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Abstract 43 

Biochar application to the soil is a novel approach to carbon sequestration. Biochar application 44 

affects the emission of greenhouse gases (GHGs), such as CO2, CH4, and N2O, from different 45 

environments (e.g. upland soils, rice paddies and wetlands, and composting environments). In 46 

this review, the effect of biochar on GHGs emissions from the above three typical environments 47 

are critically evaluated based on a literature analysis. First, the properties of biochar and 48 

engineered biochar related to GHGs emissions was reviewed, targeting its relationship with 49 

climate change mitigation. Then, a meta-analysis was conducted to assess the effect of biochar 50 

on the emissions of CO2, CH4, and N2O in different environments, and the relevant mechanisms. 51 

Several parameters were identified as the main influencing factors in the meta-analysis, 52 

including the pH of the biochar, feedstock type, pyrolysis temperature, biochar application rate, 53 

C/N ratio of the biochar, and experimental scale. An overall suppression effect among different 54 

environments was found, in the following order for different greenhouse gases: 55 

N2O > CH4 > CO2. We conclude that biochar can change the physicochemical properties of soil 56 

and compost in different environments, which further shapes the microbial community in a 57 

specific environment. Biochar addition affects CO2 emissions by influencing oligotrophic and 58 

copiotrophic bacteria; CH4 emissions by regulating the abundance of functional genes, such as 59 

mcrA (a methanogen) and pmoA (a methanotroph); and N2O emissions by controlling N-60 

cycling functional genes, including amoA, nirS, nirK, nosZ. Finally, future research directions 61 

for mitigating greenhouse gas emissions through biochar application are suggested. 62 

KEYWORDS 63 

Biochar, Black carbon, Pyrolysis, Gasification, UN Sustainable Development Goals   64 
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1. Introduction 65 

Climate change has accelerated with industrial development and the need to address this 66 

challenge is widely accepted by society and policymakers. Several pathways to zero carbon 67 

(C), or even a negative-C future, have been charted; however, achieving these goals is an 68 

enormous task, requiring multilateral efforts and different approaches, including emission 69 

reductions, CO2 capture, and atmospheric greenhouse gas (GHG) removal. Among the six 70 

major GHGs listed in the Climate Change Control Inventory, CO2, CH4, and N2O contribute 71 

the most to global climate change, with relative contributions of 60, 20, and 10%, respectively 72 

(Josep et al., 2019). The concentration of CO2 in the atmosphere has increased from 280 ppm 73 

in the 1700s to over 400 ppm, reflecting a rapid increase in CO2 emissions since the Industrial 74 

Revolution (Sriphirom et al., 2020). Various approaches aimed at mitigating or minimising 75 

climate change have been proposed to address the rising emissions of GHGs and their 76 

concentrations in the atmosphere (Song et al., 2019).  77 

Carbon sequestration can directly decrease the emission of CO2 into the atmosphere, and 78 

a new class of technologies, GHG removal technologies, have emerged to aid in reducing GHG 79 

concentrations in the atmosphere. Biochar is one piece of this puzzle as it has considerable 80 

global potential to sequester atmospheric C. The ability of biochar to sequester C from the 81 

atmosphere by plants has been the driving force behind its development. Biochar production 82 

itself can offset GHG emissions because it converts the organic C in the feedstock into stable 83 

C to prevent the degradation of biomass from releasing CO2 and CH4 into the atmosphere 84 

(Zhang & Ok, 2014). The application of biochar is supposed to be able to offset a maximum of 85 

12% of current anthropogenic CO2-C equivalent (CO2-Ce) emissions (i.e., 1.8 Pg CO2-Ce per 86 
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year of the 15.4 Pg CO2-Ce emitted annually; 1 Pg=1 Gt) (Woolf et al., 2010). As an important 87 

indicator of the effectiveness of C sequestration, the stability of biochar in different soils has 88 

been extensively studied (Lian & Xing, 2017), and it is now widely accepted that the stability 89 

of most of the C contained in biochar is of the order of hundreds or even thousands of years 90 

(Spokas & Reicosky, 2009).  91 

Biochar is produced from different feedstocks and is widely used in various environmental 92 

processes. The main functions of biochar can be summarised as follows: (1) The production of 93 

biochar, combined with energy recovery, is a good method for managing agricultural waste and 94 

has been practised both in China and around the world (Lee et al., 2017). (2) Biochar is widely 95 

used as a soil conditioner to improve soil quality and crop yield (Pariyar et al., 2020) because 96 

its porous structure can improve soil quality by enhancing soil aeration, reducing soil hardening, 97 

and increasing soil cation exchange capacity (CEC). In addition, the nutrient content of biochar 98 

is important for plant growth and crop yields. (3) Biochar can be used for the remediation of 99 

soil and water contaminants (Xiao et al., 2020). In addition, engineered biochars have been 100 

developed to enhance biochar functions, such as adsorption, reduction, oxidation, and 101 

catalysation of specific pollutants (Lyu et al., 2020). Biochar has also been applied to increase 102 

the efficiency of waste treatment processes such as composting. (4) Biochar can be used for C 103 

sequestration and as an adsorbent for GHGs, such as CO2, to mitigate climate change (Huang 104 

et al., 2015).  105 

Biochar also plays an important role in mitigating climate change by regulating GHG 106 

emissions from the soil and different environmental processes. Biochar application can change 107 

soil properties and hence affect microbial biomass, community structure, and activity, resulting 108 
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in changes in soil GHG emissions. As microbial communities in uplands are quite different 109 

from those in paddy soils and wetlands, the application of biochar will have a different effect 110 

on GHG emissions in these two environments. For example, CH4 emissions from rice paddy 111 

fields are much higher than those from upland fields, and the emissions from a rice paddy in 112 

the monsoon season in Asia account for ~25–36% of global CH4 emissions (Zhang et al., 2020b) 113 

because of extensive rice cultivation. It has been estimated that the application of biochar to 114 

paddy soils reduces seasonal CH4 emissions by 40% (Sriphirom et al., 2020). Emissions of 115 

CO2 are the main concern in upland agriculture, where biochar can reduce the net ecosystem 116 

CO2 exchange in crop production by 144–283% (Azeem et al., 2019). Another GHG is N2O, 117 

which has a much higher global warming potential and can be a key factor in both paddy and 118 

upland fields (Aamer et al., 2020). Although biochar generally reduces N2O emissions from 119 

soil (Thangarajan et al., 2018), in some cases, it can enhance N2O emissions from upland fields 120 

when water content increases (Troy et al., 2013). In addition to paddy and upland fields, biochar 121 

may also affect GHG emissions from industrial sites such as composting, anaerobic digestion, 122 

and bioremediation sites.  123 

To date, several review papers have been published that focus on the effects of biochar on 124 

soil GHG emissions. These studies have summarised the effect of biochar on the properties and 125 

