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Abstract: We aimed to develop and validate prediction models incorporating demographics, clinical 

features, and a weighted genetic risk score (wGRS) for individual prediction of colorectal cancer 

(CRC) risk in patients with gastroenterological symptoms. Prediction models were developed with 

internal validation [CRC Cases: n = 1686/ Controls: n = 963]. Candidate predictors included age, sex, 

BMI, wGRS, family history, and symptoms (changes in bowel habits, rectal bleeding, weight loss, 

anaemia, abdominal pain). The baseline model included all the non-genetic predictors. Models A 

(baseline model + wGRS) and B (baseline model) were developed based on LASSO regression to 

select predictors. Models C (baseline model + wGRS) and D (baseline model) were built using all 

variables. Models’ calibration and discrimination were evaluated through the Hosmer-Lemeshow test 

(calibration curves were plotted) and C-statistics (corrected based on 1000 bootstrapping). The models’ 

prediction performance was: model A (corrected C-statistic = 0.765); model B (corrected C-statistic = 

0.753); model C (corrected C-statistic = 0.764); and model D (corrected C-statistic = 0.752). Models 

A and C, that integrated wGRS with demographic and clinical predictors, had a statistically significant 

improved prediction performance. Our findings suggest that future application of genetic predictors 

holds significant promise, which could enhance CRC risk prediction. Therefore, further investigation 

through model external validation and clinical impact is merited. 
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1. Introduction 

Colorectal cancer (CRC) was the third most common cancer and the second leading cause of cancer-
related death in the world, 2022 [1]. Early CRC diagnosis and timely treatment could improve survival. 
Survival rate depends on cancer stage at diagnosis, with 5-year net survival starting at approximately 
90% for stage I and reduced to 10% for stage IV [2]. Although screening has successfully reduced 
CRC incidence and mortality, the majority of CRCs are still diagnosed after symptomatic presentation 
[3]. It is important to develop accurate prediction models to identify symptomatic patients with higher 
CRC risk in whom referral is most appropriate. These models could assist clinical professionals in 
their decision-making for further clinical care, such as risk-tailored cancer screening, testing, and 
treatments [4]. 

We have identified 19 prediction models that have been developed for CRC in patients with symptoms 
[5–22]. However, these models used predictors such as basic demographic characteristics (age, sex, 
BMI), lifestyle factors (smoking, alcohol consumption), biomarkers (haemoglobin, CEA), and clinical 
features (bowel symptoms). None of them use genetic predictors associated with CRC common 
susceptibility variants (neither single nucleotide polymorphisms nor polygenic risk scores). Therefore, 
we aimed to examine the association between a constellation of demographic factors, clinical features, 
and genetic risk scores in patients with gastrointestinal symptoms and CRC risk. Furthermore, we 
aimed to develop and to validate prediction models that incorporate significant predictors, enabling 
personalized prediction of CRC risk in patients with symptoms. 

2. Materials and Methods 

2.1. Studies and Variables 

CRC prediction models were developed with internal validation in a study that included participants 
from the Study of Colorectal Cancer in Scotland (SOCCS) (n = 1649) and the Lothian Bowel 
Symptoms Study (LABSS) (n = 1000). SOCCS, a case-control study, started in 1999 and has been 
recruiting CRC incident cases (aged ≥ 16 years old) and healthy controls (matched on age, sex, and 
health board) from across Scotland. In the current study, we only used data from colorectal cancer 
cases that had developed gastrointestinal symptoms prior to their recruitment in SOCCS. LABSS, 
which is a multi-centre case-control study started in 2017, recruited patients (aged ≥ 18 years old) with 
gastrointestinal symptoms through endoscopy, CT scanning, colorectal surgery, and gastroenterology 
units within NHS recruiting centres across Scotland. SOCCS and LABSS collected age, sex, BMI, 
family history, and symptoms (changes in bowel habits, rectal bleeding, weight loss, anaemia, 
abdominal pain). Age (years old), sex (male/female), BMI (kg/m2), and family history of CRC (yes/no) 
were collected and documented in questionnaires by the study nurse in SOCCS and LABSS. We 
designated individuals as having a positive family history (yes) if their first-degree (e.g., parents, 
siblings, and children) or second-degree (e.g., grandparent/grandchild, half-siblings, aunt/uncle, and 
niece/nephew) or any other relatives have a documented history of CRC. In SOCCS, symptoms 
(yes/no) were collected by the study nurse through GP referral and/or consultant clinic referral letters, 
as documented in medical records in TRAK (the NHS Lothian electronic patient data system). In 
LABSS, symptoms (yes/no) were collected by the study nurse through interviews during patient 
recruitment and recorded in a pre-designed consultation questionnaire. SOCCS and LABSS also 
collected blood samples, and DNA samples were genotyped using Illumina® HumanHap300, 
HumanHap240S, and OmniExpressExome BeadChip 8v1 arrays. Genotype data quality control was 
performed following the method proposed by Anderson [23]. Untyped variants were imputed using 
the Michigan Imputation Server, which is based on 1000 genomes (from the European reference panel) 
[24]. 

