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Abstract

The assessment of variant effect predictor (VEP) performance is fraught with biases introduced by
benchmarking against clinical observations. In this study, building on our previous work, we use
independently generated measurements of protein function from deep mutational scanning (DMS)
experiments for 26 human proteins to benchmark 55 different VEPs, while introducing minimal data
circularity. Many top-performing VEPs are unsupervised methods including EVE, DeepSequence and
ESM-1v, a protein language model that ranked first overall. However, the strong performance of
recent supervised VEPs, in particular VARITY, shows that developers are taking data circularity and
bias issues seriously. We also assess the performance of DMS and unsupervised VEPs for
discriminating between known pathogenic and putatively benign missense variants. Our findings are
mixed, demonstrating that some DMS datasets perform exceptionally at variant classification, while
others are poor. Notably, we observe a striking correlation between VEP agreement with DMS data
and performance in identifying clinically relevant variants, strongly supporting the validity of our
rankings and the utility of DMS for independent benchmarking.

Keywords: Benchmark/Circularity/DMS/MAVE/VEP

Introduction

Accurately classifying variants of uncertain clinical significance remains an ongoing challenge for
variant interpretation. Single nucleotide variants are the most common type of genetic variation in
humans, most of which have no role in disease (Auton et al, 2015). Pathogenic variants are enriched
among the rarest occurring variants in the human population (Wang et al, 2021), which makes
gathering sufficient evidence to classify them a challenging prospect, while identification of rare
benign variants is arguably an even greater challenge (Niroula & Vihinen, 2019). Over the past two
decades the field of computational variant effect prediction has sought to provide additional
evidence for the classification of variants of uncertain significance often identified in genetic
sequencing data (Livesey & Marsh, 2022). Variant effect predictors (VEPs) are algorithms that use
evidence from various sources, including evolutionary conservation, functional annotations, and
physicochemical differences, to predict the likely phenotypic outcome of a genetic variant. The
output of VEPs must be benchmarked against a “gold standard” to ensure that the predictor is
generating accurate results (Sarkar et al, 2020). Such benchmarking studies are frequently
conducted both by VEP authors and independent groups, traditionally by comparing VEP
classifications to sets of known pathogenic and benign variants (Gunning et al, 2021). This approach
raised some concern over the potential for data circularity (the re-use of data) to inflate VEP
performance estimates (Grimm et al, 2015). Type 1 circularity involves recycling data originally used
to train a predictor while assessing its performance, leading to improved performance compared to
more appropriate benchmarking data. Type 2 circularity occurs when a VEP identifies a gene where
mutations are highly skewed towards either a pathogenic or a benign outcome. In these cases,
future predictions on mutations in this gene may be influenced by a VEPs previous experience, often
resulting in apparent good performance in other mutations in these proteins, but much poorer
performance on novel proteins or genes with mixed clinical outcomes associated with mutations.

We previously attempted to address the issue of data circularity by using data from deep mutational
scanning (DMS) studies as the “gold standard” to perform a benchmark of VEP performance against
single amino acid variants (Livesey & Marsh, 2020). DMS encompasses a wide variety of high-
throughput experimental techniques, whereby functional scores for large numbers of amino acid
variants are measured (Fowler & Fields, 2014). Because most DMS-derived functional scores are for
variants never observed in the human population, using them to assess VEP performance can



address the issues of limited benchmarking data availability that sometimes lead to type 1
circularity. Even DMS-derived variants that exist in VEP training data have functional scores fully
independent from previous clinical labels. Our study also used the correlation between the
continuous outcome of each VEP and the DMS functional scores as the basis for our benchmark. This
approach helps to address type 2 circularity as a VEP cannot score highly by assigning all variants in a
protein as a single class but must determine the relative functional impact of each variant.
Previously, we identified a method based on unsupervised machine learning, DeepSequence
(Riesselman et al, 2018), to be the top-performing VEP for human proteins. We also demonstrated
the ability of DMS to outperform VEPs at direct classification of clinically relevant variants.

Significant progress has been made in both VEP development and DMS methodologies since our
previous study with multiple predictors based on cutting edge machine learning techniques and
many new DMS studies being published (Wu et al, 2021; Meier et al, 2021). In this paper, we have
updated our previous benchmarking strategy with the addition of more recently published VEPs, and
many additional human DMS datasets. While benchmarking VEPs against DMS datasets greatly
mitigates the issue of data circularity, the relevance of such datasets to human pathogenic
conditions may be more circumspect. For example, in the case of the dominant-negative effect, one
would expect mutations with a mild effect on individual protein function to cause a more severe
phenotype than highly destabilising mutations. Other factors such as limitations of the experimental
system and relevance of the functional assay to disease mechanisms can also affect the usefulness of
such datasets. To complement our analysis and help assess the usefulness of DMS for benchmarking,
we have also assessed the performance of DMS datasets and unsupervised VEPs against known
pathogenic and putatively benign missense variants. The remarkable correlation between VEP
ranking using our two independent benchmarks provides strong support for our rankings, and
demonstrates the utility of using DMS data for the task of VEP assessment.

Results
Overview of VEPs and DMS datasets used in this study

Compared to our previous benchmark, we increased the number of DMS datasets of human single
amino acid variants from 13 to 26. We considered exclusively human proteins, as only a subset of
the VEPs we include in this analysis can generate predictions for non-human proteins. We identified
new and previously unused DMS datasets through searching MaveDB (Esposito et al, 2019) and
identifying recently published works in the literature. Table 1 summarises each of the new DMS
studies that were added to the analysis, with the full set of DMS experiments given in Table EV1.

Many DMS datasets provide multiple scores covering different experimental conditions and
sometimes entirely different fitness assays of the same protein; mappings between the original
names of these assays in their respective papers and MaveDB and identifiers used in this study are
provided in Table EV2. We calculated the absolute Spearman’s correlations between these score sets
in the same protein to gauge the reproducibility of DMS results under different conditions. The
strongest correlations (>0.9) were between experiments in extremely similar conditions, while
assays investigating fitness under highly varying experimental conditions or using alternate fitness
metrics often resulted in much lower correlations (<0.3). Most correlations observed between
alternative assays were in a range between 0.4 and 0.6 (median 0.54) (Table EV3), which is similar to
the level of correlation between DMS and the top VEPs in our previous study. To represent each
protein in our analysis, we selected a single assay from each DMS study. For proteins with multiple
DMS datasets available, the assay that gave the highest median absolute Spearman’s correlation
against all VEPs was selected to be representative of fitness effects in each DMS target protein



(Table EV1). The use of the median ensures that our assay selection is not skewed by a few
particularly high or low-correlating VEPs.

We also added 12 new predictors to this study, bringing the total number of VEPs, conservation
scores and substitution matrices benchmarked from 46 to 55 (accounting for a handful removed due
to inaccessibility or suitability). Several of the new VEPs included in this analysis were added to the
dbNSFP database in the 4.2 update (Liu et al, 2020), while others were identified by literature
search. A summary of the new VEPs assessed in our benchmark along with their sources is provided
in Table 2, while the full list of VEPs is available in Table EV4. We did not include any methods
focused on predicting effects of variants on protein stability, but several of these have been assessed
in a recent study (Gerasimavicius et al, 2023).

