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Abstract

Drawing on machine learning (ML) techniques and physics-based modelling,
two feature-based reduced-order models are presented: one for the quantita-
tive prediction of density and another for the classification of the diametrical
hardness of pellets from a powder compaction process (pelleting). For in-
terpretability, the models use as input only the parameters from a modified
Drucker-Prager Cap (DPC) model calculated from process data monitoring
and the applied maximal compression force. For quantitative density pre-
diction, 8 features linked to first-principles models of powder compaction are
generated, and the final model uses only 2. A critical part of the modelling,
and also one of the main contributions, is a data augmentation step for the
primary data set of this study by leveraging much smaller supplementary
data sets that have measurements not present in the primary data set.

The final results imply a significant reduction in the quantity of data
needed for model input and cut down the cost of data acquisition, storage,
and computational time. Additionally provided is a detailed analysis of the
impact and relevance of the generated features on the model performance.

The density prediction model, using only 2 features, reaches a mean
absolute scaled error (MASE) of 12.9% and a mean absolute error (MAE)
of 0.10 (where r2 = 0.975). The scaled (diametrical) hardness classifier has
an F1 score of 0.915 using 4 features.
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Nomenclature and Symbols

The following list describes acronyms and symbols that are used within the
body of this document.

β Internal friction angle (see DPC model)
R̂ Cap eccentricity (see DPC model)
d Cohesion (see DPC model)
E Young’s modulus (see DPC model)
Fmax Maximum compression force
pa Evolution pressure (see DPC model)
pb Hydrostatic pressure yield stress (see DPC model)
r2 Coefficient of determination
v Poisson ratio (see DPC model)
CQAs Critical quality attributes
D-PIF Density Physics-Informed Features
DEM Discrete element method
DPC Drucker-Prager Cap (model)
FEM Finite element method
GPR Gaussian process regression
H-PIF Hardness Physics-Informed Features
LR Linear regression
MAE Mean absolute error
MASE Mean absolute scaled error
ML Machine learning
MLP Multilayer Perceptron
mRMR minimum Redundancy and Maximum Relevance
PLS Partial least squares (regression)
SVM Support vector machine (regression)

1. Introduction

Powder compaction is a ubiquitous manufacturing process found in a
number of industries, from pelleting metallic materials to anode and cath-
ode coatings for batteries [1, Table 1], to producing pharmaceutical prod-
ucts, detergents, ceramics and many others. For example, the production
of chemical catalysts relies on this process, and the catalyst industry was
valued at $33.9 billion in 2019 [2]. This is expected to grow by an esti-
mated 4.4% per year, indicating a significant economic incentive to improve
the pelleting process. In addition to economic implications, controlling this
process more effectively will reduce unsustainable waste and generate ac-
tionable insights for manufacturers in terms of quality control [3]. In the
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context of this work, two key properties of the pelleting process are essential
to monitor: pellet density and hardness.

The pelleting process typically involves 3 main stages [4]: die filling,
powder compaction, and ejection. The die fill refers to the process of in-
serting the powder into the pellet mould, and the filling method aims to
spread the powder evenly inside the mould. Often this is achieved using a
paddle or a vibration feeder. Compaction of the powder further rearranges
the particles and then deforms the material under increased pressure to form
a pellet. Finally, the ejection stage applies a force to the underside of the
pellet to remove it from the mould. Errors in any of these stages propagate
through the manufacturing process and can produce pellets that are not fit
for purpose.

Previous studies have primarily focused on physics-based constitutive
models, for example plasticity models such as the Drucker-Prager Cap (DPC)
model to describe plastic deformation [5]. Broadly speaking, the goal of this
manuscript is to shed light on the relationships between elements of the
manufacturing process and the resulting density and/or hardness and to
contextualise these relationships by drawing on established first principles
models such as the DPC model [6, 7].

There are two broad model paradigms in the literature: particulate mod-
els and continuum models. The discrete element method (DEM) views the
powder as elastic-plastic spheres [8] and basic contact laws between par-
ticles allow the behaviour of the macroscopic pellet to be simulated [9].
However, this approach has its limitations when dealing with high deforma-
tion and multiple contacts [4]. An alternative is the Finite Element Model
(FEM) methodology to simulate the powder compaction behaviour with
a pressure-dependent yielding plastic model (modified Drucker-Prager Cap
model). This method requires time-consuming mechanical testing for cal-
ibration, and it’s lab-scale model has extensive computing requirements.
Another major limitation is that each simulation must be validated, which
is a significant challenge [6, 7].

These observations motivate the need for a faster model for quality con-
trol, with real-time response. The solution to be explored comes from ma-
chine learning (ML) modelling and associated reduced-order models. ML
modelling has already made significant contributions to compaction models
in the pharmaceutical industry, addressing die filling performance [10], and
relationships between input variables (such as process parameters and pow-
der properties) and critical quality attributes (CQAs) [11, 12, 13]. Recent
work has also shown that hybrid data-driven and theoretical approaches are
of interest due to their interpretability. For example, the authors of [14] de-
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rived a hybrid modelling approach which took into account the throughput
of the tabletting process, as this was found to impact density and hardness
in addition to the compaction pressure.

In contrast to the previous pharmaceutical studies, the work contained
within our paper concerns inorganic catalyst material, which is generally
harder than pharmaceutical powders. However, the processing equipment
and the underpinning physics is sufficiently similar to draw useful inferences
from the pharmaceutical literature. This can be seen, for example, when
comparing [15], which shows that compaction force was the most influential
factor in the study of a pharmaceutical product, and [3], which mirrors this
finding for inorganic catalyst material.

The goal in [3] was to understand the impact of the pelleting process
parameters on the density and strength of the resulting pellets. This was
achieved by developing a partial least squares (PLS) regression model and
employing a sequential feature selection process to reduce the model inputs
to the predictive sections of the time-series profiles of the various process
parameters (including punch force, speed and displacement). The model
utilised latent features from the PLS, which makes tractable causality anal-
ysis difficult to carry out. From this study, an accurate quantitative predic-
tion of pellet density was achieved whereas the hardness prediction was less
reliable.

In this manuscript, the aim is to build from [3] (see also [16]: it clar-
ifies factual information regarding the machines used in [3]) by asking the
question: can one improve the predictive capability of ML models by using
physics-informed feature engineering1? This approach offers the benefits of
reducing the time-series data to a set of interpretable features with clear
physical meaning while avoiding the random element of data-driven feature
selection methods that add complexity to model interpretation. For the
hardness modelling, it is argued that a classification approach is more suit-
able than the quantitative prediction of [3]. This is a credible alternative
given the poor reliability of the hardness measurements in the region of
average hardness for the available data.

This work is structured as follows: Section 2 gives information about the
data used in this study and Section 3 provides details of physics-informed
feature generation and the data augmentation procedure. The ML target

1Physics-informed feature engineering refers here to the process of generating features
from the available data based on first-principles physical models. In this work, this involves
using the compaction data to estimate parameters of the DPC model.
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problems and associated modelling process is described in Section 4. Section
5 presents the results and their discussion.