2.2. Descriptive and Association Analysis 

We performed a baseline summary for SOCCS and LABSS. The test of correlation and difference in 
variables between cases and controls in two studies were examined for statistical significance by using 
the t-test (continuous variables) and the Pearson χ2 test (categorical variables). Univariable and 
multivariable logistic regression models were fitted to test the associations between variables and CRC 
risk (factors with univariable p < 0.05 were included in the multivariable analysis). 

2.3. Weighted Genetic Risk Scores 

A weighted genetic risk score (wGRS) is defined as a weighted sum of dosages of risk alleles for k 
considered SNPs (gi1, ..., gik) for the n subjects (i = 1, ..., n). The wGRS formula is: GRSi = w1gi1 + ... 
+ wkgik. This means that, for each individual, the number of risk alleles dosages carried at each genetic 
variant SNP is summed, and it is weighted by its effect size. The effect size derived from the meta-
GWAS for a SNP is referred to as the ‘weight’ (w1, …, wk).  



We used CRC genome-wide significant SNPs (p < 5 × 10-8; n = 202) from a recently published meta-
GWAS study [25]. The meta-GWAS study investigated a total of 205 SNPs, and 202 SNPs effect sizes 
in European populations were reported (for SNPs list and their reported effect size, please see 
Supplementary Table S1). Of the 202 SNPs, 137 were genotyped in SOCCS and LABSS. We checked 
the remaining 65 SNPs for proxies. We found proxies for 26 SNPs (R2 > 0.5) and 39 SNPs (0.034 < 
R2 < 0.5). Therefore, we calculated three wGRSs to include 137 (genotyped SNPs), 163 (genotyped 
SNPs and 26 proxies with R2 > 0.5), and 202 (137 genotyped SNPs and 65 proxies) SNPs 
(Supplementary Figure S1). We presented wGRS202 in the main text and the comparative assessment 
of model performance of wGRS137, wGRS163, wGRS202 is in Supplementary Table S2. 

2.4. Model Development and Internal Validation 

CRC prediction models’ development and validation were conducted and reported following the 
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis 
(TRIPOD) guideline [26] (Supplementary Figure S2). 

Models were developed with internal validation in the combined dataset with a total number of 2649 
participants (CRC symptomatic cases = 1686, symptomatic controls = 963; Figure 1). The prediction 
outcome (Y) was defined as CRC (yes/no). Candidate predictors (X) included (i) continuous 
variables—age, BMI, and wGRS—as well as (ii) categorical variables—sex, family history, and 
symptoms (changes in bowel habits, rectal bleeding, weight loss, anaemia, and abdominal pain). 

 

Figure 1. The CRC prediction models’ construction and internal validation. 

Each continuous variable (X) was modelled to test its association with the predicted outcome (Y) using 
two approaches: i) linear analysis and ii) restricted cubic splines (RCS). The continuous variables were 
then adjusted and incorporated into the full models C (linear) and E (RCS). The prediction 
performance, including overall accuracy (R2, brier score, AIC, BIC), discrimination (C-statistics), and 
calibration (p-value of Hosmer-Lemeshow test), were compared for the two approaches. The brier 
score (range: 0–1) quantifies the mean squared difference between the predicted probability and the 
observed outcome, with a lower score indicating a better prediction performance [27]. AIC and BIC 
are estimations concerning the sample prediction error, with a lower AIC or BIC value indicating a 
better model fit [28]. The decision on whether to use linear or RCS to adjust continuous variables in 
the final model was made by evaluating which method yielded better prediction performance. 

After adjusting for the continuous variables (X), CRC risk prediction models were built (Figure 1). 
Two main strategies to develop the final models are predictor selection and full model [29]. A 



comparison of strengths and limitations of the methods is presented in Supplementary Table S11. 
Models A (baseline model + wGRS) and B (baseline model) were constructed based on LASSO 
regression algorithm to identify the 𝜆 (lambda) in response to the most parsimonious model where the 
cross-validation prediction error is within one standard error of the minimum [30]. The influential 
predictors selected by LASSO were incorporated into the prediction models. Models C (baseline 
model + wGRS) and D (baseline model) were built using all 10 variables collected in SOCCS and 
LABSS. These 10 variables were used as predictors in the 19 CRC prediction models previously 
developed (Supplementary Table S3), and, therefore, they were incorporated in models C and D, 
irrespective of their associations with the prediction outcome or influence on the model performance. 
In addition, we built prediction models F and G based on random forest regression [31,32], and the 
results were presented in Supplementary Table S12, Figures S11–S13. 

