0.064 0.000

RH ENTORHINAL THICKNESS  − 0.146  − 0.108  − 0.116  − 0.079  − 0.124  − 0.131  − 0.099

RH ISTHMUS CINGULATE THICKNESS  − 0.055  − 0.008  − 0.018 0.000  − 0.028  − 0.037 0.000

RH MEDIAL ORBITOFRONTAL THICKNESS  − 0.040  − 0.009  − 0.016 0.000  − 0.023  − 0.029  − 0.002

RH MIDDLE TEMPORAL THICKNESS  − 0.454  − 0.475  − 0.471  − 0.491  − 0.467  − 0.464  − 0.482

RH PARS‑OPERCULARIS THICKNESS  − 0.097  − 0.045  − 0.057  − 0.008  − 0.069  − 0.080  − 0.033

RH PARS‑TRIANGULARIS THICKNESS  − 0.509  − 0.514  − 0.513  − 0.496  − 0.511  − 0.510  − 0.511

RH TRANSVERSETEMPORAL THICKNESS  − 0.019 0.000 0.000 0.000 0.000  − 0.001 0.000

LF WMH  − 0.023  − 0.005  − 0.009 0.000  − 0.012  − 0.016  − 0.001
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Table 7 Affective subsyndrome analyses

Row names indicate variables selected, column names indicate the lambda parameter and how many times out of 500 repeats that the lambda parameter had the 
lowest mean square error for our repeated cross-validation. Values in the cells are coefficients from the full data sample for the corresponding selected variables (rows) 
under the penalisation parameter (columns)

MoCA Montreal Cognitive Assessment, LH Left hemisphere, LO WMH Left occipital white matter hyperintensities, RBGT WMH Right basal ganglia/thalamus white 
matter hyperintensities, RH Right hemisphere

1000 (89/500) 0.0525
(44/500)

0.0479
(24/500)

0.0631
(34/500)

0.0661
(31/500)

0.0603
(34/500)

0.0575
(48/500)

0.0549
(42/500)

