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3pHLA‑score improves 
structure‑based peptide‑HLA 
binding affinity prediction
Anja Conev1, Didier Devaurs2, Mauricio Menegatti Rigo1, Dinler Amaral Antunes3* & 
Lydia E. Kavraki1*

Binding of peptides to Human Leukocyte Antigen (HLA) receptors is a prerequisite for triggering 
immune response. Estimating peptide‑HLA (pHLA) binding is crucial for peptide vaccine target 
identification and epitope discovery pipelines. Computational methods for binding affinity prediction 
can accelerate these pipelines. Currently, most of those computational methods rely exclusively on 
sequence‑based data, which leads to inherent limitations. Recent studies have shown that structure‑
based data can address some of these limitations. In this work we propose a novel machine learning 
(ML) structure‑based protocol to predict binding affinity of peptides to HLA receptors. For that, we 
engineer the input features for ML models by decoupling energy contributions at different residue 
positions in peptides, which leads to our novel per‑peptide‑position protocol. Using Rosetta’s ref2015 
scoring function as a baseline we use this protocol to develop 3pHLA‑score. Our per‑peptide‑position 
protocol outperforms the standard training protocol and leads to an increase from 0.82 to 0.99 of 
the area under the precision‑recall curve. 3pHLA‑score outperforms widely used scoring functions 
(AutoDock4, Vina, Dope, Vinardo, FoldX, GradDock) in a structural virtual screening task. Overall, this 
work brings structure‑based methods one step closer to epitope discovery pipelines and could help 
advance the development of cancer and viral vaccines.

Human Leukocite Antigen (HLA) class I molecules are an important part of human cellular immune  response1,2. 
HLAs are involved in the intracellular antigen presentation pathway; they are responsible for the transport and 
display of peptide antigens for T-cell  scrutiny3,4. Therefore, the possibility of exploiting the HLA role in this 
pathway to engineer immune responses has shown great  promise5, as highlighted by efforts on personalized 
peptide vaccine  development6. When designing peptide vaccines, a pool of potential peptide targets is identified 
from a protein of interest. Targets are then filtered to identify those most likely to induce an immune response. 
This whole process is referred to as epitope  discovery7. Discovered immunogenic epitopes are able to bind HLA 
receptors, create stable peptide-HLA (pHLA) complexes (Fig. S1) and induce an immunological  response8. 
Unfortunately, epitope discovery is made challenging by the high diversity of HLA molecules. This diversity is 
a reflection of the high number of HLA alleles: more than 24,000 HLA-I alleles have been identified to  date9. 
Each allele codes for a specific HLA receptor (e.g., HLA-A0201, HLA-B0702) with different peptide binding 
preferences. Fast and accurate computational evaluation of pHLA binding can speed up the search for epitopes 
and is an important part of epitope discovery pipelines.

So far computational pHLA binding affinity prediction efforts have been largely dominated by sequence-
based  approaches10–15,58. While these methods provide good accuracy and are a part of many existing pipelines, 
they have some inherent  drawbacks16. For instance, they rely on a predefined amino acid alphabet to represent 
the pHLA. Most existing tools have canonical amino acids in their  alphabet10–12 and are thus unable to process 
phosphorylated peptides, although these peptides can be displayed by  HLAs17. While recent  efforts18 expand 
the alphabet to include phosphorylation, the problem of the predefined alphabet persists. The presence of other 
post-translational modifications or small molecules within the binding site cannot be taken into account by such 
approaches. In addition, sequence-based predictors are highly dependent on the quality and composition of the 
training  set19,20. This represents an important limitation because of the aforementioned high diversity of HLA 
 alleles21. All these challenges indicate that sequence-based methods alone can not identify all relevant epitopes, 
which motivates further exploration and development of complementary  approaches22.
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Structure-based methods use three-dimensional arrangements (i.e., conformations) of receptors and  ligands23. 
They are not restricted to a predefined amino acid alphabet and can be used in docking or structural virtual 
screening  tasks24. In the context of these tasks, structure-based scoring functions are used to approximate the free 
energy of a molecular system. Most scoring functions are generic and can be used to score any complex of interest 
(including pHLAs), but their performance is often system-dependent25. To tailor scoring functions to a specific 
protein family, machine learning (ML) efforts are  emerging26,27. As reliable pHLA modeling tools  arise23,28, and 
more data become available, we see a potential for pHLA ML scoring functions and structure-based methods to 
enter epitope discovery pipelines and complement existing sequence-based methods.

