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Abstract  

The importance of climate risk as a source of systemic risk for financial markets and the decisions 

of investors, portfolio managers, and regulators is growing. We examine the directional 

predictability from two climate risk measures, transition risk and physical risk, to the returns and 

volatility of European brown and green energy stocks, European carbon emission allowances, and 

global green bonds. Using daily data, we apply a cross-quantilogram approach in a time-varying 

setting to measure potential differences in the predictability across quantiles and over various crisis 

periods. The return predictability results are more pronounced for transition risk than physical risk, 

especially for brown energy stocks and carbon emission allowances, and they generally vary across 

periods and markets conditions. The predictability of volatility is also significant at specific time 

periods and volatility states, especially from transition risk, and the sign of the predictability is 

positive for brown energy and carbon emission allowances whereas it is negative for green bonds. 

We show that a lower-than-expected level of discussion about the transition process leads to a 

heightened volatility of brown energy markets. These findings have important implications 

regarding climate risks assessment on return and volatility predictability and climate risk and 

portfolio decarbonization under COP26.  

Keywords: Quantile dependency and predictability; cross-quantilogram; physical and transition 

risk; green and brown energy; carbon emission allowances; green bonds; European markets 
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1. Introduction 

Increasing changes in climate and the consequent risks posed to societies and ecosystems have 

attracted a great deal of attention from regulators, financial participants, and academics (Sinha et 

al., 2020). The world needs to re-shape the entire economy toward a greener and climate-neutral 

society to fight rising temperatures and reduce the frequency and severity of physical hazards (e.g. 

storms, floods, wildfires) and their impact on economic activities.1 Several climate summits have 

taken place in recent years, the latest being the 26th United Nation Climate Change Conference 

(COP26) where parties discussed ways to accelerate action towards the Paris Agreement 

temperature goals. Central banks and financial institutions are keen to incorporate climate, as well 

as environmental, social, and governance (ESG), considerations in their policies, and investors 

want to manage climate risks and find procedures to decarbonize their portfolios. Climate-related 

risks raise the stress of the financial system (Flori et al., 2021), systematically drive the cross-

section of both stock returns (e.g. Bolton & Kacperczyk, 2021; Bua et al., 2021; Hsu et al., 2023; 

Faccini et al., 2021) and bond returns (e.g. Painter, 2020; Huynh & Xia, 2021), and impact the 

price dynamics of green and brown energy stocks (Bouri et al., 2022) and other asset classes, 

including real estate (e.g. Baldauf et al., 2020; Murfin & Spiegel, 2020; Bernstein et al., 2019), 

currencies (Bonato et al., 2022), gold (Cepni et al., 2022), and fixed-income securities, as well as 

financial institutions (e.g. Battiston et al., 2021a; Giglio et al., 2021)2.  

Climate-related risks are complex by nature and can affect the financial system, notably financial 

markets, through physical and transition risks (Bua et al., 2022), suggesting the relevance of 

considering the financial implications of these two risks separately.3 Using a textual-analysis 

approach in line with Engle et al. (2020), Bua et al. (2022) exploit scientific texts on climate and 

 
1 https://news.climate.columbia.edu/2019/06/20/climate-change-economy-impacts/ 
2 Polat et al. (2023) consider the impact of COVID-19 media coverage index on the return and volatility spillovers 

across several climate changes indices. 
3 Among the mechanisms of climate-related risk transmission to the real economy, are concerns that physical and 

transition risk can lead to sudden and unexpected adjustments in the value of financial assets, impairing financial 

stability and threatening asset managers, institutional investors, banks, insurance companies, and other economic 

agents (Battiston et al., 2021a). Physical risk’s economic consequences include, among others, business interruptions, 

damage to assets and firm productivity, and decreases in firms’ collateral value, whereas, depending on how fast and 

orderly the decarbonization process is, examples of transition risk’s negative consequences include large swings in 

asset prices, stranded assets, and the downgrading of firms’ credit ratings. For asset returns, according to the 

equilibrium model of Pastor et al. (2021), the expected returns of green assets are lower than brown assets, but the 

realized returns are higher when climate change concerns take agents by surprise. 
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a wide range of news and press articles from Reuters News to construct the Physical Risk Index 

(PRI) and Transition Risk Index (TRI), two comprehensive climate risk indicators which capture 

innovations in the two facets of climate change risk. In short, physical risk includes a loss of value 

or increased costs due to the disruptive impact of chronic hazards such as sea level rise or drought, 

or acute hazards such as floods or heat waves. Conversely, transition risk involves risks and costs 

due to the adjustment process towards a climate-neutral economy, typically triggered by climate 

mitigation policies, technological advances, and shifts in public preferences. Interestingly, using 

both types of climate change risk gives an advantage over previous studies capturing sub-

dimensions of physical and transition risks only (e.g. Faccini et al., 2021; Ardia et al., 2023) or 

climate change as a single risk factor (Engle et al., 2020). By considering the nexus between 

climate risks and financial assets, we acknowledge that this can be dependent on several factors 

including market conditions, type of asset, and time period, as well as the source of climate risk, 

physical or transition. A deeper understanding of the risk-return characteristics of various asset 

classes in relation to types of climate risk under bull, normal, and bear market conditions, as well 

as low, moderate, and high volatility states is therefore an essential tool for, among others, 

investors making climate-informed investment decisions, and policy-makers and regulators 

implementing effective climate mitigation policies, taking into consideration market return and 

volatility conditions. Nonetheless, the academic literature lacks a comprehensive analysis of the 

impact of the two facets of climate risk on the returns and volatility of various financial markets 

under various return conditions and volatility states.  

In light of this discussion, this paper investigates whether climate-related risks, physical and 

transition, have predictive ability for the returns and volatility of European brown and green energy 

stocks, European carbon emission allowances, and global green bonds, under various return and 

volatility conditions, considering various crisis periods. In doing so, the paper offers a multi-level 

study revealing new mechanisms underlying the financial implications of climate change. Notably, 

it highlights an aspect often overlooked in the literature, that is investors, policy makers, and 

regulators want to gain an understanding of the implications of climate risks, physical and 

transition, at a higher than monthly frequency. Investors may need to make prompt investment 

decisions, e.g., rapid adjustments to their portfolio compositions, in response to climate risk 

shocks, whereas policy makers, regulators, and supervisors, in the long-term, are concerned about 
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short-term climate-related risk effects on, e.g., financial price stability and the consequent 

obstacles to achieving climate goals. However, many studies adopt monthly climate risk measures, 

e.g. the climate policy uncertainty (CPU) measure of Gavriilidis (2021) or the climate change news 

index of Engle et al. (2020), rather than climate risk proxies at higher frequencies (see, Bouri et 

al., 2022; Sarker et al., 2023). Thanks to the availability of daily TRI and PRI data, we instead 

examine the dynamics of climate risk impacts on financial assets in a timelier manner which helps 

the formulation of prompter investment decisions and the planning of better climate policies. 

