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Abstract

A novel fully symmetric basis is derived for the S4-invariant poly-
nomial space, by using symmetric polynomials and invariant theory.
This new basis enables deriving explicitly the consistency conditions
for non-overdeterminedness of moment equations in the case of fully
symmetric cubature rules on the tetrahedron. Solving the correspond-
ing linear integer programming problem, optimal and quasi-optimal
rule structures are derived. Explicit formulas to calculate the esti-
mated lower bounds in the number of integration points are also given.
Additionally, the new basis is of practical interest in calculating spe-
cific cubature rules, since it allows decomposing the moment equations
into a series of successively independent smaller subsystems, which can
be exploited in designing more efficient solution methods. Solving the
moment equations analytically we obtain several interesting new results.

Keywords: numerical integration, cubature rules, tetrahedra, consistency
conditions, quasi-optimal rules

1 Introduction

Cubature, i.e. multivariate numerical integration, numerically approximates
definite integrals over multi-dimensional domains [1–3]. This is of interest
across a wide range of applications in science and engineering; for example,
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2 Explicit consistency conditions for fully-symmetric cubature on the tetrahedron

cubature is fundamental to the calculation of element stiffness matrices in the
Finite Element Method.

The most common numerical integration method, and the one considered
in this paper, is Gaussian-type cubature, which approximates the integral
through a weighted sum of evaluations of the integrand at specific points. Any
such set of points and corresponding weights constitutes a cubature rule. Col-
lections of cubature rules have been published [4–6], but newer results are still
being obtained. Indeed, theoretical results (e.g. [7]) indicate that many rules
improving on existing ones are still to be calculated.

The construction of cubature rules is a challenging task because it usually
requires solving a strongly nonlinear system of equations called the moment
equations. Much of the relevant literature therefore focuses on developing bet-
ter methods to solve the moment equations and obtain cubature rules with
specific characteristics (e.g. integration domain or degree of accuracy), for
example on the triangle [8–13] and the tetrahedron [8, 11, 14–17].

Invariance of cubature rules with respect to given transformations, i.e. sym-
metry, is often sought in practical applications. Full symmetry for the triangle
and the tetrahedron, for example, where the rule is invariant with respect
to any permutation of the vertices, allows for numerical integration that is
independent of the ordering of the vertices. Invariance can also significantly
simplify the moment equations, allowing them to be solved. For this reason,
most known rules on the triangle and tetrahedron are fully symmetric.

Symmetry defines orbits of integration points that are invariant under the
chosen transformations. Different types of orbits exist for a given symmetry,
thus a rule structure is introduced which indicates the number of orbits of each
type. The search for better rules of a given degree is greatly aided by the calcu-
lation of consistency conditions [18, 19], which indicate which rule structures
are expected to generate solvable moment equations, and can therefore also
be used to estimate the optimal (in terms of number of points) rule structure.

Consistency conditions for fully symmetric rules on the triangle [20] are
widely known and used. For the tetrahedron, a method to derive consistency
conditions, and the resulting optimal consistent rule structures, were obtained
by Maeztu and Sainz de la Maza [7]. This method however is provided with-
out a detailed implementation and does not lead to explicit expressions for
the consistency conditions. This is probably the reason why consistency con-
ditions are not used in recent papers where new rules are obtained on the
tetrahedron [8, 11, 14, 15], except for [17].

In this paper, we derive for the first time explicit expressions for the con-
sistency conditions for fully symmetric cubature rules on the tetrahedron.
Significantly extending the method in [10], we introduce symmetric polyno-
mials to rigorously generate a new fully-symmetric basis for the polynomial
space so that the structure of the moment equations can be easily analyzed to
obtain consistency conditions. These in turn are used to generate optimal and
quasi-optimal rule structures. We also calculate several new cubature rules,
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including results that show the limitations in the current approach to gener-
ating consistency conditions. While the exposition focuses on fully symmetric
rules on the tetrahedron, the proposed approach is general and can form the
basis of similar results for different domain types and/or symmetries.

The rest of the paper is separated into five sections: Section 2 presents
concisely several essential mathematical concepts. Section 3 shows the transfor-
mation and decomposition leading to the new basis for symmetric polynomials.
In Section 4, consistency conditions are derived based on the new basis. An
algorithm to calculate consistent rule structure is also presented and explicit
formulas to estimate optimal rule structures are given. In Section 5, moment
equations are solved analytically using Gröbner bases and several interesting
results are presented. Finally, Section 6 summarises the main results obtained
in this paper and mentions possible future research directions.

