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STOCHASTIC NONLINEAR WAVE DYNAMICS
ON COMPACT SURFACES

TADAHIRO OH, TRISTAN ROBERT, AND NIKOLAY TZVETKOV

ABSTRACT. We study the Cauchy problem for the nonlinear wave equations (NLW) with
random data and/or stochastic forcing on a two-dimensional compact Riemannian mani-
fold without boundary. (i) We first study the defocusing stochastic damped NLW driven
by additive space-time white noise, and with initial data distributed according to the
Gibbs measure. By introducing a suitable space-dependent renormalization, we prove
local well-posedness of the renormalized equation. Bourgain’s invariant measure argu-
ment then allows us to establish almost sure global well-posedness and invariance of the
Gibbs measure for the renormalized stochastic damped NLW. (ii) Similarly, we study the
random data defocusing NLW (without stochastic forcing or damping), and establish the
same results as in the previous setting. (iii) Lastly, we study the stochastic NLW with-
out damping. By introducing a space-time dependent renormalization, we prove its local
well-posedness with deterministic initial data in all subcritical spaces.

These results extend the corresponding recent results on the two-dimensional torus
obtained by (i) Gubinelli-Koch-Oh-Tolomeo (2021), (ii) Oh-Thomann (2020), and
(iii) Gubinelli-Koch-Oh (2018), to a general class of compact manifolds. The main in-
gredient is the Green’s function estimate for the Laplace-Beltrami operator in this setting
to study regularity properties of stochastic terms appearing in each of the problems.
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1. INTRODUCTION

1.1. Nonlinear wave equations. We investigate the stochastic damped nonlinear wave
equations (SDNLW):

ORu+ (1 — Ag)u + dyu + uf = V2, (t,x) € Ry x M, (1.1)

where the unknown w is real-valued, k£ > 2 is an integer, and (M, g) is a two-dimensional
compact Riemannian manifold without boundary. In particular, we study the Cauchy
problem for with random initial data of low regularity distributed according to the
Gibbs measure and with stochastic forcing £ given by the space-time white noise. See below
for precise definitions.

We also consider the nonlinear wave equations (NLW) without stochastic forcing:

Ou+ (1 — Agu+u* =0, (t,z) € R x M, (1.2)

with initial data distributing according to the Gibbs measure, as well as the stochastic
nonlinear wave equations (SNLW) with deterministic data:

ORu+ (1 —Agu+ub = ¢, (t,z) € R x M. (1.3)

In the case of the two-dimensional torus T? = (R/Z)?, these equations have been stud-
ied in recent works by Gubinelli-Koch-Oh-Tolomeo [18], Oh-Thomann [32], and Gubinelli-
Koch-Oh [I7]. Our main goal in this paper is to primarily investigate the Cauchy problem
for to extend the main results in [I8, B2, I7] to a more general setting of two-
dimensional compact Riemannian manifolds without boundary.

Remark 1.1. The equations ([L.1)), , and ((1.3]) indeed correspond to the (stochastic)
nonlinear (damped) Klein-Gordon equations. As for local-in-time results, the same results
with inessential modifications also hold for the (stochastic) nonlinear wave equations, where

we replace (1—Ay) in the left-hand side of ((1.1)), (1.2), and (1.3]) by —Agu. In the following,
we simply refer to (1.1]), (1.2), and ([1.3]) as the (stochastic) nonlinear wave equations.

1.2. The ®3-measure and the corresponding hyperbolic dynamical problem. The
motivation to study SDNLW comes from looking at a hyperbolic counterpart of the so-called
stochastic quantization equation (SQE) which is given by the following parabolic equation

Ou = Au+u® — 0o u+¢, (1.4)

1Our argument also works for (T.2) and (T.3).
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where £ is as above and “oco - u” refers to a counter term arising in the renormalization
procedure. The equation (1.4) was introduced in [34] as a dynamical problem whose limiting
behavior of the solutions as ¢ — 400 is at least formally given by the @%-measure:

1
“dpy = Z ' exp ( — / \Vu|?dx — / wlde — ~ / (u* — oo - u2)d:c)du”.
M M 4 m

Hereafter, we use Z to denote various normalizing constants. This measure does not make
sense as it is, since, first of all, the measure “du” is not well defined. This is overcome by
viewing it as

dpy = Z te” fM(“4_°°'“2)d$du0, (1.5)

where i is a Gaussian measure on the Sobolev space H*(M) for any s < 0 with co-
variance operator (1 — Ag)*~! (see below). In particular, the nonlinearity u* is not
integrable with respect to pg, and hence there is a need for a renormalization in and
correspondingly in , which we discuss in the following subsection.

Now, for a stochastic hyperbolic equation with a general power nonlinearity, the corre-
sponding measure on the phase-space

HE (M) = HS (M) x H Y (M)
is given similarly by the formal Gibbs measure
dpri1(u,v) = e € dudo,

where v = Jyu, and £(u,v) is the (renormalized) energy given by

1 1
E(u,v) = / {v* + |Vul® + v }dx + / L da,
2 /v E+1Jpm
and :u*t1: denotes the renormalization of the nonlinearity. In this case, the full measure
is given by

dpg+1(u,v) = Z e  Jm :“kﬂ:dxd(uo ® ,u,l), (1.6)

where ) is the white noise measure on M. Note that when there is no stochastic forcing
as in NLW ([1.2)), since it admits the Hamiltonian structure

U . 0 1
Oy <v) = JV(u,v)g(u, v) with J = <_1 ()> ,

then the energy & is preserved along the flow, and so at least formally pgy1 is invariant
for . On the other hand, adding a stochastic forcing in the equation breaks down the
Hamiltonian structure and in particular changes the equation satisfied by the speed v = O;u.
Thus, in order for p; to be stationary for v, one needs to add an extra damping term,
making the equation into a Langevin equation with the momentum v = d,u. This leads us

to consider E|

2In the physics literature, when k is odd the stochastic equation (1.1]) is then known at the “canonical”
stochastic quantization [35] of the ®5T*-measure (T.6).
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1.3. Renormalization of the nonlinearity. Let us now describe the renormalization pro-
cedure. Let {¢,}n>0 be an orthonormal basis of L?(M) consisting of real-valued C°°(M)-
eigenfunctions of —A4 with corresponding eigenvalues {)\%}nzo assumed to be arranged in
increasing order, so that for any u € D'(M), where D’(M) is the dual of C*°(M), one can

decompose
u= E CnPn,
n>0

for some sequence {ay, }n>0 of real numbers. Then, we can see 1 = f10 @ p1 as the Gaussian
probability measure induced under the map

Xt (wo,w1) € Qo x Qp —> (us®,ui") = (Z gz)(\w;))wn, Zhn(wl)g0n> e H¥ (M), (1.7)
n>0 M7 n>0

where (\,) = /1 + A2 and {(gn, hn)}n>0 is a sequence of independent standard real-valued
Gaussian random variables on a probability space (29 x Q, F, Py ® P;). From Weyl’s
law , which in particular says that A, ~ n%, it is easy to see that the convergence of
these series holds in L?(€y x Q1;H*) whenever s < 0. Moreover supp p C H* for any s < 0
but u(H%) = 0.

Now, the space-time white noise £ is a centered Gaussian random variable on a probability
space (2, P) with values in the space of Schwartz distributions &'(R; D’(M)), which is delta
correlated. This means that for any space-time test functions n, 77 € S(R; C*°(M)), we have

E[EmEm] = (i) iz

where (-,-)2 stands for the usual inner product on L*(R x M). In the following, we

impose that the space-time white noise ¢ is independent of gy, h,, in (1.7).
In particular, we see that £ is given by 0;B, where B is a two-sided cylindrical Wiener
process on L?(M), defined as

B(t) = Zﬁn(t)%@m (1.8)
n>0

with 3,(0) = 0 and B,(t) = (£, 1j0 - ¢n)te- Here, {-,-);, denotes the duality pairing
on R x M. As a result, we see that {3,}n>0 is a family of mutually independent (and
independent of g,, h,, above) two-sided Brownian motions on (£2,P). In particular, we have
B € CO(R; W*=12°(M)) almost surely for any b € [0,3) and s < 0. In the following, we
look at the base probability space (29 x Q1 x Q, Py @ P; @ P) as

(H(M) x QL ueP),
where
p=po @ =Xe(Po@Py) = (Po@P1)o X

is the push-forward of X defined in (1.7)).
With these notations at hand, let us first discuss the renormalization for (1.1). A solu-
tion u to (|1.1)) can be represented through Duhamel’s formula:

u(t) = 0V (t)uo + V(t)(uo + u1) — /Ot V(t —t)u(t)dt' + x/§/0t V(t—t)dB(t), (1.9)
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where (ug,u1) is as in (1.7]), and

sin 3_A
V(t)=e 3 (tyi — &) (1.10)

is the propagator for the damped Klein-Gordon equation: d7u + (1 — Ag)u + dyu = 0, i.e.
the (deterministic) linear part of (|1.1)).
We see that the roughness of a solution u already appears at the linear level:

Uaamp(t) L OV ()uo + V(£ (uo + u1) + V2 / t V(t—t)dB(t), (1.11)
0

which lies in C'(R; H*(M)) almost surely for any s < 0 (see Proposition below). The
strategy to define the product u* in the Duhamel formula (T.9) is then to regularize the
rough term Wq,m, and to replace u by another Well-choselynomial such that, as we
remove the regularization, the corresponding renormalized power :u”: converges to some
finite random variable almost surely.

More precisely, for any N > 0, let Py be (a smooth version of) the frequency pro-
jection on the set of frequencies {\, < N} (see below). For each (t,z) € R x M,
PnVgamp(t, ) is then a mean-zero real-valued Gaussian random variable with variance

o (@) < E[(PxVaunp(t, 2))°) = E[(Pruo(e))’]

Spn( )
_nzzow 2/\22<)\n> = O(log N),

where the second equality results from the invariance of (the truncated version of) the

[\

(1.12)

Gaussian measure p under the (truncated) linear stochastic damped wave equations given
by Proposition and the last estimate comes from Lemmaalong with Weyl’s law .
We note that oy (z) in is time independent.

As in the case M = T? investigated in [33} 32, [17], when the truncated nonlinearity
(Pyu)¥ is replaced by the Wick ordered monomial defined for al]ﬁ (t,z) € R x M by

((Pyu)*: (t,2) = Hy(Pyu(t,z);on (), (1.13)
where Hy(z,0) is the kth Hermite polynomial, the renormalized powers of the stochastic

contribution : (PnWqamp)¥ : converge almost surely to some random variable : \Pﬁamp :
See Section [3] below.

1.4. Well-posedness of the renormalized dynamics. In view of the above discussion,
we look at the following smoothed renormalized version of ([1.1)).

{ Oun + (1 - A g)un + dpun + Hk(’LLN;UN({L‘)) = V2Py¢,

(t.2) ERy x M, (1.14)
(un, Brun)|,_y = (Pyuo, Pyuy), "

with the random initial data (ug,u1) given by (1.7). Our main result is then the following.

3In particular, note that the renormalized power defined below is a monic polynomial with its lower-order
coefficients becoming infinite as the regularization is removed, which justifies the notation oo - w in (1.4) for
the cubic case.

4When M = T2, since the Gaussian process PnPdamp(t, ) is also stationary in z, oy is then independent
of x. Here the renormalization must be defined pointwise in x.
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Theorem 1.2. Let k > 2 be an integer and s < 0. Then, there exists a stopping time
T, n ® P-almost surely positive, such that for any N € N, there exists a unique solution
uy to which belongs p ® P-almost surely to C([0,T]; H*(M)). Moreover, {un}nen
converges 1 @ P-almost surely to a stochastic process u € C([0,T]; H*(M)).

Remark 1.3. (i) Formally, the limiting process u is a solution of the full equation:
Ou+ (1 — Ag)u + dpu+ :ub: = V2€. (1.15)

This is only formal since the renormalized nonlinearity ([1.13)) is only defined for smoothed
(i.e. frequency truncated) noise and data.

(ii) The limit v in Theorem is unique in the class
Pdamp + C ([0, T); H**(M))  C([0,T]; H*(M))
for0<1—-s;<x1.

(iii) The full Wick ordered nonlinearity is actually well defined on the above class (see (3.1))
below), which justifies that u “is a solution” of the full renormalized dynamics (|1.15]).

We now investigate the global well-posedness of and the invariance of the Gibbs
measure when £ > 3 is an odd integer. Instead of considering the approximate
dynamics given by truncating the noise and the initial data (as in ([1.14])), we truncate the
nonlinearity and look at the following approximate dynamics:

{ Oun + (1 — Ag)un + dyun + PyHy (Prun; on(z)) = V2€,

(1.16)
(un, Opun)|,_y = (w0, u1) ~ pn 41,

where py ;41 is the truncated Gibbs measure, defined in below. Here, the notation
(uo,u1) ~ pnk+1 means that the random initial data (ug,u1) has the law py g4+1. Since
PN, k+1 < 1, the same local well-posedness and convergence result as in Theorem also
holds for , and gives again 3E| local solution (u,dyu) to . Then we can exploit
the invariance of py j+1 under the flow of by following Bourgain’s argument as in
[3, 5, B9, [1T], 8], and extend the local well-posedness result into a global one.

Theorem 1.4. Let k > 3 be an odd integevﬁ and s < 0. Then, the limit (u,dyu) of the
dynamics can be p @ P-almost surely extended globally in time, thus defining a global
measurable flow map ®(t) : H*(M) x Q — H*(M). Moreover, the Gibbs measure pyi1 is
invariant, in the sense that for any t > 0 and any F € Cy(H*(M);R), we have

/s(M)/QF[(I)(t)(UOv“hw)]dp(w)dpkﬂ(uo,m) :/s(M) F(ug, uy)dppy1(ug, uy).

5Actually, a straightforward adaptation of our argument shows that the limits obtained by or by
are the same. See also Remark below.

°Here, we only consider the defocusing case, namely the case of an odd integer kK € N with the “+”
sign in front of the nonlinear term on the left-hand side of , since in the focusing case the density of
“Apps(u, Ou) = et Im ufth dp(u, yu)” cannot be properly defined [6l [3I]. When k is even, there is no
notion of focusing or defocusing. When k = 2, it is still possible to construct a focusing Gibbs measure, at
least on the flat torus T?; see [4, [31]. This focusing Gibbs measure is, however, endowed with a taming by
a power of the Wick-ordered L2-norm, leading to a slightly different equation. Hence, we do not consider it
in this paper. A similar comment applies to Theorem



STOCHASTIC NLW DYNAMICS ON SURFACES 7

Remark 1.5. As pointed out above, Theorem is concerned with the invariance of the
Gibbs measure pgy; in for the limit of the truncated equation . The reason to
consider this dynamics (rather than (1.14))) is that it also admits an invariant (truncated)
Gibbs measure py 11 (see the definition in below), which makes it easier to apply
Bourgain’s invariant measure argument [3), [5] to globalize the dynamics in Section [5 How-
ever, this approximation is somehow less natural than considered in Theorem as
this latter deals with solutions arising from smooth approximations of the initial data and
noise instead of truncating the nonlinearity. It turns out that there are situations where
the truncated dynamics is actually easier to handle than the natural approximation
, as one can benefit of the invariance of px 41 also in the local theory. We refer the
reader to the introduction of [37] for a more thorough discussion on this point. In our case,
the local theory and stability property established in Propositions and below are
robust enough to handle both the truncated dynamics and the natural approxima-
tion , and the result of Theorem should also hold for the natural approximation
up to minor modifications of the argument presented in Section

As mentioned above, we can also look at the evolution of pg41 under (a suitably renormal-
ized version of) the deterministic NLW (1.2)) (i.e. without stochastic forcing or damping).
For this purpose, we first study the following renormalized NLW:

(un, Opun)|,_y = (Pyuo, Pyur),

where (ugp,u;) has the law u defined in ([1.7)). In this case we have similar results.

Theorem 1.6. Let k > 2 be an integer and s < 0. Then, there exists a stopping time T,
p-almost surely positive, such that for u-almost every initial data (ug,u1) € H¥5(M) and
for any N € N, there exists a unique solution uy € C’([O,T]; HS(M)) to . Moreover,
{un}nen converges p-almost surely to a function u € C ([0, T]; H*(M)).

Here, the uniqueness of u is in the corresponding class:
z+ C([0,T); H**(M)),
where s; is as in Remark [1.3|(ii) and
sin(t/1 — Aq)

V1—14
is the linear solution with the random initial data (ug,u1) = (uy®,u;") defined in (L.7)).
Note that we have E[(Pnz(t,z))?] = on(z) as in (L.12), and hence the renormalization in

(1.17) is also defined by (1.13]).

