

Edinburgh Research Explorer

Representational Change is Integral to Reasoning

Citation for published version:
Bundy, A & Li, X 2023, 'Representational Change is Integral to Reasoning', Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 381, no. 2251, pp. 1-17.
https://doi.org/10.1098/rsta.2022.0052

Digital Object Identifier (DOI):
10.1098/rsta.2022.0052

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Jul. 2023

https://doi.org/10.1098/rsta.2022.0052
https://doi.org/10.1098/rsta.2022.0052
https://www.research.ed.ac.uk/en/publications/15984548-fd97-4175-9228-b6fafa108d2f

rsta.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

Knowledge evolution, Knowledge

representation, Automated reasoning

Keywords:

Automated theory repair, Abduction,

Belief revision, Conceptual change,

Reformation

Author for correspondence:

Insert corresponding author name

e-mail: A.Bundy@ed.ac.uk

Representational Change is
Integral to Reasoning
Alan Bundy1 and Xue Li1

1University of Edinburgh

Reasoning is the derivation of new knowledge from
old. The reasoner must represent both the old and
new knowledge. This representation will change as
reasoning proceeds. This change will not just be the
addition of the new knowledge. The representation
of the old knowledge will also often change as a
side effect of the reasoning process. For instance, the
old knowledge may contain errors, be insufficiently
detailed or require new concepts to be introduced.

We start by illustrating our claim with some
examples of such representational change. We then
describe the Abduction, Belief Revision and Conceptual
Change (ABC) theory repair system, which can
automate such representational change.

1. Lakatos’ Proof and Refutations
In his book [1], Imre Lakatos illustrates the evolution of
mathematical methodology via a rational reconstruction
of Euler’s ‘Theorem’ that in a polyhedron V − E + F =

2, where V is the number of vertices, F the number of
faces and E is the number of edges. For instance, in a
cube V = 8, F = 6 and E = 12.

The setting is a classroom of incredibly bright students
whose teacher leads a Socratic dialogue in which
the students echo the positions of various prominent
mathematicians during the history of this ‘Theorem’.

I have placed scare quotes around ‘Theorem’ because
it rapidly becomes apparent that it has a wide variety
of counterexamples. The evolution of mathematical
methodology is illustrated by the different ways in which
these counterexamples are regarded and the attempts to
rescue the ’Theorem’ in some form.

© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.&domain=pdf&date_stamp=
mailto:A.Bundy@ed.ac.uk

2

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

This ‘proof’ consists of a procedure. In step 1, a face is removed from the polyhedron and it is stretched
onto the plane. In step 2, each face is triangulated. In step 3, these triangles are successively removed
until only one remains. The last triangle has 3 vertices, 3 edges and 1 face, so V − E + F = 1. It
is argued that this invariant is preserved by each step, except the first, which removes 1 face. So,
working backwards, it has been shown that in the original polyhedron, V − E + F = 2. QED.

Figure 1. Cauchy’s ‘Proof’ of Euler’s ‘Theorem’.

(a) Cauchy’s ‘Proof’ and some Counterexamples to It
Lakatos’ book starts with a ‘proof’, due to Cauchy, illustrated by Figure 1.
We have put scare quotes around ‘proof’ because Cauchy’s ‘Proof’ is no more a proof than

Euler’s ‘Theorem’ is a theorem. It is claimed that this same procedure can be carried out on any
polyhedron. But this claim has been shown to be false. Lakatos’ students soon come up with
counterexamples. Two of these are depicted in Figure 2.

(b) The Changing Definition of Polyhedron
The students, however, are able to rescue these counterexamples and turn them into examples.

They did this by choosing an appropriate definition of polyhedron or polygon. In the case of the
hollow cube, they contrasted a solid structure with a plate structure.

Solid Structure: A polyhedron is a solid whose surface consists of polygonal faces.
Plate Structure: A polyhedron is a surface consisting of a system of polygons.

In the case of the plate structure, the hollow cube becomes one cube nested within another. For
each one V − E + F = 2.

In the case of Kepler’s Star Polyhedron, they chose an appropriate definition of a polygon.

Intersecting Edges: A polygon is a system of edges arranged in such a way that exactly two edges
meet at each vertex.

3

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

The hollow cube has a cube-shaped hole in it, so the numbers of vertices, faces and edges is
doubled: V − E + F = 4. The faces of Keplar’s star polyhedron are intersecting pentagrams. There
are 12 of these faces, making 30 edges and 12 vertices, so V − E + F = 6. Note that, in neither
counterexample, is it possible to remove one of their faces and stretch the remaining polyhedron flat
on the plane.

Figure 2. The Hollow Cube, Kepler’s Star Polyhedron and Pentagram

Non-Intersecting Edges: A polygon is a system of edges arranged in such a way that exactly two
edges meet at each vertex and the edges have no points in common except the vertices.

The second definition excludes edges that intersect, so the pentagram is ruled out as a polygon.
If the faces are triangles then there are 32 of them, with 90 edges and 60 vertices, so V − E + F =

60− 90 + 32= 2.
Now we are confronted by a conundrum:

How was it possible for Euler to state a conjecture about polyhedra and for Cauchy to claim to have
proved that conjecture, if neither had a formal definition of polyhedra?