GHG emissions in the soils of a certain type of environment, such as forest soils (Li et al., 2018) 126 

or agricultural soils (Sri et al., 2021). However, no systematic review has compared the effects 127 

of biochar on GHG emissions from microbial processes in various environments (e.g. upland 128 

soils, rice paddies and wetlands, and composting environments), which is important for 129 

mitigating GHG emissions and promoting the application of biochar. In this study, we 130 
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systematically evaluated the effects of biochar on GHG emissions in various environments (i.e. 131 

upland soils, rice paddies and wetlands, and composting environments) and the mechanisms 132 

involved. First, recent research and development on biochar production related to climate 133 

change mitigation are summarised. Second, the effects of biochar application on GHG 134 

emissions in upland fields, rice paddies and wetlands, compost systems, and the mechanisms 135 

involved (including the mechanisms that control GHG emissions based on the effects of 136 

biochar on soil physicochemical and microbial properties) are summarised.  137 

 138 

2. Properties of pristine and engineered biochar relevant to climate change mitigation  139 

2.1 Properties of biochar relevant to climate change mitigation  140 

Biochars have been widely applied to soil improvement in various environments, 141 

including uplands, rice paddies, wetlands, and composting environments. When biochar is 142 

applied to the soil, its impact on soil physicochemical properties (e.g. porosity, water holding 143 

capacity, pH, and CEC) varies depending on biochar properties such as specific surface area, 144 

porosity, and functional groups (Sun et al., 2020). These changes caused by the different 145 

properties of biochar affect GHG emissions from the soil and other environmental processes. 146 

Biochar feedstock is a key factor in determining biochar composition (Liu et al., 2019). 147 

In general, feedstock type affects the surface area, pH, and content of stable C in the biochars. 148 

For instance, owing to the higher content of lignin in wood biomass, biochar produced from 149 

wood typically has a higher surface area than that produced from grass and forms more organo-150 

mineral layers to provide a nutrient shelter for microbes, thus improving microbial activities 151 

and changing soil GHG emissions (Hagemann et al., 2017). In contrast, biochars produced 152 
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from feedstocks with higher cellulose and hemicellulose contents (e.g. sugarcane straw and 153 

rice husk) are characterised by higher pH values and nutrient concentrations (Higashikawa et 154 

al., 2016). For acidic paddy and wetland soils, the addition of alkaline biochar increases the 155 

soil pH (Sri et al., 2021). A higher soil pH is helpful for the growth of methanotrophs, resulting 156 

in decreased CH4 emission from paddy soils (Dong et al., 2013). Applying biochar with high 157 

nutrient concentrations to the soil is conducive to increasing microbial nutrients and improving 158 

the activity of microorganisms. Moreover, a meta-analysis of 154 studies reported that biochars 159 

produced from biosolids had the best ability to retain nitrogen (N) in soils, followed by those 160 

produced from animal wastes. Compared with the biochars produced from animal wastes and 161 

biosolids, the woody and herbaceous biochars exhibited a better ability to mitigate N2O 162 

emissions from soil (Li et al., 2019). There is abundant available N in animal waste and biosolid 163 

biochars, which may stimulate the growth of denitrifiers and contribute to N2O emissions. 164 

Therefore, feedstock type should be considered an important factor affecting the properties of 165 

biochar when used for environmental applications and climate change mitigation. However, 166 

the results for biosolid-derived biochar are highly variable because of the diverse 167 

physicochemical properties of the feedstocks and the limited availability of studies on biosolid-168 

derived biochar. Therefore, further research on the impact of biosolid-derived biochars on GHG 169 

emissions is needed to formulate comprehensive recommendations.  170 

The pyrolysis temperature of biochar has been recognised as another important factor 171 

affecting its properties (Liu et al., 2019). As the pyrolysis temperature increases, the pH, 172 

electrical conductivity, ash content, and C stability of the biochar increase, whereas the yield 173 

of biochar decreases. Compared to biochars produced at medium (350-600 °C) and high 174 
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temperatures (> 600 °C), biochars produced at low temperatures (≤ 350 °C) generally contain 175 

a higher organic nutrient content which increases the co-metabolic interaction between 176 

biochars and microorganisms, thus resulting in the enhancement of microbial biomass and 177 

activities, especially for bacteria and fungi (Zhang et al., 2018b). In addition, biochar produced 178 

at low temperatures (250-400 °C) stimulates C mineralisation, whereas biochar produced at 179 

high temperatures (525-650 °C) suppresses C mineralisation, ultimately decreasing CO2 180 

emissions (Wang et al., 2019b). However, high-temperature biochars may contain higher 181 

relative concentrations of toxic compounds (i.e. polycyclic aromatic hydrocarbons), affecting 182 

soil microbial biomass and activity (He et al., 2017). Simultaneously, the yield of high-183 

temperature biochars was lower. Therefore, when choosing the biochar pyrolysis temperature, 184 

not only the impact of biochar on soil GHG emissions but also the cost savings of biochar 185 

production should be considered. 186 

 187 

2.2 Properties of engineered biochar relevant to climate change mitigation  188 

Biochar properties can also be affected by post-treatment biochar production, that is, the 189 

production of engineered biochars. The properties of engineered biochars vary depending on 190 

the modification technologies, including physical (e.g. ball milling and magnetisation) and 191 

chemical (e.g. acidification, alkalisation, oxidation, and impregnation) methods (Panahi et al., 192 

2020). Biochar modification is often used to increase its surface area, pore volume, surface 193 

functional groups, and surface chemistry properties. Through modification, biochar has a 194 

highly porous structure, which can improve a range of soil physical properties such as porosity 195 

and pore size distribution. This may further improve soil aeration, thereby stimulating the 196 
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decomposition of soil organic C and the activity of methanotrophs (Liu et al., 2019). The 197 

engineering of biochar through ball milling has recently attracted significant research interest. 198 

Compared to pristine biochars, N-engineered biochar prepared by milling a mixture of biochar, 199 

bentonite, pregelatinised maize flour, and urea presents better environmental performance and 200 

lowers GHG emission intensity (Puga et al., 2020).  201 

Few studies have reported the application of engineered biochars, including Fe-, N-, and 202 

phosphorus (P)-engineered biochars, in soil improvement. The biochar-supported FeS 203 

composite (FeS/biochar) can not only immobilise Cr(VI) through fractional precipitation in 204 

soil, but can also increase soil organic matter content, microbial activity, and CO2 emissions 205 

