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Abstract

Statistical analysis of high-dimensional functional data/times series arises
in various applications. Examples include different types of brain imag-
ing data in neuroscience (Zhu et al., 2016; Li and Solea, 2018), age-
specific mortality rates for different prefectures (Gao et al., 2019a) and
intraday energy consumption trajectories (Cho et al., 2013) for thou-
sands of households, to list a few. Under this scenario, in addition to
the intrinsic infinite-dimensionality of functional data, the number of
functional variables can grow with the number of independent or se-
rially dependent observations, posing new challenges to existing work.
In this thesis, we consider three fundamental tasks in high-dimensional
functional data/times series analysis: finite sample theory, covariance
function estimation (with a new class of adaptive functional threshold-

ing operators) and modelling/prediction.

In the first chapter, we focus on the theoretical analysis of relevant esti-
mated cross-(auto)covariance terms between two multivariate functional
time series or a mixture of multivariate functional and scalar time series
beyond the Gaussianity assumption. We introduce a new perspective
on dependence by proposing functional cross-spectral stability measure
to characterize the effect of dependence on these estimated cross terms,
which are essential in the estimates for additive functional linear re-
gressions. With the proposed functional cross-spectral stability mea-
sure, we develop useful concentration inequalities for estimated cross-
(auto)covariance matrix functions to accommodate more general sub-
Gaussian functional linear processes and, furthermore, establish finite
sample theory for relevant estimated terms under a commonly adopted
functional principal component analysis framework. Using our derived
non-asymptotic results, we investigate the convergence properties of the
regularized estimates for two additive functional linear regression ap-
plications under sparsity assumptions including functional linear lagged
regression and partially functional linear regression in the context of

high-dimensional functional/scalar time series.



In the second chapter, we consider estimating sparse covariance functions
for high-dimensional functional data, where the number of random func-
tions p is comparable to, or even larger than the sample size n. Aided by
the Hilbert—Schmidt norm of functions, we introduce a new class of func-
tional thresholding operators that combine functional versions of thresh-
olding and shrinkage, and propose the adaptive functional thresholding
of the sample covariance function capturing the variability of individual
functional entries. We investigate the convergence and support recovery
properties of our proposed estimator under a high-dimensional regime
where p can grow exponentially with n. Our simulations demonstrate
that the adaptive functional thresholding estimators significantly out-
perform the competing estimators. Finally, we illustrate the proposed
method by the analysis of brain functional connectivity using two neu-

roimaging datasets.

The third chapter proposes a two-step procedure to model and pre-
dict high-dimensional functional time series, where the number p of
function-valued variables is large in relation to the number n of seri-
ally dependent observations. Our first step uses the eigenanalysis of
a positive definite matrix to look for linear transformation of original
high-dimensional functional time series such that the transformed curve
series can be segmented into multiple groups of low-dimensional sub-
series, and the subseries in different groups are uncorrelated both con-
temporaneously and serially. Modelling each low-dimensional subseries
separately will not lose the overall linear dynamical information and at
the same time avoid the overparametrization issue arisen from directly
modelling original high-dimensional functional time series. Our second
step estimates the finite-dimensional dynamical structure for each group
of the transformed curve series that converts the problem of modelling
low-dimensional functional time series to that of modelling vector time
series. Efficient strategies can be implemented to predict vector time
series groupwisely, which can then be converted back to predict groups
of transformed curve subseries and finally original functional time series.
We investigate the theoretical properties of our proposal when p diverges
at an exponential rate of n. The superior finite-sample performance of
the proposed methods is illustrated through both extensive simulations

and three real datasets.



Contents

1 Finite Sample Theory for High-Dimensional Functional /Scalar Time

Series with Applications 10
1.1 Introduction . . . . . . . . ... 10
1.2 Finite sample theory . . . . . .. .. ..o 15
1.2.1 Functional stability measure . . . . . . .. .. ... ... ... 15
1.2.2  Functional cross-spectral stability measure . . . . . . . .. .. 16
1.2.3  Sub-Gaussian functional linear process . . . . .. ... .. .. 19

1.3

1.4

1.5

1.6
1.A
1.B

1.2.4  Concentration bounds on sample (cross-)(auto)covariance ma-

trix function . . . . ... oL 21
1.2.5 Rates in elementwise £, norm under a FPCA framework . . . 22
High-dimensional functional linear lagged regression . . . . . . . . .. 25
1.3.1 Estimation procedure . . . . . . . . ... ... L. 26
1.3.2 Theoretical properties . . . . . .. ... ... ... ... 27
High-dimensional partially functional linear regression . . . . . . . . . 30
1.4.1 Estimation procedure . . . . . . . . .. ... ... 30
1.4.2  Theoretical properties . . . . . . . .. .. ... .. ... 31
Simulation studies . . . . . .. ... oL 33
1.5.1 High-dimensional functional linear lagged regression . . . . . . 34
1.5.2  High-dimensional partially functional linear regression . . . . . 35
Discussion . . . . . . ... 36
Additional theoretical results . . . . . .. ... ... L. 38
Proofs of theoretical results in Section 1.2 . . . . .. ... ... ... 39
1.B.1 Proofs of theorems . . . . .. ... .. ... ... ... .... 39



1.C

1.D

1.E
1.F

1.B.2 Proofs of propositions . . . . . ... ... 46

1.B.3 Technical lemmas and their proofs. . . . . . . ... ... ... o1
Proofs of theoretical results in Section 1.3 . . . . . . ... ... ... 64
1.C.1 Proof of Theorem 1.4 . . . . . . . . .. ... ... ... .... 64
1.C.2 Proofs of propositions . . . . ... ... ... ... .. ... . 68
1.C.3 Technical lemmas and their proofs. . . . . . ... ... .. .. 69
Proofs of theoretical results in Section 1.4 . . . . .. ... ... ... 74
1.D.1 Proof of Theorem 1.5 . . . . . . . .. .. ... . ... .... 74
1.D.2 Proofs of propositions . . . . ... ... 7
1.D.3 Technical lemmas and their proofs. . . . . . .. .. ... ... 79
Existing results for sub-Gaussian (functional) linear processes . . . . 81
Matrix representation of model (1.1) . . . . .. ... ... ... ... 83

Adaptive Functional Thresholding for Sparse Covariance Function

Estimation in High Dimensions 84
2.1 Introduction . . . . . . . ... 84
2.2 Methodology . . . . . . . .. . 87
2.3 Theoretical properties . . . . . .. .. oL 89
24 Simulations . . .. ..o 92
25 RealData . . . . .. . .. 93
2.6 Discussion . . . . . . ... 95
2.A Technical proofs . . . . . . . . ... .. 98
2.B  Examples of functional thresholding operators . . . . . .. .. .. .. 106

2.B.1 Condition verification . . . . . . .. ... ... 106

2.C

2.B.2 Derivations of the functional thresholding rules from various

penalty functions . . . . . .. ..o 107
Additional empirical results . . . . . .. ... 108
2.C.1 Simulation studies . . . . . ... ... 108
2.C.2 ADHD dataset . . .. . .. ... ... . ... .. ..., 108
2.C.3 Additional real data results . . . .. ... ... ... ... .. 113



3 On the modelling and prediction of high-dimensional functional

time series 117
3.1 Introduction . . . . . . .. ... 117
3.2 Segmentation transformation. . . . . . . ... ... L. 120
3.2.1 Model setting . . . . .. ... L 120
3.2.2 Estimation procedure . . . . . . .. ..o 122
3.2.3 Permutation . . . . ... oL 125
3.2.4  Functional thresholding . . .. ... ... ... ... ..... 126
3.3 Estimate finite-dimensional structure . . . . . . .. ... ... ... 127
3.3.1 Model setting . . . . ... ... Lo 127
3.3.2 Methodology . . . . .. ... o 130
3.3.3 Eigenanalysis and estimationof » . . . . . . .. ... ... .. 132

3.3.4 Dimension reduction and prediction for moderate and large p . 133

3.4 Theoretical properties . . . . . . . ... L 134
3.5 Simulation studies . . . . . ... Lo 138
3.5.1 Moderatep . . . . . ... 139
3.5.2 Largep . . . .. 142

3.6 Realdataanalysis. . . . .. . ... ... ... ... ... 144
3.6.1 UK annual temperature data . . . .. ... ... ... .... 145
3.6.2 Japanese mortality data . . . . . ... ... 146
3.6.3 Energy consumption data . . . ... ... ... 147

3.A Additional Results and Proofs . . . . . .. .. ... ... ... .... 149
3.A.1 Proofs of main theorems . . . . . ... ... ... ....... 149
3.A.2 Technical lemmas and their proofs. . . . . . . ... ... ... 153

3.B Additional real data results . . . . ... ... 158
Bibliography 161



Chapter 1

Finite Sample Theory for
High-Dimensional
Functional /Scalar Time Series

with Applications

1.1 Introduction

Functional time series have received a great deal of attention in the last decade
in order to provide methodology for functional data objects that are observed se-
quentially over time. Despite progress being made in this area, existing literature
has focused on the statistical analysis of a single or small number of random func-
tions. The increasing availability of large dataset with multiple functional features

corresponds to the data structure of

Xi(u) = {Xﬂ(u), . ,ti(u)}T, t=1,...,n, uel,
with covariance matrix function X9 (u,v) = Cov{X,(u), X;(v)}, where, under the
high-dimensional and dependent setting, the number of functional variables (p) can

be comparable to, or even larger than, the number of serially dependent observations

(n), posing new challenges to existing work.
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Examples of high-dimensional functional time series include daily electricity con-
sumption curves (Cho et al., 2013) for a large collection of households, half-hourly
measured PM10 curves (Aue et al., 2015) over a large number of sites and cumu-
lative intraday return curves (Horvéth et al., 2014) for hundreds of stocks. These
applications require developing learning techniques to handle such type of data. One
large class considers imposing various functional sparsity assumptions on the model
parameter space, e.g. vector functional autoregressions (VFAR) (Guo and Qiao,
2022) and, under a special independent setting, functional graphical models (Qiao
et al., 2019) and functional additive regressions (Fan et al., 2014, 2015; Kong et al.,
2016; Luo and Qi, 2017; Xue and Yao, 2021), where the corresponding regularized

estimates are proposed.

Within the high-dimensional time series framework, it is essential to establish nec-
essary concentration inequalities for dependent data and assess how the presence of
serial dependence affects non-asymptotic error bounds. See relevant concentration
results for Gaussian process (Basu and Michailidis, 2015), linear process or linear
spatio-temporal model with more general noise distributions (Sun et al., 2018; Shu
and Nan, 2019) and heavy tailed time series (Wong et al., 2020). Compared with
theoretical analysis of scalar time series, the added technical challenges that arise
to handle functional time series involve developing non-asymptotic results for de-
pendent processes within an abstract Hilbert space and characterizing the effect of
serial dependence in {X;(-)} with infinite, summable and decaying eigenvalues of
=X

Theoretical investigation of high-dimensional functional time series is rather incom-
plete. Guo and Qiao (2022) proposed a functional stability measure for Gaussian
functional time series by controlling the functional Rayleigh quotients of spectral
density matrix functions relative to E()f and hence can precisely capture the effect
of small eigenvalues. Moreover, they relied on it to establish concentration bounds
on sample (auto)covariance matrix function of X,(-), serving as a fundamental tool
to provide theoretical guarantees for the proposed three-step procedure and the reg-
ularized VFAR estimate, in a high dimensional regime. However, their proposed
stability measure only facilitates finite sample theory to accommodate Gaussian
functional time series and is not sufficient to evaluate the effect of serial dependence
on the estimated cross-(auto)covariance terms in a non-asymptotic way, which plays
a crucial role in the theoretical analysis of a wide class of additive functional linear

regressions under the high-dimensional regime when the serial dependence exists.

To illustrate, we consider two important examples of additive functional linear re-

gressions in the context of high-dimensional functional/scalar time series. The first
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example considers the high-dimensional extension of functional linear lagged regres-

sion (Hoérmann et al., 2015b) in the additive form:

L p
IAOEDIDY L Xy (W) Bnj(w, v)du + €, (v), t=L+1,....n, (u,v) el xV,
h=0j=1
(1.1)

where p-dimensional functional covariates {X;(-)} and functional errors {e;(-)} are
generated from independent, centered, stationary functional processes, and {G;(-, ) :
h=0,...,L,j =1,...,p} are sparse functional coefficients to be estimated. Under
an independent setting without lagged functional covariates, model (1.1) reduces to

the additive function-on-function linear regression (Luo and Qi, 2017).

The second example studies partially functional linear regression (Kong et al.,
2016) consisting of a mixture of p-dimensional functional time series {X:(-)} and
d-dimensional scalar time series Z; = (Zy1, ..., Zy)" for t = 1,... n, both of which

are independent of errors {¢}, as follows:

» d
Yt = ZJ th<u)ﬁ](U)dU+ ZZtk'yk"i_eta = 17"'7”7“6“7 (12)
j=1JU k=1

where {8;(-) : 7 = 1...,p} are sparse functional coefficients and {y; : k = 1,...,d}
are sparse scalar coefficients. Whereas Kong et al. (2016) focused on an independent
scenario and treated p as fixed, we allow both p and d to be diverging with n under
a more general dependence structure. See also special cases of model (1.2) without
functional covariates or scalar covariates in Basu and Michailidis (2015); Wu and
Wu (2016) or Fan et al. (2015); Xue and Yao (2021), respectively.

There are many modern applications of the proposed two additive functional linear
regression models. In environmental studies, for example, pollutant episodes often
exhibit a strong correlation with unfavorable meteorological conditions, resulting in
the diminished ability of the atmosphere to disperse the pollutants (Ziomas et al.,
1995; Bai et al., 2018). Model (1.1) thus can be applied to forecast the daily pol-
lution curves with meteorological variables, e.g. historic daily weather data, as the
functional covariates {X;(-)}. See also Chang et al. (2022) for an example of the
application of model (1.2), which aims to forecast the daily intraday return of S&P

100 based on observed cumulative intraday return trajectories of component stocks.

In addition to existing non-asymptotic results in Guo and Qiao (2022), the central
challenge to provide theoretical supports for the regularized estimates for mod-
els (1.1) and (1.2) is: (i) to characterize how the underlying dependence struc-

ture affects the non-asymptotic error bounds on those essential estimated cross-
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(auto)covariance terms, e.g. estimated cross-covariance functions between X (-) and
Yiin(+) (or €4p(:)) for h =0,..., L in model (1.1) and estimates of Cov{Xq(-), Z},
Cov(Zy, €;) and Cov{X,(-), €} in model (1.2); (ii) to develop useful non-asymptotic

results beyond Gaussian functional/scalar time series.

To address such challenges, the main contribution of this chapter is threefold.

e First, we propose a novel functional cross-spectral stability measure between
{X;(-)} and d-dimensional functional (or scalar) time series, i.e. {Y;(:) =
(Y (), ..., Yia())"}, defined on V or {Z;}, based on their cross-spectral den-
sity properties. Compared with the direct functional extension of the cross-
stability measure in Basu and Michailidis (2015), our functional cross-spectral
stability measure can more precisely capture the effect of small eigenvalues to
handle truly infinite-dimensional functional objects. It also facilitates the de-
velopment of non-asymptotic results for f]hXY and EA]?Z, which respectively are
estimates of cross-(auto)covariance terms, 3" (u,v) = Cov(Xy(u), Yiin(v))
and 37 = Cov(Xy(u), Z,p) for all integer h. Moreover, it provides insights

aXy axo .
into how 3, and X, are affected by the presence of serial dependence.

e Second, we establish finite sample theory in a non-asymptotic way for rele-
vant estimated (cross)-(auto)covariance terms beyond Gaussian functional (or
scalar) time series to accommodate more general multivariate functional linear
processes with sub-Gaussian functional errors. Our finite sample results and
adopted techniques are general, and can be applied broadly to provide theoret-
ical guarantees for regularized estimates of other high-dimensional functional
time series models, e.g., the autocovariance-based estimates of sparse func-
tional linear regressions (Chang et al., 2022) and the functional factor model
(Guo and Qiao, 2022).

e Third, due to the infinite dimensionality of the functional covariates, dimen-
sion reduction is necessary in the estimation. One common approach is func-
tional principal component analysis (FPCA). We hence establish useful de-
viation bounds on relevant estimated terms under a FPCA framework. To
illustrate using models (1.1) and (1.2), we implement FPCA-based three-step
procedures to estimate unknown parameters under sparsity constraints. With
derived non-asymptotic results, we verify functional analogs of routinely used
restricted eigenvalue and deviation conditions in the lasso literature (Loh and
Wainwright, 2012; Basu and Michailidis, 2015) and, furthermore, investigate
the convergence properties of regularized estimates under a high-dimensional

and serially dependent setting.
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Literature review. Our work lies in the intersection of two strands of literature:
functional time series and high-dimensional time series. In the context of functional
time series, many standard univariate or low-dimensional time series methods have
been recently adapted to the functional domain with theoretical properties explored
from a standard asymptotic perspective, see, e.g., Bosq (2000); Bathia et al. (2010);
Hormann and Kokoszka (2010); Panaretos and Tavakoli (2013); Aue et al. (2015);
Hormann et al. (2015b); Pham and Panaretos (2018); Li et al. (2020) and reference
therein. In the context of high-dimensional time series, some lower-dimensional
structural assumptions are often incorporated on the model parameter space and
different regularized estimation procedures have been developed for the respective
learning tasks including, e.g., high-dimensional sparse linear regression (Basu and
Michailidis, 2015; Wu and Wu, 2016; Han and Tsay, 2020) and high-dimensional
sparse vector autoregression (Guo et al., 2016; Lin and Michailidis, 2017; Gao et al.,
2019b; Ghosh et al., 2019; Zhou and Raskutti, 2019; Wong et al., 2020; Lin and
Michailidis, 2020).

Outline. The remainder of the chapter is organized as follows. In Section 1.2,
we propose cross-stability measures under functional and mixed-process scenarios,
define sub-Gaussian functional linear processes and rely on them to present finite
sample theory for estimated (cross-)terms used in subsequent analyses. In Sec-
tion 1.3, we consider sparse high-dimensional functional linear lagged model in (1.1),
develop the penalized least squares estimation procedure and apply our derived non-
asymptotic results to provide theoretical guarantees for the estimates. Section 1.4
is devoted to the modelling, regularized estimation and application of established
deviation bounds on the theoretical analysis of sparse high-dimensional partially
functional linear model in (1.2). Finally, we examine the finite-sample performance
of the proposed methods for both models (1.1) and (1.2) through simulation studies

in Section 1.5. All technical proofs are relegated to the appendix.

Notation. Let Z and R denote the sets of integers and real numbers, respec-
tively. For x,y € R, we use v y = max(x,y). For two positive sequences {a,}
and {b,}, we write a, < b, or a, = O(b,) or b, 2 a, if there exists a positive
constant ¢ independent of n such that a,/b, < c. We write a, = b, if a, < b,
and a, = b,. For a vector x € RP, we denote its ¢;, ¢, and maximum norms
by Il = X7 fagl, x| = (S0 J25%)12 and [xma = mas; [2;], respectively.

2')1/2
) :
Let Lo(U) be a Hilbert space of square integrable functions on a compact interval
U. For f,g € Ly(U), we denote the inner product by (f,g) = fu f(u)g(u)du for
fyg € Ly(Ud) with the norm | - | = {-,-)2. For a Hilbert space H < Ly(U), we
denote the p-fold Cartesian product by HP = H x --- x H and the tensor product

For a matrix B € RP*? we denote its Frobenius norm by |B|r = (ZMB
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S=H®H. For f = (f1,....f,)" and g = (¢1,...,9,)" in H?, we denote the in-
ner product by (f,g) = >¥_ {f;,g;) with induced norm of f by |f| = {f, FH)¥?
& norm by £l = X2, fil, and fo norm by [Flo = X2, I(Ifi| # 0), where
I(-) is the indicator function. For an integral matrix operator K : HP — HY in-
duced from the kernel matrix function K = (Kj;;),x, with each K;; € S through
K(f) () = { 25 By, ), [0 X (K (u, ), f5(-))} € HY, for any given
f € Hp. To simplify notation, we will use K to denote both the kernel function
and the operator. When p = ¢ = 1, K degenerates to K and we denote its
Hilbert—Schmidt norm by ||K|s = {ff K(u, v)zdudv}lﬂ. For general K, we define
functional versions of Frobenius, elementwise f.,, matrix ¢; and matrix /,, norms
by [Klr = (3 15513)", 1K max = mas; [ Kls, [K[ = max; ¥, |K]s and

Koo = max; 3 | Kij|s, respectively.

1.2 Finite sample theory

In this section, we first review functional stability measure and propose functional
cross-spectral stability measure. We then introduce the definitions of sub-Gaussian
process and multivariate functional linear process. Finally, we rely on our proposed
stability measures to develop finite sample theory for useful estimated terms to

accommodate sub-Gaussian functional linear processes.

1.2.1 Functional stability measure

Consider a p-dimensional vector of weakly stationary functional time series {X;(-) }tez

defined on U, with mean zero and p x p autocovariance matrix functions,

£ (1, v) = Cov{Xe(u), Xean(0)} = (S35 (0.0 1csuaps 11 € L, (u,0) € U

These autocovariance matrix functions (or operators) encode the second-order dy-
namical properties of {X;(-)} and typically serve as the main focus of functional
time series analysis. From a frequency domain analysis prospective, spectral density
matrix function (or operator) aggregates autocovariance information at different lag

orders h € Z at a frequency 6 € [—7, 7| as

X Z S X exp(—ihd).

heZ
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According to Guo and Qiao (2022), the functional stability measure of {X;(-)} is
defined based on the functional Rayleigh quotients of f; relative to Eé( ,

MX =21 ess sup (1.3)

where H) = {® € HP : (&, X (®)) € (0,0)} and ess sup denotes the essential
supremum, that is for a measurable real-valued function m : M — R defined on M,
ess sup(m) = inf{r € R : m(w) < v for almost all w € M}. To handle truly infinite-
dimensional objects {X,(-)} with infinite, summable and decaying eigenvalues of 37,
such stability measure M* can more precisely capture the effect of small eigenvalues

of 3¢ on the numerator in (1.3).

We next impose a condition on M* and introduce the functional stability measure

of subprocesses of {X;(+)}, which will be used in our subsequent analysis.

Condition 1.1. (i) The spectral density matriz operator £ .0 € [—m, | exists; (ii)
M¥ < .

For any k-dimensional subset J < {1,...,p} with its cardinality |J| < k, we can
measure the stability of the subprocess {(th(~)) g e d } 17 I a similar fashion.
The functional stability measure of all k-dimensional subprocesses of {X;(-)} is thus
defined by

P, fy (@
ME =27 ess sup M, =1,...,p (1.4)
be[ x| o<k, derr (P, g (®))
Under Condition 1.1, we have M < M3 <--- < M\ = M* < 0

1.2.2 Functional cross-spectral stability measure

Consider {X,(-)} and {Y,(-)}, where {Y(-) }sz is a d-dimensional vector of centered
and weakly stationary functional time series, defined on V), with lag-h autocovariance

matrix function given by

2 (u,v) = Cov{Y(u), Yyin(v)} = {Zz’jk(u7v)}1<‘j’k<d7 t,heZ, (u,v) e V2.

To characterize the effect of dependence on the cross-covariance between two se-
quences of joint stationary multivariate functional time series, we can correspond-

ingly define the cross-spectral density matrix function (or operator) and functional
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cross-spectral stability measure. The proposed cross-spectral stability measure plays
a crucial role in the non-asymptotic analysis of relevant estimated cross terms, e.g.,

estimated cross-(auto)covariance matrix functions in Section 1.2.4.

Definition 1.1. The cross-spectral density matriz function between {X:(-)}ez and
{Y:(:)}iez is defined by

g‘y = Z Z}X Yexp( ih®), 0¢€ -7, x|,

hEZ

where Y (u,v) = Cov{X,(u), Yiin(v)} = {Z,)f;,:(u, V) h<j<pi<kzd, b h € Z, (u,v) €
Ux.

Condition 1.2. For {X;(V}ez and {Y,(Vyez, Fo',0 € [—m, 7] ewists and the

functional cross-spectral stability measure defined in (1.5) is finite, i.e.

@1 £, (@)

MY = on ess sup <

e[—m,7],®1€HE, PocHI \/<<I>1, E§(¢1)>\/<¢'2, E%/(CPQ»

, (15)

where HY = {® € H? : (&, T (®)) € (0,00)} and HE = {® € H? : (@, 2} (P)) €
(0,00)}.

Remark 1.1. (a) If {X;()} are independent of {Y:()}, then MXY = 0. Moreover,
in the special case that {X;(-)} and {Y(-)} are identical, MY degenerates to
MX in (1.3).

(b) Under the non-functional setting where X; € R? and Y; € RY, Basu and Michai-
lidis (2015) introduced an upper bound condition for their proposed cross-spectral

stability measure with p = d, i.e.

g XY s p XY
MXEY = ess sup \/V o 1"fo" v < o, (1.6)

~ T
Oe[—m,m],veRd vv

where RY = {veRY: v e (0,00)} and = denotes the conjugate. This measure
relates the cross-stability condition to the largest singular value of the cross-
spectral density matriz fg(’y. On the other hand, the non-functional analog of

(1.5) is equivalent to

> fX,Y ‘
ess sup

ge[—m,m],w1€RP voeRE V/ V1V1\/V2V2
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(c)

(d)

For any ki-dimensional subset J of {1, ..., p} and ko-dimensional subset K of {1,. ..,

whose upper bound is MXY s justified in Lemma 1.1 in Appendiz 1.B.5. This
demonstrates that, compared with (1.6), our proposed cross-stability measure

corresponds to a milder condition.

For two truly infinite-dimensional functional objects, one limitation of the func-
tional analog of MXY s that it only controls the largest singular value of fg(’y.
By contrast, our proposed MXY can more precisely characterize the effect of sin-
gular values of fg(’y relative to small eigenvalues of 2§ and 23{. Furthermore,
it facilitates the development of finite sample theory for normalized versions of
relevant estimated cross terms, where the normalization is formed by the corre-
sponding eigenvalues in the denominator of M*Y . See Sections 1.2.4 and 1.2.5
for details.

We can generalize (1.5) to measure the serial and cross dependence structure
between a mizture of multivariate functional and scalar time series. Specifically,
consider {Xy(-) }iez and d-dimensional vector time series {Zy } ez, with autocovari-
ance matrices 7 for h € Z. We can also define f, 7 = = D ihez 7 exp(—ih)
with 7)) = Cov(Xy(+), Zein). According to (1.5), the mized cross-spectral
stability measure of {Xy(+)} and {Z;} can be defined by

@, v
MY =2r ess sup (1.7)
fe[—n,m], eHb veRd \/<¢, EX >\/I/T2Z
and the non-functional stability measure of {Z;} reduces to
TfZ
MZ =21 ess sup oY (1.8)

Pe[— ﬂﬂ]VERdV 2 V

where RS = {v e R : v"S%v € (0,00)}. The proposed stability measures in (1.7)
and (1.8) play an essential role in the convergence analysis of the reqularized
estimates for model (1.2). See Section 1.J for details.

we can accordingly define the functional cross-stability measure of two subprocesses.

Definition 1.2. Consider subprocesses {(Xy;(-)) : j € J},., for J < {1,...,p} with

Il <

ki (kv =1,...,p) and {(Yix(-)) : k€ K}, for K < {1,...,d} with |[K| <k
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(ko =1,...,d), their functional cross-spectral stability measure is defined by

XY ’<<I!1, g(’y(q’2>>‘
My, = 2m ess sup .
ge[—m,7],®1€HE, BocHd \/<q)17 g§<¢1)>\/<q)2, 25(@2»

[®1]o<kr,|®2fo<ke

(1.9)

Under Condition 1.2, it is easy to verify that,

XY XY XY / /
Mkl,k‘g < Mk/ k/ < M < 0O fOI' k'l < kl and kQ < k2.
172

According to (1.4), (1.7), (1.8) and (1.9), we can similarly define Mﬁiz and M7

for ky =1,...,pand ks = 1,...,d, which will be used in our subsequent analysis.

1.2.3 Sub-Gaussian functional linear process

Before presenting relevant non-asymptotic results beyond Gaussian functional time
series, we introduce the definitions of sub-Gaussian process and multivariate func-

tional linear process in this section.

Provided that our non-asymptotic analysis is based on the infinite-dimensional ana-
log of Hanson—Wright inequality (Rudelson and Vershynin, 2013) for sub-Gaussian
random variables taking values within a Hilbert space, we first define sub-Gaussian

process as follows.

Definition 1.3. Let X;(-) be a mean zero random variable in H and ¥o : H — H be
a covariance operator. Then X(-) is a sub-Gaussian process if there exists an a = 0
such that for all x € H,

E{e™X0} < e@*@X0@)/2 (1.10)

The proof of Hanson-Wright inequality for serially dependent random functions
relies on the fact that uncorrelated Gaussian random functions are also independent,
which does not apply for non-Gaussian random functions. However, we show that,
for a larger class of non-Gaussian functional time series, it is possible to develop
finite sample theory for useful estimated terms in Sections 1.2.4 and 1.2.5. We
focus on multivariate functional linear processes with sub-Gaussian errors, namely

sub-Gaussian functional linear processes:
0
Xi() = Y Asler), tel, (1.11)
1=0
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where A; = (A jk)pxp With each A;;, € S and e,(-) = {eu(),...,ep(-)}" € HP.
{e+(-)}+ez denotes a sequence of p-dimensional vector of random functions, whose
components are independent sub-Gaussian processes satisfying Definition 1.3. It
is worth noting that (1.11) not only extends the functional linear processes (Bosq,
2000) to the multivariate setting but also can be seen as a generalization of p-

dimensional linear processes (Li et al., 2019) to the functional domain.

Denote the polynomial B(z)(u,v) = >,,°, Ay(u,v)z! for u,v € Y. Under (1.11), we

can derive the spectral density matrix function as

o (u,v) JJ e ) (u,u) 5 (u/,v")B (e_ie)* (v, v")du'dv’ (1.12)

and the covariance matrix function as
o0
X (u,v) = ZJJAZ(U,u’)Eg(u',v')AZ"(v,v’)du’dv’. (1.13)
1=0

Then we can express the functional stability measure M in (1.3) based on (1.12)
and (1.13). The cross-spectral stability measure M*Y in (1.5) or M*Z in (1.7)

can be expressed in a similar fashion.
Condition 1.3. The coefficient functions satisfy Y- | A = O(1).

Condition 1.4. (i) wj = max; fu 35,45 (w, u)du = O(1); (i) The marginal-covariance
functions of {€,(-)}, X ;;(u,v)’s, are continuous on U* and uniformly bounded over

jed{l,...,p}.

Condition 1.3 ensures functional analog of standard condition of elementwise ab-
solute summability of moving average coefficients for multivariate linear processes
(Hamilton, 1994) under Hilbert-Schmidt norm. It also guarantees the stationar-
ity of {Xt( )} and, furthermore together with Condition 1.4, implies that wy =
max; fu 0.j; (4, u)du = O(1), both of which are essential in our subsequent analysis.
See Lemma 1.2 in Appendix 1.B.3 for details. In general, we can relax Conditions 1.3
and 1.4 by allowing >,°, [ Aillx and w§ to grow at very slow rates as p increases,
then our subsequent non-asymptotic bounds will depend on wg, or, more precisely,

these two terms, which complicate the presentation of theoretical results.

20



1.2.4 Concentration bounds on sample (cross-)(auto)covariance

matrix function

We construct estimated (auto)covariance of {X;(-)}}_; by

X 1 n—h
Eh (U,U) = n—h Z Xt(U’)XtJrh(U)T? h = 07 17 M) (u,v) € Z/{2,
=1

t

and estimated cross-(auto)covariance matrix functions between {X; ()} and {Y;(-)}
by

~ XY 1 e
S () = — tZ X (w)Yen(0)®, h=0,1,..., (u,v) el x V.

=1

Theorem 1.1. Suppose that Conditions 1.1-1.4 hold for sub-Gaussian functional
linear processes, {X.(-)}, {Y:()} and h is fized. Then for any given vectors ®, € Hj
and ®, € HI with |®1]lo < ky, [ Palo < ko (k1 =1,...,p, ks = 1,...,d), there exists

some constants c, cy,co > 0 such that for any n > 0,

‘|
‘|

Remark 1.2. (1.1/) extends the concentration inequality for normalized quadratic

(@, (3, —5¥)(®)
(@, 55(®))

> /\/liin} < 2exp {—cnmin (%, 7)}, (1.14)

and

~X)Y

(@1, (Z, =) (@)
(®1,55 (1)) + (D2, 55 (P2))

> <Mf1 + M+ Mé;) 77}
(1.15)

< ¢y exp{—conmin(n*,n)}.

form of i:f in Theorem 1 of Guo and Qiao (2022) under the Gaussianity assumption
to accommodate a larger class of sub-Gaussian functional linear processes and serves
as a starting point to establish further useful non-asymptotic results, e.q. those listed
in Theorems 1—4 and Proposition 1 of Guo and Qiao (2022), so we present some
results used in our subsequent analysis in Appendiz 1.E. The concentration inequality
in (1.15) illustrates that the tail for normalized bilinear form of f),)j’y—Ef’Y behaves
in a sub-Gaussian or sub-exponential way depending on which term in the tail bound
is dominant. Note that the sub-Gaussian condition is imposed to facilitate the use
of Hanson—Wright-type inequality in our non-asymptotic analysis. We believe a
Nagaev-type concentration bound can be derived under a weaker finite polynomial

moments condition, in which case heavy-tailed functional errors are allowed. It is
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also interesting to develop non-asymptotic results for more general non-Gaussian

functional time series under other commonly adopted dependence frameworks.

With suitable choices of ®; and ®,, Theorem 1.1 facilitates the elementwise con-

_ A XY
centration bounds on ¥,  as follows.

Theorem 1.2. Suppose that conditions in Theorem 1.1 hold. Then there exists some

constants cy,c3 > 0 such that for anyn >0 and each j =1,...,p, k=1,...,d,
P {HEhX;; — EhX;HS > (w + wé/)/\/lxyn} < ¢ exp {—c;;n min(n2>77)} . (1.16)

where wy = max; fu 305 (u, w)du, wy = maxy fu S0 (u, w)du and My = M7 +

MY+ Mf’ly. In particular, there exists some constant ¢y, > 0 such that, for sample

~AX,Y
size n 2 log(pd), with probability greater than 1 — ci(pd)~%, the estimate 3,
satisfies the bound

IS Y e £ Moy 2BPD) (1.17)
n

Remark 1.3. In the deviation bounds established above, the effects of dependence
are commonly captured by the sum of marginal-spectral and cross-spectral stability
measures, Mxy = M¥ + MY + /\/lf’ly, with larger values yielding a slower ele-
mentwise ly, rate in (1.17). Under a mized-process scenario consisting of {X:(+)}
and d-dimensional time series {Z;} belonging to multivariate linear processes with
sub-Gaussian errors (Sun et al., 2018), namely sub-Gaussian linear processes, it is
easy to extend (1.17) as

log(pd)

XL XA < My, — =, (1.18)

max Yo — .
1<j<p,1<k<d” h.gk h.jk

where Mx 7z = MF + M7 + ./\/lf’lz. (1.18) can be justified in the proof of Proposi-
tion 1.1 in Appendixz 1.B.2.

1.2.5 Rates in elementwise ¢, norm under a FPCA frame-

work

For each j = 1,...,p, suppose that Xy,(-),...,X,;(-) are n serially dependent ob-
servations of X;(-). The Karhunen-Loeve theorem (Bosq, 2000) serving as the theo-

retical basis of FPCA allows us to represent each functional observation in the form
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of X;;(-) = 232, Gjutbji(+). Here the coefficients iy = (Xyj, 1;1), namely FPC scores,
are uncorrelated random variables with mean zero and Cov((yi, (i) = wi I(1 = 1').

In this formulation, {(w},v;)}72, are eigenpairs satisfying (X5 ;;(u, ), ¥u(-)) =

0,57
wﬁwﬂ(u). Similarly, for each k = 1,...,d, we represent Yir(:) = Y1 Em®Prm(-)
with eigenpairs {(w) , Orm)} 2.

To estimate relevant terms under a FPCA framework, for each j, we perform an eige-
nanalysis on X5 (u, v) = n~" D31 Xyji(u) Xy;(v), 1e. (55 (u, ), ¥ul-)) = & bu(u),

0,5j 0,57
where {(@ﬁ ,¥;1) 2, denote the estimated eigenpairs. The corresponding estimated
FPC scores are given by Etjl = (Xy;, ﬂ;jl) Furthermore, relevant estimated terms for

{Yie()}, ie. @, %km(), &k, can be obtained in the same manner.

