
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The phase diagram of the next-neighbour Ising model of the face-
centred cubic lattice

Citation for published version:
Ackland, GJ 2023, 'The phase diagram of the next-neighbour Ising model of the face-centred cubic lattice',
European Physical Society Letters (EPL), vol. 142, no. 4, 41003, pp. 1-6. https://doi.org/10.1209/0295-
5075/acd07c

Digital Object Identifier (DOI):
10.1209/0295-5075/acd07c

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
European Physical Society Letters (EPL)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Jul. 2023

https://doi.org/10.1209/0295-5075/acd07c
https://doi.org/10.1209/0295-5075/acd07c
https://doi.org/10.1209/0295-5075/acd07c
https://www.research.ed.ac.uk/en/publications/9f64d70f-3ab1-43ac-a6d9-4dfd8a3a45ab


On the existence of an intermediate phase in the

antiferromagnetic Ising model on the face-centered
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Abstract. We use Monte Carlo simulation to determine the stable structures in

the second-neighbour Ising model on the face-centred cubic lattice. Those structures

are L11 for strongly antiferromagnetic second neighbour interactions and L10 for

ferromagnetic and weakly antiferromagnetic second neighbours. We find a third stable

”intermediate” antiferromagnetic phase with I41/amd symmetry, and calculate the

paramagnetic transition temperature for each. The transition temperature depends

strongly on second neighbour interactions which are not frustrated. We determine a

sublattice structure suitable for solving this problem with mean field theory.

Keywords: Ising model, phase diagram, antiferromagnetic, Monte Carlo, face-centred

cubic.

1. Introduction

The Ising model is perhaps the most famous model for magnetic interactions on a

lattice. It is based on discrete spins located on discrete lattice sites interacting with

nearby neighbours only. Despite its simplicity, it exhibits an order-disorder transition

as a function of temperature. The face-centred cubic lattice (fcc, A1 in Strukturbericht

designation), is one of the most commonly encountered structures in crystallography,

and represents the most efficient packing of hard spheres. It has Fm3̄m symmetry with

a single atom in the primitive cell. Thus the Ising model on the fcc lattice is one of the

classic problems in condensed matter physics.

In the language of a magnetic system, the Hamiltonian, H, for the Ising model

with the nearest-neighbour (NN) interaction, J1, and the next-nearest-neighbour (NNN)

interaction, J2, is

H = −J1
∑
⟨i,j⟩′

SiSj − J2
∑
⟨i,j⟩′′

SiSj −H
∑
i=1

Si, (1)
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where ⟨⟩′ stands for summation over NNs, and ⟨⟩′′ for NNNs. Ising spins Si are taken

as ±1. H is the magnetic field which we consider only in the ground state analysis;

simulations are at zero field (H = 0). In the case of the fcc lattice, the sets of NN

and NNN bonds have the same Fm3̄m as the lattice. The Hamiltonian in the above

equation 1 can be analysed as a function of two dimensionless quantities: the ratio of

the interactions relative to each other, and to the temperature.

α = J2/|J1|, β−1 = T/|J1|. (2)

Without loss of generality, we choose units such that |J1| = 1.

Calculation of phase stability in the antiferromagnetic Ising model is challenging

because of the existence of many possible antiferromagnetic arrangements. Furthermore,

the face-centred cubic lattice can be viewed as ABC stacking of triangular lattices,

leading to frustration: when two spins on the triangle are different, the third

cannot be simultaneously different from both. Furthermore, there exists an ordering

without translational symmetry for the AFM triangular and fcc lattice which has

lower energy than any periodic one (Fig.1), which inhibits nucleation and growth

of periodic structures in a Monte Carlo simulation. Although the Hamiltonian H
has full Fm3̄m symmetry, the antiferromagnetic arrangement of spins will normally

have lower symmetry. The two main approaches to the problem are Monte Carlo

simulation and mean field theories[1, 2, 3, 4, 5, 6, 7]. Monte Carlo correctly includes

all correlation effects, within the 6912 independent sites, but being a numerical method

cannot determine the phase boundary analytically[8, 9]. By contrast, effective mean field

approaches[10] are typically built on cluster approaches which limits the spatial range

of correlations. Crucial to this is the choice of sublattice structure, which restricts the

possible antiferromagnetic symmetry-breakings. The sublattice structure must therefore

be chosen with reference to possible solutions for H.

Many previous authors have looked at the near-neighbour only case[11, 12, 13, 14,

15, 16, 17]. In our previous work[10], we analysed the case where α is positive, i.e.

second neighbour interactions are ferromagnetic. We also considered non-zero field,

creating a three-dimensional α, T, H phase diagram. In that system the possible

phases are L10, L12 and paramagnetic. Those phases were examined in mean field

theory using a conventional (4-atom) fcc cell in which the four sites are treated the

independent sublattices. A superdegenerate point exists at H=4, T=0 where L10, and

L12 are degenerate, as are a range of point and extended defects.