As before, we can alternatively look at the approximations given by solving the truncated

NLW:

z(t) = S(t)(uo, u1) = cos(t\/1 — Ag)ug + uy (1.18)

{GEUN—I—(1—Ag)uN—i—PNHk(PNuN;UN({L‘)) =0 (1.19)

(un, atUN)|t:0 = (U0, 1) ~ PN k+1-

Due to the conservation of the energy and subsequently of the truncated Gibbs measure,
we also have a global statement for the limit of the solutions to (1.19)).
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Theorem 1.7. Let k > 3 be an odd integer. Then, there exists a set ¥ of full pyy1-measure
such that for any initial data (ug,u1) € X, the limit (u,dwu) of the solutions (uy,yuN)
to exists globally in time. Moreover, the flow map ®(t) : (ug,u1) — (u,Opu) leaves
the Gibbs measure pyy1 invariant. Namely, for any t € R and any F € Cy(H*(M);R), we
have

/ F(®(8) (o, ur) ) dpisa (10, u1) = / F (g, u1)dpi 41 (o, ).
(M) s(M)

Remark 1.8. The same comment as in Remark above also applies to the result stated
in Theorem In particular, for the deterministic equation , the approximation by
smooth initial data in (1.17) (while studying the same equation) is genuinely more natural
than the one given by the truncated equation , since in this case the use of randomness
on initial data can be interpreted as a way to give a meaning to limits of smooth solutions
to at a super-critical regularity. See, for example, [10, 12} [30].

Finally, we consider the case with stochastic forcing but with deterministic initial and
no dampingﬂ
8t2uN + (1 — Ag)uN + Hk(uN; O'N(t, x)) =Pn¢
(u, Opu)|t=0 = (ug,u1),

for deterministic initial data in (ug,u1) € H*(M), where on(t,z) is as in ((1.21)) below.
Here, the renormalization is slightly different. Let us first define the stochastic convolution

def tsin ((t —t')y/1 = Ay) N sin ((t — t')(An)) ,
vy [N S = 52 ([ 0 0o,

which is the solution of the linear stochastic wave equation with the zero initial data. Then,
from It6’s isometry, we have for any x € M and t > 0:

z) = T —242 2 ! Sin((t_t/)<)\n>) 2 '
w(t,2) < E[Pyw( ) n%%iﬁo (o [ [T

(t, ) € R x M (1.20)

P of t sin(2t(\,)) (1.21)
_;01/, A2) (on(z)) (2%)2 ERPTIWE ) = O(tlog N).
As in , W; thus define the renormalized Wick powers by
(POt )" H (PyU(t2); on(t 7). (1.22)

We emphasize here that since now P W is not stationary in z or ¢, the renormalization
needs to be performed pointwise in both x and t.

Theorem 1.9. Given an integer k > 2, let sqit be the critical regqularity defined in
below. Let 0 < s1 < 1 satisfying s1 > Serit if k = 2,3 or s1 > Serit when k > 4. Then, the
truncated Wick ordered SNLW is almost surely locally well-posed in H*' (M), in the
sense that for any data (ug,ui) € H* (M) and any s < 0, there exists an almost surely

Let us recall that the damping term was added in (1.1) in order to preserve the measure piy1. Hence
when there is no damping term as in (1.3]) there is no point in considering random initial data, since there
is no invariant measure for (|1.3).
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positive stopping time T = T,,(ugp,u1) such that for any N € N, there is a unique solution

un to (L1.20)) in the class
Py¥ + X7 C C([0,T]; H¥(M)),

where the space X7 is defined in (4.6) below. Moreover, the solutions un converge to a
stochastic process u € C([0,T]; H*(M)) almost surely.

The critical exponent sqit corresponds to the one given by the deterministic well-
posedness theory:

Serit = Max(Sscal, Sconf, 0) = max (1 o i T Z % i T 0) (1.23)
where Sg.a1 and Seone correspond respectively to the scaling invariance and the conformal
symimetry.

Unlike in the previous models, there is no invariant Gibbs measure available for ,
and as a consequence globalizing the solutions is not as straightforward. We point out that
in the special case M = T2, this has been investigated very recently in [I8].

1.5. Scheme of proofs and organization of the paper. As transpired in the discussion
above, the general strategy used in [13] (see also [24] [5]) to prove Theorems and [1.9)
is to look for a solution under the form uy = ry + wy with ry € {Pn¥gamp, 28, PN Y},
where wy is expected to be smoother and hence falling into the scope of applicability of
the deterministic well-posedness theory. Then, we aim to solve the perturbed equation for
wy with the enhanced data set {wn(0),9wn(0),7nN, ..., : 7% : }. Indeed, in view of the
formula below for the renormalization of the sum, we see that wy solves (in the case

of (T1)

k
k
Fwn + (1 — Agwy + Sy + Z <€> i Wkt = 0. (1.24)
£=0
Hence it is enough to estimate the Wick ordered monomials : rf\, : uniformly in NV in

order to estimate : uﬂ‘{, ;. Then, we can solve the equation for wy uniformly in N by a

standard fixed point argument as in the deterministic setting. The difficulty with working
on a general compact Riemannian manifold without boundary appears in the first step
when trying to get good probabilistic estimates on the random objects appearing after
renormalization. Indeed, the Fourier analytic proofs of these estimates in the previous
works on T? [33] 32} [17] fail here because of the lack of structure of a commutative group
and of uniform boundedness of the eigenfunctions. Thus we cannot rely only on “global
”(on M) arguments. Instead, we give a local description of the stochastic objects in the
spirit of [7], so that up to localizing and controlling various error terms which appear in this
process, the probabilistic estimates in the case of a manifold follow from analyzing the kernel
of some pseudo-differential operators (?DOs) in R?. Note that the semi-classical analysis
that we employ is somehow non-standard, since not all the pseudo-differential operators
involved depend on the semi-classical parameter, so we have to work with “semi” semi-
classical YDOs.

Alternatively, in the context of parabolic singular stochastic PDEs, the authors in [2]
developed a functional calculus adapted to the heat semi-group on manifolds, which enabled
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them to build a robust and general theory for the study of singular stochastic PDEs in a
more complex geometrical setting. Though we believe that their approach could be adapted
to treat our problem, it seems that the general bound on the powers of the truncated Green
function for the Laplace-Beltrami operator established in Proposition (3.6 which is in the
core of our proof, is new and of independent interest. In particular, it would prove itself
useful if one wishes to extend the result of [I3] for on compact surfaces. See also
Remark [3.9] below.

Another contribution of this work is to extend Bourgain’s invariant measure argument
[3, 5] to the case of a singular stochastic PDE, allowing us to globalize the local result of
Theorem This argument has indeed previously been used mainly in the context of
a deterministic Hamiltonian PDE with random initial data such as considered here.
In Section [5, we carefully detail its implementation in the presence of a singular random
forcing term.

We begin by recalling the tools that we need from spectral theory and semi-classical
calculus in Section |2, in particular the local description of semi-classical pseudodifferential
operators given in [7] that we shall use extensively. In Section [3| after recalling the basic
tools from probability theory and Euclidean quantum field theory, we establish the crucial
probabilistic estimates on the aforementioned stochastic objects. Sections [ and [f are
dedicated to the proof of the local and global well-posedness results and the invariance
property of the Gibbs measure pg1.

2. FUNCTIONAL CALCULUS AND SEMI-CLASSICAL PSEUDO-DIFFERENTIAL CALCULUS

In this section, we collect the tools from micro-local analysis that we will need in the
next sections. Most of the background needed here can be found in [40], except for the few
results on the functional calculus which can be found in [I5].

2.1. Geometric setting. We begin by recalling the general setting for our results. We
consider a d—dimensionaﬂ compact Riemannian manifold without boundary (M,g), on
which we fix a finite atlas (Uj, V}, kj)jes for some finite index set 7, i.e. the V; are open
sets covering M:
M=J v,
JjeT

and U; are open sets in R, Withﬂ some homeomorphisms «; : U; C R? — Vi c M
such that /<cj_1 o Ky, are smooth diffeomorphisms on U; N Uy, for any j,k € J such that
U; NUi, # 0. We also fix an associated smooth partition of unity (x;);e7, i.e. x; € C®(M)
with supp x; C Vj and for any x € M,

> xjl@) =1
JjeT
For j € J and a smooth function u € C*°(Vj;), the pull-back of u is then the function
Kju=uo ;€ C*(Uj).
8In this section we state some results for a general dimension d € N, but in the rest of the paper we only
consider d = 2.
9n the differential geometry literature, atlases are generally defined with the opposite convention that
UCMand k:U — x(U) C R% Here we chose to keep the convention of [7].
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Given a local chart (Uj;,Vj, k;), the metric g is given by a smooth mapping g : = €
Uj — (gm7f(x))m£:1...d where (gmvz($))m221...d is a symmetric positive definite matrix,
with inverse denoted by (gm’g(:c))m 1 d

The Laplace-Beltrami operator can then be described as the negativﬂ operator acting
locally on smooth functions u € C*°(V}) by

KX (Aqu)(z) = Z xm( det g(2)g"™" (2)0a, ) K} (Xju)

= (P2($,D) +p1(fﬂ,D))f-’~§(>7jU),

for any « € Uj, where x; € C3°(V;) satisfies x; = 1 on supp x;. Here p; is a differential
operator of order 1, and the differential operator ps is given by

p2(z, D) = Z gmj(if)axmame- (2.1)

In particular, since g is smooth with values in symmetric positive definite matrices and M
is compact, there exists ¢, C' > 0 such that for any = € |J e SUpp K;Xj and & € R? we have

~CIE* < pa(x,€) < —clef. (2.2)

We recall that —Ag admits an orthonormal basis {¢y, }n>0 C C*(M) of L?(M) consisting
of eigenfunctions with corresponding eigenvalues {\2},,>0 assumed to be arranged in the
non-decreasing order, and that we have Weyl’s law

#{n >0, Ay <A}~ 2\ (2.3)

for any A > 0. In particular we have A,, ~ n.
The eigenfunctions ¢,’s are not uniformly bounded (in n), but we have (see e.g. [9,
Proposition 8.3]) that they are bounded in a mean value meaning:

Lemma 2.1. Let d = 2. There exists C > 0 such that for any A € R and x € M, we have
( n(@))? 1
g;lAA+H 1+A2<<Cg;1MAHﬂA)1+A{

where 1z A1) 48 the indicator function of the interval (A, A + 1].

Indeed, this lemma follows directly from the following asymptotic behavior for the spec-
tral function of Ay due to Hérmander [20]: for any d € N, there exists ¢4 > 0 such that for
any A >0 and x € M,

e(,02) € N (pa(@))? = cadd + O(ATY).
AZ<A2

10Again, it is common to define the Laplace-Beltrami operator as the positive operator —Ag, but we
stick to the negative one so that the wave equations (T.1)-(T.2)-(T.3) have the same formulation as on TZ.
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2.2. Functional calculus. We finally move onto the definition and the local description in
terms of WDOs of some operators used to describe the stochastic objects and to construct
the Sobolev and Besov spaces needed to measure them.

To this end, let us first define P to be a smooth version of the Dirichlet projection onto
the frequencies {\,, < N}. Namely, take a smooth even non-increasing cut-off ¢y € C§°(R)
satisfying supp 1o C [~1,1] and 1 = 1 on [~1/2,1/2]. For any real-valued u € L?(M), we
have

U= Z<u7 @H>L2(M)90TL7

n>0

where

(U, v) L2 (M) :/ u(x)v(x)dz

M

is the inner product in L?(M) and we simply wrote dx for the volume density on (M, g).
For any N > 0, Py is then defined as the linear operator on L?(M) given by

R S [ e (2.4
n>0
In particular, if we define the finite-dimensional subspace of L?(M)
Eyn = Span{p,, A\, < N}
with the orthogonal projection
My : L*(M) — E,
then P maps L?(M) into Ey and
IIyPy =Pylly = Py (2.5)
Next, we define the sets of dyadic integers for N as
2%+ = {1,2,4, ...} and 2V = 2%+ \ {1}.

Hereafter, we will use the Sobolev and Besov spaces W*P(M) and B, (M), s € R, 1 <
p,q < 0o, which are defined via the norms

| S0 s ) 2 a o

n>0

ull s & ,

LP(M)

and

1
lulls;,, “ (IPrufly, + > M|y~ Prjaulf,) "
Ne2N

For now the Besov norms of a function u are only defined in terms of projections in the
eigenfunction expansion of u. Although it is easy to handle these norms when p = 2 (since
the ¢,,’s form an orthonormal basis of L?(M)), we need an equivalent characterization to
be able to estimate them when p # 2.
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Let us recall the definition of the L? functional calculus. For any bounded continuous
function f on R, we can define the bounded linear operator f(—Ag) on L?(M) as

Ju = Zf (s ©n) L2(M)Pn- (2.6)
n>0

This defines a continuous linear map from Cy(R) to the space £(L?(M)) of bounded linear
operators on L?(M). More generally, if f € S™ for some m > 0 (see (2.7) below), then
f(=Ay) is an unbounded operator on L?(M) with domain given by

D(f(=Ay)) = {u e D'M), 3 [F(A2) (1w, pn)[* < o0}
n>0

For N € 2N, we define

Pz () = tho(N"2x) — o (4N "2x),

and

1(z) = o(z)

for N = 1. In view of the previous definition, we have Py = to(—N~24,) and for N € 2V,
we have

Py —Pnj = tn2(—4y).
Thus we need to give a local description of the bounded linear operators which are

functions of —Ay on L*(M) given by the functional calculus. This is the content of the
next subsection.

2.3. Pseudo-differential calculus. We begin by collecting a few facts about (semi-
classical) WDOs. First, for d € N and any m € R we say that a function f € C>®°(R?)
belongs to the space S™ if for any multiindex 8 € N¢ and any ¢ € R?,

107 F()] < (&)™ 1A, (2.7)

where (£) = /1 + |£|? and || is the length of the multiindex 3. Here we use the notation
A < B if there exists ¢ > 0 (independent of the sets where A and B vary) such that
A < ¢B. We also use the notations A ~ Bif A < Band B < A, and A < B if we can take
¢ = 107'2. We extend this definition to functions a : R¢ x R* — R, which belong to the
symbol class S™ if a € C™®(R? x R?) and satisfy for any o, 3 € N? and (z,¢) € R? x RY,

020 a(x, )| < (€)1, (2.8)

Then for m € R and a symbol a € §™ we define the semi-classical ¥DO of order m with
symbol a with respect to some semi-classical parameteﬂ h € (0, 1] to be the linear operator
acting on Schwartz functions u € S(R%) by the quantization rule

1

7 [ e Sala neya(€)de, (29)
~ (2n)
and u stands for the Fourier transform of u. Hereafter we systematically neglect the con-
stants 27 appearing either in (2.9) or in the Fourier transform.

a(z,hD)u

U1y the following, we will take for the semi-classical parameter h = N~! for some N € N.
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A particular case of Fefferman’s result [16] is that a (semi-classical) ¥YDO of order 0
extends to a bounded linear operator on LP(R?) (with norm independent of A in the semi-
classical case), for any 1 < p < oco. It is also well-known (see for example [40]) that the
composition of WDOs of order m; and mo gives a DO of order m; + meo, and moreover
the symbolic calculus gives

a(x,hD) o b(x,hD) = (a#b)(z, hD),

where for arbitrary M € N,

M-1
(a#tb) (2, h€) = Y cahl® (0 - 05D) (, hE) + Ogmy+mz—i (W), (2.10)
|a|=0

Here we use the notation Ogm,; +my-u (hM) to mean
Osm1+m27M(hM) = hMrM,a,b(x7 hD)

for some rp 44 € Smitm2=M (and depending continuously upon a and b for the composi-
tion). This implies that if a € S™, then for any s € R, a(x, hD) maps continuously H*(R?)
into H*~™(R?), and for any u € S(RY) we have the estimatﬂ

a(z, hD)uHHS*m(Rd) S plm=s)N0HsA0 HUHHS(Rd)' (2.11)

Here s A 0 = min(s,0). This follows directly from the uniform (in h) L? boundedness of
the semi-classical VDO (hD)*"™a(x, hD)(hD)~* which is of order 0, and the estimates
(€)* < h=9M0(heYs and (he)® < h¥N0(€)® for any s € R and € € R%.

Let us now give a local description in terms of WDOs of the bounded linear operators
on L?(M) given by the previous functional calculus. If v is any smooth and compactly
supported function, we can also view (—N"2A,) as a semi-classical DO (with semi-
classical parameter h = N~1) in local coordinates. Indeed, let us recall the result of
Proposition 2.1 in [7].

Proposition 2.2. Let 9 € C(R), k : U C RY — V C M be a coordinate patch, and
X, X € C3°(V) with X =1 on supp x. Then there ezists a sequence of symbols (am)m>0 in
Ce(U x RY) with the following properties:

(i) for any M € N, any h € (0,1] and any s € R, 0 < o < M, we have the expansion

|

for any v € C°(M);
(ii) for any x € U the principal symbol is given by

ao(x,€) = x(k(2)Y( — p2(x,£)),

M-1

(W (=R Ag)v) = 3 WM (a, hD)n*(%v)HHW(Rd) < pMmax(@tsa sy g

m=0

(2.12)

12The operator norm of a(z, hD) : H*(R?) — H*~™(R%) depends on h here because we always work
with classical Sobolev spaces, as opposition to the semi-classical Sobolev spaces generally used in the
semi-classical analysis. This is due to the “hybrid” nature of our problem where we have to measure the
composition of classical YDOs with semi-classical ones.
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where pa has been defined in (2.1)),
(iii) for all m >0, a,, is supported in

{0, e UXRY, k(x) € suppx, —pa(a,€) € supp v }. (2.13)

In particular, this means that for ¢ € C§°(R), the semi-classical operator ¢ (—h%A,) €
L(L*(M)) defined by the functional calculus can be described locally by some ¥DOs with
symbol i

STOR xRY) = (] S"R? x RY).
meR

Note that the smoothing property of the remainder in (2.12)) is only stated for s = 0 in [7,
Proposition 2.1], but one can derive the bound in ([2.12)) by the same computation as in [7]

and using ([2.11)).
Remark 2.3. This result relies on describing ¢(—Ay) through Helffer-Sjéstrand’s formula

v(=8g) = =1 [ 0E):+ A9 az,

where 7,; is an almost analytic extension of ¢, and using that the resolvent (z + Ag)~! is
locally a ¥DO of order —2. In particular, one can see that the above integral is absolutely
convergent for any function v in the class

A= ] s"®)

m<0

(which contains C3°(R)), so that the integral representation of ¢(—Ay) also holds for ¢ € A
(see [I5, Chapter 2]). Using the same argument, for any ¢ € S™(R), m < 0, then ¢(—Ay)
is locally given by a WDO of order —2m with principal symbol

w( —pg(w,f)) € S_zm(Rd X Rd).

