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Approximations for non-stationary stochastic lot-sizing

under (s,Q)-type policy

Xiyuan Ma∗a, Roberto Rossia, and Thomas Welsh Archibalda

aBusiness School, University of Edinburgh, Edinburgh, United Kingdom

Abstract

This paper addresses the single-item single-stocking location non-stationary stochastic

lot-sizing problem under a reorder point – order quantity control strategy. The reorder

points and order quantities are chosen at the beginning of the planning horizon. The re-

order points are allowed to vary with time and we consider order quantities either to be

a series of time-dependent constants or a fixed value; this leads to two variants of the

policy: the (st, Qt) and the (st, Q) policies, respectively. For both policies, we present

stochastic dynamic programs (SDP) to determine optimal policy parameters and introduce

mixed integer non-linear programming (MINLP) heuristics that leverage piecewise-linear

approximations of the cost function. Numerical experiments demonstrate that our solution

method efficiently computes near-optimal parameters for a broad class of problem instances.

Keywords Inventory, (s,Q) policy, stochastic lot-sizing, non-stationary demand

1 Introduction

The non-stationary stochastic lot-sing problem is an extension of the well-known dynamic lot-

sizing problem (Wagner and Whitin, 1958). In this problem, one considers a single-item single-

stocking-location inventory system under a finite planning horizon and periodic review; the

demand is stochastic and non-stationary. To deal with the uncertainty inherent in a stochastic

lot-sizing problem, Bookbinder and Tan (1988) introduce three control strategies: the “static

∗Corresponding author: Xiyuan.Ma@ed.ac.uk
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uncertainty”, the “static-dynamic uncertainty”, and the “dynamic uncertainty”, which represent

different approaches for determining the timing and size of orders.

Bookbinder and Tan’s control strategies are captured by various policies. The (R,Q) policy

determines the inventory review schedule R and the order quantity Q before the system operates;

this is the static uncertainty strategy. The (s, S) policy is the dynamic uncertainty strategy, in

which the timing and size of orders are decided as late as possible, in a wait-and-see fashion, by

leveraging the reorder point s, and the order-up-to level S. Scarf (1960) shows that if the holding

and shortage costs are convex, the optimal policy in each period is of (s, S) type. In a static-

dynamic uncertainty strategy one either fixes the order schedule at the outset, and computes

the exact order quantity only when orders are issued, via suitable order-up-to-levels; or fixes the

order quantities at the outset, and decides when orders are issued in a wait-and-see fashion, by

relying on a reorder threshold. This leads to the (R,S) policy and (s,Q) policy (also referred to

as the (r,Q) policy), respectively.

Compared to stationary demand, there are relatively few studies in the literature that consider

non-stationary demand. However, in the majority of practical circumstances, demand is not only

stochastic but also non-stationary.

The following works investigate the static uncertainty strategy under non-stationary demand.

Sox (1997) proposes a mixed integer non-linear programming (MINLP) formulation of the dy-

namic lot-sizing problem with dynamic costs and develops a solution algorithm that resembles

the Wagner-Whitin algorithm. This strategy is also investigated by Vargas (2009), who devel-

ops a stochastic dynamic programming model which is equivalent to a shortest path problem

in a specified acyclic network. Vargas also provides a rolling horizon optimisation algorithm

comprising two stages: (1) to determine optimal replenishment quantities for any sequence of

replenishment points, and (2) to identify the optimal sequence of replenishment points.

For the static-dynamic uncertainty strategy, research under non-stationary demand mostly

considers the (R,S) policy. Tarim and Kingsman (2004) formulates the problem as a mixed

integer program (MIP). They model the total expected cost by minimising the sum of holding and

ordering costs under a constraint on the probability of the closing inventory being non-negative

in each time period. A method to solve this model efficiently is introduced in (Tarim et al.,

2011), where the relaxation of the original MIP model is converted to a shortest path problem

and implemented by branch-and-bound procedures. Tarim and Kingsman (2006) provide another

MIP formulation where the objective function is obtained by the mean of a piecewise linearisation.

The accuracy of the approximation can be adjusted ad libitum by introducing new breakpoints.
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Özen et al. (2012) consider both penalty cost and service level and prove that the optimal policy

is a base stock policy for both penalty and service-level constrained models, and also for capacity

limitations and minimum order quantity requirements. More recently, Rossi et al. (2015) consider

several service level measures — α service level on each period, βcyc service level independently

for each replenishment cycle, and the classic β service level — by adding suitable constraints that

leverage the loss function and its complementary function to describe the expected total holding

and penalty cost. A piecewise linearisation approach is utilized to convert the cost function from

non-linear to linear form. Tunc et al. (2018) present an efficient MIP reformulation along with a

dynamic cut generation approach that progressively refines the piecewise linearisation to achieve

a prescribed linearisation error.

Computing (s, S) policy parameters under non-stationary demand is a challenging task. The

classic Silver and Meal heuristic algorithm (Silver and Meal, 1973) for deterministic demand has

been extended by Silver (1978) and Askin (1981). Silver’s algorithm uses a deterministic model

to calculate the number of periods that each order must cover; when this replenishment plan

is known, the associated safety stocks are then determined myopically. Askin (1981) explicitly

includes the cost effects of probabilistic demand in the choice of the number of periods in which

to order. Bollapragada and Morton (1999) approximate the non-stationary problem via a series

of stationary problems based on the method developed by Zheng and Federgruen (1991). Param-

eters are determined by equating the cumulative mean demand of stationary and non-stationary

problems over the expected reorder cycle. Xiang et al. (2018) introduce a MINLP formulation for

an (s, S) policy by applying the piecewise linearisation approximation proposed by Rossi et al.

(2015). Xiang et al. (2018) also derives a heuristic algorithm with binary search. Both solution

methods outperform the previous heuristics in computational efficiency in tests involving short

and long planning horizons. The comparison of the two proposed algorithms shows that binary

search requires significantly less time than the MINLP. Visentin et al. (2021) propose a hybrid

of branch-and-bound and stochastic dynamic programming model to compute optimal (R, s, S)

policy parameters.

Based on this literature survey, we note a gap in the study of non-stationary demand: no

literature discusses or investigates the static-dynamic uncertainty strategy in the form of an (s,Q)

policy. In this paper, we propose a new control strategy for the stochastic lot-sizing problem

under non-stationary demand. Under this strategy, the reorder points st vary with time, and

we consider two cases for the order quantities: one in which the order quantity varies with time

(Qt) and another in which the order quantity is constant (Q). This leads to two (s,Q)-type
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policies: the (st, Qt) policy and the (st, Q) policy. These policies require values for st and Qt

(or Q) to be determined at the beginning of the planning horizon. Compared to the optimal

policy introduced by Scarf (1960), which allows the order quantity to vary with inventory level

and time period, the order quantity in an (st, Qt) policy is only affected by the time period and

applies to all inventory levels, while the order quantity in an (st, Q) policy is a constant value

for the entire planning horizon, and does not vary with inventory level or time period.

