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QUASI-INVARIANT GAUSSIAN MEASURES FOR THE CUBIC FOURTH

ORDER NONLINEAR SCHRÖDINGER EQUATION IN NEGATIVE

SOBOLEV SPACES

TADAHIRO OH AND KIHOON SEONG

Abstract. We continue the study on the transport properties of the Gaussian measures on
Sobolev spaces under the dynamics of the cubic fourth order nonlinear Schrödinger equation.
By considering the renormalized equation, we extend the quasi-invariance results in [30, 27] to
Sobolev spaces of negative regularity. Our proof combines the approach introduced by Planchon,
Tzvetkov, and Visciglia [35] with the normal form approach in [30, 27].
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1. Introduction

1.1. Main result. In this paper, we study the statistical properties of solutions to the cubic

fourth order nonlinear Schrödinger equation (4NLS) on the circle T = R/(2πZ):1

i∂tu = ∂4
xu+ |u|2u, (x, t) ∈ T× R. (1.1)

Let us first introduce some notations. Given s ∈ R, we consider the Gaussian measures µs,

formally written as

dµs = Z−1
s e−

1
2
‖u‖2Hs du =

∏
n∈Z

Z−1
s,ne

− 1
2
〈n〉2s|ûn|2 dûn. (1.2)

Namely, µs is the induced probability measure under the random Fourier series:2

ω ∈ Ω 7−→ uω(x) = u(x;ω) =
∑
n∈Z

gn(ω)

〈n〉s
einx, (1.3)

where 〈 · 〉 = (1 + | · |2)
1
2 and {gn}n∈Z is a sequence of independent standard complex-valued

Gaussian random variables3 on a probability space (Ω,F ,P). It is easy to see that the random

distribution (1.3) belongs almost surely to Hσ(T) if and only if

σ < s− 1

2
. (1.4)

In [30, 27], with Tzvetkov and Sosoe, the first author studied the transport properties of

Gaussian measures µs in (1.2) under the 4NLS dynamics and proved quasi-invariance4 of µs,

s > 1
2 . Our main goal in this paper is to extend the quasi-invariance results in [30, 27] to Gaussian

measures on periodic distributions of negative regularity.

It is known [30] that the cubic 4NLS (1.1) is globally well-posed in L2(T). Moreover, this

well-posedness result is sharp in the sense that (1.1) is known to be ill-posed in negative Sobolev

spaces [19, 33]. Thus, in view of (1.4), the quasi-invariance result for s > 1
2 is optimal since for

s ≤ 1
2 , the cubic 4NLS (1.1) is almost surely ill-posed with respect to the initial data given by

the random Fourier series (1.3). In order to study the dynamical problem in negative Sobolev

spaces, we consider the following renormalized 4NLS:

i∂tu = ∂4
xu+

(
|u|2 − 2

ffl
T |u|

2 dx
)
u, (1.5)

where
ffl
f(x)dx = 1

2π

´
f(x)dx. For smooth functions, the equation (1.5) is equivalent to (1.1)

via the following invertible gauge transform:

G(u)(t) := e2it
ffl
|u(t)|2dxu(t).

Namely, u ∈ C(R;L2(T)) satisfies (1.1) if and only if G(u) satisfies (1.5). On the other hand, the

gauge transform G does not make sense outside L2(T) and thus these equations describe genuinely

different dynamics, if any, outside L2(T). As mentioned above, the original equation (1.1) is

ill-posed in negative Sobolev spaces. As for the renormalized cubic 4NLS (1.5), the first author

and Y. Wang [33] proved its global well-posedness in Hs(T) for s > −1
3 . See also [21] for local

1The defocusing / focusing nature of the equation does not play any role and thus we only consider the defocusing
case. The main result also applies to the focusing case.

2In the following, we often drop the harmless factor of 2π.
3By convention, we set Var(gn) = 1, n ∈ Z.
4Given a measure space (X,µ), we say that µ is quasi-invariant under a measurable transformation T : X → X

if the transported measure T∗µ = µ ◦ T−1 and µ are equivalent, i.e. mutually absolutely continuous with respect
to each other.
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well-posedness of (1.5) for s = −1
3 . See [4, 6, 16, 28, 34] for an analogous renormalization in

the context of the usual nonlinear Schrödinger equation (NLS) with the second order dispersion.

Before proceeding further, we point out that the solution map to (1.5), constructed in [33, 21],

is not locally uniformly continuous in negative Sobolev spaces [8, 30]. Namely, we can not

construct solutions by a contraction argument. This point will be important in our study; see

Proposition 3.2 below.

We now state our main result.

Theorem 1.1. Let s > 3
10 . Then, the Gaussian measure µs in (1.2) is quasi-invariant under

the dynamics of the renormalized cubic 4NLS (1.5).

The transport properties of Gaussian measures have been studied extensively in probability

theory; see, for example, [5, 36, 9, 10]. In [39], Tzvetkov initiated the study of transport properties

of Gaussian measures on functions / distributions under nonlinear Hamiltonian PDEs and there

has been a significant progress in this direction [39, 30, 31, 27, 29, 35, 17, 13, 37, 11]. In particular,

Theorem 1.1 extends the quasi-invariance results in [30, 27]5 to negative Sobolev spaces Hσ(T),

σ > −1
5 .

The general strategy, as introduced in [39], is to study quasi-invariance of the Gaussian

measures µs indirectly by studying weighted Gaussian measures ρs, where the weight corresponds

to correction terms that arise due to the presence of the nonlinearity. The two key steps in this

strategy are (i) the construction of the weighted Gaussian measure ρs and (ii) an energy estimate

on the time derivative of the modified energy (that is, the energy of the Gaussian measure plus the

correction terms). It is crucial to choose good correction terms in order to establish an effective

energy estimate. In the context of 4NLS (1.1), this general strategy was applied in [30, 27].

In [30], the correction term was obtained by applying a normal form reduction (i.e. integration

by parts in time) in the spirit of [38, 26, 1, 25]. In the second work [27], Sosoe, Tzvetkov, and

the first author employed an infinite iteration of normal form reductions, introduced in [18],

to compute an infinite series of correction terms to the Hs-energy functional. Such an infinite

iteration of normal form reductions has turned out to be a useful tool in constructing solutions

to PDEs and establishing energy estimates; see [18, 33, 22, 34, 20, 12].

In order to prove Theorem 1.1 for the renormalized 4NLS (1.5) in negative Sobolev spaces,

we also apply an infinite iteration of normal form reductions to the Hs-energy functional and

introduce infinitely many correction terms. In [27], the multilinear forms appearing in normal form

reductions were shown to be bounded in L2(T). The main task here is to extend the boundedness

of these multilinear forms to negative Sobolev spaces Hσ(T), −1
5 < σ < 0. See also Remark 5.2.

This gives rise to the modified energies EN (u) in (3.4) whose time derivatives are uniformly

controlled on bounded sets in the support of the Gaussian measure µs (see Proposition 3.4),

provided that s > 3
10 . We point out that, as in the previous works [30, 27], the regularity

restriction in Theorem 1.1 comes from the energy estimate.

The next step is to construct weighted Gaussian measures. In [30, 27], the weighted Gaussian

measures were normalized to be probability measures thanks to the (conserved) L2-cutoff. For

our current problem in negative Sobolev spaces, however, an L2-cutoff is not available and

thus the weighted Gaussian measures associated with the modified energies EN (v) are not

probability measures. An important observation is that our proof of quasi-invariance is entirely

5The quasi-invariance results in [30, 27] were proved for (1.1) but they equally apply to the renormalized
4NLS (1.5).
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local in Hs− 1
2
−ε(T) (see Subsection 3.5). This allows us to work with the weighted Gaussian

measures restricted to compact sets in Hs− 1
2
−ε(T), for which we prove strong convergence

(see Proposition 3.6). We then follow the approach introduced by Planchon, Tzvetkov, and

Visciglia [35], where they established local-in-time (and also local in the phase space) quasi-

invariance properties, and close the argument.

Since our argument is based on the study of frequency-truncated dynamics (see (3.1)), an

approximation property of the truncated dynamics (Proposition 3.2) also plays a key role. In

L2(T), a standard contraction argument yields local well-posedness of (1.5). By a slight variation

of this contraction argument, one can easily prove the desired approximation properties of the

truncated dynamics in L2(T) (see [30, Appendix B]). In negative Sobolev spaces, however, we can

not use a contraction argument to establish local well-posedness of (1.5) due to the failure of local

uniform continuity of the solution map [8, 30]. Hence, a more careful argument is required in

studying approximation properties of the truncated dynamics. In fact, in negative Sobolev spaces,

we only prove a weaker approximation property of the truncated dynamics. See Remark 3.3. In

Section 4, we discuss in detail the approximation property of the truncated dynamics in negative

Sobolev spaces.

Remark 1.2. In [35], the authors compared their approach and the normal form approach

in [30, 27] and stated “It would be interesting to find situations where the approaches of [ [30, 27] ]

and the one used in [ [35] ] can collaborate.” Our proof of Theorem 1.1 provides the first such

example, combining the methods from [35] and [30, 27].

Remark 1.3. In [32], Tzvetkov, Y. Wang, and the first author constructed global-in-time

dynamics for (1.5) almost surely with respect to the white noise, i.e. the Gaussian measure µs
with s = 0. They also proved invariance of the white noise µ0 under (1.5), which in particular

implies its quasi-invariance. Thus, it is an interesting question to fill in the gap 0 < s ≤ 3
10

between Theorem 1.1 and the result in [32].

Remark 1.4. In [23], the second author with G. Li and Zine recently proved global well-posedness

of the following renormalized fractional NLS on T (for α > 2):

i∂tu = (−∂2
x)

α
2 u+

(
|u|2 − 2

ffl
T |u|

2 dx
)
u (1.6)

in Hσ(T) for σ > 2−α
6 . While we only consider the renormalized 4NLS (1.5) in this paper for

simplicity of presentation, our argument can be easily adapted to study the quasi-invariance

property of µs under the dynamics of (1.6) for some range of s ≤ 1
2 .

Remark 1.5. At each step of normal form reductions, we introduce a correction term. This

is precisely how correction terms are introduced in the I-method [7]. In order to prove the

energy estimate (Proposition 3.4), we implement an infinite iteration of normal form reductions

and thus introduce an infinite series of correction terms. In other words, the modified energies

EN (v) defined in (3.4) can be viewed as modified energies of an infinite order in the I-method

terminology. Finally, we remark that this infinite iteration of normal form reductions allows us

to encode multilinear dispersion in the structure of the modified energy and thus to exchange

analytical difficulty with algebraic / combinatorial difficulty.

1.2. Organization. In Section 2, we introduce some notations. In Section 3, by assuming the

approximation property of the truncated dynamics (Proposition 3.2) and the energy estimate

(Proposition 3.4) with the related normal form reductions, we prove Theorem 1.1. In Section 4,
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we discuss the approximation property of the truncated dynamics. In Section 5, we then establish

the energy estimate (Proposition 3.4) by implementing an infinite iteration of normal form

reductions.

2. Notations

In the following, we fix small ε > 0 and set

σ = s− 1

2
− ε (2.1)

such that (1.4) is satisfied. Given R > 0, we use BR to denote the ball of radius R in Hσ(T)

centered at the origin.

Given N ∈ N ∪ {∞}, we use P≤N to denote the Dirichlet projection onto the frequencies

{|n| ≤ N} and set P>N := Id−P≤N . When N =∞, it is understood that P≤N = Id. Define

EN by

EN = P≤NH
σ(T) = span{einx : |n| ≤ N}

and let E⊥N be the orthogonal complement of EN in Hσ(T).

Given s ∈ R, let µs be the Gaussian measure on Hs− 1
2
−ε(T) defined in (1.2). Then, we can

write µs as

µs = µs,N ⊗ µ⊥s,N , (2.2)

where µs,N and µ⊥s,N are the marginal distributions of µs restricted onto EN and E⊥N , respectively.

In other words, µs,N and µ⊥s,N are induced probability measures under the following random

Fourier series:

P≤Nu : ω ∈ Ω 7−→ P≤Nu(x;ω) =
∑
|n|≤N

gn(ω)

〈n〉s
einx,

P>Nu : ω ∈ Ω 7−→ P>Nu(x;ω) =
∑
|n|>N

gn(ω)

〈n〉s
einx,

respectively. Formally, we can write µs,N and µ⊥s,N as

dµs,N = Z−1
s,Ne

− 1
2
‖P≤Nu‖2HsduN and dµ⊥s,N = Ẑ−1

s,Ne
− 1

2
‖P>Nu‖2Hsdu⊥N , (2.3)

where duN and du⊥N are (formally) the products of the Lebesgue measures on the Fourier

coefficients:

duN =
∏
|n|≤N

dû(n) and du⊥N =
∏
|n|>N

dû(n). (2.4)

Given a function u ∈ Hs− 1
2
−ε(T), we may use un to denote the Fourier coefficient û(n) of u,

when there is no confusion. This shorthand notation is useful in Section 5.

We use S(t) to denote the linear propagator for the fourth order Schrödinger equation:

S(t) = e−it∂
4
x .

We denote by N (u) the renormalized nonlinearity in (1.5):

N (u) =
(
|u|2 − 2

ffl
T |u|

2 dx
)
u. (2.5)
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We also define the phase function φ(n̄) by

φ(n̄) = φ(n1, n2, n3, n) = n4
1 − n4

2 + n4
3 − n4. (2.6)

Then, recall from [30] that

φ(n̄) = (n1 − n2)(n1 − n)
(
n2

1 + n2
2 + n2

3 + n2 + 2(n1 + n3)2
)

(2.7)

under n = n1 − n2 + n3. Lastly, given n ∈ Z and N ∈ N, we define the index sets Γ(n) and

ΓN (n) by

Γ(n) =
{

(n1, n2, n3) ∈ Z3 : n = n1 − n2 + n3 and n1, n3 6= n
}

(2.8)

and

ΓN (n) =
{

(n1, n2, n3) ∈ Z3 : |nj | ≤ N, n = n1 − n2 + n3 and n1, n3 6= n
}
. (2.9)

Note that φ(n̄) 6= 0 on Γ(n) and ΓN (n).

Given T > 0, we use the following shorthand notation: CTH
σ
x = C([0, T ];Hσ(T)), etc.

In view of the time reversibility of the equation (1.5), we only consider positive times in the

following.

