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Abstract

Statistical analysis of high-dimensional functional data/times series arises

in various applications. Examples include different types of brain imag-

ing data in neuroscience (Zhu et al., 2016; Li and Solea, 2018), age-

specific mortality rates for different prefectures (Gao et al., 2019a) and

intraday energy consumption trajectories (Cho et al., 2013) for thou-

sands of households, to list a few. Under this scenario, in addition to

the intrinsic infinite-dimensionality of functional data, the number of

functional variables can grow with the number of independent or se-

rially dependent observations, posing new challenges to existing work.

In this thesis, we consider three fundamental tasks in high-dimensional

functional data/times series analysis: finite sample theory, covariance

function estimation (with a new class of adaptive functional threshold-

ing operators) and modelling/prediction.

In the first chapter, we focus on the theoretical analysis of relevant esti-

mated cross-(auto)covariance terms between two multivariate functional

time series or a mixture of multivariate functional and scalar time series

beyond the Gaussianity assumption. We introduce a new perspective

on dependence by proposing functional cross-spectral stability measure

to characterize the effect of dependence on these estimated cross terms,

which are essential in the estimates for additive functional linear re-

gressions. With the proposed functional cross-spectral stability mea-

sure, we develop useful concentration inequalities for estimated cross-

(auto)covariance matrix functions to accommodate more general sub-

Gaussian functional linear processes and, furthermore, establish finite

sample theory for relevant estimated terms under a commonly adopted

functional principal component analysis framework. Using our derived

non-asymptotic results, we investigate the convergence properties of the

regularized estimates for two additive functional linear regression ap-

plications under sparsity assumptions including functional linear lagged

regression and partially functional linear regression in the context of

high-dimensional functional/scalar time series.



In the second chapter, we consider estimating sparse covariance functions

for high-dimensional functional data, where the number of random func-

tions p is comparable to, or even larger than the sample size n. Aided by

the Hilbert–Schmidt norm of functions, we introduce a new class of func-

tional thresholding operators that combine functional versions of thresh-

olding and shrinkage, and propose the adaptive functional thresholding

of the sample covariance function capturing the variability of individual

functional entries. We investigate the convergence and support recovery

properties of our proposed estimator under a high-dimensional regime

where p can grow exponentially with n. Our simulations demonstrate

that the adaptive functional thresholding estimators significantly out-

perform the competing estimators. Finally, we illustrate the proposed

method by the analysis of brain functional connectivity using two neu-

roimaging datasets.

The third chapter proposes a two-step procedure to model and pre-

dict high-dimensional functional time series, where the number p of

function-valued variables is large in relation to the number n of seri-

ally dependent observations. Our first step uses the eigenanalysis of

a positive definite matrix to look for linear transformation of original

high-dimensional functional time series such that the transformed curve

series can be segmented into multiple groups of low-dimensional sub-

series, and the subseries in different groups are uncorrelated both con-

temporaneously and serially. Modelling each low-dimensional subseries

separately will not lose the overall linear dynamical information and at

the same time avoid the overparametrization issue arisen from directly

modelling original high-dimensional functional time series. Our second

step estimates the finite-dimensional dynamical structure for each group

of the transformed curve series that converts the problem of modelling

low-dimensional functional time series to that of modelling vector time

series. Efficient strategies can be implemented to predict vector time

series groupwisely, which can then be converted back to predict groups

of transformed curve subseries and finally original functional time series.

We investigate the theoretical properties of our proposal when p diverges

at an exponential rate of n. The superior finite-sample performance of

the proposed methods is illustrated through both extensive simulations

and three real datasets.
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Chapter 1

Finite Sample Theory for

High-Dimensional

Functional/Scalar Time Series

with Applications

1.1 Introduction

Functional time series have received a great deal of attention in the last decade

in order to provide methodology for functional data objects that are observed se-

quentially over time. Despite progress being made in this area, existing literature

has focused on the statistical analysis of a single or small number of random func-

tions. The increasing availability of large dataset with multiple functional features

corresponds to the data structure of

Xtpuq “
␣

Xt1puq, . . . , Xtppuq
(T
, t “ 1, . . . , n, u P U ,

with covariance matrix function ΣX
0 pu, vq “ CovtXtpuq,Xtpvqu, where, under the

high-dimensional and dependent setting, the number of functional variables (p) can

be comparable to, or even larger than, the number of serially dependent observations