2 Theoretical background

2.1 Barycentric coordinates

Consider a tetrahedron defined by four vertices with Cartesian coordinates
(x|κ, y|κ, z|κ) where κ = 1 . . . 4. A point with Cartesian coordinates (x, y, z)
can be described, in relation to the tetrahedron, by the barycentric coordinates
(L1, L2, L3, L4) such that

x = L1x|1 + L2x|2 + L3x|3 + L4x|4 (1a)

y = L1y|1 + L2y|2 + L3y|3 + L4y|4 (1b)

z = L1z|1 + L2z|2 + L3z|3 + L4z|4 (1c)

1 = L1 + L2 + L3 + L4 (1d)

Barycentric coordinates are not independent, as seen by eq. (1d). Although
their use increases the number of unknowns, it greatly simplifies the calcula-
tions when considering symmetry. Barycentric coordinates can also be defined
without the normalisation (1d); when such a normalisation is adopted, as in
this paper, the resulting coordinates are also called volume coordinates.

A polynomial of degree d in the Cartesian coordinates can be expressed
as a homogeneous polynomial in the barycentric coordinates, i.e. as a linear
combination of monomials Li

1L
j
2L

k
3L

d−i−j−k
4 .

2.2 Symmetric polynomials

A symmetric polynomial is a multivariate polynomial invariant under any per-
mutation of its variables [21]. Considering n variables v1, v2, . . . , vn, we define
the elementary symmetric polynomials ṽk as the sum of all products of k
distinct variables vi, with negative sign when k is odd, that is

ṽk = (−1)k
∑

1≤i1<i2<...<ik≤n

vi1vi2 . . . vik (2)
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with ṽ0 = 1. The summation in (2) is taken over all ordered sets of k distinct
indices in the range 1 . . . n. Any symmetric polynomial in the variables vi can
be uniquely expressed as a polynomial in the elementary symmetric polyno-
mials ṽk. The values of vi can be calculated from ṽk as the solutions for v of
the polynomial equation

n∑
j=0

ṽn−jv
j = 0. (3)

2.3 Solution of a polynomial system

Consider a generic system of m polynomial equations with n variables
v1, v2, .., vn and real coefficients. The system is called overdetermined if m > n
and underdetermined if m < n.

A solution of a polynomial system is a tuple of (possibly complex) values
(v1, v2, ..., vn) that satisfy all equations in the system. A system is called incon-
sistent if it has no solution, and consistent if it has at least one solution. A
consistent system is zero-dimensional if it has a finite number of solutions and
positive-dimensional if it has an infinite number of solutions. For more details
on polynomial system solving see [22].

Numerical methods, such as Newton’s method, can obtain numerical
approximations to individual solutions but cannot systematically obtain all
solutions. Indeed, for positive-dimensional systems there is no clear answer to
what is the complete solution. Using algebraic geometry, algebraic solutions
to a system can be obtained by expressing the system in a form that is exact
and easy to solve numerically, such as Gröbner bases or, for zero-dimensional
systems, the rational univariate representation.

2.4 Cubature rules, moment equations and consistency
conditions

For a function f over a domain Ω ⊂ Rn with n-volume V , consider the scaled
integral

I(f) =
1

V

∫
Ω

fdΩ (4)

A cubature formula (or cubature rule) is an approximation of the integral I as

Q(f) =

nK∑
i=1

wif(xi) ≈ I(f) (5)

where f(xi) is the value of the function f at the point xi ∈ Rn, wi is the cor-
responding weight, and nK is the number of integration points. Only cubature
rules of (polynomial) degree d are considered here, for which equation (5) is
exact for all polynomials of degree equal or less than d and not exact for at
least one polynomial of degree d + 1. The accuracy of the approximation (5)
is not considered in this paper, details can be found in [1].
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Let Pn
d denote the vector space of all polynomials in n independent variables

of degree at most d, and B be a basis of this vector space. The cubature rule
Q is of degree at least d if and only if it is exact for any element of B, that is

Q(f) = I(f) ∀f ∈ B. (6)

Equation (6) is a polynomial system of dim(Pn
d ) equations in (n + 1)nK

unknowns, where dim(Pn
d ) is the dimension of Pn

d . These so-called moment
equations can be solved to obtain the coordinates of the integration points and
their associated weights, which define the cubature rule.

The consistency conditions are assumed conditions on the number of inte-
gration points for a given rule and degree, based on the (not necessarily true)
assumption that the system of moment equations, and any of its subsystems,
will be consistent if and only if it is not overdetermined. These are therefore
consistency conditions for non-overdeterminedness of the moment equations;
for conciseness, and following previous works, throughout this paper we use
the simpler term “consistency conditions”.

2.5 Quality of cubature rules

A quality is assigned to each cubature rule, using two letters. The first letter
refers to the integration weights. It is P if all weights are positive, N if at
least one weight is negative but all weights are real, and C if there is at least
one complex weight. The second letter refers to the position of the integration
points with respect to the integration domain. It is I if all points are inside
the integration domain, B if there is at least one point on the boundary of the
domain and the remaining are inside, O if at least one point is located outside
the integration space but all points have real coordinates, and C if at least one
point has complex coordinates. The possible qualities, in the usually assumed
order of preference, are: PI, NI, PB, NB, PO, NO, PC, NC, CC.