Before presenting relevant deviation bounds in elementwise ., norm, which are es-
sential under high-dimensional regime, (logpvlogd)/n — 0, we impose the following

lower bound condition on the eigengaps.

Condition 1.5. For each 7 =1,...,pand k =1,...,d, ij > wj)g > - >0 and
Wy, > wly > -+ > 0. There exist some positive constants ¢y and ay, s > 1 such

X X —ap—1 _ Yy _ Y —ag—1
that wj W1y = col forl =1,...,0 and w;, Wr(mi1) = CoM for
m=1,...,00.

Condition 1.5 implies the lower bounds on eigenvalues, i.e. wJX > coay 17 and
w)y = coay 'm™22. See also Kong et al. (2016) and Qiao et al. (2020) for similar

conditions.

In practice, the infinite series in the Karhunen-Loeve expansions of X;;(+) and Yy, (+)
are truncated at M; and Ms, chosen data-adaptively, which transforms the infinite-
dimensional learning task into the modelling of multivariate time series. Given
sub-Gaussian functional linear process {X;(-)}, to aid convergence analysis under
high-dimensional scaling, we establish elementwise concentration inequalities and,
furthermore, elementwise £, error bounds on relevant estimated terms, i.e. esti-
mated eigenpairs and sample (auto)covariance between estimated FPC scores. These
results are of the same forms as those under the Gaussianity assumption (Guo and

Qiao, 2022), so we only present them in Lemmas 1.25 and 1.27 in Appendix 1.E.

In the following, we focus on sample cross-(auto)covariance between estimated FPC
~AXY 1xm—h 2 2 . . .
SCOTES, T} ipim = (n — h)™' 2] Gi&e+hykm, and establish a normalized devia-
. . . ~AX)Y Xy
tion bound in elementwise ¢, norm on how O jkim CODCENtrates around Ohiktm =

COV(Ctjla f(t+h)km)-

Theorem 1.3. Suppose that Conditions 1.1-1.5 hold for sub-Gaussian functional
linear processes, {Xy(-)}, {Y(-)}, and h is fixred. Let My and My be positive integers
possibly depending on (n,p,d). If n = log(pd My My) (M +? v M§“2+2)M§(7y, then
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there exist some positive constants cs and cg such that, with probability greater than
1 — cs5(pdMy My)~¢ | the estimates {32(]),:””} satisfy

‘CATX’Y ~ Tk ‘ log(pd M, M.
h,jklm h,jkim
max ’ ’ < Mxy M. (1.19)

1<j<p,l<k<d 1 1 XY ’ n
1<ISMy, l<m< Mo (la1+ v me2t ) Wi Wim

In the special case that {X;(-)} and {Y(-)} are identical, (1.19) degenerates to

the deviation bound on Gﬁjklm under the Gaussianity assumption (Guo and Qjiao,

2022). We next consider a mixed process scenario consisting of {X;(-)} and {Z,}
and establish a normalized deviation bound in elementwise ¢, norm on sample
cross-(auto)covariance between estimated FPC scores of {Xy;(-)} and Zp)x. Define
t.athil =(n—nh)t Z;:lh @ﬂZ(Hh)k and Q,)fil = Cov((sji, Zit+nyk). We are ready to

extend (1.19) to the following mixed-process scenario.

Proposition 1.1. Suppose that Conditions 1.1-1.5 hold for sub-Gaussian functional
linear process {X(-)}, {Z:} follows sub-Gaussian linear process and h is fized. Let
My be a positive integer possibly depending on (n,p,d). If sample size n 2

log(del)Mfo‘”QMg{’Z, then there exist some constants c7,cg > 0 such that, with

probability greater than 1 — c;(pdMy)~, the estimates {@fﬁl} satisfy

X7 X7
Oh.jkl — Oh,jkl log(pd M)
max L < My Y (1.20)
1<j<p,1<k<d Joa+1 CUX n
1<ISMy 51

We next consider {e(-)}7;, defined on V, which can be seen as the error term in
model (1.1) beingAindependent of {X;(+)}. Define Ei;(u,v) = Cov{Xy;(u), €+n(v)}
and its estimate Ei’;(u,v) = (n—h)"! fz_lh Xij(uw)€ersn(v). To provide theoreti-
cal analysis of the estimates for model (1.1), the FPCA-based representation in
Appendix 1.F suggests to investigate the consistency properties of the estimated
cross terms, i.e. 32(;17;1 = <¢jl,<2fﬁ’j€,¢m>> or ?fffﬁm =(n—h)! Z;:lh Cjilrnym =
<1/1jl,<§],)i’]¥,¢m>>. As {Xi_pn(-) : h=0,...,L} and {e(-)} are independent and can
together determine the response {Y;(-)} via (1.1), it is more sensible to study the

. /\X75 . X,E o . . ..
former term, i.e. how o}, 7%, deviates from o3, %, = 0 in the following proposition.

Proposition 1.2. Suppose that Conditions 1.1-1.5 hold for sub-Gaussian func-
tional linear processes {X(+)}, {e:(-)} and h is fized. Let My, My be positive integers
possibly depending on (n,p). If n = log(pMyMs)(M;* v Mj** ) (MX + MY)?,

then there exist some constants cg,c19 > 0 such that, with probability greater than
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1 — co(pM1Ms)~° the estimates {ﬁ,i(flm} satisfy

~X,e
‘Uh,”l ’ log(pM; M.
max ik < (MY 4 o)y oe2h ) (1.21)
lng]MT,]l;'rpizsklg (lal Vv mOéQ) (A)})Z{CL)Y "

Finally, we consider a mixed-process scenario in model (1.2), where {¢;}}_; are scalar
errors, independent of both {X,(-)} and {Z;}. In addition to Proposition 1.1 above,

the followmg proposition demonstrates how o gh jl =(n—nh)" Z;:lh ajl€t+h converges

to Qh,jz = Cov(Cji, €x41) = 0.

Proposition 1.3. Suppose that Conditions 1.1-1.5 hold for sub-Gaussian functional
linear process {X4(+)}, {€:} is sub-Gaussian linear process and h is fized. Let My be
positive integer possibly depending on (n,p). If n = log(pMy)M* *2(M:)?, then
there exist some constants ci1,c1o > 0 such that, with probability greater than 1 —

c11(pMy)~42 | the estimates {@hxﬁ} satisfy

~X e
‘ i log(pM
max d (M + M) M.

IjsplI<isMy / , s n

Remark 1.4. Benefiting from the independence assumption between {X.(-)} and

(1.22)

{e:(+)}, Proposition 1.2 leads to a faster rate of convergence in (1.21) compared with
(1.19) with d = 1. Proposition 1.2 also plays a crucial rule in the proof of Proposi-
tion 1.7 to demonstrate that, with high probability, model (1.1) satisfies the routinely
used deviation condition. Analogously, taking an advantage of the independence as-
sumption between {X¢(-)} and {€;}, Proposition 1.3 results in a faster rate in (1.22)
than that in (1.20) with d = 1. In the proof of Proposition 1.8, we will apply Propo-
sition 1.3 to verify that, with high probability, model (1.2) satisfies the corresponding

deviation condition.

1.3 High-dimensional functional linear lagged re-

gression

In this section, we first develop a three-step procedure to estimate sparse func-
tional coefficients in model (1.1) and then apply our derived finite sample results
in Section 1.2.5 to investigate the convergence properties of the estimates under

high-dimensional scaling.
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1.3.1 Estimation procedure

Consider functional linear lagged regression model in (1.1), where {8,; € S : h =
0,...,L,j =1,...,p} are unknown functional coefficients and {e;(-)}}_; are mean-
zero errors from sub-Gaussian functional linear process, independent of {X,(-)}},
from sub-Gaussian functional linear process. Given observed data {Y;, X;}},, our
goal is to estimate a vector of functional coeflicients, 8 = (Bo1, - .-, Bops - - -» Bra, - - -,
Brp)" with each f;; € S. To assure a feasible solution under a high-dimensional
regime, we impose a sparsity assumption on 3. To be specific, we assume that 3 is
functional s-sparse with support set S = {(h,j) € {0,..., L} x {1,...,p} : | Bpjls #
0} and its cardinality |S| = s, much smaller than the dimensionality, p(L + 1).

Due to the infinite dimensional nature of functional data, we approximate each Xy, ()
and Y;(-) under the Karhunen-Loeve expansion truncated at ¢;; and ¢q, respectively,

i.e.
ql]

Xi5(%) Zgﬂwﬂ =), Vi)~ ) Embm(-) =€7 (),
m=1

where Ctj = (Ctjh R Ctj‘]lj)T’ ¢]<) = {wjl(')7 s ’¢jQ1j(')}T7 st = (fth cee aftth)T and
&) ={h1(),..., 04 (-)}". The truncation levels ¢;; and ¢, are carefully chosen so
as to provide reasonable approximations to each X;;(-) and Y;(-). See Kong et al.

(2016) for the selection of the truncated dimension in practice.

According to Appendix 1.F, we can represent model (1.1) in the following matrix
form Lo
U=> > V,¥,+R+E, (1.23)
h=0j=1
where W, = fv fu ) Bpj(u, v)p(v)*dudv € R U e R-1D*%2 with its row
vectors given by €L+17 ...,&, and Vy; € R(M=L)xa1; with its row vectors given by
Cir+1-h)j»r -+ »C(nny;- Note R and E are (n — L) x go matrices whose row vectors
are formed by truncation errors {r; € R® : ¢t = L + 1,...,n} and random errors

{e,e R2 :t =L+ 1,...,n} respectively.
We develop the following three-step estimation procedure.
First, we perform FPCA on {X;;(-)}, for each j = 1,...,p and {Y;(-)}},, thus

obtaining estimated FPC scores and eigenfunctions, i.e. @ﬂ,z@-l() for { > 1 and

Eom, qgtm( -) for m > 1, respectively.

Second, it is worth noting that the problem of recovering functional sparsity struc-
ture in B is equivalent to estimating the block sparsity pattern in {¥,; : h =
0,...,L,j=1,...,p}. Specifically, if 8j;(-,-) is zero, all entries in W;; will be zero.

This motivates us to incorporate a standardized group lasso penalty (Simon and
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Tibshirani, 2012) by minimizing the following penalized regression criterion over
{W; :h=0,....,L,j=1,...,pk

L p L p
1O =30 2 Vi ®ullE + A D0 D Vi @l (1.24)
h=0j=1

h=0j=1

N | —

where U and \A/'hj are the estimates of U and Vj;, respectively, and A, is a non-

negative regularization parameter. Let {\ilhj} be the minimizer of (1.24).

Finally, we estimate functional coefficients by

Bni(u,0) = (W)™ Wp;p(v), (u,0) €U x V,h=0,...,Lj=1,....p.

1.3.2 Theoretical properties

We begin with some notation that will be used in this section. For a block matrix

B = (Bjk)1<j<pii<k<p, € RPI*P22 with the (7, k)-th block B, € R?*% we define

its (qu1,g2)-block versions of elementwise (,, and matrix ¢; norms by HBH%;;?Q) =

max; ; |Bjk|r and HBngl’qQ) = maxy, >, |Bj[lr, respectively. To simplify notation,
we will assume the same ¢;; across j = 1,...,p, but our theoretical results extend

naturally to the more general setting where ¢;,’s are different.

LetZ = (Voi, .., Vop oo, Vg, oo, Vi) e RO-DXECHpa § — (@F . @7
‘Iiilﬁ RN lIlEp)T € R(L+1)pq1><q2 and ]3 = diag(f)m, ce ,ﬁop, R ;ﬁLla R 7]/:\)Lp) €
READPaX(L4Dpa with Dy, = {(n — L)_1V,TU4V;U-}1/2 € R1*% for h = 0,...,L and
j =1,...,p. Then minimizing (1.24) over {¥;,} is equivalent to the following opti-

mization task:

U-ZD 'B| + AnHB\i‘”’qQ’} . (1.25)

B . { 1 |
= arg min O aEE——
BgR(Lg+1)pq1 xqg 2<n - L)

Then we have ¥ = D~'B with its {(h + 1)j}-th row block given by \i’hj.

Before our convergence analysis, we present the following regularity conditions.

Condition 1.6. For each (h,j) € S, Bn;(u,v) = X0 _| anjim®ji(uw)dm(v) and there
exist some positive constants £ > (oq v a2)/2 + 1 and pp; such that |apjim| <

png (L+m)~=Y2 for [,m > 1.

We expand each non-zero functional coefficient §,;(u, v) using principal component

functions {¢;;(u)}i=1 and {¢,(v)}m=1, which respectively provide the most rapidly
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convergent representation of {X;;(u)} and {Y;(v)} in the Ly sense. Such condition
prevents the coefficients {apjim }i.m=1 from decreasing too slowly with parameter
controlling the level of smoothness in non-zero components of {3 (-, -)}. See similar
smoothness conditions in functional linear regression literature (Hall and Horowitz,
2007; Kong et al., 2016).

Condition 1.7. Denote the covariance matriz function by

DIXSED YA >
G| 3FoE o=
22( fol Eg(

and the diagonal matriz function by ]55( ZXILH@dmg(ZéfH, o 505p) The infimum
i of the functional Rayleigh quotient of 3 relative to D{ is bounded below by zero,

1.€.

where ® € H{"TP = (& e HEDP . (@, DX (®)) € (0,0)}.

Condition 1.7 can be interpreted as requiring the minimum eigenvalue of the corre-
lation matrix function for (X} ;,...,X})" to be bounded below by zero. See also a

similar condition in Guo and Qiao (2022).

Before presenting the consistency analysis of B in Theorem 1.4, we show that the
functional analogs of the restricted eigenvalue (RE) condition and the deviation
condition in the lasso literature (Loh and Wainwright, 2012) are satisfied with high
probability in Proposition 1.4 below and Propositions 1.6-1.7 in Appendix 1.A,

respectively.

Proposition 1.4. Suppose Conditions 1.1-1.5 and 1.7 hold. Then there exist some
positive constants Cp, c* and ¢ such that, for n = log(pq.)qi™ T2 (M:)?, the matriz
[ = (n—L)'D~'1Z"ZD~! e RUEADpax(L+Dpar gqtisfies, with probability greater than
1 — ¢t (pq)~%,

6°T0 = 7,0|> — 716> VO e REDra, (1.26)

where 71 = Cr M5 gt \/log(pq1)/n and 75 = p.

28



(1.26) can be viewed as the functional extension of RE condition under the FPCA
framework. Intuitively, it provides some insight into the eigenstructure of the sample
correlation matrix of a vector formed by estimated lagged FPC scores of {Xy;(-)};_;.
In particular, for any @ € RE+VIPa guch that 7,02/ 0% is relatively small,
OTf‘O/ |@|*> is bounded away from 0. Proposition 1.4 formalize this intuition by
showing (1.26) holds with high probability. Furthermore, Propositions 1.6 and 1.7
verify the essential deviation bounds for model (1.1), where further discussions can

be found in Appendix 1.A.

Now we are ready to present the main convergence result.

Theorem 1.4. Suppose that Conditions 1.1-1.7 hold with 75 = 3211q1qes. If n =

log(pqiga) (g1 v 32 ) (MX + MY)2, then there exist some positive constants ¢

and ci such that, for any regularization parameter, \, = QCosq}m{(./\/l{( + M) v

MY (g2 v g2 TRy lemlenez) g2 and g P sh, — 0 as nyp,qr, ge — o0,
the estimate ,@ satisfies
a1/2
3 q ' 8)\71,
1B-Blh < IT, (1.27)

with probability greater than 1 — ¢ (pq1q2)_05k.

Remark 1.5. (a) The error bound ofB under functional {1 norm is determined by
sample size (n), number of functional variables (p), functional sparsity level (s)
as well as internal parameters, e.g., the convergence rate in (1.27) is better when
truncated dimensions (q1, qs), functional stability measures (M55, M€, MY ), de-
cay rates of the lower bounds for eigenvalues (an, ay) in Condition 1.5 are small
and decay rate of the upper bounds for basis coefficients (k) in Condition 1.0
and curvature () in (1.26) are large.

(b) The serial dependence contributes the additional term (M3 + M) v MY in the
error bound. Specifically, the presence of M + M€ is due to Proposition 1.2
under the independence assumption between {X.(-)} and {e/(-)}, which is used
to verify the deviation bound in Proposition 1.7. Moreover, provided that our
estimation is based on the representation in (1.23), formed by eigenfunctions
{dm ()} of BY, the term MY comes from the consistency analysis of {qAﬁm} in

Proposition 1.6.

(c) Note that the VFAR model can be rowwisely viewed as a special case of model (1.1).
The serial dependence in the error bound of the VFAR estimate is captured by
M partially due to its presence in the deviation bounds on estimated cross-

covariance between response {Xy(+)} and covariates {X; () : 1 < h < L}. By
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contrast, the serial dependence effect in (1.27) partially comes from estimated
cross-covariance between covariates {Xi—p(-) : 0 < h < L} and error {&(-)}
instead of that between {X;_n(-) : 0 < h < L} and response {Y:(-)} due to the
fact that {Y;(-)} is completely determined by {X;_p(-) : 0 < h < L} and {&(-)}
via (1.1) given B. Specially, if M€ v MY < M¥, q1 = ¢2 and oy = ay, the rate
in (1.27) is consistent to that of the VFAR estimate in Guo and Qiao (2022).

1.4 High-dimensional partially functional linear
regression

This section is organized in the same manner as Section 1.3. We first present
the three-step procedure to estimate sparse functional and scalar coefficients in
model (1.2) and then study the estimation consistency in the high-dimensional

regime.

1.4.1 Estimation procedure

Consider partially functional linear regression model in (1.2), where B(-) = {5:1(-),. ..,
B,(-)}" are functional coefficients of functional covariates {X;(-)}{-; and vy = (7, ...,
~va)" are regression coefficients of scalar covariates {Z;} ;. {€}}_, are mean-zero er-
rors from sub-Gaussian linear process, independent of {Z;} from sub-Gaussian linear
process and {X;(+)} from sub-Gaussian functional linear process. To estimate B(-)
and 7 under large p and d scenario, we assume some sparsity patterns in model (1.2),
i.e. B(-) is functional si-sparse, with support Sy = {j € {1,...,p} : |5;] # 0} and
cardinality s; = |51, and ~ is so-sparse, with support Sy = {j € {1,...,d} : v; # 0}
and cardinality sy = |S|. Here s and sy are much smaller than dimension parame-

ters, p and d, respectively.

Under the Karhunen-Loeve expansion of each Xi;(-) as described in Section 1.3.1,

model (1.2) can be rewritten as

p 4 d
3/;5 = Z 2Ct]l<¢]laﬁj> + Z Zt]’yj + 1+ €,

j=11=1 J=1

where Ty = §:1 Zloiqj+1 Ctjl<wjla BJ> Let Y = (lea B 7Yn)T € Rn’ zZ = (Zla SR 7Zd) €
RnXd, Z] = (le, R ,an)T € Rn’ Y = ('}/1, R ,’}/d)T € Rd, X] e R™% with its row
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vectors given by (4, ..., C,; and ¥, fu u)du € R%. Then we can repre-

sent model (1.2) in the followmg matrix form,

p
Y=> XV;+Zy+R+E, (1.28)

j=1
where R = (r1,...,r,)" € R" and E = (€1,...,¢€,)" € R” correspond to the trunca-

tion and random errors, respectively.

Our proposed three-step estimation procedure proceeds as follows. We start with
performing FPCA on each {X;;(-)}}_;, and hence obtain estimated FPC scores
{Z}ﬂ} and eigenfunctions {12]1()} Motivated from (1.28), we then develop a reg-
ularized least square approach by incorporating a standardized group lasso penalty
for {W;}"_, and the lasso penalty for 7, aimed to shrink all elements in W; of unim-
portant functional covariates and coefficients of unimportant scalar covariates to
be exactly zero. Specifically, we consider minimizing the following criterion over
Uy,..., ¥, and v:

P P
N A, — 2902+ A Y IBY + Xea |, (1.29)
7j=1

j=1

N | —

where ./'?j is the estimate of X, and Anl,Xn2 are non-negative regularization pa-
rameters. Let the minimizers of (1.29) be @1, o \T/p and 7. Finally, our estimated

functional coefficients are given by BJ() = @j(-)T@j for j=1,...,p.

1.4.2 Theoretical properties

We start with some notation that will be used in this section. For a block vector
B = (bf,...,b;)" € R with the j-th block b; € R? we define its g-block ver-
sions of {1 and elementwise ¢, norms by \|B||§q) =2, [b;] and HBHS{&X = max; b/,

respectively. To simplify our notation, we denote a; in Condition 1.5 by a and

assume the same truncated dimension across j = 1,...,p, denoted by ¢. Let X =
(X,..., X)) € R0 = (UF,... 00" € R¥, D = diag(Dy,...,D,) € Rre<»,
where lA)j = {n‘lé\?jT)?j}l/Q e R?*9 for j = 1,...,p. Then our minimizing task in

(1.29) is equivalent to

~ . 1 ~
<aw=awmm{%uhn3—2w+xmmW+mﬁﬂ}, (1.30)

BeRPa yeR4
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where Q = XD~! and )\, = XnQ/n. Then ¥ = D15 with its j-th row block given
by \/I}j.

Condition 1.8. For j € Sy, B;(v) = Y2, aytj(u) and there exist some positive
constants k > a/2 + 1 and p; such that |ay| < p;l=" forl = 1.

Condition 1.8 controls the level of smoothness for non-zero coefficient functions in

B(-). See also Condition 1.6 for model (1.1) and its subsequent discussion.

Condition 1.9. For the mized process {X(-), Zi}iez, we denote a diagonal matriz
function by DY = diag(X§,,, ..., X5,,). The infimum p* is bounded below by zero,

1.€.

*

R (@, 25 (@) + (B, 7v) + v (®) + V2w
T el veld (®, DY (®)) + v™v

> 0,

where H = {® e HP : (@, D (®)) € (0,0)}.

This condition is similar to Condition 1.7. In the special case where each Xi;(-) is

*

b;-dimensional, p* reduces to the minimum eigenvalue of the covariance matrix of

&1 Et1bg Eip1 &tpb T P bitd
(_X""’ < 0 pX,..., ;;Ztlw"ath) € R&y=1%7%,
VWit A/ Wik, V Ypl \/ “pbp

We next present Proposition 1.5 below and Propositions 1.8-1.9 in Appendix 1.A to

respectively show that the RE and deviation conditions are satisfied with high prob-
ability. These results together with Proposition 1.6(i) lead to theoretical guarantees

for regularized estimates of model (1.2).

Proposition 1.5. Suppose Conditions 1.1-1.5 and 1.9 hold. Let S = (Q,Z) €
R (Pa+d) then there exist some positive constants Cyr,c® and ¢ such that, for

n 2 log(pqd)q** > M 4, with probability greater than 1 — cf(pq + d)=%,

1
~07S"S6 > 76| — 77 6], VO e R, (1.31)

1 d
where 1} = CzrMx 7q* T4/ —Og(IZJJr ) and 75 = .

Instead of verifying RE conditions on n1QQ and n~1Z27Z separately, since Q) is cor-
related with Z, we define 8 = (€, Z) and verify (1.31), which requires n='6"S*S8
to be strictly positive as long as 702 /75| 0]* is relatively small. Let @ = (AT, §™)T
with A = B— B and § = 7 — 7, applying Proposition 1.5 with suitable choice of 7
yields that, with high probability, n=* (QA + Z6)T (QA + Z6) > %(HAH +6])?, which

plays a crucial role in the proof of Theorem 1.5 below. Similar to Proposition 1.7,
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Propositions 1.8 and 1.9 in Appendix 1.A verify that, with high probability, the

essential deviation bounds hold for model (1.2).

Now we are ready to present the main theorem about the error bound for B and ~.

Theorem 1.5. Suppose that Conditions 1.1-1.5, 1.8 and 1.9 hold with 75 > 647 q(s;+
So). If n 2 log(pqd)q‘la”/\/l%(z, then, for any reqularization parameters, A\, = Ap1 =
Az = 265 51(Mx z + M) [q* *{log(pg + d) /n}"? + g~ with ¢* A, (s1+ 52) — 0

as n,p,q,d — oo, the estimates B and 7 satisfy

q“?* N\ (51 + 52)

* Y

1B — Bl + ¢*2|7 — v <

(1.32)

with probability greater than 1 — ¢ (pq + d) ™.

Remark 1.6. (a) The error bound in (1.52) is governed by both dimensionality pa-
rameters (n,p,d, s1, so) and internal parameters (MX, MZ, MXZ M<, q, a, K, ).
See also similar Remark 1.5 (a) for model (1.1).

(b) Note that the sparse stochastic regression (Basu and Michailidis, 2015; Wu and
Wu, 2016) can be viewed as a special case of model (1.2) without the functional
part. Under such scenario, the absence of {Xy(-)} degenerates (1.37) in Propo-
sition 1.9 to n™ Y| Z7(Y — Z7) |max < Co(MZ + M) (logd/n)"? and simplifies
the error bound to |3 — Y1 < An2So/7s with Ay = 2Co(MZ + M®)(log d/n)Y?
for some positive constant 5’0, which is of the same order as the rate in Basu
and Michailidis (2015).

(¢) In another special scenario where scalar covariates are not included in (1.2),
the error bound reduces to H@ — By < ¢ N\us1/7E with Ay = 2C¢ s (M +
Mﬂ{q“”q/@ + q "t} Interestingly, this rate is consistent to that of,@ in

Theorem 1./ under the special case where the non-functional response results in

the absence of MY and qy in the rate.

1.5 Simulation studies

We conduct a number of simulations to evaluate the finite-sample performance of
our proposed ¢;/ls-penalized least squares estimators (¢1/¢5-LS) for models (1.1)
and (1.2) in Sections 1.5.1 and 1.5.2, respectively.

33



1.5.1 High-dimensional functional linear lagged regression

We consider model (1.1) with L = 1, where functional covariates {X;(-)}i=1,. n
are generated from a sparse VFAR model (Guo and Qiao, 2022). Specifically, we
generate Xyj(u) = (9p(u) for j = 1,...,p and v € U = [0,1], where ¥(-) =
{t1(-), ..., 9s(-)}7" is a 5-dimensional Fourier basis function and ¢, = (¢;,...,¢(y,)" €
R are generated from a stationary block sparse vector autoregressive (VAR) model,
¢, = W¢,_, +m,. The transition matrix W = (W j;),x, € RP*®P is block sparse such
that Y °_, I(|Wj|lr # 0) = 5 for each j, and 7, are sampled independently from
N(0,I5,). The nonzero elements in W are sampled from N(0,1) and we rescale
W by (W/p(W) with ¢ ~ Unif[0.5,1] to guarantee the stationarity of {(,}. For
each (h,j) € S = {0,1} x {1,...,5}, we generate non-zero functional coefficients
Bhj(u,v) = Zimzl brjim¥i(w) Yy, (v), where byji,’s are sampled from Unif(0, 0.4) for
h = 0 and Unif(0,0.15) for h = 1. The functional responses {Y;(v) : v € V};_1 .,
with V = [0, 1] are then generated from model (1.1), where €,(v) = 3° | eimtm(v)
with e,’s being independent N (0, 1) variables.

In our simulations, we consider n = 75,100,150 dependent observations for p =
40, 80 and replicate each simulation 100 times. The truncated dimensions g;; for
j =1,...pand ¢ are selected by the ratio-based method (Lam and Yao, 2012). To
select the regularization parameter \,, there exists several possible methods such
as AIC/BIC and cross-validation. The AIC/BIC requires to specify the effective
degrees of freedom, which poses a challenging task for functional data under the
high-dimensional setting and is left for future study. In this example, we generate
two separate training and validation samples of the same size n. For a sequence
of A, values, we implement the block fast iterative shrinkage-thresholding (FISTA)
algorithm (Guo and Qiao, 2022) to solve the optimization problem (1.24) on the

.....

error between observed and fitted responses on the validation set, i.e. Y, | [Y;(-) —
S, 21 fu X(t—n);j (u)@,ﬁ?”)(u, -)du|?* and choose the optimal \,, with the smallest

error.

We evaluate the performance of ¢1 /¢5-LS in terms of both model selection consistency
and estimation accuracy. For model selection consistency, we plot the true positive

rates against false positive rates, respectively defined as

#{(h, )+ B s # 0 and [ Byls # 0}
#{(h,7) - [Brslls # 0} ’

#{(h, )+ [B s # 0 and [ Byylls = 0}
#{(h,7) : | Brslls = 0}
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Table 1.1: The mean and standard error (in parentheses) of AUROCs and estima-
tion errors for model (1.1) over 100 simulation runs.

0 p 0 /05-1.S OLS-O
AUROC Estimation error Estimation error
75 40 0.849(0.006) 0.727(0.005) 1.116(0.011)
80 0.834(0.007) 0.768(0.005) 1.121(0.012)
100 40 0.898(0.005) 0.648(0.005) 0.777(0.006)
80 0.879(0.007) 0.684(0.005) 0.787(0.006)
150 40 0.953(0.004) 0.544(0.004) 0.550(0.004)
80 0.942(0.004) 0.576(0.004) 0.547(0.004)

over a grid of values of A, to produce a ROC curve, and then calculate the area un-
der the ROC curve (AUROC) with values closer to 1 indicating better performance
in support recovery. The estimation accuracy is measured by the relative estimation
error | B — B|r/|B|r. For comparison, we also implement the ordinary least squares
in the oracle case (OLS-O), which uses the true sparsity structure in the estimates
and does not perform variable selection. Table 1.1 gives some numerical summaries.
Several conclusions can be drawn. First, the model selection consistency and estima-
tion accuracy are improved as n increases or p decreases. Second, ¢ /¢5-LS provides
substantially improved estimation accuracy over OLS-O especially in the “large p,
small n” scenario. This is not surprising, since implementing OLS-O in the sense
of (1.24) with X\, = 0 still require to estimate 10 x 5% = 250 parameters, which is

intrinsically a high-dimensional estimation problem.

1.5.2 High-dimensional partially functional linear regression

We now consider model (1.2) with p-dimensional vector of functional covariates
{X:(-)}+=1. . and d-dimensional scalar covariates {Z;};—; ., which are jointly gen-
erated in a similar procedure as in Section 1.5.1. Let Xi;(u) = ¢;4(u) for j =
1 ,p and u € [0,1], and (¢, ZT)T € R%*4 are jointly generated from a sta-
tionary VAR(1) process with a block sparse transition matrix W* e ROP+d)>Gp+d)
whose (j, k)-th block is W¥%_. In particular, for each j = 1,...,p, Wi e R>*®
(k=1,...,p) and Wi € R° (k = p+1,...,p + d) such that >} | I(|W¥|r #
0) = Y0 I(|W%| # 0) = 5. For each j = p+1,...,p +d, (Wi)" € R
(k=1,...,p) and W% € R (k = p+1,...,p + d) such that >}}_, I(|(W)"]| #
0) = ZiIZH I(JW3.] # 0) = 5. For each j € S; = {1,...,5}, the non-zero functional
coeflicients are generated by f;(u) = 215:1 byt (u), where bj;’s are uniformly sam-
pled from [0,0.15]. For each k € Sy = {1,...,10}, the non-zero scalar coefficients

PRI
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Table 1.2: The mean and standard error (in parentheses) of AUROCs and estima-
tion errors for model (1.2) over 100 simulation runs.

n e 0618 - OLS-0O

AUROC B -B|/IB] [7=l/Ivl 1B =BI/B] 5=/l

- 40 0.901(0.004) L034(0.013) 0.283(0.005) L741(0.034) 0.196(0.005)
80 0.868(0.004) 1.051(0.012) 0.363(0.008) 1.750(0.039) 0.198(0.005)

oo 407 0919(0.003) 0.999(0.007) 0.235(0.005) 1376(0.024) 0.151(0.004)
80 0.902(0.004) 1.025(0.008) 0.283(0.005) 1.417(0.025) 0.151(0.004)

150 40 0.945(0.003) 0.938(0.008) 0.185(0.004) 1.006(0.018) 0.113(0.003)
80 0.937(0.004) 0.972(0.009) 0.216(0.004) 1.061(0.018) 0.113(0.003)

v's are uniformly sampled from [0.5,1]. Finally, we generate responses {Y;}i—1  »

from model (1.2), where ¢’s are sampled from N (0, 1).

We simulate the data under six different settings, where n € {75,100, 150} and
p = d € {40, 80}, and replicate each simulation 100 times. For a sequence of pairs of
(A1, An2), following the procedure in Section 1.4.1, we truncate each functional co-
variate with ¢; chosen by the ratio-based method, apply the block FISTA algorithm
to minimize the criterion (1.29) on the training data and obtain {Bj(-’\"l’k"ﬂ(‘)}j:l,m,p

An1;An2) }

and {fAylg k=1,. 4. The optimal regularization parameters (an, Xng) are selected

by minimizing the prediction error on the validation data with size n, i.e. Y, {Y} —
s fy X)) du = Sy Zu Y

We examine the performance of ¢;/¢5-LS based on AUROCs and estimation errors,
and compare it with the performance of OLS-O, where the sparsity structures in
the estimates are determined by the true model in advance. The numerical results
are summarized in Table 1.2, where the relative estimation errors for functional and
scalar coefficients are H@ — B|/IIB|| and |5 — 7||/|v|, respectively. A few trends
are apparent. First, as expected, we obtain improved overall support recovery and
estimation accuracies as n increases or p and d decrease. Second, although ¢ /¢5-
LS is outperformed by OLS-O with lower estimation errors for scalar coefficients,
it provides more accurate estimates of functional coefficients relative to OLS-O,
since, in the oracle case, the number of unknown parameters is still relatively large

especially when n is small.

1.6 Discussion

We identify several directions for future study. First, it is possible to extend our
established finite sample theory for stationary functional linear processes with sub-
Gaussian errors to that with more general noise distributions, e.g. generalized sub-

exponential process, or even non-stationary functional processes. Second, it is of
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interest to develop useful non-asymptotic results under other commonly adopted
dependence framework, e.g. moment-based dependence measure (Hormann and
Kokoszka, 2010) and different types of mixing conditions (Bosq, 2000). However,
moving from standard asymptotic analysis to non-asymptotic analysis would pose
complicated theoretical challenges. Third, from a frequency domain perspective, it
is interesting to study the non-asymptotic behaviour of smoothed periodogram esti-
mators (Panaretos and Tavakoli, 2013) for spectral density matrix function, served
as the frequency domain analog of the sample covariance matrix function. Under a
high-dimensional regime, it is also interesting to develop the functional threshold-
ing strategy to estimate sparse spectral density matrix functions. These topics are

beyond the scope of the current chapter and will be pursued elsewhere.
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1.A Additional theoretical results

We first present the following Propositions 1.6 and 1.7, in which we show that the
essential deviation bounds for model (1.1) are satisfied with high probability.

Proposition 1.6. Suppose that Conditions 1.1-1.5 hold. Then there exist some
positive constants Cy, C,,, Cy, ¢i and ¢ such that (i) for n = log(pq1)qi™ > (M:)?,

0 1

max

log(pq1)
C MY Tl,

. X1-
1<j<p,I<i<q: {wji 112 (1.33)
log(pg1)
_ X Oé1+1 oM7L/
o max i = il < CuMi'q no
with probability greater than 1 — ¢ {pq}~ % (i) for n % log(g2)gy** T (MY)?,
max |6 — dm| < CoMYgs?™! ogla) (1.34)
l<megy T TmIS e 2 n .

‘32

with probability greater than 1 — c¢f{qa}~

Proposition 1.7. Suppose that Conditions 1.1-1.6 hold. Then there exist some
positive constants Cy, ¢t and & such that, for n = log(pqiga) (1™t v 32T (M +

MY,
(n— L)"|D'Z"(0 - ZD~'B)|“®

n

a a 1 i
<Cosq1/2{(/\/lf + M) MY}{ 1+3/2 v q22+3/2) 0g(pq1q2) +q +1/2}’

(1.35)

with probability greater than 1 — ¢ (pqrqs) .

(1.33) and (1.34) in Proposition 1.6 control deviation bounds for relevant estimated
eigenpairs of Xy;(-) and Y;() under the FPCA framework. (1.35) in Proposition 1.7
ensures that the sample cross-covariance between estimated lagged-and-normalized
FPC scores and estimated errors consisting of truncated and random errors due to

(1.23), are nicely concentrated around zero.

We next provide Propositions 1.8 and 1.9, where the essential deviation bounds for
model (1.2) hold with high probability.
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Proposition 1.8. Suppose Conditions 1.1-1.5 and 1.8 hold. Then there exist some

positive constants Cg, ¢ and c& such that, for n = log(pq)q*®2(M55)?,

max
n

1 ~ ~ ]
— Q%Y = QB — 29)|9_ < CF sy (M + M) { g2 log(pq) +q "ty (1.36)
n 0

with probability greater than 1 — ¢ (pq)~%.