We make the following contributions to the stochastic lot-sizing literature.

• We model the non-stationary stochastic lot-sizing problem under a static-dynamic uncer-

tainty policy in which order quantities are determined “statically”, at the beginning of

the planning horizon, while reordering decisions are determined “dynamically”, in a wait-

and-see-fashion. We prove that the resulting optimal policy takes the non-stationary (s,Q)

form.

• We develop a new heuristic algorithm to efficiently determine near-optimal policy parame-

ters of the proposed (st, Qt) and (st, Q) policies. The algorithm is composed of two steps.

The first-step uses the (s, S)-policy heuristic introduced in Xiang et al. (2018) to determine

the order quantities, and the second-step is based on a newly developed MILP model that

applies the piecewise linearisation approach discussed in Rossi et al. (2014) to determine

the order-up-to levels.

• In a comprehensive numerical study, we show that optimality gaps for the (st, Qt) policy

obtained via our heuristic are tighter than those of a near-optimal (Rt, St) policy obtained

via the approach in Rossi et al. (2015). We also observe that an (st, Q) policy lacks

flexibility and leads to substantial optimality gaps.

The rest of this paper is structured as follows. In Section 2 we introduce the problem settings

and present a stochastic dynamic programming (SDP) formulation. Section 3 discusses the

stochastic dynamic programming formulation of the (st, Qt) and (st, Q) policies. We also show

that the resulting optimal policies take the non-stationary (st, Qt) and (st, Q) forms through the

uniqueness of reorder points. In Section 4, we develop a heuristic algorithm to compute near-

optimal policy parameters for the (st, Qt) policy and discuss the application of this algorithm to

the (st, Q) policy. A computational analysis is presented in Section 5; finally, we draw conclusions

in Section 6.
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2 Problem description

We consider a single-item single-location non-stationary stochastic lot-sizing problem over a

planning horizon of T periods. Replenishment orders are placed and instantaneously delivered

at the beginning of each time period. Each replenishment order incurs an ordering cost c(·)

comprising a fixed ordering cost K and a linear ordering cost z proportional to the non-negative

order quantity Q, where

c(Q) ,

 K + z ·Q, Q > 0;

0, Q = 0.
(1)

The periods’ demands dt, for t = 1, · · · , T , are independent random variables with known prob-

ability density functions gt(·). Any unmet demand at the end of the period is back-ordered. At

the end of each period, a linear holding cost h is incurred for each unit carried from one period

to the next, and a linear penalty cost b is charged on each unit back-ordered. The expected

immediate holding and penalty cost at the end of period t is expressed as

Lt(y) , E[hmax(y − dt) + bmax(dt − y)], (2)

where y denotes the inventory level after receiving the replenishment and E[·] denotes the expec-

tation operator.

Let Ct(x) represent the expected total cost of an optimal policy over periods t, . . . , T with

opening inventory level x; then the problem can be modelled as a stochastic dynamic program

(Bellman, 1957)

Ct(x) , min
y≥x
{c(y − x) + Lt(y) + E[Ct+1(y − dt)]}, (3)

where CT+1(x) , 0, is the boundary condition.

Scarf (1960) showed that, if Lt(y) is convex, the optimal policy of the dynamic inventory

problem is of an (s, S) type, where the inventory system places a replenishment to reach the

order-up-to level S when the stock is found to be below the reorder point at a review point. This

conclusion is based on a study of the function Gt(y) + zy, where

Gt(y) , Lt(y) + E[Ct+1(y − dt)], (4)

and Gt(y) represents the expected total cost over periods t to T when the opening inventory is

y and no order is placed in period t. Table A1 in Appendix A summarises the notation used in

this paper.
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In the rest of this paper, we conduct the discussion assuming Lt(y) is convex. In fact, as the

holding and penalty costs used in this paper are linear, Lt(y) is a weighted sum of two convex

functions and hence convex. A detailed proof can be found in (Rossi et al., 2014, page 490).

Example 1. Consider a 4–period stochastic lot-sizing problem under Poisson-distributed de-

mand with rates dt = 〈20, 40, 60, 40〉 . The cost parameters are K = 100, z = 0, h = 1 and

b = 10. Fig. 1 illustrates the variation of Gt(I0) with I0 ∈ [0, 200] and no replenishment order

placed in period 1, where G1(0) = 481.

0 50 100 150 200
200

250

300

350

400

450

500

Figure 1: Plot of G1(I0)

3 Stochastic dynamic programs for the (st,Qt) and (st,Q)

policies

This section introduces the stochastic dynamic programming formulations of the stochastic lot-

sizing problem under the (st, Qt) policy and the (st, Q) policy in Section 3.1 and Section 3.2,

respectively.

6



3.1 A stochastic dynamic program for the (st,Qt) policy

An (st, Qt) policy places a replenishment order of size Qt at the beginning of period t if the

inventory level is below the reorder point st, and does not place any order otherwise (Silver et al.,

1998). The optimal expected total cost of the system controlled under an (st, Qt) policy can be

determined by computing all feasible combinations of reorder quantities Qt, for t = 1, . . . , T .

Let qt = 〈Qt, . . . , QT 〉 denote a (T − t + 1)-dimensional vector representing order quantities

Qt, . . . , QT and Qt be the vector space representing all combinations of order quantities qt. For

any qt ∈ Qt, the expected total cost over periods t to T when the opening inventory level is x is

denoted as

Vt(x, qt) , min
δ∈{0,1}

{c(δQt) + Lt(x+ δQt) + E[Vt+1(x+ δQt − dt, qt+1)]}, t < T, (5)

where δ is a binary variable that represents the reordering decision in period t when the initial

inventory level is x; finally,

VT (x, qT ) , min
δ∈{0,1}

{c(δQT ) + LT (x+ δQT )} (6)

is the boundary condition. Therefore, considering all combinations, the optimal expected total

cost when the inventory level at the beginning of the planning horizon is x can be defined as

V0(x) , min
q1∈Q1

{V1(x, q1)}. (7)

Let the optimal order quantity be represented by the vector q∗t , 〈Q∗t , . . . , Q∗T 〉.

Next we show that the policy found by the formulation in Section 3.1 is of an (st, Qt) form.