(Lyu et al., 2018). As conductive and semi-conductive materials, biochar and Fe may enhance 206 

direct interspecies electron transfer among soil microorganisms affecting GHG emissions (Liu 207 

et al., 2020). P-engineered biochars have improved stability owing to the formation of a P-208 

containing compound that protects biochar C from oxidation (Guo & Chen, 2014). The co-209 

pyrolysis of biomass with phosphate fertiliser could reduce C loss in soil. The role of minerals 210 

in biochar and their effects on biochar C stability are complex. Some inherent minerals in 211 

biochar can enhance the stability, whereas some extraneous minerals, such as Fe-bearing 212 

materials, reduce the stability of biochars. In contrast, inherent minerals can also reduce biochar 213 

C stability, whereas some extraneous minerals can enhance it (Buss et al., 2019). The 214 

incubation of biochar with soil minerals such as FeCl3, AlCl3, CaCl2, and kaolinite could also 215 

increase the oxidation resistance of biochar (Yang et al., 2016). Clay types such as 216 

montmorillonite (MMT), red earth (RE), and bentonite have been used to synthesise engineered 217 

biochars as an efficient way to increase the stability of biochar in soil (Premarathna et al., 2019). 218 
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Therefore, it is important to develop new engineered biochars for better C sequestration and 219 

mitigation of GHG emissions. However, the relationship between stabilisation and GHG 220 

emissions remains an interesting topic for further research. 221 

 222 

3. Effect of biochar on GHG emissions from various environments 223 

The addition of biochar could be used as a low-cost and highly efficient technology that 224 

might contribute to both climate change mitigation and adaptation (improving or maintaining 225 

soil quality), ensuring that the yield of upland and paddy crops is improved or maintained 226 

despite the changing climate (Pradhan et al., 2018). Reduced nitrogen loss, increased microbial 227 

activity, shorter time until maturity, and significantly less odour is observed when biochar is 228 

used as a compost amendment (Guo et al., 2020b). As the physicochemical properties and 229 

microbial communities of upland soils, paddy and wetland soils, and compost are quite 230 

different, the application of biochar has different effects on GHG emissions in these three 231 

environments. Tables 1 and 2 summarise recent studies on GHG emissions resulting from the 232 

addition of biochar to upland fields, paddy fields, and wetland soils. In the following sections, 233 

we discuss how biochar application affects the emissions of CO2, CH4, and N2O in different 234 

environments. Moreover, a meta-analysis considering the interaction between these changes 235 

and GHG emissions is provided in Figures 1a-3a. Specifically, a literature search was 236 

conducted using Web of Science and Google Scholar databases from 1950 to 2021 using the 237 

keywords ‘biochar’ AND ‘upland’ OR ‘paddy’ OR ‘composting’ OR ‘greenhouse gas’ OR 238 

‘GHGs’ OR ‘CO2’ OR ‘CH4’ OR ‘N2O’ OR ‘global warming potential (GWP)’. Since most of 239 

the related studies separately assessed the effects of biochar application on GHGs emissions, 240 
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physicochemical properties of biochar, and soil microbial properties, only 81 observations from 241 

24 peer-reviewed studies were collected (listed in the supplemental material as Section 1). 242 

These results were discussed to clarify the different effects of biochar on GHGs emissions from 243 

upland, paddy, and wetland soils and composting environments.  244 

Several parameters were identified as the main influencing factors in the meta-analysis, 245 

including pH of biochar, feedstock, pyrolysis temperature of biochar, application rate, C/N ratio 246 

of biochar, and experimental scale. An overall suppression effect among different environments 247 

was found, in the following order for different GHGs: N2O > CH4 > CO2. Moreover, the 248 

addition of biochar can cause changes in soil physicochemical properties (bulk density, soil 249 

water-holding capacity, soil cation exchange capacity, pH, etc.), which affect soil microbial 250 

properties, including microbial biomass, microbial activity, and microbial community structure, 251 

which are related to GHG emissions in various environments (Guo et al., 2020b). Herein, we 252 

summarise the microbial processes involved in the effects of biochar on GHGs emissions. The 253 

effects and mechanisms of biochar-mediated GHG emissions are summarised in Figures 1b-254 

3b. 255 

 256 

3.1 Effect of biochar on CO2 emissions and its mechanism 257 

As shown in Figure 1a, the meta-analysis results indicated that the overall reduction rate 258 

of CO2 emissions intensity in the three different environmental processes of upland, rice 259 

paddies and wetlands, and composting was approximately 1%. However, the effect of biochar 260 

on the emission of CO2 is quite different in the three different environments, showing an 261 

enhancing effect in uplands (a promotion rate of 9%, P < 0.05) and a suppression effect in 262 
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paddy soil and composting processes (suppression rate of 10% and 2%, respectively, P < 0.05).  263 

Specifically, as shown in Figure 1a, several parameters were identified in the meta-264 

analysis as factors affecting CO2 emissions in upland soil, including the pH of biochar, 265 

feedstock, pyrolysis temperature of biochar, application rate, and C/N ratio of biochar. Among 266 

them, the pH value and feedstocks showed a greater effect on increasing CO2 emission intensity. 267 

That is, the addition of biochar promoted CO2 emission intensity regardless of changes in pH 268 

and feedstocks of biochar (i.e. biochar pH and feedstock increased CO2 emission intensity by 269 

16% and 14%, respectively, P < 0.05). Moreover, the increase in soil CO2 emission intensity 270 

was negatively correlated with biochar pyrolysis temperature, while positively correlated with 271 

biochar application rate and C/N. These results may be ascribed to the fact that lower pyrolysis 272 

temperature (500 ℃) results in more microbial available C and nutrients in biochar than a 273 

higher pyrolysis temperature (> 500 ℃), which promotes high soil microbial activities to 274 

decompose soil organic matter and release more CO2 from soil. At the same time, high 275 

temperature biochars (> 500 ℃) may contain higher relative concentrations of toxic 276 

compounds (i.e., polycyclic aromatic hydrocarbons), which affect soil microbial biomass and 277 

activity (He et al., 2017). Overall, in upland soils, enzymes and labile organic matter are 278 

adsorbed from the bulk soil to the biochar surface, which is more likely to cause significant 279 

microbial growth. In addition, the application of biochar to the soil directly affects the microbial 280 

community because of its unstable C components, which increase the apparent respiration rate 281 

of microorganisms and then increases soil CO2 emissions (Irfan et al., 2019). 282 

