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Aims To identiy a group ometabolites associated with incident cardiovascular disease (CVD) in people with type 2 diabetes and
assess its predictive perormance over-and-above a current CVD risk score (QRISK3).

Methods
and results

A panel o 228 serum metabolites was measured at baseline in 1066 individuals with type 2 diabetes (Edinburgh Type 2
Diabetes Study) who were then ollowed up or CVD over the subsequent 10 years. We applied 100 repeats o Cox least
absolute shrinkage and selection operator to select metabolites with requency >90% as components or a metabolites-
based risk score (MRS). The predictive perormance o theMRSwas assessed in relation to a reerencemodel that was based
on QRISK3 plus prevalent CVD and statin use at baseline. O 1021 available individuals, 255 (25.0%) developed CVD (me-
dian ollow-up: 10.6 years). Twelve metabolites relating to fuid balance, ketone bodies, amino acids, atty acids, glycolysis,
and lipoproteins were selected to construct the MRS that showed positive association with 10-year cardiovascular risk ol-
lowing adjustment or traditional risk actors [hazard ratio (HR) 2.67; 95% condence interval (CI) 1.96, 3.64]. The c-statistic
was 0.709 (95%CI 0.679, 0.739) or the reerence model alone, increasing slightly to 0.728 (95%CI 0.700, 0.757) ollowing
addition o the MRS. Compared with the reerence model, the net reclassication index and integrated discrimination index
or the reerence model plus the MRS were 0.362 (95%CI 0.179, 0.506) and 0.041 (95%CI 0.020, 0.071), respectively.

Conclusion Metabolomics data might improve predictive perormance o current CVD risk scores based on traditional risk actors in people
with type2 diabetes. External validation iswarranted to assess the generalizability o improvedCVDrisk predictionusing theMRS.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Lay summary This study looked at whether combining a group o newmarkers ound in the blood (called metabolites) with traditional risk
actors (such as high blood pressure and obesity) could more accurately predict how likely people with type 2 diabetes are to
develop cardiovascular diseases in the next 10 years.

Key ndings

• Twelve metabolites (including amino acids and lipids) showed strong association with 10-year cardiovascular risk in peo-
ple with type 2 diabetes, and a metabolites-based risk score (MRS) was created by integrating these metabolites.

• Combining the MRS with traditional risk actors was better at predicting the risk o a person with T2D or developing
cardiovascular diseases within the next 10 years than using traditional risk actors alone.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Cardiovascular diseases • Lipidomics • Metabolomics • Risk prediction model • Type 2 diabetes
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Introduction
Cardiovascular disease (CVD) is common in people with type 2 dia-
betes (T2D) and is the leading contributor to premature mortality
and economic burden in this high-risk population.1,2 Substantial hetero-
geneity in levels o cardiovascular (CV) risk is ound in people with T2D.
It is critical to identiy particularly high-risk sub-groups in order to bet-
ter acilitate allocation o limited healthcare resources and target early
intervention to prevent or delay the development o CVD.3

A variety o risk prediction algorithms or CVD have been developed
in general populations and specically in populations with T2D using
traditional risk actors such as hypertension and hypercholesterol-
aemia. The UKNational Institute or Health and Care Excellence clinical
guideline recommends the QRISK2 risk score or assessing CV risk in
people with T2D, and the American College o Cardiology/American
Heart Association 2018 guideline advises a Pooled Cohort Equation
to stratiy populations with T2D by levels o CV risk.4,5 However, stud-
ies on large independent cohorts have ound the predictive perorm-
ance o many existing CV risk scores in populations o T2D to be
suboptimal.6–8

Instead o ocusing on a small number o well-known biomarkers,
metabolomics is the study o identiying and quantiying numerous
low-molecular-weight endogenous compounds and exogenous chemi-
cals in a single bio-sample.9 As CVD is characterized by disturbances in
cardiac and cerebrovascular metabolism, metabolomics might shed
light into the molecular underpinnings o CVD.10 Additionally, metabo-
lomics is more proximal to disease phenotypes than other ‘omics’ (gen-
omics, transcriptomics, and proteomics), and it could integrate
upstream ‘omics’ variations and exposures to environmental actors.
Metabolomics might thereore have potential to improve prediction
o CVD that originates rom interactions between genes and
environments.10

