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Abstract 
Structural variants (SVs) and short tandem repeats (STRs) are significant sources of genetic 

variation. However, the impacts of these variants on gene expression and splicing have not 

been investigated in cattle. Here, we genotyped and characterized 19,408 SVs and 374,821 

STRs in 183 bovine genomes and investigated their impact on molecular phenotypes derived 

from testis transcriptomes. We found that 71% short tandem repeats (STRs) were multiallelic. 

The vast majority (95%) of STRs and SVs were in intergenic and intronic regions. 

Additionally, 37% of SVs and 40% of STRs were in high LD (R2>0.8) with surrounding 

SNPs/Indels. Both SVs and STRs were more than two-fold enriched among expression and 

splicing QTL (e/sQTL) relative to SNPs/Indels and were often associated with differential 

expression and splicing of multiple genes. Deletions and duplications had larger impacts on 

splicing and expression than any other type of structural variant. Exonic duplications 

predominantly increased gene expression either through alternative splicing or other 

mechanisms, whereas expression- and splicing-associated STRs primarily resided in intronic 

regions and exhibited bimodal effects on the molecular phenotypes investigated. Most e/sQTL 

resided within 100 kb of the affected genes or splicing junctions. We pinpoint candidate causal 

STRs and SVs associated with the expression of SLC13A4 and TTC7B, and alternative splicing 

of a lncRNA and CAPP1. Our results provide a comprehensive catalogue of polymorphic STRs 

and SVs in the bovine genome and show that they contribute substantially to gene expression 

and splicing variation in cattle. 

 

 

Introduction 
Genome-wide association studies (GWAS), and expression and splicing quantitative trait loci 

(e/sQTL) mapping establish links between genotype and (molecular) phenotype [1–6]. These 

approaches typically rely on single nucleotide polymorphism (SNP) and small insertion and 
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deletion (Indel, smaller than 50 bp) markers because they can be genotyped easily and 

accurately with short sequencing reads using reference-guided approaches. Complex DNA 

variations such as structural variants (SVs, larger than 50 bp) or short tandem repeats (STRs) 

are often neglected for GWAs and e/sQTL mapping because they are challenging to genotype. 

However, it becomes increasingly apparent that SVs and STRs contribute substantially to trait 

variation [7–11].  

 

Structural variants can be classified into deletions, duplications, insertions, inversions, 

translocations, segmental duplications, mobile element insertions or complex rearrangements, 

which may be a combination of multiple types [12, 13]. Tandem repeats are consecutive repeats 

of units ranging from 1 bp to several kb [14]. Short tandem repeats (STRs) specifically refer to 

repeats of a motif between 1 and 6 bp in length, e.g., AGC7 indicates that a trinucleotide (3 bp) 

AGC motif is repeated 7 times, yielding a total length of 21 bp. Polymorphic STRs can vary in 

length due to a contraction or expansion of the repeat motif. These variants can arise due to 

recombination errors, insertions of mobile genetic elements, slippage during DNA replication 

or imperfect DNA repair [15–17].   

 

Microarrays have been used to genotype polymorphic SVs and STRs to validate parentage, 

construct genetic linkage maps, assess genetic diversity, and map QTL in human and livestock 

populations [18–20]. However, microarrays interrogate only a small number of polymorphic 

SVs and STRs. Exhaustive genome-wide discovery and genotyping of SVs and STRs has 

become feasible through advancements in short read sequencing and variant detection methods 

[11, 21–25]. Yet, there are only few studies that identified SVs using whole-genome 

sequencing data in cattle [26–29]. To the best of our knowledge, STRs have not been profiled 

systematically in different cattle breeds using whole genome sequencing data, as there is only 

one study which characterized 60,106 STRs in five Holstein cattle [30].   

 

It is well known from investigations in species other than cattle that STRs and SVs contribute 

substantially to complex traits and diseases through mediating gene expression and splicing 

[31–33]. For instance, an intronic AAGGG expansion in the RFC1 gene encoding Replication 

Factor C1 is associated with cerebellar ataxia with neuropathy and bilateral vestibular areflexia 

syndrome in humans [34]. Analyses of the human Genotype-Tissue Expression (GTEx) data 

showed that SVs were the lead variants in 2.66% cis-eQTL [31] and revealed many STRs 

affecting gene expression [35]. A recent study by Hamanaka et al. (2023) showed that tandemly 
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repeated motifs of up to 20 bp contribute substantially to alternative splicing and thereby 

phenotype variation [36].  

 

The contribution of SVs and STRs to gene expression and splicing variation are largely 

unknown in cattle. Therefore, we generated a catalogue of polymorphic STRs and SVs from 

183 whole-genome sequenced cattle and assessed the impact of these variant types on gene 

expression and splicing in testis transcriptomes of 75 mature bulls. Finally, we pinpoint 

candidate causal STRs and SVs that modulate the expression and splicing of genes in testis 

tissue. 

 

Results 

 

We used paired-end whole-genome sequencing data of 183 cattle from five breeds (Brown 

Swiss - BSW, Fleckvieh – FV, Holstein - HOL, Original Braunvieh – OB, Tyrolean Grauvieh 

– TGV and their crosses) to genotype SVs, STRs, SNPs and Indels. The average sequencing 

coverage was 12.8-fold and it ranged from 5.0 to 30.4-fold. 

 

Reference-guided discovery and genotyping of short tandem repeats  

 

We identified 1,202,536 STRs with a motif size between 1 and 6 bp in the current Bos taurus 

taurus reference sequence (ARS-UCD1.2) spanning 24.9 Mb autosomal sequence (1.0%) 

(Figure S1 and Table S1). The number of STRs on each chromosome was correlated (r=0.99) 

with chromosome length (Figure S2). Mono- and hexanucleotide loci were the most and least 

frequent types of STRs respectively, amounting to 35.9% and 9.8% of all identified STRs 

(Figure S1). Repeats of A, T and AT were most prevalent among mono- and dinucleotide STRs. 