Unlike the trend in upland soils, the meta-analysis results showed that the addition of 283 

biochar usually decreases the cumulative CO2 flux from paddy and wetland soils (Figure 1a). 284 
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For example, compared to untreated paddy soils (a field experiment), the biochar-amended 285 

soils exhibited reduced CO2 emissions (from 68 962 to 55 422 kg CO2-eq ha-1) and increased 286 

rice yield (from 11.4 to 11.9 Mg ha-1) (Wang et al., 2019b). Meta-analysis results suggested 287 

that biochar feedstock, application rate, and pyrolysis temperature could influence CO2 288 

emissions from rice paddies and wetlands. For example, biochar from wood (a suppression rate 289 

of 35%, P < 0.05) can induce a greater suppression effect on CO2 emissions than rice straw (a 290 

suppression rate of 12%, P < 0.05), probably because of the higher surface area and graphitic 291 

structure of biochar from wood (Hagemann et al., 2017), which is conducive to the suppression 292 

of soil organic carbon mineralisation and the adsorption of soil CO2 molecules by biochar (Yu 293 

et al., 2021). The effect of the pyrolysis temperature of biochar on CO2 emissions in rice 294 

paddies and wetlands is quite different. Compared with higher (600-800 ℃) and lower 295 

temperature (< 400 °C) of biochars, which suppressed the CO2 emissions intensity significantly, 296 

medium temperature biochars (450-600 °C) had less suppression effect on CO2 emissions (a 297 

suppression rate of 4% for 550-600 °C, P < 0.05) and even greatly increased CO2 emissions (a 298 

promotion rate of 45% for 450-500 °C, P < 0.05). This may be due because medium pyrolysis 299 

temperature of biochars contain moderate organic nutrient content, pore structure and surface 300 

area, and lower relative concentrations of toxic compounds, which increases the overall 301 

abundance and activities of microorganisms and promotes CO2 emissions (Zhang et al., 2018a). 302 

The meta-analysis results showed that the addition of biochar to solid organic compost 303 

can regulate and mitigate CO2 emissions during composting (Figure 1a). The main influencing 304 

factors included pyrolysis temperature, raw materials, and initial C/N, all of which showed a 305 

low suppression effect on CO2 emissions (suppression rate of 0.1%-3.7%, P < 0.05). The result 306 



 

15 

 

of this suppression comes from a combination of several reasons. For example, He et al. (2019) 307 

studied the effects of biochar on GHG emissions during composting in laboratory-scale 308 

composting systems, and found that the application of bamboo biochar reduced CO2 emissions 309 

arising from composting (He et al., 2019). This has been ascribed to the biochar-mediated 310 

protection of organic matter against chemical oxidation and biological degradation (Ngo et al., 311 

2013). Moreover, the addition of biochar to composting promotes enzyme activities (e.g. 312 

dehydrogenase, protease, cellulase, amylase, and xylanase) and reduces CO2 emissions by 313 

affecting the carbon and nitrogen cycle (Awasthi et al., 2020). However, other studies have 314 

reported the opposite effects of biochar addition, i.e., increased CO2 emissions from the 315 

composting processes. The CO2 emissions from chicken manure compost supplemented with 316 

biochar (27% w/w) increased by 6-8% in small-scale laboratory composters (Chowdhury et al., 317 

2014). This may be due to the high porosity and specific surface area of biochar, which allows 318 

a compost pile to have more oxygen to facilitate aeration, thus increasing CO2 emissions 319 

(Wojciech et al., 2015). Other research indicated that higher CO2 emissions during composting 320 

of mixtures amended with biochar could result from abiotic oxidation of biochar or biochar 321 

available carbon, which functions as an energy source for microorganisms (Dias et al., 2010). 322 

Net ecosystem exchange of CO2 (NEE) should also be considered when evaluating the 323 

effects of biochar amendment on soil CO2 emissions. The NEE between terrestrial ecosystems 324 

and the atmosphere depends on the net C balance between the input and output of a given 325 

ecosystem and can be calculated as the difference between heterotrophic soil respiration and 326 

net primary production (Zhang et al., 2016). Azeem et al. (2019) conducted a two-year field 327 

trial in an arid agricultural zone to investigate the effects of biochar on NEE for a legume-328 
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cereal crop rotation. The NEE for wheat decreased by 200 and 147% in the first year, and by 329 

283 and 265% in the second year, and wheat yield increased by 6.2-22.2% in soil amended 330 

with 0.25 and 0.5% biochar, respectively (Azeem et al., 2019). The results revealed that biochar 331 

application improved the soil’s physical and chemical properties, such as increasing the 332 

porosity and water-holding capacity of the soil (Major et al., 2010). As a result, biochar 333 

applications to soils enhanced crop productivity and limited nutrient leaching (Biederman & 334 

Harpole, 2013). However, no significant difference was observed for NEE in the first year of 335 

the mash bean crop; the NEE decreased by 46.8-37.9% in the second season, and the mash 336 

bean yield increased by 3.9-9.5%. The reason for this phenomenon may be that high rainfall 337 

during mash bean growing cycles leads to increased soil respiration, and the improvement of 338 

soil physical properties results in enhanced crop productivity which leads to no or small 339 

differences in NEE (Azeem et al., 2019). 340 

The overall mechanism by which biochar regulates CO2 emissions in various 341 

environments is illustrated in Figure 1b. Generally, the governing mechanisms, including both 342 

abiotic and biotic mechanisms, are summarised as follows: (1) the increase in soil pH and the 343 

high content of alkaline metals on the surface of biochar facilitates the precipitation of CO2 to 344 

carbonates; (2) the adsorption of organic matter by biochar may be protected from further 345 

mineralisation to produce CO2; (3) the decrease in the abundance of two carbohydrate-346 

mineralising enzymes (glucosidase and cellobiosidase) reduces CO2 emissions; and (4) an 347 

increase in plant growth and plant biomass due to the addition of biochar increases the net 348 

exchange of CO2 between the atmosphere and soil (Guo et al., 2020a). Many researchers have 349 

demonstrated that soil pH is the main factor affecting the microbial community structure. 350 
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Bacterial diversity was highest in neutral soils and lowest in acidic soils. Therefore, for paddy 351 

and wetland fields with lower pH, higher biochar addition led to a higher soil pH and bacterial 352 

diversity. For example, the enrichment of copiotrophic bacteria, such as Bacteroidetes and 353 