Under the hood, most scoring functions (such as Rosetta’s  ref201529) approximate independent energy terms 
for a molecular complex and rely on the assumption that binding affinity can be described as a weighted sum 
of these  terms30. Standard ML training protocols use the same assumption.  GradDock31, for example, involves 
ref2015 standard energy terms and redefines their weights to better fit the HLA system while keeping the addi-
tive formulation. However, this additive functional form of classical (and ML-derived) scoring functions has 
been challenged in previous  studies32,33. SIEVE-Score34 recently considered binding site residues and exemplified 
the benefit of decomposing the energy terms associated with binding site residues for interaction-energy-based 
learning. The idea of assessing peptide binding affinity via decomposition into peptide residues has also been 
applied in the context of other computational approaches with mixed  results35, such as quantitative structure-
activity relationship (QSAR) studies involving amino acid  descriptors36.

In our approach, we decompose the energy terms of a pHLA complex into separate contributions for all 
residues at each position in the peptide; we then use these energy terms as input to train ML models for bind-
ing affinity prediction. We call this approach the per-peptide-position training protocol. Our rationale is that 
structural information that is important for pHLA binding prediction gets lost when standard scoring functions 
(involving the additive formulation) are applied to the pHLA complex. We use our per-peptide-position proto-
col in the context of the Rosetta  framework37, which leads to our novel 3pHLA-score. The main novelty of our 
work resides in the combination of two complementary ideas in an innovative fashion: (1) tuning the weights 
of Rosetta’s scoring function to more accurately assess pHLA binding; (2) keeping the energy terms associated 
with peptide’s residue positions separate to not lose information through aggregation.

We evaluate the predictive power of our per-peptide-position protocol in the first set of experiments where we 
compare 3pHLA-score with the baseline ref2015-score and the standard-HLA-score trained using the standard 
additive protocol. Our results show a clear lead of the per-peptide-position protocol over the standard training 
protocol and the default ref2015 scoring function. We then validate 3pHLA-score on two independent datasets 
and compare it to six widely used scoring functions:  AutoDock438,  Vina39,  Vinardo40,  GradDock31,  DOPE41, 
 FoldX42. 3pHLA-score outperforms the other scoring function in the virtual screening setting and shows the 
ability to generalize well on the independent datasets. This work provides a guideline for future development 
of ML structure-based scoring functions. Furthermore, it brings structure-based methods closer to epitope 
discovery pipelines, which could help advance the development of peptide vaccines.

Methods
In this work, we train ML models on pHLA energy terms that are decomposed into specific contributions associ-
ated with each residue position within a peptide. We call this approach the per-peptide-position protocol and 
we apply it to Rosetta’s ref2015 energy terms to build our 3pHLA-score. Hence, in order to explain our work, 
we need to first describe the ref2015-score. In addition, we describe a score that we call standard-pHLA-score 
which uses an intermediate protocol between ref2015 and 3pHLA-score, as it is trained for the pHLA system 
using the original ref2015 energy terms without decomposition.

Baseline ref2015‑score. The 3D conformation of a given pHLA complex is stored in a PDB (Protein 
 DataBank43) file containing the coordinates of all the atoms in this molecular complex (Fig. 1a). Rosetta’s ref2015 
scoring function feeds this all-atom information into pre-parametrized mathematical and physical models to 
calculate different energy  terms29. These energy terms are based on predefined equations that model different 
chemical and physical aspects of a molecular system, such as electrostatics, hydrogen bonding, and van der 
Waals interactions. The ref2015 scoring function contains 19 energy terms listed in Supplementary Table S1. The 
total energy of the input structure is approximated as a linear weighted sum of these energy terms. The default 
weights of ref2015 have been optimized on a wide range of scientific benchmarks to bring Rosetta calculations 
in agreement with small-molecule thermodynamic data and high-resolution structural  features29. In this study, 
we approximate binding energy using ref2015-score with the  equation44:

where Ecomplex is the ref2015 energy of the whole complex, Ereceptor is the ref2015 energy of the HLA receptor 
alone and Epeptide is the ref2015 energy of the peptide (Fig. 1a).