The incremental value o adding metabolites to traditional CV risk
actors or risk prediction has been assessed in general populations.
The metabolites investigated, mainly lipid species, provided some add-
itional value or CVD prediction.11 In people with T2D, although sev-
eral studies have explored association between metabolomic proles
and CVD, ew have urther evaluated the improved predictive perorm-
ance o metabolites over traditional risk actors and/or existing CVD

risk scores.9 The limited studies that have addressed this important is-
sue have been restricted by relatively short ollow-up period, inclusion
o only particular subclasses ometabolites (e.g. atty acids), or inclusion
o participants rom unrepresentative populations o T2D.12–15

We aimed to investigate a wide range o potentially important meta-
bolites, to identiy rom these a group o metabolites associated with
10-year CVD risk, and then assess the predictive perormance o this
panel o metabolites over-and-above a current CVD risk score
(QRISK3) in a representative cohort o men and women with T2D.

Methods
Study population
The Edinburgh Type 2 Diabetes Study (ET2DS) is a prospective cohort
study o 1066 men and women aged 60–75 years with T2D at baseline
(2006/2007). Participants were randomly recruited rom a representative
diabetes register, the Lothian Diabetes Register, which captures almost
everyone with diagnosed diabetes in Lothian, Scotland. Details on recruit-
ment have been described previously.16 Questionnaires and physical exam-
inations were used to collect data at baseline, and again at Year 4 (n = 831)
and Year 10 (n = 581). Hospital discharge data and death records or each
participant were obtained at baseline, Year 4 and Year 8 rom the
Inormation and Services Division o NHS Scotland, and Year 10 rom
the National Records o Scotland.17 As shown in Figure 1, ater excluding
individuals missing metabolomic proling and/or inormation on CVD,
1021 individuals were nally included in this study. Ethical permission was
granted by the Lothian Medical Research Ethics Committee, and written in-
ormed consent was obtained rom all participants.

Metabolomic proling
Fasting venous blood samples were collected at baseline, and serumwas ex-
tracted or global metabolomic proling using a high throughput targeted
nuclear magnetic resonance platorm (Nightingale, Helsinki, Finland) that
has been described previously and applied in several large epidemiological
studies.18 The platorm simultaneously quanties 228 metabolites and de-
rived ratios including lipid particles and subclasses, atty acids, glycolysis re-
lated metabolites, amino acids, ketone bodies, fuid balance molecules, and
infammation marker. Concentrations o some metabolites were recorded
as zero because they were below detection levels, and this resulted in some

Figure 1 Flowchart o the study population.
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lipid ratios being mathematically innite, and potential issues when log-
transormation was applied. Thus, a value equal to hal o the minimum con-
centration recorded in the dataset or the aected metabolite was used to
replace these zero values, and then all aected metabolite ratios were re-
calculated using the updated values.

Assessment o the outcome
Details o the assessments undertaken to identiy CV events, and the cri-
teria used to conrm such events, have been described previously.19

Briefy, in this study, CVD is a composite phenotype consisting o myocar-
dial inarction (MI), angina, transient ischaemic attack, stroke, and coronary
intervention. Prevalent CVD at baseline was assessed using a combination
o questionnaires, electrocardiograph, and hospital discharge data.
Similarly, incident CV events were identied during ollow-up using data
rom the same data sources plus scrutiny o death records and review o
clinical case notes rom general practices and hospitals as required to con-
rm events. Incident CVD in this study reers to the rst new CV event or
individuals ree oCVD at baseline or the rst recurrent CV event or those
with existing CVD at baseline.

