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The Western Ghats (WG) mountain chain is a global biodiversity hotspot
with high diversity and endemicity of woody plants. The latitudinal breadth
of the WG offers an opportunity to determine the evolutionary drivers of
latitudinal diversity patterns. We examined the spatial patterns of evolution-
ary diversity using complementary phylogenetic diversity and endemism
measures. To examine if different regions of the WG serve as a museum
or cradle of evolutionary diversity, we examined the distribution of 470
species based on distribution modelling and occurrence locations across
the entire region. In accordance with the expectation, we found that the
southern WG is both a museum and cradle of woody plant evolutionary
diversity, as a higher proportion of both old and young evolutionary
lineages are restricted to the southern WG. The diversity gradient is likely
driven by high geo-climatic stability in the south and phylogenetic niche
conservatism for moist and aseasonal sites. This is corroborated by persistent
lineage nestedness at almost all evolutionary depths (10–135 million years),
and a strong correlation of evolutionary diversity with drought seasonality,
precipitation and topographic heterogeneity. Our results highlight the global
value of the WG, demonstrating, in particular, the importance of protecting
the southern WG—an engine of plant diversification and persistence.
1. Introduction
Tropical rainforests are one of the most diverse biomes on Earth, accounting for
nearly half of all known tree diversity [1]. The high diversity of tropical rainfor-
ests can be attributed to two important processes operating on evolutionary
timescales, deep biome age and climatic stability, allowing for the persistence
and accumulation of lineages, and increased speciation rates [2–5]. Tropical rain-
forests have thus been referred to as both ‘museums’ and ‘cradles’ of diversity [4].

Within the tropics, there is variation in lineage richness over water availability
gradients. The high richness in wet sites is driven by strong phylogenetic niche
conservatism for wet and warm environments, where angiosperms putatively
originated and where angiosperm lineages persist and diversify [6,7]. Further-
more, the favourable environment in wet and aseasonal sites potentially allows
for lineages with different affinities, including dry or extratropical, to disperse
and establish, resulting in higher diversity [6,8–10]. There are several examples
of this ‘dry-tolerance pattern’ [10], wherein dry-adapted lineages have wider
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ranges and persist in wetter sites, whereas wet-affiliated
lineages have a more restricted distribution within the wetter
sites [1,6,7], resulting in a nested distribution of lineages over
water availability gradients in the tropics [9–11].

The relative influence of different evolutionary and ecologi-
cal processes in shaping these diversity patterns can be
examined using phylogenetic indices of diversity and ende-
mism [12–14]. Areas with a high proportion of old range-
restricted lineages have been speculated to be sites with a
museum-like diversity pattern [12,15,16]. Alternatively, a
high proportion of range-restricted lineages with short
branch lengths indicates recently diverged lineages, reflecting
sites with a cradle-like diversity pattern [12,15,16]. Document-
ing spatial variation in phylogenetic diversity indices has also
been useful in highlighting sites for conservation [17,18].

Mountain systems, especially in the tropics, are well
suited to examine patterns of origin and accumulation of
diversity as there is a high level of topographic and climatic
heterogeneity over a relatively short geographical distance
[19,20]. This provides opportunities for speciation via eco-
logical opportunity and offers sites for refugia (micro-
refugia) during climatic instability [20–22]. Consequently,
mountains can be an engine for lineage diversification or a
refuge for lineage persistence, or both [20,23]. Due to their
ancient age, latitudinal breadth, gradients in historical cli-
matic stability and current environment, and topographic
heterogeneity, the Western Ghats (WG) mountains represent
an ideal system to study evolutionary patterns in the
distribution and diversity of old versus young lineages.

The WGmountain chain in peninsular India (8°N–21°N) is
thought to be one of the oldest yet most dynamic regions of
differentiation for the flora and fauna of tropical Asia [24]. It
is considered a biodiversity hotspot due to its high diversity
and endemism [25]. The diversity and distribution of the
extant taxa in the WG are shaped by its complex geo-climatic
history, including the breakup of Gondwana, their northward
movement across latitudes before merging with Asia (approx.
50 Ma), extensive volcanic activity in the late Cretaceous, and
the rise of the Himalayas, monsoon intensification and aridifi-
cation in the Cenozoic [24,26–28]. Like other mountain chains,
the WG have been a refuge during climatic instability,
especially the southern Western Ghats, due to their climatic
stability and topographic heterogeneity ([28–30] and references
therein). Based on the phytogeography and geographical
breaks, the WG are broadly divided into three subdivisions,
namely the northern, central and southern WG [31]. The pro-
minent gaps in the mountain chain are the Goa gap (primarily
a climatic barrier) separating the central WG and the northern
WG, and the Palghat gap separating the southern WG and the
central WG.

