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STOCHASTIC NONLINEAR WAVE DYNAMICS

ON COMPACT SURFACES

TADAHIRO OH, TRISTAN ROBERT, AND NIKOLAY TZVETKOV

Abstract. We study the Cauchy problem for the nonlinear wave equations (NLW) with
random data and/or stochastic forcing on a two-dimensional compact Riemannian mani-
fold without boundary. (i) We first study the defocusing stochastic damped NLW driven
by additive space-time white noise, and with initial data distributed according to the
Gibbs measure. By introducing a suitable space-dependent renormalization, we prove
local well-posedness of the renormalized equation. Bourgain’s invariant measure argu-
ment then allows us to establish almost sure global well-posedness and invariance of the
Gibbs measure for the renormalized stochastic damped NLW. (ii) Similarly, we study the
random data defocusing NLW (without stochastic forcing or damping), and establish the
same results as in the previous setting. (iii) Lastly, we study the stochastic NLW with-
out damping. By introducing a space-time dependent renormalization, we prove its local
well-posedness with deterministic initial data in all subcritical spaces.

These results extend the corresponding recent results on the two-dimensional torus
obtained by (i) Gubinelli-Koch-Oh-Tolomeo (2021), (ii) Oh-Thomann (2020), and
(iii) Gubinelli-Koch-Oh (2018), to a general class of compact manifolds. The main in-
gredient is the Green’s function estimate for the Laplace-Beltrami operator in this setting
to study regularity properties of stochastic terms appearing in each of the problems.
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1. Introduction

1.1. Nonlinear wave equations. We investigate the stochastic damped nonlinear wave

equations (SDNLW):

∂2t u+ (1−∆g)u+ ∂tu+ uk =
√
2ξ, (t, x) ∈ R+ ×M, (1.1)

where the unknown u is real-valued, k ≥ 2 is an integer, and (M, g) is a two-dimensional

compact Riemannian manifold without boundary. In particular, we study the Cauchy

problem for (1.1) with random initial data of low regularity distributed according to the

Gibbs measure and with stochastic forcing ξ given by the space-time white noise. See below

for precise definitions.

We also consider the nonlinear wave equations (NLW) without stochastic forcing:

∂2t u+ (1−∆g)u+ uk = 0, (t, x) ∈ R×M, (1.2)

with initial data distributing according to the Gibbs measure, as well as the stochastic

nonlinear wave equations (SNLW) with deterministic data:

∂2t u+ (1−∆g)u+ uk = ξ, (t, x) ∈ R×M. (1.3)

In the case of the two-dimensional torus T2 = (R/Z)2, these equations have been stud-

ied in recent works by Gubinelli-Koch-Oh-Tolomeo [18], Oh-Thomann [32], and Gubinelli-

Koch-Oh [17]. Our main goal in this paper is to primarily investigate the Cauchy problem

for (1.1)1 to extend the main results in [18, 32, 17] to a more general setting of two-

dimensional compact Riemannian manifolds without boundary.

Remark 1.1. The equations (1.1), (1.2), and (1.3) indeed correspond to the (stochastic)

nonlinear (damped) Klein-Gordon equations. As for local-in-time results, the same results

with inessential modifications also hold for the (stochastic) nonlinear wave equations, where

we replace (1−∆g) in the left-hand side of (1.1), (1.2), and (1.3) by −∆gu. In the following,

we simply refer to (1.1), (1.2), and (1.3) as the (stochastic) nonlinear wave equations.

1.2. The Φ4
2-measure and the corresponding hyperbolic dynamical problem. The

motivation to study SDNLW comes from looking at a hyperbolic counterpart of the so-called

stochastic quantization equation (SQE) which is given by the following parabolic equation

∂tu = ∆u+ u3 −∞ · u+ ξ, (1.4)

1Our argument also works for (1.2) and (1.3).
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where ξ is as above and “∞ · u” refers to a counter term arising in the renormalization

procedure. The equation (1.4) was introduced in [34] as a dynamical problem whose limiting

behavior of the solutions as t→ +∞ is at least formally given by the Φ4
2-measure:

“dρ4 = Z−1 exp
(
−
�
M

|∇u|2dx−
�
M
u2dx− 1

4

�
M
(u4 −∞ · u2)dx

)
du”.

Hereafter, we use Z to denote various normalizing constants. This measure does not make

sense as it is, since, first of all, the measure “du” is not well defined. This is overcome by

viewing it as

dρ4 = Z−1e−
�
M(u4−∞·u2)dxdµ0, (1.5)

where µ0 is a Gaussian measure on the Sobolev space Hs(M) for any s < 0 with co-

variance operator (1 − ∆g)
s−1 (see (1.7) below). In particular, the nonlinearity u4 is not

integrable with respect to µ0, and hence there is a need for a renormalization in (1.5) and

correspondingly in (1.4), which we discuss in the following subsection.

Now, for a stochastic hyperbolic equation with a general power nonlinearity, the corre-

sponding measure on the phase-space

Hs(M) = Hs(M)×Hs−1(M)

is given similarly by the formal Gibbs measure

dρk+1(u, v) = e−E(u,v)dudv,

where v = ∂tu, and E(u, v) is the (renormalized) energy given by

E(u, v) = 1

2

�
M

{
v2 + |∇u|2 + u2

}
dx+

1

k + 1

�
M

:uk+1 : dx,

and :uk+1 : denotes the renormalization of the nonlinearity. In this case, the full measure

is given by

dρk+1(u, v) = Z−1e−
�
M :uk+1: dxd

(
µ0 ⊗ µ1

)
, (1.6)

where µ1 is the white noise measure on M. Note that when there is no stochastic forcing

as in NLW (1.2), since it admits the Hamiltonian structure

∂t

(
u
v

)
= J∇(u,v)E(u, v) with J =

(
0 1
−1 0

)
,

then the energy E is preserved along the flow, and so at least formally ρk+1 is invariant

for (1.2). On the other hand, adding a stochastic forcing in the equation breaks down the

Hamiltonian structure and in particular changes the equation satisfied by the speed v = ∂tu.

Thus, in order for µ1 to be stationary for v, one needs to add an extra damping term,

making the equation into a Langevin equation with the momentum v = ∂tu. This leads us

to consider (1.1).2

2In the physics literature, when k is odd the stochastic equation (1.1) is then known at the “canonical”

stochastic quantization [35] of the Φk+1
2 -measure (1.6).
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1.3. Renormalization of the nonlinearity. Let us now describe the renormalization pro-

cedure. Let {φn}n≥0 be an orthonormal basis of L2(M) consisting of real-valued C∞(M)-

eigenfunctions of −∆g with corresponding eigenvalues {λ2n}n≥0 assumed to be arranged in

increasing order, so that for any u ∈ D′(M), where D′(M) is the dual of C∞(M), one can

decompose

u =
∑
n≥0

anφn,

for some sequence {an}n≥0 of real numbers. Then, we can see µ = µ0 ⊗µ1 as the Gaussian

probability measure induced under the map

X : (ω0, ω1) ∈ Ω0 × Ω1 7−→ (uω0
0 , uω1

1 ) =

(∑
n≥0

gn(ω0)

⟨λn⟩
φn,

∑
n≥0

hn(ω1)φn

)
∈ Hs(M), (1.7)

where ⟨λn⟩ =
√

1 + λ2n and {(gn, hn)}n≥0 is a sequence of independent standard real-valued

Gaussian random variables on a probability space (Ω0 × Ω1,F ,P0 ⊗ P1). From Weyl’s

law (2.3), which in particular says that λn ∼ n
1
2 , it is easy to see that the convergence of

these series holds in L2(Ω0 ×Ω1;Hs) whenever s < 0. Moreover suppµ ⊂ Hs for any s < 0

but µ(H0) = 0.

Now, the space-time white noise ξ is a centered Gaussian random variable on a probability

space (Ω,P) with values in the space of Schwartz distributions S ′(R;D′(M)), which is delta

correlated. This means that for any space-time test functions η, η̃ ∈ S(R;C∞(M)), we have

E
[
ξ(η)ξ(η̃)

]
= ⟨η, η̃⟩L2

t,x
,

where ⟨·, ·⟩L2
t,x

stands for the usual inner product on L2(R × M). In the following, we

impose that the space-time white noise ξ is independent of gn, hn in (1.7).

In particular, we see that ξ is given by ∂tB, where B is a two-sided cylindrical Wiener

process on L2(M), defined as

B(t) =
∑
n≥0

βn(t)φn, (1.8)

with βn(0) = 0 and βn(t) = ⟨ξ,1[0,t] · φn⟩t,x. Here, ⟨·, ·⟩t,x denotes the duality pairing

on R × M. As a result, we see that {βn}n≥0 is a family of mutually independent (and

independent of gn, hn above) two-sided Brownian motions on (Ω,P). In particular, we have

B ∈ C0,b(R;W s−1,∞(M)) almost surely for any b ∈ [0, 12) and s < 0. In the following, we

look at the base probability space (Ω0 × Ω1 × Ω,P0 ⊗ P1 ⊗ P) as(
Hs(M)× Ω, µ⊗ P

)
,

where

µ = µ0 ⊗ µ1 = X⋆(P0 ⊗ P1) = (P0 ⊗ P1) ◦X−1

is the push-forward of X defined in (1.7).

With these notations at hand, let us first discuss the renormalization for (1.1). A solu-

tion u to (1.1) can be represented through Duhamel’s formula:

u(t) = ∂tV (t)u0 + V (t)(u0 + u1)−
� t

0
V (t− t′)uk(t′)dt′ +

√
2

� t

0
V (t− t′)dB(t′), (1.9)
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where (u0, u1) is as in (1.7), and

V (t) = e−
t
2

sin
(
t
√

3
4 −∆g

)√
3
4 −∆g

(1.10)

is the propagator for the damped Klein-Gordon equation: ∂2t u+ (1−∆g)u+ ∂tu = 0, i.e.

the (deterministic) linear part of (1.1).

We see that the roughness of a solution u already appears at the linear level:

Ψdamp(t)
def
= ∂tV (t)u0 + V (t)(u0 + u1) +

√
2

� t

0
V (t− t′)dB(t′), (1.11)

which lies in C
(
R;Hs(M)

)
almost surely for any s < 0 (see Proposition 3.8 below). The

strategy to define the product uk in the Duhamel formula (1.9) is then to regularize the

rough term Ψdamp and to replace uk by another well-chosen3 polynomial such that, as we

remove the regularization, the corresponding renormalized power :uk : converges to some

finite random variable almost surely.

More precisely, for any N ≥ 0, let PN be (a smooth version of) the frequency pro-

jection on the set of frequencies {λn ≤ N} (see (2.4) below). For each (t, x) ∈ R × M,

PNΨdamp(t, x) is then a mean-zero real-valued Gaussian random variable with variance

σN (x)
def
= E[(PNΨdamp(t, x))

2] = E[(PNu0(x))
2]

=
∑
n≥0

ψ0(N
−2λ2n)

2φn(x)
2

⟨λn⟩2
= O(logN),

(1.12)

where the second equality results from the invariance of (the truncated version of) the

Gaussian measure µ under the (truncated) linear stochastic damped wave equations given

by Proposition 3.8, and the last estimate comes from Lemma 2.1 along with Weyl’s law (2.3).

We note that σN (x) in (1.12) is time independent.

As in the case M = T2 investigated in [33, 32, 17], when the truncated nonlinearity

(PNu)
k is replaced by the Wick ordered monomial defined for all4 (t, x) ∈ R×M by

:(PNu)
k : (t, x) = Hk

(
PNu(t, x);σN (x)

)
, (1.13)

where Hk(x, σ) is the kth Hermite polynomial, the renormalized powers of the stochastic

contribution : (PNΨdamp)
k : converge almost surely to some random variable : Ψk

damp : .

See Section 3 below.

1.4. Well-posedness of the renormalized dynamics. In view of the above discussion,

we look at the following smoothed renormalized version of (1.1).{
∂2t uN + (1−∆g)uN + ∂tuN +Hk

(
uN ;σN (x)

)
=

√
2PNξ,

(uN , ∂tuN )
∣∣
t=0

= (PNu0,PNu1),
(t, x) ∈ R+ ×M, (1.14)

with the random initial data (u0, u1) given by (1.7). Our main result is then the following.

3In particular, note that the renormalized power defined below is a monic polynomial with its lower-order
coefficients becoming infinite as the regularization is removed, which justifies the notation ∞· u in (1.4) for
the cubic case.

4WhenM = T2, since the Gaussian process PNΨdamp(t, x) is also stationary in x, σN is then independent
of x. Here the renormalization must be defined pointwise in x.
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Theorem 1.2. Let k ≥ 2 be an integer and s < 0. Then, there exists a stopping time

T , µ ⊗ P-almost surely positive, such that for any N ∈ N, there exists a unique solution

uN to (1.14) which belongs µ⊗ P-almost surely to C
(
[0, T ];Hs(M)

)
. Moreover, {uN}N∈N

converges µ⊗ P-almost surely to a stochastic process u ∈ C
(
[0, T ];Hs(M)

)
.

Remark 1.3. (i) Formally, the limiting process u is a solution of the full equation:

∂2t u+ (1−∆g)u+ ∂tu+ :uk : =
√
2ξ. (1.15)

This is only formal since the renormalized nonlinearity (1.13) is only defined for smoothed

(i.e. frequency truncated) noise and data.

(ii) The limit u in Theorem 1.2 is unique in the class

Ψdamp + C
(
[0, T ];Hs1(M)

)
⊂ C

(
[0, T ];Hs(M)

)
for 0 < 1− s1 ≪ 1.

(iii) The full Wick ordered nonlinearity is actually well defined on the above class (see (3.1)

below), which justifies that u “is a solution” of the full renormalized dynamics (1.15).

We now investigate the global well-posedness of (1.15) and the invariance of the Gibbs

measure (1.6) when k ≥ 3 is an odd integer. Instead of considering the approximate

dynamics given by truncating the noise and the initial data (as in (1.14)), we truncate the

nonlinearity and look at the following approximate dynamics:{
∂2t uN + (1−∆g)uN + ∂tuN +PNHk

(
PNuN ;σN (x)

)
=

√
2ξ,

(uN , ∂tuN )
∣∣
t=0

= (u0, u1) ∼ ρN,k+1,
(1.16)

where ρN,k+1 is the truncated Gibbs measure, defined in (5.2) below. Here, the notation

(u0, u1) ∼ ρN,k+1 means that the random initial data (u0, u1) has the law ρN,k+1. Since

ρN,k+1 ≪ µ, the same local well-posedness and convergence result as in Theorem 1.2 also

holds for (1.16), and gives again a5 local solution (u, ∂tu) to (1.15). Then we can exploit

the invariance of ρN,k+1 under the flow of (1.16) by following Bourgain’s argument as in

[3, 5, 39, 11, 8], and extend the local well-posedness result into a global one.

Theorem 1.4. Let k ≥ 3 be an odd integer6 and s < 0. Then, the limit (u, ∂tu) of the

dynamics (1.16) can be µ⊗P-almost surely extended globally in time, thus defining a global

measurable flow map Φ(t) : Hs(M) × Ω → Hs(M). Moreover, the Gibbs measure ρk+1 is

invariant, in the sense that for any t ≥ 0 and any F ∈ Cb(Hs(M);R), we have�
Hs(M)

�
Ω
F
[
Φ(t)(u0, u1, ω)

]
dP(ω)dρk+1(u0, u1) =

�
Hs(M)

F (u0, u1)dρk+1(u0, u1).

5Actually, a straightforward adaptation of our argument shows that the limits obtained by (1.14) or by
(1.16) are the same. See also Remark 1.5 below.

6Here, we only consider the defocusing case, namely the case of an odd integer k ∈ N with the “+”
sign in front of the nonlinear term on the left-hand side of (1.1), since in the focusing case the density of

“dρ̃k+1(u, ∂tu) = e+
�
M :uk+1: dµ(u, ∂tu)” cannot be properly defined [6, 31]. When k is even, there is no

notion of focusing or defocusing. When k = 2, it is still possible to construct a focusing Gibbs measure, at
least on the flat torus T2; see [4, 31]. This focusing Gibbs measure is, however, endowed with a taming by
a power of the Wick-ordered L2-norm, leading to a slightly different equation. Hence, we do not consider it
in this paper. A similar comment applies to Theorem 1.7.
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Remark 1.5. As pointed out above, Theorem 1.4 is concerned with the invariance of the

Gibbs measure ρk+1 in (1.6) for the limit of the truncated equation (1.16). The reason to

consider this dynamics (rather than (1.14)) is that it also admits an invariant (truncated)

Gibbs measure ρN,k+1 (see the definition in (5.2) below), which makes it easier to apply

Bourgain’s invariant measure argument [3, 5] to globalize the dynamics in Section 5. How-

ever, this approximation is somehow less natural than (1.14) considered in Theorem 1.2, as

this latter deals with solutions arising from smooth approximations of the initial data and

noise instead of truncating the nonlinearity. It turns out that there are situations where

the truncated dynamics (1.16) is actually easier to handle than the natural approximation

(1.14), as one can benefit of the invariance of ρN,k+1 also in the local theory. We refer the

reader to the introduction of [37] for a more thorough discussion on this point. In our case,

the local theory and stability property established in Propositions 4.1 and 5.3 below are

robust enough to handle both the truncated dynamics (1.16) and the natural approxima-

tion (1.14), and the result of Theorem 1.4 should also hold for the natural approximation

(1.14) up to minor modifications of the argument presented in Section 5.

As mentioned above, we can also look at the evolution of ρk+1 under (a suitably renormal-

ized version of) the deterministic NLW (1.2) (i.e. without stochastic forcing or damping).

For this purpose, we first study the following renormalized NLW:{
∂2t uN + (1−∆g)uN +Hk

(
uN ;σN (x)

)
= 0

(uN , ∂tuN )
∣∣
t=0

= (PNu0,PNu1),
(1.17)

where (u0, u1) has the law µ defined in (1.7). In this case we have similar results.

Theorem 1.6. Let k ≥ 2 be an integer and s < 0. Then, there exists a stopping time T ,

µ-almost surely positive, such that for µ-almost every initial data (u0, u1) ∈ Hs(M) and

for any N ∈ N, there exists a unique solution uN ∈ C
(
[0, T ];Hs(M)

)
to (1.17). Moreover,

{uN}N∈N converges µ-almost surely to a function u ∈ C
(
[0, T ];Hs(M)

)
.

Here, the uniqueness of u is in the corresponding class:

z + C
(
[0, T ];Hs1(M)

)
,

where s1 is as in Remark 1.3 (ii) and

z(t) = S(t)(u0, u1) = cos(t
√

1−∆g)u0 +
sin(t

√
1−∆g)√

1−∆g

u1 (1.18)

is the linear solution with the random initial data (u0, u1) = (uω0
0 , uω1

1 ) defined in (1.7).

Note that we have E
[
(PNz(t, x))

2
]
= σN (x) as in (1.12), and hence the renormalization in

(1.17) is also defined by (1.13).

As before, we can alternatively look at the approximations given by solving the truncated

NLW: {
∂2t uN + (1−∆g)uN +PNHk

(
PNuN ;σN (x)

)
= 0

(uN , ∂tuN )
∣∣
t=0

= (u0, u1) ∼ ρN,k+1.
(1.19)

Due to the conservation of the energy and subsequently of the truncated Gibbs measure,

we also have a global statement for the limit of the solutions to (1.19).
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Theorem 1.7. Let k ≥ 3 be an odd integer. Then, there exists a set Σ of full ρk+1-measure

such that for any initial data (u0, u1) ∈ Σ, the limit (u, ∂tu) of the solutions (uN , ∂tuN )

to (1.19) exists globally in time. Moreover, the flow map Φ(t) : (u0, u1) 7→ (u, ∂tu) leaves

the Gibbs measure ρk+1 invariant. Namely, for any t ∈ R and any F ∈ Cb(Hs(M);R), we
have �

Hs(M)
F
(
Φ(t)(u0, u1)

)
dρk+1(u0, u1) =

�
Hs(M)

F (u0, u1)dρk+1(u0, u1).

Remark 1.8. The same comment as in Remark 1.5 above also applies to the result stated

in Theorem 1.7. In particular, for the deterministic equation (1.2), the approximation by

smooth initial data in (1.17) (while studying the same equation) is genuinely more natural

than the one given by the truncated equation (1.19), since in this case the use of randomness

on initial data can be interpreted as a way to give a meaning to limits of smooth solutions

to (1.2) at a super-critical regularity. See, for example, [10, 12, 30].

Finally, we consider the case with stochastic forcing but with deterministic initial and

no damping7:{
∂2t uN + (1−∆g)uN +Hk

(
uN ;σN (t, x)

)
= PNξ

(u, ∂tu)|t=0 = (u0, u1),
(t, x) ∈ R×M (1.20)

for deterministic initial data in (u0, u1) ∈ Hs(M), where σN (t, x) is as in (1.21) below.

Here, the renormalization is slightly different. Let us first define the stochastic convolution

Ψ(t)
def
=

� t

0

sin
(
(t− t′)

√
1−∆g

)√
1−∆g

dB(t′) =
∑
n≥0

( � t

0

sin
(
(t− t′)⟨λn⟩

)
⟨λn⟩

dβn(t
′)

)
φn,

which is the solution of the linear stochastic wave equation with the zero initial data. Then,

from Itô’s isometry, we have for any x ∈ M and t ≥ 0:

σN (t, x)
def
= E

[
PNΨ(t, x)2

]
=

∑
n≥0

ψ0(N
−2λ2n)(φn(x))

2

� t

0

[
sin

(
(t− t′)⟨λn⟩

)
⟨λn⟩

]2
dt′

=
∑
n≥0

ψ0(N
−2λ2n)(φn(x))

2

(
t

2⟨λn⟩2
− sin(2t⟨λn⟩)

4⟨λn⟩3

)
= O(t logN).