2.6 Invariant cubature rules

Let G be a finite group of transformations g : Rn → Rn. A function f(x) is
invariant with respect to G if it does not change under any transformation of
the group, that is f(g(x)) = f(x) ∀g ∈ G [23]. The G-orbit of a point x ∈ Rn,
denoted by G(x), is the set {g(x) : g ∈ G}. The point x is called a generator
of G(x).

A cubature rule is invariant with respect to the group G if the region Ω
is G-invariant (i.e. g(Ω) = Ω ∀g ∈ G), the set of integration points is a union
of G-orbits, and all points in the same orbit have the same weight. Using
Sobolev’s theorem (see [2] and references therein), invariant cubature rules can
be obtained by solving the moment equations

Q(f) = I(f) ∀f ∈ BG (7)
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where BG is a basis of the vector space Pn
d (G) ⊂ Pn

d of all G-invariant
polynomials of degree d in n variables.

3 Bases for cubature on the tetrahedron

3.1 Asymmetric basis

In three dimensions, a basis of P3
d is the set of monomials xiyjzk with total

degree i+ j + k ≤ d, which has dimension

masym =
(d+ 3)(d+ 2)(d+ 1)

6
. (8)

In this case there are four unknowns for every integration point (three
coordinates and one weight) so the consistency condition is

4nK ≥ masym. (9)

This consistency condition is obtained for any domain in R3, for asymmetric
rules (i.e. for rules that are not necessarily invariant). We know that there
exist rules that do not follow this consistency condition: for degree d = 9,
equation (9) yields nK ≥ 55, but there are, for example, known cubature rules
with 52 points on the cube [19] and with 53 points on the tetrahedron [24].

For tetrahedra, a convenient alternative basis is the set of monomials
Li
1L

j
2L

k
3L

d−i−j−k
4 of total degree d. The use of barycentric coordinates simpli-

fies the expression of the integration point coordinates in a way independent
of a specific tetrahedron. Even more importantly, barycentric coordinates sim-
plify expressing invariant rules, as any symmetry of the tetrahedron can be
expressed as invariance with respect to specific permutations of the vertices,
or of the barycentric coordinates.

3.2 Fully symmetric basis

We consider here fully symmetric rules on tetrahedra, which are invariant with
respect to the action of the symmetric group S4 (the group of all permutations
of four elements). For given degree d, the S4-invariant polynomials are the
symmetric polynomials in the four barycentric coordinates. A basis of these
polynomials are the products L̃t

1L̃
i
2L̃

j
3L̃

k
4 with t+ 2i+ 3j + 4k = d, where the

elementary symmetric polynomials in the barycentric coordinates are given by
equation (2) as

L̃1 = −(L1 + L2 + L3 + L4) = −1 (10a)

L̃2 = L1L2 + L1L3 + L1L4 + L2L3 + L2L4 + L3L4 (10b)

L̃3 = −(L1L2L3 + L1L3L4 + L1L2L4 + L2L3L4) (10c)

L̃4 = L1L2L3L4. (10d)
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Table 1 Types of orbits

Orbit type Generator Condition points variables

0 (1/4, 1/4, 1/4, 1/4) — 1 1
1 (α, α, α, 1− 3α) α ̸= 1/4 4 2
2 (α, α, 1/2− α, 1/2− α) α ̸= 1/4 6 2
3 (α, α, β, 1− 2α− β) α ̸= β, 3α+ β ̸= 1, α+ β ̸= 1/2 12 3
4 (α, β, γ, 1− α− β − γ) all coordinates distinct 24 4

Due to equation (10a), the S4-invariant basis is actually the products
L̃i
2L̃

j
3L̃

k
4 with 2i+3j+4k ≤ d. The number of elements in the basis, and there-

fore also the number of moment equations me, is the number of non-negative
integer solutions to 2i+ 3j + 4k ≤ d, given by [25]

me =

⌊
(d+ 4)3 + 3(d+ 4)2 − 9(d+ 4)

(
(d+ 4) mod 2

)
144

⌉
(11)

where ⌊x⌉ denotes the nearest integer to x. Comparing eqs. (11) and (8) shows
that the fully symmetric case has significantly fewer moment equations than
the asymmetric case (a ratio of 1/24 as d→∞).

The symmetric group S4 generates five different types of orbits, depending
on the number of repeated barycentric coordinates in the generator. These
orbit types, numbered from 0 to 4, are shown in table 1.

Table 1 also shows the number of points for each orbit type, and the number
of variables introduced in the moment equations for each orbit of a given
type (this is equal to the number of variables defining the generator, plus one
variable which is the weight, common to all points in the orbit).