The aridification of the Indian peninsula in theMiocene led
to the contraction ofwet forests to thewestern slopes of theWG
[28,32], which now harbour most of its diversity of evergreen
woody plants. The wet forests within this mountain chain
are relatively well-defined and form a cohesive biogeographic
unit in an otherwise drypeninsula [33]. Over 60%of thewoody
plant species within these forests are endemic, although ende-
mic clades at the generic level are relatively few (for example,
Agasthiyamalaia, Humboldtia, Otonephelium, Poeciloneuron) [34].
The interaction of the southwest and northeast monsoons
with topography creates a gradient of increasing temperature
and precipitation seasonality from the south to the north
[11,33,35]. The influence of past geo-climatic events and the
current climatic gradient shape the observed taxonomic
trend of decreasing woody plant diversity with increasing
latitude in the WG [11,36,37].

Here, we use spatial analyses of phylogenetic diversity indi-
ces to examine the role of age, stability and phylogenetic niche
conservatism in shaping the woody plant diversity gradient in
the WG. In particular, we address the following questions.

1. Does the latitudinal gradient in past geo-climatic
instability and current seasonality affect the evolutionary
diversity of woody plants, resulting in higher persistence
and recent divergence of lineages at lower latitudes?

The latitudinal gradient in the WG serves as a proxy for
historical and current climatic stability and topographic hetero-
geneity. We predicted that geo-climatic stability and
topographic heterogeneity in the southern WG would lead to
range-restricted old and young lineages at lower latitudes. By
contrast, the northern latitudes are likely to have younger
lineages and few range-restricted lineages due to past geo-cli-
matic instability and a present-day climate that is more seasonal.

2. Do woody plant lineages show a nested distribution
over water availability and seasonality gradients at multiple
evolutionary depths?

Water availability is one of the key determinants shaping
lineage distribution, resulting in a turnover or nestedness of
lineages [7,10]. In the WG there is a strong seasonality gradient,
with the northern portion having 6–7 months of dry season,
whereas the southern portion has a dry season of only up to
2–3 months, and this gradient has been consistent over geologi-
cal time (since Eocene-Oligocene) ([29] and references therein)
[33,38]. Taxonomically, there is evidence of a nested distribution
due to this seasonality gradient [9,11]; however, it has not been
examined if these nested trends persist at deeper evolutionary
levels. We examined the distribution pattern of the extant
lineages at different evolutionary depths (10 to 135 Ma) to
examine to which evolutionary depth the observed nested pat-
tern of distribution persists in the WG. In the Cenozoic, the
Eocene-Oligocene period is associated with the onset of a sea-
sonality gradient in the subcontinent ([29] and references
therein), and as the majority of the speciation events occurred
during the Miocene, we predict that nestedness will attenuate
and potentially be absent at evolutionary depths that are
older than the Miocene. Older lineages will have had sufficient
time to adapt to the ‘new’ dry and seasonal conditions, while
not all younger lineages that have arisen in moist and aseasonal
environments since the Miocene would have had time to adapt
to dry and seasonal conditions.

3. What are the environmental correlates of evolutionary
diversity?

In order to understand the potential mechanisms underlying
any latitudinal patterns in evolutionary diversity, we examined
if the current climate, specifically drought seasonality, mean
annual precipitation and topographic heterogeneity, are corre-
lated with evolutionary diversity measures. These predictors
have been shown to affect species distributions within the wet
gradient in the WG [9,11,36]. As such, we examined if these dri-
vers show a relationship with evolutionary diversity as well. We
expected that areas with lower drought seasonality, high annual
precipitation and higher topographic heterogeneity, would all
show higher evolutionary diversity.

4. Additionally, we examined the contribution of
different lineages to the spatial patterns of phylogenetic
diversity and if their contribution varies at different
evolutionary depths.



royalsocietypublishing.org/journal/rspb
Proc.R.

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 J

un
e 

20
23

 