3. Proof of the main result

In this section, we go over the proof of Theorem 1.1 by assuming (i) the approximation property

of the truncated dynamics (Proposition 3.2) and (ii) the energy estimate (Proposition 3.4) and

the analysis on the correction terms (Lemma 3.5). We present the proofs of Propositions 3.2

and 3.4 in Sections 4 and 5, respectively. While we follow closely the structure of Section 3

in [27], we avoid using the interaction representation v(t) = S(−t)u(t) in this section so that

the modified energies and the associated weighted Gaussian measures are not time-dependent.

Compare this with [30, 27], where the modified energies and the associated weighted Gaussian

measures were time-dependent.

In the following, we fix 3
10 < s ≤ 1

2 and set σ = s− 1
2 − ε for some small ε > 0, unless otherwise

stated.

3.1. Truncated dynamics. Given N ∈ N, we consider the following truncated version of the

renormalized 4NLS:

i∂tu = ∂4
xu+ P≤NN (P≤Nu), (3.1)

where N (u) is as in (2.5). Note that (3.1) is not a finite-dimensional system of ODEs, when

written on the Fourier side. The higher frequency part P>Nu is propagated by the linear flow.

Given initial data u0 ∈ Hσ(T), we can write u0 = P≤Nu0 + P>Nu0. Then, the L2-global

well-posedness of the (renormalized) 4NLS [30] yields a global-in-time solution uN to the low

frequency dynamics: {
i∂tuN = ∂4

xuN + P≤NN (uN )

uN |t=0 = P≤Nu0,
(3.2)

while the high frequency dynamics with initial data P>Nu0 evolves linearly and hence is globally

well-posed. We denote by ΦN (t) the flow map of the truncated dynamics (3.1) at time t:

u(0) ∈ Hσ(T) → u(t) ∈ Hσ(T). We also denote by Φ(t) the flow map to the renormalized

4NLS (1.5), constructed in [33].
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We first record the following uniform (in N) growth bound. This estimate essentially follows

from the growth bound on solutions to the renormalized cubic 4NLS (1.5) in negative Sobolev

spaces [33].

Lemma 3.1. Let σ > −1
3 . Given any R > 0 and T > 0, there exists C(R, T ) > 0 such that

ΦN (t)(BR) ⊂ BC(R,T )

for any t ∈ [0, T ] and N ∈ N∪ {∞}, with the understanding that Φ∞ = Φ. Here, BR denotes the

ball of radius R in Hσ(T) centered at the origin.

Next, we state the approximation property of the truncated dynamics (3.1).

Proposition 3.2. Let σ > −1
3 . Given R > 0, let A ⊂ BR be a compact set in Hσ(T). Given

t ∈ R, u0 ∈ A, and small δ > 0, there exists N0 = N0(t, R, u0, δ) ∈ N such that

Φ(t)(u0) ∈ ΦN (t)(A+Bδ)

for any N ≥ N0.

We present the proof of Proposition 3.2 in Section 4.

Remark 3.3. (i) It is possible to state Proposition 3.2 without referring to a compact set A. In

fact, there exists N0 = N0(t, u0, δ) ∈ N such that Φ(t)(u0) ∈ ΦN (t)(u0 + Bδ) for any N ≥ N0.

We, however, stated Proposition 3.2 as above so that the statement can be easily compared with

the corresponding statement in the L2-setting; see [30, Proposition B.3/6.21].

(ii) We point out that Proposition 3.2 is weaker than the approximation property of the truncated

dynamics in L2(T), which played a key role in the previous works [30, 27]. Due to the lack of local

uniform continuity of the solution map in negative Sobolev spaces, the rate of approximation N0

depends on the initial data u0 in Proposition 3.2, while, in L2(T), N0 does not depend on u0 ∈ A;

see [30, Proposition B.3/6.21]. In particular, we do not know if we have Φ(t)(A) ⊂ ΦN (t)(A+Bδ)

for any sufficiently large N � 1. This is different from the situation considered in [35], thus

requiring a careful implementation of the argument. See Subsection 3.5.

We also point out that, in [30], the continuity of the solution map from L2(T) to the (local-

in-time) X0,b-space was implicitly used to control the high frequency part P>NΦ(t)(u0) of the

solution, uniformly in u0 belonging to a compact set A ⊂ L2(T); see [30, Lemma B.1/6.19]. In

negative Sobolev spaces, however, we do not know6 how to obtain such a uniform control on the

high frequency part P>NΦ(t)(u0) for u0 belonging to a compact set A ⊂ Hσ(T).

3.2. Energy estimate. In this subsection, we introduce a modified Hs-energy functional and

state the crucial energy estimate in negative Sobolev spaces (Proposition 3.4) whose proof is

presented in Section 5.

Let N ∈ N ∪ {∞}. We say that u is a solution to (3.2) if u is a solution to (3.2) when N ∈ N
and to (1.5) when N =∞. Then, by iteratively applying normal form reductions as in [27], we

6Recall that the solutions constructed in [33] belong to the short-time Xσ,b-space, while those constructed
in [21] belong to the modified Xσ,b-space which depends on initial data; see (4.10) below. In particular, we do not
know if the solution map is continuous from Hσ(T) into the standard Xσ,b-space if σ < 0.
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formally7 obtain the following identity:8

d

dt

(
1

2
‖u(t)‖2Hs

)
=

d

dt

( ∞∑
j=2

N (j)
0,N (u)(t)

)
+

∞∑
j=2

N (j)
1,N (u)(t) +

∞∑
j=2

R(j)
N (u)(t) (3.3)

for any (smooth) solution u to the finite-dimensional truncated dynamics (3.2) (i.e. the low

frequency part of (3.1)). Here, N (j)
0,N is a 2j-linear form and N (j)

1,N and R(j)
N are (2j + 2)-linear

forms. This motivates us to define the following modified energy:

EN (u) :=
1

2
‖u‖2Hs −

∞∑
j=2

N (j)
0,N (u)(t). (3.4)

When N =∞, we simply denote E∞(u) by E(u) and also drop the subscript N =∞ from the

multilinear forms; for example, we write N (j)
0 for N (j)

0,∞.

We now state the energy estimate.

Proposition 3.4 (energy estimate). Let 3
10 < s ≤ 1

2 and σ = s− 1
2 − ε for some small ε > 0.

Then, given any R > 0 and T > 0, the following energy estimate holds uniformly in N ∈ N∪{∞}:

sup
t∈[0,T ]

∣∣∣∣ ddtEN (u)(t)

∣∣∣∣ ≤ Cs(R)

for any solution u ∈ C(R;Hσ(T)) to (3.2), satisfying the growth bound :

sup
t∈[0,T ]

‖u(t)‖Hσ ≤ R. (3.5)

We also record the following bound on the correction terms. Set

SN (u) :=
∞∑
j=2

N (j)
0,N (P≤Nu) (3.6)

for N ∈ N ∪ {∞}.

Lemma 3.5. Let 1
6 < s ≤ 1

2 . Then, given any R > 0, there exists Cs = Cs(R) > 0 such that

|SN (u)| ≤ Cs(R) (3.7)

for any u ∈ BR ⊂ Hσ(T) and N ∈ N ∪ {∞}. Furthermore, SN (u) converges to S∞(u) as

N →∞ for each u ∈ BR.

In Section 5, we present the proofs of Proposition 3.4 and Lemma 3.5. The main tool is an

infinite iteration of normal form reductions from [27], where such an argument was implemented

in L2(T). For our problem, however, we need to prove boundedness of each multilinear term by

a product of the Hσ-norm of u with σ = s− 1
2 − ε < 0. For this purpose, we adapt the argument

from [33], where an infinite iteration of normal form reductions was implemented in negative

Sobolev spaces. Indeed, the only essential difference between our argument and that in [33] is the

presence of the weight 〈n〉2s, coming from the Hs-norm squared on the left-hand side of (3.3).

7For each finite N ∈ N, any solution to (3.2) is smooth and thus the computation leading to (3.3) does not
require any justification. See Section 5.

8Hereafter, we use the following shorthand notation for multilinear form: N (j)
0,N (u) = N (j)

0,N (u, . . . , u), etc.
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3.3. Weighted Gaussian measures. As in [30, 27], we prove quasi-invariance of the Gaussian

measure µs indirectly by first establishing quasi-invariance of weighted Gaussian measures

associated with the modified energies E(u) and EN (u) in (3.4). In [30, 27], the weighted Gaussian

measures were normalized to be probability measures thanks to the conserved L2-cutoff. Due

to the unavailability of a cutoff based on a conservation law in negative regularity, we do not

normalize our weighted Gaussian measures (which is precisely the setting for the approach in [35]).

See Subsection 3.5.

We define the following measures:

dρs(u) = Fs(u)dµs(u) and dρs,N (u) = Fs,N (u)dµs(u), (3.8)

where Fs(u) and Fs,N (u) are given by

Fs(u) := exp

(
− E(u) +

1

2
‖u‖2Hs

)
= exp

( ∞∑
j=2

N (j)
0 (u)

)
, (3.9)

Fs,N (u) := exp

(
− EN (P≤Nu) +

1

2
‖P≤Nu‖2Hs

)
= exp

( ∞∑
j=2

N (j)
0,N (P≤Nu)

)
. (3.10)

We also write ρs,∞ = ρs and Fs,∞(u) = Fs(u).

Note that the quasi-invariance property is a local property in the sense we only need to work

on compact sets in Hσ(T). Thus, in proving quasi-invariance of ρs and ρs,N , we only require

Fs,N ∈ L1
loc(µs), uniformly in N ∈ N∪ {∞}, (i.e. Fs,N is locally integrable with a uniform (in N)

bound on each compact set) and Fs,N → Fs in L1
loc(µs).

Proposition 3.6. Let 1
6 < s ≤ 1

2 and σ = s − 1
2 − ε for some small ε > 0. Given any R > 0,

there exists C = C(s,R) > 0 such that

ρs,N (BR) =

ˆ
BR

Fs,N (u)dµs(u) ≤ C(s,R) (3.11)

for any N ∈ N ∪ {∞}. Namely, Fs,N ∈ L1
loc(µs), uniformly in N ∈ N ∪ {∞}. Moreover, we have

lim
N→∞

ˆ
BR

|Fs,N (u)− Fs(u)|dµs(u) = 0. (3.12)

Proof. The bound (3.11) follows from (3.7) in Lemma 3.5. Furthermore, it follows from Lemma 3.5

that SN (u) converges to S∞(u) as N →∞ for each u ∈ BR. Then, from (3.6), (3.9), and (3.10),

we see that Fs,N converges to Fs almost surely with respect to µs. Together with the bound (3.7)

in Lemma 3.5, the bounded convergence theorem yields (3.12). �

3.4. A change-of-variable formula. Next, we go over a global aspect of the proof of Theo-

rem 1.1. From (2.2) and (2.3), we can write ρs,N in (3.8) as

dρs,N = Z−1
s,N exp

(
− EN (P≤Nu)

)
duN ⊗ dµ⊥s,N , (3.13)

where duN is as in (2.4) (= the Lebesgue measure on EN ∼= C2N+1) and Z−1
s,N is the normalizing

constant for µs,N . Proceeding as in [30] with (3.13), we have the following change-of-variable

formula.
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Lemma 3.7. Let 1
6 < s ≤ 1

2 and σ = s− 1
2 − ε for some small ε > 0. Then, we have

ρs,N (ΦN (t)(A)) =

ˆ
ΦN (t)(A)

e
∑∞
j=2N

(j)
0,N (P≤Nu)dµs(u)

= Z−1
s,N

ˆ
A
e−EN (P≤NΦN (t)(u))duN ⊗ dµ⊥s,N

for any t ∈ R, N ∈ N, and any measurable set A ⊂ Hσ(T).

3.5. Proof of Theorem 1.1. We are now ready to present the proof of Theorem 1.1. We follow

the argument in [35] but due to the weaker approximation property of the truncated dynamics

in negative Sobolev spaces, more care is needed to close the argument. Fix 3
10 < s ≤ 1

2 and set

σ = s− 1
2 − ε for some small ε > 0.

In the following, we only consider the positive times. Fix t > 0. Then, by the inner regularity

of the measure µs, it suffices to show that

A ⊂ Hσ(T) compact and µs(A) = 0 =⇒ µs(Φ(t)(A)) = 0.

Fix a compact set A ⊂ Hσ(T) such that µs(A) = 0. From Lemma 3.5 with Lemma 3.1, we have

0 < exp

( ∞∑
j=2

N (j)
0 (u)

)
<∞ (3.14)

for all u ∈ A ∪ Φ(t)(A). Then, it follows from (3.8) and (3.9) with µs(A) = 0 that ρs(A) = 0.

Our goal is to prove

ρs(Φ(t)(A)) = 0. (3.15)

Once we prove (3.15), we then conclude from (3.14) that µs(Φ(t)(A)) = 0.

Since A is compact, we have A ⊂ BR ⊂ Hσ(T) for some R > 0. By Lemma 3.1, there exists

C(R) > 0 such that

ΦN (τ)(B2R) ⊂ BC(R) (3.16)

for any τ ∈ [0, t] and N ∈ N ∪ {∞}.
Fix a measurable set D ⊂ B2R. Then, from (3.13) and Lemma 3.7, we have∣∣∣∣ ddτ ρs,N (ΦN (τ)(D))

∣∣∣∣ =

∣∣∣∣ ddτ Z−1
s,N

ˆ
ΦN (τ)(D)

exp
(
− EN (P≤Nu)

)
duN ⊗ dµ⊥s,N

∣∣∣∣
=

∣∣∣∣Z−1
s,N

ˆ
D

d

dτ
exp

(
− EN (P≤NΦN (τ)(u))

)
duN ⊗ dµ⊥s,N

∣∣∣∣. (3.17)

From Proposition 3.4 with (3.16), we also have∣∣∣∣ ddτ exp
(
− EN (P≤NΦN (τ)(u))

)∣∣∣∣ ≤ C ′(R) exp
(
− EN (P≤NΦN (τ)(u))

)
(3.18)
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for any τ ∈ [0, t] and u ∈ D. Hence, from (3.17), (3.18), and Lemma 3.7 with (3.8) and (3.13),

we have ∣∣∣∣ ddτ ρs,N (ΦN (τ)(D))

∣∣∣∣ ≤ Z−1
s,N C

′(R)

ˆ
D

exp
(
− EN (P≤NΦN (τ)(u))

)
duN ⊗ dµ⊥s,N

= Z−1
s,N C

′(R)

ˆ
ΦN (τ)(D)

exp
(
− EN (P≤Nu)

)
duN ⊗ dµ⊥s,N

= C ′(R)

ˆ
ΦN (τ)(D)

Fs,N (u)dµs

= C ′(R) ρs,N (ΦN (τ)(D))

for any τ ∈ [0, t]. Then, by Gronwall’s inequality, we obtain

ρs,N (ΦN (τ)(D)) =

ˆ
ΦN (τ)(D)

Fs,N (u)dµs ≤ exp(C ′(R)τ)ρs,N (D) (3.19)

for any τ ∈ [0, t] and N ∈ N. Note that the estimate (3.19) allows us to conclude quasi-invariance

of ρs,N (and µs) under the truncated dynamics ΦN (t).

