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Abstract. Real-world object detection models should be cheap and
accurate. Knowledge distillation (KD) can boost the accuracy of a small,
cheap detection model by leveraging useful information from a larger
teacher model. However, a key challenge is identifying the most infor-
mative features produced by the teacher for distillation. In this work,
we show that only a very small fraction of features within a ground-
truth bounding box are responsible for a teacher’s high detection perfor-
mance. Based on this, we propose Prediction-Guided Distillation (PGD),
which focuses distillation on these key predictive regions of the teacher
and yields considerable gains in performance over many existing KD
baselines. In addition, we propose an adaptive weighting scheme over
the key regions to smooth out their influence and achieve even better
performance. Our proposed approach outperforms current state-of-the-
art KD baselines on a variety of advanced one-stage detection architec-
tures. Specifically, on the COCO dataset, our method achieves between
+3.1% and +4.6% AP improvement using ResNet-101 and ResNet-50 as
the teacher and student backbones, respectively. On the CrowdHuman
dataset, we achieve +3.2% and +2.0% improvements in MR and AP,
also using these backbones. Our code is available at https://github.com/
ChenhongyiYang/PGD.

Keywords: Dense object detection · Knowledge distillation

1 Introduction

Advances in deep learning have led to considerable performance gains on object
detection tasks [2,6,11,15,18,25–27,31]. However, detectors can be computation-
ally expensive, making it challenging to deploy them on devices with limited
resources. Knowledge distillation (KD) [1,13] has emerged as a promising app-
roach for compressing models. It allows for the direct training of a smaller student
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(a) Box (b) Box Gaussian (d) Ours(c) FGFI

Fig. 1. A comparison between different foreground distillation regions. The ground-
truth bounding box is marked in blue. The colour heatmaps indicate the distillation
weight for different areas. In contrast to other methods (a)–(c) [9,30,34], Our approach
(d) focuses on a few key predictive regions of the teacher.

model [17,24,28,33] using information from a larger, more powerful teacher model;
this helps the student to generalise better than if trained alone.

KD was first popularised for image classification [13] where a student model
is trained to mimic the soft labels generated by a teacher model. However, this
approach does not work well for object detection [34] which consists of jointly
classifying and localising objects. While soft label-based KD can be directly
applied for classification, finding an equivalent for localisation remains a chal-
lenge. Recent work [8,9,30,34,35,37,41] alleviates this problem by forcing the
student model to generate feature maps similar to the teacher counterpart; a
process known as feature imitation.

However, which features should the student imitate? This question is of the
utmost importance for dense object detectors [6,15,18,31,38,42] because, unlike
two-stage detectors [2,11,27], they do not use the RoIAlign [11] operation to
explicitly pool and align object features; instead they output predictions at every
location of the feature map [16]. Recent work [30,35] has shown that distilling the
whole feature map with equal weighting is sub-optimal because not all features
carry equally meaningful information. Therefore, a weighting mechanism that
assigns appropriate importance to different regions, particularly to foreground
regions near the objects, is highly desirable for dense object detectors, and has
featured in recent work. For example, in DeFeat [9], foreground features that
lie within ground truth (GT) boxes (Fig. 1a) are distilled with equal weighting.
In [30] the authors postulate that useful features are located at the centre of
GT boxes and weigh the foreground features using a Gaussian (Fig. 1b). In Fine-
grained Feature Imitation (FGFI) [34], the authors distil features covered by
anchor boxes whose Intersection over Union (IoU) with the GTs are above a
certain threshold (Fig. 1c).

In this paper, we treat feature imitation for foreground regions differently.
Instead of assigning distillation weights using hand-design policies, we argue
that feature imitation should be conducted on a few key predictive regions: the
locations where the teacher model generates the most accurate predictions. Our
intuition is that these regions should be distilled because they hold the infor-
mation that leads to the best predictions; other areas will be less informative
and can contaminate the distillation process by distracting from more essential
features. To achieve our goal, we adapt the quality measure from [6] to score
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teacher predictions. Then, we conduct an experiment to visualise how these
scores are distributed and verify that high-scoring key predictive regions con-
tribute the most to teacher performance. Those findings drive us to propose a
Prediction-Guided Weighting (PGW) module to weight the foreground distil-
lation loss: inspired by recent progress in label assignment [6,20,32,38,42] for
dense detectors, we sample the top-K positions with the highest quality score
from the teacher model and use an adaptive Gaussian distribution to fit the key
predictive regions for smoothly weighting the distillation loss. Figure 1d shows a
visual representation of the regions selected for distillation. We call our method
Prediction-Guided Distillation (PGD). Our contributions are as follows:

1. We conduct experiments to study how the quality scores of teacher predictions
are distributed in the image plane and observe that the locations that make
up the top-1% of scores are responsible for most of the teacher’s performance
in modern state-of-the-art dense detectors.

2. Based on our observations, we propose using the key predictive regions of the
teacher as foreground features. We show that focusing distillation mainly on
these few areas yields significant performance gains for the student model.