2.5. Model Prediction Performance 

Models’ prediction performance was evaluated in terms of calibration and discrimination. Calibration, 
which measures the agreement between the model predicted probabilities (the risk rate of individuals 
with CRC) and the observed probabilities, was assessed using the Hosmer-Lemeshow (HL) goodness of 
fit test, with a p > 0.05 indicating good model calibration. Calibration curves were plotted to visualize 
the models’ calibrative power. Discrimination performance was examined through analysis of the area 
under the curve (AUC), which is also referred to as the C-statistic. The corrected C-statistics were 
calculated based on bootstrapping validation (1000 bootstraps resamples). The receiver operating 
characteristic (ROC) curve and the precision-recall curve (PRC) were plotted [33,34]. The continuous 
Net Reclassification Index (NRI) and Integrated Discrimination Index (IDI) were calculated after 
recalibration to compare models and assess the prediction increment [35]. An online nomogram for the 
final model was built using Shiny.apps. 

2.6. Statistical Analysis 

The LASSO regression was conducted using the ‘glmnet’ R package. Random forest regression was 
performed using the ‘randomForest’ R package. The HL test was constructed using the ‘hoslem.test’ 
function in the ‘ResourceSelection’ R package. The C-statistic was calculated using the “rcorr.cens” and 
“roc” functions in the ‘rms’ package. The online CRC risk prediction nomogram/calculator was 
constructed using the ‘DynNom’ and ‘rsconnect’ R packages. A two-sided p-value less than 0.05 was 
considered statistically significant. All analyses were performed using R, version 4.0.3 (R Foundation 
for Statistical Computing). 

  



3. Results 

3.1. Baseline Characteristics 

The baseline characteristics of SOCCS (n = 1649) and LABSS (n = 1000) studies are summarized in 
Table 1. The distribution of each variable comparing symptomatic cases versus symptomatic controls 
in two studies is presented in Supplementary Table S4. There were no statistically significant 
differences between CRC symptomatic cases in SOCCS and LABSS with regards to wGRS202, age, 
sex, BMI, family history, and symptoms (p > 0.05). Comparing symptomatic cases (n = 1686) versus 
symptomatic controls (n = 963) in SOCCS and LABSS (Table 1), CRC symptomatic cases had a higher 
wGRS202, were older in age, and had a higher proportion of male patients, compared to symptomatic 
controls (p < 0.001). Cases had a lower BMI (p = 0.017). No statistically significant differences were 
found between symptomatic cases and controls for family history (p = 0.570). Regarding symptoms, 
the proportion of anaemia was significantly higher in CRC symptomatic cases (23.31%) than in the 
symptomatic control group (14.75%) [p < 0.001], while the proportions of changes in bowel habits 
(42.41%), weight loss (14.77%), and abdominal pain (19.69%) in CRC symptomatic cases were 
significantly lower compared to the symptomatic control group (changes in bowel habits: 74.87%, 
weight loss: 18.59%, abdominal pain: 43.93%) [p < 0.001]. Rectal bleeding was not statistically 
different between symptomatic cases and controls (p = 0.219). 

In univariable analysis, statistically significant baseline factors for CRC risk included wGRS202, age, 
sex, BMI, and symptoms: changes in bowel habits, weight loss, anaemia, and abdominal pain (p < 
0.05). Family history and rectal bleeding were not associated with CRC risk (p > 0.05). The above 
eight significant baseline factors were included in the multivariable analysis. Multivariable analysis 
demonstrated that (i) age (OR = 1.04, 95% CI: (1.03–1.05); p = 1.43 × 10−28), (ii) sex (male: OR = 
1.44, 95% CI: (1.20–1.72); p = 7.11 × 10−05), (iii) wGRS202 (OR = 2.14, 95% CI: (1.74–2.64); p = 5.52 
× 10−13), (iv) BMI (OR = 0.98, 95% CI: (0.97–1.00); p = 0.019), and (v) symptoms—changes in bowel 
habits (OR = 0.28, 95% CI: (0.23–0.34); p = 7.92 × 10−37), abdominal pain (OR = 0.51, 95% CI: (0.42–
0.61); p = 8.48 × 10−12) remained independent predictors for CRC risk (Table 1). 



Table 1. The univariable and multivariable logistic regression models of CRC risk. 