Proposition 1.9. Suppose Conditions 1.1-1.5 and 1.8 hold. Then there exist some

positive constants CF,c¥ and & such that, for n = log(pqd)g** 2 M% ,,
074 2 X,z

1 ~ 1 d
L2t 0B — 29w < G (M + M) {qa“«/—og(pfl ., q—*”»“/?} ,

(1.37)
with probability greater than 1 — ¢ (pq + d) .

Intuitively, (1.36) in Proposition 1.8 (or (1.37) in Proposition 1.9) indicates the sam-
ple cross-covariance between estimated normalized FPC scores (or scalar covariates)

and estimated errors is nicely concentrated around zero.

1.B Proofs of theoretical results in Section 1.2

We provide proofs of theorems and propositions stated in Section 1.2 in Appen-
dices 1.B.1-1.B.2, followed by the supporting technical lemmas and their proofs in
Appendix 1.B.3. Throughout, we use Cy, Cy,..., ¢,C1,..., C1,Coyvy Py P1, 025+ -
to denote positive constants. For a matrix B € RP*? we denote its operator
norm by [B| = supj,<[|Bx|2. For ¢1,¢, € H and K € S, we respectively
denote fu K(u,v)p1(u)du, fv K(u,v)ps(v)dv and fu fv K (u,v)p1(u)pa(v)dudv by
(p1, K, (K, p3) and (g1, (K, ¢o)>. For a fixed ® € HP, we denote M(f¥ &) =
21 - ess WDy (B £ (@),

1.B.1 Proofs of theorems

Proof of Theorem 1.1 Part (i): Define Y = ((®1,Xy),...,{P®1,X,,))", then
we obtain [(®, (23( — 33)(®1))] = LYTY — E(Y"Y)|. Our proof is organised
as follows: We first introduce the M-truncated sub-Gaussian process Xy r:(u) =
S Ai(enrs ), where exry(-) = S N W5aidq () for j =1,...,p. We then ap-

ply the inequality in Lemma 1.5 on Xy 1 = Xp(u) = Z{;O A,(e;;) by proving
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T < M(Fipp. 1) and limpy oo M(f3; 0, ®1) = M(F7, ®1). Finally, we will
show that such inequality still holds as L — 0.

When L and M are both fixed, we first define Y, = ((®1, Xparp1),---»
(@1, Xp1,0n))" Then Yy, Y1, can be represented in the same form as (ey, K(ens))

in Lemma 1.5, where ey = (€], .., €5, )" € H*™HP. We rewrite Y,z as

YM,L = JJ(IH ® <I>1(u)T)WL(u, v)@M(v)aMLdudv = I‘M,LaML,

where
0 0 0 Ao ALfl AL
0 0 Ao A1 AL 0
WL = ’
Ay Ay -+ - oo AL o0

On(u) =L ® diag(cp}ml, e 790}/[,;)) with ¢y, = (\/WTElQSH, cee \/@@M)T and
ar, = (@nity - Anidy - Gnpls oo s Qpphs - - - Q(—L)p1s - - - A(1—L)pM) " € R(+L)pM
Then we can write Y]TW’LYM’L = a}LLHM,LaM,L withIT5 = Tp " Ty . Lemma 1.8
implies that |Var(Yar)| = |TarcTh Ll < M(fr L, ®1), where M(f3; ., ®1) =
27 - 88 SUPpe[_n (D1, fﬁL’@({)l» and fﬁ,L,@(') is the spectral density matrix oper-
ator of process {Xnsr.+(+)}ez-

Define Y, =Yoo, = (1, X11), ..., {(P1,X1,))". By Lemma 1.7, (1.45) in Lemma 1.5

and rank(I';, ;T 1) = n, we obtain

P{(®@,, (5,0 — Z5)(@1)] > M(F¥, ®1)n}

=P{|lY[Y,—-EY[Y,| > n./\/l(ff, P )n} < 2exp {—cn min (772, n)} ,

where M(fX,®,) = 27 - esssupge[fmrﬁ@l,ffe(q)l» and ffg() is the spectral

density matrix operator of {Xy ;(-)}tez.

Next, we need to show that this result still holds as L. — oo. Lemmas 1.9 and
. . o X o X . X

1.10 imply that lim;_ E {‘@1, (Eh0— 5 )(@1)>‘} — 0, limy, oo (B, 550 (®1)) =

(@, 35 (®1)) and lim o, M(f, ®1) = M(f¥, ®,). Combining the above results

and following the similar argument in the proof of Lemma 1.5, we obtain

P{[@, (85 - =)@ > M(F*, @) )

< 2exp {—cn min (172, 77)} .
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Provided that M(f*, ®;) < M {(®1, = (®1)), we obtain

P {
which completes the proof of (1.14). Part (ii): For fixed vectors ®; € HP and

®, € HY, we denote M(fXY, &, ®,) = 27 - ess SUDge[—r ) [{(P1, Y (®,))]. Define
M, (1) = [(Xe( )", (Ye(:)]". Letting ® = (@], P;)", we have

@1, (£, - =)@
(®,, 55 (®))

' > Mﬁn} < 2exp{—cnmin (772,77)},

@0 (807 - S )(@a) = [(®, (80 - 2 (@) - (@, (5] - B)(®1)

~(®.(8 - B)(@)].
Applying (1.38) on {X¢(:)} and {Y,(-)}, we obtain that

P{@1, (85 = ZN)(@1)] > M(FY, @1 < 2exp{—cnmin(n,n)},
P {‘@2, (S - zg)(cp2)>‘ > M(fY, @)n} < 2exp{—cnmin(2, 1)},

For {M;(:)}, M(fM,®) < M(f¥X, &) + M(f¥, &) + 2M(fXY, ®,,®,). This,
together with (1.38) implies that

M
P{|[@, (8 —Z)(@)] > (M(F¥, @) + M(FY, @2) +2M(FXY, 1, 8)n}
< 2exp{—cnmin(n?,n)}.

Combining the above results, we obtain

~AX)Y

P{@1, (50" =S )@a)] = (MK, @1) + M(FY, 82) + M(FEY, 81, 85) 1}

< 6exp{—cn min(nQ, n)}.

(1.39)

For h > 0, let Ul,t = Xt + Xt+h7 U27t = Xt — Xt—i—h, Vl,t = Yt + Yt+h and
Vo, =Y, — Y. Accordingly, we have that

(D1, T/ By)) = 2@, T (®2)) + (D1, ) (@2)) + (81, 5% (P2)),

(@1, 57" (®2)) = 221, T (R2)) — (B0, 51 (B2)) — (1, Bl (D)),
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and

o = (2 + exp(—ihf) + exp(ih0)) £y,

52" = (2 — exp(—ihd) — exp(ihd)) £ .
Combining these with the definition of M(f*Y, &, ®,) yields

KDy, (5 — =5V (@)

U Uz

a Ui W aUz Ve 2,V2
=(@1, (5, ~ g (@2)) — (@1, (By T~ Eg)(®2)),

and
M(fULVl? ¢17 ¢2) < 4M(fX7Y7 ¢17 (52)

By similar arguments, we obtain M(fY, ®,) < AM(F~, ®,) and M(F", ®,) <
AM(fY, ®,), for i = 1,2. Then it follows from (1.39) that
P{[@1 (817 =20 (@2))] > 2MES, @1) + MFY, ®2) + MFXY, @1, B2}
2
<3 P{[@u 0" = =0 @) = (MUY 1) + MFY B2) + MUV 81, B2)in)
i=1

<12exp{—cnmin(n?,n)}.

Provided that M(f%, &1, ®5) < M (81,55 (1)) + (2,57 (P2))) and
M(fX, ®1) < ME(®1, 55 (@1)), we obtain
~X)Y
P (B, (2, —Z)(®a))
(1,35 (@1)) + (Do, T} (P2))

XY
> (Mé‘; + M}; + Mk17k2> n}

< 6exp {—cnmin(n®,n)},

~X)Y

(@1, (Z, = 7")(®2)
(®1,55 (1)) + (D2, 55 (P2))

|

Letting ¢o = ¢/4, we complete the proof of (1.15). o

> 2 (M + M+ M) n}

< 12exp{—cnmin(n?,1n)}.
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Proof of Theorem 1.2 Under FPCA framework, for each k = 1,...,d, we have

Yie(:) = 200 Ekm@rm(-) with eigenpairs (w),, dxm), and for each j = 1,...,p, we
have Xt]( ) = 221 Ceubi(+) with eigenpairs (w3, 1;;). Denote My = M+ M} +
MY Let @y = (0,...,0,{w¥} 2¢;,0,...,0)" and @5 = (0,....,0, {w},} 2 dpm, 0,

. ,0) Following the similar argument in the proof of Theorem 2 in Guo and Qiao

(2022) with 24/wiwd < wg + w} and Theorem 1.1, we can prove

{HEhgk hijS > (wy +wp )M, Yn} ¢1 exp{—cgnmin(n*,n)}.

. XY
By the definition of |2, — I3 |max = Maxi<j<p1<h<d thjk ZhXﬁZHS, we have

that
PSS = 20 e > (@ + ) )Mxyn | < erpdexpl—cgnmin(r?, n)}.

Let n = pa/log(pd)/n < 1 and p?cz > 1, which can be achieved for sufficiently large
n. We obtain that

QXY log(pd e
P{\zh I > (0 + ) My #} < cr(pa)
which implies (1.17). o

Before presenting the proof of Theorem 1.3, we provide some useful inequalities
for estimated eigenpairs under the FPCA framework. For {X;(-)}wez, let 65 =
minlgllgl{w;g/ — l'+1 } and A f]éfjl — E()fjl forj=1,...;,pandl =1,2,.... It
follows from (4.43) and Lemma 4.3 of Bosq (2000) that

sup (25 —wf| < |A%ls and  supa¥|du— vl < 2V2IAKs. (140

= =

Similarly, for process {Y;(+)}ez, let 6) = minjcpem{w), , — w,z/(m, +1)} and ﬁ{m =

igkm—Z({km fork=1,...,dand m = 1,2,..., we have

sup [B),, — wil < |A% s and Sup5 ol B — Seml| < 2V2[AY s (1.41)

m=1

Proof of Theorem 1.3 Recall 3,)5%% = ﬁ Z::lh Z}ﬂf(wh)km and aif}zm =
Cov(Cujts Epsnyrm) = Uyt (Sn ]k,¢km>>- Let 71 = Vj — Vji, Wem = Pkm — Prm and
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AXY QXY XY
Ah’jk Yk — Xj g, then

~AXY XY
O kim — Ohjkim

=T, <§i7j§;’ Wrm)) + <<7q il <£i}};, Prm)) + (Ui, <£hX,’j};, @km»)
<<Tﬂ7 <Zh gk ¢km>> + <¢le <2 h,jk> 7:‘}km>>) + <¢jl7 <Ah gk ¢km>>

:[1+[2+[3+[4.

XY NX,)Y
Let @7 = {IAN Nl < (wf + i )Mxynf, 0%, = {I1A%]s < 2MFuifn}, 0F, =

{HAkk”S < ZM}/wé/n} and Q = {HAhX;;Hs < (wo + wp )} By Theorem 1.2 and
Lemma 1.24, we have

P ((@50)9) < crexp{—csnmin(n?,m)},

( Jim) C)

( Kk C) 4 exp{—¢&nmin(n? n)},
)¥) <

( C

4exp{—cénmin(n* n)},

c1 exp{—csn(Mxy) 2}

On the event of mQ Uk POQE Aoy ,» by Condition 1.5, (1.40), (1.41), Lemma 1.2

and the fact that (wwd)¥? < 1/2(wf + W), we obtain that

I ~
< ¢ H(aro) 2 Pme 2 R [ (|AN Y s + IS0k ) [ B |
wXwY
L km
< P2 AX I AY s (1A s + (i wp )M?)
g <l3041+2 v m 3a2+2)MXM1 n,
< (2 v ) (M + MY,
I ~ ~
2| < g ) P e P A s 17l + [
Wi Wem

< 1P AT s (1 A s + mee AR s)

< (l2a1+1 v m2a2+1)MX7Y(MX v MY)T]27

s (l2a1+1 v m20¢2+1)M§(7Y772’
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By Theorem 1.1,

P > 2Mxyn ¢ < c1exp{—conmin(n? n)}.
wXwY
L km
: o~ Xy XY ~ .
Next, we consider the term I3 = (7ji, (3}, ks Pkm)) + (Wi, (B, g W) By Condi-

tion 1.5, Lemmas 1.14 and 1.26 for {X;}z and {Y;}«z, we obtain that

I3
X, Y
Wi Wiem
SM{(ZO‘1+177+ (M1X)2l(5a1+4)/2772 _'_M%/mag—&-ln_'_ (MT)Qm(5a2+4)/2n2

S(la1+1 v mag-ﬁ-l)(M{( + M%’)n + (l(5a1+4)/2 v m(5a2+4)/2)(M{( + M¥)2n2

holds with probability greater than 1 — 16 exp{—csn min(n? 1)} — 8 exp{—c4n
(MEPEOD (MY o)1),
Combining the above results, we obtain that there exists positive constants py, pa,

¢7 and ¢g such that

aX,Y OX,Y
h,jklm — “hjklm
P J = YJ > ,01./\/1)(73/([&14_1 v m”“)n + p2M%{,Y(13a1+2 v m3a2+2)n2
Wil Wim

l?(oq +1)

v m2(a2+1))—1}

I

< cgexp{—cémn min(nQ, )} + ¢ eXp{—E7M;<?Yn(

where Mxy = M + MY + Mf’ly. Applying the Boole’s inequality, we obtain
that

~X,Y XY
o — 0 i
P max h,jklm h,jklm > PlMX,Y(la1+1 v ma2+1)n + P2M§( Y(l3a1+2 v m3a2+2)n2
1<j<p wXwY ’
1<k<d JUkm
1<I<SM;
1<m<Msy

< pdM; Ma{ég exp{—&mmin(n?,n)} + & exp{—67/\/l)_(?yn(l2(al+1) v m2(°‘2+1)71)}.

Letting n = pgq/ 22@AMM) 9 and py + papsMxy (M M) < py, there

n
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exist some constants cs, cg > 0 such that

AXY XY

Oh,jkim ~ Oh,jkim at1 i1y [log(pdM;Ms)
P ~max ,03p4MX7y(M1 ! \% M2 2 ) _— =
1<j<p,1<k<d wXY n
1<I<SMy,1<m<M, JLkm

< c5(pd My Ms)©e

1.B.2 Proofs of propositions

Proof of Proposition 1.1 Under a mixed-process scenario consisting of {X;(-)}
~X,Z
and d-dimensional time series {Z;}, we obtain the concentration bound on X, " |

|

<cj exp{—cynmin(n?,n)}.

~X.Z
(@, (%, - 2;)1(’2)
(®1, 55 (®1)) + v E{v

(M + MZ +Mk1k2) } )

Provided with Lemma 1.28, the above result can be proved in similar way to (1.15)

in Theorem 1.1, hence we omit it here.

Denote of;, = +/Var(Zy), (0f)* = maxicr<a Var(Zy) < o0 and My z = MY +
Mlz—s—/\/lf’lz. Letting @, = (0,...,0, {wy 2%1, ;oo 0)Tand v = (0,...,0, {0},
0,...,0)7, we obtain that Ay = (@, (5, —z“)u> (W)~ 1/2(00kk) Wby, Ex5—

h]k> and <‘I)172X(‘I)1)> = VTEZV = 1. Then th]k h]kH2 Zl:le)‘l(<0-0,kk> A%,jkl'

By Jensen’s inequality, we have that

0

E{ IS0 - Zle ) <« k>2‘I(§]wﬂ) S WX E| Ay

=1

< {og P {wp SUP E{Ah ]k‘l|
By (1.42), we obtain that

P{|Anju| > 2Mx zn} < c1 exp{—canmin(n?,n)}.

Combining the above results and following the similar argument in the proof of
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Theorem 2 in Guo and Qiao (2022) yields
PSS - 551 > 2Muzofy o n} er exp{—eanmin(2. )}

Then with the fact that 24/(0% )2 2 + wgt, we obtain

P{ISET - S > (87 + ot )szn} erexp{—csnmin(y?, )}, (1.43)

This also implies (1.18).

Recall that @fjil = nth?flh CtjiZ+nye and fo]il = Cov(Cyi, Zarnyk)- Let 7y =

NXZ QX Z X,Z
@/Jﬂ — Yy and Ap g =30 — X0 We have

~X,Z X,Z ~ X7 A wX,Z
On ikl — Ohjkl = Tty Ah,jk> + (T, 2 ]k;> + (i, Ah ]k>
=L+ 1+ Is.

Let Q37 = {IAN < (i + (D)) M}, 9, = {I1AS]s < 2MFwin ) and

Jk.n Jim

O = {HAhXJiH < (wi + (0d)? )} By (1.43) and Lemma 1.24, we have

P (@) < cr exp{—canmin(?. ).

P ((95,)°) < 4exp{—inmin(n® 1)},

P ((£1)°) < crexp{—csn(Mx,z) "}

On the event of Q; N anji N Q% by Condition 1.5, (1.40), Lemma 1.2 and (0§)* <

o0, we obtain that

Il a X, Z «
—| <! PIATENR] < B AT NAS s
< l3a1/2+1MX ZMA1X772

By Condition 1.5, Lemma 1.26 and [£5%] < 0 00 k> We obtain that

I
2 SM{(loq—i-ln_i_ (MIX)QZ(5<11+4)/2,'72
X
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holds with probability greater than 1 — 8 exp{—c4n min(n?, 1)} — 4 exp{—c4n
({IM£}72[~2a+ D)1 By (1.42) and the fact that 1/ (0f )2wi < 1/2{(0%)? + w{}, we
obtain that

> 2Mx z00n ¢ < c1exp{—conmin(n?,n)}.

I3
N
Combining the above results, we obtain that there exists positive constants ps, pg,

Cg9 and ¢;g such that

~X,Z X,Z
O ikl — Ohjki
X

wjl

P > psMx 21y + pe M 1P T2

< ¢ exp{—cyn min(nZ, n)} + ¢1o exp{—égM)_(?an_Q(mH) }.

Letting n = pra/ M <1 and ps + psprMx.z My < pg, there exist some

constants c7, cg > 0 such that

~X,7

G oy log(pd M)
h.ki ~ Chjkl 1 log(pdM,
P _max okl hkl > prpsMx s M | == < cr(pdMy)s,
1<j<p,l<k<d X n
1<I<SM, Jl

which implies (1.20). o

Proof of Proposition 1.2 To simplify our notation, we will denote Jff ;zm and

a,)fﬁm by G jim and oy, ji, in subsequent proofs. Recall that 7y, jim, = <1Zﬂ, <Z,§;, Om))
and oy, jim = <wﬂ,<2h] , Om). Since we assume {X;(-)} and {¢/(-)} are independent

processes, o, jim = 0.

~ -~ ~ N X, X, X,
Let 71 = bt — Vit G = bm — dm and Ay = S0 — 5,

Bt = Pty g B + (Pt B Gy + o, B B
+ <,¢jla <Ahxj7 ¢m>>

=1+ I+ Is.
X,e N X,e €
Denote 05 = { 1A ]ls < (wf +wi)Mxn}, 0, = {1A%1s < 2MmFuiin}, QF =
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{187 )s <2MYwn} and @ = {I1A)]s
Lemma 1.24, we have

< (wif +w5)}. By Theorem 1.2 and

( C) ¢y exp{—csnmin(n? n)},

C

( Sim 4 exp{— clnmm(n n)},

)¥) <
( C) 4 exp{—¢&nmin(n? n)},
)¥) <

( C

¢y exp{—csn(Mx,) "}

On the event of €, mQXemﬂig ,NE, by Condition 1.5, (1.40), (1.41) and Lemma 1.2,

we obtain that

Hanaz) 1P me 2w (185 s + 15

5)[ @]

/ Y
| wjlw

S <l3cx1+2 v m3a2+2)M{(MY 27

lal/Zmag/QHAhXJe’

(1 AK s + m A 5)
S <l20¢1+1 v m2a2+1)MX’E{M{( + MY}T]2,

Cy1a2)1/2l011/2 a2/2||AXe|

< (I v m®)Mx n.

/ Y
w]lw

Combining the above results, we obtain that there exists positive constants pg, p19,

511 and 612 such that

§

< épexp{—¢érinmin(n?,n)} + é1 eXP{_éllM)_(,Qe”}'

Oh,jlm

X, Y
w]lw

,OQMX,e(lal v ma2)77 + PIOMX,E(M{( + MY)(l3a1+2 v m3a2+2)772}

Letting n = pllq/bg(z’% < Land pg+ prop1n {MS + MY F(MP* 2 v M7 )n <
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p12, there exist some constants cg, c;gp > 0 such that

Ohjlm = Oh.j log(pM; M:
P max Thojlm = Ohojlm | p11p12(ME + MY (M v MS?) log(pM1M>)
1<j<p waY n
1<I<SM;,1<m< M, Jjl

< co(pMi M),

which completes the proof. o
L /\XC _ 1 n—h/\ X7€ o

Proof of Proposition 1.3 Recall that gh]l = —= > 1 Gyi€ien and O =

~ ~ N X, SX e X,e
Cov(Ciji, €r+n)- Let 75 = 1pj; — ¢, and AL =55 — X5 We have

X X, A~ RX, AX,
O Jez Qh,jel = (1, Ah,j6> + (Wi, Ah,f>

=[1+12.

Let Q5 = {IA)5] < (wf + (0§)) My fand 0%, = {|AX]s < 2MFwin} . By
(1.43) and Lemma 1.24, we have

P ((inf)c> < e exp{—cgnmin(i?, )},

P ((Qj)gn) ) < 4dexp{—¢nmin(n*,n)}.

On the event of Qxe N QX

=, by Condition 1.5, (1.40) and Lemma 1.2, we obtain
that

I

S I PIART IRl < B ARSI AK s

wﬂ

< l3o¢1/2+1MX76MA1X772

By (1.42) and the fact that 4/ (o, < 1/2{(0§)* + wg'}, we obtain that

= QMX,eO-STI < eXp{—CQTL min(n27 77>}

I
/X
Combining the above results, we obtain that there exists positive constants pi3, p14,

20



¢13 and ¢4 such that

~X e X,e

On.i1 — Op.s
P{ LXW PISMXen+p14l3a1/2+lM M } ¢14 exp{—¢éizn min(n?,n)}.
Wiy
Letting n = p15 (le) < 1 and py3 +p14p15/\/lXM3a1/2+1?7 < pi6, there exist some
constants c1, ¢ > 0 such that
~X e
Op 51 — Q log(p M-
P4 max M = pispreMx e log(p21) < e (pMy)“2,
1<j<p w? n
1<I<M, Jt

which implies (1.22). o

1.B.3 Technical lemmas and their proofs

Lemma 1.1. The non-functional version of our proposed cross-spectral stability

measure satisfies

XY
‘VTf ) V2 ‘
€8s sup

Oe[—m,m],v1€RE, V2R \/ V1 Viy/ V2 Vo

_ Xy
< MY

where M*Y is defined in (1.6).

Proof. For any fixed § € [—m, 7], we perform singular value decomposition on

XY
)

the diagonal. Then

= UDV", where D is a diagonal matrix with singular values {o;} of fg( Y on

VTfX’YV2‘
max
U1€RO7VQER \/ Vl Vl/\/ V2V2
x"Dy]|

= max ———— (x=U'vy,y = V')

xeRP yeRd /X XA/ YTy
xeRP yeRd 1/ VXTXNY Ty XAy xeRg,yeRd \/ Z 24/ Z y?

2 (4ioi)?

<maxy [ S5 —— < max(o;)
yeRd ny '
XY g pX,Y
vt Ty fe v
<m%X\/ (218
veRd v'v

51



This holds almost everywhere for § € [—m, 7], which completes our proof. o

Lemma 1.2. Suppose that Conditions 1.5 and 1./ hold, then wif = O(1).

Proof. Recall that X;(u Z fAl u,v)e;—(v)dv and &;(-)’s are i.i.d. mean-zero
functional processes. Let Al J denote the j-th row of A;. Then

max JEé{jj(u, w)du

1<j<p

= max [‘E { X4 (u) Xej(u)} du

- m]ax IE[{ i Z JAl,jk(u, v)atl’k(v)dvr]du

<m]aXIE[{§:Zp:\/J(Al]kuv \/Jatm v} ]d

< maxZ Zp: J (Arjx(u,v))*dudv max ]E{ f(etl’k('u)fdv}

Lk

1=0 k=1
o p 0 p

<whmax Y > Aukls < wymax > (O [ALxls)”
T Z0k=1 7120 k=1

wo{Z [A]} = O(D),

which completes our proof. o

Before presenting Lemma 1.3, we define sub-Gaussian distribution and sub-Gaussian
norm as follows. A centered random variable x with variance proxy o? is sub-
Gaussian if for any ¢ > 0, P(|z] > t) < 2exp(—t?/(20?)). The sub-Gaussian norm
of z is defined by |z]y4, = inf{K > 0: Eexp(2?/K?) < 2}.

Lemma 1.3. Let x = (x1,...,2,) € R" be a random vector with independent mean
zero sub-Gaussian coordinates. Without loss of generality, we assume that Ex? = 1
fori=1,...,n. Let A be an nxn matriz. Then there exists some universal constant

¢ > 0 such that for any given n > 0,

2

P (|x"Ax — Ex"Ax| > |A|n) < 2exp {—cmin <m, 77) } . (1.44)

Proof. It follows from Theorem 1.1 of Rudelson and Vershynin (2013) and ||y, =
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1 for i =1,...,n, that there exists a constant ¢ > 0 such that

ot
P(|x"Ax — Ex"Ax| > t) < 2exp {—cmin (—, —) } :
|A[E"[A]

By |A[r < +/rank(A)|A| and letting ¢ = n| A, we obtain (1.44). o

Lemma 1.4. Suppose that sub-Gaussian process {ei;(-)}1ez follows Definition 1.5.

Under Karhunen-Loéve expansion e;;(-) = 2321 &dj(-) = 221 A/wW5iad(-) with
E(ai) = 0 and E(afjl) =1forteZ and j = 1...,p, ay follows sub-Gaussian
distribution with |agl|y, = 1, that is for alln >0,t€Z, j=1,....,p and l > 1,

Pllagi| > n] < 2exp(—n*/2).

Proof. By Definition 1.3, for all z € H, E{e*X’} < ¢**@>0@)/2 Combining with
the choice of x = c¢ji(-) for ¢ > 0 and orthonormality of {¢;(-)} yields

E <€c, /w]‘?latjz> < 6(12020);?[/2.

Without loss of generality, we assume o = 1. By Markov’s inequality and the above

result, we have that for all ¢ > 0,

E (ec\/rﬂe'la“l)

€
Cy/W5M

2 ,€ €
c wjl/2—c w5n

£ . €
P(ayi >n) <P <ec’v Lt > ef “’j’"> < <e

e

2
Choosing ¢ = 5/, /w5, we have P(ay > n) < e~z . In the same manner with the

2
choice of = —cgy(+) for ¢ > 0, we can prove P(a;j; < —1) < e~ =. Combining the
2
n

above results, P[|ai| > n] = P(ay; > n) + P(ay; < —n) < 2e”z which completes
the proof. o

Before presenting Lemma 1.5 below, we give some definitions:

(i) Suppose that e = (ey,...,eny)" € HY is formed by N independent mean zero
sub-Gaussian processes with e;(-) = >}7, y/wiaudq(-) under the Karhunen-Loeve
expansion. Define ¢,,; = (\/ﬁqﬁﬂ, e m(jﬁiM)T.

(i) Suppose K = (K;;)nxn with each K;; € S. For any nonempty subset G < Z.
= {1,2,...} with |G| < oo, write G = {g1,...,9/g/} with g1 < --- < g|g and
bci = (Gigrs - Pige)” foreachi =1,..., N. Let @¢ = diag(dg ;- - -, g y), then
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we define

rank(K) =  sup  rank (J J b (u)K(u, U)Glig(v)dudv> :
GcZ+,|Gl<w

Condition 1.10. Let Iy = ff@&(u)K(u,v)@M(v)dudv with Oy taking the

form @y = diag(py ;- Py ) and K = (Kij)nxn with each Ky € S. It satisfies

that ||| < by and limpy o bpr = b.

Lemma 1.5. Suppose that max<;<y fu Yo (u,u)du < oo and K satisfies Condi-
tion 1.10. Then, there exists some universal constant ¢ > 0 such that for any given

n >0,
P (|(e,K(e)) — Ele, K(e))| = by) < 2exp {—cmin (WEK) n) } . (1.45)

Proof. We organize our proof as follows: First, we truncate e;(-) to M-dimensional
process epr;(-) = Zf\il A/ Whaida(-), then apply Hanson-Wright inequality in Lemma 1.3
and finally show that the inequality still hold under the infinite-dimensional setting.

3 T 3 T T
Rewrite ey = (ear1, - .-, emn)” with ey = ajy 00, and ay; = (@i, ..., ain) "

Let ay = (ahyy,.-.,a5y)" € RYY then we have (e, K(ey)) = aj,IIyay. By

RNM

Lemma 1.4, elements in ay; € are i.i.d. sub-Gaussian with E(a;) = 0 and

E(a?) = 1. Combining this with Lemma 1.3 yields

P ([<enr, K(ear)) — Eenr, K(ear))| = bun)

2

. Ui
<2exp{— —— )
exp{ cmin (I‘ank(HM) 7’])}

It follows from Lemma 1.6 that (e, K(ey)) converges in probability to (e, K(e))
and limy/_,., E(epr, K(ey)) = E(e, K(e)). These results together with Condition 1.10
imply that

(enr, K(en)) — Edenr, K(ear)) — burm

converges in distribution to
<e7 K(e)> - E<ea K(e>> - bT]
Finally, by the fact that rank(Il,;) < rank(K) and taking M — oo on both sides of

o4



(1.46), we obtain (1.45), which completes the proof. o

Lemma 1.6. Under the same assumption and notation in Lemma 1.5 and its proof,

we have
Jim E {ler — €]} =0 (1.47)

and

lim Edey, K(en)) = Ee,K(e)). (1.48)

M—0

Proof. Since |lexs —e|? = 30 [lears —eil> = X0, | 350 000 A/@5aadal?, it suffices
to show limpo B {|| D302 1101 v/ WGaadul?} = 0. By E(agaw) = 1{l = I'} and the
orthonormality of {¢;}, we have

ee} 2 ee}
E f( Z «/wflailgbil(u)) du p = Z ws.
I=M+1 I=M+1

This together with Condition 1.4 implies that above goes to zero as M — oo, which

completes the proof of (1.47).

By triangle inequality, we have
Eewr, K(en)) — Ble, K(e))] < [Elenr, K(ea — e))] + [Ed(eas — €), K(e))]. (1.49)
By Jensen’s inequality and Lemma 1.11, we have
[Edenr, K(en — e))* < [K[RE(Jen|*)E(|er —e]?),
[E (e — e), K(e))|* < |KIFE(Je|*)E(es —e]?).
From (1.47), we have limy;_, E {|leas — €]?} = 0 and limy; o E{|leas]?} = E{|e|?}.
Combining these with E(|e[?) < N maxj<i<n fu ¥ (u,u)du < oo and |Klgp < o0

implies the right side of (1.49) goes to zero when M — oo, which completes the
proof of (1.48). o

Lemma 1.7. Suppose Conditions 1.1, 1.5 and 1./ hold for stationary sub-Gaussian
L

process {Xi(-) ez Let Xppi(u) = > A(enms—i). Then, for any ®, € Hf with
1=0

[®1]lo <k and k =1,...,p,

A}{iinoo./\/l(fﬁ,p b)) = M(ffa ).
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Proof. By the definitions of M(f)z\;,u ®) and fﬁ7L79(<I>) in the proof of Theorem 1.1
in Appendix 1.B.1, we have

A}[iinoo |M(f§(4L, ) — M(f1.®1)]

=27 lim
M—o0

ess sup [(®1, fiy ,o(P1))| — ess sup (@1, £7,5(®1)))|

Oe[—m,x] Oc[—m,m]

< 2m lim ess sup [[(@1, Far 1.o(P1)) — [(P1, £7,0(21)]|

M—o0 Oc[—m,x]

< |®4]* lim
M=

Z(Ei\(/th -3 (by Lemma 1.11 and |exp(—ihd)| = 1)
. L, 7

heZ F
< @47 A}iinoo Z sz(/[,L,h - EﬁhHF :
heZ

Provided that [®1]? < oo, it suffices to prove that >, | S5, — EihHF < @

and limp—o, |23 . — B2 4] = 0.

By triangle inequality and Lemma 1.12, we obtain that

o¢] 0

a0
DN —Ziale < D) IZNale + D) I < .

h=—00 h=—00 h=—o00
We next prove limps_, HZJ\X/LLJL — Zf,h”p = 0. Write
Eﬁ,L,h(Ua v) =E {XM,L,t—h<u)X§/[,L,t('U)}
L—h
— Z JAHh(u,u’)ESM (u', 0" { Ay (v,0")} du'd,
1=0
3 (uv) = EA{Xpen(u)XL,(0)}

L—h
— Z JAHh(u,u/)ES(u',v’){Al(v,’U’)}Tdu/dv’.
1=0

26



Then,

A 23— 2l

= lim

L—h
Z JAHh(u, u ) {BM (u',v") — 35w, 0") H{A (v, ")} du' do'
1=0

F
L—h

< 2 [AdelAvne lim 36" = 3]e  (by Lemma 1.11)

~
o

1/2
< ) NAe[Avn|r ]\}[1£>noo {Z 123 — Z;:z,jk%}
Tk

~
=

~
[e=]

< 2 IAdlel Apnle lim > 5%, — 55 54lls

™~
>

=0 (by Lemmas 1.12 and 1.13)

which completes the proof. o

Lemma 1.8. Suppose that conditions in Lemma 1.7 hold. For any ®, € Hf with
[®1]lo <k and k =1,...,p, define Y = ((®1,X1),...,{P®1,X,))". Then

[ Var(Y)| < M(f¥, @1) < M (21,27 (®1)).

Proof. The proof follows from the proof of Theorem 1 in Guo and Qiao (2022) and

hence the proof is omitted here. o

L
Lemma 1.9. Suppose that conditions in Lemma 1.7 hold. Let X (u) = > Aj(er—i).
1=0

For any ®; € Hj with |®4]lo <k (k=1,...,p), define Y = (<<I>1,XL’1>_,. .
<(I)1, XL7n>)T and Y = (<¢1, X1>, c. ,<¢1, Xn>)T, then

Jlim {IY,-Y[*} =0 (1.50)
and
lim E[Y]Y,] =E[Y"Y]. (1.51)
—00

Proof of (1.50). By definitions of Y, and Y, we have that

E{IY, - Y[*} = Y E{(®1, X1 — X’}

t=1

o7



By Lemma 1.11, we have E {|[{(®1, X1, — Xp)|*} < |®1[*E{| X, — X;|*}. With the
fact | @ [* < oo, it suffices to prove that limy o E{| X, —X¢|[*} =0fort =1,...,n.
By Lemma 1.13, we have E(|&;—;|) < y/pw§. This together with Lemma 1.11 implies
that

2

E(|Xp: —X?) =ES | Y] f A(u,v)e,_(v)dv

I=L+1

0 o
< E( > D] ||A11F|A12\F|€t—h|€t—zz>
l1

=L+11ly=L+1

" 2
<pw§< Z Al”F) :

I=L+1

By Lemma 1.12, we have Y, ||A|lr < co. This together with the above yields
lim E{|X,, — X;[*} =0, (1.52)
L—

which completes the proof of (1.50).
Proof of (1.51). Next we show that lim; ., E[Y]Y,] —E[Y"Y] = 0. Write

E[Y]Y,]-E[Y"Y]|
=n[(®1, (25, — Z3)(®1))]

=n

J(I)f(u)E (X o()X] o (0) — Xo(w)X] (0)) @1 (0)dudy

<n

J‘Q}‘E (XL,t(XL,t — Xt)T) <I)1dud’0

+n

JQTE ((XL,t — Xt)XtT) @1dudv

By Jensen’s inequality and Lemma 1.11, we have

2

<[ @ E{IX LoV E X 1 — Xe*}

U SIE (X (X — Xp)") ®rdudv

2

U OE (Xpe — X4)XF) @rdudv| < @' E{X P E{ XL — Xef*)-

Combining the above results with (1.52), we complete the proof of (1.51). o
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L

Lemma 1.10. Suppose conditions in Lemma 1.7 hold. Let X (u) = Y Ai(er—y).
1=0

Then, for any ®, € HE with |®1]o < k and k =1,...,p,

lim M(f77, ®1) = M(F7, @1).
Proof. By definitions of M(f¥,®) and f; (®), we have

LIE%O IM(fL, ®1) — M(f¥, @)

= 2 lim |ess sup [(®1, £7,9(®1))] — ess sup [(B1, £7 (P1))]
L—o0 Oe[—m,7] Oc[—m,m]
< 27 lim ess sup [[(@1, £7,5(®1))| — KB, £7 (21))|
=P ge[—m,7]

2 (B - 37)

heZ

< ||<I>1H2]_}£I;C (by Lemma 1.11 and |exp(—ihf)| = 1)

F
<@ Jim D25, - B,

heZ

With [®1]? < o0, it suffices to prove >, |E7, — EhXHF < o0 and

limz o |25, — Z5 [, = 0.