Gemmatimonadetes, and the decrease in oligotrophic bacteria, such as Acidobacteria in paddy 354 

and wetland fields were responsible for the decreased CO2 emissions. However, when the 355 

biochar is added to the upland soil, the bacteria in the upland soil can adsorb to the surface of 356 

the biochar, making the bacteria in the soil less susceptible to soil leaching, thus increasing the 357 

number of bacteria in the soil. The biochar gaps are better able to protect microbes from 358 

competitors and thus enhance respiration of upland soil microbes in relation to soil available 359 

carbon (Li et al., 2021).  360 

 361 

3.2 Effect of biochar on CH4 emissions and its mechanism 362 

As shown in Figure 2a, the meta-analysis results confirmed that the addition of biochar 363 

generally suppressed the release of CH4 from the three environments (upland soil, paddy and 364 

wetland fields, and compost) (Guo et al., 2015; Pascual et al., 2020), with an overall 365 

suppression of about 7% (P < 0.05). The suppression effect among different environments was 366 

in the following order: composting environment > rice paddies and wetlands > upland soil. It 367 

is speculated that the primary reason for this suppression is that the changes in the physical and 368 

chemical properties affect microbial activities. Biochar increases soil oxygen content because 369 

of its large pore structure. Since methanogens are anaerobic bacteria, the aerated environment 370 

suppresses their activity, resulting in a decrease in the amount of CH4 produced. However, the 371 

suppression of CH4 emissions after biochar addition was not as strong in upland fields (a 372 
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suppression rate of 3%, P < 0.05) as in other ecosystems (e.g. a suppression rate of 6% in rice 373 

paddies and wetlands), as shown in Figure 2a. This is because the low water content also 374 

suppresses the CH4 oxidation process. Consequently, the promotion effect of biochar on 375 

methanotrophs in upland fields is weaker than in wet areas (Troy et al., 2013). Some studies 376 

have indicated that the addition of biochar can increase CH4 emissions in uplands (Zhang et al., 377 

2013). For example, a higher biochar application rate (> 5 t ha-1) provides a large amount of 378 

substrate, promoting the production of CH4 (a promotion rate of 10%, P < 0.05), as confirmed 379 

by the results of the meta-analysis on CH4 emission intensity in uplands (Figure 2a). 380 

CH4 emissions from rice paddies and wetlands were much higher than those from upland 381 

fields. Routine drainage and flooding of wetlands increase CH4 emissions into the atmosphere. 382 

The meta-analysis results showed that the application of biochar to rice paddies and wetlands 383 

suppresses CH4 emissions in general (Figure 2a). For example, in a two-year field experiment 384 

conducted by Dong et al. (2013), rice straw and bamboo biochars were applied to paddy soils 385 

and CH4 emissions were monitored for two growing seasons. The results showed that rice straw 386 

biochar had the most significant effect on the reduction of CH4 emissions (causing 47.3-86.4% 387 

reduction) and raised rice yield by 13.5-6.1% during the two rice-growing cycles (Dong et al., 388 

2013). This decrease may be ascribed to an increase in CH4 oxidation and a decrease in 389 

methanogenic activity (Han et al., 2016). Specifically, biochar application decreases soil bulk 390 

density and increases soil aeration, thereby enhancing CH4 oxidation (Liu et al., 2019). 391 

Moreover, soil pH is an important parameter to control soil CH4 emission rates in paddy fields 392 

and wetlands because the biochemical activities of most methanogens are very sensitive to 393 

changes in soil pH. Soil pH increased after the addition of biochar. A higher soil pH was helpful 394 
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for the growth of methanotrophs, resulting in reduced CH4 emissions. However, different 395 

feedstocks of biochar have different effects on CH4 emissions as shown in Figure 2a. Among 396 

them, biochar from straw suppressed CH4 emissions intensity by 16% (P < 0.05), while biochar 397 

from wood significantly increased CH4 emissions intensity by 34% (P < 0.05). The difference 398 

in the chemical properties of the biochars might explain this phenomenon. Compared with 399 

wood biochar, straw biochar generally has higher pH, which can significantly increase the 400 

degree of soil pH, increase the abundance of methane nutrient bacteria and promote methane 401 

oxidation (Dong et al., 2013). The higher pyrolysis temperature of biochar (> 500 ºC) resulted 402 

in an enhanced inhibitory effect of biochar on CH4 emissions. This was related to the soil redox 403 

potential, which also contributed to the reduction in CH4 emissions. A soil redox potential of < 404 

−150 mV is beneficial to CH4 production (Lyu et al., 2018). The addition of biochar might 405 

increase the redox potentials of paddy and wetland soils by affecting the water-holding capacity, 406 

soluble organic C, and metabolism of plant roots, thereby reducing CH4 emissions. The biochar 407 

application rate and C/N ratio also had significant effects on CH4 emissions in paddy and 408 

wetland soils. A higher application rate and lower C/N ratio are beneficial for suppressing CH4 409 

emissions which may be the result of both adsorption and microbial activity. 410 

The meta-analysis results shown in Figure 2a confirmed that the addition of biochar 411 

significantly suppressed CH4 emissions during composting (a suppression rate of 15%, P < 412 

0.05) by improving the internal structure of compost piles, increasing the formation of aerobic 413 

sites, suppressing the activity of methanogens, enhancing the activity of methane-oxidising 414 

bacteria, and reducing CH4 emissions (Sonoki et al., 2013). The proportion of biochar added 415 

was positively correlated with the reduction in CH4 emissions during composting, for example, 416 
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after 15 days of composting, the CH4 emission concentration decreased from 1000 to 750 ppm 417 

as the biochar application rate increased from 5% to 20% (w/w) (Liu et al., 2017). Overall, the 418 

addition of biochar suppressed CH4 emission intensity regardless of changes in application rate, 419 

feedstocks and C/N ratio of biochar, suggesting that biochar application is a good strategy to 420 

mitigate CH4 emissions in composting systems. In addition to the reason mentioned above that 421 

the addition of biochar improves the permeability of compost and changes the oxidation-422 

reduction potential, so as to suppress the activity of methanogens and promote the activity of 423 

methane-oxidising bacteria, another reason for biochar to reduce CH4 emission in compost is 424 

its adsorption of NH4
+-N, which decrease nitrogen availability to methanogens (Liu et al., 425 