 SOCCS + LABSS (N = 2649) Univariable Analysis Multivariable Analysis 

 Cases (n = 1686) Controls (n = 963) Total (N = 2649) p-value¶ OR 95% CI p-value OR 95% CI p-value 

wGRS202 † 0.11 (−0.19–0.42) −0.03 (−0.34–0.26) 0.06 (−0.24–0.37) 3.36 × 10−16 2.14 1.77–2.58 1.88 × 10−15 2.14 1.74–2.64 5.52 × 10−13 

Age † 68.01 (59.32–75.36) 60.00 (51.00–70.00) 65.42 (56.00–73.50) <2.2 × 10−16 1.05 1.04–1.05 3.61 × 10−42 1.04 1.03–1.05 1.43 × 10−28 

Sex           

 Female 730 (43.30%) 537 (55.76%) 1267 (47.83%) 8.38 × 10−10 1 *   1 *   

 Male 956 (56.70%) 426 (44.24%) 1382 (52.17%)  1.65 1.41–1.94 7.35 × 10−10 1.44 1.20–1.72 7.11 × 10−5 

BMI† 26.11 (23.39–29.91) 26.64 (23.50–30.47) 26.35 (23.44–30.11) 0.017 0.98 0.97–1.00 0.016 0.98 0.97–1.00 0.019 

Family history           

 No 1418 (84.10%) 801 (83.18%) 2219 (83.77%) 0.570 1 *      

 Yes 268 (15.90%) 162 (16.82%) 430 (16.23%)  0.93 0.75–1.16 0.534    

Symptoms           

Changes in bowel habits           

 No 971 (57.59%) 242 (25.13%) 1213 (45.79%) <2.2 × 10−16 1 *   1 *   

 Yes 715 (42.41%) 721 (74.87%) 1436 (54.21%)  0.25 0.21–0.29 2.12 × 10−55 0.28 0.23–0.34 7.92 × 10−37 

Rectal bleeding           

 No 1130 (67.02%) 622 (64.59%) 1752 (66.14%) 0.219 1 *      

 Yes 556 (32.98%) 341 (35.41%) 897 (33.86%)  0.90 0.76–1.06 0.203    

Weight loss           

 No 1437 (85.23%) 784 (81.41%) 2221 (83.84%) 0.012 1 *   1 *   

 Yes 249 (14.77%) 179 (18.59%) 428 (16.16%)  0.76 0.61–0.94 0.010 0.99 0.78–1.26 0.910 

Anaemia           

 No 1293 (76.69%) 821 (85.25%) 2114 (79.80%) 1.69 × 10−07 1 *   1 *   

 Yes 393 (23.31%) 142 (14.75%) 535 (20.20%)  1.76 1.42–2.17 1.61 × 10−07 0.94 0.73–1.20 0.619 

Abdominal pain           

 No 1354 (80.31%) 540 (56.07%) 1894 (71.50%) <2.2 × 10−16 1 *   1 *   

 Yes 332 (19.69%) 423 (43.93%) 755 (28.50%)  0.31 0.26–0.37 1.03 × 10−38 0.51 0.42–0.61 8.48 × 10−12 

SOCCS: the Study of Colorectal Cancer in Scotland; LABSS: and the Lothian Bowel Symptoms Study; OR: odds ratio; CI: confidence interval. * Reference group. Only significant factors 
(univariable p < 0.05) were included in the multivariable analysis. p-value for t-test or x2 test. † Median and quartiles in parenthesis.



3.2. Prediction Models of CRC Risk in Patients with Symptoms 

Models A-D were developed with internal validation in SOCCS and LABSS to predict CRC risk in patients with symptoms (Figure 
1). 

3.2.1. Continuous Variables Adjustment 

The shape of the relationship between each continuous variable (age, BMI, and wGRS202) and the predicted outcome (CRC 
probability) is presented in Supplementary Figures S3–S5. Relationship figures showed steady increments in CRC probability 
for each year increase in age, decreasing BMI, and increasing wGRS202. The relationships between continuous variables and CRC 
were roughly linear in shape. 

Continuous variables were then transformed by RCS, and we tested the hypothesis that the associations between continuous 
variables and the predicted outcome are not linear [36]. Spline functions with three, four, and five knots were created to fit each 
of these in the logistic regression model. 

Supplementary Figures S6–S8 and Tables S5–S7 demonstrated that R2, AIC, and BIC were the lowest using RCS with three knots, 
compared to four and five knots. There was no evidence of significant non-linear associations between age (nonlinear p-value = 
0.105), BMI (nonlinear p-value = 0.587), wGRS202 (nonlinear p-value = 0.688), and CRC risk. The findings are consistent with 
Supplementary Figures S3–S5, showing that the relationships between age, BMI, wGRS, and CRC risk were linear in shape. 