By triangle inequality and Lemma 1.12, we obtain that

o0 o0
M=, - =, < Z IS5 e+ Y IS < .

h=—00 h=—0o0 h=—0o0

We next prove limy_, ”th — EffHF = 0. Write

X (u,0) = E (Xo_p(u)XF (v 2 JAHh w, ') E5(u, v ) { Ay (v,0")} T du'dv'

th(u,v) =E (Xp—n(u)XF (v Z jAHh w, ') S5 (v, v ) { A (v, ")} du' dv'.
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Then,

Jim 25, - 357,

= lim
L—o

2 JAHh w, ') X5 (v, v ) { A (v, 0"} du do’

l=L—h+1

F

< pwg ngn Z |A|r|Aisn|r  (by Lemmas 1.11 and 1.13)

I=L—h+1
e} a0
< pw; hngO Z 1A |r Z 1A e
I=L—h+1 I=L—h+1

=0 (by Lemma 1.12),

which completes the proof. o
Lemma 1.11. (i)Let A = (A;j)pxq with each A;; €S and B = (By,...,B,)" € H.

HJJA u, v)B(v)dudv

< [A[£IB]. (1.53)

Similarly, we have

< |A[ Bl (1.54)

HJAUU

(11)Let A = (Aij)pxq with each A;; € S and B = (Bj) <, with each Bj, € S. Then

we have
HJA u, 2)B(z,v)

Proofof (1.53). Let C = ffA(u,v)B(v)dudv. Thus |C;| = |ZkffAik(u,v)Bk(v)dudv| <
2 | Aik]ls | B

< [|A[#IB] 7 (1.55)

2
IO = 1CP < ), <Z Aik|s||Bk>
7 i k

< Z (Z ]Alk”?s) (Z ||Bk!2> (by Cauchy-Schwarz inequality)
i \ k k

< X 1 AulE X 1B)” = |AFIB*.
ik K
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Proof of (1.54). Let C(u) = fA(u,v)B(v)dv, then we have that Cj(u) =
Zkaik(u,v)Bk(v)dv.

|C)? = ZJ du—ZJ{ZJ Aye(u, v) B (v d}zdu

< ZJ {; \/f A2 (u, v)vaB,f(v)dv} du
< ;J {;JAfk(u, v)dvzk] J Bz(v)dv} du
= ;; ”Aik:”QZk: |Bx[* = [ AlFIB*.

Proof of (1.55). Let C(u,v) = fA(u, 2)B(z,v)dz, then we have Cj;(u,v) =
Dk f A (u, 2)By;(z,v)dz. Following the similar argument in the proof of (1.54), we

obtain

IC? =;Jf0ij(u,v)2dudv = ZJ”;JM(U z)Bkj(z,v)dz}zdudv
< ;JJ{;JA?k(u,z)dsz:Jsz(z,v)dz}dudv

= |AJEIBI.

Lemma 1.12. Suppose that conditions in Lemma 1.7 hold. Then we have

0
2 Adp < oo

=0

and

2
e}
Z 1= F < 2pwf {Z |AZF}
heZ =0
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Proof. It follows from Condition 1.3 that

i A = 2 {2 Aw}m

MS

DA < 0.
J

o~

0

Provided that X;(u Z fAl u,v)e;_i(v)dv and €,(+)’s are i.i.d. mean zero sub-

Gaussian processes, we have

25 (u,0) = EA{Xn(u)XF (0)}
S J Avin (i, )E {eo i (e (o)} {Ag(v, o))} du'd!
=0

0
— Z J App(u,u) 5w, V) {A (v, 0")} du' du'.
1=0

This together with the fact that %, (u,v) = {Z; (v, u)}T implies that

[
E
:
=
»q:
[\J
M8
7:\
=
ER

22 |ZfAl+h w,u') 2G5 (u', v ) { A (v, v")} du' do || g
h=0 1=0
QZZ| JAHh w, u') 35w, V) { A (v, ") } T du' V||

oo
2 2 | A Apen e |Z5r  (by Lemma 1.11)
=E 2

< 2puwy {Z ||A1|F} <o (by Lemme 1.13),

which completes the proof. o

Lemma 1.13. For a p-dimensional vector process {X;(-)} ez, whose lag-h auto-
covariance matrix function is X = (Eh,jk)Kj k<p with each Xy i € S and wy =

maxlgjgpfzo,jj(u,u)du < o0, we have

[Shklls < wo,  [Zalr < pwo, E(IXe]) < vpwo and E(|X]?) < pwo.
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Let Xpr4j(-) = Zf‘il Ei1dji(-) be the M-truncated process, we have

Tim |53 — 55 s = 0. (1.56)

Proof. By %) jx = mezl E(& 1€ t+nyem) @1 (1) Prm (v), orthonormality of {¢;} and

Cauchy-Schwarz inequality, we obtain

0 2
HZh,ij?s = J{ Z E(gtjlg(t—i-h)km)(bjl(u)¢km(v>} dudv

I,m=1
o8] [o0]
- Z E(&jiernyim)” < Z (§t;l) (‘S trhyem) < Wy
I,m=1 I,m=1

This implies that |27 = 3, [Znl5 < p°wg. By the similar arguments, we have

© 2
HEhX% - EhX]kH?S = f{ Z E(&i€t+nykm) bii (u)(bkm(U)} dudv

I,m=M+1
0 e}
= Z E (&€ snppm)? < Z E(&50E(ED 4 nytm)-
Im=M+1 Im=M+1

Since Y7 E(£7;) < wo < o0, the above goes to zero when M — oo, completing the
proof of (1.56).

Provided that X;;(-) = 3,2, &ié(-), orthonormality of {¢;;} and Jensen’s inequal-

ity, we have

VAN

Similarly, we obtain that E(|X|?) { X3 } = 2 2 E(&7) < pwo.

O
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Lemma 1.14. For process {Xy(-)} ez and {Y+(+)}1ez, we have that

HZ’h ]kHS S wh W s
XY XY
[ P | < AJwi Wi and |S535, Y| < 4 Jwiiwg -

Proof. This lemma can be proved in similar way to Lemma 8 of Guo and Qiao
(2022) and hence the proof is omitted here. o

and

1.C Proofs of theoretical results in Section 1.3

We present the proof of Theorem 1.4 in Appendix 1.C.1 and proofs of Proposi-
tions 1.4-1.7 in Appendix 1.C.2, followed by the supporting technical lemmas and
their proofs in Appendix 1.C.3. For a matrix A € RP*? we denote its elementwise
maximum norm by [A|max = max; ; |4;;|. To simplify our notation, for a square-
block matrix B = (Bj)1<j<pi 1<k<p, € RP19*P2¢ with the (j, k)-th block Bj;, € R*9,

we use HB||max and |\B||1q) to denote its block versions of elementwise /,, and matrix

{1 norms.

1.C.1 Proof of Theorem 1.4

Denote the minimizer of (1.25) by B € RE+Dparxaz Then

|U - ZD'BJ + A B |U - ZD'BJ2 + A, |B] ()

b <1
2(n— L) Q(n — L)

Let A = B — B and S° be the complement of S in the set {0,...,L} x {1,...,p},
For matrices A, B € RP**?2 we let ((A,B)) = trace(A"B). Then we write

S(a Ay

1 A A A oA
<———(AD7Z"(U - ZD'B)) + M (B — |B + Al ™)

1 N— AT - 71— 1,92 1,92
<——5(AD'Z(U - ZD7'B)) + Au(|As|" ™ — [ Ase[™ ),
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where T' = (n — L)"'D~'Z"ZD~'. By Proposition 1.7 and A, > 2Cysq > (M +
M) v MO a+3/2 qu+3/2) log(pq1a2) q;H+1/2}’ we have

n

1 ~ A A
—|<<A7 D™'Z"(U - ZD'B)))|
n —

< —ID72'(0 - Z2D71B) ) Al
An q1,92) (q1,42)
< 5 (l1As s\ 4 | Age] ).
This implies that
1 >\n 1 3 7
<<A FA>> ||A H(q q2) 7||A H(q ,q2) §>\n||A||§QI qz).

Therefore | A% < 4] Ag|{"%) < 4,/5| A|r. By Proposition 1.4 and 7, > 3271¢1¢es,

we obtain

~ T
(A TAY) 2 Bl A - naig{|A" ™) > (r, - 16n101029) | A} > fHAH%-

Therefore,

T2 3 ,
TIALE < SAIA™ < 6Aus" | Alr,

which implies that

965\,

T2

245"\,
|Ar < == and A" < (1.57)
2

Here, we aim to prove the upper bound of ||B — B||;. For each (h,j) € S we have,

th — By = "zj(u)T{I}hj%(U> — 1, (u)"p0(v) + Rpj(u,v)
= (9 (u) — ¥,;()"Up;d(v) + ()" T (P(v) — D))

+ 4, (W) (@ — ©p)(v) + Ry, v),
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where Ry;(u,v) = — Z;’iqlﬂ Z;"ﬁl:qﬁl apjim¥ji(w) P (v). Therefore,

1B—Bh < Z (8 () = ;)" () | s + Z 4 ()" W15 (B(v) — B(v))]s

+ Z 4, (w)™ (B1j — ®1j)p(v)|s + D | Ry, 0) s

h.j

(1.58)

Due to the orthonormality of {¢;;(-)} and {¢,,(-)} and the estimated eigenfunctions
{j()} and {dm ()},

(b (u) = () "B p(0)]ls < ai”* [ maax [0 — o]

I, (0) @05 (D(0) = (0) s < 03" [¥islle max |G — Y,

9 (u)* (Bh; = ny)(v) s = [ Wiy — P

To bound the first three terms of (1.58), we start with the upper bound of }] H\ilhj -
h.j

Wil = H\il—\Ingql ) and Z H‘I’thF — || ®['%) From Condition 1.6, for (h, j) € S,

[nile = {2021 2= 1/~th(l +om) 2 < g [P (@4 )T dady) P =
O( ;). For (h,j) e 5S¢, W,; = 0. Hence,

| = Em@mw— (s). (1.59)

By the definition of wy’, Condition 1.5 and Proposition 1.6, we have |D||max < /Wi,

D™ fimax < 764" and

. ke 1
D D e < 0} g g POLMT D)
n
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Recall that & — ¥ = DB - D-'B = DB - B) + (D! - D1)B. Then

|@ — v

<D e B = BI™  [D = D B

< D B = BJE Y + [D7 — D7 o[ B — B
HD = D B

D™ s B = B + D™ — D™y | B — BJ™

N

+ID7Y — D | D e [ €.

This, together with (1.57) implies that,

IBJ{™ %) = O(y/wif s), (1.60)
and
5 960, % * s\,
[@ — ) < ZEAL SR 4 o(1)) (1.61)

Combining (1.59) and (1.61), we have

[ @[ = Os).

To bound the fourth term of (1.58), |Rn;ls = O(| XLy 20— gyt njim¥siPmls v
| 201 2y @njim¥iibmlls) = O(uny min(gu, g2)~**Y/?), for each (h,j) € S. For

(h,7) € S¢, | Ryjlls = 0. Hence, Y ||Rp;lls = O(smin(q, go) ~"+%2).
h.j

Combining all the results with Proposition 1.6, we obtain

~ =~ (g1, 1/2 ~ 1/2 ~
1B - Bl < 191 { g max s vyls + 03 max |G~ ol

+ @ — W+ Ryl

h,j
9602 %5\,
<— 5 {1+0(1)},

which completes the proof. o
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1.C.2 Proofs of propositions

Proof of Proposition 1.4 Define I' = (n — L) 'D'E{Z"Z}D~!. Note that
6'T9 = 0°T0 + 8" (' — I')0. Hence we have

0°T0 > 0"TO — |T — T 1nax | 0] %

By Condition 1.7, wnin(T") = p, where wpyin(I') denotes the minimum eigenvalue of

I'. This, together with Lemma 1.16, completes our proof. o

Proof of Proposition 1.6 This proposition can be proved in similar way to

Proposition 3 of Guo and Qiao (2022) and hence the proof is omitted here. o

Proof of Proposition 1.7 Notice that U = ZD_1]§ +R+ E where B = DU
and {(h + 1)j}-th row block of ¥, \Tlhj fv fu w) B (u, v)¢( )"dudv. The ma-
trix R and E are both (n — L) x ¢, matrices Whose row vectors are formed by
{ry = (Th, ... 7)1 and {€ = (€n,...,6q,)" "} 41 respectively, where 7, =

25:0 Z?:l Zloiq1+l<<wjla th>7 $m><tjl and /E\tm = <Et7 $m> Then we rewrite

1

n —

D~'Z"(U - ZD 'B)

1 ~ .~ - A~ 1 A~ ~ ~ 1 ~ A~ ~
= D 'Z°(ZD'B-ZD 'B)+ —— D 'Z"R D 'Z"E
n—L ( )+ n—L * n—L

=1+ 1, + Is.

Next, we show the deviation bounds of the above three parts.

715
1 A ~ [ ]_ A~ A~
= D~'Z"(zZD™' - ZD")B|@®) + |——D"'Z"ZD (B — B)| @)
= D2 DB + = '(B - B)ii
1 ~ &
<H—LD—lzT<ZD—1 D) [ B
+H—LD '27ZD (1)1 - By
<l D12 (ZD - 2D BB + [P B - B
1 ~ .~
- D7 (7D ! — B _ B| qz)
= D2 Dl B - Bl
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where T' = (n — L)_lf)_liTZf)_l. By Lemmas 1.15, 1.17, 1.18 and (1.60) in Ap-

pendix 1.C.1, there exist some positive constants C7, ¢ and c5 such that

[0 [0} 1
L]0 < Crsql2(MEGEHI o MY ge2+32) [ BP0 v &) (1.62)

1
max n

*
—c3 )

with probability greater than 1 — ¢} (pq; v ¢2)

By Lemma 1.19, we obtain that there exist some positive constants C3,cj and c}
such that

|12 (41,92) < <l Sq—fi+1 (1.63)

max

k
—c3

with probability greater than 1 — ¢} (pqi1¢2)
Let Q = ((n — L)"'UTU)Y2 = diag({w }"/, ..., {w;/}l/Q). It follows from Proposi-

tion 1.2 and ||Qr < v/w! that there exist some positive constants C¥,cf and c
such that

1,92 1/2 AR -
185 < %D D] (n = L) DT Z'EQ ™ fax | Qv

1/2 log(pq12) (164
< Gl (MY + M) (7" v 45°)

n
*
—cF

with probability greater than 1 — ¢} (pqi1¢2)

It follows from (1.62)—(1.64) that there exist some positive constants Cy, ¢ and ¢}

such that

1 A im AN A~
Z[D127(0 - 2D71B)| g1

n —

o o 1 k
S 003‘11/2 ((M{( + M) v M%/) {<q11+3/2 ‘122+3/2> Og(]:;h@) Taq +1/2}

with probability greater than 1 — ¢*(pg1q2)~%, which completes the proof. o

1.C.3 Technical lemmas and their proofs

Lemma 1.15. |T|{% = O(¢?).
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Proof. For a semi-positive definite block matrix

L X

XT M

we have that |X||2 < ||L|g|M|r. This can be seen as a special case of p = 1 in
Theorem 4.2 of Horn and Mathias (1990). Without loss of generality, we take L = 0
as an example. Let fjk = (fjl,km)lghmgql. Then for j = k, by the diagonal struc-

ture of f‘jj, we have Hf‘NHF = O(qi/g). Applying the above inequality, we obtain
= S S 1/2

ITselle < A/ 1T e Tile = O(ai”). o

Lemma 1.16. Suppose that Conditions 1.1-1.5 hold. Then there exist some positive

constants Cp, ¢} and c& such that

B -1, < Crmgpy 220

max

with probability greater than 1 — ¢ (pg) ™.

Proof. The proof follows from Lemma 5 in Guo and Qiao (2022). o

Lemma 1.17. Suppose that Conditions 1.1-1.5 hold. Then there exist some positive

constants Cr., ci and ci such that

1
n_

N R ) 1
| =D "1Z7(ZD " = ZD ) e < Cr Mg —Og(s(h)

with probability greater than 1 — ¢*(pgy) ™% .

Proof. We first consider \|71+L]3—12TZD—1—1“\|W. By Lemma 1.26, Proposition 1.6
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and following the similar argument in the proof of Lemma 1.27, we obtain that

(n — L)_1 Z?:LH C(t_h)jotkm - E(C(tfh)jICtkm)

max

dokodm Wi, wi Wi,

< e S0t Cils Om)) = Wity Ei e G1n))
s Wt

< e S0 it e Sn)) + Wity il = Tk S
b Wl

< MEgen! logg?ql)

holds with probability greater than 1 — ¢*(pg;)~. This, together with Lemma 1.16,
shows that

1 ~ ~ A A
|=—D"'Z(ZD"" = ZD )| max
1 ~ ~ A~
< H LD_1ZTZ]:)_1 - F”max + HF - F”max
n —
o log(pg
= Op{ Mg | — Sl 1)}

Lemma 1.18. Suppose that Conditions 1.1-1.6 hold. Then there exist some positive

constants Cp, ¢ and ¢ such that

a~ 1
IB — Bnghqz) < C’Bs./\/lfq;‘ﬁ?’p 0g(q2)

n
*
Co

with probability greater than 1 — cf(q2)~

Proof. We start with the convergence rate of |[¥ — \I!||§Q1’QQ) . Elementwisely, for

fixed h, jand [ =1,...,q;,m = 1,...,qe, we have that

<<wjl> ﬁhj>7 $m> - <<wjla ﬂhj>7 ¢m> = <<wjl> ﬁhj>a (gm - ¢m> = [1
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Recall that 3, = mezlﬁhjlm%l(uwm( v) and [apim| < un; ([ +m) =512,

Il = <<¢jl= Z ahjl'm'wjl'¢m'>7 (gm - ¢m> = Z ahjlm’<¢m’> ng - ¢m>
I';m'=1 m/=1

< [ — fm sl 2.
It follows from Lemma 1.25, for (h,j) € S,

qa Qg2

[n; = Wnsllp = ;1 21[ < wnygy lglaf e
log(q2)
a2 +3/2 g\4q2
_op{uh]MY = }

Then ”\f, _ \IIH§QLQ2) _ Zizo szl H\i’h] ‘I’h]HF — Op {S./\/ly az+3/2 /logT(qu } This

result, together with |D|max < {wi }/2, implies that there exists C'z such that

B =B = ID(F = @)™ < D & — w7

< CBSMY a2+3/2 10g<QQ)
n Y

with probability greater than 1 — ¢(go)~%. o

Lemma 1.19. Suppose that Conditions 1.1-1.6 hold. Then there exist some positive

constants Cg, cf and c& such that

[(n— L)~ 1D~ 1ZTRH 71,92) < C’qul_”l

max

Lk
02'

with probability greater than 1 — ¢t (pqiqe)

Proof. Recall that we have 7, = 37, 21 Z?iqlﬂ«%‘l’ Biids GmdCiit = S, 21 Ttmhg-
The matrix R are (n — L) x go matrices whose row vectors are formed by {r; =

(e .-y Tegy)"st = L+ 1,...,n}. By Cauchy-Schwarz inequality and the definition
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of &% %, We obtain

_ n =~ L ~
(n - L) ! Zt:LJrl C(t*h)jl Zh:() Z?’:l T'tmhg’

{@le(}l/z

n

(n - L)_l Z 7:152mhj’

t=L+1

22

-
<.
;

I
M=
=

5!

T
o
<.
Il
—_

t=L+1

\

E(f?mhj’) +(n—1L)"! 2 {Ttmh] (Ttthj’>}
\
vV

p
Z L tmnjr + Lo tmhjr-

=1

I
M=

>
Il
=}

.

Recall that Cov((i, Gr) = X](l = 1), Bri(u,v) = mezl anjim¥ji (W) (v) and
|\anjim| < up;(L+m)~*~Y2 Then for (h, ') € S,

o0 2 o0
Iymny = E ( Z <¢j/l/,<5hju¢m>>@j'lf> = Z by Bty Gy 2wy

U'=q1+1 UV=q1+1
e0]
< S Wil Y nm b + (B — )
V=qi+1 1 m/ =1
0 ~ 0 o 2
D7 R SR U S
U'=q1+1 U'=q1+1 \m”=1

< (g +m) 7 + O — G g
To provide the upper bound of I5 4,5, we start with

D11 Sty — By, Gty )]
n—L

- <@/{7’11,<on i = Doy Vina)) < HEOJ = Soglls = Op{M;n~'?}.

Combining this result with Lemmas 1.24 and 1.25 and following the similar argument
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in the proof of the upper bound of I ¢,;, we obtain that, for (h,j’) € S,

Is tmnj
— © ~ ~ Dt 1 G Gt — E(Cejrn Cein )]
_ lm;ﬂ“@j/h A Bnjts DmdYXjr1ys {Bhjrs dm ) i =

2
oo
< |25 — oy ls { 2 <¢j’l'7<5hj”¢m>>} = or(Litmhg)-

l'=q1+1

Then
1/\ A q1 q2 ~
1 _ —2Kk+2
|-D Z'R| 1) < s max ZZ; 21{(Q1 +m)"2 4 Gy — O] ?qr 7}
=1 m=
= 1.65)

< —2Kk+2 —2Kk+3 _ 2 (

<s &1;2; \/q1 + q q2 Kmmaép ||¢m ¢m”

_ OP{Sql_H+1}-

1.D Proofs of theoretical results in Section 1.4

This section is organized in the same manner as Appendix 1.C. The proofs of The-
orem 1.5 and Propositions 1.5-1.9 are presented in Appendices 1.D.1 and 1.D.2, re-

spectively, followed by supporting technical lemmas and their proofs in Appendix 1.D.3.

1.D.1 Proof of Theorem 1.5

Here B € RP and 4 € R? are the minimizer of (1.30). Then

1 AA_ AN ~ 3 ~
5 |Y = XDB — ZA* + Aul BIY + Awel Al

1 S
<51V = XD B = 29?4 Al BIYY + Mzl
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Letting A = B- B, 0 =74 —, S¢ be the complement of Sy in the set {1,...,p} and
S5 be the complement of Sy in the set {1,...,d} , we have

1 A ~
S AATTOA + 207020 + 5727 25)
n

1 ~ ~
< (AT TZN(Y - QB — Z7) + Aa(|BIY — B+ Al)
Azl = Iy + 8lh)
< LAy —GB—zy) + Lotz y — 0B - 24)
n n

(|28 19— [Ase D) + Ao (105,11 — [852]1),

where Q@ = XD~ By Propositions 1.8, 1.9 and the choice of A\, = A1 = Ao =
208 s1(Mx.z + M)[q*+*{log(pq + d)/n}? + ¢=**1], we obtain that

—_

—ATQT(J’ QB — 27) < —|AIP|Q7(Y - OB — 29)|

>/3

< 2"(HASIH1 + A1),

1 T 7T O 1 T O
Lyzry 0Bz < ﬁuéuluz =08 — 23)|
1)

= (105,11 + [0

w|>’

Combining the above results, we have

1)-

1
(185,57 + 65, 11) = 5 [ Al + g

l\DICO

This ensures |Age |\ + [0ss |1 < 3(|As, | ¥ + |0, ]1). Then we have that

IAIY + 8] < 4(1 A8, |5 + 188, 11) < 4(v/51A] + v/5208]) < 451 + s2(|A] + [3])-
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This, together with Proposition 1.5, [|Af; < ﬂHAng) and 75 > 6477°q(s1 + s2)

implies

l{ATQTQA + 20O Z0 + 6T ZTZ6)
n

> (A2 + 8] — 7 (Val AL + [8],)?

T *

>{5 = 1677 q(s1 + s2)H(|A] + [])*
,7_*

> (I1A] + 1)

This implies
'rs 3\,
S UAL+ 1817 < =AY + 6]2) < /s + sa(|A] + [4]).

Therefore, we obtain that

A
JA] + o] 5 Sny LT %2

* )
2

)\n S1 + So
AL + 3], < 2ot )
2

Provided that |D~!|max < a'/2cg /?¢®/2, the rest can be proved in a similar way to

the proof of Theorem 1.4, which shows

1B =By + ¢*2|7 = v1 < |¥ = ¥\ + ¢*2|F — A1 + o(1)

< D x| B = Bl + ¢*2I7 = 7|1 + o(1)

< CPlsit ) gy

~

%
Ty
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1.D.2 Proofs of propositions
Proof of Proposition 1.5 By Lemmas 1.16, 1.20 and 1.28, we obtain

1

(1325—-4u525ﬂ

max

—-max(”—ZTZ—— E{ZTZH

ZH)— E&?Qﬂ

max |F I‘|max)

—0p {max <./\/l1Z logn(d)’M{(an logipCI) My log(pqd))}

n

max

_ OP {MX an+1 ]'Og(pq + d) } .

n

Combining this with Condition 1.9 and following the similar argument in the proof

of Proposition 1.4 implies Proposition 1.5. o
Proof of Proposition 1.8 Notice that

1A A 1A A
QY -QB—-Zy) = -Q"((Q2-Q)B+ R+ E)
n n

where ) = XD~!, B = DV and j-th row of ¥ takes the form that U, = fu Y ;(u)Bj(u)du.
Recall that r, = 1;:1 quﬂ Gji¥j1, B;). Then it follows from Lemma 1.17 when

L = 0 that there exist some positive constants C7;, cf and ¢ such that

| B\

max

log(pq)
n b

H—QTQ S)B)

SR

max

* X a+2

with probability greater than 1 — ¢ (pq)‘c§ :

Second, it follows from Lemma 1.22 that there exist some positive constants C7,, ¢}
and c3 such that

H_QTR’ 1

—K
Clas19
max

*
—c .

with probability greater than 1 — ¢} (pq)

Third, it follows from Proposition 1.3 that there exist some positive constants C1s, cf
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and ¢ such that

D 'DDIXTE

(9) . . log(pq
n < ClS{M{( + M }q1/2 L

1A (@) 1
Loe], -]
n max n

Y
max

with probability greater than 1 — ¢*(pq)~%.

Combining the above results, we obtain that there exist some positive constants

Co1, cf and ¢ such that
Ly 6 @ X Age) d gatz, [ 108(PD)
EHQ (Y = QB = Z7)|iax < Corsi(My + M) 1 ¢q T +q

with probability greater than 1 — ¢ (pq)‘c§ =

Proof of Proposition 1.9 Notice that
1 N ]_ A~
—ZNY-QB—-Zy)=-Z"((Q-Q)B+ R+ E).
n n

First, we show the deviation bound of £Z*( — Q)B. It follows from Lemma 1.21

and the fact that |¥;|; = ?:1 u;l™" = O(uj), for j € Sy, that there exist some

positive constants C3;, c¢j and ¢ such that

)%ZT(Q -~ < H%zm -0)

| Bl

max max

1 ~
<[RE Q-0 1Dl 71

/1o d
< 05‘181/\4)(,2(]0‘“ %7

with probability greater than 1 — ¢*(pgd)~%.
Second, it follows from Lemma 1.23 that there exist some positive constants C5,, ¢}
and c3 such that

1
R
n

—Kk+1/2
Y

*
< C5519

with probability greater than 1 — ¢*(pgd) .

Third, it follows from Lemma 1.28 that there exist some positive constants C3, ¢}

and ci such that

log(d
< O M7+ Mepy [ 28D

max n

1
2=
n
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with probability greater than 1 — ¢*(d)~.

Combining the above results, we obtain that there exist some positive constants

Cog, ¢} and ¢ such that

n

1 o log(pg + d
EHZTO) — QB — Z7)|max < Cozs1{Mx z + M)} {q‘”l log(pg + d) + qHH/Q}

with probability greater than 1 — ¢} (pg + d)~%

1.D.3 Technical lemmas and their proofs

Lemma 1.20. Suppose that Conditions 1.1-1.5 hold. Then there exist some positive

constants Cy zr, ci and ¢ such that

1 .~ 1 ~ 1 d
H—ZTQ _ —]E{ZTQ}‘ < G e My gty 28040
n n max n
with probability greater than 1 — ¢} (pqd)~
Proof. Note that
S 2T _ T ~AX\—1/2~X,Z -1/2 X,Z
H 20 E{Z Q}‘mx 1<jg%§k$d {Wj On ikl — {Wj Oh jkl|"
1<i<gq
Let 5. = {w X 12 , then we obtain that
HX1-12p%.2 12,
{W' / Oh,jkl {W I / ,]kl
~X,Z X,Z
5 Onjkl — Oh,jkl {W 2 — {WX}l/Q Oh,jkl
J {wﬁ}m {@;l(}m {wﬁ}m
It follows Propositions 1.1, 1.6 and the fact E(C;1Zu) < of {w3 }'/? that there exist
some positive constants CN'L zr, ¢} and ¢ such that
1 .~ 1 ~ 1 d
H—ZTQ _ —]E{ZTQ}‘ < O M g 25P1D)
n n max n

with probability greater than 1 — ¢} (pgd)~
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Lemma 1.21. Suppose that Conditions 1.1-1.5 hold. Then there exist some positive

constants Cy zr, cf and ¢ such that

~ N [log(pqd
< Oy zrMx zq H %

with probability greater than 1 — ¢ (pqd) .

Lo

Proof. We first consider |2 Z7Q — LE{Z7Q}|max. By (1.42) in Appendix 1.B.2, we
obtain that

o T DT 2 i ey B(Z )i Gotom)
pham \ w’i(m V wli(m

S bemy = (S, Yo log(pqd
ax< h,jk (o > )f h,jk (o > _ OP{MX,Z og(:q )}

m
‘7k7
Jofm V Wim

This, together with Lemma 1.20, implies that

| " 1 1 1 oa 1
lCzr0-0)  <|-zio-—Ez'e)| +|-zr0- iz}
n n n max n n

[log(pgd)
_ a+1
=0Op {MX,ZQ —n .

max max

Lemma 1.22. Suppose that Conditions 1.1-1.5 and 1.8 hold. Then there exist some

positive constants Cry, ¢§ and ¢ such that

Hn—IQTRH(q) < ORlslq—n—&-l

max

with probability greater than 1 — ¢ (pq) .

Proof. This lemma can be proved in a similar way to Lemma 1.19 and hence the

proof is omitted here. o

Lemma 1.23. Suppose that Conditions 1.1-1.5 and 1.8 hold. Then there exist some

positive constants Cre, ¢§ and ci such that

”n_lzTRHmax < C’R251q_m+l/2
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with probability greater than 1 — ¢ (pgd) ™.

Proof. This lemma can be proved in a similar way to Lemma 1.19 and hence the

proof is omitted here. o

1.E Existing results for sub-Gaussian (functional)

linear processes

For ease of reference, we present some useful existing results in Guo and Qiao (2022),
including non-asymptotic error bounds on estimated covariance matrix function,
estimated eigenpairs and estimated (auto)covariance between estimated FPC scores.
By Theorem 1.1, we can easily extend these results from Gaussian functional time
series to accommodate sub-Gaussian functional linear processes in Lemmas 1.24—
1.27. Moreover, we also present non-asymptotic error bounds on estimated (cross-
)covariance matrix in Basu and Michailidis (2015) to accommodate sub-Gaussian

linear processes in Lemma 1.28.

Lemma 1.24. Suppose that Conditions 1.1, 1.5 and 1.4 hold for sub-Gaussian linear
process {Xy(-)}ez. Then there exists some universal constant ¢, > 0 such that for

any n >0 and each j,k=1,... p,
PS5 — Sialls > 20 M0} < dexp{-cmmin(?,n)}.

Proof. This lemma follows directly from Theorem 1.1 and Theorem 2 of Guo and
Qiao (2022) and hence the proof is omitted here. o

Lemma 1.25. Suppose that Conditions 1.1, 1.3, 1.4 and 1.5 hold for sub-Gaussian
linear process {X;(-)}ez. Let M be a positive integer possibly depending on (n,p).
If n 2 log(pM)M*2(MX)?% then there exist some constants ¢, 3 > 0 such that,

with probability greater than 1 — éy(pM)~%, the estimates {0} and {zzﬂ} satisfy

~NX X

X
u@l

n ‘ (T

la+1

} < MY log(p) (1.66)

max
1<j<p,I<ISM

Proof. This lemma follows directly from Theorem 1.1 and Theorem 3 of Guo and
Qiao (2022) and hence the proof is omitted here. o
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Lemma 1.26. Suppose that conditions in Lemma 1.25 hold. Then there exists some
unwersal constant ¢4 > 0 such that for each j = 1,...,p,l = 1,...,d;, any given

function g € H and n > 0,

P ([ = t0.9)| = Al LMY 4l
< 8exp { — éanmin(n’, ?7)} +dexp { - 64{/\/1{(}*%5*2(@“)},

» 1/2 _ _
where g(-) = 332 9ua (), 197w = (Cpwmwigiy) s o1 = 25wy and py =
4(6 4 2v/2)cg Hw }? with ¢y < AMFw 1ot

Proof. This lemma follows directly from Theorem 1.1 and Lemma 3 of Guo and
Qiao (2022) and hence the proof is omitted here. o

Lemma 1.27. Suppose that conditions in Lemma 1.25 hold. Let M be a positive
integer possibly depending on (n,p). If n = log(pM)M**+2(MX)2 then there exist
some constants ¢5,c¢ > 0 such that, with probability greater than 1 — é5(pM )% the

estimates {G, 1, } Satisfies

~X o X‘
max ’Uh,Jklm Uh,Jklm| < M{( M (1.67)
1<,k<p X X n

+1
1<l,m<M (l Vv m)a wjl Wim

Proof. This lemma follows directly from Theorem 1.1 and Theorem 4 of Guo and
Qiao (2022) and hence the proof is omitted here. o

Lemma 1.28. (i)Suppose {Z;} is from d-dimensional sub-Gaussian linear process
with absolute summable coefficients and bounded MZ. For any given vector v € R
with |[vo < k (k= 1,...,d), denote M(f;,v) = 27 - essSUPpe[_n V' f 2. Then

there exists some constants c, ¢y, C17 > 0 such that for any n > 0,

P

|

I/T(flg — Eg)l/) > M(fz,v)n} < 2exp {—cnmin (772,77)},

and y
V(X - 25)”

vy

> M,fn} < 2exp {—cnmin (772,77)}.
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In particular, with probability greater than 1 — ¢i6(d) =7,

log(d)
Z | < pZ
12%’%’20]19 ZO,]k’NMl N

(11)Suppose {€;} is from sub-Gaussian linear process with absolute summable coeffi-
cients, bounded M€ and independent of {Z;}. Then there exist some positive con-

stants Cig, C1g such that with probability greater than 1 — ¢ig(d)=,

log(d)

n

max Z Zijer/n| S (M7 + MF)
1

1<j<d
J =

Proof. This lemma can be proved in similar way to Proposition 2.4 of Basu and
Michailidis (2015) and be extended to sub-Gaussian linear process setting following

the similar techniques used in the proof of Theorem 1.1. o

1.F Matrix representation of model (1.1)

It follows from the Karhunen-Loeve expansion that model (1.1) can be rewritten as

L p o
Z&mcbm ZZZ it (), By (1, 0))e—nyjt + €(v),

This, together with orthonormality of {®,,(-)}m>1, implies that

L P 4915
Em =D Z<<¢gz s Brj(w, 0)), G (V))C—hyjt + Ttm + €m,
h=0j=11-1

where i = Yo S0y 02 Ciu(u), By (1, 0)); G (0))C- )it and e = {bm, 1)
for m =1,...,q, represent the approximation and random errors, respectively. Let
ry = (Ta,...,71g)" and € = (e,...,€4,)". Let R and E be (n — L) x ¢ matrices
whose row vectors are formed by {r;,t = L+ 1,...,n} and {€,t = L +1,...,n}

respectively. Then (1.1) can be represented in the matrix form of (1.23).
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Chapter 2

Adaptive Functional Thresholding
for Sparse Covariance Function

Estimation in High Dimensions

2.1 Introduction

The covariance function estimation plays an important role in functional data anal-
ysis, while existing methods are restricted to data with a single or small num-
ber of random functions. Recent advances in technology have made multivari-
ate or even high-dimensional functional datasets increasingly common in various
applications: for example, time-course gene expression data in genomics (Storey
et al., 2005), air pollution data in environmental studies (Kong et al., 2016) and
different types of brain imaging data in neuroscience (Zhu et al., 2016; Li and
Solea, 2018). Under such scenario, suppose we observe n independent samples
Xi() = {Xa(),..., Xip()}" (¢ = 1,...,n) defined on a compact interval U with
covariance function 2 (u,v) = {Ek(u,v)}pxp = Cov{X;(u),X;(v)}' for u,v € U,
which can also been seen as a matrix of marginal- and cross-covariance functions.
Besides being of interest in itself, an estimation of ¥(-, -) is useful for numerous pro-
cedures including multivariate functional principal components analysis (Happ and
Greven, 2018), classification by functional linear discriminant analysis (Park et al.,

2022) and recovering functional graphical models (Qiao et al., 2019).