Next, by a limiting argument, we prove quasi-invariance of ρs under Φ(t). From Proposition 3.6,

we have

lim
N→∞

ˆ
BC(R)

|Fs,N (u)− Fs(u)|dµs(u) = 0, (3.20)

where C(R) is as in (3.16). Thus, given small δ > 0, we have

ρs(Φ(t)(A)) =

ˆ
Φ(t)(A)

Fs(u)dµs

=

ˆ

Φ(t)(A)∩ΦN (t)(A+Bδ)

Fs(u)dµs +

ˆ

Φ(t)(A)\ΦN (t)(A+Bδ)

Fs(u)dµs

≤
ˆ

ΦN (t)(A+Bδ)

Fs(u)dµs +

ˆ

Φ(t)(A)\ΦN (t)(A+Bδ)

Fs(u)dµs

≤
ˆ

ΦN (t)(A+Bδ)

Fs,N (u)dµs +

ˆ

Φ(t)(A)\ΦN (t)(A+Bδ)

Fs(u)dµs + δ

(3.21)

for any sufficiently large N � 1. Then, by applying (3.19) (with D = A+Bδ for δ < R) to (3.21)

and then applying (3.20) again, we have

ρs(Φ(t)(A)) ≤ exp(C ′(R)t)

ˆ

A+Bδ

Fs,N (u)dµs +

ˆ

Φ(t)(A)\ΦN (t)(A+Bδ)

Fs(u)dµs + δ

≤ exp(C ′(R)t)

ˆ

A+Bδ

Fs(u)dµs +

ˆ

Φ(t)(A)\ΦN (t)(A+Bδ)

Fs(u)dµs + 2δ.

(3.22)

By Proposition 3.6 and the Lebesgue dominated convergence theorem, we have

lim
δ→0

ˆ
A+Bδ

Fs(u)dµs =

ˆ
A
Fs(u)dµs = ρs(A) = 0. (3.23)
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Next, we consider the second term on the right-hand side of (3.22). Let AN := Φ(t)(A) \
ΦN (t)(A+Bδ). Then, it follows from Proposition 3.2 that

lim supAN =

∞⋂
k=1

∞⋃
N=k

AN = ∅. (3.24)

Indeed, if (3.24) did not hold, then there would be at least one element u ∈ lim supAN , namely,

u ∈ AN for infinitely many N . This is clearly a contradiction to Proposition 3.2 since, given any

such u (which in particular belongs to Φ(t)(A)), we have

u ∈ ΦN (t)(A+Bδ) ⊂ AcN
for all N ≥ N0(t, R, u, δ). This implies that limN→∞ 1AN (u) = 0 for any u ∈ Φ(t)(A) (and thus

for any u ∈ Hσ(T)). Hence, by Lemma 3.5 and the Lebesgue dominated convergence theorem,

we have

lim
N→∞

ˆ
AN

Fs(u)dµs = 0. (3.25)

Finally, putting (3.22), (3.23), and (3.25) together and taking δ → 0, we conclude (3.15). This

completes the proof of Theorem 1.1.

4. On the approximation property of the truncated dynamics

In this section, we study the approximation property of the truncated dynamics (3.1) and

present the proof of Proposition 3.2.

4.1. Gauged 4NLS. We first go over the basic reduction of the problem. Fix σ > −1
3 . Let

u ∈ C(R;Hσ(T)) be the global solution to the renormalized 4NLS (1.5) with u|t=0 = u0. The

main obstruction in carrying out analysis in negative Sobolev spaces is the resonant part of

the nonlinearity. In order to weaken the resonant interaction, we introduce the following gauge

transform J = Ju0 as in [32, 23]:

J (u)(x, t) = Ju0(u)(x, t) =
∑
n∈Z

einx−it|û0(n)|2 û(n, t). (4.1)

This gauge transform is clearly invertible and leaves the Hs-norm invariant. A direct computation

shows that the gauged function v = J (u) satisfies the following gauged 4NLS:{
i∂tv = ∂4

xv +N1(v) +N2(v),

v|t=0 = u0.
(4.2)

Here, the first nonlinearity N1(v) is defined by

N1(v)(x, t) :=
∑
n∈Z

einx
∑
Γ(n)

eitΘ(n̄)v̂(n1, t)v̂(n2, t)v̂(n3, t), (4.3)

where Γ(n) is as in (2.8) and the phase function Θ(n̄) = Θu0(n̄) is given by

Θ(n̄) := Θ(n1, n2, n3, n) = |û0(n1)|2 − |û0(n2)|2 + |û0(n3)|2 − |û0(n)|2. (4.4)

The second nonlinearity N2(v) is defined by

N2(v)(x, t) := −
∑
n∈Z

einx
(
|v̂(n, t)|2 − |û0(n)|2

)
v̂(n, t). (4.5)

In the following, we often view N1 as a trilinear operator and, with a slight abuse of notations, we

write N1(v1, v2, v3) to denote the right-hand side of (4.3), where we replace the jth occurrence of
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v by vj , j = 1, 2, 3. Given a trilinear operator M(v1, v2, v3), we write M(v) to mean M(v, v, v).

We apply this convention in the following.

Next, we apply the gauge transform J in (4.1) to the truncated dynamics (3.1). Let uN ∈
C(R;Hσ(T)) be the global solution to the truncated equation (3.1) with the same initial data

uN |t=0 = u0. Then, the gauged function vN = J (uN ) satisfies the following gauged truncated

4NLS: {
i∂tvN = ∂4

xvN +NN
1 (vN ) +NN

2 (vN )

vN |t=0 = u0,
(4.6)

where NN
1 (vN ) and NN

2 (vN ) are given by

NN
1 (vN )(x, t) := P≤NN1(P≤Nv)(x, t)

=
∑
|n|≤N

einx
∑

ΓN (n)

eitΘ(n)v̂N (n1, t)v̂N (n2, t)v̂N (n3, t),

NN
2 (vN )(x, t) := −

∑
|n|≤N

einx
(
|v̂N (n, t)|2 − |û0(n)|2

)
v̂N (n, t)

+
∑
|n|>N

einx|û0(n)|2v̂N (n, t).

(4.7)

Note that the high frequency part of the solution to the gauged truncated 4NLS (4.6) is given by

P>NvN (t) = Su0(t)P>Nu0,

where Su0(t) is the modified linear propagator defined by

Su0(t)f :=
∑
n∈Z

e−it(n
4+|û0(n)|2)f̂(n)einx. (4.8)

When N =∞, the equation (4.6) formally reduces to (4.2) and thus we use the notations v∞,

N∞1 (v), and N∞2 (v) for v, N1(v), and N2(v) in the following.

4.2. Function spaces and nonlinear estimates. We recall the definition of the basic function

spaces and the key estimates in proving local well-posedness of the renormalized 4NLS (1.5) in

negative Sobolev spaces.

We first recall the Fourier restriction norm method introduced by Bourgain [3]. Given s, b ∈ R,

we define the Xs,b-space as the completion of S(T× R) under the following norm:

‖u‖Xs,b(T×R) = ‖〈n〉s〈τ + n4〉bû(n, τ)‖`2nL2
τ
.

Given a time interval I ⊂ R, we define the local-in-time version Xs,b(I) by setting

‖u‖Xs,b(I) = inf
{
‖ũ‖Xs,b : ũ|I = u

}
.

When I = [0, T ], we also set Xs,b
T = Xs,b(I). We use the same notation for the time restriction

of other function spaces. Recall that

‖u‖CTHs
x
. ‖u‖

Xs,b
T

(4.9)

for b > 1
2 . Using the Xs,b-space, local well-posedness in L2(T) of 4NLS (1.1) (and the renormalized

4NLS (1.5)) follows from the L4-Strichartz estimate and a contraction argument. See [30].

Due to the lack of local uniform continuity of the solution map, one can not use a contraction

argument to prove local well-posedness of the renormalized 4NLS (1.5) in negative Sobolev spaces.

In [33], the short-time Fourier restriction norm method and the normal form approach were used



14 T. OH AND K. SEONG

to overcome this issue. Following the previous works [38, 26, 24] on the modified KdV equation

and the third order NLS, Kwak [21] used the modified Xs,b-space, defined by the norm:

‖u‖
Y s,bu0

(T×R)
= ‖〈n〉s〈τ + n4 − |û0(n)|2〉bû(n, τ)‖`2nL2

τ
(4.10)

for u|t=0 = u0 and proved local well-posedness of (1.5) by a compactness argument. In [23], Li,

Zine, and the second author proved local well-posedness of the fractional NLS (1.6) (for α > 2)

below L2(T) by studying the gauged formulation (as in (4.2)). We point out that

‖Ju0(u)‖Xs,b = ‖u‖
Y s,bu0

(4.11)

and thus studying the renormalized 4NLS (1.5) in the Y s,b
u0 -spaces is equivalent to studying the

gauged renormalized 4NLS (4.2) in the standard Xs,b-spaces.

Let Ψ(t) and ΨN (t) be the solution maps to (4.2) and (4.6), respectively, with the understanding

that Ψ∞(t) = Ψ(t). Then, as a consequence of the aforementioned well-posedness results, we

have the following uniform growth bound for σ > −1
3 ; given any R > 0 and T > 0, there exists

C0(T,R) > 0 such that

sup
N∈N∪{∞}

sup
u0∈BR

‖ΨN (t)(u0)‖
X
σ, 12+ε

T

≤ C0(T,R) (4.12)

for some small ε > 0, where BR ⊂ Hσ(T) denotes the ball of radius R centered at the origin.

For small T = T (R) > 0, the bound (4.12) follows from the uniform (in N) local well-posedness

result in [21, 23].9 For large T > 0, the bound (4.12) follows from the same bound over short time

intervals together with the global-in-time control and the strong uniqueness statement in [33]

(which guarantees that the solutions constructed in [33, 21, 23] all agree) and the subadditivity

of the local-in-time Xσ, 1
2

+ε-norms over disjoint time intervals as in Lemma A.4 in [2].

Next, we recall the linear estimates. See [3, 14].

Lemma 4.1. Let s ∈ R and 0 < T ≤ 1.

(i) For any b ∈ R, we have

‖S(t)u0‖Xs,b
T
≤ Cb‖u0‖Hs .

(ii) Let −1
2 < b′ ≤ 0 ≤ b ≤ b′ + 1. Then, we have∥∥∥∥ˆ t

0
S(t− t′)F (t′)dt′

∥∥∥∥
Xs,b
T

≤ Cb,b′T 1−b+b′‖F‖
Xs,b′
T

.

We now state the nonlinear estimates, which essentially follow from [21, 23]. In the remaining

part of this section, we fix small ε > 0.

Lemma 4.2. Let −1
2 < σ < 0 and T > 0. Then, we have

‖NN
1 (v1, v2, v3)‖

X
σ,− 1

2+2ε

T

.
3∏
j=1

‖vj‖
X
σ, 12+ε

T

, (4.13)

uniformly in N ∈ N ∪ {∞}.

9In [21, 23], only the untruncated equation (1.5) was considered. In view of the uniform (in N) boundedness of
P≤N on the relevant function spaces, the local well-posedness argument in [21, 23] also applies to the truncated
equation (3.1), uniformly in N ∈ N.
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Proof. This is a direct consequence of Proposition 3.1 in [21]. Indeed, in terms of our notations,

Proposition 3.1 in [21] establishes the following trilinear bound:

‖N1(u1, u2, u3)‖
Y
σ,− 1

2+2ε

u0,T

.
3∏
j=1

‖uj‖
Y
σ, 12
u0,T

(4.14)

for −1
2 < σ < 0 and 0 < T ≤ 1, where N1 is defined by

N1(u1, u2, u3)(x, t) :=
∑
n∈Z

einx
∑
Γ(n)

û1(n1, t)û2(n2, t)û3(n3, t). (4.15)

We first note that the restriction T ≤ 1 in (4.14) does not play any role in the proof presented

in [21] and thus we can drop the restriction T ≤ 1. A similar comment applies to the lemmas

below.

From (4.7) and (4.15) with (4.1) and (4.4), we have

NN
1 (v1, v2, v3) = P≤NJ

(
N1(P≤Nu1,P≤Nu2,P≤Nu3)

)
, (4.16)

where uj = J −1(vj). Then, from (4.16), (4.11), and (4.14) together with the uniform (in N)

boundedness of P≤N on the Xs,b
T - and Y s,b

u0,T
-spaces, we have

‖NN
1 (v1, v2, v3)‖

X
σ,− 1

2+2ε

T

= ‖P≤NN1(P≤Nu1,P≤Nu2,P≤Nu3)‖
Y
σ,− 1

2+2ε

u0,T

.
3∏
j=1

‖P≤Nuj‖
Y
σ, 12
u0,T

≤
3∏
j=1

‖vj‖
X
σ, 12+ε

T

,

where, in the last step, we used the monotonicity of the Xs,b-norm in the parameter b. This

yields (4.13). �

Lemma 4.3. Let −1
3 < σ < 0 and T > 0. Given N ∈ N ∪ {∞}, let vN be the smooth solution

to (4.6) with vN |t=0 = u0 ∈ C∞(T). Then, we have

sup
|n|≤N

∣∣∣∣ Im(ˆ T

0

∑
ΓN (n)

eitΘ(n̄)v̂N (n1, t)v̂N (n2, t)v̂N (n3, t)v̂N (n, t)dt

)∣∣∣∣
. ‖vN‖4

X
σ, 12+ε

T

+ ‖vN‖6
X
σ, 12+ε

T

+ ‖vN‖8
X
σ, 12+ε

T

,

(4.17)

where ΓN (n) is as in (2.9) and ΓN (n) = Γ(n) when N =∞. Here, the implicit constant in (4.17)

is independent of N ∈ N.