3. We introduce a parameterless weighting scheme for foreground distillation
pixels and show that when applied to our key predictive regions, we achieve
even stronger distillation performance.

4. We benchmark our approach on the COCO and CrowdHuman datasets and
show its superiority over the state-of-the-art across multiple detectors.

2 Related Work

Dense Object Detection. In the last few years, object detection has seen
considerable gains in performance [2,3,6,11,15,18,25–27,31]. The demand for
simple, fast models has brought one-stage detectors into the spotlight [6,31]. In
contrast to two-stage detectors, one-stage detectors directly regress and classify
candidate bounding boxes from a pre-defined set of anchor boxes (or anchor
points), alleviating the need for a separate region proposal mechanism. Anchor-
based detectors [6,18] achieve good performance by regressing from anchor boxes
with pre-defined sizes and ratios. In contrast, anchor-free methods [15,31,42]
regress directly from anchor points (or locations), eliminating the need for the
additional hyper-parameters used in anchor-based models. A vital challenge for
detectors is determining which bounding box predictions to label as positive and
negative – a problem frequently referred to as label assignment [42]. Anchors are
commonly labelled as positives when their IoU with the GT is over a certain
threshold (e.g. IoU ≥ 0.5) [18,31], however, more elaborate mechanisms for label
assignment have been proposed [6,31,38,42]. For example, FCOS [31] applies a
weighting scheme to suppress low-quality positive predictions using a “center-
ness” score. Other works dynamically adjust the number of positive instances
according to statistical characteristics [38] or by using a differentiable confidence
module [42]. In DDOD [6], the authors separate label assignment for the clas-
sification and regression branches and balance the influence of positive samples
between different scales of the feature pyramid network (FPN).
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Knowledge Distillation for Object Detection. Early KD approaches for
classification focus on transferring knowledge to student models by forcing their
predictions to match those of the teacher [13]. More recent work [34,35,41] claims
that feature imitation, i.e. forcing the intermediate feature maps of student mod-
els to match their teacher counterpart, is more effective for detection. A vital
challenge when performing feature imitation for dense object detectors is deter-
mining which feature regions to distil from the teacher model. Naively distilling
all feature maps equally results in poor performance [9,30,35]. To solve this
problem, FGFI [34] distils features that are covered by anchor boxes which
have a high IoU with the GT. However, distilling in this manner is still sub-
optimal [8,30,35,40,41]. TADF [30] suppresses foreground pixels according to a
static 2D Gaussian fitted over the GT. LD [40] gives higher priority to central
locations of the GT using DIoU [39]. GID [8] propose to use the top-scoring pre-
dictions using L1 distance between the classifications scores of the teacher and
the student, but do not account for location quality. In LAD [21], the authors
use label assignment distillation where the detector’s encoded labels are used to
train a student. Others weight foreground pixels according to intricate adaptive
weighting or attention mechanisms [8,14,35,36,41]. However, these weighting
schemes still heavily rely on the GT dimensions, and they are agnostic to the
capabilities of the teacher. In contrast, we focus distillation on only a few key
predictive regions using a combination of classification and regression scores as a
measure of quality. We then smoothly aggregate and weigh the selected locations
using an estimated 2D Gaussian, which further focuses distillation and improves
performance. This allows us to dynamically adjusts to different sizes and orien-
tations of objects independently of the GT dimensions while accounting for the
teacher’s predictive abilities.

3 Method

We begin by describing how to measure the predictive quality of a bound-
ing box prediction and find the key predictive regions of a teacher network
(Sect. 3.1). Then, we introduce our Prediction-Guided Weighting (PGW) mod-
ule that returns a foreground distillation mask based on these regions (Sect. 3.2).
Finally, we describe our full Prediction-Guided Distillation pipeline (Sect. 3.3).

3.1 Key Predictive Regions

Our goal is to amplify the distillation signal for the most meaningful features
produced by a teacher network. For this purpose, we look at the quality of a
teacher’s bounding box predictions taking both classification and localisation
into consideration, as defined in [6]. Formally, the quality score of a box b̂(i,j)
predicted from a position Xi = (xi, yi) w.r.t. a ground truth b is:

q(b̂(i,j), b) = 1 [Xi ∈ b]
︸ ︷︷ ︸

indicator

·
(

p̂(i,j)(b)
)1−ξ

︸ ︷︷ ︸

classification

·
(

IoU
(

b, b̂(i,j)
)
)ξ

︸ ︷︷ ︸

localisation

(1)
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(a) ATSS (b) FCOS (c) AutoAssign (d) GFL (e) DDOD

Fig. 2. A visualisation of quality scores for various dense object detectors with ξ = 0.8
following [6]. We acquire the quality heatmap by taking the maximum value at each
position across FPN layers.

where 1 [Xi ∈ Ωb] is an indicator function that is 1 if Xi lies inside box b and 0
otherwise; p̂(i,j)(b) is the classification probability w.r.t. the GT box’s category;
IoU

(

b, b̂(i,j)
)

is the IoU between the predicted and ground-truth box; ξ is a
hyper-parameter that balances classification and localisation. We calculate the
quality score of location Xi as the maximum value of all prediction scores for that
particular location, i.e. q̂i = maxj∈Ji

q(b̂(i,j), b), where Ji is the set of predictions
at location Xi. While this quality score has been applied for standard object
detection [6], we are the first to use it to identify useful regions for distillation.