To test these predictions, we expand upon the previous
phylogenetic studies [29,38], which were restricted to more
southern latitudes (south of 16° N), by including the northern
limit of the wet gradient in the WG (up to 19° N). The
inclusion of higher latitudes is critical in understanding the
influence of environmental extremes on evolutionary diver-
sity. Furthermore, the insights from previous phylogenetic
studies primarily used metrics of phylogenetic community
structure (i.e. how divergent or closely related are species in
a given area). While such metrics are insightful in terms of
ecological and evolutionary drivers of community assembly,
they do not represent well the richness dimension of evol-
utionary history [14,18,39]. Here, we aim to provide a more
comprehensive understanding of the evolutionary diversity
patterns and drivers of WG woody plants, using indices
sensitive to different aspects of phylogenetic richness.
Soc.B
290:20222513
2. Material and methods
(a) Dataset
We compiled occurrence datasets from three primary sources
[11,40,41], which consist of plots ranging from 0.06 ha to 1 ha
in size. Additional occurrence data were obtained from the pub-
lished literature (electronic supplementary material, figure S1).
From the compiled dataset, we excluded species with clear dry
deciduous and thorny scrub affinities. We focused on evergreen
areas within the WG, defined as areas where most species are
evergreen as defined by their phenology. All species names
were validated manually according to The Plant List database
(http://www.theplantlist.org/), and synonyms were removed.
The final revised list consisted of 470 species with 9448
occurrence locations at a approximately 1 × 1 km resolution
(duplicate occurrences of a species in a grid cell were removed).

(b) Species distribution modelling
To estimate diversity at the scale of the WG and to account
for the variable sampling effort across datasets, we employed a
presence-only distribution modelling approach using Maxent
version 3.4.1 [42]. For each species with >3 occurrence locations,
Maxent models were implemented for the full extent of peninsu-
lar India (8°–24°N, 68°–91°E) at approximately 1 × 1 km
resolution, with predictors selected from the WorldClim data-
base of bioclimatic variables [43]; specifically, mean annual
precipitation, mean precipitation of the driest quarter, mean pre-
cipitation of the warmest quarter, mean annual temperature,
mean temperature of the warmest quarter, mean temperature
of the driest quarter and elevation. These predictors have been
shown to affect the species composition of woody plants in the
WG [9,44]. We chose background ‘pseudo-absence’ locations
from a bias layer that accounted for variation in sampling
effort (see electronic supplementary material, appendix S2 for
more information).

The predictions of habitat suitability for the evergreen woody
plants obtained from the best model (electronic supplementary
material, appendix S2) were clipped to the extent of the WG,
and the continuous predictions at 1 × 1 km resolution were
aggregated to a 10 × 10 km resolution. The species-level maps
were stacked to obtain a species richness map of the WG, extend-
ing from 8° to 19° N with 1756, 10 × 10 km grid cells. To get a
conservative estimate of diversity for evergreen woody plants,
we removed 508 grid cells with less than ten species (minimum
observed species richness in the raw plot dataset), which may
not represent evergreen sites and thus may be associated with
poor model predictability (electronic supplementary material,
figure S2). The richness maps at 10 × 10 km resolution were
used for calculating indices of evolutionary diversity for 348
species. For 12 species with poor model performance and 110
species with ≤3 occurrences (largely representing point ende-
mics), only the observed occurrence points were considered for
calculating evolutionary diversity and endemism indices. Finally,
we clipped the latitudinal extent of the species distribution to the
known occurrence locations to get a conservative estimate of
species range. The resulting richness maps of clipped versus
unclipped data were similar in terms of the richness trends
from south to north. However, we decided to focus on the
former to get a conservative estimate of species distributions
[45]. The code for the SDMs was modified from Bharti et al.
[46] (https://github.com/bhartidk/centipede_diversity_ende-
mism). Spatial data were processed using the packages ‘rgeos’
[47], ‘raster’ [48], ‘sf’ [49], ‘sp’ [50], and Maxent models were
run using the package ‘ENMeval’ [51] and ‘dismo’ [52] in R
4.1.1 [53]. For more details regarding the species distribution
models, refer to electronic supplementary material, appendix S2.

(c) Phylogenetic tree for WG woody plants
The Smith & Brown [54] megaphylogeny of seed plants was used
to create a phylogeny for the WG woody plants (470 species).
Following the recommendations of Qian & Jin [55], we used
the function ‘phylo.maker’, build.node.1 function and scenario
3 from the R package ‘V.PhyloMaker’ [56] to create the phylo-
geny, which was then used to calculate the evolutionary
diversity indices. In total, 149 species were present in the mega-
phylogeny and 321 species not initially present were bound to
the tree. One genus, Hydnocarpus (3 species in the dataset), was
added to the tree using ‘bind.relative’ function. This method of
using a phylogeny that is well-resolved above species level to cal-
culate evolutionary diversity metrics is robust to unresolved
species-level phylogenetic relationships [55,57].

