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Abstract

The predictive utility of polygenic scores is increasing, and many polygenic scoring methods

are available, but it is unclear which method performs best. This study evaluates the

predictive utility of polygenic scoring methods within a reference-standardized framework,

which uses a common set of variants and reference-based estimates of linkage disequilib-

rium and allele frequencies to construct scores. Eight polygenic score methods were tested:

p-value thresholding and clumping (pT+clump), SBLUP, lassosum, LDpred1, LDpred2,

PRScs, DBSLMM and SBayesR, evaluating their performance to predict outcomes in UK

Biobank and the Twins Early Development Study (TEDS). Strategies to identify optimal

p-value thresholds and shrinkage parameters were compared, including 10-fold cross vali-

dation, pseudovalidation and infinitesimal models (with no validation sample), and multi-

polygenic score elastic net models. LDpred2, lassosum and PRScs performed strongly

using 10-fold cross-validation to identify the most predictive p-value threshold or shrinkage

parameter, giving a relative improvement of 16–18% over pT+clump in the correlation

between observed and predicted outcome values. Using pseudovalidation, the best meth-

ods were PRScs, DBSLMM and SBayesR. PRScs pseudovalidation was only 3% worse

than the best polygenic score identified by 10-fold cross validation. Elastic net models con-

taining polygenic scores based on a range of parameters consistently improved prediction

over any single polygenic score. Within a reference-standardized framework, the best poly-

genic prediction was achieved using LDpred2, lassosum and PRScs, modeling multiple

polygenic scores derived using multiple parameters. This study will help researchers per-

forming polygenic score studies to select the most powerful and predictive analysis

methods.
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Selzam S, Fürtjes AE, Gaspar HA, et al. (2021)

Evaluation of polygenic prediction methodology

within a reference-standardized framework. PLoS

Genet 17(5): e1009021. https://doi.org/10.1371/

journal.pgen.1009021

Editor: Vincent Plagnol, University College London,

UNITED KINGDOM

Received: August 11, 2020

Accepted: March 28, 2021

Published: May 4, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pgen.1009021

Copyright: © 2021 Pain et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: A data transfer

agreement is required to access individual-level

data for TEDS (https://www.teds.ac.uk/

researchers/teds-data-access-policy) and UK

https://orcid.org/0000-0001-5680-3281
https://orcid.org/0000-0001-8321-9435
https://orcid.org/0000-0001-9697-8596
https://orcid.org/0000-0003-4985-8174
https://orcid.org/0000-0001-6590-4957
https://orcid.org/0000-0002-5540-2707
https://orcid.org/0000-0002-6759-0944
https://orcid.org/0000-0002-0756-3629
https://orcid.org/0000-0003-0708-9530
https://orcid.org/0000-0002-8249-8476
https://doi.org/10.1371/journal.pgen.1009021
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009021&domain=pdf&date_stamp=2021-05-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009021&domain=pdf&date_stamp=2021-05-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009021&domain=pdf&date_stamp=2021-05-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009021&domain=pdf&date_stamp=2021-05-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009021&domain=pdf&date_stamp=2021-05-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009021&domain=pdf&date_stamp=2021-05-14
https://doi.org/10.1371/journal.pgen.1009021
https://doi.org/10.1371/journal.pgen.1009021
https://doi.org/10.1371/journal.pgen.1009021
http://creativecommons.org/licenses/by/4.0/
https://www.teds.ac.uk/researchers/teds-data-access-policy
https://www.teds.ac.uk/researchers/teds-data-access-policy


Author summary

An individual’s genetic predisposition to a given outcome can be summarized using poly-

genic scores. Polygenic scores are widely used in research and could also be used in a clini-

cal setting to enhance personalized medicine. A range of methods have been developed

for calculating polygenic scores, but it is unclear which methods are the best. Several

methods provide multiple polygenic scores for each individual which must then be tested

in an independent tuning sample to identify which polygenic score is most accurate.

Other methods provide a single polygenic score and therefore do not require a tuning

sample. Our study compares the prediction accuracy of eight leading polygenic scoring

methods in a range of contexts. For methods that calculate multiple polygenic scores, we

find that LDpred2, lassosum, and PRScs methods perform best on average. For methods

that provide a single polygenic score, not requiring a tuning sample, we find PRScs per-

forms best, and the faster DBSLMM and SBayesR methods also perform well. Our study

has provided a comprehensive comparison of polygenic scoring methods that will guide

future implementation of polygenic scores in both research and clinical settings.

Introduction

In personalized medicine, medical care is tailored for the individual to provide improved dis-

ease prevention, prognosis, and treatment. Genetics is a potentially powerful tool for providing

personalized medicine as genetic variation accounts for a large proportion of individual differ-

ences in health and disease [1]. Furthermore, an individual’s genetic sequence is stable across

the lifespan, enabling predictions long before the onset of most diseases. Although genetic

information is used to predict rare Mendelian genetic disorders, such as breast cancer based

on BRCA1/2 variants, our ability to predict common disorders using genetic information is

currently insufficient for clinical implementation. This is due to the increased etiological com-

plexity of common disorders, with complex interplay between genetic and environmental fac-

tors, and the highly polygenic genetic architecture with contributions from many genetic

variants with small effect sizes [2]. However, genome-wide association studies (GWAS), used

to detect common genetic associations, are rapidly increasing in sample size, and are identify-

ing large numbers of novel and robust genetic associations for health-related outcomes [3].

This growing source of information is also improving our ability to predict an individual’s dis-

ease risk or measured trait based on their genetic variation [4,5].

An individual’s genetic risk for an outcome can be summarized in a polygenic score, calcu-

lated from the number of trait-associated alleles carried. The contributing variants are typically

weighted by the magnitude of effect they confer on the outcome of interest, estimated in a ref-

erence GWAS. There are several challenges in performing a well-powered polygenic score

analysis. Firstly, GWAS effect-sizes are inflated through Winner’s curse, and unbiased esti-

mates can only be obtained through an independent training sample, with these effect-size

estimates then used to calculate polygenic scores in a further independent sample [6]. Sec-

ondly, to maximize polygenic prediction accuracy, the GWAS summary statistics must be

adjusted to account for the linkage disequilibrium (LD) between genetic variants, to avoid

double counting the non-independent effect of variants in high LD, and account for varying

degrees of polygenicity across outcomes, i.e. the number of genetic variants affecting the out-

come [6]. LD can be accounted for using LD-based clumping of GWAS summary statistics,

removing variants in LD with lead variants within each locus, and polygenicity is accounted

for by applying multiple GWAS p-value thresholds (pT) to select the effect alleles included in
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the polygenic score [4,5]. This pT+clump approach is conceptually simple and computation-

ally scalable [7]. However, using a hard LD threshold in clumping to retain or remove variants

from the polygenic score calculation can potentially reduce the variance explained by the poly-

genic score. Alternative summary statistic-based polygenic score methods retain all genetic

variants by modelling both the LD between variants and the polygenicity of the outcome [8–

14]. These methods use estimates of LD to jointly estimate the effect of nearby genetic varia-

tion maximizing the signal captured, and generally apply a shrinkage parameter to the genetic

effects to reduce overfitting and allow for varying degrees of polygenicity across outcomes.