The following discussion is inspired by the work of Gallego and Toktay (2004) on all-or-nothing

ordering policies under a capacity constraint. For any opening inventory level x and a vector of

order quantities qt, let Jt(x, qt) and Ĵt(x, qt) denote the expected total cost when the decision

in period t is not to order (δ = 0) and to order (δ = 1) respectively, it follows that

Jt(x, qt) , Lt(x) + E[Vt+1(x− dt, qt+1)] (8)

and

Ĵt(x, qt) , c(Qt) + Lt(x+Qt) + E[Vt+1(x+Qt − dt, qt+1)]. (9)
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Recall that Eq. (5) optimises the system over the reorder decision δ ∈ {0, 1} and is equivalent to

Vt(x, qt) = min{Ĵt(x, qt), Jt(x, qt)}

= min{K + zQt + Lt(x+Qt) + E[Vt+1(x+Qt − dt, qt+1)],

Lt(x) + E[Vt+1(x− dt, qt+1)]}

= min{K + zQt + Jt(x+Qt, qt), Jt(x, qt)}

= Jt(x, qt) + min{K + zQt −∆Jt(x, qt), 0}, (10)

where we define

∆Jt(x, qt) , Jt(x, qt)− Jt(x+Qt, qt). (11)

From Eq. (10), it is optimal to reorder in period t with opening inventory x when ∆Jt(x, qt) >

K + zQt and not to reorder otherwise. If we choose not to reorder when ∆Jt(x, qt) = K + zQt,

then the range of opening inventory level x for which it is optimal to reorder can be expressed as

{x : ∆Jt(x, qt) > K + zQt}. (12)

If ∆Jt(x, qt) is non-increasing in x for given order quantities q∗t , then either there exits an st

such that it is optimal to order in period t when x < st and not otherwise, or it is never optimal

to order in period t; and it hence leads to the (st, Qt) policy. In the following, for any given qt,

we show the monotonicity of ∆Jt(x, qt) in x.

Lemma 1. Lt(y)− Lt(y + a) is non-increasing in y for any a > 0 and t = 1, . . . , T .

Proof. Since Lt(y) is convex, its derivative L
′

t(y) is non-decreasing by the definition of convexity.

For any a > 0 and any t = 1, . . . , T , [Lt(y) − Lt(y + a)]
′

= L
′

t(y) − L′

t(y + a) ≤ 0; therefore,

Lt(y)− Lt(y + a) is non-increasing in y.

Lemma 2. For a given qt, the function ∆Jt(x, qt) is non-increasing with respect to the opening

inventory level x for any t = 1, . . . , T .

Proof. We prove this by induction. For period T ,

∆JT (x, qT ) = JT (x, qT )− JT (x+QT , qT ) = LT (x)− LT (x+QT )

is non-increasing by Lemma 1. Assuming that ∆Jt(x, qt) is non-increasing in x, we want to show
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that ∆Jt−1(x, qt−1) is non-increasing in x. We find that

K + zQt + Vt(x+Qt, qt)− Vt(x, qt)

= K + zQt + Jt(x+Qt, qt)− Jt(x, qt) + min{0,K + zQt −∆Jt(x+Qt, qt)}

−min{0,K + zQt −∆Jt(x, qt)}

= K + zQt −∆Jt(x, qt) + min{0,K + zQt −∆Jt(x+Qt, qt)} −min{0,K + zQt −∆Jt(x, qt)}

= max{0,K + zQt −∆Jt(x, qt)}+ min{0,K + zQt −∆Jt(x+Qt, qt)}

is the sum of two non-decreasing functions because ∆Jt(x, qt) is assumed to be non-increasing.

It follows that Vt(x, qt)−Vt(x+Qt, qt) is non-increasing. Consequently, since Lt−1(x)−Lt−1(x+

Qt−1) is non-increasing in x,

∆Jt−1(x, qt) = Jt−1(x, qt−1)− Jt−1(x+Qt−1, qt−1)

= Lt−1(x)− Lt−1(x+Qt−1) + E[Vt(x− dt−1, qt)− Vt(x+Qt − dt−1, qt)]

is the sum of two non-increasing functions; therefore, ∆Jt−1(x, qt) is non-increasing in x. This

completes the proof by induction.

For a given qt, the monotonicity of ∆Jt(x, qt) in x assures the unique existence of the reorder

point st, which defines the region of opening inventory x < st for which it is optimal to reorder,

where st can be denoted as

st = inf{x : ∆Jt(x, qt) < K + zQt}; (13)

if the inventory levels are discrete, then st is the minimum value of x such that ∆Jt(x, qt) <

K+zQt, where Qt is the first argument of the order quantities qt. The reorder points associated

with the optimal order quantities q∗t hence can be denoted as s∗t , 〈s∗t , . . . , s∗T 〉.

Example 2. Consider a 4–period stochastic lot-sizing problem under Poisson-distributed de-

mand with rates dt = 〈2, 1, 5, 3〉. The cost parameters are K = 5, z = 0, h = 1 and b = 3. The

maximum order quantity is set to 9. After exhaustive enumeration of all order quantity vectors,

we obtain q∗1 = 〈3, 3, 8, 5〉 and the associated reorder points s∗1 = 〈1, 0, 4, 1〉. The expected total

cost of the optimal (st, Qt) policy is 22.5 when the initial inventory is 0. Under discrete inven-

tory levels with Poisson demand, Fig. 2 and Fig. 3 illustrate determining s∗1 by scatter plots. In

Fig. 2, s∗1 = 1 is selected as the minimum value such that ∆J1(I0, q
∗
1) < K, which is equivalent to

J1(I0, q
∗) > Ĵ1(I0, q

∗) when I0 ≤ 0, suggesting it is optimal to order; and J1(I0, q
∗) < Ĵ1(I0, q

∗)

when I0 ≥ 1, suggesting it is optimal not to order, as Fig. 3 shows.
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Figure 2: s∗1 = 1 determined by comparing ∆J1(I0, q
∗
1) and c(Q∗1).
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Figure 3: s∗1 = 1 determined by comparing J1(I0, q
∗
1) and Ĵ1(I0, q

∗
1).
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3.2 A stochastic dynamic program for the (st,Q) policy

An (st, Q) policy places a replenishment order of size Q if the inventory level falls below the

reorder point st and does not place an order otherwise. It is therefore a special case of (st, Qt)

in which all Qt’s are equal. We modify the vector space Qt introduced in section 3.1 to explore

the (st, Q) policy.

Let q̇t , 〈Q, . . . , Q〉 be a (T − t+ 1)-dimensional vector of reorder quantities for the (st, Q)

policy and Q̇t be the vector space containing all combinations of order quantities q̇t. It follows

that Q̇t is a subspace of Qt. For a given q̇t ∈ Q̇t, the expected total cost over periods t to T

when the opening inventory level is x is

Vt(x, q̇t) = min
δ∈{0,1}

{c(δQ) + Lt(x+ δQ) + E[Vt+1(x+ δQ− dt, q̇t+1)]}, t < T, (14)

and

VT (x, q̇T ) = min
δ∈{0,1}

{c(δQ) + LT (x+ δQ)} (15)

is the boundary condition. The optimal expected total cost under the (st, Q) policy with opening

inventory level x can be defined as

V0(x) = min
q̇1∈Q̇1

{V1(x, q̇1)}. (16)

We let the optimal order quantity vector be q̇∗t , 〈Q∗, . . . , Q∗〉. Since Q̇t is a subspace of Qt,

Lemma 2 holds for any q̇t ∈ Q̇t. The determination of reorder points under the (st, Q) policy

follows in the same fashion as for the (st, Qt) policy by Eq. (13). We denote the reorder points

associated with q̇∗t as ṡ∗t , 〈ṡ∗t , . . . , ṡ∗T 〉.

