

Edinburgh Research Explorer

Querying Incomplete Numerical Data: Between Certain and
Possible Answers
Citation for published version:
Console, M, Libkin, L & Peterfreund, L 2023, Querying Incomplete Numerical Data: Between Certain and
Possible Answers. in Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS ’23). PODS '23, ACM Association for Computing Machinery, pp. 349-358, 42nd
ACM Symposium on Principles of Database Systems , Seattle , Washington, United States, 18/06/23.
https://doi.org/10.1145/3584372.3588660

Digital Object Identifier (DOI):
10.1145/3584372.3588660

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS
’23)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Jul. 2023

https://doi.org/10.1145/3584372.3588660
https://doi.org/10.1145/3584372.3588660
https://www.research.ed.ac.uk/en/publications/8a013531-cf97-431b-9aa4-c9f36ca03ae0

Querying Incomplete Numerical Data:
Between Certain and Possible Answers

Marco Console

Sapienza, University of Rome

Rome, Italy

console@diag.uniroma1.it

Leonid Libkin

The University of Edinburgh

Edinburgh, United Kingdom

l@libk.in

Liat Peterfreund

LIGM, Université Gustave Eiffel, CNRS

Champs-sur-Marne, France

liat.peterfreund@univ-eiffel.fr

ABSTRACT

Queries with aggregation and arithmetic operations, as well as

incomplete data, are common in real-world database, but we lack

a good understanding of how they should interact. On the one

hand, systems based on SQL provide ad-hoc rules for numerical

nulls, on the other, theoretical research largely concentrates on the

standard notions of certain and possible answers. In the presence

of numerical attributes and aggregates, however, these answers are

often meaningless, returning either too little or too much. Our goal

is to define a principled framework for databases with numerical

nulls and answering queries with arithmetic and aggregations over

them.

Towards this goal, we assume that missing values in numerical

attributes are given by probability distributions associated with

marked nulls. This yields a model of probabilistic bag databases

in which tuples are not necessarily independent since nulls can

repeat. We provide a general compositional framework for query

answering and then concentrate on queries that resemble stan-

dard SQL with arithmetic and aggregation. We show that these

queries are measurable, and their outputs have a finite representa-

tion. Moreover, since the classical forms of answers provide little

information in the numerical setting, we look at the probability that

numerical values in output tuples belong to specific intervals. Even

though their exact computation is intractable, we show efficient

approximation algorithms to compute such probabilities.

CCS CONCEPTS

• Theory of computation → Logic; Incomplete, inconsistent,

and uncertain databases; Logic and databases; •Mathematics

of computing→ Probabilistic algorithms; Probabilistic representa-
tions; • Information systems→ Incomplete data; Relational

database model.

KEYWORDS

Nulls; numerical attributes; aggregate queries; probabilistic databases;

approximations; certain and possible answers

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0127-6/23/06. . . $15.00

https://doi.org/10.1145/3584372.3588660

ACM Reference Format:

Marco Console, Leonid Libkin, and Liat Peterfreund. 2023. Querying Incom-

plete Numerical Data: Between Certain and Possible Answers. In Proceedings
of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Data-
base Systems (PODS ’23), June 18–23, 2023, Seattle, WA, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3584372.3588660

1 INTRODUCTION

Handling incomplete data is a subject of key importance in databases,

but the practical side of it has many well-known deficiencies [13–

15], and the state-of-the-art in theoretical research has a rather

narrow focus in terms of its applicability (see, e.g., [9] for a recent

survey). In particular, systems based on SQL follow a rather specific

approach to handling incomplete data where all types of incom-

pleteness are replaced with a single null value, and specific rules

are applied to those nulls depending on their usage (e.g., 3-valued

logic in selection conditions with true tuples retained; 3-valued
logic in constraint conditions with non-false constraints satisfied,
syntactic equality of nulls for grouping and set operations). With

these rules frequently leading to undesired behaviors, many practi-

cal applications attempt to impute incomplete data in a statistically

meaningful way, i.e., resembling the distribution of other data val-

ues in a database [18]. While standard query evaluation can be used

on the now complete data, the knowledge that the original data

was incomplete is lost for the users, and they may take the answers

as correct without the healthy dose of scepticism they deserve.

There is little that database research can offer to mitigate this

problem, especially for numerical attribute values where imputation

is most commonly used. For them, typical queries use arithmetic

operations, aggregate functions, and numerical constraints. In fact,

queries of this kind are very common in practice and form the

absolute majority of standard benchmarks for database systems

(e.g., TPC-H or TPC-DS). For these queries, though, we have little

theoretical knowledge to rely on.

To explain why this is so, we observe that most of the existing

theoretical research on answering queries over incomplete data

concentrates on the notions of certain and possible answers. The for-
mer is often viewed as the holy grail of query answering, while the

latter is often a fallback position in case we do not have enough cer-

tain answers to show. Both possible and certain answers, however,

are often meaningless for queries with arithmetic and aggregation.

Consider, for example, the following SQL query 𝑞

SELECT A, SUM(B) FROM R GROUP BY A WHERE B ≥ 2

on a relation 𝑅(𝐴, 𝐵) with tuples (1, 1) and (1, Null), where Null
denotes the SQL null value. If all we know about the attribute 𝐵 is

that it is an integer, then no answer is certain for 𝑞 (in fact, as long

as there is any uncertainty about the value that Null may take, the

certain answer is empty). As for possible answers, then every tuple

https://orcid.org/0009-0004-5526-019X
https://orcid.org/0000-0002-6698-2735
https://orcid.org/0000-0002-4788-0944
https://doi.org/10.1145/3584372.3588660
https://doi.org/10.1145/3584372.3588660

PODS ’23, June 18–23, 2023, Seattle, WA, USA Console and Libkin and Peterfreund

(1, 𝑐) for 2 ≤ 𝑐 ∈ N is a possible answer, in cases where Null is

interpreted as 𝑐 (since the tuple (1, 1) is excluded due to the WHERE

clause). Hence, the usefulness of such answers is limited. A recent

attempt to provide proper substitutes for these notions was made

in [41] but the shape of answers presented is quite complex for

the user to comprehend. Another approach, specifically focused on

numerical attributes, was presented in [10], but it does not take into

account aggregation and prior knowledge on the missing data. As

for imputation, it would choose some value for Null, say 2 based

on the other data in the database, and then simply return the tuple

(1, 2) as the definitive truth – without any hint to the user as to the

doubts of the veracity of the answer.

But what about mixing the probabilistic approach of imputation

with the classical certain/possible answers approach? For example,

suppose that, in the above example, the possible values for Null
are distributed according to the normal distribution with mean 2

and standard deviation 0.5. Then, with probability approximately

0.682, the value of the SUM aggregate will fall into the [2.5, 3.5]

interval. Unlike returning the value (1, 3), giving no hint that data

was incomplete in first place, this new type of answer makes it very

clear that our knowledge is only partial. Also, it provides much

more information than an empty certain answer (nothing is certain)

and an infinite possible answer (absolutely everything is possible)

The goal of this paper is to define a model of incomplete nu-

merical data and a framework for query answering that naturally

support answers like the one above. As a first theoretical model

of this kind, our approach will not cover the entire SQL Standard

and all the numerical attributes in it. However, we shall cover a

significant portion of the query language (essentially, the usual

SELECT-FROM-WHERE-GROUP BY-HAVING queries) and use the

real numbers R as an abstraction for numerical attributes, for the

ease of reasoning about probability distributions.

Our first task will be to define the data model. The example

above hints that we want to treat nulls as random variables, ac-

cording to some distribution. In our model, for generality, we allow

a real-valued random variable for each null, though, in a more

down-to-earth approach, we could associate them with individual

attributes (say, the height of a person that is usually assumed to fol-

low a normal distribution [39]). Thus, unlike the usual probabilistic

databases [38], ourmodel deals with uncountably infinite probability
spaces. Such databases were the focus of recent studies [8, 21, 22],

which mainly focused on the crucial issue of measurability of query

mappings. Those papers, however, left open a crucial issue: how to

construct suitable probabilistic databases from real-world incom-

plete numerical data. As our first task, we fill this gap and provide

such a model. Our construction is general enough so that queries

could be viewed as measurable maps between probability spaces

given by infinite probabilistic databases.