Standard‑pHLA‑score. ML models can be used to refine scoring functions and tailor them to a specific 
system of interest. However, they do not have priors on physical and chemical properties of the molecular sys-
tem. If all-atom coordinates are used as features, they can introduce noise which slows down the training and 
makes the learning process more difficult. This is why an initial step of transforming the structural information 
into compact features is needed. A standard protocol is to use the energy terms provided by traditional scoring 
functions as features (i.e., inputs to the models) and tune their weights to fit a particular  system31,45. We formu-
late the standard ref2015 features as a vector containing the 19 ref2015 energy terms. We train non-linear ML 

(1)Ebinding = Ecomplex − (Ereceptor + Epeptide)
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models (see Machine learning models subsection) using these standard features to develop the standard-pHLA-
score (Fig. 1b).

3pHLA‑score. To develop 3pHLA-score, we go beyond the standard featurization. We decompose ref2015 
energy terms into energy contributions associated with each residue position in the peptide, which we call per-
peptide-position features. This protocol is inspired by the domain knowledge about the pHLA complex. Experi-
mental findings on peptide anchors suggest that important information about the binding can be retrieved 
by zooming into the energy of the binding pocket at specific regions surrounding different positions in the 
 peptide46. To extract the per-peptide-position features, we first scored the whole pHLA complex with Rosetta’s 
ref2015 (as explained in the subsection above). Next, we applied PyRosetta’s47 residue_total_energies_array func-
tion. This function allows us to see how the structural energy of the complex breaks down into per-peptide-
position contributions. The output of residue_total_energies_array is an array of energy terms (Table S1) for each 
peptide residue position, which we stack to form the input vector (see Supplementary Material subsection Per-
peptide-position feature vector). This vector is used as input to the non-linear ML models (see Machine learning 
models subsection) to create 3pHLA-score (Fig. 1c).

Machine learning models. For standard-pHLA-score and 3pHLA-score we used the same dataset and set-
tings to train our ML models - they only differ in the input features extracted from molecular structures.

We trained Random Forest Regression  models48 on a per-HLA-allele basis. For each featurization, we trained 
28 models - one for each HLA allele in the dataset. We built regression trees using the CART  algorithm49 with the 
mean absolute error as the split criterion. To create ensembles of regression trees we used bootstrap aggregation. 
We scaled experimental binding affinities into the [0,1]  range11,12 (Eq. S.3) and used them as prediction targets.

We compiled the training set by extracting 90% of binders and 90% of non-binders with equally distributed 
binding affinities out of Dataset 1 (see below). The rest of the data constitutes the test set, which was left out of 
the training and cross-validation phase. We stratified the training set into 5 folds (each with equal distribution 
of binding affinities) for hyperparameter tuning in a 5-fold cross-validation setting. Using randomized search 
and the 5-fold cross-validation we tuned the following parameters: number of trees, number of features per tree, 
maximum tree depth, and minimum samples per leaf. After tuning, we evaluated the performance of the final 
models on the left-out test set.

Note that our main experiments describe the use of Random Forest Regression models for training the 
standard-pHLA-score and 3pHLA-score. However, we assessed other regression techniques: linear regression, 
support vector machine regression, and partial least squares regression. We provide related results and discussion 
in the Alternative ML regression techniques subsection of the Supplementary Material.