Proof. • Case 1: N = ∞. We first recall Proposition 3.4 in [21]; given −1
3 ≤ σ < 0 and

0 < T ≤ 1, we have

sup
n∈Z

∣∣∣∣ Im(ˆ T

0

∑
Γ(n)

û(n1, t)û(n2, t)û(n3, t)û(n, t)dt

)∣∣∣∣
. ‖u0‖4Hσ +

(
‖u0‖2Hσ + ‖u‖4

Y
σ, 12
u0,T

)2
+ ‖u‖4

Y
σ, 12
u0,T

+ ‖u‖6
Y
σ, 12
u0,T

(4.18)

for any smooth solution u to (1.5) with u|t=0 = u0 ∈ C∞(T). As mentioned in the proof of

Lemma 4.2, we can drop the restriction T ≤ 1 and the estimate (4.18) indeed holds for any T > 0

(at least for smooth solutions; see Remark 4.5 below).
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Given u0 ∈ C∞(T), let v be the solution to (4.2) with v|t=0 = u0. Then, u = J −1(v)

satisfies (1.5) with u|t=0 = u0. Hence, from (4.18) with (4.1), (4.4), and (4.11), we obtain

sup
n∈Z

∣∣∣∣ Im( ˆ T

0

∑
Γ(n)

eitΘ(n̄)v̂(n1, t)v̂(n2, t)v̂(n3, t)v̂(n, t)dt

)∣∣∣∣
. ‖u0‖4Hσ +

(
‖u0‖2Hσ + ‖v‖4

X
σ, 12
T

)2
+ ‖v‖4

X
σ, 12
T

+ ‖v‖6
X
σ, 12
T

. ‖v‖4
X
σ, 12+ε

T

+ ‖v‖6
X
σ, 12+ε

T

+ ‖v‖8
X
σ, 12+ε

T

,

where, by relaxing the temporal regularity from b = 1
2 to b = 1

2 + ε, we used (4.9) in the last

step. This proves (4.17) for N =∞.

• Case 2: N < ∞. As in the case N = ∞, we establish (4.17) for N < ∞ by reducing the

estimate to an analogue of (4.18). For this purpose, we first recall the proof of Proposition 3.4

in [21] (namely, the estimate (4.18)). First, we divide the domain Γ(n) into a good region Γgood(n)

and a bad region Γbad(n).10 Then, the good part, i.e. the contribution to (4.18) from Γgood(n),

is treated by establishing 4-linear estimates (Cases II and III in the proof of [21, Proposition

3.4]), yielding the third term on the right-hand side of (4.18). In handling the bad part, i.e. the

contribution to (4.18) from Γbad(n) (corresponding to Case I in the proof of [21, Proposition

3.4]), we first apply integration by parts in time (as in [38, 26, 24]) and writeˆ T

0

∑
Γbad(n)

û(n1, t)û(n2, t)û(n3, t)û(n, t)dt

=

ˆ T

0

∑
Γbad(n)

e−iφ(n̄)tŵ(n1, t)ŵ(n2, t)ŵ(n3, t)ŵ(n, t)dt

=
∑

Γbad(n)

e−iφ(n̄)t

−iφ(n̄)
ŵ(n1, t)ŵ(n2, t)ŵ(n3, t)ŵ(n, t)

∣∣∣∣T
t=0

+

ˆ T

0

∑
Γbad(n)

e−iφ(n̄)t

iφ(n̄)
∂t

(
ŵ(n1, t)ŵ(n2, t)ŵ(n3, t)ŵ(n, t)

)
dt

=: In + IIn,

(4.19)

where φ(n̄) is as in (2.6) and w(t) = S(−t)u(t) denotes the interaction representation of u. As

for In, a simple 4-linear estimate yields

sup
n∈Z
| In| . ‖u0‖4Hσ + ‖u(T )‖4Hσ .

Combining this with the following bound (see Corollary 3.3 in [21]):

‖u(T )‖2Hσ . ‖u0‖2Hσ + ‖u‖4
Y
σ, 12
u0,T

,

we obtain

sup
n∈Z
| In| . ‖u0‖4Hσ +

(
‖u0‖2Hσ + ‖u‖4

Y
σ, 12
u0,T

)2
,

yielding the first two terms on the right-hand side of (4.18).

10The precise definitions of Γgood(n) and a bad region Γbad(n) are not important for our purpose.
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As for IIn, recalling that u satisfies (1.5), we see that w(t) = S(−t)u(t) satisfies

i∂tw = S(−t)N (S(t)u). (4.20)

See also (5.1) below. By applying the product rule in taking a time derivative in (4.19) and

substituting (4.20), we express IIn as a sum of 6-linear terms, each of which can be bounded by

establishing 6-linear estimates. This yields the fourth term on the right-hand side of (4.18).

In establishing (4.17) for N <∞, we repeat the argument in Case 1 and first reduce the proof

of (4.17) to establishing the following analogue of (4.18):

sup
|n|≤N

∣∣∣∣ Im(ˆ T

0

∑
ΓN (n)

ûN (n1, t)ûN (n2, t)ûN (n3, t)ûN (n, t)dt

)∣∣∣∣
. ‖u0‖4Hσ +

(
‖u0‖2Hσ + ‖uN‖4

Y
σ, 12
u0,T

)2
+ ‖uN‖4

Y
σ, 12
u0,T

+ ‖uN‖6
Y
σ, 12
u0,T

(4.21)

for any smooth solution uN to (3.1) with u|t=0 = u0 ∈ C∞(T). Once (4.21) is established, we

can simply repeat the reduction in Case 1 (with uN = J −1(vN )) and obtain (4.17) for N <∞.

Lastly, note that the only difference between the equations (3.1) and (1.5) is the presence

of the frequency cutoff P≤N . Hence, in view of the uniform (in N) boundedness of P≤N on

the relevant spaces, we see that the proof of (4.18) described above (namely, the proof of [21,

Proposition 3.4]) can be directly applied11 to establish (4.21) for N < ∞. This concludes the

proof of Lemma 4.3. �

Lemma 4.4. Let −1
3 < σ < 0 and T > 0. Given N ∈ N, let v and vN be the smooth solutions

to (4.2) and (4.6), respectively, with v|t=0 = vN |t=0 = u0 ∈ C∞(T). Then, we have

sup
|n|≤N

∣∣∣∣ Im( ˆ T

0

∑
ΓN (n)

eitΘ(n̄)
(
v̂(n1, t)v̂(n2, t)v̂(n3, t)v̂(n, t)

− v̂N (n1, t)v̂N (n2, t)v̂N (n3, t)v̂N (n, t)
)
dt

)∣∣∣∣
≤ C

(
‖v‖

X
σ, 12+ε

T

, ‖vN‖
X
σ, 12+ε

T

)(
‖v − vN‖

X
σ, 12+ε

T

+ ‖P>N
3
v‖

X
σ, 12+ε

T

)
,

(4.22)

where the implicit constant in (4.22) is independent of N ∈ N.

Proof. This lemma follows from a slight modification of the proof of Proposition 3.8 in [21] which

states the following difference estimate; given −1
3 ≤ σ < 0 and 0 < T ≤ 1, we have

sup
n∈Z

∣∣∣∣ Im(ˆ T

0

∑
Γ(n)

(
û1(n1, t)û1(n2, t)û1(n3, t)û1(n, t)

− û2(n1, t)û2(n2, t)û2(n3, t)û2(n, t)
)
dt

)∣∣∣∣
≤ C

(
‖u0‖Hσ , ‖u1‖

Y
σ, 12
u0,T

, ‖u2‖
Y
σ, 12
u0,T

)
‖u1 − u2‖

Y
σ, 12
u0,T

(4.23)

for any smooth solutions u1, u2 to (1.5) with u1|t=0 = u2|t=0 = u0 ∈ C∞(T). As before, we

can drop the restriction T ≤ 1 and the estimate (4.23) holds for any T > 0 (at least for

smooth solutions; see Remark 4.5 below). The proof of (4.23) is analogous to that of (4.18)

11including the integration-by-parts argument in (4.19). We just need to insert P≤N in appropriate places.
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(i.e. Proposition 3.4 in [21]). Namely, divide the domain Γ(n) into a good region Γgood(n) and

a bad region Γbad(n). Then, the good part is estimated by the same 4-linear estimates as in

the proof of (4.18), while, as for the bad part, we apply integration by parts at the level of the

interaction representation (as in (4.19)) and rewrite the 4-linear terms into the 4-linear boundary

terms and the 6-linear terms.

In order to prove (4.22), we aim to bound the following difference:

sup
|n|≤N

∣∣∣∣ Im(ˆ T

0

∑
ΓN (n)

(
û(n1, t)û(n2, t)û(n3, t)û(n, t)

− ûN (n1, t)ûN (n2, t)ûN (n3, t)ûN (n, t)
)
dt

)∣∣∣∣,
(4.24)

where u and uN are solutions to (1.5) and (3.1), respectively, with u|t=0 = uN |t=0 = u0 ∈ C∞(T).

We proceed as in the proof of (4.23) (= Proposition 3.8 in [21]) described above. In studying (4.23),

a difference appears in the integration-by-parts step (in estimating the contribution from the

bad region Γbad(n)). After applying integration by parts to the first summand in (4.24), the

non-boundary looks likeˆ T

0

eiφ(n̄)t

iφ(n̄)
∂t

(
ŵ(n1, t)ŵ(n2, t)ŵ(n3, t)ŵ(n, t)

)
dt, (4.25)

where φ(n̄) is as in (2.6) and w = S(−t)u(t) is the interaction representation of u. See (4.19).

We then apply the product rule and use (4.20) to replace ∂tŵ by (the Fourier transform of) the

cubic nonlinearity: M(w)(t) := S(−t)N (S(t)w(t)). Write

M(w) = P≤NM(P≤Nw) + P≤N
(
M(w)−M(P≤Nw)

)
+ P>NM(w). (4.26)

The first term on the right-hand side of (4.26) can be put together with the analogous contribution

for wN (t) = S(−t)uN (t) coming from the second summand in (4.24), yielding

P≤NM(P≤Nw)−P≤NM(P≤NwN )

= P≤NM(P≤N (w − wN ),P≤Nw,P≤Nw)

+ P≤NM(P≤NwN ,P≤N (w − wN ),P≤Nw)

+ P≤NM(P≤NwN ,P≤NwN ,P≤N (w − wN ))

(4.27)

Then, by substituting (4.27) (for ∂tŵ) in (4.25) and applying the 6-linear estimate from the proof

of Proposition 3.4 in [21], we bound the contribution from this term to (4.24) by

C
(
‖u0‖Hσ , ‖u‖

Y
σ, 12
u0,T

, ‖uN‖
Y
σ, 12
u0,T

)
‖u− uN‖

Y
σ, 12
u0,T

. (4.28)

As for the second term on the right-hand side of (4.26), we first write

P≤N
(
M(w)−M(P≤Nw)

)
= P≤NM(P>Nw,w,w) + P≤NM(P≤Nw,P>Nw,w)

+ P≤NM(P≤Nw,P≤Nw,P>Nw).

(4.29)

Namely, one of the factors is given by P>Nw. Then, by substituting (4.29) (for ∂tŵ) in (4.25)

and applying the 6-linear estimate from the proof of Proposition 3.4 in [21] as before, we bound

the contribution from this term to (4.24) by

C
(
‖u0‖Hσ , ‖u‖

Y
σ, 12
u0,T

)
‖P>Nu‖

Y
σ, 12
u0,T

. (4.30)
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As for the the third term on the right-hand side of (4.26):

P>NM(w) = P>NM(w,w,w),

we first note that this term vanishes unless one of the factors has frequencies greater than N
3 .

Then, proceeding as above, we bound the contribution from this term to (4.24) by

C
(
‖u0‖Hσ , ‖u‖

Y
σ, 12
u0,T

)
‖P>N

3
u‖

Y
σ, 12
u0,T

. (4.31)

Then, putting (4.28), (4.30), and (4.31) together, we obtain

(4.24) ≤ C
(
‖u0‖Hσ , ‖u‖

Y
σ, 12
u0,T

, ‖uN‖
Y
σ, 12
u0,T

)(
‖u− uN‖

Y
σ, 12
u0,T

+ ‖P>N
3
u‖

Y
σ, 12
u0,T

)
≤ C ′

(
‖u‖

Y
σ, 12+ε

u0,T

, ‖uN‖
Y
σ, 12+ε

u0,T

)(
‖u− uN‖

Y
σ, 12+ε

u0,T

+ ‖P>N
3
u‖

Y
σ, 12+ε

u0,T

) (4.32)

for any ε > 0. Here, in the second inequality, we used the embedding (4.9) (for the Y
σ, 1

2
+ε

u0,T
-space).

Finally, given the smooth solutions v and vN to (4.2) and (4.6), respectively, with v|t=0 =

vN |t=0 = u0 ∈ C∞(T), let u = J −1(v) and uN = J −1(vN ). Then, the desired bound (4.22)

follows from (4.32) with (4.1), (4.4), and (4.11). This concludes the proof of Lemma 4.4. �

Remark 4.5. As pointed out in [24], the smoothness assumption in Lemmas 4.3 and 4.4 is not

necessary. In view of Lemma 4.2, it suffices to assume that v, vN ∈ X
σ, 1

2
+ε

T for σ > −1
2 . See [23]

for details. We also point out that, in Lemmas 4.3 and 4.4, the endpoint σ = −1
3 is excluded so

that the estimates in these lemmas hold for rough solutions in C([0, T ];Hσ(T)), −1
3 < σ < 0, for

any T > 0, using the global-in-time control (4.12), which is valid only for σ > −1
3 .

4.3. Proof of Proposition 3.2. We now establish the approximation property of the truncated

dynamics (3.1) (Proposition 3.2). In view of the approximation result in L2(T) (see [30]), we

restrict our attention to the range −1
3 < σ < 0. We first establish the following preliminary

lemma.

Lemma 4.6. Let −1
3 < σ < 0 and u0 ∈ Hσ(T). Then, for any T > 0 and δ > 0, there exists

N0 = N0(T, u0, δ) ∈ N such that

‖Ψ(t)(u0)−ΨN (t)(u0)‖Hσ < δ

for any t ∈ [0, T ] and N ≥ N0.