Example 1 (Continued). Recall the 4–period stochastic lot-sizing problem under Poisson-

distributed demand with rates dt = 〈20, 40, 60, 40〉. Under the (st, Q) policy, the optimal order

quantity is Q∗ = 83 as illustrated by Fig. 4. The reorder points associated with q̇∗1 are determined

as ṡ∗1 = 〈13, 33, 54, 24〉. Fig. 5 and Fig. 6 illustrate determining ṡ∗1 = 13. Note that we apply

curves to show the trend of expected costs, while the system is in fact discrete. In Fig. 6, a unique

sign change in [∆J1(I0, q̇
∗
1) − c(Q∗)] is detected between I0 = 12 and 13 and so, by Eq. (13),

I0 = 13 is chosen as ṡ∗1.
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Figure 4: Q∗ = 83 under (st, Q) policy for Example 1.
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Figure 5: ṡ∗1 = 13 determined by comparing ∆J1(I0, q̇
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1) and c(Q∗).
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Figure 6: ṡ∗1 = 13 determined by comparing J1(I0, q̇
∗
1) and Ĵ1(I0, q̇

∗
1).

4 A MINLP-based heuristic for the (st,Qt) policy

Optimal (st, Qt) and (st, Q) policies can be obtained by enumerating all possible order quantities

and using the stochastic dynamic programming formulations presented in Section 3. However, as

the length of planning horizon increases, the enumeration increases exponentially and it becomes

impractical to use this method. In this section, we therefore introduce an effective heuristic to

compute near-optimal (st, Qt) and (st, Q) policy parameters in reasonable time. Our heuristic

leverages a MINLP approximation of Vt(·) and, similarly to Bookbinder and Tan (1988), it

comprises two steps: in the first step, we determine a set of near-optimal order quantities; in the

second step, we compute the associated reorder points.

4.1 Step I: Order quantity Qt of the (st,Qt) policy

We first aim to derive a vector of near-optimal order quantities q̂t , 〈Q̂1. . . . , Q̂T 〉 for our heuristic

(st, Qt) policy. The reader should note that we seek a policy that is near-optimal in terms of

expected total cost, not in terms of how close the policy parameters obtained are to the true

optimal ones. Therefore, our approximated order quantities and reorder points do not need to
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be close to the true optimal ones for the (st, Qt) policy, as long as the expected total cost they

provide is close enough to the expected total cost of an optimal policy.

Note that if an order is placed in period t under the (st, St) policy, the order quantity is at

least St − st; in fact, if the opening inventory level It−1 < st in period t, a further st − It−1
items will be ordered to ensure the order-up-to level is reached. In our heuristic (st, Qt) policy,

we define Q̂t , St − st to be our approximate order quantity in period t; and we will denote

the vector of approximate order quantities as q̂t , 〈Q̂t, . . . , Q̂T 〉. While these Q̂t’s may not be

optimal, we will compensate for this in Section 4.2, by computing suitable reorder points that

are tailored for these approximate order quantities.

Of course, to compute Q̂t, we need optimal or near-optimal values of parameters st and

St of the (st, St) policy. We use the approach introduced by Xiang et al. (2018) to compute

near-optimal st and St values. For completeness, the model used is presented in Appendix B.

4.2 Step II: Reorder point st of the (st,Qt) policy

Since approximate order quantities q̂t are a lower bound for order quantities observed under an

(st, St) policy, we cannot directly use the reorder points from the optimal (st, St) policy as the

reorder points for a heuristic (st, Qt) policy. To compensate for the under-estimation in the order

quantities, we need higher reorder points.

For a given vector q̂t of approximate order quantities, we may compute the associated optimal

reorder points by using an SDP formulation. This would be relatively straightforward for Poisson

demand, but would require a discretisation step for continuous demand distributions. In order

to provide a framework that can be applied to Poisson, normal, and possibly other continuous

demand distributions, we modify the model in Xiang et al. (2018) to capture the characteristics

of an (st, Qt) and provide an approximation Jt(x, q̂t) of Jt(x, q̂t) that can be used in Eq. (13) to

compute near-optimal reorder points. Let Jt(x, q̂t) be our approximation of Jt(x, q̂t) for the set
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of near-optimal order quantities q̂t computed in Section 4.1.

Jt(x, q̂t) = min hH̃t + bB̃t +

T∑
k=t+1

[hH̃k + bB̃k + c(δkQ̂k)], (17)

s.t. δt = 0, (18)

Ĩt + d̃t = Ĩt−1, (19)

δk = 0→ Ĩk + d̃k − Ĩk−1 = 0, k = t+ 1, . . . , T, (20)

δk = 1→ Ĩk + d̃k − Ĩk−1 = Q̂k, k = t+ 1, . . . , T, (21)

Pjk ≥ δj −
k∑

r=j+1

δr, k = t, · · · , T and j = t, . . . , k, (22)

∑k

j=t
Pjk = 1, k = t+ 1, . . . , T, (23)

Pjk = 1→ H̃k = L̂(Ĩk + d̃jk, djk), k = t, . . . , T and j = t, . . . , k, (24)

Pjk = 1→ B̃k = L(Ĩk + d̃jk, djk), k = t, . . . , T and j = t, . . . , k, (25)

H̃k, B̃k ≥ 0, Pjk, δk ∈ {0, 1}, k = t, . . . , T and j = t, . . . , k. (26)

Let H̃k and B̃k denote the expected positive inventory and back-order levels at the end of

period k, respectively; their values are computed by following the piecewise-linear approximation

strategy in Rossi et al. (2015), which is based on the first-order loss function L and its complement

L̂. We discuss in detail the loss function and its piecewise-linear approximation under non-

stationary Poisson demand in Appendix C.

In line with (Tarim and Kingsman, 2006), we introduce the binary decision variable δk that

takes value 1 if and only if an order is placed in period k. In the model above, the objective

function Jt(x, q̂t) approximates the expected total cost over horizon (t, T ) with no order in period

t. Constraint (18) indicates that no order is placed in period t and leads to the flow balance

equation for period t as constraint (19). Constraints (20) and (21) are indicator constraints1

representing the flow balance equations and reorder conditions under the (st, Qt) policy that

applies order quantities q̂t+1 over horizon (t+ 1, T ).