2. Data Description and data pre-processing steps

There are 3 data sets in this study, X2, Z and Y , where X2 was studied
in [3, 16] and was denoted there as X2. These 3 data sets are collected from
different experiments on the same catalytic material: the powders have the
same size, range, and characteristics. Nonetheless, since each experiment
is different, each data set contains different measurements (with overlaps).
Table 1 summarises the data sets and measurements contained in each.

This section provides a detailed description of the 3 data sets (see also [3,
Section 2.1 and 2.2], [16]) and also outline the data pre-processing, including
outlier removal and scaling. Specific descriptions are given afterwards.

Variables Recorded
Data set

X2 Z Y

Lower punch displacement Upper punch displacement

✔ ✔ ✘
Lower punch force Upper punch force

Distance between punches Punches force difference
Lower punch linear speed Upper punch linear speed

Density (volumetric) ✔ ✘ ✔

Hardness: axial ✘ ✘ ✔

Hardness: diametrical ✔ ✘ ✔

Radial pressure ✘ ✔ ✘

Number of pellets (after data pre-processing) 771 140 140

Table 1: Variables recorded by data set and number of pellets (after data pre-processing)

2.1. Primary Data set X2

2.1.1. Materials, Experimental Design and data collected

The primary data set, denoted X2, was generated by Johnson Matthey.
The feed powder was a co-precipitated base metal plus inorganic support
material catalyst precursor. This has not been calcined, so it will comprise
essentially classic low-temperature, high surface area crystalline morpholo-
gies of the oxides or hydrated oxides. The feed has been pre-compacted using
a roll compactor, and screened for under- and over-sized fractions. Repre-
sentative data for the particle size are shown in Table 2. It is noted that
the size distribution is rather broad, but this is influenced by production
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D10 (µm) D50 (µm) D90 (µm)

Average size 184 916 1850

Table 2: Solids size distribution

economics2. The pelleting data were obtained using a STYL’One Evolution
(Medelpharm SAS, France) compaction simulator [3, 16].

The STYL’One Evolution is designed to simulate production scale pel-
leting with an instrumented single-punch. The machine is fitted with an
array of sensors to record data during the pelleting process (see Table 1).

In addition, an instrumented die (in the STYL’ONE Evolution) was
fitted with sensors 3 to record the diametrical stress and axial stress (fur-
ther used for data sets Y and Z, discussed below) against other variables
during the compaction/pelleting process, such as time, punch displacement
and pellet volumetric density (the method is well described below and in
[6]). The recorded data from instrumented die compactor were used to cali-
brate solids’ mechanical properties such as cohesion, internal friction angle,
Young’s Modulus and Poisson ratio for developing the Drucker-Prager Cap
model (DPC; detailed in the methods Section 3). The pelleting process
involves four main steps, given in order: (a) filling of the die; (b) pre-
compaction of the solids (rearranging the particles); (c) main compaction of
the solids (forming the pellet); and (d) ejection of the pellet from the die.
The measurements (described in Table 1) are recorded every 0.01 millisec-
onds (ms) over pre-compaction, main compaction, and ejection.

The compaction simulator was used to produce 200 pellets (200mg per
pellet) for each of the six experimental runs, and each run used different
solids feeder setups. Two different solids feeder systems were used: (a) a
force feeder, which pushes solids over the die to allow it to fill; and (b) a
vibration feeder, which vibrates so that solids fall into the die. The force
feeder was used in both a left and right orientation, which changes the angle
of the blade that pushes the solids over the die. The feeders were operated
at different speeds and the vibration feeder at different vibration intensities.
The feeder set-ups for each experiment are detailed below:

• Force feeder
1. Paddles rotating left, speed 40%

2It is impractical in this case to require a homogeneous particle size distribution, as
this would be too expensive for this industrial application. In particular, the low pass
yield of the upstream roll compaction would result in prohibitive costs.

3For clarification, “instrumented die” is a piece of unit in the machine.
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2. Paddles rotating left, speed 70%
3. Paddles rotating right, speed 70%

• Vibration feeder

1. Speed 20%
2. Speed 38%
3. Speed 70%

The pre-compression thickness was kept constant, the main compaction
depth was set at 2.9mm, and the machine speed was set at 25 cycles per
minute. Furthermore, the SOTAX ST50 (SOTAX AG, Switzerland), a semi-
automatic pellet hardness tester (diametric crush strength test), was used
to measure four properties of the pellets: weight, diameter, thickness and
hardness.

Although the experiment generated data for 1,200 pellets, data set X2

contains only compaction measurements for around 800 pellets as they are
compressed, and the measurements recorded are shown in Table 1.

2.1.2. Data pre-processing

Significant amounts of data processing is required for data set X2. Ini-
tially, various summary statistics and non-numerical entries were present in
X2, which were identified and removed. Exploration of the data showed that
pellets did not undergo compression at the same time. The stages in the
process occurred at a range of times (see Fig. 1a and 1b). Plotting the time
series profiles for all variables revealed that the lower punch force shows the
pre-compression, main compression, and ejection stages most clearly. There-
fore the pellets are aligned based on the time at which this variable reaches
its maximum, which corresponds to aligning pellets so that the main com-
pression occurs at a pre-determined time point. This shift is applied for all
variables so that the main stages of the process happen at easily identifiable
time points.

It is clear that there are large time intervals at which no compression
or ejection is occurring. For example Fig. 1b shows that any measurements
recorded before 2300ms or after 3000ms do not contain useful information.
Removing these data points reduces the size of X2 very significantly (and
improves the performance of the models discussed in later sections). Ad-
ditionally, it is possible to remove all measurements in the time intervals
between compression and ejection events without negatively impacting the
performance of the models. That is, when no compression or ejection events
are occurring, the behaviour of the punches have no impact on the resulting
density or hardness of the pellet as the punches themselves are no longer in
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(a) (b)

(c) (d)

Figure 1: Lower punch force profile forX2: (a) unaligned and (b) aligned by main compres-
sion time. (c) Data mismatches (red cross) identified using scaled density and maximum
compression data from all experiments in X2. (d) Data mismatches in X2 (red cross)
identified using scaled density and scaled diametrical hardness, with corresponding data
points from Y overlaid (black star).
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contact with the material. Therefore, removing the measurements recorded
at these time intervals does not remove useful information from the model,
hence not increasing the prediction error. Using this method reduces the
number of time points by more than 70%, from approximately 70,000 to
fewer than 19,000.

A further step in the pre-processing operations for the data is to identify
and remove outliers. Inspection of feature profiles after alignment allows
clear outliers to be easily identified, but an initial linear regression on the
variables indicated that further significant outliers were present. Therefore,
assuming that the data points are normally distributed, all points outwith
a 95% confidence interval are identified as outliers and removed.