(1.21)

As in (1.13), we thus define the renormalized Wick powers by

: (PNΨ(t, x))k :
def
= Hk

(
PNΨ(t, x);σN (t, x)

)
. (1.22)

We emphasize here that since now PNΨ is not stationary in x or t, the renormalization

needs to be performed pointwise in both x and t.

Theorem 1.9. Given an integer k ≥ 2, let scrit be the critical regularity defined in (1.23)

below. Let 0 < s1 < 1 satisfying s1 > scrit if k = 2, 3 or s1 ≥ scrit when k ≥ 4. Then, the

truncated Wick ordered SNLW (1.20) is almost surely locally well-posed in Hs1(M), in the

sense that for any data (u0, u1) ∈ Hs1(M) and any s < 0, there exists an almost surely

7Let us recall that the damping term was added in (1.1) in order to preserve the measure ρk+1. Hence
when there is no damping term as in (1.3) there is no point in considering random initial data, since there
is no invariant measure for (1.3).
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positive stopping time T = Tω(u0, u1) such that for any N ∈ N, there is a unique solution

uN to (1.20) in the class

PNΨ+Xs1
T ⊂ C([0, T ];Hs(M)),

where the space Xs1
T is defined in (4.6) below. Moreover, the solutions uN converge to a

stochastic process u ∈ C
(
[0, T ];Hs(M)

)
almost surely.

The critical exponent scrit corresponds to the one given by the deterministic well-

posedness theory:

scrit = max(sscal, sconf, 0) = max

(
1− 2

k − 1
,
3

4
− 1

k − 1
, 0

)
(1.23)

where sscal and sconf correspond respectively to the scaling invariance and the conformal

symmetry.

Unlike in the previous models, there is no invariant Gibbs measure available for (1.3),

and as a consequence globalizing the solutions is not as straightforward. We point out that

in the special case M = T2, this has been investigated very recently in [18].

1.5. Scheme of proofs and organization of the paper. As transpired in the discussion

above, the general strategy used in [13] (see also [24, 5]) to prove Theorems 1.2, 1.6, and 1.9

is to look for a solution under the form uN = rN + wN with rN ∈ {PNΨdamp, zN ,PNΨ},
where wN is expected to be smoother and hence falling into the scope of applicability of

the deterministic well-posedness theory. Then, we aim to solve the perturbed equation for

wN with the enhanced data set {wN (0), ∂twN (0), rN , ..., : r
k
N : }. Indeed, in view of the

formula (3.1) below for the renormalization of the sum, we see that wN solves (in the case

of (1.1))

∂2twN + (1−∆g)wN + ∂twN +

k∑
ℓ=0

(
k

ℓ

)
:rℓN : wk−ℓ

N = 0. (1.24)

Hence it is enough to estimate the Wick ordered monomials : rℓN : uniformly in N in

order to estimate : ukN :. Then, we can solve the equation for wN uniformly in N by a

standard fixed point argument as in the deterministic setting. The difficulty with working

on a general compact Riemannian manifold without boundary appears in the first step

when trying to get good probabilistic estimates on the random objects appearing after

renormalization. Indeed, the Fourier analytic proofs of these estimates in the previous

works on T2 [33, 32, 17] fail here because of the lack of structure of a commutative group

and of uniform boundedness of the eigenfunctions. Thus we cannot rely only on “global

”(on M) arguments. Instead, we give a local description of the stochastic objects in the

spirit of [7], so that up to localizing and controlling various error terms which appear in this

process, the probabilistic estimates in the case of a manifold follow from analyzing the kernel

of some pseudo-differential operators (ΨDOs) in R2. Note that the semi-classical analysis

that we employ is somehow non-standard, since not all the pseudo-differential operators

involved depend on the semi-classical parameter, so we have to work with “semi” semi-

classical ΨDOs.

Alternatively, in the context of parabolic singular stochastic PDEs, the authors in [2]

developed a functional calculus adapted to the heat semi-group on manifolds, which enabled
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them to build a robust and general theory for the study of singular stochastic PDEs in a

more complex geometrical setting. Though we believe that their approach could be adapted

to treat our problem, it seems that the general bound on the powers of the truncated Green

function for the Laplace-Beltrami operator established in Proposition 3.6, which is in the

core of our proof, is new and of independent interest. In particular, it would prove itself

useful if one wishes to extend the result of [13] for (1.4) on compact surfaces. See also

Remark 3.9 below.

Another contribution of this work is to extend Bourgain’s invariant measure argument

[3, 5] to the case of a singular stochastic PDE, allowing us to globalize the local result of

Theorem 1.2. This argument has indeed previously been used mainly in the context of

a deterministic Hamiltonian PDE with random initial data such as (1.2) considered here.

In Section 5, we carefully detail its implementation in the presence of a singular random

forcing term.

We begin by recalling the tools that we need from spectral theory and semi-classical

calculus in Section 2, in particular the local description of semi-classical pseudodifferential

operators given in [7] that we shall use extensively. In Section 3, after recalling the basic

tools from probability theory and Euclidean quantum field theory, we establish the crucial

probabilistic estimates on the aforementioned stochastic objects. Sections 4 and 5 are

dedicated to the proof of the local and global well-posedness results and the invariance

property of the Gibbs measure ρk+1.

2. Functional calculus and semi-classical pseudo-differential calculus

In this section, we collect the tools from micro-local analysis that we will need in the

next sections. Most of the background needed here can be found in [40], except for the few

results on the functional calculus which can be found in [15].

2.1. Geometric setting. We begin by recalling the general setting for our results. We

consider a d-dimensional8 compact Riemannian manifold without boundary (M, g), on

which we fix a finite atlas (Uj , Vj , κj)j∈J for some finite index set J , i.e. the Vj are open

sets covering M:

M =
⋃
j∈J

Vj ,

and Uj are open sets in Rd, with9 some homeomorphisms κj : Uj ⊂ Rd → Vj ⊂ M
such that κ−1

j ◦ κk are smooth diffeomorphisms on Uj ∩ Uk, for any j, k ∈ J such that

Uj ∩Uk ̸= ∅. We also fix an associated smooth partition of unity (χj)j∈J , i.e. χj ∈ C∞(M)

with suppχj ⊂ Vj and for any x ∈ M,∑
j∈J

χj(x) = 1.

For j ∈ J and a smooth function u ∈ C∞(Vj), the pull-back of u is then the function

κ⋆ju = u ◦ κj ∈ C∞(Uj).

8In this section we state some results for a general dimension d ∈ N, but in the rest of the paper we only
consider d = 2.

9In the differential geometry literature, atlases are generally defined with the opposite convention that
U ⊂ M and κ : U → κ(U) ⊂ Rd. Here we chose to keep the convention of [7].
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Given a local chart (Uj , Vj , κj), the metric g is given by a smooth mapping g : x ∈
Uj 7→

(
gm,ℓ(x)

)
m,ℓ=1...d

where
(
gm,ℓ(x)

)
m,ℓ=1...d

is a symmetric positive definite matrix,

with inverse denoted by
(
gm,ℓ(x)

)
m,ℓ=1...d

.

The Laplace-Beltrami operator can then be described as the negative10 operator acting

locally on smooth functions u ∈ C∞(Vj) by

κ⋆jχj(∆gu)(x) =
d∑

m,ℓ=1

1√
det g(x)

∂xm

(√
det g(x)gm,ℓ(x)∂xℓ

)
κ⋆j (χ̃ju)

=
(
p2(x,D) + p1(x,D)

)
κ⋆j (χ̃ju),

for any x ∈ Uj , where χ̃j ∈ C∞
0 (Vj) satisfies χ̃j ≡ 1 on suppχj . Here p1 is a differential

operator of order 1, and the differential operator p2 is given by

p2(x,D) =

d∑
m,ℓ=1

gm,ℓ(x)∂xm∂xℓ
. (2.1)

In particular, since g is smooth with values in symmetric positive definite matrices and M
is compact, there exists c, C > 0 such that for any x ∈

⋃
j∈J suppκ⋆jχj and ξ ∈ Rd we have

−C|ξ|2 ≤ p2(x, ξ) ≤ −c|ξ|2. (2.2)

We recall that −∆g admits an orthonormal basis {φn}n≥0 ⊂ C∞(M) of L2(M) consisting

of eigenfunctions with corresponding eigenvalues {λ2n}n≥0 assumed to be arranged in the

non-decreasing order, and that we have Weyl’s law

#{n ≥ 0, λn ≤ λ} ∼ λd, (2.3)

for any λ ≥ 0. In particular we have λn ∼ n
1
d .

The eigenfunctions φn’s are not uniformly bounded (in n), but we have (see e.g. [9,

Proposition 8.3]) that they are bounded in a mean value meaning:

Lemma 2.1. Let d = 2. There exists C > 0 such that for any Λ ∈ R and x ∈ M, we have∑
n≥0

1(Λ,Λ+1](λn)
(φn(x))

2

1 + λ2n
≤ C

∑
n≥0

1(Λ,Λ+1](λn)
1

1 + λ2n
,

where 1(Λ,Λ+1] is the indicator function of the interval (Λ,Λ + 1].

Indeed, this lemma follows directly from the following asymptotic behavior for the spec-

tral function of ∆g due to Hörmander [20]: for any d ∈ N, there exists cd > 0 such that for

any Λ ≥ 0 and x ∈ M,

e(x,Λ2)
def
=

∑
λ2
n≤Λ2

(φn(x))
2 = cdΛ

d +O(Λd−1).

10Again, it is common to define the Laplace-Beltrami operator as the positive operator −∆g, but we
stick to the negative one so that the wave equations (1.1)-(1.2)-(1.3) have the same formulation as on T2.
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2.2. Functional calculus. We finally move onto the definition and the local description in

terms of ΨDOs of some operators used to describe the stochastic objects and to construct

the Sobolev and Besov spaces needed to measure them.

To this end, let us first define PN to be a smooth version of the Dirichlet projection onto

the frequencies {λn ≤ N}. Namely, take a smooth even non-increasing cut-off ψ0 ∈ C∞
0 (R)

satisfying suppψ0 ⊂ [−1, 1] and ψ0 ≡ 1 on [−1/2, 1/2]. For any real-valued u ∈ L2(M), we

have

u =
∑
n≥0

⟨u, φn⟩L2(M)φn,

where

⟨u, v⟩L2(M) =

�
M
u(x)v(x)dx

is the inner product in L2(M) and we simply wrote dx for the volume density on (M, g).

For any N > 0, PN is then defined as the linear operator on L2(M) given by

PNu =
∑
n≥0

ψ0

( λ2n
N2

)
⟨u, φn⟩L2(M)φn. (2.4)

In particular, if we define the finite-dimensional subspace of L2(M)

EN = Span{φn, λn ≤ N}

with the orthogonal projection

ΠN : L2(M) → EN ,

then PN maps L2(M) into EN and

ΠNPN = PNΠN = PN . (2.5)

Next, we define the sets of dyadic integers for N as

2Z+ = {1, 2, 4, ...} and 2N = 2Z+ \ {1}.

Hereafter, we will use the Sobolev and Besov spaces W s,p(M) and Bs
p,q(M), s ∈ R, 1 ≤

p, q ≤ ∞, which are defined via the norms

∥u∥W s,p
def
=

∥∥∥∑
n≥0

⟨λn⟩s⟨u, φn⟩L2(M)φn

∥∥∥
Lp(M)

,

and

∥u∥Bs
p,q

def
=

(∥∥P1u
∥∥q
Lp +

∑
N∈2N

N sq
∥∥(PN −PN/2)u

∥∥q
Lp

) 1
q
.

For now the Besov norms of a function u are only defined in terms of projections in the

eigenfunction expansion of u. Although it is easy to handle these norms when p = 2 (since

the φn’s form an orthonormal basis of L2(M)), we need an equivalent characterization to

be able to estimate them when p ̸= 2.
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Let us recall the definition of the L2 functional calculus. For any bounded continuous

function f on R, we can define the bounded linear operator f(−∆g) on L
2(M) as

f(−∆g)u =
∑
n≥0

f(λ2n)⟨u, φn⟩L2(M)φn. (2.6)

This defines a continuous linear map from Cb(R) to the space L(L2(M)) of bounded linear

operators on L2(M). More generally, if f ∈ Sm for some m > 0 (see (2.7) below), then

f(−∆g) is an unbounded operator on L2(M) with domain given by

D
(
f(−∆g)

)
=

{
u ∈ D′(M),

∑
n≥0

∣∣f(λ2n)⟨u, φn⟩
∣∣2 <∞

}
.

For N ∈ 2N, we define

ψN2(x) = ψ0(N
−2x)− ψ0(4N

−2x),

and

ψ1(x) = ψ0(x)

for N = 1. In view of the previous definition, we have PN = ψ0(−N−2∆g) and for N ∈ 2N,

we have

PN −PN/2 = ψN2(−∆g).

Thus we need to give a local description of the bounded linear operators which are

functions of −∆g on L2(M) given by the functional calculus. This is the content of the

next subsection.

2.3. Pseudo-differential calculus. We begin by collecting a few facts about (semi-

classical) ΨDOs. First, for d ∈ N and any m ∈ R we say that a function f ∈ C∞(Rd)

belongs to the space Sm if for any multiindex β ∈ Nd and any ξ ∈ Rd,

|∂βξ f(ξ)| ≲ ⟨ξ⟩m−|β|, (2.7)

where ⟨ξ⟩ =
√
1 + |ξ|2 and |β| is the length of the multiindex β. Here we use the notation

A ≲ B if there exists c > 0 (independent of the sets where A and B vary) such that

A ≤ cB. We also use the notations A ∼ B if A ≲ B and B ≲ A, and A≪ B if we can take

c = 10−12. We extend this definition to functions a : Rd × Rd → R, which belong to the

symbol class Sm if a ∈ C∞(Rd × Rd) and satisfy for any α, β ∈ Nd and (x, ξ) ∈ Rd × Rd,∣∣∂αx ∂βξ a(x, ξ)∣∣ ≲ ⟨ξ⟩m−|β|. (2.8)

Then for m ∈ R and a symbol a ∈ Sm we define the semi-classical ΨDO of order m with

symbol a with respect to some semi-classical parameter11 h ∈ (0, 1] to be the linear operator

acting on Schwartz functions u ∈ S(Rd) by the quantization rule

a(x, hD)u =
1

(2π)d

�
Rd

eix·ξa(x, hξ)û(ξ)dξ, (2.9)

and û stands for the Fourier transform of u. Hereafter we systematically neglect the con-

stants 2π appearing either in (2.9) or in the Fourier transform.

11In the following, we will take for the semi-classical parameter h = N−1 for some N ∈ N.
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A particular case of Fefferman’s result [16] is that a (semi-classical) ΨDO of order 0

extends to a bounded linear operator on Lp(Rd) (with norm independent of h in the semi-

classical case), for any 1 < p < ∞. It is also well-known (see for example [40]) that the

composition of ΨDOs of order m1 and m2 gives a ΨDO of order m1 +m2, and moreover

the symbolic calculus gives

a(x, hD) ◦ b(x, hD) = (a#b)(x, hD),

where for arbitrary M ∈ N,

(a#b)(x, hξ) =

M−1∑
|α|=0

cαh
|α|(∂αξ a · ∂αx b)(x, hξ) +OSm1+m2−M (hM ). (2.10)

Here we use the notation OSm1+m2−M (hM ) to mean

OSm1+m2−M (hM ) = hMrM,a,b(x, hD)

for some rM,a,b ∈ Sm1+m2−M (and depending continuously upon a and b for the composi-

tion). This implies that if a ∈ Sm, then for any s ∈ R, a(x, hD) maps continuously Hs(Rd)

into Hs−m(Rd), and for any u ∈ S(Rd) we have the estimate12

∥a(x, hD)u∥Hs−m(Rd) ≲ h(m−s)∧0+s∧0∥u∥Hs(Rd). (2.11)

Here s ∧ 0 = min(s, 0). This follows directly from the uniform (in h) L2 boundedness of

the semi-classical ΨDO ⟨hD⟩s−ma(x, hD)⟨hD⟩−s which is of order 0, and the estimates

⟨ξ⟩s ≲ h(−s)∧0⟨hξ⟩s and ⟨hξ⟩s ≲ hs∧0⟨ξ⟩s for any s ∈ R and ξ ∈ Rd.

Let us now give a local description in terms of ΨDOs of the bounded linear operators

on L2(M) given by the previous functional calculus. If ψ is any smooth and compactly

supported function, we can also view ψ(−N−2∆g) as a semi-classical ΨDO (with semi-

classical parameter h = N−1) in local coordinates. Indeed, let us recall the result of

Proposition 2.1 in [7].

Proposition 2.2. Let ψ ∈ C∞
0 (R), κ : U ⊂ Rd → V ⊂ M be a coordinate patch, and

χ, χ̃ ∈ C∞
0 (V ) with χ̃ ≡ 1 on suppχ. Then there exists a sequence of symbols (am)m≥0 in

C∞
0 (U × Rd) with the following properties:

(i) for any M ∈ N, any h ∈ (0, 1] and any s ∈ R, 0 ≤ σ ≤M , we have the expansion∥∥∥κ⋆(χψ(−h2∆g)v
)
−

M−1∑
m=0

hmam(x, hD)κ⋆(χ̃v)
∥∥∥
Hs+σ(Rd)

≲ hM−max(σ+s,σ,|s|)∥v∥Hs(M)

(2.12)

for any v ∈ C∞(M);

(ii) for any x ∈ U the principal symbol is given by

a0(x, ξ) = χ(κ(x))ψ
(
− p2(x, ξ)

)
,

12The operator norm of a(x, hD) : Hs(Rd) → Hs−m(Rd) depends on h here because we always work
with classical Sobolev spaces, as opposition to the semi-classical Sobolev spaces generally used in the
semi-classical analysis. This is due to the “hybrid” nature of our problem where we have to measure the
composition of classical ΨDOs with semi-classical ones.
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where p2 has been defined in (2.1),

(iii) for all m ≥ 0, am is supported in{
(x, ξ) ∈ U × Rd, κ(x) ∈ suppχ, −p2(x, ξ) ∈ suppψ

}
. (2.13)

In particular, this means that for ψ ∈ C∞
0 (R), the semi-classical operator ψ(−h2∆g) ∈

L
(
L2(M)

)
defined by the functional calculus can be described locally by some ΨDOs with

symbol in13

S−∞(Rd × Rd) =
⋂
m∈R

Sm(Rd × Rd).

Note that the smoothing property of the remainder in (2.12) is only stated for s = 0 in [7,

Proposition 2.1], but one can derive the bound in (2.12) by the same computation as in [7]

and using (2.11).

Remark 2.3. This result relies on describing ψ(−∆g) through Helffer-Sjöstrand’s formula

ψ(−∆g) = − 1

π

�
C
∂̄ψ̃(z)(z +∆g)

−1dz,

where ψ̃ is an almost analytic extension of ψ, and using that the resolvent (z + ∆g)
−1 is

locally a ΨDO of order −2. In particular, one can see that the above integral is absolutely

convergent for any function ψ in the class

A =
⋃
m<0

Sm(R)

(which contains C∞
0 (R)), so that the integral representation of ψ(−∆g) also holds for ψ ∈ A

(see [15, Chapter 2]). Using the same argument, for any ψ ∈ Sm(R), m < 0, then ψ(−∆g)

is locally given by a ΨDO of order −2m with principal symbol

ψ
(
− p2(x, ξ)

)
∈ S−2m(Rd × Rd).

Using the previous proposition, we get the following Bernstein type estimate for the

Lp(M) → Lq(M) mapping property of the operator ψ(−h2∆g). See Corollary 2.4 in [7].

Corollary 2.4. Under the conditions of the previous proposition, for any 1 ≤ p ≤ q ≤ ∞,

there exists C > 0 such that for any u ∈ C∞(M) and h ∈ (0, 1],

∥ψ(−h2∆g)u∥Lq(M) ≤ Ch
d
(

1
q
− 1

p

)
∥u∥Lp(M).

2.4. More on the function spaces. In order to close the fixed point argument in the

proofs of the well-posedness results, we will need a fractional Leibniz rule in Bs
p,q(M). First,

we need an equivalent characterization of the topology on the Besov spaces Bs
p,q(M).

Proposition 2.5. Let κ : U ⊂ Rd → V ⊂ M be a coordinate patch and χ ∈ C∞
0 (V ). For

any s ∈ R and 1 ≤ p, q ≤ ∞, there exist c, C > 0 such that for any u ∈ C∞(M),

c∥χu∥Bs
p,q(M) ≤ ∥κ⋆(χu)∥Bs

p,q(Rd) ≤ C∥u∥Bs
p,q(M). (2.14)

13See also [40, Section 14.3.2].
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Proof. First, observe that it is enough to establish the right-hand side inequality, since by

duality it holds

∥χu∥Bs
p,q(M) = sup

∥ũ∥
B−s
p′,q′

(M)
≤1

�
M
χu · ũ = sup

∥ũ∥
B−s
p′,q′

(M)
≤1

�
Rd

κ⋆(χu) · κ⋆(χ̃ũ)

≲ sup
∥ũ∥

B−s
p′,q′

(M)
≤1

∥κ⋆(χu)∥Bs
p,q(Rd)∥κ⋆(χ̃ũ)∥B−s

p′,q′ (R
d) ≲ ∥κ⋆(χu)∥Bs

p,q(Rd),

where in the last step we used the right-hand side inequality in (2.14). This shows that the

left-hand side inequality follows from the right-hand side one.