We introduce a binary variable Pjk to properly account for demand variance while computing

the first-order loss function. Let Pjk (j ≤ k) take value of 1 if the last order before period k

(including period k itself) is placed at the beginning of period j. Note that the combination

of constraints (22) and (23) ensures that demand variance is properly accounted even when no

1An indicator constraint (denoted by →), see e.g. (Belotti et al., 2016), is a way to express relationships among

variables by identifying a binary variable to control whether or not a specified constraint is active. Indicator

constraints are standard constructs that are nowadays implemented in most off-the-shelf MILP solvers.
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order takes place within the horizon (j, k). Constraints (24) and (25) are indicator constraints

modelling end of period k expected excess inventory and back-orders by means of the first order

loss function (Xiang et al., 2018).

Since Jt(x, qt) is approximated as Jt(x, q̂t), the near-optimal reorder point ŝt can be deter-

mined, following Eq. (13), as

ŝt = inf{x : ∆Jt(x, q̂t) < K + zQ̂t}, (27)

or as the minimum value of x such that

∆Jt(x, q̂t) < K + zQ̂t (28)

for discrete inventory levels, where ∆Jt(x, q̂t) , Jt(x, q̂t)−Jt(x+ Q̂t, q̂t). Note that ∆Jt(x, q̂t)

is not necessarily monotonic in x, since the piecewise linearisation produces errors; our model ap-

plies the optimal partitioning strategy to maintain a minimum error (Rossi et al., 2014, Thm. 11).

We denote the vector of near-optimal reorder points associated with q̂t as ŝt , 〈ŝt, . . . , ŝT 〉.

4.3 A binary search approach to approximate the reorder points st

A line search for ŝt following Eq. (27) may be too time-consuming for large-scale instances.

This subsection introduces a heuristic algorithm to approximate ŝt and reduce computational

complexity.

The algorithm applies a binary search on ∆Jt(x, q̂t) with q̂t known as an input. For any

period t, the opening inventory level x0 and given step-size w (w > 0) define an interval of

inventory level [x0, x0 + w], which maps to [∆Jt(x0 + w, q̂t), ∆Jt(x0, q̂t)]. The binary search

halves the length of the interval in each iteration until ŝt is detected according to Eq. (27). If

the initial interval does not span the point at which the sign of ∆Jt(x, q̂t) −K − zQ̂t changes,

we renew [x0, x0 + w] by panning it w units to the left if ∆Jt(x0 + w, q̂t) < K + zQ̂t or to the

right, otherwise; and then proceed with the binary search.

We present the following algorithm for integer inventory levels. One can extend it to discrete

systems with any interval between two adjacent inventory levels. For integer inventory levels, the

algorithm terminates if a pair of inventory levels x and x + 1 are found such that ∆Jt(x, q̂t) ≤

K + zQ̂t ≤ ∆Jt(x+ 1, q̂t), and then ŝt = x+ 1. The procedure in detail is as follows.
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Algorithm 1 Computing the reorder points ŝt associated with q̂t.

1: Input: demand rates d̃t; cost parameters (K, z, h, b); the step-size w; an opening inventory x0;

order quantities q̂t.

2: Output: reorder point ŝt associated with q̂t.

3: for t = 1→ T do

4: Compute the ordering cost of placing an order J0 = K + zQ̂t;

5: xl = x0 and xr = x0 + w;

6: compute Jl = ∆Jt(xl, q̂t) and Jr = ∆Jt(xr, q̂t) with Q̂t;

7: if Jl > J0 > Jr then

8: xm = bxl+xr
2
c and Jm = ∆Jt(xm, q̂t);

9: if Jm > J0 then

10: if ∆Jt(xm + 1, q̂t) < J0 then

11: output ŝt = xm;

12: else xl = xm, xr = xr, and repeat lines 6 – 20;

13: end if

14: else

15: if ∆Jt(xm − 1, q̂t) > J0 then

16: output ŝt = xm − 1;

17: else xl = xl, xr = xm, and repeat lines 6 – 20;

18: end if

19: end if

20: end if

21: end for

Example 2 (Continued). Recall the 4–period stochastic lot-sizing problem under Poisson-

distributed demand with rates dt = 〈2, 1, 5, 3〉. Applying 20 partitions in the piecewise linearisa-

tion approximation, q̂1 = 〈3, 4, 9, 5〉 approximates J1(I0, q
∗
1) as shown in Fig. 7 for I0 ∈ [−4, 14].

The curves are plotted to demonstrate the difference between J1(I0, q
∗
1) and Jt(I0), while the

system is in fact discrete. Table 1 compares the (st, Qt) policy parameters obtained by the SDP

in Section 3.1 and the heuristic for a zero initial inventory level.

Table 1: Parameters of the (st, Qt) policy for Example 2 computed by SDP and the heuristic.

Q̂t ŝt

t 1 2 3 4 1 2 3 4

SDP 3 3 8 5 1 0 4 1

Heuristic 3 4 9 5 1 -2 4 0

Taking G1(0) = 21.8 as a benchmark, the optimality gaps of the (st, Qt) policy determined by

SDP and our heuristic, relative to the (st, St) policy are shown in Table 2. We note that the

(st, Qt) policy produces large optimality gaps in Example 2, where values of the expected total
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Figure 7: Plot of J1(I0, q
∗
1) and J1(I0, q̂1).

cost are small, while the approximation accuracy of the heuristic (23.1 − 22.5)/22.5 × 100% =

2.67% is acceptable. We will extend our computational study in Section 5 to investigate how the

(st, Qt) policy performs on several problem instances.

Table 2: Expected total cost (ETC) and optimality gap (OG) of SDP and the heuristic for

Example 2 under the (st, Qt) policy.

ETC OG(%)

SDP 22.5 3.33

Heuristic 23.1 5.93

4.4 Approximation of the (st,Q) policy parameters

For the (st, Q) policy, a direct way to approximate the order quantity is to simplify the model in

Appendix B by replacing Qt with Q and then follow the steps in Sections 4.1 and 4.2; however,

this is found to produce large optimality gaps in terms of the expected total cost.

Following the line of reasoning illustrated in Section 4.1 for (st, Qt), one can derive a single

order quantity in period 1 as S1 − I0 for a known opening inventory I0. However, a high value
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for I0 may result in a low order quantity imposed over a long period. In our heuristic (st, Q)

policy, we define Q̂ , S1 to be our approximate order quantity for horizon (1, T ); and we denote

the vector of approximate order quantities as q̂ , 〈Q̂, . . . , Q̂〉. The reorder points are adjusted

to compensate for the over-estimation for cases with high opening inventory levels.