Polygenic scoring methods can lead to overfitting of genetic effects due to the p-value based

selection of variants or joint estimation of many genetic effects. To avoid this overfitting,

genetic effect size estimates can be reduced using shrinkage methods to improve the generaliz-

ability of the model. Shrinkage methods for polygenic scoring can be separated into frequentist

penalty-based methods (e.g. lasso regression-based lassosum [10], summary-based best linear

unbiased prediction (SBLUP) [9]) and Bayesian methods that shrink estimates to fit a prior

distribution of effect sizes, such as LDpred1 [8], LDpred2 [13], PRScs [11], SBayesR [12], and

DBSLMM [14]. Each of these methods have been shown to improve the predictive utility of

polygenic scores over those derived using the pT+clump approach. In comparisons between

methods the findings are mixed: some studies have similar results across methods [15], while

papers developing a new method often report that the developed method out-performs chosen

other methods. To our knowledge no independent study has yet compared all approaches.

Five methods (pT+clump, LDpred1, LDpred2, lassosum and PRScs) generate multiple poly-

genic scores from user-defined tuning parameters. To determine which tuning parameter pro-

vides optimal prediction, the polygenic scores must first be tested in an independent ‘tuning’

sample. The pT+clump approach applies p-value thresholds to select variants included in the

polygenic score, whereas LDpred1, LDpred2, lassosum and PRScs apply shrinkage parameters

to adjust the GWAS effect sizes. In addition, lassosum, PRScs and LDpred2 provide a pseudo-

validation approach, whereby a single optimal shrinkage parameter is estimated based on the

GWAS summary statistics alone, and therefore do not require a tuning sample. SBayesR and

DBSLMM can be considered pseudovalidation approaches as they also do not require a tuning

sample to identify optimal parameters. Another approach to derive polygenic scores is to

assume an infinitesimal model, as is done by SBLUP and the infinitesimal models of LDpred1

and 2 [16]. Similar to pseudovalidation approaches, no tuning sample is required when assum-

ing an infinitesimal model. Rather than selecting a single tuning parameter, some studies have

suggested that combining polygenic scores across p-value thresholds whilst taking into

account their correlation using either PCA or model stacking can improve prediction [17,18].

Polygenic scores are a useful research tool, as well as a promising potential tool for personalized

healthcare through prediction of disease risk, prognosis, and treatment response [19]. However,

polygenic scores calculated in a clinical setting should be valid for a single target sample and thus

need to be constructed using a reference-standardized framework. Here, the polygenic score is

independent of any properties specific to the target sample, including the genetic variation avail-

able, and the LD and minor allele frequency (MAF) estimates. In a reference-standardized

approach, the genetic variants considered can be standardized by using only single nucleotide

polymorphisms (SNPs) that are commonly available after imputation, such as variation within the

HapMap3 reference [20]. The LD and MAF estimates can be standardized by using an ancestry

matched individual-level genetic dataset such as 1000 Genomes [21]. Determining these proper-

ties (SNPs, LD, MAF) in reference data provides a practical approach for estimating polygenic

scores for an individual, making them comparable to polygenic scores for other individuals of the

same ancestry [22]. Use of a reference-standardized framework also offers advantages by improv-

ing the comparability of polygenic scores across cohorts. Several polygenic scoring methods now
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recommend the use of HapMap3 SNPs and precomputed external LD estimate references [11–

13], in line with a reference-standardized approach.

In this study, we perform an extensive comparison of polygenic scoring methods within a refer-

ence-standardized framework. We evaluate the predictive utility of models for outcomes in UK

Biobank (UKB) and the Twins Early Development Study (TEDS), combining information across

tuning parameters. We evaluate eight polygenic scoring methods and apply different modelling

strategies to select optimal tuning parameters to establish the combinations that perform consistently

well. The reference-standardized framework increases the generalizability of results and provides a

resource for future studies investigating polygenic prediction in a research study or clinical setting.

Methods

To evaluate the different polygenic scoring approaches, we used two target samples: UK Biobank

(UKB) [23], and the Twins Early Development Study (TEDS) [24]. All code used to prepare data

and carryout analyses is available on the GenoPred website (see Data and Code Availability).

Ethics statement

For UKB, the protocol and written consent were approved by the UKB’s Research Ethics Com-

mittee (Ref: 11/NW/0382). For TEDS, ethical approval for TEDS has been provided by the

King’s College London ethics committee (reference: 05/Q0706/228), with written parental

and/or self-consent obtained before data collection.

UKB

UKB is a prospective cohort study that recruited >500,000 individuals aged between 40–69

years across the United Kingdom.

Genetic data. UKB released imputed dosage data for 488,377 individuals and ~96 million

variants, generated using IMPUTE4 software [23] with the Haplotype Reference Consortium refer-

ence panel [25] and the UK10K Consortium reference panel [26]. This study retained individuals

that were of European ancestry based on 4-means clustering on the first 2 principal components

provided by the UKB (self-reported ancestry was not used), and removed related individuals (>3rd

degree relative) using relatedness kinship (KING) estimates provided by the UKB [23]. The

imputed dosages were converted to hard-call format using a hard call threshold of zero.

Phenotype data. Eleven UKB phenotypes were analyzed. Eight phenotypes were binary:

Depression, Type II Diabetes (T2D), Coronary Artery Disease (CAD), Inflammatory Bowel

Disease (IBD), Rheumatoid arthritis (RheuArth), Multiple Sclerosis (MultiScler), Breast Cancer,

and Prostate Cancer. Three phenotypes were continuous: Intelligence, Height, and Body Mass

Index (BMI). Further information regarding outcome definitions can be found in S1 Text.

Analysis was performed on a subset of ~50,000 UKB participants for each outcome. For each

continuous trait (Intelligence, Height, BMI), a random sample was selected. For disease traits,

all cases were included, except for Depression and CAD where a random sample of 25,000 cases

was selected. Controls were randomly selected to obtain a total sample size of 50,000. Sample

sizes for each phenotype after genotype data quality control are shown in Table 1. S1 Fig shows

a schematic diagram of how UKB data was split into training and testing samples.