Previously, we defined four different categories to classify VEPs based on their architecture and
training: supervised, unsupervised, empirical and metapredictors. These categories overlapped with
each other to some extent as several VEPs could fall into multiple categories. To better reflect which
predictors are related by methodology, we have now given all VEPs a label that is either
“supervised” or “unsupervised” (Table 2, Table EV4), which reflects whether labelled examples were
used to train the predictor and thus whether data circularity is a concern for its assessment. Despite
this simplification of VEP classification, Eigen could still qualify for both categories. Eigen uses an
unsupervised spectral method to combine multiple other VEP scores and deleteriousness metrics.
However, one of the VEPs it includes as a feature is PolyPhen-2, a supervised VEP that has been
trained on labelled variants. Thus, Eigen has the potential for data circularity, and we have therefore
labelled it as supervised in this analysis.

Benchmarking of VEPs using DMS data

We calculated the Spearman’s correlation between each of the selected representative DMS
datasets for every protein, and all available variant effect predictions using the continuous outcome
scores produced by each VEP. Our results show that many of the recently developed VEPs produce
higher correlations than those already present in our previous analysis (Fig 1). The correlations also
varied considerably between each DMS dataset (Fig EV1). Of particular note are the unsupervised
methods EVE and ESM-1v as well as the supervised predictor VARITY. EVmutation is a slightly older
unsupervised VEP that was not included in our previous study, but also produced high correlations
with the DMS data.

Low correlations with all VEPs were observed for several DMS datasets in our previous study,
notably TPK1 and CALM1. The expansion of this analysis with further DMS datasets has highlighted
additional cases where all VEPs fall below 0.4 Spearman’s correlation with the DMS data: CXCR4,
GDI1 and LDLRAPL. Interestingly, all but one of the DMS datasets were carried out in yeast systems
(complementation assays in CALM1, TPK1, GDI1 and a two-hybrid assay for LDLRAP1); the exception
was CXCR4, which was assessed in human cells by expression level. On the other hand, some yeast
assays did show high correlations, so it is likely that there are strong protein-specific factors
influencing this trend. Some of the highest correlations between VEP output and DMS results
observed in this study involved DMS assays that were tailored specifically to the function of the
protein being assessed (‘Protein-specific assays’ in Figure 1). Other common DMS approaches such
as measuring protein expression levels by VAMP-seq (Matreyek et al, 2018), cell-surface expression,
or measuring specific protein interaction affinities tended to be less correlated with VEP predictions
or produced mixed results. This is likely due to a disconnect between the specific fitness definition of
the assay and the more general fitness effects predicted by VEPs. VAMP-seq, for example only



identifies variants that negatively affect protein stability as low fitness, while the protein itself may
be non-functional but stable.

We improved upon our previous VEP rank score calculations by performing a comparison between
all pairs of VEPs using the Spearman’s correlation between each VEP and DMS data across only
variants for which both VEPs produced predictions. This resolves the issue of VEPs being compared
across variants that are not necessarily shared between them. For example, some VEPs output
predictions for every possible amino acid substitution, while others output predictions only for
missense variants possible via a single-nucleotide change. Moreover, some VEPs do not output
predictions across the entire length of the protein. According to our methodology, VEPs receive a
point for ‘winning’ each pairwise comparison, and the total score is then divided by the number of
comparisons the VEP participated in. We averaged this metric for each VEP across all DMS datasets
to produce a final rank score that can be interpreted as the average proportion of other VEPs that
each VEP performs better than across all DMS datasets (Fig 2). The per-protein results are available
in Table EVS5.

To determine the significance of these rankings we implemented a bootstrapping approach whereby
all pairs of VEP scores were re-sampled with replacement and the rankings re-calculated 1000 times
(Dataset EV1). Using both the new (Fig 2) and old (Table EV6) ranking methods, the top ranked VEP
was ESM-1v, a new unsupervised protein language model that produces functional predictions by
zero-shot inference (Meier et al, 2021), although its ranking did not differ significantly from EVE
(p=0.130). Like many other unsupervised predictors, ESM-1v is trained using large numbers of
proteins sequences, but unlike other methods, ESM-1v is not trained using an alignment specifically
related to the protein of interest. It is instead pre-trained on a large database of 98 million protein
sequences. Zero-shot prediction is the application of a model to an entirely new task without any
task-specific training (Lampert et al, 2009). While ESM-1v can be fine-tuned by providing a multiple
sequence alignment (MSA), here the pre-constructed model is used to directly infer fitness effects
for any protein with no additional training for the target proteins or fine tuning. In addition to
performing top in our analysis, ESM-1v is considerably faster and easier to run than other top
unsupervised methods (EVE, DeepSequence and EVmutation), as generating an MSA or training a
new model for every protein is not required.

VARITY was the top-ranking supervised VEP in our analysis, being significantly outperformed only by
ESM-1v (p=0.006). VARITY is based on a gradient boosted trees model and has an innovative
approach to weighting training data by predicted quality (Wu et al, 2021). The model gives two
scores, VARITY_R which includes only rare pathogenic variants (minor allele frequency < 0.5%) in the
core training set and VARITY_ER which includes only extremely rare pathogenic variants (minor allele
frequency < 1x10). It must be noted that, like Envision (Gray et al, 2018), VARITY uses some DMS
datasets during its training, specifically ten of the same datasets we have used to assess predictors in
this analysis (UBE2I, SUMO1, CALM1, TPK1, GDI1, MTHFR, CBS, BRCA1, PTEN and TPMT); therefore,
data circularity may be inflating the performance estimates of VARITY. Importantly, however, after
exclusion of these DMS datasets from the benchmarking analysis, VARITY_R and VARITY_ER retain
4th and 5th ranked places respectively, and the rank scores even improve marginally (Dataset EV2).
VARITY_R was also not significantly lower ranked than DeepSequence (p=0.201) or ESM-1v (p=0.122)
using this subset of DMS datasets, but EVE was significantly higher ranked than all other VEPs. Thus,
the strong performance of VARITY does not appear to be due to data circularity, although the
possibility also exists that VARITY has learned to predict some features of DMS data in general.

The other top performers, EVE (Frazer et al, 2021) and DeepSequence, were both developed by the
same group, and each makes use of an unsupervised variational autoencoder to learn the latent



rules underlying a multiple sequence alignment based on the protein of interest. Performance of the
two VEPs is very similar, with EVE ranking slightly higher, although not significantly better than
DeepSequence (p=0.123) or VARITY_R (p=0.062). EVE scores are constrained to a range between 0
and 1 to aid with interpretability and pre-calculated results are available to download online, while
DeepSequence outputs unconstrained log likelihood ratios and does not offer any pre-calculated
results.