(n), posing new challenges to existing work.
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Examples of high-dimensional functional time series include daily electricity con-

sumption curves (Cho et al., 2013) for a large collection of households, half-hourly

measured PM10 curves (Aue et al., 2015) over a large number of sites and cumu-

lative intraday return curves (Horváth et al., 2014) for hundreds of stocks. These

applications require developing learning techniques to handle such type of data. One

large class considers imposing various functional sparsity assumptions on the model

parameter space, e.g. vector functional autoregressions (VFAR) (Guo and Qiao,

2022) and, under a special independent setting, functional graphical models (Qiao

et al., 2019) and functional additive regressions (Fan et al., 2014, 2015; Kong et al.,

2016; Luo and Qi, 2017; Xue and Yao, 2021), where the corresponding regularized

estimates are proposed.

Within the high-dimensional time series framework, it is essential to establish nec-

essary concentration inequalities for dependent data and assess how the presence of

serial dependence affects non-asymptotic error bounds. See relevant concentration

results for Gaussian process (Basu and Michailidis, 2015), linear process or linear

spatio-temporal model with more general noise distributions (Sun et al., 2018; Shu

and Nan, 2019) and heavy tailed time series (Wong et al., 2020). Compared with

theoretical analysis of scalar time series, the added technical challenges that arise

to handle functional time series involve developing non-asymptotic results for de-

pendent processes within an abstract Hilbert space and characterizing the effect of

serial dependence in tXtp¨qu with infinite, summable and decaying eigenvalues of

ΣX
0 .

Theoretical investigation of high-dimensional functional time series is rather incom-

plete. Guo and Qiao (2022) proposed a functional stability measure for Gaussian

functional time series by controlling the functional Rayleigh quotients of spectral

density matrix functions relative to ΣX
0 and hence can precisely capture the effect

of small eigenvalues. Moreover, they relied on it to establish concentration bounds

on sample (auto)covariance matrix function of Xtp¨q, serving as a fundamental tool

to provide theoretical guarantees for the proposed three-step procedure and the reg-

ularized VFAR estimate, in a high dimensional regime. However, their proposed

stability measure only facilitates finite sample theory to accommodate Gaussian

functional time series and is not sufficient to evaluate the effect of serial dependence

on the estimated cross-(auto)covariance terms in a non-asymptotic way, which plays

a crucial role in the theoretical analysis of a wide class of additive functional linear

regressions under the high-dimensional regime when the serial dependence exists.

To illustrate, we consider two important examples of additive functional linear re-

gressions in the context of high-dimensional functional/scalar time series. The first

11



example considers the high-dimensional extension of functional linear lagged regres-

sion (Hörmann et al., 2015b) in the additive form:

Ytpvq “

L
ÿ

h“0

p
ÿ

j“1

ż

U
Xpt´hqjpuqβhjpu, vqdu ` ϵtpvq, t “ L ` 1, . . . , n, pu, vq P U ˆ V ,

(1.1)

where p-dimensional functional covariates tXtp¨qu and functional errors tϵtp¨qu are

generated from independent, centered, stationary functional processes, and tβhjp¨, ¨q :

h “ 0, . . . , L, j “ 1, . . . , pu are sparse functional coefficients to be estimated. Under

an independent setting without lagged functional covariates, model (1.1) reduces to

the additive function-on-function linear regression (Luo and Qi, 2017).

The second example studies partially functional linear regression (Kong et al.,

2016) consisting of a mixture of p-dimensional functional time series tXtp¨qu and

d-dimensional scalar time series Zt “ pZt1, . . . , Ztdq
T for t “ 1, . . . , n, both of which

are independent of errors tϵtu, as follows:

Yt “

p
ÿ

j“1

ż

U
Xtjpuqβjpuqdu `

d
ÿ

k“1

Ztkγk ` ϵt, t “ 1, . . . , n, u P U , (1.2)

where tβjp¨q : j “ 1 . . . , pu are sparse functional coefficients and tγk : k “ 1, . . . , du

are sparse scalar coefficients. Whereas Kong et al. (2016) focused on an independent

scenario and treated p as fixed, we allow both p and d to be diverging with n under

a more general dependence structure. See also special cases of model (1.2) without

functional covariates or scalar covariates in Basu and Michailidis (2015); Wu and

Wu (2016) or Fan et al. (2015); Xue and Yao (2021), respectively.