(Intercept) 0.800 3.419 3.553 3.124 3.046 3.200 3.275 3.348

AGE 0.000  − 0.008  − 0.009  − 0.006  − 0.006  − 0.007  − 0.007  − 0.008

Sex(female) 0.000  − 0.121  − 0.134  − 0.090  − 0.082  − 0.098  − 0.106  − 0.113

Sex(Male) 0.000 0.009 0.011  − 0.004 0.003 0.006 0.007 0.008

MoCA TOTAL 0.000  − 0.033  − 0.034  − 0.029  − 0.027  − 0.030  − 0.031  − 0.032

LH LATERAL OCCIPITAL THICKNESS 0.000 0.614 0.657 0.519 0.492 0.544 0.566 0.591

LH LATERAL ORBITOFRONTAL THICKNESS 0.000 0.345 0.420 0.173 0.127 0.217 0.261 0.305

LH LINGUAL THICKNESS 0.000 0.424 0.442 0.384 0.375 0.393 0.405 0.414

LH PERICALCARINE THICKNESS 0.000 0.111 0.140 0.040 0.019 0.059 0.078 0.095

LH POSTERIOR CINGULATE THICKNESS 0.000  − 0.118  − 0.146  − 0.048  − 0.027  − 0.067  − 0.086  − 0.103

LH SUPERIOR TEMPORAL THICKNESS 0.000 0.000  − 0.002 0.000 0.000 0.000 0.000 0.000

RH CAUDAL ANTERIOR CINGULATE THICKNESS 0.000  − 0.279  − 0.299  − 0.233  − 0.218  − 0.246  − 0.258  − 0.269

RH MIDDLE TEMPORAL THICKNESS 0.000  − 0.019  − 0.035 0.000 0.000 0.000 0.000  − 0.009

RH PARS‑TRIANGULARIS THICKNESS 0.000  − 0.726  − 0.761  − 0.633  − 0.602  − 0.622  − 0.687  − 0.707

RH TEMPORAL POLE THICKNESS 0.000  − 0.107  − 0.122  − 0.072  − 0.059  − 0.083  − 0.091  − 0.100

RH INSULA THICKNESS 0.000  − 0.040  − 0.060 0.000 0.000  − 0.004  − 0.018  − 0.028

RP WMH 0.000  − 0.002  − 0.005 0.000 0.000 0.000 0.000 0.000

LO WMH 0.000  − 0.050  − 0.055  − 0.036  − 0.032  − 0.040  − 0.044  − 0.048

RBGT WMH 0.000 0.197 0.211 0.169 0.161 0.176 0.183 0.190

Table 8 Hyperactivity subsyndrome analyses

Row names indicate variables selected, column names indicate the lambda parameter and how many times out of 500 repeats that the lambda parameter had the 
lowest mean square error for our repeated cross-validation. Values in the cells are coefficients from the full data sample for the corresponding selected variables (rows) 
under the penalisation parameter (columns)

MoCA Montreal Cognitive Assessment, LH Left hemisphere, RBGT WMH Right basal ganglia/thalamus white matter hyperintensities, RH Right hemisphere

0.1514
(32/500)

0.1905
(30/500)

0.1738
(56/500)

0.1445
(29/500)

0.1585
(30/500)

0.1659
(54/500)

0.1819
(51/500)

(Intercept) 8.521 7.047 7.636 8.876 8.179 7.911 7.348

MoCA TOTAL  − 0.067  − 0.057  − 0.061 ‑0.069  − 0.065  − 0.063  − 0.059

LH FUSIFORM THICKNESS  − 0.022 0.000 0.000  − 0.034  − 0.010  − 0.001 0.000

LH ROSTRAL ANTERIOR CINGULATE THICKNESS  − 0.174  − 0.138  − 0.154  − 0.180  − 0.167  − 0.161  − 0.146

LH SUPERIOR TEMPORAL THICKNESS  − 0.372  − 0.360  − 0.369  − 0.369  − 0.373  − 0.373  − 0.364

LH INSULA THICKNESS  − 0.057  − 0.047  − 0.055  − 0.051  − 0.061  − 0.058  − 0.051

RH CAUDAL ANTERIOR CINGULATE THICKNESS  − 0.436  − 0.308  − 0.362  − 0.460  − 0.412  − 0.387  − 0.336

RH LATERAL
ORBITOFRONTAL THICKNESS

 − 0.158  − 0.174  − 0.169  − 0.155  − 0.163  − 0.166  − 0.171

RH MEDIAL ORBITOFRONTAL THICKNESS  − 0.244  − 0.128  − 0.177  − 0.264  − 0.222  − 0.643  − 0.153

RH PARS‑TRIANGULARIS THICKNESS  − 0.698  − 0.558  − 0.616  − 0.724  − 0.670  − 0.593  − 0.587

RH TEMPORAL POLE THICKNESS  − 0.077  − 0.047  − 0.060  − 0.081  − 0.072  − 0.067  − 0.054

RBGT WMH 0.011 0.000 0.000 0.024 0.000 0.000 0.000
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The most prevalent NPS across all groups in our study 
was depression, which is consistent with prior stud-
ies that reported no significant difference in depressive 
symptoms across neurodegenerative diseases [80–82, 91]. 
Both anxiety and depression can be presenting symptoms 
of neurodegenerative disease as well as strong predictors 
of cognitive decline [92–97].