Using the previous proposition, we get the following Bernstein type estimate for the
LP(M) — L9(M) mapping property of the operator 1/(—h?Ay). See Corollary 2.4 in [7].

Corollary 2.4. Under the conditions of the previous proposition, for any 1 < p < q < 00,
there exists C' > 0 such that for any u € C*°(M) and h € (0, 1],

2 d(i-1)
[9(—h*Ag)ullLavy < Ch™ Va2 |[ul| Lo ag)-

2.4. More on the function spaces. In order to close the fixed point argument in the
proofs of the well-posedness results, we will need a fractional Leibniz rule in B; ,(M). First,
we need an equivalent characterization of the topology on the Besov spaces B]‘;q(M).

Proposition 2.5. Let k: U C RY — V C M be a coordinate patch and x € C*(V). For
any s € R and 1 < p,q < oo, there exist ¢,C > 0 such that for any u € C*°(M),

ellxull s, vy < I8 Cc)ll g ey < Cllullis, - (2.14)

133ee also [0}, Section 14.3.2].
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Proof. First, observe that it is enough to establish the right-hand side inequality, since by
duality it holds

Pals,an= s [owd= swo [ e s G
e g S1IM [l <1
S R OO0 e PGy ey ] gy
H“‘\Bf,s/(M)Sl p'.q

where in the last step we used the right-hand side inequality in (2.14). This shows that the
left-hand side inequality follows from the right-hand side one.
We thus need to estimate

S NN (D) (xw) 1L
Ne2Z+

where {0n} ooz 18 an inhomogeneous dyadic partition of unity in R, We first take a

fattened version 12?le of lez, where lez is the multiplier in the definition of Py, , and

decompose
On(D) Z On(D)K*(xun,)
Nye2b+
= Y On(D)s*(xun) + > On(D X7/1N2( g)UNy ),
Ni~N N1N

where uy, = @ZJle(—Ag)u. To bound the terms in the second sum above, we have the
following lemma.

Lemma 2.6. Let k and x as in Proposition . Then for any u € LP(M), p > 1, and any
N, Ny € 2%+ with (N V N1) > (N A N1), we have for arbitrary B > 0:

105 (D)™ (X2 (—Ag) ) || o gay S (N V N1) 7 Jull o rq (2.15)
With this lemma at hand, we can finish establishing the right-hand side inequality in
(2.14]). Indeed, for the almost diagonal terms, we have from Minkowski’s inequality, the
uniform boundedness of the Littlewood-Paley projectors y(D) on LP(RY), and Hélder’s
inequality with Fubini’s theorem that
[N~ n NN (D)R* (Xt ) Hz?v(ﬂﬂm(l[@d)z}vl (25) S 13~ N, Hf?vl (274 )9, (274 ) LP (M)
S llull s, (v
while for the off-diagonal terms we have from Minkowski’s inequality and Lemma[2.6 applied
to uy, with B > 2|s|:
HleéNeN(D)’i* (Xwa(_Ag)UNJ H[?V(QZJ,»)L}D(Rd)g}Vl (2%+)

-B
5 H].N1,7(/NNS(N\/N]_) uNlHEIJIV(2Z+)LP(M)£}VI(22+)

|s|-B
S HNl uNlHe}Vl(QZﬂLp(M) S HUHB;,q(M)-

This concludes the proof of Proposition assuming Lemma ]
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Proof of Lemma[2.6. For M > 1 to be chosen later, we use Proposition to decompose

HN(D)K*(XTZNf(_A ) = 9N { Z N x N lD) (iu) + U—M,N1}’

where

<N51+52 M‘

HU—MNlHHn(M) |u”H*52(M)

for any s1,s2 > 0 with s; + s9 < M, in view of Proposition (i) with s = —s9 and
o = 81 + S9.

Note that from the support property of a,, and the assumption (N V Nj) >
(N A Ni), we have from the symbolic calculus that Ox(D) o an,(x, N; 'D) vanishes at
infinite order, but we have to be cautious with the dependence in N and N; within the
remainder in . Namely for any A > 1, we use the composition rule to expand

On(D) o am(z, N 'D)
= > caN 005 (€) - 0, NT'E) (2, D) + N~ 7 v, (2, D)

= NﬁAT’A,]\@Nl (ac, D)

for some constants c,. Indeed the last equality results of the support property of a,, and
the assumption (N V Ny) > (N A Np) so that the supports (in &) of Oy and ay,(x, Ny '€)
are disjoint. Here ry y n, is a ¥DO with symbol

1 .
ZCO‘/ //eZz'&aaeN(g+’51)3aam($+tz,Nf1§)<1—t)"‘1dtd§1dz. (2.16)
R4 JO

laj=A

This is obtained as a by-product of the proof of the symbolic product rule for ¥DOs: writing
down the symbol of the composition, performing the Taylor expansion of this symbol and
integrating by parts gives the sum for |a| < A, and the rest which corresponds to the symbol
in (2.16). In particular, in view of the support properties in ¢ of Ox(¢) and am(z, NT1€)
(and the boundedness of M), we can integrate by parts the kernel

1
(2m)

Rann (z,y) = /Rd Ty N, (2, €)dE

of ra n N, (z, D) with respect to z in (2.16)) to get some negative powers of &;. Indeed, for
any ¢1 € N, we integrate by parts to get

1
Ranm(my) =Y ca / / / / (€1) D eiEa -0 g0g, (¢ 4 €))
R4 JRE JO

la]=A
D) (0% (x4 tz, Ny RO (1 — 1) A dtdg dzde.
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Similarly, in order to get some decay in x, we can integrate by parts in £ to get for any
/€N

Ra NN, (z,y)

an/ / / / (&) 41 >€2€—i(z-£1—($—y)'€)
Rd JRE JRR4

la]=A
X (De) |00 (€ + €)(D2) (9%am(x + t2, NT€) (1= 1) | dtdgy dde.
We finally integrate by parts in £; to get some decay in z, leading to

Ran N (2,y)

= Ca/ /Rd /Rd/ (€)™ (@ — y) " (z) B Fa— (@)

jal=A
x (Dg)*2 [aawgl%se]v(g + €)D" (8% (2 + tz, NyRE)) (1 — t)A’l} dtde, dzde.

In view of (N V Ni) > (N A Nj) and the localization of ¢ and (£ + &1), we have the
localization |£1] ~ (IV V Ni). Moreover, for fixed &, in view of the support properties of
On and a,, then £ lies in a set of size at most (N A Ny)%. Hence for any 1, fo, /3 > 2 the
integrand is absolutely integrable and we get the bound

|Ran,w (@,9)| S (NANDAN VN —y) =",
We can then integrate in x or y provided that we take f5 > d, to obtain
IR s 2y + I Rana losers S (N ANDHN v N1,
This is enough to estimate the contribution
N=AN;™|0n (D) © agm (2, Ny ' D)&* ()| 1o et

by the right-hand side of in view of Schur’s lemma, since ¢; € N is arbitrary.

As for the remainder in the use of Proposition we first take M = B + s1 + s9 + 10
with s; and so large enough so that, by Sobolev embedding, H*'(R%) ¢ LP(R?), and by
Sobolev embedding and the compactness of M, LP(M) C H™*2(M). Then, in the case
N < Ny, we use the boundedness of (D) : LP(R?) — LP(R?) to bound

N81+82 —-M

10N (DYU-rr,N: | o (ray S N1U-m.0 [ o1 ey S el =s2 a0y S Ny 2 llull 2o any-

In the other case N > Nj, using that 6y is then supported on an annulus we have
-B
10N (D)Uni, N | zoray S N2 NUM N [ pron+8 may
S NN ) o gy S NPl o
This concludes the proof of the lemma. O

Using Proposition the finiteness of J and that the embeddings and the fractional
Leibniz rule hold on R?, we get the following consequences of Proposition

Corollary 2.7. Let M be any compact Riemannian manifold of dimension d without bound-
ary.
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(i) For any s € R we have B3 o(M) = H*(M), and more generally for any 2 < p < oo and
e > 0 we have

lulls vty < Nullwenian) < lullss s S lull gz re-

(ii) Let s € R and 1 < p1 < pz2 < o0 and q € [1,00]. Then for any f € B, (M) we have
il L1 S s, M)
B:;‘;(ﬁ_ﬁ)(M) P1a

(iii) Let o, € R with o+ B > 0 and p1,p2,q1,q2 € [1,00] with

1 1 1 1 1 1

=+ and =4

p pn P2 9 @1 92
Then for any f € By, ,, (M) and g € 3527612 (M), we have fg € Bﬁg\ﬁ(/\/l), and moreover it
holds

<
1fall sars pey S 1F 185, 0 0 ll9lse - any-

Proof. The first estimate in (i) is a direct consequence of the boundedness of (P — P /2)
provided by Corollary whereas the second one follows from the square function estimate
given in [7, Corollary 2.3], and the last one from Cauchy-Schwarz inequality. Similarly, (ii)
follows directly from Corollary

For the product rule (iii), we take a partition of unity {x;};jes and a fattened version
{X;}jes, so that using Proposition we have

* . . ~ .
1£9ll pensonny S S0 185067 - X59) | gy
jeJ
Then using the standard product rule for Besov spaces on R? (see [1], using the paraproduct
estimates of Theorems 2.82 and 2.85), we can estimate the term above with

* . *(~ .
;\|mj<xjf>||351,q2mHnj<x39>Hng<Rd)-
je

We can then use the finiteness of J along with Proposition to conclude. (]

3. PROBABILISTIC ESTIMATES

3.1. Probabilistic tools and construction of the Gibbs measure. We recall briefly
here some basic probabilistic estimates and the outline of the construction of the Gibbs
measure. A fully detailed construction on a 2d-manifold can be found in [33] in the context
of the nonlinear Schrédinger equation, which, up to replacing the Laguerre polynomials
used in [33] with the Hermite polynomials, can be adapted in a straightforward manner to
treat the invariant measure for and .

Let us first recall a few facts about the Hermite polynomials Hy(x; o). They are defined
through the generating function

t:z:—o—2 tk
=5 = 3 Dby (o),
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for any t,x € R. When o = 1 we simply write Hy(z;1) = Hg(x), and we have the scaling
property
Hy(z;0) = Ugﬂk(af%x).

Moreover, the following formula hold:

k
Hi(z+y;0 Z( )He z; o)yt (3.1)

=0

and
Oy Hi(z;0) = kHy—1(z;0). (3.2)

Now if we define the (spatial) white noise on M

§o = Zgncpm

n>0

where g, are as in , then we can define the white noise functional to be the action of
the distribution & extended to L? functions, i.e.

W f € LA(M) — Wy = (f,&)12(m) € L*(Q).
It is easy to see that W is unitary, and moreover we have the relation
E[Hy (W) He(Wy)] = Sk.0k! £, 9)52 ) (3.3)

for any f, g normalized L? functions, where k¢ stands for Kronecker’s delta function.
As in [I7], we also have the following lemma.

Lemma 3.1. Let f, g be centered jointly Gaussian random variables with variances oy and
og4, then

E[H(f;0¢)He(g; 04)] = 01 kE[fg]". (3.4)

See [27, Lemma 1.1.1].
Now, if we then define the real-valued random variables G j41 on (H*(M), ug) as

1

GN,k:+1 (UO) = m

(P yup)* () du,
M
then we have the following lemma.

Lemma 3.2. Let Gy j+1 be the random variable on (H*(M), po) defined above.

(i) {GNk+1}Nen is a Cauchy sequence in LP(pg) for any finite p > 1, thus converging to
some Giy1 € LP (1),

(ii) e=GNk+1 converges to e~Ck+1 almost surely and in LP(uo) for any finite p > 1.

This last convergence result allows to define the Gibbs measure pgy1 as the limit in total
variation of Z;,le*GN»’vH dp.

The proof of (i) for p = 2 follows from a direct computation using and Lemma
and for p > 2 it is a consequence of the case p = 2 along with the following Wiener chaos
estimate (see [36]):
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Lemma 3.3. Let d,m € N and Q(X1, ..., X)) be a polynomial of degree d in m variables.
Let {gn} be as in (1.7). Then for any p > 2 we have

1Q(91, s gm) o) < (= DE Q91+ gm) | 2(52)- (3.5)

This lemma is itself a consequence of the hypercontractivity of Ornstein-Uhlenbeck’s
semi-group [26]. As for Lemma (ii), it then follows from the same argument as in [33,
Proposition 4.5].

As explained in the introduction, Lemma @ allows us to define the Gibbs measure py41
on H*(M) by the formula . In particular, ppy1 < p as e”Ck+1 is a finite positive
random variable, so that supp pg,1 = supp u = H*(M) \ HO(M), s < 0.

3.2. Stochastic estimates for (1.1) and ((1.2)). Now we move onto the construction of
the Wick ordered monomials : \Ilﬁamp : and their large deviation bounds. We first deal with
the stochastic objects for (1.2]), and so we recall that zy = Pn.S(t)(up,u1) is the truncated

linear solution with the random initial data (ug,u1) given in (|1.7).

Proposition 3.4. For any £k > 1, T > 0, 0 < ¢ € 1 and 1 < pqg <

the random variables {Hj, (PNS(t)(uo,ul);aN(:U))}NeN form a Cauchy sequence in
Lp(u; L9([0,T7; W*E’OO(M))). Moreover, there exists C > 0 such that for any T, R > 0 and
N € N the following tail estimate holds:

M(HHk(PNS(t)(UmUl);UN(x))HL%er,oo > R) < C’e_CR%Tiq%. (3.6)

Denoting the limit by : 2% :, it also holds Hy(PNS(t)(uo,u1);on(z)) —: 2% : in
L([0,T], W=5°(M)), p-almost surely, and : 2* : also satisfies the tail estimate (3.6)).
Moreover, for k = 1 we have z € C([0,T]; W—5%(M)) n C*([0,T], W~175°(M)), p-
almost surely, for any € > 0. Lastly, we also have the following tail estimate for the
convergence:

([ 1 (P v S(8) (o, )5 o, (2)) = Hi (P S(8) (10, ); 0 () | gy > RR)

< Ce*cNfR%T_"%, (3.7)
for some 0 < € < € and any Ny > Nj.
Proof. We begin by proving that Hj(PnS(t)(ug,w1);on(x)) is uniformly bounded in
LP(p; L9([0, T); W=5°°(M))). Note that it is enough to consider the case p,¢ > 2. In
the following, we write x,y for the space variables on M and z,y for the points in R2.

Let us start with the following lemma which collects the main properties of P nS(t)(uo, u1)
that we will use.

Lemma 3.5. The measure p is invariant under the transformation (ug,u1) >
(S(t)(uo,u1), 0pS(t) (ug,ur)), for any t € R. Moreover, if we define the (truncated) co-
variance function

(i taxy) [ ey [P S 02) o, ) P S (82) (o, ) ) g, ),

Myplike when M = T2, it is not as straightforward to get the convergence of H, (zN;UN(:c)) in
ﬁ[O,T]; W~=°°(M)) almost surely when ¢ > 2, which prevents us from taking ¢ = co. See also Remark
below.
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then we have for any (t,x) € R x M

/ (1= Ag)x ? Hy (P S (1) (g, ur) (x); oy (%)) | *dpauag, ua)
(M)

= K1 = Ag)x (1= Ay (yw (st xa,x0)) ]| (3.8)
Lastly, we have the identity
(% y) E Nt x,y) = (Py @ Py)y(x,y), (3.9)

where 7y is the Green function for the Laplace-Beltrami operator on M, i.e. vy is the kernel

of (1 —Ag)7L:

=2 "o SO"
n>0
Here the notation (Py ® P x)v(x,y) means that we apply Py to both v(-,y) and v(x, -).
Note that since v has a diagonal expansion on the basis ¢, ® ¢,/ of L2(M x M), this is
the same as (P3 @ Id)y or (Id ® P%)y.

Proof of Lemma[3.5. In order to prove the invariance, we first compute for (ug°, u$") given

by :
S(t)(ug°, ust) = Z %{ cos(t{An))gn(wo) + sin(t n(wi)} = Z ) gn (wo,w1),

n>0

where for any ¢ € R, {g}},>0 is a family of independent real-valued standard Gaussian
random variables on Qg x €, and similarly for 9,5(t)(ug°, u7"). In particular this shows
that if (uo,u1) ~ p then for any t € R, (S(¢)(uo, 1), 8;S(t)(uo, u1)) ~ p too.