In Fig. 2 we visualise the heatmaps of prediction quality scores for five state-
of-the-art detectors, including anchor-based (ATSS [38] and DDOD [6]) and
anchor-free (FCOS [31], GFL [15] and AutoAssign [42]) detectors. Across all
detectors, we observe some common characteristics: (1) For the vast majority of
objects, high scores are concentrated around a single region; (2) The size of this
region doesn’t necessarily correlate strongly with the size of the actual GT box;
(3) Whether or not the centring prior [31,42] is applied for label assignment
during training, this region tends to be close to the centre of the GT box. These
observations drive us to develop a Prediction-Guided Weighting (PGW) module
to focus the distillation on these important regions.

3.2 Prediction-Guided Weighting Module

The purpose of KD is to allow a student to mimic a teacher’s strong gener-
alisation ability. To better achieve this goal, we propose to focus foreground
distillation on locations where a teacher model can yield predictions with the
highest quality scores because those locations contain the most valuable infor-
mation for detection and are critical to a teacher’s high performance. In Fig. 3
we present the results of a pilot experiment to identify how vital these high-
scoring locations are for a detector. Specifically, we measure the performance of
different pre-trained detectors after masking out their top-X% predictions before
non-maximum suppression (NMS) during inference. We observe that in all cases
the mean Averaged Precision (mAP) drops dramatically as the mask-out ratio
increases. Masking out the top-1% of predictions incurs around a 50% drop in



128 C. Yang et al.

C
O

C
O

 m
A

P

0

12.5

25

37.5

50

Mask-out Ratio (%)

0 0.05 0.1 0.5 1 5 10 20

FCOS ATSS AutoAssign GFL DDOD

Fig. 3. COCO mAP performance of pre-trained detectors after ignoring predictions in
the top-X% of quality scores during inference. We observe that the top-1% predictions
within the GT box region are responsible for most performance gains.

AP. This suggests that the key predictive regions (responsible for the majority
of a dense detector’s performance) lie within the top-1% of all anchor positions
bounded by the GT box.

Given their significance, how do we incorporate these regions into distillation?
We could simply use all feature locations weighted by their quality score, however,
as we show in Sect. 4.3 this does not yield the best performance. Inspired by recent
advances in label assignment for dense object detectors [6,32], we instead propose
to focus foreground distillation on the top-K positions (feature pixels) with the
highest quality scores across all FPN levels. We then smooth the influence of each
position according to a 2D Gaussian distribution fitted by Maximum-Likelihood
Estimation (MLE) for each GT box. Finally, foreground distillation is conducted
only on those K positions with their weights assigned by the Gaussian.

Formally, for an object o with GT box b, we first compute the quality score
for each feature pixel inside b, then we select the K pixels with the highest
quality score T o = {(Xo

k , lok)|k = 1, ...,K} across all FPN levels, in which Xo
k

and lok are the absolute coordinate and the FPN level of the k-th pixel. Based
on our observation in Sect. 3.1, we assume the selected pixels T o

k are drawn as
T o

k ∼ N (μ,Σ|o) defined on the image plane and use MLE to estimate μ and Σ:

μ̂ =
1
K

K
∑

k=1

Xo
k , Σ̂ =

1
K

K
∑

k=1

(Xo
k − μ̂)(Xo

k − μ̂)T (2)

Then, for every feature pixel P(i,j),l on FPN layer l with absolute coordinate
Xi,j , we compute its distillation importance w.r.t. object o by:

Io
(i,j),l =

{

0 P(i,j),l /∈ T o

exp
(− 1

2 (Xi,j − μ̂)Σ̂−1(Xi,j − μ̂)T
)

P(i,j),l ∈ T o
(3)

If a feature pixel has non-zero importance for multiple objects, we use its maxi-
mum: I(i,j),l = maxo {Io

(i,j),l}. Finally, for each FPN level l with size Hl ×Wl, we
assign the distillation weight M(i,j),l by normalising the distillation importance
by the number of non-zero importance pixels at that level:
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Fig. 4. Our Prediction-Guided Distillation (PGD) pipeline. The Prediction-Guided
Weighting (PGW) modules find the teacher’s key predictive regions and generates a
foreground distillation weighting mask by fitting a Gaussian over these regions. Our
pipeline also adopts the attention masks from FGD [35] and distils them together with
the features. We distil the classification and regression heads separately to accommo-
date for these two distinct tasks [6].