Sex differences were observed in our study with irrita-
bility and nighttime behaviours seen more frequently in 
males across the entire sample. Additionally, males with 
FTD or PD were more likely to experience NPS, such 
as delusions, apathy, and depression whilst females with 
AD/MCI were more likely to experience depression. 
Studies examining the sex/gender differences in pres-
entation of NPS in dementia have mostly been in AD/
MCI and have reported inconsistent findings [98–102]. 
The higher frequency of depression in females with AD/
MCI is in keeping with previous studies that reported 
that more females suffer from affective disorders [100, 
103–105]. One study found that depression was asso-
ciated with a twofold greater risk of AD in females but 
not males [106]. The higher frequency of irritability, 
nighttime behaviours, delusion, and apathy in males is 
in keeping with some studies that also reported higher 
frequencies of the aforementioned NPS in males [98, 
107–109], whilst contradicting others that have showed 
the opposite [98, 99, 105, 108]. These sex differences may 
be attributed to multiple factors such as disease severity 

across studies, the use of different NPS assessments, the 
genetic predisposition to AD including the interaction 
between sex and  apoE4 in AD/MCI [99, 110], sex-related 
hormonal levels, or the use of pharmacological treat-
ments [109]. Also, some diseases have sex differences 
in distribution and are associated with specific NPS, for 
example 50% of individuals with PD or DLB experience 
psychotic symptoms as compared to 30% of individuals 
with AD/MCI [111], but PD and DLB are more prevalent 
in males [112, 113]. Moreover, bvFTD appears to be more 
prevalent in males [114], and they have more apathy and 
psychotic symptoms and less empathy [71, 92, 115]. A 
recent study found that females with bvFTD displayed 
fewer NPS, particularly less apathy, sleep disturbance, 
and appetite changes than males, despite showing a simi-
lar amount of atrophy [116], which may support the neu-
roprotective role of oestrogen hormone in females [117].

A smaller cortical thickness was implicated in NPS 
across all groups. Although we obtained several brain 
regions within each NPS subsyndrome, we concen-
trated on those that appeared across subsyndromes 
and analyses such as the pars-triangularis, prefrontal, 
cingulate, temporal and frontal poles, and insula cor-
tices. Apathy is a multifaceted syndrome representing 
deficits in cognition, emotion, and initiation [118]. It is 
not surprising that several studies report similar neuro-
anatomical correlates of apathy regardless of the under-
lying pathologies. Apathy is associated with changes in 
the fronto-striatal circuits (the dorsal anterior cingulate 
cortex and ventral striatum) in addition to the orbito-
frontal cortex and basal ganglia [119]. In PD, the neural 
correlates of apathy have been structurally and func-
tionally linked to a broad range of regions modulated 
by dopamine like the ventral striatum and prefrontal 
cortex [120–126]. Likewise in AD/MCI, Guercio et  al. 
[20] found apathy was associated with smaller inferior 
temporal and increased anterior cingulate thickness 

Fig. 4 Partial least square correlation diagram for neuropsychiatric subsyndromes component scores. Notes: the values for all subsyndromes appear 
in the same direction where apathy shows the highest amount of variance on Component 1

Table 9 Bootstrap ratios for the NPS subsyndromes

Component 1

Psychosis 1.202

Apathy 5.029

Affective 1.429

Hyperactivity 4.757
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in MCI whilst other studies found lower grey matter 
volume in the anterior cingulate, prefrontal, and sub-
cortical areas were associated with apathy in AD [39, 
127–129]. These findings in AD/MCI have been cor-
roborated in some functional imaging studies that 
observed a relationship between apathy and hypome-
tabolism in the anterior cingulate cortex and medial 
prefrontal cortex [130–132] in addition to being linked 
with increased neurofibrillary tangles in the anterior 
cingulate cortex [133].

The change in the anterior cingulate cortex has been 
implicated in apathy in FTD, ALS, and CVD. In FTD, 
apathy was related to atrophy in the subcortical areas in 
addition to anterior cingulate, and fronto-insular cortices 
in bvFTD [12, 134, 135]. Similar regions were associated 
with apathy in participants with ALS-FTD [136] and ALS 
without dementia [15]. Additionally, lesions in the fronto-
striatal circuits has been implicated in apathy or related-
disorder abulia [119, 137, 138] thus, indicating that it is a 
common symptom of both ischaemic and haemorrhagic 
strokes [138]. Moreover, functional neuroimaging has 
demonstrated decreased functional connectivity in the 
cingulo-opercular network due to dysfunction of the con-
necting regions [139]. Together, these results imply that 
the manifestation of apathy across multiple neurodegen-
erative and cerebrovascular diseases results from the dis-
ruption of critical and interconnected regions—mainly 
anterior cingulate cortex and ventral striatum—that are 
necessary for goal-oriented behaviours.