Next, with the definition of the operator (1 — Ag)_é, we compute for any fixed (¢,x) €
[0,T] x M:

/Q /Q (1= Ag)x® Hy (PrS(E) (ut®, w2 )(x); oy (x))|*dPodPy
SOn ‘Pn
v v = BTN

X E[Hk (PNS(t)<u8}O, u‘fl)(xl); UN(Xl))Hk (PNS(t)(u%’O, u(ijl)(XQ); O'N(XQ)):| XmdXQ

where the expectation is taken with respect to Py ® P;. We can then use (3.4) and the
definition of vy (t,t,x1,X2) to continue with

Z SOn SOn )/ Ky (t, 6, %1, X2) Ko (x1) onr (x2) dx 1 dxg
‘weN n n’ MXM

= k" [(1 — Ag);1§(1 — Ag>;2§ (’yN(t,t,Xl,XQ)k)] ‘xlzxg:x'
This shows .
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As for (3.9), in view of the definitions of the (truncated) covariance function v and of
the propagator S(t), we can compute

N (t1,t2,X,y)

_ —242 N—2)2 Pn, (x )SDnz cos sin
N n17§n2:>0 wo >\ w ( )\nQ) <A /Qo /Q1 (tl <An1>)gn1 + (tl <An1>)h”1)

n1) (A

% (cos(ta(Ana) )y + sin(t2<An2>)hn2)} dPydP;
= Z YN T2A7) W cos ((t1 — t2)(An)). (3.10)
n>0 n

The identity (3.9) thus follows from (3.10]) by taking t; = t».
O

Note that in order to estimate the right-hand side of (3.8)), we do not need the smoothing
in x1, and using Sobolev inequality in x; with some (large) p. and the compactness of M,
we have

w\m
w\m

sup [(1— Ag)x’ (1 — Ag)x,
xeM

S = Ag)x (v (x1,%2)") | Loe (M) x Lo (M) (3.11)

(’YN(Xh X2)k)] |x1:x2:x

SN = Ag)es (v (%1, %2)") [ Lo (M)

The following proposition allows us to bound the powers of the covariance function 7y,
viewed through the identity (3.9).

Proposition 3.6. Let vy : M x M — R be the truncated Green function of the Laplace-
Beltrami operator on M defined in (3.9). Then for any e > 0 and k € N, there exists
C = C(g, k) > 0 such that for any N € N,

H(l - Ag);; (VN(Xb X2)k) HL‘X’(MXM) < C <. (312)
Moreover, {’chv}NeN defines a Cauchy sequence in
Wo’ia’oo(M X M) = {U c D/(M X M), H(l — Ag);2§U<X1;X2)HLOO(M><M) < OO}
and satisfies
11 = Ag)xg” (v (x1, %2)" = 7va (%1, %2)") || e ppsepny) < OV (3.13)

for any N1 < Ny € N and some 0 < & < ¢ and C' > 0 independent of Ny, Na.
Finally, if Py is defined similarly to Py but with another cut-off 1o in place of g with
the same properties, then

(1 = Ag)ws (PRy(x1, x2)% — PR~ (31, %2) )HLOO (MxM) S CN~%. (3.14)

We postpone the proof of this proposition and finish the proof of Proposition Now,
for any finite p > 1, we first use Sobolev inequality to get for any t € R:

HHk(PNS(t)(uo,u1) on(x )HW 00 HHk(PNS( ) (o, u1); on(x )HW 5ores
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for some r. € [2,400). Thus if p > max(q,r.), using Minkowski’s inequality, the Wiener

chaos estimate (3.5 along with (3.8)), (3.11)) and Proposition with the compactness of
M, we obtain

[ (P S () (o, un) (x)s 00 (%)) || 1 1y

SHH(l— 2Hk(PNS (w0, u1)(x); on (x )HLP

Lq L7e

SpmHH(l_Ag)f%Hk(PNsa)(uo,ul)( );on ()|l

Lq L7e
1

l\)\m
l\)\m

o (1= ) (yv(x1,%2)")) | - XHL2L2

Sk Tl/qpk/2‘

This  proves  that {Hr(PNS(t)(uo, u1)(x); on(x )}NEN is  bounded in
LP(p; LY([-T, T); W™5°(M))) for any finite p,¢ > 1 with p large enough. Using
then Chebyshev’s inequality, we get that there is C' > 0 such that for any p > 1 and R > 0

([ (P S (1) (0, u) (0 o8 () | gy > )
< RipHHk(PNS(t)(uovul)( ) UN HLPLQW e 00 < Oppp%Tngp’

and optimizing in p leads to (3.6]).
Now for any N7 < N, we can compute, similarly to (3.8]),

[0 8978 [H (P S(0) (o, ) ()i o, ()
s (M)

— Hi (P, 5(6) (o, 1) (x); o, ()| (o, 1)

= k! [(1 - Ag)xf(1 - Ag);f (P?\fﬂ(xlv X2)k — 2PN, y(x1, X2)k + P?VQ’Y(XL X2)k)] ‘xlzxzzx,

where we used that Py, Py, = Py, for Ny > Nj. Then — in Proposition
show that the sequence {Hj(PnS(t)(uo,u1)(x);on(x )}NEN defines a Cauchy sequence,
thus converging to some : z¥ : in LP(u; L9([~T,T]); W~5>)) and from the same argument
as above with we get the tail estimate . Then, as in the proof of Proposition
3.2 in [30], Borel-Cantelli’s lemma yields that Hy (P nS(t)(uo, u1)(x);on(x)) converges to
: 2%+ in LI([-T,T); W=5°), p-almost surely, and moreover : z* : also satisfies (3.6)).
Lastly, we prove the continuity in time of z. If we define the translation operator 7y, :
u+— u(-+h) for any h € [—1, 1], we can use and the mean value theorem to estimate

/ }(1_Ag)_%(ThZ—Z)(t,X)Fd,u
Hs (M)

Z 90”1 (‘0”2 / / Ony (X1)Pn, (X2 {'y x1,%X2) — Y(t + h,t,x1,%2 }dxlde

ni,ng

x 2
<3 9”“>222€<1 NUCWED r ==

n>0 An n>0
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uniformly in h € [-1,1], x € M and ¢ € R. Finally, using Lemma we obtain the bound

2
/ o (M) (1= Ag) ™3 (mhz — 2)(t, %) *du S |B° EEDS 1[k’k+1)()\n)%( X)

k>0 n>0 {An)?
1
SR D sy M) 7553
k>0 n>0
1
SIhEY oz Sl
n>0

Hence using Sobolev’s and Minkowski’s inequalities as above, together with the Wiener

chaos estimate (3.5))
1(7nz = 2) D gy S RIPZ, (3.15)

uniformly in ¢ € [0,7], which suffices to conclude that z € C([0, T]; W~°°(M)) almost
surely by using Kolmogorov’s continuity criterion for p large enough. We can use the same
argument to bound 9,z in C([0, T]; W~175°°(M)) almost surely, which concludes the proof

of Proposition O

Proof of Proposition[3.6. We now give the proof of (3.12). Since this is clear for N < 1, we
can assume that N > 1. First, in view of the finiteness of 7, it is enough to fix j,j; € J
and to estimate

|55 @ 3 DG )1 = D)y * ey (3.16)

where for functions f on M x M and (z,y) € U; x U;, we write (k; ® kj,)"f(x,y) =
f(r(2), 55, (y)-

By a variant of Proposition (see Remark [2.3) with fixed 2 € R?, we can write

(55 @ 3 ) i (1= Dg)y * ()} = ag, 2y, D) (55 © 1) (5% (1)) } + Gev
for some symbol a;, _. € S7¢(R? x R?) with compact support in y included in Uj,, some
fattened version X, of x;j,, and for arbitrary M > 0 with

M
G318 (| oo 2y s 2y S N2 713G ()1 56, 9) oo () =22 0)
for any s1,s9 > 0 with s 4+ so < M. In particular the contribution of this last term to

ED) i

_ k
HG—M’NHLOO(RQXRQ) S HG_M’NHLOO(R%XH?(R?) < N? MH'YNHLOO M)xL® (M)

§N2—M sup <Z¢ 2)\2 <Pn ) (Zd) 2/\2 go(n(n>)22)

x,yeM

IMES

= O(N2_M log(N) ),

where the last two estimates come from Cauchy-Schwarz inequality and . This term
is uniformly bounded by choosing M > 2.

Taking again fattened versions of xj,X;, (which to simplify notations we still write
Xj,Xj1) it then remains to estimate

aj—e(y, D){ (r; @ k)" (i) )
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Now, in view of the definition of the functional calculus and (3.9)), we can see vy as the
kernel of the ¥DO (1 — Ag)~*p2(—N?A,). First, using e.g. [21, Theorem 18.1.24], we can
expand the resolvent as

15 (01 = 8g)7Y) = aj—2(z, D)R}X; + Rj-3

for some symbol aj_2 € S ~2(R? x R?) compactly supported in x in Uj, and some smoothing
operator R; _3 of order —3 satisfying for any s € R

< 1.

HR‘7_3HHS(M)_>H5+3(R¢1) ~

Next, using Proposition and dropping the tilde for the fattened cut-offs, we get the
expansion
ﬁ;(Xj(l - Ag)_l¢8(_N2Ag)Xj1)

= [aj,—2(w, D)rjx; + Rj,—:%} U5 (—=N?Ag)x;y
M-—1
= aj2(2, D)) (0 N7 ajm (@, N7 DI (6 x0) + Ryvrvia )

m=0
+ Rj 303 (—=N>Ag) X1,
where R; _jrn is a smoothing operator of order —M, with

HRlv—M:NHH*W(M)%HSI(Rd) S NS1+52—M’

for any s1, so > 0 with s1 + so < M.
Then, taking M = 1 in the above expansion, we have for any (z,y) € U; x U;; and
(x,y) = (rj(x), K5, (y)):

g (@ y) (k5 @ k)" (G () () (%, )

= (Id @ ¢j50) " (85 Oixa) (W) Ko, 9)) + xi () Ki (,y), (3.17)
where K is the kernel of
(K5x5)aj,—2(z, D)(k5X;)¥5(—pj2(z, N~ D)), (3.18)
and K3 the one to
(K5x3)a5,—2(x, D)(K5X5) Ri—an + 5500 Ry —305 (=N 724y). (3.19)

Here ¢ j, = Kj oKy is a diffeomorphism on U; NUj,, provided that supp x; Nsupp xj, # 0,
otherwise the contribution of Ky in vanishes. Let us also decompose K1 = Ki 1+ K12
corresponding to the two operators in (3.19)).

We will use that we can bound these kernels by the operator norm of the corresponding
operators from H~'7%(R?) (or H179(M)) to H'TO(R?). For K, since aj_o(x, D) is
bounded from H*®(R?) to H*1*2?(R?), and using the smoothing property of Rj_p;n for

1
M =1, we deduce that for sy = —1+ 6 and sy =1+ § for some 0 < § < o the operator

with kernel K1 maps H~'79(M) to H'*%(R?) with operator norm bounded by N2°~!.
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Thus we obtain

H"i;l (le (y)KLl(x’y)) HLOO(]RQXRQ)
< || (85xg)as—2(a, DY(5X5) Ry— a8 (55, X5 16 gy 10 (2
N HR'»*MvN(Fglxﬁ)HH—l—‘S(M)HH—H‘S(R?)
26—1
SN 650650 18 gy =150
< NP1 (3.20)
where in the last step we used the product rule of Corollary (iii).
As for Kj o, we have that |[R; 3|l g—2ts(pv)—mitome) S 1 and since we assumed that

N > 1 we also have that ’WO(—N*QAg)HH*lfé(M)—>H*2+5(M) < N2~1 Thus we also have
the bound

H'L{;l (le Kl,2) HLO"(R2><R2) < N20-1

Now we compute
k
Wi = ((1d® G (£ (Xijl)KO))
~ (k ¢ k—¢
+ Z (f) (’%;1 (leKl)) ((Id & Cj,j1)*[ﬁ;(Xij1)K0]) .
(=1

We first deal with the terms with ¢ > 1. Since aj, . € S7¢(R? x R?), in particular it is
bounded on LP(R?) for any 1 < p < oo (see e.g. [16]), hence using as above the Sobolev in-
equality W& (R?) ¢ L>*(R?) for some 7. > 1, and the compactness of supp (/ij(xjle )Ko)
and supp 7, (xj, K1), we get the crude estimate

k—¢

<t DI 5,000 50) (00 G (500300 1

¢ k—t
< )65 O K0 (0 © ) (5063 KD) )|, e
< * 14 * k—¢
~ ||”j1(XJ'1K1)HL°°(R2xR2)H“j(XJle)KOHLoo(R2xR2)'
Along with the previous bounds for K;; and K2, we finally obtain
k
Hajh—a(y? D)(fy]’i/,j,jl)HLoo(RQXRQ) S )‘aj1,—6(yv D) ((Id ® gjvjl)*(ﬁ;(Xijl)KO)) HLOO(R2><R2)

k
+ 3 NI K5 ooy (3.21)
(=1

Now, with the definition of Ky, we proceed as in (3.20]) to get the rough bound
1Kol oo (R2 xR2)
S., ‘}(H;Xj)($)aj7_2($, D)(H;%j)(x)w(%(_pj?)(x’ NﬁlD) HH*l*d(RQ)%HlJr§(R2)

S5 (=pj2) (2, N7 D) || -1-s(may oy pr-1+5m2y S N2,
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so that with our choice for 4, the second term in the right-hand side of (3.21)) is O(N~?")
for &' =1 — 2kd > 0. We are then left with estimating

H%,—e(y’ D) ((Id ® ijjl)*(ﬁ;(Xijl)Ko)>kHL°°(R2><R2).

First, to deal with (j ;,, since the symbol class S™ in (22.8)) is invariant by diffeomorphisms
for any m € R (see e.g. Theorem 18.1.17 in [21]), we can then write

aj = D) (14 @ ¢3)* (55 (03 K0) ) = (14.© G )* (@5 < D) (5 (i3 K) )

for some a;, . € S7°.
Next, we compute the symbol co(x, &) of (3.18]) as

(@) = (5@ [ [ e a6+ @) (5T + )
X "Lﬂg(—pjg(w +.’L’1,N71§))d§1dx1. (3.22)

First, since pj2 and (/@;ij) are smooth in x; with bounded derivatives, we can integrate
by parts in 21 to get enough decay in &;. Using that aj_o is a ¥DO of order —2, which
therefore satisfies the bound ([2.8) with m = —2, this gives for any a € N

(e 81 S (0@ [ [ 6+ e
(1= 82, (K)o + 2008 (s + 00, N71) v

Now, when a derivative in @1 hits ¢¥3(—pj2(x + z1, N71€)), we pick up a term (1 —
92 )pja(x 4+ z1, N71E) = O((N1E)?) by which, due to the localization || < N
on the support of ¥3(—pj;2(z + z1, N~1)), is then bounded uniformly in N . Thus we see
that the term on the second line above can be bounded by

L(z + 21 € supp(rjx;)) (gl S N).

Then we can take a large enough to ensure that the integral in & converges, so that we
arrive at

(e, 1 S () @115 N) [ (@) (e + &)~
< (55x5)(@)1(lg] < N){€) 2. (3.23)
Now, the kernel Kj is related to the symbol cy(x, ) via the formula,

Kofe,) = [ | (e, )i = 7 o),z = ),

where ]-'{ ! means the inverse Fourier transform in the & variable. This means that

((Hg(Xijl))(y)Ko>k can be seen as

((/{;(ijjl))(y)KO)k = (K506x3) @) F¢ (o %8 ) (2,2 = ),
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where *’g stands for the iterated convolution in the £ variable:

(coxg ) (w, &) =/ Hco (2, &;)dE;.

fO £1+ +€k j 1
Next, using that a;, . € S7¢(R? x R?), we have for any ¢, & € R?,

(@1, —(y, 1 S ()77 S (€)= &%,

and since £5(x ;) € C§°(R?), we can compute

Hﬁjl,—e(y, D) <(/€§(Xij1 ) (y)K0> k H

L (R2xR2)
- H/ €@, —e(y, E)/ (5 061)) " (6 = &)e ™€ (coxf) (@, & d&déHLw (R2xR2)

< swp sup [ [ (€)7o e = 60 (€ - 607 st o~ s

z€supp(K}X;) yESUPP K5 (X5 Xy, )

S Gt R

xesupp(/-cj*-xj

Thus, expanding the iterated convolution above and using the triangle inequality with the
bound (3.23)), we get the estimate

k
[ -0 D (506D B | S [ 1ot S (R
k,N =1
(3.24)
where
Tpn = { (& en &) € RHF, &I SN, £=1,..,k}.