A recent paper by Jurčǐsinová and Jurčǐsin (JJ) entitled ”Prediction of the existence

of an intermediate phase in the antiferromagnetic J1-J2 system on the face-centered

cubic lattice”[18] tackled the harder problem of α < 0, where second neighbour

interactions are also antiferromagnetic, simplifying matters by setting H = 0. Despite

the title, they actually considered a Hamiltonian which has Pm3m symmetry with

two inequivalent sites (L12 in Strukturbericht designation). To investigate symmetry-

breaking due to antiferromagnetism, they used a three-site sublattice structure with one

sublattice comprising the face-centres, and two sublattices on cube corners (Appendix
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Structure Free energy Magnetization Stability

L10 −4J1 + 6J2 0 AFM J1, FM J2
I41/amd −4J1 + 2J2 0 J1, AFM J2,

L11 −6J2 0 AFM J2, J1 < −J2
Ferromagnetic 12J1 + 6J2 −H 1 FM J1, FM J2
Paramagnetic 0 0 high T

Ferromagnetic[10] 12J1 + 6J2 −H 1 high H

DO22 [10] 2J2 −H/2 1/2 AFM J1, AFM J2, medium H

AFM1[18] (L12) 6J2 −H/2 1/2 AFM J1, FM J2, medium H

AFM2[18] (mC=1) 12J1 + 9J2/2− 3H/4 3/4 nowhere

AFM2[18] (mC=0) -1.5J2 0 nowhere

Table 1: Perfect crystal energies at T=0 from Eq. 1. Candidate phases from[10] AFM1

and AFM2 are from Ref [18]. ”Stability” indicates the region of the phase diagram

where the phase is expected. Horizontal line separates phases observed in this work

from others reported elsewhere.

Figure 1: Aperiodic ordering on the triangular lattice with lower energy than any

periodic order for nearest-neighbour AFM Ising model. Central site has six unlike

neighbours: when extended in a bullseye pattern all other sites have four unlike

neighbours. The lowest energy AFM periodic structures have four unlike neighbours

at each site. The generalisation to fcc is straightforward - each subsequent layer is

coloured to be different from the majority of sites below

Fig.5). They reported that the phase diagram has two ”antiferromagnetic” phases

(named AFM1 and AFM2) and a third ”well-defined” intermediate phase. Here we

investigate whether any intermediate state of the type found in the Pm3m Ising model

is also present in the more familiar fcc lattice.

2. Ground State structures

First we consider only the T=0 case, attempting to identify the possible stable

structures. According to the Third Law of thermodynamics, an ordered state must be
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Figure 2: The FCC lattice in the a = (110), b = (110), c = (1
2
, 1
2
, 1) setting viewed close

to the b direction. Colouring shows the patterns of the various sublattice spin ordering

corresponding to the L10, L11 and I41/amd structures.

the most stable. Identifying these candidate states is a necessary precursor to making

a sensible definition of order parameters or sublattice structures. At T=0, these can

be generated by hand, looking at colourings of sites on the appropriate lattice which

maximise unlike first and/or second neighbours. Some orderings are long established

from the near-neighbour problem and taken from previous work (here refs [18, 10] were

used). Other structures were constructed by colouring-in drawings of the fcc lattice with

a crayon, maximising the number of unlike second neighbours either absolutely (L11)

or subject to maximised near-neighbours (I41/amd). The relevant phases are shown in

Figure 2 with details given in Table 1 and the Appendix figures 2 and 5

If we consider the reported states of the JJ structures, we see that AF1 has

mA = mB = −mC . This is the L12 structure, which can be obtained in the four-

sublattice model with m1 = m2 = m3 = −m4. In fcc, the L12 structure has a ground

state energy which can be written in the three-sublattice decomposition as

EL12 = EA/8 + EB/8 + 3EC/4

= 0.125(12J1 − 6J2) + 0.125(12J1 − 6J2) + 0.75(−4J1 − 6J2)

= − 6J2.

or in the four-site decomposition as

EL12 = E1/4 + E2/4 + E3 + E4/4

= 0.25(12J1 − 6J2) + 3× 0.25(−4J1 − 6J2)

= − 6J2.

For antiferromagnetic J2 this is less stable than randomly oriented spins, and

therefore L12 (AF1) should not appear in this region of the phase diagram, since it

is not stable at T=0, and has lower entropy than the disordered paramagnetic state.

DO22 is always more stable than L12, but even it may only be stabilised by an external

field[10].

