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ABSTRACT. We give a simple polynomial-time approximation algorithm for the total varia-
tion distance between two product distributions.

1. Introduction

The total variation (TV) distance is a fundamental metric to measure the difference between
two distributions. It is essentially the 𝐿1 distance. Unlike many other quantities for similar
uses, such as the relative entropy and the 𝜒2-divergence, the TV distance does not tensorise
over product distributions. In fact, it was discovered recently that, somewhat surprisingly,
exact computation of the total variation distance, even between product distributions over the
Boolean domain, is #P-hard [1].

This leaves open the question of approximation complexity of the TV distance. In [1],
the authors give polynomial-time randomised approximation algorithms in two special cases
over the Boolean domain, when one of the distribution has marginals over 1/2 and dominates
the other, or when one of the distribution has a constant number of distinct marginals. Their
method is based on Dyer’s dynamic programming algorithm for approximating the number of
knapsack solutions [2].
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In this note, we give a simple polynomial-time approximation algorithm for total variation
distance between two product distributions. Our algorithm is based on the Monte Carlo method
and does not have further restrictions.

THEOREM 1.1. Let [𝑞] = {1, 2, . . . , 𝑞} be a finite set. There exists an algorithm such that given
two product distributions 𝑃, 𝑄 over [𝑞]𝑛 and parameters 𝜀 > 0 and 0 < 𝛿 < 1, it outputs a random
value 𝑑 in time𝑂( 𝑛2

𝜀2 log 1
𝛿) such that (1−𝜀)𝑑TV(𝑃, 𝑄) ≤ 𝑑 ≤ (1+𝜀)𝑑TV(𝑃, 𝑄) holds with probability

at least 1 − 𝛿.

Our algorithm can also handle the case where each coordinate has a different domain size
without any change. In Theorem 1.1, the input product distributions are given by the marginal
probability for each coordinate and each 𝑐 ∈ [𝑞] in binary. The stated running time assumes
that all arithmetic operations can be done in 𝑂(1) time.

To approximate the TV distance, the näıve Monte Carlo algorithm works well when the two
distributions are sufficiently far away. However, when the TV distance is exponentially small,
näıve Monte Carlo may require exponentially many samples to return an accurate estimate.
Our idea is to consider a distribution that can be efficiently sampled from and yet boosts the
probability that the two distributions are different. Ideally, we would want to use the optimal
coupling, but that is difficult to compute. We use instead the coordinate-wise greedy coupling as
a proxy, where each coordinate is coupled optimally independently. We further condition on the
(potentially very unlikely) event that the two samples are different. Normally, conditioning on
an unlikely event is a bad move since computational tasks would become hard. However, here
they are still easy thanks to the independence of the coordinates under the coupling. With this
conditional distribution, our estimator is the ratio between the probabilities of the assignment
in the optimal coupling and in the greedy coupling. We show that this estimator is always
bounded from above by 1 and its expectation is at least 1/𝑛. This means that the standard Monte
Carlo method will succeed with high probability using only polynomially many samples.

One remaining question is if a deterministic approximation algorithm exists for the TV
distance. The answer might be positive, because of the connection with counting knapsack
solutions established by Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, and Vinodchandran
[1], and the deterministic approximation algorithm for the latter problem by Gopalan, Klivans,
Meka, Štefankovič, Vempala, and Vigoda [3, 4, 5].

2. Preliminaries

Let Ω be a (finite) state space, and 𝑃 and 𝑄 be two distributions over Ω. The total variation
distance is defined by

𝑑TV(𝑃, 𝑄) :=
1
2

∑︁
𝜔∈Ω

|𝑃(𝜔) − 𝑄(𝜔) | .
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It satisfies the following:
for any event 𝐴 ⊆ Ω, 𝑑TV(𝑃, 𝑄) ≥ |𝑃(𝐴) − 𝑄(𝐴) |;
for any coupling C between 𝑃 and 𝑄, 𝑑TV(𝑃, 𝑄) ≤ PrC [𝑋 ≠ 𝑌 ], where 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄.