Figure 1.  Description of three different protocols for approximating the binding affinity of a pHLA complex. 
Example input structures are visualized in the first row. The second row (orange stripe) shows the feature 
extraction phase of the scoring where ref2015 energy terms are extracted (Supplementary Table S1). The score 
calculation and training phase are indicated in row 3 (green stripe). (a) For ref2015-score, standard ref2015 
energies are calculated for the complex, receptor, and ligand. They are then used to derive the binding energy 
with the Eq. (1) (b) For standard-pHLA-score, standard features are extracted from the complex; scoring is 
done using trained random forest regression models. (c) For the 3pHLA-score, per-peptide-position features are 
extracted from the structure of the complex; scoring is done using trained random forest regression models.
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Dataset 1. This dataset consists of 77,581 pHLA structures modeled by the APE-Gen modeling  tool28,50. 
It involves 28 HLA alleles (13 HLA-A, 12 HLA-B, and 3 HLA-C alleles). Peptides included in this dataset are 
all of the length 9 (9-mers). The experimental binding affinity of each pHLA complex was extracted from 
 MHCFlurry10, which used  IEDB51 as its main source of information. As mentioned above, Dataset 1 was split 
into non-overlapping training and test portions to separately train and evaluate 3pHLA-score and standard-
ref2015-score.

Dataset 2. Dataset 2 is an evaluation dataset containing 100 strong binders experimentally identified and 
curated in related  work10 along with 2000 additional pHLA decoys extracted from the NetMHC  dataset11. 
Selected pHLA complexes have no overlap with the training set (which is a subset of Dataset 1) and were mod-
eled with APE-Gen using the methodology proposed in the reference  study28. Dataset 2 was composed to mimic 
an epitope discovery setting where a large pool of peptide targets is screened, but only a small portion of the 
targets are true binders.

Dataset 3. Dataset 3 is an evaluation set containing 11 pHLA complexes for the HLA-A0201 allele with 
different levels of known experimental binding affinity (strong [0-5] nM, medium [50-500] nM and weak [500-
25,000] nM) for which there exist crystal structures in the PDB. Three out of 11 peptides are 10-mers while the 
others are 9-mers. We collected crystal structures for each of the pHLA complexes (note that there were multiple 
entries for some complex complexes, see Supplementary Table S4). Multiple biological assemblies sometimes 
with alternative side chain positions were extracted from each PDB file and treated as separate structures. This 
led to the inclusion of 77 structures in Dataset 3. Preprocessing of the crystals was done using  PyMol52 (to 
remove water molecules and hydrogen atoms) and  pdbfixer53 (to add missing atoms). Since crystal structures of 
complexes involving non-binder peptides do not exist, five additional structures of experimentally determined 
non-binding  peptides50 for the HLA-A0201 allele were modeled with  Docktope54 and added to Dataset 3. The 
complete dataset is outlined in Supplementary Table S4; it contains 82 structures of pHLA complexes involving 
16 peptides and the HLA-A0201 receptor. These pHLA complexes do not appear in the training set (which is 
a subset of Dataset 1). Dataset 3 is a good test of the generalizability of 3pHLA-score because it strongly differs 
from the training dataset - structures are not modeled by APE-Gen and some involve peptides of length 10.

Comparison of scoring functions. Several evaluation metrics were used to compare the performance 
of scoring functions (see Supplementary Material section Evaluation Metrics). Because we focused on assess-
ing how well the functions could reproduce peptide rankings in terms of HLA-binding affinity, we used Pear-
son’s correlation coefficient r and Spearman’s correlation coefficient ρ to evaluate the regression performance. 
To assess classification power, we used the Area Under the Receiver Operator Curve (AUROC) and the Area 
Under the Precision-Recall Curve (AUPRC). The performance of 3pHLA-score on Dataset 2 and Dataset 3 was 
compared to other widely used scoring functions which use different techniques (Table S5). When visualized, 
scores were scaled using max normalization to fit [0-1] range, but inverted such that values closer to 1 represent 
stronger binders for all investigated scoring functions, while values closer to 0 represent weaker binders.

Human and animal rights. No human or animal data samples were used in this study.

Results
We investigate the benefits of our per-peptide-position protocol by assessing the predictive power of 3pHLA-
score on the test portion of Dataset 1 (see Methods subsection Dataset 1). We then compare the performance of 
the 3pHLA-score to six other widely used scoring functions in two different settings using independent datasets: 
Dataset 2 and Dataset 3.