The reerence cardiovascular disease risk
score (QRISK3)
Developed and validated in 2017, the QRISK3 algorithm is an update o
QRISK2 with the improvement or CVD prediction over its predecessor.20

The components o QRISK3 include age, sex, ethnicity, deprivation, smok-
ing, body mass index (BMI), systolic blood pressure (SBP), SBP variability
[standard deviation (SD) o repeated measures], ratio o total cholesterol
to cholesterol in high density lipoproteins (HDL), diabetes, chronic kidney
disease (CKD, stage 3, 4, or 5), treated hypertension, amily history oCVD,
atrial brillation, rheumatoid arthritis, migraine, severe mental illness, sys-
temic lupus erythematosus (SLE), erectile dysunction (ED), atypical anti-
psychotic use, and corticosteroid use.

As predictive perormance o original QRISK3 algorithmwas not satisac-
tory in ET2DS [c-statistics: 0.647 (0.615, 0.679)], and people with existing
CVD and/or with statin prescriptions were excluded in the derivation
population o QRISK3, we decided to derive a reerence model based on
QRISK3 algorithm. In this reerence risk model, diabetes and SLE were ex-
cluded or their non-variability within the population (all are T2D and
non-SLE in ET2DS), and ED was removed to avoid decrease in statistical
power due to sex-specic modelling. Prevalent CVD and lipid-lowering
drug use was reported in a considerable proportion o population in
ET2DS, which also represents a common situation in populations o T2D
in the real world, so these two variables were added to the reerence score.
We tried to make denitions o individual components o the reerence
score in this study be as close as possible to that in the original study o
QRISK3, and they were ascertained by a combination o questionnaires,
physical examinations, laboratory tests, and data linkage with hospitalization
and death records (see Supplementary material online, Table S1).

Statistical analyses
Characteristics o the population are shown as mean ± SD, median [lower
interquartile range (IQR) and upper IQR], or n (%) or normally distributed
variables, variables with skewed distribution, and categorical variables, re-
spectively. Levels o metabolites were transormed into the natural loga-
rithm scale and then standardized beore regression modelling. Single
imputation was used to address missing values o predictors in the reer-
ence score using the mice package (version 3.14.0) in R.

To construct a single metabolites-based risk score (MRS) that would in-
tegrate most inormative metabolites associated with incident CVD,
the least absolute shrinkage and selection operator (LASSO) with the
Cox regressionmodel was used ormetabolites selection. The LASSOmini-
mizes the residual sum o squares subject to the sum o the absolute value o
the coecients being less than a constant, and thus, predictors selection is
achieved by orcing coecients o some variables to be exactly zero.21

Given this property, LASSO is a useul tool to handle highly correlated
and high-dimensional data.

The tuning parameter (λ) in LASSO was chosen by ve-old cross-
validation with one standard error rule using cv.glmnet unction in glmnet
package (version 4.0–2) in R. To obtain a stable group o components or

the MRS, 100 repeats o Cox LASSO were applied using Bootstrap with re-
placement by changing the old o cross-validation and random seeds (see
Supplementary material online, Figure S1). Only metabolites with top re-
quencies (being selected more than 90% times) in the 100 repeats o selec-
tion were regarded as components o the MRS. An unadjusted and
unpenalized Cox model with all selected metabolites and 10-year incident
CVDwas urther perormed, and the linear predictor (i.e. sum o regression
coecients multiplied by corresponding metabolites’ concentration) in this
Cox model was calculated as a weighted MRS or each participant.

To explore how adding the MRS will aect the associations between
traditional CV risk actors with incident CVD, Cox regression was per-
ormed to estimate hazard ratios (HRs) and corresponding 95% condence
interval (CI) or associations between individual components o the reer-
ence score and 10-year CVD beore and ater the MRS was added into
the reerence model. Association o the MRS with individual components
o the reerence was visualized in a heatmap.