(d) Evolutionary diversity indices
Evolutionary diversity was quantified using three indices that
focus on the richness dimension of evolutionary diversity [14]:
(1) Faith’s phylogenetic diversity (PD), (2) time-integrated line-
age diversity (TILD) and (3) phylogenetic endemism (PE). PD
is the summation of all branch lengths found in a grid cell [58].
TILD is calculated by integrating the area under a lineage
through time plot where the number of lineages is first log trans-
formed [18]. As such, it reduces weighting diversity in recent
evolutionary time and shifts it toward deeper evolutionary
time. TILD is a useful ‘deep-time’ complement to PD, as PD is
strongly driven by young lineage diversity (i.e. the number of
species in a sample) [6,18]. PE is estimated by weighting
each branch length in the phylogeny by the total descendant
clade’s range [59]. PE, by integrating the range size information
with evolutionary history, is a useful measure to examine
how spatially restricted or widely distributed the evolutionary
history is in a landscape. As PE is highly sensitive to the
area occupied by a species, we excluded species without distri-
bution predictions (122 out of 470 species; see section 2b).
Given that most of the excluded data are point endemics in the
southern WG, their inclusion would have only strengthened
the observed trends (see Results). Lastly, the total number of
species per grid cell was used as a measure of species richness
(SR). The indices were calculated using the packages ‘phylore-
gion’ [60], ‘ape’ [61] and ‘picante’ [62] in R. Data wrangling
and tree visualization were done in R using ‘tidyverse’ [63],
and ‘ggtree [64] packages.

(e) Lineage accumulation and latitudinal trends
The time-calibrated phylogenetic tree was sliced at 10 million
year intervals (Myr) from the present to 135 million years ago

http://www.theplantlist.org/
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(Ma), which is the root age of the WG woody angiosperm phy-
logeny. The sliced trees at each evolutionary depth were used
to examine the accumulation of extant lineages at different evol-
utionary depths using lineage through time (LTT) plots, and the
latitudinal distribution of lineages at each evolutionary depth.
The method outlined here simply examines the present distri-
bution and diversity of extant lineages at different evolutionary
depths [13,65,66]. It does not examine the complete historical
diversity or the true range sizes of the ancestral lineages, which
would require adequate fossil data. For these analyses, we
included both the predicted distribution of species and species
for which only occurrence locations were known. The tree was
sliced using R code modified from Daru et al. [65], and the line-
age age and latitudinal trends were examined using R code
modified from Griffiths et al. [13].

( f ) Nested distribution of lineage at different
evolutionary depths

To examine the nested distribution of lineages at different evol-
utionary depths, we used the metacommunity approach of
Leibold & Mikkelson [67]. The presence of all lineages at each
evolutionary depth was ascertained for latitudinal bins and a lati-
tudinally ordered lineage presence-absence matrix was used.
Nestedness or turnover was assessed by examining how many
times a lineage is replaced at two adjacent sites compared to the
average number of replacements when the matrix was randomly
re-sorted 1000 times. This was done for each evolutionary depth
ranging from 10 to 135 Ma. The null matrix was created using
the ‘r1’ null model, where the lineage richness of a site is held con-
stant (rows), and the lineage ranges (columns) are filled based on
their marginal probability values. Higher observed values than
expected indicate turnover, while the converse indicates nested-
ness [68]. This analysis was done using the function ‘Turnover’
from the ‘metacom’ package in R [69]. Although this analysis is
in terms of the lineage diversity, the approach used is ecological
in its inference, wherein, nestedness refers to differences in rich-
ness among sites, i.e. if lineages in one site are a subset of
lineages found in another site and turnover refers to replacement
of lineages across sites. We are not using the term nestedness as
the phylogenetic literature uses it, that is when one clade is
found ‘nested’ within another clade.

(g) Correlates of phylogenetic diversity
We examined the environmental correlates of the evolutio-
nary diversity in the WG at 10 × 10 km resolution, using the
following predictors, topographic heterogeneity (calculated using
WorldClim elevation layer), and mean annual precipitation, from
the WorldClim database and mean climatic water deficit (CWD)
[70]. Topographic heterogeneity was measured using topographic
ruggedness index following Riley et al. [71], wherein the average
difference between the focal cells and its neighbouring cells were
calculated using the function ‘terrain’ from the raster package.
Topographic heterogeneity was calculated at 1 × 1 km resolution
and aggregated to 10 × 10 km resolutionwith higher values indicat-
ing high ruggedness. CWD was correlated with temperature
and precipitation seasonality in the study area (electronic sup-
plementary material, figure S3). CWD reflects the water stress
experienced by plants during the dry season and as such is a
usefulmeasure to quantify drought. It ismeasured as the difference
between rainfall and evapotranspiration during dry months only
(in millimetres per year). It is always a negative number, with
higher negative values implying a greater water deficit. These pre-
dictors have been shown to affect woody plant diversity patterns in
the WG [9,11,36,38] and are also not correlated among themselves
(electronic supplementarymaterial, figure S3).One grid cellwithno
predictor information from the WorldClim database was removed.
(h) Spatial and temporal contribution of key
lineages to PD