The computation of reorder points ŝt associated with order quantity Q̂ follows the same

procedure proposed in Section 4.2 for (st, Qt). We apply Model 4.2 with Q̂ to obtain the ap-

proximated expected cost over horizon (t, T ) when no order is placed in period t, denoted as

Jt(x, q̂), and we apply our previously introduced heuristic algorithm on the function ∆Jt(x, q̂)

to determine ŝt.

Example 1 (Continued). Applying 20 partitions in the piecewise linearisation approximation,

Fig. 8 approximates J1(I0, q̇
∗
1) by J1(I0, q̂). While the inventory system is discrete, we plot

interpolated curves for the sake of clarity. For a zero initial inventory level, Table 3 compares the
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Figure 8: Plot of J1(I0, q̇
∗
1) and J1(I0, q̂).

parameters of the (st, Q) policy computed by SDP and the approximation. Taking G1(0) = 481

as the benchmark, Table 4 summarises the optimality gaps of the (st, Q) policy computed by

SDP and the heuristic. The approximation accuracy (505− 503)/503× 100% = 0.398% is high.
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Table 3: Parameters of the (st, Q) policy for Example 1 computed by SDP and the heuristic.

Q̂ ŝt

t – 1 2 3 4

SDP 83 13 33 54 24

Heuristic 84 14 34 55 24

We discuss the performance of the (st, Q) policy in detail in the next section.

Table 4: Expected total cost (ETC) and optimality gap (OG) of SDP and the heuristic for

Example 1 under the (st, Q) policy

.

ETC OG(%)

SDP 503 4.57

Heuristic 505 4.99

5 Computational analysis

This section presents a computational analysis to evaluate (s,Q)-type policies under non-stationary

stochastic demand. The analysis considers both the stochastic dynamic programming formula-

tions and our heuristics for the (st, Qt) and (st, Q) policies. In Section 5.1, we consider a test set

comprising small problem instances with 6 periods; we investigate the performance of optimal

(s,Q)-type policies against that of optimal non-stationary (s, S) policies, and we evaluate the

difference between optimal (s,Q) and heuristic (s,Q) policies. In Section 5.2, we consider a

test set comprising large problem instances with 25 periods; we investigate the performance of

(s,Q)-type heuristics versus that of the optimal non-stationary (s, S) policy; we also compare the

performance between our (s,Q)-type heuristics and another existing static-dynamic uncertainty

heuristic, namely the (Rt, St) policy discussed in (Rossi et al., 2015).

We name the optimal policy for the stochastic lot-sizing problem, which takes an (s, S)

form, (st, St)-SDP. In our experiment we consider two variants of the (s,Q) policy: the (st, Qt)

policy, and the (st, Q) policy; presented in Section 3.1 and Section 3.2, respectively. For each

variant, we discuss results for the optimal SDP formulation, named (st, Qt)-SDP and (st, Q)-SDP,

respectively; and results for our MINLP heuristics formulations presented in Section 4, named

(st, Qt)-Heuristic and (st, Q)-Heuristic, respectively. We apply 10 partitions in the piecewise

approximation for both heuristics. We simulate each test instance with the policy parameters
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obtained from the heuristics and derive the average total cost of 500,000 simulation runs.

For each approach, we always use the optimal (s, S) policy as a benchmark. Approaches are

compared in terms of their expected total cost (ETC) using the percent optimality gap computed

as 100 × (ETC2 − ETC1)/ETC1, where ETC1 is the expected total cost of the optimal non-

stationary (s, S) policy, and ETC2 is the expected total cost of the other approach benchmarked.

We set a zero initial inventory for all test instances and test the robustness of heuristics for (s,Q)-

type policies.

In our numerical study, we consider ten expected demand patterns: two life cycle patterns,

one moves from the launch stage to maturity via a growth (LCY1) and the other moves from

the growth stage through maturity and into decline (LCY2); two sinusoidal patterns, one with

stronger (SIN1) and the other with weaker (SIN2) oscillations; a stationary demand pattern

(STAT); a random demand pattern (RAND); and lastly, 4 empirical patterns derived according

to (Strijbosch et al., 2011).

All computations are performed by a 4.0 (1.90+2.11) gigahertz Intel(R) Core(TM) i7-8650U

CPU with 16.0 gigabytes of RAM in JAVA 1.8.0 201.

5.1 A test set with 6-period Poisson-distributed demand

The first test set involves 60 instances over a 6-period planning horizon in which the demand

follows a non-stationary Poisson distribution. Our aim is twofold: first, we aim to investigate the

performances of optimal (s,Q)-type policies obtained via SDP against the optimal non-stationary

(s, S) policy; second we aim to evaluate the difference between the optimal and heuristic (s,Q)

policies.

We assume the maximum order quantity is 9, which allows us to enumerate all combinations

of order quantities for the (st, Qt) policy by stochastic dynamic programming. The problems in

this test set are designed with very small mean demands λt, as illustrated in Fig. 9. The values

of λt are set to be between 1 and 7 in all cases which allows variation in the optimal values of

Qt and ensures that the optimal order quantity is never as high as 9 in any period. The problem

coefficients are considered over z ∈ {0, 1} and the three sets of K and b shown in Table 5 with

different ratios of K to b. Holding cost is set as h = 1 for all instances.
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Figure 9: Demand patterns of 6-period instances.

Table 5: parameter groups of fixed ordering cost (K) and penalty cost (p)

set K b ratio

1 5 3 1.67

2 10 3 2.00

3 10 7 1.43

For each approach considered, Table 6 reports the optimality gaps observed relative to the

optimal (st, St) policy. The results for (st, Qt)-SDP and (st, Q)-SDP give the exact optimality

gaps for these policies against optimal (st, St) policy, which are on average 1.91% and 3.61%

respectively. In detail, (st, Qt)-SDP performs better than (st, Q)-SDP in every individual demand

pattern; and (st, Q)-SDP is dominated by (st, Qt)-SDP even in the case of a stationary demand

pattern. In view of cost parameters, there is no obvious relation between optimality gaps and the

variation in demand patterns or in the ratio of K to b. Optimality gaps also decrease when the

unit cost increases. On the other hand, the increase in penalty cost results in a small increase in

the optimality gap for both (st, Qt)-SDP (1.43% to 1.49%) and (st, Q)-SDP (2.92% to 3.22%).

For (st, Qt)-Heuristic and (st, Q)-Heuristic we found that the optimality gaps increase by an

average of 0.85% and 1.05%, respectively. The largest average increases arise under demand pat-
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tern EMP3 (1.04%) for (st, Qt)-Heuristic and RAND (1.75%) for (st, Q)-Heuristic. We conclude

that the difference between SDP and the heuristic approach is generally low.

Table 6: Average percent optimality gap over our 6-period test set under different demand

patterns and pivoting parameters.