M(i,j),l =
I(i,j),l

∑Hl

i=1

∑Wl

j=1 1(i,j),l

(4)

where 1(i,j),l is an indicator function that outputs 1 if I(i,j),l is not zero. The pro-
cess above constitutes our Prediction-Guided Weighting (PGW) module whose
output is a foreground distillation weight M across all feature levels and pixels.

3.3 Prediction-Guided Distillation

In this section, we introduce our KD pipeline, which is applicable to any dense
object detector. We build our work on top of the state-of-the-art Focal and Global
Distillation (FGD) [35] and incorporate their spatial and channel-wise attention
mechanisms. In contrast to other distillation methods, we use the output mask
from our PGW module to focus the distillation loss on the most important
foreground regions. Moreover, we decouple the distillation for the classification
and regression heads to better suit the two different tasks [6,22]. An illustration
of the pipeline is shown in Fig. 4.

Distillation of Features. We perform feature imitation at each FPN level,
encouraging feature imitation on the first feature maps of the regression and
classifications heads. Taking inspiration from [6], we separate the distillation
process for the classification and regression heads – distilling features of each
head independently. Formally, at each feature level of the FPN, we generate two
foreground distillation masks Mcls,Mreg ∈ RH×W with different ξcls and ξreg

using PGW. Then, student features FS,cls, FS,reg ∈ RC×H×W are encouraged
to mimic teacher features FT,cls, FT,reg ∈ RC×H×W as follows:
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Lcls
fea =

C
∑

k=1

H
∑

i=1

W
∑

j=1

(αMcls
i,j + βN cls

i,j )PT,cls
i,j AT,cls

k,i,j (FT,cls
k,i,j − FS,cls

k,i,j )2 (5)

Lreg
fea =

C
∑

k=1

H
∑

i=1

W
∑

j=1

γMreg
i,j AT,reg

k (FT,reg
k,i,j − FS,reg

k,i,j )2 (6)

where α, β, γ are hyperparameters to balance between loss weights; N cls

is the normalised mask over background distillation regions: N cls
i,j =

1−
i,j/

∑H,W
h=1,w=1 1

−
w,h where 1−

a,b is the background indicator that becomes 1 if
pixel (a, b) does not lie within any GT box. P and A are spatial and channel
attention maps from [35] as defined below. Note, we do not use the Global Distil-
lation Module in FGD and the adaptation layer that is commonly used in many
KD methods [4,9,34,35,37,41] as we find them have negligible impact to the
overall performance.

Distillation of Attention. We build on the work in FGD [35] and addition-
ally encourage the student to imitate the attention maps of the teacher. We
use spatial attention as defined in [35], but we modify their channel attention
by computing it independently for each feature location instead of all spatial
locations. Specifically, we define spatial attention P ∈ R1×H×W and channel
attention A ∈ RC×H×W over a single feature map F ∈ RC×H×W as follows:

Pi,j =
HW · exp (

∑C
k=1 |Fk,i,j |/τ)

∑H
i=1

∑W
j=1 exp (

∑C
k=1 |Fk,i,j |/τ)

, Ak,i,j =
C · exp (|Fk,i,j |/τ)

∑C
k=1 exp (|Fk,i,j |/τ)

(7)

Similar to feature distillation, we decouple the attention masks for classifica-
tion and regression for the teacher and student: AT,cls, AT,reg, PS,cls. The two
attention losses are defined as follows:

Lcls
att =

δ

HW

H
∑

i=1

W
∑

j=1

|PT,cls
i,j − PS,cls

i,j | +
δ

CHW

C
∑

k=1

H
∑

i=1

W
∑

j=1

|AT,cls
k,i,j − AS,cls

k,i,j | (8)

Lreg
att =

δ

C
∑H

i=1

∑W
j=1 1i,j

H
∑

i=1

W
∑

j=1

C
∑

k=1

1i,j |AT,reg
k,i,j − AS,reg

k,i,j | (9)

where δ is balancing loss weight hyperparameter; and 1i,j is an indicator that
becomes 1 when Mreg

i,j �= 0.

Full Distillation. The full distillation loss is

Ldistill = Lcls
fea + Lreg

fea + Lcls
att + Lreg

att (10)

4 Experiments

4.1 Setup and Implementation Details

We evaluate PGD on two benchmarks: COCO [19] for general object detection
and CrowdHuman [29] for crowd scene detection; this contains a large number of



Prediction-Guided Distillation 131

Table 1. A comparison between our PGD with other state-of-the-art distillation meth-
ods on COCO mini-val set. All models are trained locally. We set hyper-parameters
for competing methods following their paper or open-sourced code bases.