We thus need to estimate ∑
N∈2Z+

N sq∥θN (D)κ⋆(χu)∥q
Lp(Rd)

,

where {θN}N∈2Z+ is an inhomogeneous dyadic partition of unity in Rd. We first take a

fattened version ψ̃N2
1
of ψN2

1
, where ψN2

1
is the multiplier in the definition of PN1 , and

decompose

θN (D)κ⋆(χu) =
∑

N1∈2Z+

θN (D)κ⋆(χuN1)

=
∑

N1∼N

θN (D)κ⋆(χuN1) +
∑

N1 ̸∼N

θN (D)κ⋆
(
χψ̃N2

1
(−∆g)uN1

)
,

where uN1 = ψN2
1
(−∆g)u. To bound the terms in the second sum above, we have the

following lemma.

Lemma 2.6. Let κ and χ as in Proposition 2.5. Then for any u ∈ Lp(M), p ≥ 1, and any

N,N1 ∈ 2Z+ with (N ∨N1) ≫ (N ∧N1), we have for arbitrary B > 0:∥∥θN (D)κ⋆
(
χψ̃N2

1
(−∆g)u

)∥∥
Lp(Rd)

≲ (N ∨N1)
−B∥u∥Lp(M). (2.15)

With this lemma at hand, we can finish establishing the right-hand side inequality in

(2.14). Indeed, for the almost diagonal terms, we have from Minkowski’s inequality, the

uniform boundedness of the Littlewood-Paley projectors θN (D) on Lp(Rd), and Hölder’s

inequality with Fubini’s theorem that∥∥1N1∼NN
sθN (D)κ⋆(χuN1)

∥∥
ℓqN (2Z+ )Lp(Rd)ℓ1N1

(2Z+ )
≲

∥∥1N1∼NN
suN1

∥∥
ℓqN1

(2Z+ )ℓqN (2Z+ )Lp(M)

≲ ∥u∥Bs
p,q(M),

while for the off-diagonal terms we have fromMinkowski’s inequality and Lemma 2.6 applied

to uN1 with B > 2|s|:∥∥1N1 ̸∼NθN (D)κ⋆
(
χψ̃N2

1
(−∆g)uN1

)∥∥
ℓqN (2Z+ )Lp(Rd)ℓ1N1

(2Z+ )

≲
∥∥1N1 ̸∼NN

s(N ∨N1)
−BuN1

∥∥
ℓqN (2Z+ )Lp(M)ℓ1N1

(2Z+ )

≲
∥∥N |s|−B

1 uN1

∥∥
ℓ1N1

(2Z+ )Lp(M)
≲ ∥u∥Bs

p,q(M).

This concludes the proof of Proposition 2.5, assuming Lemma 2.6. □
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Proof of Lemma 2.6. For M ≫ 1 to be chosen later, we use Proposition 2.2 to decompose

θN (D)κ⋆
(
χψ̃N2

1
(−∆g)u

)
= θN (D)

{M−1∑
m=0

N−m
1 am(x,N−1

1 D)κ⋆(χ̃u) + U−M,N1

}
,

where ∥∥U−M,N1

∥∥
Hs1 (M)

≲ N s1+s2−M
1 ∥u∥H−s2 (M)

for any s1, s2 ≥ 0 with s1 + s2 ≤ M , in view of Proposition 2.2 (i) with s = −s2 and

σ = s1 + s2.

Note that from the support property (2.13) of am and the assumption (N ∨ N1) ≫
(N ∧ N1), we have from the symbolic calculus that θN (D) ◦ am(x,N−1

1 D) vanishes at

infinite order, but we have to be cautious with the dependence in N and N1 within the

remainder in (2.10). Namely for any A ≥ 1, we use the composition rule (2.10) to expand

θN (D) ◦ am(x,N−1
1 D)

=

A−1∑
|α|=0

cαN
−|α|

{
∂αθN (ξ) · ∂αam(x,N−1

1 ξ)
}
(x,D) +N−ArA,N,N1(x,D)

= N−ArA,N,N1(x,D)

for some constants cα. Indeed the last equality results of the support property of am and

the assumption (N ∨N1) ≫ (N ∧N1) so that the supports (in ξ) of θN and am(x,N−1
1 ξ)

are disjoint. Here rA,N,N1 is a ΨDO with symbol

∑
|α|=A

cα

�
Rd

�
Rd

� 1

0
e−iz·ξ1∂αθN (ξ + ξ1)∂

αam(x+ tz,N−1
1 ξ)(1− t)A−1dtdξ1dz. (2.16)

This is obtained as a by-product of the proof of the symbolic product rule for ΨDOs: writing

down the symbol of the composition, performing the Taylor expansion of this symbol and

integrating by parts gives the sum for |α| < A, and the rest which corresponds to the symbol

in (2.16). In particular, in view of the support properties in ξ of θN (ξ) and am(x,N−1
1 ξ)

(and the boundedness of M), we can integrate by parts the kernel

RA,N,N1(x, y) =
1

(2π)d

�
Rd

ei(x−y)·ξrA,N,N1(x, ξ)dξ

of rA,N,N1(x,D) with respect to z in (2.16) to get some negative powers of ξ1. Indeed, for

any ℓ1 ∈ N, we integrate by parts to get

RA,N,N1(x, y) =
∑
|α|=A

cα

�
Rd

�
Rd

�
Rd

� 1

0
⟨ξ1⟩−ℓ1e−i(z·ξ1−(x−y)·ξ)∂αθN (ξ + ξ1)

· ⟨Dz⟩ℓ1
(
∂αam(x+ tz,N−1

1 ξ)t|β|
)
(1− t)A−1dtdξ1dzdξ.
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Similarly, in order to get some decay in x, we can integrate by parts in ξ to get for any

ℓ2 ∈ N

RA,N,N1(x, y)

=
∑
|α|=A

cα

�
Rd

�
Rd

�
Rd

� 1

0
⟨ξ1⟩−ℓ1⟨x− y⟩−ℓ2e−i(z·ξ1−(x−y)·ξ)

× ⟨Dξ⟩ℓ2
[
∂αθN (ξ + ξ1)⟨Dz⟩ℓ1

(
∂αam(x+ tz,N−1

1 ξ)
)
(1− t)A−1

]
dtdξ1dzdξ.

We finally integrate by parts in ξ1 to get some decay in z, leading to

RA,N,N1(x, y)

=
∑
|α|=A

cα

�
Rd

�
Rd

�
Rd

� 1

0
⟨ξ1⟩−ℓ1⟨x− y⟩−ℓ2⟨z⟩−ℓ3e−i(z·ξ1−(x−y)·ξ)

× ⟨Dξ⟩ℓ2
[
∂α⟨Dξ1⟩ℓ3θN (ξ + ξ1)⟨Dz⟩ℓ1

(
∂αam(x+ tz,N−1

1 ξ)
)
(1− t)A−1

]
dtdξ1dzdξ.

In view of (N ∨ N1) ≫ (N ∧ N1) and the localization of ξ and (ξ + ξ1), we have the

localization |ξ1| ∼ (N ∨ N1). Moreover, for fixed ξ1, in view of the support properties of

θN and am then ξ lies in a set of size at most (N ∧N1)
d. Hence for any ℓ1, ℓ2, ℓ3 > 2 the

integrand is absolutely integrable and we get the bound∣∣RA,N,N1(x, y)
∣∣ ≲ (N ∧N1)

d(N ∨N1)
d−ℓ1⟨x− y⟩−ℓ2 .

We can then integrate in x or y provided that we take ℓ2 > d, to obtain

∥RA,N,N1∥L∞
x L1

y
+ ∥RA,N,N1∥L∞

y L1
x
≲ (N ∧N1)

d(N ∨N1)
d−ℓ1 .

This is enough to estimate the contribution

N−AN−m
1 ∥θN (D) ◦ am(x,N−1

1 D)κ⋆(χ̃u)∥Lp(Rd)

by the right-hand side of (2.15) in view of Schur’s lemma, since ℓ1 ∈ N is arbitrary.

As for the remainder in the use of Proposition 2.2, we first take M = B + s1 + s2 + 10

with s1 and s2 large enough so that, by Sobolev embedding, Hs1(Rd) ⊂ Lp(Rd), and by

Sobolev embedding and the compactness of M, Lp(M) ⊂ H−s2(M). Then, in the case

N ≪ N1, we use the boundedness of θN (D) : Lp(Rd) → Lp(Rd) to bound

∥θN (D)U−M,N1∥Lp(Rd) ≲ ∥U−M,N1∥Hs1 (Rd) ≲ N s1+s2−M
1 ∥u∥H−s2 (M) ≲ N−B

1 ∥u∥Lp(M).

In the other case N ≫ N1, using that θN is then supported on an annulus we have

∥θN (D)UM,N1∥Lp(Rd) ≲ N−B∥UM,N1∥Hs1+B(Rd)

≲ N s1+s2+B−M
1 N−B∥u∥Lp(M) ≲ N−B∥u∥Lp(M).

This concludes the proof of the lemma. □

Using Proposition 2.5, the finiteness of J and that the embeddings and the fractional

Leibniz rule hold on Rd, we get the following consequences of Proposition 2.5.

Corollary 2.7. Let M be any compact Riemannian manifold of dimension d without bound-

ary.
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(i) For any s ∈ R we have Bs
2,2(M) = Hs(M), and more generally for any 2 ≤ p <∞ and

ε > 0 we have

∥u∥Bs
p,∞(M) ≲ ∥u∥W s,p(M) ≲ ∥u∥Bs

p,2(M) ≲ ∥u∥Bs+ε
p,∞(M).

(ii) Let s ∈ R and 1 ≤ p1 ≤ p2 ≤ ∞ and q ∈ [1,∞]. Then for any f ∈ Bs
p1,q(M) we have

∥f∥
B

s−d

(
1
p1

− 1
p2

)
p2,q

(M)

≲ ∥f∥Bs
p1,q

(M).

(iii) Let α, β ∈ R with α+ β > 0 and p1, p2, q1, q2 ∈ [1,∞] with

1

p
=

1

p1
+

1

p2
and

1

q
=

1

q1
+

1

q2
.

Then for any f ∈ Bα
p1,q1(M) and g ∈ Bβ

p2,q2(M), we have fg ∈ Bα∧β
p,q (M), and moreover it

holds

∥fg∥
Bα∧β

p,q (M)
≲ ∥f∥Bα

p1,q1
(M)∥g∥Bβ

p2,q2
(M)

.

Proof. The first estimate in (i) is a direct consequence of the boundedness of (PN −PN/2)

provided by Corollary 2.4, whereas the second one follows from the square function estimate

given in [7, Corollary 2.3], and the last one from Cauchy-Schwarz inequality. Similarly, (ii)

follows directly from Corollary 2.4.

For the product rule (iii), we take a partition of unity {χj}j∈J and a fattened version

{χ̃j}j∈J , so that using Proposition 2.5, we have

∥fg∥
Bα∧β

p,q (M)
≲

∑
j∈J

∥κ⋆j (χjf · χ̃jg)∥Bα∧β
p,q (Rd)

.

Then using the standard product rule for Besov spaces on Rd (see [1], using the paraproduct

estimates of Theorems 2.82 and 2.85), we can estimate the term above with∑
j∈J

∥κ⋆j (χjf)∥Bα
p1,q2

(Rd)∥κ⋆j (χ̃jg)∥Bβ
p2,q2

(Rd)
.

We can then use the finiteness of J along with Proposition 2.5 to conclude. □

3. Probabilistic estimates

3.1. Probabilistic tools and construction of the Gibbs measure. We recall briefly

here some basic probabilistic estimates and the outline of the construction of the Gibbs

measure. A fully detailed construction on a 2d-manifold can be found in [33] in the context

of the nonlinear Schrödinger equation, which, up to replacing the Laguerre polynomials

used in [33] with the Hermite polynomials, can be adapted in a straightforward manner to

treat the invariant measure for (1.1) and (1.2).

Let us first recall a few facts about the Hermite polynomials Hk(x;σ). They are defined

through the generating function

etx−σ t2

2 =
∑
k≥0

tk

k!
Hk(x;σ),
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for any t, x ∈ R. When σ = 1 we simply write Hk(x; 1) = Hk(x), and we have the scaling

property

Hk(x;σ) = σ
k
2Hk(σ

− 1
2x).

Moreover, the following formula hold:

Hk(x+ y;σ) =
k∑

ℓ=0

(
k

ℓ

)
Hℓ(x;σ)y

k−ℓ. (3.1)

and

∂xHk(x;σ) = kHk−1(x;σ). (3.2)

Now if we define the (spatial) white noise on M

ξ0 =
∑
n≥0

gnφn,

where gn are as in (1.7), then we can define the white noise functional to be the action of

the distribution ξ0 extended to L2 functions, i.e.

W : f ∈ L2(M) 7−→ Wf = ⟨f, ξ0⟩L2(M) ∈ L2(Ω).

It is easy to see that W is unitary, and moreover we have the relation

E
[
Hk(Wf )Hℓ(Wg)

]
= δk,ℓk!⟨f, g⟩kL2(M), (3.3)

for any f, g normalized L2 functions, where δk,ℓ stands for Kronecker’s delta function.

As in [17], we also have the following lemma.

Lemma 3.1. Let f, g be centered jointly Gaussian random variables with variances σf and

σg, then

E
[
Hk(f ;σf )Hℓ(g;σg)

]
= δk,ℓk!E

[
fg

]k
. (3.4)

See [27, Lemma 1.1.1].

Now, if we then define the real-valued random variables GN,k+1 on (Hs(M), µ0) as

GN,k+1(u0) =
1

k + 1

�
M

: (PNu0)
k+1(x) : dx,

then we have the following lemma.

Lemma 3.2. Let GN,k+1 be the random variable on (Hs(M), µ0) defined above.

(i) {GN,k+1}N∈N is a Cauchy sequence in Lp(µ0) for any finite p ≥ 1, thus converging to

some Gk+1 ∈ Lp(µ0),

(ii) e−GN,k+1 converges to e−Gk+1 almost surely and in Lp(µ0) for any finite p ≥ 1.

This last convergence result allows to define the Gibbs measure ρk+1 as the limit in total

variation of Z−1
N e−GN,k+1dµ.

The proof of (i) for p = 2 follows from a direct computation using (3.3) and Lemma 2.1,

and for p > 2 it is a consequence of the case p = 2 along with the following Wiener chaos

estimate (see [36]):
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Lemma 3.3. Let d,m ∈ N and Q(X1, ..., Xm) be a polynomial of degree d in m variables.

Let {gn} be as in (1.7). Then for any p ≥ 2 we have

∥Q(g1, ..., gm)∥Lp(Ω) ≤ (p− 1)
d
2 ∥Q(g1, ..., gm)∥L2(Ω). (3.5)

This lemma is itself a consequence of the hypercontractivity of Ornstein-Uhlenbeck’s

semi-group [26]. As for Lemma 3.2 (ii), it then follows from the same argument as in [33,

Proposition 4.5].

As explained in the introduction, Lemma 3.2 allows us to define the Gibbs measure ρk+1

on Hs(M) by the formula (1.6). In particular, ρk+1 ≪ µ as e−Gk+1 is a finite positive

random variable, so that supp ρk+1 = suppµ = Hs(M) \ H0(M), s < 0.

3.2. Stochastic estimates for (1.1) and (1.2). Now we move onto the construction of

the Wick ordered monomials : Ψk
damp : and their large deviation bounds. We first deal with

the stochastic objects for (1.2), and so we recall that zN = PNS(t)(u0, u1) is the truncated

linear solution with the random initial data (u0, u1) given in (1.7).

Proposition 3.4. For any k ≥ 1, T > 0, 0 < ε ≪ 1 and 1 ≤ p, q <

∞14, the random variables
{
Hk

(
PNS(t)(u0, u1);σN (x)

)}
N∈N form a Cauchy sequence in

Lp
(
µ;Lq([0, T ];W−ε,∞(M))

)
. Moreover, there exists C > 0 such that for any T,R > 0 and

N ∈ N the following tail estimate holds:

µ
(∥∥Hk

(
PNS(t)(u0, u1);σN (x)

)∥∥
Lq
TW−ε,∞ > R

)
≤ Ce−cR

2
k T

− 2
qk
. (3.6)

Denoting the limit by : zk : , it also holds Hk

(
PNS(t)(u0, u1);σN (x)

)
→ : zk : in

Lq([0, T ],W−ε,∞(M)), µ-almost surely, and : zk : also satisfies the tail estimate (3.6).

Moreover, for k = 1 we have z ∈ C
(
[0, T ];W−ε,∞(M)

)
∩ C1

(
[0, T ],W−1−ε,∞(M)

)
, µ-

almost surely, for any ε > 0. Lastly, we also have the following tail estimate for the

convergence:

µ
(∥∥Hk

(
PN1S(t)(u0, u1);σN1(x)

)
−Hk

(
PN2S(t)(u0, u1);σN2(x)

)∥∥
Lq
TW−ε,∞ > R

)
≤ Ce−cN ε̃

1R
2
k T

− 2
qk
, (3.7)

for some 0 < ε̃≪ ε and any N2 ≥ N1.

Proof. We begin by proving that Hk

(
PNS(t)(u0, u1);σN (x)

)
is uniformly bounded in

Lp
(
µ;Lq([0, T ];W−ε,∞(M))

)
. Note that it is enough to consider the case p, q ≥ 2. In

the following, we write x,y for the space variables on M and x, y for the points in R2.

Let us start with the following lemma which collects the main properties of PNS(t)(u0, u1)

that we will use.

Lemma 3.5. The measure µ is invariant under the transformation (u0, u1) 7→(
S(t)(u0, u1), ∂tS(t)(u0, u1)

)
, for any t ∈ R. Moreover, if we define the (truncated) co-

variance function

γN (t1, t2,x,y)
def
=

�
Hs(M)

[
PNS(t1)(u0, u1)(x)PNS(t2)(u0, u1)(y)

]
dµ(u0, u1),

14Unlike when M = T2, it is not as straightforward to get the convergence of Hℓ

(
zN ;σN (x)

)
in

C
(
[0, T ];W−ε,∞(M)

)
almost surely when ℓ ≥ 2, which prevents us from taking q = ∞. See also Remark

3.7 below.
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then we have for any (t,x) ∈ R×M�
Hs(M)

∣∣(1−∆g)
− ε

2
x Hk

(
PNS(t)(u0, u1)(x);σN (x)

)∣∣2dµ(u0, u1)
= k!

[
(1−∆g)

− ε
2

x1 (1−∆g)
− ε

2
x2

(
γN (t, t,x1,x2)

k
)]∣∣

x1=x2=x
. (3.8)

Lastly, we have the identity

γN (x,y)
def
= γN (t, t,x,y) = (PN ⊗PN )γ(x,y), (3.9)

where γ is the Green function for the Laplace-Beltrami operator on M, i.e. γ is the kernel

of (1−∆g)
−1:

γ(x,y) =
∑
n≥0

φn(x)φn(y)

⟨λn⟩2
.

Here the notation (PN ⊗PN )γ(x,y) means that we apply PN to both γ(·,y) and γ(x, ·).
Note that since γ has a diagonal expansion on the basis φn ⊗ φn′ of L2(M×M), this is

the same as (P2
N ⊗ Id)γ or (Id⊗P2

N )γ.

Proof of Lemma 3.5. In order to prove the invariance, we first compute for (uω0
0 , uω1

1 ) given

by (1.7):

S(t)(uω0
0 , uω1

1 ) =
∑
n≥0

φn

⟨λn⟩
{
cos(t⟨λn⟩)gn(ω0) + sin(t⟨λn⟩)hn(ω1)

}
=

∑
n≥0

φn

⟨λn⟩
gtn(ω0, ω1),

where for any t ∈ R, {gtn}n≥0 is a family of independent real-valued standard Gaussian

random variables on Ω0 × Ω1, and similarly for ∂tS(t)(u
ω0
0 , uω1

1 ). In particular this shows

that if (u0, u1) ∼ µ then for any t ∈ R,
(
S(t)(u0, u1), ∂tS(t)(u0, u1)

)
∼ µ too.

Next, with the definition of the operator (1−∆g)
− ε

2 , we compute for any fixed (t,x) ∈
[0, T ]×M:�

Ω0

�
Ω1

∣∣(1−∆g)
− ε

2
x Hk

(
PNS(t)(u

ω0
0 , uω1

1 )(x);σN (x)
)∣∣2dP0dP1

=
∑

n,n′∈N

φn(x)φn′(x)

⟨λn⟩ε⟨λn′⟩ε

�
M×M

φn(x1)φn′(x2)

× E
[
Hk

(
PNS(t)(u

ω0
0 , uω1

1 )(x1);σN (x1)
)
Hk

(
PNS(t)(u

ω0
0 , uω1

1 )(x2);σN (x2)
)]
dx1dx2

where the expectation is taken with respect to P0 ⊗ P1. We can then use (3.4) and the
definition of γN (t, t,x1,x2) to continue with

=
∑

n,n′∈N

φn(x)φn′(x)

⟨λn⟩ε⟨λn′⟩ε

�
M×M

k!γN (t, t,x1,x2)
kφn(x1)φn′(x2)dx1dx2

= k!
[
(1−∆g)

− ε
2

x1 (1−∆g)
− ε

2
x2

(
γN (t, t,x1,x2)

k
)]∣∣

x1=x2=x
.