The answer is that both were genralising from a finite set of examples. They knew about the five
Platonic solids of tetrahedron, cube, octahedron, dodecahedron, icosahedron, and a few more.
Euler’s conjecture and Cauchy’s proof both worked for them. There were others, however, for
which whether it worked or not depended on definitions that they had not formulated.

Our claim is that this state of affairs is commonplace. Not now in modern mathematics, which
imposes a discipline of formal definitions, but in everyday life. It is a frequent cause of computer
failures, for instance. Programs are successfully tested on a finite set of test examples then, but
later encounter so called, ’edge cases’, on which they fail.

Formal verification of computer programs can avoid this problem because it proves the
correctness of the program for the, potentially infinite, set of all cases. It requires, though, a formal
logical definition of all cases and this is still error prone since it is a non-trivial task to formulate
such a definition.

This motivated us to attempt to automate the repair of faulty logical theories. This is not just a
matter of enlarging or reducing the axioms of a theory. It also entails refining the language in which
they are expressed. We saw such language refinement in the case of polyhedra in the debate over
whether they were solid or plate structured and over whether their edges could intersect. In this
spirit, we developed the ABC Theory Repair System [2,3].

4

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

2. The ABC Theory Repair System
The ABC system takes a faulty theory T and a preferred structure PS. It uses PS and inference on
T to identify faults in T. It then applies repair operations to T in an attempt to correct the faults.
If it terminates, it outputs a fault-free theory.

Theories are expressed in the Datalog language. See §(a) for details. The preferred structure
PS is a pair ⟨T (PS),F(PS)⟩ of sets of ground assertions representing observations of the
environment. T (PS) represents ground assertions that are observed and F(PS) represents ground
assertions that are not observed. Faults are either insufficiencies, where something in T (PS) is not
predicted or incompatibilities, where something in F(PS) is predicted. By predicting a ground
assertion we mean that it is a theorem of T. To prove theorems we use Selected Literal Resolution
(SL) [4]. See §(b) for details.

The flowchart of the ABC system is depicted in Figure 3. The pre-process C1 reads and
rewrites inputs into the internal format for later use. Then in C2, ABC applies SL to T to detect
incompatibility and insufficiency faults.

Our hypothesis is that the ABC System has a diverse range of applications to successfully repairing
faulty representations.

We evaluate this claim in §4 by presenting a diverse range of applications to which ABC has been
successfully applied.

The green arrows deliver a set of theories one by one to the next process; the blue arrow delivers all
faults of one theory as a set. When a faulty-theory is not repairable, it will be dropped.

Figure 3. The Flowchart of ABC.

(a) Datalog Theories
Datalog is a logic programming language consisting of Horn clauses in which there are no
functions except constants [5]. We use this notation to define a subset of first-order logic that
we also call Datalog. We choose Datalog because it is decidable under SL and ABC requires1

decidability in the detection of faults. We represent formulae in Datalog as clauses in Kowalski
normal form, shown in Definition 2.1 below.

Definition 2.1 (Datalog Formulae).
Let the language of a Datalog theory T be a triple ⟨P, C,V⟩, where P are the propositions, C are the

constants and V are the variables. We will adopt the convention that variables are written in lower case,
and constants and predicates start with a capital letter2.
1This requirement can be relaxed providing one is willing to accept a heuristic ABC. That is, proof attempts can be terminated
with failure when some time or space threshold is exceeded. So, a difficult to prove theorem might be wrongly classified as
unprovable.
2The opposite of the Prolog convention.

5

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

A proposition is a formula of the form P (t1, . . . , tn), where tj ∈ C ∪ V for 1≤ j ≤ n, i.e., there are
no compound terms. Let R ∈P and Qi ∈P for 0≤ i≤m in T. Datalog clauses are of the four types in
Definition 2.2, R is called the head of the clause and the conjunction of the Qis forms the body.

Definition 2.2. Kowalski Form Horn Clauses

Implication: (Q1 ∧ . . . ∧Qm) =⇒ R, where m> 0 These usually represent the rules of T.
Assertion: =⇒ R, i.e., the body is empty. When R contains no variables the assertion is called ground.

These ground assertions represent the facts of T and the members of T (PS) and F(PS).
Goals: Q1 ∧ . . . ∧Qm =⇒ , i.e., the head is empty. These usually arise from the negation of the conjecture

to be proved and from subsequent subgoals in a derivation.
Empty Clause: =⇒ , i.e., both the head and body are empty. This represents false, which is the target of a

reductio ad absurdum proof. Deriving it, therefore, represents success in proving a conjecture.

(b) Selected Literal Resolution
SL is a complete, reductio ad absurdum proof procedure for first order logic expressed in clausal
form [4]. When restricted to Datalog clauses, such as those defined in Definition 2.2, SL is a
decision procedure. This means that ABC can decide whether a given conjecture is or is not a
theorem of a Datalog theory T.