We can contrast this with the L10 phase which comprises alternating (001) planes

of different spins; using our sublattice structure it is m1 = m2 = −m3 = −m4, but L10
cannot be represented within the three-sublattice assumption. In L10 all sites have equal

energy E = −4J1 + 6J2. This is the unique stable state at zero field for ferromagnetic
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J2, and extends some way into the antiferromagnetic J2 region (Figure 3. Clearly, for

6J2 > 4J1 this L10 structure has higher than zero, so some other ordered phase must

exist which favours unlike second neighbours.

A candidate for this phase is L11: a layered structure with alternating (111) close-

packed planes of opposite spins, symmetry R3m. It cannot be defined based on either

of the sublattices considered above. Relative to the conventional fcc cell, it is a two

atom cell with a=(1/2,-1/2,0), b=(-1/2,0,1/2), c=(0,1,-1), with basis atoms at (0,0,0)

and (0,0,1/2) which define the sublattice. This structure has T=0 energy -6J2, and so

becomes degenerate with L10 at J2 = J1/3.

It seemed unlikely that L10, which has all NNN aligned, could persist when J2 is

antiferromagnetic. For near-neighbour only interactions L10 has zero-energy stacking

faults[10], and by considering an array of stacking faults we found an intermediate phase

with I41/amd symmetry which does not appear in the Strukturbericht designation. This

is degenerate with L11 at J2 = J1/2 and L10 J2 = 0, and more stable between those

values.

We note that in the limit J1 → 0 the fcc structure breaks into four unconnected

simple cubic lattices, which can be made independently antiferromagnetic in the B1

(NaCl) structure without frustration. L11 can be viewed as four interpenetrating NaCl

lattices.

3. Numerical simulations

We ran Metropolis Monte Carlo[19] simulations on a 12x12x12x4 atom supercell. The

model parameters are J2 and T and there are two cases: ferromagnetic J1 = 1 and

antiferromagnetic J1 = −1. No external field was applied (H = 0). Updates were

single-site flips, of randomly-chosen sites. At each temperature we equilibrate for 106

attempted flips and collect data for 109.

In Figure 3 we show the phase diagram found by monitoring the temperature

variation of fluctuations in the energy:

c(T ) = ⟨H2⟩ − ⟨H⟩2 (3)

and detecting peaks therein. To detect transitions between ordered phases we monitor

fluctuations in the NNN contribution to the energy only.

The simulations revealed just four distinct ordered phases, all of which were as

anticipated from the analytic ground state calculations.

• ferromagnetic for J1 > 0; J2 > −J1,

• L10 for J1 < 0; J2 > 0,

• I41/amd for J1 < 0; −J1/2 < J2 < 0,

• L11 for J1 < 0; J2 < −J1/2, and for J1 > 0; J2 < −J1.

The AFM1 and AFM2 structures found by JJ on their Pm3m lattice are not

observed in fcc, Fm3m with antiferromagnetic second neighbours. Our intermediate

I41/amd structure is also different from the JJ intermediate structure.
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Figure 3: Phase diagram for (top left) Ferromagnetic J1 = 1 (top right)

Antiferromagnetic J1 = −1. Points indicate the (J2, T ) tuple for the two highest values

of peaks in c: for the PM transition line this is a lambda peak, within ordered phase

is comes from annealing a domain structure. Colours indicate starting configuration:

black: PM, red: FM, blue L10, green L11. Star indicates the small region of I41/amd.

(bottom) typical plots of c(T ) and H(T ) for J1 = −1, and energy for showing sharp

”annealing” peaks at lower in the ordered phases, which in these cases are not large

enough to appear in the phase diagram and lambda peak at the paramagnetic transition.

Peak detection is not completely straightforward, because a high variation of H can

occur if there is a domain structure which rearranges itself during a simulation. Such an

event produces a bimodal distribution and consequent high value for (⟨H∈⟩−⟨H⟩2) at a
single temperature, whereas a thermodynamic phase transition produces a characteristic

lambda transition across a range of temperatures. For this reason, c(T ) cannot always

be associated with a specific heat capacity. To address this, we plot in Fig.3 the

temperatures corresponding to the two highest values of c(T ) as points on a graph

of J2 vs T . This traces out the phase boundaries with a sharp line, and also shows a

diffuse region corresponding to the ”annealing temperature”, at which point the single-

flip algorithm is able to anneal out a domain structure. We also plot examples of c(T )

and H(T ) from single runs which show the domain formation events as single peaks.
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In all the AFM phases, the sites are equivalent except for the sign of the spin, so the

sublattice magnetisation is simply the square root of fraction of the T=0 binding energy

(i.e. energy with negative sign).

The phase lines are rather straight, with the PM transition temperature lowest at

the ”maximally frustrated” value of J2 where two ordered structures are degenerate.

4. Sublattice structures

A mean field treatment of the antiferromagnetic second neighbour Ising model will

require a sublattice decomposition which permits all possible ground states: alternating

(001) layers and alternating (111) layers, and the I41/amd. Each have two independent

sublattices, so a supercell which can describe them all requires at least eight sublattices.