ITo clarify, we reuse the symbols that are presented in the previous chapter and will redefine
the notation in Chapters 2 and 3, respectively.
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This chapter focuses on estimating 3 under high-dimensional scaling, where p can be

comparable to, or even larger than n. In this setting, the sample covariance function
~ ~ 1 n _ _
B(u,v) = {Zjelw, V)pxp = ——7 D Xi(w) = X (W) HXi(v) = X(0)}T, w,veld,
i=1

where X(-) = n71 X" | X;(+), performs poorly, and some lower-dimensional struc-
tural assumptions need to be imposed to estimate ¥ (u,v) consistently. In contrast
to extensive work on estimating high-dimensional sparse covariance matrices, for
example, Bickel and Levina (2008); Rothman et al. (2009); Cai and Liu (2011);
Chen and Leng (2016); Avella-Medina et al. (2018) and Wang et al. (2021), re-
search on sparse covariance function estimation in high dimensions remains largely

unaddressed in literature.

In this chapter, we consider estimating sparse covariance functions via adaptive func-
tional thresholding. Note that the words “sparse” and “sparsity” are used to describe
the non-zero structure of the high-dimensional covariance function. To achieve this,
we introduce a new class of functional thresholding operators that combine func-
tional versions of thresholding and shrinkage based on the Hilbert—Schmidt norm of
functions, and develop an adaptive functional thresholding procedure on i(, -) using
entry-dependent functional thresholds that automatically adapt to the variability of
ijk(o, -)’s. To provide theoretical guarantees of our method under high-dimensional
scaling, it is essential to develop standardized concentration results taking into ac-
count the variability adjustment. Compared with the adaptive thresholding for
non-functional data (Cai and Liu, 2011), the intrinsic infinite-dimensionality of each
Xi;(-) leads to a substantial rise in the complexity of sparsity modeling and theo-
retical analysis, as one needs to rely on some functional norm of standardized fljk’s,
for example, the Hilbert—-Schmidt norm, to enforce the functional sparsity in )
and tackle more technical challenges for standardized processes within an abstract

Hilbert space.

There are many applications of our proposed sparse covariance function estimation
method in neuroimaging analysis, where brain signals are measured over time at a
large number of regions of interest (ROIs) for individuals. Examples include the
brain-computer interface classification (Lotte et al., 2018) and the brain functional
connectivity identification (Rogers et al., 2007). Traditional neuroimaging analy-
sis models brain signals for each subject as multivariate random variables, where
each ROI is represented by a random variable, and hence the covariance/correlation
matrices of interest are estimated by treating the time-course data of each ROI as

repeated observations. However, due to the non-stationary and dynamic features of
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signals (Chang and Glover, 2010), the strategy of averaging over time fails to char-
acterize the time-varying structure leading to the loss of information in the original
space. To overcome these drawbacks, we follow recent proposals to model signals
directly as multivariate random functions with each ROI represented by a random
function (Li and Solea, 2018; Qiao et al., 2019; Solea and Li, 2022; Hu and Yao,
2021). The identified functional sparsity pattern in our estimate of ¥ can be used
to recover the functional connectivity network among different ROIs, which is illus-
trated using examples of functional magnetic resonance imaging (fMRI) datasets in
Section 2.5 and Section 2.C.2 of the Appendix.

This chapter makes useful contributions at multiple fronts. On the method side, it
generalizes the thresholding/sparsity concept in multivariate statistics to functional
settings and offers a novel adaptive functional thresholding proposal to handle the
heteroscedastic problem of the sparse covariance function estimation by incorpo-
rating variance effects of individual entries of the sample covariance function into
functional thresholding. Such procedure also provides an alternative of identify-
ing correlation-based functional connectivity with no need to specify the correla-
tion function, the estimation of which poses additional challenges as the inverses
of marginal-covariance functions are unbounded. On the theory side, we show that
adaptive functional thresholding estimators enjoy the convergence and support re-
covery properties under a high-dimensional regime. The proof relies on tools from
empirical process theory due to the infinite-dimensional nature of functional data
and some novel standardized concentration bounds in the Hilbert—Schmidt norm to
deal with issues of high-dimensionality and variance adjustment. Our theoretical
results and adopted techniques are general, and can be applied to other settings
in high-dimensional functional data analysis. Empirically, we demonstrate the uni-
form superiority of adaptive functional thresholding estimators over the universal
functional thresholding estimators via both simulation studies and the functional

connectivity analysis of two neuroimaging datasets.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce
a class of functional thresholding operators, based on which the adaptive functional
thresholding of the sample covariance function is proposed. Section 2.3 presents
convergence and support recovery analysis of the adaptive functional thresholding
estimator. In Sections 2.4 and 2.5, we examine the finite-sample performance of the
proposed method through simulations and the functional connectivity analysis of a
neuroimaging dataset, respectively. Section 2.6 concludes this chapter by discussing

three potential extensions. All technical proofs are relegated to the Appendix.
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2.2 Methodology

We begin by introducing some notation. Let Ly(U) denotes a Hilbert space of
square integrable functions defined on U and S = Lo(U) ® Lo(U), where ® is the
Kronecker product. For any K € S, we denote its Hilbert—-Schmidt norm by | K|s =
{§ § K (u,v)2dudv}/?. With the aid of Hilbert-Schmidt norm, for any regularization
parameter A > 0, we first define a class of functional thresholding operators sy : S —

S that satisfy the following conditions:

(i) [sx(2)|s < ¢|Y|s for all Z and Y € S that satisfy |Z — Y|s < A and some

c>0;
(i) |sx(Z2)]s =0 for | Z]s < A;

(iii) ||sx(Z) — Z||s < A for all Z € S.

Our proposed functional thresholding operators can be viewed as the functional
generalization of thresholding operators (Cai and Liu, 2011). Instead of a simple
pointwise extension of such thresholding operators under functional domain, we
advocate a global thresholding rule based on the Hilbert—Schmidt norm of functions
that encourages the functional sparsity, in the sense that s)(Z)(u,v) = 0, for all
u,v € U, if |Z|s < X under condition (ii). Condition (iii) limits the amount of

(global) functional shrinkage in the Hilbert—Schmidt norm to be no more than A.

Conditions (i)—(iii) are satisfied by functional versions of some commonly adopted
thresholding rules, which are introduced as solutions to the following penalized

quadratic loss problem with various penalties:
)1 2
sx(Z) = arg min §H6’—Z\|S + pa(6) (2.1)
0eS

with py(0) = pa(]|€]s) being a penalty function of |f]s to enforce the functional
sparsity.

The soft functional thresholding rule results from solving (2.1) with an ¢;/¢5 type
of penalty, pA(f#) = A|0|s, and takes the form of s3(Z) = Z(1 — N\/|Z||s)+, where
(z); = max(x,0) for x € R. This rule can be viewed as a functional generalization
of the group lasso solution under the multivariate setting (Yuan and Lin, 2006).
To solve (2.1) with an £y/¢y type of penalty, px(0) = 272A21(|f||s # 0), we obtain
hard functional threhsolding rule as ZI(|Z|s = A), where I(-) is an indicator func-

tion. As a comparison, soft functional thresholding corresponds to the maximum
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amount of functional shrinkage allowed by condition (iii), whereas no shrinkage re-
sults from hard functional thresholding. Taking the compromise between soft and
hard functional thresholding, we next propose functional versions of SCAD (Fan and
Li, 2001) and adaptive lasso (Zou, 2006) thresholding rules. With a SCAD penalty
(Fan and Li, 2001) operating on | - |s instead of | - | for the univariate scalar case,
SCAD functional thresholding s3°(Z) is the same as soft functional thresholding if
|Z]ls < 2A, and equals Z{(a — 1) — a)\/|Z|s}/(a —2) for |Z]|s € [2\,aA] and Z if
|Z||s > a\, where a > 2. Analogously, adaptive lasso functional thresholding rule is
S5H(Z) = Z(1 = N Z[5) 4 with g > 0,

Our proposed functional generalizations of soft, SCAD and adaptive lasso thresh-
olding rules can be checked to satisfy conditions (i)—(iii), see Appendix 2.B for
details. To present a unified theoretical analysis, we focus on functional threshold-
ing operators s)(Z) satisfying conditions (i)—(iii). It is worth noting that, although
the hard functional thresholding does not satisfy condition (i), theoretical results
in Section 2.3 still hold for hard functional thresholding estimators under similar

conditions with corresponding proofs differing slightly.

In general, conditions (i)—(iii) are satisfied by a number of solutions to (2.1), where
the presence of || s in both the loss and various penalty functions leads to functional
thresholding rules as functions of | Z|s. Such connection demonstrates the rational-
ity of imposing Hilbert—Schmidt-norm based conditions (i)—(iii). For examples of
functional data with some local spikes, one may suggest another class of functional
thresholding operators §,(Z) satisfying three supremum-norm based conditions anal-
ogous to conditions (i)—(iii), where, for any K € S, we denote its supremum norm by
|K | = sup, ye [ K (u, v)|. In this case, §,(Z) can not be directly derived as the so-
lution to (2.1) with py(0) = pa(||f]«). However, by substituting ||-|s in s3(Z), s3°(2)
and s3"(Z) with | - |, the corresponding supremum-norm based functional thresh-
olding rules can be presented and checked to satisfy three conditions for §,(Z) in
a similar fashion. To study theoretical properties analogous to Theorems 2.1 and
2.2 in Section 2.3, the main challenge is to establish concentration bounds on some
standardized processes in the supremum norm, where our tools and results in Ap-
pendix 2.A can be applied accordingly. In this regard, the || - |s that we adopt in
sx(Z) is not necessarily the unique choice, but serves as the building block for the

sparse covariance function estimation problem.

We now discuss our estimation procedure based on s,(Z). As the variance of ijk(u, v)
depends on the distribution of {X;(u), X;x(v)} through higher-order moments, which
is intrinsically a heteroscedastic problem, it is more desirable to use entry-dependent

functional thresholds that automatically takes into account the variability of f]jk’s.
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To achieve this, define the variance factors © ;. (u, v) = Var([X;;(u)—E{X;;(u)}][ X (v)—
E{X;1(v)}]) with corresponding estimators

n

B, (u, v) = %Z [{Xij(u)—Xj(u)}{xi,f(v)—Xk@)}—ijk(u,v)r Gok=1,....p).

=1

Then the adaptive functional thresholding estimator 3, = {ifk(, )} pxp is defined
by
~ A 3
_ Al/2 jk
2?147 - @]k X S\ <é1/2> ) (22)
jk
which uses a single threshold level to functionally threshold standardized entries,
ijk/@;f for all j,k, resulting in entry-dependent functional thresholds for f]jk’s.
The selection of optimal A is of practical importance and will be discussed in details

in Section 2.4.

An alternative approach to estimate X is the universal functional thresholding esti-

mator
Yy = {E;'Jk('a Vpxp with E;‘Jk = Sx (Ejk)7

where a universal threshold level is used for all entries. In a similar spirit to Rothman
et al. (2009), the consistency of N requires the assumption that marginal-covariance
functions are uniformly bounded in the nuclear norm, that is max; |3;;|x < M,
where |X5]x = §,, £j;(u, u)du. However, intuitively speaking, such universal method
does not perform well when nuclear norms vary over a wide range, or even fails when
the uniform boundedness assumption is violated. Section 2.4 provides some empir-

ical evidence to support this intuition.

2.3 Theoretical properties

We begin with some notation. For a random variable W, define the Orlicz norm
W]y = inf{c > 0 : E[¢(|W|/c)] < 1}, where ¢ : [0,00) — [0,00) is a non-
decreasing, non-zero convex function with ¢(0) = 0 and the norm takes the value
o if no finite ¢ exists for which E[¢(|]W|/c)] < 1. Denote ¢ (x) = exp(a®) — 1 for
k = 1. Let the packing number D(e,d) be the maximal number of points that can
fit in the compact interval ¢ while maintaining a distance greater than e between
all points with respect to the semimetric d. We refer to Chapter 8 of Kosorok
(2008) for further explanations. For {X;;(u) : w e U,i = 1,...,n,5 = 1,...,p},
define the standardized processes by Y;;(u) = [Xij(u) — E{X;;(u)}]/o;(u)'/?, where

oj(u) = Xj;(u, u).
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To present the main theorems, we impose the following regularity conditions.

Condition 2.1. (i) For each i and j, Y;;(-) is a separable stochastic process with
the semimetric d;(u,v) = |Y1;(u) — Y1,;(0)|ly, for u,v € U; (ii) For some uy € U,

maxi<j<p |Y1;(%0) |y, is bounded.

Condition 2.2. The packing numbers D(e,d;)’s satisfy max,<;<,D(€,d;) < Ce™"

for some constants C,r > 0 and € € (0, 1].

Condition 2.3. For some constant 7 > 0, min;; inf, ey Var{Ylj (u)Ylk(v)} > T

1/4

Condition 2.4. The pair (n,p) satisfies logp/n'’* — 0 as n and p — .

Conditions 2.1 and 2.2 are standard to characterize the modulus of continuity of
sub-Gaussian processes Y;;(+)’s, as described in Chapter 8 of Kosorok (2008). These
conditions also imply that there exist some positive constants Cy and 7 such that
Elexp(t|Y3,]?)] < Cp for all [t| < n and j with Yy, = {§,Yi;(u)?du}/?, which
plays a crucial role in our proof when applying concentration inequalities within
Hilbert space. Condition 2.3 restricts the variances of Y;;(u)Y;x(v)’s to be uniformly
bounded away from zero so that they can be well estimated. It also facilitates the
development of some standardized concentration results. This condition excludes
the case of a Brownian motion Xj;(-) starting at 0 for some j. However, replacing
Xi;j(-) with a contaminated process X;;(-) + &;, where &;;’s are independent from
a normal distribution with zero mean and a small variance and are independent of
Xi;(+)’s, Condition 2.3 is fulfilled while the cross-covariance structure in ¥ remains
the same in the sense that Cov{X;;(u)+&;;, Xik(v)} = Cov{X;;(u), Xix(v)} for k # j
and u,v € U. Condition 2.4 allows the high-dimensional case, where p can diverge

at some exponential rate as n increases.

In the following, we establish the convergence rate of the adaptive functional thresh-
olding estimator > A over a large class of “approximately sparse” covariance functions
defined by

p
Claso(@sth) = {23 > 0, max 3 o |97 o 402 S8 < so(p)).
SISPLT

for some 0 < ¢ < 1, where |0j| = sup,q,0j(u) and ¥ > 0 means that ¥ =
{Zjr(, ) }pxp s positive semidefinite, that is >}, § § Zje(u, v)a;(w)ag(v)dudv = 0
for any a;(-) € L*(U) (j = 1,...,p). See Cai and Liu (2011) for a similar class of

covariance matrices for non-functional data. Compared with the class

p
C*(g,50(p);U) = {3 3 = 0, max o < M, max 3 [V < s0(p)},
k=1
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over which the universal functional thresholding estimator f]U can be shown to be
consistent, the columns of a covariance function in C(q, so(p);U) are required to be
within a weighted ¢,/¢s ball, instead of a standard ¢,/¢5 ball, where the weights are
determined by |o;]x’s. Unlike C*(q, so(p);U), C(q, so(p);U) no longer requires the
uniform boundedness assumption on |o;|x’s and allows max; |o;[x — 0. In the
special case of ¢ = 0, C(q, so(p);U) corresponds to a class of truly sparse covariance
functions. Note that the constant so(p) is allowed to depend on p and can be

regarded implicitly as the restriction on functional sparsity.

Theorem 2.1. Suppose that Conditions 2.1-2./ hold. Then there exists some con-
stant § > 0 such that, uniformly on C(q,so(p);U), if A = 6(log p/n)"/?,

1—q

A~ P ~ 10 p 2
IS, -3, - mag)j;uz;k—zjkus:%{30<p>( )71 e

1<k

Theorem 2.1 presents the convergence result in a functional version of matrix ¢,
norm. The rate in (2.3) is consistent to those of sparse covariance matrix estimates
(Rothman et al., 2009; Cai and Liu, 2011).

We finally turn to investigate the support recovery consistency of )y A over the pa-

rameter space of truly sparse covariance functions defined by
p
Co(so(p);U) ={X: = >0, Qféﬁ,; I(|Zse]ls # 0) < so(p)},

which assumes that {X;x(, -) },x, has at most so(p) non-zero entries on each row. The
theorem below shows that, with the choice of A = d(logp/n)'/? for some constant
§ >0, 3, exactly recovers the support of 3, supp(X) = {(j, k) : |X;k|s # 0}, with
high probability.

Theorem 2.2. Suppose that Conditions 2.1-2.4 hold and szk/@%QHs > (20 +

7)(log p/n)Y? for all (j,k) € supp(X) and some v > 0, where § is stated in The-

orem 2.1. Then we have that

lelelgo pr{supp(X,) = supp(X)} — 1 as n — .

Theorem 2.2 guarantees that 3, achieves the exact recovery of functional spar-
sity structure in X, that is the graph support in functional connectivity analysis,
with probability tending to 1. This theorem holds under the condition that the

Hilbert—Schmidt norms of non-zero standardized functional entries exceed a certain
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threshold, which ensures that non-zero components are correctly retained. See an
analogous minimum signal strength condition for sparse covariance matrices in Cai

and Liu (2011).

2.4 Simulations

We conduct a number of simulations to compare adaptive functional thresholding
estimators to universal functional thresholding estimators. In each scenario, to
mimic the infinite-dimensionality of random curves, we generate functional variables
by Xi;j(u) =s(u)"0;; fori =1,...,n,5 =1,...,pand u e U = [0, 1], where s(u) is
a 50-dimensional Fourier basis function and 8; = (05, ...,6;)" € R*” is generated
from a mean zero multivariate Gaussian distribution with covariance matrix Q =
(€ )pxp- The functional sparsity pattern in 3 = {¥;4(-, )}pxp with its (j, k)th
entry X, (u, v) = s(u)"Q;;s(v) can be characterized by the block sparsity structure
in Q. Define Q) = w;D with D = diag(17%,...,5072) and hence Cov(8;ji, 0jx) ~
E=2I(k = k') for k,k' =1,...,50. Then we generate € with different block sparsity

patterns as follows.

e Model 1 (block banded). For j,k =1,...,p/2, wjr = (1 — |j — k|/10)4. For
Jok=p/24+1, ... p, wj=41( =k).

e Model 2 (block sparse without any special structure). For j, k = p/2+1,...,p,
wijr = 41(j = k). For j,k = 1,...,p/2, we generate w = (Wji)p/2xp2 = B +
01,2, where elements of B are sampled independently from Uniform[0.3,0.8]
with probability 0.2 or 0 with probability 0.8, and § = {—Auin(B),0} + 0.01

to guarantee the positive definiteness of €2.

We implement a cross-validation approach (Bickel and Levina, 2008) for choosing the
optimal thresholding parameter in )y - Specifically, we randomly divide the sample
{X;:i=1,...,n} into two subsamples of size n; and nq, where ny = n(1—1/logn)
and ns = n/logn and repeat this N times. Let f]iyi()\) and EA)(SVQ) be the adaptive
functional thresholding estimator with thresholding parameter A and the sample
covariance function based on n; and ny observations, respectively, from the vth

split. We select the optimal A by minimizing

N
3 _ &) &)
RO = N7 Y2000 — Zgalr,
v=1
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where | - |p denotes the functional version of Frobenius norm, that is for any K =
{Kji (", ) }pxp with each Ky €S, [K|r = (3, |K;x|%)Y2. The optimal thresholding

parameter in 3 can be selected in a similar fashion.

We compare the adaptive functional thresholding estimator s A to the universal
functional thresholding estimator 3, under hard, soft, SCAD (with a = 3.7) and
adaptive lasso (with 7 = 3) functional thresholding rules. Here A is selected by
the cross-validation procedure with N = 5. We also obtain the sample covariance
function EA]S, the results of which deteriorate severely compared with the com-
petitors, so we do not report their results here. We generate n = 100 obser-
vations for p = 50,100,150 and replicate each simulation 100 times. We exam-
ine the performance of nine approaches by both estimation and support recov-
ery accuracies. In terms of the estimation accuracy, Table 2.1 reports numerical
summaries of losses measured by functional versions of Frobenius and matrix ¢,
norms. To assess the support recovery consistency, we present in Table 2.2 the
average of true positive rates (TPRs) and false positive rates (FPRs), defined as
TPR = #{(j,k) : [Spls # 0 and |Sills # O}/#{(G. k) : [Sils # 0} and
FPR = #{(.k) : [Sulls # 0 and [Zyels = 0}/#{G. k) : [Zjels = 0. For com-
parison, we also present the support recovery accuracy of the pairwise testing for
uncorrelatedness (Zhang, 2013) with multiple testing adjustments in Table 2.3 of
Appendix 2.C. The direct implementation of such inference procedure involves the
eigen-decomposition of four-way tensors, which results in higher computational cost

especially for large p.

Several conclusions can be drawn from Tables 2.1 and 2.2. First, in all scenarios,
the adaptive functional thresholding estimator )y A provides substantially improved
accuracy over the universal functional thresholding estimator f]U regardless of the
thresholding rule or the loss used. Second, for support recovery, again by A uniformly
outperforms iU, which fails to recover the functional sparsity pattern especially
when p is large. Third, the adaptive functional thresholding approach using the hard
and the adaptive lasso functional thresholding rules tends to have lower losses and
lower TPRs/FPRs than that using the soft and the SCAD functional thresholding

rules.

2.5 Real Data

In this section, we aim to investigate the association between the brain functional
connectivity and fluid intelligence (gF'), the capacity to solve problems indepen-

dently of acquired knowledge (Cattell, 1987). The dataset contains subjects of
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Table 2.1: The average (standard error) functional matrix losses over 100 simulation
runs.

p =50 p =100 p =150
Model ~ Method N S R S N S
Functional Frobenius norm
Hard 5.51(0.04) 12.16(0.02)  8.08(0.04) 17.65(0.01) 10.18(0.04)
Soft 6.41(0.06) 10.58(0.08)  9.60(0.05) 16.81(0.07) 12.12(0.06)
SCAD 5.79(0.05) 10.73(0.08)  8.69(0.05) 16.92(0.07) 11.03(0.06) 21.63
Adap. lasso 5.39(0.04) 11.66(0.08)  7.92(0.04) 17.64(0.01)  9.94(0.05)

Functional matrix ¢; norm

Hard 4.05(0.06)  9.44(0.01)  4.62(0.05)  9.52(0.01)  4.90(0.05)  9.55(0.01)

Soft 5.16(0.07)  8.29(0.08)  6.03(0.05)  9.33(0.02)  6.38(0.05)  9.51(0.01)

SCAD 4.49(0.08)  8.46(0.07)  5.47(0.06)  9.38(0.02)  5.90(0.06)  9.52(0.01)

Adap.asso  3.94(0.07)  9.11(0.07)  4.64(0.06)  9.51(0.01)  4.98(0.06)  9.55(0.01)
Functional Frobenius norm

Hard 5.78(0.03)  9.59(0.02)  9.72(0.04) 16.14(0.01) 14.38(0.06) 22.75(0.01)

Soft 6.27(0.03)  8.73(0.04) 10.50(0.05) 15.29(0.05) 15.10(0.05) 22.35(0.05)

SCAD 6.06(0.03)  8.76(0.04) 10.17(0.05) 15.33(0.05) 14.79(0.06) 22.36(0.04)

9 Adap. lasso 5.57(0.03)  9.29(0.04)  9.22(0.04) 16.06(0.02) 13.33(0.06) 22.74(0.01)
Functional matrix ¢; norm

Hard 2.94(0.03)  4.85(0.01)  4.94(0.05)  7.27(0.01)  7.86(0.07) 10.54(0.01)

Soft 3.39(0.03)  4.61(0.04) 5.51(0.04)  7.06(0.02)  8.42(0.05) 10.43(0.01)

SCAD 3.31(0.03)  4.59(0.03)  5.43(0.04)  7.06(0.02)  8.35(0.05) 10.44(0.01)

Adap. lasso 2.85(0.03)  4.76(0.02)  4.77(0.05)  7.23(0.01)  7.57(0.07) 10.54(0.01)

resting-state fMRI scans and the corresponding ¢gF scores, measured by the 24-item
Raven’s Progressive Matrices, from the Human Connectome Project (HCP). We
follow many recent proposals based on HCP by modelling signals as multivariate
random functions with each region of interest (ROI) representing one random func-
tion (Zapata et al., 2022; Lee et al., 2021; Miao et al., 2022). We focus our analysis
on niew = 73 subjects with intelligence scores gF' < 8 and npign = 85 subjects with
gF = 23, and consider p = 83 ROIs of three generally acknowledged modules in
neuroscience study (Finn et al., 2015): the medial frontal (29 ROIs), frontopari-
etal (34 ROIs) and default mode modules (20 ROIs). For each subject, the BOLD
signals at each ROI are collected every 0.72 seconds for a total of L = 1200 mea-
surement locations (14.4 minutes). We first implement the ICA-FIX preprocessed
pipeline (Glasser et al., 2013) and a standard band-pass filter at [0.01,0.08] Hz
to exclude frequency bands not implicated in resting state functional connectivity
(Biswal et al., 1995). Figure 2.8 in Appendix 2.C.3 displays exemplified trajectories
of pre-smoothed data. The adaptive functional thresholding method is then adopted

to estimate the sparse covariance function and therefore the brain networks.

The sparsity structures in 33, for both groups are displayed in Figure 2.1. With
X selected by the cross-validation, the network associated with ﬁA for subjects
with ¢gF > 23 is more densely connected than that with gF < 8, as evident from
Fig. 2.1(a)—(b). We further set the sparsity level to 70% and 85%, and present the
corresponding sparsity patterns in Fig. 2.1(c)—(f). The results clearly indicate the
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Table 2.2: The average TPRs/ FPRs over 100 simulation runs.

p =50 p =100 p = 150
Model ~ Method s, S, s, ) N S
Hard 0.70/0.00 0.00/0.00 0.66/0.00 0.00/0.00 0.63/0.00 0.00/0.00

Soft 0.89/0.07 0.48/0.17 0.85/0.04 0.24/0.05 0.83/0.03 0.06/0.01

! SCAD  0.89/0.07 0.44/0.14 0.85/0.04 0.21/0.04 0.84/0.03 0.06/0.01
Adap. lasso  0.78/0.00 0.11/0.02 0.74/0.00 0.00/0.00 0.72/0.00 0.00,/0.00
Hard  0.77/0.00 0.00/0.00 0.68/0.00 0.00/0.00 0.63/0.00 0.00/0.00

) Soft 0.99/0.06 0.50/0.07 0.97/0.04 0.31/0.04 0.96/0.04 0.12/0.02

SCAD  0.99/0.06 0.48/0.06 0.97/0.05 0.29/0.04 0.96/0.05 0.11/0.02
Adap. lasso  0.91/0.00 0.11/0.01 0.85/0.00 0.02/0.00 0.83/0.00 0.00/0.00

existence of three diagonal blocks under all sparsity levels, complying with the iden-
tification of the medial frontal, frontoparietal and default mode modules in Finn
et al. (2015). We also implement the universal functional thresholding method.
However, compared with > A, the results of EAIU suffer from the heteroscedasticity, as
demonstrated in Section 1.5 and Section 2.C.2 of the Appendix, and fail to detect
any noticeable block structure, hence we choose not to report them here. To ex-
plore the impact of gF on the functional connectivity, we compute the connectivity
strength using the standardized form Hijkﬂg/{ﬂf]?jH3||§]‘,;‘k||3}1/2 for j,k =1...,p.
Interestingly, we observe from Figure 2.2 that subjects with ¢F > 23 tend to have
enhanced brain connectivity in the medial frontal and frontoparietal modules, while
the connectivity strength in the default mode module declines. This agrees with
existing neuroscience literature reporting a strong positive association between in-
telligence score and the medial frontal /frontoparietal functional connectivity in the
resting state (Van Den Heuvel et al., 2009; Finn et al., 2015), and lends support
to the conclusion that lower default mode module activity is associated with better
cognitive performance (Anticevic et al., 2012). See also Section 2.C.2 of the Ap-
pendix, in which we illustrate our adaptive functional thresholding estimation using
another ADHD dataset.

2.6 Discussion

We conclude this chapter by discussing three directions for future study. The first
extension considers estimating functional Gaussian graphical models targeting at
recovering the conditional dependence structure among p random functions. Qiao
et al. (2019) proposed to estimate a block sparse inverse covariance matrix by treat-
ing dimensions of random functions as approaching infinity. However, to deal with

truly infinite-dimensional Gaussian processes, it is desirable to avoid the estimation
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(c) gF < 8: EA]A (70% zeros)
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(b) gF = 23: 8, (72% zeros) (d) gF > 23: 8, (70% zeros) (f) gF > 23: 3, (85% zeros)

Figure 2.1: Estimated sparsity structures in fJA using soft functional thresholding rule
at fluid intelligence gF < 8 and ¢gF > 23: (a)—(b) with the corresponding A selected by
fivefold cross-validation; (c)—(f) with the estimated functional sparsity levels set at 70%
and 85%.

of sparse inverse covariance function due to its unboundedness. For non-functional
Gaussian graphical models, an innovative transformation (Fan and Lv, 2016) con-
verts the problem of estimating sparse inverse covariance matrix to that of sparse
covariance matrix estimation. It is thus of great interest to generalize this transfor-
mation strategy to the functional domain and hence our proposed sparse covariance

function estimation approach can be applied.

The second topic is about the classification for multivariate functional data, where
estimating the covariance function plays a crucial role. Existing literature has fo-
cused on univariate or low-dimensional functional data, while our proposal of esti-
mating sparse covariance function can be possibly incorporated into the development

of functional classification under high-dimensional settings.

The third potential extension involves developing adaptive functional thresholding
strategy for a practical scenario where functions are sparsely or densely observed
This extension could be achieved using a nonparametric smoothing
2005).

tion results under different measurement schedules, which would pose complicated

with errors.

approach (Yao et al., It is interesting to develop standardized concentra-

theoretical challenges.

These topics are beyond the scope of the current chapter and will be pursued else-

where.
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(¢) gF < 8: the default mode module in (f) gF > 23: the default mode module in
Fig. 2.1(e) Fig. 2.1(f)

Figure 2.2: The connectivity strengths in Fig. 2.1(e)—(f) at fluid intelligence gF' < 8 and
gF = 23. Salmon, orange and yellow nodes represent the ROIs in the medial frontal,
frontoparietal and default mode modules, respectively. The edge color from cyan to blue
corresponds to the value of Hf]?kHs/{Hf]?]HSHf]ngS}l/Q from small to large.
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2.A Technical proofs

Before stating the regularity conditions, we make some notation. For a function
Z €8, define | Z| 4 = sup, | Z(u,v)|. For two sequences of real numbers {a,} and
{b,}, write a,, < b, if there exists some constant C' such that |a,| < C|b,| holds for all
n, and similarly, for two sequences of real processes {a,(u),u € U} and {b,(u),u € U},
write a,(u) < b,(u) if there exists some constant C' such that |a,(u)| < Clb,(u)
holds for all n and u € U. Without loss of generality, in the following we assume
that £{X;;(u)} = 0 and both estimators ijk(u,v) and (:)jk(u, v) are defined as

n

~ 1 1& ~
Yip(u,v) = EZX’J(U)X“C( v) and G)]k, u,v) = EZ )2 — Sn(u,v)?,
i=1 P

respectively.

Lemma 2.1. Suppose that Conditions 2.1-2./ hold. Then for any M > 0, there

exists some constant p; > 0 such that

pr { max
Jk

Proof. Denote 6 ,(u,v) = E{X;;(u)*Xy,(v)2}. We decompose © 4 (u, v) — O 4 (u, v)

as

~

0,1 — O
0,1

>y log” p} =0(p™).

/2

(:)jk(u, v) — Ok (u,v)

= Y (u, v)2

3I'—‘

i{ )2—éjk(u,v)}.

By Condition 2.3, O;;(u,v) = 70;j(u)oi(v) for each 5,k =1,...,p. Hence,

(:)jk(u, v) — O, (u,v)
O,k (u,v)
B, 0)? = Si(u,v)?| |1 $ X Xialo)” ~ Ou(u, v)
h 70 (u)og(v) n < T0j(u)og(v)

1 2
= I;k)(u,v) + I;k)(u,v).

First, consider the concentration bound for H]](,? |oo- Denote ﬁjk(u, v) =Y (u)Yi(v)—
Yik(u,v)/{oj(u) 2o (v)V?} and let djp.((u,v), (W',v") = d;j(u,v') + dy(v,0"). Ap-
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plying Theorem 8.4 in Kosorok (2008) under Conditions 2.1 and 2.2, we obtain
that, there exists some constant C; > 0 such that H SUD,,c1¢ |Y1j(u)|H¢2 < (] for all

j=1,...,p. By the property of 1);-norm, we have that

1Y (u)Yie (v) = Vi () Yar (0) ],
< Vi (@) {Yir(v) = Yae (W)}, + {5 (u) = Yij (u) }Yie ()],
< Vi (@), 1Yie () = Ya (W), + [Yar (W), 1Ye5(u) = Yig(u) ],

S {dj(u> u/) + dk(”? U/)} = djk((“a U)v (ula ’U/)),

which implies that

~

i\}zﬂc (’U,, U) - K]k (Ul, U/)

< djp((u,v), (u',0"). (2.4)

U1

Note that

A~

- Yip(u,v) = Ejp(u,v) 1 Yik(u,v)
Zin(u,0) = o;(u) 2oy (v)1/? ) Z {Y;j(u)Y;k(v) B aj(u)l/Qak(v)l/Q} ’

=1

and for a random variable X and any integer m > 1, E|X|™ < m!| X[} . By Bern-

stein’s inequality and Lemma 8.3 of Kosorok (2008), we have that for u, v, v, v" € U,

Hnl/Z{ij(u, V) — Z(dd, U')} < d((u, v), (', ).

1

For the semimetric d;i, D(e,d;) < D(e/2,d;)D(€/2,dy) < e %", Applying Theorem
8.4 in Kosorok (2008) with Conditions 2.1 and 2.2 again, we obtain that, there exists

some constant Cy > 0 such that

sup [n'2Z;(u,v)|| < Cs.

u,vel

max
1<j,k<p

1

This immediately implies that there exist some universal constant C's > 0 such that

for any x > 0,

A

Yik(u,v) — Eji(u,v)
0j(u) 2oy (v)/?

Jk u,vel

pr {max sup > x} < p? exp{—Csn'/z}.
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As a result, for any M > 0, there exists some constant p; > 0 such that

ijk(u, v) — Ejp(u,v)
j(u) 2oy (v)1/?

gk u,veU

. lo _
pr {max sup > nlg/f} <p M. (2.5)

Observe that

S (u, v)2 — S (u, v)? S (u, v) — Sy (u,0)

o (u) 20, (v)12

~ 2
- Yik(u,v) — Eji(u,v)
73 () (1)

Y

since | (u, v)| < o;(u)?05(v)"2. By the inequality (2.5), we have that
J j

_logp ~210g2p} <M

(1)
pr {max 1101 > 251058 + (26)

We next control the bound for HI Hoo through the truncation technique. Note that

(:)jk(u, v)

7, (w)oi(v)’

= Yi(u)*Yi(v)* —

Define that Y;¥(u) = Yj;(u)l {HY%jHoo < Cylog?(p v n)} and

Zii(u,v) = Y (u)*Yi(v)* — B{Y}] (u)*Y ;3 (v)*}.

By the property of ¢1-norm and |Y;(u)* — Y (u')?| < 20, log™(p v n)|Y;5(u) —
Yii(u')], we have that

v YWY,
H WPVEW? - Vi P, + YR - Vo le
< log(p v n){HE?(U)Hw [Vik(v) = YRy, + Vi @), [¥5 () = Y5 @), }

< log(p v n){d;(u,u') + dg(v,v")} <log(p v n)dir((u,v), (u',v")),

which implies that, similar to (2.4),

H Z]k ljk H1p S log(p Vv n)djk((uv U>7 (UI7U/))‘
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Let Z% (u,v) = n~' Y ZF (u,v). We apply the similar technique of Zj;, above to
the term Z 7r and obtain that there exists some universal constant C5 > 0 such that

for any x > 0,

Zj*k(u v)

ik e |l0g(p v n)

pr {max sup > x} < p?exp(—Csnt/?x).