This shows (3.8).
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As for (3.9), in view of the definitions of the (truncated) covariance function γ and of

the propagator S(t), we can compute

γN (t1, t2,x,y)

=
∑

n1,n2≥0

ψ0(N
−2λ2n1

)ψ0(N
−2λ2n2

)
φn1(x)φn2(y)

⟨λn1⟩⟨λn2⟩

�
Ω0

�
Ω1

[(
cos(t1⟨λn1⟩)gn1 + sin(t1⟨λn1⟩)hn1

)
×
(
cos(t2⟨λn2⟩)gn2 + sin(t2⟨λn2⟩)hn2

)]
dP0dP1

=
∑
n≥0

ψ2
0(N

−2λ2n)
φn(x)φn(y)

⟨λn⟩2
cos

(
(t1 − t2)⟨λn⟩

)
. (3.10)

The identity (3.9) thus follows from (3.10) by taking t1 = t2.

□

Note that in order to estimate the right-hand side of (3.8), we do not need the smoothing

in x1, and using Sobolev inequality in x1 with some (large) pε and the compactness of M,

we have

sup
x∈M

[
(1−∆g)

− ε
2

x1 (1−∆g)
− ε

2
x2

(
γN (x1,x2)

k
)]∣∣

x1=x2=x

≲ ∥(1−∆g)
− ε

2
x2

(
γN (x1,x2)

k
)
∥Lpε (M)×L∞(M) (3.11)

≲ ∥(1−∆g)
− ε

2
x2

(
γN (x1,x2)

k
)
∥L∞(M×M).

The following proposition allows us to bound the powers of the covariance function γN ,

viewed through the identity (3.9).

Proposition 3.6. Let γN : M×M → R be the truncated Green function of the Laplace-

Beltrami operator on M defined in (3.9). Then for any ε > 0 and k ∈ N, there exists

C = C(ε, k) > 0 such that for any N ∈ N,∥∥(1−∆g)
− ε

2
x2

(
γN (x1,x2)

k
)∥∥

L∞(M×M)
≤ C <∞. (3.12)

Moreover, {γkN}N∈N defines a Cauchy sequence in

W 0,−ε,∞(M×M) =
{
u ∈ D′(M×M), ∥(1−∆g)

− ε
2

x2 u(x1,x2)∥L∞(M×M) <∞
}

and satisfies ∥∥(1−∆g)
− ε

2
x2

(
γN1(x1,x2)

k − γN2(x1,x2)
k
)∥∥

L∞(M×M)
≤ CN−ε̃

1 , (3.13)

for any N1 ≤ N2 ∈ N and some 0 < ε̃≪ ε and C > 0 independent of N1, N2.

Finally, if P̃N is defined similarly to PN but with another cut-off ψ̃0 in place of ψ0 with

the same properties, then∥∥(1−∆g)
− ε

2
x2

(
P̃2

Nγ(x1,x2)
k −P2

Nγ(x1,x2)
k
)∥∥

L∞(M×M)
≤ CN−ε̃. (3.14)

We postpone the proof of this proposition and finish the proof of Proposition 3.4. Now,

for any finite p ≥ 1, we first use Sobolev inequality to get for any t ∈ R:∥∥Hk

(
PNS(t)(u0, u1);σN (x)

)∥∥
W−ε,∞ ≲

∥∥Hk

(
PNS(t)(u0, u1);σN (x)

)∥∥
W− ε

2 ,rε ,
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for some rε ∈ [2,+∞). Thus if p ≥ max(q, rε), using Minkowski’s inequality, the Wiener

chaos estimate (3.5) along with (3.8), (3.11) and Proposition 3.6 with the compactness of

M, we obtain∥∥Hk

(
PNS(t)(u0, u1)(x);σN (x)

)∥∥
Lp
µL

q
TW−ε,∞

≲
∥∥∥∥∥(1−∆g)

− ε
2Hk

(
PNS(t)(u0, u1)(x);σN (x)

)∥∥
Lp
µ

∥∥∥
Lq
TLrε

≲ pk/2
∥∥∥∥∥(1−∆g)

− ε
2Hk

(
PNS(t)(u0, u1)(x);σN (x)

)∥∥
L2
µ

∥∥∥
Lq
TLrε

= pk/2
√
k!
∥∥(1−∆g)

− ε
2

x1 (1−∆g)
− ε

2
x2

(
γN (x1,x2)

k
)
)
∣∣
x1=x2=x

∥∥ 1
2

L
q
2
T L

rε
2

x

≲k T
1/qpk/2.

This proves that
{
Hk

(
PNS(t)(u0, u1)(x);σN (x)

)}
N∈N is bounded in

Lp
(
µ;Lq([−T, T ];W−ε,∞(M))

)
for any finite p, q ≥ 1 with p large enough. Using

then Chebyshev’s inequality, we get that there is C > 0 such that for any p ≥ 1 and R > 0

µ
(∥∥Hk

(
PNS(t)(u0, u1)(x);σN (x)

)∥∥
Lq
TW−ε,∞ > R

)
≤ R−p

∥∥Hk

(
PNS(t)(u0, u1)(x);σN (x)

)∥∥p
Lp
µL

q
TW−ε,∞ ≤ Cppp

k
2T

p
qR−p,

and optimizing in p leads to (3.6).

Now for any N1 < N2, we can compute, similarly to (3.8),
�
Hs(M)

∣∣∣(1−∆g)
− ε

2

[
Hk

(
PN1S(t)(u0, u1)(x);σN1(x)

)
−Hk

(
PN2S(t)(u0, u1)(x);σN2(x)

)]∣∣∣2dµ(u0, u1)
= k!

[
(1−∆g)

− ε
2

x1 (1−∆g)
− ε

2
x2

(
P2

N1
γ(x1,x2)

k − 2PN1γ(x1,x2)
k +P2

N2
γ(x1,x2)

k
)]∣∣

x1=x2=x
,

where we used that PN2PN1 = PN1 for N2 > N1. Then (3.13)-(3.14) in Proposition 3.6

show that the sequence
{
Hk

(
PNS(t)(u0, u1)(x);σN (x)

)}
N∈N defines a Cauchy sequence,

thus converging to some : zk : in Lp(µ;Lq([−T, T ];W−ε,∞)) and from the same argument

as above with (3.13) we get the tail estimate (3.7). Then, as in the proof of Proposition

3.2 in [30], Borel-Cantelli’s lemma yields that Hk

(
PNS(t)(u0, u1)(x);σN (x)

)
converges to

: zk : in Lq([−T, T ];W−ε,∞), µ-almost surely, and moreover : zk : also satisfies (3.6).

Lastly, we prove the continuity in time of z. If we define the translation operator τh :

u 7→ u(·+h) for any h ∈ [−1, 1], we can use (3.10) and the mean value theorem to estimate
�
Hs(M)

∣∣(1−∆g)
− ε

2 (τhz − z)(t,x)
∣∣2dµ

= 2
∑
n1,n2

φn1(x)φn2(x)

⟨λn1⟩ε⟨λn2⟩ε

�
M

�
M
φn1(x1)φn2(x2)

{
γ(x1,x2)− γ(t+ h, t,x1,x2)

}
dx1dx2

≲
∑
n≥0

φn(x)
2

⟨λn⟩2+2ε
(1 ∧ |h|⟨λn⟩) ≲

∑
n≥0

φn(x)
2

⟨λn⟩2+ε
|h|ε,
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uniformly in h ∈ [−1, 1], x ∈ M and t ∈ R. Finally, using Lemma 2.1, we obtain the bound�
Hs(M)

∣∣(1−∆g)
− ε

2 (τhz − z)(t,x)
∣∣2dµ ≲ |h|ε

∑
k≥0

⟨k⟩−ε
∑
n≥0

1[k,k+1)(λn)
φn(x)

2

⟨λn⟩2

≲ |h|ε
∑
k≥0

⟨k⟩−ε
∑
n≥0

1[k,k+1)(λn)
1

⟨λn⟩2

≲ |h|ε
∑
n≥0

1

⟨λn⟩2+ε
≲ |h|ε.

Hence using Sobolev’s and Minkowski’s inequalities as above, together with the Wiener

chaos estimate (3.5)

∥(τhz − z)(t)∥p
Lp
µW−ε,∞ ≲ |h|p

ε
2 , (3.15)

uniformly in t ∈ [0, T ], which suffices to conclude that z ∈ C
(
[0, T ];W−ε,∞(M)

)
almost

surely by using Kolmogorov’s continuity criterion for p large enough. We can use the same

argument to bound ∂tz in C
(
[0, T ];W−1−ε,∞(M)

)
almost surely, which concludes the proof

of Proposition 3.4. □

Proof of Proposition 3.6. We now give the proof of (3.12). Since this is clear for N ≲ 1, we

can assume that N ≫ 1. First, in view of the finiteness of J , it is enough to fix j, j1 ∈ J
and to estimate∥∥∥(κj ⊗ κj1)

⋆
{
χj(x)χj1(y)(1−∆g)

− ε
2

y (γN (x,y))k
}∥∥∥

L∞(R2×R2)
, (3.16)

where for functions f on M × M and (x, y) ∈ Uj × Uj1 we write (κj ⊗ κj1)
⋆f(x, y) =

f(κj(x), κj1(y)).

By a variant of Proposition 2.2 (see Remark 2.3) with fixed x ∈ Rd, we can write

(κj ⊗ κj1)
⋆
{
χjχj1(1−∆g)

− ε
2

y (γN )k
}
= aj1,−ε(y,D)

{
(κj ⊗ κj1)

⋆
(
χjχ̃j1(γN )k

)}
+G−M,N

for some symbol aj1,−ε ∈ S−ε(R2 × R2) with compact support in y included in Uj1 , some

fattened version χ̃j1 of χj1 , and for arbitrary M > 0 with∥∥G−M,N

∥∥
L∞(R2)×Hs1 (R2)

≲ N s1+s2−M
∥∥χj(x)γN (x,y)k∥L∞(M)×H−s2 (M)

for any s1, s2 ≥ 0 with s1 + s2 ≤ M . In particular the contribution of this last term to

(3.16) is∥∥G−M,N

∥∥
L∞(R2×R2)

≲
∥∥G−M,N

∥∥
L∞(R2)×H2(R2)

≲ N2−M
∥∥γN∥∥k

L∞(M)×L∞(M)

≲ N2−M sup
x,y∈M

(∑
n≥0

ψ0(N
−2λ2n)

φn(x)
2

⟨λn⟩2
) k

2
(∑

n≥0

ψ0(N
−2λ2n)

φn(y)
2

⟨λn⟩2
) k

2

= O
(
N2−M log(N)k

)
,

where the last two estimates come from Cauchy-Schwarz inequality and (1.12). This term

is uniformly bounded by choosing M > 2.

Taking again fattened versions of χj , χ̃j1 (which to simplify notations we still write

χj , χj1) it then remains to estimate

aj1,−ε(y,D)
{
(κj ⊗ κj1)

⋆(χjχj1γN )
}k
.
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Now, in view of the definition of the functional calculus and (3.9), we can see γN as the

kernel of the ΨDO (1−∆g)
−1ψ2

0(−N2∆g). First, using e.g. [21, Theorem 18.1.24], we can

expand the resolvent as

κ⋆j
(
χj(1−∆g)

−1
)
= aj,−2(x,D)κ⋆j χ̃j +Rj,−3

for some symbol aj,−2 ∈ S−2(R2×R2) compactly supported in x in Uj , and some smoothing

operator Rj,−3 of order −3 satisfying for any s ∈ R∥∥Rj,−3

∥∥
Hs(M)→Hs+3(Rd)

≲ 1.

Next, using Proposition 2.2, and dropping the tilde for the fattened cut-offs, we get the

expansion

κ⋆j
(
χj(1−∆g)

−1ψ2
0(−N2∆g)χj1

)
=

[
aj,−2(x,D)κ⋆jχj +Rj,−3

]
ψ2
0(−N2∆g)χj1

= aj,−2(x,D)(κ⋆jχj)
(M−1∑

m=0

N−maj,m(x,N−1D)κ⋆j (χjχj1

)
+Rj,−M,Nχj1

)
+Rj,−3ψ

2
0(−N2∆g)χj1 ,

where Rj,−M,N is a smoothing operator of order −M , with∥∥Rj,−M,N

∥∥
H−s2 (M)→Hs1 (Rd)

≲ N s1+s2−M ,

for any s1, s2 ≥ 0 with s1 + s2 ≤M .

Then, taking M = 1 in the above expansion, we have for any (x, y) ∈ Uj × Uj1 and

(x,y) = (κj(x), κj1(y)):

γN,j,j1(x, y)
def
= (κj ⊗ κj1)

⋆
(
χj(x)χj1(y)γN (x,y)

)
=

(
Id⊗ ζj,j1

)⋆(
κ⋆j (χjχj1)(y)K0(x, y)

)
+ χj1(y)K1(x,y), (3.17)

where K0 is the kernel of

(κ⋆jχj)aj,−2(x,D)(κ⋆j χ̃j)ψ
2
0(−pj,2(x,N−1D)), (3.18)

and K1 the one to

(κ⋆jχj)aj,−2(x,D)(κ⋆j χ̃j)Rj,−M,N + κ⋆j (χj)Rj,−3ψ
2
0(−N−2∆g). (3.19)

Here ζj,j1 = κ−1
j ◦κj1 is a diffeomorphism on Uj ∩Uj1 , provided that suppχj ∩ suppχj1 ̸= ∅,

otherwise the contribution ofK0 in (3.17) vanishes. Let us also decomposeK1 = K1,1+K1,2

corresponding to the two operators in (3.19).

We will use that we can bound these kernels by the operator norm of the corresponding

operators from H−1−δ(R2) (or H−1−δ(M)) to H1+δ(R2). For K1,1, since aj,−2(x,D) is

bounded from Hs1(R2) to Hs1+2(R2), and using the smoothing property of Rj,−M,N for

M = 1, we deduce that for s1 = −1 + δ and s2 = 1 + δ for some 0 < δ <
1

2k
, the operator

with kernel K1,1 maps H−1−δ(M) to H1+δ(R2) with operator norm bounded by N2δ−1.
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Thus we obtain∥∥κ⋆j1(χj1(y)K1,1(x, y)
)∥∥

L∞(R2×R2)

≲
∥∥(κ⋆jχj)aj,−2(x,D)(κ⋆j χ̃j)Rj,−M,N (κ⋆j1χj1)

∥∥
H−1−δ(M)→H1+δ(R2)

≲
∥∥Rj,−M,N (κ⋆j1χj1)

∥∥
H−1−δ(M)→H−1+δ(R2)

≲ N2δ−1
∥∥(κ⋆j1χj1)

∥∥
H−1−δ(M)→H−1−δ(M)

≲ N2δ−1, (3.20)

where in the last step we used the product rule of Corollary 2.7 (iii).

As for K1,2, we have that ∥Rj,−3∥H−2+δ(M)→H1+δ(R2) ≲ 1 and since we assumed that

N ≫ 1 we also have that ∥ψ0(−N−2∆g)∥H−1−δ(M)→H−2+δ(M) ≲ N2δ−1. Thus we also have

the bound ∥∥κ⋆j1(χj1K1,2

)∥∥
L∞(R2×R2)

≲ N2δ−1.

Now we compute

γkN,j,j1 =
(
(Id⊗ ζj,j1)

⋆
(
κ⋆j (χjχj1)K0

))k

+

k∑
ℓ=1

(
k

ℓ

)(
κ⋆j1(χj1K1)

)ℓ(
(Id⊗ ζj,j1)

⋆[κ⋆j (χjχj1)K0]
)k−ℓ

.

We first deal with the terms with ℓ ≥ 1. Since aj1,−ε ∈ S−ε(R2 × R2), in particular it is

bounded on Lp(R2) for any 1 < p <∞ (see e.g. [16]), hence using as above the Sobolev in-

equalityW ε,rε(Rd) ⊂ L∞(Rd) for some rε ≫ 1, and the compactness of supp
(
κ⋆j (χjχj1)K0

)
and suppκ⋆j1(χj1K1), we get the crude estimate∥∥∥aj1,−ε(y,D)

{(
κ⋆j1(χj1K1)

)ℓ(
(Id⊗ ζj,j1)

⋆
(
κ⋆j (χjχj1)K0

))k−ℓ}∥∥∥
L∞(R2×R2)

≲
∥∥∥(κ⋆j1(χj1K1)

)ℓ(
(Id⊗ ζj,j1)

⋆
(
κ⋆j (χjχj1)K0

))k−ℓ∥∥∥
L∞(R2×R2)

≲
∥∥κ⋆j1(χj1K1)

∥∥ℓ
L∞(R2×R2)

∥∥κ⋆j (χjχj1)K0

∥∥k−ℓ

L∞(R2×R2)
.

Along with the previous bounds for K1,1 and K1,2, we finally obtain∥∥aj1,−ε(y,D)(γkN,j,j1)
∥∥
L∞(R2×R2)

≲
∥∥∥aj1,−ε(y,D)

(
(Id⊗ ζj,j1)

⋆
(
κ⋆j (χjχj1)K0

))k∥∥∥
L∞(R2×R2)

+

k∑
ℓ=1

N (2δ−1)ℓ∥K0∥k−ℓ
L∞(R2×R2)

. (3.21)

Now, with the definition of K0, we proceed as in (3.20) to get the rough bound

∥K0∥L∞(R2×R2)

≲
∥∥(κ⋆jχj)(x)aj,−2(x,D)(κ⋆j χ̃j)(x)ψ

2
0(−pj,2)(x,N−1D)

∥∥
H−1−δ(R2)→H1+δ(R2)

≲ ∥ψ2
0(−pj,2)(x,N−1D)∥H−1−δ(R2)→H−1+δ(R2) ≲ N2δ,



28 T. OH, T. ROBERT, AND N. TZVETKOV

so that with our choice for δ, the second term in the right-hand side of (3.21) is O(N−δ′)

for δ′ = 1− 2kδ > 0. We are then left with estimating∥∥∥aj1,−ε(y,D)
(
(Id⊗ ζj,j1)

⋆
(
κ⋆j (χjχj1)K0

))k∥∥∥
L∞(R2×R2)

.

First, to deal with ζj,j1 , since the symbol class Sm in (2.8) is invariant by diffeomorphisms

for any m ∈ R (see e.g. Theorem 18.1.17 in [21]), we can then write

aj1,−ε(y,D)
(
(Id⊗ ζj,j1)

⋆
(
κ⋆j (χjχj1)K0

))k
= (Id⊗ ζj,j1)

⋆
(
ãj1,−ε(y,D)

(
κ⋆j (χjχj1)K0

)k)
for some ãj1,−ε ∈ S−ε.

Next, we compute the symbol c0(x, ξ) of (3.18) as

c0(x, ξ) = (κ⋆jχj)(x)

�
R2

�
R2

e−ix1·ξ1aj,−2(x, ξ + ξ1)(κ
⋆
j χ̃j)(x+ x1)

× ψ2
0(−pj,2(x+ x1, N

−1ξ))dξ1dx1. (3.22)

First, since pj,2 and (κ⋆j χ̃j) are smooth in x1 with bounded derivatives, we can integrate

by parts in x1 to get enough decay in ξ1. Using that aj,−2 is a ΨDO of order −2, which

therefore satisfies the bound (2.8) with m = −2, this gives for any α ∈ N

|c0(x, ξ)| ≲ (κ⋆jχj)(x)

�
R2

�
R2

⟨ξ1⟩−2α⟨ξ + ξ1⟩−2

×
∣∣(1− ∂2x1

)α
(
(κ⋆j χ̃j)(x+ x1)ψ

2
0(−pj,2(x+ x1, N

−1ξ))
)∣∣dξ1dx1.

Now, when a derivative in x1 hits ψ2
0(−pj,2(x + x1, N

−1ξ)), we pick up a term (1 −
∂2x1

)αpj,2(x + x1, N
−1ξ) = O(⟨N−1ξ⟩2) by (2.8) which, due to the localization |ξ| ≲ N

on the support of ψ2
0(−pj,2(x+ x1, N

−1ξ)), is then bounded uniformly in N . Thus we see

that the term on the second line above can be bounded by

1(x+ x1 ∈ supp(κ⋆j χ̃j))1(|ξ| ≲ N).

Then we can take α large enough to ensure that the integral in ξ1 converges, so that we

arrive at

|c0(x, ξ)| ≲ (κ⋆jχj)(x)1
(
|ξ| ≲ N

)�
R2

⟨ξ1⟩−2α⟨ξ + ξ1⟩−2dξ1

≲ (κ⋆jχj)(x)1
(
|ξ| ≲ N

)
⟨ξ⟩−2. (3.23)

Now, the kernel K0 is related to the symbol c0(x, ξ) via the formula,

K0(x, y) =

�
R2

ei(x−y)·ξc0(x, ξ)dξ = F−1
ξ (c0)(x, x− y),

where F−1
ξ means the inverse Fourier transform in the ξ variable. This means that((

κ⋆j (χjχj1)
)
(y)K0

)k
can be seen as((

κ⋆j (χjχj1)
)
(y)K0

)k
=

(
κ⋆j (χjχj1)

)k
(y)F−1

ξ

(
c0 ∗kξ

)
(x, x− y),
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where ∗kξ stands for the iterated convolution in the ξ variable:

(c0∗kξ )(x, ξ0) =
�
ξ0=ξ1+···+ξk

k∏
j=1

c0(x, ξj)dξj .