While an abrupt transition can cause dramatic effects in financial markets, an orderly transition is 

expected to limit financial risks (Carney, 2015). Therefore, knowing the effects of daily climate 

shocks can inform us whether actual climate policies are fostering an orderly or disorderly 

transition process.4   

For the purpose of this analysis, the cross-quantilogram approach of Han et al. (2016) is a suitable 

methodology, as it enables us to capture the direction, duration, and strength of the predictability 

from climate risk to the return and volatility of assets, while considering a large number of lags 

and various quantiles of the return and volatility distributions. Using daily data and applying this 

cross-quantilogram method, we can study how different levels of climate risk (from high to low), 

not simply average levels, impact the return and volatility of assets over a wide spectrum of market 

conditions, from bullish to bearish states and from heightened to low volatility, allowing us to 

show a potential asymmetry in the predictability between low and high climate risk quantiles. 

Furthermore, we extend the analysis to a time-varying setting to document any evolution of the 

predictability of climate risk over time and during crisis periods. Our sample includes data for 

STOXX EUROPE 600 OIL & GAS, EUROSTOXX OIL & GAS, European Renewable Energy, 

and EEX-EU CO2 Emissions EUA from September 20, 2010 to June 30, 2022, and data for the 

global green bond index from June 1, 2012 to June 1, 2022. For the climate data, we extend the 

Bua et al. (2022) PRI and TRI to June 30, 2022, applying a computational improvement to the 

text-based algorithm as explained further in the methodology section. 

The results of the static analysis suggest that it is transition risk, rather than physical climate change 

risk, that has a stronger returns predictive ability, especially for energy stocks and carbon emission 

 
4 For the energy transition process, Cook (2012) highlights the importance of governments promoting a balanced 

energy mix, in light of the inability of renewable energies to meet global demand. 
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allowances. From the time-varying analysis, the results for the predictability of assets returns are 

more complex, possibly reflecting structural changes in the impact of PRI and TRI due to events 

in financial markets. However, while the results are heterogeneous across periods and market 

conditions, we document a common short-term significance effect of climate risk on the asset 

returns studied, such that the impact of climate-related shocks appears to dissipate after one trading 

day. This finding might either imply that the market incorporates the new information into asset 

prices quickly, or be a signal of myopic investment behaviour. The static analysis of the effects of 

climate risks on assets volatility, shows that climate risk affects the volatility of stocks and green 

bonds in the span of a trading day to a trading week, with heterogeneous effects for both transition 

risk and physical risk. We show that a lack of information or discussion about the decarbonization 

process when market agents expect it (i.e. low quantile TRI), causes an increase in brown energy 

asset volatility. Finally, in a time-varying setting, we find that the significance of the predictability 

of volatility depends on the time period and volatility state, such that, typically, climate risks 

increase the volatility of brown energy stocks and carbon emission allowances whereas the 

volatility of green bonds is dampened, especially by the effect of transition climate risk.  

The remainder of the paper is organised as follows. Section 2 provides a review of the related 

literature. Section 3 describes the cross-quantilogram methodology. Section 4 reports the data used 

in the analysis. Section 5 presents the empirical findings on the directional predictability from 

climate risks to the returns and volatilities of the assets under study, both in a static and a time-

varying setting. Section 6 concludes the paper and proposes directions for future research. 

2. Related literature and contribution 

This paper contributes to both the growing literature on green finance, which explores the role of 

climate-related risks in financial markets, and the literature on the return and volatility 

predictability of energy stocks, carbon allowances, and green bonds. Climate risks pose economic 

challenges (see e.g. Stern & Stern, 2007; Pankratz et al., 2019) and previous research finds that 

investors care about climate risks in their investment decisions and are already demanding extra-

returns to compensate for climate risk exposure (e.g. Bolton & Kacperczyk, 2021; Bua et al., 

2022). Some studies, such as  Andersson et al. (2016) and Engle et al. (2020), propose 
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decarbonized portfolio procedures, while others explore green-labelled investments’ hedging 

abilities against climate risks (e.g. Dutta et al., 2021; Yousaf et al., 2022; Cepni et al., 2022)5.  

Many studies focus on understanding the financial implications of a specific sub-dimension of 

climate change risks, so-called climate policy uncertainty. This refers to the uncertainty stemming 

from the unsure response of financial markets, and the economy more broadly, to climate or 

environmental policies aimed at slowing the rate of changes in the hope of mitigating adverse 

environmental and socio-economic impacts introduced by national authorities or international 

bodies (e.g. global emission reduction goals from international negotiations in climate summits 

such as COP26 and the Paris Agreement, or country-specific policies such as the European Green 

Deal). Some studies examine the effects CPU has on firm profitability or demand for renewable 

versus non-renewable energy. For instance, Shang et al. (2022) document that CPU promotes long-

run renewable energy demand and reduces non-renewable energy demand, whereas Ren et al. 

(2022), using a Chinese sample, find that CPU reduces firm-level total factor productivity. Other 

studies, closer to the current paper, investigate the role of CPU in predicting asset volatility. For 

example, Bouri et al. (2022) find that CPU is relevant to predicting green and brown energy equity 

price dynamics. Climate change risk, however, has a broader definition than that captured by 

climate policy uncertainty, related to the transition risk component. Climate change risk includes 

both physical and transition risk, and encapsulates the uncertainty stemming from climate policies. 

Therefore, in this paper, we aim to provide a broader analysis of climate change risk than only 

CPU.  

This paper and its findings have implications for the recent COP26 climate conference. As climate 

change can compromise sustainable development (see e.g. Jiang et al., 2021), the COP26 

international climate negotiations highlight the importance of fostering a green energy transition 

to achieve the Paris Agreement net zero emissions goals by 2050. Governments need to promote 

green energy while considering the necessities of companies (Lu et al., 2022; Dogan et al., 2022). 

Under COP26, the demand for renewable energy is expected to increase (Dogan et al., 2022) as 

 
5 Wei et al. (2023) consider the linkages between crude oil decomposed shocks and green bond markets while 

accounting for the role of the pandemic. There are also studies on central banks and environmental policy objectives 

(e.g. Hilmi et al., 2021) and banking policies under a changing financial conditions (Shahin and El Achkar, 2017). 

Furthermore, Djoundourian et al. (2022) find evidence that receiving adaptation funding negatively affects CO2 

emissions. 
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clean energies become central to decarbonizing economies (Przychodzen & Przychodzen, 2020). 

Lang et al. (2013) provide evidence on the interaction of climate risk and bank liquidity6. Recent 

studies explore the role of climate-related risks under evolving regulatory challenges due to the 

more stringent climate and environmental policies of COP26. Khalfaoui et al. (2022) study the 

connectedness of US stock markets and find it to be sensitive to climate-related risks, especially 

under bust and boom markets. In the current paper, we contribute to the literature by studying the 

effects of physical and transition risk, separately, on the risk-return of various assets under various 

conditions in relation to the recent COP26 negotiations. In particular, by considering quantiles of 

the climate risk distribution our findings inform regulators and policy-makers of the heterogenous 

effects climate states have on financial assets, helping the formulation of climate policies. Our 

finding that low-quantiles of transition risk generate an increase in brown energy asset volatility 

serves to warn central banks and supervisors, as it implies that a lower than expected level of 

discussion about the transition process causes price instability. 