To identify the key lineages contributing to PD, the branch
lengths of each lineage (super order and family level) were
summed within 1° latitudinal bins to evaluate their contri-
bution to total PD. Furthermore, at the super order level, in
addition to the spatial contribution to PD, we also examined
the contributions temporally by summing the branch length
of each lineage from a sliced tree from 135 Ma to the current
time period (see section 2e). The node identities of the ances-
tral lineages were identified primarily by its most recent
common ancestor (‘getMRCA’ function in ‘ape’ package in
R) and by visually examining the phylogenetic tree. We
excluded lineages with only one extant taxon.
3. Results
(a) Patterns of evolutionary diversity and endemism
All evolutionary diversity indices showed a trend of increasing
diversity from northern latitudes to southern latitudes
(figure 1). Both SR and PD show a similar increase with
decreasing latitude (figure 1a,b). The gradient for TILD relative
to the other indices was less stark, but with the drier and the
seasonal northern sites still having the lowest TILD values
(figure 1d). On average, the grids in the northern WG had
approximately 1.4 times lower TILD (electronic supplementary
material, figure S4D), and approximately 3 and 6 times lower
PD and SR than the grids in the southern WG (electronic sup-
plementary material, figure S4A,B). The sites in the central WG
had a comparable spread of PD and SR values to sites in the
southern WG, but on average had approximately 1.5 times
less PD and SR as compared to sites in the southern WG (elec-
tronic supplementary material, figure S4A,B). Compared to the
other diversity measures, PE shows the starkest contrast in the
northsouth gradient (figure 1c). The average PE value of sites
in the southern WG was approximately 6 and 2 times higher
than the sites in the northern WG and central WG, respectively
(electronic supplementary material, figure S4C). All indices,
despite being sensitive to different aspects of the phylogenetic
tree, showed very high correlations with each other (Pearson’s
correlation > 0.9, p < 0.05; electronic supplementary material,
figure S5). These results highlight that the southern WG are
the sites which have a high diversity of old, young and
range-restricted lineages.

(b) Spatial and temporal patterns of lineage diversity
and latitudinal trends at different evolutionary
depths

The lineage through time plot for the extant lineages, shows that
the accumulation of lineages is higher at lower latitudes across
all evolutionary depths, with almost an order of magnitude
higher lineage richness in the current time period (figure 2a).

In terms of the latitudinal ranges, the lower latitudes showa
nested distribution of lineages at all evolutionary depths
(figure 2b). This is consistent with statistical analysis which
shows that lineages consistently display lower turnover than
expected along the latitudinal gradient of the WG (table 1).

We further dissected these results to examine the lineage
richness patterns above and below 13° latitude, the midpoint
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of our study region. The lineage richness was consistently
higher at the lower latitudes, with the lower latitudes
contributing 42–34% of the total lineage richness from
120 Myr to 10 Myr (figure 2b; table 2). There are no lineages
restricted to above 13° latitude that are older than 60 Myr
(figure 2b(iv); table 2). There is a striking richness contrast
in 30 Myr old lineages, with lower latitudes having seven
times the lineage richness compared to higher latitudes
(figure 2b(v); table 2). The lower latitudes have both older
and younger, range-restricted lineages. For example, five
lineages that are 120 Myr old occur at lower latitudes but
none above 13°. Among lineages that are 10 Myr old, 114
lineages occur at lower latitudes but only 13 lineages occur
at higher latitudes.
(c) Correlates of evolutionary diversity
Examining the relationship of environmental variables with
evolutionary diversity indicates that the CWD is a strong
correlate of all diversity indices (figure 3; Pearson’s correlation,
r = 0.74, 0.78 and 0.82 for TILD, PD and PE respectively with
p < 0.01). There was a weaker relationship of annual precipi-
tation (figure 3; r = 0.26, 0.23, 0.13 for TILD, PD and PE
respectively with p < 0.01) and a moderate correlation of
topographic heterogeneity with all diversity indices (figure 3;
r = 0.38, 0.47, 0.50 for TILD, PD and PE respectively with
p < 0.01). While CWD is a strong determinant for evolutionary
diversity, in terms of annual precipitation, there is a peak
in diversity between approximately 2000 and 4000 mm of
precipitation. The evolutionary diversity increased with
topographic heterogeneity as expected (figure 3).