GC-rich repeats (e.g., AGC) were most frequent among trinucleotide STRs (Figure S3). The 

overall length of the STRs varied from 11 bp to 10,427 bp with a median size of 18 bp. The 

vast majority of the STRs (n=1,199,357, 99.7%) were shorter than 100 bp, facilitating short 

read-based genotyping.  

 

We obtained genotypes for 794,300 autosomal STRs in 183 cattle using HipSTR [37], of which 

we retained 374,822 polymorphic loci after stringent filtering for downstream analyses. We 

identified between 73,791 and 189,658 (average: 150,104) STRs in each cattle genome, and 

the number of STRs detected correlated (r=0.94) with sequencing depth (Figure S4). As 
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expected, given their prevalence in the bovine reference genome, mono- (52.9%) and 

hexanucleotide STRs (2.5%) were respectively the most and least frequent type of the 

polymorphic STRs (Figure 1a). Pentanucleotide STRs were more frequent than tetranucleotide 

STRs. Approximately three quarter of polymorphic STRs (n=266,509, 71.1%) were 

multiallelic and had between 1 and 41 alternate alleles, but more than 20 alternate alleles were 

rarely seen (Figure S5). Dinucleotide STRs had the highest number of alternative alleles among 

all STRs (Figure 1b). Repeats of A and T were the most frequent classes among the 

mononucleotide STRs, whereas AGC and CTG repeats prevailed among trinucleotide STRs 

(Figure S6). Heterozygosity and allelic diversity were higher for dinucleotide loci than any 

other type of STRs (Figure 1b & c), possibly suggesting higher mutation rate and less purifying 

selection in this class.  

 

Functional annotation showed an enrichment of STRs in intergenic regions (60.4%, p=0.002, 

OR=1.26). STRs were depleted in exonic regions (0.89%, p=0.003, OR=0.36) and promoter 

regions (3.55%, p=0.027, OR=0.66) (Figure 1d & Figure S7). The proportion of STRs that 

overlapped exons was highest for tri- (1.9%) and hexanucleotide (1.4%) motifs (Figure 1d) 

which were the least heterozygous among all annotation categories (Figure S8).  
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Figure 1: Properties of 374,822 polymorphic STRs in 183 taurine Bos taurus taurus cattle 

genomes. (a) Proportion and count of STRs for each motif size. (b) Number of alternative 

alleles observed for each STR motif size. Numbers above the boxplots indicate the average 

number of alleles observed in the 183 cattle genomes for each motif size. (c) Heterozygosity 

in each STRs motif. (d) Proportion of loci overlapping four annotation categories for each STR 

motif size. Numbers inside the stacked bars represent the count of STRs for each annotation 

category. 

 

Structural variant discovery and genotyping 

We applied the smoove pipeline to discover and genotype 61,806 SVs in the 183 cattle 

genomes, of which we retained 19,408 polymorphic autosomal loci (12,899 deletions (DEL), 

1,043 duplications (DUP), 224 inversions (INV) and 5,242 SVs with unspecified breakends 

(BND)) after stringent filtering for downstream analyses (Figure 2a). The number of 

polymorphic SVs identified per chromosome was correlated (r=0.94) with chromosome length 

(Figure S10). We found between 4,259 and 6,835 SVs in each cattle genome (mean: 5,915), 

and this number was correlated with sequencing coverage (r=0.60) (Figure S9 and S10). A total 

of 6,728 (34.6%) SVs had minor allele frequency below 0.05 (Figure 2c). Inspecting the length 

of the different SV types suggested that most (n=891, 85.4%) DUP were smaller than 1 kb, 

whereas 3,465 (23%) DEL were larger than 1 kb (Figure S11).  

 

We annotated the SVs according to their location to assess putative functional consequences. 

This approach revealed that 12,400 (63.8%), 5,383 (27.7%), 823 (4.2%) and 802 (4.1%) SVs 

overlapped intergenic, intronic, promoter and exonic regions, respectively (Figure 2b). SVs 

partially or fully overlapped 3,863 genes. Among the SVs that overlapped exons, we identified 

52 DUP (25 copy gain DUP or whole gene DUP, 4 full exonic DUP and 23 partial exonic 

DUP), 19 INV (15 whole gene INV and 4 INV with one breakpoint in exon) and 317 putative 

loss of function DEL (162 whole gene DEL and 155 DEL affected at least one exon with one 

breakpoint). We also detected 414 BND in exons. Whole gene inversions (median size 867.9 

kb) were the type of exonic SV that was largest in size and lowest in number. The whole-gene 

inversions detected encompassed 182 coding genes and 32 non-coding genes. Approximately 

one third of the SVs (n=7,083, 36.4%) were only present in the heterozygous state, and most 

of these (n=4,989, 70.4%) had minor allele frequency less than 0.05 (Figure 2c). Among these, 

4,345, 2,017, 391 and 330 overlapped with intergenic, intronic, promoter, and exonic regions. 
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Figure 2: Properties of 19,420 polymorphic SVs in 183 taurine cattle genomes. (a) Count 

of polymorphic loci for each SV type. (b) Proportion of loci overlapping four annotation 

categories. The numbers inside the stacked bars represent the count of SVs for each annotation 

category. (c) Alternative allele frequency distribution for each SV type.  

 

Linkage disequilibrium and population structure of the cattle cohort 

 

We also discovered and genotyped SNPs and Indels in the 183 animals using the GATK 

haplotype caller. We considered 12,222,397 SNPs and 1,317,363 Indels with minor allele 

frequency greater than 5% for the downstream analyses, of which 55,010 SNPs and 89,673 

Indels overlapped with STRs, and 387,593 SNPs and 47,129 Indels overlapped with SVs. The 

large overlap between SNP, SV and STR is possibly due to nested variation but can also 

indicate that short sequencing reads are unable to resolve complex DNA variation. 