The continuous variables were adjusted and incorporated into the full model C (linear) and model E (RCS with three knots). 
Supplementary Table S8 summarizes and compares the two models’ prediction performance. Model C had higher AIC, lower 
BIC, and higher corrected C-statistic compared to model E. Therefore, continuous variables (X) were adjusted in CRC prediction 
models, keeping age, BMI, and wGRS202 as continuous covariates in models.  

3.2.2. Models’ Development and Validation 

Each model’s predictors, intercept, coefficients, discrimination, and calibration estimates are presented in Table 2. Model formulas 
are presented in Supplementary Table S9. 



Table 2. A summary of CRC prediction models A–D. 

Model Method Case Control 𝜆 Intercept Predictors Coefficient OR (95% CI) p-value R2 Brier AIC BIC C-Statistic Corrected C-Statistic AUC-PR 
HL p-

Value 

Model A LASSO 1686 963 0.0257 −1.3030 

wGRS202 0.7612 2.14 (1.74–2.64) 5.31 × 10−13 

0.266 0.183 2911.234 2946.526 0.767 (0.748–0.786) 0.765 (1000 bootstrap) 0.8325 0.024 

Age 0.0410 1.04 (1.03–1.05) 3.53 × 10−29 

Sex 0.3611 1.43 (1.20–1.72) 7.19 × 10−5 

Changes in bowel habits −1.2411 0.29 (0.24–0.35) 8.06 × 10−29 

Abdominal pain −0.6784 0.51 (0.42–0.62) 7.65 × 10−12 

Model B LASSO 1686 963 0.0310 −1.2124 

Age 0.0401 1.04 (1.03–1.05) 1.06 × 10−28 

0.244 0.188 2962.840 2992.25 0.754 (0.735–0.774) 0.753 (1000 bootstrap) 0.8243 0.711 
Sex 0.3690 1.45 (1.21–1.73) 4.09 × 10−5 

Changes in bowel habits −1.2411 0.29 (0.24–0.35) 1.34 × 10−39 

Abdominal pain −0.7020 0.50 (0.41–0.60) 7.77 × 10−13 

Model C Full model 1686 963 NA −0.7679 

wGRS202 0.7603 2.14 (1.74–2.64) 6.91 × 10−13 

0.269 0.183 2915.181 2979.883 0.767 (0.749–0.786) 0.764 (1000 bootstrap) 0.8334 0.018 

Age 0.0410 1.04 (1.03–1.05) 2.65 × 10−28 

Sex 0.3631 1.44 (1.20–1.72) 7.05 × 10−5 

BMI −0.0195 0.98 (0.96–1.00) 0.0187 

Family history −0.0024 1.00 (0.78–1.27) 0.9846 

Changes in bowel habits −1.2616 0.28 (0.23–0.34) 7.68 × 10−37 

Rectal bleeding 0.0402 1.04 (0.86–1.27) 0.6858 

Weight loss −0.0112 0.99 (0.78–1.26) 0.9278 

Anaemia −0.0531 0.95 (0.74–1.22) 0.6785 

Abdominal pain −0.6786 0.51 (0.42–0.63) 1.55 × 10−11 

Model D Full model 1686 963 NA −0.7170 

Age 0.0404 1.04 (1.03–1.05) 4.12 × 10−28 

0.247 0.187 2966.240 3025.059 0.755 (0.736–0.775) 0.752 (1000 bootstrap) 0.8240 0.428 

Sex 0.3714 1.45 (1.21–1.73) 3.94 × 10−5 

BMI −0.0191 0.98 (0.97–1.00) 0.0200 

Family history −0.0349 1.04 (0.82–1.32) 0.7738 

Changes in bowel habits −1.2667 0.28 (0.23–0.34) 7.07 × 10−38 

Rectal bleeding 0.0734 1.08 (0.89–1.31) 0.4553 

Weight loss −0.0661 0.99 (0.78–1.27) 0.9655 

Anaemia −0.6999 0.94 (0.73–1.20) 0.6021 

Abdominal pain −0.6786 0.50 (0.41–0.60) 2.03 × 10−12 

AIC: Akaike’s Information Criteria; AUC-PR: area under the precision recall curve; BIC: Bayesian information criteria; CI: confidence interval; HL: Hosmer-Lemeshow; OR: odds ratio. 