Definition 2.3 (A Deductive Step in SL). A deductive step in SL is between a goal clause and either an
assertion or a rule, which we will collectively call an axiom. A proposition in the goal clause and the head
of the axiom must unify, that is it must be possible to instantiate each of them so that they are identical. An
instantiation σ replaces variables by constants. We write ϕσ to mean that proposition ϕ is instantiated by
substitution σ. The substitution used in an SL step is called a most general unifier [6]. We will depict
such an SL step as:

Q1 ∧ . . . ∧Qi ∧ . . . ∧Qm =⇒
(Q1 ∧ . . . ∧ P1 ∧ . . . ∧ Pm ∧ . . . ∧Qm)σ =⇒

P1 ∧ . . . ∧ Pm =⇒ R

where σ is the most general unifier of Qi and R.

Definition 2.4 (An SL Refutation). Because a proof in SL is by reductio ad absurdum, we call it a
refutation. It consists of a series of SL steps. Each step takes as input the goal clauses produced by the
previous step and outputs the goal clauses to be used in the next step. In the final step, one goal proposition
remains and an assertion is unified with it to leave the empty goal clause =⇒ . We can depict such a
refutation as follows.

Goal1 =⇒
Goals2 =⇒ Axiom1

Goals3 =⇒ Axiom2

Goal4 =⇒ Axiom3

=⇒ Assertion

If an SL refutation proves a formula ϕ using the axioms from theory T. We write T ⊢ ϕ.

(c) Types of Fault
Given a preferred structure PS, a theory T could have two kinds of faults:

Incompatibility: Predictions that arise from the agent’s representation conflict with observations
of their environment: ∃ϕ.T ⊢ ϕ ∧ ϕ∈F(PS).

Insufficiency: The agent fails to predict observations of its environment: ∃ϕ.T ̸⊢ ϕ ∧ ϕ∈ T (PS)

6

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

Since SL is decidable for Datalog theories [7], ABC can exhaustively test all members of
both T (PS) and F(PS) for theorem-hood. So it can detect all occurrences of insufficiency and
incompatibility in a Datalog theory.

(d) ABC Repair Operations
An insufficiency can be repaired by unblocking a proof with additional necessary SL steps, while
an incompatibility can be repaired by blocking all its proofs, which can be done by breaking
one SL step in each of them [2]. ABC repairs faulty theories using eleven repair operations. There
are five for repairing incompatibilities and six for repairing insufficiencies. These are defined in
Definitions 2.5 and 2.6.

Definition 2.5 (Repair Operations for Incompatibility). In the case of incompatibility, the unwanted
proof can be blocked by causing any of the SL steps to fail. Suppose the targeted SL step is between a goal,
P (s1, . . . , sn), and an axiom, Body =⇒ P (t1, . . . , tn), where each si and ti pair can be unified. Possible
repair operations are as follows:

Belief Revision 1: Delete the targeted axiom: Body =⇒ P (t1, . . . , tn).
Belief Revision 2: Add an additional precondition to the body of an earlier rule axiom which will become

an unprovable subgoal in the unwanted proof.
Reformation 1c: Rename P in the targeted axiom to either a new predicate or a different existing predicate

P ′.
Reformation 2c: Increase the arity of all occurrences P in the axioms by adding a new argument. Ensure

that the new arguments in the targeted occurrence of P , are not unifiable. In Datalog, this can
only be ensured if they are unequal constants at the point of unification.

Reformation 3c: For some i, suppose si is C. Since si and ti unify, ti is either C or a variable. Change
ti to either a new constant or a different existing constant C′.

Definition 2.6 (Repair Operations for Insufficiency). In the case of insufficiency, the wanted but failed
proof can be unblocked by causing a currently failing SL step to succeed. Suppose the chosen SL step is
between a goal P (s1, . . . , sm) and an axiom Body =⇒ P ′(t1, . . . , tn), where either P ̸= P ′ or for some
i, si and ti cannot be unified. Possible repair operations are:

Abduction 1: Add the goal P (s1, . . . , sm) as a new assertion and replace variables with constants.
Abduction 2: Add a new rule whose head unifies with the goal P (s1, . . . , sm) by analogising an existing

rule or formalising a precondition based on a theorem whose arguments overlap with the ones of
that goal.

Abduction 1: Locate the rule axiom whose precondition created this goal and delete this precondition from
the rule.

Reformation 1s: Replace P ′(t1, . . . , tn) in the axiom with P (s1, . . . , sm).
Reformation 2s: Suppose si and ti are not unifiable. Decrease the arity of all occurrences P ′ by 1 by

deleting its ith argument.
Reformation 3s: If si and ti are not unifiable, then they are unequal constants, say, C and C′. Either (a)

rename all occurrences of C′ in the axioms to C or (b) replace the offending occurrence of C′ in
the targeted axiom by a new variable.

In a faulty theory, there can be multiple faults and each fault can have multiple repairs.
The basic search is shown by Figure 4 (a), where repairs are applied individually and the fault
detection and repair generation are recursively until the repair process terminates with fault-free
theories or finds no further repairs to apply. This basic search is of low efficiency. In the next
section, a refinement which improves the search efficiency will be introduced.

7

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

(a) The Naive search space. (b) The reduced search space based on MSCRs.

The length of each search branch can be different. By applying all repairs in one search branch, that
branch terminates with a fault-free theory or with failure, if no repair is available to fix a detected
fault.

Figure 4. The Search Space for Fault-Free Theories.