Proof. We first consider the high frequency part of the dynamics. Recalling that P>NΨN (t)(u0) =

Su0(t)P>Nu0, where Su0(t) is as in (4.8). Hence, there exists N1 = N1(u0, δ) ∈ N such that

‖P>NΨN (t)(u0)‖L∞T Hσ
x

= ‖Su0(t)P>Nu0‖L∞T Hσ
x

= ‖P>Nu0‖Hσ <
δ

4

for any N ≥ N1. From (4.12) with N =∞ and the Lebesgue dominated convergence theorem,

we have

‖P>NΨ(t)(u0)‖L∞T Hσ
x
. ‖P>NΨ(t)(u0)‖

X
σ, 12+ε

T

<
δ

4

for any N ≥ N2 = N2(T, u0, δ) ∈ N.

Hence, it suffices to show that there exists N3 = N3(T, u0, δ) ∈ N such that

‖P≤NΨ(t)(u0)−P≤NΨN (t)(u0)‖L∞T Hσ
x
<
δ

2
(4.33)
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for any N ≥ N3. By writing (4.2) and (4.6) in the Duhamel formulations with v(t) = Ψ(t)(u0)

and vN (t) = ΨN (t)(u0), we have

P≤Nv(t)−P≤NvN (t) = −i
2∑
j=1

ˆ t

0
S(t− t′)

(
P≤NNj(v)−P≤NNN

j (vN )
)
(t′)dt′

=: I + II.

(4.34)

We set wN = P≤Nv −P≤NvN . We first estimate I . From (4.3) and (4.7), we have

P≤NN1(v)−P≤NNN
1 (vN )

=
∑
|n|≤N

einx
∑

ΓN (n)

eitΘ(n̄)
(
ŵN (n1, t)v̂(n2, t)v̂(n3, t)

+ v̂N (n1, t)ŵN (n2, t)v̂(n3, t) + v̂N (n1, t)v̂N (n2, t)ŵN (n3, t)
)

+
∑
|n|≤N

einx
∑
Γ(n)

max
j=1,2,3

|nj |>N

eitΘ(n̄)v̂(n1, t)v̂(n2, t)v̂(n3, t).

Hence, from Lemmas 4.1 and 4.2 with (4.12), we have

‖ I‖
X
σ, 12+ε
τ

. τ ε‖P≤NN1(v)−P≤NNN
1 (vN )‖

X
σ,− 1

2+2ε
τ

≤ τ εC(T,R)
(
‖wN‖

X
σ, 12+ε
τ

+ ‖P>Nv‖
X
σ, 12+ε
τ

) (4.35)

for any τ ∈ [0, T ], where R = ‖u0‖Hσ .

Next, we consider II in (4.34). From (4.5) and (4.7), we have

II = i

ˆ t

0
S(t− t′)

∑
|n|≤N

einx
(
|v̂(n, t′)|2 − |û0(n)|2

)
ŵN (n, t′) dt′

+ i

ˆ t

0
S(t− t′)

∑
|n|≤N

einx
(
|v̂(n, t′)|2 − |v̂N (n, t′)|2

)
v̂N (n, t′) dt′

=: II1 + II2.

(4.36)

By Lemma 4.1, the fundamental theorem of calculus, (4.2), Lemma 4.3, and (4.12), we have

‖II1‖
X
σ, 12+ε
τ

. τ ε‖(i∂t − ∂4
x)II1‖

X
σ,− 1

2+2ε
τ

≤ τ ε‖(i∂t − ∂4
x)II1‖L2

τH
σ
x

. τ ε sup
t∈[0,τ ]
|n|≤N

∣∣∣∣Re

ˆ t

0
∂tv̂(n, t′)v̂(n, t′)dt′

∣∣∣∣ · ‖wN‖
X
σ, 12+ε
τ

= τ ε sup
t∈[0,τ ]
|n|≤N

∣∣∣∣ Im( ˆ t

0

∑
Γ(n)

eitΘ(n̄)v̂(n1, t
′)v̂(n2, t′)v̂(n3, t

′)v̂(n, t′)dt′
)∣∣∣∣ · ‖wN‖

X
σ, 12+ε
τ

≤ τ εC(T,R)‖wN‖
X
σ, 12+ε
τ

(4.37)

for any τ ∈ [0, T ].
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Recalling that v|t=0 = vN |t=0 = u0, it follows from the fundamental theorem of calculus, (4.2),

(4.6), Lemmas 4.4 and 4.3, and (4.12) that∣∣∣|v̂(n, t)|2 − |v̂N (n, t)|2
∣∣∣ ≤ ∣∣∣|v̂(n, t)|2 − |û0(n)|2

∣∣∣+
∣∣∣|v̂N (n, t)|2 − |û0(n)|2

∣∣∣
≤ 2

∣∣∣∣ Im( ˆ t

0

∑
ΓN (n)

eitΘ(n̄)
(
v̂(n1, t

′)v̂(n2, t′)v̂(n3, t
′)v̂(n, t′)

− v̂N (n1, t
′)v̂N (n2, t′)v̂N (n3, t

′)v̂N (n, t′)
)
dt′
)∣∣∣∣

+ 2

∣∣∣∣ Im( ˆ t

0

∑
Γ(n)

max
j=1,2,3

|nj |>N

eitΘ(n̄)v̂(n1, t
′)v̂(n2, t′)v̂(n3, t

′)v̂(n, t′)dt′
)∣∣∣∣

≤ C(T,R)
(
‖wN‖

X
σ, 12+ε
τ

+ ‖P>N
3
v‖

X
σ, 12+ε
τ

)
, (4.38)

uniformly in |n| ≤ N and 0 ≤ t ≤ τ ≤ T . Then, from (4.36), Lemma 4.1, (4.38), and (4.12), we

obtain

‖II2‖
X
σ, 12+ε
τ

. τ ε‖(i∂t − ∂4
x)II2‖

X
σ,− 1

2+2ε
τ

≤ τ ε‖(i∂t − ∂4
x)II2‖L2

τH
σ
x

. τ ε sup
t∈[0,τ ]
|n|≤N

∣∣∣|v̂(n, t)|2 − |v̂N (n, t)|2
∣∣∣ · ‖vN‖

X
σ, 12+ε
τ

≤ τ εC(T,R)
(
‖wN‖

X
σ, 12+ε
τ

+ ‖P>N
3
v‖

X
σ, 12+ε
τ

)
.

(4.39)

Therefore, from (4.34), (4.35), (4.36), (4.37), and (4.39), we have

‖wN‖
X
σ, 12+ε
τ

. τ εC∗(T,R)
(
‖wN‖

X
σ, 12+ε
τ

+ ‖P>N
3
v‖

X
σ, 12+ε
τ

)
(4.40)

for any τ ∈ [0, T ]. By choosing τ = τ(T,R) > 0 sufficiently small such that

τ εC∗(T,R) ≤ 1

2
, (4.41)

we obtain, from (4.40) with (4.9),

‖wN‖L∞τ Hσ
x
. ‖wN‖

X
σ, 12+ε
τ

≤ C1(T,R)‖P>N
3
v‖

X
σ, 12+ε

T

. (4.42)

We now consider the second time interval I2 = [τ, 2τ ]. The estimates (4.35) on I and (4.37)

on II1 also hold on [τ, 2τ ]. As for the analysis on II2, we need to make the following modification

in (4.38). By writing

|v̂(n, t)|2 − |v̂N (n, t)|2 =
(
|v̂(n, t)|2 − |v̂(n, τ)|2

)
−
(
|v̂N (n, t)|2 − |v̂N (n, τ)|2

)
+
(
|v̂(n, τ)|2 − |v̂N (n, τ)|2

)
,

(4.43)

we estimate the first two terms on the right-hand side of (4.43) by using the fundamental theorem

of calculus as in (4.38), while the last term on the right-hand side of (4.43) is already controlled

by (4.38) with t = τ . Together with (4.42), this gives

|v̂(n, t)|2 − |v̂N (n, t)|2 ≤ C(T,R)
(
‖wN‖

Xσ, 12+ε([τ,2τ ])
+ ‖P>N

3
v‖

Xσ, 12+ε([τ,2τ ])

)
+ C ′1(T,R)‖P>N

3
v‖

X
σ, 12+ε
τ

(4.44)
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uniformly in |n| ≤ N and 0 ≤ τ ≤ t ≤ 2τ ≤ T . Therefore, proceeding as before with (4.44), we

have

‖wN‖
Xσ, 12+ε([τ,2τ ])

. τ εC∗(T,R)‖wN‖
Xσ, 12+ε([τ,2τ ])

+ τ εC ′′1 (T,R)‖P>N
3
v‖

X
σ, 12+ε

T

. (4.45)

Hence, from (4.45) and (4.41), we obtain

‖wN‖L∞([τ,2τ ];Hσ) . ‖wN‖Xσ, 12+ε([τ,2τ ])
≤ C2(T,R)‖P>N

3
v‖

X
σ, 12+ε

T

.

By repeating this argument, we have

‖wN‖L∞(Ij ;Hσ) . ‖wN‖Xσ, 12+ε(Ij)
≤ Cj(T,R)‖P>N

3
v‖

X
σ, 12+ε

T

.

on the jth time interval Ij = [(j − 1)τ, jτ ] ∩ [0, T ]. Note that while Cj(T,R) is increasing in

j, it follows from our choice of τ in (4.41) that maxj=1,...,[T
τ

]+1Cj(T,R) ≤ C∗(T,R) for some

C∗(T,R) > 0. Therefore, we conclude that

‖wN‖L∞T Hσ
x
≤ C∗(T,R)‖P>N

3
v‖

X
σ, 12+ε

T

. (4.46)

Then, the desired bound (4.33) follows from (4.46) and the Lebesgue dominated convergence

theorem with (4.12). This completes the proof of Lemma 4.6. �

Remark 4.7. Due to the lack of local uniform continuity of the solution map in negative Sobolev

spaces, it is crucial that Ψ(t)(u0) and ΨN (t)(u0) have the same initial condition u0 in the proof

of Lemma 4.6; see (4.38).

We conclude this section by presenting the proof of Proposition 3.2. We follow [39, Proposi-

tion 2.10] and [30, Proposition B.3/6.21].

Proof of Proposition 3.2. Let u0 ∈ A, t ∈ R, and small δ > 0. Write

Φ(t)(u0) = ΦN (t)(ΦN (−t)Φ(t)(u0)).

By setting wN = ΦN (−t)Φ(t)(u0), it suffices to show that there exists N0(t, R, u0, δ) ∈ N such

that

wN ∈ A+Bδ

for every N ≥ N0. Define zN by

zN = ΦN (−t)Φ(t)(u0)− u0

such that wN = u0 + zN . Since u0 ∈ A, we only need to check that zN ∈ Bδ for all N � 1. By

writing

zN = ΦN (−t)
(
Φ(t)(u0)− ΦN (t)(u0)

)
,

it follows from the uniform (in N) growth bound on the Hσ-norm of solutions to (3.1) (see [33,

Proposition 6.6] for the case N =∞) that

‖zN‖Hσ =
∥∥ΦN (−t)

(
Φ(t)(u0)− ΦN (t)(u0)

)∥∥
Hσ

≤ C(t)‖Φ(t)(u0)− ΦN (t)(u0)‖c(σ)
Hσ

for some c(σ) > 0. By the unitarity of the gauge transform J in (4.1) (for fixed t ∈ R) and

Lemma 4.6, we have

‖Φ(t)(u0)− ΦN (t)(u0)‖Hσ −→ 0



QUASI-INVARIANT MEASURES FOR THE CUBIC 4NLS IN NEGATIVE SOBOLEV SPACES 23

as N →∞. This implies that zN ∈ Bδ for N ≥ N0(t, R, u0, δ) ∈ N. This proves Proposition 3.2.

�

5. Normal form reductions

In this section, we present the proof of Proposition 3.4 and Lemma 3.5 by implementing an

infinite iteration of normal form reductions as in [27, 33]. This procedure allows us to construct

an infinite sequences of correction terms and thus build the desired modified energies EN (u)(t)

and E(u)(t) in (3.4).

5.1. Main proposition. In this subsection, by expressing the multilinear terms in the series

expansion (3.3) in terms of the interaction representation, we state the bounds on these multilinear

terms (Proposition 5.1). By assuming these bounds, we then present the proofs of Proposition 3.4

and Lemma 3.5.

In order to encode multilinear dispersion in an effective manner, it is convenient to work with

the following interaction representation of u defined by

v(t) := S(−t)u(t).

On the Fourier side, we have

vn(t) = eitn
4
un(t),

where, for simplicity of notation, we set vn(t) = v̂(n, t), etc. We use this short-hand notation in

the remaining part of this section. If u is a solution to (1.5), then {vn}n∈Z satisfies the following

equation:

∂tvn = −i
∑
Γ(n)

e−iφ(n̄)tvn1vn2vn3 + i|vn|2vn

=: N (v)n +R(v)n,

(5.1)

where φ(n̄) and Γ(n) are as in (2.6) and (2.8). By writing (3.2) in terms of the interaction

representation, we have the following finite dimensional system of ODEs:

∂tvn = −i
∑

ΓN (n)

e−iφ(n̄)tvn1vn2vn3 + i|vn|2vn, |n| ≤ N (5.2)

with v|t=0 = P≤Nv|t=0, namely, vn|t=0 = 0 for |n| > N .

In the following, we simply say that v is a solution to (5.2) if v is a solution to (5.2) when

N ∈ N and to (5.1) when N =∞. We state out main result in this section.

Proposition 5.1. Let 3
10 < s ≤ 1

2 and σ = s − 1
2 − ε for some small ε > 0. Then, given

N ∈ N ∪ {∞}, there exist multilinear forms
{
N

(j)
0,N (t)

}∞
j=2

,
{
N

(j)
1,N (t)

}∞
j=2

, and
{
R

(j)
N (t)

}∞
j=2

,

depending on t ∈ R, such that

d

dt

(
1

2
‖v(t)‖2Hs

)
=

d

dt

( ∞∑
j=2

N
(j)
0,N (t)(v(t))

)
+

∞∑
j=2

N
(j)
1,N (t)(v(t)) +

∞∑
j=2

R
(j)
N (t)(v(t)) (5.3)

for any solution v ∈ C(R;Hσ(T)) to (5.2).12 Here, N
(j)
0,N (t) are 2j-linear forms, while N

(j)
1,N and

R
(j)
N are (2j + 2)-linear forms, satisfying the following bounds in Hσ(T); there exist positive

12Note that the left-hand side of (5.3) does not a priori make sense for v ∈ C(R;Hσ(T)). The identity (5.3) is
to be understood in the limiting sense for rough solutions.
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constants C0(j), C1(j), and C2(j), decaying faster than any exponential rate13 as j →∞ such

that

sup
t∈R

∣∣N(j)
0,N (t)(f1, . . . , f2j)

∣∣ ≤ C0(j)

2j∏
k=1

‖fk‖Hσ , (5.4)

sup
t∈R

∣∣N(j)
1,N (t)(f1, . . . , f2j+2)

∣∣ ≤ C1(j)

2j+2∏
k=1

‖fk‖Hσ , (5.5)

sup
t∈R

∣∣R(j)
N (t)(f1, . . . , f2j+2)

∣∣ ≤ C2(j)

2j+2∏
k=1

‖fk‖Hσ (5.6)

for j = 2, 3, . . . . Note that these constants C0(j), C1(j), and C2(j) are independent of the cutoff

size N ∈ N ∪ {∞}.