There are many modern applications of the proposed two additive functional linear

regression models. In environmental studies, for example, pollutant episodes often

exhibit a strong correlation with unfavorable meteorological conditions, resulting in

the diminished ability of the atmosphere to disperse the pollutants (Ziomas et al.,

1995; Bai et al., 2018). Model (1.1) thus can be applied to forecast the daily pol-

lution curves with meteorological variables, e.g. historic daily weather data, as the

functional covariates tXtp¨qu. See also Chang et al. (2022) for an example of the

application of model (1.2), which aims to forecast the daily intraday return of S&P

100 based on observed cumulative intraday return trajectories of component stocks.

In addition to existing non-asymptotic results in Guo and Qiao (2022), the central

challenge to provide theoretical supports for the regularized estimates for mod-

els (1.1) and (1.2) is: (i) to characterize how the underlying dependence struc-

ture affects the non-asymptotic error bounds on those essential estimated cross-
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(auto)covariance terms, e.g. estimated cross-covariance functions between Xtp¨q and

Yt`hp¨q (or ϵt`hp¨q) for h “ 0, . . . , L in model (1.1) and estimates of CovtXtp¨q,Ztu,

CovpZt, ϵtq and CovtXtp¨q, ϵtu in model (1.2); (ii) to develop useful non-asymptotic

results beyond Gaussian functional/scalar time series.

To address such challenges, the main contribution of this chapter is threefold.

• First, we propose a novel functional cross-spectral stability measure between

tXtp¨qu and d-dimensional functional (or scalar) time series, i.e. tYtp¨q “

pYt1p¨q, . . . , Ytdp¨qqTu, defined on V or tZtu, based on their cross-spectral den-

sity properties. Compared with the direct functional extension of the cross-

stability measure in Basu and Michailidis (2015), our functional cross-spectral

stability measure can more precisely capture the effect of small eigenvalues to

handle truly infinite-dimensional functional objects. It also facilitates the de-

velopment of non-asymptotic results for pΣ
X,Y

h and pΣ
X,Z

h , which respectively are

estimates of cross-(auto)covariance terms, ΣX,Y
h pu, vq “ CovpXtpuq,Yt`hpvqq

and ΣX,Z
h “ CovpXtpuq,Zt`hq for all integer h. Moreover, it provides insights

into how pΣ
X,Y

h and pΣ
X,Z

h are affected by the presence of serial dependence.

• Second, we establish finite sample theory in a non-asymptotic way for rele-

vant estimated (cross)-(auto)covariance terms beyond Gaussian functional (or

scalar) time series to accommodate more general multivariate functional linear

processes with sub-Gaussian functional errors. Our finite sample results and

adopted techniques are general, and can be applied broadly to provide theoret-

ical guarantees for regularized estimates of other high-dimensional functional

time series models, e.g., the autocovariance-based estimates of sparse func-

tional linear regressions (Chang et al., 2022) and the functional factor model

(Guo and Qiao, 2022).

• Third, due to the infinite dimensionality of the functional covariates, dimen-

sion reduction is necessary in the estimation. One common approach is func-

tional principal component analysis (FPCA). We hence establish useful de-

viation bounds on relevant estimated terms under a FPCA framework. To

illustrate using models (1.1) and (1.2), we implement FPCA-based three-step

procedures to estimate unknown parameters under sparsity constraints. With

derived non-asymptotic results, we verify functional analogs of routinely used

restricted eigenvalue and deviation conditions in the lasso literature (Loh and

Wainwright, 2012; Basu and Michailidis, 2015) and, furthermore, investigate

the convergence properties of regularized estimates under a high-dimensional

and serially dependent setting.

13



Literature review. Our work lies in the intersection of two strands of literature:

functional time series and high-dimensional time series. In the context of functional

time series, many standard univariate or low-dimensional time series methods have

been recently adapted to the functional domain with theoretical properties explored

from a standard asymptotic perspective, see, e.g., Bosq (2000); Bathia et al. (2010);

Hörmann and Kokoszka (2010); Panaretos and Tavakoli (2013); Aue et al. (2015);

Hörmann et al. (2015b); Pham and Panaretos (2018); Li et al. (2020) and reference

therein. In the context of high-dimensional time series, some lower-dimensional

structural assumptions are often incorporated on the model parameter space and

different regularized estimation procedures have been developed for the respective

learning tasks including, e.g., high-dimensional sparse linear regression (Basu and

Michailidis, 2015; Wu and Wu, 2016; Han and Tsay, 2020) and high-dimensional

sparse vector autoregression (Guo et al., 2016; Lin and Michailidis, 2017; Gao et al.,

2019b; Ghosh et al., 2019; Zhou and Raskutti, 2019; Wong et al., 2020; Lin and

Michailidis, 2020).