(e) The Optimal Maximal Set of Commutative Repairs
Commutative repairs are the ones that can be applied in any order, for instance, because they repair
different parts of a theory to solve different faults. Thus, we refine the naive search method so that
it computes only Maximal Sets of Commutatives Repairs (MSCR). As the repairs in a MSCR can
be applied together, the search space of fault-free theories using MSCR is reduced dramatically.

Not all repairs are commutative.

(i) It is possible that after applying one repair r1, another repair r2 won’t be needed because
r1 has also solved the fault which r2 targeted.

(ii) On the other hand, r1 may make r2 inapplicable. For instance, r1 may merge predicate
mother with predicate mum. Then, if r2 would have deleted an axiom of mother, it
cannot find it after r1’s application.

These are the scenarios where repairs are not commutative because applying them in different
orders results in different repaired theories.

The commutation between repairs r1 and r2 is defined in Definition 2.7. T · r represents the
application of a repair r to a theory T.

Definition 2.7 (Commutative Repairs). Two repairs r1 and r2 are commutative if applying them in
different orders to theory T results in the same repaired theory.

T · r1 · r2 =T · r2 · r1 (2.1)

Accordingly, the maximal set of commutative repairs are defined below.

Definition 2.8 (Maximal Set of Commutative Repairs). Given the whole set of all possible repairs R
for all detected faults in the theory T, a MSCR M is a maximum set of T’s commutative repairs if they
avoid the scenarios illustrated in (i) and (ii). We can formalise this as follows:

∃rm ∈M, ∀r ∈R \M, S(T, r) ∧ S(T, rm) ̸= ∅ (2.2)

∀r1, r2 ∈M, if r1 ̸= r2, then F(T, r1) ̸=F(T, r2) (2.3)

where S(T, r) = {α|α∈T ∧ α ̸∈T · r} is the scope of a repair r in the theory T, and F(T, r) is the fault
in T that a repair r solves.

8

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

There could be n MSCRs, where n≥ 1, and a repair can belong to more than one MSCRs. ABC
computes all MSCRs and applies each MSCR separately to produce n semi-repaired theories,
which will be delivered for the next round of fault detection and repair generation. By applying
repairs in a MSCR together, the search space is reduced because the search branches of grouped
repairs are merged into one. The comparison of search spaces are drawn in Figure 4.

Inspired by the sub-optimal pruning of ABC repairs based on Max-Sat [8], an optimal MSCR
is defined as follows:

Definition 2.9 (Optimal MSCR). A MSCR, M1, is optimal for the theory T if and only its estimated cost
c(T M1) is not bigger than any of the MSCRs of that theory, denoted as M2:

∀M2. c(T, M1)≤ c(T, M2) (2.4)

where the estimated cost is:

c(T, M) = |M|+Ninsuff (Tm) +Nincomp(Tm)

where |M| is the number of repairs in M and Ninsuff (Tm) and Nincomp(Tm) are the number of
insufficiencies and incompatibilities of Tm, respectively, and where Tm is the repaired theory produced
by applying all repairs in M to T.

By only taking the optimal MSCRs to the remaining repair process, the search space of fault-
free theories is further reduced. This method dramatically saves time and space.

3. Illustrative Example
In this section we illustrate the operation of ABC using the black swan theory, which is given in
Example 3.1. This example was drawn from the belief revision literature [9], where the proposed
repair operations are to remove one of the four axioms: A1−A4.

Let the theory in 3.1 be T.

Example 3.1 The Black Swan Theory: T

german(X) =⇒ european(X) (A1)

european(X) ∧ swan(X) =⇒ white(X) (A2)

=⇒ german(bruce) (A3)

=⇒ swan(bruce) (A4)

T (PS) = {black(bruce)}, F(PS) = {white(bruce)}

T has both an incompatibility fault and an insufficiency one.

T ⊢white(bruce) ∧ white(bruce)∈F(PS)

T ̸⊢ black(bluce) ∧ black(bruce)∈ T (PS)

T illustrates a limitation of relying on just belief revision for repairing faulty theories. None
of the four axiom removal operations results in what we suggest is the most natural repair to its
incompatibility fault. We think this fault arises from the ambiguity of european(X): it could mean
‘X is a European variety’ or ‘X is resident in Europe’. In the first case, since bruce is black then
european(bruce) is false, but in the second case it could be true if bruce is resident in Germany,
e.g., in a zoo3. ABC’s Reformation 2c repair adds an extra argument to predicate european that
enables this distinction.
3A black swan can be seen in St James’s Park, just opposite the Royal Society’s HQ.

9

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

We will start by repairing this incompatibility fault. To see that T ⊢white(bruce), consider the
SL proof in Figure 5.

white(bruce) =⇒
european(bruce) ∧ swan(bruce) =⇒

european(X) ∧ swan(X) =⇒ white(X)

german(bruce) ∧ swan(bruce) =⇒
german(X) =⇒ european(X)

swan(bruce) =⇒
=⇒ german(bruce)

=⇒ =⇒ swan(bruce)

A different colour is used to highlight each pair of unifying propositions.

Figure 5. SL Resolution Steps of the Incompatibility.