One such structure is shown in Fig.2. Compared to the conventional fcc cell it has

a=(1,1,0) b=(1,-1,0) c=(1
2
, 1
2
,1). To include L12 and DO22 structures a still larger set of

sublattices is needed, based on a 16 atom cell a=(1,1,0) b=(1,-1,0) c=(0,0,2). (Table 2)

The changing domain structure of the Monte Carlo simulation precludes assignment

of sites to sublattices, but one can obtain a mean-field estimate of sublattice

magnetisation m from inverting Eq.1 using the T=0 energies in Table 1, i.e. m =√
H(T )/H(0). This is valid only in the ordered phase, and follows typical Ising-model

behaviour.

5. Discussion and conclusions

We find four different ordered phases in the second-neighbour (J1, J2) Ising model on

the fcc lattice: Ferromagnetic fcc, and ordered AFM phases I41/amd, L11, and L10. All

of these are stable at zero temperature, and with increased temperature, all transform

directly to a paramagnetic state.

Numerical simulations show that the stable structures with antiferromagnetic J1
interactions all have zero magnetisation (assuming H=0). Spontaneous magnetisation

is observed only for ferromagnetic J1.

The Monte Carlo simulations also reveal a reasonably well-defined temperature at

which specific defects, such as stacking faults and microdomains, start to be generated

or annealed out. While interesting, it is likely that this temperature is sensitive to the

single-flip algorithm, and its exact position is both ill-defined and sensitive to finite size

effects[9].

A recent mean field calculation, which also reported two AFM states and an

intermediate structure in the ”face-centred cubic lattice” was, in fact, considering a

different lattice, i.e. L12 with no interactions between face-centred sites. There is no

discrepancy between these results, but we note that the 3-sublattice decomposition

assumed in that work does not permit the L10, I41/amd and L11 groundstates of

the antiferromagnetic fcc lattice, and cannot sensibly be applied to the Hamiltonian

considered here. Similarly, the 4-sublattice decomposition which was used previously[9]
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x y z L10 L11 I41/amd L12 DO22 FM

0 0 0 1 1 1 1 1 1

1/2 0 0 1 1 -1 1 1 1

1/2 1/2 0 1 -1 1 1 1 1

0 1/2 0 1 -1 -1 1 1 1

1/4 1/4 1/4 -1 -1 -1 -1 -1 1

1/4 3/4 1/4 -1 1 1 1 1 1

3/4 1/4 1/4 -1 -1 1 1 1 1

3/4 3/4 1/4 -1 1 -1 -1 -1 1

0 0 1/2 1 -1 -1 1 1 1

1/2 0 1/2 1 -1 1 1 1 1

1/2 1/2 1/2 1 1 -1 1 1 1

0 1/2 1/2 1 1 1 1 1 1

1/4 1/4 3/4 -1 1 1 -1 1 1

1/4 3/4 3/4 -1 -1 -1 1 -1 1

3/4 1/4 3/4 -1 1 -1 1 -1 1

3/4 3/4 3/4 -1 -1 1 -1 1 1

Table 2: Fractional positions in tetragonal supercell with a = b =
√
2, c = 2 relative

to conventional fcc cell, and associated ground state spins for structures in the phase

diagram.

in the ferromagnetic J2 case would also be inappropriate for the antiferromagnetic

J2 case. We demonstrate that an effective mean-field theory treatment covering all

possibilities for the second-neighbour fcc Ising model would require eight sublattices.

The paramagnetic transition temperature is strongly dependent on J2, even if J1
is held fixed. It takes its lowest value at the point where two competing ordered

structures have identical ground-state enthalpy. This is true regardless of whether T is

measured in units of |J1| or an average interaction weighted by number of neighbours,

i.e. |J1|+ |J2|/2. The disproportionate effect of J2 on the transition temperature follows

from the absence of frustration in NNN interactions.
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7. Appendix- previous sublattice decompositions

(a) (b) (c)

Figure 4: (a) Four-sublattice decomposition based on conventional unit-cell of FCC.

FCC lattice can be considered as four interpenetrating simple cubic (SC) lattices which

each SC lattice here is denoted by a different colour. (b) L10 is represented by A = m1

( ) = m2 ( ), B = m3 ( ) = m4 ( ), and (c) L12 by A = m1 ( ), B = m3 ( ) = m2

( ) = m4 ( ).
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Figure 5: Three-sublattice decomposition based on conventional unit-cell of FCC. Figure

taken from Jurčǐsinová and Jurčǐsin [18]. In discussion with those authors afte rthe

current paper was complete, it transpires that the lattice they consider has only the

interactions shown in the figure, i.e. no interactions between atoms on the face-centre

C sublattice. Moreover, the corner sites were doubly-weighted