Psychosis was also associated with a smaller cortical 
thickness in fronto-cingulate and left precuneus regions. 
The inferior frontal and precuneus cortices have been 
implicated in visual hallucinations and delusions [140]. 
Lower grey matter volume in multiple regions includ-
ing the right frontoparietal cortex were associated with 
delusions in AD [128] whilst decreased cortical thick-
ness in the supramarginal gyrus was found in both AD 
and PD with visual hallucinations [19, 141]. Addition-
ally, Sanchez-Castaneda et  al. [142] found visual hallu-
cinations were associated with atrophy in the precuneus 
and inferior frontal areas in DLB and orbitofrontal area 
in PD with dementia. Dysregulation amongst the fron-
toparietal networks has been implicated in psychosis 
across neurodegenerative diseases but different patterns 
are evident. Shine et al. [143] found an increase in con-
nectivity between the default mode network (DMN) and 
ventral attention networks and a decrease in the DMN 
in patients with PD with visual hallucinations com-
pared to patients without. In AD/MCI, Qian et al. [144] 
reported decreased connectivity between the inferior 
parietal lobule, superior temporal, and orbitofrontal with 
greater delusion severity in patients with AD compared 
to those without. These results suggest that disruption 

Table 10 Bootstrap ratios for all other variables (only those 
above magnitude of 2 are shown)