The proof in Figure 5 can be broken at any of these four coloured unification steps. We will
illustrate it being broken at the blue pair, i.e., between european(bruce) and european(X). We
choose the repair operation Reformation 2c, which will add a new argument to european to
distinguish its two possible meaning. ABC is not able to assign meanings to new constants, so we
use abnormal to the instance in the goal clause and normal to that in the axiom4. In this example,
humans can interpret abnormal as ‘resident’ and normal as ‘variety’. Note that instances in other
rules in T, such as (TA1) are assigned a new variable.The resulting (and desired) repair of T is
given by Example 3.2 with changes highlighted in red.

Example 3.2 The Desired Incompatibility Repaired Theory.

german(X,Y) =⇒ european(X,Y) (TA1)

european(X,normal) ∧ swan(X) =⇒ white(X) (TA2)

=⇒ german(bruce, abnormal) (TA3)

=⇒ swan(bruce) (TA4)

T (PS) = {black(bruce)}, F(PS) = {white(bruce)}

The incompatibility fault has been repaired, as the proof of white(bruce) in Figure 5 is now
broken.

We now illustrate ABC’s repair of the insufficiency. Its simplest repair is adding the preferred
proposition as an axiom directly using Abduction 1. This is illustrated in Example 3.3. The
required proof of black(bruce) consists of one step between the goal and this new axiom.

Example 3.3 A fully Repaired Black Swan Theory.

german(X,Y) =⇒ european(X,Y) (A1’)

european(X,normal) ∧ swan(X) =⇒ white(X) (A2’)

=⇒ german(bruce, abnormal) (A3)

=⇒ swan(bruce) (A4)

=⇒ black(bruce) (A5)

The current theory is faithful concerning PS. The repaired theory is generated by combining
reformation and abduction, and the solution satisfies the claimed repair postulates.
4This choice seems to work tolerably well for most examples.

10

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

ABC can find 39 ways to repair theory 3.1 by breaking the proof at different points and by
choosing different repair operations to break it. Many of these repairs also support a meaningful
interpretation. Work continues on mechanisms for preferring one repair over another.

4. Applications of Theory Repair
In §2 we claimed that:

The ABC System has a diverse range of applications in successfully repairing faulty representations.

Our evidence to support this claim is to present some diverse examples of faulty theories that
the ABC system has successfully repaired.

(a) Defeasible Reasoning
Defeasible reasoning occurs when a rule is given, but there may be specific exceptions to it. We
will call such a rule defeasible. In AI, defeasible reasoning has usually been formalised by some
kind of non-monotonic logic [10]. Logical theories are normally5 monotonic, i.e., adding extra axioms
to a theory increases its set of theorems. In a non-monotonic theory adding a new axiom can
sometimes override some applications of a defeasible rule, so that of proofs of some theorems
will no longer hold.

We offer an alternative mechanism using only monotonic logical theories, i.e., a monotonic
theory containing a faulty rule is repaired into another monotonic theory in which the fault has
been eliminated.

The classic example of defeasible reasoning is about tweety the penguin: a non-flying bird. We
have formalised both the original faulty theory and its repair in Figure 4.1.

Example 4.1 Bird Theory Tb on the left and its Repair Tr on the right.

bird(X) =⇒ fly(X)

bird(X) =⇒ feathered(X)

penguin(Y) =⇒ bird(Y)

=⇒ penguin(tweety)

=⇒ bird(polly)

=⇒ fly(polly)

bird(X,normal) =⇒ fly(X)

bird(X,Y) =⇒ feathered(X)

penguin(X) =⇒ bird(X, abnormal)

=⇒ penguin(tweety)

=⇒ bird(polly, normal)

=⇒ fly(polly)

T (PS) = {fly(polly), feathered(polly), feathered(tweety)}, F(PS) = {fly(tweety)}

The left hand theory Tb has an incompatibility fault: Tb ⊢ fly(tweety) but fly(tweety)∈
F(PS). The repair operation Reformation 2c is applied to add an additional argument to bird

in all occurrences in theory Tr and these are highlighted in red. This argument is given the
value normal, abnormal or a variable. This prevents the unification of bird(X,normal) with
bird(X, abnormal), which is required to prove fly(tweety). The proofs of the members of T (PS)
are unaffected by this repair.

ABC also finds a repair in which Reformation 1c is used to rename bird in the axiom to
a new predicate bird′, representing flying birds, where bird now means non-flying ones. To

5Some logicians regard monotonicity as a defining property. For them, a non-monotonic logic is an oxymoron.

11

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

(g1) (g2)

The sender’s view is at the top and the receiver’s at the bottom. The sender knows what is in each box,
the receiver doesn’t. The receiver does, however, know how many helpful and harmful boxes there are,
indicated by the red or green diamonds at bottom left. The sender marks one box with a tick and the
receiver can see what was marked. The receiver can open as many boxes as they like, but must avoid
harmful ones while opening as many helpful ones as possible.

Figure 6. Two Rounds of the Scorpion and Bananas Game.

avoid introducing an insufficiency, the axiom bird(X) =⇒ feathered(X) axiom now has to be
duplicated for bird′. This is a disadvantage of Reformation 1c over Reformation 2c in this case.