CRC prediction models A, B, C, and D were evaluated, and they demonstrated good prediction 
performance. The summary of discrimination and calibration results for these models is as follows: 
Model A had a C-statistic of 0.767 (corrected 0.765) and a HL-test p-value of 0.024, while Model B had 
a C-statistic of 0.754 (corrected: 0.753) and a HL-test p-value of 0.711, as shown in Table 2 and Figures 
2–4. Model C had a C-statistic of 0.767 (corrected: 0.764) and a HL-p value of 0.018, while Model D 
had a C-statistic of 0.755 (corrected: 0.752) and a HL-p value of 0.428 (Table 2; Figures 5–7). Precision 
recall curves, which visualize the relationship between precision (positive predictive value) and recall 
(sensitivity) to compare across models, were shown in Figures 4 and 7. 

 

Figure 2. ROC curves—the model A and model B comparison. 

 

Figure 3. Calibration curves—the model A and model B comparison. 



 

Figure 4. Precision recall curves—the model A and model B comparison. 

 

Figure 5. ROC curves—the model C and model D comparison. 



 

Figure 6. Calibration curves—the model C and model D comparison. 

. 

Figure 7. Precision recall curves—the model C and model D comparison. 

Models A (parsimonious LASSO model) and C (full model) had better prediction performance, 
compared to baseline models B and D. The findings suggested incremental predictive value had been 
introduced by the addition of wGRS [Model A vs. B: NRI = 0.226 (0.149–0.335), IDI = 0.019 (0.013–
0.024); Model C vs. D: NRI = 0.239 (0.154–0.340), IDI = 0.018 (0.013–0.023); p < 0.01]. There was 
no statistical difference in the predictive accuracy between models A and C (C-statistic increment = 
0.001, p = 0.479). In addition, the sensitivity analysis found that there was no statistical difference in 
models for wGRS137, wGRS163, and wGRS202 predictive accuracy (Supplementary Table S2; Figures 
S9–S10). Random forest models F (baseline model + wGRS) and G (baseline model), with 500 trees, 
were built, and the results were consistent with the findings in cross-assessment of models A/B and 
C/D (Supplementary Table S12; Figures S11–S13). Model F had an out-of-bag (OOB) prediction error 
rate of 27.64%, compared to 27.37% for model G. Models that integrated wGRS in combination with 
demographic and clinical predictors had better performance than baseline models. 



We developed an online CRC risk prediction nomogram/calculator A. This can be accessed through 
the following link: (https://crcpredictionmodel.shinyapps.io/dynnomapp/; accessed on 27 June 2023). 
The CRC risk for individuals can be calculated via inputting each patient’s information. 

4. Discussion 

4.1. Interpretation of Main Findings 

Our study investigated the predictive value of demographic characteristics, a wGRS based on 202 CRC 
susceptibility SNPs, family history, and symptoms on CRC risk. The dedicated CRC prediction models 
were developed and internally validated for personalized cancer risk prediction for patients presenting 
with symptoms. 

4.1.1. Model Predictors 

CRC risk prediction models A-D were constructed using a polygenic risk score, age, sex, BMI, family 
history, and symptoms to predict CRC risk in patients with symptoms. 

In previous studies, a total of 19 CRC prediction models were developed [5–22]. The median number 
of predictors included in the models was ten (ranging from three to 16). An amount of 55 unique 
predictors were incorporated in at least one of the above 19 models (Supplementary Table S3). The 
19models used predictors, such as demographic characteristics (age: in 16 models, 82.4%; sex in 11 
models, 57.9%), lifestyle factors (smoking in four models, 21.1%; alcohol consumption in three 
models, 18.8%), biomarkers (haemoglobin in five models, 26.3%; CEA in two models, 10.53%), 
family history (in six models, 31.6%), and symptoms (rectal bleeding in 15 models, 78.9%; changes 
in bowel habits in 10 models, 52.6%; abdominal pain in nine models, 47.4%; weight loss in nine 
models, 47.4%; anaemia in  five models, 26.3%). 

The 10 candidate variables (except wGRS) in our study were all used as predictors in the previously 
developed 19 CRC prediction models. Our models’ findings were in line with these previous studies. 
It should be noted that family history data in SOCCS and LABSS studies was collected based on self-
reported bowel cancer history, which was recorded in patient questionnaires and may be affected by 
recall bias. Furthermore, predictive value of symptoms as indicators for CRC is not well established. 
Previous studies argued that bowel symptoms correlate poorly with the presence of CRC [37]. They 
are also common in patients free from CRC risk, which implies they do not have good sensitivity for 
CRC [38]. Bowel symptoms are associated with CRC risk, but only for patients who have had the 
symptom at least weekly and for less than 12 months [5]. For symptoms that may be relevant, 
investigating the frequency and duration of symptoms is helpful. Data related to duration and 
frequency of bowel symptoms were unfortunately not collected in SOCCS, and thus we could not 
explore this in our study. 