LH Left hemisphere, RH Right hemisphere, MoCA Montreal Cognitive Assessment

Component 1

MoCA TOTAL  − 4.57

Sex(female)  − 2.11

LH PARS‑TRIANGULARIS THICKNESS  − 3.25

LH POSTERIOR CINGULATE THICKNESS  − 2.53

LH ROSTRAL ANTERIOR CINGULATE THICKNESS  − 2.52

LH SUPERIOR FRONTAL THICKNESS  − 3.39

LH INSULA THICKNESS  − 3.44

LH PRECUNEUS THICKNESS  − 2.75

LH PARAHIPPOCAMPAL THICKNESS  − 2.68

LH FUSIFORM THICKNESS  − 2.86

LH TEMPORAL POLE THICKNESS  − 2.39

LH SUPERIOR TEMPORAL THICKNESS  − 3.83

LH MIDDLE TEMPORAL THICKNESS  − 3.19

LH PARACENTRAL THICKNESS  − 2.43

LH ROSTRAL MIDDLE FRONTAL THICKNESS  − 3.58

LH POST CENTRAL THICKNESS  − 2.24

LH PARS‑OPERCULARIS THICKNESS  − 2.64

LH MEDIAL ORBITOFRONTAL THICKNESS  − 2.15

LH CAUDAL MIDDLE FRONTAL THICKNESS  − 3.09

LH FRONTAL POLE THICKNESS  − 2.40

LH TRANSVERSE TEMPORAL THICKNESS  − 3.12

LH ENTORHINAL THICKNESS  − 2.69

LH ISTHMUS CINGULATE THICKNESS  − 2.32

LH INFERIOR PARIETAL THICKNESS  − 2.02

LH INFERIOR TEMPORAL THICKNESS  − 2.69

RH CAUDAL ANTERIOR CINGULATE THICKNESS  − 2.49

RH ENTORHINAL THICKNESS  − 3.19

RH PRECUNEUS THICKNESS  − 2.77

RH INFERIOR PARIETAL THICKNESS  − 2.22

RH CAUDAL MIDDLE FRONTAL THICKNESS  − 3.18

RH MEDIAL ORBITOFRONTAL THICKNESS  − 2.51

RH LATERAL ORBITOFRONTAL THICKNESS  − 3.06

RH INFERIOR TEMPORAL THICKNESS  − 3.02

RH MIDDLE TEMPORAL THICKNESS  − 4.35

RH PARS‑ORBITALIS THICKNESS  − 2.54

RH ROSTRAL ANTERIOR CINGULATE THICKNESS  − 2.03

RH SUPERIOR TEMPORAL THICKNESS  − 3.42

RH SUPRAMARGINAL THICKNESS  − 2.37

RH FRONTAL POLE THICKNESS  − 2.49

RH TEMPORAL POLE THICKNESS  − 2.99

RH PARAHIPPOCAMPAL THICKNESS  − 3.05

RH LATERAL OCCIPITAL THICKNESS  − 2.35

RH LINGUAL THICKNESS  − 2.56

RH FUSIFORM THICKNESS  − 3.32

RH ISTHMUS CINGULATE THICKNESS  − 2.89

RH PARS‑OPERCULARIS THICKNESS  − 2.29

RH PARS‑TRIANGULARIS THICKNESS  − 3.54

RH POSTERIOR CINGULATE THICKNESS  − 2.65

RH ROSTRAL MIDDLE FRONTAL THICKNESS  − 3.23

RH SUPERIOR FRONTAL THICKNESS  − 3.78

RH TRANSVERSE TEMPORAL THICKNESS  − 2.73

RH INSULA THICKNESS  − 2.95
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between top-down dorsal attention and bottom-up ven-
tral attention and DMN processing can result in psycho-
sis [145]. In relation to FTD, ALS, and CVD, only a few 
studies have explored the neural mechanism of psycho-
sis [146, 147]. Devenney et al. [146] reported a predomi-
nant frontal and temporal pattern of atrophy extending 
to cerebellum and anterior thalamus across all the FTD-
ALS continuum, particularly in C9orf72 carriers. Whilst 
Stangeland et al. [147] found the majority of post-stroke 
patients with psychosis had right hemisphere lesions 
mainly in frontoparietal and basal ganglia regions. Since 
these are network-based diseases, it is possible that psy-
chosis can result from dysfunction of core neural net-
works that are associated with perception and beliefs in 
addition to interacting with other associative networks, 
thereby leading to disease-specific psychotic symptoms 
[148].

We found that increased right basal ganglia/thalamus 
WMH volume was associated with psychotic, affective, 
and hyperactivity subsyndromes whilst increased left 
frontal WMH volume was associated with apathy subsyn-
drome, albeit a lesser contributor than cortical thickness. 

Our results are in contrast to two recent longitudinal 
studies that showed that WMH contributed more to the 
progression of NPS subsyndromes than decreased grey 
matter volume in individuals with AD/MCI [39, 149]. 
Previous studies have demonstrated that lacunes and 
WMHs in the fronto-striatal circuitry were correlated 
with affective disorders [29, 40, 150–152], psychosis [31, 
153], and reduction in goal-oriented behaviours [29, 32, 
154] in neurodegenerative and cerebrovascular diseases 
disease. Kim et al. [32]. reported that lacunes and WMH, 
especially in the frontal lobe and basal ganglia and tha-
lamic areas, were associated with depression and apathy 
in subcortical-vascular cognitive impairment. Similarly, 
a study on individuals with autosomal dominant arterio-
pathy with subcortical infarcts and leukoencephalopa-
thy (CADASIL) found that basal ganglia and thalamic 
lesions were associated with apathy [154] whilst another 
reported an association between depression and frontal 
and temporal WMHs in community dwelling older adult 
[150]. In probable AD, increased frontal WMH was asso-
ciated with apathy whilst increased right parietal WMH 
was associated with depression [29] which was supported 
in an autopsy-confirmed FTD and AD study [155].