One factor that affects the usefulness of VEPs is the proportion of mutations for which they can
produce results. Some VEPs do not provide predictions in low-coverage MSA regions by default.
Other VEPs generate predictions only at the nucleotide level, and thus have no output for amino acid
substitutions that require multiple nucleotide changes. Our ranking system could potentially favour
low-coverage VEPs in cases where they fail to produce outputs in a generally poorly predicted region
of a protein. To account for this possibility while not unfairly penalising nucleotide-level VEPs we
considered only missense mutations possible via a single nucleotide change and, on the assumption
that most missing data would be due to poorly conserved protein regions, we filled the remaining
missing scores for each VEP with the most benign score it produced on a per-protein basis. Re-
calculating the VEP rankings like this (Dataset EV3) does not greatly change the outcome, with ESM-
1v retaining its top position. EVE, which has the lowest coverage of the top VEPs (84.0%) drops from
2" to 4" place, behind DeepSequence and VARITY_R. Most notably, mutationTCN (Kim & Kim,
2020), the VEP with the lowest coverage overall (64.5%), dropped from 9" (significantly lower
ranked than 8 other VEPs) to 20" (significantly lower ranked than 19 other VEPs), indicating that
some of its apparent performance may have been due to exclusion of poorly predicted regions.

The correlation of VEP predictions and DMS measurements varies along the length of a protein
sequence with some regions being much more highly correlated than others. In regions of DMS
maps that correlate poorly with all VEPs, comparison between VEPs is less meaningful; therefore, it
may make sense to exclude these regions from the analysis. To address this issue, we used a
scanning window of length 20 amino acids to calculate the average VEP correlation with DMS across
each protein. We then removed the central 10 amino acids of any window that fell more than one
standard deviation below the mean correlation across all windows. The remaining data were used to
re-calculate the rank scores (Dataset EV4). Only minor changes to the ranking of individual
predictors were observed and all broad trends remained, EVE ranked slightly higher than ESM-1v
although the difference was not significant (p=0.801).

Performance of DMS compared to VEPs against datasets of pathogenic and
benign missense variants

One of the most interesting applications of DMS data is in directly predicting the effects of clinically
relevant variants. While data circularity often negatively influences our ability to evaluate supervised
VEPs, known clinical labels have no impact on the assessment of experimentally derived, fully
independent DMS data and, theoretically, a minimal impact on unsupervised VEPs. To assess the
performance of DMS datasets at predicting actual clinical outcomes in comparison to unsupervised
VEPs, we used known pathogenic and likely pathogenic missense variants from ClinVar (Landrum et
al, 2014) and the Human Gene Mutation Database (HGMD) public (Stenson et al, 2003), while
putatively benign variants were obtained from gnomAD (Karczewski et al, 2020), excluding those
also in the pathogenic set. We refer to the gnomAD variants as “putatively benign” because the
individuals sequenced are from cohorts without severe paediatric disease as well as their first- and
second-degree relatives. While gnomAD certainly contains some recessive, low-penetrance and late-
onset pathogenic variants, it should be highly enriched in benign variants and provides a useful set



for comparison to the known pathogenic variants from ClinVar and HGMD. In principle, the quality of
gnomAD as a benign reference set could be improved by filtering out variants with low allele
frequency. However, doing so drastically reduces the size of the benign datasets, resulting in fewer
than 10 variants with DMS measurements for all genes in our analysis at an allele frequency cutoff of
1%. Even with an allele frequency cutoff of 0.01%, only TP53, CBS, MTHFR and MSH2 would retain
sufficient variants. Since the primary purpose of most VEPs is to assign labels to rare variants that
are frequently identified through sequencing, it is potentially more informative to retain these
variants in the putatively benign dataset, as has recently been discussed (Wu et al, 2021).
Furthermore, as common and rare benign variants may have distinct features (loannidis et al, 2016),
benchmarking against only common variants is likely to be less reflective of actual clinical utility.

We used these datasets to calculate the area under the receiver operating characteristic curve
(AUROC) statistic, which is a common technique for summarising classifier performance. One
advantage of using AUROC for this study is that our pathogenic and putatively benign variant sets
are essentially independent of each other: the number of pathogenic variants for each gene will be
influenced by the frequency of disease, and how closely it has been studied, while the number of
putatively benign variants is determined by the individuals in gnomAD. The nature of AUROC means
that it should be independent of the size of either variant dataset, e.g. if we increased the size of our
putatively benign dataset by considering a larger population cohort, or added more pathogenic
variants to a particular gene due to more focused sequencing studies, the AUROC should not change
by much, unless the initial dataset was too small to adequately represent one of the classes.

We calculated AUROC for every protein with available DMS data and at least 10 pathogenic and 10
putatively benign missense variants. We also supplemented the SNCA dataset with additional
variants from the literature (Fevga et al, 2021; Daida et al, 2022; Kapasi et al, 2020) and the CALM1
dataset by adding variants from CALM2 and CALM3, which have identical amino acid sequences.

Similar to our ranking analysis, we compared the AUROC of every pair of unsupervised predictors or
DMS score sets using only variants shared between them (providing at least 10 ClinVar and 10
gnomAD variants were shared). The method that produces the higher AUROC in each pairwise
comparison gains one point. Figure 3 shows the rankings of each unsupervised predictor based on its
mean rank across every protein. We selected the best-ranking DMS score per protein to represent
the overall DMS rankings. Similar to the correlation-based analysis, we determined the relative
significance of the ranking using a bootstrapping approach whereby pathogenic and benign variant
were re-sampled with replacement 1000 times and the ranking re-calculated (Dataset EV1).

The DMS datasets showed highly heterogeneous performance, ranking first for TP53, BRCA1, SNCA
and HRAS but performing somewhat poorly for TPK1, MTHFR and MAPK1. DMS ranked fifth by
overall mean ranking across all proteins but was not a significantly lower performer than the top
VEPs. The top three VEPs (DeepSequence, EVE and ESM-1v) as well as DMS also do not differ
significantly in ranking. We note that, although TPK1 DMS outperformed all VEPs in our previous
study, the inclusion of more pathogenic missense variants here (increasing from 8 to 15) has
substantially affected its performance. The TPK1 DMS data were also interesting for another reason:
compared to the CALM1 data from the same study, the TPK1 scores were inverse predictors of
clinical outcome (i.e. they produced an AUROC under 0.5). To maintain comparability, we inverted
the scale of the TPK1 scores.