Overall, despite the growing climate finance literature, the Granger causal relationship between 

climate risks and financial assets considering various market conditions and crisis periods remains 

largely unexplored, leaving many unanswered questions about asset return and volatility 

predictability which we address in this paper.  Unlike most previous studies, we: i) consider both 

aspects of climate risks, physical and transition, in full, while the existent literature, with few 

exceptions (e.g. Bua et al., 2022), considers climate change as a unique risk factor (Engle et al., 

2020) or focuses solely on the transition risk aspect (Batten et al., 2016; Meinerding et al., 2020), 

physical risk (e.g. Alok et al., 2020; Choi et al., 2020), or sub-categories of both  (Faccini et al., 

2021; Ardia et al., 2023), meanwhile we expand and enhance through computational improvement 

the text-based PRI and TRI of Bua et al. (2022) using European news sourced from Reuters News, 

updating the daily climate risk series to June 2022 which allows us to incorporate recent 

developments such as the COVID-19 Omicron wave and the Russo-Ukraine war; ii) study multiple 

asset classes and focus on Europe rather than the US, proposing a relevant analysis for, but not 

limited to, European investors and institutions; iii) consider various market conditions, 

 
6 Other related studies consider sustainability practices (Nader et al., 2022), digital transformation for sustainable 

societies (Tarhini et al. 2022), policy insights on carbon capture (Gowd et al., 2023), energy transition in OECD 

economies (Hu et al., 2022). On a different front, Qin et al. (2023) consider the role of  blockchain as a carbon-neutral 

facilitator.  
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differentiating between bear and bull markets and low and high volatility states; iv) look at both 

the static and time-varying effects of climate risks; and v) perform a daily analysis documenting 

the short-term effects of climate risks of particular interest for short-horizon investors and 

policymakers looking to make timely decisions at a higher frequency, such as daily, unlike studies 

that consider lower frequencies (e.g. monthly) or the long-run effects of climate change (e.g. Engle 

et al., 2020; Bansal et al., 2017; Bouri et al., 2022).  

3. Methodology 

We apply the cross-quantilogram approach of Han et al. (2016) to capture the direction, duration, 

and strength of the predictability from PRI and TRI to the return and volatility of the indices under 

study, while considering a large number of lags and the quantiles of the distributions of the time 

series. Notably, this approach can be applied in a time-varying setting, allowing us to make 

inferences regarding the time evolution of predictability from one variable to another, on a 

quantile-on-quantile basis (Bouri et al., 2020). This reveals potential evidence of asymmetry in the 

predictability between low and high quantiles. We consider both the returns and volatility of the 

indices and thus, through low and high quantiles, we differentiate between bear and bull market 

conditions and low and high volatility states.  

According to Han et al. (2016), the cross-quantilogram approach can be presented as follows. 

Assume 𝑦𝑡 and 𝑥𝑡 to be two stationary time series, where 𝑦𝑡 = (𝑦1𝑡, 𝑦2𝑡)T ∈ ℝ2 and 𝑥𝑡 =

(𝑥1𝑡, 𝑥2𝑡)T ∈ ℝ𝑑1 × ℝ𝑑2. The conditional distribution function of 𝑦𝑖𝑡 given 𝑥𝑖𝑡 can be defined as 

𝐹(𝑦𝑖|𝑥𝑖)(∙ |𝑥𝑖𝑡), whereas the corresponding quantile function is defined as 𝑞𝑖,𝑡(αi) =  inf {𝑣 ∶

𝐹(𝑦𝑖|𝑥𝑖)(𝑣|𝑥𝑖𝑡) ≥  𝛼𝑖} for 𝛼𝑖 ∈ (0,1), for i = 1, 2.  

We represent the cross-quantilogram of α quantiles for k lags as: 

𝜌𝛼(𝑘) =  
𝐸 [𝜓𝛼1

(𝑦1,𝑡 − 𝑞1,𝑡(𝛼1)) 𝜓𝜏2
(𝑦2,𝑡−𝑘 − 𝑞2,𝑡−𝑘(𝛼2))]

√𝐸 [𝜓𝛼1
2 (𝑦1,𝑡 − 𝑞1,𝑡(𝛼1))] √𝐸 [𝜓𝛼2

2 (𝑦2,𝑡−𝑘 − 𝑞2,𝑡−𝑘(𝛼2))]

 (1) 

where, 𝜓𝛼(𝜇) = 1[𝑢 < 0] − 𝑎 denotes the quantile-hit process.  
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We test the null-hypothesis of no directional predictability (𝐻0: 𝜌𝛼(1) = ⋯ = 𝜌𝛼(𝑝) = 0) against 

𝐻1  𝜌𝛼(𝑘) ≠ 0 for some (𝑘, 𝛼) ∈ {1 … … … 𝑝} using the portmanteau test statistic:  

 𝜌�̂�
(𝑝)

= 𝑇(𝑇 + 2) ∑
𝜌�̂�

2(𝑘)

𝑇 − 𝑘

𝑝

𝑘=1

 (2) 

The stationary bootstrap (Politis and Romano, 1994) method is employed to construct the 

confidence interval.  

4. The dataset 

Our data comprises two datasets. The first consists of two distinct climate risk measures for 

transition and physical risks. Following Bua et al. (2022), we extend both the Transition Risk Index 

(TRI) and Physical Risk Index (PRI) to the period November 2021 to June 2022 inclusive, and 

apply a computational improvement to the novelty filter calculation, delivering enhanced climate 

risk series which can contribute to future research. According to the one-day novelty filter, only 

the first news of the day is kept from a series of similar news published on the same day, removing 

redundancy within the data (see Dang et al., 2015). We identify the novelty filter parameter as the 

similarity threshold value, c, such that if news has a similarity higher than c with any prior news 

in a day, it is left out of the sample because it is considered repetitive. Usually, this parameter is a 

predefined value which is very sensitive and needs to be calibrated precisely to make sure that the 

eliminated (kept) news is effectively redundant (novel). We therefore refine and validate the 

novelty filter parameter by performing various trials on the news dataset, delivering improved 

climate series. Finally, to update TRI and PRI, we collect (European) news from Reuters News 

using the Factiva database and apply the term-frequency inverse-document-frequency approach 

combined with the cosine-similarity technique, in line with Bua et al. (2022) and Engle et al. 

(2020).  