Next, using that ãj1,−ε ∈ S−ε(R2 × R2), we have for any ξ, ξ1 ∈ R2,

|ãj1,−ε(y, ξ)| ≲ ⟨ξ⟩−ε ≲ ⟨ξ1⟩−ε⟨ξ − ξ1⟩ε,

and since κ⋆j (χjχj1) ∈ C∞
0 (R2), we can compute∥∥∥ãj1,−ε(y,D)

((
κ⋆j (χjχj1)

)
(y)K0

)k∥∥∥
L∞(R2×R2)

=
∥∥∥�

R2

eiy·ξãj1,−ε(y, ξ)

�
R2

̂(
κ⋆j (χjχj1)

)k
(ξ − ξ1)e

−ix·ξ1(c0∗kξ )(x,−ξ1)dξ1dξ
∥∥∥
L∞(R2×R2)

≲ sup
x∈supp(κ⋆

jχj)
sup

y∈suppκ⋆
j (χjχj1

)

�
R2

�
R2

⟨ξ1⟩−ε⟨ξ − ξ1⟩ε · ⟨ξ − ξ1⟩−10
∣∣(c0∗kξ )(x,−ξ1)∣∣dξ1dξ

≲ sup
x∈supp(κ⋆

jχj)

�
R2

⟨ξ1⟩−ε
∣∣(c0∗kξ )(x,−ξ1)∣∣dξ1.

Thus, expanding the iterated convolution above and using the triangle inequality with the

bound (3.23), we get the estimate∥∥∥ãj1,−ε(y,D)
((
κ⋆j (χjχj1)

)
(y)K0

)k∥∥∥
L∞(R2×R2)

≲
�
Γk,N

⟨ξ1 + · · ·+ ξk⟩−ε
k∏

ℓ=1

⟨ξℓ⟩−2dξℓ,

(3.24)

where

Γk,N =
{
(ξ1, ..., ξk) ∈ (R2)k, |ξℓ| ≲ N, ℓ = 1, ..., k

}
.

So it remains to bound the integral in (3.24), uniformly in N . By symmetry in ξ1, ..., ξk, it

is enough to bound the contribution of

Γ̃k,N = {(ξ1, ..., ξk) ∈ Γk,N , |ξk| ≥ · · · ≥ |ξ1|}.

First, to estimate the integral in ξk, if ⟨ξ1 + · · ·+ ξk⟩ ≥ ⟨ξk⟩ then we have�
|ξk|≥|ξk−1|

⟨ξ1 + · · ·+ ξk⟩−ε⟨ξk⟩−2dξk ≲
�
|ξk|≥|ξk−1|

⟨ξk⟩−2−εdξk ≲ ⟨ξk−1⟩−ε.

On the other hand, in the case ⟨ξ1 + · · ·+ ξk⟩ ≤ ⟨ξk⟩ we have�
|ξk|≥|ξk−1|

⟨ξ1 + · · ·+ ξk⟩−ε⟨ξk⟩−2dξk ≲ ⟨ξk−1⟩−
ε
2

�
R2

⟨ξ1 + · · ·+ ξk⟩−2− ε
2dξk ≲ ⟨ξk−1⟩−

ε
2 .

Hence we end up with the bound

�
Γ̃k−1,N

⟨ξk−1⟩−2− ε
2

k−2∏
ℓ=1

⟨ξℓ⟩−2dξℓdξk−1,
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for which we can integrate successively in |ξk−1| ≥ |ξk−2| ≥ · · · ≥ |ξ1|:�
Γ̃k−1,N

⟨ξk−1⟩−2− ε
2

k−2∏
ℓ=1

⟨ξℓ⟩−2dξℓdξk−1 ≲
�
Γ̃k−2,N

⟨ξk−2⟩−2− ε
2

k−3∏
ℓ=1

⟨ξℓ⟩−2dξℓdξk−2

≲ · · · ≲
�
R2

1(|ξ1| ≲ N)⟨ξ1⟩−2− ε
2dξ1 ≤ C <∞

uniformly in N . This proves (3.12).

For (3.13), we can decompose locally γN1 = K0,N1 + N−1
1 K1,N1 and γN2 = K0,N2 +

N−1
2 K1,N2 similarly as above, and following the computations we end up with estimating

∥ãj1,−ε(y,D)
(
Kk

0,N1
−Kk

0,N2

)
∥L∞(R2×R2),

which follows as before except that we notice that the corresponding symbols satisfy(
c0,N1 ∗kξ

)
(x, ξ0)−

(
c0,N2 ∗kξ

)
(x, ξ0)

=

�
ξ0=ξ1+···+ξk

( k∏
ℓ=1

c0,N1(x, ξℓ)−
k∏

ℓ=1

c0,N2(x, ξℓ)
) k∏

ℓ=1

dξℓ.

In view of (3.22), for the integral above to be non-zero, this requires at least one of the

ξℓ to be in the region N1 ≲ |ξℓ| ≲ N2; otherwise, in the case all |ξℓ| ≪ N1 we have

both ψ2
0(−pj,2(x,N

−1
1 ξℓ)) = 1 = ψ2

0(−pj,2(x,N
−1
2 ξℓ)) and we see that

∏k
ℓ=1 c0,N1(x, ξℓ) =∏k

ℓ=1 c0,N2(x, ξℓ). For N1 ≲ |ξℓ| ≲ N2, we can then replace the factor ⟨ξℓ⟩−2− ε
2 in the

corresponding integral by N
− ε

4
1 ⟨ξℓ⟩−2− ε

4 and finish integrating as above. The estimate

(3.14) follows from the same argument, replacing N1 ≲ |ξℓ| ≲ N2 by |ξℓ| ∼ N .

□

Remark 3.7. In Proposition 3.4, we only estimated the higher Wick powers : zℓ :, ℓ ≥ 2,

in Lq([0, T ];W−ε,∞(M)) and did not show the continuity in time for these objects. Though

we would only need a very rough bound in space (just to get a power of h as in (3.15)),

the global argument as the one we used for z does not seem to apply since we would need

to estimate a product of k eigenfunctions φn1 . . . φnk
, for which it is not clear if there is

an “off-diagonal decay” allowing to sum on n1, ..., nk even after regularizing the product.

On the other hand, a local argument as in Proposition 3.6 also fails since contrary to

the truncation operator ψN2(−∆g), the wave operator cos(h
√
1−∆g) for the linear wave

equations does not belong to the usual symbol class S0 defined in (2.8). However, we might

be able to overcome this difficulty by replacing the local description of γN in terms of ΨDO

by a local description of γN (t+ h, t) in terms of Fourier integral operators by following the

construction in e.g. [7, 25]. We chose not to pursue this point further since our proof of

well-posedness only requires the Wick powers to be controlled in Lq([0, T ];W−ε,∞(M)) for

some large but finite p, q ∈ [1,∞).

Next, we prove a similar statement as in Proposition 3.4 but for the solution PNΨdamp

to truncated linear stochastic damped wave equations

d

(
uN
vN

)
=

(
0 1

∆g − 1 0

)(
uN
vN

)
dt+

(
0

−vNdt+
√
2PNdB

)
(3.25)

with data given by (uN , vN )
∣∣
t=0

= PN (u0, u1) ∼ (PN )⋆µ. Recall that Ψdamp =

Ψdamp(u0, u1, ω) is the random variable on Hs(M)× Ω defined in (1.11).
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Proposition 3.8. (PN )⋆µ is invariant under (3.25), in the sense that for any continuous

and bounded test function F ∈ Cb(Hs(M);R) and any t ≥ 0,�
Hs(M)

�
Ω
F
[(
PNΨdamp(u0, u1, ω), ∂tPNΨdamp(u0, u1, ω)

)]
dP(ω)dµ(u0, u1)

=

�
Hs(M)

F
[(
PNu0,PNu1

)]
dµ(u0, u1).

Moreover for any k ∈ N, T > 0, 0 < ε ≪ 1 and 1 ≤ p, q < ∞ then{
Hk

(
PNΨdamp(u0, u1, ω);σN (x)

)}
N∈N is a Cauchy sequence in

Lp
(
µ⊗ P;Lq([0, T ];W−ε,∞(M))

)
and converges almost surely to a limit : Ψk

damp :∈ Lq([0, T ];W−ε,∞(M)). Moreover

Hk

(
PNΨdamp(u0, u1, ω);σN (x)

)
and :Ψk

damp : obey the tail estimates (3.6) and (3.7), and

we also have Ψdamp ∈ C
(
[0, T ];W−ε,∞(M)

)
∩ C1

(
[0, T ];W−ε−1,∞(M)

)
almost surely, as

well as the tail estimate

µ⊗ P
(
∥(Ψdamp, ∂tΨdamp)∥C([0,T ];H−ε) > R

)
≤ Ce−cR2

. (3.26)

Lastly, µ is invariant under (u0, u1) 7→ (Ψdamp, ∂tΨdamp), in the same sense as above.

Remark 3.9. Note that in the case of the stochastic quantization equation (1.4) treated

in [13], the truncated stochastic convolution

zN (t) = PN

� t

−∞
e(t−t′)(∆g−1)dB(t′)

has the same covariance function γN as for zN and PNΨdamp, so we can use the same

argument as in Propositions 3.4 and 3.8 to estimate the Wick powers of z. In turn this

would generalize the result of Da Prato and Debussche [13] to the case of a general compact

boundaryless Riemannian surface, which to the authors knowledge would be new.

Proof of Proposition 3.8. We only prove the first assertion, since the rest of the proposition

follows from the same analysis as for Proposition 3.4. Namely, once we have the invari-

ance of (PN )⋆µ, we know that PNΨdamp has the same (spatial) covariance function γN as

PNS(t)(u0, u1), so we can write�
Hs(M)

�
Ω

∣∣(1−∆g)
− ε

2Hk

(
PNΨdamp(u0, u1, ω)(t,x);σN (x)

)∣∣2dP(ω)dµ(u0, u1)
= k!

[
(1−∆g)

− ε
2

x1 (1−∆g)
− ε

2
x2

(
γN (x1,x2)

k
)]∣∣

x1=x2=x
,

where γN is the same as in Lemma 3.5, and the same computations as in the proof of

Proposition 3.4 apply.

Proving the invariance of µN = (PN )⋆µ is equivalent to showing L#
NµN = 0, where LN

is the infinitesimal generator of (3.25) and L#
N is its dual acting on probability measures

on EN × EN by

∀F ∈ C∞
b (EN × EN ;R),

�
EN×EN

F (u, v)d(L#
NµN ) =

�
EN×EN

(LNF )(u, v)dµN (u, v).
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But in view of (3.25), we have LN = L1
N + L2

N , where L1
N is the generator for the linear

wave equations, and L2
N the one for an Ornstein-Uhlenbeck process. More precisely, (3.25)

can be seen as a system of SDEs in R2ΛN , where ΛN = dimEN , given by{
dan = bndt

dbn = −⟨λn⟩2andt+ (− bndt+
√
2ψ0(N

−2λ2n)dβn)
, n = 0, ...,ΛN − 1,

whose infinitesimal generator is given by

LNf(a0, ..., aΛN−1, b0, ..., bΛN−1) =

ΛN−1∑
n=0

bn∂anf − ⟨λn⟩2an∂bnf − bn∂bnf + ψ0(N
−2λ2n)

2∂2bnf.

Now if we set

L2
Nf =

ΛN−1∑
n=0

−bn∂bnf + ψ0(N
−2λ2n)

2∂2bnf

we recognize the generator of the Ornstein-Uhlenbeck process{
an(t) = an(0),

bn(t) = e−tbn(0) +
√
2ψ0(N

−2λ2n)
� t
0 e

−(t−t′)dβn(t
′),

and a straightforward computation using Itô’s isometry gives that bn is a mean 0 Gaussian

random variable with variance

E(bn(t)2) = e−2tE(bn(0)2) + 2ψ0(N
−2λ2n)

2 1− e−2t

2
.

In particular, in view of (1.7), E(bn(t)2) = ψ0(N
−2λ2n)

2 = E(bn(0)2), which means that L2
N

preserves µN . On the other hand, we have

L1
N =

ΛN−1∑
n=0

bn∂an − ⟨λn⟩2an∂bn ,

which is the generator of the truncated linear wave equations seen as the Hamiltonian

system of ODEs {
d
dtan = bn,
d
dtbn = −⟨λn⟩2an,

n = 0, ...,ΛN − 1.

Now the energy of this system

E0,N (a0, ..., aΛN−1, b0, ..., bΛN−1) =
1

2

ΛN−1∑
n=0

(
⟨λn⟩2a2n + b2n

)
is conserved, and by Liouville’s theorem, this system preserves the Lebesgue measure∏ΛN−1

n=0 dandbn, so we see that the measure e−E0,N (a0,...,aΛN−1,b0,...,bΛN−1)
ΛN−1∏
n=0

dandbn is also

conserved, which is nothing else than the conservation of µN in view of (1.7). All in all,

L#
NµN = 0 which concludes the proof of the invariance.

The invariance of µ for (Ψ, ∂tΨ) then follows from the invariance of (PN )⋆µ for

(PNΨ,PN∂tΨ) along with the almost sure convergence of (PNΨ,PN∂tΨ)(t) towards

(Ψ, ∂tΨ)(t) in Hs(M) for any t ≥ 0 and the weak convergence of (PN )⋆µ towards µ (which
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is clear from the convergence almost surely and in Lp(Ω0 × Ω1;Hs(M)) for any p ≥ 1 of

the series in (1.7)).

Finally, in order to show the last tail estimate (3.26), in view of (1.11) we can first

separate

µ⊗ P
(
∥(Ψdamp, ∂tΨdamp)∥C([0,T ];H−ε) > R

)
≤ µ

(
sup
t≤T

∥∂tV (t)u0 + V (t)(u0 + u1)∥H−ε ≳ R
)

+ µ
(
sup
t≤T

∥∂2t V (t)u0 + ∂tV (t)(u0 + u1)∥H−1−ε ≳ R
)

+ P
(
sup
t≤T

∥∥∥� t

0
V (t− t′)dB(t′)

∥∥∥
H−ε

≳ R
)

+ P
(
sup
t≤T

∥∥∥� t

0
∂tV (t− t′)dB(t′)

∥∥∥
H−1−ε

≳ R
)

= I + II + III + IV.

We begin by estimating I . Using Chebyshev’s inequality, the boundedness of ∂jt V (t) :

Hs(M) → Hs+j−1(M), for any s ∈ R and j ≥ 0, and the Wiener chaos estimate (3.5) with

the fact that (u0, u1) is Gaussian, we get a constant C > 0 such that we can bound for any

T,R, ε > 0 and p ≥ 1

I ≲ R−pE
[(

sup
t≤T

∥∂tV (t)u0 + V (t)(u0 + u1)∥H−ε

)p]
≲ R−pE∥(u0, u1)∥pH−ε

≲ R−p(p− 1)
p
2
(
E∥(u0, u1)∥2H−ε

) p
2 ≤ Cp(p− 1)

p
2R−p.

Optimizing in p finally leads to

µ
(
sup
t≤T

∥∂tV (t)u0 + V (t)(u0 + u1)∥H−ε ≳ R
)
≲ e−cR2

for some c > 0 independent of T and R. The estimate on II is similar. As for III, we first

use Doob’s martingale inequality (see e.g. Theorem 3.9 in [14]) to bound

III ≲ R−p sup
t≤T

E
[∥∥∥� t

0
V (t− t′)dB(t′)

∥∥∥p
H−ε

]
and then conclude as above since

� t
0 V (t−t′)dB(t′) is Gaussian. The same argument applies

to IV, which finally leads to (3.26). □

Remark 3.10. Note that the proof of the invariance of (PN )⋆µ above works equally well

for (ΠN )⋆µ. Of course, the estimates on the Wick powers require the smooth cut-off PN

instead of the sharp cut-off ΠN .

3.3. Estimate on the stochastic convolution. As for the nonlinear wave equations with

random initial data, the key point in the analysis of the stochastic nonlinear wave equa-

tions (1.3) is the following proposition. Let us recall here that the (truncated) stochastic

convolution (solution of the linear stochastic wave equation) is defined by

ΨN (t, x) = PN

� t

0

sin
(
(t− t′)

√
1−∆g

)√
1−∆g

dB(t′)
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and the cylindrical Wiener process B is defined in (1.8). The corresponding renormalization

is given in (1.22).

Proposition 3.11. Let 0 < ε ≪ 1, k ∈ N, T ∈ (0; 1] and p, q ∈ [1,∞). Then,{
Hk

(
PNΨ(ω);σN (t,x)

)}
N∈N is a Cauchy sequence in Lp

(
Ω;Lq

(
[0, T ];W−ε,∞(M)

))
. In

particular, denoting the limit by : Ψk : , we also have that Hk

(
PNΨ(ω);σN (t,x)

)
con-

verges almost surely towards : Ψk : in Lq
(
[0, T ];W−ε,∞(M)

)
, and for k = 1, we have

that Ψ belongs almost surely to C([0, T ];W−ε,∞(M))∩C1([0, T ];W−ε−1,∞(M)). Moreover

Hk

(
PNΨ(ω);σN (t,x)

)
, :Ψk : , and Ψ respectively obey the tail estimates (3.6), (3.7), and

(3.26).

Proof. As before, we can compute for fixed t ∈ [0, T ] and x ∈ M

E
[∣∣(1−∆g)

− ε
2Hk

(
PNΨ(ω, t,x);σN (t,x)

)∣∣2]
=

∑
n,n′≥0

φn(x)

⟨λn⟩ε
φn′(x)

⟨λn′⟩ε

�
M

�
M

E
[
Hk

(
PNΨ(ω, t,x1);σN (t,x1)

)
×Hk

(
PNΨ(t,x2);σN (t,x2)

)]
φn(x1)φn′(x2)dx1dx2.

Now we use (3.4), hence

E
[∣∣(1−∆g)

− ε
2Hk

(
PNΨ(ω, t,x);σN (t,x)

)∣∣2]
= k!

∑
n,n′≥0

φn(x)

⟨λn⟩ε
φn′(x)

⟨λn′⟩ε

�
M2

[
γtN (x1,x2)

]k
dx1dx2

= k!
(
(1−∆g)

− ε
2

x1 (1−∆g)
− ε

2
x2

[
γtN (x1,x2)

]k)∣∣
x1=x2=x

,

where we define

γtN (x1,x2)
def
= E

[
PNΨ(ω, t,x1) ·PNΨ(ω, t,x2)

]
=

∑
n≥0

ψ2
0(N

−2λ2n)

(� t

0

[
sin

(
(t− t′)⟨λn⟩

)
⟨λn⟩

]2
dt′

)
φn(x1)φn(x2),

the last equality resulting from Itô’s isometry. In particular, in view of the second line in

(1.21), we see that γtN can be decomposed as

γtN =
t

2
γN + γ̃tN ,

where γN is given in (3.10), and

γ̃tN (x1,x2) = −
∑
n≥0

ψ2
0(N

−2λ2n)
sin(2t⟨λn⟩)
4⟨λn⟩3

φn(x1)φn(x2).

Hence, using the product estimate of Corollary 2.7 (iii), we get for any t ∈ [0, T ]

∥(γtN )k∥
B

− ε
2∞,∞(M)×B

− ε
2∞,∞(M)

≲T

k∑
ℓ=0

∥γℓN (γ̃tN )k−ℓ∥
B

− ε
2∞,∞(M)×B

− ε
2∞,∞(M)

≲
k∑

ℓ=0

∥γℓN∥
B

− ε
2∞,∞(M)×B

− ε
2∞,∞(M)

∥γ̃tN∥k−ℓ
Bε

∞,∞(M)×Bε
∞,∞(M).
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Now from Proposition 3.6, we have that ∥γℓN∥
W− ε

2 ,− ε
2 ,∞ is bounded uniformly in N for any

ε > 0. As for the other term, we can estimate it directly with Cauchy-Schwarz inequality

and Lemma 2.1:

∥γ̃tN∥Bε
∞,∞(M)×Bε

∞,∞(M)

= sup
M1,M2∈2Z+

M ε
1M

ε
2 sup
x1,x2∈M

∣∣∣∑
n≥0

ψ0(N
−2λ2n)ψM2

1
(λ2n)ψM2

2
(λ2n)

sin(2t⟨λn⟩)
4⟨λn⟩3

φn(x1)φn(x2)
∣∣∣

≲ sup
M1,M2∈2Z+

M ε
1M

ε
2 sup
x1,x2∈M

(∑
n≥0

ψ0(N
−2λ2n)

2ψM2
1
(λ2n)ψM2

2
(λ2n)

sin(2t⟨λn⟩)2

⟨λn⟩3
φn(x1)

2
) 1

2

×
(∑

n≥0

ψM2
1
(λ2n)ψM2

2
(λ2n)

1

⟨λn⟩3
φn(x2)

2
) 1

2

≲ sup
M1∼M2≲N

M2ε
1

∑
n≥0

ψM2
1
(λ2n)ψM2

2
(λ2n)

1

⟨λn⟩3

≲ sup
M1≲N

M2ε−1
1 ≤ C < +∞

uniformly in N ∈ N.
Thus we can conclude as in the proof of Proposition 3.4 that E

∣∣(1−∆g)
−ε :Ψk

N (t, x) :
∣∣2

is uniformly bounded in N , from which we get a uniform bound in

Lp
(
Ω;Lq([0, T ];W−ε,∞(M))

)
for any 1 ≤ p, q <∞.