Predictive perormance o the reerence model and its combination with
the MRS was assessed separately by discrimination (Harrell c-statistics) and
calibration. Internal validation with 500 bootstrap repeats was perormed
to take account o overtting. Added predictive value o the MRS over trad-
itional risk actors or CVD prediction was assessed by continuous net re-
classication improvement (NRI) and integrated discrimination
improvement (IDI).22,23 According to pre-specied CV risk categories (0–
10%, 10–20%, and >20%), categorical NRIs (i.e. NRIevent and NRInon-event)
were calculated separately to indicate the raction o individuals correctly
reclassied by the updated model within the event and non-event groups
in comparison with the reerence model.19

The proportional hazard assumptions o Cox regression models were
checked based on the scaled Schoeneld residuals, and i assumptions
were violated or some predictors, interactions between age and these pre-
dictors would be added into the Cox model. A P-value o <0.05 was con-
sidered signicant. All analyses were perormed using R version 4.0.3
(R Foundation or Statistical Computing, Vienna, Austria).

Results
Characteristics o the study population
Major demographics and CV risk actors o the study population at
baseline are described in Table 1. During the median ollow-up o
10.6 years, 255 (25.0%) individuals had a CV event, and 116 o these re-
presented a rst incidence oCVD. Distribution o serummetabolites is
shown in Supplementary material online, Table S2, and substantial
inter-correlations (correlation coecients ranged between −0.998
and +0.999) between individual metabolites are displayed in
Supplementary material online, Figure S2.

Construction o the metabolites-based
risk score
In the construction o the MRS, the number ometabolites selected in
the optimum subset in each single repeat o Cox LASSO ranged be-
tween 4 and 26. Overall, 33 metabolites (mainly subclasses o lipo-
proteins, amino acids, and ketone bodies) were selected ater 100
repeats o Cox LASSO as being associated with incident CVD in at
least one repeat o the analysis (see Supplementary material online,
Table S3). Twelve metabolites with top requencies (>90%) in the
100 repeats o selection were included as nal components o the
MRS.

The HRs o all 12 selected metabolites in the unpenalized and un-
adjusted Cox model are shown in Figure 2. Seven metabolites showed
a positive direction o association with incident CVD and o these, three
(3-hydroxybutyrate, creatinine, and phenylalanine) were statistically sig-
nicantly associated at P < 0.05 [HRs (95%CI): 1.20 (1.06, 1.37), 1.34
(1.19, 1.51), and 1.17 (1.02, 1.35)]. Five metabolites showed an inverse
direction o association with incident CVD, and o these, two ratios o
ree cholesterol [ree cholesterol to total lipids ratio in IDL
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(intermediate density lipoproteins) and ree cholesterol to total lipids
ratio in small HDL] showed signicant association with incident CVD
[HRs (95%CI): 0.87 (0.77, 0.98) and 0.74 (0.64, 0.85)].

TheMRS varies rom aminimum o −1.62 to a maximum o 2.26, and
mean ± SD MRS was 0.0 ± 0.6. Its distribution is approximately normal
and is displayed in Supplementary material online, Figure S3.

Association o individual cardiovascular
risk actors and themetabolites-based risk
score with 10-year incident cardiovascular
disease
Associations between individual components o the reerence model
and 10-year incident CVD, both beore and ater addition o the
MRS, are described in Supplementary material online, Table S4. In the
presence o the MRS, most actors that showed signicant association
with 10-year CVD remained as signicant predictors, except or the ra-
tio o total cholesterol to HDL cholesterol and CKD. The MRS showed
strong association with CVDwith a HR o 2.67 (95%CI 1.96, 3.64) ater
adjustment or individual components o the reerence model.

Predictive values o themetabolites-based
risk over-and-above the reerence model
Stratied CVD-ree survival curves by predicted risk quartiles in the re-
erence model and the model combining the reerence model with the
MRS are shown separately in Figure 3, illustrating that the two models
had similar discriminative ability or 10-year CVD but the model with
the MRS showed a slightly better perormance or low-risk groups
(the 1st and 2nd quartiles).
Table 2 lists metrics o predictive perormance or the reerence

model and its combination with the MRS. The c-statistic or the reer-
ence model was 0.709 (95%CI 0.679, 0.739), and it was slightly in-
creased to 0.728 (95%CI 0.700, 0.757) ater the MRS was added.
Similarly, the improvement in discriminative ability by adding the MRS
were internally validated by bootstrapping 500 times, with c-statistics
o 0.704 (95%CI 0.675, 0.732) or the combination model and 0.684
(95%CI 0.654, 0.714) or the reerence model (Table 2).