(d) Spatial and temporal contribution of key lineages to
PD

Our WG woody plant dataset consists of 35 orders, 75
families and 209 genera. There is a clade-level disparity in
the richness of lineages (electronic supplementary material,



Table 1. Observed and expected turnover (mean turnover of 1000
randomly sorted matrix) of lineages at each evolutionary depth along the
latitudinal gradient. The p-value tests if the observed lineage turnover
along the latitudinal gradient differs from a random expectation. The
observed turnover is significantly lower than the expected turnover at all
evolutionary depths, indicating a nested lineage distribution at all
evolutionary depths along the latitudinal gradient of the Western Ghats.

age
(Ma)

number
of lineages

observed
turnover

expected
turnover p

135 3 0 3.91 <0.01

120 12 0 218.41 <0.01

90 54 95 3039.79 <0.01

60 85 638 7952.76 <0.01

30 153 10 750 30247.79 <0.01

10 337 59 524 145479.55 <0.01

Table 2. Total lineage richness and lineage restricted to north and south of
13° latitude at selected evolutionary depths. See electronic supplementary
material, table S1 for all evolutionary depths.

age
(Ma)

total
lineages

num. of
lineages≤ 13°

num. of
lineages > 13°

135 3 0 0

120 12 5 0

90 54 11 0

60 85 18 1

30 153 35 5

10 337 114 13
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table S2) and their contribution to PD (figure 4). At the oldest
evolutionary depths (120 Ma and before), the largest contri-
bution to PD at all latitudes is by basal Eudicots and
Magnolids (figure 4a). The relative importance of these
lineages at younger evolutionary depths is eclipsed by the
superorders of Asteridae and Rosidae, which contribute
most to PD at younger evolutionary depths across latitudes
(figure 4a). At the family level, 10 speciose families contribu-
ted to more than half of the PD (figure 4b). Examining the
contribution of key families to PD with respect to the latitudi-
nal bins shows that these key families are present throughout
the latitudinal extent, except for Fabaceae, which drop off at
15° (figure 4b). The relative contribution of the key families
to PD varies however across the latitudinal regions. For
example, in the northern WG, Euphorbiaceae, Lauraceae,
Phyllanthaceae and Rutaceae contribute the most to PD
(figure 4b). By contrast, the contribution of different families
to PD is higher at the lower latitudes, with Annonaceae and
Myrtaceae having a relatively higher proportion of PD in
both the southern WG and the central WG (figure 4b).
4. Discussion
We find that the southern WG are a hotbed of evolutionary
diversity, facilitating both persistence and recent divergence
of lineages. This latitudinal asymmetry in lineage diversity
is likely to be driven by phylogenetic niche conservatism
for moist and aseasonal sites, which in congruence with
higher geo-climatic stability and higher topographic hetero-
geneity in the lower latitudes, limits extinction and allows
for higher diversification rates. Across all evolutionary
depths, some lineages do manage to occur in the more seaso-
nal and dry northern WG, but other lineages are restricted to
areas of the WG with low seasonality and higher water avail-
ability, resulting in the nested distribution pattern with
respect to latitude that persists at all evolutionary depths.
Current environmental variables in terms of drought season-
ality, precipitation and topographic heterogeneity shape the
evolutionary diversity. These results are in line with studies
in the Americas that show that within the tropics, water avail-
ability is a stronger driver of the evolutionary diversity of
woody plants than temperature [7,72].

(a) Southern WG as a museum and a cradle of diversity
Evolutionary diversity measures show a decreasing trend of
diversity from lower to higher latitudes for woody plants in
the WG. TILD, compared to the other indices, drops off
only in the most aseasonal and dry sites of the northern
regions of the WG, indicating that over the evolutionary his-
tory of the WG, older lineages have been able to colonize
most of the WG. Both PD and SR show almost identical pat-
terns of reduced diversity in the northern latitudes, with PE
showing the starkest reduction. Given that all indices are
strongly correlated with each other, it is clear that the lower
latitudes harbour both range-restricted old and young
lineages. Our results build on previous studies in the WG
[29,38] by emphasizing that the high evolutionary diversity
at lower latitudes is shaped by the significant contribution
of range-restricted lineages.

Spatially restricted evolutionary history, with long or
short branch lengths, indicates older or recent in situ
divergence, respectively [59,73,74]. Areas with greater topo-
graphic complexity and environmental heterogeneity
contribute to ancient and recent divergence by acting as refu-
gia for the persistence of lineages and providing the
ecological opportunity for speciation [15,20–22,75]. Historic
climatic stability may also aid in the persistence of older
lineages across paleoclimatic oscillations, resulting in higher
PE [20,73,76,77], due to fewer extinctions and greater time
for species accumulation. Our results are in line with global
and regional studies, wherein mountains, due to a gradient
in historical and current climatic stability coupled with
environmental heterogeneity, harbour high phylogenetic
endemism and exhibit both persistence and recent divergence
of lineages [12,15,77,78].