The orbit structure of a rule is the list [n0, n1, n2, n3, n4], where ni is the
number of orbits of type i. The total number of points nK for a rule with orbit
structure [n0, n1, n2, n3, n4] is:

nK = n0 + 4n1 + 6n2 + 12n3 + 24n4 (12)

while the number of unknowns is

ne = n0 + 2n1 + 2n2 + 3n3 + 4n4 (13)

Equations (11) and (13) can be used to derive a consistency condition for
fully symmetric rules. A more precise set of consistency conditions can however
be obtained by adopting a different basis that has as many elements as possible
that are zero for as many orbit types as possible.
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3.3 A simpler fully symmetric basis

Substituting L for the generic variable v in equation (3), and using
equation (10a), gives

L4 − L3 + L̃2L
2 + L̃3L+ L̃4 = 0. (14)

Studying the multiplicity of the roots of (14), considered as a quartic func-
tion in L, gives the relation between L̃2, L̃3 and L̃4 for each orbit type. This
study is greatly simplified by considering the depressed quartic, therefore we
use the transformation

lκ = Lκ − 1/4 with κ = 1 . . . 4 (15)

so that the elementary symmetric polynomials are

l̃1 = −(l1 + l2 + l3 + l4) = 0 (16a)

l̃2 = l1l2 + l1l3 + l1l4 + l2l3 + l2l4 + l3l4 (16b)

l̃3 = −(l1l2l3 + l1l3l4 + l1l2l4 + l2l3l4) (16c)

l̃4 = l1l2l3l4 (16d)

and equation (3) becomes

l4 + l̃2l
2 + l̃3l + l̃4 = 0. (17)

The discriminant of (17) with respect to l is

∆ = −27l̃43 − 4l̃2(l̃
2
2 − 36l̃4)l̃

2
3 + 16l̃4(l̃

2
2 − 4l̃4)

2. (18)

We therefore have the following cases [26]:

• Type-0 orbit (four equal roots, all zero) for l̃2 = l̃3 = l̃4 = 0
• Type-1 orbit (three equal roots) for 8l̃32 + 27l̃23 = 0 and l̃22 + 12l̃4 = 0, with
l̃2 ̸= 0

• Type-2 orbit (two pairs of equal roots) for l̃3 = 0 and l̃22−4l̃4 = 0, with l̃2 ̸= 0
• Type-3 orbit (only one pair of equal roots) for ∆ = 0 but none of the previous
cases holding

• Type-4 orbit (four distinct roots) for ∆ ̸= 0.

Note that the conditions given for orbits of types 0, 1 and 2 ensure that
∆ = 0. Further simplification is achieved by introducing the quantities

p = −2l̃2
3
, q = −l̃3, r =

l̃22 + 12l̃4
9

(19)

resulting in the following simpler conditions
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piqjrk piqjrkr3 piqjrk∆

piqjr2 piqjr(p2 − r)

piqj piqjq2 piqj(p3 − pr − q2)

piq

pi pip2 pi(p2 − r)

p

1

piqjr piqjqr

pir

Fig. 1 Diagram showing the derivation of the fully symmetric basis for consistency condi-
tions

• Type-0 orbit for p = q = r = 0
• Type-1 orbit for p3 − q2 = 0 and r = 0, with p ̸= 0
• Type-2 orbit for q = 0 and p2 − r = 0, with p ̸= 0
• Type-3 orbit for ∆ = 0 but none of the previous cases holding
• Type-4 orbit for ∆ ̸= 0

where now

∆ = 27
(
−q4 + 2p(p2 − 3r)q2 − (p2 − 4r)(p2 − r)2

)
(20)

We therefore consider the fully symmetric monomial basis piqjrk with
weighted degree 2i+3j+4k ≤ d. This basis is simpler than the previous ones,
as it is easier to express the conditions holding on orbits of types 0 to 3.

3.4 Fully symmetric basis for consistency conditions

As already mentioned, a more precise set of consistency conditions can be
obtained by adopting a basis which has as many elements as possible that are
zero for as many orbit types as possible. We create such a basis starting from
the monomial basis piqjrk and then splitting and transforming (by taking
linear combinations with constant coefficients) groups of elements. This process
is summarised in figure 1 and explained in the following.

Orbits of types 0 to 3 are identified by the condition ∆ = 0. Equation (20)
shows that ∆ is of degree 3 in r, so we split piqjrk, by degree of r, into

[piqjrk]→ [piqjrkr3, piqjr2, piqj , piqjr] (21)



10 Explicit consistency conditions for fully-symmetric cubature on the tetrahedron

where i, j, k can take different values for each term. To simplify notation, here
and in the following we implicitly consider that i, j, k ≥ 0 and that the mono-
mials and polynomials shown are of total weighted degree up to d. The reason
for swapping the last two terms will be seen shortly.

The terms piqjrkr3 can easily be transformed, by taking linear combina-
tions with the other terms, into elements piqjrk∆, which are zero for orbit
types 0 to 3. The remaining terms, of degree less than 3 in r, cannot be lin-
early combined to give a polynomial with a factor ∆, and will therefore not
be zero for type-3 orbits.

To proceed further, we use algebraic geometry [27] to obtain that any
polynomial in p, q, r that is zero for orbit types 0 to 2 will be the sum of
polynomials with factors p3−pr−q2, r(p2−r), or qr (as these three polynomials
generate the radical of the product of the ideals generated by the polynomials
that have to be zero for each orbit type from 0 to 2).