Then, we instantiate our framework to the case of databases with

marked (or repeating) nulls [2, 27]. The fact that nulls can repeat in

different tuples will take us out of the realm of tuple-independent

probabilistic databases that have dominated the field of probabilis-

tic data so far. In fact, the need for a model of “tuple-dependent”

databases even transcends our immediate goal. Consider, for exam-

ple, the query

SELECT * FROM R JOIN S ON R.A = S.A

with 𝑅(𝐴, 𝐵) having one fact (1, Null) and 𝑆(𝐴,𝐶) containing (1, 2)

and (1, 3). The end result has tuples (1, Null, 2) and (1, Null, 3). Since

Null is defined by the same random variable in both tuples, the

probability that a tuple, say (1, 1, 2), is in the answer depends on the

prior knowledge that another tuple, say (1, 1, 3), is in the answer.

Thus, if we want to have a compositional query language, i.e., the

ability to query the results of other queries (taken for granted in

languages like SQL), then we cannot rely on the tuple-independent

model, as query results will be not be tuple-independent.

We next instantiate a query language. Following the long line of

work on algebras with aggregates [23, 25, 30, 33, 34] we provide a

simple yet powerful extension of relational algebra that captures

key features of SQL queries such as arithmetic and aggregation. We

then show that answers for these queries define measurable sets

in our probabilistic model. Thus, a meaningful form of answers for

queries in our extended algebra, and SQL, can be defined in our

framework.

With that, we move to query answering. As hinted above, we

first look at computing the probability that values in the output

tuples belong to given intervals. We formulate this intuition as a

computation problem as well as the corresponding decision prob-

lem, and study their complexity. For the computation problem, we

prove that results are often transcendental, and even for simple

distributions, that are guaranteed to yield rational numbers, the

problem is ♯P-hard [3]. For the computation problem, we show that

it is NP-hard.

This means that one needs to resort to approximations. We first

show that the standard FPRAS (Fully Polynomial Randomized Ap-

proximation Scheme [3]) approximation does not exist modulo

some complexity-theoretic assumptions. We do show however that,

if we allow additive error guarantees, approximations exist and

are computable in polynomial time. This is a reasonable relaxation

since numbers we compute are probabilities, hence in the interval

[0, 1].

This development leaves two loose ends with respect to the

feasibility of our approach. First, when a user asks a query, that

user expects an output, not necessarily going tuple by tuple and

asking for probabilities. Can there be a compact representation

of the infinite answer space? We give the positive answer and

explain how to construct finite encodings of infinite probabilistic

databases that capture information in them up to a difference that

has probability zero.

Second, our approximation algorithm creates several samples

of the missing data by instantiating nulls in the input database.

Even creating one such sample would be infeasible in real life, as it

amounts to, essentially, creating a copy of the entire input data just

to ask a query over it. To mitigate this issue, we show that sampling

can be done smartly, i.e., encoded in a query that is expressible in

our relational algebra. Thus, the sampling approximation algorithm

can be expressed by a single query ran over the input database.

The remainder of the paper is organized as follows. We start by

recalling relevant notions in databases and probability theory in

Section 2. In Section 3, we present our framework of probabilis-

tic databases and its instantiation by means of marked nulls with

attached probability distributions. In Section 4, we introduce the

query language RA
∗
for databases with numerical entries. Answers

for RA
∗
in our framework are then introduced in Section 5 where

Querying Incomplete Numerical Data PODS ’23, June 18–23, 2023, Seattle, WA, USA

we also study their measurability and complexity of exact and ap-

proximate computation. We expand on approximation in Section 6,

where we present an efficient approximation algorithm for RA
∗

queries over probabilistic databases and show how it can be en-

coded within RA
∗
queries. Finally, Section 7 shows that answers for

RA
∗
queries can be represented finitely. In Section 8 we conclude.

Related Work. The majority of probabilistic databases found in the

literature are based on Possible World Semantics [38]. In these

models, a probabilistic database (pdb) defines a probability space

whose outcomes are complete database instances. Such pdbs are

often based on tuple-level events, i.e., events defining whether a

tuple belongs to a relation. A large body of work on the topic

focuses on pdbs where the presence of each tuple is an independent

event (tuple-independent pdbs) [12]. Even when tuples may define

dependent events, such models are usually characterized by finitely-

many events and, thus, are not well suited to represent uncertainty

on infinite attribute domains. This is the case, for example, of pdbs

based on c-tables where tuple variables are not allowed (see, e.g.,

[11]). To characterize attribute-level uncertainty, one could define

events at the attribute-level, i.e., focus on the values that uncertain

attributes can take. In the literature, however, such models often

require attribute domains to be finite (e.g., [20]) or discrete (e.g.,

[31]) to avoid issues with measurability. To ensure tame behavior

of the probability spaces thus defined, query languages considered

are often limited to fragments of first-order logic.

Themodel of this paper is based on PossibleWorld Semantics and

attribute-level events. It differs from existing work in that attributes

of our pdbs have continuous domains, and their events are defined

by continuous probability distributions. Moreover, we study query

answering in a rich language that is close to actual SQL. Ours is the

first formal framework of this kind, to the best of our knowledge.

Probabilistic databases with continuous attribute domains have

been studied in database systems literature [26, 28, 29, 31, 36]. In this
line of work, systems either consider only specific classes of queries

or resort to ad-hoc semantics of incompleteness to achieve desired

computational behavior. For example, the work in [29] focuses on

the expected values and moments of answers, and aggregation is

handled via sampling. In [28], query answers are defined directly as

the result of a Monte Carlo process while, in [36], answers are de-

fined via a direct manipulation of the probability density functions

involved using techniques of [37]. A further interesting example

is the work in [17] where attribute-level uncertainty comes in the

shape of continuous intervals, and query answers are defined as ap-

proximations of classical certain answers. Despite these differences,

our formal framework could pave the way for a deeper understand-

ing of the behavior of such systems.

2 BACKGROUND

2.1 Incomplete Databases

Schemas and instances. We assume a countable set R of rela-
tion schemas. Each relation schema 𝑅 ∈ R has an associated arity
denoted by arity(𝑅). A schema S is a set of relation schemas.

We work with the model of marked nulls, i.e., we assume a

countable set Null := {⊥1,⊥2, . . .} of nulls. The entries in databases

come from the setR∪Null. That is, we assume that numerical values

come from R; since non-numerical values can be enumerated in an

arbitrary way, e.g., as 1, 2, . . ., we assume without loss of generality

that all non-null entries come from R.
A tuple of arity 𝑘 is an element in (R ∪ Null)𝑘 . We follow SQL’s

bag semantics, that is, a relationR over a relation schemaR is a finite

multi-set (bag) of tuples with arity arity(𝑅). An incomplete database
D, or just database for short, over a schema S consists of relations

RD over each relation schema R in S. We define adom(D) as the set

of all entries ofD, andNull(D) as all entries ofD that are also inNull.
A database D is complete if all its relations instances are complete,
that is, do not include nulls; Or, alternatively, if Null(D) = ∅.

A database query 𝑞 over database schema S is a function from

databases over S into databases over S′
, for some schema S′

that

consists of a single relation symbol. We write 𝑞 : S → S′
when

schemas need to be specified explicitly.

Valuations. Valuations assign values to nulls. Formally, a valu-
ation 𝑣 : Null → R is a partial mapping, whose domain, i.e., the
subset of Null on which it is defined, is denoted by dom(𝑣). We

lift valuations to databases by defining 𝑣(D) as the database that is

obtained from D by replacing every null entry ⊥ with 𝑣(⊥).

2.2 Probability Theory

We present the basic notions of probability we use.

Probability spaces. A 𝜎-algebra on a set 𝑋 is a family Σ of subsets

of 𝑋 such that 𝑋 ∈ Σ and Σ is closed under complement and count-

able unions. If Σ
′
is a family of subsets of 𝑋 , then the 𝜎-algebra

generated by Σ
′
, denoted by 𝜎(Σ

′
), is the smallest 𝜎-algebra on 𝑋

containing Σ
′
. Ameasurable space is a pair (𝑋, Σ)with𝑋 an arbitrary

set and Σ a 𝜎-algebra on 𝑋 . Subsets of 𝑋 are called Σ-measurable
if they belong to Σ. A probability measure on (𝑋, Σ) is a function

𝑃 : Σ → [0, 1] with 𝑃 (∅) = 0, 𝑃 (𝑋) = 1 and 𝑃 (∪𝑛
𝑖=1

𝜎𝑖) =

∑𝑛
𝑖=1

𝑃 (𝜎𝑖)

for every sequence 𝜎1, . . . , 𝜎𝑛 of disjoint measurable sets. A mea-

surable space equipped with a probability measure is called a prob-
ability space. When 𝑋 := R, we implicitly assume that Σ is the Borel

𝜎-algebra Σ𝐵 (i.e., the one generated by open intervals (𝑎, 𝑏) for

𝑎 < 𝑏 ∈ R), and hence, we only specify the density function that

suffices to determine the probability space.