2017). 426 

The overall mechanism by which biochar regulates CH4 emission in various environments 427 

is shown in Figure 2b. Three processes determine the release of CH4: CH4 production, CH4 428 

oxidation, and CH4 transport from soil to the atmosphere. CH4 emissions are mainly related to 429 

the relative abundances of methanogens and methanotrophs, which are responsible for the 430 

production and oxidation of CH4, respectively (Henri et al., 2018). The ratio of methanogens 431 

and methanotrophs is opposite to the suppression effect of biochar on CH4 emission, which 432 

was confirmed in the paddy soil with long-time application of biochar (Wang et al., 2019a). In 433 

addition, two genes related to CH4 emissions, mcrA (a methanogen) and pmoA (a 434 

methanotroph), have been well studied, and there is a positive relationship between the copy 435 

number of mcrA and CH4 emissions (Su et al., 2019). Methanogens are more active in weakly 436 

alkaline and neutral soils. Biochar addition generally results in an increase in pH and oxygen 437 

content in all three environments, which inhibited methanogens and reduced the emission of 438 
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CH4 (Pascual et al., 2020). Moreover, NO3
--N was found to inhibit the activity of methanogens 439 

and enhance the activity of methanotroph (Nan et al., 2022). This indicates that the emission 440 

of CH4 is related to N cycle by changing the relative abundance of different types of microbial 441 

community, which deserve to be further studied in the future. 442 

 443 

3.3 Effect of biochar on N2O emissions and its mechanism 444 

As shown in Figure 3a, the addition of biochar had the most obvious suppression effect 445 

on the release of N2O from the three environments (an overall suppression rate of 31%, P < 446 

0.05) compared with CO2 and CH4 (Dong et al., 2020). The suppression effect on N2O emission 447 

intensity among different environments was in the following order: upland soil (a suppression 448 

rate of 62%) > rice paddies and wetlands (a suppression rate of 20%) > composting 449 

environment (a suppression rate of 10%), which might be related to the different conditions. A 450 

meta-analysis of 208 peer-reviewed studies reported that biochar increased symbiotic 451 

biological N2 fixation (63%), improved plant N uptake (11%), reduced soil N2O emissions 452 

(32%), and decreased soil N leaching (26%) (Liu et al., 2018). However, the soil type was not 453 

considered in this meta-analysis.  454 

In this work, the meta-analysis showed that N2O emissions from upland were suppressed 455 

regardless of changes in pH of biochar, feedstock, pyrolysis temperature of biochar, application 456 

rate, and C/N ratio of biochar (Figure 3a). Alkaline conditions are favourable for N2O 457 

emissions. In some cases, the pH value of upland soils is higher than that of biochar (Dong et 458 

al., 2020). When biochar is applied to upland fields, it decreases soil pH and reduces N2O 459 

emissions. The pyrolysis temperature of biochar is also an important factor affecting N2O 460 



 

22 

 

emissions in upland soils. A 100-day laboratory incubation experiment by Pokharel et al. (2018) 461 

showed that a higher pyrolysis temperature of 550 °C reduces N2O emissions by 27.5%, while 462 

biochar pyrolyzes at 300 °C without affecting N2O emissions (Pokharel et al., 2018). These 463 

results are consistent with the meta-analysis results (Figure 3a) and might be ascribed to the 464 

fact that high-temperature biochar is more conducive to the transfer of electrons to soil-465 

denitrifying microorganisms, leading to a more active N2O reductase and an enhanced rate of 466 

N2O reduction to N2. The application rate was positive, and the C/N ratio showed a negative 467 

suppression effect on N2O emissions in upland soil, which can be related to the 468 

physicochemical properties of soil, such as soil porosity, pH value, and air permeability, which 469 

need to be comprehensively considered. For example, biochar application could enhance soil 470 

porosity to adsorb NH4
+ while reducing NO3

- produced by nitrification and N2O produced by 471 

denitrification in soil (Zhang et al., 2020a). Similarly, several studies have shown that biochar 472 

did not significantly reduce the release of N2O and even promoted the release of N2O in the 473 

absence of an external N source, indicating that N2O release is regulated by soil saturated water 474 

content and plant N uptake (Zhang et al., 2012). Nevertheless, the application of biochar to 475 

upland fields is generally beneficial for alleviating the release of N2O. 476 

The reduction in soil N2O emissions from paddy and wetland soils as a result of biochar 477 

application was confirmed in the meta-analysis results, as shown in Figure 3a. The fluctuation 478 

of changes in N2O emission intensity among different parameters, including pH of biochar, 479 

feedstock, pyrolysis temperature of biochar, application rate, and C/N ratio of biochar, was 480 

lower in paddy and wetland soils (20%, P < 0.05) than in upland soils (62%, P < 0.05). N2O 481 

emissions are predominantly generated via N transformation in soils (Ji et al., 2020b). The 482 
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interaction between biochar and arbuscular mycorrhizal fungi affects N2O emissions in paddy 483 

fields and constructed wetlands (Liang et al., 2019). This may be the reason why low pH 484 

favoured the suppression of N2O emissions in paddy soils and constructed wetlands in the 485 

meta-analysis. The presence of arbuscular mycorrhizal fungi decreased the concentrations of 486 

chlorophyll and N in Phragmites australis and the concentrations of NH4
+-N, NO3

−-N, 487 

inorganic N, and total N in paddy and wetland soils, thereby decreasing N2O emissions. 488 

Moreover, biochar alters microbial activity and abundance, thereby affecting arbuscular 489 

mycorrhizal fungi and GHG emissions. In a field experiment, increasing the biochar 490 

application rate from 0 to 10 t ha-1, 20 t ha-1, and 40 t ha-1 reduced N2O emissions from Cd- 491 

and Pb-contaminated soils by 7.1%, 30.7%, and 48.6%, respectively, and increased rice yield 492 

by 10.0%, 25.1%, and 26.3%, respectively (Zhang et al., 2015). The application rate of biochar 493 

was positively correlated with the suppression of N2O emissions, which was consistent with 494 

the results of meta-analysis. Moreover, a meta-analysis of 88 studies on the effects of biochar 495 

on soil N2O emissions concluded that on average, biochar application resulted in a 38% 496 

reduction in N2O emissions (Borchard et al., 2019).  497 

The emissions of N2O from composting can be reduced by applying biochar, although the 498 

changes in N2O emission intensity are low (a suppression rate of 10%, P < 0.05) (Figure 3a). 499 

The availability of N in the compost is one of the main factors affecting N2O generation. 500 