Per‑peptide‑position featurization shows superior predictive power. First, we compare the 
regression and classification power of the following scoring functions on the test portion of Dataset 1: ref2015-
score, standard-pHLA-score, and 3pHLA-score. We are interested to see how well the rank of predicted binding 
affinities matches the rank of the true binding affinity values for tested pHLA complexes. On the other hand, 
with the classification metrics (AUROC, AUPRC), we want to test how well predicted binding affinities separate 
the known binders from non-binders. The regression power of the scoring functions is evaluated on the test set 
using Pearson’s correlation coefficient r (Fig. 2). 3pHLA-score outperformed both ref-2015 and standard-pHLA-
score: while 3pHLA-score achieves an average Pearson’s correlation of 0.75 on the test set, ref2015-score and 
standard-pHLA-score achieve a significantly lower correlation of 0.09 and 0.46, respectively (Table 1). Figure S3 
shows in detail the correlation between predicted and experimental scores for the best and worst performing 
3pHLA-score models. The same pattern is observed for all individual HLA alleles across all investigated met-
rics (Fig. S2, Table S2). Additionally, we provide the same analysis for standard-pHLA-score and 3pHLA-score 
that are trained using alternative ML regression techniques (Supplementary Material subsection Alternative ML 
regression techniques). 3pHLA-score consistently outperforms standard-pHLA-score across all ML regression 
techniques we assessed.

The predictive power of the per‑peptide‑position protocol varies depending on the choice of 
positions. We know that different residue positions in a peptide (i.e., peptide positions) have different con-
tributions to HLA binding and T-cell recognition. While middle positions are usually more exposed and there-
fore involved in the recognition by T-cells, the anchor positions are usually buried in the HLA groove and play a 
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more direct role in pHLA  binding55. For this reason, we conducted an ablation study to investigate the influence 
of different peptide positions on the performance of 3pHLA-score. 3pHLA-score was trained with three different 
position sets: all nine positions, anchor positions (1, 2, 3, 8, 9), or middle positions (4, 5, 6, 7). We generate bind-
ing affinity predictions for the test set using these different versions of 3pHLA-score and we investigate how well 
the affinities are ranked compared to the true affinities as well as how well the predictions separate binders from 
non-binders. We observe that the choice of positions in 3pHLA-score has a substantial influence on its perfor-
mance on the test set according to Pearson’s correlation (Fig. 3 , Table S3) and other metrics (Figure S4). The per-
formance of training with anchor positions only and all nine positions is comparable, with r values higher than 
0.8 for most HLA alleles. The r values drop below 0.7 when middle positions only are used. The only exception is 
the HLA-B0801 allele, for which closer inspection of the binding motif in IEDB (iedb.org/mhc/252) clearly indi-
cates the importance of position 5 for peptide binding, as reflected in the HLA-B0801 predictor’s performance.

3pHLA‑score outperforms well‑validated structure‑based scoring functions in an epitope dis‑
covery setting. The goal of structure-based virtual screening for epitope discovery is to distinguish true 
binder peptides from non-binders, which can be seen as a classification problem. To evaluate 3pHLA-score in 
an epitope discovery scenario, we compare it to a variety of widely used structural scoring functions (Table S5) 
on a dataset containing 100 strong binders and 2,000 decoys across 16 HLA alleles (Dataset 2). Our results show 
that 3pHLA-score clearly outperforms other evaluated scoring functions in this virtual screening setting, with an 
average AUPRC of 0.71 compared to the second-best scoring function (Vinardo) with AUPRC of 0.35 (Table 2). 
This is consistent with 3pHLA-score achieving higher values of both AUROC and AUPRC for all investigated 
HLA alleles individually (Tables S7, S8), and 3pHLA-score separating binders from non-binders more clearly 
than other scoring functions (Figure S5). It is also important to note that Dataset 2 was not used in the training 
phase. Therefore, this experiment also demonstrates the capacity of 3pHLA-score to generalize to new datasets.

In the context of epitope discovery, current pipelines use sequence-based scoring functions. Therefore, we 
evaluate how 3pHLA-score compares to sequence-based methods and present the details of this analysis in Sup-
plementary Material. Overall, 3pHLA-score has comparable performance to selected sequence-based methods 

Figure 2.  The predictive power of ref2015-score, standard-pHLA-score, and 3pHLA-score is evaluated and 
compared on the test portion of Dataset 1. Results are reported for individual alleles, listed on the x-axis. The 
regression power of the scores is quantified using Pearson’s r, on the y-axis.