 

We calculated the principal components from genomic relationship matrices built with SNP, 

STR and SV genotypes of the 183 cattle. All three analyses correctly separated the individuals 
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by breed (Figure S12). Due to variation in sample size, coverage, and insert size between 

breeds, we did not investigate within- and across-breed diversity in SVs and STRs. Next, we 

investigated if SVs and STRs can be tagged by SNPs/Indels. We calculated the linkage 

disequilibrium (LD) between SNPs/Indels within 100 kb of each SV and STR. We observed 

that 40.1% of STRs (n=150,393) were in high LD (R2 > 0.8) with at least one SNP or Indel 

while this fraction ranged from 3.1% and 52.2 % for the different SV types (Figure S13a and 

Table S2). BND and DUP were poorly tagged, possibly indicating low genotyping accuracy 

for these loci. The LD between SNPs/Indels and STR was consistent across the different STR 

types (Figure S13b and Table S2). 

 

Properties of STRs and SVs associated with gene expression. 

The impact of polymorphic SVs, STRs, SNPs and Indels on gene expression was investigated 

in a subset of 75 sequenced bulls that also had testis RNA sequencing data. We performed cis-

eQTL mapping between 19,415 expressed genes and 12,093 SVs, 271,450 STRs and 

13,494,075 SNPs and Indels that had minor allele frequency greater than 5% in the 75 bulls. 

Five eQTL analyses were conducted, i.e., for SNPs & Indels, SVs, STRs, and jointly for SVs 

and STRs (SV-STR), and all (ALL) variants to assess the contribution of different types of 

DNA variation to gene expression.  

 

An eQTL mapping with 13,494,075 ALL variants revealed 6,627 eGenes associated with 7,398 

unique eVariants (25 SVs, 514 STRs, 964 Indels & 5,902 SNPs). Both SVs (OR=3.98 and 

p=1.4	 ×	10!") and STRs (OR=3.6, p=6.7 ×	10!#$%) were enriched among the eVariants 

indicating that these variant types contribute disproportionally to gene expression variation. 

The SV-STR eQTL mapping revealed 5,641 eGenes associated with 5,971 unique eVariants 

(Table 1). The subsequent separate variant type eQTL mapping revealed 6,550, 1,798 and 

5,669 eGenes with 7,303, 1,391, 5,995 unique eVariants, respectively, when only SNPs/Indels, 

SVs and STRs were considered (Table 1). A total of 1,514 eGenes overlapped between the five 

eQTL analyses (Figure S14). Most eGenes (3,379) were shared between the separate eQTL 

analyses but 1,420 eGenes were shared only between SNPs & Indels and ALL suggesting that 

many eGenes are only associated with SNPs and Indels. A larger proportion of eSV (24.1% of 

eSV) and eSTR (8.0% of eSTR) than eSNV/eIndel (2.9% of eSNP/Indel) were associated with 

the expression of multiple eGenes (Table 1).  
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Table 1: Overview of cis-eQTL detected in 75 testis transcriptomes. 

 

Type Total variants eGenes e-Variant (% 

total variants) 
eVariant   

(affecting > 1 

eGene)  

 

 

eQTL 

(eVariant-eGene 

pair) 

SNP & Indel 13,210,530 6,550 7,303 (0.05%) 153 7,665 

SV 12,093 1,798 1,391 (11.5%) 336 1909 

STR 271,450 5,669 5,995 (2.2%) 485 6,572 

SV-STR 283,545 5,641 5,971 (2.1%) 465 6,525 

ALL 13,494,075 6,627 7,398 (0.05%) 146 7,552 

 

The contribution of STRs and SVs to gene expression variation was quantified based on results 

from the SV-STR eQTL analysis (Table S3). The eVariants were more strongly enriched for 

SVs than STRs (312 eSV, OR=1.2, p = 3.3 × 10!&) but most eVariants were STRs (5,659 

eSTRs out of 5,971 eVariants). Among the different SV types, DEL were enriched (264 eDEL, 

OR=1.6, p=2.9 × 10–12) and BND were depleted (30 eBND, OR=0.4, p=3.3 × 10–7) among the 

eVariants compared to STRs (Figure 3a, Table S4). The proportion of eVariants associated 

with multiple eGenes was higher for eDUP (21.4%) than eSTRs (9.6%). Overall, eDUP 

affected on average 1.35 eGenes (eSV 1.12 eGenes) whereas eSTR and eSNP & eIndel affected 

1.11 and 1.01 eGenes, respectively. The maximum number of eGenes per eVariant was larger 

for STR (n=6) than any other variant type (Figure 3b).  

 

We examined the distance between eVariants and eGenes (5′-UTR or TSS) and found that most 

eSVs and eSTRs were located within 250 kb of eGenes (Figure 3c) but eBND (48.3%) and 

eINV (80%) were more distant (>250 kb) from their eGenes (Table S5). Overall, 19.9% 

eVariants (n=1,194) overlapped with their eGenes; 64 (0.9%), 166 (2.5%) and 964 (14.7%) 

overlapped with exons, promoters, and introns. Most eQTL were in introns (48.1%) or 

intergenic regions (39.4%). eDUP were enriched in exons of their eGenes (OR=105.1, 

p=4.0 × 10!&) while eDEL were enriched in the exons of other genes (OR=2.89, 

p=9.2 × 10!&). In contrast, eSTRs were depleted in the exons of their eGenes (OR=0.1, p= 

3.4 × 10!&) and other genes (OR=0.4, p=6.2 × 10!&) (Figure 3d and Table S6). These results 
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suggest that eDUP impact gene expression by increasing the copy of their eGenes which agrees 

with previous research [38]. The highest proportion of eSTRs overlapping with exons of their 

eGenes (17 eSTR) or other genes (24 eSTR) had a trinucleotide repeat motif (Figure 3f). Such 

STRs are likely to be more tolerated and less selected against than those compromising the 

triplet codon structure. Most trinucleotide eSTRs in exons had GC-rich repeat motifs (CGG, 

CTG, CCG, AGC).  