Fig. 5 Partial least square correlation diagram for stable contributors component scores. Notes: the stable contributors go in the opposite direction 
as the neuropsychiatric subsyndromes scores, indicating a negative correlation between them. LH, left hemisphere; MoCA, Montreal Cognitive 
Assessment; RH, right hemisphere
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The few studies that have investigated the association 
between WMH and NPS in PD have reported mixed 
results. Kraft et  al. [156] found no association between 
global and occipital WMH with visual hallucinations in 
PD but two studies found that increased WMH was asso-
ciated with depression and anxiety in PD [38, 157], par-
ticularly in the fronto-striatal region [38]. Another study 
found that baseline WMH volume was a risk factor for 
worsening apathy in PD [158]. These inconsistences in 
the localisation of WMH in relation to NPS echoes the 
notion that injury to multiple sites in a network may con-
tribute to the disruption of cortico-subcortical circuits 
and the manifestation of NPS across many clinical con-
structs [159], as well as difficulty in capturing multiple 
NPS as a singular concept, e.g. affective.

Limitations and strengths
The current study has several limitations and strengths. 
Firstly, the generalisability of our findings might be 
impacted due to the lack of healthy controls in our study. 
Secondly, we were limited from addressing the cause-
effect relationships amongst WMH, cortical thickness, 

and NPS due to the cross-sectional nature of our study. 
However, as discussed above from a recent longitudinal 
study, WMH may contribute more to NPS progression 
than decreased cortico-subcortical grey matter volumes, 
at least in individuals with AD/MCI [39, 149]. This may 
suggest that at baseline, smaller cortical thickness may 
have the greatest influence on NPS but that WMH may 
impact NPS progression. Thirdly, focussing on changes 
in cortical thickness estimation may lead to the exclusion 
of the potential involvement of subcortical structures to 
the manifestation of NPS. Fourthly, we did not account 
for the use of antipsychotics, antidepressants, anticholin-
ergics, and stimulants for treatment of NPS (which might 
affect symptom severity in our cohorts). Lastly, since 
clinical and neuroimaging parameters were used to make 
the diagnoses of disease categories without diagnostic 
biomarkers, some observed relationships in our cohorts 
might have been influenced by mixed pathology because 
it is very common and increasingly recognised in neuro-
degenerative diseases [160].

A main strength of our study was the inclusion of 
multiple neurodegenerative disease groups, especially 

Fig. 6 Relationship between diagnosis, neuropsychiatric subsyndromes, and contributors. Notes: FS, FreeSurfer cortical thickness (68 regions); WMH, 
lobar white matter hyperintensities (10 regions); MoCA = Montreal Cognitive Assessment; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; 
CVD, cerebrovascular disease; FTD, frontotemporal disease; MCI, mild cognitive impairment; PD, Parkinson’s disease
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participants with ALS, FTD, and PD. Prior research 
examining grey matter loss and/or WMH correlates of 
NPS have mostly focused on AD/MCI and CVD [31, 32, 
39], occasionally on PD and FTD [155, 157], and rarely 
on ALS [136]. Thus, our study provides an opportunity 
to investigate these associations across several disease 
groups. Also, we were able to adjust for several factors 
associated with NPS in our models.

Conclusions
Our findings demonstrate the high prevalence of NPS in 
neurodegenerative and cerebrovascular diseases, espe-
cially in FTD. Using both univariate and multivariate 
models, we showed that smaller cortical thickness and 
white matter lesion burden are associated with NPS sub-
syndromes across disease groups. In this cross-sectional 
study, a smaller cortical thickness was a more stable pre-
dictor than WMH in NPS across disease groups, par-
ticularly in the fronto-cingulate regions. These results 
underline the need for future longitudinal studies to 
include multiple neurodegenerative and cerebrovascu-
lar diseases when examining the interactive effects of 
WMH and grey matter loss on NPS. Moreover, SVD is 
associated with modifiable vascular risk factors, like 
hypertension, type 2 diabetes, and smoking that can 
be significantly reduced via healthy lifestyles changes. 
These interventions may help in managing vascular dis-
eases that can contribute to the development of NPS in 
individuals with neurodegenerative and cerebrovascular 
diseases.
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