(b) Modelling Virtual Bargaining
Virtual Bargaining is a term coined by Cognitive Scientist, Nick Chater, to describe the
extraordinary ability of cooperating humans to reach a, sometimes complex, agreement with only
minimal channels of communication. It relies on their ability to put themselves in the shoes of
their partner to imagine how they will understand these minimal communications [11].

To illustrate virtual bargaining, [11] invents a two-person cooperative game called bananas and
scorpions. In this game, the human players need to guess or adjust the winning strategy based
only on the others’ game moves. The two players are the sender and the receiver. There are three
boxes of two kinds: the helpful (containing bananas) and the harmful (containing scorpions). The
sender knows all the boxes’ contents and marks one of them to guide the receiver to choose a
helpful box by marking only one box. On the other hand, the receiver only knows the number
of each type of box, and which box is marked, and then aims to select as many helpful boxes as
possible.

Two rounds of the game are illustrated in Figure 6. In the first round (g1), only box b1 is helpful
and boxes b2 and b3 are harmful while the opposite is true in the second round (g2): b2 and b3 are
helpful and b1 is harmful.

Given this limited bandwidth, each player has to imagine what the other is thinking and plan
their play. In situation (g1), the sender has marked the only box marked ’Help’. This is a natural
strategy to adopt. It’s akin to pointing at the box you want to have opened. But in situation (g2),
the strategy is less obvious. The sender could mark one of the two ‘Help’ boxes, but can’t mark
both, as only one tick is allowed. The receiver could then open this box, but this is a sub-optimal
outcome, as the best outcome would be to open both ‘Help’ boxes. Bearing this in mind, the
sender has changed strategy to mark the single ‘Harm’ box, intending the receiver to open both
‘Help’ boxes. Remarkably, the human players of the game frequently and spontaneous adopted
this strategy, thus confirming their ability to do virtual bargaining. They did not first have to
experiment to see which strategy was being used.

In [12], our research group modelled this process. Our Datalog theories were logic programs
that the sender and receiver would invent and the receiver could then use to select which boxes
to open. The faulty theory T that ABC generated an easily fixed insufficiency for g1 but failed
completely on g2, because it would have opened a harmful box and would have failed to open
either of the helpful ones.

12

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

The key rule in T was:

mark(X,Y) =⇒ select(X,Y) (4.1)

which can be interpreted as ‘select the marked box’, where mark(X,Y) means ‘in game X mark
box Y ’ and select(X,Y) means ‘in game X select box Y ’. The preferred structure was:

T (PS) = {select(g1, bgreen), select(g2, bgreen1), select(g2, bgreen2)}

F(PS) = {select(g1, bred1), select(g1, bred2), select(g2, bred)}

Using the red and green diamonds, this reflects the receiver’s knowledge of the two games. In g1,
bgreen stands for whichever box is known to be helpful and bred1 and bred2 the two boxes known
to be harmful. In g2, it’s bgreen1 and bgreen2 that are known to be helpful and bred that is harmful.
Note that we must not assume that the receiver knows which actual boxes these correspond to,
e.g., the receiver does not initially know that in g1, bgreen will turn out to be b1, the marked box.

The insufficiency in g1 is that T ̸⊢ select(g1, boxgreen). The proof fails because mark(g1, bgreen)

does not unify with mark(g1, b1), where b1 is the leftmost and marked box. This insufficiency is
easily fixed using Reformation 3s, by merging b1 and bgreen.

In g2, T has both incompatibility and insufficiency faults, namely:

T ⊢ select(g2, bred) ∧ select(g2, bred)∈F(PS)

T ̸⊢ select(g2, bgreen1) ∧ select(g2, bgreen1)∈ T (PS)

T ̸⊢ select(g2, bgreen2) ∧ select(g2, bgreen2)∈ T (PS)

The simple repair that worked for g1 will not work for g2 because both select(g2, bgreen1) and
select(g2, bgreen2) have to proved and b1 cannot be merged with both bgreen1 and bgreen2 because
they are unequal.

Instead, ABC repairs the faulty T using the operation Belief Revision 2, namely adding extra
preconditions to rule 4.1. This rule is duplicated and the two new rules are given different
preconditions to distinguish the two situations: when there are more harmful than helpful boxes
or the other way around. These two new rules are:

hp< hm ∧mark(X,Y) =⇒ select(X,Y) (4.2)

hm<hp ∧ Y ̸=Z ∧ mark(X,Z) =⇒ select(X,Z) (4.3)

where hm is the number of harmful boxes and hp the number of helpful ones in the game. Using
rule 4.3, the repaired theory suggests opening all boxes that are not marked6 With these new rules,
the repaired theory is able to correct the incompatibility and both the insufficiencies.

(c) Root Cause Analysis
Root Cause Analysis based on system logs of network systems 7, where single causes can trigger
multiple failures. Taking the input theory containing the information from system logs and
domain rules, ABC can detect missing information (MI) that is essential to cause failures and
then suggest repairs to fix root causes [13].