The second dataset involves STOXX EUROPE 600 OIL & GAS (STXOIL) in euro, 

EUROSTOXX OIL & GAS (EUROOIL) in euro7, European Renewable Energy (ERIX) in euro8, 

and EEX-EU CO2 Emissions (EU Allowance) EUA (EEX) in euro, for the period September 20, 

 
7 STXOIL and EUROOIL are used as proxies for the performance of brown energy stocks in Europe.  
8 ERIX is used as a proxy for the performance of European firms operating in the following investment segments: 

solar, water, wind, biofuels, geothermal, and marine energy.  
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2010 to June 30, 2022, and the global green bond index (GB) for the period June 1, 2012 to June 

1, 2022. It is collected from Refinitiv and Bloomberg terminal. The availability of data on each 

index in the second dataset dictates the sample period used in the empirical analysis. Overall, the 

sample period is long enough to cover various periods of tranquillity and instability in the energy 

and carbon emission markets such as the oil price crash of June 2014 to January 2016, the COVID-

19 outbreak,9 and the Russo-Ukrainian war.  

Figure 1 plots the levels of climate risk measures and the returns and volatility of the indices under 

study. It shows heightened levels of volatility around the COVID-19 outbreak around February-

March 2020.  

We compute log-returns by taking the log difference between two consecutive closing prices in 

the index multiplied by 100, while volatility is computed as squared returns (see Wang et al., 

2022). Table 1 presents the summary statistics of the two climate risk measures and the returns 

and volatility of the various assets under study. The highest mean of returns (0.058) and highest 

standard deviation (3.188) are reported for EEX. Conversely, the lowest are for GB. Overall, all 

series have high kurtosis and non-zero skewness and the Jarque–Bera statistics reject the normality 

of the return and volatility series. Furthermore, the mean and median are not identical which 

indicates the suitability of applying a quantile-based approach, while a mean-based approach 

would lead to partial relationships or an incomplete picture of the relationship across the 

conditional distribution. The stationarity test of Elliott, Rothenberg, and Stock (1996), which 

considers potential structural breaks in the data, and that of Phillips and Perron (1988) indicate that 

all return and volatility series are stationary. The same is true for the two climate risk measures. 

These results fill the requirements for the application of the cross-quantilogram approach. 

5. Results 

In this section, we present the results for the directional predictability from TRI (PRI) to the returns 

and volatility of the indices under study, both in a static and time-varying setting. Overall, our 

results are heterogeneous indicating that asset returns and volatility predictability from climate 

risks can depend on multiple factors, including the type of asset, market conditions (bearish or 

 
9 Brem et al. (2021) highlight the implications of the COVID-19 outbreak for innovation and discuss the technological 

challenges and their social impacts.  
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bullish), volatility state (heightened or low), the source of climate risk (physical or transition), and 

the level of climate risk, along with other major financial events and specific time periods.  

5.1. Cross-quantile dependence - static results 

The results of the static analysis suggest that transition risk has a generally stronger returns 

predictive ability than physical risk, especially for energy stocks and carbon emissions. We detect 

that (daily) climate shocks have predictive power for one-day-ahead stock returns suggesting that 

the market is significantly sensitive to climate change risks in the short-term. This finding is of 

particular interest to short-horizon investors because when unexpected climate risks news hits the 

market it is surprising and they quickly react to it opening investment opportunities for this type 

of investor. This effect, however, appears not to last long potentially suggesting that the market is 

able to absorb and digest new information quickly. Alternatively, assuming for instance that daily-

frequency climate risk news also incorporates information about the long-term course of changes 

in climate,10 this finding might be a signal of myopic investment behaviour or underreaction to 

climate change risk by financial participants. The static analysis of the predictability of asset 

volatility shows that climate risks affect the volatility of stocks and green bonds in the span of a 

trading day to a trading week, with heterogeneous effects for transition risk and physical risk, 

stressing the role of climate risks in raising market turmoil. We suggest that lower than expected 

levels of discussion on the transition process causes an increase in brown energy stocks’ volatility. 

Our results further suggest that prediction models for asset returns or volatility could benefit from 

the inclusion of climate risk, as well as variables measuring the interaction of climate risk with 

market conditions.  

We dedicate the next two sub-sections to a more detailed description of the static analysis results. 

The heatmaps in Figures 2-5 show the results at various quantiles (0.1, 0.2, …, 0.8, 0.9) and lags 

of 1, 5, and 22 days, which capture the effects after a trading day, a trading week, and a trading 

month, respectively. The multicoloured bars below the heatmaps measure the magnitude of the 

effect (cross dependence), which varies from negative (red) to positive (blue). The white areas 

indicate no effect and the asterisk (*) indicates a significant effect at the 10% level.  

 
10 In the asset pricing literature, studies highlight the importance of climate risk as a long-run risk factor (e.g. Bansal 

et al., 2017). 
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5.1.1. Climate risk and asset returns 

Figure 2 (3) shows the directional predictability from TRI (PRI) to the returns at various quantiles 

and lags. The vertical axis represents TRI (PRI), and the horizontal axis represents the asset returns. 

Generally, a change in climate risk measures affects the asset returns during a trading day and no 

significant effect is shown at higher lags, especially after a trading month. 

TRI has a positive impact on the returns of STXOIL in the next trading day, mainly when TRI is 

in the middle or upper quantiles and the returns of STXOIL are in the lower quantiles. TRI also 

has a negative impact on the returns of EEX the next trading day, specifically when TRI is in the 

middle or upper quantiles and the returns of EEX are in the lower or middle quantiles. Considering 

that TRI is in the upper (middle) quantile when the discussion around transition risk issues is higher 

than (as high as) expected, the result of a one-day-ahead positive impact on brown energy stock 

returns may appear controversial. However, we document this effect during bearish brown energy 

market conditions, possibly indicating a price correction after a contemporaneous (negative) effect. 

Bua et al. (2022) find that brown energy sector returns are negatively related to contemporaneous 

TRI, supporting this assumption. There is also some evidence that, when the brown energy market, 

specifically EUROOIL, is instead in a bullish state a high risk of transition predicts a decrease in 

returns one-day-ahead, suggesting that a bad (climate) signal during good times is of most surprise 

to the market pushing the brown energy performance down. This result is in line with Pastor et al. 

(2021) who argue that brown stocks underperform when agents are surprised by climate risk 

concerns, and it contributes to Bouri et al. (2022) who investigate the predictive ability of climate 

risk, specifically from policy uncertainty, for green and brown stock price dynamics. On the other 

side, acknowledging that the EU Emissions Trading System scheme follows a “cap-and-trade” 

principle such that a cap on the allowed greenhouse gas emissions over a year is imposed and 

regulated entities can trade allowances with other entities, the TRI ability to forecast a negative 

effect on EEX one-day-ahead could indicate a sell-pressure due to, e.g., a switch to clean energies 

to align with the decarbonization process, or a price correction after a contemporaneous (positive) 

effect. Finally, a lack of significance one-week and one-month-ahead suggests that the TRI 

predictability power is higher in the short-term.  