TEDS

TEDS is a population-based longitudinal study of twins born in England and Wales between

1994 and 1996 [27]. For this study, one individual from each twin pair was removed to retain

only unrelated individuals.
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Genetic data. TEDS participants were genotyped using two arrays, HumanOmniExpres-

sExome-8v1.2 and AffymetrixGeneChip 6.0. Stringent quality control was performed sepa-

rately for each array, prior to imputation via the Sanger Imputation server using the Haplotype

Reference Consortium (release 1.1) reference data [25,28]. Imputed genotype dosages were

converted to hard-call format using a hard call threshold of 0.9, with variants for each individ-

ual set to missing if no genotype had a probability of>0.9. Variants with an INFO score <0.4,

MAF <0.001, missingness >0.05 or Hardy-Weinberg equilibrium p-value <1×10−6 were

removed.

Phenotypic data. This study used four continuous phenotypes within TEDS: Height,

Body Mass Index (BMI), Educational Achievement, and Attention Deficit Hyperactivity Dis-

order (ADHD) symptom score (Table 1). These phenotypes were selected based on a previous

polygenic study, enabling comparison across methods [29]. The phenotypes were derived

using the same protocol as previously.

Genotype-based scoring

The following genotype-based scoring procedure provides reference standardized polygenic

scores and can be applied to any datasets of imputed genome-wide array data (Fig 1).

SNP-level QC. HapMap3 variants from the LD-score regression website (see Web

Resources) were extracted from target samples (UKB, TEDS), inserting any HapMap3 variants

that were not available in the target sample as missing genotypes (as required for reference

MAF imputation by the PLINK allelic scoring function) [30]. No other SNP-level QC was

performed.

Individual-level QC. Individual-level QC prior to imputation was previously performed

for both UKB [23] and TEDS [28] samples. Only individuals of European ancestry were

retained for polygenic score analysis. They were identified using 1000 Genomes Phase 3 pro-

jected principal components of population structure, retaining only those within three stan-

dard deviations from the mean for the top 100 principal components. This process will also

remove individuals who are outliers due to technical genotyping or imputation errors.

Table 1. Sample size of target sample phenotypes after quality control.

UKB Phenotype Description Total sample size No. of cases No. of controls

Depression Major depression 50000 25000 25000

Intelligence Fluid intelligence 50000 NA NA

BMI Body Mass Index 50000 NA NA

Height Height 50000 NA NA

T2D Type-2 Diabetes 50000 35112 14888

CAD Coronary Artery Disease 50000 25000 25000

IBD Inflammatory Bowel Disease 50000 46539 3461

MultiScler Multiple Sclerosis 50000 48863 1137

RheuArth Rheumatoid Arthritis 50000 46592 3408

Prostate Cancer Prostate Cancer 50000 47073 2927

Breast Cancer Breast Cancer 50000 41488 8512

TEDS Phenotype

GCSE Mean GCSE scores 7296 NA NA

ADHD ADHD symptoms 7880 NA NA

BMI21 Body Mass Index at age 21 5220 NA NA

Height21 Height at age 21 5455 NA NA

https://doi.org/10.1371/journal.pgen.1009021.t001
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GWAS summary statistics. GWAS summary statistics were identified for phenotypes the

same as or similar as possible to the UKB and TEDS phenotypes (descriptive statistics in S1

Table), excluding GWAS with documented sample overlap with the target samples. GWAS

summary statistics underwent quality control to extract HapMap3 variants, remove ambigu-

ous variants, remove variants with missing data, flip variants to match the reference, retain

variants with a minor allele frequency (MAF) >0.01 in the European subset of 1KG Phase 3,

retain variants with a MAF >0.01 in the GWAS sample (if available), retain variants with a

INFO>0.6 (if available), remove variants with a discordant MAF (>0.2) between the reference

and GWAS sample (if available), remove variants with p-values >1 or� 0, remove duplicate

variants, remove variants with sample size >3SD from the median sample size (if per variant

sample size is available).

Reference genotype datasets. Target sample genotype-based scoring was performed

using two different reference genotype datasets, the European subset of 1000 Genomes Phase 3

(N = 503) and a random subset of 10,000 European-ancestry UKB participants. The UKB

Fig 1. Schematic diagram of reference-standardized polygenic scoring. 1KG = 1000 Genomes; LDSC = Linkage Disequiibrium Score

Regression; MAF = Minor allele Frequency; Pre-imputed genotype data = Indicates the observed genotype data has already been imputed;

Observed genome-wide genotype data = Indicate the observed genotype data has not been imputed, and therefore requires imputation.

https://doi.org/10.1371/journal.pgen.1009021.g001
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reference set was independent of the target sample used for evaluating polygenic scoring meth-

ods. These references were used to determine whether the sample size of the reference geno-

type dataset affects the prediction accuracy of polygenic scores. Only 1,042,377 HapMap3

variants were available in the UKB dataset and used in genotype-based scoring.

Polygenic Scores (PRS). Polygenic scoring was carried out using eight approaches with

default parameters outlined in Table 2. To ensure comparability across methods, the same set

of HapMap3 variants were considered, and the same reference genotype datasets were used to

estimate LD and MAF (except for PRScs and SBayesR).

PRScs-provides an LD reference for HapMap3 variants based on the European subset of the

1000 Genomes, and results should be comparable to other methods when using the 1000 Genomes

reference. PRScs was not applied using the larger UKB reference dataset as PRScs has been previ-

ously reported to show minimal improvement when using larger LD reference datasets [11].

SBayesR analysis requires shrunk and sparse LD matrices as input. LD matrices were calcu-

lated using Genome-wide Complex Trait Bayesian analysis (GCTB) [31] in batches of 5,000

variants, which were then merged for each chromosome, shrunk, and then made sparse.

SBayesR analysis was also performed using LD matrices released by the developers of GCTB

based on 50,000 European UKB individuals (see Web Resources).

Two additional modifications of the standard pT+clump approach were tested, termed ‘pT

+clump (non-nested)’ and ‘pT+clump (dense)’. The pT+clump (non-nested) approach is the

same the standard pT+clump approach except non-overlapping p-value thresholds were used

to select variants included in the polygenic score, thereby making the polygenic scores for each

threshold independent. The pT+clump (dense) approach is the same as the standard pT

Table 2. Description of polygenic scoring approaches.