So it remains to bound the integral in (3.24]), uniformly in N. By symmetry in &1, ..., &, it
is enough to bound the contribution of

Tin = {61, &) €Thn, [&] > > &}

First, to estimate the integral in &, if (& + -+ + &) > (&) then we have

/ (& 4+ &) (&) 2dEy S / (&) 2 %dék S (&r) "
1€k > 1€k —1] 1€k 216k —1]

On the other hand, in the case (§1 + -+ + &) < (k) we have

€

/ (&1 4+ &) (&) 2dék S (1) 2/ (€14 + &) 23, S (G2
[€k1>1Ek—1] R?2

Hence we end up with the bound

k—2
/~ ()22 [ [ (60 2dedgy,

Fp_1,n —1
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for which we can integrate successively in [x_1| > [{x—2| > -+ > |&1]:

. k—2 . k—3
R | (DT TR A ARy | (R 2o
Tr_1,n =1 Pr—2,n /=1

S5 [ 106l V@) R <0 <o

uniformly in N. This proves (3.12)).
For (3.13)), we can decompose locally vn, = Ko n, + NflKLNl and vn, = Kon, +
Ny K 1,N, similarly as above, and following the computations we end up with estimating

~ k k
@y, —e(y, D)(KD,Nl - KO,NQ) | oo (R2 xR2)5

which follows as before except that we notice that the corresponding symbols satisfy

(co.n, *£ ) (@, &0) — (con, *E ) (2, &)

k . i
- / ( H co,n, (2,8e) — H co,N, (7, &)) H dé,.
So=€1++Ek -

=1 =1
In view of (3.22)), for the integral above to be non-zero, this requires at least one of the
& to be in the region Ny < || < No; otherwise, in the case all || < N; we have

~

both ¢3(—pja(z, Ny &) = 1 = ¢3(—pja(z, Ny '&)) and we see that ngzl con, (x,&) =
H§:1 con, (7,&). For N1 < |&| < Na, we can then replace the factor ()27 2 in the

corresponding integral by N, Z<fg>_2_% and finish integrating as above. The estimate
(3.14) follows from the same argument, replacing N1 < [&| < Na by || ~ N.
O

Remark 3.7. In Proposition we only estimated the higher Wick powers : z¢ :, £ > 2,
in L9([0, T]; W—5°°(M)) and did not show the continuity in time for these objects. Though
we would only need a very rough bound in space (just to get a power of h as in (3.15))),
the global argument as the one we used for z does not seem to apply since we would need
to estimate a product of k eigenfunctions ¢y, ...y, , for which it is not clear if there is
an “off-diagonal decay” allowing to sum on nq,...,n; even after regularizing the product.
On the other hand, a local argument as in Proposition [3.6] also fails since contrary to
the truncation operator 1y2(—A4,), the wave operator cos(h,/1 — Ay) for the linear wave
equations does not belong to the usual symbol class S° defined in . However, we might
be able to overcome this difficulty by replacing the local description of vy in terms of ¥YDO
by a local description of vy (t + h,t) in terms of Fourier integral operators by following the
construction in e.g. [7, 25]. We chose not to pursue this point further since our proof of
well-posedness only requires the Wick powers to be controlled in L4([0,T]; W~5°°(M)) for
some large but finite p, g € [1, 00).

Next, we prove a similar statement as in Proposition but for the solution PxWVqamp
to truncated linear stochastic damped wave equations

! (Zfi) - (Ago— 1 (1)> (ﬁfﬁ) dt + <_det +0\/§PNdB> (3.25)

with data given by (qu”N)‘t:o = Pn(uo,u1) ~ (Pn)«p. Recall that Ugump =
WU gamp (U0, u1,w) is the random variable on H*(M) x Q defined in ([1.11)).
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Proposition 3.8. (Py).u is invariant under (3.25)), in the sense that for any continuous
and bounded test function F' € Cy(H*(M);R) and any t > 0,

/ / F[(PN\Pdamp(uﬂv u1,w), 0P NV qamp (o, u1, w))} dP(w)dp(uo, u1)
s Q

—/ F[(PNUO,PNul)]du(uo,ul).
Hs (M)

Moreover for any k € N, T > 0, 0 < ¢ € 1 and 1 < p,q < oo then
{H;€ (PN\I’damp(uo,ul,w);JN(:U))}NeN 18 a Cauchy sequence in

LP(p @ P; L([0,T); W5 (M)))

and converges almost surely to a limit : Uk

damp € LU[0,T|; W™=2(M)).  Moreover
Hk(PN\Pdamp(UO,ul,w);aN(x)) and \I/flamp' obey the tail estimates (3.6)) and (3.7)), and

we also have Vgamp € C([0,T]; W5°(M)) N CH([0,T]; W—="12°(M)) almost surely, as
well as the tail estimate

D2
1@ P(||(Yaamp: 0rVaamp) | o(o.y-5) > R) < Ce . (3.26)
Lastly, p is invariant under (ug, u1) — (Ydamp, % Wdamp), i the same sense as above.

Remark 3.9. Note that in the case of the stochastic quantization equation ([1.4)) treated
n [I3], the truncated stochastic convolution

t
w(®) =Py [ S Dap(e)
—0o0

has the same covariance function vy as for zy and PyW¥4amp, so we can use the same
argument as in Propositions and to estimate the Wick powers of 3. In turn this
would generalize the result of Da Prato and Debussche [I3] to the case of a general compact
boundaryless Riemannian surface, which to the authors knowledge would be new.

Proof of Proposition[3.8 We only prove the first assertion, since the rest of the proposition
follows from the same analysis as for Proposition Namely, once we have the invari-
ance of (P N)*,u, we know that PyWg,mp has the same (spatial) covariance function vy as
PnS(t)(up,u1), so we can write

/ ) / (1= D)™ % Hi (P W gamp (110, 1) (£, %); 0 (3)) | *dP(w)dpa (119, 1)

= k! [(1 - AG)X12 (1 - Ag)x22 (ryN(Xl’ XQ)k)] }x1:x2:x’
where 7y is the same as in Lemma [3.5] and the same computations as in the proof of
Proposition [3.4] apply.
Proving the invariance of uy = (P N )it is equivalent to showing cr VN = 0, where Ly
is the infinitesimal generator of | and L’% is its dual acting on probability measures
on F N X 1) N by

VF € CEO(EN X EN;R), /

Flu0)d(Chnm) = [ (xF)(uv)dux(u,o).
ExxEn EnxEN
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But in view of (3.25)), we have Ly = L} + £%;, where £} is the generator for the linear
wave equations, and E?V the one for an Ornstein-Uhlenbeck process. More precisely, (3.25))
can be seen as a system of SDEs in R?AV | where Ay = dim Ey, given by

day, = bydt
dby, = —(Ap)2andt + (— bpdt + /200 (N"202)dB,,)
whose infinitesimal generator is given by

An-1
LN f(ag, oy Ay 1,00, bAy—1) = Y bnBanf — (An)?an0s, f — bu, f + 1ho(N2A2)%0F f.
n=0

y TLZO,...,AN—L

Now if we set
Any—1
LN =D =bubs, f + (N0} f
n=0

we recognize the generator of the Ornstein-Uhlenbeck process

an(t) = an(0),
bu(t) = e, (0) + V2o (N 2X2) [3 e=t=)dp,, ('),

and a straightforward computation using It6’s isometry gives that b, is a mean 0 Gaussian

random variable with variance
1— —2t
E(bu(t)?) = e 'E(5(0)%) + 20(N A2 ——.
In particular, in view of (L.7)), E(b,(t)%) = 1o(N"2A2)? = E(b,(0)?), which means that £
preserves pn. On the other hand, we have
An—1

AC}V = Z bnaan - <)\n>2anabn>
n=0

which is the generator of the truncated linear wave equations seen as the Hamiltonian
system of ODEs

ian = by,
{ %bn %, n=0,..,Ay—1.
Now the energy of this system
1 An—1
&wmmmﬂmﬁh%wwquﬁ=§§:(Qm%i+ﬁ)
n=0
is conserved, and by Liouville’s theorem, this system preserves the ALeblesgue measure
N
Hﬁggl da,,db,,, so we see that the measure e €0.N(a0,,0A N —1,00,-.bA 1) H da,db,, is also
n=0

conserved, which is nothing else than the conservation of uy in view of . All in all,
ﬁﬁ,u, ~ = 0 which concludes the proof of the invariance.

The invariance of p for (U,0;¥) then follows from the invariance of (Ppy),p for
(PnVU,PN0O:¥) along with the almost sure convergence of (Py¥,Pxn0:VU)(¢) towards
(P, 0:¥)(t) in H*(M) for any ¢t > 0 and the weak convergence of (P y),pu towards g (which
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is clear from the convergence almost surely and in LP(Qy x Qq; H*(M)) for any p > 1 of

the series in (|1.7)).
Finally, in order to show the last tail estimate (3.26)), in view of (1.11)) we can first

separate

& ]P)(H(\Ildamm 8t\I,damp)||C([07T};7{—E) > R)
< (sup |V (uo + V(#) (o + ) [sr-- 2 R)
t<

+ M(Sup ”afV(t)uo + 0V (t)(uo + ur)|| g-1-c 2 R)

t<T
supH/ (t—t)dB(t ) ZR)
t<T -
IP’ H (t —t")dB(t >
ey -2

=1 +0+ 10+ 1V.

We begin by estimating I. Using Chebyshev’s inequality, the boundedness of 85 V(t) :
H¥(M) — H5=Y(M), for any s € R and j > 0, and the Wiener chaos estimate with
the fact that (up,u;) is Gaussian, we get a constant C' > 0 such that we can bound for any
T, R,e>0andp>1

I< R*pE[(sgg 10:V (t)uo + V () (uo + w1) || g—2)"] S RPE| (uo, up) [y,
t<

p p
2 2

< R7(p— 1)% (B (up, wn)|I5,--) R
Optimizing in p finally leads to

p(sup 10V (£)uo + V(1) (o + )| = 2 R) S e~
t<

< CP(p—1)

for some ¢ > 0 independent of T" and R. The estimate on II is similar. As for IIl, we first
use Doob’s martingale inequality (see e.g. Theorem 3.9 in [14]) to bound

t
<R Psupk H / vt —t)aB@)|" ]
t<T 0 H=#
and then conclude as above since fot V(t—t")dB(t') is Gaussian. The same argument applies
to IV, which finally leads to (3.26)). O

Remark 3.10. Note that the proof of the invariance of (Py)u above works equally well
for (ITx)«p. Of course, the estimates on the Wick powers require the smooth cut-off Py
instead of the sharp cut-off Ily.

3.3. Estimate on the stochastic convolution. As for the nonlinear wave equations with
random initial data, the key point in the analysis of the stochastic nonlinear wave equa-
tions ([1.3)) is the following proposition. Let us recall here that the (truncated) stochastic
convolution (solution of the linear stochastic wave equation) is defined by

Un(t,z) =Py /0 sin ((t\_/f)_i VAl_ Ag)dB(t’)
g
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and the cylindrical Wiener process B is defined in . The corresponding renormalization
is given in .

Proposition 3.11. Let 0 < ¢ < 1, k € N, T € (0;1] and p,q € [1,00). Then,
{H,(PNT(w);on(t,x )}NEN is a Cauchy sequence in LP(; L1([0, T); W—5°(M))). In
particular, denoting the limit by : UF ;| we also have that Hk(PN\IJ(w);oN(t,x)) con-
verges almost surely towards : ¥* : in Lq([O,T];W*E’OO(./\/l)), and for k = 1, we have
that U belongs almost surely to C([0,T); W—5°°(M))NCL([0,T]; W—=-1°(M)). Moreover
H, (PN\I/(w);aN(t,x)), Uk and U respectively obey the tail estimates , , and
(13.26)).

Proof. As before, we can compute for fixed t € [0,7] and x € M
E[|(1-A )*%Hk(PN\I/(w t,%); on(t,%))|?]

Z gon <Pn’ / / [Hi(PnY(w, t,x1);0n(t,%1))

n/>0

X Hk (PN\I/(t,XQ); O'N(t,XQ))]Lpn<X1>g0n/ (Xg)dxldXQ.
Now we use , hence
E[|(1-A )_%Hk(PN\I/(w,t,X);UN(t,X)) ‘2]

= k! Z *0" 90" x) /w [ (x1, x9)] Py dxes

n'/>0

= k!((l ~-A )x?(l = Ag)e [t x2)]") e

where we define
def
Ao (x1,%x2) = E[PNU(w,t,x1) - Py (w,t,%2)]

v ([ [ ((t‘“M)}2dt'>¢n<xown<m>,

n>0 {An)

the last equality resulting from It6’s isometry. In particular, in view of the second line in
(1.21]), we see that ~4; can be decomposed as

¢ t ~¢
YN = §’YN + YN

where 7y is given in (3.10)), and
sin(2t(\,,))
'Yt (x1,X2) Zwo 2)\2 4<)\n>;l on(x1)en(x2).
n>0
Hence, using the product estimate of Corollary (iii), we get for any ¢ € [0, 7]

4 ﬁt )k—E”

t \k . . <
108 =5yt v ST 3 I

£ £

k
¢ =t ||k—4
S Il -5 st o VB, < se, vy
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Now from Proposition we have that |74l

W55 is bounded uniformly in N for any
e > 0. As for the other term, we can estlmate it directly with Cauchy-Schwarz inequality
and Lemma 2.7}

||7N||B€ oo (M) x BE,

oo (M)
sin(2t(\,,
sup MM sup | ST v (N2 (e 02 ) ()i )|
My, Mze2%+ x1,X2E€M n>0 < n>
sin(2t(\,))? 3
< s MEME s (N2 () (02) P (o))
My, Mae2%+ x1,X2E€M n>0 < n>
1 1
2 22
<Z”¢M2 ¢M2 (A% )<)\n>3¢n(x2) >
n>0
1
<  sup Uy ( w 2 /\2
My My <N nz>0 M7 M3 ( )<)\n>3
< sup ME <O < +o0
M SN

uniformly in N € N.

Thus we can conclude as in the proof of Proposition that E|(1 — Ag)™® Wk (t,2): ‘2
is uniformly bounded in N, from which we get a uniform bound in
LP(Q;Lq([O,T]; Wfs’oo(/\/l))) for any 1 < p,q < o0

As for the convergence of Hy, (PN\IJ(w, t,x);on(t, X)), we have again for N1 < Ny

2
E’(l ~A) [Hk(Pquf(w,t,x);aNl(t,x)) — Hy (P, U(w, £, %); oy (¢ x))”
_£& _& k
= k(1= Agl (1= Al [ (PR, (x1,%2))
—2(Pn, P,y (1, Xz))k

+ (P%vﬂt(xl,xﬂ)k}
S H (P?Vl’)/t(xhxz))k — 2(PN1PN2’yt(x1 x2))k

‘X1:X2:X

P2, ‘I A
PR LX) s i
Writing as above PN = tP?\&’y + P?\,Qﬁt, we then estimate for ¢ € [0, T the contribution
of

[ B3 er.a)) -
k

ZH PN2 (Xl,XQ)) (PN2 (Xl,XQ))kie
=0

k
(P Py (x1,%2)) HB‘7 (M) x B2 (M)

— ket
- (Pa P11, %2)) (P P (1, 2) HB’% (M)x Bl (M)
2 J4 l 2 ~t k—¢
S sup H [(PNQW(X17X2)) — (P P,y (x1,%2)) }(PN{Y (x1,%2)) "B;§W(M)XB;?W(M)
¢ - k—t . k—t
+H(PN1PN2’Y(X1,X2)) [(P?\/ﬂt(xl,xz)) — (P, Pn, Y (x1,%2)) ”)B_% MOXBCE (M)
Ssup (I +1).
<k

£
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Using again the product estimate of Corollary (iii), we bound

2 ¢ ¢
1 S H(PN2’Y(X17X2)) - (PN1PN27(X17XQ)) HB;%OO(M)XB;,%M(M)

P2 f—t
x ||Px, 7Y (X1,%2)

BE, oo (M)XBS, (M)
<N,

for some 0 < £ < €. This follows from (3.13))-(3.14]) similarly as in the proof of Proposition
along with the previous bound on 7. As for II, we use also the product estimate to get

V4
s H(PN”(XI’XQ)) HB*% (M)XBE (M)

x| (PR e 2)) " = (P P et 2)) |

By oo (M)X B, oo(M)

and we can gain a small negative power of Nj in the second term by proceeding as
for the bound on 3! above and using that the supremum of Mfg_l Nnow runs over
N1 < My < Na. The second contribution (P%\, ’}/t(X1,X2))k (PNlPNnyt(xl,XQ))k is esti-
mated similarly. This shows that {Hj(Pn¥(w,t,x);0n(t,%))
in LP(€; LY([0, T); W—5°°(M))) for any finite p,q > 1.

Let us finally turn to the continuity property of ¥ and ¥. As in the previous section,
we compute for any h,t € [0,7] and x € M

R \If)(w,t’xﬂ _ on(x)2 { /t+h [sin ((t+h—t) () ] 2dt/

} Nen 18 @ Cauchy sequence

n>0 < n>2E <>\n>
S1n t—l— h—t )()\n>) — ¢in ((t — t’)<)\n>) 2 '
A o) | )
< Z Z>(;(+2E {h+tsin (h<;\n>) }
n>0
<X L oy 20
n>0

n

which leads as in the previous section to ¥ € C([0, T]; W~5°°(M)) almost surely.
Lastly, the tail estimate is obtained through the same argument as in the previous section.
This concludes the proof of Proposition [3.11 ]

4. LOCAL WELL-POSEDNESS RESULTS

4.1. Proof of Theorems [1.2] and [1.6, We begin by establishing a general local well-
posedness result for a perturbed version of (| . Let us consider the nonlinear wave
equations with a general nonlinearity

(4.1)

OPw+ (1 — Ayw + vdyw + Fi(w) =0
(w, dyw)|t=0 = (0,0)
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where
k—1
Fr(w) = w* + ) fou'
£=0

for some functions f; : R* x M — R, and v € {0,1}. Note that here we only consider
the dynamics (4.1)) starting from zero initial data, as the data for the Cauchy problem
is contained in the forcing terms f,. This is not a restriction, as the case of a general
initial data (w,dyw)|t=0 = (wo,w1) can be put in the form (4.1) by decomposing w =
(0:V (H)wo + V (t)(wo 4+ w1)) + W where W solves (1)) with Fj, (W) = Wk + Z]E:& foWw* for
some data f; depending on f; and (wo, w1).