As a result, for any M > 0, there exists some constant ps > 0 such that

log“(p v n _
pr{maxsup‘ kuv|>p2%}§p M

7,k u,v

Now we consider the bound of the term |Y;;|«. By Conditions 2.1-2.2 and Theorem

8.4 of Kosorok (2008), we immediately have that there exists some constant Cg > 0

max
1<i<n,1<j<p

sup \Yu(u)\H < G,
ueld P2

which also implies that there exists some constant C'; > 0 such that for any z > 0,

pr{ max ||V (uw)]e > x} < npexp(—Crz?).

1<i<n,1<j<p

Hence we obtain that for any M > 0, there exists some constant C; > 0 such that
g 1/2 < M

pr {1<i<r%%}éj<p |Yiilloo > Cylog=(p v n)} <(pvn) . (2.7)

On the event
Q= { _max [¥ylo < Cilog (v m)}.

1<i<n, 1<5<p

we find that

+ B{Y)?Yi(0)? — Y (0)Yir(0)2).

Note that Y;(u)? — YVi;(u)? = Y (u)?I{| Vi > Cilog"?(p v n)}. By the inequality
(2.7), we can obtain that

B{Y; @Yi)? - Yy@)Ya)? | < (0 v ).
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Therefore, for any M > 0, there exist some constant p3 > 0 such that

_log*(pvn _
pr { max H];,?Hoo > p;;T) <sp M. (2.8)

1<jsp

Combining (2.6) and (2.8), we obtain that for any M > 0, there exists some constant
p1 > 0 such that

pr { max
Jk

The proof is complete. o

A~

0,1 — O
0,1

= Pl nl/2

oty ) o

0

Lemma 2.2. Suppose that Conditions 2.1-2.4 hold. Then for any M > 0, there

exist some constant ps > 0 such that

1/2 A\1/2
e’ -6y

~1/2

log” p
< P2W (2.9)

09]

max
ak

with probability greater than 1 — O(p~™).

Proof. Let the event Q,(s) = {||(©;x — ©z)/Ojrl < slog?p/n*/2 < 1/2}. For any
M > 0, it follows from Lemma 2.1 that there exists some constant p; > 0 such that
pr{Q.(p1)} =1 —O(p~™). Since

~

0,1 — O
On

O,

~

O

Ojk

Ok

Ok

~

+1,

[o0]

0

0 0

hence, on the event ,(p;), we have that [|6,1/0 x| < 2. As a result, on the event
Q,(p1), it follows that

Ojr — O
O

1/2 A\1/2
A

~1/2
@jk

0., — O,
A 1/2 ~1/2

Ojk
Ok

o0 ' [ee} a0

Take py = 2p; and the proof is complete. o

Lemma 2.3. Suppose that Conditions 2.1-2.4 holds. Then for any M > 0, there

exist some positive constant ps > 0 such that

10 1/2
< pa ( gp)
n

S

S — Tk

1/2
Y

max
j?k
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with probability greater than 1 — O(p~™).

Proof. Let Yij(u,v) = Yij(w)Yie(v) — 5w, v) /{0 (uw) 204 (v)2} and

_ ijk(u, v) — Xji(u,v) 1 ~
Znl) = = o e~ &Y

We first derive the concentration bound of | Z|s. It follows from the proof of Lemma

2.1 that there exists some constant Cg > 0 such that

< Gs.
W1

max

su
3k b

u,veEU

%jk(uv U)‘

which further implies that max; HH?U’“H SH < Cg. As a result, it follows from
P1

Theorem 2.5 of Bosq (2000) that there exists some universal constant Cy > 0 such
that for any = > 0

pr (HijHS > z) < 2exp{—Cynmin(z?, z)}.

For any M > 0, there exists some constant p > 0 that

2= (222)" 210

n

with probability greater than 1 — O(p~).

Now we derive the bound of H ik — 2k / @1/ 2” Note that Condition 2.3 implies
that O, (u,v) = 70;(u)ok(v). We obtain that
R 1) |
o0

Hence, together with (2.10) and Lemma 2.2, the lemma follows. The proof is com-

A~

Sk — Sin
~1/2

~

Sk — Sin
1/2

1/2
~1/2

12 A1/2
e’ - ol
1/2

<2, (

S S 0

plete. o

Proof of Theorem 2.1. For easy representation, define

& (u,v) = M, b (u,v) = M and @ (u,v) = L’Ul)ﬂ
O, (u,v)1/?2 O, (u,v)1/? Ojr(u, v)
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Let

o Ok — O
Qn1 = {max [P — Pjxls < )\}, Qo = { max | ———2
gk Jik O,k

1
<z /-
2}
0¢]

It is immediate to see that under the event Q,9, 27O k) < |\@]kHoo < 2|0,k for
all j and k. By Conditions 2.1-2.3, we have O ;(u,v) < C'0;(u)oy(v) and O (u,v) =
70j(u)og(v) Then under the event €2,; N Q2 and Conditions (i)-(iii) on S\(Z), we
obtain that

155 — Zjklls

7=

x>
Il
—

I
7=

1525 = SielsI{|®slls = A} + Z 125 lsT{|@jxlls < A}
k=1

{153@3) = Biells + 1851 = Byl } 1O, TUIinls = A, [Bjuls > A}

x>
Il
—_

)
1=

k=1
p

+ 3 Fsa(@30) - B] WH I8l > ||<1>Jk||s<A}+2|\zjknsf{||<bjkus<2A}
k=1

$ 1/2 < A1/2

22)\"9 | I{®uls = Z )@l 5105 oI {|®xlls < A}

el
Il

1

V4
+ D 1Bkl s[©32] T Biulls < 27}
k=1

1—q

N 12 - a-a/2)_ 10-0/2p50 1a logp
2 10] 195015 < A Z losllee ™ oelee ™ Iaxls < sop) (= :
k=1

k=1

Since there exists some constant § > 0 such that pr{Q¢ } + pr{Q%,} < p=, the

theorem follows. o

Proof of Theorem 2.2. We consider two sets: S,1 = {(J, k) : HE |s # 0and [Z;xlls =
0} and S, = {(4, k) : ||Z s =0 and |E;;]s # 0}. It suffices to prove that

pr(|Sni| > 0) + pr(|Sne| > 0) — 0,

as n,p — 0. By Conditions (i)-(iii) on S\(Z),

A~ A~

_ 3. . ik — 3
Sn1 = {(J,k) : Tj/kg > A and [[Zj,)s = 0} < {(J’k) : jkA1/2 = > )‘}
ik lls O s
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Therefore, with the choice A = d(log p/n)*/?, we obtain

Sk — S
(:)1/2

P(|Sm|>0)< P {max
ik

j7k

> )\} <p ™. (2.11)
S

for some prespecified M > 0. Similarly, we have

2k
~1/2
Jk

Sn2 = {(]7 k) :

< A and [|Zs # O} :
s

Note that |X;;|s # 0 implies that

& o A1/2
log p 12 ik Yk — Mijk ik Ok
(25+v)( - ) < —@f/z < —Jémf —@f/z @JW (2.12)
Jk s jk S Jk s Jk oo

Let Q3 = {||((:)]1,/§2 — @;22)/@%2H00 < 6} for some small constant 0 < € < /(40 +27).

Conditioned on the event of €,3, the inequality

N1/2 A1/2 1/2 N1/2
1/2 ~1/2 12
@jk 0 @jk 0 ij '

implies that H(:)jlf/@jl,/fnoo < 1/(1 — €). This together with (2.12) shows that

S« 1/2
SHQHQn?)C {(]7k) M >5<10gp) }
o2 n
Jk S
As a result,
S -, 1 12
pr(|Sna] > 0) < pr(Q%,) + pr{ max [ZE ) 55 °sp <p ™. (213)
Jik @1,22 n
j S

Combining (2.11) and (2.13), we complete our proof. o
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2.B Examples of functional thresholding opera-
tors

In Section 2.B.1, we verify that our proposed soft, SCAD and adaptive lasso func-
tional thresholding rules satisfy conditions (i)—(iii) in Section 2.2. We then present

the derivations of these three functional thresholding rules in Section 2.B.2.

2.B.1 Condition verification

It is directly implied from the thresholding rules that the soft, SCAD and adaptive
lasso functional methods satisfy condition (ii). Since the soft functional threshold-
ing has the largest amount of functional shrinkage in the Hilbert—Schmidt norm
compared with SCAD and adaptive lasso methods, it suffices to show that the soft
functional thresholding satisfies condition (iii). For | Z]s < A, the thresholding effect
leads to |0 — Z|s < A\. When ||Z|s > A, we obtain that |Z)\/|Z]s|s = A.

We next show that the above three thresholding methods satisfy condition (i). By
the triangle inequality, [|Z —Y|ls < X in condition (i) implies that || Z]s—A| < [V]s.

e Soft functional thresholding: If |[Z]s < A, 0 < ¢||Y||s directly holds for all
Y eS and ¢ > 0. When |Z||s > A, we have |s3(Z)|ls = [Z]s — A < |V s with

the choice of ¢ = 1.

e SCAD functional thresholding: When |Z|s < 2\, s3°(Z) is the same as the
soft functional thresholding rule. For ||Z|s > 2\, we have |s3°(Z)|s < | Z]s <
[Y|s +A<|Y]s+ |Z]ls/2 and hence |s5°(Z)|ls < | Z]|s < 2||Y]|s. Combining

the above results, we take ¢ = 2.

e Adaptive lasso functional thresholding: Let [n] denote the smallest integer
greater than or equal to 7. For | Z]s < A, this condition holds for all Y € S
and ¢ > 0. For |Z|s > A, we have that ||s3"(Z)[s = |Z(1 — A1/ Z|EY)|s =
(1215 = X215 < (12187 = A0/ z218 = (121s = MZ18" +
||ZHL37]_1)\ + ot )\W)/HZH?] < ([n] + 1)|Y|s. Hence, for any n > 0, we can
find ¢ = [n] + 1. In the special case of n = 0, s3*(Z) degenerates to the soft
functional thresholding rule with ¢ = 1, which is consistent with our finding

for the soft functional thresholding.

106



2.B.2 Derivations of the functional thresholding rules from

various penalty functions

Soft functional thresholding can be obtained via
S : 1 2
s3\(Z) = arg min §||9 —Z|ls+ M0|s ¢ - (2.14)
0eS

First, we show that if |Z|s < A, then |s3(Z)|s = 0 and hence s3(Z) = 0. This
results from the fact that, for any 6,

1 1 2
216~ ZI3 + Aol > 5 (16l — 1715)” + A6l

1 1 1
= S0 + (= 1Z19)0ls + 51213 = 51213,

Second, we show that if |Z|s > A, then [|s3(Z)||s # 0. In fact, we can find 0, = ¢Z
with ¢ = 1 — \/||Z]|s > 0 such that

1 1 1
10— ZI& + Alocls = 51— P23 + AelZls < 51713

As a result, we are able to take the first derivative of (2.14) with respect to 6 and
set ph(0) = 0 — Z + \0/|0]s = 0. Thus, 8 = Z|8|s/(|0]s + A), which implies that
|0]s = | Z|ls — A. Combining the above results, we have that b = Z(1=X|Z]||s)+-

The SCAD and adaptive lasso functional thresholding rules can be derived in a
similar fashion. Hence, we only present their penalty functions here. The functional

version of SCAD penalty takes the form of

2aA[0]s — |65 — X*
2(a—1)

pa0) =A0]sI(|0]s < A) +

2
N A (a2+ 1)]

I < |f)s < aX)

(l0ls > ar),

for a > 2. For the functional version of adaptive lasso penalty, we use p)(0) =
N Z|IS"0]ls, for n = 0. A similar adaptive lasso penalty function operating on ||

for the univariate scalar case can be found in Rothman et al. (2009).
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2.C Additional empirical results

2.C.1 Simulation studies

Table 2.3 presents the average TPRs/FPRs of pairwise testing over 100 simulation
runs with two multiple testing adjustments: Benjamini-Hochberg Procedure (B-H)
and Bonferroni correction. The B-H procedure attains similar FPRs/FPRs with the
adaptive functional thresholding estimator s A under the adaptive lasso functional
thresholding rule, which also demonstrate the effectiveness of the proposed adaptive
thresholding idea. As expected, the Bonferroni correction procedure provides much
lower TPRs due to its conservative nature. Figures 2.3 and 2.4 plot the heat maps
of the frequency of the zeros identified for the Hilbert—Schimidt norm of each entry
of the estimated covariance function, when p = 50, out of 100 simulation runs.
The true nonzero patterns of Model 1 and 2 are presented in Figures 2.3(a) and
2.4(a), respectively. Figure 2.5 displays the average receiver operating characteristic
(ROC) curves (plots of true positive rates versus false positive rates over a sequence
of A values) for both the adaptive functional thresholding and universal functional
thresholding methods. These results again demonstrate the uniform superiority of

the adaptive functional thresholding method in terms of graph selection consistency.

Table 2.3: The average TPRs/ FPRs of pairwise testing over 100 simulation runs.

Model  Method p =50 p=100 p=150
1 B-H 0.80/0.01 0.75/0.00 0.73/0.00
Bonferroni  0.65/0.00 0.58/0.00 0.54/0.00
B-H 0.87/0.00 0.79/0.00 0.75/0.00
Bonferroni 0.60/0.00 0.43/0.00 0.30/0.00

2.C.2 ADHD dataset

In this section, we illustrate our adaptive functional thresholding estimation us-
ing the ADHD-200 Sample, collected by New York University Medical Center.
This dataset consists of resting-state fMRI scans with Blood Oxygenation Level-
Dependent (BOLD) signals recorded every 2 seconds in the whole brain with L = 172
locations in total, for n,pup, = 90 patients diagnosed with attention-deficit/hyperactivity
disorder (ADHD) and nqp = 87 typically-developing controls (TDC). The prepro-
cessing of the raw fMRI data is performed by Neuro Bureau using the Athena
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(a) True (b) Hard =, (c) Hard 3,
(d) Soft S, (e) Soft S, (f) SCAD £,
(g) SCAD o (h) Adap. lasso N (i) Adap. lasso S

Figure 2.3: Heat maps of the frequency of the zeros identified for the Hilbert—Schimidt
norm of each entry of the estimated covariance function (when p = 50) for Model 1 out of
100 simulation runs. White and black correspond to 100/100 and 0/100 zeros identified,
respectively.
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(g) SCAD 3,

Figure 2.4: Heat maps of the frequency of the zeros identified for the Hilbert—Schimidt
norm of each entry of the estimated covariance function (when p = 50) for Model 2 out of
100 simulation runs. White and black correspond to 100/100 and 0/100 zeros identified,

respectively.

(f) SCAD 3,

(h) Adap. lasso N
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Figure 2.5: Model 1 (top row) and Model 2 (bottom row) for p = 50,100, 150: Comparison
of the average ROC curves for adaptive functional thresholding (solid line) and universal
functional thresholding (dotted line) over 100 simulation runs.

pipeline (Bellec et al., 2017). See Figure 2.7 in Section 2.C.3 for plots of pre-
smoothed BOLD signals at a selection of ROIs. Following Li and Solea (2018)
based on the same dataset, we treat the signals at different ROIs as multivariate
functional data. Our goal is to construct resting state functional connectivity net-
works among p = 116 ROIs (Tzourio-Mazoyer et al., 2002), with the first 90 ROIs
from the cerebrum and the last 26 ROIs from the cerebellum, for ADHD and TDC
groups, respectively. To this end, we implement adaptive and universal functional

thresholding methods to discover the networks for two groups.

Figure 2.6 plots the sparsity patterns in estimated covariance functions correspond-
ing to identified functional connectivity networks. We observe several interesting
patterns. First, with A selected by the cross-validation, 3, in Fig. 2.6(a)—(b) reveal
clear blockwise connectivity structures with two blocks coinciding with the regions
of the cerebrum and the cerebellum, while 3, in Fig. 2.6(c)—(d) result in very sparse
networks. Second, under the same sparsity levels as those of &, in Fig. 2.6(a)—(b),
3, in Fig. 2.6(e)—(f) only retain edges related to large marginal-covariance func-
tions but fail to identify some essential within-network connections, e.g., those of
the cerebellar region (Dobromyslin et al., 2012) on the bottom right corner. Third,
the ADHD group has increased connections relative to the TDC group, which is in

line with the finding in Konrad and Eickhof (2010) that ADHD patients tend to
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(a) ADHD: ¥, (57.50% ze- (c) ADHD: %, (98.94% ze- (¢) ADHD: 3, (57.50% ze-
ros) ros) ros)

i

N T
W TR

TR R
- ..;E‘.! - ..“ ", p

(b) TDC: %, (71.24% zeros) (d) TDC: 8 (98.85% zeros) (f) TDC: 3 (71.24% zeros)

Figure 2.6: The sparsity structures in 3, and £, for ADHD and TDC groups: (a)—(d) with
the corresponding ) selected by fivefold cross-validation using soft functional threosholding
rule; (e)—(f) with the same sparsity levels as those in (a)—(b). Black corresponds to non-
zero entries of 3, and f]U (identified edges connecting a subset of ROISs).
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exhibit abnormal spontaneous functional connectivity patterns.

2.C.3 Additional real data results

Figures 2.7 and 2.8 display the pre-smoothed BOLD signal trajectories at a selection
of ROIs of subjects from the ADHD and HCP datesets, respectively. Figures 2.9
and 2.10 plot the connectivity strengths at fluid intelligence gF < 8 and ¢gF' > 23 in
Fig. 2.1(a)—(b) and Fig. 2.1(c)—(d), respectively. We observe that as gF increases,
the connectivity strengths in the medial frontal and frontoparietal modules tend to
increase while those in the default mode module decrease, which is consistent with

our finding in Section 2.5.

fMRI data — ADHD group
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Figure 2.7: ADHD dataset: the smoothed BOLD signals at the first 5 ROIs of two subjects
in ADHD and TDC groups respectively. The 5.73-minute interval with 172 scanning points
is rescaled to [0, 1].
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fMRI data — HCP
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Figure 2.8: HCP dataset: the smoothed BOLD signals at the first 5 ROIs of one subject.
The 14.40-minute interval with 1200 scanning points (14.40 mins) is rescaled to [0, 1].
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) gF < 8 the medial frontal module in (d) gF > 23: the medial frontal module in
Fig. 2.1(a) Fig. 2.1(b)

I

o]
f l

gF < 8 the frontoparietal module in (e) gF > 23: the frontoparietal module in
2.1(a) Fig. 2.1(b)

(¢) gF < 8 the default mode module in (f) gF > 23: the default mode module in
Fig. 2.1(a) Fig. 2.1(b)

Figure 2.9: The connectivity strengths in Fig. 2.1(a)—(b) at fluid intelligence gF < 8
and ¢gF > 23. Salmon, orange and yellow nodes represent the ROIs in the medial frontal,
frontoparietal and default mode modules, respectively. The edge color from cyan to blue
corresponds to the value of HZ;kHS/{HE%HSHEngS}lp from small to large.
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(a) gF < 8 the medial frontal module in (d) gF > 23: the medial frontal module in
Fig. 2.1(c) Fig. 2.1(d)

=
N
g

the default mode module in (f) gF > 23: the default mode module in
Fig. 2.1(d)

<) g
Fig. 2.1(c

~

Figure 2.10: The connectivity strengths in Fig. 2.1(c)—(d) at fluid intelligence gF < 8
and ¢gF > 23. Salmon, orange and yellow nodes represent the ROIs in the medial frontal,
frontoparietal and default mode modules, respectively. The edge color from cyan to blue

corresponds to the value of Hi;kus/{”i?]HS”ingS}IQ from small to large.
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Chapter 3

On the modelling and prediction
of high-dimensional functional

time series

3.1 Introduction

Functional time series typically refers to continuous-time records that are naturally
divided into consecutive time intervals, such as days, months or years, over which
the observed curves are treated as serially dependent realizations of an underlying
stochastic process. With recent advances in data collection technology, multivariate
or even high-dimensional functional time series are rising ubiquitously in many ap-
plications. Typical examples include daily pollution concentration curves (Hérmann
et al., 2015a) and annual temperature curves (Aue et al., 2018) collected at a number
of stations, annual age-specific mortality rates for different prefectures (Gao et al.,
2019b) and intraday energy consumption trajectories (Cho et al., 2013) for thou-
sands of households, to list a few. These modern applications call for new methods

to tackle problems involving high-dimensional functional time series.

We consider p-dimensional functional time series Y(u) = {Yi(u), ..., Yy (u)}" for
it = 1,...,n defined on a compact set Y. Under a high-dimensional regime, not
only Y;;(-)’s are infinite-dimensional objects exhibiting the serial dependence across
observations, the dimension p is comparable to, or even larger than, the sample size

n, posing a challenging learning task that is largely unexplored in the literature.
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Hence, it is of fundamental importance to develop an effective procedure to model

and predict Y;(u) with large p.

A standard procedure in the existing literature is to firstly extract features by per-
forming dimension reduction for each component series Yy;(-) separately via, e.g.,
functional principal component analysis (FPCA) or dynamic FPCA (Hérmann et al.,
2015a) or the method of Bathia et al. (2010), and then considers modelling p vector
time series separately or applying high-dimensional techniques to model p vector
time series jointly under some lower-dimensional structural assumptions, e.g., regu-
larized vector autoregressions (Guo and Qiao, 2022; Chang et al., 2022) and factor
model (Gao et al., 2019b). However, modelling the p vector time series separately
fails to account for the cross serial dependence among different component series of
Y, () that is essential in predicting future values of Y,(-), while the gain from incor-
porating those cross-(auto)covariance in a high-dimensional joint model is typically
not enough to compensate the errors accumulated from estimating a large number
of parameters. Alternatively, one can concatenate multiple functions to perform di-
mension reduction for Y,(-) directly via, e.g., multivariate FPCA (Chiou et al., 2014;
Happ and Greven, 2018) when p is fixed or sparse FPCA (Hu and Yao, 2021) when p
is large. However, these methods do not consider the serial dependence information
and the subsequent modelling of extracted features under high-dimensional scaling

remains untrapped.

In this chapter, we decompose Y,(-) as follows:

Yi(u) = Xe(u) + er(u), uel, (3.1)

where X (u) = {Xu(u), ..., Xip(u)}" is the finite-dimensional curve dynamics, e(u) =
{er1(u), ..., ep(u)}”" is white noise in the sense that E{e;(u)} = 0 and E{e;(u)e (v)"} =
0 for any u,v € U and t # s. Note {X;(-)}i, and {e:(-)}}_, are uncorrelated and
unobservable. Under the decomposition (3.1), the linear dynamic structure of Y;()
is entirely driven by a finite number of scalar coefficients under suitable basis expan-
sion of X;(+), while no parts of X;(-) are white noise since those parts are absorbed
into &;(-). Therefore, the problem of modelling Y(+) is reduced to that of modelling
the associated finite-dimensional vector time series of X,(-). Efficient strategies can
be implemented to predict vector time series, which can be further re-transformed

to predict multivariate functional time series.

When the dimension p is moderate or large, the intrinsic dimensionality of X;()
is large, thus leading to less efficient predictions of the associated high-dimensional

vector time series of Xy(-). Our first segmentation step proposes to transform Y,(-)
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into a new p-dimensional functional times series by a contemporaneous linear trans-
formation. The estimation of the proposed transformation boils down to the eige-
nanalysis of a positive definite matrix, formed by the double integral and sum of
quadratic forms in (auto)covariance functions of Y,(-) from different time lags. A
maximum-pairwise-covariance-based permutation is further developed to segment
the p transformed curve series into multiple groups, where curves from different
groups are uncorrelated across all time lags. Hence, the overall linear dynamics is
effectively converted into the cross serial dependence among subseries from the same
group, and an initial effective dimension reduction is achieved. Within each group,
the transformed curves can also be decomposed in the same form of (3.1), i.e. the
sum of two uncorrelated and latent components, one finite-dimensional dynamic and
one white noise. Inspired by the fact that the autocovariance function automatically
filters out the noise, the proposed second step is applied to each group of transformed
curve subseries based on the eigenanalysis of a positive-definite operator defined in
terms of their autocovariance functions. Such proposal is targeted to estimate the
finite-dimensional dynamic structure and based on which predict low-dimensional
transformed curve subseries in a groupwise fashion. Finally, owing to the one-to-one
linear transformation in the segmentation step, the good predictive performance of
transformed curve series can be groupwisely transformed back to the prediction of

the original high-dimensional functional time series.

This chapter makes useful contributions at multiple fronts. First, the segmentation
transformation ensures zero cross serial correlations among curve subseries from dif-
ferent groups while maintaining the useful cross dynamical information within each
group. Hence our proposal is more advantageous than predicting each Y;(-) sep-
arately. It also avoids predicting Yy(-) directly based on a joint model, thus not
suffering from the ‘curse of dimensionality’. Second, despite the basic idea of the
proposed transformation being similar to the so-called PCA for scalar time series of
Chang et al. (2018), our proposal relies on the double integral to take full advantage
of the functional nature of the data by gathering the (auto)covariance information
at each (u,v) € U? and then integrating over U?. Third, aided by the enforced spar-
sity, we propose a novel functional thresholding procedure, which guarantees the
consistent estimation under a high-dimensional regime. Fourth, the autocovariance-
based dimension reduction approach makes the good use of the serial dependence
information in our estimation, which is most relevant in the context of time se-
ries modelling and prediction. Our proposal extends the univariate approach of
Bathia et al. (2010) by taking into account the cross-autocovariance to accommo-
date multivariate functional time series and by allowing different component series

with different domains.
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Literature review. Our work lies in the intersection of two strands of literature:
functional time series and high-dimensional time series. In the context of functional
time series, many standard univariate or vector time series theory and methods have
been adapted to the functional domain, see, e.g., Bathia et al. (2010); Hormann
and Kokoszka (2010); Cho et al. (2013); Panaretos and Tavakoli (2013); Aue et al.
(2015); Hormann et al. (2015a); Aue et al. (2018); Li et al. (2020); Chen et al.
(2022); Jiao et al. (2021), among many others. In the context of high-dimensional
scalar time series, the available methods to reduce the number of parameters can be
loosely divided into two categories: (i) regularization (Han et al., 2015; Basu and
Michailidis, 2015; Guo et al., 2016; Lin and Michailidis, 2017; Ghosh et al., 2019;
Wilms et al., 2021) and (ii) dimension reduction via factor model (Pena and Box,
1987; Bai and Ng, 2002; Forni et al., 2005; Pan and Yao, 2008; Lam et al., 2011; Lam
and Yao, 2012; Stock and Watson, 2012; Fan et al., 2016) or independent component
analysis (Tiao and Tsay, 1989; Back and Weigend, 1997; Matteson and Tsay, 2011;
Chang et al., 2018), each of which corresponds to a large body of literature and

hence an incomplete list of the relevant references is presented here.

The remainder of the paper is organized as follows. In Section 3.2, we develop an
estimation procedure for the first step of segmentation transformation with the help
of permutation and functional thresholding. Section 3.3 specifies the methodology
for the second dimension reduction step that can be applied to estimate the finite-
dimensional dynamical structure within each segmented group. We investigate the
associated theoretical properties of the proposed two-step procedure in Section 3.4.
The finite-sample performance of our methods are examined through extensive sim-
ulations in Section 3.5. Section 3.6 applies our proposal to three real datasets,
revealing its superior predictive performance over the competitors. All technical

proofs are relegated to Section 3.A of the Appendix.

3.2 Segmentation transformation

3.2.1 Model setting

In this section, we focus on the case where p is large or moderately large. Our
first segmentation step transforms linearly observed curves Y,(:) in (3.1) into p-
vector of new functional time series Z;(-) = {Zu(+), ..., Zy(-)}" in the form of (3.2)
below such that p new curve series can be divided into ¢ groups of sizes pi,...,p,

respectively, and the curves from different groups are uncorrelated across all time
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lags, where ¢ < p, p; = 1 and Y}/, p; = p. To be specific, we consider that Y (u)

admits a latent segmentation structure:
Yi(u) = AZ(u) = A{Z; (u)", ..., Zuq(u)T}T, uel, (3.2)

where A is a p x p unknown constant matrix, the [-th group is formed by p;-vector
of functional time series Z;;(u), and Cov{Z;;(u),Zsy(v)} = 0 for all t,s, [ # I’ and
u,veU. Write A = (A4,...,A,), where A; has p; columns. To simplify the matter
concerned, we restrict to orthogonal transformation only, i.e., ATA = AA" =1,

(an p x p identity matrix), which together with (3.2) implies that
Zyj(u) =AY (u), 1=1,....q. (3.3)
Hence, it holds that

3. k(u,v) = Cov{Zi(u), Ziir(v)}
(3.4)
= A"Cov{Y(u), Yiik(v)}A = A"S, ;(u,v)A for any w,v e U,

where X, ;. (u,v) is block-diagonal with the main block sizes py, ..., pq.

Remark 3.1. (i) There is an identifiable issue among A and Z(-), since (3.2) and
the block-diagonal structure of X, ;(u,v) (i.e., q subseries Zy(-) are uncorrelated
with each other both contemporaneously and serially) remain unchanged if {A, Z(-)}
is replaced by {AT,T7'Z(-)} for any invertible matriz T = diag(T,...,T,), where
Ty is a p; x p; submatriz. With the additional constraint that A is an orthogonal ma-
triz, A and Z(-) still can not be determined uniquely, but the linear spaces spanned
by the columns of Ay, denoted by C(A;) forl =1...,q, and the latent segmentation
structure of Zy(+) can.

(i1) To guarantee the orthogonality of A while maintaining the block-diagonal struc-
ture, we can adopt a normalization step to Y(-). Define V, = Suo 3, 0(u, u)du
and V, = Suo 3. o(u,u)du. We then replace Yi(-) and Z4(-) by V;l/QYt(‘) and
V;1/2Zt(~), respectively. It follows from (3.2) that V;1/2Yt(-) = A*{V;1/2Zt(-)}

with the normalized transformation matrix A* =V, V2AVY? and
I, = J Var{V, Y (u)} du = A* J Var{V;?Z,(u)}A*" du = A*{A*}",
Uo Z/[O

which implies that A* is an orthogonal matriz. Moreover, the block diagonal struc-

ture of the autocovariance matrices of VZ_I/QZt(') is the same as that of Zy(-), there-
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fore V;l/QZt(-) maintains the latent segmentation structure of Zi(-). In practice,
we apply such normalization idea as a preliminary step by substituting Y(-) with
V, Y (), where Vy = n=t S §u (Y1 () =Y () H{Y () = Y (u)}* du is the sample
estimator for V. It is noteworthy that the above normalization relies on 'V, instead
of the double integral via \N/'y = Suo Suo 3, 0(u,v) dudv, since the positive-definiteness
no longer holds for V,,.

Remark 3.2. Combining (5.1) and (3.3) implies that the transformed curves sub-
series Zy (u) arises as the sum of one dynamical component it,l(u) and one white

noise component €, ;(u) :
Zoi(u) = ATX,(u) + ATey(u) = Xy (u) + &), (3.5)

which takes same form of (3.1) with X,(-) and () being uncorrelated and la-
tent. Within each of the q groups, our second dimension reduction step applies
techniques in Section 3.3 to estimated curve series of Zy(-), thus identifying the
finite-dimensional structure of th(') and based on which predicting future values
of Z4;(-). According to the transformation in (3.2), we finally make predictions for

original curve series Y(-). See also Remark 3.6 and Section 3.3./.

3.2.2 Estimation procedure

To identify the latent segmentation structure in (3.2), we need to estimate A =
(Ai,...,A,), or more precisely, the spanned linear spaces, C(A;),...,C(A,). Given

some prespecified positive integer kg, let

Ko
WZ - Z f J EZJC(uv U){Ez,k:(u, U)}T dudv,
k=0 YUo JUo

Ko (3.6)
Wy = Z J f 3y k(u, V){Zy k(u,v)}" dudo.
—o JYUo JUp
It follows from (3.4), (3.6) and the orthogonal constraint AA™ = I, that
W.=A"W,A. (3.7)

To highlight the key idea, we first consider the case with ¢ = p, i.e., Zu(-), ..., Zi(*)
are p uncorrelated functional time series across all time lags. Then 3, y(u,v) in

(3.4) reduces to a diagonal matrix, and so does W,. Hence the columns of A are
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the eigenvectors of matrix W,; see (3.7). We show below that this is still the case
when ¢ < p. Noting that all 3, y(u,v) for £ > 0 and u,v € Uy, are block diagonal
matrices with the main block sizes py,...,p,, it is easy to see from (3.6) that W,
is also a block diagonal matrix of the same sizes. Let I', be the orthogonal matrix

consisting of orthonormal eigenvectors of W, i.e.,
Wz]-‘z = Fsz (38)

where D is a diagonal matrix consisting of p eigenvalues. Arranging the diagonal
elements of D based on the order of the blocks in W, I', is also a block diagonal
matrix of the same type as W,. Then (3.7) implies that

W, AT, = AW.T, = AT.D.

Thus the columns of I') = AT, are the orthonormal eigenvectors of W,. Combining
this with (3.2) yields that

F;Yt(') =TTAYY, () =T7Z(). (3.9)

Since T, is a block diagonal orthogonal matrix with ¢ blocks, I'} Z,(-) effectively ap-
plies orthogonal transformation within each of the ¢ groups of Z;(-) such that neither
contemporaneous nor serial correlation exists across the ¢ groups in I',;Z,(-). This
implies that knowing I'] Z,(-) is as good as knowing the latent segmentation Z(-).
Hence I'y can be seen as a column-permutation of the latent matrix A. We summa-
rize the above finding in a proposition below. Note that the order of eigenvectors in

I', is unknown.

Proposition 3.1. (i) The orthogonal matriz T, in (3.8) can be taken as a block-

diagonal orthogonal matriz with the same block structure as W .

(ii) An orthogonal matriz T, satisfies (3.8) if and only if its columns are a permuta-
tion of the columns of a block-diagonal orthogonal matrix described in (i), provided

that any two different main diagonal blacks in W, do not share the same eigenvalues.

The above proposition appears to be the same as Proposition 1 of Chang et al.
(2018), though it deals with a different segmentation problem. Its proof is therefore

omitted.

To discover the latent segmentation Z;, we perform the following two steps of oper-

ations:
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1. Let f]y,k(u, v) be the consistent estimator of X, x(u,v) for k = 1,..., Ko. Replac-
ing ¥, 1 (u,v) in (3.6) by fly,k(u, v), we obtain an estimator of W, via

LO LO (u, v) {2y 4 (u,v)}" dudv, (3.10)

and calculate its orthonormal eigenvectors (7,,...,7,) corresponding to the or-
dered eigenvalues /\1(\/7\\7y) > )xp(\/ﬂ\/'y).

2. We construct A = (Al, e ,Aq) with the corresponding columns being a permu-
tation of (7;,...,m,) such that Z.(-) = A"Y,(-) can be divided into ¢ uncorre-
lated groups AfYt(-), . ,AqTYt(-).

Remark 3.3. (i) We have developed the estimation procedure assuming that the
number of groups q is known or can be identified correctly. In practice, q is unknown.
We will see in Sections 3.2.5 and 3./ that q as well as the segmentation structure of
Z.(-) can be well estimated.

(11) To ensure A in Step 2 a valid estimator in the sense that C(Aj) is consistent
to C(A;) for j = 1,...,q, it is essential to make use of the consistent estimators
for X, ;(u,v) in Step 1 under different asymptotic scenarios. When p is fized or

p = o(n~Y?), the sample versions of B 1 (u,v) fork =1,..., Ko,

35 (1, v) = — — Z{Yt (WHYerk(v) = Y ()}, (3.11)

are consistent and hence can be plugged in (3.10) to obtain \/7\\7y. When p grows
faster than n'/?, some sparsity assumptions on A can be imposed, which facilitates
the development of a thresholded estimator for 3, (u,v) to retain the consistency.
See details in Section 3.2.J.

(111) Note that W, in (3.6) relies on the double integral and the sum to accumulate
the (auto)covariance information as much as possible from each (u,v) € UE and
from lags k = 0 to Ko, whereas fixing at certain (u,v) or time lag may lead to
spurious estimation results. One can define an alternative positive definite matrix

by integrating along the diagonal path u = v € Uy,
W, ZJ e, W) {3, (1)} du,

However Wy suffers from the loss of (auto)covariance information for u # v in-

curred by the single integral. Note that all integrated terms in W, are non-negative
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definite. Hence there is no information cancellation over different lags, leading to
the results insensitive to the choice of kg. In practice a small ko s often sufficient,
provided that the first ko lags carry sufficient information on the block diagonal

structure, while enlarging ko will add more noise to estimate W,.