We now present the proofs of Proposition 3.4 and Lemma 3.5 by assuming Proposition 5.1.

First, we prove Proposition 3.4. Given N ∈ N∪ {∞}, let u ∈ C(R;Hσ(T)) be a solution to (3.2),

satisfying the growth bound (3.5). Then, we define the multilinear form N (j)
0,N , N (j)

1,N , and R(j)
N

by setting

N (j)
0,N (u(t)) := N

(j)
0,N (t)(S(−t)u(t)),

N (j)
1,N (u(t)) := N

(j)
1,N (t)(S(−t)u(t)),

R(j)
N (u(t)) := R

(j)
N (t)(S(−t)u(t)).

(5.7)

While the multilinear forms N
(j)
0,N , N

(j)
1,N , and R

(j)
N appearing in Proposition 5.1 are non-autonomous

(i.e. they depend on t ∈ R), it is easy to see from the construction of these multilinear forms

carried out in the remaining part of this section that the multilinear forms N (j)
0,N , N (j)

1,N , and R(j)
N

defined in (5.7) are indeed autonomous.

From (5.3) and (5.7) with the unitarity of S(t), we obtain (3.3). By defining the modified

energy EN (u) as in (3.4), it follows from (3.3) and (5.7)

d

dt
EN (u)(t) =

∞∑
j=2

N
(j)
1,N (t)(S(−t)u(t)) +

∞∑
j=2

R
(j)
N (t)(S(−t)u(t)). (5.8)

Then, from (5.8) and Proposition 5.1 together with the growth bound (3.5) and the fast decay

(in j) of the constants C0(j), C1(j), and C2(j), we obtain

sup
t∈[0,T ]

∣∣∣∣ ddtEN (u)(t)

∣∣∣∣ ≤ ∞∑
j=2

(
C1(j) + C2(j)

)
R2j+2

≤ Cs(R).

This proves Proposition 3.4.

13In fact, by slightly modifying the proof, we can make C0(j), C1(j), and C2(j) decay as fast as we want as
j →∞.
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We now turn to the proof of Lemma 3.5. Let u ∈ BR ⊂ Hσ(R). Then, from (3.6), (5.7),

and (5.4) in Proposition 5.1, we have

|SN (u)| =
∣∣∣∣ ∞∑
j=2

N (j)
0,N (P≤Nu)

∣∣∣∣ =

∣∣∣∣ ∞∑
j=2

N
(j)
0,N (t)(P≤NS(−t)u)

∣∣∣∣
≤
∞∑
j=2

C0(j)R2j ≤ Cs(R)

for any N ∈ N ∪ {∞} (and any t ∈ R). As for the convergence part, we refer the readers to

Subsection 4.7 in [27] for details. This completes the proofs of Proposition 3.4 and Lemma 3.5.

Remark 5.2. In [27], Proposition 5.1 was shown for σ = 0 (and 1
2 < s < 1), where the divisor

counting argument played an important role. In the current setting with σ < 0, we need to

make use of the fourth order dispersion to gain derivatives and, for this purpose, we follow the

argument in [33]. In particular, we do not rely on the divisor counting argument. The essential

difference between our argument and that in [33] is the presence of the weight 〈n〉2s, coming

from the Hs-norm squared on the left-hand side of (5.3). Namely, for our problem, we need to

exhibit a stronger smoothing property than that in [33], resulting in a worse regularity restriction

σ > −1
5 in Proposition 5.1.

5.2. Notations: index by ordered bi-trees. In this subsection, we go over notations from

[18, 27, 33] for implementing an infinite iteration of normal form reductions. Our main goal is to

apply normal form reductions to the Hs-energy functional14 and thus we need tree-like structures

that grow in two directions. For our analysis, ordered bi-trees in Definition 5.4 play an essential

role.

Definition 5.3. (i) Given a partially ordered set T with partial order ≤, we say that b ∈ T
with b ≤ a and b 6= a is a child of a ∈ T , if b ≤ c ≤ a implies either c = a or c = b. If the latter

condition holds, we also say that a is the parent of b.

(ii) A tree T is a finite partially ordered set satisfying the following properties:

(a) Let a1, a2, a3, a4 ∈ T . If a4 ≤ a2 ≤ a1 and a4 ≤ a3 ≤ a1, then we have a2 ≤ a3 or

a3 ≤ a2,

(b) A node a ∈ T is called terminal, if it has no child. A non-terminal node a ∈ T is a node

with exactly three ordered15 children denoted by a1, a2, and a3,

(c) There exists a maximal element r ∈ T (called the root node) such that a ≤ r for all

a ∈ T ,

(d) T consists of the disjoint union of T 0 and T ∞, where T 0 and T ∞ denote the collections

of non-terminal nodes and terminal nodes, respectively.

(iii) A bi-tree T = T1 ∪ T2 is a disjoint union of two trees T1 and T2, where the root nodes rj of

Tj , j = 1, 2, are joined by an edge. A bi-tree T consists of the disjoint union of T 0 and T ∞,

where T 0 and T ∞ denote the collections of non-terminal nodes and terminal nodes, respectively.

14More precisely, to the evolution equation satisfied by the Hs-energy functional.
15For example, we simply label the three children as a1, a2, and a3 by moving from left to right in the planar

graphical representation of the tree T . As we see below, we assign the Fourier coefficients of the interaction
representation v at a1 and a3, while we assign the complex conjugate of the Fourier coefficients of v at the second
child a2.
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By convention, we assume that the root node r1 of the tree T1 is non-terminal, while the root

node r2 of the tree T2 may be terminal.

(iv) Given a bi-tree T = T1 ∪ T2, we define a projection Πj , j = 1, 2, onto a tree by setting

Πj(T ) = Tj .

Note that the number |T | of nodes in a bi-tree T is 3j + 2 for some j ∈ N, where |T 0| = j

and |T ∞| = 2j + 2. Let us denote the collection of trees in the jth generation (namely, with j

parental nodes) by BT (j), i.e.

BT (j) := {T : T is a bi-tree with |T | = 3j + 2}.

Next, we recall the notion of ordered bi-trees, for which we keep track of how a bi-tree “grew”

into a given shape.

Definition 5.4. (i) We say that a sequence {Tj}Jj=1 is a chronicle of J generations, if

(a) Tj ∈ BT (j) for each j = 1, . . . , J ,

(b) Tj+1 is obtained by changing one of the terminal nodes in Tj into a non-terminal node

(with three children), j = 1, . . . , J − 1.

Given a chronicle {Tj}Jj=1 of J generations, we refer to TJ as an ordered bi-tree of the Jth

generation. We denote the collection of the ordered trees of the Jth generation by BT(J). Note

that the cardinality of BT(J) is given by |BT(1)| = 1 and

|BT(J)| = 4 · 6 · 8 · · · · · 2J = 2J−1 · J ! =: cJ , J ≥ 2. (5.9)

(ii) Given an ordered bi-tree TJ ∈ BT(J) as above, we define projections πj , j = 1, . . . , J − 1,

onto the previous generations by setting

πj(TJ) = Tj ∈ BT(j).

We stress that the notion of ordered bi-trees comes with associated chronicles. For example,

given two ordered bi-trees TJ and T̃J of the Jth generation, it may happen that TJ = T̃J as

bi-trees (namely as planar graphs) according to Definition 5.3, while TJ 6= T̃J as ordered bi-trees

according to Definition 5.4. In the following, when we refer to an ordered bi-tree TJ of the Jth

generation, it is understood that there is an underlying chronicle {Tj}Jj=1.

Given a bi-tree T , we associate each terminal node a ∈ T ∞ with the Fourier coefficient (or

its complex conjugate) of the interaction representation v and sum over all possible frequency

assignments. For this purpose, we recall the notion of index functions, assigning integers to all

the nodes in T in a consistent manner.

Definition 5.5. (i) Given a bi-tree T = T1 ∪ T2, we define an index function n : T → Z such

that

(a) nr1 = nr2 , where rj is the root node of the tree Tj , j = 1, 2,

(b) na = na1 − na2 + na3 for a ∈ T 0, where a1, a2, and a3 denote the children of a,

(c) {na, na2} ∩ {na1 , na3} = ∅ for a ∈ T 0,

where we identified n : T → Z with {na}a∈T ∈ ZT . We use N(T ) ⊂ ZT to denote the collection

of such index functions n on T .

(ii) Given a tree T , we also define an index function n : T → Z by omitting the condition (a)

and denote by N(T ) ⊂ ZT the collection of index functions n on T .
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Remark 5.6. (i) In view of the consistency condition (a), we can refer to nr1 = nr2 as the

frequency at the root node without ambiguity. We shall simply denote it by nr in the following.

(ii) Given a bi-tree T ∈ BT (J) and n ∈ Z, consider the summation over all possible frequency

assignments {n ∈ N(T ) : nr = n}. While |T ∞| = 2J + 2, there are 2J free variables in this

summation. Namely, the condition nr = n reduces two summation variables. It is easy to see

this by separately considering the cases Π2(T ) = {r2} and Π2(T ) 6= {r2}.

Given an ordered bi-tree TJ of the Jth generation with a chronicle {Tj}Jj=1 and associated

index functions n ∈ N(TJ), we use superscripts to denote such generations of frequencies.

Fix n ∈ N(TJ). Consider T1 = π1(TJ) of the first generation. Its nodes consist of the two

root nodes r1, r2, and the children r11, r12, and r13 of the first root node r1. We define the first

generation of frequencies by(
n(1), n

(1)
1 , n

(1)
2 , n

(1)
3

)
:= (nr1 , nr11 , nr12 , nr13).

The ordered bi-tree T2 = π2(TJ) of the second generation is constructed from T1 by changing one

of its terminal nodes a ∈ T ∞1 = {r2, r11, r12, r13} into a non-terminal node. Then, we define the

second generation of frequencies by setting(
n(2), n

(2)
1 , n

(2)
2 , n

(2)
3

)
:= (na, na1 , na2 , na3).

As we see below, this corresponds to introducing a new set of frequencies after the first differenti-

ation by parts.

In general, we construct an ordered bi-tree Tj = πj(TJ) of the jth generation from Tj−1 by

changing one of its terminal nodes a ∈ T ∞j−1 into a non-terminal node. Then, we define the jth

generation of frequencies by(
n(j), n

(j)
1 , n

(j)
2 , n

(j)
3

)
:= (na, na1 , na2 , na3).

We denote by φj the phase function for the frequencies introduced at the jth generation:

φj = φj
(
n(j), n

(j)
1 , n

(j)
2 , n

(j)
3

)
:=
(
n

(j)
1

)4 − (n(j)
2

)4
+
(
n

(j)
3

)4 − (n(j)
)4
.

Note that we have |φj | ≥ 1 in view of Definition 5.5 and (2.7). We also denote by µj the phase

function corresponding to the usual cubic NLS (at the jth generation):

µj = µj
(
n(j), n

(j)
1 , n

(j)
2 , n

(j)
3

)
:=
(
n

(j)
1

)2 − (n(j)
2

)2
+
(
n

(j)
3

)2 − (n(j)
)2

= −2
(
n(j) − n(j)

1

)(
n(j) − n(j)

3

)
.

Then, from (2.7), we have

|φj | ∼ (n(j)
max)2 · |

(
n(j) − n(j)

1

)(
n(j) − n(j)

3

)
| ∼ (n(j)

max)2 · |µj |, (5.10)

where n
(j)
max is defined by

n(j)
max := max

(
|n(j)|, |n(j)

1 |, |n
(j)
2 |, |n

(j)
3 |
)
.

Lastly, given an ordered bi-tree T ∈ BT(J) for some J ∈ N, define Aj ⊂ N(T ) by

Aj =
{
|φ̃j+1| . (2J + 4)3|φ̃j |

}
∪
{
|φ̃j+1| . (2J + 4)3|φ1|

}
, (5.11)

where φ̃j is defined by

φ̃j =

j∑
k=1

φk. (5.12)
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In Subsections 5.3 and 5.4, we perform normal form reductions in an iterative manner. At

each step, we divide multilinear forms into nearly resonant part (corresponding to the frequencies

belonging to Aj) and highly non-resonant part (corresponding to the frequencies belonging to

Acj) and apply a normal form reduction only to the highly non-resonant part. Then, we prove the

multilinear estimates (5.4), (5.5), and (5.6) for a solution v to (5.2), uniformly in N ∈ N ∪ {∞}.
For simplicity of presentation, however, we only consider the N = ∞ case and work on the

equation (5.1) without the frequency cutoff 1|n|≤N in the following. We point out that the same

normal form reductions and estimates hold for the truncated equation (5.2), uniformly in N ∈ N,

with straightforward modifications: (i) set v̂n = 0 for all |n| > N and (ii) the multilinear forms

for (5.2) are obtained by inserting the frequency cutoff 1|n|≤N in appropriate places.16 In the

following, we introduce multilinear forms such as N
(j)
0 , N

(j)
1 , N

(j)
2 , and R(j) for the untruncated

equation (5.1). With a small modification, these multilinear forms give rise to N
(j)
0,N , N

(j)
1,N , N

(j)
2,N ,

and R
(j)
N , N ∈ N, for the truncated equation (5.2), appearing in Proposition 5.1.