Measurablemappings. If (𝑋, Σ) and (𝑋 ′, Σ′) aremeasurable spaces,

and 𝜙 : 𝑋 → 𝑋 ′
is a mapping then we say that 𝜙 is (Σ, Σ′

)-

measurable (or simply measurable if Σ, Σ′
are clear from context) if

the preimage𝜙−1
under𝜙 of everyΣ

′
-measurable set isΣ-measurable.

For additional details, we refer the reader to [35, Section 5].

3 QUERYING AND INSTANTIATING

PROBABILISTIC DATABASES

Our model of probabilistic databases describes all possible data

configurations together with a probability measure defining how

likely they are to occur. This intuition is captured by the following

notion.

Definition 1. A probabilistic database (PDB) D over a database

schema S is a probability space whose domain is a set of complete

databases over S.

Notice that, similarly to [22], the domain of a PDB D may be

uncountable due to the fact that D uses reals as entries. However,

PODS ’23, June 18–23, 2023, Seattle, WA, USA Console and Libkin and Peterfreund

in most models of probabilistic databases known in the literature,

one assumes tuple independence, i.e., the presence of each tuple is

an independent event. This is not the case for the PDBs presented

in Definition 1 where no restriction is imposed on the probability

distribution.

3.1 Querying PDBs

To define queries for PDBs, we start from the standard notion of

queries for complete databases. Let 𝑞 be a query over a schema S,
and let D := (𝑋D , ΣD , 𝑃D) be a probabilistic database over S. For
a query 𝑞, we write 𝑋𝑞,D to denote the set {𝑞(D) | D ∈ 𝑋D } of all
possible answers for 𝑞 over 𝑋D . We equip 𝑋𝑞,D with the 𝜎-algebra

Σ𝑞,D generated by the family {𝐴 ⊆ 𝑋𝑞,D | 𝑞−1
(𝐴) ∈ ΣD }. In

other words, Σ𝑞,D is the 𝜎-algebra generated by those images of

𝑞 that are measurable in D. For each element 𝜎 of Σ𝑞,D , we set

𝑃𝑞,D (𝜎) := 𝑃D (𝑞−1
(𝜎)), provided the latter is defined.

Proposition 2. Given a PDB D over a schema S, and a query 𝑞
over S,

• 𝑞 is (ΣD , Σ𝑞,D)-measurable; and
• 𝑃𝑞,D is defined over every element of Σ𝑞,D and is a probability
measure for (𝑋𝑞,D , Σ𝑞,D).

In view of Proposition 2, we can define the probability space for

the answers to 𝑞 over D as follows.

Definition 3. The answer space of 𝑞 over D is defined as the

probabilistic database 𝑞(D) := (𝑋𝑞,D , Σ𝑞,D , 𝑃𝑞,D).

We point out next that, contrary to tuple-independent prob-

abilistic databases, our model preserves composability of query

languages.
1
We say that a pair (𝑞, 𝑞′) of queries is composable if

𝑞 : S → S′
and 𝑞′ : S′ → S′′

. In this case, we define their compo-
sition (𝑞′ ◦ 𝑞)(D) := 𝑞′ (𝑞(D)). Can we lift composability to PDBs?

The following proposition shows that the answer to this question

is positive.

Proposition 4. Let (𝑞, 𝑞′) be composable queries. Then (𝑞′ ◦
𝑞)(D) = 𝑞′(𝑞(D)) for every PDB D and query 𝑞 for D.

Note that composability is a consequence of the answer space

definition, and is independent of the query language.

3.2 PDBs from Incomplete Databases

We now show how the PDBs we introduced in Definition 1 can be

instantiated naturally via incomplete databases.

To associate an incomplete database D with a PDB, we equip

each ⊥𝑖 ∈ Null with a probability density function 𝑃𝑖 .

We assume without loss of generality that Null(D) :=

{⊥1, . . . ,⊥𝑛}, and we then define the measurable space of valu-
ations (𝑋𝑉 , Σ𝑉) of Null(D) such that 𝑋𝑉 is the set of all valuations

𝑣 with dom(𝑣) = Null(D), and Σ𝑉 is the 𝜎-algebra generated by the

family consisting of the sets

𝑉 (𝜎1, . . . , 𝜎𝑛) := {𝑣 | 𝑣(⊥𝑖) ∈ 𝜎𝑖 }
for each 𝜎1, . . . , 𝜎𝑛 in the Borel 𝜎-algebra Σ𝐵 . Notice that the range

of the valuations of each such set is a Cartesian product of sets

1
Note that even the simplest operations, e.g., computing union of a relation with itself,

results in a violation of tuple-independence.

𝑞 := 𝑅 | 𝜋
$𝑖1,...,$𝑖𝑘 (𝑞) | 𝜎\ (𝑞) | 𝑞 × 𝑞 | 𝑞 ∪ 𝑞 | 𝑞 \ 𝑞

| Apply𝑓 (𝑞) | ∑$𝑗

$𝑖1,...,$𝑖𝑘
(𝑞)

\ := $𝑖 = $ 𝑗 | $𝑖 < $ 𝑗

𝑓 ∈ RAT[$1, $2, . . .], 𝑘 ≥ 0

Figure 1: RA
∗
Queries

in Σ𝐵 . The events defined by these sets, i.e., 𝑣(⊥𝑖) ∈ 𝜎𝑖 , for each

𝑖 = 1, . . . , 𝑛, are assumed to be mutually independent.

To reflect this, we would like to define a probability function 𝑃𝑉
for which the following requirement holds:

𝑃𝑉 (𝑉 (𝜎1, . . . , 𝜎𝑛)) = Π
𝑛
𝑖=1

𝑃𝑖 (𝜎𝑖) (1)

As it turns out, this requirement determines a unique probability

measure for (𝑋𝑉 , Σ𝑉).

Theorem 5. There exists a unique probability measure 𝑃𝑉 for the
measurable space of valuations of Null(D) that satisfies Equation (1).

From now on, we refer to (𝑋𝑉 , Σ𝑉 , 𝑃𝑉) as the valuation space of
Null(D). The valuation space, however, does not define a PDB, since

multiple valuations may define the same complete database.
2

To overcome this, we define the PDB of D as follows. Let

𝑋D be the set of all possible instantiations of D, i.e., 𝑋D :=

{𝑣(D) | dom(𝑣) = Null(D)}, and let 𝜒 : 𝑋𝑉 → 𝑋D be the mapping

such that 𝜒(𝑣) := 𝑣(D). We set

ΣD := {𝐴 | 𝜒−1
(𝐴) ∈ Σ𝑉 }.

Proposition 6. ΣD is a 𝜎-algebra on 𝑋D for every incomplete
database D.

With Proposition 6 in place, we can move to define a probability

measure for the measurable space (𝑋D, ΣD). To this end, we define

𝑃D : ΣD → [0, 1] by setting, for each 𝐴 ∈ ΣD,

𝑃D(𝐴) := 𝑃𝑉 (𝜒−1
(𝐴))

Proposition 7. 𝑃D is a probability measure for (𝑋D, ΣD) for every
incomplete database D.

As a consequence of the previous results, we now have a well-

defined concept of the probabilistic space of D. We record this in

the following definition.

Definition 8. The PDB of D is (𝑋D, ΣD, 𝑃D).

With a slight abuse of notation, from now on, we shall sometimes

refer to the PDB of D, simply as D.

4 QUERY LANGUAGE: EXTENDED

RELATIONAL ALGEBRA

To analyze our framework, we need to focus on a concrete query

language. Our choice is a compact language that has sufficient

power to express standard SQL queries with arithmetic and aggre-

gation, similar to [33]. This language, RA
∗
is an extended form

of relation algebra and its syntax is presented in Figure 1. Due to

space limitations, the full formal semantics is in the Appendix; here

2
For example, given a Unary relation that consists of two nulls, for any valuation

there is a symmetric one (that replaces one nulls with the other) that defines the same

database.

Querying Incomplete Numerical Data PODS ’23, June 18–23, 2023, Seattle, WA, USA

we introduce the main constructs and explain the expressiveness

of the language.

Like SQL, the queries of RA
∗
are interpreted under bag semantics,

i.e., relations may have multiple occurrences of the same tuple.