As for the convergence of Hk

(
PNΨ(ω, t,x);σN (t,x)

)
, we have again for N1 < N2

E
∣∣∣(1−∆g)

− ε
2

[
Hk

(
PN1Ψ(ω, t,x);σN1(t,x)

)
−Hk

(
PN2Ψ(ω, t,x);σN2(t,x)

)]∣∣∣2
= k!(1−∆g)

− ε
2

x1 (1−∆g)
− ε

2
x2

[(
P2

N1
γt(x1,x2)

)k
− 2

(
PN1PN2γ

t(x1,x2)
)k

+
(
P2

N2
γt(x1,x2)

)k]∣∣x1=x2=x

≲
∥∥∥(P2

N1
γt(x1,x2)

)k − 2
(
PN1PN2γ

t(x1,x2)
)k

+
(
P2

N2
γt(x1,x2)

)k∥∥∥
B

− ε
2∞,∞(M)×B

− ε
2∞,∞(M)

.

Writing as above P2
N2
γt = t

2P
2
N2
γ+P2

N2
γ̃t, we then estimate for t ∈ [0, T ] the contribution

of∥∥∥(P2
N2
γt(x1,x2)

)k − (
PN1PN2γ

t(x1,x2)
)k∥∥∥

B
− ε

2∞,∞(M)×B
− ε

2∞,∞(M)

≲
k∑

ℓ=0

∥∥∥(P2
N2
γ(x1,x2)

)ℓ(
P2

N2
γ̃t(x1,x2)

)k−ℓ

−
(
PN1PN2γ(x1,x2)

)ℓ(
PN1PN2 γ̃

t(x1,x2)
)k−ℓ

∥∥∥
B

− ε
2∞,∞(M)×B

− ε
2∞,∞(M)

≲ sup
ℓ≤k

∥∥∥[(P2
N2
γ(x1,x2)

)ℓ − (
PN1PN2γ(x1,x2)

)ℓ](
P2

N2
γ̃t(x1,x2)

)k−ℓ
∥∥∥
B

− ε
2∞,∞(M)×B

− ε
2∞,∞(M)

+
∥∥∥(PN1PN2γ(x1,x2)

)ℓ[(
P2

N2
γ̃t(x1,x2)

)k−ℓ −
(
PN1PN2 γ̃

t(x1,x2)
)k−ℓ

]∥∥∥
B

− ε
2∞,∞(M)×B

− ε
2∞,∞(M)

≲ sup
ℓ≤k

(
I + II

)
.



36 T. OH, T. ROBERT, AND N. TZVETKOV

Using again the product estimate of Corollary 2.7 (iii), we bound

I ≲
∥∥∥(P2

N2
γ(x1,x2)

)ℓ − (
PN1PN2γ(x1,x2)

)ℓ∥∥∥
B

− ε
2∞,∞(M)×B

− ε
2∞,∞(M)

×
∥∥∥P2

N2
γ̃t(x1,x2)

∥∥∥k−ℓ

Bε
∞,∞(M)×Bε

∞,∞(M)

≲ N−ε̃
1 ,

for some 0 < ε̃≪ ε. This follows from (3.13)-(3.14) similarly as in the proof of Proposition

3.4, along with the previous bound on γ̃t. As for II, we use also the product estimate to get

II ≲
∥∥∥(PN1γ(x1,x2)

)ℓ∥∥∥
B

− ε
2∞,∞(M)×B

− ε
2∞,∞(M)

×
∥∥∥(P2

N2
γ̃t(x1,x2)

)k−ℓ −
(
PN1PN2 γ̃

t(x1,x2)
)k−ℓ

∥∥∥
Bε

∞,∞(M)×Bε
∞,∞(M)

,

and we can gain a small negative power of N1 in the second term by proceeding as

for the bound on γ̃t above and using that the supremum of M2ε−1
1 now runs over

N1 ≲ M1 ≲ N2. The second contribution
(
P2

N1
γt(x1,x2)

)k − (
PN1PN2γ

t(x1,x2)
)k

is esti-

mated similarly. This shows that
{
Hk

(
PNΨ(ω, t,x);σN (t,x)

)}
N∈N is a Cauchy sequence

in Lp(Ω;Lq([0, T ];W−ε,∞(M))) for any finite p, q ≥ 1.

Let us finally turn to the continuity property of ΨN and Ψ. As in the previous section,

we compute for any h, t ∈ [0, T ] and x ∈ M

E
∣∣(1−∆g)

−ε(τhΨ−Ψ)(ω, t,x)
∣∣2 = ∑

n≥0

φn(x)
2

⟨λn⟩2ε

{� t+h

t

[
sin

(
(t+ h− t′)⟨λn⟩

)
⟨λn⟩

]2
dt′

+

� t

0

[
sin

(
(t+ h− t′)⟨λn⟩

)
− sin

(
(t− t′)⟨λn⟩

)
⟨λn⟩

]2
dt′

}
≲

∑
n≥0

φn(x)
2

⟨λn⟩2+2ε

{
h+ t sin

(h⟨λn⟩
2

)2}
≲

∑
n≥0

φn(x)
2

⟨λn⟩2+2ε
(h⟨λn⟩)ε ≲ hε,

which leads as in the previous section to Ψ ∈ C
(
[0, T ];W−ε,∞(M)

)
almost surely.

Lastly, the tail estimate is obtained through the same argument as in the previous section.

This concludes the proof of Proposition 3.11. □

4. Local well-posedness results

4.1. Proof of Theorems 1.2 and 1.6. We begin by establishing a general local well-

posedness result for a perturbed version of (1.2). Let us consider the nonlinear wave

equations with a general nonlinearity{
∂2tw + (1−∆g)w + ν∂tw + Fk(w) = 0

(w, ∂tw)|t=0 = (0, 0)
(4.1)
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where

Fk(w) = wk +
k−1∑
ℓ=0

fℓw
ℓ

for some functions fℓ : R+ × M → R, and ν ∈ {0, 1}. Note that here we only consider

the dynamics (4.1) starting from zero initial data, as the data for the Cauchy problem

is contained in the forcing terms fℓ. This is not a restriction, as the case of a general

initial data (w, ∂tw)|t=0 = (w0, w1) can be put in the form (4.1) by decomposing w =

(∂tV (t)w0+V (t)(w0+w1))+W where W solves (4.1) with F̃k(W ) =W k +
∑k−1

ℓ=0 f̃ℓW
ℓ for

some data f̃ℓ depending on fℓ and (w0, w1).

Proposition 4.1. There exists ε0 = ε0(k) > 0 such that if s1 = 1− ε for any 0 < ε < ε0,

then for any q > 1 there exists C > 0 such that for any R ≥ 1 ≥ θ > 0, and any

fℓ ∈ Lq
(
[0, 1];W− ε

2
,∞(M)

)
with ∥fℓ∥Lq([0,1];W− ε

2 ,∞(M))
≤ R, ℓ = 0, ..., k − 1, if we set

δ = C(θR−1)q
′ ∈ (0, 1]

then (4.1) admits a unique solution w ∈ C
(
[0, δ];Hs1(M)

)
∩ C1([0, δ];Hs1−1(M)), which

satisfies

∥(w, ∂tw)∥C([0,δ];Hs1 ) ≤ θ.

Moreover, the flow map

(f0, ..., fk−1) ∈ Lq
(
[0, 1];W− ε

2
,∞(M)

)k 7−→ (w, ∂tw) ∈ C
(
[0, δ];Hs1(M)

)
is continuous. Lastly, the same local well-posedness result holds if we replace Fk in (4.1) by

FN,k(w) = PN

(
(PNw)

k +

k−1∑
ℓ=0

fℓ(PNw)
ℓ

)
, (4.2)

uniformly in N ∈ N.

Proof. For δ ∈ (0, 1], ν ∈ {0, 1}, let us define the nonlinear operator on C
(
[0, δ];Hs1(M)

)
by

Υδ(w)(t) = −
� t

0
e−

ν
2
(t−t′)

sin
(
(t− t′)

√
1− ν2

4 −∆g

)
√
1− ν2

4 −∆g

Fk(w)dt
′.

We shall prove that for δ small enough, Υδ defines a contraction mapping in a ball of radius

θ in C
(
[0, δ];Hs1(M)

)
∩ C1([0, δ];Hs1−1(M)).

We use (2.6) to define and evaluate the Hs1(M) norm of the operators, and that

Hs1(M) = Bs1
2,2(M), so that we get the first bound

∥(Υδ(w), ∂tΥδ(w))∥C([0,δ];Hs1 ) ≲ ∥wk∥L1
δH

s1−1 +

k−1∑
ℓ=0

∥fℓwℓ∥L1
δH

s1−1

≲ ∥wk∥L1
δB

−ε
2,2

+

k−1∑
ℓ=0

∥fℓwℓ∥L1
δB

−ε
2,2
.
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We begin by treating the first term, which we can simply estimate by

∥wk∥L1
δB

−ε
2,2

≲ δ∥wk∥L∞
δ L2 ≲ δ∥w∥kL∞

δ L2k .

Thus, provided that ε < 1
k , we can use Sobolev’s inequality to get the bound

∥wk∥L1
δH

s1−1 ≲ δ∥w∥kL∞
δ Hs1 .

As for the other terms, we now use the product rule in Corollary 2.7 (iii), to get for

ℓ = 1, ..., k − 1

∥fℓwℓ∥L1
δB

−ε
2,2

≲ δ
1
q′ ∥fℓ∥Lq

δB
−2ε/3
∞,2

∥wℓ∥L∞
δ Bε

2,2
≲ δ

1
q′ ∥fℓ∥Lq

δW
− ε

2 ,∞∥w∥ℓL∞
δ Bε

2ℓ,2
,

and then use that

∥w∥L∞
δ Bε

2ℓ,2
≲ ∥w∥L∞

δ B
s1
2,2

for any ℓ = 1, ..., k − 1, provided that ε < 1
2(k−1) . The term for ℓ = 0 is estimated directly,

so that all in all we arrive at

∥(Υδ(w), ∂tΥδ(w))∥C([0,δ];Hs1 ) ≤ c1δ∥w∥kL∞
δ Hs1

+ c2δ
1
q′

k−1∑
ℓ=0

∥fℓ∥Lq
δW

− ε
2 ,∞∥w∥ℓL∞

δ Hs1 .

In particular for R ≥ 1 ≥ θ > 0 and δ = C(θR−1)q
′
, Υδ maps the ball of radius θ in itself.

From the same computations, if Υ′
δ is defined similarly to Υδ with respect to another data

w′
0, w

′
1, f

′
0, ..., f

′
k−1 then we get

∥Υδ(w)−Υ′
δ(w

′)∥C([0,δ];Hs1 )

≤ c1δ∥w − w′∥L∞
δ Hs1

(
∥w∥L∞

δ Hs1 + ∥w′∥L∞
δ Hs1

)k−1

+ c2δ
1
q′ ∥f0 − f ′0∥Lq

δW
− ε

2 ,∞ + c3δ
1
q′

k−1∑
ℓ=1

{
∥fℓ − f ′ℓ∥Lq

δW
− ε

2 ,∞∥w∥ℓL∞
δ Hs1

+ ∥w − w′∥L∞
δ Hs1∥f ′ℓ∥Lq

δW
− ε

2 ,∞
(
∥w∥L∞

δ Hs1 + ∥w′∥L∞
δ Hs1

)ℓ−1
}
, (4.3)

and similarly for the time derivative. This shows the contraction property and the contin-

uous dependence on the fℓ’s up to taking δ smaller depending on c1, c2, c3. □

With Proposition 4.1 at hand, we can now get our main local well-posedness results.

Proof of Theorems 1.2 and 1.6. We begin by proving Theorem 1.2. Recall that we see

Ψdamp as a random variable on (Hs(M)× Ω, µ⊗ P). For any M ∈ N we take

ΣM =
{
(u0, u1, ω) ∈ Hs(M)× Ω, Ψdamp ∈ C

(
[0, 1];W− ε

2
,∞(M)

)
and ∀ℓ = 1, ..., k,∥∥Hℓ

(
PNΨdamp(u0, u1, ω);σN (x)

)
− :Ψℓ

damp(u0, u1, ω) :
∥∥
L2
(
[0,1];W− ε

2 ,∞(M)
) → 0,

and sup
N∈N

∥∥Hℓ

(
PNΨdamp(u0, u1, ω);σN (x)

)∥∥
L2([0,1];W− ε

2 ,∞)
≤M

}
.

In view of the large deviation bounds given by Proposition 3.8, we see that

µ⊗ P(Hs(M)× Ω \ ΣM ) ≤ Ce−cM
2
k . (4.4)
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Moreover, (1.24) and Proposition 3.8 show that for any (u0, u1, ω) ∈ ΣM , we can ap-

ply Proposition 4.1 with R = M , θ = 1 and fℓ =
(
k
ℓ

)
Hℓ

(
PNΨdamp(u0, u1, ω);σN (x)

)
for any N ∈ N ∪ {∞}, with the convention that P∞Ψdamp = Ψdamp and

Hℓ

(
P∞Ψdamp(u0, u1, ω);σ∞(x)

)
= : Ψℓ

damp(u0, u1, ω) : . We thus get solutions wN and

w∞ = w to (1.24) on [0, T ] with T = CM−2 independent of N . Moreover since

PNΨdamp ∈ C
(
[0, T ];W− ε

2
,∞(M)

)
, N ∈ N ∪ {∞}, we have

uN = PNΨdamp + wN ∈ PNΨdamp + C
(
[0, T ];Hs1(M)

)
∩ C1

(
[0, T ];Hs1(M)

)
.

Hence in view of Proposition 3.8 we have uN and u in C
(
[0, T ];H−ε(M)

)
∩

C1
(
[0, T ];H−1−ε(M)

)
and using again Proposition 3.8, we get the convergences

PNΨdamp → Ψdamp and wN → w. From the continuous dependence in Proposition 4.1, we

thus get that uN → u in C
(
[0, T ];H−ε(M)

)
. The proof of Theorem 1.2 is completed by

taking

Σ = lim inf
M≥1

ΣM

which, by (4.4) and Borel-Cantelli’s lemma, is of full probability. The proof of Theorem 1.6

follows through the same argument, with PNS(t)(u0, u1) in place of PNΨdamp(u0, u1, ω)

and (Hs(M), µ) in place of (Hs(M)× Ω, µ⊗ P). □

4.2. Deterministic estimates. We collect here the deterministic estimates needed to

prove Theorem 1.9. Let us recall from [17] that for s1 ∈ (0, 1), a pair (q, r) is s1-admissible

(respectively (q̃, r̃) dual s1-admissible) if 1 ≤ q̃ < 2 < q ≤ ∞, 1 < r̃ ≤ 2 ≤ r <∞ and

1

q
+

2

r
= 1− s1 =

1

q̃
+

2

r̃
− 2,

2

q
+

1

r
≤ 1

2
, and

2

q̃
+

1

r̃
≥ 5

2
.

Let us then consider the following inhomogeneous linear wave equations{
(∂2t + 1−∆g)u = f on [0, T ]×M,

(u, ∂tu)
∣∣
t=0

= (u0, u1) ∈ Hs1(M)
(4.5)

for some T ∈ (0, 1]. For s1 ∈ (0, 1) and (q, r) an s1-admissible pair (respectively (q̃, r̃) a

dual s1-admissible pair), we set

Xs1
T = C

(
[0, T ];Hs1(M)

)
∩ C1

(
[0, T ];Hs1−1(M)

)
∩ Lq

(
[0, T ];Lr(M)

)
(4.6)

and

X̃s1
T = L1

(
[0, T ];Hs1−1(M)

)
+ Lq̃

(
[0, T ];Lr̃(M)

)
.

Lemma 4.2. Let u be a solution of (4.5), then the following Strichartz estimate holds:

∥u∥Xs1
T

≲ ∥(u0, u1)∥Hs1 + ∥f∥
X̃

s1
T
. (4.7)

Proof. Due to the finite speed of propagation and in the absence of boundary, this follows

from the same Strichartz estimates as in [23, 25] for the variable coefficients linear wave

equations on R2. □

Next, we recall the following technical result from [17].
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Lemma 4.3. Let s1 be as in Theorem 1.9. Then there exist an s1-admissible pair (q, r)

and a dual s1-admissible pair (q̃, r̃) satisfying

q ≥ kq̃, r ≥ kr̃ (4.8)

where the first inequality is strict in the case s1 > scrit.

Proof. This is the content of the discussion in [17, Subsection 3.1]. □

4.3. Proof of Theorem 1.9. We finally prove the local result for SNLW. As above, we

define for N ∈ N ∪ {∞} and (u0, u1) ∈ Hs1(M),

ΥT (w) = cos
(
t
√
1−∆g

)
u0 +

sin
(
t
√
1−∆g

)√
1−∆g

u1

−
k∑

ℓ=0

(
k

ℓ

) � t

0

sin((t− t′)
√
1−∆g)√

1−∆g

Hℓ

(
PNΨ(t′);σN (t′, x)

)
wk−ℓ(t′)dt′,

with the same convention as above for N = ∞.

We then prove a result similar to [17, Proposition 3.5].

Proposition 4.4. Let k ∈ N and s1 be as in Theorem 1.9, and take (q, r) and (q̃, r̃) given

by Lemma 4.3. Then there exist 0 < ε≪ 1 and α > 0 such that for any N ∈ N ∪ {∞},

∥ΥT (w)∥Xs1
T

≲ ∥(u0, u1)∥Hs1 +
∥∥Hk

(
PNΨ(t);σN (t, x)

)∥∥
L1
THs1−1

+ Tα
k−1∑
ℓ=1

∥∥Hℓ

(
PNΨ(t);σN (t, x)

)∥∥
Lp
TW− ε

2 ,∞∥w∥k−ℓ
X

s1
T

+ T
1
q̃
− k

q ∥w∥k
X

s1
T
, (4.9)

for some large p. Moreover, a similar estimate holds for the difference as in (4.3).

Proof. The linear solution with the term for ℓ = k in ΥT are directly estimated with the

Strichartz estimate (4.7) of Lemma 4.2 to give the first two terms in the right-hand side of

(4.9).

As for the term ℓ = 0, we have from the Strichartz estimate (4.7) and Hölder’s inequality

with (4.8)∥∥∥∥� t

0

sin((t− t′)
√
1−∆g)√

1−∆g

wk(t′)dt′
∥∥∥∥
X

s1
T

≲ ∥wk∥
X̃

s1
T

≲ ∥w∥k
Lkq̃
T Lkr̃

≲ T
1
q̃
− k

q ∥w∥k
X

s1
T
.

Hence it remains to show∥∥∥∥� t

0

sin((t− t′)
√
1−∆g)√

1−∆g

Hℓ

(
PNΨ(t′);σN (t′, x)

)
wk−ℓ(t′)dt′

∥∥∥∥
X

s1
T

≲ Tα
∥∥Hℓ

(
PNΨ(t);σN (t, x)

)∥∥
Lp
TW− ε

2 ,∞∥w∥k−ℓ
X

s1
T

,

for ℓ = 1, ..., k − 1. As in [17, Proposition 3.5], by interpolation we have for any 0 < ε <

s1 ∧ (1− s1)

X̃s1
T ⊃ Lq̃1

(
[0, T ];W−ε,r̃1(M)

)
and Lq1

(
[0, T ];W ε,r1(M)

)
⊃ Xs1

T , (4.10)

with

1

q1
=

1− ε/s1
q

and
1

r1
=

1− ε/s1
r

+
ε/s1
2
, (4.11)
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and

1

q̃1
=

1− ε/(1− s1)

q̃
+
ε/(1− s1)

1
and

1

r̃1
=

1− ε/(1− s1)

r̃
+
ε/(1− s1)

2
. (4.12)

Then, using Lemma 4.2 with the first embedding in (4.10), we have∥∥∥∥� t

0

sin((t− t′)
√
1−∆g)√

1−∆g

Hℓ

(
PNΨ(t′);σN (t′, x)

)
wk−ℓ(t′)dt′

∥∥∥∥
X

s1
T

≲
∥∥Hℓ

(
PNΨ(t);σN (t, x)

)
wk−ℓ

∥∥
X̃

s1
T

≲
∥∥Hℓ

(
PNΨ(t);σN (t, x)

)
wk−ℓ

∥∥
L
q̃1
T W−ε,r̃1

≲
∥∥Hℓ

(
PNΨ(t);σN (t, x)

)
wk−ℓ

∥∥
L
q̃1
T B

− ε
2

r̃1,∞
.