The terms piqjr2 in (21), taken in linear combination with the terms piqjr,
give terms piqjr(p2−r). This leaves from (21) the terms piqj and piqjr, which
are split as

[piqj , piqjr]→ [piqjq2, piq, pi, piqjqr, pir] (22)

The first term on the r.h.s. of (22), taken in linear combination with the second,
fourth and fifth terms, yields terms piqj(p3 − pr − q2), while the fourth term
is already in the form piqj(qr), completing the set of terms that are zero for
orbit types 0 to 2.

The third term on the r.h.s. of (22) can be further split as

[pi]→ [pip2, p, 1] (23)

where the terms pip2, taken in linear combination with the terms pir, yields
the terms pi(p2 − r) which are zero for orbit types 0 and 2.

Collecting all the resulting terms yields a new fully symmetric basis, sum-
marised in table 2, which no longer contains only monomial terms. The way in
which the new basis is derived from the monomial basis in p, q, r ensures that
the resulting basis is indeed a basis of the same vector space of polynomials.
Additionally, this basis maximises the number of elements that are zero for
different orbit types, since no linear combination of elements that are zero for
fewer orbit types can give a polynomial that is zero for more orbit types.

4 Consistency conditions and (quasi-)optimal
rules

In the previous section, we have obtained a new fully symmetric basis for
the vector space of S4-invariant polynomials, which has as many elements as
possible that are zero for as many orbit types as possible. This allows deriving
the consistency conditions, and therefore also the estimated lower bounds on
the number of integration points for cubature rules in tetrahedra.
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Table 2 Fully symmetric basis for consistency conditions. The column “orbit types” lists
the orbit types for which the elements are not necessarily zero.

elements orbit types weighted degree number of elements

piqjrk∆ 4 2i+ 3j + 4k + 12 mp3(d− 12) m4

piqjr(p2 − r) 3,4 2i+ 3j + 8 mp2(d− 8)
}
m3piqjqr 3,4 2i+ 3j + 7 mp2(d− 7)

piqj(p3 − pr − q2) 3,4 2i+ 3j + 6 mp2(d− 6)
pi(p2 − r) 1,3,4 2i+ 4 mp1(d− 4)

}
m1piq 1,3,4 2i+ 3 mp1(d− 3)

pir 2,3,4 2i+ 4 mp1(d− 4) m2

p 1,2,3,4 2 mp0(d− 2) m12

1 0,1,2,3,4 0 1 m0

4.1 Number of basis elements equations

The last column of table 2 gives the number of basis elements for each element
type. This is the number of non-negative integer solutions, for the indices
appearing in the weighted degree, for which the weighted degree is less or equal
to the degree d. Specifically, mp3(d) is given by eq. (11), extended to also
cover negative values of d

mp3(d) =

⌊
(d+ 4)3 + 3(d+ 4)2 − 9(d+ 4)

(
(d+ 4) mod 2

)
144

⌉
Jd ≥ 0K (24a)

where the Iverson brackets J. . .K are defined as [28]

JSK =

{
0 if S is false

1 if S is true
(24b)

Similarly, mp2(d) is the number of non-negative integer solutions of 2i+3j ≤ d,
given by [29]

mp2(d) =

⌊
(d+ 3)2

12

⌉
Jd ≥ 0K (24c)

and mp1(d) is the number of non-negative integer solutions of 2i ≤ d, that is

mp1(d) =

⌊
d+ 2

2

⌋
Jd ≥ 0K (24d)

where ⌊x⌋ is the largest integer that is smaller or equal to x. Finally, mp0(d)
is simply given by

mp0(d) = Jd ≥ 0K (24e)

Table 2 shows that the basis elements can be grouped by the
orbit types for which they are not necessarily zero, giving six
groups: {4}, {3, 4}, {2, 3, 4}, {1, 3, 4}, {1, 2, 3, 4}, {0, 1, 2, 3, 4}, having respec-
tively m4,m3,m2,m1,m12,m0 elements. From table 2 and equations (24), the
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Table 3 Number of basis elements for each orbit group

Degree m0 m12 m1 m2 m3 m4 me

0 1 0 0 0 0 0 1
1 1 0 0 0 0 0 1
2 1 1 0 0 0 0 2
3 1 1 1 0 0 0 3
4 1 1 2 1 0 0 5
5 1 1 3 1 0 0 6
6 1 1 4 2 1 0 9
7 1 1 5 2 2 0 11
8 1 1 6 3 4 0 15
9 1 1 7 3 6 0 18
10 1 1 8 4 9 0 23
11 1 1 9 4 12 0 27
12 1 1 10 5 16 1 34
13 1 1 11 5 20 1 39
14 1 1 12 6 25 2 47
15 1 1 13 6 30 3 54
16 1 1 14 7 36 5 64
17 1 1 15 7 42 6 72
18 1 1 16 8 49 9 84
19 1 1 17 8 56 11 94
20 1 1 18 9 64 15 108

number of basis elements in each group is computed as

m4 = mp3(d− 12) (25a)

m3 =

⌊(d
2
− 2

)2
⌋
Jd ≥ 6K (25b)

m2 =

⌊
d

2
− 1

⌋
Jd ≥ 4K (25c)

m1 = (d− 2)Jd ≥ 2K (25d)

m12 = Jd ≥ 2K (25e)

m0 = 1 (25f)

Table 3 lists the number of basis elements in each element group, and the total
number of elements, for degrees d ≤ 20.