Due to the method of data collection, it is highly likely that there are
mismatches in the compaction data and the response variables. The volu-
metric density (in g/cm3) and hardness (in Newtons, N) of the pellets were
measured by collecting compacted pellets from the simulator and manually
transferring them to a hardness tester. During the transfer, any changes to
the order of the compacted pellets will result in a pellet being associated
with a density and hardness measurement that is not correct. To identify
these, one observes that the maximum compression force, denoted Fmax, is
highly correlated with the density of the pellet, and thus an inspection of
Figs. 1c and 1d shows clear identifiable mismatches in the data that are then
removed. After removing the outliers, the data set X2 contains 771 obser-
vations (see Table 1). Throughout, the density and hardness measurements
are scaled to have zero mean and unit variance.

Lastly, Figure 1d evidences a scatter effect in the hardness measure-
ments and this will influence the modelling choices. The issue is discussed
in Section 4.3 and includes a literature perspective.

2.2. Secondary data sets: Z and Y

Two further smaller data sets, Z and Y , were also provided by Johnson
Matthey. These data sets correspond to independent experiments, each with
data from 140 pellets (after pre-processing), that were prepared using the
same feed material as for data set X2 – it is the same catalytic material: the
powders have the same size, range, and characteristics.

The secondary compaction data set, Z, contains largely the same com-
paction information as X2 (see Table 1) and underwent the same data pre-
processing steps as X2. There are critical differences, namely that Z con-
tains: (a) an additional measurement of the radial pressure in the die during
compaction (measured from a different machine); (b) significantly fewer ob-
servations than X2 (140 pellets compared to 771 of X2); (c) there are 20
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pellets for each of 7 pre-selected compression forces (hence averages can be
computed); and, (d) the pellets in Z do not have any hardness or density
measurement associated to them.

The other supplementary data set Y contains results of axial and di-
ametrical hardness tests, and sufficient additional information to compute
the volumetric density for each of its 140 pellets. Note that Y contains the
same amount of pellets as Z, again 20 per pre-set compression force, and
of these 20: 10 pellets have an axial hardness measurement associated and
the other 10 have a diametrical hardness measurement. It is not possible to
record both hardness measurements for each pellet due to the destructive
nature of the test. Again, Y contains significantly fewer observations than
X2, and Z and Y are from different experiments. For emphasis, data set Y
only contains hardness and (computed) density measurements, but in con-
trast to X2, Y has both axial and diametrical hardness in Y (see Table 1).
Finally, like Z, there are multiple pellets with the same (relative) density
and thus averages may be used (see Fig. 4 below).

The experimental description of the Y data set confirms the pellets un-
derwent the same type of compression force profiles as X2 and Z (but such
profiles are not provided). Importantly, the measurements in Y cannot be
matched directly to the compaction measurements from Z, but instead Y
contains data about pellets of the same material as those in X2 and Z span-
ning a larger range of densities. Nonetheless, it is possible to approximately
match the data in Y with the measurements in Z using the procedure de-
tailed in Section 3.2, and it is these approximate pairings that are later used
to enhance X2. This procedure is a primary contribution of this work.

2.2.1. Further remarks on data set Y and Z

The data in Z are collected using a gravity feeder in the Styl’One com-
paction simulator (see Section 2.1), with an instrumented die capable of
measuring the radial pressure during compaction. The diameter of the pel-
lets was 11.28 mm, and for each given tablet thickness (or compaction pres-
sure) twenty pellets were produced. Seven pressure levels were explored,
and no hardness or density information was recorded for these tablets.

Data set Y contains only hardness measurements, again for seven distinct
pressure levels. For each pressure level, twenty pellets are tested; 10 pellets
are used to measure diametrical hardness, and the remaining 10 for axial
hardness. This is because each of the tests are destructive so cannot be
performed on the same pellet. Diametrical hardness was measured using
the Brazilian test, which is standard practice in the pharmaceutical industry
[17]. The test applied increasing compressive force across the diameter of
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the pellet to induce a fracture. The pressure at which the tablet fractures
indicates the diametrical or tensile strength of the pellet. Similarly, the
axial hardness is measured by exerting a compressive force at a 90 degree
angle to the diameter of the pellet. Again, pressure at which the fracture
occurs can be used to compute the axial strength of the pellet. Both of these
measurements are recorded in Y .

3. Modelling and Methods: data augmentation

The goal of Section 3.1 and Section 3.2 is to use the secondary data sets
Z and Y to augment X2, via the Drucker-Prager Cap (DPC) model. These
dependencies are summarised in Table 3.

In this section, it is shown how to compute estimates of DPC parameters
as functions of the relative density of the pellets. Here, the relative density
is defined as the ratio of the actual density of the pellet to the maximum
density of the pellet (measured when the maximum compression force is
applied). Note that in Sections 4-6, the text refers to the scaled density of
X2, which is distinct from the relative density of X2, Z and Y . The scaled
density refers to the actual density scaled to have a zero mean and unit
variance, and this scaling is done using Python’s StandardScaler. Scaling is
also applied to the diametrical hardness of X2.

3.1. Feature generation: DPC model parameters in Z and Y

The Drucker-Prager Cap model is a plasticity model that is capable of
representing the densification and hardening of a powder during compaction
[18]. In this model, the powder is viewed as a continuum, and properties
such as cohesion, internal friction, and material stresses are averaged over all
particles – the validity of this representation is a generally accepted approach
[19]. The idea is to express the properties of the material as the compaction
progresses as a function of a specified state variable – typically the chosen
state variable is the relative density, ρ̃.

Fig. 2 shows the components of a DPC model with the relevant param-
eters and an in-depth discussion can be found in [18]. The two distinct
segments, the cap surface Fc and the shear failure surface Fs, represent the
two behaviours expected during powder compression. A third surface, Ft, is
introduced to smooth the transition between Fs and Fc, and hence is known
as the transition surface. These surfaces are described in (A.1)-(A.3).

When the hydrostatic pressure p is low, the model shows that the powder
will follow a Mohr-Coulomb shear failure line. Shear failure will occur when
the stresses (p, q) lie on the Mohr-Coulomb line (where q is the von Mises
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Figure 2: Drucker-Prager Cap Model: yield surface in the p− q plane [18, Fig. 5] (repro-
duced with permission from Elsevier)

equivalent stress). Note that throughout this section, stress variables are
measured in megapascals,MPa. When p > pa, the behaviour of the material
is described by the cap surface Fc. This represents the hardening of the
material as a result of compaction; if the state (p, q) lies on the surface Fc,
the powder undergoes densification and hardening. This is caused by plastic
deformation in the material. The transition surface, Ft, exists solely to
smooth the transition between Fc and Fs. Note that these DPC parameters,
summarised in Table 3, are typically density-dependent and are determined
as a function of the volumetric plastic strain; [20] corroborates that DPC
model-based material properties for compaction properties of dry granulated
powders are density-dependent.