Figure 3 indicates that the impact of PRI on the returns of EUROOIL is negative within the next 

trading day when PRI is at the middle or upper quantiles. Similarly to the case of TRI, a high level 
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of PRI indicates a high level of unexpected discussion of physical climate risk. This represents bad 

climate news stemming from the verification, or potential verification, of physical hazards that can 

generate losses and costs. The finding that a high-risk PRI state predicts a decrease in EUROOIL 

implies therefore that the brown energy stock market is closely linked to risks associated with 

physical hazards, result of particular relevance in today’s environment where changes in climate 

cause an intensification of physical hazards. From a practical perspective, this result suggests the 

necessity for brown energy companies to cope with physical risks by building climate resilient 

strategies to better survive the negative impact of hazards. Furthermore, we document a negative 

effect of middle-PRI on the returns of GB after a trading day when the returns of GB are in the 

middle or upper quantiles, suggesting that physical risk has the power to actually decrease green 

bonds returns during both normal and bullish market states. Our results do not show any notable 

impact of climate risks on the returns of ERIX.  

5.1.2. Climate risks and asset volatility 

Figures 4 and 5 show the directional predictability from TRI and PRI, respectively, to the asset 

volatility at various quantiles and lags. In these figures, the vertical axis represents PRI or TRI, 

and the horizontal axis represents asset volatility. Generally, a change in climate risk measures 

affects the volatility of stocks and green bonds within the span of a trading day to a trading week. 

Our results do not show any significant effect after a trading month. Intuitively, the effect of TRI 

is more pronounced on the volatility of STXOIL, EUROOIL, EEX, and GB, whereas the effect of 

PRI is more pronounced on the volatility of EEX. An effective forecasting of energy asset volatility 

is relevant for climate policy formulation and risk management. 

Figure 4 shows that TRI increases the volatility of STXOIL, EUROOIL, and EEX within the next 

trading day when TRI is at low or average levels. This positive relationship is more significant at 

the lower quantiles of the volatility of EEX, lower and middle quantiles of the volatility of 

STXOIL, and almost all quantiles of the volatility of EUROOIL. A positive impact of TRI on the 

volatility of EUROOIL and EEX is detectable even after a trading week and is more pronounced 

at lower quantiles of TRI. This result has new and interesting economic implications. Considering 

that a low level of TRI indicates a lower than expected discussion around transition issues, a 

general volatility surge effect for brown energy markets and carbon emissions should not be that 

surprising. To better explain the economic intuition behind this result, we provide an example of 
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a low-quantile TRI scenario. For purely explicative reasons, imagine the period surrounding the 

COP26. Economic agents expect information on the international climate negotiations, the 

roadmap to achieve net zero goals, changes to mitigation policies, and much more. However, no 

news is released. This causes surprise in the market as agents are unsure about the conclusions of 

the on-going international debate on climate issues. The lack of information generates confusion 

and increases the stress in the market resulting in asset price swings, as we document a volatility 

rise. While this finding is very informative for investors, it is certainly of most interest for its policy 

and regulatory implications. Regulators and policy-makers as well as financial supervisors and 

central banks learn from this finding that the absence of (clear) climate action plans, where they 

were expected, threatens price stability. This result contributes to Battiston et al. (2021) who study 

the relationship between climate risks and financial stability. Additionally, we find that TRI has a 

negative impact on the volatility of GB, which is significant mainly when both TRI and the 

volatility of GB are in the middle or upper quantiles. This result shows that an unexpected 

acceleration of the decarbonization process mitigates the GB volatility during high/normal-

volatility states.  

The results presented in Figure 5 imply that the impact of PRI on the volatility of EUROOIL is 

positive within the next trading day when PRI is in the lower quantiles and the volatility of 

EUROOIL is in the lower or middle quantiles. The impact of PRI on the volatility of EEX is also 

positive within the span of a trading day to a trading week and is significant mainly at the lower 

and middle quantiles of both PRI and the volatility of EEX. We do not document any relevant 

impact of physical risk on the volatility of ERIX. 

5.2. Time-varying results of cross dependence 

Alongside the static analysis, we examine the effects of climate risks (TRI and PRI) on the returns 

and volatility of the assets in a time-varying setting. This allows us to check the robustness of the 

results derived from the entire sample analysis by uncovering possible structural changes due to 

major events in financial markets.11 We do this for 𝛼1 = 𝛼2 = 0.1, 0.5, and 0.9, reflecting, 

 
11 To calculate the time-varying cross-quantilograms, each time series is divided into sub-samples from the start to the 

end of each year (i.e. each sub-sample is equal to around 252 daily observations). Then the cross-quantilogram is 

calculated for each sub-sample using a rolling window framework for which all trading days in the first year are 

employed. The cross-quantilogram model is first estimated then re-estimated by shifting the window forward to the 

next year as many times as needed until the end of the sample period. 
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respectively, the lower, middle, and upper quantiles of both climate risk measures and 

returns/volatility series. The results are presented in Figures 6-9, where the upper and lower rows 

present the cross-quantilograms and results of the portmanteau test obtained for each year. 

Furthermore, 1000 bootstrapped replicates are used to illustrate 90% bootstrap confidence 

intervals (dashed lines) in each graph.  

5.2.1. Climate risks and asset returns 

The results of the time-varying cross-quantilograms from climate risks to asset returns are 

presented in Figures 6 and 7.  

The results of the portmanteau test in Figure 6 indicate a significant impact of TRI on the returns 

of STXOIL, ERIX, and EEX. The cross-quantilograms obtained in these cases indicate a positive 

impact of TRI on the returns of STXOIL in 2022, when both TRI and the returns of STXOIL are 

in the upper quantile, possibly supporting the recent emergence of a transition risk premium so 

that brown stocks should deliver higher returns to compensate for the higher risk of holding them. 

The graphs related to the relationship between TRI and the returns of ERIX show both positive 

and negative impacts of TRI on the returns of ERIX in 2012 and 2021, respectively. Again, these 

findings may support the emergence of a transition risk premium in the recent period as they show 

that green stock returns instead decrease due to TRI. Furthermore, these opposite impacts are 

significant in the upper quantile, and the average impact during the time period of our study could 

be insignificant. There is also evidence of a negative impact of TRI on the returns of EEX in 2017 

when both TRI and the returns of EEX are in the lower quantile. These results, as well as evidence 

of no significant impact of TRI on EUROOIL and GB provided in Figure 6, confirm the results of 

the static analysis presented in Figure 2. 

Figure 7 shows a significant impact of PRI on the returns of STXOIL, EUROOIL, ERIX, EEX, 

and GB. The cross-quantilograms obtained in these cases indicate: i) a negative impact of PRI on 

the returns of STXOIL in 2013 when both variables are in the middle quantile and a positive impact 

in 2011 when both variables are in the upper quantile; ii) a negative impact of PRI on the returns 

of EUROOIL in 2013 when both PRI and the returns of EUROOIL are in the lower quantile and 

in 2014 when both PRI and the returns of EUROOIL are in the upper quantile; and iii) a negative 

impact of PRI on the returns of ERIX in 2017 when both variables are in the lower quantile. The 

graphs also show both negative and positive impacts of PRI on the returns of ERIX in 2012 and 
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2018, respectively. These opposite impacts are significant in the middle quantile. The cross-

quantilograms further indicate: iv) negative and positive impacts of PRI on the returns of EEX in 

2016 and 2022 when both variables are in the middle quantile, and positive and negative impacts 

of PRI on the returns of EEX in 2013 and 2017 when both variables are in the upper quantile; and 

v) a positive impact of PRI on the returns of GB in 2020 when both variables are in the lower 

quantile and a negative impact in 2013 when both variables are in the middle quantile.  