The first line of the Figure 1 contains the standard operations of

Relational Algebra. We use the unnamed perspective [1] and refer

to attributes by their positions in the relation, i.e., $1, $2, etc, for the

first, second, etc attribute of a relation. Projection and selection keep

duplicates; Cartesian product × multiplies occurrences, ∪ as SQL’s

UNION ALL adds them, and \ as SQL’s EXCEPT ALL subtracts the

number of occurrences, as long as it is non-negative.

The operation Apply𝑓 (𝑞) takes a function 𝑓 ∈ RAT[$1, $2, . . .],

which is a rational function over variables $𝑖 , 𝑖 ∈ N, i.e., a ratio

of two polynomials with real coefficients. It then adds a column

to a relation with the result of this function for each tuple in the

result of 𝑞. For example, if 𝑓 ($1, $2) = ($1)
2/$2, then Apply𝑓 (𝑅)

turns a binary relation 𝑅 into a ternary relation that consists of

tuples (𝑎, 𝑏, 𝑎2/𝑏) for every occurrence of (𝑎, 𝑏) in 𝑅.

The operation

∑$𝑗

$𝑖1,...,$𝑖𝑘
(𝑞) is grouping with summation aggrega-

tion; intuitively, this is SQL’s SELECT $𝑖1, . . . , $𝑖𝑘 , SUM($ 𝑗) FROM

𝑞 GROUP BY $𝑖1, . . . , $𝑖𝑘 . When 𝑘 = 0, we group by the empty set,

thus obtaining a query that returns a unique value who is the sum

of all values in column 𝑗 .

While we have chosen a rather minimalistic language for the

convenience of presentation and proofs, RA
∗
actually packs con-

siderable expressive power. For example, it can express all of the

following:

• Arbitrary conditions 𝑓 𝜔 𝑔 where 𝜔 ∈ {=, ̸=, <, >, ≤, ≥} and
𝑓 , 𝑔 are polynomials in variables $1, $2, etc. Indeed values

of 𝑓 , 𝑔 can be attached as new attributes, and those can be

compared with = and < comparisons; other comparisons are

expressed by means of set operations.

• All SQL aggregates MIN, MAX, AVG, SUM, COUNT. Indeed,

MIN and MAX can be expressed in standard relational alge-

bra. To express count, we can attach an attribute with con-

stant value 1 and add up those values. For example, SQL’s

SELECT A, COUNT(B) FROM R GROUP BY A for a two-

attribute relation is expressed as

∑
$3

$1
(Apply1(𝑅)). To ex-

press multiple aggregates, one needs to take the product of

the input relation with the result of the first aggregation to

restore duplicates, and then perform another aggregation.

And finally average can be expressed as the ratio of SUM

and COUNT.

• Duplicate elimination is encoded in grouping: one needs

to add an aggregate and project out grouping attributes.

For example, to eliminate duplicates from a single-attribute

relation 𝑅, one would write 𝜋
$1

(∑
$2

$1
(Apply1(𝑅))

)
.

• Conditions involving subqueries, as in IN and EXISTS con-

ditions used in SQL’s WHERE. This is already doable in

relational algebra [24, 42].

Thus, we see that despite its simplicity, the language is signif-

icantly expressive, as it captures the essence of SELECT-FROM-

WHERE-GROUP BY-HAVING queries of SQL.

5 QUERY ANSWERING

With the query language in place, we now turn to query answer-

ing. To do so, we focus on specific subsets of the answer space;

essentially we ask, as was outlined in the introduction, whether

values in output tuples belong to specific intervals. We want to

know the probability of such events. In this section we show that

such probabilities are well defined, and look at the complexity of

their exact computation (which will be high, thus leading us to

approximation algorithms in the following section).

5.1 Target Sets of the Answer Space

As we already explained, when dealing with numerical values,

returning certain or possible tuples of constants is not very infor-

mative. Instead we want to settle for providing intervals of values.
These intervals may be fixed, say [1, 2], or even defined by functions

on nulls in a database, say [$1 + 3, $1 + 4].

Formally, we define interval tuples as tuples 𝑎 whose entries

are open, or closed, or half-open half-closed intervals of one of

the forms (𝑥,𝑦), [𝑥,𝑦], [𝑥,𝑦), (𝑥,𝑦] where 𝑥,𝑦 ∈ RAT[⊥1,⊥2, . . .] ∪
{±∞}. We denote by Null(𝑎) the set of all nulls that appear in the

entries of 𝑎, and by 𝑣(𝑎) the tuple obtained from 𝑎 by replacing each

⊥𝑖 with 𝑣(⊥𝑖). In such a tuple, all intervals are grounded, i.e. their

endpoints are real numbers.

We say that a tuple of constants 𝑡 := (𝑡1, . . . , 𝑡𝑛) is consistent with

𝑣(𝑎) if 𝑡𝑖 ∈ 𝑣(𝑎𝑖) for each 𝑖 , that is, 𝑡𝑖 is a value within the interval

𝑣(𝑎𝑖). For the rest of the section we use the symbol ◦ to denote one

of the usual comparisons, i.e., <, =, or >. We write #(𝑣(𝑎), 𝐴) ◦ k
when the number of tuples in the bag 𝐴 that are consistent with

𝑣(𝑎) is ◦k. With this, we can move to the following key definition.

Definition 9.

out𝑞,D,◦(𝑎, k) :=

{
𝑞(𝑣(D)) ∈ 𝑋𝑞,D

���� dom(𝑣) = Null(D),

#(𝑣(𝑎), 𝑞(𝑣(D))) ◦ k

}
Intuitively, out𝑞,D,◦(𝑎, k) is the set that consists of all those

databases in 𝑋𝑞,D such that each contains ◦k tuples consistent with
𝑎. Note that 𝑋𝑞,D is the domain of the answer space of 𝑞 over D as

defined in Definition 3. We call out𝑞,D,◦(· , ·) the target mapping for

𝑞 over D. Target mappings capture information about the query

answer space, and we next see how to compute them.

5.2 Measurability of Target Sets

The target mapping can provide us with information about the

answer space. In particular, we can compute how likely it is that

tuples consistent with 𝑎 appear in the answer (at most, at least or

exactly) k times. This is captured by the following computational

problem.

Likelihood[𝑞, ◦, k]

Parameters: A query 𝑞 ∈ RA
∗
, k ≥ 0,

and ◦ ∈ {<, =, >}
Input: An incomplete database D,

and an interval tuple 𝑎

Problem: Compute 𝑃𝑞,D(out𝑞,D,◦(𝑎, k))

PODS ’23, June 18–23, 2023, Seattle, WA, USA Console and Libkin and Peterfreund

Is this problem even well-defined? In other words, is it always the

case that 𝑃𝑞,D(out𝑞,D,◦(𝑎, k)) exists? The answer is not immediate

since not every subset of 𝑋𝑞,D is measurable. We settle this issue

with the following claim.

Theorem 10. For every 𝑞 ∈ RA∗, incomplete database D, interval
tuple 𝑎, k ≥ 0, and ◦ ∈ {<, =, >}, it holds that

out𝑞,D,◦(𝑎, k) ∈ Σ𝑞,D

To obtain Theorem 10, we first observe that out𝑞,D,◦(𝑎, k) is the

union of some countable family of sets out𝑞,D,=(𝑎, k). Since each

such set is definable by a first-order formula in the theory of the

reals with |Null(D)|= 𝑛 free variables, we can conclude that each set

is the finite union of open sets in R𝑛 , which are Borel-measurable

R𝑛 , and sets of smaller dimensions which have measure zero in R𝑛

([43]). The claim follows from the fact that the PDB defined by D
is Borel-isomorphic to R𝑛 , that is, there exists a bijection between

the two spaces (see, e.g., [16, Section 1] for more details).

5.3 Computing Likelihood[𝑞, ◦, k] Exactly

Solving the computational problem Likelihood[𝑞, ◦, k] exactly is a

very challenging task that is unfeasible in practice even for simple

queries. Let SPC be the fragment of RA
∗
that allows only basic rela-

tions, selection, projection, and Cartesian product. We can prove

that the Likelihood[𝑞, ◦, k] is not rational even for queries in SPC
and nulls defined by basic distributions. An exponentially distributed
database is an incomplete database whose null values are anno-

tated with exponential probability distributions _𝑒−_𝑥 , where _ is

rational.

Proposition 11. For each ◦ ∈ {<, =, >}, there exists a Boolean
query 𝑞 ∈ SPC and a family of exponentially distributed databases
{Dk | k > 0 ∈ N} such that Likelihood[𝑞, ◦, k](Dk, ()) is a tran-
scendental number.