DPC Parameter Symb. Data set

Cohesion d Y

Internal friction angle β Y

Cap eccentricity R̂ Z (needs: d, β)

Evolution pressure pa Z (needs: d, β)

Hydrostatic pressure yield stress pb Z (needs: d, β)

Young’s modulus E Z

Poisson ratio v Z

Table 3: Drucker-Prager Cap parameters [21] and the supplementary data set from which
they are computed to then enhance data set X2. Note that the radius of the transition
surface parameter α is chosen arbitrarily within a specified range and hence is not included
as a density-dependent feature.
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(a) (b)

Figure 3: (a) Relationship between axial stress and strain on the powder during com-
paction of pellets in Z. (b) Relationship in Z data between the hydrostatic pressure, p
and the von Mises equivalent stress, q. For both figures, loading is shown in red and
unloading in blue.

To determine the parameters of the DPC model, one begins by comput-
ing the stress and strain of the powder as it undergoes compaction. These
parameters can be inferred directly using the compaction data in Z, and are
then transformed into stress invariants as follows [22, Chapter 10]:

axial stress = σz =
F

A
, axial strain = ϵz = log ρ̃, (1)

radial stress = σr, p =
1

3
(σz + 2σr) and q =

1√
3
∥σz − σr∥. (2)

In (1)-(2), F refers to the compression force exerted on the powder, A
is the surface area of the pellet, and ρ̃ is the relative density. These are all
computed from the data in Z.

Shear failure surface parameters d, β

Consider the DPC model shown in Fig. 2. The shear failure surface is
determined by the cohesion, d, and the internal angle of friction, β, which
can be computed using Y as follows 4:

d =
(
√
13− 2)σtσc
σc − 2σt

and β = arctan

[
3

(
σc − d

σc

)]
. (3)

4Note that the below formula for d and β in [18, Eqs (23) and (24)] have a small typo
in the signs. Equation (3) is the correct version (as are [22, Equations 10.34a and 10.34b]).
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In (3), σc and σt denote the compression and tensile stress respectively,
defined as

σc =
4hu
πD2

and σt =
2hd
πDt

, (4)

where D is the diameter of the pellet and t is the measured thickness. The
force hu refers to the axial hardness, and hd to the diametrical hardness. Ad-
ditionally, the internal friction angle β is converted from radians to degrees.

(a) (b)

Figure 4: (a) Internal friction angle β as function of the relative density ρ̃ computed from
Y with 95% confidence intervals in red, and 2nd order polynomial interpolant β(ρ̃) in blue.
(b) Young’s modulus as function of ρ̃ and computed using Z with 95% confidence intervals
in red and 2nd order interpolant E(ρ̃) in blue.

Fig. 4a illustrates the relationship between the relative density of a given
pellet and the internal friction angle β, and a similar computation is under-
taken for the cohesion d. These computations aim to determine the param-
eters as functions of the relative density, d(ρ̃) and β(ρ̃). The approximate
function β(ρ̃) is also shown in Fig. 4a. One can then use these approxima-
tions to find estimates of d and β for the pellets in Z by: computing the
relative density ρ̃ for each Z pellet, and then evaluating d(ρ̃) and β(ρ̃) at
each of these values. These estimates are essential for the determination of
the cap parameters in the proceeding section.

Cap parameters R̂, pa, and pb
The cap surface is described by the parameters R̂, pa, α, and pb (see Table

3). Again, following [18, Section 4] and as described above, one estimates
the values of R̂, pa and pb for Z data via the functions R̂(ρ̃), pa(ρ̃) and pb(ρ̃)
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determined by Y . Combining these with the shear surface parameters d and
β, the cap parameters can be used to fully determine the DPC model via
data set Z. All cap parameters are computed by following the formulae in
[22, Chapter 10] (see (A.7)) and, just like for d(ρ̃) and β(ρ̃), one produces
estimated functions for these.

Note that, since the parameters are density dependent, increasing the
compression force will change the shape and magnitude of the DPC sur-
faces. Fig. 4b shows the relationships between the Young’s modulus and
the relative density of the pellets in Z, and it is clear that there is a strong
positive correlation. This provides good evidence that computing estimates
for the DPC parameters in the data set X2 as inputs to a model is likely to
generate a well-performing predictor.

Young’s modulus E and Poisson ratio v

Using (1)-(2), one is able to compute the Young’s modulus and the Pois-
son ratio of the powder for pellets in Z. This is done by following [18, Section
4] – see (A.4)-(A.5). Note that the results are dependent on the pellet’s rel-
ative density ρ̃. Therefore, compressing the powder at varying maximum
compression forces generates a range of values for both the Young’s modu-
lus and Poisson ratio for the same material, so that these properties can be
expressed as functions of the relative density. These estimated functions are
denoted as E(ρ̃), for the Young’s modulus, and v(ρ̃), for the Poisson ratio.
Fig. 4b shows the true values of E computed using Z and the polynomial
estimate E(ρ̃).

3.2. Enhancing Data set X2

Using the procedure outlined in the previous section, it is straightforward
to compute the cohesion and friction angle from Y . One can then use the
estimated functions β(ρ̃) and d(ρ̃) to find an approximation for β and d for
each pellet in Z. Then, these parameters are used to find the cap parameters
for Z pellets, for which one then produce polynomial estimates as discussed
above. Along with the estimated polynomials E(ρ̃) and v(ρ̃), one now has
the following functions of the relative density: d(ρ̃), β(ρ̃), R̂(ρ̃), pa(ρ̃), and
pb(ρ̃). Contingent on a justification provided below, one finds the DPC pa-
rameters for X2 simply by evaluating these functions on the relative density
of the pellets in X2.

Inspection ofX2 in Fig. 5a reveals that the relative densities of the pellets
in this primary data set X2 range from 0.84 to 0.99. From this information
one can retrospectively analyse the polynomial estimates and confirm that
a good fit for the true data in this range is indeed observed. For example,
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(a) (b)

Figure 5: Illustration of data enhancement for X2 using estimated parameters from Z
and Y . (a) Spread of densities of pellets in primary data set X2 showing a density range
contained in the interval [0.84, 0.99]. (b) Poisson ratio v as function of relative density ρ̃
computed using Z with polynomial estimate v(ρ̃); mean-value observations from Z (red
dots) with 95% confidence intervals and connected via linear interpolation; in blue is a
5th order interpolant that defines v(ρ̃); banded region refers to the pellet density range in
X2 shown in (a).

in Fig. 5b, the polynomial fits the true Poisson ratio well in this range, but
has a steep negative gradient as ρ̃ is decreased below 0.6. Although this is
not likely to be a good fit for real data due to the physical interpretation of
v, for this work one is not concerned with such fit outside of the range of
interest determined by X2.