Proposition 4.1. There exists g = 9(k) > 0 such that if s1 =1 —¢€ for any 0 < € < &,
then for any q > 1 there exists C' > 0 such that for any R > 1 > 6 > 0, and any
fe € L([0,1]; W—2°(M)) with Hf@HLq([o,l];W‘%"’O(M)) <R, L=0,...k—1, if we set
§=COR™M € (0,1]

then admits a unique solution w € C([0,8]; H*1(M)) N C*([0,6]; H** 71 (M)), which
satisfies

[[(w, Bpw)llc(j0,5751) < 0.
Moreover, the flow map
—£ 0 k s
(for o fi1) € L2101 W5 (M))* 1 (w, Bw) € C([0, 8 1 (M)
is continuous. Lastly, the same local well-posedness result holds if we replace Fy, in (4.1) by

k—1
Fyi(w) =Py ((PNw)k +)° fg(PNw)’Z), (4.2)

=0
uniformly in N € N.

Proof. For 6 € (0,1], v € {0,1}, let us define the nonlinear operator on C([O, R Hsl(./\/l))
by

sin ((t—t’) 1-— % —Ag>

V2
—T Ay

v

Taw)(t) == [ 500

Fk(w)dt’.

We shall prove that for § small enough, Y4 defines a contraction mapping in a ball of radius
0 in C([0,0]; H**(M)) N C*([0,4]; H*~1(M)).

We use to define and evaluate the H®'(M) norm of the operators, and that
H*Y(M) = B3',(M), so that we get the first bound

k—1
H(Té(w)a3tT6(w))HC([0,5};H81) S HwkHL};Hsvl + Z HféwZHLgHsrl
£=0
k—1
< k l
S [lw HL(%BQ*E + Z | few HL};B;’;-
(=0
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We begin by treating the first term, which we can simply estimate by
2 k k
I HL}B;,; S Ofjw ”L§°L2 S 5||wHL§oL2k‘
Thus, provided that € < %, we can use Sobolev’s inequality to get the bound
k k
[Jw HLgHﬁ—l S 5HwHL§°H31'
As for the other terms, we now use the product rule in Corollary (iii), to get for

(=1, k—1

4 = 0 i
I few gy S 07 el sl lgoms, S 7 Mol s el e,

and then use that
lwlizgens,, S lwllpeps,

for any £ = 1,....,k — 1, provided that ¢ < 201
so that all in all we arrive at

1(C5(w), 8 Ts(w)lleo,smer) < crdllwl|fee o
k-1

+CQ(5‘1 ZHfEHLqW OOHwHLO"Hsl
£=0

In particular for R >1>60 > 0 and § = C(OR™)?, Y5 maps the ball of radius 6 in itself.
From the same computations, if Y is defined similarly to T with respect to another data
wyy, wi, fo, - fr._; then we get

15 (w) = Y5(w)lleqo.0m)

k—1
< crdllw — w'l|pgems (lwll g o + [0l 2go rron )

k: - The term for £ = 0 is estimated directly,

k—1
1
87 |1 fo = Foll s + €307 D {Ufe = Fll s 0l e
(=1
/-1
o =g s 170 gy e (ol e + 0o ) ™ (4.3)

and similarly for the time derivative. This shows the contraction property and the contin-
uous dependence on the f;’s up to taking § smaller depending on ¢y, co, c3. ([l

With Proposition at hand, we can now get our main local well-posedness results.

Proof of Theorems|[I.3 and[1.. We begin by proving Theorem [I.2] Recall that we see
VU gamp as a random variable on (H*(M) x Q, u ® P). For any M € N we take

Yum= {(uo,ul,w) S HS(M) x €, \deamp € C([O, 1]; Wi%’oo(./\/l)) and V/ =1, ...k,
|| He (PN Waamp (uo, u1,w); o8 (1)) = W (uo, u,w): HLQ([OJ];ng,oo(M)) — 0,

< M}.

and sup HHZ(PN\IJdamp(umul? );on(z )HL2 ([0,1]; W~ 2°°) =

NeN
In view of the large deviation bounds given by Proposition [3.8, we see that

1@ P(H (M) x Q\ ar) < CeME (4.4)
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Moreover, and Proposition show that for any (ug,uj,w) € X, we can ap-
ply Proposition with R = M, § = 1 and f;, = (’Z)Hg(PN\Ildamp(uo,ul,w);aN(m))
for any N € N U {oo}, with the convention that PoVqamp = WYdamp and
Hg(POO\IIdamp(uo,ul,w);aoo(:c)) =: \Iffiamp(uo,ul,w) ;. We thus get solutions wy and
Weo = w to on [0,7] with T = CM~? independent of N. Moreover since
PN Ugamp € C([0,T); W™2°(M)), N € NU {co}, we have

un =PNVdamp + WN € PyPaamp + C([0,T]; H*(M)) N C ([0, T]; H* (M)).

Hence in view of Proposition we have uy and w in C([0,T}; H5(M)) N
C'([0,T); H17¢(M)) and using again Proposition we get the convergences
PNYdamp — Ydamp and wy — w. From the continuous dependence in Proposition we
thus get that uy — u in C([0,7]; H¢(M)). The proof of Theorem is completed by
taking

Y = liminf ¥y
M>1

which, by (4.4]) and Borel-Cantelli’s lemma, is of full probability. The proof of Theorem |1.6
follows through the same argument, with Px.S(t)(ug,u1) in place of PnWqamp(uo, u1,w)
and (H*(M), n) in place of (H5(M) x Q, u @ P). O

4.2. Deterministic estimates. We collect here the deterministic estimates needed to
prove Theorem Let us recall from [I7] that for s; € (0, 1), a pair (¢,) is sj-admissible
(respectively (g,7) dual s;-admissible) if 1 <¢g<2<¢<o00,1 <7 <2<r<ooand
1 2 1 2 2 1 1 2 1
S4S=l-s1==+2-2 S+4+-<-, and Z+=>:.
q r q T q r 2 q r 2
Let us then consider the following inhomogeneous linear wave equations
{(azuAg)u:f on [0, T] x M,

(u7 8tu) ’t:() = (Uo, Ul) € H? (M) (45)

for some T' € (0,1]. For s; € (0,1) and (¢,7) an s;-admissible pair (respectively (¢,7) a
dual sj-admissible pair), we set

X5 = C(0,T); H* (M) nCH ([0, T); H* (M) N L4([0, T]; L™ (M) (4.6)
and
Xat = LM[0,7); H 1 (M) + LI([0,T]; LT (M)).
Lemma 4.2. Let u be a solution of , then the following Strichartz estimate holds:
lullxz S luos w)llmes + 1 f 1l s (4.7)

Proof. Due to the finite speed of propagation and in the absence of boundary, this follows
from the same Strichartz estimates as in [23, 25] for the variable coefficients linear wave
equations on R2. (]

Next, we recall the following technical result from [I7].
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Lemma 4.3. Let s1 be as in Theorem . Then there exist an si-admissible pair (q,r)
and a dual s1-admissible pair (q,7) satisfying

q>kq, r>kr (4.8)
where the first inequality is strict in the case s1 > Scrit-

Proof. This is the content of the discussion in [I7, Subsection 3.1]. O

4.3. Proof of Theorem We finally prove the local result for SNLW. As above, we

define for N € NU {oc} and (ug,u1) € H*' (M),

sin (/1 — Ay)
V1-=A

k /

t—t 1-A

-3 (8) [ S o),

2.\¢) Jy J1- A,

with the same convention as above for N = co.
We then prove a result similar to [I7, Proposition 3.5].

Tr(w) = cos (t/1 — Ag)ug +

U1l

Proposition 4.4. Let k € N and s1 be as in Theorem[1.9, and take (q,7) and (¢,7) given
by Lemma . Then there exist 0 < ¢ < 1 and a > 0 such that for any N € NU {o0},

T (w)ll xS Mo, ua) [l + HHk(PN‘I’(t);UN(MJ))HL;Hsrl
k—1

—i—TaZHHg(PN\IJ(t);aN(t,a:))HLz%W_%,OOHwH’f LT qu”XSl, (4.9)
/=1

for some large p. Moreover, a similar estimate holds for the difference as in (4.3)).

Proof. The linear solution with the term for £ = k in T are directly estimated with the
Strichartz estimate (4.7)) of Lemma to give the first two terms in the right-hand side of

[@9).
As for the term ¢ = 0, we have from the Strichartz estimate (4.7)) and Holder’s inequality

with (4.8)
H/ sin( 1—A) W)

Hence it remains to show

‘/ sin((t = )V/1 = A 1_A)HZ(PN\IJ( ;0 (t’,g;))w’f—f(t')dt'
9

k
S llwfllgs < llwll?

Tq q w
. s

LEIpRT ~

sy
Xp

ST“HHz(PN\If( Jiow(t0)) [ g Il

for ¢ =1,..,k — 1. As in [I7, Proposition 3.5], by mterpolatlon we have for any 0 < ¢ <
S1 A (1 — Sl)
X5 o LA([0,T); W= (M)) and L9 ([0, T); WS (M) D X3, (4.10)
with
i_l*&/sl l_1*6/81+6/51

= and ,
Q1 q 1 r 2

(4.11)
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and

1 1—5/(1—31)+€/(1—51) and é: 1—8/9—81)4_6/(1—81).

17l q 1 71 r 2
Then, using Lemma with the first embedding in (4.10)), we have

H/t sin((t —t')/1— Ay)
0 V1-14,

N HHZ(PN‘P(t);UN(t,m))w’“‘fH)z;l
S | He(Py¥ () on(t,)w* |

(1
(® )yt

t);oN

(4.12)

Hy(PyU(t);on(t, :E))wk_g(t')dt’

S1
XT

(t,ﬂ:’) Lg\iw—a,ﬁ
< || He(Pyo (t @) i
T 77y,

Next, we can use Corollary (iii) and (i) with Holder’s inequality to estimate this last
term with

. k—t
HHe (PNU(t);on(t, ) ‘}L;/%—%)Bjm |lw HL?B;?OO

S | Ho(PrO(t);on(t2)) |

k-t ”wHZL(’“*’f)‘EW&@*‘Vi’
LT a2 g T

where q1 < g2 < q. The proof of Proposition [4.4] is then completed once we notice that for
{>1,
el e ooy S T o0l e

for some small « > 0 provided that (k—1)g2 < ¢1 and (k—1)r; < ry, which can be insured

by taking & small enough in view of the choice of g3 and (4.8)-(4.11)-(4.12)). Lastly, we
invoke the second embedding in (4.10) to conclude the proof of the proposition. (|

With this proposition at hand, we can conclude as in Subsection [4.1] in the subcritical
case § > Scrit, with a stopping time 7" = T, (|| (uo, u1)||%s1) > 0. However, in the case k > 4
1_k

and s = S¢pit then we have T ¢« = 1 and so we cannot recover the contraction property by
taking T' = 10, (|| (w0, u1)||%=1 ) small enough. Instead, defining as in [I7] the slightly weaker
norm

1—¢ 3
lllyze = max ([lull g e el g 7 10l 2o e ),

we can repeat the argument as in the proof of Proposition [1.4] using the interpolation
lnequallty HUHLZ}WE,T]_ S ||u||Y;l, tO get

Tz (w)llys S 158 (uo, ur)lyzn + HHk(PN‘I’(t);UN(t,iE))HLlTHS1—1

k-1
k—¢
P13 (P on () | 5 Il 4 ol
(=1
and similarly for the difference estimate. Since || - HY;l — 0 as T'— 0, taking then T" small

enough such that

NGRS

HS(t)(uo,ul)HY;l + HH’C(PN\II(t);UN(t’x))HLlTHsl—l S
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for some small 0 < § < 1, then Y7 defines a contraction on the ball of radius 6 (in Y;!).
Lastly, repeating again the argument to obtain (4.9) with the interpolation inequality we
can control

Hw“X;l = ||TT(w)||X;1 < (o, ua) [lgsr + HHk(PN\II(t);O-N(t?:E))HLlTHslfl

k—1

+ T |[Ho(PnU(t); on(t, ) HLng%,oo HZUIIIQZEf + lel'fw;u
=1
which shows that w € X}' and concludes the proof of Theorem |1.9

5. GLOBAL WELL-POSEDNESS AND INVARIANCE OF THE (GIBBS MEASURE

In this last section, we present the proof of Theorem the one for Theorem (1.7
following through the same argument. In the rest of the section, we then assume that
k is an odd integer, and we fix some parameters s < 0 < so < s; < 1 4 s such that
0<—-s<1-51<1-s52< 1. We also simply denote ¥gamp by V.

5.1. The frequency truncated SDNLW. As in [5, B9l 11, 8], for any N € N and k£ > 2
we look at the approximating equation

(02 +1— Ag+ 0)u+ Py Hy(Pyuyion (@) = V2,
(u, Opu)|,_y = (uo,u1).

Note that the same argument as in the previous section shows p ® P-almost sure local
well-posedness for ([5.1)), thus defining a local flow map

ON(t) : HI (M) x Q = H(M).
We have the following global well-posedness result for (5.1)).

Proposition 5.1. For any N € N, (5.1 is p ® P-almost surely globally well-posed. More-
over, the truncated Gibbs measure

(5.1)

1
1y ((Pyu)rtt: da:)d,u, (5.2)

is invariant under (5.1)), in the sense that for any F € Cy(H*(M);R) and any t > 0,

/ /F[CDN(t)(uo,ul,w)]dP(w)de,kH(uo,ul) —/ F(ug, u1)dpn 41(uo, ur).
s(m) Ja Hs (M)

dpN g1 = Zx' exp < -

Proof. After expanding the solution to (5.1]) as uxy = ¥ + wy and writing the equation for
wpy, we can apply Proposition above to get local well-posedness for wy, for all N € N,
in the sense that there exists some stopping time T almost surely positive such that there
exists a unique solution wy € C([0, Ty]; H**(M)) N CH([0, Tx]; H*~1(M)) to
(8? +1-— Ag + 8t)w]v + FNyk(wN) =0,
(wn, Orwn ) |t=0 = (0,0),
where Fiy , is as in (4.2) with f, = Hy (PN\I/(uo, up,w); O'N((L')), and with s; as in Proposition
(with e replaced by —s). Thus justifies that the local flow map
(I)N(t) : (UO, ui, w) — (\I/(UO, Ui, w)(t) + wN(t), 8t\I/(ZLO, ui, w)(t) + 8th(t))

is indeed almost surely well-defined on [0, 7] for some T = Ty (ug, ui,w) > 0.

(5.3)
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Then, defining the energy
1 1
En = / {(Own)? + |[Vun[* + wk }dr + / (Pywy)itde,
we can use (5.3) and (3.1]) to compute
d

%51\7 = —||8tU)N||%2 + <ath,PNHk(PNwN + PN\I/;UN(x))) — PN(PNwN)k>

< <3th,PNHk(PN‘I’;0’N(93))>
L
+ Z <£> <(9th, PN [(PNU}N)k’;izHg(PN\I/; O’N(x)):| >,
(=1
where (-,-) is the usual inner product in L2(M). With Ex(0) = 0, this gives
En(t) < /0 t <6th(t’),PNHk (PyT(t); UN(:U))>dt’
k=l ¢ o
+ Z <€> /0 <6th(t’), PN [(PNwN(t’)) Hg(PN\II(t/); O'N(l'))} >dt/. (54)

The first term in the right-hand side of ([5.4]) can be estimated via Cauchy-Schwarz and
Young’s inequalities to get the bound

t
‘/ <8th(t’),PNHk(PN\II(t');UN(x))>dt’
0
t
5/ ||<9th(t/)||%2al75,4‘HPN}LIk(PN‘I’(t/%O’N(fl”))Hi?L2
0 t

t
< / En(t)dt' + C(N, 1)
0

for some constant C(N,t) almost surely finite for any finite N and ¢. In the second step we
used that for fixed N € N, Py H (Py¥(t);on(z)) is indeed smooth with L*(R;; L*(M))-
norm depending on (and blowing-up with) /N, and that k is odd so that the potential part
of the energy is non-negative.

As for the terms in the sum above, even though we work with N fixed and do not need
to have bounds uniform in N, the homogeneity in the terms on the second line of
does not allow us to conclude directly by a crude estimate on these terms and Gronwall’s
inequality WhenE| k > 5. Thus we use the integration by part trick of [29] to get for

5When k = 3, the integration by part trick is not needed, and one can instead use the argument of [12].
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1</i<k-1:
/ot (Dron (t), P | (Prun ()" H Py 0 () on(@))| )at

= [ (o) H (P w ()i ()Y

- c<(PNwN(t))’“*”1, Hy(PnY(t); 0N($>)>

—¢c /0 t <(PNwN(t’))’f—f+1, 0PNy (¢)Hy 1 (PNU(H); aN(x))>dt’
where we used in the last step. The first term can be bounded by

‘ <(PNwN(t))k—f+l, Hy(PyU (L) on(x)) >)

SIPrwn OIS [ Ho(P T () on (@) o

kil
< poq PN O + O e (Prw e owa)

< eEn(t) + Cle)||He(Pn¥(t); on () Hzf

by using the compactness of M and Young’s inequality (since 1 < ¢ < k —1), the definition
of &x and the same remark as above, for any 0 < € < 1 so that we can absorb the term
with En(t) in the left-hand side of . Note that from the proof of Proposition we
have that the second term is bounded by C(N,t) which is almost surely finite for any finite
t>0.