Problem Settings (st, Qt)-

SDP

(st, Qt)-

Heuristic

(st, Q)-

SDP

(st, Q)-

Heuristic

demand pattern

LCY1 1.96 2.60 2.55 3.30

LCY2 2.70 3.60 5.37 6.11

SIN1 1.95 2.89 3.96 4.80

SIN2 2.13 3.04 3.18 4.75

STAT 1.54 2.41 2.45 4.00

RAND 1.17 2.02 3.12 4.86

EMP1 1.98 2.87 3.98 5.33

EMP2 2.32 2.94 3.56 4.44

EMP3 1.13 2.17 3.11 3.66

EMP4 2.21 3.11 4.80 5.39

unit cost

0 2.03 2.93 3.83 5.15

1 1.79 2.59 3.38 4.18

set

1 2.81 3.76 4.67 5.76

2 1.43 2.29 2.92 3.96

3 1.49 2.23 3.22 4.28

Average 1.91 2.76 3.61 4.66

5.2 A test set with 25-period Normally-distributed demand

We extend the planning horizon to 25 periods. The purpose of implementing this test set is

twofold. First we aim to investigate the performance of (s,Q)-type heuristics versus that of

the optimal non-stationary (s, S) policy for larger instances; second, we aim to compare the

performances of (s,Q)-type heuristics and the non-stationary (R,S) policy introduced in (Rossi

et al., 2015), which we name (Rt, St)-Heuristic.

Since the computation of piecewise linearisation parameters consumes a large amount of

computation time for large non-stationary demand following a Poisson distribution, in what

follows we will focus on normally distributed demand patterns, for which Rossi et al. (2014)

present precomputed optimal partitioning coefficients.
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Figure 10: Demand patterns of 25-period instances.

We refer to the 25-period instances in Xiang et al. (2018). The demand dt in each period

t is assumed to be a normally distributed random variable with known mean d̃t and standard

deviation σt = ρ · d̃t, where ρ denotes the coefficient of variation of the demand, which remains

fixed over time as prescribed in Bollapragada and Morton (1999); demands are assumed to be

independent of each other. We allow the standard deviation parameter ρ to vary over ρ ∈
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{0.1, 0.2, 0.3}. Demand patterns are illustrated in Figure 10. Other problem parameters are

K ∈ {500, 1000, 1500}; b ∈ {5, 10, 20}; z ∈ {0, 1}; and h = 1.

The reader should note that, since stochastic dynamic programming is pseudo-polynomial, an

increase in the average value of the demand or of its standard deviation will lead to a dramatic

increase in the state space and hence of computational times (Dural-Selcuk et al., 2020). The

(st, Q)-SDP can be implemented by bounding the inventory level, while it is no longer possible

to compute (st, Qt)-SDP within a reasonable time for normal demand or large planning horizons

such as 25.

Table 7 reports average optimality gaps for our 25-period instances. For the (st, Qt)-Heuristic,

the average optimality gap is 2.31%, which is similar to the result obtained for the 6-period test

problems. The optimality gap also exhibits similar trends with the penalty cost and the unit cost,

while the gap increases with penalty cost and decreases when the unit cost is increased. For the

normal distribution, the increase of the standard deviation parameter ρ reduces the optimality

gap, which suggests the (st, Qt) policy performs slightly better when the standard deviation of

demand is higher.

For (st, Q)-Heuristic, once more, as with 6-period test set, we observe that the (st, Q)-

Heuristic is not satisfactory. The average optimality gap now increases up to 11.5%; and for

an individual demand pattern, the optimality gap reaches 25.9%. We also cross-validated results

against optimal (st, Q) parameters obtained via SDP, to ensure the accuracy of the result, but

found that the optimality gap remained as large as 10.5% on average. This confirms that it is

not just the approximation, but the policy itself that performs poorly. We believe that under

non-stationary demand, when the length of planning horizon increases, the single order quantity

Q in the (st, Q) policy cannot properly hedge against demand, and thus it produces substantially

higher expected cost than other policies that provide more flexibility. It should be noted that

the maximum optimality gaps observed for (st, Q)-SDP (24.9% and 23.8%) concern empirical

demand patterns with a series of 0 demand. A single order quantity for all periods causes either

a large amount of holding cost for 0-demand periods or penalty cost for large-demand periods.

Despite the unsatisfactory performance of the (st, Q) policy, it is worth noting that the results

show the same trends with respect to ρ, b and z as the (st, Qt) policy.

The optimality gaps for the (Rt, St)-Heuristic are 2.90% on average, which is larger than

the optimality gap observed for the (st, Qt)-Heuristic over all demand patterns and pivoting

parameters. As a result, we conclude that in the context of our test set the (st, Qt) is better

than (Rt, St) policy in terms of expected cost.
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Table 7: Average percent optimality gap over our 25-period test set under different demand

patterns and pivoting parameters.

Problem Settings (st, Qt)-

Heuristic

(R,S)-

Heuristic

(st, Q)-

SDP

(st, Q)-

Heuristic

demand pattern

LCY1 2.38 2.50 9.56 10.5

LCY2 2.20 2.20 7.06 7.60

SIN1 2.52 2.87 6.25 8.06

SIN2 2.00 2.03 3.29 3.79

STA 1.45 1.50 1.91 2.25

RAND 2.58 2.99 7.24 8.98

EMP1 2.62 3.19 12.5 13.3

EMP2 2.50 4.22 24.9 25.9

EMP3 2.19 2.79 8.73 9.49

EMP4 2.70 4.71 23.8 25.3

std parameter

0.1 2.52 2.68 10.3 11.4

0.2 2.48 2.50 11.0 11.9

0.3 1.94 3.53 10.3 11.3

fixed ordering cost

500 2.71 3.36 13.8 14.7

1000 1.86 2.61 9.97 10.8

1500 2.35 2.69 7.70 8.90

penalty cost

5 2.15 2.37 8.79 9.93

10 2.17 2.97 10.8 11.6

20 2.62 3.37 12.0 13.0

unit cost

0 2.53 2.47 11.7 12.7

1 2.10 3.33 9.32 10.3

Average 2.31 2.90 10.5 11.5

6 Conclusion

This paper investigated (s,Q)-type policies for the non-stationary stochastic lot-sizing problem.

By adopting a variant of the Bookbinder and Tan (1988) static-dynamic uncertainty strategy in

which order quantities are fixed once and for all at the beginning of the planning horizon, we

derived a stochastic dynamic formulation for the problem and proved that the associated optimal

policy must take the (s,Q) form.
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To compute optimal policy parameters, we enumerated all possible order quantity configura-

tions to determine an optimal one, and then used a dynamic programming recursion to determine

associated reorder points. Since this brute force approach is not scalable, we introduce MINLP-

based heuristics to tackle large-size problems under (s,Q)-type policies. Our heuristics leverage

the MINLP approaches introduced in Xiang et al. (2018) for the non-stationary (s, S) policy, in

which the non-linearity is dealt with via a piecewise linearisation of the cost function.