We point out that given finite N ∈ N, a solution to the truncated equation (5.2) is smooth and

therefore the formal computations presented in Subsections 5.3 and 5.4 can be easily justified for

solutions to (5.2). When N =∞, we need to impose the regularity condition v ∈ C(R;Hσ(T)),

σ ≥ 1
6 , to justify the normal form procedure. See [18, 33] for details. Hence, given a solution

v ∈ C(R;Hσ(T)) to (5.1) with −1
5 < σ ≤ 0 as in Proposition 5.1, we need to go through a

limiting argument to obtain the identity (5.3). This argument, however, is standard and thus we

omit details.

5.3. First few steps of normal form reductions. In this section and the next section, we go

over normal form reductions. The formal computation at each step and the resulting multilinear

forms are essentially the same as those appearing in [27] (modulo the slightly different frequency

sets Aj defined in (5.11)). In terms of the actual estimates on the multilinear forms, however,

we closely follow the argument in [33]. For readers’ convenience, we present essentially the full

details.

In this section, we go over the first few steps. Let v be a smooth global solution to (5.1). With

φ(n̄) and Γ(n) as in (2.6) and (2.8), we have

d

dt

(
1

2
‖v(t)‖2Hs

)
= −Re i

∑
n∈Z

∑
Γ(n)

〈n〉2se−iφ(n̄)tvn1(t)vn2(t)vn3(t)vn(t)

=: N(1)(t)(v(t)).

(5.13)

Remark 5.7. (i) Due to the presence of the phase factors in their definitions, the multilinear

forms such as N(1)(t)(v(t)) are non-autonomous in t. In the following, however, we establish

nonlinear estimates on these multilinear forms, uniformly in t ∈ R, by simply using |e−iφ(n̄)t| = 1.

Hence, we suppress such t-dependence when there is no confusion.

(ii) The complex conjugate signs on vnj do not play any significant role. Hereafter, we drop the

complex conjugate sign.

16Using the bi-tree notation, it follows from (5.2) that we simply need to insert the frequency cutoff 1|n(j)|≤N

on the parental frequency n(j) assigned to each non-terminal node a ∈ T 0.
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In view of (2.7) and (2.8), we have |φ(n̄)| ≥ 1 in (5.13). Then, by performing a normal form

reduction, namely, differentiating by parts, and substituting the equation (5.1), we obtain

N(1)(v)(t) = Re ∂t

[ ∑
T1∈BT(1)

∑
n∈N(T1)

〈nr〉2s
e−iφ1t

φ1

∏
a∈T∞1

vna

]

− Re
∑

T1∈BT(1)

∑
n∈N(T1)

〈nr〉2s
e−iφ1t

φ1
∂t

( ∏
a∈T∞1

vna

)

= Re ∂t

[ ∑
T1∈BT(1)

∑
n∈N(T1)

〈nr〉2s
e−iφ1t

φ1

∏
a∈T∞1

vna

]

− Re
∑

T1∈BT(1)

∑
b∈T∞1

∑
n∈N(T1)

〈nr〉2s
e−iφ1t

φ1
R(v)nb

∏
a∈T∞1 \{b}

vna

− Re
∑

T2∈BT(2)

∑
n∈N(T2)

〈nr〉2s
e−i(φ1+φ2)t

φ1

∏
a∈T∞2

vna

=: ∂tN
(2)
0 (v)(t) + R(2)(v)(t) + N(2)(v)(t). (5.14)

In the second equality, we used the equation (5.1) to replace ∂tvnb by the resonant part R(v)nb
and the non-resonant part N (v)nb . Note that the substitution of N (v)nb amounts to extending

the tree T1 ∈ BT(1) (and n ∈ N(T1)) to T2 ∈ BT(2) (and to n ∈ N(T2), respectively) by

replacing the terminal node b ∈ T ∞1 into a non-terminal node with three children b1, b2, and b3.

Remark 5.8. Strictly speaking, the phase factor appearing in N(2)(v) may be φ1 − φ2 when

the time derivative falls on the terms with the complex conjugate. In the following, however,

we simply write it as φ1 + φ2 since it does not make any difference in our analysis. Also, we

often replace ±1 and ±i by 1 for simplicity when they do not play an important role. Lastly, for

notational simplicity, we drop the real part symbol on multilinear forms with the understanding

that all the multilinear forms appear with the real part symbol.

We first estimate the boundary term N
(2)
0 . In the remaining part of this section, we set

σ = σ(s) = s− 1
2 − ε for some small ε > 0 as in (2.1).

Lemma 5.9. Let N
(2)
0 be as in (5.14). Then, for s > 0, we have

|N(2)
0 (v)| . ‖v‖4Hσ . (5.15)

Proof. For notational simplicity, we drop the superscript (1) in the frequencies n(1) = nr and

n
(1)
j . From (5.10), we have

sup
n∈Z

∑
Γ(n)

n4s−8σ
max

|φ1|2
. sup

n∈Z

∑
Γ(n)

1

|(n− n1)(n− n3)|2n4−4s+8σ
max

. 1, (5.16)
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provided that 4 − 4s + 8σ > 0, namely, s > 0. Then, by Cauchy-Schwarz inequality with

|BT(T1)| = 1 and (5.16), we have

|N(2)
0 (v)| .

∑
T1∈BT(1)

∑
n∈Z

∑
n∈N(T1)
nr=n

n2s−4σ
max

|φ1|
∏
a∈T∞1

〈na〉σvna

≤ ‖v‖Hσ

{(
sup
n∈Z

∑
Γ(n)

n4s−8σ
max

|φ1|2

)
·
(∑
n∈Z

∑
Γ(n)

3∏
i=1

〈ni〉2σ|vni |2
)} 1

2

. ‖v‖4Hσ .

This proves (5.15) �

Proceeding in an analogous manner, we obtain the following estimate on R(2).

Lemma 5.10. Let R(2) be as in (5.14). Then, for s > 1
4 , we have

|R(2)(v)| . ‖v‖6Hσ .

Proof. This lemma follows from the proof of Lemma 5.9 and `2 ↪→ `6, once we observe that

sup
n∈Z

∑
Γ(n)

n4s−12σ
max

|φ1|2
. sup

n∈Z

∑
Γ(n)

1

|(n− n1)(n− n3)|2n4−4s+12σ
max

. 1,

provided that 4− 4s+ 12σ > 0, namely, s > 1
4 . �

As it is, we cannot estimate N(2) in (5.14). By dividing the frequency space into A1 defined

in (5.11) and its complement Ac1, we split N(2) as

N(2) = N
(2)
1 + N

(2)
2 , (5.17)

where N
(2)
1 is the restriction of N(2) onto A1 and N

(2)
2 := N(2) − N

(2)
1 . Thanks to the frequency

restriction A1, we can estimate the first term N
(2)
1 .

Lemma 5.11. Let N
(2)
1 be as in (5.17). Then, for s > 3

10 , we have

|N(2)
1 (v)| . ‖v‖6Hσ .

Proof. On A1, we have |φ2| . |φ1|. Then, from (5.10), we have

sup
n∈Z

∑
n∈N(T2)
nr=n
|φ2|.|φ1|

(n
(1)
max)4s−6σ(n

(2)
max)−6σ

|φ1|2

. sup
n∈Z

∑
n∈N(T2)
nr=n

1

|µ1|α|µ2|2−α(n
(1)
max)−4s+6σ+2α(n

(2)
max)6σ+4−2α

(5.18)

for any 0 ≤ α ≤ 2. We impose −4s+ 6σ + 2α > 0 and 6σ + 4− 2α > 0, namely,

s > −α+
3

2
and s >

α

3
− 1

6
. (5.19)
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In view of the powers of n
(1)
max and n

(2)
max on the left-hand side of (5.18), we may assume that

1 ≤ α ≤ 2. From |µ2| . (n
(2)
max)2, we have

|µ2|2−α(n(2)
max)6σ+4−2α & |µ2|3s−2α+ 5

2
−3ε.

Now, we impose 3s− 2α+ 5
2 > 1, namely,

s >
2

3
α− 1

2
. (5.20)

Under the conditions (5.19) and (5.20), it follows from (5.18) that there exists δ > 0 such that

sup
n∈Z

∑
n∈N(T2)
nr=n
|φ2|.|φ1|

(n
(1)
max)4s−6σ(n

(2)
max)−6σ

|φ1|2
. sup

n∈Z

∑
n∈N(T2)
nr=n

1

|µ1|1+δ|µ2|1+δ
. 1. (5.21)

By optimizing the conditions (5.19) and (5.20) with α = 6
5 , we obtain the restriction s > 3

10 .

• Case 1: We first consider the case Π2(T2) = {r2}. Namely, the second root node r2 is a

terminal node. By Cauchy-Schwarz inequality with (5.21), we have

|N(2)
1 (v)| .

∑
n∈Z

∑
T2∈BT(2)

Π2(T2)={r2}

∑
n∈N(T2)
nr=n

1A1

〈nr〉2s

|φ1|
∏
a∈T∞2

vna

. ‖v‖Hσ

{∑
n∈Z

( ∑
T2∈BT(2)

Π2(T2)={r2}

∑
n∈N(T2)
nr=n

1A1

〈n〉2s−σ

|φ1|
∏

a∈T∞2 \{r2}

vna

)2} 1
2

. ‖v‖Hσ sup
T2∈BT(2)

Π2(T2)={r2}

(
sup
n∈Z

∑
n∈N(T2)
nr=n

1A1

(n
(1)
max)4s−6σ(n

(2)
max)−6σ

|φ1|2

) 1
2

×
(∑
n∈Z

∑
n∈N(T2)
nr=n

∏
a∈T∞2 \{r2}

〈na〉2σ|vna |2
) 1

2

. ‖v‖6Hσ .

• Case 2: Next, we consider the case Π2(T2) 6= {r2}. In this case, we need to modify the

argument above since the frequency nr = n does not correspond to a terminal node. Noting that

T ∞2 = Π1(T2)∞ ∪Π2(T2)∞, we have

∑
n∈N(T2)
nr=n

∏
a∈T∞2

|vna |2 =

2∏
j=1

( ∑
n∈N(Πj(T2))

nrj=n

∏
aj∈Πj(T2)∞

|vnaj |
2

)
. (5.22)
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Then, from (5.21) and (5.22), we have

|N(2)
1 (v)| .

∑
n∈Z

∑
T2∈BT(2)

Π2(T2)6={r2}

∑
n∈N(T2)
nr=n

1A1

〈nr〉2s

|φ1|
∏
a∈T∞2

vna

. sup
T2∈BT(2)

Π2(T2) 6={r2}

∑
n∈Z

( ∑
n∈N(T2)

1A1

(n
(1)
max)4s−6σ(n

(2)
max)−6σ

|φ1|2

) 1
2

×
( ∑

n∈N(T2)
nr=n

∏
a∈T∞2

〈na〉2σ|vna |2
) 1

2

. sup
T2∈BT(2)

Π2(T2) 6={r2}

∑
n∈Z

( ∑
n∈N(T2)
nr=n

∏
a∈T∞2

〈na〉2σ|vna |2
) 1

2

. sup
T2∈BT(2)

Π2(T2) 6={r2}

∑
n∈Z

2∏
j=1

( ∑
n∈N(Πj(T2))

nrj=n

∏
aj∈Πj(T2)∞

〈naj 〉2σ|vnaj |
2

) 1
2

. sup
T2∈BT(2)

Π2(T2) 6={r2}

2∏
j=1

(∑
n∈Z

∑
n∈N(Πj(T2))

nrj=n

∏
aj∈Πj(T2)∞

〈naj 〉2σ|vnaj |
2

) 1
2

. ‖v‖6Hσ .

This completes the proof of Lemma 5.11. �

Before moving onto the next subsection, let us briefly describe how to handle the highly

non-resonant part N
(2)
2 in (5.17). On the support of N

(2)
2 , i.e. on Ac1, we have

|φ1 + φ2| � 63|φ1| (5.23)

Namely, the phase function φ1 + φ2 is “large” in this case and hence we can exploit this fast

oscillation by applying the second step of the normal form reduction:

N
(2)
2 (v) = ∂t

[ ∑
T2∈BT(2)

∑
n∈N(T2)

1Ac1
〈nr〉2se−i(φ1+φ2)t

φ1(φ1 + φ2)

∏
a∈T∞2

vna

]

−
∑

T2∈BT(2)

∑
b∈T∞2

∑
n∈N(T2)

1Ac1
〈nr〉2se−i(φ1+φ2)t

φ1(φ1 + φ2)
R(v)nb

∏
a∈T∞2 \{b}

vna

−
∑

T3∈BT(3)

∑
n∈N(T3)

1Ac1
〈nr〉2se−i(φ1+φ2+φ3)t

φ1(φ1 + φ2)

∏
a∈T∞3

vna

=: ∂tN
(3)
0 (v) + R(3)(v) + N(3)(v).

Using (5.23), we can estimate the first two terms N
(3)
0 and R(3) on the right-hand side in a

straightforward manner. See Lemmas 5.12 and 5.14 below. As for the last term N(3), we split it

as N(3) = N
(3)
1 + N

(3)
2 , where N

(3)
1 and N

(3)
2 are the restrictions onto A2 and its complement Ac2,

respectively. By exploiting the frequency restriction on Ac1 ∩A2, we can estimate the first term
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N
(3)
1 (see Lemma 5.15 below). As for the second term N

(3)
2 , we apply the third step of the normal

form reductions. In this way, we iterate normal form reductions in an indefinite manner.

5.4. General step. After the Jth step, we have

N
(J)
2 (v) = ∂t

[ ∑
TJ∈BT(J)

∑
n∈N(TJ )

1⋂J−1
j=1 A

c
j

〈nr〉2se−iφ̃J t∏J
j=1 φ̃j

∏
a∈T∞J

vna

]

−
∑

TJ∈BT(J)

∑
b∈T∞J

∑
n∈N(TJ )

1⋂J−1
j=1 A

c
j

〈nr〉2se−iφ̃J t∏J
j=1 φ̃j

R(v)nb
∏

a∈T∞J \{b}

vna

−
∑

TJ+1∈BT(J+1)

∑
n∈N(TJ+1)

1⋂J−1
j=1 A

c
j

〈nr〉2se−iφ̃J+1t∏J
j=1 φ̃j

∏
a∈T∞J+1

vna

=: ∂tN
(J+1)
0 (v) + R(J+1)(v) + N(J+1)(v). (5.24)

On
⋂J−1
j=1 A

c
j , we have |φ1| ≥ 1 and

|φ̃j | � (2j + 2)3 max
(
|φ̃j−1|, |φ1|

)
≥ (2j + 2)3 (5.25)

for j = 2, . . . , J. As in [18, 27, 33], we control the rapidly growing cardinality cJ = |BT(J)|
defined in (5.9) by the growing constant (2j + 2)3 appearing in (5.25).