Next, we can use Corollary 2.7 (iii) and (i) with Hölder’s inequality to estimate this last

term with ∥∥Hℓ

(
PNΨ(t);σN (t, x)

)∥∥
L
1/( 1

q̃1
− 1

q̃2
)

T B
− ε

2∞,∞

∥wk−ℓ∥
L
q̃2
T B

2ε
3

r̃1,∞

≲
∥∥Hℓ

(
PNΨ(t);σN (t, x)

)∥∥
L
1/( 1

q̃1
− 1

q̃2
)

T W− ε
2 ,∞

∥w∥ℓ
L
(k−ℓ)q̃2
T W ε,(k−ℓ)r̃1

,

where q̃1 < q̃2 < q̃. The proof of Proposition 4.4 is then completed once we notice that for

ℓ ≥ 1,

∥w∥
L
(k−ℓ)q̃2
T W ε,(k−ℓ)r̃1

≲ Tα∥w∥Lq1
T W ε,r1

for some small α > 0 provided that (k− 1)q̃2 < q1 and (k− 1)r̃1 ≤ r1, which can be insured

by taking ε small enough in view of the choice of q̃2 and (4.8)-(4.11)-(4.12). Lastly, we

invoke the second embedding in (4.10) to conclude the proof of the proposition. □

With this proposition at hand, we can conclude as in Subsection 4.1 in the subcritical

case s > scrit, with a stopping time T = Tω(∥(u0, u1)∥Hs1 ) > 0. However, in the case k ≥ 4

and s = scrit then we have T
1
q̃
− k

q = 1 and so we cannot recover the contraction property by

taking T = Tω(∥(u0, u1)∥Hs1 ) small enough. Instead, defining as in [17] the slightly weaker

norm

∥u∥Y s1
T

= max
(
∥u∥Lq

TLr , ∥u∥1−
ε
s

Lq
TLr∥u∥

ε
s
L∞
T Hs1

)
,

we can repeat the argument as in the proof of Proposition 4.4 using the interpolation

inequality ∥u∥Lq1
T W ε,r1 ≲ ∥u∥Y s1

T
, to get

∥ΥT (w)∥Y s1
T

≲ ∥S(t)(u0, u1)∥Y s1
T

+
∥∥Hk

(
PNΨ(t);σN (t, x)

)∥∥
L1
THs1−1

+ Tα
k−1∑
ℓ=1

∥∥Hℓ

(
PNΨ(t);σN (t, x)

)∥∥
Lp
TW− ε

2 ,∞∥w∥k−ℓ
Y

s1
T

+ ∥w∥k
Y

s1
T
,

and similarly for the difference estimate. Since ∥ · ∥Y s1
T

→ 0 as T → 0, taking then T small

enough such that

∥S(t)(u0, u1)∥Y s1
T

+
∥∥Hk

(
PNΨ(t);σN (t, x)

)∥∥
L1
THs1−1 ≤ θ

2
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for some small 0 < θ ≪ 1, then ΥT defines a contraction on the ball of radius θ (in Y s1
T ).

Lastly, repeating again the argument to obtain (4.9) with the interpolation inequality we

can control

∥w∥Xs1
T

= ∥ΥT (w)∥Xs1
T

≲ ∥(u0, u1)∥Hs1 +
∥∥Hk

(
PNΨ(t);σN (t, x)

)∥∥
L1
THs1−1

+ Tα
k−1∑
ℓ=1

∥∥Hℓ

(
PNΨ(t);σN (t, x)

)∥∥
Lp
TW− ε

2 ,∞∥w∥k−ℓ
Y

s1
T

+ ∥w∥k
Y

s1
T
,

which shows that w ∈ Xs1
T and concludes the proof of Theorem 1.9.

5. Global well-posedness and invariance of the Gibbs measure

In this last section, we present the proof of Theorem 1.4, the one for Theorem 1.7

following through the same argument. In the rest of the section, we then assume that

k is an odd integer, and we fix some parameters s < 0 < s2 < s1 < 1 + s such that

0 < −s < 1− s1 < 1− s2 ≪ 1. We also simply denote Ψdamp by Ψ.

5.1. The frequency truncated SDNLW. As in [5, 39, 11, 8], for any N ∈ N and k ≥ 2

we look at the approximating equation{(
∂2t + 1−∆g + ∂t

)
u+PNHk

(
PNuN ;σN (x)

)
=

√
2ξ,

(u, ∂tu)
∣∣
t=0

= (u0, u1).
(5.1)

Note that the same argument as in the previous section shows µ ⊗ P-almost sure local

well-posedness for (5.1), thus defining a local flow map

ΦN (t) : Hs(M)× Ω → Hs(M).

We have the following global well-posedness result for (5.1).

Proposition 5.1. For any N ∈ N, (5.1) is µ⊗ P-almost surely globally well-posed. More-

over, the truncated Gibbs measure

dρN,k+1 = Z−1
N exp

(
− 1

k + 1

�
M

: (PNu)
k+1 : dx

)
dµ, (5.2)

is invariant under (5.1), in the sense that for any F ∈ Cb(Hs(M);R) and any t ≥ 0,�
Hs(M)

�
Ω
F
[
ΦN (t)(u0, u1, ω)

]
dP(ω)dρN,k+1(u0, u1) =

�
Hs(M)

F (u0, u1)dρN,k+1(u0, u1).

Proof. After expanding the solution to (5.1) as uN = Ψ+wN and writing the equation for

wN , we can apply Proposition 4.1 above to get local well-posedness for wN , for all N ∈ N,
in the sense that there exists some stopping time TN almost surely positive such that there

exists a unique solution wN ∈ C([0, TN ];Hs1(M)) ∩ C1([0, TN ];Hs1−1(M)) to{
(∂2t + 1−∆g + ∂t)wN + FN,k(wN ) = 0,

(wN , ∂twN )|t=0 = (0, 0),
(5.3)

where FN,k is as in (4.2) with fℓ = Hℓ

(
PNΨ(u0, u1, ω);σN (x)

)
, and with s1 as in Proposition

4.1 (with ε replaced by −s). Thus justifies that the local flow map

ΦN (t) : (u0, u1, ω) 7→
(
Ψ(u0, u1, ω)(t) + wN (t), ∂tΨ(u0, u1, ω)(t) + ∂twN (t)

)
is indeed almost surely well-defined on [0, TN ] for some TN = TN (u0, u1, ω) > 0.
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Then, defining the energy

EN =
1

2

�
M

{
(∂twN )2 + |∇wN |2 + w2

N

}
dx+

1

k + 1

�
M
(PNwN )k+1dx,

we can use (5.3) and (3.1) to compute

d

dt
EN = −∥∂twN∥2L2 +

〈
∂twN ,PNHk

(
PNwN +PNΨ;σN (x)

)
)−PN (PNwN )k

〉
≤

〈
∂twN ,PNHk

(
PNΨ;σN (x)

)〉
+

k−1∑
ℓ=1

(
k

ℓ

)〈
∂twN ,PN

[
(PNwN )k−ℓHℓ

(
PNΨ;σN (x)

)]〉
,

where ⟨·, ·⟩ is the usual inner product in L2(M). With EN (0) = 0, this gives

EN (t) ≤
� t

0

〈
∂twN (t′),PNHk

(
PNΨ(t′);σN (x)

)〉
dt′

+

k−1∑
ℓ=1

(
k

ℓ

) � t

0

〈
∂twN (t′),PN

[(
PNwN (t′)

)k−ℓ
Hℓ

(
PNΨ(t′);σN (x)

)]〉
dt′. (5.4)

The first term in the right-hand side of (5.4) can be estimated via Cauchy-Schwarz and

Young’s inequalities to get the bound

∣∣∣� t

0

〈
∂twN (t′),PNHk

(
PNΨ(t′);σN (x)

)〉
dt′

∣∣∣
≲

� t

0
∥∂twN (t′)∥2L2dt

′ +
∥∥PNHk

(
PNΨ(t′);σN (x)

)∥∥2
L2
tL

2

≲
� t

0
EN (t′)dt′ + C(N, t)

for some constant C(N, t) almost surely finite for any finite N and t. In the second step we

used that for fixed N ∈ N, PNHk

(
PNΨ(t′);σN (x)

)
is indeed smooth with L2(R+;L

2(M))-

norm depending on (and blowing-up with) N , and that k is odd so that the potential part

of the energy is non-negative.

As for the terms in the sum above, even though we work with N fixed and do not need

to have bounds uniform in N , the homogeneity in the terms on the second line of (5.4)

does not allow us to conclude directly by a crude estimate on these terms and Gronwall’s

inequality when15 k ≥ 5. Thus we use the integration by part trick of [29] to get for

15When k = 3, the integration by part trick is not needed, and one can instead use the argument of [12].
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1 ≤ ℓ ≤ k − 1:� t

0

〈
∂twN (t′),PN

[(
PNwN (t′)

)k−ℓ
Hℓ

(
PNΨ(t′);σN (x)

)]〉
dt′

=

� t

0

〈 1

k − ℓ+ 1
∂t(PNwN (t′))k−ℓ+1, Hℓ

(
PNΨ(t′);σN (x)

)〉
dt′

= c
〈
(PNwN (t))k−ℓ+1, Hℓ

(
PNΨ(t);σN (x)

)〉
− c

� t

0

〈
(PNwN (t′))k−ℓ+1, ∂tPNΨN (t′)Hℓ−1

(
PNΨ(t′);σN (x)

)〉
dt′

where we used (3.2) in the last step. The first term can be bounded by∣∣∣〈(PNwN (t))k−ℓ+1, Hℓ

(
PNΨ(t);σN (x)

)〉∣∣∣
≲ ∥PNwN (t)∥k−ℓ+1

Lk−ℓ+1

∥∥Hℓ

(
PNΨ(t);σN (x)

)∥∥
L∞

≤ ε

k + 1
∥PNwN (t)∥k+1

Lk+1 + C(ε)
∥∥Hℓ

(
PNΨ(t);σN (x)

)∥∥ k+1
ℓ

L∞

≤ εEN (t) + C(ε)
∥∥Hℓ

(
PNΨ(t);σN (x)

)∥∥ k+1
ℓ

L∞

by using the compactness of M and Young’s inequality (since 1 ≤ ℓ ≤ k−1), the definition

of EN and the same remark as above, for any 0 < ε ≪ 1 so that we can absorb the term

with EN (t) in the left-hand side of (5.4). Note that from the proof of Proposition 3.8 we

have that the second term is bounded by C(N, t) which is almost surely finite for any finite

t ≥ 0.

As for the other term, we have as above∣∣∣ � t

0

〈
(PNwN (t′))k−ℓ+1, ∂tPNΨN (t′)Hℓ−1

(
PNΨ(t′);σN (x)

)〉
dt′

∣∣∣
≲

� t

0

�
M
(PNwN (t′))k+1dxdt′ +

� t

0
∥∂tΨN (t′)∥

k+1
ℓ

L∞

∥∥Hℓ−1

(
PNΨ(t′);σN (x)

)∥∥ k+1
ℓ

L∞ dt′

≲
� t

0
EN (t′)dt′ + C(N, t).

Hence using Gronwall’s inequality with EN (0) = 0, we deduce that

sup
t<TN

EN (t) ≲ C(N,TN ) <∞

almost surely on the set {TN <∞}. Finally, using again that k is odd, we conclude that

sup
t<TN

∥(wN (t), ∂twN (t))∥2H1 ≤ sup
t<TN

EN (t) <∞

almost surely on {TN <∞}. This shows that wN exists globally, and so does uN .

As for the invariance of ρN,k+1 under the flow ΦN of (5.1), we can write

ΦN (t, ω) =
(
ΠNΦN (t, ω), (1−ΠN )(Ψ, ∂tΨ)(t, ω)

)
on (EN × EN )⊕ (E⊥

N × E⊥
N ),

when we see (Ψ(t, ω), ∂tΨ(t, ω)) as a measurable map from Hs(M) to Hs(M).

First, for the linear part (1 − ΠN )(Ψ(t, ω), ∂tΨ(t, ω)), we can repeat the argument of

Proposition 3.8 to get it leaves the Gaussian measure (1 − ΠN )⋆µ invariant; indeed, we
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have for any F ∈ Cb(Hs(M);R) and initial data (u0, u1) with law (1−ΠN )⋆µ:�
Hs(M)

�
Ω
F
[
(1−ΠN )Ψ⃗(t, u0, u1, ω)

]
dP(ω)dµ(u0, u1)

= lim
M→∞

�
Hs(M)

�
Ω
F
[
PM (1−ΠN )Ψ⃗(t, u0, u1, ω)

]
dP(ω)dµ(u0, u1)

by the dominated convergence theorem, where Ψ⃗ = (Ψ, ∂tΨ). Then from the same argument
as in the proof of Proposition 3.8 we have that [PM (1 − ΠN )]⋆µ is invariant for PM (1 −
ΠN )(Ψ(t, ω), ∂tΨ(t, ω)), so we can continue with

= lim
M→∞

�
Hs(M)

F
[
PM (1−ΠN )u0,PM (1−ΠN )u1)

]
dµ(u0, u1)

=

�
Hs(M)

F
[
(1−ΠN )u0, (1−ΠN )u1)

]
dµ(u0, u1).

This shows the invariance of (1−ΠN )⋆µ under (1−ΠN )(Ψ(t, ω), ∂tΨ(t, ω)).

On the other hand, decomposing ΠNuN =
∑

λn≤N anφn and ΠN∂tuN =
∑

λn≤N bnφn,

we can write ΠNΦN as the flow of the finite-dimensional system of stochastic differential

equations (SDEs) on R2ΛN :
dan = bndt

dbn =
[
− ⟨λn⟩2an −

〈
PNHk

(
PN

ΛN−1∑
n1=0

an1φn1 ;σN (x)
)
, φn

〉
− bn

]
dt+

√
2dβn(t)

(5.5)

for n = 0, ...,ΛN − 1, where as in Proposition 3.8 we define ΛN = dimEN . If we redefine

the truncated energy

EN (a0, ..., aΛN−1, b0, ..., bΛN−1)
def
=

1

2

ΛN−1∑
n=0

(⟨λn⟩2a2n + b2n)

+
1

k + 1

�
M
Hk+1

(
PN

ΛN−1∑
n=0

anφn(x);σN (x)
)
dx,

we can repeat the argument of the proof of Proposition 3.8 with EN instead of E0,N to get

that the truncated Gibbs measure Z−1
N e−GN,k+1(ΠN )⋆µ, with the density e−GN,k+1 as in

Lemma 3.2 and the partition function ZN , is invariant under the dynamics of (5.5). All

in all, this shows that the full dynamics ΦN =
(
ΠNΦN , (1− ΠN )(Ψ, ∂tΨ)

)
for (5.1) leaves

ρN,k+1 = Z−1
N e−GN,k+1(ΠN )⋆µ⊗ (1−ΠN )⋆µ invariant. □

5.2. Proof of Theorem 1.4. We now prove the almost sure global existence for (1.1) and

the invariance of the Gibbs measure. We begin by constructing a set of arbitrary small

complementary probability on which we have good control on the solution to (5.1). We

follow closely [8] (see also [19] for the argument in the context of stochastic equations).

For N ∈ N, recall that ΦN (t) is the global stochastic flow map of (5.1) given by Propo-

sition 5.1, and take (u0, u1) with law ρN,k+1. Note that ΦN (t)(u0, u1) still exists globally

for ρN,k+1 ⊗P-almost every (u0, u1, ω) since ρN,k+1 ≪ µ. By Proposition 5.1, we thus have

that for any t0 ≥ 0, the law of ΦN (t0)(u0, u1) is also given by ρN,k+1. Moreover, since B
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in (1.8) is a cylindrical Wiener process on L2(M), we also have that for any t0 ≥ 0, the

translation t 7→ t+ t0 defines a measure-preserving transformation τt0 on (Ω,P) given by

B(t, τt0(ω)) = B(t+ t0, ω)−B(t0, ω). (5.6)

We can thus extend ΦN (t) : Hs(M)× Ω → Hs(M) as a measure-preserving map

Φ̃N (t) :

{(
Hs(M)× Ω, ρN,k+1 ⊗ P

)
→

(
Hs(M)× Ω, ρN,k+1 ⊗ P

)
(u0, u1, ω) 7→

(
ΦN (t)(u0, u1, ω), τt(ω)

)
.

We then have the following control on ΦN (t).

Proposition 5.2. There exists C > 0 such that for all m,N ∈ N, there exists a measurable

set Σm
N ⊂ Hs(M)× Ω such that

ρN,k+1 ⊗ P(Hs(M)× Ω \ Σm
N ) ≤ 2−m, (5.7)

and for all (u0, u1, ω) ∈ Σm
N and t ≥ 0, the solution ΦN (t)(u0, u1, ω) to (5.1) satisfies∥∥ΦN (t)(u0, u1, ω)

∥∥
Hs ≤ C

(
m+ log(1 + t)

) k
2 . (5.8)

Proof. First, we recall that Ψ = Ψdamp is the stochastic process on Hs(M)×Ω defined by

Ψ(t, u0, u1, ω) = ∂tV (t)u0 + V (t)(u0 + u1) +
√
2

� t

0
V (t− t′)dBω(t′).

Then, for m, j ∈ N, we set

δ = D−4(m+ j)−2k (5.9)

given by Proposition 4.1 with R = D(m + j)
k
2 , θ = R−1 and q = 2, for some D ≫ 1

independent of N,m, j to be fixed later, such that as in Proposition 4.1 in the nonlinear

estimates we have Cδ
1
q′R ≤ 1

2 for various constants C such as in (4.3).

Next, as in [8] (see also [3, 5]), we can define

Σm,j
N

def
=

[2j/δ]⋂
a=0

Φ̃N (aδ)−1
(
Bm,j
N (D)

)
where [2j/δ] denotes the integer part of 2j/δ, and

Bm,j
N (D)

def
=

{
(u0, u1, ω) ∈ Hs(M)× Ω,∥∥(Ψ(u0, u1, ω), ∂tΨ(u0, u1, ω)

)∥∥
C([0,1];Hs)

≤ D(m+ j)
k
2 , (5.10)

∀ℓ = 1, ..., k,
∥∥Hℓ

(
PNΨ(u0, u1, ω);σN (x)

)∥∥
L2([0,1];W s,∞)

≤ D(m+ j)
k
2 ,

(5.11)∥∥Hℓ

(
PMΨ(u0, u1, ω);σM (x)

)
−Hℓ

(
PNΨ(u0, u1, ω);σN (x)

)∥∥
L2([0,1];W s,∞)

≤M−εD(m+ j)
k
2 , ∀M ≤ N

}
, (5.12)

for some 0 < ε ≪ −s in view of (3.7), and D ≫ 1 is to be taken large enough but

independent of m, j,N . In particular, note that using (5.6) and Proposition 4.1 with the

choice of δ in (5.9), for any a = 0, ..., [2j/δ] and Φ̃N (aδ)(u0, u1, ω) ∈ Bm,j
N (D) we have that

wN,a(t)
def
= ΦN (t+ aδ)(u0, u1, ω)−Ψ(t, Φ̃N (aδ)(u0, u1, ω))
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satisfies

∥(wN,a, ∂twN,a)∥C([0,δ];Hs1 ) ≤ D−1(m+ j)−
k
2 , (5.13)

where s1 = 1 + 2s. This implies that for any a = 0, ..., [2j/δ] and any (u0, u1, ω) ∈
ΦN (aδ)−1Bm,j

N (D), the use of (5.10) and (5.13) leads to∥∥ΦN (t+ aδ)(u0, u1, ω)
∥∥
C([0,δ];Hs)

≤
∥∥(Ψ(t, Φ̃N (aδ)(u0, u1, ω)), ∂tΨ(t, Φ̃N (aδ)(u0, u1, ω))∥C([0,δ];Hs) + ∥(wN,a, ∂twN,a)∥C([0,δ];Hs1 )

≤ D(m+ j)
k
2 +D−1(m+ j)−

k
2 ≤ D(m+ j + 1)

k
2 (5.14)

provided that D is large enough.

Next, using that Φ̃N (t) :
(
Hs(M) × Ω, ρN,k+1 ⊗ P

)
→

(
Hs(M) × Ω, ρN,k+1 ⊗ P

)
is

measure-preserving, we can estimate

ρN,k+1 ⊗ P
(
Hs(M)× Ω \ Σm,j

N )

≤
[2j/δ]∑
a=0

ρN,k+1 ⊗ P
{
Φ̃N (aδ)−1

(
Hs(M)× Ω \Bm,j

N (D)
)}

≲
2j

δ
ρN,k+1 ⊗ P

(
Hs(M)× Ω \Bm,j

N (D)
)

Using Cauchy-Schwarz inequality with the uniform (in N) integrability property of the

density e−GN,k+1(u0) of ρN,k+1 given by Lemma 3.2, we can continue with

≲
2j

δ
∥e−GN,k+1∥L2(µ0)µ⊗ P

(
Hs(M)× Ω \Bm,j

N (D)
) 1

2

≲
2j

δ

{
µ⊗ P

(∥∥(Ψ(u0, u1, ω), ∂tΨ(u0, u1, ω)
)∥∥

C([0,1];Hs)
> D(m+ j)

k
2

) 1
2

+
k∑

ℓ=1

µ⊗ P
(∥∥Hℓ

(
PNΨ(u0, u1, ω);σN (x)

)∥∥
L2([0,1];W s,∞)

> D(m+ j)
k
2

) 1
2

+

k∑
ℓ=1

∑
M≤N

µ⊗ P
(∥∥Hℓ

(
PMΨ(u0, u1, ω);σM (x)

)
−Hℓ

(
PNΨ(u0, u1, ω);σN (x)

)∥∥
L2([0,1];W s,∞)

> M−εD(m+ j)
k
2

) 1
2

}
.

Using the tail estimates (3.6), (3.7) (which also hold for Ψ) and (3.26) given by Proposition

3.8 together with (5.9), we can finally bound for some 0 < ε̃≪ ε≪ −s

ρN,k+1 ⊗ P
(
Hs(M)× Ω \ Σm,j

N

)
≲ 2jD4(m+ j)2k

{
e−cD2(m+j)k

+
k∑

ℓ=1

(
e−cD

2
ℓ (m+j)

k
ℓ +

∑
M≤N

e−cM ε̃D
2
ℓ (m+j)

k
ℓ
)}

≲ 2jD4(m+ j)2ke−cD
2
k (m+j) ≤ 2−(m+j) (5.15)

for D ≫ 1, independently of N,m, j.
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Next, we define

Σm
N

def
=

∞⋂
j=1

Σm,j
N .