While both CYP2C9 and CCR5 had enough apparently pathogenic variants to be included in this
analysis, close inspection indicated that most of the HGMD variants were not truly pathogenic.
CYP2C9 is an enzyme involved in drug metabolism, and most variants in ClinVar and HGMD have an



altered drug response phenotype. Using these variants as a “pathogenic” dataset for the purpose of
calculating AUROC produces extremely poor results across all VEPs and DMS datasets (Fig EV2a).
Another contributing factor is likely the presence of many drug response variants in gnomAD which
would not be filtered out. Using a specialised database such as PharmVar (Gaedigk et a/, 2018) may
be more appropriate for assessing the performance of VEPs and DMS datasets for variant
interpretation in this protein. CCR5 is a cell-surface chemokine receptor expressed by T-cells and
macrophages. The protein is also important for HIV cell entry, and most ClinVar and HGMD records
are variants that alter HIV binding affinity. While AUROC results support some modest ability of VEPs
and DMS to identify these variants that affect HIV entry (Fig EV2b), they are not necessarily relevant
to human genetic disease.

A common criticism of AUROC is that its insensitivity to class balance means it could be considered
to overestimate performance in cases with few positive (pathogenic) samples compared to negative,
which is the case for several proteins in our dataset. Precision-recall curves can be useful in these
situations as an alternate performance metric, where the focus is on correct prediction of the
positive class; however, for the area under the precision-recall curve to be comparable, the
predictors need the same numbers of samples in both classes, which makes comparisons of different
proteins difficult. As an alternative, we have also employed the area under the balanced precision
recall curve (AUBPRC) statistic (Wu et al, 2021), which provides the advantages of precision-recall
while remaining comparable across datasets with differing class balances. When calculated using
AUBPRC, DMS improves in overall ranking to joint first (with DeepSequence) and becomes the top
predictor for MSH2 and PTEN, but loses SNCA (Fig EV3), although it remains statistically
indistinguishable from DeepSequence, EVE, EVmutation and ESM-1v. The strong performance of
DMS when assessed using the AUBPRC metric suggests that DMS may be generally useful for
identifying clinically relevant variants, but the relatively poorer performance with AUROC shows that
DMS may be weaker than some VEPs at correctly classifying benign variants.

Benchmarking unsupervised VEPs on large clinical datasets

The issues of type 1 and 2 data circularity apply primarily to supervised VEPs; in contrast,
unsupervised VEP predictions cannot be overtly influenced in the same way, as these methods are
not trained using labelled data although biases may still emerge based on the composition of the
underlying data (often a MSA). It is also possible that some unsupervised VEPs are tweaked based on
performance against clinical observations that could re-introduce type 1 circularity into performance
assessments but in general, we consider unsupervised VEPs immune to these forms of bias. As data
circularity is far less likely in unsupervised VEPs, the use of traditional benchmarks with clinical data
for these methods is likely to be a much better reflection of actual performance than for supervised
VEPs. Therefore, to assess the performance of all unsupervised VEPs against clinical data on a large
scale, we identified all human proteins with at least 10 pathogenic or likely pathogenic missense
variants in ClinVar, and 10 other missense variants in gnomAD, leaving us 985 proteins. Where
possible, we obtained predictions from 18 unsupervised VEPs for all variants in these proteins. To
compensate for the fact that some VEPs were unable to make predictions for all missense variants in
a protein, we again used a pairwise ranking approach, whereby every pair of unsupervised VEPs
were compared by AUROC and calculated the significance of the ranks by bootstrapping (Dataset
EV1). Figure 4A shows the distributions of rank scores for unsupervised predictors across all
proteins.

The top performing unsupervised VEPs by median rank score were EVE, ESM-1v and DeepSequence,
which all produced median AUROC values in excess of 0.84 across all proteins (Fig 4B). EVE



significantly outranked all other methods except ESM-1v (p=0.123), while ESM-1v and
DeepSequence were also not significantly distinct (p=0.070). Overall, the results obtained by ranking
unsupervised VEPs against clinical data were similar to their relative rankings against the DMS data
with the largest difference being VESPAI, which ranked fourth using the clinical data compared to
ninth out of the unsupervised VEPs against the DMS benchmark. Nucleotide conservation metrics
and substitution matrices are relatively poor predictors of clinical effects, while the top five VEPs are
all based on advanced unsupervised machine learning methodology. It has been noted that
nucleotide-based alignments (such as those that form the basis of GERP++, SiPhy and PhyloP) may
be noisier than protein alignments (Wernersson & Pedersen, 2003) and that protein-based
alignments allow for more distantly related sequences to be included in the alighment (Pearson,
2013). Given recent advances in the alignment of biological sequence data, it is unclear to what
extent these limitations of nucleotide alignments still apply, but this remains a possible contributor
to the marked underperformance of nucleotide-based predictors. Performing the same analysis
using AUBPRC instead of AUROC (Fig EV4A-B) gives very similar results, although ESM-1v ranks first
but is not significantly different from VESPAI (p=0.205) or EVE (p=0.082).

While only unsupervised VEPs can be benchmarked in a fair manner using this approach, we can
include the supervised VEPs in this analysis out of interest (Fig EV5A). In this comparison, the seven
top-ranked VEPs are supervised and the top three are all meta-predictors that integrate multiple
other VEPs as predictive features, which are thus capable of importing further bias from their
component predictors. Importantly, the extent to which data circularity influences the performance
of each supervised VEP cannot be reliably ascertained, so we do not believe that the relative
rankings or AUROCs (Fig EV5B) of supervised VEPs observed here are particularly meaningful.
Despite this advantage, recent unsupervised methods remain competitive with many supervised
predictors on large clinical datasets.

Comparison of the rank score obtained by benchmarking of unsupervised VEPs with DMS data and
the rank score obtained by using AUROC on large clinical datasets demonstrates remarkable
agreement (Spearman’s correlation: 0.946, p=9.02x10'°), strongly supporting the utility of both
independent benchmarking strategies (Fig 5). Adding supervised VEPs to this analysis identifies those
predictors that over-performed at the clinical benchmark relative to the DMS benchmark and are
thus more likely to have been influenced by data circularity (Fig EV6). MetaRNN, ClinPred, BayesDel,
VEST4 and MutPred in particular show much better performance on the clinical data than the DMS
data.

Discussion

Our updated analysis produced some interesting results in terms of predictor ranking;
DeepSequence remained a highly ranked method, but was joined by ESM-1v, EVE and VARITY. The
strong performance of many new predictors indicates that VEP methodologies are continuing to
improve. In our previous study, supervised VEPs were previously superior to most unsupervised
methods, with the exception of DeepSequence. Our present results indicate that most of the top-10
VEPs are now unsupervised, demonstrating that multiple unsupervised methodologies are viable for
VEP development, and that researchers are taking the potential for bias seriously and making efforts
to avoid introducing it into new VEPs. No particular machine learning technique is dominant among
the top-ranking VEPs, indicating that multiple approaches to variant effect prediction remain
powerful with their unique advantages and disadvantages.

The excellent performance of ESM-1v is particularly interesting, not due to its nature as an
unsupervised VEP, but because it had no access to a protein-specific multiple sequence alignment



like EVE, DeepSequence and EVmutation. While type 1 and 2 data circularity poses no issue for these
predictors, sampling bias from the database used to construct MSAs still has the potential to
influence predictions in some proteins. ESM-1v has demonstrated that even this source of bias can
be mitigated, although not entirely eliminated, as language models are still trained using a sequence
database, albeit a very large and varied one. We used ESM-1v in a zero-shot setting, where no MSA
generation took place, but it is also possible to use the model in a “few-shot” setting, where a
protein-specific MSA is provided to assist with protein-specific predictions. The authors of the
method found that using the model in a few-shot context improved predictions slightly (Meier et al,
2021) but we were unable to successfully run this model on our system.