In other words, Proposition 11 implies that it may not be possible

to evenwrite down the exact output of Likelihood[𝑞, ◦, k](Dk, ()). Is

it due to the density functionswe chose? It turns out, that evenwhen

we consider very simple andwell-behaved distributions the problem

remains computationally challenging. Formally, a uniform interval
database is an incomplete database whose nulls are annotated with

uniform interval distributions with rational parameters. That is,

their density function is a rational constant 1/(𝑢−𝑙) over an interval
[𝑙, 𝑢], with 𝑙 < 𝑢 both rational, and 0 everywhere else. We denote

by Likelihood𝑖𝑛𝑡 [𝑞, ◦, k] the restriction of Likelihood[𝑞, ◦, k] to

input databases from the class of uniform interval databases.

Theorem 12. For each ◦ ∈ {<, =, >}, there exists a Boolean query
𝑞 ∈ SPC such that Likelihood𝑖𝑛𝑡 [𝑞, ◦, k] is #𝑃-hard, for each k ≥ 0.

We recall that hard problems in the class #𝑃 ([3]) are at least

as hard as the whole polynomial hierarchy [40]. From a practical

perspective, it is often enough to checkwhether Likelihood[𝑞, ◦, k]

exceeds a given threshold. We thus define the decision version of

Likelihood[𝑞, ◦, k]:

Threshold[𝑞, ◦, k, 𝛿]

Parameters: A query 𝑞 ∈ RA
∗
, k ≥ 0,

a threshold 0 ≤ 𝛿 ≤ 1, and ◦ ∈ {<, =, >}
Input: An incomplete database D,

and a interval tuple 𝑎

Problem: Decide whether 𝑃𝑞,D(out𝑞,D,◦(𝑎, k)) > 𝛿

The case Threshold[𝑞, <, 0, 𝛿] is trivial, and it will not be consid-

ered in what follows. We call Threshold𝑖𝑛𝑡 [𝑞, ◦, k, 𝛿] the restric-

tion of Threshold[𝑞, ◦, k, 𝛿] to uniform interval databases only.

Even this problem is not simple to solve, as the following theorem

suggests.

Theorem 13. For each ◦ ∈ {<, =, >}, there exists a Boolean query
𝑞 ∈ RA∗ such that Threshold𝑖𝑛𝑡 [𝑞, ◦, k, 0] is NP-hard.

This has consequences also on approximation algorithms for

Likelihood[𝑞, ◦, k]. A Fully-Polynomial Randomised Approximation
Scheme (FPRAS) for 𝑓 : 𝑋 → 𝑌 [3] is an algorithm 𝐴 with the

following guarantees, for input 𝑥 ∈ 𝑋 and Y ∈ (0, 1], :

• 𝐴 runs in time polynomial in the size of 𝑥 and
1

Y ; and

• 𝐴 returns a random variable 𝐴(𝑥, Y) such that

𝑃 (|𝐴(𝑥, Y) − 𝑓 (𝑥)|≤ Y · |𝑓 (𝑥)|) ≥ 0.75.

Of course 0.75 can be replaced by any constant > 0.5; here we follow

the traditional definition of 0.75 as the chosen constant.

Corollary 14. Unless 𝑅𝑃 = 𝑁𝑃 , there exists 𝑞 ∈ RA∗ such
Likelihood𝑖𝑛𝑡 [𝑞, ◦, k] admits no FPRAS.

The class 𝑅𝑃 consists of decision problems that can be solved effi-

ciently by a randomized algorithm with a bounded one-sided error

see, e.g., [3]. It is commonly believed that𝑅𝑃 ̸= 𝑁𝑃 , since, otherwise,

problems in 𝑁𝑃 would admit efficient ephratctical solutions.

Are there other approximation schemes that can lead to better

results? We answer this in the next section.

6 APPROXIMATION

In this section, we present an efficient approximation scheme with

additive error for Likelihood[𝑞, ◦, k], hence answering positively

the question posed at the end of the previous section.

To deal with the numerical nature of our problem, inwhat follows

we assume an extension of the RAMmodel of computation with the

following assumptions: values in R are represented with arbitrary

precision in one single register, and basic arithmetic operations

(+,−, ·, ··) are performed in constant time. Note that this model is

commonly used for numerical problems (e.g., [6]).

An Additive Error Fully-Polynomial Randomised Approximation
Scheme (AFPRAS) for 𝑓 : 𝑋 → 𝑌 is an algorithm 𝐴 with the

following guarantees, for input 𝑥 ∈ 𝑋 and Y ∈ (0, 1], :

• 𝐴 runs in time polynomial in the size of 𝑥 and
1

Y ; and

• 𝐴 returns a random variable 𝐴(𝑥, Y) such that

𝑃 (|𝐴(𝑥, Y) − 𝑓 (𝑥)|≤ Y) ≥ 0.75.

The difference between FPRASs discussed previously and AFPRASs

is in that the latter is allowed an additive rather than multiplicative

error, i.e., the difference between the value an AFPRAS returns and

the actual value it approximates is fixed rather than proportional.

Querying Incomplete Numerical Data PODS ’23, June 18–23, 2023, Seattle, WA, USA

6.1 Sampling the Valuation Space

Our approximation scheme is obtained by sampling valuations of

the input database using samplers, i.e., algorithms that return ran-

dom variables distributed according to some predefined distribution

(see, e.g., [5]). For commonly used probability distributions, sam-

plers can be obtained using different techniques (see, e.g., [7, 32]).

Formally, a sampler for a probability space S = (𝑋𝑆 , Σ𝑆 , 𝑃𝑆) is

a randomized algorithm 𝐴 that returns a random variable 𝑋 such

that 𝑃 (𝑋 ∈ 𝜎) = 𝑃𝑆 (𝜎), for each 𝜎 ∈ ΣS . Given an incomplete

database D, we say that D is efficiently sampled (E.S.) if, for every

⊥𝑖 ∈ Null(D) defined by the probability space N𝑖 , there exists a

efficient sampler for N𝑖 that runs in time polynomial in the size of D.
In what follows, we will use Samplei for the result of an efficient

sampler for N𝑖 .
Using the notions introduced so far, Algorithm 1 defines an

approximated sampler for the space of valuation of incomplete

databases that is E.S.

Algorithm 1 ValSampler[D]

Parameter: An E.S. database D with |Null(D)|= 𝑛

Output: A valuation 𝑣 for Null(D)

for all ⊥𝑖 ∈ Null(D) do

𝑠𝑖 := Samplei
end for

Let 𝑣 : Null(D) → R s.t. 𝑣(⊥𝑖) = 𝑠𝑖 , for each ⊥𝑖 ∈ Null(D);

return 𝑣 ;

The following claim formalizes the relevant properties of

ValSampler[D].

Lemma 15. For every incomplete database D, ValSampler[D] is a
sampler for the valuation space ofNull(D). Moreover, ValSampler[D]

runs in time polynomial in the size of D.

6.2 Approximation via Direct Sampling

For input E.S. databases, we can obtain an AFPRAS for

Likelihood[𝑞, ◦, k] using ValSampler[D]. The idea behind our

technique is the following. Assume 𝑞 ∈ RA
∗
, an incomplete data-

base D, and an interval tuple 𝑎. The algorithm uses ValSampler[D]

to sample a number of valuations 𝑣 from the valuation space of

Null(D), and computes the average number of such 𝑣 for which

#(𝑣(𝑎), 𝑞(𝑣(D)))◦k holds. Using well-known bounds on the expected

values of a sum of independent random variables, we can prove

that, with high probability, the value of this average is close enough

to Likelihood[𝑞, ◦, k](D, 𝑎). We formalize this intuition in Algo-

rithm 2.

Lemma 16. For every incomplete E.S. database D, interval tuple 𝑎
and Y ∈ (0, 1] it holds that

𝑃 (|LikeApx[q, ◦, k](D, 𝑎, Y) − Likelihood[𝑞, ◦, k](D, 𝑎)|≤ Y) ≥ 0.75

We are finally ready to formally conclude the existence of an

AFPRAS for Output Tuple Likelihood:

Theorem 17. For every 𝑞 ∈ RA∗, comparison ◦ ∈ {<, =, >},
and integer k ≥ 0, the algorithm LikeApx[q, ◦, k] is an AFPRAS
for Likelihood[𝑞, ◦, k] over input databases that are E.S.

Algorithm 2 LikeApx[q, ◦, k]

Parameters: 𝑞 ∈ RA
∗
, ◦ ∈ {<, =, >}, an integer k ≥ 0.