Detector Setting AP AP50 AP75 APS APM APL

FCOS [31] Teacher 43.1 62.4 46.6 25.5 47.1 54.7

Student 38.2 57.9 40.5 23.1 41.3 49.4

DeFeat [9] 40.7(+2.5) 60.5(+2.6) 43.5(+3.0) 24.7(+1.6) 44.4(+3.1) 52.4(+3.0)

FRS [41] 40.9(+2.7) 60.6(+2.7) 44.0(+3.5) 25.0(+1.9) 44.4(+3.1) 52.6(+3.2)

FKD [37] 41.3(+3.1) 60.9(+3.0) 44.1(+3.6) 23.9(+0.8) 44.9(+3.6) 53.8(+4.4)

FGD [35] 41.4(+3.2) 61.1(+3.2) 44.2(+3.7) 25.3(+2.2) 45.1(+3.8) 53.8(+4.4)

Ours 42.5(+4.3) 62.0(+4.1) 45.4(+4.9) 24.8(+1.7) 46.1(+5.8) 55.5(+6.1)

Auto- Teacher 44.8 64.1 48.9 27.3 48.8 57.5

Assign [42] Student 40.6 60.1 43.8 23.6 44.3 52.4

DeFeat [9] 42.3(+1.7) 61.6(+1.5) 46.1(+2.3) 24.1(+0.5) 46.0(+1.7) 54.4(+2.0)

FRS [41] 42.4(+1.8) 61.9(+1.8) 46.0(+2.2) 24.9(+1.3) 46.0(+1.7) 54.8(+2.4)

FKD [37] 42.8(+2.2) 62.1(+2.0) 46.5(+2.7) 25.7(+2.1) 46.4(+2.1) 55.5(+3.1)

FGD [35] 43.2(+2.6) 62.5(+2.4) 46.9(+3.1) 25.2(+1.6) 46.7(+2.4) 56.2(+3.8)

Ours 43.8(+3.1) 62.9(+2.8) 47.4(+3.6) 25.8(+2.2) 47.3(+3.0) 57.5(+5.1)

ATSS [38] Teacher 45.5 63.9 49.7 28.7 50.1 57.8

Student 39.6 57.6 43.2 23.0 42.9 51.2

DeFeat [9] 41.8(+2.2) 60.3(+2.7) 45.3(+2.1) 24.8(+1.8) 45.6(+2.7) 53.5(+2.3)

FRS [41] 41.6(+2.0) 60.1(+2.5) 44.8(+1.6) 24.9(+1.9) 45.2(+2.3) 53.2(+2.0)

FGFI [34] 41.8(+2.2) 60.3(+2.7) 45.3(+2.1) 24.8(+1.8) 45.6(+2.7) 53.5(+2.3)

FKD [37] 42.3(+2.7) 60.7(+3.1) 46.2(+3.0) 26.3(+3.3) 46.0(+3.1) 54.6(+3.4)

FGD [35] 42.6(+3.0) 60.9(+3.3) 46.2(+3.0) 25.7(+2.7) 46.7(+3.8) 54.5(+3.3)

Ours 44.2(+4.6) 62.3(+4.7) 48.3(+5.1) 26.5(+3.5) 48.6(+5.7) 57.1(+5.9)

GFL [15] Teacher 45.8 64.2 49.8 28.3 50.3 58.6

Student 40.2 58.4 43.3 22.7 43.6 52.0

DeFeat [9] 42.1(+1.9) 60.5(+2.1) 45.2(+1.9) 24.4(+1.7) 46.1(+2.5) 54.5(+2.5)

FRS [41] 42.2(+2.0) 60.6(+2.2) 45.6(+2.3) 24.7(+2.0) 46.0(+2.4) 55.5(+3.5)

FKD [37] 43.1(+2.9) 61.6(+3.2) 46.6(+3.3) 25.1(+2.4) 47.2(+3.6) 56.5(+4.5)

FGD [35] 43.2(+3.0) 61.8(+3.4) 46.9(+3.6) 25.2(+2.5) 47.5(+3.9) 56.2(+4.2)

LD [40] 43.5(+3.3) 61.8(+3.4) 47.4(+4.1) 24.7(+2.0) 47.5(+3.9) 57.3(+5.3)

Ours 43.8(+3.6) 62.0(+3.6) 47.4(+4.1) 25.4(+2.7) 47.8(+4.2) 57.6(+5.6)

DDOD [6] Teacher 46.6 65.0 50.7 29.0 50.5 60.1

Student 42.0 60.2 45.5 25.7 45.6 54.9

DeFeat [9] 43.2(+1.2) 61.6(+1.4) 46.7(+1.2) 25.7(+0.0) 46.5(+0.9) 57.3(+2.4)

FRS [41] 43.7(+1.7) 62.2(+2.0) 47.6(+2.1) 25.7(+0.0) 46.8(+1.2) 58.1(+3.2)

FGFI [34] 44.1(+2.1) 62.6(+2.4) 47.9(+2.4) 26.3(+0.6) 47.3(+1.7) 58.5(+3.6)

FKD [37] 43.6(+1.6) 62.0(+1.8) 47.1(+1.6) 25.9(+0.2) 47.0(+1.4) 58.1(+3.2)

FGD [35] 44.1(+2.1) 62.4(+2.2) 47.9(+2.4) 26.8(+1.1) 47.2(+1.6) 58.5(+3.6)