(b) Phylogenetic niche conservatism for wet, aseasonal
sites is likely to shape the latitudinal asymmetry in
evolutionary diversity

Niche conservatism for wet and aseasonal sites [6,7] is likely
to be one of the key mechanisms underlying the observed
asymmetry in evolutionary diversity from lower to higher
latitudes. While some older lineages are present throughout
the WG, 42%–21% of these lineages, which are 120 Myr old
and 60 Myr old, respectively, are found only below 13°N
(table 2). At an evolutionary depth of 30 Myr, there is seven
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Figure 3. Distribution of different evolutionary indices along the axes of climatic water deficit (CWD), annual precipitation and topographic ruggedness index (TRI).
(a–c) Time-integrated lineage diversity (TILD); (d–f ) phylogenetic diversity (PD); (g–i) phylogenetic endemism (PE). Each point is a measure of the respective
evolutionary diversity at a 10 × 10 km grid cell.
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times higher lineage richness at lower latitudes compared to
higher latitudes. Of the lineages which are 10 Myr old, 34%
(out of 337 lineages) are found only below 13° (table 2). Over-
all, these results suggest deep niche conservatism for wet and
aseasonal lower latitudes, even within the relatively wet ever-
green portion of the WG, which are the focus of our study.
For example, key clades such as Magnolids, Rosids and
Asterids, while present throughout the WG, are the highest
contributors to PD in the lower latitudes (figure 4a). These
results are statistically confirmed by the nestedness analysis
of lineages at different evolutionary depths. It is not surpris-
ing that we do not find a pattern of turnover at any
evolutionary depth, as previous studies at the shallowest
evolutionary depth (i.e. species) find a pattern of nestedness
in the WG [9,11]. In fact, it would be impossible to have turn-
over at deeper evolutionary depths if there is nestedness at
the lowest evolutionary depths. However, it is surprising
that the nestedness persists at all evolutionary depths in the
WG up to the age of angiosperms themselves (135 Ma).
Our results are consistent with those of a previous study
that showed that the precipitation niches of lineages are
conserved between the WG and Central America [79].
3

(c) Seasonal drought, annual precipitation, and
topographic heterogeneity shape evolutionary
diversity

Water availability, quantified here using values of mean
annual precipitation and CWD, is the key driver of evolution-
ary diversity in the tropics [7,10,72]. Our results indicate that
water availability is likely to limit lineage distribution even
within the relatively wetter portions of the WG that we
study here, especially for lineages with putative origins in
the moist end of the gradient [6,7,72,79]. This is corroborated
by recent studies, which show that precipitation and toler-
ance to drought limit the distribution of evergreen tree
species in WG [9,11]. This results in a nested distribution,
wherein species with wider drought tolerances can persist
throughout the WG, whereas species with narrow climatic
tolerance are restricted to the lower latitudes due to the
ecophysiological barrier at higher latitudes.

The importance of topographic heterogeneityacross theWG
mountains, is in accordancewith the expectation that more het-
erogeneous sites have higher evolutionary diversity due to
increased ecological opportunity resulting in higher speciation
[20–22]. There is some evidence for this in the WG, in which
species’ elevation ranges decrease from higher to lower lati-
tudes, suggesting higher niche packing in the lower latitudes
[11]. While these predictors are likely to be important for
evolutionary diversity indices, it is difficult, however, to truly
tease apart their influence as they all covary together with the
latitudinal gradient and affect species distribution [9,11].

To summarize, the high taxonomic endemism in the
lower latitudes of the WG [11,37] is indicative of the role of
in situ divergences in shaping evolutionary diversity trends.
Additionally, the higher evolutionary diversity in the lower
latitudes is also due to the persistence of old lineages and
the presence of lineages with both narrow and wide climatic
tolerance (figure 3). By contrast, the northern communities
have the subset of lineages that can persist at climatic
extremes, which exist there either via range expansion from
the lower latitudes or dispersal events.
(d) Insights from biogeographic history of WG in
shaping the extant evolutionary diversity

Biogeographic processes, such as vicariance and dispersal,
coupled with geological events, are the primary determinants
shaping regional diversity and diversification dynamics [80].
The WG woody plant community is thought to be shaped by
ancient Gondwanan vicariance, dispersal into India from
Southeast Asia and in situ speciation ([27] and references
therein). It has been argued that many ancient lineages
with Gondwanan affinity went extinct in the Cretaceous
due to volcanic activity, creating empty niches which were
occupied by Southeast Asian lineages with wet forest affinity
through multiple dispersal events after the Indian plate col-
lided with Asia [27,28,81,82]. Within the WG, the southern
WG, in addition to aiding the persistence of lineages, is
likely to be characterized by older and recent dispersal
events. The environmentally diverse yet generally favourable
conditions there likely eased successful establishment, fol-
lowed by in situ divergence. The northern WG, in contrast,
is likely to be shaped by extinction and range-expansion
events from the southern WG and potentially elsewhere,
but with less frequent successful establishment.