4.2 Consistency conditions

Every element inside the basis must satisfy equation (6), therefore each element
group represents a subsystem of the moment equations. For each of these
groups, consistency requires that the number of unknowns across all orbits in
the group must be greater or equal to the number of equations that only involve
the orbits of the group. Applying this to each group we get the consistency
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conditions

n0 + 2n1 + 2n2 + 3n3 + 4n4 ≥ m4 +m3 +m2 +m1 +m12 +m0 (26a)

2n1 + 2n2 + 3n3 + 4n4 ≥ m4 +m3 +m2 +m1 +m12 (26b)

2n1 + 3n3 + 4n4 ≥ m4 +m3 +m1 (26c)

2n2 + 3n3 + 4n4 ≥ m4 +m3 +m2 (26d)

3n3 + 4n4 ≥ m4 +m3 (26e)

4n4 ≥ m4 (26f)

An additional condition is that there can be at most one orbit of type 0, i.e.
n0 ∈ {0, 1}. This means, since m0 = 1, that equation (26b) can be omitted as
it is implied by equation (26a). The consistency conditions can then be written
as

n0 ∈ {0, 1} (27a)

n0 + 2n1 + 2n2 + 3n3 + 4n4 ≥ m4 +m3 +m2 +m1 +m12 +m0 (27b)

2n1 + 3n3 + 4n4 ≥ m4 +m3 +m1 (27c)

2n2 + 3n3 + 4n4 ≥ m4 +m3 +m2 (27d)

3n3 + 4n4 ≥ m4 +m3 (27e)

4n4 ≥ m4 (27f)

4.3 Consistent rule structures

For a given degree d, a rule structure [n0, n1, n2, n3, n4] is consistent if it sat-
isfies the consistency conditions (27). Consistent rule structures with a given
maximum number of points can be easily calculated using algorithm 1.

A consistent rule structure is optimal for a given degree if there are no
other consistent structures for the same degree with fewer points. Finding
optimal consistent rule structures is in general an integer linear programming
problem [19], but we propose here a simpler approach. Considering the consis-
tency conditions (27) in reverse order, we estimate an optimal consistent rule
structure as

n∗
4 =

⌈m4

4

⌉
(28a)

n∗
3 =

⌈
m4 +m3 − 4n∗

4

3

⌉
(28b)

n∗
2 =

⌈
m4 +m3 +m2 − 3n∗

3 − 4n∗
4

2

⌉
(28c)

n∗
1 =

⌊
me − 2n∗

2 − 3n∗
3 − 4n∗

4

2

⌋
(28d)

n∗
0 =me − 2n∗

1 − 2n∗
2 − 3n∗

3 − 4n∗
4 (28e)
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Algorithm 1 Pseudo code for consistent rule structures

d← cubature rule degree
nm
K ← desired maximum number of integration points

for n4 ←
⌈
m4

4

⌉
to

⌊
nm
K

24

⌋
do

for n3 ← max
{⌈

m4+m3−4n4

3

⌉
, 0
}
to

⌊
nm
K−24n4

12

⌋
do

for n2 ← max
{⌈

m4+m3+m2−4n4−3n3

2

⌉
, 0
}
to⌊

nm
K−24n4−12n3

6

⌋
do

for n1 ← max
{⌈

m4+m3+m1−4n4−3n3

2

⌉
, 0
}
to⌊

nm
K−24n4−12n3−6n2

4

⌋
do

for n0 ← max{me − 4n4 − 3n3 − 2n2 − 2n1, 0} to
min{nm

K − 24n4 − 12n3 − 6n2 − 4n1, 1} do
save [n0, n1, n2, n3, n4]

end for
end for

end for
end for

end for

Algorithm 1, with maximum number of points equal to the number of points
of rule structure (28), shows that this rule is optimal, and is unique (at least
up to an unrealistically high degree d = 200).

Table 4 shows the optimal consistent rule structures for degree d ≤ 20,
and the corresponding number of points. This number of points represents an
estimate of the lower bound for the number of integration points.

It is however important to remember that consistency conditions only pro-
vide an estimate for which cubature rule structures will yield actual cubature
rules, since satisfaction of the consistency conditions does not guarantee that
the system of moment equations is indeed consistent, and therefore a cubature
rule with a given structure actually exists.