 

Exonic eDUP predominantly increased gene expression, while exonic eDEL mostly decreased 

gene expression. All other eVariant types exhibited a bimodal effect size distribution. We then 

explored the LD between eSTRs and eSVs and nearby SNP/Indel. More than three quarter 

(78.4%) of the eDEL and two thirds of the eSTR (65.9%) were in high LD (R2> 0.8) with 

surrounding SNP/Indel. In contrast, eDUP and eBND were poorly tagged by SNP/Indel.  

 

We found that 92.2% of the eGenes were protein-coding genes, 4.5% were lncRNA, 0.98% 

were pseudogenes, and 1.8% were other genes (Figure S15). We observed a similar distribution 

of eGenes across all eVariant types except for eINV. 
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Figure 3: Properties of eSVs and eSTRs from the SV-STR eQTL mapping. eSNPs and 

eIndels are added from the ALL eQTL mapping. (a) Percentage of unique eVariants for each 

variant type. The count of eVariants per type is shown next to each bar. (b) Number of eGenes 

affected by each type of eVariants. (c) Distribution of the absolute distance between eVariants 

and eGenes (5’UTR or TSS). (d) Proportion of eQTLs from different annotation categories in 

each type. (e) Proportion of eQTLs from different annotation categories in each STRs type (f) 

Total count of the most frequent STR motifs (>30 observations) among eSTR. (g) Distribution 

of effect size of eQTL per type based on exonic (overlap with an exon (exonic) of their eGene 

or other genes) or non-exonic category. (h) Distribution of maximum LD (R2) per variant for 

each eVariant type. 
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Figure 4: Candidate eSTR (a-c) and eSV (d-g) associated with eGene expression. The 

eSTR Bos_Tau_STR_126581 is a GT dinucleotide that repeats 11 times in the reference 

sequence, and between 8.5 and 13 times in the 75 genotyped bulls. eQTL mapping revealed 

association between Bos_Tau_STRs_126581 and TTC7B mRNA abundance. (a) Schematic 

overview of the exon/intron structure of bovine TTC7B gene and Bos_Tau_STRs_126581. The 

vertical blue line indicates the position of Bos_Tau_STRs_126581 and the vertical black lines 

indicate exons of TTC7B. (b) Normalized gene expression of TTC7B in 75 genotyped bulls in 

each mean dosage of eSTR. (c) Manhattan plot of –log10(P)-values for all variants surrounding 

Bos_Tau_STRs_126581 from the nominal ALL-eQTL analysis. Different colours indicate the 

pairwise linkage disequilibrium (R2) between Bos_Tau_STR_126581 and all other variants. 

(d) Schematic overview of ENSBTAG00000015551 (turquoise colour) and SLC13A41 (salmon 

colour) that are associated with a 885 bp deletion on chromosome 4 (eDEL 4_99481913_DEL). 

The boxes represent exons. The vertical blue lines indicate the position of 4_99481913_DEL. 

(e) & (f) Normalized mRNA expression of ENSBTAG00000015551 and SLC13A41 in 75 

genotyped bulls for each genotype of eDEL (g) Manhattan plot of –log10(P)-values for all 

variants surrounding 4_99481913_DEL from the nominal ALL-eQTL analysis as pink colour 

(two points as same eDEL corresponding to two genes). Different colours indicate the pairwise 

linkage disequilibrium (R2) between 4_99481913_DEL and all other variants. 
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We identified a candidate causal eSTR (GT11, Bos_Tau_STR_126581, Chr10:102,255,360–

102,255,381 bp) in the seventh intron of TTC7B encoding tetratricopeptide repeat domain 7B 

(Figure 4a). The abundance of TTC7B mRNA (mean TPM 4.9 ± 1.3) increased with an 

expansion of the GT repeat motif (p=3.4 × 10!#$). This STR was the top eVariant in both the 

ALL and SV-STR eQTL analyses (Figure 4b, c). A candidate causal eSV is a 885 bp deletion 

(Chr4:99,481,913–99,482,798 bp) encompassing ENSBTAG00000015551 and the distal end of 

SLC13A41 encoding solute carrier family 13-member 4 (Figure 4d). The deletion reduced 

mRNA expression of ENSBTAG00000015551 (mean TPM 7.2 ± 3.4, p=7.1	 × 10!#') and 

SLC13A4 (mean TPM 0.9 ± 0.4, p=1.6	 × 10!#%) (Figure e,f). This deletion was the top 

eVariant in the ALL and SV-STR eQTL analyses for both genes. 

 

Cis-sQTL mapping 

We calculated intron excision ratios of 241,427 introns assigned to 76,083 intron clusters. More 

than half (n=135,342, 56.0%) of the introns overlapped with 14,583 genes, but the annotation-

free splicing event identification by the LeafCutter software also detected many introns that 

did not overlap with annotated features. The intron excision ratios were normalized for each 

intron and subsequently used as input phenotypes for cis-sQTL mapping. We mapped cis-sQTL 

with an approach that was similar to the eQTL mapping, i.e., we separately considered SNPs 

& Indels, SVs, STRs, SV-STR, and ALL. 