The above results of the dynamic analysis are more comprehensive than those reported in Figure 

3 for the static analysis. They reflect possible structural changes in the impact of PRI and TRI due 

to major events in financial markets, which explain some of the inconsistencies between the results 

of the static and dynamic analyses. Previous studies demonstrate the time-varying characteristics 

of climate risks (e.g. Sarhadi et al., 2016) while documenting the return dynamic nature of financial 

markets (Dutta et al., 2021). Overall, our results are in line with Bouri et al. (2022) who indicate 

the impact of climate policy uncertainty on the price dynamics of green and brown energy stocks, 

although our analysis is more comprehensive given its ability to differentiate between market 

conditions within the quantile-based predictability approach and to consider both transitional 

climate risk and physical climate risk.    

5.2.2. Climate risks and asset volatility 

The time-varying cross-quantilograms covering the directional predictability from climate risks to 

asset volatility are presented in Figures 8 and 9.  

The results in Figure 8 confirm the results from the static analysis in Figure 4, indicating a positive 

impact of TRI on the volatility of STXOIL, EUROOIL, and EEX, and a negative impact of TRI 

on the volatility of GB, along with non-significant evidence of the impact of TRI on the volatility 

of ERIX. In particular we find: i) a positive impact of TRI on the volatility of STXOIL in 2017 

when both TRI and the volatility of STXOIL are in lower or middle quantiles, suggesting that 

brown stock volatility increases in the period right after the Paris Agreement and in concomitance 

with discussions around the EU carbon market reform deal; ii) a positive impact of TRI on the 

volatility of EUROOIL in 2017 and 2019 when both TRI and the volatility of EUROOIL are in 

the middle quantile, similarly to STXOIL; iii) a positive impact of TRI on the volatility of EEX in 

2021 when both variables are in the lower quantile, in 2013 when both variables are in the middle 

quantile, and in 2022 when both variables are in the upper quantile; and iv) a negative impact of 
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TRI on the volatility of GB in 2017 when both variables are in the middle quantile and in 2021 

when both variables are in the upper quantile, showing how transition risk dampens the volatility 

of GB especially in the period after the Paris Agreement. 

Figure 9 shows a significant impact of PRI on the volatility of STXOIL, EUROOIL, ERIX, and 

EEX. The cross-quantilograms obtained in these cases indicate: i) a positive impact of PRI on the 

volatility of STXOIL in 2017 when both variables are in the lower quantile and a negative impact 

in 2013 when both variables are in the middle quantile, suggesting a switch in volatility reaction 

possibly related to the pre- and post-Paris Agreement periods, with brown stock volatility 

increasing with PRI post-Paris Agreement; ii) a positive impact of PRI on the volatility of 

EUROOIL in 2017 and 2018 when both variables are in the lower quantile and a negative impact 

in 2012 and 2014 when both variables are in the upper quantile, similarly to STXOIL; and iii) 

positive and negative impacts of PRI on the volatility of ERIX in 2012 and 2022 when both PRI 

and the volatility of ERIX are in the lower quantile and also positive and negative impacts in 2014 

and 2021 when both variables are in the middle quantile. Despite the average impact during the 

time period of our study being potentially insignificant, we observe an opposite reaction of PRI on 

green stock volatility with respect to brown stocks when making a similar distinction between the 

pre- and post-Paris Agreement periods. The cross-quantilograms further indicate: iv) a positive 

impact of PRI on the volatility of EEX in 2013 and 2017 when both PRI and the volatility of EEX 

are in the lower quantile as well as a positive impact of PRI on the volatility of EEX in 2013 when 

both variables are in the middle quantile; and v) no significant impact of PRI on the volatility of 

GB irrespective of the quantiles of either series. 

The results of the dynamic analysis presenting the nature of the impact of PRI on the volatility of 

ERIX, EEX, and GB confirm the results of the static analysis presented in Figure 5. It is worth 

mentioning that the results of the static analysis provide evidence of positive and negative impacts 

of PRI on EUROOIL in the lower and upper quantiles of PRI, respectively. This is in line with the 

dynamic analysis results, but the positive impact in the static analysis is negligible. Overall, our 

analysis shows the predictive power of climate risks for the volatility of various assets, which is in 

line with recent studies showing evidence that climate-related risks can increase the stress of the 

financial system (Flori et al. 2021) and represent a source of systematic risk (e.g. Bolton & 

Kacperczyk, 2021; Faccini et al., 2021; Bua et al., 2022; Hsu et al., 2023). Our results also concord 
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with Bouri et al. (2022) who point to the importance of climate policy uncertainty on the volatility 

of green and brown energy stocks.  

5.3. Robustness check 

We test the robustness of the results of our analysis to the choice of the volatility measure and 

present them in Appendix A. We estimate 12 GARCH conditional volatility series for each asset 

return based on 12 models: GARCH(1,1), AR(1) GARCH(1,1), ARMA(1,1) GARCH(1,1), 

ARMA(1,2) GARCH(1,1), ARMA(2,1) GARCH(1,1), ARMA(2,2) GARCH(1,1), T-

GARCH(1,1), AR(1) T-GARCH(1,1), ARMA(1,1) T-GARCH(1,1), ARMA(1,2) T-

GARCH(1,1), ARMA(2,1) T-GARCH(1,1), and ARMA(2,2) T-GARCH(1,1), and select the best 

model based on the Akaike information criterion (AIC).12 Then we estimate the predictability from 

TRI and PRI to the new conditional volatility series using static and dynamic cross-quantilogram 

techniques. The rationale for using conditional volatility instead of squared returns is to reflect 

stylized facts in asset returns such as volatility clustering and the leverage effect.   

The results of the static cross-quantilogram analysis are presented in Appendix Figure A1 (a) for 

TRI and (b) for PRI. They are consistent with the main results in Figures 4 and 5 in all cases, 

except for the impact of PRI on STXOIL volatility and the impact of TRI on GB volatility, where 

we note slight differences. The results of the dynamic cross-quantilogram analysis are presented 

in Appendix Figures A2 and A3. We note good consistency between these results and the main 

results in Figures 8 and 9. The only case that shows a difference is GB. For all other cases, 

similarities are obvious, especially in terms of the overall sign of the impacts. 