With this definition, we see that (5.7) is a direct consequence of (5.15). Moreover, for any

(u0, u1, ω) ∈ Σm
N and t ≥ 0, if j ∈ N is such that 2j−1 < 1 + t ≤ 2j , then (5.8) follows from

(5.14) since (u0, u1, ω) ∈ Σm,j
N . □

We can now finish the proof of the global existence. Let us set

Σm = lim sup
N→∞

Σm
N

and

Σ =
⋃
m∈N

Σm.

First, we show that Σ is of full ρk+1 ⊗ P-measure. From Fatou’s lemma we get for any

m ∈ N

ρk+1 ⊗ P(Σm) ≥ lim sup
N→∞

ρk+1 ⊗ P(Σm
N )

Using next the convergence of the density e−GN,k+1 of ρN,k+1 to that of ρk+1 given by
Lemma 3.2 (ii), and (5.15), we deduce the lower bound

≥ lim sup
N→∞

ρN,k+1 ⊗ P(Σm
N ) ≥ 1−

∑
j∈N

2−(m+j).

This proves that

ρk+1 ⊗ P(Σ) ≥ lim
m→∞

ρk+1 ⊗ P(Σm) ≥ 1− lim
m→∞

∑
j∈N

2−(m+j) = 1.

Now for any (u0, u1, ω) ∈ Σ, we have by construction that there exists m ∈ N, C > 0

and a sequence Np → ∞ such that for all j, p ∈ N and all 0 ≤ t ≤ 2j ,

∥ΦNp(t)(u0, u1, ω)∥Hs ≤ CD(m+ j + 1)
k
2 . (5.16)

Thus the global well-posedness part of Theorem 1.4 follows from the following proposition.

Proposition 5.3. Let m, j ∈ N, Np → ∞ and (u0, u1, ω) ∈
⋂

p∈NΣm,j
Np

. Then{
ΦNp(t)(u0, u1, ω) − Ψ(t)(u0, u1, ω)

}
p∈N is a Cauchy sequence in C([0, 2j ];Hs2(M)). In

particular,
{
ΦNp(t)(u0, u1, ω)

}
p∈N is a Cauchy sequence in C([0, 2j ];Hs(M)). Here s <

0 < s2 < s1 < 1 + s with 0 < −s < 1− s1 < 1− s2 ≪ 1.

Note that contrary to [8], we prove convergence for ΦNp(t)(u0, u1, ω) − Ψ(t)(u0, u1, ω)

instead of PNpΦ
Np(t)(u0, u1, ω), as in [5]. This allows us to prove the convergence in

the stronger topology of Hs2(M) instead of Hs(M), which is used to control the difference

between the flow initiated at ΦNp(aδ)(u0, u1, ω) and at ΦN (aδ)(u0, u1, ω) for a = 1, ..., [2j/δ].

First, note that since our general local well-posedness result in Proposition 4.1 is robust

enough, we can use the same argument as for the proof of Theorem 1.2 in the previ-

ous section, with the truncated dynamics (1.16) in place of (1.14), to get that the limit

Φ(t)(u0, u1, ω) = (u, ∂tu) = limN→∞ΦN (t)(u0, u1, ω) exists in C([0, T ];Hs(M)) on a set Σ̃
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of full µ⊗ P-probability, for a random time T = T (u0, u1, ω) µ⊗ P-almost surely positive,

and coincides with the local solution constructed in Theorem 1.2. Then we use the previous

proposition to construct iteratively Φ(t)(u0, u1, ω) on larger and larger time intervals. In-

deed, up to replacing Σ by Σ∩Σ̃, which is still of full probability, we can use Proposition 5.3

along with the definition of Σ, to get that for any (u0, u1, ω) ∈ Σ, there exists m ∈ N and

Np → ∞ as p→ ∞ such that (u0, u1, ω) ∈
⋂

p,j∈NΣm,j
Np

. In view of the previous proposition,

it follows from (5.16) that for any t ≥ 0

∥Φ(t)(u0, u1, ω)∥Hs = lim
p→∞

∥∥ΦNp(t)(u0, u1, ω)
∥∥
Hs ≤ CD

(
m+ log(1 + t)

) k
2 .

In particular Φ(t)(u0, u1, ω) is globally defined for any (u0, u1, ω) ∈ Σ.

The invariance of ρk+1 then follows directly from the invariance of ρNp,k+1 under (5.1)

along with the convergence of ΦNp(t)(u0, u1, ω) towards Φ(t)(u0, u1, ω) given by the previous

proposition and the convergence of ρNp,k+1 towards ρk+1 given by Lemma 3.2. Indeed, as

in [38], for any initial data (u0, u1) with law ρ, any test function F ∈ Cb(Hs;R) and any

t ≥ 0, we have by Lemma 3.2, Proposition 5.3 and the dominated convergence theorem

�
Hs(M)

�
Ω
F
[
Φ(t)(u0, u1, ω)

]
dP(ω)dρk+1(u0, u1)

= Z−1

�
Hs(M)

�
Ω
F
[
Φ(t)(u0, u1, ω))

]
e−Gk+1(u0)dP(ω)dµ(u0, u1)

= lim
p→∞

Z−1
Np

�
Hs

�
Ω
F
[
ΦNp(t)(u0, u1, ω)

]
e−GNp,k+1(u0)dP(ω)dµ(u0, u1)

where Z =
�
Hs(M) e

−Gk+1(u0)dµ(u0, u1) and ZNp =
�
Hs(M) e

−GNp,k+1(u0)dµ(u0, u1). Now

we can use the invariance of ρNp,k+1 under ΦNp(t) given by Proposition 5.1, and we can
continue with

= lim
p→∞

�
Hs

F (u0, u1)dρNp,k+1

=

�
Hs

F (u0, u1)dρk+1.

This shows the invariance of ρk+1. Hence the proof of Theorem 1.4 will be completed once

we prove the proposition.

Proof of Proposition 5.3. Let us fixm, j ∈ N, δ > 0 as in (5.9), and (u0, u1, ω) ∈
⋂

p∈NΣm,j
Np

.

In the following, we fix two (large) integers N,M ∈ {Np}p∈N. Again, we write

(wN , ∂twN )(t) = ΦN (t)(u0, u1, ω)−Ψ(t, u0, u1, ω),

and we denote by ΦN
1 (t) (respectively ΦN

2 (t)) the first (respectively second) component of

ΦN (t). We will control inductively the difference (wN (t), ∂twN (t)) − (wM (t), ∂twM (t)) on

the time intervals [aδ, (a+ 1)δ], a = 1, ..., [2j/δ]. We begin by controlling the difference on

the first time interval, corresponding to a = 0.
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Then on [0, δ], we have for N ≤M :

wM (t)− wN (t)

=
k∑

ℓ=0

(
k

ℓ

)� t

0
V (t− t′)

{
PM

[
Hℓ

(
PMΨ(t′, u0, u1, ω);σM (x)

)(
PMwM (t′)

)k−ℓ
]

−PN

[
Hℓ

(
PNΨ(t′, u0, u1, ω);σN (x)

)(
PNwN (t′)

)k−ℓ
]}
dt′

=
k∑

ℓ=0

(
k

ℓ

)� t

0
V (t− t′)

{
(PM −PN )

[
Hℓ

(
PMΨ(t′, u0, u1, ω);σM (x)

)(
PMwM (t′)

)k−ℓ
]

+PN

[(
Hℓ

(
PMΨ(t′, u0, u1, ω);σM (x)

)
−Hℓ

(
PNΨ(t′, u0, u1, ω);σN (x)

))(
PMwM (t′)

)k−ℓ
]

+PN

[
Hℓ

(
PNΨ(t′, u0, u1, ω);σN (x)

)((
PMwM (t′)

)k−ℓ −
(
PNwN (t′)

)k−ℓ
)]}

dt′

=: I + II + III. (5.17)

To estimate these terms, we proceed as in the proof of Proposition 4.1. We begin with

∥ I∥C([0,δ];Hs2 )

≲
k∑

ℓ=0

∥∥∥(PM −PN )
[
Hℓ

(
PMΨ(u0, u1, ω);σM (x)

)(
PMwM

)k−ℓ
]∥∥∥

L1([0,δ];Hs2−1)

≲
k∑

ℓ=0

N s2−s1
∥∥∥[Hℓ

(
PMΨ(u0, u1, ω);σM (x)

)(
PMwM

)k−ℓ
]∥∥∥

L1([0,δ];Hs1−1)

≲
k∑

ℓ=0

N s2−s1δ
1
2

∥∥Hℓ

(
PMΨ(u0, u1, ω);σM (x)

)∥∥
L2([0,1];W s,∞)

∥PMwM∥k−ℓ
C([0,δ];Hs1 )

≤ C(m, j)N s2−s1 ,

for some constant C(m, j) independent of N,M , where the second to last estimate comes

from the same argument as in the proof of Proposition 4.1, and the last one from the

condition (5.11) given by (u0, u1, ω) ∈ Bm,j
M (D), with (5.13) and the choice of δ in (5.9).

Similarly, we bound

∥II∥C([0,δ];Hs2 )

≲
k∑

ℓ=1

∥∥∥[Hℓ

(
PMΨ(u0, u1, ω);σM (x)

)
−Hℓ

(
PNΨ(u0, u1, ω);σN (x)

)](
PMwM

)k−ℓ
∥∥∥
L1([0,δ];Hs2−1)

≲ δ
1
2

{∥∥∥Hk

(
PMΨ(u0, u1, ω);σM (x)

)
−Hk

(
PNΨ(u0, u1, ω);σN (x)

)∥∥∥
L2([0,δ];Hs2−1)

+

k−1∑
ℓ=1

∥∥∥Hℓ

(
PMΨ(u0, u1, ω);σM (x)

)
−Hℓ

(
PNΨ(u0, u1, ω);σN (x)

)∥∥∥
L2([0,δ];W s,∞)
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×
∥∥PMwM

∥∥k−ℓ

C([0,δ];Hs1 )

}
≤ C(m, j)N−ε,

where the last bound comes from (5.12) given by (u0, u1, ω) ∈ Bm,j
M (D) and from (5.13)

with the choice of δ.

Finally, we can further decompose

III =
k−1∑
ℓ=0

(
k

ℓ

)� t

0
V (t− t′)PN

{
Hℓ

(
PNΨ(t′, u0, u1, ω);σN (x)

)[(
wN (t′)k−ℓ −

(
PNwN (t′)

)k−ℓ
)

+
((

PMwM (t′)
)k−ℓ − wM (t′)k−ℓ

)
+
(
wM (t′)k−ℓ − wN (t′)k−ℓ

)]}
dt′

=: III1 + III2 + III3.

We estimate similarly as before

∥III1∥C([0,δ];Hs2 ) ≲
k−1∑
ℓ=0

δ
1
2

∥∥Hℓ

(
PNΨ(u0, u1, ω);σN (x)

)∥∥
L2([0,1];W s,∞)

×
∥∥(1−PN )wN

∥∥
C([0,δ];Hs2 )

(∥∥PNwN

∥∥k−ℓ−1

C([0,δ];Hs2 )
+
∥∥wN

∥∥k−ℓ−1

C([0,δ];Hs2 )

)
≤ C(m, j)N s2−s1 ,

where the first estimate follows from the same argument as in the proof of Proposition 4.1,

provided that s2 < s1 < 1 + s < 1 is close enough to 1. The same argument applies to

III2 and gives the same bound (with M in place of N), and the last term can be bounded

similarly by

∥∥III3∥∥C([0,δ];Hs2 )
≲

k−1∑
ℓ=0

δ
1
2

∥∥Hℓ

(
PNΨ(u0, u1, ω);σN (x)

)∥∥
L2([0,1];W s,∞)

×
∥∥wM − wN

∥∥
C([0,δ];Hs2 )

(∥∥wM

∥∥k−ℓ−1

C([0,δ];Hs2 )
+
∥∥wN

∥∥k−ℓ−1

C([0,δ];Hs2 )

)
≤ Cδ

1
2D(m+ j)

k
2 ∥wM − wN∥C([0,δ];Hs2 ),

where the last estimate comes again from (5.11) thanks to (u0, u1, ω) ∈ Bm,j
M (D), and from

(5.13) with the argument of Proposition 4.1 applied with s2 (provided that s2 is sufficiently

close to 1). With our choice of Cδ
1
2D(m+ j)

k
2 = Cδ

1
2R ≤ 1

2 , we can absorb this last term

in the left-hand side of (5.17).

The same arguments also apply to control ΦN
2 (t)−ΦM

2 (t) on [0, δ]. Therefore, gathering

the estimates above leads to∥∥ΦM (t)(u0, u1, ω)− ΦN (t)(u0, u1, ω)
∥∥
C([0,δ];Hs2 )

≤ C(m, j)
(
N s2−s1 +N−ε

)
(5.18)

for any N ≤M . In particular this shows the convergence on the time interval [0, δ].
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We now investigate the convergence on the second time interval [δ, 2δ]: we first decompose∥∥ΦM (t+ δ)(u0, u1, ω)− ΦN (t+ δ)(u0, u1, ω)
∥∥
C([0,δ];Hs2 )

≤
∥∥ΦM (t)Φ̃M (δ)(u0, u1, ω)− ΦN (t)Φ̃M (δ)(u0, u1, ω)

∥∥
C([0,δ];Hs2 )

+
∥∥ΦN (t)Φ̃M (δ)(u0, u1, ω)− ΦN (t)Φ̃N (δ)(u0, u1, ω)

∥∥
C([0,δ];Hs2 )

.

Note that replacing Ψ(u0, u1, ω) by Ψ
(
Φ̃M (δ)(u0, u1, ω)

)
in the previous estimates and

using that we still have Φ̃M (δ)(u0, u1, ω) ∈ Bm,j
M by choice of (u0, u1, ω) ∈ Σm,j

M shows that

the first term above is still bounded by∥∥ΦM (t)Φ̃M (δ)(u0, u1, ω)− ΦN (t)Φ̃M (δ)(u0, u1, ω)
∥∥
C([0,δ];Hs2 )

≤ C(m, j)
(
N s2−s1 +N−ε

)
for any N ≤M .

Thus we need to deal with the second term. We can redefine

wM (t) = ΦN
1 (t)Φ̃M (δ)(u0, u1, ω)−Ψ

(
t, Φ̃M (δ)(u0, u1, ω)

)
and

wN (t) = ΦN
1 (t)Φ̃N (δ)(u0, u1, ω)−Ψ

(
t, Φ̃N (δ)(u0, u1, ω)

)
,

and since N,M ∈ {Np}p∈N and (u0, u1, ω) ∈
⋂

p∈NΣm,j
Np

we have in particular that both

Φ̃M (δ)(u0, u1, ω) ∈ Bm,j
M (D) and Φ̃N (δ)(u0, u1, ω) ∈ Bm,j

N (D) so that both wM and wN are

well-defined and enjoy the bound (5.13). Moreover, by definition of ΦN
1 (t) and Ψ, they

satisfy the following Duhamel formula:

wM =
k∑

ℓ=0

(
k

ℓ

)� t

0
V (t− t′)PN

{
Hℓ

(
PNΨ

(
t′, Φ̃M (δ)(u0, u1, ω)

)
;σN (x)

)(
PNwM (t′)

)k−ℓ
}
dt′,

and

wN =
k∑

ℓ=0

(
k

ℓ

)� t

0
V (t− t′)PN

{
Hℓ

(
PNΨ

(
t′, Φ̃N (δ)(u0, u1, ω)

)
;σN (x)

)(
PNwN (t′)

)k−ℓ
}
dt′.

To estimate in C([0, δ];Hs2(M)) the difference

ΦN
1 (t)Φ̃M (δ)(u0, u1, ω)− ΦN

1 (t)Φ̃N (δ)(u0, u1, ω)

= Ψ
(
t, Φ̃M (δ)(u0, u1, ω)

)
−Ψ

(
t, Φ̃N (δ)(u0, u1, ω)

)
+ wM − wN ,

we first bound directly the linear terms by∥∥Ψ(
t, Φ̃M (δ)(u0, u1, ω)

)
−Ψ

(
t, Φ̃N (δ)(u0, u1, ω)

)∥∥
C([0,δ];Hs2 )

≤
∥∥ΦM (δ)(u0, u1, ω)

)
− ΦN (δ)(u0, u1, ω)

∥∥
Hs2

≤ C(m, j)
(
N s2−s1 +N−ε

)
thanks to (1.11) and (5.18).
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To estimate the difference of the nonlinear components, we decompose

wM − wN

=
k∑

ℓ=0

(
k

ℓ

)� t

0
V (t− t′)PN

{
Hℓ

(
PNΨ

(
t′, Φ̃M (δ)(u0, u1, ω)

)
;σN (x)

)(
PNwM (t′)

)k−ℓ

−Hℓ

(
PNΨ

(
t′, Φ̃N (δ)(u0, u1, ω)

)
;σN (x)

)(
PNwN (t′)

)k−ℓ
}
dt′

=

k∑
ℓ=0

(
k

ℓ

)� t

0
V (t− t′)PN

{[
Hℓ

(
PNΨ

(
t′, Φ̃M (δ)(u0, u1, ω)

)
;σN (x)

)
−Hℓ

(
PNΨ

(
t′, Φ̃N (δ)(u0, u1, ω)

)
;σN (x)

)](
PNwM (t′)

)k−ℓ

+Hℓ

(
PNΨ

(
t′, Φ̃N (δ)(u0, u1, ω)

)
;σN (x)

)[(
PNwM (t′)

)k−ℓ −
(
PNwN (t′)

)k−ℓ
]}
dt′

=: ĨI + ĨII.

First note that we can estimate ĨII exactly as III in (5.17), giving the bound∥∥ĨII∥∥
C([0,δ];Hs2 )

≤ C(m, j)N s2−s1 +
1

2

∥∥wM − wN

∥∥
C([0,δ];Hs2 )

.

Finally, we estimate the remaining term by∥∥ĨI∥∥
C([0,δ];Hs2 )

≲
k∑

ℓ=1

∥∥∥[Hℓ

(
PNΨ

(
Φ̃M (δ)(u0, u1, ω)

)
;σN (x)

)
−Hℓ

(
PNΨ

(
Φ̃N (δ)(u0, u1, ω)

)
;σN (x)

)](
PNwM

)k−ℓ
∥∥∥
L1([0,δ];Hs2−1)

Writing then

Hℓ(u;σN )−Hℓ(v;σN ) = −
ℓ−1∑
i=0

(
ℓ

i

)
Hi(u;σN )(v − u)ℓ−i

thanks to (3.1), we can then estimate the previous term with

k∑
ℓ=1

ℓ−1∑
i=0

δ
1
2

∥∥∥[PNΨ
(
Φ̃M (δ)(u0, u1, ω)

)
−PNΨ

(
Φ̃N (δ)(u0, u1, ω)

)]ℓ−i

×Hi

(
PNΨ

(
Φ̃N (δ)(u0, u1, ω)

)
;σN (x)

)(
PNwM

)k−ℓ
∥∥∥
L2([0,δ];Hs2−1)

≲
k∑

ℓ=1

ℓ−1∑
i=0

δ
1
2

∥∥∥Hi

(
PNΨ

(
Φ̃N (δ)(u0, u1, ω)

)
;σN (x)

)∥∥∥
L2([0,1];W s,∞)

×
∥∥∥Ψ(

Φ̃M (δ)(u0, u1, ω)
)
−Ψ

(
Φ̃N (δ)(u0, u1, ω)

)∥∥∥ℓ−i

C([0,δ];Hs2 )

∥∥wM

∥∥k−ℓ

C([0,δ];Hs2 )
,
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provided again that s2 is close enough to 1 (depending on k). Using then that

Φ̃N (δ)(u0, u1, ω) ∈ Bm,j
N (D) and (5.13),(5.18), we finally get∥∥ĨI∥∥

C([0,δ];Hs2 )
≤ C(m, j)

(
N s2−s1 +N−ε

)
.

Gathering the estimates above, we obtain∥∥wM − wN

∥∥
C([0,δ];Hs2 )

≤ 4C(m, j)(N s2−s1 +N−ε)

which leads to∥∥(wN , ∂twN )(t+ δ)− (wM , ∂twM )(t+ δ)
∥∥
C([0,δ];Hs2 )

≤ C2(m, j)
(
N s2−s1 +N−ε

)
for some larger constant C2(m, j) ≥ C(m, j). This shows that

{
(wNp , ∂twNp)

}
p∈N is also a

Cauchy sequence in C([0, 2δ];Hs2(M)).

We can then proceed inductively on a = 0, ..., [2j/δ] and repeat the previous estimates

by using that at each step Φ̃N (aδ)(u0, u1, ω) ∈ Bm,j
N (D) since (u0, u1, ω) ∈ Σm,j

N . Thus

we deduce that there exists a (large) constant C2j/δ(m, j) > 0 such that for any N,M ∈
{Np}p∈N with N ≤M it holds∥∥(wN , ∂twN )− (wM , ∂twM )

∥∥
C([0,2j ];Hs2 )

≤ C2j/δ(m, j)
(
N s2−s1 +N−ε

)
. (5.19)

This is enough to show the convergence of {ΦNp(t)(u0, u1, ω) − Ψ(t)(u0, u1, ω)} in

C([0, 2j ];Hs2(M)). As a result,
{
ΦNp(t)(u0, u1, ω)

}
p∈N converges in C([0, 2j ];Hs(M)).

This concludes the proof of Proposition 5.3. □

Remark 5.4. By slightly modifying the proof of Proposition 5.3, we can indeed

show that for (u0, u1, ω) ∈ Σ, the entire sequence
{
ΦN (t)(u0, u1, ω)

}
N∈N converges in

C([0, 2j ];Hs(M)) for any j ∈ N. See for example Corollary 9.11 in [28].
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