At this point, one has generated, via extrapolation, estimates for all
features displayed in Table 3 for X2 (with the exception of α, which is
arbitrarily chosen). These estimated features encode information from a
significant proportion of the original features in X2, which themselves have
no established physical interpretation from a first-principles standpoint.

This physics-informed augmentation procedure is motivated by an inter-
est in contextualising the input features to the machine learning models de-
veloped next, so that the predictions can be clearly linked to first-principles
models of powder compaction. The real gain of this methodology is that one
is able to extract an increased value out of data that already exists without
the need for additional testing or data generation.

In conclusion, this section shows how to augment X2 by including the
DPC parameters of Table 3. To highlight the gain of the augmentation
procedure note that in the next modelling step only the density, hardness,
maximum compression Fmax of X2, and the 7 DPC estimated parameters
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(justified by the strong relation seen in Fig. 1c) are considered. All other
force measurements of X2 (see Table 1) are discarded: this reduces the
dimension of the feature space from more than 70,000 features to just 8.

4. Modelling and Methods: Machine learning modelling

The next sections describe: (i) a feature selection mechanism (Section
4.1) used to ascertain which features highlighted in Table 3 are most relevant
to the model and lead to parsimonious models; and, (ii) a description of the
machine learning modelling carried out for the task of quantitative prediction
of density (Section 4.2) and task of classification of hardness (Section 4.3).

Our modelling gain: an alternative approach to that used in this paper
for the prediction of density would be to inject the estimated DPC param-
eters into the DPC model itself and solve it for the density. Using ML and
statistics gives further interpretability to feature importance loadings and
the small number of parameters needed to predict/estimate density (model
parsimony). The sole use of DPC abdicates the ability to fine-tune the
model scores on train/test and fit/overfit balance and – as is shown below –
density can be estimated with a small number of parameters, much smaller
than the 7 DPC parameters estimated in the previous section.

4.1. Feature selection process: mRMR

Effective feature selection has a number of benefits, including improved
model interpretability [23]. In this work, the Minimum Redundancy and
Maximum Relevance (mRMR) selection (introduced in [24]) is deployed. It
chooses a subset of the original features based on the maximising the correla-
tion with the target variable (relevance) and minimising shared information
within the selected subset (redundancy). Specifically, the algorithm com-
putes the mutual information between each of the original features and the
target, and subtracts from this the mean of the pairwise mutual information
between the features [25] (see (A.8)). The implementation used is that of
[26]. Crucially, mRMR performs better than feature selection mechanisms
based solely on Pearson’s correlation.

4.2. Quantitative prediction model for Density

A number of machine learning models for density prediction were devel-
oped and analysed, including classical linear regression (LR), partial least
squares regression (PLS) [27, 3], support vector machine regression (SVM)
[28], and Gaussian process regression (GPR) [29, 30]. All models performed
similarly but GPR was able to reduce overall model variance and over-fitting,
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capture non-linear relationships in the data, and had the best performance
(both in sample and out of sample) in terms of the metrics considered. For
brevity, only GPR is discussed as it is not in the scope of this work to
compare model performances.

Model description. GPR takes a Bayesian approach to predictive mod-
elling and generates a probabilistic output; a prior is specified, which one
then uses with the training data to define a posterior function. The GPR
model then finds a probability distribution over all posteriors that fit the
data, and predictions can be made using each of these. The mean of the
predictions is taken as the point prediction for the GPR model, and one can
also use the standard deviations to generate the prediction intervals of each
prediction [31]. This provides a reliable uncertainty quantification element
for every density prediction, which is a major advantage of this model.

Input features and prediction target. It is known that GPR performs
poorly when too many input features (more than 20-30) are used [29]. Using
only the DPC estimates and the maximum force Fmax as features, a total of
8 features are used – this set is referred to as the Density Physics-Informed
Features (D-PIF) set. Clearly, this set of features generates a model that is
in the efficiency region of GPR with respect to number of input variables.
The feature selection mechanism of Section 4.1 reduces these further. The
prediction target is the scaled density of the pellets in X2.

Model performance metrics. Two metrics are considered: the mean ab-
solute scaled error (MASE) given in (A.9), and the classical statistical coef-
ficient of determination, r2. The models’ evaluations is based on the scores
on an independent testing set, and metrics are also computed during model
training to identify and correct overfitting.

Details on model training and tuning. The data are split into training
and testing sets in a 70/30 ratio respectively. The model error is estimated
using 5-fold cross-validation [32, Section 7.10]. A grid search on GPR ker-
nels is performed, and the kernel minimising the MASE of the model is
implemented. This kernel is the sum of a Matérn kernel with a length scale
of 1000 and a smoothing parameter ν of 1.5, and a white noise kernel with
noise level 0.5.

4.3. Classification model for Diametrical Hardness

The results from [3, 16], the evident scatter in hardness measurements
seen in Figure 1d and initial experimentation showing poor MASE and r2

metrics, indicate that the quantitative prediction of hardness is a significantly
more challenging problem than a quantitative prediction of density.
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A perspective on the high scatter in hardness data. The literature in-
dicates that catalyst crush strength data are subject to significant scatter
[33, 34, 35]. Variability in excess of 25% is commonly seen in published data
sets, even where the pellets are taken from an ostensibly homogeneous sam-
ple. This is irrespective of the test method used, whether horizontal crush
strength (as used for the data set analysed herein), cutting or the three
point bend test [36]. The key origin of the variance arises from the random
alignment of microcracks, that are propagated in pellet fracture, with the
tensile stress lines imposed during the test [37] and the data are commonly
fitted using the fracture theory derived Weibull distribution [34, 35, 38, 39].
“Repeat” tests from comparable pellets may however equally fit a Gaussian
distribution in accordance with the noted random microcrack orientation
[35, 40, 41]. Moreover, it has been shown that a large number of test sam-
ples (30-50) is required to confidently fit the parameters of the distribution
[38], implying that production environment strength data will always suf-
fer high scatter or low signal to noise ratio which will be difficult to fit by
regression without risk of over-fitting

Modelling choices. In order for the hardness model to function as a
quality control tool, it is thus not necessary to generate a point prediction
of the hardness. A classification model is a natural option if one is interested
only in knowing whether or not a pellet falls within an acceptable hardness
range.

Input features and prediction target. The input data for the classification
model are the 8 features used for the quantitative prediction of density
discussed in Section 4.2, and additionally the predicted density generated
by the GPR model that is denoted by the symbol Γ. A total of 9 features
are used initially – this collection is referred to as the Hardness Physics-
Informed Features (H-PIF) set. The mRMR feature selection algorithm is
also applied to these features.

Next, a region of acceptability must be established. Fig. 1d (also Fig. 9c)
shows that the majority of pellets have a scaled hardness measurement of
approximately −1 to 1, and in-field informed discussion indicated that this
cluster would be a reasonable acceptability region for hardness in X2.