Outline. The remainder of the chapter is organized as follows. In Section 1.2,

we propose cross-stability measures under functional and mixed-process scenarios,

define sub-Gaussian functional linear processes and rely on them to present finite

sample theory for estimated (cross-)terms used in subsequent analyses. In Sec-

tion 1.3, we consider sparse high-dimensional functional linear lagged model in (1.1),

develop the penalized least squares estimation procedure and apply our derived non-

asymptotic results to provide theoretical guarantees for the estimates. Section 1.4

is devoted to the modelling, regularized estimation and application of established

deviation bounds on the theoretical analysis of sparse high-dimensional partially

functional linear model in (1.2). Finally, we examine the finite-sample performance

of the proposed methods for both models (1.1) and (1.2) through simulation studies

in Section 1.5. All technical proofs are relegated to the appendix.

Notation. Let Z and R denote the sets of integers and real numbers, respec-

tively. For x, y P R, we use x _ y “ maxpx, yq. For two positive sequences tanu

and tbnu, we write an À bn or an “ Opbnq or bn Á an if there exists a positive

constant c independent of n such that an{bn ď c. We write an — bn if an À bn

and an Á bn. For a vector x P Rp, we denote its ℓ1, ℓ2 and maximum norms

by }x}1 “
řp
j“1 |xj|, }x} “ p

řp
j“1 |xj|

2q1{2 and }x}max “ maxj |xj|, respectively.

For a matrix B P Rpˆq, we denote its Frobenius norm by }B}F “
`
ř

i,j B2
ij

˘1{2
.

Let L2pUq be a Hilbert space of square integrable functions on a compact interval

U . For f, g P L2pUq, we denote the inner product by xf, gy “
∫

U fpuqgpuqdu for

f, g P L2pUq with the norm } ¨ } “ x¨, ¨y1{2. For a Hilbert space H Ď L2pUq, we

denote the p-fold Cartesian product by Hp “ H ˆ ¨ ¨ ¨ ˆ H and the tensor product

14



S “ H b H. For f “ pf1, . . . , fpq
T and g “ pg1, . . . , gpq

T in Hp, we denote the in-

ner product by xf ,gy “
řp
i“1xfi, giy with induced norm of f by }f} “ xf ,fy1{2,

ℓ1 norm by }f}1 “
řp
i“1 }fi}, and ℓ0 norm by }f}0 “

řp
i“1 Ip}fi} ‰ 0q, where

Ip¨q is the indicator function. For an integral matrix operator K : Hp Ñ Hq in-

duced from the kernel matrix function K “ pKijqqˆp with each Kij P S through

Kpfqpuq “
␣
řp
j“1xK1jpu, ¨q, fjp¨qy, . . . ,

řp
j“1xKqjpu, ¨q, fjp¨qy

(T
P Hq, for any given

f P Hp. To simplify notation, we will use K to denote both the kernel function

and the operator. When p “ q “ 1, K degenerates to K and we denote its

Hilbert–Schmidt norm by }K}S “
␣ ∫ ∫

Kpu, vq2dudv
(1{2

. For general K, we define

functional versions of Frobenius, elementwise ℓ8, matrix ℓ1 and matrix ℓ8 norms

by }K}F “
`
ř

i,j }Kij}
2
S
˘1{2

, }K}max “ maxi,j }Kij}S , }K}1 “ maxj
ř

i }Kij}S and

}K}8 “ maxi
ř

j }Kij}S , respectively.

1.2 Finite sample theory

In this section, we first review functional stability measure and propose functional

cross-spectral stability measure. We then introduce the definitions of sub-Gaussian

process and multivariate functional linear process. Finally, we rely on our proposed

stability measures to develop finite sample theory for useful estimated terms to

accommodate sub-Gaussian functional linear processes.

1.2.1 Functional stability measure

Consider a p-dimensional vector of weakly stationary functional time series tXtp¨qutPZ

defined on U , with mean zero and p ˆ p autocovariance matrix functions,

ΣX
h pu, vq “ CovtXtpuq,Xt`hpvqu “ tΣX

h,jkpu, vqu1ďj,kďp, t, h P Z, pu, vq P U2.