 

The ALL sQTL mapping revealed association between 12,835 unique lead variants (sVariant) 

and 11,588 (15.2%) intron clusters (sIntron cluster). The 12,835 sVariants included 25 SVs, 

712 STRs, 1,593 Indels & 10,505 SNPs, and 286 of the sVariants were associated with more 

than one intron cluster. More than half of the sIntron clusters (n=6,798, 58.6%) overlapped 

with 4,890 sGenes whereas the remaining did not overlap with annotated features. Both SVs 

(OR=2.3, p=2.3 × 10!&) and STRs (OR=2.9, p=6.4	 ×	10!#$() were enriched among the 

sVariants when compared to SNPs and Indels. The SV-STR analysis revealed 9,065 sIntron 

clusters associated with 8,857 unique sVariants (Table 2). Variant type-specific sQTL analyses 

revealed 8,749, 1,707 and 12,683 sVariants, respectively, when only STR, SV and SNP & Indel 

were considered (Table 2).  

 

We then assessed the overlap of sGenes/sIntron clusters between all sQTL analyses. 

Approximately half of the sIntron-clusters (n=6,034, 47.9%) and sGenes (n=2,590, 49.1%) 
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overlapped between the SNPs & Indels, STRs, SV-STR and ALL sQTL analyses suggesting 

that distinct variant types in LD tag the same splicing event (Figure S15 & S16). A total of 

3,126 (24.8%) sIntron clusters and 1,126 (21.3%) sGenes were shared only between SNPs & 

Indels and ALL suggesting that a substantial fraction of sGenes is only associated with SNPs 

and Indels.   

 

Table 2: Overview of cis-sQTL detected in 75 testis transcriptomes. 

Type of variants 

in sQTL 

analysis 
Total 

variants 
sIntron 

clusters 

 

 Not 

annotated 

sIntron 

cluster  

 

 

  sGenes 
sVariants 

 

 

sQTL 

(sVariant-

sIntron cluster 

pair) 

SNP & Indel 13,210,530 11,452 4,748 4,831 12,683 13,003 

SV 12,093 2,463 1,051 1,182 1,707 2,552 

STR 271,450 8,999 3,708 3,990 8,749 10,008 

SV-STR 283,545 9,065 3,755 4,001 8,857 10,083 

ALL 13,494,075 11,588 4,790 4,890 12,835 13,136 

 

Variant properties of sSTR and sSV  

 

The impact of STRs and SVs on alternative splicing was assessed based on the results from the 

SV-STR sQTL analysis (Table S7). We observed that DEL were more likely to be sVariants 

than STRs (4.9% of DEL, OR=1.6, p=1.7	 ×	10!#') (Figure 5a and Table S8). Conversely, 

BND (OR=0.4, p=1.3 ×	10!)) were less likely to be sVariants compared to STRs (Table S8). 

We further examined how many intron clusters are affected by an sVariant. A similar 

proportion of sDEL (12.2%) and sSTR (11.2%) were associated with multiple sIntron clusters 

whereas this fraction was considerably lower or negligible for all other types of sVariants 

(Figure 5b, Table S3). Between 62% and 81% of the sVariants were located within 100 kb of 

their sIntron cluster (Figure 5c and Table S9).  

 

Most of the sQTL overlapped with either introns (49.7%) or intergenic regions (41.0%), but 

only few with promoter (6.9%) and exons (2.3%). Interestingly, sDEL were enriched in exons 
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and depleted in introns of other genes, whereas sDUP showed enrichment in exons of sGenes 

(Table S9). On the other hand, sSTRs were depleted in exons of other genes but they were 

enriched in introns of other genes (Table S10). We observed a high proportion of trinucleotide 

sSTRs among those that overlapped exons. These trinucleotide sSTRs were GC-rich (Figure 

5f). Most sQTL showed bimodal effects. A bimodal effect size distribution in splicing variation 

encompassing both positive and negative effects is associated with variation in the relative 

abundance of transcripts between different genotypes [39]. sDUP had slightly positive effects 

on splicing phenotypes which may indicate a relatively higher abundance of the transcript 

associated with the duplication (Figure 5g). The vast majority of  sDEL (94.0%) and sSTR 

(84.3%) were in high LD (R2> 0.8) with surrounding (±50 Kb) SNP/Indel, but sDUP (31.5%) 

and sBND (39.5%) were less frequently tagged (Figure 5h).  

 

Finally, we compared genes and molecular QTL (eQTL and sQTL as gene-variant pair) from 

both the eQTL and sQTL SV-STR analyses. This comparison revealed that 1,988 genes and 

505 QTL overlapped between both analyses. Out of the 505 shared QTLs, 479 were due to 

STR, while 23 were due to DEL (Figure S18 and S19). The eQTL that were also sQTL mainly 

regulated expression due to alterations in gene transcript level abundance, and these changes 

were mainly modulated by STR and DEL.  
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Figure 5: Properties of sVariants (SVs and STRs) from the SV-STR sQTL analysis. SNPs 

& Indels are from ALL analyses in all panels (a) Percentage of unique sVariants for each 

variant type. The number of sVariants per category is shown next to the bars. (b) Total number 

of sIntron clusters per sVariant for each variant type. (c) Distance between sQTL and the start 

position of the associated sIntron cluster for each variant type. (d) Fraction of sQTL from 

different annotation categories in each variant type. (e) Fraction of sQTL per different 

annotation categories in each STR motif size. (f) Prevalence of the most frequent (>50) STR 

motif among sSTR. (g) Distribution of sQTL effects. Colours differentiate between exonic and 

non-exonic sQTL. The black dots represent the overall mean. (h) Distribution of maximum LD 

(R2) between sQTL and SNP/Indel for different variant types. 
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Figure 6: Two candidate causal sSTR (a-d) and sSV (f-h). The sSTR Bos_Tau_STR_57388 

on chromosome 1 is associated with ENSBTAG00000054182 splicing. (a) Schematic overview 

of ENSBTAG00000054182. Bos_Tau_STR_57388 (blue line) is upstream of lncRNA 

ENSBTAG00000054182 and it is associated with the splicing junction spanning from 

Chr1:112,307,410 to 112,322,799. Intron/splice junction boundaries are indicated with green 

dotted lines. (b) Normalized ENSBTAG00000054182 expression, (c) intron excision ratio for 

different sSTR genotypes and (d) Manhattan plot of nominal ALL-sQTL result surrounding 

the sSTR. Different colours indicate the pairwise linkage disequilibrium (R2) between 