Method Multiple

tuning

parameters

Pseudo-validation/

infinitesimal

option

Software Description Parameters MHC region LD-reference

pT+clump

[30]

Yes No PLINK LD-based clumping

and p-value

thresholding

10 nested p-value thresholds: 1e-8, 1e-

6, 1e-4, 1e-2, 0.1, 0.2, 0.3, 0.4, 0.5, 1

Clumping: r2 = 0.1; window = 250kb

Only top variant

retained

EUR 1KG, EUR

10K UKB

lassosum

[10]

Yes Pseudo-validation lassosum Lasso regression-

based

80 s and lambda combinations: s = 0.2,

0.5, 0.9, 1. lambda = exp(seq(log

(0.001), log(0.1), length.out = 20))A

Not excluded EUR 1KG, EUR

10K UKB

PRScs[11] Yes Pseudo-validation PRScs Bayesian shrinkage 5 global shrinkage parameters (phi) =

1e-6, 1e-4, 1e-2, 1, auto

Not excluded PRScs-provided

EUR 1KG

SBLUP[9] No Infinitesimal (only

option

GCTA Best Linear

Unbiased

Prediction

NA Not excluded EUR 1KG, EUR

10K UKB

SBayesR

[12]

No Pseudo-validation

(only option)

GCTB Bayesian shrinkage NA Excluded (as

recommended)

EUR 1KG, EUR

10K UKB,

GCTB-provided

LDpred1

[8]

Yes Infinitesimal LDpred Bayesian shrinkage Infinitesimal model and 7 non-zero

effect fractions (p) = 3e-3, 1e-3, 3e-2,

1e-2, 3e-1, 1e-1, 1

Not excluded EUR 1KG, EUR

10K UKB

LDpred2

[13]

Yes Pseudo-validation

and infinitesimal

bigsnpr Bayesian Shrinkage Auto, infinitesimal, and grid modes.

Grid includes 126 combinations of

heritability and non-zero effect

fractions (p).

Not excluded EUR 1KG, EUR

10K UKB

DBSLMM No Yes (only option) DBSLMM Bayesian shrinkage NA Not excluded EUR 1KG, EUR

10K UKB

Note. Default or recommended parameters were used for all methods.
A lassosum lambda values described using R code.

https://doi.org/10.1371/journal.pgen.1009021.t002
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+clump approach except that it uses 10,000 p-value thresholds (minimum = 5×10−8, maxi-

mum = 0.5, interval = 5×10–5), implemented using default settings in PRSice [7].

After adjustment of GWAS summary statistics as necessary for each polygenic scoring

method, polygenic scores were calculated using PLINK with reference MAF imputation of

missing data. All scores were standardized based on the mean and standard deviation of poly-

genic scores in the reference sample.

To determine whether certain methods are more prone to capturing genetic effects driven

by population stratification, we carried out a sensitivity analysis, in which the first 20 principal

components were regressed from the polygenic scores in advance. Principal components were

derived in the 1KG Phase 3 reference, and then projected into UKB and TEDS samples.

Modelling approaches. For methods that provide polygenic scores based on a range of p-

value thresholds (pT+clump) or shrinkage parameters (lassosum, PRScs, LDpred1, LDpred2),

the best parameter was identified using either 10-fold cross validation (10FCVal) and, if avail-

able, pseudovalidation (PseudoVal). Pseudovalidation was performed using the pseudovalidate

function in lassosum, the fully-Bayesian approach in PRScs, the auto model in LDpred2.

SBayesR and DBSLMM by default estimate the optimal parameters and are therefore consid-

ered pseudovalidation methods. Methods assuming an infinitesimal model were SBLUP and

the infinitesimal models of LDpred1 and 2. In addition to selecting the single ‘best’ parameter

for polygenic scoring, elastic net models were derived containing polygenic scores based on a

range of parameters for each method, with elastic net shrinkage parameters derived using

10-fold cross-validation (Multi-PRS). The number of scores generated by each method, which

were included in the multi-PRS model, are shown in Table 2. In addition, we tested whether

combining polygenic scores from all methods in an elastic net model improved prediction.

This combined model is referred to the ‘All’ model.

The optimal parameters (pT, GWAS-effect size shrinkage, elastic net parameters) were

determined based on the largest mean correlation between observed and predicted values

obtained through 10-fold cross validation, and the resulting model was then applied to an

independent test set. Ten-fold cross-validation is liable to overfitting when using penalized

regression as hyperparameters are tuned using the 10-fold cross validation procedure. The

independent test-set validation avoids any overfitting as the independent test sample is not

used for hyperparameter tuning. Ten-fold cross validation was performed using 80% of the

sample and the remaining 20% was used as the independent test sample. Ten-fold cross valida-

tion and test-set validation was carried out using the ‘caret’ R package, setting the same ran-

dom seeds prior to subsetting individuals to ensure the same individuals were included for all

polygenic scoring methods.

Evaluating prediction accuracy. Prediction accuracy was evaluated as the Pearson corre-

lation between the observed and predicted outcome values. Correlation was used as the main

test statistic as it is applicable for both binary and continuous outcomes and standard errors

are easily computed as

SEr ¼
1 � r2

ffiffiffiffiffiffiffiffiffiffiffi
n � 2
p ð1Þ

Where SEr is the standard error of the Pearson correlation, r is the Pearson correlation, and

n is the sample size. Correlations can be easily converted to other test statistics such as R2

(observed or liability) and area under the curve (AUC) (equations 8 and 11 in [32]), with rela-

tive performance of each method remaining unchanged.

When modelling the polygenic scores, logistic regression was used for predicting binary

outcomes, and linear regression was used for predicting continuous outcomes. If the model
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contained only one predictor, a generalized linear model was used. If the model contained

more than one predictor (i.e. the polygenic scores for each p-value threshold or shrinkage

parameter), an elastic net model was applied to avoid overfitting due to the inclusion of multi-

ple correlated predictors [33].

The correlation between observed and predicted values of each model were compared

using William’s test (also known as the Hotelling-Williams test) [34] as implemented by the

‘psych’ R package’s ‘paired.r’ function, with the correlation between model predictions of each

method specified to account for their non-independence. A two-sided test was used when cal-

culating p-values.

The correlation between predicted and observed values were combined across phenotypes

for each polygenic score method. Correlations and their variances (SE2) were aggregated using

the ‘BHHR’ method [35] as implemented in the ‘MAd’ R package’s ‘agg’ function, using a phe-

notypic correlation matrix to account for the non-independence of analyses within each target

sample. In addition to averaging results across all phenotypes, we estimate the average perfor-

mance of methods within high and low polygenicity phenotypes. The polygenicity of pheno-

types was estimated using AVENGEME [36] (more information in S1 Text).

The percentage difference between methods was calculated as

% difference ¼ ððr1 � r2Þ=r2Þ � 100 ð2Þ

Where r1 and r2 indicate the Pearson correlation between predicted and observed values for

models 1 and 2, respectively.