For the supervised methods Envision and VARITY, this analysis does not constitute a truly
independent benchmark, as some of the DMS datasets from our benchmark were also a part of their
training data. VARITY may be somewhat optimised for predicting the results of DMS experiments in
general, but its strong performance on datasets that were not used in its training suggests that this is
not a major issue. It seems likely that more newly developed VEPs will incorporate DMS data in the
future. While it makes little sense to exclude DMS datasets as a potential source of training data, it
does mean that future benchmarking using this data may carry the same caveats as benchmarking
supervised predictors using variant databases. Similar scenarios will likely arise for any new source of
benchmarking data, as it will eventually be used as a training dataset for new VEPs. We must
continue to be vigilant regarding the data used to train VEPs, and where possible ensure that fully
independently derived data is used for benchmarking.

Our analysis demonstrates that unsupervised methods excel when benchmarked against
independent DMS data. In contrast, when assessed against human pathogenic and putatively benign
missense variants, certain supervised VEPs outperform the top unsupervised methods, but this is
almost certainly influenced by data circularity. Nevertheless, it is essential to consider that the
superior performance of supervised methods on clinical variants may also stem from their specific
design and optimisation for this particular purpose, rather than the more general task of predicting
functional effects across all possible variants, which is assessed by the DMS benchmark. Future
research and clever design of unbiased clinical benchmarks will be needed to disentangle this
difficult issue.

Several DMS datasets demonstrated consistently low correlations with VEP predictions. While the
systematic nature of the poor correlations appeared to indicate that in these cases the DMS study
design was not sufficiently related to the human disease mechanisms to accurately recapitulate
disease-related fitness effects, that may not always be the case. Our group has recently
demonstrated that VEPs consistently underperform on non-loss-of-function mutations, in particular
dominant-negative and gain-of-function (Gerasimavicius et al, 2022). On a structural level, both
dominant-negative and gain-of-function mutants tend to be less structurally disruptive than loss-of-
function. This may be the case for SNCA where gain-of-function can lead to fibril formation
(Bertoncini et al, 2005) and in CALM1 where the dominant-negative effect has been observed
(Rocchetti et al, 2017). The tendency of CALM1 mutants to be dominant-negative raises a further
issue, which is that in the yeast growth-rate based DMS assay assessing the performance of CALM1
mutants, pathogenic dominant-negative mutations would likely score as less damaging than null
mutants. This could result in neither DMS nor VEPs from picking up on pathogenic mutations,
despite agreeing.

Our AUROC analysis included six further proteins over our previous study and made use of
numerous additional variants deposited in ClinVar since 2018 and HGMD. While DMS data did not
perform as the top predictor for the majority of proteins, it was still often among the top methods.



Notably, DMS ranked first for four proteins, which was more than any individual VEP. However, DMS
also performed quite poorly for some proteins, demonstrating that DMS datasets are heterogeneous
in their performance in disease variant classification. We previously claimed that DMS experiments
based on growth rate tended to be more representative of human disease mutations compared to
those based on protein expression levels or other assays. With an expanded set of DMS data and
additional variants, this conclusion no longer seems valid as some DMS assays based on expression
levels and quantifying protein-protein interactions predicted disease as well as those based on yeast
complementation or general growth rate. It is crucial that we learn what factors make a DMS dataset
reliable for this purpose, whether they be related to the target protein specifically, the choice of
experimental assays, or other technical experimental issues. Is there some way we can predict a
priori whether a DMS dataset will be predictive of variant pathogenicity? Interestingly, there is little
correspondence between the median VEP correlation with DMS datasets and the performance of
DMS datasets for variant classification in terms of AUROC (Fig EV7A) or pairwise ranking (Fig EV7B).
However, it is notable that the most clinically predictive datasets were all for cancer related genes
(P53, BRCA1, PTEN and MSH2 as tumour suppressors and HRAS as a proto-oncogene), all of which
except MSH2 also have relatively high correlations with VEP predictions. It may be that the observed
growth rate changes in these DMS studies are more reflective of the actual functional changes seen
in human disease than for other classes of genes.

Finding suitable benchmarks to compare VEPs is an ongoing challenge for the field of variant effect
prediction, particularly when many of those VEPs are supervised. In addition to DMS datasets, other
suitable sources of data that may yield equally bias-free results exist. Prediction performance on
case-control disease studies would also not be reliant on existing clinical labels, but would greatly
reduce the diversity of variants tested (Wu et al, 2021; Mclnnes et al, 2019). This approach can also
be scaled-up and applied to multiple relevant gene-trait combinations (Kuang et al, 2022).

Our results continue to indicate that benchmarking using independent variant effect datasets is a
powerful strategy for reducing data circularity when assessing VEP performance. The potential of
DMS for direct variant effect prediction remains an exciting option, although care should be taken to
ensure that the assay used is indicative of phenotypic outcome. With just two years’ worth of
additional data, we more than doubled the amount of DMS datasets in this analysis, and it is likely
that with projects like the Atlas of Variant Effects (www.varianteffect.org), the availability of such
datasets, and their utility for protein variant interpretation, will explode.

Methods

DMS identification and criteria

We retained 13 DMS datasets in human proteins from our previous analysis and identified a further
19 studies with publically available datasets from MAVEDB (Esposito et al, 2019)
(https://www.mavedb.org/) and literature searches. We applied a threshold of 5% minimum
coverage of all amino acid variants within the target protein to prevent any particularly low-
coverage studies from skewing our results. This prevented a SCN5A dataset being included (Glazer et
al, 2020). We also excluded datasets for NCS1 and TECR obtained from MAVEDB as no methodology
was published with them at the time.

VEP score retrieval

Most VEP predictions were retrieved from the dbNSFP database version 4.2 (academic) (Liu et al,
2020). Scores were retrieved for the transcript that matches the canonical Uniprot sequence for
each protein. As dbNSFP is a nucleotide-resolution database, there are instances where multiple



nucleotide variants map to the same amino acid substitution. In these cases the mean of the VEP
scores mapping to the same substitution were used.

SIFT was run locally using the UniRef90 database (Suzek et al, 2015) to generate multiple sequence
alignments.

EVmutation scores were obtained from the EVcouplings pipeline (mutation stage). We used the
Uniref100 database to generate alignments and default settings as found in:
https://github.com/debbiemarkslab/EVcouplings/blob/develop/config/sample config monomer.txt
except changing the minimum_column_coverage setting to 20 to reduce large alighnment gaps.

DeepSequence was run locally using alignments generated by the EVcouplings pipeline with default
settings. EVE results were partially retrieved online from: https://evemodel.org/ and others were
run locally using default settings on a GPU and the same alignments as DeepSequence.