Bos_Tau_STR_57388 and all other variants. A Candidate sSV (8_17328959_DEL) on 

chromosome 8 is associated with alternative CAAP1 splicing. (e) Schematic overview of 

CAAP1 gene. A promoter deletion “8_17328959_DEL” (blue line) is associated with excision 

ratios of splicing junction Chr8:17,329,855–17,336,097. Intron boundaries are indicated with 

green dotted lines. (f) Normalized CAAP1 expression and (g) intron excision ratio for the 

different sSV genotypes. (h) Manhattan plot of nominal ALL-sQTL result surrounding sDEL. 

Different colours indicate the pairwise linkage disequilibrium (R2) between sDEL and all other 

variants.  

 

Among the sQTL, we identified a candidate causal sSTR (AACTG5, Bos_Tau_STR_57388, 

Chr1:112307866–112307890 bp) upstream of the long non-coding RNA (lncRNA) 

ENSBTAG00000054182 (Figure 6a). An expansion of Bos_Tau_STR_57388 (the inserted 

motif AAATG differed slightly from the reference motif AACTG) was associated with a 
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splicing junction (Chr1:112,307,410–112,322,799, p=4.5 × 10!$%) in both SV-STR and All 

sQTL analyses. This splicing junction extends from upstream the lncRNA to the first intron of 

the lncRNA (Figure 6a) and its intron excision ratio increased with an expansion of the repeat 

motif (Figure 6c, d). The expression of ENSBTAG00000054182 (mean TPM 5.1	 ± 1.5) 

decreased with the insertion of an additional repeat unit (Figure 6b). Bos_Tau_STR_57388 was 

also the top eVariant for ENSBTAG00000054182 in the SV-STR eQTL analysis 

(p=2.3 × 10!#%) but not in ALL eQTL analysis where a SNP (Chr1:112,315,134 bp) in LD 

(R2=0.93) was the top eVariant. 

 

A candidate sSV is a 729 bp deletion on chromosome 8 (Chr8:17,328,959–17,329,688), which 

resides in the promoter region of CAAP1 encoding caspase activity and apoptosis inhibitor 1 

(Figure 6e). The deletion was associated (p=2.8 × 10!##) with reduced excision ratios of a 

splicing junction (Chr8:17,329,855–17,336,097) overlapping CAAP1 (Figure S18) (Figure 6f, 

h). and expression of CAAP1 (mean TPM 26.4	 ± 2.8) (Figure 6b). This sDEL was also the 

top eVariant for CAAP1 in the ALL eQTL and SV-STR eQTL (p=5.1 × 10!#$).  

 

Discussion 

 

We generated a catalogue of bovine polymorphic STR which contain motifs that vary in size, 

but some may also contain variation between the repeat motifs. A large number of cattle from 

different breeds enabled us to genotype sixfold more STRs compared to a previous study 

(374,821 vs. 60,661) that considered only 5 Holstein cattle genomes [30]. Three quarter of the 

STRs genotyped in our study were multiallelic, which agrees with previous studies in cattle, 

pigs and humans [25, 30, 40]. We also genotyped almost 20k SVs. The majority of both SVs 

and STRs were in introns and intergenic regions likely because coding regions are less tolerant 

to variants affecting several bases. We also detected SVs and STRs that overlapped exonic 

regions but half of the exonic SVs were only present in the heterozygous state which may 

indicate that some of them manifest deleterious phenotypes in the homozygous state. However, 

even deleterious SVs can persist and increase in frequency over time due to drift or pleiotropic 

effects and balancing selection, such as a 660 kb deletion in Nordic red cattle [50]. Deleterious 

SVs in less conserved genes may be evolutionarily less constrained [28]. We also observed a 

high proportion of tri- and hexanucleotide STR in exonic regions possibly suggesting that non-

triplet STR are less tolerated and might be under negative selection [25].  
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We observed more than twice the number of deletions compared to other SV types likely 

because they are easier to identify from short-read sequencing data [41]. Only half of the STRs 

and DELs are in high linkage disequilibrium with SNPs and Indels (R2 > 0.8). The LD between 

SNPs and other types of SVs such as BND, DUP and INV is even lower which could be 

possibly due to incorrect genotyping, alignment error, or their occurrence in complex regions 

such as segmental duplications. Thus, the direct genotyping of these variants is required to 

enable powerful association studies. Our results confirm that sequencing coverage and insert 

size have profound impacts on the genotyping of SVs and STRs [38][39]. We applied stringent 

filters to retain only high-confidence SVs. This approach likely removed some true large and 

complex SVs and STRs from our data. Long sequencing reads and pangenome integration 

enable to reliably detect large and complex SVs and STRs [42, 43]. However, long read 

sequencing is still too costly when applied at the population scale. Future studies could utilize 

a combination of long read sequencing and pangenome integration with short read sequencing 

data to identify and genotype the full spectrum of genetic variants at the population scale [45, 

46]. 

 

Our eQTL and sQTL analyses showed that SVs and STRs have profound impacts on gene 

splicing and expression variation. We found that each eSV affects on average 1.11 nearby 

genes with most of this contribution arising from DUP. However, this value is lower than the 

1.82 genes in cis per eSV reported recently in humans, where major contributions were from 

multi-allelic copy number variants (mCNV) and DUP [31]. In our study, CNV are part of the 

DUP category. This difference likely indicates that our study had less power to detect s/eQTL 

because our variant catalogue (61,668 SVs in human vs. 19,408 SVs here) and sample size 

(643 individuals with 48 tissues vs. 75 individuals with one tissue) were considerably smaller. 