Input: An E.S. database D, an interval tuple 𝑎, Y ∈ (0, 1].

Output: A number between 0 and 1

Let 𝛾 := ⌈Y−2⌉;
count := 0

for all i = 1, . . . , 𝛾 do

𝑣 := ValSampler[D]

if #(𝑣(𝑎), 𝑞(𝑣(D))) ◦ k then

count := count + 1

end if

end for

return
count
𝛾

6.3 Encoding Sampling into Queries

Our approximation algorithm LikeApx[q, ◦, k] requires a separate

instantiation of the input database D for each sample. Practical

implementations of the algorithm would need to generate these

instantiations directly inside the RDBMS hosting D, thus leading
to an overhead that is unacceptable in practical scenarios. Instead

of explicitly generating this data, however, it is possible to encode

a full run of LikeApx[q, ◦, k] into a query to be executed directly

over D. In this section we present such construction.

First, we introduce some notation. To keep notation compact, in

all following statements of our results, we let 𝑞 be a generic query

in RA
∗
, D be an incomplete database, 𝑎 be an interval tuple, 𝑘 be

a positive integer, and ◦ be an element of {<, =, >}. Moreover, to

evaluate RA
∗
queries directly over incomplete databases, we will

implicitly assume naive evaluation [19], i.e., we will treat nulls as

standard constants.

Theorem 18. For every 𝜖 ∈ (0, 1], there exists an RA∗ query apxY
such that

𝑃 (|apxY (D) − Likelihood[𝑞, ◦, k](D, 𝑎)|≤ Y) ≥ 0.75.

The construction of apxY is done in several steps that we proceed
to describe. We first show that we can compile a specific valuation

𝑣 into 𝑞, that is, we can rewrite 𝑞 to obtain 𝑞𝑣 such that for every

input D we have

𝑞𝑣 (D) = 𝑞(𝑣(D))

Using the COUNT aggregation, in particular the one corresponding

with SQL’s COUNT(∗), we can obtain𝑞𝑣 such that, if ♯(𝑡, 𝑞𝑣 (D)) = 𝑘′,
then (𝑡, 𝑘′) appears once in 𝑞𝑣 (D). We do so by setting

𝑞𝑣 := COUNT
$1,$2,...,$𝑛(𝑞𝑣)

Since we are interested in the total number of tuples of 𝑞(𝑣(D))

that are consistent with 𝑎 := (𝑎1, . . . , 𝑎𝑛), we set

𝑞𝑣,𝑎 := 𝜋
$𝑛+1

(
𝜎

$1∈𝑣(𝑎1)∧···∧$𝑛∈𝑣(𝑎𝑛)
(𝑞𝑣)

)
where $ 𝑗 ∈ 𝑣(𝑎 𝑗) is the condition requiring that $ 𝑗 is within the

interval 𝑣(𝑎 𝑗). Then, to checkwhether this multiplicity is ◦𝑘 , we sum
the multiplicities that 𝑞𝑣,𝑎 returns and select upon the condition

$1◦𝑘 . Finally, we project the result on the empty set, thus obtaining

PODS ’23, June 18–23, 2023, Seattle, WA, USA Console and Libkin and Peterfreund

the Boolean query

𝑞𝑣,𝑎,◦𝑘 := 𝜋∅

(
𝜎

$1◦𝑘

(
$1∑︁
∅
𝑞𝑣,𝑎

))
This query returns true, i.e., one occurrence of the empty tuple

if 𝑞(𝑣(D)) contains ◦𝑘 tuples consistent with 𝑎, and false, i.e., the

empty bag, otherwise.

Finally, let 𝑉 = {𝑣1, . . . , 𝑣𝛾 } be the results of running the algo-

rithm ValSampler[D] for 𝛾 = ⌈Y−2⌉ times. We define

apxY := AVG∅

(
𝛾⋃
𝑗=1

𝑞𝑣𝑗 ,𝑎,◦𝑘

)
.

and show that it indeed has the desired properties. Moreover, we

can show that it can be efficiently computed.

Proposition 19. apxY can be computed in time polynomial in the
size of 𝑞, D, and 𝑎, and the value Y−1.

The construction presented so far can be adapted to return the

possible answers of 𝑞(D) along with their approximated probability.

To this end, we define

computeY := Apply $1

𝛾

(
COUNT

$1,...,$𝑛+1

(
𝛾⋃
𝑗=1

𝑞𝑣𝑗

))
Recall that

⋃𝛾

𝑗=1
𝑞𝑣𝑗 returns tuples of the form (𝑡, 𝑘′) such that

𝑡 occurs 𝑘′ times in 𝑞(𝑣 𝑗 (D)). Thus, COUNT
$1,...,$𝑛+1

(⋃𝛾

𝑗=1
𝑞𝑣𝑗

)
results in tuples of the form (𝑡, 𝑘′, 𝑘′′) with the same guarantees as

before and, in addition, 𝑘′′ is the number of valuations 𝑣 amongst

𝑣1, . . . , 𝑣𝛾 for which 𝑡 occurs 𝑘′ times in 𝑞(𝑣(D)). We can show that

each such tuple represents a possible answer for 𝑞 over D. In the

next theorem, by a slight abuse of notation, we refer to a tuple

(𝑐1, . . . , 𝑐𝑛) as the interval tuple ([𝑐1, 𝑐1], . . . , [𝑐𝑛, 𝑐𝑛]).

Theorem 20. Let 𝜖 ∈ (0, 1]. Then, for every tuple (𝑐, 𝑏, 𝑝) in
computeY (D),

𝑃 (|𝑝 − Likelihood[𝑞, =, 𝑏](D, 𝑐)|≤ Y) ≥ 0.75

7 FINITE REPRESENTATION OF THE ANSWER

SPACE

Additionally to the encoding technique presented previously, a

desirable feature that may hint that our model can be deployed in

practical use-cases is the ability to represent the answer space of

RA
∗
queries in a finite manner. This technique allows us to analyze

fully the answer space of a given query which is fundamental in

decision-support scenarios.

Do incomplete databases suffice for instantiating the answer

space? Let us investigate the answer space of 𝜎
$𝑖<$𝑗 over D – the

PDB of R := {{(⊥1, `)}}, where {{·}} brackets are used for bags. If ⊥1

is distributed according to, e.g., the normal distribution with mean

`, then the domain of the answer space contains the empty relation

along with instantiations of R for which ⊥1 > `. Therefore, there

is no incomplete database that instantiates precisely the answer

space. Similarly to [27] which dealt with the same issue for non-

probabilistic databases, these considerations lead to a notion of

conditional worlds.

7.1 Conditional Worlds

The idea behind conditional worlds is to separate the answer space

to sub-spaces, each instantiatable by an incomplete database, along

with a condition that indicates when it is valid. For the previous

example, the answer space can be represented by the empty relation

with the condition ⊥1 < `, and by the relation that consists of

(⊥1, `) attached with ⊥1 > `. Note that here and throughout this

section, we assume that the probability of each null to be equal to

a constant is zero.

Definition 21. A probability distribution (dom, Σ, 𝑃) is said to be

singleton unlikely if 𝑃 ({𝑐}) = 0 for every 𝑐 ∈ dom.

This is a very mild restriction since all continuous random vari-

ables enjoy this property [35].

To formally define conditional worlds we need to define condi-

tional databases. Intuitively, conditional databases are pairs of (data-

base, condition) such that database is valid whenever the condition

holds. To carry full information on the computation and to express

the conditions, we extend the domain. We define an arithmetic data-
base as a database whose active domain is RAT[⊥1,⊥2, . . .], that is,

ratios of polynomials with real coefficients over the nulls.

Definition 22. A conditional database is a pair (A, 𝑐A) where

• A is an arithmetic database, and

• 𝑐A is a set of arithmetic conditions which are elements of the

form 𝑒 < 0 where 𝑒 ∈ RAT[⊥1,⊥2, . . .]; For simplicity, we

refer to 𝑒 < 0 as 𝑒 .

We denote the set of all nulls that appear in A and in 𝑐A by

Null(A, 𝑐A).

To specify when an arithmetic condition holds, for an arithmetic

condition 𝑐 , and a valuation 𝑣 , we set 𝑣(𝑐) := t if 𝑣(𝑒) < 0 for every

𝑒 ∈ 𝑐; otherwise, we set 𝑣(𝑐) := f.