Ours 45.4(+3.4) 63.9(+3.7) 49.0(+3.5) 26.9(+1.2) 49.2(+3.6) 59.7(+4.8)

heavily occluded objects. Our codebase is built on PyTorch [23] and the MMDe-
tection [5] toolkit and is available at https://github.com/ChenhongyiYang/
PGD. All models are trained on 8 Nvidia 2080Ti GPUs. For both COCO and
CrowdHuman, all models are trained using batch sizes of 32 and with an initial
learning rate of 0.02, we adopt ImageNet pre-trained backbones and freeze all

https://github.com/ChenhongyiYang/PGD
https://github.com/ChenhongyiYang/PGD
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Batch Normalisation layers during training. Unless otherwise specified, on both
dataset we train teacher models for 3× schedule (36 epochs) [10] with multi-
scale inputs using ResNet-101 [12] as backbone, and train student models for 1×
schedule (12 epochs) with single-scale inputs using ResNet-50 as backbone. The
COCO models are trained using the train2017 set and evaluated on mini-val
set following the official evaluation protocol [19]. The CrowdHuman models are
trained using the CrowdHuman training set, which are then evaluated on the
CrowdHuman validation set following [7]. We set K in the top-K operation to
30 for all detectors and set α to 0.8 and 0.4 for anchor-based and anchor-free
detectors respectively. Following [35], we set σ = 0.0008, τ = 0.8 and β = 0.5α;
we set ξcls = 0.8 and ξreg = 0.6 following [6]. We empirically set γ = 1.6α with
minimal tuning.

Table 2. Distillation results on COCO mini-val using MobileNetV2 as the student
backbone.

Detector Setting AP AP50 AP75 APS APM APL

FCOS Teacher 43.1 62.4 46.6 25.5 47.1 54.7

Student 32.8 51.3 34.5 18.4 35.4 42.6

FGD 34.7(+1.9) 53.0(+1.7) 36.8(+2.3) 19.8(+1.4) 36.8(+1.4) 44.9(+2.3)

Ours 37.3(+4.5) 55.6(+4.3) 39.8(+5.3) 20.5(+2.1) 40.3(+4.9) 49.9(+7.3)

ATSS Teacher 45.5 63.9 49.7 28.7 50.1 57.8

Student 33.5 50.1 36.0 18.7 36.2 43.6

FGD 35.8(+2.3) 52.6(+2.5) 38.8(+2.8) 20.6(+1.9) 38.4(+2.2) 46.2(+2.6)

Ours 38.3(+4.8) 55.1(+5.0) 41.7(+5.7) 21.3(+2.6) 41.6(+5.4) 51.6(+8.0)

4.2 Main Results

Comparison with State-of-the-Art. We compare our PGD and other recent
state-of-the-art object detection KD approaches for five high-performance dense
detectors on COCO; these are a mixture of anchor-based (ATSS and DDOD) and
anchor-free (FCOS, GFL and AutoAssign) detectors for COCO. The results are
presented in Table 1. We use the same teacher and student models and the same
training settings in each case, and all training is conducted locally. For competing
distillation methods, we follow the hyper-parameter settings in their correspond-
ing papers or open-sourced code repositories. We observe that our methods sur-
pass other KD methods with a large margin for all five detectors, which validates
the effectiveness of our approach. Our approach significantly improvement over
the baseline approach FGD [35] and even outperforms LD [40] when applied to
GFL [15], which was specifically designed for this detector. We observe PGD is
particularly good at improving the AP75 of student models, suggesting that the
student model’s localisation abilities have been largely improved.

Distilling to a Lightweight Backbone. Knowledge Distillation is usually
used to transfer useful information from a large model to a lightweight model
suitable for deployment on the edge. With this in mind, we apply PGD using
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Table 3. A comparison between our PGD with other state-of-the-art distillation meth-
ods on CrowdHuman validation set using DDOD as object detector.

Setting MR ↓ AP ↑ JI ↑
Teacher 41.4 90.2 81.4

Student 46.0 88.0 79.0

FKD [] 44.3(–1.7) 89.1(+1.1) 80.0(+1.0)

DeFeat [9] 44.2(–1.8) 89.1(+1.1) 79.9(+0.9)

FRS [41] 44.1(–1.9) 89.2(+1.2) 80.3(+1.3)

FGFI [34] 43.8(–2.2) 89.2(+1.2) 80.3(+1.3)

FGD [35] 43.1(–2.9) 89.3(+1.3) 80.4(+1.4)

Ours 42.8(–3.2) 90.0(+2.0) 80.7(+1.7)

a ResNet-101 as the teacher backbone and a MobileNet V2 [28] as the stu-
dent backbone on anchor-based (ATSS) and anchor-free (FCOS) detectors. The
results are provided in Table 2. Our method surpasses the baseline by a signifi-
cant margin, pointing to its potential for resource-limited applications.