Method runtime comparison. To compare the time taken for each polygenic scoring

method to process GWAS summary statistics, we ran each method using GWAS summary statis-

tics restricted to variants on chromosome 22. No parallel implementations were used in this com-

parison. Apart from LDpred1, all the polygenic scoring methods can be implemented in parallel.

Results

The eight polygenic risk score methods were applied to the target datasets of UKB (11 pheno-

types) and TEDS (4 phenotypes), using two reference data sets of 1000 Genomes (1KG, 503

individuals) and UKB (10,000 individuals). Models were derived using 10-fold cross-valida-

tion, pseudovalidation, infinitesimal PRS and analysis of multiple threshold PRS, as appropri-

ate for each polygenic risk score method (Table 2).

First, we confirmed that the design of the study was appropriate to detect differences

between the methods using the GWAS summary statistics and test data sets chosen. GWAS

summary statistics had sample sizes of a mean of 50,698 cases and 94,391 controls, and

423,698 individuals for continuous traits, with heritability on the liability scale (estimated from

the GWAS) ranging between 0.021 (Multiple Sclerosis) and 0.542 for Crohn’s disease (S1

Table). For pT+clump, with 1KG reference and UKB target samples, the correlations between

observed values (case-control status or measured trait) and the predicted values from the poly-

genic risk scoring models ranged from 0.074 (SE = 0.010) for Intelligence to 0.299 (SE = 0.010)

for Height (S7 Table). For each disorder or trait, reference panel and polygenic scoring

method, the correlation was significantly different from zero (S6–S9 Tables). These results

confirm that the study design—comprising the GWAS, reference panel, target studies and

traits—had sufficient information to capture polygenic prediction, and that the traits are

diverse in polygenic architecture.

Results were highly concordant across the different target and reference samples used

though the estimates were more precise when using the UKB target sample due to the

increased sample size compared to TEDS (S2 and S3 Figs).
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Effect of reference panel and validation method

Polygenic scoring methods were applied to two reference panels of European ancestry: 503

individuals from the 1,000 Genomes sample, and 10,000 individuals from UKB. On average,

results were highly similar for both panels (S2 and S3 Figs). For example, with the larger refer-

ence panel the correlation increased by a mean of 0.002 in UKB, and 0.008 in TEDS, across

traits and polygenic scoring methods (test-set validation, S2–S5 Tables; excluding PRScs which

used only the 1,000 Genomes reference panel). The greatest improvements with the larger ref-

erence panel were for SBayesR and LDpred2 pseudovalidation methods, with an average

increase in correlation of 0.011 and 0.017 respectively. Detailed results are reported here only

for the 1,000 Genomes (1KG) reference panel, with full results for UKB reference panel in S1–

S20 Tables and S1–13 Figs.

Both 10-fold cross validation and test-set validation methods were used in modelling, across

all polygenic risk scoring methods. The 10-fold cross validation results were highly congruent

with test-set validation results (Table 3). Results reported are based on test-set validation since

this method is clearly robust to overfitting when using elastic net models (see S1–S20 Tables

for 10-fold cross-validation results).

Overview of polygenic scoring methods by modelling strategy

The performance for each polygenic scoring method across phenotypes was assessed using the

correlation between observed and fitted values (Fig 2A), and then comparing each method

with a baseline method of pT+clump with 10-fold cross validation using the difference in

Table 3. Average test-set correlation between predicted and observed values across phenotypes.

Method Model CrossVal R (SE) IndepVal R (SE)

pT+clump 10FCVal 0.155 (0.002) 0.153 (0.004)

pT+clump MultiPRS 0.175 (0.002) 0.174 (0.004)

lassosum 10FCVal 0.19 (0.002) 0.183 (0.004)

lassosum MultiPRS 0.199 (0.002) 0.194 (0.004)

lassosum PseudoVal 0.159 (0.002) 0.157 (0.004)

PRScs 10FCVal 0.19 (0.002) 0.183 (0.004)

PRScs MultiPRS 0.194 (0.002) 0.187 (0.004)

PRScs PseudoVal 0.188 (0.002) 0.182 (0.004)

SBLUP Inf 0.162 (0.002) 0.156 (0.004)

SBayesR PseudoVal 0.17 (0.002) 0.167 (0.004)

LDpred1 10FCVal 0.178 (0.002) 0.171 (0.004)

LDpred1 MultiPRS 0.181 (0.002) 0.175 (0.004)

LDpred1 Inf 0.163 (0.002) 0.156 (0.004)

LDpred2 10FCVal 0.194 (0.002) 0.187 (0.004)

LDpred2 MultiPRS 0.197 (0.002) 0.191 (0.004)

LDpred2 PseudoVal 0.155 (0.002) 0.151 (0.004)

LDpred2 Inf 0.161 (0.002) 0.155 (0.004)

DBSLMM PseudoVal 0.182 (0.002) 0.175 (0.004)

All MultiPRS 0.202 (0.002) 0.197 (0.004)

Note. This table shows results based on the UKB target sample and 1000 genomes reference. 10FCVal = Single polygenic score based on the optimal parameter as

identified using 10-fold cross-validation. Multi-PRS = Elastic net model containing polygenic scores based on a range of parameters, with elastic net shrinkage

parameters derived using 10-fold cross-validation. PseudoVal = Single polygenic score based on the predicted optimal parameter as identified using pseudovalidation,

which requires no tuning sample, Inf = Single polygenic score based on infinitesimal model, which requires no tuning sample.

https://doi.org/10.1371/journal.pgen.1009021.t003
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correlation (Fig 2B). All methods performed at least as well as pT+clump. These overview

results show that the pseudovalidation (PseudoVal) and infinitesimal models (Inf) performed

less well than polygenic scores selected through 10-fold cross-validation (10FCVal), and that

the prediction when modelling multiple PRS (multi-PRS) was slightly higher than the 10-fold

Fig 2. Polygenic scoring methods comparison for UKB target sample with 1KG reference. A) Average test-set correlation

between predicted and observed values across phenotypes. B) Average difference between observed-prediction correlations for

the best pT+clump polygenic score and all other methods. The average difference across phenotypes are shown as diamonds and

the difference for each phenotype shown as transparent circles. Shows only results based on the UKB target sample when using

the 1KG reference. Error bars indicate standard error of correlations for each method. 10FCVal represents a single polygenic

score based on the optimal parameter as identified using 10-fold cross-validation. Multi-PRS represents an elastic net model

containing polygenic scores based on a range of parameters, with elastic net shrinkage parameters derived using 10-fold cross-

validation. PseudoVal represents a single polygenic score based on the predicted optimal parameter as identified using

pseudovalidation, which requires no tuning sample. Inf represents a single polygenic score based on the infinitesimal model,

which requires no tuning sample.

https://doi.org/10.1371/journal.pgen.1009021.g002
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cross-validation. Full results for all traits in UKB and TEDS indicate consistency across meth-

ods, with no trait performing unexpectedly well or poorly on any single method (S6–S9 Tables;

S4–S7 Figs).