3.2.3 Permutation

In this section, we adopt a maximum cross-(auto)covariance method to divide the
components of Z() into ¢ uncorrelated groups, where g and the group sizes p1, ..., pq
are unknown. Recall that for curves Z;(-) and Z;;(-) within the same latent group,
one would expect that the lag-k cross-(auto)covariance function, that is EZ 4w, v) =
Cov{Zii(u), Zyir;(v)} to be 81gn1ﬁcantly different from zero for some k, and u,v €
Uy, thus leading to at least one large HEZ ijlls, where || s denotes the Hilbert—Schmidt
norm, i.e., for any B € S = L*(Uy) ® L*(Up), |Bls = {§,, 5, Bu,v)’dudv}'?. Let
th( ) =1, 1Y (+) for j = 1,- -, p. Inspired by the above fact, we define the maximum
cross-(auto)covariance over the lags between prespecified —m and m for any pair

t # j under the Hilbert-Schmidt norm as

ﬁ] = max HZ
|k|<m

s = max max {77 Sy, s, 1 (S0 ls} (312

2,1

and take Z,(-) and Zj(-) as a pair of significantly cross-correlated curves if ﬁj is
greater than an approprlate threshold level 7 > 0. To be specific, we rearrange po =

p(p — 1)/2 values of TZJ (1 <i < j < p) in the descending order, T( == T(

Po)
and compute
@ = argmax T(j)/T(j_;,.D, (313)
1<j<copo
where ¢, € (0, 1) is a prescribed constant. Corresponding to f(l), ceey f(@), we identify

0 pairs of cross-correlated curves.

Remark 3.4. The intuition behind (5.13) is clear as follows. Let Ty = --- =
Tipo) be the ordered true cross-(auto)covariances under the Hilbert-Schmidt norm.
Suppose there are only o cross-correlated pairs among total py pairs, i.e., T(,) > 0 and
Tio+1) = 0, then the ratio T(j)/T;4+1) = © for j = o. To avoid the case of arbitrary
large ratio f(j)/f(j.ﬁ,.l) for j > o, we consider ¢, € (0,1). See other applications of
such ratio-based estimator in Lam and Yao (2012); Ahn and Horenstein (2013) and
Chang et al. (2018).
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The permutation in Step 2 can then be performed as follows. We start with p groups
with each Zj(-) in one group and then repeatedly merge two groups if two cross-
correlated curves are split over the two groups. The iteration is terminated until
all the cross-correlated pairs are within one group. Hence we obtain the estimated
group structure of Zt() with the number of the final groups ¢ being the estimated
value for ¢. It is worth mentioning that in practice, one could repeat the permutation
step multiple times within each of the discovered groups to enhance the accuracy
of segmentations when p is large. See Section 3.5.2 for more technical details and

empirical evidence to support this proposal.

3.2.4 Functional thresholding

Our problem of interest now becomes how to estimate 3, ; for k = 0,..., ko and W,

1/2 the sample (auto)covariance

in (3.6) consistently. When p diverges faster than n
function ﬁzk in (3.11) is no longer a consistent estimator for ¥, ;. In such high-
dimensional case, we impose the sparsity condition below on the transformation

matrix A.

Condition 3.1. For A = (A;j)pxp, there has some constant o € [0,1), such that

maxlgigp Z?:l ‘Aij|a < S1 and maxlgjgp Zf:l |Aij|a < S9.

The parameters s; and s, determine the row and column sparsity levels of A, re-
spectively. We may allow s; and s, to grow at slow rates as p increases. The row
sparsity with small s; entails that each component of Yy(-) is a linear combination
of a small number of components in Z;(-), while the column sparsity with small s,
corresponds to the case that each Z;;(-) has impact on only a few components of
Y,(:). The parameter « also controls the sparsity level of A with a smaller value
yielding a sparser A. It can be inferred from the fact 3, 4 (u,v) = AX, j(u,v)A"
that our imposed sparsity constraint in A is inherited by the functional sparsity

structure in X, ;. as justified in the following lemma.

Lemma 3.1. Let ¥, (u,v) = (z® (4, v)}pxp. Under Condition 5.1, 3%, | |2 <

Y,iJ Y,iJ

= and 37, HE&EH% <E fork=1,... ko, where Z = s155(2maxici<o i + 1).

Lemma 3.1 relies on the Hilbert-Schmidt norm to encourage the functional spar-
(k)
Y,ij
(u,v) = 0 for all u,v € Uy. This lemma reveals that the functional sparsity

sity pattern in X, in the sense that, for some i,j,k, |2,/ |s = 0 if and only if

(k)
Ey,ij
structures in columns/rows of ¥, are determined by s;, s; and a with smaller

values yielding functional sparser 3, .
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Inspired by the spirit of thresholded estimator for large covariance matrix (Bickel
and Levina, 2008), we apply the functional thresholding rule, that combines the
functional generalizations of hard thresholding and shrinkage with the aid of the
Hilbert—Schmidt norm of functions, on entries of the sample autocovariance func-
tion f];k( v) = {Eyk”(u,v)}pxp in (3.11). Hence we construct the functional

thresholding estimator by
7;1«( z,k)(u7 U) = [ gs;,k i (W, U ]{HZ kzj”g wk}]pxpv u,v € Uy, (314)

where I(-) is the indicator function and wy > 0 is the thresholding parameter at lag
k. Taking Ey,k in (3.10) as ﬁk(ZZk) yields

< ILO JMO (1, 0){ T (22 1) (1w, 0)} ™ dud., (3.15)

Remark 3.5. The thresholding parameter wy for each k =1, ..., ko can be selected
using a K-fold cross-validation approach. Specifically, we sequentially divide the set
{1,...,n} into K wvalidation sets V1, ..., Vi of approximately equal size. For each
j=1....K, let izg)(u,v) and f?f/’ﬁ;j)(u,v) be the sample lag-k autocovaraince
functions based on the j-th validation set {Y.(-) : t € V;} and the remaining K — 1
sets {Y(:) : t € Vi, i # j}, respectively. We select the optimal &y, by minimizing

K ~ A~ .
Z |7 (E50) = =557 5

where | - || s,F denotes the functional version of Frobenius norm, i.e, for any B =
(Bij)pxp with each By; € S, |Blsr= (3, ; |B;5)"?. Given the time break from the
leave-out validation set, the autocovariance estimation based on the remaining K —1
groups s affected by ko misutilized lagged terms. Howewver, this effect is negligible

especially for sufficiently large n.

3.3 Estimate finite-dimensional structure

3.3.1 Model setting

Recall that the transformed curve subseries Z;;(u) is expressed as the sum of

two uncorrelated and latent components, one finite-dimensional dynamic and one
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white noise, in the sense of (3.5). The goal of our second dimension reduction
step is to identify the finite-dimensional structure of th (u) and based on which
to predict future values of Z;;(u). Observe that both Z;;(u) in (3.5) and Y:(u)
in (3.1) are decomposed in the same form. To present the methodology, we fo-

cus on a general model setup in this section for p-vector of functional time series
Yi(u) = {Yia(w1),...,Ys(u,)}" satisfying

Y:(u) = Xi(u) + ei(u), u=(uy,...,up) €U =Uy x -+ xU,, (3.16)

where X;(u) = {Xu(u1),...,Xep(uy)}" is the latent and finite-dimensional dy-
namical component, and is uncorrelated with the white noise component &;(u) =
{en(ur), ... ep(uy)}”. Note that (3.16) takes the same form of (3.1) but allows dif-
ferent component curves to be defined on the different sets U, ..., U,, which are all

subintervals of the real line.

Remark 3.6. Under this general setting when p is small, say p < 3, we can di-
rectly perform the dimension reduction approach developed in Section 3.3 on observed
Y:(u) to estimate the finite-dimensional structure of X;(u) and based on which to
predict future values of Y (u). The appealing of this approach is that the dimension-
ality of Xy(u) is small. When p is large or moderately large, it is unrealistic to expect
this dimensionality to be still small. Therefore, under a common setting in practice
where all component series of Y(-) share the same support Uy, we first adopt the
segmentation step in Section 3.2 on Y(-) such that the transformed curve series
are segmented into q uncorrelated groups. Then, within each group [ = 1,...,q, the
second dimension reduction step applies the methodology in this section to estimated

transformed curve subseries
Zo,(u) = ATY,(u), uel, (3.17)

See details in Section 3.53./ below.

Under (3.16), we also assume that both p(u) = E{X;(u)} and

My (u, v) = E[{X¢(u) — p(u) {Xeiu(v) = p(v)}] (F=0,1,...), (3.18)

do not depend on ¢ and §, E[{X,(u)}"X,(u) + {e,(u)}"e;(u)] du < o0. Then X,(u)

admits the Karhunen—Loéve expansion:

X (u) = p(w) = ) &iepy(w), weld, (3.19)
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where @, (1) = {pji(u1),. .., @jp(uy)}* for j = 1 are a sequence of deterministic or-
thonormal functions in L*(U) satisfying §, {¢;(u)}"¢;(u) du = 1ifi = j and 0 other-
wise, and &; are scalar random variables defined as &; = §, {X;(u)—p(u)}"p;(u) du
for j = 1. Furthermore it holds that E(&;) = 0, Var(§;) = A; and Cov(&;,&;) = 0
for i # j. We rank {&;;};>1 such that \y > Ay > --- = 0. We refer to Chiou et al.
(2014) and Happ and Greven (2018) for further details on the Karhunen—Loéve
expansion for multivariate functional data. Note that {¢;(u)};>1 are the eigenfunc-
tions of the covariance function My(u, v) defined in (3.18). They do not reflect the

serial correlations of the curves across different times.

Let L*(U;) be a Hilbert space of squared integrable functions defined on U; for j =
1,...,p. We denote the p-fold Cartesian product by L*(U) = L*(Uy) x - -- x L*(U,).
For F,G € L*(U), we denote the inner product by

(F.G) - L (F(w)}"S(w) du, (3.20)

with induced norm | - | = ¢-,->/%. Note My, in (3.18) can be regarded as the kernel
of an induced linear operator acting on L*(U/) in the sense that it maps G(-) € L*(U)
to My(9)(-) = §, Mi(-,v)G(v)dv € L*(U). To abuse the notation a bit, we use
M, to denote both the kernel function and the induced operator. Provided that
{(Aj, p;(u))};=1 are the eigenpairs of My(u,v), it then holds that

J My(u,v)p;(v)dv = N\jp;(u), ueld and j=>1. (3.21)
u

Remark 3.7. Now we give an heuristic interpretation of inner product (3.20) and
eigen-equation (3.21), which lead to a simple and direct way to calculate eigenval-
ues and eigenfunctions in Section 3.5.5 below. If we view each element in L*(U)
as a matriz with p columns and each column being a curve, (3.20) can be viewed
as the ‘standard’ inner product for vectors applying to the long vectors obtained by
stacking the p ‘columns’ together for each element of L?*(U). On the other hand,
My(u,v) = [Cov{Xy(ui), Xy (v)}]

as an infinitely long vector, and we inflate Mgy above by replacing its (i, j)-th element

, see (3.18). Now we view each curve Xy;(+)

by Cov{Xu(-), X¢;(+)}, a covariance matriz of two infinitely long vectors. Then eigen-
equation (3.21) may be conceptually ‘recasted’ as Mob; = \;b; (j = 1,...,7), where
My is a block matriz with infinite sizes and its (i, j)-th block is Cov{Xy(-), Xt;()},
and bj is a long vector obtained by stacking all the component curves of ¢;(-) to-
gether. This transforms the eigen-problem in a space of curve bundles into an eigen-

problem of a matriz (of infinite sizes).
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The goal of the dimension reduction approach is to model and predict Y,(u) based
on some latent low-dimensional structure when p is small. We assume that X;(u)
is r-dimensional in the sense that A, > 0 and A.;; = 0 (Bathia et al., 2010). We
then estimate this low-dimensional structure based on autocovariance of the curve
series. Specifically, this requires to identify r and to estimate the dynamic space,
C(gp), spanned by the orthonormal functions ¢, (u),...,,.(u). See Sections 3.3.2
and 3.3.3 below.

3.3.2 Methodology

When X, () is r-dimensional, it follows from (3.16) and (3.19) that
Yi(u) = p(u) + > & ;(u) + (). (3.22)
j=1

Given some prescribed positive integer kg, put

n—ko
2 (Yiw) = Y@ H{Yuur(v) - Y(V)JT fork=0,1,....k,
t=1

(3.23)
where Y () =n~' 3" | Y,(-). Based on (3.21), a natural way to estimate the finite-

dimensional structure (3.22) is to perform an eigenanalysis for the operator i\/Io.

Unfortunately, M is not a consistent estimator for My, as Cov{Y(u),Yi(v)} =
Mj(u,v) + Cov{e;(u),e:(v)}. Motivated from the fact that Cov{Y(u), Yi1x(v)} =
My (u,v) for any k > 1, which ensures that 1/\\/Ik is a legitimate estimator for My,

we proceed to estimate (3.22) based on M; for k > 1 instead.
Define a nonnegative operator to pull together the autocovariance information at

different lags:

K(u,v) = ZO LMk(u,w){Mk(v,w)}T dw, u,velu, (3.24)
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whose sample counterpart is

Z Mkuw{l\/[k(v w)}t dw
k=11
n—ko ko

Z Z{Yt (WHY(v) = Y@} Y = Y, Yo = Y),

t,s=1k=1

(3.25)

see (3.23). Note the non-negativity of K(u,v) ensures no cancellation of the infor-
mation accumulated from lags 1 to kg, thus making the estimation not sensitive to
the choice of k. In practice, we tend to select small kg, as the strongest autocorre-

tions usually appears at the small time lags.

Let & = (&, .-, &) and 2y, = E(€t£g+lc)‘ Denote by T/Jj(u) = {Yj1(uw1), ., ¥jp(up)}*

for j = 1,...,r the orthonormal eigenfunctions of K(u,v) corresponding to the r
largest eigenvalues ¢ = --- = 0, > 0 of K(u, v). Let C(v) = span{t,(u),...,,(u)}.
Then it follows from Proposition 1 of Bathia et al. (2010) that operator K only has r
positive eigenvalues with 6; = 0 for ¢ > r + 1 under model (3.22), and C(v) = C(¢p),
provided that Q is a full-ranked matrix for some k < kq. Therefore, X;(-) can be
expanded using r basis functions ¥, (+),...,%,.(-), i.e

Xo(u) = p(w) = ) Gyt (w), ueld,

where (y; = (X; — p, ;). As a result, the linear dynamic structure of Y,(-) is fully

captured by that of the r-dimensional vector process ¢, = (- -+, G )"

Based on the above findings, we propose the following procedure to predict Y()

consisting of three steps:

a. Carry out an eigenanalysis on IA((u, v) to obtain 7 non-zero estimated eigenvalues
and estimated eigenfunctions 1?)1(u), o ,1,Ab7¢(u)7 see details in Section 3.3.3. The
corresponding estimated coefficients are étj =Y, =Y, ¢y forj=1,...,7

b. Model the 7-dimensional vector process &t = (étl, e ,QA},:)T based on VAR or

other vector time series models and obtain h-step ahead prediction as é’t h

c. Recover h-step ahead functional prediction as

Yiin(w) = Y(u) + O {emyp; (), h=0. (3.26)

j=1
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3.3.3 Eigenanalysis and estimation of r

Performing an eigenanalysis in a Hilbert space consisting of multiple curves is not
a trivial matter. To overcome the difficulties due to multiple curves, Happ and
Greven (2018) first calculate each of p component eigenfunctions separately using
the existing methods for univariate curves and then construct the required multiple
eigenfunctions from those univariate ones based on the theory of integral equations
(Zemyan, 2012).

Drawing the inspiration from Remark 3.7 above, we propose a simple and direct
method for estimating the eigenfunctions of operator K. We transform the eigen-
analysis for K to that for a matrix (of finite sizes) based on a well-known matrix
duality property that AB™ and BT A share the same non-zero eigenvalues for any
matrices A and B of the same sizes, which also holds for operators in a Hilbert
space. When d = 1, the proposal reduces to the method of Bathia et al. (2010) for

univariate functional time series.

We present a heuristic argument first. To view the operator IA((, -) defined in (3.25)
as AB™, denote by y,; the vector of infinite length obtained by stacking p curves
Ya(:) = Yi(+),...,Yy(:) — Y,(+) together. Here we view each curve Yi;(-) as an in-
finitely long vector, and thus y; is viewed as consisting of p infinitely long vectors.

Naturally we view yfy, as (Y; =Y, Y, —Y). Put Y. = (Yisk,--,Yn_kosr) for

k=0,1,...,ky. Then K may be represented by an o0 x oo matrix
~ 1 ko
K=—— E i o

Furthermore @(u) = {1(wy),- - J¥,(uy)}T is an eigenfunction of K if and only
if the o0 x 1 vector obtained by stacking p curves ¢ (-),--- ,4,(-) together is the
eigenvector of K. Now applying the aforementioned duality, K shares the same

non-zero eigenvalues with (n — ko) x (n — ko) matrix

1 ko

K=—" Z Y. 919, Y. (3.27)

(Tl — ko)Q el

For each j = 1,...,7, let v; = (71,...,7;)" be the eigenvector of K corre-
sponding to its j-th largest eigenvalue. The duality also implies that {bj(u) =
{szl(ul), e ,@ij(up)}T is the eigenfunction of K corresponding to its j-th largest
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eigenvalue, where

n—=ko

t=1

A~

Note that the eigenfunctions p;(-), . .. ,vjb,,(-) obtained above may not be orthonor-
mal. But they may be made orthonormal by applying a Gram-Schmidt algorithm.

The heuristic argument presented above is justified by Proposition 1 below. Its proof
is similar to that of Proposition 2 of Bathia et al. (2010), and is therefore omitted.

Proposition 3.2. The operator K shares the same non-zero eigenvalues with matriz

K defined in (3.27) with the corresponding eigenfunctions given in (3.28).

In practice we need to estimate r (i.e. the number of non-zero eigenvalues). Let

AM(K) = - = Ay (K) = 0 be the eigenvalues of K. We take the commonly-

adopted ratio-based estimator for r as:

N
7= argmax Lv), (3:29)
1<j<cer (n—ko) >\j+1(K)

where ¢, € (0,1) is a prescribed constant. In empirical studies, we take ¢, = 0.75
to avoid the fluctuations due to the ratios of extreme small values. See further
discussion in Lam and Yao (2012). The above method also applies to the cases

where U;, for different j, have different dimensions, as in Happ and Greven (2018).

3.3.4 Dimension reduction and prediction for moderate and
large p

When p is moderate or large, after the first segmentation step in Section 3.2, our
second dimension reduction step applies the techniques in Sections 3.3.2 and 3.3.3

to each estimated transformed curve subseries 2“() in (3.17) instead of Z,(-) for

[ =1,...,q. Specifically, following the same spirit as (3.24), we define a nonnegative
operator,
ko
Ki(u,0) = Y | My(w, w){My,(v,w)}" dw, u,v e, (3.30)
k=1Uo
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for the [-th group, where My, ;(u, v) = Cov{Z;;(u), Zi1x,(v)}. With the aid of (3.17),
the estimators of My, ;(u,v) and K;(u,v) are respectively defined by

A~ ~

ﬁk,l(uvv) = AlTiy,k(ua U)Ala (331)

2 Mkl (u, w){ My, (v, w)}" duw. (3.32)

Implementing the three-step procedure in Section 3.3.2 on ﬁl(u, v) for each [, we
obtain the h-step ahead prediction for transformed curve subseries ZHh,l(-) and
hence the h-step ahead prediction for original curve subseries ?t+h,l(~) = AZZHM(.).
It is noteworthy that (3.31) requires the consistent estimators of X, ;(u,v) for k =
1,..., k. Its implementation under the high-dimensional setting can thus be done
by setting f]%k = %k(ﬁzk)

3.4 Theoretical properties

In this section, we present theoretical analysis of our estimation procedure consisting

of the segmentation step followed by the dimension reduction step.

Before imposing the regularity conditions, we solidify some notation and definition.
For any B = (B,;),x, with each B;; € S, we denote its functional version of matrix I,
norm by |B||s . = max; },; [Bij|s. Denote the p-fold Cartesian product defined on
Uy by H = L?(Uy) x - - - x L*(Uy). We define the functional version of sub-Gaussianity
that facilities the development of non-asymptotic results for Hilbert space-valued

random elements.

Definition 3.1. Let X;(-) be a mean zero random variable in L*(Uy) and g :

L*(Uy) — L*(Up) be a covariance operator. Then X;(-) is a sub-Gaussian process if
there exists a constant ¢ > 0 such that E[exp{{z, X;—E(X;))}] < exp{27'c*(z, Xo(z))}
for all x € L*(Uy).

Condition 3.2. (i) Y(:) is a sequence of multivariate functional linear processes

with sub-Gaussian errors, i.e., Yi(-) = Z D (€i—1), where Dy = (Dy;j)pxp with each

Dy €S and () = {ea(:), ..., (- )}T wzth independent components of mean-zero

sub-Gaussian processes satisfying Definition 3.1; (ii) The coefficient functions satisfy

2ol (1); (i) max; §,, Coviey(u), &;(u)} du = O(1).
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Condition 3.3. The spectral density operator f, 4 = 2713 o By rexp(—ik0) for

0 € [—m, 7] exists and the functional stability measure defined in (3.33) is finite, i.e.,

b b
M, =2m ess sup < ’fy’(’( )

Ny T o 3.33
Oe[—m, ], PeHy <(I)> Ey70(‘1))> ( )

where Hy = {® e H : (®,X, o(P)) € (0,0)}.

Condition 3.4. kg, m and ko are fized positive integers.

Condition 3.3 places a finite upper bound on the functional stability measure, which
characterizes the effect of small decaying eigenvalues of 3,y on the numerator of
(3.33), thus being able to handle infinite-dimensional functional objects Yy;(-). See its
detailed discussion in Guo and Qiao (2022). Condition 3.2 (i) can be viewed as the
functional (or multivariate) generalization of the multivariate (or functional) linear
process. Condition 3.2 (ii) and (iii) guarantees the covariance-stationarity of {Yy(-)}
and implies that max; fuo E;?J).j(u, u)du = O(1) (Fang et al., 2022). Both conditions
are essential to derive the convergence rate for 3, , under the functional version of
s norm, max; Hf];kzj — E;kz)JHS = O0p{M,(logp/n)'/?}, which plays a crucial rule
in our theoretical analysis. In general, we can relax Conditions 3.2(ii) and (iii) by
allowing >° | D] s and max; §u Covierj(u), er(u)} du to diverge slowly with p,

then our established rates below will depend on these two terms.

We first establish the group recovery consistency of the segmentation step. We refor-
mulate the permutation step in Section 3.2.3 in an equivalent graph representation
way. With an appropriate level 7, > 0, we build an estimated graph (G, E) with
vertex set G = {1,...,p} and edge set

~ A~

E={(i,j): Ti; > 7.}, (3.34)

and split it into multiple connected subgraphs (CA}l/, E/) for I’ =1,...,q. Note that
p vertexes in G corresponds to the ordered eigenvectors (7, ... ,'?;p). Denote by
{(\j(W,),n;)}}_, the (eigenvalue, eigenvector) pairs of W, with \(W,) = - >
Ap(W,). The true segmented groups specified as Gy, ..., G, forms a partition of G
such that

FGl = (nj)jeG’l € RP*Pl with |Gl| = DI and C(FGl) = C(Al) for [ = 17 o4, (335)

Condition 3.5. For each | and every possible H; = (hy1,...,h;,,) € RP*P with
CH,) = C(Tg,) = C(A)), there exists a connected graph ({1,...,p}, E;), some
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¢ > 0 and fixed m such that

[max max {H Xy by

o I () Bugls} =, V(6g) € B

Condition 3.5 formalizes the supporting intuition of the permutation step in Sec-
tion 3.2.3. To be specific, due to the fact that A = (A;,...,A,) in (3.2) is not
uniquely defined, this condition ensures that the group G| is inseparable at the min-
imal signal level ¢ > 0 given any legitimate transformation H; for each [. Recall
that W, = diag(W,1,..., W,,) in (3.7) is a block diagonal matrix, where W, is
a p; X p; matrix. For each [ = 1,...,q, we further define the minimum difference

between eigenvalues of W ; and those of other W ;’s as

0 = min min A= Al
I#L NeAXW . 1), A jeX(W, ;)

where A\(B) denotes the set of eigenvalues of the matrix B. Let p = minj<, 0 > 0

and ¢ = minj¢<,q > 0.

Theorem 3.1. Let Conditions 3.1-3.5 hold and v, = Z> M~ (log p/n) =2 where
= s speciﬁed in Lemma 3.1. There exits some constant ¢ > 0 such that cp™ =y, <
Tw < ¢ — cp ‘2w, then Gy for each | in (3.55) is detected by (3.3/) in the sense of
Max <i<q P(Gy # Gy)) — 0 for some ' € {1,...,q}.

Theorem 3.1 guarantees the group recovery consistency of our segmentation step,
which further implies that ¢ = ¢ and p; = p; for [ = 1,...,q hold with high proba-
bility. Supported by Theorem 3.1, our subsequent theoretical results are developed
by assuming that the group structure of Z(-), (i.e., {G;,l = 1,...,q}) is correctly

identified or known.

To evaluate the errors in estimating C(A;) = C(T'g,) for [ = 1,..., ¢, we use a dis-

crepancy measure (Chang et al., 2018) of two linear spaces spanned by the columns
of B; € RP*? with B/ B; = I; fori=1,2as

D{C(B1),C(Bs)} = /1 — p~'trace(B;BIB,B}) € [0,1]. (3.36)

Then D{C(B;),C(By)} is equal to 0 if and only if C(B;) = C(B.), and to 1 if and

only if the two spaces are orthogonal.

Theorem 3.2. Let Conditions 3.1-3./ hold and f‘Gl = (7;)jec,- There exists some
constants ¢, > 0 for k = 1,...,Kkg such that, with the choice of threshold levels
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W = CkMy(log p/n)l/{

max pD{C(Te,),C(Ta)} = O,(v), (3.37)

1<i<q

where v, s specified in Theorem 3.1.

Remark 3.8. Theorem 3.2 presents the uniform convergence rate overl =1,... ¢q
for plD{C(f‘Gl),C(FGZ)}, which is determined by both dimensionality parameters
(n, p, 81, 52) and internal parameters (M, «). It is easy to see that the rate is faster
for smaller values of {s1, s2, M, a}, while enlarging the minimum eigen-gap between
W and other blocks (i.e., larger p;) reduces the difficulty of estimating C(T'g,).

We now turn to investigate the theoretical properties of the second dimension reduc-
tion step. Inherited from the segmentation step, {Z:;(-),l = 1,...,q} in (3.6) relies
on the specific form of A = (Ay,...,A,), and thus is not uniquely defined. Yet
intuitively, we only require a certain transformation matrix to make our subsequent

analysis related to the set {'f)j, j =1,...,p} mathematically tractable.

Denote by {Ilg,,l = 1,...,q} the particular set of legitimate transformation we
are interested in. To save space and avoid confusion, we defer the construction of
Ilg, to (3.44) in Section 3.A of the Appendix. Note that C(Ilg,) = C(A;) for each
I. Let Zy;(-) = TIg, Y4(-). Recall that the primary goal of this step is to identify
7 and to estimate the dynamic space spanned by ;,(-),...,%,;,,(-), denoted by
C(p;) = span{ep;,(-),..., 2, (-)}, for each [, where ¥, ; = (Y1j1,...,%ip)" for
j = 1,...,7 are the orthonormal eigenfunctions of K; in (3.30) corresponding to
non-zero eigenvalues 6;1,...,6,,,. Also denote by {éhj,v,Abl’j(-)}jZl the (eigenvalue,
eigenfunction) pairs of K; in (3.32). Note we always arrange the eigenvalues in
descending order. Our asymptotic results are based on the following regularity

conditions:

Condition 3.6. maX1<lqu(HZt’l

\2) = 0(1) and maxi< <, = O(1).

Condition 3.7. For each [, all r; non-zero eigenvalues of K; are different, i.e.,

1> >0, >0=0,.4 =

In the spirit of (3.29), we can obtain ratio-based estimator 7, for r; based on the
eigenanalysis of IA(l for each [. To facilitate the consistency analysis of 7; and to avoid

cases of ‘0/0’, we propose a modified estimator

N (Ky) + 6,
7; = argmax (Y 0

L , (3.38)
1<j<n—ko )\j+1(KZ) + 5n
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where 6,, > 0 provides an upper bound correction to )\j(IA{l) for j > r; and all [.

Theorem 3.3. Suppose Conditions 5.1-3./ and 3.6-5.7 hold, 6, = p 'Zv, and
0, max; 01/ min, 912,” — 0. Then for 7, defined in (3.38), we have that min, <<, P(7; =

7“[) — 1.

Theorem 3.3 shows that r; can be correctly identified via (3.38) with probability
tending to one uniformly over {1,...,¢}. In practice, provided that §, is usually
hard to be specified, we instead adopt (3.29) operating on Rl to estimate r; for each
group. This theorem also provides support for the assumption that r; = 7 or is

known for all [ to facilitate further convergence results.

Let C(zAbl) = Span{{pm(-), e 1},7” (-)} be the dynamic space spanned by r; estimated
eigenfunctions. To measure the discrepancy between C();) and C ({bl), we introduce
the following metric. For two r-dimensional subspaces C(by) = span{by;(-),...,by.(-)}
and C(bz) = {bai(-),...,ba.(-)} of H satisfying (b;;,b;;) = 1 if j = k and 0 oth-
erwise for i = 1,2, the discrepancy measure between C(b;) and C(by) is defined

as

T

D{C(by),C(b2)} =, | 1=171 Y (¢byy, o)’ € [0,1].

J.k=1

This measure equals 0 if and only if C(b;) = C(by) and 1 if and only if two spaces are
orthogonal. It is worth noting that this can be seen as a multivariate generalization
of the discrepancy measure used in Bathia et al. (2010) and also the generalization
of (3.36) to the functional domain.

Theorem 3.4. Let Conditions 5.1-5.4 and 3.6-3.7 hold. Then we have that

max p D{C(,},C(¢)} = O,(Ew,). (3.39)

1<I<q

Comparing with (3.37), the uniform convergence rate in (3.39) is slower by a multi-
plicative factor =. This comes from controlling the additional term X, . (recall (3.31))
in the sense of |2, x|s,0 < Emax; ; HZg(lkZ)]H;a = O(Z) as required to bound HlVIkl -
My, |s for each I.

3.5 Simulation studies

We conduct a series of simulations to illustrate the finite sample performance of the
proposed methods for cases when p is moderate and large in Sections 3.5.1 and 3.5.2,

respectively.
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3.5.1 Moderate p

In each simulated scenario, we generate p-vector of observed functional time series
Y.(u) fort =1,...,n and u € Uy = [0, 1] by (3.2), where the entries of A are sam-
pled from Uniform[—3, 3] and p-vector of transformed functional time series Z;(u) is
decomposed as the sum of a dynamic element X;(u) = {X4(u), ..., Xy(uw)}" and a
white noise element e,(u) = {e41(u), ..., e (u)}" according to (3.1). Each curve com-
ponent of &,(-) is generated by &;(u) = 312, 27 Ve by (u) for j = 1,...,p, where
ey are independent standard normal and {t;(+)};2, is a 10-dimensional Fourier basis
function. To generate Z;(-) with predesigned group structure, we need to generate
its finite-dimensional dynamic element X;(-) with the same group structure. Specif-
ically, let ¥y,(u) = 320, Ggitbi(u) be 5-dimensional curve dynamics for g = 1,.. ., 30.
The basis coefficients ¢, = ((ig1,- -, Crg5)" are generated from a stationary VAR
model ¢y, = UyC(,_1), + € for each g. The entries of Uy € R5*® are sampled from
Uniform[—3, 3] and rescaled by ¢/p(U,) with p(U,) being the spectral radius of U,
and ¢ ~ Uniform[0.5, 1] to guarantee the stationary of ¢,,. The components of the
innovation e; are sampled independently from N(0,1). We consider the following
three examples to generate X,(-) with different group structures for p = 6,10, 15
based on ¥ (+), ..., V(-

EXAMPLE 1. Xy (1) = Yu(-), Xiy(1) = Dgjo2)2(-) for j = 2,3 and Xy;() =
19(t+j—4)3(') fOI‘j = 4)576'

EXAMPLE 2. Xi,(-) for j = 1,...,6 are the same as those in Example 1 and
th(‘) = ?9(t+j—7)4(-) for y =17,...,10.

EXAMPLE 3. Xy;(+) for j = 1,...,10 are the same as those in Example 2 and
Xi(+) = 79(t+j—11)5(‘) for j =11,...,15.

Therefore, X;(+) consists of ¢ = 3,4 and 5 uncorrelated groups of curve subseries in
Examples 1, 2 and 3, respectively, where the number of component curves per group
ispp =1 forl =1,...,¢q. The white noise sequence &;(-) ensures that Z(-) shares
the same group structure as X;(-). Unless otherwise stated, we set kg = kg = m =5
and ¢, = ¢, = 0.75 in our simulations, as our simulation results suggest that they
are insensitive to the maximum lag orders and the prescribed constants used in

ratio-based estimators.

The performance of our proposed procedure is examined in terms of linear space
specification, group identification and post-sample prediction. We start with the
definition of an ‘effective’ specification of the ¢ linear spanned spaces C(A;) for

[ =1,...,q. Since the ranks of A; and _& are not necessarily the same, we use a
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general discrepancy measure (Chang et al., 2018) of two linear spaces spanned by
the columns of B; € RP*? with rank(B;) = p; for i = 1,2 as

D? SR race
D (C(B1)7C<B2)) =1 mln(pl,pg)t (QIQQ) [ ]

where Q; = B;(BYB;) BT, for i = 1,2. Then D2?(C(B;),C(B,)) is equal to 0 if and
only if C(By) < C(B3) or C(Bg) c C(By), and to 1 if and only if the two spaces are
orthogonal. We call (Al, . ,Aq) an effective specification for A = (Ay,...  A,) if
(i) 1 < ¢ < g; (ii) After pairing each A; (I =1,...,q) with Aj for which

I' = f(l) := argmin 52(C(Al>7c(‘&j))7

j€(17"'7qA)

the ranks of A, paired with that of the A, satisfy 2 py—r rank(Ay) = rank(.&l/)
for each I' = 1,...,q. Intuitively, such specification for A leads to an effective
segmentation for Z(-) in the sense that each identified group in Z(-) contains at
least one, but not all, groups in Z,(-). To ease reference, we call the above situation
‘effective segmentation’ hereafter. For the special case of complete segmentation
(¢ = q), we compute the maximum and averaged estimation errors for (Al, e Aq),

respectively defined as

maXDQ(A A) = max D (C(Al),C(Af(l))) and DQ(A A) ézq:f) (A)), C(Af )5

1<l<q

respectively, to assess the ability of our method in fully recovering the spanned
spaces, C(Ay),...,C(A,).

To evaluate the post-sample predictive accuracy, we integrate segmentation trans-
formation and dimension reduction in Sections 3.2 and 3.3 into the VAR estimation

(denoted as SegV) to obtain h-step ahead prediction consisting of three steps below.

i. Treat the first n — h observations as training data, adopt the normalization
step in Section 3.2.1 to obtain Y,(-) = \A/'y_th(-), implement the segmentation
transformation step in Section 3.2.2 on {¥;(-)}*=" and the permutation step in

Section 3.2.3 to calculate (Al, e ,Aq) and to identify ¢ uncorrelated groups,
Zii(), .. Zyg(e).

ii. Following Section 3.3.4, within each identified group, apply the three-step ap-
proach in Section 3.3.2 on {Z,l(-)}?;h to achieve the h-step ahead prediction
in,l(') forl =1,...,q. In particular, for each [, select the best VAR that best fits

cach lower-dimensional vector process {&t,l}?:_lh according to the AIC criterion.
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iii. Obtain the h-step ahead prediction for normalized curves Y,, = (Yoi,--, Y0 )"
with each Y,,(-) = fx,inl() and hence for original curves Y, (-) = {7;/2?,1()

Compute the mean squared prediction error (MSPE), defined as

1 &S
MSPE = — > 3 {V,,(v;) — Yo (v:)}, (3.40)
pN j=1i=1
where vy, ..., vy are equally spaced time points in [0, 1].

We compute the relative prediction error as the ratio of MSPE in (3.40) to that
under the ‘oracle’ case, which uses the true A and the embedded group structure
in the estimation. For comparison, we also implement an univariate functional
prediction method on each Yj;(-) separately by performing univariate dimension
reduction (Bathia et al., 2010), then predicting vector time series based on the best

fitted VAR model and finally recovering functional prediction (denoted as UniV).