Figure 7 (a) shows the damage caused by MI in RCA. All nodes are explicitly in the theory,
which models the software system, except the dashed node8. Due to MI, the green node will not
be diagnosed as the root cause of all four failures, as it should be. Figure 7 (b) depicts ABC’s
workflow in RCA, where the faulty T, which lacks MI, is repaired into T1 to cover the previous
missed information and then T2 includes repairs that fixes root causes.
6Note that, in order to stay within the Datalog grammar, ̸= is not the negation of =, but a binary predicate in its own right
with the same meaning.
7To avoid misunderstanding, ‘system’ in this subsection only refers to the object where system failures occur, rather than the
ABC repair system.
8A cause may be missing while its logical consequence exists in a KM, e.g., only the latter is recorded in the log.

13

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

(a) (b)

(a) Failed RCA due to MI. Triangles are propositions describing system failures; circle nodes
are axioms or theorems representing system behaviours; an arrow starts from a behaviour’s
representation to its logical consequence’s; the dashed node corresponds to the axiom that should
be added to represent MI, which is not in the original theory that describing the network system;
(b) ABC’s flow of two-step RCA. RCA’s input are 1) KM T; 2) the observed system failures as
a set of assertions E. RCA’s output is the repaired KM T2 where the root cause is addressed. Here
ABC’s inputs are a KM, T (PS) and F(PS) in turn: in the first step T (PS) =E, F(PS) = ∅; ABC
outputs potential repairs {T′

1,T
′′
1 ...}, from which the selected T1 is the input KM of the second step,

where T (PS) = ∅, F(PS) =E.

Figure 7. ABC in Root Cause Analysis.

The example given by [13] is about microservices in a network system. In the first step of RCA,
ABC detects two insufficiencies in the original faulty theory, because the theory fails to predict two
microservices failures. The first insufficiency is caused by the MI of a microservice session: that id
is built on a full board d1. Thus, the repair is to add the corresponding axiom (4.4) (in green). The
other insufficiency is cased by the mismatch between the predicate microservice in (4.5) and the
predicate ms in (4.6) (in red). The repair is to merge them, e.g., rename ms to microservice. In the
second step of RCA, ABC changes the full board to not being full, which solves all system failures:
two microservices id1 and id2 deployed on that board and another microservice id3 depends on
the failed id2 according to rule (4.6).

=⇒ createOn(id1, d1) (4.4)

=⇒ microservice(id1, s1) (4.5)

ms(X, s1) ∧ms(Y, s2) ∧ sameRoute(X,Y) =⇒ depend(Y,X) (4.6)

In this example, the two insufficiencies are caused by the incompleteness of the system log:
the information of (4.4) was missing, and the theory is formalised from multiple data sources
which caused the mismatch between (4.5) and (4.6), respectively. Then the repair of the former
reminds engineers to improve the log quality by adding the MI. The repair of renaming ms to
microservice contributes to aligning the knowledge from the different data sources. In addition,
the repair of the second step of RCA provides the solution of fixing these system failures: ensuring
that board d1 is not full.

(d) New Physics by Analogy
For his 2016 MSc project, Cheng-Hao Cai applied reformation to the problem of correcting
faulty analogies [14,15]. One of these faulty analogies was between gravitational attraction
and electrostatic attraction/repulsion. In particular, an approximation to Coulomb’s Law of
electrostatic force can be generated from Newton’s law of universal gravitation

F = G.
m1.m2

r2

where F is the gravitational force acting between two objects of mass m1 and m2, r is the distance
between their centres of mass, and G is the gravitational constant. However, corresponding
electrostatic charges repel rather than attract and G must be replaced by Coloumb’s constant
ke.

14

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

2016 predates ABC, so Cai applied just reformation. He also needed equational reasoning in
addition to resolution, so adapted reformation to work with the Z3 solver [16]. The equivalents of
Reformation 1s was used to change attraction to repulsion and Reformation 3s to change G to ke.

(e) Modelling Student Misconceptions
When students learn arithmetic, they may make mistakes. Jovita Tang’s 2016 MSc project used
reformation to model students’ misconceptions of arithmetic procedures [17]. The preferred
structure was the students’ incorrect answers to arithmetic problems T (PS), with the correct
mathematical calculation rules R treated as the original faulty theory. ABC repaired R into a
theory that models the student’s incorrect mathematical calculation, i.e. theory R′ is a logic
program that derives the student’s miscalculations in T (PS) as theorems. The repairs required
to do this highlight the student’s misconception.

5. Conclusion
We have argued that representational change is integral to reasoning for both humans and
computers. As arguments are fleshed out, faults are exposed by the reasoning process that then
have to be repaired. Such repair frequently involves an elaboration of the representation on which
the reasoning is based. New concepts must be defined or existing ones refined. Unexpected
distinctions are required and the language of the representation refined to attest them. For
instance, an analysis of Lakatos’"Proofs and Refutations" shows that, even in mathematical proofs,
the objects of the reasoning are revealed to be vague and require elaboration.

To formalise representational change, we have implemented the ABC system, that combines
abduction, belief revision and conceptual change to repair faulty theories. To demonstrate the
generality and range of ABC, we describe diverse successful applications to defeasible reasoning,
virtual bargaining, root cause analysis, analogy repair and modelling student misconceptions.
These applications include both technological and cognitive domains. It is sometimes necessary
to model faults, e.g., in a 5G network or a student’s understanding. In these cases, ABC can be
used to work backwards, from a theory of the ideal situation, via symptoms of the fault, to the
faulty situation being modelled.