In terms o reclassication, the addition o the MRS to the reerence
model resulted in a continuous NRI (category-ree) o 0.362 (95%CI
0.179, 0.506) with 8.5% o non-events correctly reclassied or the
combination model compared with the reerence model alone
[NRInon-event= 0.085 (95%CI 0.017, 0.157)]. The IDI o 0.041 (95%CI
0.020, 0.071) indicates that the combination model has an absolute in-
crease o 4.1% in mean predicted risk or participants with incident CV
events compared with participants without events over the reerence
model. Calibration perormance o the two models is shown in
Supplementary material online, Figure S4 that illustrates good agree-
ment between observed risk and predicted risk in both two models.

Association o the metabolites-based risk
with individual components o the
reerence model
Association o the MRS and its constitutive metabolites with individual
components o the reerence model was illustrated in Supplementary
material online, Figure S5. The correlation coecients o the association
between the MRS and individual CV risk actors ranged between
−0.338 and +0.590, and the strongest correlation was or the MRS
and ratio o total cholesterol to HDL cholesterol.

Discussion
In older people with T2D, a metabolomic risk score (which integrated
inormation on lipoproteins, amino acids, ketone bodies, and markers
o fuid balance) provided some improvement in the prediction o

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics o the study
population (n = 1021)

Characteristics

Demographics
Age (years) 67.9 ± 4.2
Male 528 (51.7)
Ethnicity

White 1007 (98.6)

Others 14 (1.4)
SIMD
Quintile 1 (most deprived) 119 (11.7)

Quintile 2 202 (19.8)
Quintile 3 183 (17.9)

Quintile 4 185 (18.1)

Quintile 5 (least deprived) 332 (32.5)
Traditional CV risk actors
Smoking

Non-smoker 398 (39.0)
Ever-smoker 484 (47.4)

Light smoker (<10 cigarettes or equivalent/day) 29 (2.8)

Moderate smoker (10–19 cigarettes or equivalent/day) 46 (4.5)
Heavy smoker (20+ cigarettes or equivalent/day) 64 (6.3)

BMI (kg/m2) 31.5 ± 5.6
SBP (mmHg) 133.2 ± 16.4
SBP variabilitya 13.3 ± 4.2
Ratio o total cholesterol to HDL cholesterol 3.6 ± 1.1
Chronic kidney disease 247 (24.2)
Treated hypertension 835 (81.8)

Lipid-lowering drug use 874 (85.6)

Additional CV risk actors in the reerence model
Probability o having amily history o CVDb 0.36 ± 0.04
Atrial brillation 67 (6.6)

Rheumatoid arthritis 39 (3.8)
Migraine 5 (0.5)

Severe mental illness 26 (2.5)

Atypical antipsychotic use 6 (0.6)
Corticosteroid use 143 (14.0)

Prevalent CVD 365 (35.7)

Diabetes-related characteristics
Plasma glucose (mmol/L) 7.6 ± 2.1
HbA1c (%) 7.4 ± 1.1
HbA1c (mmol/mol) 57.4 ± 12.2
Duration o diabetes (years) 6.0 (3.0, 11.0)

Data are presented as mean ± SD, n (%), or median (lower IQR and upper IQR).
SD, standard deviation; IQR, interquartile range; SIMD, Scottish Index o Multiple
Deprivation; BMI, body mass index; SBP, systolic blood pressure; CVD,
cardiovascular diseases; HbA1c, haemoglobin A1c.
aBased on standard deviation o≥2 historic systolic blood pressure values within 5 years
beore baseline.
bA proxy was used here to approximate the conditional probability o having a amily
history o CVD.
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10-year CV risk over and above traditional CV risk actors. Slight im-
provement was seen in predictive perormance o the updated model
with the MRS in terms o discrimination and calibration, and there was
better reclassication, in comparison with the reerence model based
on QRISK3.