Comparison of polygenic scoring methods

A pairwise comparison of polygenic scoring methods was performed for each method (pT+-

clump, lassosum, PRScs, SBLUP, SBayesR, LDpred1, LDpred2, DBSLMM, All) and each

model (10-fold cross validation, multi-PRS, pseudovalidation and infinitesimal). Fig 3 shows

the difference in correlation (R) within and between methods for UKB outcomes with 1KG

reference panel, with p-values for significant differences calculated using the William’s test

results aggregated across outcomes. Full results for TEDS and UKB, and for both reference

panels are given in S10–S13 Tables and S8 Fig, and by trait in S14–S17 Tables.

When using 10-fold cross validation to identify the optimal parameter, LDpred2, lassosum

and PRScs provided the most predictive polygenic scores in the test sample on average, with a

Fig 3. Pairwise comparison between all methods, showing average test-set observed-expected correlation difference between all methods

with significance value. Correlation difference = Test correlation–Comparison correlation. Red/orange coloring indicates the Test method

(shown on Y axis) performed better than the Comparison method (shown on X axis). Shows only results based on the UKB target sample when

using the 1KG reference. � = p<0.05. �� = p<1×10−3. ��� = p<1×10−6. P-values are two-sided. 10FCVal represents a single polygenic score based

on the optimal parameter as identified using 10-fold cross-validation. Multi-PRS represents an elastic net model containing polygenic scores based

on a range of parameters, with elastic net shrinkage parameters derived using 10-fold cross-validation. PseudoVal represents a single polygenic

score based on the predicted optimal parameter as identified using pseudovalidation, which requires no tuning sample. Inf represents a single

polygenic score based on the infinitesimal model, which requires no tuning sample.

https://doi.org/10.1371/journal.pgen.1009021.g003
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16–18% relative improvement (p<8×10−16) over the 10-fold cross-validated pT+clump

approach. When using 10-fold cross validation, on average LDpred2 provided a small but

nominally significantly improved prediction over lassosum and PRScs (2%, p = 0.05).

Pseudovalidation and infinitesimal models do not require a tuning sample and their results

are therefore described in parallel. The methods providing a pseudovalidation and/or infinites-

imal approach include lassosum, PRScs, LDpred, LDpred2, SBLUP, DBSLMM and SBayesR.

When using the smaller 1KG reference panel PRScs and DBSLMM performed the best on

average, providing at least a 5% relative improvement (p<2×10−2) over other pseudovalidation

approaches. The PRScs pseudovalidation approach provided a further significant improve-

ment over DBSLMM, with an average relative improvement of 4% (p = 4×10−4). Furthermore,

the PRScs pseudovalidation approach was on average only 3% (p-value = 6×10−3) worse than

the best polygenic score identified by 10-fold cross validation for any method. When using the

larger UKB reference panel, the performance of SBayesR improved and was not significantly dif-

ferent to that of DBSLMM. The performance of lassosum pseudovalidation, the LDpred1 and

LDpred2 infinitesimal models, SBLUP, LDpred2 pseudovalidation and SBayesR was variable

across phenotypes, whereas the PRScs pseudovalidated polygenic score achieved near optimal

predication compared to any method, and always performed better than the best pT+clump

polygenic scores as identified by 10-fold cross validation. The performances of DBSLMM, and

SBayesR when using the larger UKB reference were also relatively stable across phenotypes.

Modelling multiple polygenic scores based on multiple parameters using an elastic net con-

sistently outperformed models containing the single best polygenic score as identified using

10-fold cross validation. The improvement was largest when using pT+clump polygenic scores

(12% relative improvement, p = 1×10−21), but was also statistically significant for lassosum (6%

relative improvement, 3×10−15), PRScs (2% relative improvement, p = 4×10−5), LDpred1 (2%

relative improvement, p = 4×10−5) and LDpred2 (2% relative improvement, p = 3×10−4 meth-

ods. On average, the ‘All’ method, combining polygenic scores across polygenic scoring meth-

ods provided a statistically significant improvement over the single best method (multi-PRS

lassosum, 2% relative improvement, p = 4x10−3). Elastic net models using non-nested or dense

p-value thresholds showed no improvement over the standard p-value thresholding approach

(S18 and S19 Tables).

Convergence issues occurred for SBayesR for 4 of the 14 GWAS. In the latest version of the

software implementing SBayesR (GCTB v2.03), developers have included a robust parameteri-

zation option which is automatically turned on when convergence issues are detected. We

found that the robust parameterization resolved convergence issues, although the software had

limited ability to detect convergence issues (S9 and S10 Figs). As a result, we recommend spec-

ifying the ‘--robust’ option to force the robust parameterization, as this optimized SBayesR

performance in most instances (S9 and S10 Figs). Results comparing SBayesR to other meth-

ods reported in this study were derived using the robust parameterization option.

The relative performance of all methods and modelling approaches was similar across low

and high polygenicity phenotypes (S11 Fig). Infinitesimal model-based polygenic scores per-

formed better for high polygenicity phenotypes. Estimates of polygenicity for each phenotype

are shown in S20 Table.

Controlling for the first 20 genetic principal components did not affect the relative perfor-

mance of polygenic scoring methods (S12 Fig).

Runtime comparison

The runtime of methods to process GWAS summary statistics on chromosome 22 without

parallel implementations varied substantially (S13 Fig). The methods (fastest to slowest) were
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pt+clump (~3 seconds), DBSLMM and lassosum (~30 seconds), SBLUP (~1 minute), SBayesR

and LDpred1 (~3–6 minutes), PRScs (~35 minutes), and LDpred2 (~50 minutes). The number of

parameters tested by each method will influence the runtime. For example, using only one shrink-

age parameter for PRScs will take 1/5 of time taken for PRScs to use 5 shrinkage parameters.

Discussion

This study evaluated a range of polygenic scoring methods across phenotypes representing a

range of genetic architectures and using reference and target sample genotypic data of different

sample sizes. This study shows that, when a tuning sample is available to identify optimal

parameters, more recently developed methods that do not perform LD-based clumping pro-

vide better prediction, with LDpred2, lassosum and PRScs providing a relative improvement

of 16–18% compared to the pT+clump approach. When a tuning sample is not available, the

optimal method for prediction was PRScs, with DBSLMM and SBayesR also performing well.