Biochar can limit N availability by directly adsorbing NO3
- and NH4

+ and forming nutrient-501 

rich organo-mineral complexes (Zwieten et al., 2010). Additionally, biochar can adsorb nitrate 502 

and dissolved organic C produced during composting, which can promote the complete 503 

denitrification of nitrate to produce N2, thus reducing N2O formation (Kammann et al., 2015). 504 
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In contrast, N2O emissions from composting during the maturation stage mainly depend on the 505 

degree of completion of the denitrification reactions and the proportion of biochar added (Wang 506 

et al., 2013). The addition of biochar increases the oxygen content in the compost pile and 507 

suppresses the activity of denitrifying bacteria, thereby weakening the completion of the 508 

denitrification reaction (Singh et al., 2010). In pilot-scale treatments (2 tons of compost), Wang 509 

et al. (2013) found that an input of 3% (w/w) biochar reduces the abundance of denitrifying 510 

bacteria, suppresses denitrification, and reduces N2O emissions. However, with a high biochar 511 

application rate (> 8%), the compost accumulates a large amount of NH4
+-N, which facilitated 512 

the production of N2O during the maturation stage.  513 

The overall mechanism by which biochar regulates N2O emission in various environments 514 

is summarised in Figure 3b. Generally, N2O production involves two main microbial processes, 515 

nitrification and denitrification. N2O-related functional genes, such as amoA, nirS, nirK, and 516 

nosZ, have been widely studied and can be used to elucidate ammonia oxidation, nitrification, 517 

and denitrification processes related to N2O emissions (Harter et al., 2016). Variations in 518 

environmental factors, such as pH, oxygen, and water content, cause changes in the microbial 519 

activity involved in these two processes. There are five reasons for the reduction in N2O release 520 

in soils as a result of biochar application. (1) Biochar reduces the activity of denitrifying 521 

bacteria and their enzymes by increasing soil porosity and permeability, thereby suppressing 522 

N2O emissions (Singh et al., 2010). (2) Biochar may facilitate the transfer of electrons to soil-523 

denitrifying microorganisms, leading to a more active N2O reductase and an enhanced rate of 524 

N2O reduction to N2 (Cayuela et al., 2013). (3) Biochar produced from higher pyrolysis (> 525 

500 ℃) or feedstocks containing heavy metals may contain some toxic substances that inhibit 526 
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nitrification and denitrification processes. (4) Biochar can immobilise the available N in the 527 

soil, thereby reducing the effective utilisation of N in nitrification and denitrification reactions 528 

(Dong et al., 2020). (5) Furthermore, low soil pH is another reason for the reduction in N2O 529 

emissions from soils. The increase in pH caused by the addition of biochar affects the activities 530 

of related enzymes involved in denitrification (such as nitrous oxide reductase), which is more 531 

pronounced in rice paddies, wetlands, and compositing systems (Cayuela et al., 2014). 532 

 533 

4. Conclusions and future research prospects 534 

The widespread application of biochar and engineered biochar in different environments 535 

will affect soil and other biological processes that eventually affect GHG emissions. There has 536 

been much research on the application of biochar in the agricultural systems of upland and rice 537 

paddy fields and composting systems. Research to date suggests that biochar can improve soil 538 

quality by regulating soil pH, bulk density, water-holding capacity, and organic matter content, 539 

which can improve the agricultural productivity and quality of the composting process. 540 

Furthermore, biochar can regulate the emission of the three most important GHGs, i.e., CO2, 541 

N2O, and CH4 in different environmental processes. In conclusion, the effect of biochar on the 542 

emission of CO2 in all three environments is still not clear, as contradictory results were 543 

obtained (Table 3). This can be attributed to the properties of the biochar itself and the negative 544 

and positive priming effects of biochar on the decomposition of soil organic matter. Despite 545 

this, it is becoming apparent that biochar can decrease the N2O emissions from upland and 546 

paddy soils and compost environments to a certain degree and considerably decrease the 547 

emission of CH4 in paddy soils and composting systems. The emissions of CH4 in upland soils 548 
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did not appear to be affected by the addition of biochar. The emissions of CH4 in upland soils 549 

increased because of the high pH value of some upland soils.  550 

Based on our review, several future research directions are suggested. 551 

 (1) There are few reports on the effect of engineered biochar application on GHG 552 

emissions. Engineered biochars, such as nZVI-biochar composites, have been extensively 553 

studied and applied in the environment. The effects of these engineered biochars on GHG 554 

emissions differ from those of original biochars, and further studies are required. More 555 

importantly, engineered biochars can be developed with the primary or secondary aim of 556 

mitigating GHG emissions. 557 

(2) A comprehensive analysis of the pyrolysis process, stability of biochar, and mitigation 558 

effect of biochar application should be carried out based on the concept of life cycle assessment 559 

(LCA) and compared with other processes, such as biogas fermentation, combustion, and direct 560 

application of biomass to the soil. 561 

(3) Owing to the large number of fertilisers, such as nitrogen and organic fertilisers used 562 

in agricultural production, it is possible to study the relationship between the change 563 

mechanism of soil microorganisms and the change of GHGs in the process of simultaneously 564 

applying fertiliser and biochar to different soils. 565 

(4) The effects of different feedstocks and production technologies of biochar on soil GHG 566 

emissions and crop yield need to be quantified and vetted. Guidelines on selecting and 567 

producing biochar formulations should be developed to improve soil health and environmental 568 

management, reduce the carbon footprint, abate climate change impacts on food production, 569 

and increase farmland profitability. Biochars can be tailored for specific applications through 570 
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feedstock selection by modifying process conditions through pre- or post-production 571 

treatments to adjust pH by increasing nutrient levels and availability, carbon persistence, and 572 

adsorptive properties. 573 
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Table 1. Overview of the main impact of biochar addition on upland soils  

Biochar types Soil type Region Influence Reference 

Sawdust biochar， 

Sophora japonica bark 

biochar 

Obsidian and 

loess 
Loess Plateau， China 

-Soil CO2 emission flux shows an increasing trend with an increase in the 

amount of biochar added 

-Suppression of CH4 emissions and no significant impact on N2O emissions  

-Differences exist among treatments with different biochars 

(Guo et 

al., 2015) 

Bamboo char 
Dystric 

Cambisols  

Obu City, Aichi Prefecture, 

Japan 
-No significant changes in greenhouse gas (GHG) emissions 

(Watanabe 

et al., 

2014) 

Rice husks biochar 
Orthic 

Anthrosols 
Nanjing, China 

-Increased CH4 emissions 

-Reduced NO2 emissions 

-Differences in GHG emissions between upland and wetland soils 

(Wang et 

al., 2012) 

Wheat straw biochar Loamy soil  Central China Plain 
-Reduced GHGs emissions 

-Enhanced crop productivity 

(Zhang et 

al., 2012) 

Barley straw biochar Loamy soil  

Sepung-ri, Gwangyang-eup, 

Gwangyang-si, and 

Jeollanam-do, South Korea 

-Reduced N2O emissions 

-The combined treatment of biochar and chemical fertilisers was more effective 

in suppressing N2O emissions than the treatment alone 

(Kang et 

al., 2018) 