Distillation for Crowd Detection. We compare our approach to other KD
methods on the challenging CrowdHuman dataset that features heavily crowded
scenes. We use the DDOD object detector for this experiment as it achieves the
strongest performance. In addition to detection AP, we report the log miss rate
(MR) [7] designed for evaluation in crowded scenes as well as the Jaccard Index
(JI) that evaluates a detector’s counting ability. The results are available in
Table 3. Our approach performs better than all competing methods. While FGD
achieves comparable MR and JI scores to our method, the AP for our methods
is significantly greater. We believe this is because PGD strongly favours highly
accurate predictions during distillation, which directly impacts the AP metric.

Table 4. Self-distillation performance on COCO mini-val. ResNet-50 is adopted as
teacher and student backbone, which are both trained for 1× schedule.

Detector Setting AP AP50 AP75 APS APM APL

FCOS S & T 38.2 57.9 40.5 23.1 41.3 49.4

FGD 39.0(+0.8) 58.6(+0.7) 41.4(+0.9) 23.7(+0.6) 42.1(+0.8) 50.6(+1.2)

Ours 39.5(+1.3) 59.2(+1.3) 41.9(+1.4) 24.4(+1.3) 42.8(+1.5) 50.6(+1.2)

ATSS S & T 39.6 57.6 43.2 23.0 42.9 51.2

FGD 40.2(+0.6) 58.6(+1.0) 43.6(+1.4) 23.3(+0.3) 43.7(+0.8) 52.3(+1.1)

Ours 40.7(+1.1) 58.9(+1.3) 44.2(+2.0) 24.0(+0.9) 44.2(+1.3) 52.9(+1.7)

Self-distillation. Self-distillation is a special case of knowledge distillation
where the teacher and student models are exactly same. It is useful as it can boost
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a model’s performance while avoiding introducing extra parameters. We com-
pare the our method’s self-distillation performance with the baseline FGD and
present results for both anchor-free FCOS and anchor-based ATSS in Table 4.
The teachers and students use ResNet-50 as backbone and are trained with 1×
schedule using single-scale inputs. We can see that our approach achieves a better
performance than the baseline, indicating its effectiveness in self-distillation.

Table 5. Ablation study on different foreground distillation strategies on COCO mini-
val seet using ATSS as object detector.

Setting AP AP50 AP75 APS APM APL

Teacher 45.5 63.9 49.7 28.7 50.1 57.8

Student 39.6 57.6 43.2 23.0 42.9 51.2

Box 43.3 (+3.7) 61.4(+3.8) 47.2(+4.0) 25.9(+2.9) 47.6(+4.7) 56.4(+5.2)

BoxGauss 43.7(+4.1) 61.9(+4.3) 47.6(+4.4) 26.7(+3.7) 47.8(+4.9) 56.6(+5.4)

Centre 43.1(+3.5) 61.0(+3.4) 46.9(+3.7) 25.9(+2.9) 47.3(+4.4) 56.1(+4.9)

Quality 43.8(+4.2) 61.8(+4.2) 47.8(+4.6) 25.7(+2.7) 48.2(+5.3) 56.8(+5.6)

TopkEq 43.9(+4.3) 62.0(+4.4) 47.7(+4.5) 27.1(+4.1) 48.0(+5.1) 56.8(+5.6)

KDE 44.0(+4.4) 62.1(+4.5) 47.8(+4.6) 26.3(+3.3) 48.5(+5.6) 56.8(+5.6)

Ours 44.2(+4.6) 62.3(+4.7) 48.3(+5.1) 26.5(+3.5) 48.6(+5.7) 57.1(+5.9)

Table 6. Hyper-parameter ablation studies on COCO mini-val.

K 1 5 9 15 30 45 60

AP 43.2 43.5 43.6 43.9 44.2 44.0 43.9

Ablation study on different K in the top-K operation using ATSS as detector.

α 0.005 0.01 0.03 0.05 0.07 0.1 0.2

FCOS 41.7 42.0 42.5 42.5 42.4 42.2 41.8

ATSS 42.9 43.2 43.7 43.9 44.2 44.1 43.2

Ablation study on distillation loss magnitude α using FCOS and ATSS.