Our results confirm that e/sDUP in exonic and non exonic regions mostly increase gene 

expression whereas e/sDEL￼￼. An increased expression associated with an e/sDUP is 

frequently due to either duplication of the entire gene or exon or its regulatory regions. For 

instance, a 12 kb multi-allelic CNV in an enhancer region of the GC gene is associated with an 

increased GC expression ￼￼. This putative eSV is also polymorphic in our SV cohort but 

was not an e/sQTL, likely because GC is barely expressed (7 ±￼0.2 TPM) in testis tissue.  

 

Our analysis showed that most e/sSTRs and e/sSVs were in intronic regions rather than 

intergenic regions, which contrasts with their overall distribution along the genome. This 
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pattern agrees with the position of human e/sSTRs and e/sSVs [44, 46, 47]. Our study thus 

confirms the importance of non-coding SVs and STRs in regulating gene expression and 

splicing [48]. Intronic and intergenic regions can contain regulatory elements that modulate 

splicing and gene expression via change in nucleosome positioning, open chromatin structure 

RNA-binding protein, DNA methylation [12, 32, 46]. Nearly half of the intron clusters detected 

in our study could not be annotated with the current cattle annotation (Ensembl 104). The 

FANTOM5 consortium revealed significant overlap of transcription start sites (TSS) to STR 

loci which are unassigned to any known genic or enhancer regions in humans [49]. Most of 

these TSS overlapping with STRs, are responsible for initiating noncoding RNAs in humans. 

Similarly, a candidate causal sSTR detected in our study was associated with the splicing of 

the lncRNA ENSBTAG00000054182, which produces a transcript that is not included in the 

current Ensembl annotation. This further emphasises the need for an improved bovine 

annotation, particularly with respect to non-coding elements of the genome such as lncRNAs. 

Although the association of expression and splicing variation with STRs and SVs in e/sQTL 

studies do not necessarily provide the underpinning molecular mechanism of action, these 

variants contribute significantly to complex trait variation [50].  

 

Material and Methods 

 

Alignment and variant calling (SNPs & Indels) 

We used paired-end (2 x 150 bp) whole-genome sequencing data of 183 individual cattle (mean 

coverage 12x) from the Brown Swiss, Original Braunvieh, Grauvieh, Holstein and  Fleckvieh 

breeds, and their crosses. Reference-guided alignment and variant discovery were performed 

as described in Lloret-Villas et al. [51]. In brief, we aligned reads that passed quality control to 

the ARS-UCD1.2 reference genome using the MEM-algorithm of the Burrows-Wheeler 

Alignment (BWA) software [52] with option -M. Read duplicates were marked with the 

MarkDuplicates module from the Picard Tools software suite [37]. Subsequent discovery and 

genotyping of SNPs and Indels was performed with GATK HaplotypeCaller (version 4.1) [53]. 

We filtered the variants with hard filtration settings recommended by GATK to retain high-

quality SNPs and Indels. Finally, we imputed sporadically missing genotypes with Beagle 

(version 4.1) [54] and retained variants with minor allele frequency > 0.05 for downstream 

analysis.  

 

Building reference STRs 
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A previously proposed HipSTR [37] workflow (https://github.com/HipSTR-Tool/HipSTR-

references/tree/master/mouse) was applied to compile a set of reference STRs from the soft-

masked ARS-UCD1.2 reference genome (available from Ensembl (v. 104)). Briefly, we ran 

the Tandem Repeat Finder (TRF) software for each chromosome with settings 

2,7,7,80,10,5,500 -h -d -l 6 -ngs [55]. We retained repeats with a motif size between 1 and 6 

bp, merged overlapping repeats, and finally kept sites with high scores according to motif size 

as implemented in the trf_parser.py utility. STRs that are not within 10 bp from another STR 

were retained. 

 

STRs genotyping 

The STRs were genotyped in the cohort of 183 cattle using the default mode of the HipSTR 

software tool [37]. The resulting VCF file was filtered using the filter_vcf.py script from 

HipSTR, with options --min-call-qual 0.8, --max-call-flank-indel 0.20 and --min-loc-depth 5x. 

We kept only STRs with genotyping rate higher than 60% and at least 1 bp difference. 

 

SVs calling 

We applied the smoove workflow (https://github.com/brentp/smoove) to discover and 

genotype SVs from short sequencing reads [56]. This approach extracts split and discordant 

reads from each bam file using samblaster [57]. These reads are then further filtered using 

lumpy [58] based on several quality metrics. The filtered reads were subsequently used to 

genotype SVs in each sample separately. The sample-specific SV calls were merged to obtain 

a set of SVs that segregate in the cohort. Each sample was then re-genotyped for the common 

set of SVs using SVTyper [59], and Duphold [60] was run to add depth fold-change. A single 

joint VCF file was eventually generated that contained deletions (DEL), duplications (DUP), 

inversions (INV) and breakends (BND). We retained only SVs that were longer than 50 bp, for 

which the breakpoints were precisely known, and that were supported by at least 1 split read. 

We kept DUP based on average DHFFC scores as het > 1.25 and homo alt > 1.3 and DEL with 

DHFFC het < 0.70 and DHFFC homo < 0.50. INV were kept if their quality score was above 

100. If multiple SVs were reported for the same location, we kept the variant with the highest 

quality score. 

 

Annotation of variants  

Both STRs and SVs were annotated according to the Ensembl annotation (v. 104) of the bovine 

genome in a hierarchical manner using BEDTOOLS intersect [61] (exon > intron > promoter 
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> intergenic). We assessed if exonic SVs overlap the whole gene or if they overlap only 

partially as proposed by Collins et al. [22]. SNPs and Indels were annotated with the Variant 

Effect Predictor (VEP) tool [62] based on the Ensembl annotation of the bovine genome 

(version 104). The most severe consequence for each variant was then assigned to exon, intron, 

promoter and intergenic regions as above. 