ESM-1v results were obtained by adapting the example at:
https://github.com/facebookresearch/esm/blob/main/examples/variant-prediction/predict.py and
running locally on a GPU. The final score is the mean of esm1v_t33_560_UR90S_1,
esmlv_t33_560_UR90S_2, esmlv_t33_560_UR90S_3, esmlv_t33_560_UR90S_4 and
esmlv_t33 560 _UR90S_5 outputs.

Sources for all VEPs can be found in Table EV4.
Correlation analysis

For each protein we had DMS data for, we selected a single DMS dataset to be representative of it in
our analysis. We selected the dataset with the highest median Spearman’s correlation to all VEP
predictions for that protein to help prevent outliers from influencing the choice of set.

Spearman’s correlation was calculated using the scipy.stats.spearmanr() function of the python scipy
package.

Variant identification

For calculation of AUROC and AUBPRC values, we used pathogenic and likely pathogenic variants for
the ClinVar database of clinically relevant variants (September 2022 update) (Landrum et al, 2014)
(https://www.ncbi.nlm.nih.gov/clinvar/) and also from HGMD (public version) (Stenson et al, 2003)
(https://www.hgmd.cf.ac.uk/ac/index.php) for those proteins we had DMS data for. ClinVar entries
were filtered to only include variants with a one-star annotation level or higher (assertion criteria
provided). Additional pathogenic variants from SNCA were found though a literature search (Fevga
et al, 2021; Daida et al, 2022; Kapasi et al, 2020). Variants in CALM2 and CALM3 were used to
supplement CALM1 variants as all three proteins share the same primary structure, although they
differ at the genomic level.

We used the gnomAD database version 2.1.1 (Karczewski et al, 2020)
(https://gnomad.broadinstitute.org/) as a source of putatively benign variants. While these variants
certainly contain some recessive and low-penetrance pathogenic variants, gnomAD filters out
individuals with severe paediatric disease and their first-degree relatives. This means that gnomAD
should be depleted in pathogenic variants relative to the population and serves as a useful estimate
of benign variation. We performed no filtering based on allele frequency but only used variants that
passed the gnomAD internal quality filters (inbreeding coefficient <-0.3, at least one sample with
depth >=10, genotype quality >=20 and minor allele balance >0.2).




AUROC calculation

ROC AUC values were calculated using the sklearn.metrics.roc_auc_score() function of the sklearn
python package. Pathogenic variants were labelled as true positives and putatively benign variants
were labelled as true negatives. Where VEPs or DMS had an inverted scale (lower scores being more
pathogenic), the scores were converted to a comparable scale using:

Modified Score = |score — max(score)|

AUBPRC calculation

Precision-recall AUC was calculated using the sklearn.metrics.average_precision_score() function of
the sklearn python package. Average precision uses a weighted mean of precision scores at each
threshold of the precision-recall curve to summarise the curve (Turpin & Scholer, 2006). Pathogenic
samples were labelled as true positives while putatively benign samples were labelled true
negatives. Predictors with inverted scores were modified as with the AUROC calculation.

Average precision scores were then converted to balanced average precision using the formula
presented by (Wu et al, 2021)

AUPRC * (1 — prior)

AUBPRC =
AUPRC = (1 — prior) + (1 — AUPRC) = prior

Where the prior is the proportion of positive (in this case pathogenic) samples and AUPRC is the area
under the precision recall curve (for which we used average precision).

AUBPRC can be interpreted as the precision-recall AUC if the classes were balanced, which removes
the main disadvantage of precision-recall of being incomparable if the balance of sample labels
changes.

Rank score calculation

The rank scores presented in Figures 2 and 3 were calculated using a series of pairwise comparisons,
ensuring that only data shared between the predictors being compared was used. For the rank score
based on DMS-VEP correlation in Figure 2, for each protein the Spearman’s correlation between
each pair of predictors and the DMS data was calculated using only amino acid substitutions shared
between the three methods. The ‘winning’ VEP in every comparison gains one point. The total points
scored by each VEP is then divided by the number of tests it participated in, generating a per-protein
rank score. Finally, the mean of this score is taken for each VEP across all proteins to generate the
final rank score.

The AUROC-based rank score in Figure 3 was calculated using similar methodology. AUROC was
compared for every pair of VEPs/DMS datasets for each protein using only variants that were shared
between the methods. The ‘winning’ predictor from each comparison was awarded one point. The
total points scored by each predictor was then divided by the number of tests it participated in
generating a per-protein rank score. The final rank score is the mean of the per-protein score across
all proteins. Only the top-scoring DMS dataset per-protein was taken to represent DMS in the final
results. The same strategy was used to calculate the balanced AUBPRC-based rank scores in Figure
EV3.

Bootstrapping



Significance of the rankings were calculated using a bootstrapping methodology. The data shared
between VEPs was randomly re-sampled with replacement 1000 times and used to calculate a new
ranking. The total number of times that each VEP out-ranked every other VEP in these 1000
iterations indicates the significance of the rank values, with a total of 950 being equivalent to a p-
value of 0.05 and indicating statistical significance. For ROC-based analyses, the pathogenic and
putatively benign datasets were sampled independently to ensure that no situations arose where
one class was fully removed from the analysis.
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Figure legends

Figure 1 - Spearman’s correlation between DMS datasets and VEPs.

The Spearman’s correlation between all VEPs and the selected DMS datasets for every protein. The
top-performing VEP by Spearman’s correlation for each protein is labelled on the plot. DMS
experiments are grouped by the type of fitness assay employed. “Yeast complementation” describes
an assay where the human gene is used to compensate for the lack of activity in an essential yeast
gene. “Growth or survival” includes any assay where growth rate (and lack of growth) is assessed
excluding yeast complementation assays. “Expression level” includes VAMP-seq and other assays
that quantify the amount of protein produced. “Interaction” includes any assays that quantify a
protein’s interaction with binding partners such as yeast two-hybrid. “Protein specific” includes any
assay tailored to assessing the function of a particular protein that does not fall easily into another
category.

Figure 2 - Overall ranking of VEP performance based on correlation with DMS data.

Rank scores for each VEP based on the Spearman’s correlation between VEP predictions and DMS
data across all protein using only shared variants by pairwise comparisons. The number of proteins
for which predictions of each VEP are available are indicated on the right of the plot. Error bars
represent the standard deviation of rank scores obtained in 1000 bootstrap iterations.

Figure 3 - Ranking of DMS and unsupervised VEPs using clinical missense variants.

The rankings of DMS and unsupervised VEPs by AUROC. The colour scale represents the AUROC of
each predictor for classifying pathogenic and putatively benign variants in every protein. The
numbers indicate the relative ranking of all predictors for each protein while rank ties are assigned
the same rank as the top-ranking member of the group.

Figure 4 - The performance of unsupervised VEPs against clinical missense variants.