We generate n = 200, 400, 800, 1600, 3200 observations for each example and repli-
cate each simulation 500 times. Table 3.1 provide numerical summaries, including
the relative frequencies of the effective segmentation with respect to ¢ = ¢ and
g = q — 1, and the estimation errors for A under the complete segmentation case.
Note that due to the normalized model assumption, we shall use a transformed ver-
sion of A in computing the estimation errors. Let A* = V, /2 AVY? = (Af,...,AY)
and A = V;UQA —(A,,... ,:&q). Since V. is a block-diagonal matrix, it holds that
C(A) = C(A}) for I = 1,...,q. Hence, l~)2(C(A),C(A)) can be calculated by re-
placing A by V, Y2 A As one would expected, the proposed method provides higher
proportions of effective segmentation and lower estimation errors as n increases, and
performs fairly well for reasonably large n as p increases. For (p,n) = (6,200), we
observe 62.6% complete segmentation with DQ(A, A) as low as 0.079. Furthermore,
the proportions of effective segmentation with ¢ = ¢ — 1 are above 93% for n > 200.
Similar results can be found for cases of (p,n) = (10,800+) and (15, 1600+ ), whose
proportions of effective segmentation with ¢ > ¢ — 1 remain higher than 87.4% and
83%, respectively. Table 3.1 also reports the relative h-step ahead prediction errors.
It is evident that SegV significantly outperforms UniV in all settings, demonstrating
the effectiveness of our proposed segmentation transformation and dimension reduc-
tion in predicting future values. Although the proportions of complete segmentation
are not high especially when p = 15, the corresponding proportions of ¢ > ¢ — 1
become substantially higher, and SegV performs very similarly to the oracle case

with its relative prediction errors being close to 1.

141



Table 3.1: Examples 1, 2 and 3: The relative frequencies of effective segmentation
with respect to ¢ = ¢ and ¢ = ¢ — 1, and the means (standard deviations) of
max D?(A, A), D?(A, A), and relative MSPEs over 500 simulation runs.

P n = 200 n = 400 n = 800 n = 1600 n = 3200
q 0.626 0.722 0.772 0.88 0.972
-1 0.93 0.988 0.998 1 1
max DQ(A, A) 0.128(0.088) 0.089(0.066) 0.053(0.048) 0.035(0.037) 0.023(0.027)
D2(A., A) 0.079(0.052)  0.053(0.038) 0.030(0.025) 0.019(0.019) 0.012(0.014)
( 1.026(0.065) 1.014(0.048) 1.010(0.036)
) )

= o=
= = =

SegV 1.081(0.172)  1.048(0.105
UniV 1.584(0.453) 1.598(0.423) 1.596(0.379) 1.651(0.443) 1.623(0.430
i=q 0.324 0.444 0.644 0.806 0.898
G=q-1 0.490 0.688 0.874 0.972 0.994

1o maxDA(A,A) 0.301(0.108) 0.193(0.09) 0.117(0.064) 0.072(0.049) 0.035(0.025)
D2(A,A)  0.183(0.059) 0.115(0.047) 0.069(0.035) 0.041(0.024) 0.019(0.013)
SegV 1.201(0.271)  1.174(0.215) 1.089(0.143) 1.059(0.091) 1.037(0.070)
UniV 1.708(0.404) 1.836(0.410) 1.841(0.436) 1.862(0.392) 1.863(0.397)
7=q 0.032 0.178 0.410 0.622 0.790
G=q-1 0.086 0.344 0.616 0.832 0.948

15 maxD(A,A) 0.426(0.091) 0.347(0.121) 0.241(0.113) 0.157(0.091) 0.090(0.059

) ) )
D2(A,A)  0.273(0.054) 0.195(0.05) 0.128(0.042) 0.077(0.033) 0.041(0.019)
SegV 1.477(0.313)  1.363(0.277) 1.166(0.156) 1.091(0.098) 1.056(0.069)
UniV 1.805(0.370) 1.967(0.394) 2.033(0.394) 2.001(0.384) 2.064(0.413)

3.5.2 Large p

Under a high-dimensional large p scenario, a natural question to ask is whether the
segmentation method still perform well, and if not, whether a satisfactory improve-
ment is attainable via the functional-thresholding developed in Section 3.2.4. To
this end, we generate Y,(-) for p = 30,60 and n = 200,400 by the same procedure
as in Section 3.5.1. Specifically, we let Xy3i-2)(-) = Pu(:), Xya-1(-) = Yur1)(-),
Xian () = Dqan(-) for I = 1,...,¢. This setting ensures ¢ uncorrelated groups of
curve subseries in X, () with p; = 3 component curves per group and hence ¢ = 10
and 20 correspond to p = 30 and 60, respectively. Let the px p transformation matrix
A = Ay +0A,. Here Ay = diag(Aqy, ..., Ajye) with elements of each Ay; € RS
being sampled from Uniform[—3,3] for i = 1,...,p/6, and A, is a matrix with two
randomly selected non-zero elements from Uniform[—1, 1] each row. We set 6 = 0.1
and 0.5. It is notable that our setting results in a very high-dimensional learning
task in the sense that the intrinsic dimension 30 x 5 = 150 or 60 x 5 = 300 is large

relative to the sample size n = 200 or 400..

We assess the performance of ordinary segmentation (Seg) with functional-thresholding-
based segmentation (FTSeg) in discovering the group structure. The optimal thresh-
olding parameters w; in FTSeg are selected by the five-fold cross validation as dis-
cussed in Remark 3.5(i). Tables 3.2 and 3.3 report the relative frequencies of the
effective segmentation with respect to different levels of group identification § > ¢/2

and ¢ = 3¢/5. To enhance the accuracy of identified group structure, we propose to
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Table 3.2: The relative frequencies of effective segmentation with respect to ¢ = ¢/2
over 500 simulation runs.

Seg FTSeg

(P:9) | 2200 0 =400 | m=200 n =400
(30,0.1) 0 0 0.704  0.990
(30,0.5) 0 0 0.564  0.820
(60,0.1) 0 0 0.296  0.978
(60,0.5) 0 0 0192 0.712

refine the estimated groups by repeating FTSeg R (> 2) times. To be precise, the
i-th round of refinement via FTSeg is performed within each group discovered in
the (i — 1)-th round with ¢, = 1 in (3.13) for i = 1,..., R, and hence (Aq,...,A})
is updated after each iteration. The segmentation results for R = 5 and 10 are also
provided in Table 3.3. Finally, we compare the predictive performance of UniV,
SegV with FTSegV and its refined versions, which substitute Seg in Step i with
FTSeg and its R-round refinements, respectively, before Steps ii and iii. Table 3.4

presents the relative prediction errors for all five comparison methods.

Several conclusions can be drawn from Tables 3.2, 3.3 and 3.4. First, the perfor-
mance of Seg severely deteriorates under the high-dimensional setting. Specifically,
this procedure fails to detect any effective segmentation, thus leading to the el-
evated prediction errors. By comparison, FTSeg does a reasonably good job in
recovering the group structure of Z,(-) as evident from Table 3.2, and FTSegV ex-
hibits superior predictive performance over SegV and UniV in all scenarios. Second,
comparing the results among different R, we observe that repeating the segmen-
tation step can largely refine the identified group structure, whereas its influence
on improving the predictive accuracy is limited. For example, under the setting
(p,w,n) = (60,0.1,400), the proportion of effective segmentation with ¢ > 3¢/5
jumps to 0.772 and 0.9 from the initial 0.012 after 5 and 10 iterations, respectively,
implying that ¢ tends to ¢ as R increases, while the relative prediction error only
decreases slightly from 1.11 to 1.099. This phenomenon highlights the success of
FTSegV when p is large in the sense that it performs comparably well to the oracle
method especially for sufficiently large n. Although FTSeg fails to efficiently recover
the group structure in Z,(-) under this case, it achieves an effective dimension reduc-
tion to provide significant improvement in high-dimensional functional prediction.
If the main purpose lies in the group identification with enhanced accuracy, one can

apply FTSeg to Zt() repeatedly with a moderate value of R.
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Table 3.3: The relative frequencies of effective segmentation with respect to ¢ = 3¢/5
over 500 simulation runs. The highest values are in bold font.

Seg FTSeg
(p,w) R=5 R=10
n =200 n =400} n =200 n=400 ' o0 ' 400 |n =200 n=d400
(30,0.1) 0 0 0.030 0002 | 0.468  0.630 | 0.492  0.772
(30,0.5) 0 0 0.076  0.002 | 0368 0510 | 0.378  0.660
(60,0.1) 0 0 0.084  0.012 | 0144 0772 | 0.144  0.900
(60,0.5) 0 0 0.066  0.008 | 0.078  0.650 | 0.072  0.786

Table 3.4: Means (standard deviations) of relative MSPEs over 500 simulation runs.
The lowest values are in bold font.

Method (p,w) n =200 n =400 (p,w) n =200 n =400
FTSegV 1.243(0.162)  1.095(0.105) 1.249(0.122)  1.110(0.073)
FTSegV (R = 5) 1.225(0.153)  1.091(0.101) 1.250(0.123)  1.104(0.071)
FTSegV (R = 10) | (30,0.1) | 1.222(0.151) 1.087(0.099) | (60,0.1) | 1.249(0.122) 1.099(0.071)
SegV 1.814(0.376) 1.901(0.368) 1.813(0.271) 1.907(0.265)
UniV 1.631(0.313)  1.735(0.317) 1.509(0.214)  1.682(0.210)
FTScgV 1.263(0.176)  1.134(0.134) 1.285(0.134)  1.149(0.101)
FTSegV (R = 5) 1.255(0.171)  1.128(0.130) 1.282(0.136)  1.142(0.098)
FTSegV (R = 10) | (30,0.5) | 1.250(0.168) 1.128(0.127) | (60,0.5) | 1.281(0.136)  1.141(0.099)
SegV 1.815(0.377)  1.903(0.369) 1.813(0.271)  1.905(0.264)
UniV 1.635(0.315)  1.740(0.317) 1.603(0.215)  1.684(0.209)

3.6 Real data analysis

In this section, we apply our proposed SegV and FTSegV to three real data ex-
amples arising from different fields. Our main goal is to evaluate the post-sample
predictive accuracy of both methods. By comparison, we also implement componen-
twise univariate prediction method (UniV) and the multivariate prediction method
of Gao et al. (2019b) (denoted as GSY) to jointly predict p component series by
fitting a factor model to estimated scores obtained via eigenanalysis of the long-run
covariance function (Hérmann et al., 2015a). To evaluate the effectiveness of the seg-
mentation step, we also consider cases of under-segmentation and over-segmentation
for both SegV and FTSegV. In particular, after Step i, the under-segmentation up-
dates the identified groups by merging two groups with the largest 7;; for ¢ and j
from two groups before subsequent analysis, while the over-segmentation regards
each component of the transformed curve series as an individual group and then
applies UniV componentwisely. For a fair comparison, the orders of VAR models
adopted in SegV, FTSegV and UniV are determined by the AIC criterion without
any fine-tuning being applied, whereas GSY is implemented using the R package
ftsa.

To examine the predictive performance, we apply an expanding window approach
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to the observed data Yy;(v;) for t = 1,...,n,j = 1,...,p,i = 1,..., N. We split
the dataset into a training set and a test set respectively consisting of the first
ny and the remaining no observations. For any positive integer h, we implement
each comparison method on the training set, obtain h-step ahead prediction on the
test data based on the fitted model, increase the training size by one and repeat the
above procedure ny+1—~h times and finally compute the h-step ahead mean absolute
prediction error (MAPE) and mean squared prediction error (MSPE), respectively,
defined as

MAPE(h) == % 20 2y 20w = Yis(w)l,
t=ii+hj=1l=1 (3‘41)
1 ShS 2
MSPE(h) :(n2 T1- h)pN Z ZZ {Yt] Uz Y;S](Uz)} .

1i=

[y

t=

3

1+hj

3.6.1 UK annual temperature data

The first dataset, which is available at https://www.metoffice.gov.uk/research/
climate/maps-and-data/historic-station-data, consists of monthly mean tem-
perature collected at p = 22 measuring stations across Britain from 1959 to 2020
(n = 62). Let Yi(v;) (¢t = 1,...,62, 5 = 1,...,22, ¢ = 1,...,12) be the mean
temperature during month v; = ¢ of year 1958 + t measured at the j-th station.
The observed temperature curves are smoothed using a 10-dimensional Fourier ba-
sis that characterizes the periodic pattern over the annual cycle. See Figure 3.1
in Appendix 3.B for plots of smoothed annual temperature curves. We divide the
smoothed dataset into the training set of size n; = 41 and the test set of size ny = 21.
Since the smoothed curve series exhibit very weak autocorrelations beyond k = 3

and the training size is relatively small, we use ky = kg = m = 3 in this example.

The values of MAPE and MSPE for h = 1,2, 3 defined in (3.41) are summarized
in Table 3.5. Several obvious patterns are observable. First, our proposed SegV
and FTSegV perform similarly well and both provide the highest predictive accura-
cies among all comparison methods for all h. This demonstrates the effectiveness
of reducing the number of parameters via the segmentation in predicting high-
dimensional functional time series, while the latent transformation matrix may not
be approximately sparse in practice. Second, although the cases of under- and
over-segmentation are slightly inferior to the correct-segmentation case, they sig-
nificantly outperform UniV and GSY in one- and two-step-ahead predictions. It
is worth noting that the over segmentation ignores all the correlations among dif-

ferent components of transformed curves, whereas UniV neglects those of original
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curves. This observation reveals that the transformation step can also improve the

prediction efficiently.

Table 3.5: Comparison of MAFEs and MSFEs for three versions of SegV, FTSegV,
and two competitors on the UK temperature curves for h = 1, 2, 3. The lowest values
are in bold font.

MAFE MSFE
Method h=1 h=2 h=3|h=1 h=2 h=
SegV 0.786 0806 0.827 | 1.073 1075 1.155

Under.SegV 0.805 0.826 0.883 | 1.152 1.135 1.266
Over.SegV 0.797 0821 0.845 | 1.101 1.126 1.174
FTSegV 0.789 0.806 0.828 | 1.077 1.073 1.158
Under.FTSegV | 0.791 0.820 0.872 | 1.105 1.112 1.250
Over.FTSegV | 0.797 0.821 0.845 | 1.101 1.126 1.174
UniV 0.936 0951 0.976 | 1.450 1.450 1.458
GSY 0.894 0.884 0.854 | 1.346 1.338 1.219

3.6.2 Japanese mortality data

The second dataset, which can be downloaded from https://www.ipss.go.jp/
p-toukei/JMD/index-en.html, contains age-specific and gender-specific mortality
rates for p = 47 prefectures in Japan during 1975 to 2017 (n = 43). Following
the recent proposal of Gao et al. (2019b), we model the log transformation of the
mortality rate of people aged v; = ¢ — 1 living in the j-th prefecture during year
1974 + t as a random curve Yy;(v;) (¢ =1,...,43,j=1,...,47,i=1,...,96) and
perform smoothing for observed mortality curves via smoothing splines. Figure 3.2
in Appendix 3.B displays exemplified trajectories of smoothed mortality curves.
The post-sample prediction are carried out in an identical way to Section 3.6.1. We
choose ky = kg = m = 3 in our estimation and treat the smoothed curves in the
first ny = 33 years and the last ny = 10 years as the training sample and the test

sample, respectively.

Table 3.6 reports the MAPEs and MSPEs for Japanese females and males. Again it
is obvious that SegV and FTSegV provide the best predictive performance uniformly
for both females and males, and all h. One may also notice that, compared with
SegV and Under.SegV, Over.SegV does not perform well for males. In most cases,
the decorrelated curve series for males admits ¢ = 44 groups with 43 groups of size
1 and one large group of size 4. However, Over.SegV fails to account for the cross
serial dependence within such large group, thus leading to less accurate predictions.
On the other hand, the transformed curves for females reveal a common structure

with one group of size 2 and the remaining groups of size 1. As expected, Over.SegV
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performs slightly better in this case. This finding again confirms the effectiveness of
our procedure, in particular, the within group cross dependence information is also

valuable in the post-sample prediction.

Table 3.6: MAFEs and MSFEs for eight competing methods on the Japanese female
and male mortality curves for h = 1,2,3. All numbers are multiplied by 10. The
lowest values are in bold font.

MAFE MSFE
Method - h—9 T = - - -
SegV 1.393 1.414 1.468 | 0.482 0.470 0.486

Under.SegV 1.537 1.661 1.853 | 0.528 0.560 0.642
Over.SegV 1.427 1.610 1.814 | 0.482 0.520 0.588
FTSegV 1.392 1417 1.468 | 0.484 0471 0.484

Female [ 17 qor FTSegV | 1542 1.661 1.846 | 0533 0560 0.638
Over.FTSegV | 1.433 1617 1.816 | 0.484 0.523  0.588

UniV 1.602 1.858 2.136 | 0.523 0.618 0.737

GSY 1.618 1.691 1.682 | 0.678 0.733 0.706

SegV 1.374 1461 1543 | 0436 0.453 0.481
Under.SegV | 1.394 1491 1.608 | 0.443 0.464 0.503
Over.SegV | 1.506 1.678 1.897 | 0.468 0514 0.603

Malo FTSegV 1.376  1.444 1.521 | 0.435 0.446 0.473

Under.FTSegV | 1.389 1.482 1.596 | 0.440 0.460 0.499
Over.FTSegV | 1.512 1.673 1.894 | 0.470 0.512 0.604
UniV 1.568 1.855 2.167 | 0.485 0.595 0.743
GSY 1.550 1.581 1.576 | 0.669 0.663 0.628

3.6.3 Energy consumption data

Our third dataset contains energy consumption readings (in kWh) taken at half
hourly intervals for thousands of London households, and is available at https://
data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households.
In our study, we select households with flat energy prices during the period between
December 2012 and May 2013 (n = 182) after removing samples with too many
missing records, and hence construct 4000 samples of daily energy consumption
curves observed at T = 48 equally spaced time points. To alleviate the impact of
randomness from individual curves, we randomly split the data into p groups of
equal size, then take the sample average of curves within each group and finally
smooth the averaged curves based on a 15-dimensional Fourier basis. See Figure 3.3
in Appendix 3.B for some examples of the smoothed intraday consumption curves.
We target to evaluate the h-day ahead predictive accuracy for intraday energy con-
sumption curves in May 2013 based on the training data from December 2012 to
the previous day. The eight comparison methods are built in the same manner as
Section 3.6.1 with ky = kg = m = 5.
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Table 3.7 presents the mean prediction errors for h = 1,2,3 and p = 40,80. A few
trends are apparent. First, the prediction errors for p = 80 are higher than those
for p = 40 as higher dimensionality poses more challenges in prediction. Second,
likewise in previous examples, SegV and FTSegV attain the lowest prediction errors
in comparison to five competing methods under all scenarios. All segmentation-
based methods consistently outperform UniV and GSY by a large margin. Third,
despite being developed for high-dimensional functional time series prediction, GSY

provides the worst result in this example.

Table 3.7 MAFEs and MSFEs for eight competing methods on the energy con-
sumption curves for h = 1,2,3 and p = 40, 80. All numbers are multiplied by 102.
The lowest values are in bold font.

MAFE MSFE
Method - = - - = -
SegV 1.639 1.748 1.793 | 0.047 0.053 0.054

Under.SegV 1.669 1.766 1.794 | 0.048 0.054 0.054
Over.SegV 1.709 1.873 1.964 | 0.049 0.058 0.062
FTSegV 1.637 1.747 1.791 | 0.047 0.053 0.054
Under. FTSegV | 1.669 1.766 1.793 | 0.048 0.054 0.054
Over. FTSegV | 1.708 1.872 1.963 | 0.049 0.058 0.062

UniV 1.867 2.009 2.109 | 0.058 0.067 0.072
GSY 2.142 2264 232 | 0.099 0.110 0.119
SegV 1.996 2.058 2.071 | 0.070 0.075 0.075

Under.SegV 2.025 2.092 2104 | 0.072 0.077 0.077
Over.SegV 2.022 2132 2.187 | 0.070 0.078 0.081
FTSegV 2.012 2.055 2.070 | 0.071 0.074 0.074
Under.FTSegV | 2.040 2.087 2.104 | 0.073 0.076  0.077
Over.FTSegV | 2.045 2.138 2.190 | 0.072 0.078 0.081
UniV 2221 2362 2463 | 0.083 0.093 0.100
GSY 2.833 2826 2.781 | 0.159 0.159 0.159
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3.A Additional Results and Proofs

We begin by introducing some notation. For a vector b € RP, we denote its £, norm
by [blz = (37_, [b;]?)"/2. For a matrix B € RP9, we let |B|; = Aiax(B*B), where
Amax(M) denotes the largest eigenvalue of the matrix M. For B = (B,;),x, with
its (,j)-th component B,; € S, we define the functional version of matrix ¢; norm
by |B|s1 = max; Y, |Bij|s. We use ® to denote the Kronecker product. For two
positive sequences {a,} and {b,}, we write a,, < b, or b, 2 a, if there exist a positive
constant ¢ such that a, /b, < ¢. Throughout, we use ¢, ¢y to denote generic positive

finite constants that may be different in different uses.

3.A.1 Proofs of main theorems

Proof of Theorem 3.1. Recall W, in (3.6) and Wy in (3.15). It follows from
Lemma 3.4 and fixed kg under Condition 3.4 that

Hwy - WyH2
KO
<2
k=0

0, {EQMH (_10519 ) 5} .

[ [ 700 1T (B0 0 = B ), 0y due

2

(3.42)

Due to the fact that maX1§j<p|>\j(Wy) — N(Wy)| < ||V/\\7y — W, |2, we obtain
mMaxi<j<p P‘j(‘/ﬁy) — Ni(Wy)| =, 0 given E(p)> M~ (logp/n)(l—a)/Q = o(1). Re-
call W, and W, = diag(W.1,..., W, ) share the same eigenvalues, and W,
and W, do not share same eigenvalues if {; # [5. Therefore, there exists a map
7w {l,....p} = {1,...,q} such that each Aj(wy) converges to some eigenvalue
of W_ (). Recall n; is the eigenvector of \/7\\7y associated with )\j(wy). For each
[=1,...,q, welet A; be a p x p, matrix whose columns are n; with 7(j) = [. If we
view A;, W, and W, as Q;, B and B + E in Lemma 3.7 respectively, then the cor-
responding Q7, denoted by H;, provides an orthonormal basis of C(A;). Therefore,

applying Lemma 3.7 yields that, for each [,

A, —H, < 85 |[W, — W, .. (3.43)

Write T'¢, = (7;)jec, € RP*P1. Note that the columns of A, are also permutation of
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{n;,j € Gi}. By (3.43), we have that

HfGlf‘Zz - FGngz HQ = HAZA!T - HlHlTHz

< A= H[; + 2[H A - H,

—111x%7
<o |Wy, - Wy”z'
Let Udiag(ds, .. ., d,,)U" be the SVD of T, T5, T, T, where dy > --- > d,,. Define
I, = UU T, 1=1,...,q (3.44)

Hence, there exists a p x p matrix IT = (v,,...,7,) such that Tlg, = (v;)jcq,-
Following the same techniques as in the proof of Theorem 2 in Han et al. (2021), we
have that Il I, = I'g,T'g, and

- ~ AT
ho— o~y < - a ¢
112;2; len] '7]”2 < 11213%)2 leFGl HG;HQ < 1nslla<}§1 \@leFGzFGl FGZFGlH2 (345>

S HWy - WyH2v

Denote by E = {(i,j) D maXo<p<m Max [ [¥I By 1y, ls, [V}, ls] > O} the
edge set of G = {1,...,p} under II. The true segmented groups in (3.35), defined
according to the ordered eigenvectors of W, can also be found via splitting {G, E'}

into multiple connected subgraphs (Gy, E;), for i =1,...,q.

Define @,, = EM'~*(log p/n)1 =2, Consider the event 2, = { maxo<r<m | 7oy (f];k)—
S, kls1 < cow,}. By (3.42) and (3.45), it is immediate to see that there exists some
constant ¢ such that maxi <j<p |71,—7,ll2 < ¢p™ v, where v, = Z2M~*(log p/n)~*)/2,

By Condition 3.5 and Lemma 3.6, for each (i,j) € E,

Ty = e max {81 T, (25,007, s, 1A To (55,01 s |

0<k<m

o SE
> ¢ — max |[a; — > max X, s — max [T, (%)) - Byxls.,

where ¢ = minj¢<, 5. Combining the above results with (3.49) (in the proof of
Lemma 3.4) under the event €, yields that

min T;; > ¢ — cp’lEyn,
(ij)eE
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where p = min; <, p;. Similarly, we have that

max T;; < =
(i.4)¢E

Letting cp™'Zv, < 7, < ¢ — cp '2v,, we obtain the exact recovery of the true seg-
mentation {G1, ..., G,} in the sense of £ = E. Note it follows from Lemma 3.3 that
P(QY) = o(1). Hence we complete the proof of Theorem 3.1. o

Proof of Theorem 3.2. By (3.42), (3.43) and the remark for Lemma 1 of Chang
et al. (2018), we obtain that

) _ o 15
max 0 D(C(A).C(A) < [W, — W, 2 = O, {:M () } ,

1<I<q n

which completes the proof. o

Proof of Theorem 3.3. We follow the same notation as in the proofs of The-
orems 3.1 and 3.2. Recall that T, = (,)jec, = (Ay,---+7,,) and Ig, =
(¥j)jec, = (Vi1 -+ Y1y,)- We now focus our analysis based on IT in the sense that
My (u,v) =I5, By x(u, v)Ig, = {Mi(f’l)(u, V) }p,xp, for each true group [ =1,...,4¢.
Recall that

= ~ & ~ AT S ~ (kL
Mk,l(uv ?}) = A?'E,AE;,C)(?VL,U)Al = FGl%k(EZ,k)(ua U)FGZ = {Mzg )<u7v)}pz><pl'
Notice that
kD Akl eT SIS Vs AT _
Mij Mij = "71,1‘7?% (Ey,k)"?z,j 7l,i2y7k7l,j =N+ 1o+ I3+ 1y + I,

where [; = (ﬁz,i - ’Yz,i)T{%k(EZ,k) - EyJe}?A?z,ja I = ('f?l,i - 7l,i)T2y,k’(’f’l,j - ’)’l,j)a
Iy = (ﬁl,i—’Yz,z‘)TEy,k’Yl,ja Iy = Vf,i{%k(zz,k)_zy,k}’f?z,j and [5 = ’Yfizy,k(ﬁz,j _7l,j)'
By (3.45), (3.49), the orthonormality of 0, ;, 7, ; and Lemmas 3.3, 3.6, we obtain
that

——1 2

maxpl L] = Op(E77),  maxpilla| = Op(Evy),

max |I| = Op(E7'va), mapi(|s] + I5]) = Op(Era).
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The above results lead to
(k,l k)l —_
ma pi| M = M7 s = Op(Zwn),
which together with Condition 3.6 implies that

max leMkz — Mylsr = Op(Evy).

Write Zy(-) = (Zt(’ll)('), e Zt(’l;l(-))T. It follows from Cauchy-Schwartz inequality
and Condition 3.6 that

max IMpi|sr = max \/Z J J{Mi(j@:l)(u, v)}2dudv
< max \/ZJ {Z“ du\/EJ Zt(ikj )} ]du < mlaXIE(HZt’lH?) = 0(1).

Combining the above results, we have

K -K
fgg{ﬂzﬂ ! llsF

k() kO
< mlaX Z PzHMk,l - Mkl”?sp + 2 mlaX Pl Z HMk,le,FHMk,z - Mk,lHS,F (3.46)

k=1 k=1

=0,(Ew,).
This, together with Theorem 2 of Chiou et al. (2014), implies that

wax |ty — 0] = Op(Swn), max prlep;, — by || = Op(Era). (3.47)

Recall that

N él] + 0p
7, = argmax —=2———
1<j<n—ko elj+1 + 5
— 0 with §, = p~!'Zv,, implies that §, =

Py . 2
The condition 4§, max; 61/ min; 07,

o(min, 0, ,,). Combining this with (3.47), we obtain for j < r,

- 917]' + 0, ~ max Qlyj — 9“ + 9173‘ + 0, . maxigigq 91,1
= = P :
ISISOG) 00 + 6, 1SISU0 500 — 00 + g1 + 0, Milicicg Oy
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For j =y,

. el,rl + 571 . el,rl - Hl,rl + el,rl + 5n minlélgg el,rl
min ——— = Inin = —p .
Isi<q el,m-i-l + 571 Isi<q el,m-i-l + 571 5”

For j > r;, we have
0,:+9
max —2—" — C.
ISI<a )04 + 9,
Hence, under the condition of d,, max; 6; 1/ min, Q?W — 0, r; is correctly identified via

7 uniformly over {1,...,q}. o

Proof of Theorem 3.4. By (3.47), the definition of D{C(@LZ),C(%)} and the

orthonormality of ).,, we obtain that

]7l’

max p;v/ 27 D{C 'l,bl (¢,) } max py

1<i<q 1<i<q

Z (l/)l] Ry — i, ® d’ZJ)

SF

Ty
< max Z H%l P, +2 [ax py 2 1l — bl

1<l<

=0,(Zv,).o

3.A.2 Technical lemmas and their proofs

Proof of Lemma 3.1. Recall that f]E[{th(u)}z]du = 1 as discussed in Sec-
tion 3.2.1. Hence,

HE,(ZIC’L)jH?S = JJ[E{th(U) (t+k); (v)}]?dudv
< [ El{Zo(P I | B{Zey ) )0 < 1.

153



By the inequality (a + b)* < a® + b* for z,y = 0 and « € [0, 1), we obtain that

O 5(0) Y (k)
im1 i=11,m=1

< ma‘X ||Zz lmHS ma‘XZ ‘A’Ll’ Z ‘A3m|a

i=1 [l—m|<max; p;

p
< somax |20, [3@maxp+1) ) Ayl
< s155(2maxp; + 1)

In the same manner, we can prove the second result in this lemma. o

Lemma 3.2. Suppose that Conditions 5.2 and 5.5 hold for sub-Gaussian linear
process {Y(-)}iez. Then, for k = 1,... Kg, there exists some universal constant

¢ > 0 such that for any n > 0 and each i,7 =1,...,p,

{HZ(’“ _n® s > Mn} < 8exp{—cénmin(n* n)}.

Y5ij Y5ij

In particular, if sample size n 2 log(p), then for any M > 0, there exist some

positive constant ¢, > 0 such that

log p

0]
Y5ij YU\ s

<M

maX HZ

with probability greater than 1 — O(p~™).

Proof. This lemma follows directly from Theorem 1 of Fang et al. (2022) and
Theorem 2 of Guo and Qiao (2022) and hence the proof is omitted here. o

Lemma 3.3. Suppose that Conditions 3.1-3.3 hold. Then there exists some constant
0 > 0 such that for k < Ko, if wr = d/logp/n, it holds that

19) {’:Ml—a <10gp>;a}
p — n )
e (logp\
S,0 = Op {:Ml (T) } .

Proof. Denote by 7, (Z; i7) the (i, j)-th component of 7:Jk<22 .). Under the event

170 (350) =2

176 (35,0) — Ty
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5w 0

< wy, we have that

k: k:
max2||7;k E8) - 2" s

Y5ij Y5ij

Y,ij

V4
k k
=max 3 [T (80) = S5 s IS s =
=1
5 (k) () (k)
+ m]axz (e (Ey,ij) - Ey,inSI{HEy,inS < wif
=1
S (k) (k)
<max ) {75 E5) = S s + 155% - S5 s HOE Is > wes IZ5) s > o)
=1

p
S(k k
a4 T () = Dyl Tyl = e 19,50 < )

+ maXZ szz]” ]{sz z]HS < wk}

<2wk21{||2;’3]\|5 wk}+maXZ||Z(k A PYE()

vii = Sy Ws = wr [201s < wi)

+ maXZ IZy s THIEG) s < 2we}

=: Q1+ Q2+ Q3

By Lemma 3.1, we have that

i

Ql + Q3 C wl}: QZ HEyU”S ~ -

=1

(3.48)

To bound Q,, for 6 € (0,1), we write

Q2<max2uzw SO HIEE s > wio 120 < b}

~ k
+ maXZ |E8. OSSN s = wy, Oy, < |Z0 s < wi)
=1

<wkmaX21{\|zw W ls > (1 — Owy) +wp 0=

i=1
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By Lemma 3.2, we obtain that, for n = log(p),

p
Pl Y HIE, —2ils > (1= B} ] = P{ max [0 - s > (1 - B}

< 8p?exp{—¢&(1 — 0)%logp} — 0,

Hence, Qo < w, “Z. This, together with (3.48), implies that

n

» ~ lo =R
i N _ e gp
mjaxz |7 (Ez(m‘)j) - Ez(’”)jns = {:Ml < ) '
i—1

The second result can be proved in the similar manner. Hence, the proof is complete.

[m]

Lemma 3.4. Suppose Conditions 5.1-5.3 hold. Then we have that

HJJ (52550 (u, 0{ T (25 1) (w, 0))" Zy,k(u,v){zy,k(u,U)}T]dudv
- 0, {E2M1—a (10%) 12“}

Proof. It follows from Lemma 3.5 that

2

H f f | o (525,00 (0, 0)(Tor (855,0) (1, )™ = S, 0){ By, 0)} | duco

2

<2\/ 135 k112l 00 T (325 1) = B ills [ T (355 1) = By klls.00

T (B 1) = Byrlsal T (B54) — By klls.co-

By Lemma 3.1, we have that

p
k
ISy klls = max 3 Sy s < Smax S0 5
=1
"o (3.49)
Sy kllse = max 37 |Sylls < Emax |2

=1

yz]”

Combining the above results with Lemma 3.3, we complete the proof. o

Lemma 3.5. Let By = (B1,ij)pxp with each By;; € S and By = (B j)pxp with each
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Bgﬂ'j € S. Then

e

< \/IBuls o Bils 1/ [Balis ol Bl
2

Proof. Notice that

p

= max
1<5<
1 A e

p P
max > | Biklls| Bajils

[ [t

f JZ By ik (u, v) B ji(u, v)dudv
k

N

1<J<pi=1 o1
p p
< max Z; |Briels max ;;1 | Bajills
= [Bi]s,1[Bz]s0-
(3.50)
By similar argument, we obtain that
H J f By (1, 0){Bs(u, 1)} dudv| < |Bis.e|Bslss. (3.51)
o8]

Combining (3.50), (3.51) and the matrix norm inequality |E|? < |E|»|E|; for any

matrix E € RP*P we complete the proof. o

Lemma 3.6. Let B = (B;j),x, with each B;; €S, by € RP and by € RP. Then

[biBbs|s < [[bi]s]b2]ay/[Bls.c|Bls.1-

Proof. By elementary calculation and Lemma 3.5, we obtain that

IbTBby|2% — J fbe(u, )bobI{B(u, )} by dudy

<f f [bab3 o bTB(u, v)[2dudv < [bs? f f bIB(u, v) {B(u, v)} "bydudv

<[[b1 2Dz 2B s 0 IBlls.1,

which completes our proof. o

Lemma 3.7. Suppose B and B + E are m x m symmetric matrices and that
Q = (Q1,Q2), where Qp is an m x | matrix and Qz is an m x (m — 1) matriz,

is an orthogonal matriz such that C(Qy) is an invariant subspace for B (that is,
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B C(Q1) = C(Qq)). Partition the matrices Q"BQ and QTEQ as follows:

D, 0 ] E, EI
Q"'BQ = and Q'EQ =
0 D, Es Eg

If sep(D1,Dy) = ming, exp,)uerms) |11 — p2| > 0, where A\(M) denotes the set
of eigenvalues of the matrix M, and |E|y < sep(Di,Ds)/5, then there exists a
matriz P e RM=DXU with Py < 4|Ea|/sep(D1, D) such that the columns of
Q; = (Qi + QuP)(I + P™P)~/2 define an orthonormal basis for a subspace that is
invariant for B + E.

This is Theorem 8.1.10 of Golub and Van Loan (1996). From Lemma 3.7, we have

1Q7 — Quf2 = [{Q1 + QP — Qi (T + PTP)W}(I + PTP)—1/2H2

< [Qu{I - I+ P P) 2} + Q2P

8 8

<2|P|ls € ————|E < —F— | E|.
H H2 Sep(D1,D2)H 21”2 Sep(Dl,D2)H H2

3.B Additional real data results

Figures 3.1-3.3 display exemplified trajectories of smoothed curves from the UK
annual temperature data, Japanese mortality data and energy consumption data,

respectively.
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Cambridge station (1959-1968)
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Figure 3.1: UK annual temperature data: the smoothed annual temperature data mea-
sured at the Cambridge station from 1959 to 1968.

Kyoto: female (1975-1984)

Log mortality rate

0 20 40 60 80

Age

Figure 3.2: Japanese mortality data: Log smoothed female mortality rate in the Kyoto
prefecture from 1975 to 1984.
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Group 1 (December 2012)
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Figure 3.3: Energy consumption data: the smoothed intraday group-averaged consump-
tion curves of Group 1 in December 2012.
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