5.4. Implications for the COP26 and the Climate Glasgow Pact 

Our results contribute to and have relevant implications for the COP26 discussion and the resultant 

Glasgow Climate Pact (GCP), a package of decisions and actions agreed by the nations to limit 

global temperature rise to 1.5o degrees. The Pact “underscores the urgency of enhancing 

understanding and action to make finance flows consistent with a pathway towards low 

greenhouse gas emission and climate-resilient development in a transparent and inclusive manner 

in the context of sustainable development”. It also urges that financial institutions “scale up 

investments in climate action and calls for a continued increase in the scale and effectiveness of 

 
12 The results of the AIC selection are not presented here but are available from the authors upon request.  
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climate finance from all sources globally” and, jointly with development banks and the private 

sector, they should “enhance finance mobilization in order to deliver the scale of resources needed 

to achieve climate plans” (GCP, 2022). The financial sector is therefore recognised to have a 

crucial role in fostering sustainability and supporting the green transition (e.g., Beltran et al., 2023) 

by transmitting mitigation policies to the real economy and/or by financing climate actions and the 

green transition. However, several factors can potentially hinder the achievement of international 

climate agreement goals, including those enshrined in the CGP, such as the level of integration of 

sustainable considerations in decision-making processes by economic agents (Ahmed et al., 2023), 

the recognition that climate risk exposure requires a risk premium (Birindelli et al., 2023), and the 

actual credibility of climate-policies (Battiston et al., 2021b; Gourdel et al., 2022; Birindelli et al., 

2023). We argue that climate risks assessment can be considered as a common element across 

these factors. Indeed, a good climate risk assessment can improve the quality of climate risk 

management and its integration into investment decisions, contribute to our understanding of 

potential heterogeneity of assets reaction to climate risks, and enhance the effectiveness of 

mitigation policies. In fact, a Paris-aligned response from financial markets is conditioned to a 

sufficient understanding of how climate risks propagate throughout the economy, including the 

understanding of how climate-related risks affect assets’ returns and volatility. 

The findings discussed in this paper therefore highlight the need for a comprehensive assessment 

of the impact of climate-related risks considering multiple factors. In an ideal scenario with perfect 

climate risk assessment information, investors would have the complete knowledge they need to 

make climate-informed investment decisions, fully aware of the risk-return profiles of their 

investments and whether their decision-making processes adequately account for climate risks, or 

whether their portfolios are aligned with international agreements’ decarbonizations trajectories. 

However, it is not just climate-informed investments, but also climate-informed policies that are 

necessary in order to foster a sustainable development and promote the mobilization of net zero 

capital allocation. In this regard, our results offer a comprehensive study of the effects of different 

types of climate risks, physical and transition, on the assets under investigation, considering 

various market conditions and degrees of climate risks severity both in a static and time-varying 

contexts, improving both climate-informed investments and policy decisions. Our findings are in 

fact relevant to the COP26 as they contribute to the dissemination of knowledge regarding climate 

risk assessment. On one hand, policymakers can learn from these results about the diverse effects 
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of climate risks based on, e.g., market return conditions and use this knowledge to formulate more 

informed and credible policies. On the other hand, our results are informative for investors to  

better integrate climate considerations within their strategies. Among our set of results, we, for 

example, show that lower than expected levels of discussion on the transition process leads to 

heightened volatility in brown energy stocks. This finding highlights the importance of effective 

communication of climate action plans by governments and serves as a warning to supervisors 

overseeing financial price stability. Another significant result indicates that transition risk tends to 

have a greater impact on predicting future returns of assets compared to physical risk. In the 

context of COP26, this suggests that economic agents may be more focused on regulatory concerns 

associated with climate change rather than its physical aspects. Consequently, governments may 

need to enhance investor awareness regarding the financial risks associated with climate hazards.  

6. Conclusions  

In this paper we study the directional predictability from climate-related risks considering both 

aspects of climate change, i.e. physical and transition, to the returns and volatility of European 

brown and green energy stocks, European carbon emission allowances, and global green bonds 

under various market conditions and crisis periods, both in a static and time-varying setting. We 

use, extend, and enhance two novel measures of physical and transition climate risks computed 

from the textual analysis of European news sourced from Reuters News. Using daily data we apply 

the text-based climate risk factors to the cross-quantilogram approach of Han et al. (2006) to 

investigate the direction, duration, and strength of their effects to the first and second moments of 

the distribution of the assets on a quantile-basis considering a large number of lags. Considering 

low, medium, and high quantiles, we document how the impact of various levels of climate risk, 

not simply average levels, vary across a spectrum of market conditions from bullish to bearish 

states and from heightened to low volatility, revealing new underlying financial implications of 

physical and transition risks. Alongside the static analysis we extend the cross-quantilogram 

approach to a time-varying setting to provide evidence of any evolution of predictability of climate 

risks over time. 

Our main findings on returns predictability suggest that transition risk has a stronger predictive 

ability than physical risk, especially for energy and carbon emissions stocks, considering a static 

analysis, whereas the results for TRI and PRI become more complex in a time-varying setting, 
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possibly due to the impact of other financial events or structural changes in markets. Despite the 

heterogeneity of the results, we identify a common short-term significance effect of climate risks 

on the asset returns studied. Daily climate risks, under specific circumstances, can predict one-

day-ahead returns only, possibly indicating myopic investment behaviour given the well-known 

long-run component of climate risk, or indicating the market ability to incorporate the new 

information as quickly as one trading day ahead. For the predictability of asset volatility, the static 

analysis provides evidence that the climate risk effect on the volatility of assets and green bonds 

can last up to one trading week, with heterogeneous results for transition and physical risk. In a 

time-varying setting, the significance predictability of volatility varies according to time periods 

and assets volatility states. Generally, climate risks, in particular transition risks, positively relate 

to the volatility of brown energy and carbon emissions stocks, whereas they negatively relate to 

the volatility of green bonds.  

The analyses conducted in this study and the main findings are relevant for, among others, 

European policy makers, investors, portfolio managers, and other financial institutions that want 

to know how to effectively integrate climate-related risks into their policies or investment 

decisions. For instance, asset managers interested in carbon neutrality procedures, ESG-oriented 

investments, or climate-hedged strategies can benefit from our results by learning how climate 

risks, physical and transition, can play a useful role in predicting both asset returns and volatility, 

as well as how these effects depend on other variables. The European focus makes this paper 

appealing for, e.g., European regulators, the European Central Bank, and other regulatory bodies 

interested in international climate development, which need to assess the impact of climate risks 

within financial markets in preparation for achieving climate goals as, e.g., agreed upon in the 

European Green Deal or so-called “Fit for 55” scheme. Documenting the different reactions of 

climate risks under different market conditions and volatility states provides useful insights not 

only for risk management but also for climate policy formulations and timings. The findings 

presented in this paper have relevant policy implications as they inform regulators and policy 

makers of the heterogeneous effects that climate states (high, average, or low) have on the return-

risk profile of financial assets helping the formulation of climate regulations. For instance, 

regulators learn from this paper that the consequent increase in asset volatility due to a lack of 

information or discussion about the transition process, when this is expected by market agents, has 

the potential to impair price stability, ultimately warning central banks and supervisors.  
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In general, this paper relates and contributes to both the green and climate finance literature and 

the literature on the predictability of asset returns and volatility, as a multi-level study that sheds 

light on the directional predictive ability of climate-related risks under various market conditions. 