Table 1.  Results of scoring functions obtained using different training protocols on the test set averaged 
across all HLA alleles for all four evaluated metrics (Pearson’s correlation coefficient |r|, Spearman’s correlation 
coefficient |ρ| , the Area Under the Receiver Operator Curve AUROC and the Area Under the Precision Recall 
Curve AUPRC) . The highest values and best performing values in each column are bolded.

|r| |ρ| AUROC AUPRC

3pHLA-score 0.75 0.90 0.98 0.99

standard-pHLA-score 0.46 0.50 0.80 0.82

ref2015-score 0.09 0.07 0.44 0.56



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10749  | https://doi.org/10.1038/s41598-022-14526-x

www.nature.com/scientificreports/

with an average AUROC of 0.977 compared to the best achieved AUROC of 0.993 with MHCFlurry2.010. Note 
that we do not know if MHCFlurry2.0 has had a part of our test dataset in their training, which might give it a 
slight advantage.

3pHLA‑score can generalize to an independent dataset. We tested the ability of 3pHLA-score to 
generalize to other “types“ of structural data with the independent Dataset 3. Dataset 1 and Dataset 2 contain 

Figure 3.  Results of the ablation study, in which 3pHLA-score was trained using different subsets of peptide 
positions: all nine positions, anchor positions (1, 2, 3, 8, 9), and middle positions (4, 5, 6, 7). Results are reported 
for individual alleles indicated on the x-axis. The regression power of scoring functions is quantified using 
Pearson’s r and plotted on the y-axis. The logo representation of the HLA-A0201 and HLA-B0801 binders is 
presented to compare the importance of the middle position 5 for HLA-B0801.

Table 2.  AUROC and AUPRC values aggregated for the virtual screening experiment across HLA alleles. The 
highest values and best performing values in each column are bolded.

AUROC AUPRC

3pHLA-score 0.977 0.712

Vinardo40 0.898 0.354

Vina39 0.871 0.291

GradDock31 0.778 0.182

DOPE41 0.769 0.141

AutoDock438 0.751 0.141

FoldX42 0.687 0.142
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structures that were all modeled by APE-Gen28 with peptides of 9 residues in length (9-mers). With an inde-
pendent dataset, we can investigate the possible biases towards this modeling tool and explore how to general-
ize to the peptides of length 10. Dataset 3 contains experimentally resolved three-dimensional pHLA struc-
tures involving binders and non-binders modeled by  Docktope54. Importantly, it contains 10-mer peptides. As 
3pHLA-score was trained on 9-mers, the size of the input of the model is 9× 19 (i.e., 9 peptide positions times 
19 energy terms). To score 10-mers, we excluded the energy terms of the middle position (i.e., position 6) of the 
peptide. The rationale for this approach lies in the aforementioned experimental findings on peptide  anchors46.

Since Dataset 3 contains peptides with a wide range of experimental binding affinities (strong, medium, weak 
binders, and non-binders), two tasks were identified for the scoring functions: a regression and a classification 
task. For the regression task, scoring functions are expected to predict the correct peptide ranking in terms of 
binding affinities. In this context, it is also interesting to analyze the range of scores predicted for a given pep-
tide within different structures (i.e., same complex, but different crystallography experiments). The smaller the 
range, the more consistent a scoring function is for scoring a certain peptide. For the classification task, we label 
peptides with three different binding affinity thresholds: 50 nM (distinguishing strong binders from others), 
500 nM (distinguishing strong and medium binders from others), and 25,000 nM (distinguishing binders from 
non-binders). The classification power of scoring functions was evaluated using AUROC and AUPRC.