In particular, there exists an event 𝐴𝑂 and an optimal coupling O such that 𝑑TV(𝑃, 𝑄) =

|𝑃(𝐴𝑂) − 𝑄(𝐴𝑂) | = PrO [𝑋 ≠ 𝑌 ]. Optimal couplings are not necessarily unique. For any op-
timal coupling O, it holds that

∀𝜔 ∈ Ω, PrO [𝑋 = 𝑌 = 𝜔] = min{𝑃(𝜔), 𝑄(𝜔)}. (1)

The above equation holds because (1) for any valid coupling C, it holds that PrC [𝑋 = 𝑌 = 𝜔] ≤
min{𝑃(𝜔), 𝑄(𝜔)}; (2) to achieve the optimal coupling, every 𝜔 must achieve the equality. We
have

PrO [𝑋 = 𝜔 ∧ 𝑌 ≠ 𝑋] = PrO [𝑋 = 𝜔] − PrO [𝑋 = 𝑌 = 𝜔] = max{0, 𝑃(𝜔) − 𝑄(𝜔)}. (2)

3. Algorithm

From now on we consider only product distributions. Let Ω = [𝑞]𝑛 be the state space, where
[𝑞] = {1, . . . , 𝑞} is a finite set. Let 𝑃 = 𝑃1 ⊗ 𝑃2 ⊗ · · · ⊗ 𝑃𝑛 and 𝑄 = 𝑄1 ⊗ 𝑄2 ⊗ · · · ⊗ 𝑄𝑛 be two
product distributions. Let O be an (arbitrary) optimal coupling between 𝑃 and 𝑄.

Let C be the coordinate-wise greedy coupling. Namely, for each coordinate 𝑖 and 𝑐 ∈ [𝑞],
PrC [𝑋𝑖 = 𝑌𝑖 = 𝑐] = min{𝑃𝑖 (𝑐), 𝑄𝑖 (𝑐)}, and the remaining probability can be assigned arbitrarily
as long as C is a valid coupling (but each coordinate is independent). In other words, for each
𝑖 ∈ [𝑛], C couples 𝑃𝑖 and 𝑄𝑖 optimally and independently. Note that

PrC [𝑋 ≠ 𝑌 ] = 1 − PrC [𝑋 = 𝑌 ] = 1 −
𝑛∏
𝑖=1

(1 − 𝑑TV(𝑃𝑖 , 𝑄𝑖)) (3)

can be computed exactly.
Consider the distribution 𝜋 such that

𝜋(𝜔) := PrC [𝑋 = 𝜔 | 𝑋 ≠ 𝑌 ] . (4)

We may assume 𝑃 and 𝑄 are not identical, as otherwise the algorithm just outputs 0. This makes
sure that the distribution 𝜋 is well-defined. The following lemma shows that we can draw
random samples from 𝜋 efficiently.

LEMMA 3.1. We can sample from the distribution 𝜋 in 𝑂(𝑛) time.

PROOF . We draw a random sample 𝜔 ∈ [𝑞]𝑛 from 𝜋 index by index. In the 𝑘-th step, where
1 ≤ 𝑘 ≤ 𝑛, we sample 𝜔𝑘 ∈ [𝑞] from 𝜋𝑘 (· | 𝜔1, 𝜔2, . . . , 𝜔𝑘−1), which is the marginal distribution
on the 𝑘-th variable conditional on the values of the first 𝑘 − 1 variables being 𝜔1, 𝜔2, . . . , 𝜔𝑘−1.
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By definition,

𝜋𝑘 (𝜔𝑘 | 𝜔1, 𝜔2, . . . , 𝜔𝑘−1) =
Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖]

Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑋𝑖 = 𝜔𝑖]
.