Model description. As in Section 4.2, several classification methods were
implemented and analysed. Only the Multilayer Perceptron (MLP) model
is discussed here as this achieved the best performance according to the
relevant metrics (see below). The MLP model belong to the class of (deep)
Neural Network models [42]: it contains an input layer, through which the
features are passed to the hidden layers. These hidden layers are composed
of perceptrons, which are simple artificial neurons that take an input and
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calculate a weighted sum, before applying an activation function, and then
producing an output [43]. The final layer of a MLP model is known as
the output layer. This model is trained efficiently using backpropagation to
compute the gradient of the error in the network [42], and iterates standard
gradient descent to converge to a minimal loss.

Model performance metrics. Analyses of classification models require a
choice of metric to evaluate against. By default, many classifiers use an
accuracy score but in practise alternative metrics can be significantly more
insightful. An alternative metric, the F1 score, is often more informative as
it balances the precision and the recall of the model, which provides a more
complete picture of the model performance [43]. This is the metric against
which the MLP model is evaluated, and is calculated as the harmonic mean
of the precision and the recall. Equation (5) below gives the definition:

precision =
true positives

true positives + false positives
,

recall =
true positives

true positives + false negatives
,

F1 = 2

(
precision× recall

precision + recall

)
. (5)

This metric gives a high score to classifiers that perform well in terms of
both precision and recall [43]. This is useful since one would like to minimise
both the false negatives and the false positives. False negatives refer to
pellets that are classed as not acceptable when in fact they are fit for purpose;
these should be minimised because the model will be used to flag problems
in the compaction process, and a high rate of false negatives reduces trust
in the model and may obscure genuine errors. On the other hand, false
positives are pellets that are not acceptable, but the model determines that
they are. These misclassified pellets would be at risk of fracturing during
packaging or transportation, or may be too hard to dissolve or react when
used. Both errors in the model have significant impact and the F1 score in
equation (5) provides a good solution balancing the precision-recall trade-off.

Details on model training and tuning. A number of parameters must be
specified prior to training the MLP model. These choices are detailed in
Table 4. Since a logistic activation function is used, the cross-entropy loss
(also known as the logistic loss) function is minimised [44]. With this setup,
the model is trained and outputs a binary classification of ‘1’ for a pellet
that falls in the acceptability region, and ‘0’ otherwise.
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MLP Parameter choices

Number of hidden layers 1

Size of hidden layers 50

Learning rate 0.01

Activation function Logistic

Epochs 100

Table 4: MLP parameters for hardness classification.

5. Results

As discussed throughout the previous sections, understanding feature
interpretability and relevance is a primary motivation for this work. In
particular, the aim is to identify the smallest possible subset of physically
meaningful features that produces a well-performing, parsimonious model
according to the specified metrics. For each problem the feature selection
and relevance is firstly discussed and the results of the model itself are then
presented.

5.1. Model for density prediction

5.1.1. Feature selection

Fig. 6a shows the Pearson correlation between the 8 features and both
targets (density and hardness); this measure indicates how strongly related
the features are in terms of their linear relationship, and suggests which
may be most relevant for predicting a given target [45]. This correlation
analysis is limited to linear relationships in the data and more complex
nonlinear relationships are not highlighted here. One sees that the strongest
positive correlation in the variables is between the density and the maximum
compression force, Fmax, with the strongest negative correlation occurring
between density and the Young’s modulus, E.

A further notable finding from Fig. 6a is that the Poisson ratio, v, has
low correlation with the density. This suggests that this feature is the least
relevant of the D-PIF set when building a predictive model for density pre-
dictions.

Section 4.1 describes how the Pearson correlation can quantify the rel-
evance of each feature and weight this against the measured redundancy
in order to select the best feature set. Fig. 6 displays the effect of feature
selection on the model performance on the left (Fig. 6b) and the mRMR
feature relevance of all D-PIF on the right (Fig. 6c).
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(a)

(b) (c)

Figure 6: (a) Pearson correlation between D-PIF and H-PIF features and target labels.
The last element, Γ, is the predicted density from the GPR model that belongs to the
H-PIF set. (b) Optimal number of features for GPR model against MASE (red, on left
y-axis) and r2 (blue, on right y-axis). Both of these metrics are computed using the test
set. (c) D-PIF feature relevance using mRMR feature selection for GPR model (right).
Feature relevance plots show the features selected by mRMR for the model (red). See
Table 3 for feature symbols and descriptions.

For density prediction, selecting only 2 features improves both the MASE
and r2 score for the GPR model. As suggested by Fig. 6a, the most relevant
features are the Young’s modulus, E, and the maximum compression force
Fmax. These are exactly the two features selected by mRMR, which indi-
cates that there is minimal shared information (redundancy) between these
variables. The selection of Fmax is in line with the findings of [15, 3], and
the strong correlation highlighted by Fig. 1c. This latter feature has a clear
physical interpretation and is easily controlled during manufacture.

The Young’s Modulus is a pellet property that is known to cross-correlate
with pellet porosity [46, 47]. When the feed material is constant, as it is
in this manuscript, Young’s Modulus makes for a (mathematically) good
“soft sensor” or marker for density. Zhang et al. [47] in a univariate anal-
ysis of experimentally derived data note additionally that the hydrostatic
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yield stress (pb), internal friction b and Cap Eccentricity (R, related to the
evolution pressure, pa) all show a significant monotonic relationship with
pellet density and will therefore be statistically confounded. This may ex-
plain why the feature importance ranking in this study indicates only minor
discrimination between their influence (Fig.6c).

5.1.2. Model performance

(a) (b)

(c)

Figure 7: (a) Scores on test set by model (LR, PLS, SVM, GPR) for scaled density
prediction against MASE (red, on left y-axis) and r2 (blue, on right y-axis). (b) GPR
parity plot for testing (red) and training (blue) data, with residual histogram inset. (c)
GPR mean predictions and 95% prediction intervals (on test set).

Fig. 7a summarises the performance of several models for density pre-
diction for both MASE and r2, trained on only the estimated DPC features
(Table 3) and maximum compression force. The results from LR, PLS and
SVM models are displayed without detail and for reference only. It is clear
that the GPR model is the better performing model in terms of the MASE
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score on the independent testing, achieving a 13.1% scaled error. Compara-
tively, the simple LR model has an MASE of 15.1%. The GPR parity plot is
displayed in Fig. 7b and compares the density prediction to the actual mea-
sured density. The black line indicates a 1:1 parity and provides a reference
point for the quality of the predictions. That is, the closer to the line a point
falls, the closer the predicted density is to the true value. Residual errors are
shown in the histogram inset in Fig. 7b, and it is clear that these errors are
distributed approximately normally with zero mean – this is indicative of a
good model fit. Fig. 7c shows the prediction intervals for GPR, which are
smaller than those of the other models implemented. This indicates that the
prediction generated by GPR has less uncertainty associated with it. The
relatively low level of uncertainty also promotes explainability in the results.