The scaled scores aggregated across structures for each peptide are shown in Fig. 4. The scaled score for each 
structure in Dataset 3 is shown in Figure S6. Pearson’s correlation coefficient between experimental binding 
affinity and predicted scores is given in Table S6. While DOPE scoring function consistently outperforms oth-
ers, 3pHLA-score shows competitive performance in this challenging setting and is a runner-up in most of the 
evaluated tasks. In the regression setting, this fact is reflected by DOPE achieving a correlation of 0.62, while 
3pHLA-score achieves a correlation of 0.56 with experimental affinity. However, neither of these correlations 
are strong. On the other hand, both DOPE and 3pHLA-score produce small variations of the score for different 
structures of the same peptide which is a desirable property for an epitope discovery task. With respect to the 
classification task, DOPE produced the best results according to AUROC and AUPRC for most of the thresh-
olds analyzed (Table 3). The 3pHLA-score also occupied a position of relevance, having the best AUPRC value 
for the 500 nM threshold and the second-best AUPRC values for the 50 nM and 25,000 nM thresholds. When 
considering AUROC values, Vina and Vinardo are the second best for the 50 nM and 500 nM thresholds; the 
3pHLA-score was again the second best for the 25,000 nM threshold.

Figure 4.  Performance of different scoring functions in evaluating the binding affinity of structures from the 
independent Dataset 3. Pearson’s correlation coefficient is indicated next to the name of the scoring function. 
Peptides involved in the structures of Dataset 3 (see Table S4) are listed on the y-axis. The peptide names and 
corresponding box plots are colored and arranged along the y-axis according to their experimental binding 
affinity (ranging from dark green, strong binders, at the top, to dark orange, non-binders, at the bottom). 
Predicted scores scaled to the range 1-0 are plotted on the x-axis (1-highest predicted binder; 0-non-binder). 
The correlation is calculated for the predicted binding affinity of each of the 82 structures present in Dataset 3 
with respect to their experimental binding affinities.

Table 3.  Quantified power of scoring functions to discriminate between peptides of different binding strength 
on the Dataset 3. ∗ Top 2 performing values are bolded. ∗∗ thr: threshold of binding affinity used to label 
different classes.

thr = 50 nM thr = 500 nM thr = 25,000 nM

AUROC AUPRC AUROC AUPRC AUROC AUPRC

DOPE 1.0 1.0 0.84 0.69 1.0 0.97

3pHLA-score 0.76 0.85 0.76 0.72 0.99  0.91

Vina 0.84 0.71 0.81 0.52 0.90 0.27

Vinardo 0.85 0.73 0.78 0.49 0.87 0.23

FoldX 0.83 0.74 0.70 0.41 0.83 0.19

AutoDock4 0.73 0.63 0.63 0.35 0.82 0.17

GradDock 0.42 0.48 0.48 0.33 0.16 0.04
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Discussion
Motivated by experimental findings of peptide anchors, we hypothesize that important information for training 
ML pHLA scoring functions is lost in standard training protocols. We try to recover this information using our 
novel per-peptide-position protocol and we apply it to develop the 3pHLA-score.

In the first set of experiments, we show how energy decoupling of the per-peptide-position protocol (as 
applied to 3pHLA-score) significantly increases the predictive power of models (Figs. 2,  S2, Table 1). Further-
more, we show that the predictive power of 3pHLA-score is highly dependent on the choice of peptide positions 
to be decoupled (Figs. 3, S4).

Next, we provide an extensive comparison of the 3pHLA-score against other widely used scoring functions. 
3pHLA-score shows a clear superior performance to other scoring functions when tested in the epitope dis-
covery setting where we perform structure-based virtual screening of true peptide-binders to HLA receptors 
(Table 2, Fig. S5).