Furthermore, the PRScs pseudovalidation performance was only 3% worse than the best poly-

genic scores identified by 10-fold cross validation for any other method. This study also shows

that an elastic net model containing multiple polygenic scores based on a range of p-value

thresholds or shrinkage parameters provides better prediction than the single best polygenic

score as identified by 10-fold cross validation. Modelling multiple parameters increased pre-

diction by 12% when using the pT+clump approach and 2–6% for polygenic scoring methods

that model LD. Modelling polygenic scores from multiple methods provided a relative im-

provement of 1.7% in prediction over the single best method, though the additional computa-

tion time to perform all methods is substantial.

Our study highlighted the performance of SBayesR using default settings is highly variable

across GWAS summary statistics due to convergence issues. However, convergence issues are

avoided when the newly implemented robust parameterization option is specified.

These methods were evaluated within a reference-standardized framework and the results

are likely to be generalizable to a range of settings, including a clinical setting. The improved

transferability of prediction accuracy when using a reference-standardized approach enables

prediction with a known accuracy for a single individual. This is an essential feature of any pre-

dictor as then its prediction can be appropriately considered in relation to other information

about the individual. It is important to consider whether the reference-standardized approach

impacts the predictive utility of the polygenic scores compared to those derived using target

sample specific properties. The use of only HapMap3 variants is common for polygenic scoring

methods as denser sets of variants increase the computational burden of the analysis and pro-

vide only incremental improvements in prediction [12]. However, denser sets of variants are

ultimately likely to be of importance for optimizing the predictive utility of polygenic scores.

The use of reference LD estimates instead of target sample-specific LD estimates is less likely to

impact the predictive utility of polygenic scores. LD estimates are used to recapitulate LD struc-

ture in the GWAS discovery sample, and there should therefore be no advantage to using target

sample specific LD estimates instead of reference sample LD estimates, unless the target sample

better captures the LD structure in the GWAS discovery sample.

One major limitation of our study is that it was performed only in studies of European

ancestry since GWAS of other ancestries have insufficient power for polygenic prediction.

Polygenic scoring method comparisons in other ancestries or across ancestries will require

substantial progress in diversifying genetic studies to non-European ancestry. In particular, it

will be important to assess the impact of greater genetic diversity and weaker linkage disequi-

librium in African ancestry populations. These studies are essential if polygenic risk scores are

to be implemented in clinical care, to ensure equity of healthcare.
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The clinical implementation of polygenic scores is at an early stage, and we identify five

areas that still require further research. First, this study demonstrates that the reference-stan-

dardized approach provides reliable polygenic score estimates. However, the extent to which

missing genetic variation within target sample data affects the prediction accuracy needs to be

investigated. Furthermore, the extent to which prediction accuracy varies across individuals

from different European ancestral populations needs to be assessed. Second, this study used

the HapMap3 SNP list when deriving polygenic scores, building on previous research suggest-

ing that these variants are reliably imputed and provide good coverage of the genome [20].

However, other sets of variants should be explored as denser coverage of the genome may

improve prediction. Third, this study investigates polygenic scores based on a single discovery

GWAS or phenotype. Previous research has shown that methods which combine evidence

across multiple GWAS can improve prediction due to genetic correlation between traits [37–

41]. Further research comparing the predictive utility of multi-trait polygenic prediction

within a reference-standardized framework is required. Fourth, we present the reference stan-

dardized approach as a conceptual framework for implementing polygenic scores in a clinical

setting. However, several additional issues will need to be addressed before they can be used in

a clinical setting, such as assigning individuals to the optimal reference population, the pres-

ence of admixture, and translating relative polygenic scores into absolute terms. Finally, inte-

gration of functional genomic annotations has been shown to improve prediction over

functionally agnostic polygenic scoring methods [42]. Comparison of functionally informed

methods within a reference-standardized framework is also required.

In conclusion, this study performed a comprehensive comparison of GWAS summary sta-

tistic-based polygenic scoring methods within a reference-standardized framework using

European ancestry studies. The results provide a useful resource for future research and

endeavors to implement polygenic scores for individual-level prediction. All the code, ratio-

nale and results of this study are available on the GenoPred website (see Web Resources). This

website will continue to document the evaluation of novel genotype-based prediction methods,

providing a valuable community resource for education, research, and collaboration. Novel

polygenic score methods can be rapidly tested against these standard methods to benchmark

performance. This framework should be a valuable tool in the roadmap of moving polygenic

risk scores from research studies to clinical implementation. Further investigation of methods

providing genotype-based prediction within a reference-standardized framework is needed.

Supporting information

S1 Fig. Schematic diagram showing UKB was split into reference, training and testing sam-

ples. A sample of UKB providing 50,000 observations for each phenotype was identified. The

sample was then further split into training (80%) and testing (20%) samples. The training sam-

ple used 10-fold cross validation to identify the optimal polygenic scoring parameters and elas-

tic net hyper-parameters. An independent sample of 10,000 European UKB participants was

also created to as a reference for polygenic scoring.

(PNG)

S2 Fig. Average test-set correlation between predicted and observed values across pheno-

types. Error bars indicate standard error of correlations for each method. Results are split by

the target and reference genotypic data used. Results are 10FCVal bars represent a single poly-

genic score based on the optimal parameter as identified using 10-fold cross-validation. Multi-

PRS bars represent an elastic net model containing polygenic scores based on a range of

parameters, with elastic net shrinkage parameters derived using 10-fold cross-validation.

PseudoVal bars represent a single polygenic score based on the predicted optimal parameter as
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identified using pseudovalidation, which requires no tuning sample. Inf represents a single

polygenic score based on the infinitesimal model, which requires no tuning sample.

(PNG)

S3 Fig. Average test-set observed-expected correlation difference between the best pT+clump

polygenic score and all other methods. The average difference across phenotypes are shown as

diamonds with error bars indicating the standard error, and the difference for each phenotype

shown as transparent circles. Results are split by the target and reference genotypic data used.

10FCVal represents a single polygenic score based on the optimal parameter as identified using

10-fold cross-validation. Multi-PRS represents an elastic net model containing polygenic scores

based on a range of parameters, with elastic net shrinkage parameters derived using 10-fold cross-

validation. PseudoVal represents a single polygenic score based on the predicted optimal parame-

ter as identified using pseudovalidation, which requires no tuning sample. Inf represents a single

polygenic score based on the infinitesimal model, which requires no tuning sample.