Definition 23. A conditional world C is a set

{(A1, 𝑐1), . . . , (A𝑚, 𝑐𝑚)} of conditional databases such that

• 𝑃𝑉 ({𝑣 | 𝑣(𝑐1) = t ∨ · · · ∨ 𝑣(𝑐𝑚) = t}) = 1, and

• {𝑣 | 𝑣(𝑐𝑖) = t ∧ 𝑣(𝑐 𝑗) = t} = ∅ for every 𝑖 ̸= 𝑗

where (dom𝑉 , Σ𝑉 , 𝑃𝑉) is the valuation space of Null(C) defined as

the union

⋃𝑚
𝑖=1

Null(A𝑖 , 𝑐𝑖).

In the previous definition it may be the case that𝑈 := {𝑣 | 𝑣(𝑐1) =

t∨ · · · ∨ 𝑣(𝑐𝑚) = t} ⊊ dom𝑉 , which implies that 𝑃𝑉 (dom𝑉 \𝑈) = 0.

7.2 Interpreting Conditional Worlds as PDBs

In the next section we will explain how conditional worlds can

instantiate the answer space, but before we show how to interpret

these worlds as PDBs.

Definition 24. The probabilistic interpretation (domC, ΣC, 𝑃C) of
a conditional world C := {(A1, 𝑐1), . . . , (A𝑚, 𝑐𝑚)} is defined by:

domC :=

𝑚⋃
𝑖=1

{𝑣(A𝑖) | dom(𝑣) = Null(C)}

ΣC := {𝐴 | 𝜒−1
(𝐴) ∈ Σ𝑉 }

𝑃C (𝐴) := 𝑃𝑉 (𝜒−1
(𝐴))

Querying Incomplete Numerical Data PODS ’23, June 18–23, 2023, Seattle, WA, USA

where (dom𝑉 , Σ𝑉 , 𝑃𝑉) is the valuation space of Null(C), and 𝜒 :

dom𝑉 → domC is defined by

𝜒(𝑣) :=

𝑣(A1) if 𝑣(𝑐1) = t

.

.

.

.

.

.

𝑣(A𝑚) otherwise

Note that 𝜒 is well-defined due to Definition 23, and hence the

probabilistic interpretation is also well-defined.

Before proceeding, we show that, as its name hints, the proba-

bilistic interpretation is indeed a PDB.

Lemma 25. For every conditional world C, the probabilistic inter-
pretation of C is a PDB.

7.3 Lifting Queries to Conditional Worlds

To show how conditional worlds instantiate the answer space, we

need to show how queries can be lifted from complete databases

to conditional worlds. For all queries, except that of inequality

selections, the definitions are rather straightforward.

The intuition behind 𝜎
$𝑖<$𝑗 (C) is that the result of evaluating

an inequality selection on C := {(A1, 𝑐1), . . . , (A𝑚, 𝑐𝑚)} depends on
which tuples are not filtered out. A tuple 𝑡 := (𝑡1, . . . , 𝑡𝑛) is filtered

out if the condition 𝑡𝑖 − 𝑡 𝑗 < 0 is not satisfied. Thus, conditions that

may affect the result are the conditions in

C(𝑖, 𝑗) := {𝑡𝑖 − 𝑡 𝑗 < 0 | (𝑡1, . . . , 𝑡𝑛) ∈ ∪𝑚𝑖=1
A𝑚}

and each subset of satisfied conditions corresponds with a subset

of the possible answers. We define the condition 𝑐𝐵 of a subset

𝐵 ⊆ C(𝑖, 𝑗) in a way it ensures that (1) all tuples that satisfy the

conditions in 𝐵 remains, and (2) all those that do not are filtered

out. Thus, we set 𝑐𝐵 := 𝐵 ∪ {−𝑏 | 𝑏 ∈ C(𝑖, 𝑗) \ 𝐵}. The first element

in the union ensures (1) and the second (2). With this notation we

can present the full definition.

Definition 26. We define the semantics 𝑞(C) of queries 𝑞 on con-

ditional worlds C inductively as follows:

C ◦ C′
:= {(A ◦ A′, 𝑐 ∪ 𝑐′) | (A, 𝑐) ∈ C, (A′, 𝑐′) ∈ C′}

𝑞(C) := {(𝑞(A), 𝑐), | (A, 𝑐) ∈ C}
𝜎

$𝑖<$𝑗 (C) := {(𝜎𝐵 (A), 𝑐 ∪ 𝑐𝐵 | (A, 𝑐) ∈ C, 𝐵 ⊆ C(𝑖, 𝑗)}
with ◦ ∈ {×,∪, \}, 𝑞 := 𝑅 | 𝜋

$𝑖1,...,$𝑖𝑘 (𝑞) | 𝜎\ (𝑞) | Apply𝑓 (𝑞) |∑$𝑗

$𝑖1,...,$𝑖𝑘
(𝑞), while setting 𝜎∅ (A) := ∅, and all operators de-

fined on complete databases whose active domain is extended to

RAT[⊥1,⊥2, . . .].

To show that this inductive definition is indeed well defined, it

suffices to show compositionality of conditional worlds:

Lemma 27. 𝑞(C) is a conditional world for every conditional world
C and query 𝑞.

Example 1. Assume that C consists of (A, 𝑐) where A =

{{(⊥1, 0), (⊥1,⊥1), (⊥3,⊥1 + ⊥3)}}. To compute 𝜎
$1<$2

(C), we first

notice that C(1, 2) = {⊥1,−⊥1}. There are, therefore, four subsets
of C(1, 2), and we obtain

𝜎
$1<$2

(C) = {(∅, 𝑐 ∪ {−⊥1,⊥1}), (𝜎⊥1
(A), 𝑐 ∪ {⊥1}),

(𝜎−⊥1
(A), 𝑐 ∪ {−⊥1}), (𝜎⊥1,−⊥1

(A), 𝑐 ∪ {⊥1,−⊥1})}

Note that each condition that contains {−⊥1,⊥1} never holds. And,
indeed, their corresponding databases cannot be instantiated to any

of the possible answers.

7.4 Answer Spaces as Conditional Worlds

We now show that we can instantiate a probability space that is

almost similar to the answer space using the lifting we presented

in the previous section. But before, what does it mean to be almost

similar? A probability space (dom, Σ, 𝑃) is said to be a trivial exten-
sion of a probability space (dom′, Σ′, 𝑃 ′) if dom ⊇ dom′

, Σ ⊇ Σ
′
,

and 𝑃 ′(𝜎) = 𝑃 (𝜎) for every 𝜎 ∈ Σ
′
.

Theorem 28. For every incomplete databaseD and query𝑞, if each
null in Null(D) has a singleton-unlikely distribution then the answer
space of 𝑞 over D is a trivial extension of 𝑞(C) where C := {(D,−1)}.

The choice of C is due to the fact that its probabilistic interpre-

tation is similar to the PDB of D.

8 CONCLUSION

We presented a novel model for incomplete numerical data based on

tuple-dependent infinite probabilistic databases. We studied query

answering in a language that captures key features of SQL, looked

at exact and approximate answers, and showed how to represent

query outputs. As for future work, we would like to extend our

model to other SQL data-types, especially discrete domains. We

would like to study other forms of approximations, in particular

direct sampling from the conditional world that represents the out-

put. Such representations may be optimized deploying ideas from

cylindrical algebraic decomposition [4]. From a practical stand-

point, we would like to implement our theoretical algorithms using

real-world RBDMSs, and test their performances with real data.

ACKNOWLEDGMENTS

This work was supported by a Leverhulme Trust Research Fellow-

ship; by EPSRC grants N023056 and S003800; by Agence Nationale

de la Recherche project ANR-21-CE48-0015 (Verigraph); by MUR

under the PRIN 2017 project “HOPE” (prot. 2017MMJJRE), by the

EU under the H2020-EU.2.1.1 project TAILOR, grant id. 952215, and

by MUR under the PNRR project PE0000013-FAIR.

REFERENCES

[1] Abiteboul, S., Hull, R., and Vianu, V. Foundations of Databases. Addison-

Wesley, 1995.

[2] Abiteboul, S., Kanellakis, P., and Grahne, G. On the representation and

querying of sets of possible worlds. Theoretical Computer Science 78, 1 (1991),
158–187.

[3] Arora, S., and Barak, B. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[4] Basu, S., and González-Vega, L., Eds. Algorithmic and Quantitative Aspects
of Real Algebraic Geometry in Mathematics and Computer Science, Proceedings
of a DIMACS Workshop, Piscataway, NJ, USA, March 12-16, 2001 (2001), vol. 60
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
DIMACS/AMS.