As for the other term, we have as above

| /0 t ((Pywn () P NN () He o Py (E); o (@) )l

k+1
o)

t t k+1
< / / (Pywn () dedt’ + / 1000 N ()| | Hems (P () o () || o
0 M 0

t
< / En(t)dt' + C(N,t).
0
Hence using Gronwall’s inequality with Ex(0) = 0, we deduce that

sup En(t) SC(N,Ty) < o
t<Tn

almost surely on the set {T < oco}. Finally, using again that & is odd, we conclude that

sup [|(wn (t), dpwn (£)) |5, < sup En(t) < oo
t<Tn t<Tn

almost surely on {7y < co}. This shows that wy exists globally, and so does uy.
As for the invariance of py ;41 under the flow ®N of (5.1)), we can write
N (t,w) = (@Y (t,w), (1 — ) (T, 9, ¥)(t,w)) on (Ex x Ex) ® (Ex x Ey),

when we see (V(t,w), ;¥ (t,w)) as a measurable map from H*(M) to H*(M).
First, for the linear part (1 — IIn)(¥(t,w), 0¥ (t,w)), we can repeat the argument of
Proposition to get it leaves the Gaussian measure (1 — IIy),p invariant; indeed, we
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have for any F' € Cy(H*(M);R) and initial data (ug,u1) with law (1 — IIy),p

/ sw/ (1= T B (8, o, )| AP () dp(uo, wn)

M—oo

= lim / )/QF[PM(lHN)\ff(t,uo,ul,w)]dIP’(w)du(uo,ul)

by the dominated convergence theorem, where ¥ = (¥, d;¥). Then from the same argument
as in the proof of Proposition we have that [Pys(1 — IIy)],.p is invariant for Py (1 —
Iy)(V(t,w), 0¥ (t,w)), so we can continue with

= lim F[PM(l — HN)U(), PM(l — HN)ul)]du(uo, ul)
M—o0 H5 (M)

= / F[(l —y)ug, (1 — HN)Ul)]d,U(UOa u).
s(M)

This shows the invariance of (1 — IIy),u under (1 — In)(¥(t,w), 0¥ (¢, w)).

On the other hand, decomposing IIxyuxy = } )\ <y @n@n and Hyoiuny = >\ < bnn,
we can write IIy®" as the flow of the finite-dimensional system of stochastic differential
equations (SDEs) on R?A~:

da, = bydt
An—1

dby = | = (n)?an = (PxHi(Py Y @upuion(a) ). n) = budt + V2dB,(1)
n1=0

(5.5)
for n = 0,..., Ay — 1, where as in Proposition we define Ay = dim Ey. If we redefine
the truncated energy

An—1
def 1

gN(a()y"waAN*l?bO?'”vbAN*l) = 5 Z (<AN>2a%+bi)
n=0

-

Ay—1
k—i—l/ Hi1 (Pw Z anpn(2); on())dz,

we can repeat the argument of the proof of Proposition Wlth 5 ~ instead of & n to get
that the truncated Gibbs measure Z]?,le*GvaH(HN)*,u, with the density e~¢N++1 as in
Lemma, and the partition function Zy, is invariant under the dynamics of . All
in all, this shows that the full dynamics @V = (IIy®", (1 — IIy)(¥, 9, V)) for leaves
PN Jt1 = Znt e ONkr (TN )t @ (1 — Ty )4p invariant. O

5.2. Proof of Theorem We now prove the almost sure global existence for and
the invariance of the Gibbs measure. We begin by constructing a set of arbitrary small
complementary probability on which we have good control on the solution to . We
follow closely [8] (see also [19] for the argument in the context of stochastic equations).
For N € N, recall that ®V(t) is the global stochastic flow map of given by Propo-
sition and take (ug,u1) with law py gy1. Note that @V (¢)(ug,u1) still exists globally
for pn k41 ® P-almost every (ug, u1,w) since py 41 < p. By Proposition we thus have
that for any tg > 0, the law of ®V(tg)(ug,u1) is also given by PN k+1.- Moreover, since B
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in (1.8)) is a cylindrical Wiener process on L?(M), we also have that for any to > 0, the
translation ¢ — t + tp defines a measure-preserving transformation 7, on (€2, P) given by

B(t, ¢, (w)) = B(t + to,w) — B(to,w). (5.6)
We can thus extend ®V(t) : H5(M) x Q — H*(M) as a measure-preserving map
BN (1) : { (H* (M) x Q, pr 1 @ P) = (H(M) X Q, py g1 @ P)
(uo, u1,w) = (DN (¢)(uo, ur,w), 7(w)).
We then have the following control on ® (¢).

Proposition 5.2. There exists C > 0 such that for all m, N € N, there exists a measurable
set X C H¥(M) x Q such that
PN k+1 @ P(HP (M) x Q\ X)) <277, (5.7)
and for all (up,u1,w) € X% and t > 0, the solution ®N (t)(ug, ur,w) to satisfies
BN (£) (0, w1,) |0 < C(m +log(1 + 1)) 2. (5.8)
Proof. First, we recall that ¥ = W4, is the stochastic process on H*(M) x Q defined by

U(t,up, ur,w) = OV (t)ug + V(t)(ug +u1) + \/i/ot V(t—t)dB“(t).

Then, for m,j € N, we set
6 =D "*m+j)" % (5.9)

given by Proposition u with R = D(m + j)g, 0 = R~ and ¢ = 2, for some D > 1
independent of N, m,j to be fixed later, such that as in Proposition in the nonlinear
estimates we have C'§ iR < % for various constants C' such as in (4.3]).
Next, as in [§] (see also [3, [5]), we can define
(27 /4]
Spd ) @ (as) ! (BR(D))

a=0

where [27 /5] denotes the integer part of 27/4, and

B%’J(D) d:ef {(uo,ul,w) € HS(M) X Q,

H (\II(U(), Ul,(d), atqj(u(]vulaw)) HC([OJ];’HS) < D(m +])§7 (510)

MBS

Ve=1,.. k,

‘HZ(PN\II(U(M ulaw); O'N(l‘)) HLQ([OJ];WS,OO) < D(m +J) )
(5.11)

HHE (PM‘I’(U07 Uy, w)a O'M(LU)) - Hf (PN\I](UOa uy, w)v O-N(l‘)> HLQ([O,l];WS,OO)
< M~ D(m+ )%, VM < N}, (5.12)
for some 0 < ¢ < —s in view of (3.7), and D > 1 is to be taken large enough but
independent of m, j, N. In particular, note that using (/5.6 and Proposition with the
choice of § in (5.9), for any a = 0, ...,[27/6] and ® (ad)(uo, u1,w) € By’ (D) we have that

def

wio(t) = BN (t + ad)(ug, ur,w) — W(t, BN (ad) (ug, u1,w))
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satisfies
(e drowa)leqosiay < D7 m+4)72, (5.13)
where 51 = 1+ 2s. This implies that for any a = 0,...,[27/6] and any (ug,u1,w) €
OV (ad) 1By (D), the use of and leads to

9% ¢+ a8) (w0, w1, | g0

< [[(w(t, @ (ad) (uo, ur,w)), ¥ (t, @V (ad) (o, ur, w)) e (o) + (W ar Frwna)lleospmer)
<Dm+j)% +D Nm+j)5 <Dm+j+1)3 (5.14)
provided that D is large enough.
Next, using that ®V(t) : (H5 (M) x Q, pypi1 @ P) = (HE(M) x Q,pyj1 @ P) s
measure-preserving, we can estimate
PN+ ® P(HA (M) x Q\ S07)
[27/4]
< 3 o @ P{BN(a0) 7 (1 (M) x 2\ BRI (D)) }
a=0
2 s m.j
S Sonust @ P(H (M) x Q\ B (D))
Using Cauchy-Schwarz inequality with the uniform (in N) integrability property of the
density e~ GNk+1(u0) of PN k+1 given by Lemma we can continue with

2 s i 1
S S e gy © B(HA (M) x 2\ BRI (D))
2 3

k
2

S 5{# ® P(H (U (uo, u1,w), 0r¥ (ug, u1,w)) HC’([O,l];Hs) > D(m + j) ) ’

NI
N|=

k
+ Zu ® IP’(HHg(PN\I/(uo, up,w); UN(x)) HLZ([O,l];WSvOO) > D(m + j)
=1

k
303w P([[He (P (uo, ur,w)iou(@))

=1 M<N

)

1
— Hg(PN\I/(U()v u, w); UN(x)) HL2([0,1];W57C’°) > M™*D(m +j)§) 2 }

Using the tail estimates (3.6[), (3.7]) (which also hold for ¥) and ([3.26)) given by Proposition
together with ([5.9)), we can finally bound for some 0 < £ € € € —s

PN o1 @ P(H (M) x Q\ Z%J) < 2 D*m + j)2k{e—cD2(m+j)k

i(ecD%(m+j)]g n Z efcMED%(m+j)%>}

=1 M<N

+

5 2jD4(m +j)2ke—cD%(m+j) < 2—(m+j) (5‘15)

for D > 1, independently of N, m, j.
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Next, we deﬁne
7 def
e ﬂz J
% ?Vl]'
=1

With this definition, we see that (5.7)) is a direct consequence of (5.15)). Moreover, for any
(up,u1,w) € X and ¢ > 0, if j € N is such that 2971 < 1+ < 27, then (5.8) follows from

(5.14) since (ug,u1,w) € Z%’j. O
We can now finish the proof of the global existence. Let us set
Y™ = limsup Xy
N—o0
and
==
meN

First, we show that ¥ is of full pgy; ® P-measure. From Fatou’s lemma we get for any
m e N

prr1 @ P(E™) > limsup prq1 @ P(X7)

N—oo

Using next the convergence of the density e CNk+1 of PN k+1 to that of piyi given by
Lemma [3.2] (i), and (5.15)), we deduce the lower bound

> limsup py p41 @ P(XF) > 1 — Z 9~ (m+7),
N—oo jen

This proves that
i m R H —(m+j) _
et @P(X) > lim pryy @ P(S™) > 1 W}%Zz =1.
JEN
Now for any (ug,u;,w) € X, we have by construction that there exists m € N, C' > 0
and a sequence N, — oo such that for all j,p € N and all 0 < ¢ < 27,

12 (£) (ug, ur, w)[|3s < CD(m +j+1)%. (5.16)
Thus the global well-posedness part of Theorem [I.4] follows from the following proposition.

Proposition 5.3. Let m,j € N, N, — oo and (up,ui,w) € mpgN Z%j. Then
{@N> (t) (up, u1,w) — \If(t)(uo,ul,w)}peN is a Cauchy sequence in C’([O,Q]];HSQ(M)). In
particular, {@Np(t)(uo,ul,w)}peN is a Cauchy sequence in C([0,2’];H*(M)). Here s <
O0<so<si<lHswithO< —s<1—8<1—s9K1.

Note that contrary to [8], we prove convergence for ®™»(t)(ug, u1,w) — ¥ (t)(ug, u1,w)
instead of Py, &7 (t)(ug,u1,w), as in [5]. This allows us to prove the convergence in
the stronger topology of #*?(M) instead of H*(M), which is used to control the difference
between the flow initiated at ®™» (ad)(uo, u1,w) and at ®V (ad)(ug, uy,w) fora = 1, ..., [27/4].

First, note that since our general local well-posedness result in Proposition [4.1|is robust
enough, we can use the same argument as for the proof of Theorem in the previ-
ous section, with the truncated dynamics in place of , to get that the limit
B (1) (ug, w1, w) = (u, ) = limp_yo0 OV (£) (ug, u1,w) exists in C([0,T]; H*(M)) on a set
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of full y ® P-probability, for a random time 7' = T'(ug, u1,w) p ® P-almost surely positive,
and coincides with the local solution constructed in Theorem Then we use the previous
proposition to construct iteratively ®(t)(ug,u1,w) on larger and larger time intervals. In-
deed, up to replacing ¥ by Eﬂi, which is still of full probability, we can use Proposition
along with the definition of X, to get that for any (ug,u;,w) € X, there exists m € N and
N, — o0 as p — oo such that (ug, ui,w) € ﬂmeN Z%j. In view of the previous proposition,
it follows from that for any ¢ > 0

[MIE

|1 (t)(ug, ut,w)|ps = lim H@Nl’(t)(uo,ul,w)HHS < CD(m+log(1+1t))2.
pP—00
In particular ®(¢)(ug, u1,w) is globally defined for any (ug,u1,w) € X.

The invariance of pj41 then follows directly from the invariance of px, x41 under (5.1)
along with the convergence of ®™7 (t)(ug, uy,w) towards ®(t)(ug, u1,w) given by the previous
proposition and the convergence of pn, k11 towards pgi1 given by Lemma @ Indeed, as
n [38], for any initial data (ug,u1) with law p, any test function F' € Cy(H*;R) and any
t > 0, we have by Lemma Proposition and the dominated convergence theorem

/ /F[@(t)(uo,ul,w)]dIP’(w)dpkH(uo,ul)

Hs(M) Ja

-1 un. w1 w)) e~ Grt1(wo) w Uo. U
_y /H » /Q F[®(t) (o, u1, w))] dP(w)dps(up, u1)

= lim Zy] / . /Q F [ (1) (ug, ur, w)] e 31 (40) dP(w) dpa(ug, wr)
where 7 = st(M) e~ Crr1(u0)dyy(ug, up) and Zn, = fHS(M) e_GNP”““(“O)d,u(uo,ul). Now

we can use the invariance of py, r11 under ®"»(t) given by Proposition and we can
continue with

= lim F(UO,Ul)d,ONp,kH
P—00 Jqus

= [ F(ug,u1)dpg+1.
HS

This shows the invariance of pg1. Hence the proof of Theorem will be completed once
we prove the proposition.

Proof of Proposition[5.3. Let us fixm,j € N, d > 0asin (5.9), and (ug, u1,w) € MNpen E%’f.
In the following, we fix two (large) integers N, M € {Np}pen. Again, we write

(wy, ywn ) (t) = DN (t) (ug, uy, w) — U(t, ug, u, w),

and we denote by ®V (t) (respectively ®J(¢)) the first (respectively second) component of
®N(t). We will control inductively the difference (wy (t), dywn (t)) — (war(t), dpwar(t)) on
the time intervals [ad, (a + 1)d], a = 1, ..., [27/5]. We begin by controlling the difference on
the first time interval, corresponding to a = 0.
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Then on [0, d], we have for N < M:

wp (t) — wn (t)
= sz; (E) /Ot V(t— t,){PM [HZ(PM\IJ(t,,uo,ul,w); UM($)) (PMU)M(t/))k_Z]

— Py [HZ(PN‘I’(tlqu,uhw); oN(g;)) (PNwN(t/))k_q }dt/

- sz; (E) /Ot V(t— t’){(PM —Py) [He (PM‘I’(t/’uO,ul,w);gM(x)> (PMwM(t/))k—e]

+ Py {(Hg(PM\I'(t’,uo,ul,w); O'M(l‘))

— HE(PN\I/@/, ug, ul,w);aN(a:))) (PMwM(t/))kiq

k—¢ k—¢
+PN [Hg(PN\IJ(t',uo,ul,w);oN(a;))((PMwM(t')) - (PN’U}N(t/)) )]}dtl
=1+ 1+ I (5.17)
To estimate these terms, we proceed as in the proof of Proposition We begin with

I Tl 0,60 m52)

s g H(PM —Py) [He (PM\If(uo,m,w); O'M(:E)) (PMlUM)k_q ‘
k

S Z NS2—s1

=0

L([0,0];H#21)

[Hg (PM\P(UOa u, w); UM(QU)) (PMwM)kiq ‘

L([0,0];H#171)

k
_ 1 k—¢
S SN | H (P (o, un, @) oar (@) )| o gogaweey P MM 701
=0
< C(m, j)N>"",
for some constant C'(m, j) independent of N, M, where the second to last estimate comes
from the same argument as in the proof of Proposition and the last one from the

condition (5.11]) given by (ug,u1,w) € B]\m/[’j (D), with (5.13) and the choice of § in (5.9).

Similarly, we bound
Il ((0,8); m222)

< Ek: H [Hg(PM\IJ(uo,ul,w); O'M(:B))
/=1

— Hy (PN (ug,ur,w); UN(”C))] (PM“)M)’H‘

L([0,0];H#2~1)

< 55{HH;€(PM\II(UO, ur,w);on (@) — Hy(PnY (uo, ur, w); UN(x))‘

k-1

+ Z HHg(PM\IJ(uo, ur,w);on(z)) — He(P NP (uo, up,w); O‘N(l’))‘
(=1

L2([0,0];H#2~1)

L2([0,8 W)
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k—t
X HPMwM||C([0,5};HS1)}
< C(m,j)N"F,

where the last bound comes from (5.12)) given by (ug,u1,w) € Bﬁ’j (D) and from (5.13))
with the choice of 4.