A) The distribution of AUROC-based rank scores for unsupervised VEPs on ClinVar and gnomAD
variants from 985 proteins. B) Distribution of the raw AUROCs for each unsupervised VEP on ClinVar
and gnomAD variants from 985 proteins. Outliers are plotted as individual points when they occur
1.5 times the interquartile range beyond the 1% or 3™ quartile. A black line indicates the median of
each distribution. EVmutation is excluded from this analysis due to predictions being available for
only a limited number of proteins.

Figure 5 - The relationship between correlation-based rank score and AUROC-based rank score for
unsupervised VEPs.

The rank score of unsupervised VEPs from Figure 2 plotted against AUROC-based rank score from
Figure 4A. The identity of each unsupervised VEP is indicated on the chart.






Tables

Table 1 - Summary of new DMS studies used to benchmark VEPs.

All DMS studies used to benchmark VEPs that were not present in our previous benchmark including
a brief description of the functional assay used to assess variant fitness. Less than 40% coverage of
amino acid substitutions in the protein indicates that study focussed on SNVs or a single protein

domain rather than amino acid variants across the whole protein.

DMS target Functional assay Coverage of all amino | Reference

(Uniprot ID) acid substitutions (%)

SNCA (P37840) Yeast growth rate hindered by 97.26 (Newberry et
aggregate toxicity (reverse- al, 2020)
survival)

CASP3 (P42574) Apoptotic activity assessed by 28.63 (Roychowdhury

CASP7 (P55310) fluorescence in a microfluidic 29.17 & Romero,
system. 2022)

CBS (P35520) Yeast growth rate 64.41 (Sun et al,
complementation 2020)

CCR5 (P51681) Antibody binding activity and 99.97 (Heredia et al,

CXCR4 (P61073) surface expression levels in human | 99.36 2018)
cells

CYP2C9 (P11717) | Activity profiling (Click-seq). 65.97 (Amorosi et al,

2021)

GDI1 (P31150) Yeast growth rate 51.40 (Silverstein et
complementation al, 2021)

HMGCR (P04035) | Yeast growth rate 99.89 (Jiang, 2019)
complementation

LDLRAP1 Yeast two hybrid binding assay 99.03 (Jiang, 2019)

(Q55W96)

MSH2 (P43246) Rescue of MMR-deficient HAP1 94.38 (Jiaetal, 2021)
cells

MTHFR (P42898) | Yeast growth rate 99.85 (Weile et al,
complementation 2021)

NUDT15 Drug resistance assay (growth 94.16 (Suiter et al,

(Q9NV35) rate). 2020)

TP53 (P04637)° reverse growth rate assay in 39.37 (Kotler et al,
human cells 2018)

PDE3A (Q14432) | DNMDP sensitivity in a 36.41 (Garvie et al,
glioblastoma cell line. 2021)

VKORC1 Protein stability assessed by FACS 87.02 (Chiasson et al,

(Q9BQB6) (VAMP-seq). 2020)

“Our previous benchmark already included TP53, but we identified a further dataset published by

another group.




Table 2 - All benchmarked VEPs that were not present in our previous study.

The classification and data sources of all VEPs that are benchmarked in this study, but not included
in our previous analysis. Note that ESM-1v can be fine-tuned to a protein of interest by providing a
multiple sequence alignment; we used ESM-1v in a zero-shot context with no task-specific training or

fine-tuning.
VEP Classification Data source Reference
ESM-1v Unsupervised (no Run locally (Meier et al,
fine-tuning) 2021)
LIST-S2 Unsupervised dbNSFP 4.2 (Malhis et al,
2020)
EVE Unsupervised Run locally and (Frazer et al,
https://evemodel.org/ 2021)

download/bulk

EVmutation_epistatic and
EVmutation_independent

Unsupervised

Run locally

(Hopf et al, 2017)

VESPAI

Unsupervised

https://zenodo.org/record/
5905863#.Yuu0Y3bMI2w

(Marquet et al,
2021)

mutationTCN

Unsupervised

http://mtban.kaist.ac.kr/
humanProteins.jsp

(Kim et al, 2021)

ClinPred Supervised dbNSFP 4.2 (Alirezaie et al,
2018)

BayesDel Supervised dbNSFP 4.2 (Feng, 2017)

MetaRNN Supervised dbNSFP 4.2 (Li et al, 2021)

VARITY_R and Supervised http://varity.varianteffect.org/ | (Wu et al, 2021)

VARITY_ER




Expanded view figure legends

Figure EV1 - Distribution of Spearman’s correlations between VEPs and DMS datasets.

The distribution of Spearman’s correlations between all VEPs and each selected DMS dataset ranked
by the median correlation (black bar). The boxplot whiskers indicate the range of the data while flier
points are represented by empty circles.

Figure EV2 - Performance of DMS and unsupervised VEPs for classifying variants in CYP2C9 and
CCR5.

The area under the balanced precision-recall curve for DMS and unsupervised VEPs for classifying
“pathogenic” ClinVar and HGMD variants in (a) CYP2C9 and (b) CCR5.

Figure EV3 - Ranking of DMS and unsupervised VEPs using clinical missense variants and AUBPRC.

The rankings of DMS and unsupervised VEPs by AUBPRC using shared variants. The colour scale of
the heatmap represents the AUBPRC of each predictor for classifying pathogenic and putatively
benign variants in every protein. The numbers indicate the relative ranking of all predictors for each
protein while rank ties are assigned the same rank as the top-ranking member of the group.

Figure EV4 - The performance of unsupervised VEPs against clinical missense variants by AUBPRC.

A) The distribution of AUBPRC-based rank scores for unsupervised VEPs on ClinVar and gnomAD
variants from 985 protein. B) Distribution of the raw AUBPRC for each unsupervised VEP on ClinVar
and gnomAD variants from 985 proteins. Outliers are plotted as individual points when they occur
1.5 times the interquartile range beyond the 1% or 3™ quartile. A black line indicates the median of
each distribution. EVmutation is excluded from this analysis due to predictions being available for
only a limited number of proteins.

Figure EV5 - The performance of all VEPs against clinical missense variants.

A) The distribution of AUBPRC-based rank scores for all VEPs on ClinVar and gnomAD variants from
985 proteins. B) Distribution of the raw AUBPRCs for all VEPs on ClinVar and gnomAD variants from
985 proteins. Bars are colour coded green for unsupervised VEPs and brown for supervised VEPs.
Outliers are plotted as individual points when they occur 1.5 times the interquartile range beyond
the 1% or 3" quartile. A black line indicates the median of each distribution. EVmutation is excluded
from this analysis due to predictions being available for only a limited number of proteins. The scale
of Fathmm is inverted in this figure due to improved predictive performance.

Figure EV6 - The relationship between correlation-based rank score and AUROC-based rank score
for all VEPs.

The rank score of VEPs from Figure 2 plotted against the AUROC-based rank score from Figure EV5A.
The identity of each VEP is indicated on the chart and points are coloured green for unsupervised
and brown for supervised VEPs. The scale of Fathmm is inverted in this figure for AUROC calculation
due to improved predictive performance.