[5] Blum, A., Hopcroft, J., and Kannan, R. Foundations of data science. Cambridge

University Press, 2020.

[6] Blum, L., Cucker, F., Shub, M., and Smale, S. Complexity and real computation.
Springer Science & Business Media, 1998.

[7] Box, G., and Muller, M. A note on the generation of random normal deviates.

Ann. Math. Statist. 29 (1958), 610–611.
[8] Carmeli, N., Grohe, M., Lindner, P., and Standke, C. Tuple-independent repre-

sentations of infinite probabilistic databases. In PODS’21: Proceedings of the 40th

PODS ’23, June 18–23, 2023, Seattle, WA, USA Console and Libkin and Peterfreund

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Vir-
tual Event, China, June 20-25, 2021 (2021), L. Libkin, R. Pichler, and P. Guagliardo,

Eds., ACM, pp. 388–401.

[9] Console, M., Guagliardo, P., Libkin, L., and Toussaint, E. Coping with

incomplete data: Recent advances. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2020, Portland,
OR, USA, June 14-19, 2020 (2020), D. Suciu, Y. Tao, and Z. Wei, Eds., ACM, pp. 33–

47.

[10] Console, M., Hofer, M. F. J., and Libkin, L. Queries with arithmetic on in-

complete databases. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2020, Portland, OR, USA, June
14-19, 2020 (2020), D. Suciu, Y. Tao, and Z. Wei, Eds., ACM, pp. 179–189.

[11] Dalvi, N. N., Ré, C., and Suciu, D. Queries andmaterialized views on probabilistic

databases. J. Comput. Syst. Sci. 77, 3 (2011), 473–490.
[12] Dalvi, N. N., and Suciu, D. Efficient query evaluation on probabilistic databases.

VLDB J. 16, 4 (2007), 523–544.
[13] Date, C. J. Database in Depth - Relational Theory for Practitioners. O’Reilly, 2005.
[14] Date, C. J. A critique of Claude Rubinson’s paper ‘Nulls, three-valued logic, and

ambiguity in SQL: critiquing Date’s critique’. SIGMOD Record 37, 3 (2008), 20–22.
[15] Date, C. J., and Darwen, H. A Guide to the SQL Standard. Addison-Wesley,

1996.

[16] Durrett, R. Probability: theory and examples, vol. 49. Cambridge university

press, 2019.

[17] Feng, S., Glavic, B., Huber, A., andKennedy, O. A. Efficient uncertainty tracking

for complex queries with attribute-level bounds. In SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June 20-25, 2021 (2021),
G. Li, Z. Li, S. Idreos, and D. Srivastava, Eds., ACM, pp. 528–540.

[18] Gao, Y., and Miao, X. Query Processing over Incomplete Databases. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2018.

[19] Gheerbrant, A., Libkin, L., and Sirangelo, C. Naïve evaluation of queries over

incomplete databases. ACM Trans. Database Syst. 39, 4 (2014), 31:1–31:42.
[20] Green, T. J., and Tannen, V. Models for incomplete and probabilistic information.

IEEE Data Eng. Bull. 29, 1 (2006), 17–24.
[21] Grohe, M., Kaminski, B. L., Katoen, J., and Lindner, P. Probabilistic data with

continuous distributions. SIGMOD Rec. 50, 1 (2021), 69–76.
[22] Grohe, M., and Lindner, P. Infinite probabilistic databases. Log. Methods

Comput. Sci. 18, 1 (2022).
[23] Grumbach, S., and Milo, T. Towards tractable algebras for bags. J. Comput.

Syst. Sci. 52, 3 (1996), 570–588.
[24] Guagliardo, P., and Libkin, L. A formal semantics of SQL queries, its validation,

and applications. Proc. VLDB Endow. 11, 1 (2017), 27–39.
[25] Hella, L., Libkin, L., Nurmonen, J., and Wong, L. Logics with aggregate

operators. Journal of the ACM 48, 4 (2001), 880–907.
[26] Huang, J., Antova, L., Koch, C., and Olteanu, D. Maybms: a probabilistic

database management system. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA,

June 29 - July 2, 2009 (2009), U. Çetintemel, S. B. Zdonik, D. Kossmann, and

N. Tatbul, Eds., ACM, pp. 1071–1074.

[27] Imielinski, T., and Lipski, W. Incomplete information in relational databases.

Journal of the ACM 31, 4 (1984), 761–791.
[28] Jampani, R., Xu, F., Wu, M., Perez, L. L., Jermaine, C. M., andHaas, P. J.MCDB: a

monte carlo approach to managing uncertain data. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2008, Vancouver,
BC, Canada, June 10-12, 2008 (2008), J. T. Wang, Ed., ACM, pp. 687–700.

[29] Kennedy, O., and Koch, C. PIP: A database system for great and small expec-

tations. In Proceedings of the 26th International Conference on Data Engineering,
ICDE 2010, March 1-6, 2010, Long Beach, California, USA (2010), F. Li, M. M. Moro,

S. Ghandeharizadeh, J. R. Haritsa, G. Weikum, M. J. Carey, F. Casati, E. Y. Chang,

I. Manolescu, S. Mehrotra, U. Dayal, and V. J. Tsotras, Eds., IEEE Computer Society,

pp. 157–168.

[30] Klug, A. C. Equivalence of relational algebra and relational calculus query

languages having aggregate functions. J. ACM 29, 3 (1982), 699–717.
[31] Lakshmanan, L. V. S., Leone, N., Ross, R. B., and Subrahmanian, V. S. Probview:

A flexible probabilistic database system. ACM Trans. Database Syst. 22, 3 (1997),
419–469.

[32] L’Ecuyer, P. Non-uniform random variate generations. In International Encyclo-
pedia of Statistical Science, M. Lovric, Ed. Springer, 2011, pp. 991–995.

[33] Libkin, L. Expressive power of SQL. Theor. Comput. Sci. 296, 3 (2003), 379–404.
[34] Libkin, L., and Wong, L. Query languages for bags and aggregate functions. J.

Comput. Syst. Sci. 55, 2 (1997), 241–272.
[35] Loeve, M. Probability theory. Courier Dover Publications, 2017.
[36] Singh, S., Mayfield, C., Mittal, S., Prabhakar, S., Hambrusch, S. E., and Shah,

R. Orion 2.0: native support for uncertain data. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008 (2008), J. T. Wang, Ed., ACM, pp. 1239–1242.

[37] Singh, S., Mayfield, C., Shah, R., Prabhakar, S., Hambrusch, S. E., Neville,

J., and Cheng, R. Database support for probabilistic attributes and tuples. In

Proceedings of the 24th International Conference on Data Engineering, ICDE 2008,
April 7-12, 2008, Cancún, Mexico (2008), G. Alonso, J. A. Blakeley, and A. L. P.

Chen, Eds., IEEE Computer Society, pp. 1053–1061.

[38] Suciu, D., Olteanu, D., Re, C., and Koch, C. Probabilistic Databases. Mor-

gan&Claypool Publishers, 2011.

[39] Tanner, J. M. A History of the Study of Human Growth. Cambridge University

Press, 1981.

[40] Toda, S. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20, 5
(1991), 865–877.

[41] Toussaint, E., Guagliardo, P., and Libkin, L. Knowledge-preserving certain an-

swers for sql-like queries. In KR (2020), D. Calvanese, E. Erdem, andM. Thielscher,

Eds., pp. 758–767.

[42] Van den Bussche, J., and Vansummeren, S. Translating sql into the relational

algebra. Course notes, Hasselt University and Université Libre de Bruxelles (2009).
[43] Van den Dries, L. Tame topology and o-minimal structures, vol. 248. Cambridge

university press, 1998.

	Abstract
	1 Introduction
	2 Background
	2.1 Incomplete Databases
	2.2 Probability Theory

	3 Querying and Instantiating Probabilistic Databases
	3.1 Querying PDBs
	3.2 PDBs from Incomplete Databases

	4 Query Language: Extended Relational Algebra
	5 Query Answering
	5.1 Target Sets of the Answer Space
	5.2 Measurability of Target Sets
	5.3 Computing Likelihood[q,, k] Exactly

	6 Approximation
	6.1 Sampling the Valuation Space
	6.2 Approximation via Direct Sampling
	6.3 Encoding Sampling into Queries

	7 Finite Representation of the Answer Space
	7.1 Conditional Worlds
	7.2 Interpreting Conditional Worlds as PDBs
	7.3 Lifting Queries to Conditional Worlds
	7.4 Answer Spaces as Conditional Worlds

	8 Conclusion
	References