Individual metabolites and improved
cardiovascular risk prediction
Prior studies are oten done in the general population and tend to as-
sess predictive perormance by adding individual metabolites into reer-
ence models, rather than integrating them into one index,11 with
candidate metabolites primarily refecting lipid species and/or amino
acids.24–27 The c-statistics in these studies ranged rom 0.71 to 0.76,
and ater metabolites were added into the model, they were slightly im-
proved to between 0.72 and 0.79.24–27 O note, Mundra et al.28 inves-
tigated predictive perormance o metabolites in both general and
populations o T2D and suggested that predictive models should be op-
timized or the diabetes population because o evident interactions be-
tween diabetes status and identied lipids.

Metabolomics studies ocusing on improving CV risk prediction in
people with T2D are even more scarce, with the majority based on
a single population rom the ADVANCE clinical trial.12,13,28,29

Rather than investigating global metabolomic proles as in our study,
analyses rom ADVANCE separately assessed predictive perormance
o specic subclasses o metabolites. In an exploration o the predict-
ive perormance o atty acids or CV events over 5 years, the percent-
age o omega-3 atty acids to total atty acids resulted in a very limited
increase in c-statistic (rom 0.692 to 0.695) together with increased
accuracy in reclassication (continuous NRI = 0.144).13 Notably, this
atty acid ratio was also identied as a component o the MRS in
our study. In ADVANCE, there was also a modest incremental value
o adding seven amino acids into the reerence model.12 Although
three o these amino acids (glycine, leucine, and phenylalanine) were
also identied in our study, other metabolites ound to increase

prediction o CVD in people with T2D in previous studies were not
measured in our study.14,29

Predictive values o themetabolites-based
risk score
A meta-analysis suggests that metabolites scores tend to have stronger
association with CVD than individual metabolites.11 An MRS-like index
has been assessed in several studies in the general population,30–32 but
we ound only one small study in a population o T2D that applied the
‘score’ technique to explore incremental values o six amino acids or
predicting CVD.33

The key contributors to the MRS in our study were creatinine, ree
cholesterol to total lipids ratio in small HDL, 3-hydroxybutyrate, and
phenylalanine based on their weights. O note, our components o
the MRS were lipid-related metabolites or ratios, indicating that high-
resolution lipidomic prole might capture the complexity o the altered
lipid metabolism underlying the increased CV risk in T2D and thus con-
tribute to improved risk prediction. Interestingly, although associations
o two strong predictors (CKD and the ratio o total to HDL choles-
terol) with incident CVD were largely attenuated ater the MRS was
added to the model, the updated model still had some improvement
in predictive perormance. On the one hand, this might suggest that
some components o the MRS could lie on the pathophysiological path-
ways o these well-known risk actors, which could be urther con-
rmed by correlations between components o the MRS and these
risk actors. On the other hand, residual risk, which could not be re-
fected by traditional risk actors, might be explained by the MRS, as me-
tabolomic proles might serve as mediators o association between
CVD and some unmeasured risk actors such as physical activities
and diet.34,35

The limited improvement in discrimination might be explained by
good perormance o the reerence model, since c-statistics are
oten insensitive in refecting improved model perormance ater
adding novel biomarkers into a model that already contains strong

Figure 2 Association between 12 selected individual metabolites and 10-year cardiovascular disease in the unpenalized and unadjusted Cox model.
The 12 metabolites entered the Cox model together, and no traditional cardiovascular risk actors were adjusted. HDL, high-density lipoprotein; IDL,
intermediate-density; LDL, low-density lipoprotein; VLDL, very low-density lipoprotein; HR, hazard ratio; CI condence interval.
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Figure 3 Kaplan–Meier curves o cardiovascular disease-ree survival probability stratied by predicted risk in the reerence model and its combin-
ation with the MRS. CVD, cardiovascular disease; MRS, metabolites-based risk score.
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predictors.19,36 Thus, it has been suggested that reclassication metrics
might be more suitable to refect the incremental predictive value o
novel biomarkers in this situation.36 The model with the MRS in our
study showed an improved net reclassication o non-events
[NRInon-event= 0.085 (95%CI 0.017, 0.157)], which means net reclassi-
cation o 65 o 766 people without CVD assigned a lower risk in the
combination model. Given that the categorized NRI relies on selection
o risk groups and events rates,37 continuous NRI and IDI were also cal-
culated in our study, which indicates improved reclassication o the
model with the MRS.