Additionally, in most practical applications only rules of quality PI, or at
most NI, are considered acceptable. Even when rules with the optimal consis-
tent structure exist, therefore, the quality of such rules may not be acceptable.
It is then worth looking for quasi-optimal consistent rule structures, i.e. struc-
tures that follow the consistency conditions but have a few more integration
points than the optimal ones. For a given degree, the search is in practice
limited to rules that have fewer integration points than any known PI rule.
Quasi-optimal consistent rule structures are easily computed using algorithm 1.
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Table 4 Optimal consistent rule structures for tetrahedra

Degree Number of points n0 n1 n2 n3 n4

0 1 1 0 0 0 0
1 1 1 0 0 0 0
2 4 0 1 0 0 0
3 5 1 1 0 0 0
4 11 1 1 1 0 0
5 14 0 2 1 0 0
6 24 0 3 0 1 0
7 30 0 3 1 1 0
8 43 1 3 1 2 0
9 52 0 4 2 2 0
10 68 0 5 2 3 0
11 81 1 5 2 4 0
12 117 1 5 2 5 1
13 133 1 6 2 6 1
14 163 1 6 3 8 1
15 190 0 7 3 10 1
16 233 1 7 4 11 2
17 266 0 8 3 14 2
18 318 0 9 3 16 3
19 355 1 9 3 19 3
20 415 1 9 5 21 4

5 New results for cubature rules

Consistency conditions help limit the search space when searching for cubature
rules with better quality or lower number of points than existing ones. Addi-
tionally, the choice of an appropriate basis of the polynomials simplifies the
calculations needed to solve the moment equations and derive individual rules.

5.1 Summary of new results

Table 5 shows, for degree up to 20, the (estimated) lowest number of integration
points as well as the lowest number of points achieved in known cubature
rules of different quality. Known results for NI or *O (i.e. PO or NO) quality,
and for PI quality up to degree 6, are given in [6]. More recent results, all
of PI quality, are from [8] for degree 8, [11] for degrees 7 and 9, and [17] for
degrees 12 to 20. Results for degrees 10 and 11 are taken from the source code
of version 0.9.7 of the PHG (Parallel Hierarchical Grid) code (http://lsec.cc.
ac.cn/phg/download.htm) and were obtained using an improved version of the
code described in [8].1

For degrees 1 to 6 and 8, rules of PI or NI quality with the estimated lower
number of points were already given in the literature. For other degrees, a
gap exists between estimated and actual lower number, which increases with
degree. Using the results obtained in the previous sections and extending the
approach presented in [10], some new results were obtained, indicated with an
underline in table 5.

1L. Zhang, personal communication, 14 Sep. 2022.

http://lsec.cc.ac.cn/phg/download.htm
http://lsec.cc.ac.cn/phg/download.htm
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Table 5 Estimated and known lower bounds for number of integration points in fully
symmetric rules on the tetrahedron. Rules of worse quality are not shown if any rules of
better quality with the same or lower number of integration points are known. Underlined
results are newly obtained in this work.

degree optimal PI NI *O *C

1 1 1
2 4 4
3 5 8 5
4 11 14 11
5 14 14
6 24 24
7 30 35 31 – 30
8 43 46 43
9 52 59 55 53 52
10 71 79
11 86 96 – 87
12 117 123
13 133 145
14 163 175
15 190 209
16 233 248
17 266 284
18 318 343
19 355 383
20 415 441

Table 6 Degree 9, 55-point NI rule generators and weights. The barycentric coordinates
of the generators in terms of α and β are given in table 1.

Orbit type weight α β

0 -4.6296861376723131
1 1.2150353004018342 0.23962566193927949
1 -0.22747436971238236 0.11018941963473842
1 0.012202966891188984 0.049553558692414900
2 0.016884869064330526 0.45159058017363670
3 0.021517480296540043 0.39673341203779513 0.18159662632542559
3 0.10182368310953738 0.13432467380123244 0.65894809355477895
3 0.0041022810075698088 0.011921405727783134 0.71336869297190663

For degrees 7 and 9 we obtain rules with the optimal number of points,
but only with complex point coordinates. While not of practical interest, these
results confirm that consistency of the moment equations is correctly predicted
for these rule structures. As the moment equations for both cases are zero-
dimensional and all solutions are obtained, using Gröbner bases, we prove
that there are no optimal rules of better quality. For degree 9, a new 55-point
NI rule with structure [1, 3, 1, 3, 0] is also obtained, which improves on the 59
points of the existing PI rule (see table 6).

For degree 10, the optimal consistent rule structure given in table 4 is
[0, 5, 2, 3, 0], with 68 points. The corresponding moment equations, using the
non-monomial basis from section 3.4, have a subsystem for the type-3 orbits
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with 9 equations and 9 unknowns which is however inconsistent. There are
therefore no degree-10 rules with structure [∗, ∗, ∗, 3, 0]; eliminating those from
the list of quasi-optimal consistent structures results in an optimal consistent
structure [1, 4, 1, 4, 0] with 71 points. Similar calculations show that there is no
rule of degree 11 with structure [∗, ∗, ∗, 4, 0], so the optimal consistent structure
is [0, 5, 1, 5, 0] with 86 points.