Figure EV7 - The relationship between median VEP-DMS correlation and AUROC.



A) The median correlation between each DMS dataset and all VEPs plotted against the AUROC of
each DMS dataset. B) The median correlation between each DMS dataset and all VEPs plotted
against the AUROC-based rank score of each DMS dataset.



NOLuoneInw "n U P gy “Ga« T @ g Fam < gEN3Ld

s
WS%%Q:QEE: lu IAA‘AAIAA-‘A <Y 0 WE < = m < < " m 160¢dAD
.m =/E -,A‘lﬂ#lﬂ n F . n nAlA 0 0 O - LdSVO
@)
x N gl ' medn B, m< g < O 0 -€dSVO
THST gl il A m g g <« o8, ® " 4 [eauay
e T S e . euoo
.m Noonanw g [ gl Gilisdig e my w  |gpyian
m jJuapuadapui uoneinwAg g < LAM ﬂAA‘AhA < & IAAA [ <« 4 a n llrm,c&__._
e R e R L T =t
mm M . el Py < Ty g . = lWdl
_._vML onesids uoneinwAg ot MA}Az ‘A & ~PdOX0O
o amwA « g L g nm < " " Balyons
AT-Ws3 ® B8 y . ((u8 <« g g gl " lve3aad
.M W ALIVA - o Ann.t-Al 41 4 g - R < _nu= U < = [€Sd
m MWST Bmgm g AL e ¢ 1™« g " -STLANN
.W onEsIda UoNEINWAT g 0 ¢ Fimee AAAIAAAAH sdhie’ % ‘llhl. = "CHSIW
G 309dsns AIP‘AAAAAAEAMAE AAiAl < N S < u " Bm B, u " TAdVIN
PO (Y gy gy w? T Byl m<  m " 1vDud
" e U S
.m AT-WS3 = solgfall'] <o dn . = DI
c
m N Ml W e« Poavom o "0 e bromwns
W WIWHLVH € a (% Il < A'AAIA = Ai -HIIIA W rddHL1W
M YIHINVd Y ot < llAl lAAA.u “2 1€ 4 Fl < FYDOWH
> TARVA ¢« <l AAA « <+« "aA" wemm g N 1100
. 0 <4 <
W.WW INT m ‘lﬂﬁ’h‘ﬂl A‘ < i€ IAIA . " g H -S40
528 NS e e E e % A 3, TR TIOW
P
0 ™ © n < ™ N — =
o o o o o o o o o

uolje|allod s,uewleads

Protein



VEP

Number of
proteins

ESM-1v 25 |
EVE 18
DeepSequence 25
VARITY_R 26
VARITY_ER 26
EVmutation_epistatic 25
MetaRNN 26
EVmutation_independent 25
mutationTCN 18
ClinPred 26
REVEL 26
SuSPect 26
MutationAssessor 25
DEOGEN2 26
SNPs&GO 22
BayesDel 26
SNAP2 26
MPC 20
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SIFT4G 26
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PANTHER 21
Polyphen2_HumDiv 26
SIFT 26
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phyloP 26
BLOSUM®62 26
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Grantham 26
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GenoCanyon Predictor Category 26
phastCons B Unsupervised 26
fitCons B Supervised 25
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DMS target Functional assay Coverage of all amino | Reference

(Uniprot ID) acid substitutions (%)

SNCA (P37840) Yeast growth rate hindered by 97.26 (Newberry et
aggregate toxicity (reverse- al, 2020)
survival)

CASP3 (P42574) Apoptotic activity assessed by 28.63 (Roychowdhury

CASP7 (P55310) fluorescence in a microfluidic 29.17 & Romero,
system. 2022)

CBS (P35520) Yeast growth rate 64.41 (Sun et al,
complementation 2020)

CCR5 (P51681) Antibody binding activity and 99.97 (Heredia et al,

CXCR4 (P61073) surface expression levels in human | 99.36 2018)
cells

CYP2C9 (P11717) | Activity profiling (Click-seq). 65.97 (Amorosi et al,

2021)

GDI1 (P31150) Yeast growth rate 51.40 (Silverstein et
complementation al, 2021)

HMGCR (P04035) | Yeast growth rate 99.89 (Jiang, 2019)
complementation

LDLRAP1 Yeast two hybrid binding assay 99.03 (Jiang, 2019)

(Q55W96)

MSH2 (P43246) Rescue of MMR-deficient HAP1 94.38 (Jiaetal, 2021)
cells

MTHFR (P42898) | Yeast growth rate 99.85 (Weile et al,
complementation 2021)

NUDT15 Drug resistance assay (growth 94.16 (Suiter et al,

(Q9NV35) rate). 2020)

TP53 (P04637)° reverse growth rate assay in 39.37 (Kotler et al,
human cells 2018)

PDE3A (Q14432) | DNMDP sensitivity in a 36.41 (Garvie et al,
glioblastoma cell line. 2021)

VKORC1 Protein stability assessed by FACS 87.02 (Chiasson et al,

(Q9BQB6) (VAMP-seq). 2020)

a Our previous benchmark already included TP53, but we identified a further dataset published by

another group.

Table 1 - Summary of new DMS studies used to benchmark VEPs.

All DMS studies used to benchmark VEPs that were not present in our previous benchmark including
a brief description of the functional assay used to assess variant fitness. Less than 40% coverage of
amino acid substitutions in the protein indicates that study focussed on SNVs or a single protein

domain rather than amino acid variants across the whole protein.




VEP Classification Data source Reference
ESM-1v Unsupervised (no Run locally (Meier et al,
fine-tuning) 2021)
LIST-S2 Unsupervised dbNSFP 4.2 (Malhis et al,
2020)
EVE Unsupervised Run locally and (Frazer et al,
https://evemodel.org/ 2021)

download/bulk

EVmutation_epistatic and
EVmutation_independent

Unsupervised

Run locally

(Hopf et al, 2017)

VESPAI

Unsupervised

https://zenodo.org/record/
5905863#.YuuOY3bMI2w

(Marquet et al,
2021)

mutationTCN

Unsupervised

http://mtban.kaist.ac.kr/
humanProteins.jsp

(Kim et al, 2021)

ClinPred Supervised dbNSFP 4.2 (Alirezaie et al,
2018)

BayesDel Supervised dbNSFP 4.2 (Feng, 2017)

MetaRNN Supervised dbNSFP 4.2 (Li et al, 2021)

VARITY_R and Supervised http://varity.varianteffect.org/ | (Wu et al, 2021)

VARITY_ER

Table 2 - All benchmarked VEPs that were not present in our previous study.

The classification and data sources of all VEPs that are benchmarked in this study, but not included
in our previous analysis. Note that ESM-1v can be fine-tuned to a protein of interest by providing a
multiple sequence alignment; we used ESM-1v in a zero-shot context with no task-specific training or

fine-tuning.
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