As 𝜔1, . . . , 𝜔𝑘−1 are sampled from the marginal distribution of 𝜋, the denominator is positive.
We show how to compute the numerator next, and the denominator can be computed similarly.
By definition

Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖] = Pr(𝑋,𝑌 )∼C [∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖 | 𝑋 ≠ 𝑌 ]

(by Bayes’ law) =
(
1 − Pr(𝑋,𝑌 )∼C [𝑋 = 𝑌 | ∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖]

)
·

∏𝑘
𝑖=1 𝑃𝑖 (𝜔𝑖)

1 −∏𝑛
𝑖=1(1 − 𝑑TV(𝑃𝑖 , 𝑄𝑖))

.

In the coupling C, every pair of 𝑋𝑖 and 𝑌𝑖 is coupled optimally and independently. We have

Pr(𝑋,𝑌 )∼C [𝑋 = 𝑌 | ∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖] =
𝑘∏
𝑖=1

PrC [𝑋𝑖 = 𝑌𝑖 = 𝜔𝑖]
PrC [𝑋𝑖 = 𝜔𝑖]

𝑛∏
𝑖=𝑘+1

PrC [𝑋𝑖 = 𝑌𝑖]

(by (1)) =

𝑘∏
𝑖=1

min{𝑃𝑖 (𝜔𝑖), 𝑄𝑖 (𝜔𝑖)}
𝑃𝑖 (𝜔𝑖)

𝑛∏
𝑖=𝑘+1

(1 − 𝑑TV(𝑃𝑖 , 𝑄𝑖)). (5)

Combining the two equations, we can compute Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 = 𝜔𝑖], and thus we
can compute and sample from 𝜋𝑘 (· | 𝜔1, 𝜔2, . . . , 𝜔𝑘−1). When sampling from the distribu-
tion 𝜋, we pre-process

∏𝑛
𝑖=𝑘+1(1 − 𝑑TV(𝑃𝑖 , 𝑄𝑖)) for all 𝑘, and maintain the prefix products∏𝑘

𝑖=1 min{𝑃𝑖 (𝜔𝑖), 𝑄𝑖 (𝜔𝑖)} and
∏𝑘

𝑖=1 𝑃𝑖 (𝜔𝑖). This way, each conditional marginal distribution
can be computed with 𝑂𝑞(1) incremental cost. Hence, the total running time is 𝑂𝑞(𝑛), where
𝑂𝑞(·) hides a factor linear in 𝑞. ■

Let 𝜔 be a random sample from 𝜋. Now consider the following estimator:

𝑓 (𝜔) :=
PrO [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]
PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] =

max{0, 𝑃(𝜔) − 𝑄(𝜔)}
PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] , (6)

where the second equality is due to (2). This estimator 𝑓 is well-defined, because when PrC [𝑋 =

𝜔 ∧ 𝑋 ≠ 𝑌 ] = 0, 𝜋(𝜔) = 0 as well and 𝜔 will not be drawn.
In fact, if 𝜋(𝜔) = 0, or equivalently PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] = 0, it must be that max{0, 𝑃(𝜔) −

𝑄(𝜔)} = 0. This is because PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] = 0 implies that either PrC [𝑋 = 𝜔] = 𝑃(𝜔) = 0
or PrC [𝑋 ≠ 𝑌 | 𝑋 = 𝜔] = 0. In the first case, max{0, 𝑃(𝜔) − 𝑄(𝜔)} = 0. In the second case
PrC [𝑌 = 𝜔 | 𝑋 = 𝜔] = 1, which implies that 𝑄(𝜔) ≥ 𝑃(𝜔), and max{0, 𝑃(𝜔) − 𝑄(𝜔)} = 0 as
well.

LEMMA 3.2. For any 𝜔 ∈ Ω with 𝜋(𝜔) > 0, 𝑓 (𝜔) can be computed in 𝑂(𝑛) time.