Finally, we can further decompose

I = z_:l (E) /Ot Vit — t/)PN{Hg(PN\P(t',uo,ul,w); gN(x)) [(wN(t')k_Z _ (PNwN(t’))k_Z)

N ((PMwM(t/))k_E B wM(t’)k’€> 1 (wM(t/)kfe _ wN(t/)kfeﬂ }dt/

We estimate similarly as before

k-1
1T (| e jo,5]; E52) S 25% [ He (PN (uo, u1,w); o8 () || 2 (01700751009
=0
k—t— k—t
x (1= PN)wNHC([O,(S};HSZ) (HPNwNHC([O,(Sl];HS2 + [lwnleg (o, 53 HS2)>
< C(m, j)N>"",

where the first estimate follows from the same argument as in the proof of Proposition
provided that sy < s31 < 1+ s < 1 is close enough to 1. The same argument applies to
Il and gives the same bound (with M in place of N), and the last term can be bounded
similarly by

k-1
1
Hm?’HC([O,é];HSZ) ;52 | He(P T (ug, u,w); 0 :U))HLQ([O,I];WS»OO)

k—t—1 k—t—1
X [Jwar = wNHc ([0,8);H52) (HU’MHC (0.8);E52) T H“’NHC ([0,6]; H52)>

< C82D(m+ )7 |Jwy — wn |l e(o,0:m552)

where the last estimate comes again from (5.11)) thanks to (ug,u1,w) € Bﬁ’j (D), and from
(5.13]) with the argument of Proposition applied with sy (provided that so is sufficiently

close to 1). With our choice of C’(ﬁD(m + ])§ — C62R < 3, we can absorb this last term
in the left-hand side of ([5.17)).

The same arguments also apply to control ® (t) — ®31(¢) on [0, 6]. Therefore, gathering
the estimates above leads to

H<I>M(t)(uo,u1,w) - cI>N(t)(uo,ul,w)HC([O’(ﬂﬁ_m) < C(m,j)(N®=7% + N7%) (5.18)

for any N < M. In particular this shows the convergence on the time interval [0, d].
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We now investigate the convergence on the second time interval [d, 2d]: we first decompose
H(I)M(t + 5) (u07 uy, w) - (I)N(t + 6) (Uo, uy, OJ) HC([O,(S];HSQ)
< [[@™ ()M (5) (o, ur, w) — DV (OB (8) (w0, w1, )| 0,572

+ H<I>N(t)E>M(6)(u0,u1,w) — N (&)DN (6)(uo, ulvw)HC([o,é];wz)'

Note that replacing W (ug, u1,w) by W(%M(é)(uo, u1,w)) in the previous estimates and
using that we still have ®M (8)(ug, u1,w) € By’ by choice of (ug,u1,w) € Xy’ shows that
the first term above is still bounded by

@M (£)®M (8) (uo, ur,w) — N ()M (8) (ug, ur, w)
< C(m,j)(N®=~ + N°%)

HC([O,&];?—LSQ)

for any N < M.
Thus we need to deal with the second term. We can redefine

war(t) = &Y ()M (6) (uo, ur, w) — U (t, &M (8) (uo, u1,w))
and
wn(t) = O (1) BN (8) (uo, ur,w) — (¢, N (8)(ug, u1,w)),

and since N, M € {Np}pen and (uo,u1,w) € (\,ey Z%’Jj we have in particular that both

M (§)(ug, u1,w) € By (D) and &N (8)(ug, u1,w) € Byr? (D) so that both wyy and wy are
well-defined and enjoy the bound (5.13). Moreover, by definition of ®(¢) and ¥, they
satisfy the following Duhamel formula:

wy = Zzi% <IZ> /Ot V(t— t,)PN{Hﬁ (PN\I/(t’,5M(5)(u0,u1,w));01\/(aﬁ)) (PNwM(t’))kz}dt’,

and
AN = k—¢
wy =Y <£>/ V(t—t’)PN{Hg(PN\I!(t’,@N(é)(u(),ul,w));oN(a;)> (Prwn () }dt’.
=0 0
To estimate in C([0,0]; H*2(M)) the difference
o (£)DM () (uo, ur, w) — @7 () BN (8) (uo, ua,w)
=U(t, &)M(é)(uo,ul,w)) — (¢, <T>N(5)(uo,u1,w)) + wy — wy,
we first bound directly the linear terms by
H\Il(t M (0) (ug,ul,w)) - \I/(t, <T>N((5)(u0,u1,w)
H<I>M 5)(u07u1,w)) — (IDN((F)(Ug,ul,w)‘
< C(m,j)(N®~% + N°%)

thanks to (1.11]) and (5.18).

) HC([O,(S];H%)

Ho2
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To estimate the difference of the nonlinear components, we decompose

Wp — WN

- g <lz> /Ot V(t— t,)PN{HZ (PN\IJ(t’, M (8) (uo, U1,w));UN(:B)> (PNwM(t/))k—e
_ He(PN\I’(t/’ <5N(5)(UO,U1,W));0N(95)> (PNU)N(t/))k_E}dt/
<lz> /Ot V(t— t,)PN{ [He (PN\IJ(L", M (8) (uo, ul,w));gN(x))

— Hy(Pw (¢, 8N(6) (w0, w1, ) o (@) ) | (Pavwns (1)

+H, (PN\I/(t’, E)N(é)(uo,ul,w));azv(x)> [(PNwM(t/))kie - (PNwN(t,))kiq }dt,

::IN[—i—]ﬁ.

k
=0

First note that we can estimate III exactly as III in (5.17), giving the bound
~ , B 1
HHIHC([O,E];HS2) < C(m,j)N>=7"" + §HwM - wNHC([o,a];HS2)-
Finally, we estimate the remaining term by

1o 529

< i H |:Hg (PN‘I/(&)M((S)(Uo,ul,w));O‘N(l‘)>

/=1

— Hy (PN\I/(&)N((S)(Uo,ul,UJ));UN(ZL‘)>] (PNwM)kJ

L([0,8;H®271)
Writing then

-1
l I—i
Hy(u; — Hy(v; =— H;(u; —u) "
o)~ o) = =3 () itsom) (e~
thanks to (3.1)), we can then estimate the previous term with
ko1 B ~ —i
DINE [PN\I/(QDM(é)(uO,ul,w)) - PN\IJ(<I>N(5)(u0,u1,w))]
£=1 1=0

x H; (PN\I/(&)N(&)(UO, ul,w));aN(a:)) (PNwM)k_g

£2([0,6];Hs2—1)

H; (PN\I/(&)N((s)(uo, ul,w));aN(x))

L2([0,1;W =)

=0
x| @ (@M (0) o, w1, 0)) = W (Y (8) (10, ur, )| [0 .

C([0,0];H52)
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provided again that sp is close enough to 1 (depending on k). Using then that
®N(8)(up, u1,w) € By’ (D) and (5.13)),(5-18)), we finally get

Hﬁuc([oﬂ;}[%) < C(m,j)(stfsl + N,E).

Gathering the estimates above, we obtain
HwM - wNHC([O,é};HSQ) <AC(m, J)(N*=7"1 4+ N7%)
which leads to
[[(wn, Bewn ) (t + ) = (war, ewnr) (t+ 6) || o spepgeay < C2(m, 5) (N7 + N7°F)

for some larger constant Co(m, j) > C(m, j). This shows that {(wy,, 8thp)}p€N is also a
Cauchy sequence in C(]0,24]; H%2(M)).

We can then proceed inductively on a = 0, ..., [27 /6] and repeat the previous estimates
by using that at each step ®V(ad)(ug,u1,w) € B’ (D) since (ug,u1,w) € L. Thus
we deduce that there exists a (large) constant Cy; /5(m,j) > 0 such that for any N, M €
{Np}pen with N < M it holds

I, Bron) = (war, Bwan) o syeay < Corgpm N1 4 N7F). (5.19)

This is enough to show the convergence of {®™(t)(ug,uy,w) — W(t)(up,u1,w)} in
C([0,27); H®2(M)). As a result, {@Np(t)(uo,ul,w)}peN converges in C([0,27]; H*(M)).
This concludes the proof of Proposition |5.3 U

Remark 5.4. By slightly modifying the proof of Proposition we can indeed
show that for (ug,u;,w) € 3, the entire sequence {@N(t)(uo,ul,w)}NeN converges in
C([0,27]; H*(M)) for any j € N. See for example Corollary 9.11 in [28].

Acknowledgements. The authors are thankful to Younes Zine for careful proofreading.
They also wish to thank the anonymous referees for their careful proofreading and helpful
remarks which improved the quality of the paper.

T.O. was supported by the European Research Council (grant no. 637995 “ProbDyn-
DispEq” and grant no. 864138 “SingStochDispDyn”). T.R. was supported by the Euro-
pean Research Council (grant no. 637995 “ProbDynDispEq”) and the German Research
Foundation (DFG) through the CRC 1283. N.T. was supported by the ANR grant ODA
(ANR-18-CE40-0020-01).

REFERENCES

[1] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations.
Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. xvi+523 pp.

[2] 1. Bailleul, F. Bernicot, Heat semigroup and singular PDEs, J. Funct. Anal. 270 (2016), no. 9, 3344—
3452.

[3] J. Bourgain, Periodic nonlinear Schrodinger equation and invariant measures, Comm. Math. Phys. 166
(1994), no. 1, 1-26.

[4] J. Bourgain, Nonlinear Schrédinger equations, Hyperbolic equations and frequency interactions (Park
City, UT, 1995), 3-157, IAS/Park City Math. Ser., 5, Amer. Math. Soc., Providence, RI, 1999.

[5] J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrédinger equation, Comm. Math.
Phys. 176 (1996), no. 2, 421-445.

[6] D. Brydges, G. Slade, Statistical mechanics of the 2-dimensional focusing nonlinear Schrodinger equa-
tion, Comm. Math. Phys. 182 (1996), no. 2, 485-504.



(7]
(8]
(9]

STOCHASTIC NLW DYNAMICS ON SURFACES 55

N. Burq, P. Gérard, N. Tzvetkov, Strichartz inequalities and the nonlinear Schridinger equation on
compact manifolds, Amer. J. Math. 126 (2004), no. 3, 569-605.

N. Burq, L. Thomann, N. Tzvetkov, Long time dynamics for the one dimensional non linear Schrédinger
equation, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2137-2198.

N. Burq, L. Thomann, N. Tzvetkov, Remarks on the Gibbs measures for nonlinear dispersive equations,
Ann. Fac. Sci. Toulouse Math. 27 (2018), no. 3, 527-597.

N. Burq, N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,
Invent. Math. 173 (2008), no. 3, 449-475.

N. Burq, N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. II. A global exis-
tence result, Invent. Math. 173 (2008), no. 3, 477-496.

N. Burq, N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc.
(JEMS) 16 (2014), no. 1, 1-30.

G. Da Prato, A. Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab. 31
(2003), no. 4, 1900-1916.

G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Second edition. Encyclopedia of
Mathematics and its Applications, 152. Cambridge University Press, Cambridge, 2014. xviii+493 pp.
E. B. Davies, Spectral theory and differential operators, Cambridge University Press 42 (1996).

C. Fefferman, L? bounds for pseudo-differential operators, Israel J. Math. 14 (1973), no. 4, 413-417.
M. Gubinelli, H. Koch, T. Oh, Renormalization of the two-dimensional stochastic nonlinear wave equa-
tions, Trans. Amer. Math. Soc. 370 (2018), no 10, 7335-73509.

M. Gubinelli, H. Koch, T. Oh, L. Tolomeo, Global dynamics for the two-dimensional stochastic nonlinear
wave equations, Int. Math. Res. Not. (2021), rnab084, https://doi.org/10.1093/imrn/rnab084

M. Hairer, K. Matetski, Discretisations of rough stochastic PDEs, Ann. Probab. 46 (2018), no. 3,
1651-1709.

L. Hérmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218.

L. Hérmander, The analysis of linear partial differential operators III : Pseudo-differential operators,
Classics in Mathematics (2007), Springer Berlin.

J.L. Lebowitz, H. A. Rose, E. R. Speer, Statistical mechanics of the nonlinear Schridinger equation, J.
Stat. Phys. 50 (1988), no. 3, 657—687.

L.V. Kapitanskii, Norm estimates in Besov and Lizorkin-Triebel spaces for the solutions of second-order
linear hyperbolic equations, J. Soviet Math. 56 (1991), 2348-2389.

H.P. McKean, Statistical mechanics of nonlinear wave equations. IV. Cubic Schrédinger, Comm. Math.
Phys. 168 (1995), no. 3, 479-491. Erratum: Statistical mechanics of nonlinear wave equations. IV. Cubic
Schrodinger, Comm. Math. Phys. 173 (1995), no. 3, 675.

G. Mockenhaupt, A. Seeger, C.D. Sogge, Local smoothing of Fourier integral operators and Carleson-
Sjolin estimates, J. Amer. Math. Soc. 6 (1993), no. 1, 65-130.

E. Nelson, A quartic interaction in two dimensions, 1966 Mathematical Theory of Elementary Particles
(Proc. Conf., Dedham, Mass., 1965) pp. 69—73 M.L.T. Press, Cambridge, Mass.

D. Nualart, The Malliavin calculus and related topics, Second edition. Probability and its Applications
(New York). Springer-Verlag, Berlin, 2006. xiv+382 pp.

T. Oh, M. Okamoto, L. Tolomeo, Focusing ®4-model with a Hartree-type nonlinearity, arXiv:2009.03251
[math.PR].

T. Oh, O. Pocovnicu, Probabilistic global well-posedness of the energy-critical defocusing quintic non-
linear wave equation on R, J. Math. Pures Appl. (9) 105 (2016), no. 3, 342-366.

T. Oh, O. Pocovnicu, N. Tzvetkov, Probabilistic local well-posedness of the cubic nonlinear wave equa-
tion in negative Sobolev spaces, to appear in Ann. Inst. Fourier (Grenoble).

T. Oh, K. Seong, L. Tolomeo, A remark on Gibbs measures with log-correlated Gaussian fields,
arXiv:2012.06729 [math.PR].

T. Oh, L. Thomann, Invariant Gibbs measures for the 2-d defocusing nonlinear wave equations, Ann.
Fac. Sci. Toulouse Math. (6) 29 (2020), no. 1, 1-26.

T. Oh, L. Thomann, A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing
nonlinear Schrédinger equations, Stoch. Partial Differ. Equ. Anal. Comput. 6 (2018), 397-445.

G. Parisi, Y. S. Wu, Perturbation Theory Without Gauge Fizing, Sci. Sin. 24 (1981), no. 483.

S. Ryang, T. Saito, K. Shigemoto, Canonical stochastic quantization, Progr. Theoret. Phys. 73 (1985),
no. 5, 1295-1298.



56 T. OH, T. ROBERT, AND N. TZVETKOV

[36] B. Simon, The P(p)2 Euclidean (quantum) field theory, Princeton Series in Physics. Princeton Univer-
sity Press, Princeton, N.J., 1974. xx+392 pp.

[37] C. Sun, N. Tzvetkov, Gibbs measure dynamics for the fractional NLS, STAM J. Math. Anal. 52 (2020),
no. 5, 4638-4704

[38] L. Tolomeo, Unique ergodicity for a class of stochastic hyperbolic equations with additive space-time
white noise, Comm. Math. Phys. 377 (2020), no. 2, 1311-1347.

[39] N. Tzvetkov, Invariant measures for the defocusing nonlinear Schrédinger equation, Ann. Inst. Fourier
(Grenoble) 58 (2008), no. 7, 2543-2604.

[40] M. Zworski, Semiclassical analysis. Graduate Studies in Mathematics 138, American Mathematical
Society, Providence, RI, 2012.

TADAHIRO OH, SCHOOL OF MATHEMATICS, THE UNIVERSITY OF EDINBURGH, AND THE MAXWELL IN-
STITUTE FOR THE MATHEMATICAL SCIENCES, JAMES CLERK MAXWELL BUILDING, THE KING’S BUILDINGS,
PETER GUTHRIE TAIT ROAD, EDINBURGH, EH9 3FD, UNITED KINGDOM

Email address: hiro.oh@ed.ac.uk

TRISTAN ROBERT, INSTITUT ELIE CARTAN, UNIVERSITE DE LORRAINE, B.P. 70239, F-54506
VAND®UVRE-LES-NANCY CEDEX, FRANCE
Email address: tristan.robert@univ-lorraine.fr

NIKOLAY TZVETKOV, LABORATOIRE AGM, UNIVERSITE DE CERGY-PONTOISE, CERGY-PONTOISE, F-
95000, UMR 8088 pu CNRS, FRANCE
Email address: nikolay.tzvetkov@cyu.fr



	1. Introduction
	1.1. Nonlinear wave equations
	1.2. The 42-measure and the corresponding hyperbolic dynamical problem
	1.3. Renormalization of the nonlinearity
	1.4. Well-posedness of the renormalized dynamics
	1.5. Scheme of proofs and organization of the paper

	2. Functional calculus and semi-classical pseudo-differential calculus
	2.1. Geometric setting
	2.2. Functional calculus
	2.3. Pseudo-differential calculus
	2.4. More on the function spaces

	3. Probabilistic estimates
	3.1. Probabilistic tools and construction of the Gibbs measure
	3.2. Stochastic estimates for (1.1) and (1.2)
	3.3. Estimate on the stochastic convolution

	4. Local well-posedness results
	4.1. Proof of Theorems 1.2 and 1.6
	4.2. Deterministic estimates
	4.3. Proof of Theorem 1.9

	5. Global well-posedness and invariance of the Gibbs measure
	5.1. The frequency truncated SDNLW
	5.2. Proof of Theorem 1.4

	References