Table 5 summarises the findings. It indicates that choosing the 2 features
(Fmax and E) suffices for improved model performance in terms of MASE.
This is likely due to correlations and noise present in the other features,
which can cause overfitting, so removing the extra features improves the
model’s ability to generalise to testing data. The number of features seems
to have no significant impact on the model’s r2 score. Finally, the last row
of Table 5 is discussed in remark 5.1.3.

Features MASE (%) MAE r2

2 D-PIF features (Section 5.1.1) 12.9 0.10 0.975

All 8 D-PIF features 13.1 – 0.975

8 (mRMR selected) compaction features 14.3 – 0.970

Table 5: Comparison of GPR scores on test set for different feature sets. MAE reported
only for the best model for comparison purposes. All models take less than 15 seconds to
train. See Section 5.1.1 for further details; last row discussed in Section 5.1.3.

5.1.3. Remark: using statistical features Vs physics-informed features

The last row of Table 5 shows, for comparison purposes, the metrics
when using only compaction data as input, where ‘compaction data’ refers
to statistical features generated from only the original data in X2 (see Table
1); this is in line with what was done in [3]. An in-depth discussion of
said statistical features is out of the scope of this work, but the summary
Table A.6 provides an overview. It is not feasible to train a GPR model
on all compaction features due to the computational effort required, so the
mRMR feature selection mechanism is used to shrink the feature space to
8 elements. The 8 features selected from this set of input features are also
detailed in A.6.
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Selecting 8 features from the compaction data gives a clear comparison
for the model performance to when using the D-PIF set. Although the model
with compaction features has relatively good performance with a MASE of
14.3% and r2 of 0.970, these scores show that the D-PIF input generates
better predictions. Crucially, Table 5 demonstrates that one is able to de-
rive physically relevant features from existing data and train a maximally
explainable model, whilst also improving upon model performance.

5.2. Model for Hardness classification

5.2.1. Feature selection

The analysis for feature selection for the hardness classifier is similar
to that presented in Section 5.1.1 for the density prediction task. Fig. 6a
shows that, for this data, the D-PIF features are more significantly related
to the density than to the hardness. This may relate to the observation
that a quantitative hardness prediction is a more difficult problem than for
density [3], as the data does not contain a sufficient amount of information.
The Poisson ratio, v, is weakly correlated with the hardness compared to
the other H-PIF features; the same was found when considering density
correlations.

(a) (b)

Figure 8: (a) F1 score (y-axis) as function of the number of features (x-axis) used for
training; Test score in red dots; Train score in blue crosses. (b) H-PIF feature relevance
including the predicted density from the GPR model, Γ, using mRMR feature selection
for the MLP classifier. Feature relevance plots show the features selected by mRMR for
the model (red). See Table 3 for feature descriptions.

This observation is also found in Fig. 8b, which illustrates that the Pois-
son ratio has minimal mRMR relevance, so it is clear that this feature is not
informative for either prediction task. The F1 score for the classification
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model is not impacted significantly by reducing the number of features (see
Fig. 8a). Therefore one chooses 4 features, in order to reduce the feature
space by 55%. Again, Fmax is selected. The selection of Fmax and Young’s
modulus, E, for the model is particularly interesting as Fmax is a quantity
that is easily monitored and adjusted in situ while Young’s modulus is a
pellet property.

From a theoretical point of view, Griffiths’ Fracture Theory [46], and
the eponymous equation which shows the fracture tensile stress σF ∝

√
E,

it is not surprising that Young’s modulus demonstrates a strong influence.
Evidently though, the particle-particle powder friction, β, and onset of plas-
tic deformation during compaction, pb, are able to capture this important
relationship statistically just as well (see Figure 8b).

5.2.2. Model performance

Training the MLP classifier yields an F1 score of 0.915 on the indepen-
dent test set, which signifies that there are very few false negatives or false
positives identified. This indicates that the model has very good predic-
tive capabilities in terms of accurately classifying pellets according to their
hardness.

It is known that machine learning models can be susceptible to overfitting
[48], which is characterised by scores that are significantly better on the
training data than on the validation set. This occurs when the model learns
the training data too well, for example by learning the noise present in
those data. Two ways to reduce the likelihood of overfitting are to reduce
the complexity of the model, and to reduce the number of observations in the
training set. A single hidden layer was chosen in Section 4.3 for simplicity,
and Fig. 9a shows that overfitting does not appear to be a problem. However,
one notes that using 242 training instances produces a model that generalises
well to the validation set, with a sufficiently narrow confidence interval on
the F1 score. It is clear that additional training data has little impact on the
performance of the classifier so one selects 242 pellets randomly to train the
MLP model. This promotes computational efficiency in the model without
compromising on performance.

Fig. 9b shows the confusion matrix for the trained MLP model. This
illustrates the errors made by the model, and it is noteworthy to observe that
the most common error is a false positive. That is, when the model makes
an error, it is more likely that this mistake classifies an out of specification
pellet as acceptable. The false positives identified in the validation set are
shown in Fig. 9c. This highlights the fact that the majority of false positives
lie above the acceptability region, with a cluster of such errors falling just
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(a) (b)

(c)

Figure 9: (a) MLP model sensitivity to training data set size by F1 score with 95%
confidence intervals. (b) Confusion matrix for MLP hardness classifier. (c) Pellets falsely
identified as acceptable (red crosses) by MLP model, pellets correctly identified (blue
dots), and acceptability region shaded.

outwith the boundary.

5.3. Comparison with the literature

The main data set of this work, X2, is also the data set X2 from [3]
but in [3] neither Z or Y were used. In [3], the authors use Partial Least
Squares (PLS) Regression, a covariance based regression model, to quanti-
tatively predict scaled density and hardness. The input for the model are
the complete force profiles of X2 (see the first four lines in Table 1), and
during model training the inputs are reduced via PLS’s Variable Importance
in Projection scores. Critically, the features generated by the PLS are latent
variables, which diminishes the understanding of why certain parts of the

27



time-series are selected and how the selected features relate to rejected fea-
tures. For quantitative prediction of scaled density, their PLS model with 4
latent variables reports MAE between 0.09 and 0.18, and r2 = 0.86. Com-
paratively, the 2-feature GPR model in this work reports an MAE of 0.10,
and r2 = 0.975 (and MASE of 12.9). No comparison can be established
between the hardness models as here one deals with a classification problem
while there it is a quantitative prediction problem.

The main advantage that the model here offers in terms of the quan-
titative prediction of density is a construction based on physics-informed
features ultimately motivated by an interest in contextualising the input
features to the models. The models in [3] cannot provide for this.