PROOF . Note that

PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] = 𝑃(𝜔) PrC [𝑋 ≠ 𝑌 | 𝑋 = 𝜔] = 𝑃(𝜔) (1 − PrC [𝑋 = 𝑌 | 𝑋 = 𝜔]).
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Since 𝜋(𝜔) > 0, it holds that 𝑃(𝜔) > 0. Using (5), we have

𝑓 (𝜔) = max
0,

1 − 𝑄(𝜔)
𝑃(𝜔)

1
𝑃(𝜔) PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]

 = max
0,

1 −∏𝑛
𝑖=1

𝑄𝑖 (𝜔𝑖)
𝑃𝑖 (𝜔𝑖)

1 −∏𝑛
𝑖=1

min{𝑃𝑖 (𝜔𝑖),𝑄𝑖 (𝜔𝑖)}
𝑃𝑖 (𝜔)

 ,

which can be computed in 𝑂(𝑛) time. ■

LEMMA 3.3. We have the following:

E𝜋 𝑓 =
PrO [𝑋 ≠ 𝑌 ]
PrC [𝑋 ≠ 𝑌 ] ; (7)

1
𝑛
≤ E𝜋 𝑓 ≤ 1. (8)

Moreover, for any 𝜔 ∈ Ω with 𝜋(𝜔) > 0,

0 ≤ 𝑓 (𝜔) ≤ 1, (9)

and it holds that

Var𝜋 𝑓 ≤ E𝜋 𝑓 . (10)

PROOF . For (7), Let Ω+ = {𝜔 ∈ Ω | 𝜋(𝜔) > 0}. Then,

E𝜋 𝑓 =
∑︁
𝜔∈Ω+

𝜋(𝜔) × PrO [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]
PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]

=
∑︁
𝜔∈Ω+

PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]
PrC [𝑋 ≠ 𝑌 ] × PrO [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]

PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]

=

∑
𝜔∈Ω+ PrO [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]

PrC [𝑋 ≠ 𝑌 ] =
PrO [𝑋 ≠ 𝑌 ]
PrC [𝑋 ≠ 𝑌 ] ,

where in the last equation we used the aforementioned fact that 𝜋(𝜔) = 0 implies max{0, 𝑃(𝜔)−
𝑄(𝜔)} = 0.

For (8), as O is the optimal coupling, PrO [𝑋 ≠ 𝑌 ] ≤ PrC [𝑋 ≠ 𝑌 ]. For the other direction,
notice that O projected to coordinate 𝑖, denoted O𝑖 , is a coupling between 𝑃𝑖 and 𝑄𝑖 . Thus,

PrO [𝑋 ≠ 𝑌 ] ≥ max
1≤𝑖≤𝑛

PrO𝑖
[𝑋𝑖 ≠ 𝑌𝑖] ≥ max

1≤𝑖≤𝑛
𝑑TV(𝑃𝑖 , 𝑄𝑖) .

On the other hand, by the union bound,

PrC [𝑋 ≠ 𝑌 ] ≤
𝑛∑︁
𝑖=1

PrC𝑖 [𝑋𝑖 ≠ 𝑌𝑖] =
𝑛∑︁
𝑖=1

𝑑TV(𝑃𝑖 , 𝑄𝑖) ≤ 𝑛 max
1≤𝑖≤𝑛

𝑑TV(𝑃𝑖 , 𝑄𝑖).
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For (9), the lower bound is trivial. For the upper bound, we only need to consider 𝜔 ∈ Ω+

such that 𝑃(𝜔) > 𝑄(𝜔). In this case

𝑓 (𝜔) = max{0, 𝑃(𝜔) − 𝑄(𝜔)}
PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] =

𝑃(𝜔) − 𝑄(𝜔)
PrC [𝑋 = 𝜔] PrC [𝑋 ≠ 𝑌 | 𝑋 = 𝜔]

=
𝑃(𝜔) − 𝑄(𝜔)

𝑃(𝜔) (1 − PrC [𝑋 = 𝑌 | 𝑋 = 𝜔]) =
1 − 𝑄(𝜔)

𝑃(𝜔)
1 − PrC [𝑋 = 𝑌 | 𝑋 = 𝜔] .