Data Accessibility. Insert details of how to access any supporting data here.
The ABC system can be downloaded from GitHub at https://github.com/XuerLi/ABC_

Datalog.

Authors’ Contributions. Alan Bundy defined and led the representational change research programme
that is summarised in this paper. Xue Li designed, implemented and evaluated the ABC system.

Competing Interests. The authors declare that they have no competing interests.

Funding. The EPSRC Human-Like Computing Network+ funded the work on virtual bargaining. Huawei
project CIENG4721/LSC funded the further development of the ABC system and the application to root
cause analysis. Also ELIAI (The Edinburgh Laboratory for Integrated Artificial Intelligence) EPSRC (grant no
EP/W002876/1) funded Xue Li.

Acknowledgements. Thanks to the co-authors on the papers and dissertations outlined in this survey:
Chenghao Cai, Jovita Tang and Eugene Philalithis. Also to Xue’s other supervisors: Alan Smaill and Ewen
Maclean. We gratefully acknowledge the support from Huawei, particularly Lei Xu, Stefano Mauceri and
Zhenhao Zhou. We thank Predrag Janičić for redrawing the diagrams in Figures 1 and 2.

References
1. Lakatos I. 1976 Proofs and Refutations: The Logic of Mathematical Discovery.

Cambridge University Press.
2. Li X, Bundy A, Smaill A. 2018 ABC repair system for Datalog-like theories.

In KEOD, pp. 333–340.

https://github.com/XuerLi/ABC_Datalog
https://github.com/XuerLi/ABC_Datalog

15

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..

3. Li X, Bundy A. 2022 An overview of the ABC repair system for Datalog-like theories.
In The Third of International Workshop on Human-Like Computing (HLC 2022), volume 28, p. 30.

4. Kowalski RA, Kuehner D. 1971 Linear resolution with selection function.
Artificial Intelligence 2, 227–60.

5. Ceri S, Gottlob G, Tanca L. 1990 Logic Programming and Databases.
Surveys in Computer Science. Berlin: Springer-Verlag.

6. Robinson JA. 1965 A machine oriented logic based on the resolution principle.
J Assoc. Comput. Mach. 12, 23–41.

7. Pfenning F. 2006 Datalog.
Lecture 26. 15-819K: Logic Programming.

8. Urbonas M, Bundy A, Casanova J, Li X. 2020 The use of max-sat for optimal choice of
automated theory repairs.
In Artificial Intelligence XXXVII (ed. M Bramer, R Ellis), pp. 49–63. Cham: Springer
International Publishing.

9. Gärdenfors P. 1992 Belief revision: An introduction.
In Belief Revision (ed. P Gärdenfors), pp. 1–28. Cambridge University Press.
Cambridge Tracts in Theoretical Computer Science

10. Strasser C, Antonelli GA. 2019 Non-monotonic logic.
In The Stanford Encyclopedia of Philosophy (ed. EN Zalta). Metaphysics Research Lab, Stanford
University, summer 2019 edition.

11. Misyak J, Noguchi T, Chater N. 2016 Instantaneous conventions: The emergence of flexible
communicative signals.
Psychological science 27, 1550–1561.

12. Bundy A, Philalithis E, Li X. 2021 Modelling repairs to virtual bargaining via representational
change.
In Human-Like Machine Intelligence (ed. SH Muggleton, N Chater), pp. 68–89. Oxford
University Press.

13. Li X, Bundy A. 2022 ABC repair system in root cause analysis by adding missing information.
In The 8th International Online & Onsite Conference on Machine Learning, Optimization, and Data
Science, special session of AI for Network/Cloud Management.

14. Cai CH. 2016 The Application of Reformation to Repair Faulty Analogical Blends.
MSc thesis, School of Informatics, University of Edinburgh.

15. Cai CH, Bundy A. 2022 Repairing numerical equations in analogically blended theories using
reformation.
In The Third of International Workshop on Human-Like Computing (ed. A Bundy, D Mareschal).
CEUR.

16. Moura Ld, Bjørner N. 2008 Z3: An efficient smt solver.
In International conference on Tools and Algorithms for the Construction and Analysis of Systems,
pp. 337–340. Springer.

17. Tang JWQ. 2016 Arithmetic Errors Revisited: Diagnosis and Remediation of Erroneous Arithmetic
Performance as Repair of Faulty Representations.
MSc thesis, School of Informatics, University of Edinburgh.

	1 Lakatos' Proof and Refutations
	(a) Cauchy's `Proof' and some Counterexamples to It
	(b) The Changing Definition of Polyhedron

	2 The ABC Theory Repair System
	(a) Datalog Theories
	(b) Selected Literal Resolution
	(c) Types of Fault
	(d) ABC Repair Operations
	(e) The Optimal Maximal Set of Commutative Repairs

	3 Illustrative Example
	4 Applications of Theory Repair
	(a) Defeasible Reasoning
	(b) Modelling Virtual Bargaining
	(c) Root Cause Analysis
	(d) New Physics by Analogy
	(e) Modelling Student Misconceptions

	5 Conclusion
	References