Municipal solid waste 

biochar 
/ Chongqing， China 

-CO2 emissions increased in the first 2 weeks 

-Suppressed the total CO2 emissions within 36 weeks 

(Liu et al., 

2015) 

Ten types of biochar 

from Mediterranean 

agricultural residues 

Sandy loam Jumilla, Murcia, Spain 
-CH4 release was suppressed 

-The starting material of biochar determined the difference in CH4 release flux 

(Pascual et 

al., 2020) 

Fir sawdust Luvisol soil Luancheng, HeBei, China 
- Suppressed the production of N2O in the soil 

-Stimulated the reduction of N2O to N2 

(Dong et 

al., 2020) 

Wheat straw 
Orthic Black 

Chernozem 

Flagstaff County, southeast 

Alberta, Canada 

-Reduced N2O emissions 

-No significant change in CO2 or CH4 emissions 

(Wu et al., 

2013) 

Maize straw 
Sandy loam 

soil  

Fengqiu County, Henan 

Province, China 

-Reduced N2O emissions 

-Reduced denitrification potential 

(Niu et al., 

2017) 
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Table 2. Overview of the main impact of biochar addition on paddy and wetland soils 

Biochar type Soil type Region Influence Reference 

Rice straw 

biochar 
Rice paddy 

Subtropical rice 

paddy of China 

-Biochar treatment decreased the cumulative CO2 flux in the late paddy and for the 

complete year (early and late paddies) 

-Biochar treatment also decreased the cumulative CH4 flux in the early paddy 

(Wang et al., 

2019b) 

Wheat straw 

biochar 
Rice paddy 

Dongshan Town, 

Suzhou City, Jiangsu 

Province, China 

-The application of 4% biochar significantly increased N2O emissions during the 

45-day incubation by 291 and 256%, respectively 

-The abundance and diversity of ammonia-oxidising bacteria increased 

(Lin et al., 2017) 

Wheat straw 

biochar 

Cadmium- and 

lead-contaminated 

rice paddy soil  

Tai lake Plain, China 

-No change in soil CO2 emissions was observed at 10 t ha-1 of biochar addition 

-Biochar treatment reduced soil CO2 emissions by 16–24% at 20 and 40 t ha-1  

-Biochar treatment increased rice yield by 25–26% and thus enhanced ecosystem 

CO2 sequestration by 47–55% over the control 

-Seasonal total N2O emissions were reduced by 7.1, 30.7, and 48.6% under biochar 

addition at 10, 20, and 40 t ha-1, respectively 

(Zhang et al., 

2015) 

Mangrove 

biochar 
Rice paddy 

Rangbua, 

Chombueng District, 

Ratchaburi 

Province, Thailand 

-Relative to control, biochar application reduced seasonal CH4 emissions by 40.6% 

-Biochar application enhanced soil organic carbon stock by 21.2% 

(Sriphirom et al., 

2020) 

Rice straw 

biochar 
Rice paddy 

Yuhang District, 

Hangzhou, Zhejiang 

Province, China 

-Biochar treatment reduced CH4 emissions under ambient conditions and 

significantly reduced emissions by 39.5% under simultaneously elevated 

temperature and CO2 

(Han et al., 2016) 

Rice straw 

biochar 
Rice paddy 

Hwasungsi, 

Gyeonggido, Korea 

-Biochar amendment did not significantly increase the CO2 or CH4 emissions 

-Biochar addition increased the N2O emissions 

-The microbial biomass and the abundance of methane related microorganisms 

were not changed by biochar addition 

(Yoo et al., 2015) 
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Biochar type Soil type Region Influence Reference 

Wheat straw and 

sawdust biochars 
Rice paddy  

Taihu Lake region of 

China 

-Biochar decreased CH4 emissions 

-Biochar application decreased N2O emissions 

(Zhou et al., 

2018) 

Rice chaff 

biochar 
Rice paddy 

Chunan-Si, 

Chungcheongnam-

Do, Korea 

-Biochar treatment reduced the soil NH4
+ content and increased the NO3

–content 

-Biochar addition increased C contents in the wet stable aggregates of size 53 to 

1000 mm, and the water holding capacity 

(Yoo et al., 

2014) 

Digested slurry 

biochar 
Rice paddy 

Graduate School of 

Horticulture, Chiba 

University, Matsudo, 

Japan 

-Biochar treatment increased the CH4 emissions 

-Biochar treatment increased the soil NH4
+-N content 

(Singla et al., 

2014) 

Tree branches 

biochar 

Constructed 

wetlands 

Yunnan 

University in 

Kunming, China 

-Biochar treatment decreased the CO2, CH4, and N2O emissions (Ji et al., 2020a) 

Cattail biochar 

(harvested from 

the wetland) 

Constructed 

wetlands 

Chongqing 

University, 

Chongqing, China 

-Biochar reduced the global warming potential values of N2O and CH4 from 18.5% 

to 24.0% 

-N2O fluxes and global warming potential decreased, while CH4 and CO2 fluxes 

increased with increasing COD/N ratios 

(Guo et al., 

2020a) 
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Table 3. Comparison of the mitigating effect of biochar in different environmental systems 

System CO2 emissions N2O emissions  CH4 emissions 

Upland soils 

Increase in the initial 

period, decrease in 

the long-term 

Decrease 
Small decrease or no 

effect 

Rice paddy and 

wetlands 

Changed based on 

conditions 
Decrease Decrease 

Composting 

sites 
Decrease 

Decrease initially, 

increase at maturity 
Decrease 
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                    (a)                                                   (b) 

Figure 1. (a) Changes in CO2 intensity in upland, rice paddy and wetlands, and composting environments after biochar application as influenced 

by pH, feedstock, pyrolysis temperature, application rate, and C/N ratio of biochar. The black solid line at zero indicates no change in CO2 intensity 

after biochar addition. (b) The effects and mechanisms of biochar application on soil CO2 emissions. 
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                    (a)                                                   (b) 

Figure 2. (a) Changes in CH4 intensity in upland, rice paddy and wetlands, and composting environments after biochar application as influenced 

by pH, feedstock, pyrolysis temperature, application rate, and C/N ratio of biochar. The black solid line at zero indicates no change in CH4 intensity 

after biochar addition. (b) The effects and mechanisms of biochar application on soil CH4 emissions. 
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                                (a)                                      (b) 

Figure 3. (a) Changes in N2O intensity in upland, rice paddy and wetlands, and composting environments after biochar application as influenced 

by pH, feedstock, pyrolysis temperature, application rate, and C/N ratio of biochar. The black solid line at zero indicates no change in N2O intensity 

after biochar addition. (b) The effects and mechanisms of biochar application on soil N2O emissions. 