We carried out extensive computational experiments on a test set of small problems with short

(6-period) planning horizons and a test set of large problems with long (25-period) planning

horizons. Both test sets include 10 demand patterns and various coefficient settings. In the

numerical study on small problems, our results show that the average optimality gaps for the

(st, Qt) policy and the (st, Q) policy versus the optimal (st, St)-SDP are 1.91% and 3.61%,

respectively; and the optimality gaps associated with (st, Qt)-Heuristic and (st, Q)-Heuristic

(2.76% and 4.66%, respectively) are close to those of the corresponding SDP.

In the numerical study on large problems, we found that the average optimality gaps of

the (st, Qt)-Heuristic remained small (2.31%); while the optimality gap of the (st, Q)-Heuristic

remained unsatisfactory (11.5%). Our comparison against the (Rt, St)-Heuristic showed that the

optimality gap of the (st, Qt)-Heuristic was slightly better than that of the (Rt, St)-Heuristic

(2.90%).

Our investigation demonstrates the effectiveness of (s,Q)-type policies for the non-stationary

stochastic lot-sizing problem. The (st, Qt) policy can be well approximated by a heuristic that

provides satisfactory results in reasonable time. (Near-)optimal parameters for the (st, Q) pol-

icy can be found in a reasonable time using either SDP or a heuristic, but it produces larger

optimality gaps than the (st, Qt) policy.
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A Notations

Table A1: Notations of important functions

Functions Explaination

c(Q) cost of an order of size Q

Lt(y) expected immediate holding and penalty cost when the inventory level after replen-
ishment is y at period t

Ct(x) expected total cost of the optimal policy over periods t to T when the opening inven-
tory level is x

Gt(y) expected total cost over periods t to T when the opening inventory level is y and no
order is placed in period t

Vt(x, qt) expected total cost with a combination of reorder quantities qt ∈ Qt when the opening
inventory level is x

V0(x) minimum expected total cost over Q, the set of possible order quantities, when open-
ing inventory level is x

Jt(x, qt) expected total cost with a combination of reorder quantities qt ∈ Qt when no order
is placed for opening inventory level x in period t

Ĵt(x, qt) expected total cost with a combination of reorder quantities qt ∈ Qt when an order
is placed for opening inventory level x in period t

∆Jt(x, qt) = Jt(x, qt)− Jt(x+Qt, qt), the difference between expected total costs with opening
inventory levels x and x+Qt

Jt(x, q̂) an approximation of Jt(x, q
∗
t ) by MINLP

B MINLP model to compute St

This appendix section presents the MINLP model introduced in (Xiang et al., 2018) to compute the
order-up-to level St of the (st, St) policy. To properly account for the proportional ordering cost z, we
modify the objective function in line with Tarim and Kingsman (2006). We apply a superscript ‘S’ to
distinguish decision variables from other formulations.

min z(ĨST + d̃tT ) +

T∑
k=t

(KδSk +QSk + h · H̃k + b · B̃k),

s.t. δSt = 1, (B1)

ĨSt + d̃t = St, (B2)

δSk = 0→ ĨSk + d̃k = ĨSk−1, k = t+ 1, . . . , T, (B3)

δSk = 1→ ĨSk + d̃k = ĨSk−1 +QSk , k = t+ 1, . . . , T, (B4)∑k

j=t
PSjk = 1, k = t+ 1, . . . , T, (B5)

PSjk ≥ δSj −
k∑

r=j+1

δSr , k = t, . . . , T and j = t, . . . , k, (B6)

PSjk = 1→ H̃k = L̂(ĨSk + d̃jk, djk), k = t, . . . , T and j = t, . . . , k, (B7)

PSjk = 1→ B̃k = L(ĨSk + d̃jk, djk), k = t, · · · , T and j = t, . . . , k, (B8)

QSk , H̃k, B̃k ≥ 0, k = t, . . . , T, (B9)

PSjk, δ
S
k ∈ {0, 1}, k = t, . . . , T and j = t, . . . , k. (B10)
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We add constraints (B1) and (B2) to force the system to place an order in the first period of the horizon
(t, T ) in order to approximate St. The other constraints remain as in Xiang et al. (2018). Constraints
(B3) and (B4) capture the inventory flow balance equations and reorder conditions. Constraint (B6)
forces PSjk = 1 if the most recent replenishment before period k in horizon (t, k) is placed in period j;
constraint (B5) ensures PSjk = 0 otherwise. Constraints (B7) and (B8) model the expected inventory
and back-order levels at the end of period k through first order loss functions.

C Piecewise approximation with non-stationary Poisson
demand

Consider a random variable ω and a scalar variable x, the first order loss function is defined as L(x, ω) =
E[max(ω − x, 0)] and its complement as L̂(x, ω) = E[max(x − ω, 0)]. Decision variables H̃t ≥ 0 and
B̃t ≥ 0 denote the expected inventory and back-order levels at the end of period t.

Rossi et al. (2014) presented the approach with bounding techniques to generate piecewise linear
lower and upper bounds and discussed the implementation on the standard normal distribution. In-
stances in this paper involve non-stationary Poisson demand to enable the computation analysis on
problems with small means of demand. Therefore, we extend the results of Rossi et al. to the Poisson
distribution.

To minimise the expected inventory and back-order levels at the end of each period with a lower
bounding piecewise linear approximation, H̃t is constrained by

H̃t ≥ (Ĩt +

t∑
j=1

d̃jtPjt)

i∑
k=1

pk +

t∑
j=1

(

i∑
k=1

pkE[djt|Ωjt])Pjt, (C1)

and B̃t by

B̃t ≥ −Ĩt + (Ĩt +

t∑
j=1

d̃jtPjt)

i∑
k=1

pk +

t∑
j=1

(

i∑
k=1

pkE[djt|Ωjt])Pjt. (C2)

where djt follows the notation in section 4.1 denoting the convolution of dj to dt, demand dt is a random
variable that is of a Poisson distribution with mean λt, and its domain R+ is partitioned into N disjoint
adjacent subregions Ω1,Ω2, · · · ,ΩN .

According to the technique in (Rossi et al., 2014), Ω1 = [0, a1], Ωi = [ai−1, ai] for i = 2, · · · , N − 1
and ΩN = [aN−1,∞]. Let the probability density function of dt be gλt(k) = ek/λt! and g−1

λt
(p) be its

inverse function, which returns the value of k satisfying gλt(k) = p, then

ai = g−1
λt

(
i

N
),

and the probability pi that a realisation of the Poisson random variable dt (i.e. a value of demand dt)
locates within the subregion i is

pi = Pr{dt ∈ Ωi} =

∫
Ωi

gλt(u) du, (C3)

and

E[dt|Ωi] =
N

i

∫
Ωi

ugλt(u) du, (C4)

where i = 1, 2, · · · , N .
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