First, we estimate N
(J+1)
0 and R(J+1).

Lemma 5.12. Let N
(J+1)
0 be as in (5.24). Then, for any s > 1

6 , we have

|N(J+1)
0 (v)| . 1∏J

j=2(2j + 2)
1
3

‖v‖2J+2
Hσ . (5.26)

Here, the implicit constant is independent of J .

Proof. From (5.12), we have

|φj | . max
(
|φ̃j−1|, |φ̃j |

)
.

Then, in view of (5.25), we have

(2j)3|φj | � |φ̃j−1||φ̃j |. (5.27)

Hence, from (5.27) and then (5.25), we have

J∏
j=1

|φ̃j |2 � |φ1||φ̃J |
J∏
j=2

(
(2j)3|φj |

)
� |φ1|2

J∏
j=2

(
(2j + 2)3|φj |

)
. (5.28)

We only discuss the case Π2(TJ) = {r2} since the modification is straightforward if Π2(TJ) 6=
{r2}. Given s > 1

6 , there exists small δ > 0 such that

(n
(j)
max)−6σ

|φj |
∼ (n

(j)
max)−6σ

|µj |(n(j)
max)2

.
1

|µj |1+δ
. (5.29)

Similarly, we have

(n
(1)
max)4s−6σ

|φ1|2
∼ (n

(1)
max)4s−6σ

|µ1|2(n
(1)
max)4

.
1

|µ1|2
. (5.30)



34 T. OH AND K. SEONG

Then, from (5.28), (5.29), and (5.30), we have

sup
n∈Z

∑
n∈N(TJ )
nr=n

1⋂J−1
j=1 A

c
j
· (n(1)

max)4s
J∏
j=1

(n
(j)
max)−6σ

|φ̃j |2

� 1∏J
j=1(2j + 2)3

· sup
n∈Z

∑
n∈N(TJ )
nr=n
φj 6=0

j=1,...,J

1⋂J−1
j=1 A

c
j

(n
(1)
max)4s−6σ

|φ1|2
J∏
j=2

(n
(j)
max)−6s

|φj |

.
1∏J

j=1(2j + 2)3
· sup
n∈Z

∑
n∈N(TJ )
nr=n
µj 6=0

j=1,...,J

1

|µ1|2
J∏
j=2

1

|µj |1+δ

≤ CJ∏J
j=1(2j + 2)3

. (5.31)

Hence, by Cauchy-Schwarz inequality and (5.31), we have

|N(J+1)
0 (v)| . ‖v‖Hσ

∑
TJ∈BT(J)

Π2(TJ )={r2}

{∑
n∈Z

( ∑
n∈N(TJ )
nr=n

1⋂J−1
j=1 A

c
j

〈n(1)
max〉4s−6σ

|φ1|2
J∏
j=2

〈n(j)
max〉−6σ

|φ̃j |2

)

×
( ∑

n∈N(TJ )
nr=n

∏
a∈T∞J \{r2}

|vna |2
)} 1

2

.
cJ · C

J
2∏J

j=2(2j + 2)
3
2

‖v‖2J+2
Hσ . (5.32)

Then, the desired bound (5.26) follows from (5.9). �

Remark 5.13. At the first inequality in (5.32), we needed the full power 〈n(j)
max〉−6σ only for

those j’s such that the three terminal nodes of the tree added in the (j − 1)th step are also in

T ∞J . For example, j = J satisfies this condition. For other values of j, a smaller power may

suffice. Note, however, that we need to use (5.29) at least for j = J , thus requiring the regularity

restriction s > 1
6 . We therefore simply used the maximum power 〈n(j)

max〉−6σ for all j = 1, . . . , J

at the first inequality in (5.32). The same comments applies to Lemmas 5.14 and 5.15.

Lemma 5.14. Let R(J+1) be as in (5.24). Then, for any 1
6 < s ≤ 1

2 , we have

|R(J+1)(v)| . 1∏J
j=2(2j + 2)

1
3

‖v‖2J+4
Hσ . (5.33)

Here, the implicit constant is independent of J .

Proof. We consider two cases: (i) |φ̃J | & |φJ | and (ii) |φ̃J | � |φJ |.
• Case 1: |φ̃J | & |φJ |. From (5.10), we have

(n(J)
max)−4σ . |φJ |−2σ (5.34)
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for σ ≤ 0, namely, s ≤ 1
2 . From (5.25), we have

|φ̃J | = |φ̃J |−2σ|φ̃J |1+2σ � |φ̃J |−2σ|φ1|1+2σ & |φJ |−2σ|φ1|1+2σ, (5.35)

provided that 1 + 2σ ≥ 0, namely, s > 0. We also observe that

(n
(1)
max)4s−6σ

|φ1|2+2σ
∼ 1

|µ1|2+2σ(n
(1)
max)4−4s+10σ

. (5.36)

Note that 4− 4s+ 10σ > 0 and 2 + 2σ > 1, provided that s > 1
6 . Then, by applying (5.28) and

(5.35) followed by (5.29), (5.34), and (5.36), we have

sup
n∈Z

∑
n∈N(TJ )
nr=n

1⋂J−1
j=1 A

c
j
· (n(J)

max)−4σ(n(1)
max)4s

J∏
j=1

(n
(j)
max)−6σ

|φ̃j |2

� 1∏J
j=2(2j)3

· sup
n∈Z

∑
n∈N(TJ )
nr=n
φj 6=0

j=1,...,J

1⋂J−1
j=1 A

c
j

(n
(J)
max)−4σ

|φ̃J |
(n

(1)
max)4s−6σ

|φ1|

J∏
j=2

(n
(j)
max)−6σ

|φj |

� 1∏J
j=2(2j)3

· sup
n∈Z

∑
n∈N(TJ )
nr=n
φj 6=0

j=1,...,J

(n
(J)
max)−4σ

|φJ |−2σ

(n
(1)
max)4s−6σ

|φ1|2+2σ

J∏
j=2

(n
(j)
max)−6σ

|φj |

.
CJ∏J

j=2(2j)3
. (5.37)

Hence, proceeding as in (5.32) with (5.37) and (5.9), we obtain (5.33) in this case.

• Case 2: |φ̃J | � |φJ |. In this case, we have |φJ | ∼ |φ̃J−1|. From (5.27), we have

J∏
j=1

|φ̃j |2 � |φ1||φ̃J−1||φ̃J |2
J−1∏
j=2

(
(2j)3|φj |

)
. (5.38)

From (5.25), we also have

|φ̃J | � (2J + 2)3|φ̃J−1| ∼ (2J + 2)3|φJ |,

|φ̃J−1| � (2J)3|φ1|.
(5.39)

Thus, from (5.38) and (5.39), we have

J∏
j=1

|φ̃j |2 � |φ1||φJ |
J∏
j=1

(
(2j + 2)3|φj |

)
. (5.40)

Note that

(n
(J)
max)−10σ

|φJ |2
∼ (n

(J)
max)−10σ

|µJ |2(n
(J)
max)4

≤ 1

|µJ |2
, (5.41)
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provided that 4 + 10σ > 0, namely, s > 1
10 . Then, from (5.40), (5.29), (5.30), and (5.41), we have

sup
n∈Z

∑
n∈N(TJ )
nr=n

1⋂J−1
j=1 A

c
j
· (n(J)

max)−4σ(n(1)
max)4s

J∏
j=1

(n
(j)
max)−6σ

|φ̃j |2

� 1∏J
j=1(2j + 2)3

· sup
n∈Z

∑
n∈N(TJ )
nr=n
φj 6=0

j=1,...,J

(n
(J)
max)−10σ

|φJ |2
(n

(1)
max)4s−6σ

|φ1|2
J−1∏
j=2

(n
(j)
max)−6σ

|φj |

.
CJ∏J

j=1(2j + 2)3
. (5.42)

Hence, proceeding as in (5.32) with (5.42) and (5.9), we obtain (5.33) in this case. �

Finally, we consider N(J+1). As before, we write

N(J+1) = N
(J+1)
1 + N

(J+1)
2 , (5.43)

where N
(J+1)
1 is the restriction of N(J+1) onto AJ defined in (5.11) and N

(J+1)
2 := N(J+1)−N

(J+1)
1 .

In the following lemma, we estimate the first term N
(J+1)
1 . Then, we apply a normal form

reduction once again to the second term N
(J+1)
2 as in (5.24) and repeat this process indefinitely.

Lemma 5.16 below shows that, for a smooth function v, this error term N
(J+1)
2 tends to 0 as

J →∞.

Lemma 5.15. Let N
(J+1)
1 be as in (5.24). Then, for any s > 3

10 , we have

|N(J+1)
1 (v)| . 1∏J

j=2(2j + 2)
1
3

‖v‖2J+4
Hσ . (5.44)

Here, the implicit constant is independent of J .

Proof. On AJ ∩AcJ−1, we have |φ̃J+1| . (2J + 4)3|φ̃J | and thus

|φJ+1| . |φ̃J+1|+ |φ̃J | . J3|φ̃J |. (5.45)

Then, from (5.27), (5.45), and (5.25), we have

J3
J∏
j=1

|φ̃j |2 � |φ1|(J3|φ̃J |)1−α(J3|φ̃J |)α
J∏
j=2

(
(2j)3|φj |

)

& |φ1|2−α|φJ+1|α
J∏
j=2

(
(2j)3|φj |

) (5.46)

for 0 ≤ α ≤ 1.

Writing

(n
(1)
max)4s−6σ

|φ1|2−α
∼ 1

|µ1|2−α(n
(1)
max)−4s+6σ−2α+4

(5.47)

and

(n
(J+1)
max )−6σ

|φJ+1|α
∼ 1

|µJ+1|α(n
(J+1)
max )6σ+2α

, (5.48)
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we impose −4s+ 6σ − 2α+ 4 > 0 and 6σ + 2α > 0, namely,

s > α− 1

2
and s > −α

3
+

1

2
. (5.49)

From |µJ+1| . (n
(J+1)
max )2, we have

|µJ+1|α(n(J+1)
max )6σ+2α & |µ2|3s+2α− 3

2
−3ε.

We now impose 3s+ 2α− 3
2 > 1, namely,

s > −2

3
α+

5

6
. (5.50)

By optimizing the conditions (5.49) and (5.50) with α = 4
5 , we obtain the restriction s > 3

10 .

Hence, for s > 3
10 , it follows from (5.46), (5.47), (5.48), and (5.29) that

sup
n∈Z

∑
n∈N(TJ+1)

nr=n

1AJ∩(
⋂J−1
j=1 A

c
j)
· (n(J+1)

max )−6σ(n(1)
max)4s

J∏
j=1

(n
(j)
max)−6σ

|φ̃j |2

� J3∏J
j=2(2j)3

· sup
n∈Z

∑
n∈N(TJ+1)

nr=n
|φj |6=0

j=1,...,J+1

(n
(J+1)
max )−6σ

|φJ+1|α
(n

(1)
max)4s−6σ

|φ1|2−α
J∏
j=2

(n
(j)
max)−6σ

|φj |

.
J3∏J

j=2(2j)3
· sup
n∈Z

∑
n∈N(TJ+1)

nr=n

J+1∏
j=1

1

|µj |1+δ

.
CJ+1J3∏J
j=2(2j)3

(5.51)

for some small δ > 0. Then, the desired bound (5.44) follows from the Cauchy-Schwarz argument

with (5.51). �

We conclude this subsection by showing that the error term N
(J+1)
2 in (5.43) tends to 0 as

J →∞ under some regularity assumption on v. From (5.24), we have

N
(J+1)
2 (v) = −

∑
TJ+1∈BT(J+1)

∑
n∈N(TJ+1)

1⋂J
j=1 A

c
j

〈nr〉2se−iφ̃J+1t∏J
j=1 φ̃j

∏
a∈T∞J+1

vna . (5.52)

Lemma 5.16. Let σ > 1
2 . Then, given any v ∈ Hσ(T), we have

|N(J+1)
2 (v)| −→ 0,

as J →∞.

Proof. By the algebra property of Hs(T), s > 1
2 , we can easily bound (5.52) by oJ→∞(1)‖v‖2J+4

Hs ,

where the decay in J comes from (5.25) for j = 2, . . . J + 1. See also [27, Subsection 4.5]. �

Remark 5.17. We point out that one can actually prove Lemma 5.16 under a weaker regularity

assumption σ ≥ 1
6 . See [33, Lemma 8.15].
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5.5. Proof of Proposition 5.1. We briefly discuss the proof of Proposition 5.1. Let v be a

smooth global solution to (5.1). Then, by applying the normal form reduction J times, we

obtain17

d

dt

(
1

2
‖v(t)‖2Hs

)
=

d

dt

( J+1∑
j=2

N
(j)
0 (v)(t)

)
+

J+1∑
j=2

N
(j)
1 (v)(t)

+
J+1∑
j=2

R(j)(v)(t) + N
(J+1)
2 (v)(t).

For a smooth solution v, Lemma 5.16 allows us to take a limit as J →∞, yielding

d

dt

(
1

2
‖v(t)‖2Hs

)
=

d

dt

( ∞∑
j=2

N
(j)
0 (v)(t)

)
+

∞∑
j=2

N
(j)
1 (v)(t) +

∞∑
j=2

R(j)(v)(t).

Therefore, we obtain (5.3) for a smooth solution v to (5.1). For a rough solution v ∈ C(R;Hσ(T)),

−1
5 < σ ≤ 0, we can obtain the identity (5.3) by a limiting argument. This argument is standard

and thus we omit details. See, for example, Subsection 8.5 in [33].

The bounds (5.4), (5.5), and (5.6) follow from Lemmas 5.9, 5.10, 5.11, 5.12, 5.14, and 5.15.

This proves Proposition 5.1.

Acknowledgements. T.O. was supported by the European Research Council (grant no. 864138

“SingStochDispDyn”). K.S. was partially supported by National Research Foundation of Korea

(grant NRF-2019R1A5A1028324). K.S. would like to express his gratitude to the School of

Mathematics at the University of Edinburgh for its hospitality during his visit, where this

manuscript was prepared. The authors would like to thank the anonymous referee for the helpful

comments which improved the presentation of the paper.

References

[1] A. Babin, A. Ilyin, E. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation,
Comm. Pure Appl. Math. 64 (2011), no. 5, 591–648.
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