None of the 19 models incorporated genetic factors (neither individual SNPs nor a wGRS). To the best 
of our knowledge, this is the first study that developed and internally validated prediction models that 
included a wGRS in addition to demographic and clinical factors for CRC risk in patients with 
symptoms. Models A and C verified that the wGRS, including 202 CRC susceptibility SNPs, is the 
score with the best prediction performance, compared to baseline models B and D. The findings 
showed that the inclusion of the genetic predictor (wGRS) into the baseline model could improve CRC 
risk stratification. By comparison, previous studies were mainly focused on the predictive ability of 
genetic factors to capture the overall risk of CRC in the general population, not in symptomatic patients 
[39]. A recently published systematic review synthesized and evaluated a total of 33 CRC risk 
prediction models, which were developed by incorporating genetic predictors (SNPs or GRS) for the 
prediction of CRC risk in the general population [39] (Supplementary Table S10). An amount of 78.8% 
of the identified 33 CRC risk prediction models applied GRS, and the remaining 21.2% of them, 
incorporated SNPs as genetic predictors. The meta-analysis findings suggested no correlation between 
the number of SNPs and AUC improvement (p = 0.695). Furthermore, AUC improvement for the 
addition of genetic predictors to baseline models ranged from 0.010 to 0.084. The meta-analysis 
resulted in a pooled estimate of AUC improvement for genetic-enhanced prediction models compared 
with baseline models of 0.040 (95% CI: 0.035–0.045) [39].  

These results are consistent with our finding of the polygenic risk score value in symptomatic patients. 
The integration of genetic predictors into classical CRC prediction models (baseline models) could 
improve the models’ prediction accuracy. There are several strengths for using genetic risk 
stratification in CRC. First, wGRS provides a measure of genetic susceptibility to CRC risk. Second, 
genetic predisposition to CRC remains relatively unchanged throughout life and affords the 



opportunity to provide long-term estimation of risk trajectories. Third, genetic risk stratification could 
improve CRC risk prediction in people who carry high-impact disease-causing genetic variants. Future 
application of genetic predictors holds significant promise and has the potential to enhance CRC risk 
prediction, assist clinical decision-making in precision therapeutics, and improve population-level 
screening [40]. Despite the potentials and benefits of using genetic predictors, there are risks and 
limitations of clinical use, which should be acknowledged. The first concern is to balance the cost and 
net benefit of using genetic predictors [40]. Genetic variants are not routinely collected in clinical 
practice, and it is not clear whether their predictive accuracy is better than for traditional risk factors, 
which can be more easily collected from routine patient records [39]. In addition, the standards and 
methods to incorporate genetic predictors in prediction models are constantly developing [41]. There 
has not been a unified standard, and this inconsistency becomes a major challenge during its clinical 
application. Another challenging aspect of using genetic predictors in clinical practice is to ensure that 
they are equally applicable to all ethnic groups [42]. The majority of current genetic variants data are 
from European populations, thus, GRS are primarily developed and validated in those of European 
descent [43]. This usually leads to a decrease in predictive accuracy when applied to non-European 
ancestries [44]. Lastly, it is important to validate genetic predictors’ feasibility in routine clinical 
practice [41]. It is suggested to evaluate the CRC genetic model’s clinical impact (e.g., cost-
effectiveness) prior to implementation in the clinical setting [45]. 

4.1.2. Model Prediction Performance, Validation, and Clinical Impact 

CRC prediction models A, B, C, and D were found to have good predictive performance, surpassing 
the area under the ROC curves threshold of 0.7. Our models have the advantage of identifying 
symptomatic patients who have a higher probability of CRC among all patients. In addition, the 
calibration plots illustrated the acceptable agreement between the observed CRC probabilities and the 
predicted CRC probabilities. Due to a lack of external data, it was unfortunate that models A, B, C, 
and D could not be validated in the external population. Comparing LASSO model A and full model 
C, there was no statistical difference in the models’ predictive accuracy. It is critical to consider 
whether the model’s predictive accuracy increment is worth the additional time and cost to collect all 
the predictors. The parsimonious model A used five LASSO-selected influential predictors. LASSO 
approach could select the most influential predictors [46]. By comparison, the full model C used all 
the 10 predictors. In this study, the increased time and cost to collect the larger number of predictors 
for the full model C outweighed the increased predictive accuracy. It is important to balance model 
parsimony and accuracy [47]. From a practical perspective, the parsimonious model A is easier to 
interpret, generalize, and use in practice. In the current study, model A is preferred over model C.  