6. Conclusions

In this manuscript two predictive models were presented as well as a re-
producible mechanism to enhance data sets by leveraging smaller ones from
independent experiments. Regarding the models, the first is for the quan-
titative prediction of pellet density and the second is for the classification
of pellet hardness as ‘in-specification’ or ‘out-of-specification’. The analysis
provided demonstrates that is it possible to derive physically relevant fea-
tures from existing data and train a maximally explainable model, whilst
also improving upon model performance – the model selection of compaction
forces and peak force is in-line with either DPC literature or early data-
driven modelling [3, 16]. The models developed improve upon significantly
existing findings and provide insights into the relationships between com-
paction process parameters and pellet CQAs (density and hardness). This
is a step towards optimisation of the pelleting process parameters to achieve
reduced variability in pellet density and hardness. Critically, the models
were built consistently with relevant quality control metrics of high-recall
(minimising false negatives) and improved precision (minimising false posi-
tives). Our models are the most competitive data-driven physics-informed
reduce-order models found in current literature (to the best of the authors’
knowledge), seen by either low errors, better explanability or a reduced
amount of training data.

From an industrial perspective, the models developed here are inline with
the trend of sustainable advanced manufacturing aiming to capture com-
plex materials’ properties and mechanical processing requirements. These
models deliver on the possibility of controlling the process from design to
manufacturing for less well-studied material, and thus provide savings of
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the high-value materials, energy consumption, working risks and other eco-
environmental factors of practical trial and error. The mantra being the
same as in [3]: “Control of quality leads to improved economics and sustain-
ability”.

From a practical perspective, the information provided by these models
can be deployed to supervisor plant operators or embedded in an auto-
mated control system to guide and monitor the production process ensuring
on-specification outputs. From a holistic point of view, such models help
overcome the challenges of scale-up and scale-down by being digital-twin
component proxies to the multi-variables across the production scales. Left
open is further research into the impact of the processes upstream of pellet-
ing, such as roller compaction and granulation, and the influence of formu-
lation and manufacturing process disturbances. These would help to bridge
the gap between R&D and commercial scale production.

Appendix A. Methods

Appendix A.1. Drucker-Prager Cap Equations

The equations for the DPC surfaces described in Section 3 are given in
this Appendix. See Table 3 for descriptions of the parameters used in the
next equations (A.1)–A.3. The shear failure surface, Fs, is written as

Fs = q − p tanβ − d = 0. (A.1)

The cap surface, Fc, is described by the following equation

Fc =

√√√√(p− pa)2 +

[
R̂q

1 + α− α/ cosβ

]
− R̂(d+ pa tanβ) = 0. (A.2)

Finally, the transition surface, Ft, is

Ft =

√
|(p− pa)|2 +

[
q −

(
1− α

cosβ

)
(d+ pa tanβ)

]2
− α(d+ pa tanβ) = 0.

(A.3)

One finds next the formulae to calculate the Young’s modulus and the
Poisson ratio. These quantities require the calculation of the bulk modulus
K and shear modulus G, which is done by solving the equations below

K +
4

3
G =

σzB − σzC
ϵzB − ϵzC

and
2G√
3K

=
qB

pB − pC
. (A.4)
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Recall that σz and ϵz are the axial stress and strain respectively, and then
σzB is σz at point B in Fig. 3a. The quantities σzC , ϵzB and ϵzC are defined
similarly, namely, as the stress and strain at points B and C. Also, pB and
pc are the hydrostatic pressure p at points B and C from Fig. 3b respectively.

The Young’s modulus, E, and the Poisson ratio, v, are computed through

E =
9GK

3K +G
, and v =

3K − 2G

2(3K +G)
. (A.5)

Define α̂ as

α̂ = 1 + α− α/ cosβ.

Then the cap equations are as shown:

pa =
−3qB − 4dα̂2 tanβ +

√
9q2B + 24dqBα̂2 tanβ + 8α̂2

(
3pBqB + 2q2B

)
tan2 β

4α̂2 tan2 β
,

(A.6)

R̂ =

√
2α̂2 (pB − pa)

3qB
and pb = R̂d+ pa

(
1 + R̂ tanβ

)
. (A.7)

Appendix A.2. Machine Learning elements

Feature generation: statistical feature from compaction data

Observing the compaction data in X2, it is clear that the force profiles
of different pellets have varying skews, and the gradient of the compression
force at each time point is steeper when the maximum force recorded is
larger. For these reasons, one generates statistical features from the curve
profiles in X2 (e.g., Fig. 1b) that correlate with the density variable. Table
A.6 overviews said generated features.

Table 5 contains the results of applying the ML model to the statistical
features. In particular, the mRMR algorithm is applied to a set of features
containing exactly the measurements from dataset X2 and the features in
Table A.6. For comparison with the main result of this work, 8 features are
selected, and these are given below, in order of relevance (as determined by
mRMR):

1. Upper punch force skew,

2. Lower punch displacement 2597.4,

3. Lower punch displacement 2597.3,

4. Lower punch displacement 2597.8,
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Feature Formula

Skew
∑N

i (Xi−µ)3

(N−1)σ3

Kurtosis
∑N

i (Xi−µ)4

(N−1)×σ4

Area under curve
∫
f(x)dx

Squared feature f(x)2

Derivative (first and second order, force only)
df

dx
,
d2f

dx2

Table A.6: Generated features for X2. In the above, µ is the mean value of the feature,
with standard deviation σ, and the number of observations is N . For each variable, f(x)
represents the profile of the variable over all relevant time points x.

5. Lower punch displacement 2597.9,

6. Lower punch displacement 2597.7,

7. Lower punch displacement 2597.5,

8. Lower punch displacement 2597.6.

Note that the number refers to the time at which the measurement is
recorded (in ms), and that in this case maximum compression occurs at
time 2595.1. That is, the punch force features selected appear to relate to
post-compression relaxation.

Details on the mRMR Feature Selection algorithm

The mRMR algorithm utilises the F-statistic, F (·, ·) and the Pearson
correlation, ρ(·, ·), to rank features according to their importance score,
fmRMR as shown [23]:

fmRMR(Xi) = F (Y,Xi)−
1

|S|
∑
Xs∈S

ρ(Xs, Xi), (A.8)

where Xi for i ∈ {1, ...,m} are the m original features, Y is the target, and
S is the set of selected features. This version of mRMR is known as FCD
and is implemented for continuous features.

To select K features, one computes the score of each candidate feature
using (A.8) and then adds the feature with the highest score to the set of
selected features, S. This selected feature is removed from the candidate
set. These steps are performed iteratively until |S| = K, at which point the
algorithm terminates and the output S is presented as the selected feature
subset.
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Performance metrics

The metrics considered in this study are the coefficient of determination,
r2, mean absolute error (MAE), mean absolute scaled error (MASE). They
are defined as follows [49, Section 3.4]:

r2(y, ŷ) = 1−
∑n

i=1(yi − ŷ)2∑n
i=1(yi − y)2

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|

MASE(y, ŷ) = 100× MAE(y, ŷ)

1/n
∑n

i=1 |yi − y|

, (A.9)

where yi, ŷi are the actual and predicted values for sample i respectively, n
is the number of samples, and y is the mean of the actual values.
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