There has been criticism of the use of the terms ‘museum’
and ‘cradle’, as the dichotomous definition is likely to be too
simplistic to decipher complex patterns occurring over evol-
utionary time scales [5,83]. In the case of the WG, our
results are unequivocal that the lower latitudes are likely to
be both a museum and cradle of diversity, as indicated by
old and young range-restricted lineages. The northern WG,
however, may ultimately be found to exhibit a more complex
pattern, given its historic climatic instability and high current
climatic seasonality. A more detailed clade-level examination
might shed light on which of the processes influence the
observed trends and if the lineages found here are character-
ized by different ages and variable diversification rates or
constant diversification rates [1].
(e) Conservation implications
Our study is a comprehensive examination of the evolution-
ary diversity of the woody plants of the WG, highlighting
the potential mechanisms driving the observed diversity gra-
dient and the conservation value of this region. PD, while
recognized as an important measure to conserve biodiversity
[17,58], is less applied in relation to taxonomic-based conser-
vation measures. Previous efforts to map species-level
endemics [84] can now be extended to include PE and PD
at the scale of WG. Based on our results here, the identifi-
cation of priority sites based on species richness and
evolutionary diversity are likely to overlap; nonetheless, the
inclusion of evolutionary history can further augment and
strengthen the support for existing protected areas.

All measures of evolutionary diversity point towards
exceptional diversity at lower latitudes. The northern WG,
representing the extreme limit of where wet forest can
occur, have unsurprisingly low diversity. Nonetheless, the
northern WG represents approximately 5000 Myr of evol-
utionary history in terms of woody plants alone (calculated
as summation of branch length of lineages found in this
region, in units of millions of years). While there are very
few endemic woody species in the northern WG, it harbours
relatively higher endemism of other plant groups, such as
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shrubs and herbaceous species, including endemic radiations
[85,86]. As our study focuses only on the standing woody
plants (generally >10 cm diameter at breast height) and
their evolutionary diversity, future studies that include
other groups such as pteridophytes, gymnosperms and
other plant habits (herbs, lianas, climbers etc.) to the dataset
are needed to obtain a more holistic view of the spatial distri-
bution of the evolutionary diversity of plants in the WG.
Shrubs, in particular, show much higher endemism, and the
WG are likely to hold one of the richest understory shrub
communities globally [87]. However, obtaining reliable
occurrence locations and phylogenetic data for these species
is likely to be a critical bottleneck.

( f ) Going beyond occurrence data, the use of presence-
based species distribution modelling and their
limitations

Estimating species ranges is a non-trivial endeavour [88].
While distribution models like Maxent are likely to overpre-
dict, occurrence information from plot-based data or
herbaria is likely to underpredict distributions [45]. The
true range of species is likely to lie between these two
extremes. We acknowledge the likely overpredictions due to
species distribution models, based on presence-only data, as
a potential source of bias in this study. However, using
model transferability and performance as a criterion to
select the models [89], having a species-specific model fitting
and tuning, limiting the latitudinal species extent to known
occurrence locations, and removing grid cells having species
less than the minimum number of species in a plot, the rich-
ness estimates reported here are at best a conservative
estimate of the evolutionary diversity indices. Additionally,
rare species, for which distributions were not modelled
(those with only 1–3 occurrences), predominantly occur in
the southern WG and have narrow distributions. The
inclusion of the ‘true’ ranges of these species is unlikely to
change the outcome of our study but would rather further
strengthen the observed patterns of higher richness in the
southern WG.
5. Conclusion
In summary, examining the spatial dimension of evolutionary
diversity of evergreen woody plants indicates that the lower
latitudes of the WG harbour substantial diversity of old and
young range-restricted lineages. These results support previous
studies on mountains playing a dual role of persistence and
divergence, mediated by region-specific biogeographic pro-
cesses. Examining the lineage-age distribution trends and the
correlates of phylogenetic diversity indicates the role of niche
conservatism for wet and aseasonal sites in shaping the
distribution of older and younger lineages. These results
further give support to the idea that precipitation is a key
driver of the evolutionary diversity of woody plants in the tro-
pics, both globally and regionally as well. Our results highlight
the exceptional evolutionary diversity of the WG mountains
and the role of southern WG in the persistence and generation
of woody plant diversity.
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