Compared to the previously published 19 risk prediction models, 13 (68.4%) models reported a median 
AUC value of 0.85 (ranged from 0.73 to 0.97), which indicated that these models had better 
discrimination ability. With regards to validation, 10 (52.6%) models did not undergo either internal 
or external validation; five (26.3%) models were internally validated; and three (15.8%) models were 
validated in external datasets. One model (5.3%) was developed with both internal and external 
validation. None of the 19 models performed clinical impact analysis. Although they perform at a level 
that is considered ‘clinically acceptable’ with a C-statistic >0.7, however, these models have not yet 
been applied in clinical practice. 

4.2. Strengths and Limitations 

The main strength of this study is that CRC prediction models were developed with internal validation 
to alleviate the models’ overfitting and optimism. Models incorporated both influential genetic and 
non-genetic predictors to increase the models’ prediction performance, which were validated to have 
good calibration and discrimination. 

However, the following potential limitations should be considered. (1) This risk prediction modelling 
study was based on a small sample size and may not be sufficiently representative of the population. 
Furthermore, due to the small sample size, we did not develop risk prediction models for CRC risk in 
males and females separately or in different CRC cancer sites. (2) The majority of CRC cases came 
from SOCCS (97.81%), and all controls, were from LABSS. The different variable collection methods 
in SOCCS (GP e-referrals) and LABSS (questionnaire) could bias the study’s results. For GP e-
referrals, it is possible that not all the symptoms would be accurately recorded by GPs. By comparison, 
for LABSS, patients were asked whether they had presented the symptoms (those were variables of 
interest and were designed to be collected in the questionnaire), and, therefore, they were more likely 
to recall a greater number of symptoms. (3) Previous systematic reviews found that biomarkers (e.g., 
haemoglobin, CEA, qFIT result), lifestyle (e.g., vitamin D) variables, and bowel symptoms (e.g., rectal 



mass, abdominal mass) are associated with CRC risk [48,49]. However, these predictors were not 
collected in SOCCS and LABSS studies and could not be employed in the developed CRC prediction 
models. (4) The prediction performance of using genetic predictors may vary, depending on the SNPs 
included (whether they are high-risk susceptibility), SNPs weight estimates from a meta-GWAS 
dataset, and the specific computational method used for GRS construction [39]. We included a list of 
genome-wide CRC significant SNPs (p < 5 × 10−8) from the most recently published meta-GWAS 
study [25]. However, 8.43% of the meta-GWAS participants were SOCCS participants. Thus, this 
could overestimate our wGRS when we used their SNPs’ coefficients for external weight. Another 
limitation is that current genetic variants are from European populations, which usually leads to a 
decrease in predictive accuracy when applied to non-European ancestries [50]. (5) Internal validation 
cannot address selection bias with recruitment, or measurement errors, as validation is performed 
within the study population [51]. (6) The C-statistic, HL goodness of fit test, and calibration plots were 
employed to examine model performance (discrimination and calibration). These metrics have their 
own limitations. The C-statistic does not have a clear interpretation when assessing the incremental 
value after adding a new predictor [52]. The HL test might lack statistical power to detect overfitting, 
it is sensitive to the sample size, and it provides no information on the direction or magnitude of 
miscalibration [53]. The calibration plot cannot provide quantitative assessment of model calibration 
[54]. (7) The developed CRC risk prediction models have not been externally validated due to lack of 
data. Validation studies of large sample size may be considered in the future. 

4.3. Clinical Implications and Future Research 

CRC prediction models have the benefit of providing disease risk assessment to identify patients, whilst 
also supporting clinical decision-making about risk-tailored, personalised clinical care [55]. This 
eventually could improve patients’ health outcomes and the cost-effectiveness of care [38]. Despite their 
benefits, CRC prediction models in front-line clinical practice remain under-utilized. There are risks and 
limitations of CRC prediction models in clinical use. The first concern is associated with prediction 
accuracy. Incorrect CRC prediction models might prioritize the wrong patients for further screening, 
interventions, and clinical treatments [56]. In addition, two studies conducted interviews/focus groups 
and surveys to investigate attitudes regarding the use of CRC prediction models among GPs and to 
identify barriers to their clinical use [57,58]. The findings indicate that clinicians may interpret symptoms 
inconsistently which would lead to inaccurate and unreliable CRC risk assessment. Therefore, future 
application of genetic predictors holds significant promise and has the potential to enhance CRC risk 
prediction. 

5. Conclusions 

CRC prediction models were developed with internal validation for personalized cancer risk prediction 
for patients presenting with symptoms. The integration of genetic architecture into the CRC classical 
prediction model could improve prediction performance. This could be helpful to identify a 
subpopulation among the symptomatic population with higher CRC risk due to genetic susceptibility. 
The findings merit further investigation through model external validation and model clinical impact. 
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