5.2 Details on the consistency conditions for degree 10

For a degree-10 rule with structure [∗, ∗, ∗, 3, 0], table 2 shows that there are 9
basis elements that only involve type-3 orbits, namely

[g1, . . . , g9] = [p3 − pr − q2, qr, p(p3 − pr − q2), r(p2 − r), q(p3 − pr − q2),

pqr, p2(p3 − pr − q2), q2r, pr(p2 − r)]
(29)

Therefore the corresponding subsystem of the moment equations becomes

Qi = Ii i = 1 . . . 9 (30)

where

Qi = 12

3∑
j=1

wjgi(pj , qj , rj) (31)

and Ii are the exact integrals (4) evaluated for the elements gi, resulting in

[I1, . . . , I9] = [1/22680, 1/151200, 19/4989600, 23/9979200, 1/1108800,

13/19958400, 1/2620800, 29/172972800, 17/74131200]
(32)

The quantities pj , qj , rj for every orbit satisfy ∆j = ∆(pj , qj , rj) = 0, where
the discriminant ∆ is given by equation (20). Therefore the system (30) is
essentially a system of 9 equations with nine unknowns, which we therefore
assume to be consistent.

Computing a Gröbner basis for the system, however, shows that the system
is inconsistent. In this case, therefore, the consistency conditions fail to predict
consistency of the moment equations. This is not due to an incorrect choice of
the non-monomial basis in section 3.4, but due to a more complex relationship
between the quantities Qi. Indeed, we can calculate that in this case the Qi

are not independent, but satisfy the equation

Q1Q3Q
2
7+Q1Q3Q7Q8−5Q1Q3Q7Q9+4Q1Q3Q

2
9−4Q1Q4Q

2
7−4Q1Q4Q7Q8

+ 20Q1Q4Q7Q9 − 16Q1Q4Q
2
9 −Q1Q

2
5Q7 + 8Q1Q5Q6Q7 − 8Q1Q5Q6Q9

− 12Q1Q
2
6Q7 + 4Q1Q

2
6Q8 + 12Q1Q

2
6Q9 + 4Q2

2Q
2
7 + 4Q2

2Q7Q8 − 20Q2
2Q7Q9

+ 16Q2
2Q

2
9 + 8Q2Q3Q5Q9 − 8Q2Q3Q6Q7 − 8Q2Q3Q6Q8 + 8Q2Q3Q6Q9

− 8Q2Q4Q5Q7 + 32Q2Q4Q6Q7 − 32Q2Q4Q6Q9 −Q3
3Q7 −Q3

3Q8 + 5Q3
3Q9
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+ 4Q2
3Q4Q7 + 4Q2

3Q4Q8 − 28Q2
3Q4Q9 +Q2

3Q
2
5 − 8Q2

3Q5Q6 + 16Q2
3Q

2
6

+4Q3Q
2
4Q7+32Q3Q

2
4Q9+8Q3Q4Q5Q6−32Q3Q4Q

2
6−16Q3

4Q7+16Q2
4Q

2
6 = 0

(33)

Equation (33) is non-linear, and does not hold for n3 > 3. It is therefore
clear that deriving consistency conditions that correctly indicate that there
are no degree-10 rules with structure [∗, ∗, ∗, 3, 0] requires a different approach
to the one in this paper (and in general in the literature) which is based on
linearly independent basis elements.

6 Conclusion

In this paper we have rigorously developed a new non-monomial fully sym-
metric polynomial basis for the tetrahedron. By having as many elements as
possible to be zero for as many orbit types as possible, this basis directly leads
to the formulation of consistency conditions. For the first time we are able
to obtain explicit formulas for the consistency conditions, and thus for deter-
mining the optimal consistent rule structures. Additionally, an algorithm is
presented that generates quasi-optimal rule structures.

The new basis is also useful in calculating specific cubature rules, since it
allows decomposing the moment equations into a series of successively inde-
pendent smaller subsystems, which can be exploited in designing more efficient
solution methods. Solving the moment equations for specific cases, we obtained
a new NI rule of degree 9 with 55 points (lower than existing rules of PI/NI
quality). We also proved that there exist rules of degree 7 and 9 with the opti-
mal structure but they are not of practical use as their point coordinates are
complex numbers.

Finally, we proved that the optimal rule structures estimated by our for-
mulas for degrees 10 and 11 lead to inconsistent moment equations. This is not
due to an incorrect derivation of the consistency conditions but is a result of
a more complex non-linear relationship between the moment equations, which
cannot be captured by the usual assumptions that are employed to derive
consistency conditions.

The quasi-optimal rule structures obtained can be used as the starting point
for calculating additional cubature rules. For higher degrees the large number
of equations and unknowns necessitates improved solving techniques, possi-
bly mirroring those already developed for the triangle. The overall approach
described in this paper can be further applied to obtain consistency conditions
for different domains and types of symmetry.
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