4.3 Ablation Study

Comparing Foreground Distillation Strategies. We compare alternative
strategies for distilling foreground regions to investigate how important is distill-
ing different foreground regions. We use ATSS as our object detector and present
results in Table 5. Note here we only modify the foreground distillation strategy
while keeping everything else the same. We first evaluate the strategy used in
FGD [35] and DeFeat [9], where regions in the GT box are distilled equally.
We dub this the Box strategy (Fig. 1a). Compared to our method, Box achieves
0.9 AP worse performance. A possible reason for this is that it can include
sub-optimal prediction locations that distract from more meaningful features.
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Note that the Box strategy still outperforms the baseline FGD, we attribute
this improvement to the decoupling of distillation for classification and regres-
sion branches. Several works [30,40] postulate that most meaningful regions lie
near the centre of the GT box. We evaluate the BoxGauss strategy that was
proposed in TADF [30] (Fig. 4b). Specifically, a Gaussian distribution is used to
weight the distillation loss, where its mean is the centre of the GT box, and the
standard deviation is calculated from the box dimensions. This strategy yields
+0.4 AP improvement over vanilla Box strategy, suggesting the importance of
focusing on the centre area; however, it is still surpassed by our approach. We
consider a Centre strategy, which distils a 0.2H × 0.2W area at the middle of
the GT box. Somewhat surprisingly, this achieves an even worse AP than the
vanilla Box strategy in almost all instances, with comparable performance on
small objects. A possible explanation is that a fixed ratio region fails to cover
the full span of useful regions for different-sized objects and limits the amount
of distilled information. Then we compare to an adaptive loss weighting mecha-
nism where we directly use the quality score in Eq. 1 to weight features for the
distillation loss. The strategy—which we refer to as Quality—improves slightly
on BoxGauss, especially for medium and high scoring boxes. However, it signifi-
cantly under-performs on small objects. In contrast, the TopkEq strategy, where
we limit distillation to only the top-K pixels according to the quality score (we
set K = 30 to match our method), provides a significant improvement to the
detection of small objects. A possible explanation for this is that distilling on
positions with lower scores still introduces considerable noise, whereas limiting
distillation to only the highest-scoring pixels focuses the student towards only
the most essential features of the teacher. Finally, we compare our method to
one that replaces the Gaussian MLE with kernel density estimation, the KDE
strategy. It achieves similar performance to our Gaussian MLE approach, but is
more complicated.

Hyper-Parameter Settings. Here, we examine the effect of changing two
important hyper-parameters used in our approach, as presented in Table 6. The
first is K, which is the number of high-scoring pixels used for distillation. The
best performance is obtained for K = 30. Small K can cause distillation to
neglect important regions, whereas large K can introduce noise that distracts the
distillation process from the most essential features. The second hyper-parameter
we vary is α which controls the magnitude of the distillation loss. We can see
how this affects performance for anchor-based ATSS and anchor-free FCOS. We
find that the ATSS’s performance is quite robust when α is between 0.05–0.1,
and FCOS can achieve good performance when α is between 0.03–0.1. For both
types of detectors, a small α will minimise the effect of distillation, and a large
α can make training unstable.

Decoupled Distillation. In our pipeline, we decouple the KD loss to distil the
classification and regression heads separately (see Sect. 3.3). This practice differs
from previous feature imitation-based approaches where the FPN neck features
are distilled. Here we conduct experiments to test this design and present the
result in Table 7. Firstly, we remove the regression KD loss and only apply the
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classification KD loss using FPN features. The model achieves 43.6 mAP on
COCO. Then we test only applying the classification KD loss using the clas-
sification feature map; the performance improves very slightly (by 0.2). Next,
we only test the regression KD loss using the regression features, resulting in
41.7 COCO mAP. The performance is significantly harmed because the regres-
sion KD loss only considers foreground regions while ignoring background areas.
Finally, we come to our design by combining both classification and regression
KD losses, which achieves the best performance, at 44.2 COCO mAP.

(a) (b) (c) (d) (e)

Fig. 5. Visualisation of the detection results on COCO mini-val set using ATSS as
detector and PGD for distillation. GTs are shown in blue; plain student detections are
shown in red; distilled student predictions are shown in orange. (Color figure online)

Table 7. Comparison between different distillation branches.

neck cls reg AP AP50 AP75 APS APM APL

- - - 39.6 57.6 43.2 23.0 42.9 51.2

� 43.6(+4.0) 61.8(+4.2) 47.5(+4.3) 26.1(+3.1) 47.8(+4.9) 56.8(+5.6)

� 43.8(+4.2) 62.1(+4.5) 47.5(+4.3) 26.5(3.5) 48.0(+5.1) 56.8(+5.6)

� 41.7(+2.1) 60.2(+2.6) 45.2(+2.0) 25.3(+2.3) 45.4(+2.5) 53.9(+2.7)

� � 44.2(+4.6) 62.3(+4.7) 48.3(+5.1) 26.5(+3.5) 48.6(+5.7) 57.1(+5.9)

Qualitative Studies. We visualise box predictions using ATSS as our object
detector in Fig. 5, in which we show GT boxes alongside student predictions with
and without distillation using PGD. While the high-performance ATSS is able
to accurately detect objects in most cases, we observe some clear advantages
of using our distillation approach: it outputs fewer false positives (Fig. 5b,c),
improves detection recall (Fig. 5a,d), and localises objects better (Fig. 5b,d,e).

5 Conclusion

In this work, we highlight the need to focus distillation on features of the teacher
that are responsible for high-scoring predictions. We find that these key predictive
regions constitute only a small fraction of all features within the boundaries
of the ground-truth bounding box. We use this observation to design a novel
distillation technique—PGD—that amplifies the distillation signal from these
features. We use an adaptive Gaussian distribution to smoothly aggregate those
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top locations to further enhance performance. Our approach can significantly
improve state-of-the-art detectors on COCO and CrowdHuman, outperforming
many existing KD methods. In future, we could investigate the applicability of
high-quality regions to two-stage and transformer models for detection.
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