Potential clinical utility
Although the improvement in discrimination by adding the MRS to
traditional risk actors is modest in this study, a slight improvement
may still be clinically important when the disease impacts a large popu-
lation (e.g. CVD). Further, signicantly improved reclassication in the
non-event group might help more people, who will not develop
CVD (the majority o T2D population), avoid unnecessary medication
treatments. However, identiying potentially important metabolites
to include in a risk score is just the rst step to evaluating their clinical
utility, and urther investigation on its generalizability and cost-
eectiveness should be thoroughly assessed beore the MRS is
implemented in clinic.

Strengths and limitations
In terms o study strengths, our study was based on a representative
population o T2D and has the longest ollow-up period to date among
metabolomics studies or predicting CV risks in people with T2D. Also,
this study included various well-dened phenotypes enabling us to thor-
oughly depict CV risk o participants. Most importantly, we used
LASSO, a prediction-oriented modern technique, to select candidate
metabolites and construct the MRS, which could take account o
overtting.

However, ndings in this study should be interpreted in the context
o several limitations. This study is limited by little variation o some pre-
dictors, and despite being one o the largest metabolomics studies or
predicting CVD in people with T2D, it still has limited statistical power
due to sample size. Another potential limitation o our study is the rela-
tively selective set o co-variables that we chose to include in our mod-
els, and which, were this to have been analysed with less ocus on the
additive value o the MRS over-and-above an established risk score,
could be viewed as conounding variables. However, we were able to

include most predictors o the QRISK3 plus prevalent CVD and
lipid-lowering drug use, which met the overall aim o our approach.
Despite this, it is entirely possible that residual conounders might re-
main that could lead to a less ‘competitive’ reerence model compared
with a model that did not rely on the improvement o an existing model
alone. Moreover, denitions o some predictors and CVD in this study
are not exactly the same as that in original QRISK3 study. To this end,
we reerred to denitions or proxies used in prior peer-reviewed litera-
ture, but this might still restrict the predictive perormance o the re-
erence model and introduce measurement errors. Whilst we applied
internal validations on this representative population o T2D, it is just
a minimum prerequisite o generalizability, so urther external valid-
ation using independent populations o T2D is now required.
Furthermore, clinical interpretation o some metrics (i.e. continuous
NRI) is still unclear,38 and we were unable to quantiy the impact o
the updated predictive model in practice by evaluating individuals’ beha-
viours and cost-eectiveness o care, so this merits randomized clinical
trials and economic modelling in the uture.

In conclusion, in this study o 1021 participants rom a representative
cohort o T2D population, we identied 12metabolites associated with
10-year CV risk and constructed a risk score based on them. Themodel
combining the MRS and traditional CV risk actors perormed better
than the reerence model with slight improvement in discrimination
and reclassication, but generalizability o the model needs to be vali-
dated in external populations o T2D.

Supplementary material
Supplementary material is available at European Journal o Preventive
Cardiology.
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Table 2 Metrics o predictive perormance o the
reerence model and its combination with the MRS or
10-year CVD risk

Metrics Reerencemodel Reerence model
plus the MRS

c-Statistics 0.709 (0.679, 0.739) 0.728 (0.700, 0.757)

Optimism-adjusted

c-statistics (internal
validation)

0.684 (0.654, 0.714) 0.704 (0.675, 0.732)

Continuous NRI Re. 0.362 (0.179, 0.506)

NRIevent Re. −0.010 (−0.053, 0.068)
NRInon-event Re. 0.085 (0.017, 0.157)

IDI Re. 0.041 (0.020, 0.071)

MRS, metabolites-based risk score; NRI, net reclassication improvement; IDI,
integrated discrimination improvement.
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consent, but aggregate data and analytical plan might be available rom the
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