(PNG)

S4 Fig. Correlation between predicted and observed values for each phenotype in UKB

when using the European subset of 1000 Genomes as the reference. Error bars indicate stan-

dard errors. 10FCVal bars represent a single polygenic score based on the optimal parameter

as identified using 10-fold cross-validation. Multi-PRS bars represent an elastic net model con-

taining polygenic scores based on a range of parameters, with elastic net shrinkage parameters

derived using 10-fold cross-validation. PseudoVal bars represent a single polygenic score

based on the predicted optimal parameter as identified using pseudovalidation, which requires

no tuning sample. Inf represents a single polygenic score based on the infinitesimal model,

which requires no tuning sample.

(PNG)

S5 Fig. Correlation between predicted and observed values for each phenotype in UKB

when using an independent 10K subset of European UKB individuals as the reference.

Error bars indicate standard errors. 10FCVal bars represent a single polygenic score based on

the optimal parameter as identified using 10-fold cross-validation. Multi-PRS bars represent

an elastic net model containing polygenic scores based on a range of parameters, with elastic

net shrinkage parameters derived using 10-fold cross-validation. PseudoVal bars represent a

single polygenic score based on the predicted optimal parameter as identified using pseudova-

lidation, which requires no tuning sample. Inf represents a single polygenic score based on the

infinitesimal model, which requires no tuning sample.

(PNG)

S6 Fig. Correlation between predicted and observed values for each phenotype in TEDS

when using the European subset of 1000 Genomes as the reference. Error bars indicate stan-

dard errors. 10FCVal bars represent a single polygenic score based on the optimal parameter

as identified using 10-fold cross-validation. Multi-PRS bars represent an elastic net model con-

taining polygenic scores based on a range of parameters, with elastic net shrinkage parameters

derived using 10-fold cross-validation. PseudoVal bars represent a single polygenic score

based on the predicted optimal parameter as identified using pseudovalidation, which requires

no tuning sample.1000G Reference. Inf represents a single polygenic score based on the infini-

tesimal model, which requires no tuning sample.

(PNG)

S7 Fig. Correlation between predicted and observed values for each phenotype in TEDS

when using an independent 10K subset of European UKB individuals as the reference.
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Error bars indicate standard errors. 10FCVal bars represent a single polygenic score based on

the optimal parameter as identified using 10-fold cross-validation. Multi-PRS bars represent

an elastic net model containing polygenic scores based on a range of parameters, with elastic

net shrinkage parameters derived using 10-fold cross-validation. PseudoVal bars represent a

single polygenic score based on the predicted optimal parameter as identified using pseudova-

lidation, which requires no tuning sample. Inf represents a single polygenic score based on the

infinitesimal model, which requires no tuning sample.

(PNG)

S8 Fig. Average test-set observed-expected correlation difference between all methods with

significance value. Correlation difference = Test correlation–Reference correlation. Shows

only results based on the UKB target sample when using the 1KG reference as other results

were highly concordant. � = p<0.05. �� = p<1×10−3. ��� = p<1×10−6. P-values are one-sided.

10FCVal corresponds to a single polygenic score based on the optimal parameter as identified

using 10-fold cross-validation. Multi-PRS corresponds to an elastic net model containing poly-

genic scores based on a range of parameters, with elastic net shrinkage parameters derived

using 10-fold cross-validation. PseudoVal corresponds to a single polygenic score based on the

predicted optimal parameter as identified using pseudovalidation, which requires no tuning

sample. Inf represents a single polygenic score based on the infinitesimal model, which

requires no tuning sample.

(PNG)

S9 Fig. Correlation between predicted and observed values across phenotypes in UKB for

SBayesR polygenic scores derived using different reference samples and different GWAS

processing procedures. 1KG indicates the reference sample was the European subset of 1000

Genomes. UKB indicates the reference sample was an independent 10K subset of European

UKB individuals. GCTB indicates the reference was the GCTB-provided reference data based

on a non-independent 50K subset of European UKB individuals. The colour of the bars indi-

cates the version of GCTB used when running SBayesR and which settings were used. Default

indicates that default settings were used. P<0.4 indicates only variants with a GWAS p-value

<0.4 were retained. Robust indicates that the—robust parameter was specified, forcing robust

parameterisation.

(PNG)

S10 Fig. Correlation between predicted and observed values across phenotypes in TEDS

for SBayesR polygenic scores derived using different reference samples and different

GWAS processing procedures. 1KG indicates the reference sample was the European subset

of 1000 Genomes. UKB indicates the reference sample was an independent 10K subset of

European UKB individuals. GCTB indicates the reference was the GCTB-provided reference

data based on a non-independent 50K subset of European UKB individuals. The colour of the

bars indicates the version of GCTB used when running SBayesR and which settings were used.

Default indicates that default settings were used. P<0.4 indicates only variants with a GWAS

p-value <0.4 were retained. Robust indicates that the—robust parameter was specified, forcing

robust parameterisation.

(PNG)

S11 Fig. Comparison of methods across high and low polygenicity outcomes in UKB target

sample using 1KG reference. Figure shows average test-set observed-expected correlation dif-

ference between the best pT+clump polygenic score and all other methods. The average differ-

ence across phenotypes are shown as diamonds with error bars indicating the standard error,

and the difference for each phenotype shown as transparent circles. 10FCVal represents a
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single polygenic score based on the optimal parameter as identified using 10-fold cross-valida-

tion. Multi-PRS represents an elastic net model containing polygenic scores based on a range

of parameters, with elastic net shrinkage parameters derived using 10-fold cross-validation.

PseudoVal represents a single polygenic score based on the predicted optimal parameter as

identified using pseudovalidation, which requires no tuning sample. Inf represents a single

polygenic score based on the infinitesimal model, which requires no tuning sample.

(PNG)

S12 Fig. Comparison of methods after controlling for genetic principal components in

UKB target sample using 1KG reference. Figure shows average test-set observed-expected

correlation difference between the best pT+clump polygenic score and all other methods. The

average difference across phenotypes are shown as diamonds with error bars indicating the

standard error, and the difference for each phenotype shown as transparent circles. 10FCVal

represents a single polygenic score based on the optimal parameter as identified using 10-fold

cross-validation. Multi-PRS represents an elastic net model containing polygenic scores based

on a range of parameters, with elastic net shrinkage parameters derived using 10-fold cross-

validation. PseudoVal represents a single polygenic score based on the predicted optimal

parameter as identified using pseudovalidation, which requires no tuning sample. Inf repre-

sents a single polygenic score based on the infinitesimal model, which requires no tuning sam-

ple.

(PNG)

S13 Fig. Runtime for each polygenic scoring method using genetic variants on chromo-

some 22. No parallel implementations were used.

(PNG)
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