Future research could, for instance, further explore the role of text-based physical and transition 

risk measures, as proposed in this paper, in relation to investor behaviour considering various 

market conditions, or study market efficiency incorporating climate risks and/or propose effective 

climate hedging strategies according to various scenarios in light of the findings of this paper. 

Another line of research could involve the use of return and volatility data on financial markets 

from other regions of the world to see whether the impacts detected in the context of European 

markets are transferable to other contexts. 
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Tables 

 

Table 1. Summary statistics of the climate risk measures and returns and volatilities of the assets. 

  
PRI TRI 

Returns Volatilities 

  STXOIL EUROOIL ERIX  EEX GB STXOILV EUROOILV ERIXV EEXV GBV 

Mean -0.002 -0.003 0.002 0.001 0.039 0.058 0.001 2.256 2.301 2.644 10.164 0.105 

Std dev 0.022 0.023 1.502 1.517 1.626 3.188 0.324 9.684 9.307 6.363 43.928 0.288 

Min -0.068 -0.081 -18.432 -17.954 -12.972 -44.655 -2.424 0.000 0.000 0.000 0.000 0.000 

25% -0.017 -0.017 -0.696 -0.739 -0.791 -1.415 -0.170 0.102 0.105 0.164 0.373 0.006 

50% -0.005 -0.005 0.026 0.025 0.089 0.000 0.007 0.504 0.569 0.715 2.281 0.030 

75% 0.009 0.009 0.724 0.764 0.900 1.659 0.178 1.833 1.951 2.509 8.450 0.103 

Max 0.123 0.191 14.653 12.390 10.030 21.060 2.013 339.733 322.330 168.270 1994.087 5.875 

Skewness 0.862 1.032 -0.769 -0.863 -0.290 -0.991 -0.421 22.745 22.139 10.045 31.698 11.895 

Kurtosis 1.706 4.234 16.461 14.398 3.831 16.804 5.579 665.819 647.752 187.918 1368.181 200.993 

Jarque-Bera  799.7 3083.4 33268 25564.1 1887.2 34936.7 3430.8 54570427 51667911 4494413.6 229913509 4405710.3 

ERS -5.753*** -4.356*** -4.356*** -3.813*** -9.350*** -7.047*** -5.686*** -7.201*** -7.100*** -6.986*** -8.321*** -6.796*** 

PP -4632.0*** -4773.7*** -2925.3*** -3034.3*** -2854.9*** -2955.8*** -2544.8*** -4196.7*** -4242.9*** -3761.3*** -3226.3*** -2874.2*** 

Count 3071 3071 3071 3071 3030 3071 2601 3071 3071 3030 3071 2601 

Notes: ERS is the statistic of the unit root test based on Elliott, Rothenberg, and Stock (1996). PP is the statistic of the unit root test based on Phillips and Perron (1988). The 

null hypothesis of both tests is that the variable has a unit root. The critical values of the ERS test are -3.480, -2.890, and -2.570 and the critical values of Phillips–Perron test 

are -20.700, -14.100, and -11.300 for 1%, 5%, and 10% significance levels respectively; *** indicates significance at the 1% level. TRI is Transition Risk Index; PRI is Physical 

Risk Index; STXOIL is STOXX EUROPE 600 OIL & GAS; EUROOIL is EUROSTOXX OIL & GAS in euro; ERIX is European Renewable Energy in euro; EEX is EEX-

EU CO2 Emissions EUA; GB is global green bond index. 
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Figures 

Figure 1. Climate risk measures and the returns and volatility of the indices. 
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Notes: TRI is Transition Risk Index; PRI is Physical Risk Index; STXOIL is STOXX EUROPE 600 OIL & GAS; 

EUROOIL is EUROSTOXX OIL & GAS in euro; ERIX is European Renewable Energy in euro; EEX is EEX-EU 

CO2 Emissions EUA; GB is global green bond index.
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Figure 2. Predictability from TRI to return series. 
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Notes: The vertical axis represents TRI (PRI), and the horizontal axis represents asset returns. The multicoloured bars below the 

heatmaps measure the magnitude of the effect, which varies from negative (red) to positive (blue). White indicates no effect. Asterisk 

(*) indicates a significant effect at the10% level. TRI is Transition Risk Index; PRI is Physical Risk Index; STXOIL is STOXX 

EUROPE 600 OIL & GAS; EUROOIL is EUROSTOXX OIL & GAS in euro; ERIX is European Renewable Energy in euro; EEX 

is EEX-EU CO2 Emissions EUA; GB is global green bond index. 
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Figure 3. Predictability from PRI to return series. 
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Note: See the notes to Figure 2.
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Figure 4. Predictability from TRI to volatility series. 
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Notes: The vertical axis represents TRI (PRI), and the horizontal axis represents the asset volatility. The multicoloured bars below 

the heatmaps measure the magnitude of the effect, which varies from negative (red) to positive (blue). White indicates no effect. 

Asterisk (*) indicates a significant effect at the10 % level. TRI is Transition Risk Index; PRI is Physical Risk Index; STXOIL is 

STOXX EUROPE 600 OIL & GAS; EUROOIL is EUROSTOXX OIL & GAS in euro; ERIX is European Renewable Energy in 

euro; EEX is EEX-EU CO2 Emissions EUA; GB is global green bond index. 
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Figure 5. Predictability from PRI to volatility series. 
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Note: See the notes to Figure 4. 
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Figure 6. Rolling directional predictability from TRI to return series. 
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Notes: The upper and lower rows present the cross-quantilogram and the results of the portmanteau test obtained for each year. The 

dashed lines indicate the 90% confidence interval. 0.1, 0.5, and 0.9 are selected as lower, middle, and upper quantiles for both 

climate risk measures and returns/volatility series. The portmanteau test is employed to detect directional predictability from 

TRI/PRI to returns/volatility series at various quantiles. TRI is Transition Risk Index; PRI is Physical Risk Index; STXOIL is 

STOXX EUROPE 600 OIL & GAS; EUROOIL is EUROSTOXX OIL & GAS in euro; ERIX is European Renewable Energy in 

euro; EEX is EEX-EU CO2 Emissions EUA; GB is global green bond index. 
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Figure 7. Rolling directional predictability from PRI to return series. 
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Note: See the notes to Figure 6.
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Figure 8. Rolling directional predictability from TRI to volatility series. 
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Note: See the notes to Figure 6.
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Figure 9. Rolling directional predictability from PRI to volatility series. 
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Note: See the notes to Figure 6.
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Appendix A. Robustness Check. 

Figure A1. Predictability from TRI (a) and PRI (b) to conditional volatility series. 
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Note: See the notes to Figure 4. 
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Figure A2. Rolling directional predictability from TRI to conditional volatility series. 
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Note: See the notes to Figure 6. 
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Figure A3. Rolling directional predictability from PRI to volatility conditional series. 
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Note: See the notes to Figure 6. 