Since C couples each coordinate independently,

PrC [𝑋 = 𝑌 | 𝑋 = 𝜔] =
𝑛∏
𝑖=1

min{𝑃𝑖 (𝜔𝑖), 𝑄𝑖 (𝜔𝑖)}
𝑃𝑖 (𝜔𝑖)

≤
𝑛∏
𝑖=1

𝑄𝑖 (𝜔𝑖)
𝑃𝑖 (𝜔𝑖)

=
𝑄(𝜔)
𝑃(𝜔) .

This finishes the proof of (9).
For (10), since 0 ≤ 𝑓 (𝜔) ≤ 1 for all Ω ∈ Ω+, 𝑓 (𝜔)2 ≤ 𝑓 (𝜔) and thus E𝜋 𝑓 2 ≤ E𝜋 𝑓 . We have

Var𝜋 𝑓 = E𝜋 𝑓 2 − (E𝜋 𝑓 )2 ≤ E𝜋 𝑓 2 ≤ E𝜋 𝑓 . ■

Lemma 3.3 implies that standard Monte Carlo method can be used to accurately estimate
E𝜋 𝑓 = PrO [𝑋≠𝑌 ]

PrC [𝑋≠𝑌 ] . To implement the Monte Carlo algorithm, we use Lemma 3.1 and Lemma 3.2.
To be more specific, our approximate algorithm is to compute the median of means. The

input contains the descriptions of 2𝑛 distributions 𝑃1, 𝑃2, . . . , 𝑃𝑛, 𝑄1, 𝑄2, . . . , 𝑄𝑛 together with
two parameters 𝜀 > 0 and 0 < 𝛿 < 1. The algorithm proceeds as follows:

for each 𝑖 from 1 to 𝑚 = ⌈10𝑛
𝜀2 ⌉, independently sample 𝜔𝑖 ∼ 𝜋 and let

𝐹 =
1
𝑚

𝑚∑︁
𝑖=1

𝑓 (𝜔𝑖);

use independent samples to compute 𝐹 for 𝑠 = 10⌈log 1
𝛿⌉ times to get 𝐹1, 𝐹2, . . . , 𝐹𝑠 and let

𝐹 = Median{𝐹1, 𝐹2, . . . , 𝐹𝑠};

output the value 𝑑 = (1 −∏𝑛
𝑖=1(1 − 𝑑TV(𝑃𝑖 , 𝑄𝑖)))𝐹.

We claim that

Pr [|𝐹 − E𝜋 𝑓 | ≥ 𝜀E𝜋 𝑓 ] ≤ 1
10

. (11)

Assuming that (11) holds, by the Chernoff bound, it holds that

Pr
[���𝐹 − E𝜋 𝑓

��� ≥ 𝜀E𝜋 𝑓
]
≤ 𝛿.

Using (7) in Lemma 3.3 and (3), we have

Pr
[���𝑑 − 𝑑TV(𝑃, 𝑄)

��� ≥ 𝜀𝑑TV(𝑃, 𝑄)
]
= Pr

[���𝐹 − E𝜋 𝑓
��� ≥ 𝜀E𝜋 𝑓

]
≤ 𝛿.

By Lemma 3.1 and Lemma 3.2, the total running time is 𝑂(𝑛𝑚𝑠) = 𝑂( 𝑛2

𝜀2 log 1
𝛿). This proves

Theorem 1.1.
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Finally, we prove the claim (11). Note that the expectation and the variance of the random
variable 𝐹 satisfy that E 𝐹 = E𝜋 𝑓 and Var 𝐹 = 1

𝑚 Var𝜋 𝑓 . By Chebyshev’s inequality,

Pr [|𝐹 − E𝜋 𝑓 | ≥ 𝜀E𝜋 𝑓 ] = Pr [|𝐹 − E 𝐹 | ≥ 𝜀E 𝐹] ≤ Var 𝐹
𝜀2(E 𝐹)2 =

Var𝜋 𝑓

𝑚𝜀2(E𝜋 𝑓 )2

≤ 1
𝑚𝜀2 E𝜋 𝑓

≤ 𝑛

𝑚𝜀2 ≤ 1
10

. (by (10), (8), and 𝑚 = ⌈10𝑛
𝜀2 ⌉)
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