Note that the training of the 3pHLA-score could not have been done using only experimentally-determined 
crystal structures, due to the limited number of pHLA crystals available (i.e., less than 800 in the PDB). Therefore, 
we chose to use models produced by APE-Gen, which is potentially the only currently available pHLA-specific 
modeling tool with the capacity to model thousands of complexes (e.g., nearly 80,000 complexes modeled for 
Dataset 1). The choice of the modeling method, however, can introduce a bias in the training of the scoring 
function. To test that, we used an independent dataset (i.e., Dataset 3) containing crystal structures and models 
produced by a different tool DockTope. Note that DockTope uses a very different modeling protocol, based on 
fixed backbone templates. Despite involving different types of structures, our results still show a good overall 
performance of 3pHLA-score on Dataset 3, being competitive with other popular scoring functions. These results 
suggest that 3pHLA-score can be used with crystal structures and models produced by other tools, without 
additional training, although a broader survey with other tools for pHLA modeling and peptide-docking will be 
needed to further corroborate this point. Interestingly, in this experiment, the most consistent predictions across 
different structures of the same complex, and the strongest correlation with experimental data, were observed 
for DOPE (Table 3, Fig. 4). This surprising result might be directly linked to the nature of this dataset and the 
intended use of DOPE. DOPE scoring function is a statistical potential used to assess the global quality of homol-
ogy models produced by  Modeller56. This provides two advantages to DOPE in the experiment with Dataset 3. 
First, this dataset is mostly composed of crystal structures, and DOPE’s global assessment was observed in our 
experiment to be more resilient to small differences between different conformations of the same complex. Sec-
ond, DOPE is well suited to distinguish the non-binders, which were modeled with a docking-based approach, 
from the experimentally-determined crystal structures used for all other complexes. Our results show that the 
3pHLA-score predictions could be generalized to both DockTope models and crystal structures, while the good 
performance of DOPE did not generalize to other datasets. For instance, 3pHLA-score outperformed DOPE 
and other scoring functions on Dataset 2 (Table 2, Fig. S5). It is therefore the method that provides the most 
consistent results across the three different datasets.

The discovered potential of per-peptide-position energy terms for pHLA system opens up many additional 
opportunities that we discuss here. To build 3pHLA-score we trained separate models for each HLA allele. This 
limits the use of 3pHLA-score to a fixed set of HLA alleles that is found in the training dataset. However, a bigger 
pan-allele dataset can be acquired in the future and the same method could be applied to train a more general 
pan-allele model. APE-Gen, the tool used here to model pHLA structures, is currently limited to modeling 
the peptides containing only the 20 standard amino acids. Therefore, modeling phosphorylated peptides (or 
peptides with other post-translational modifications) and assessing the HLA-binding energies of these peptides 
with 3pHLA-score is another interesting challenge, which would greatly broaden the impact of our methods on 
ongoing efforts in epitope  discovery57. 3pHLA-score was trained here with a single conformation per peptide, to 
predict HLA binding affinity in the context of structural virtual screening. Future studies could investigate the use 
and refinement of 3pHLA-score to the geometry prediction task (i.e., ranking different conformations of the same 
pHLA complex). For that task, we would propose using the same per-peptide-position training protocol on a 
dataset that contains multiple conformations per peptide mapped to a corresponding experimentally determined 
crystal structures. The baseline scoring function for extracting the energy terms used here was ref2015. Therefore, 
it remains to be determined how the same training protocol would perform when applied to another existing 
scoring function which provides energy terms for specific regions of the model. This question is left for future 
work. As discussed above, our per-peptide-position protocol could provide more opportunities than exempli-
fied by 3pHLA-score. The protocol can be applied beyond the ref2015 energy terms as well as beyond the pHLA 
system. For that reason, we make a distinction between the 3pHLA-score and the per-peptide-position protocol.

Overall, our results confirm that important structural signal for binding prediction gets lost when the standard 
energy terms are calculated at the all-peptide-atom level. This could point to the fact that the additive nature of 
the standard all-atom energy terms is not appropriate for the pHLA system. Our work emphasizes how experi-
mental findings can help engineer more powerful features and train ML models with better predictive power. 
This can serve as a guideline for future attempts of training custom ML scoring functions for different systems of 
interest. As more structural pHLA data become available, we hope that our findings will inspire future efforts in 
training structure-based pHLA binding predictors that could enter epitope discovery pipelines and complement 
sequence-based methods. 3pHLA-score has direct application to epitope discovery projects, which could help 
advance the development of vaccines against several types of cancer and viral infections.

Data availability
Sequencing data was not generated in this study.
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The code and the data used for running the experiments and training along with the scoring function and datasets 
is available in the repository: https:// github. com/ Kavra kiLab/ 3pHLA- score.
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