 

Population structure and linkage disequilibrium (LD) 

We used Plink1.9 [63] to calculate the principal components of genomic relationship matrices 

constructed from SNPs/Indels, SVs or STRs. We used Bcftools [64] to extract all SNPs and 

Indels within 50 kb of SVs or STRs. For each SV and STR, we calculated LD as the squared 

Pearson correlation coefficient (R2) with the dosage of each surrounding SNP or Indel (maf > 

0.05) where dosage is 0 for the 0/0, 1 for the 0/1 and 2 for the 1/1 genotype [46]. 

 

Preprocessing RNA seq data and alignment 

Total RNA of testis tissue from 76 mature bulls that are a subset of the 183 bulls used to profile 

STRs and SVs were available from a previous study [65]. The stranded paired-end reads were 

trimmed for adapter sequences, low quality bases, and poly-A and poly-G tails with fastp [66]. 

The filtered reads were aligned to the ARS-UCD1.2 reference genome and the Ensembl gene 

annotation (v.104) using STAR (version 2.7.9a) with options -- twopassMode, --

waspOutputMode, and --varVCFfile [67].  

 

Gene expression quantification  

Gene level expression (in transcript per million (TPM)) was quantified with the QTLtools quan 

function with default settings [68]. Raw read counts were obtained with FeatureCounts [69]. 

We retained genes that had expression values >0.2 TPM in at least 20% of samples and > 6 

reads in at least 20% of samples. A PCA was conducted using log2(TPM +1) transformed 

expression values. One sample was excluded as it appeared as an outlier in the PCA. Finally, 

TPM values were quantile normalized and inverse normal transformed across samples per gene 

using the R package RNOmni [70]. 

 

Splicing quantification 

We used RegTools [71] and LeafCutter [72] to quantify intron excision ratios. First, we filtered 

the STAR-aligned bam files for uniquely aligned and wasp-filtered reads (tag vW:i:1)[73]. 

Next, exon-exon junctions were obtained using RegTools with option -a 8 -m 50 -M 500000 -
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s 1. Finally, introns were clustered with a modified version of the leafcutter_cluster.py script 

provided by the Human GTEx consortium [74]. The script additionally filters introns without 

any read counts in >50% of samples and insufficient variability. Finally, the filtered intron 

counts were normalized using the prepare_phenotype_table.py script from LeafCutter and 

converted to BED format with the start/end position corresponding to the first position of 5’ of 

intron cluster. 

 

Covariates for e/sQTL analysis 

To account for hidden confounders that might cause variance of gene expression or splicing, 

we applied the Probabilistic Estimation of Expression Residuals (PEER) [75]. The top three 

principal components of a genomic relationship matrix that was calculated based on LD pruned 

(--indep-pairwise 50 10 0.1) SNPs using Plink1.9 [63] was used to account for population 

structure. The influence of covariates on gene expression and splicing was quantified with the 

variancePartition R package [76].  

 

e/sQTL mapping 

We used the difference in length between reference and alternate (computed from the sum of 

the GB format tag in the output VCF file from HipSTR) alleles as dosage for the STRs for 

eQTL mapping [46, 47]. To minimize the effect of outlier STRs, we converted the genotypes 

to missing if they were not observed in at least two samples. We kept sites with >80% 

genotyping rate. To prevent the removal of multiallelic sites by QTLtools, we replaced the 

alternate allele field of the VCF file with the string "STR". Furthermore, the GT field 

(genotype) was substituted with dosage values. Genotypes of SVs, SNPs and Indels, were also 

converted to dosages (0/0 to 0, 0/1 to 1 and 1/1 to 2). Genotypes at each variant position were 

normalized so that the effect size can be compared across the different variant types. All these 

changes were implemented using custom Python scripts. We performed cis-eQTL mapping 

between expressed genes and all variants in cis (± 1 Mb) with QTLtools using the cis 

permutation mode (1000 permutations) and accounting for covariates (5 PEER factors, 3 PC, 

RIN and age). To account for multiple testing per molecular phenotype (Genes), we used the 

Storey & Tibshirani False Discovery Rate procedure that was implemented with the R/qvalue 

package on beta approximated p-values (eGene) as described by Delaneau et al. [77]. This 

approach resulted in genes (eGenes) that had at least one significant eVariant and threshold p 

values for all genes. Finally, we performed conditional analyses using QTLtools with threshold 
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p values to identify all significant independent eVariants per eGene which were used for all 

subsequent comparison. 

 

Cis-sQTL mapping was performed as described above with QTLtools using the cis permutation 

mode and accounting for covariates (5 PEER factors, 3 PC, RIN and age). We employed 

grouped permutations (--grp_best option) to collectively calculate an empirical p-value across 

all introns within an intron cluster. Normalized intron excision ratios (the ratio of the reads 

defining an excised intron to the total number of reads of an intron cluster) were used as 

molecular phenotypes. We considered sQTL to be an sVariant per sIntron cluster pair. 

Significant intron clusters were annotated (candidate intron boundaries per cluster) based on 

the ARS-UCD1.2 gene annotation and strand match (Ensembl release 104). Intron cluster 

coordinates that mapped to multiple genes were considered as unannotated although the 

number of such intron clusters was less than 100 in each sQTL analyses.  

 

Properties of e/s Variants 

From each sQTL/eQTL analyses, we annotated each e/sVariant type with their respective 

annotation category as described above. For all enrichment analyses, we used Fisher’s Exact 

Test (two sided). All plots were created in R (v 3.6.3) with ggplot2 and combined with 

patchwork (https://github.com/thomasp85/patchwork/).  
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