These autocovariance matrix functions (or operators) encode the second-order dy-

namical properties of tXtp¨qu and typically serve as the main focus of functional

time series analysis. From a frequency domain analysis prospective, spectral density

matrix function (or operator) aggregates autocovariance information at different lag

orders h P Z at a frequency θ P r´π, πs as

fXθ “
1

2π

ÿ

hPZ

ΣX
h expp´ihθq.
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According to Guo and Qiao (2022), the functional stability measure of tXtp¨qu is

defined based on the functional Rayleigh quotients of fXθ relative to ΣX
0 ,

MX
“ 2π ess sup

θPr´π,πs,ΦPHp
0

xΦ,fXθ pΦqy

xΦ,ΣX
0 pΦqy

, (1.3)

where Hp
0 “ tΦ P Hp : xΦ,ΣX

0 pΦqy P p0,8qu and ess sup denotes the essential

supremum, that is for a measurable real-valued function m : M Ñ R defined on M,

ess suppmq “ inftν P R : mpϖq ď ν for almost all ϖ P Mu. To handle truly infinite-

dimensional objects tXtp¨qu with infinite, summable and decaying eigenvalues of ΣX
0 ,

such stability measure MX can more precisely capture the effect of small eigenvalues

of ΣX
0 on the numerator in (1.3).

We next impose a condition on MX and introduce the functional stability measure

of subprocesses of tXtp¨qu, which will be used in our subsequent analysis.

Condition 1.1. (i) The spectral density matrix operator fXθ , θ P r´π, πs exists; (ii)

MX ă 8.

For any k-dimensional subset J Ď t1, . . . , pu with its cardinality |J | ď k, we can

measure the stability of the subprocess
␣`

Xtjp¨q
˘

: j P J
(

tPZ in a similar fashion.

The functional stability measure of all k-dimensional subprocesses of tXtp¨qu is thus

defined by

MX
k “ 2π ¨ ess sup

θPr´π,πs,}Φ}0ďk,ΦPHp
0

xΦ,fXθ pΦqy

xΦ,ΣX
0 pΦqy

, k “ 1, . . . , p. (1.4)

Under Condition 1.1, we have MX
1 ď MX

2 ď ¨ ¨ ¨ ď MX
p “ MX ă 8.

1.2.2 Functional cross-spectral stability measure

Consider tXtp¨qu and tYtp¨qu, where tYtp¨qutPZ is a d-dimensional vector of centered

and weakly stationary functional time series, defined on V , with lag-h autocovariance

matrix function given by

ΣY
h pu, vq “ CovtYtpuq,Yt`hpvqu “ tΣY

h,jkpu, vqu1ďj,kďd, t, h P Z, pu, vq P V2.

To characterize the effect of dependence on the cross-covariance between two se-

quences of joint stationary multivariate functional time series, we can correspond-

ingly define the cross-spectral density matrix function (or operator) and functional
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cross-spectral stability measure. The proposed cross-spectral stability measure plays

a crucial role in the non-asymptotic analysis of relevant estimated cross terms, e.g.,

estimated cross-(auto)covariance matrix functions in Section 1.2.4.

Definition 1.1. The cross-spectral density matrix function between tXtp¨qutPZ and

tYtp¨qutPZ is defined by

fX,Yθ “
1

2π

ÿ

hPZ

ΣX,Y
h expp´ihθq, θ P r´π, πs,

where ΣX,Y
h pu, vq “ CovtXtpuq,Yt`hpvqu “ tΣX,Y

h,jkpu, vqu1ďjďp,1ďkďd, t, h P Z, pu, vq P

U ˆ V .

Condition 1.2. For tXtp¨qutPZ and tYtp¨qutPZ, f
X,Y
θ , θ P r´π, πs exists and the

functional cross-spectral stability measure defined in (1.5) is finite, i.e.

MX,Y
“ 2π ess sup

θPr´π,πs,Φ1PHp
0,Φ2PHd

0

ˇ

ˇ

ˇ
xΦ1,f

X,Y
θ pΦ2qy

ˇ

ˇ

ˇ

b

xΦ1,Σ
X
0 pΦ1qy

b

xΦ2,Σ
Y
0 pΦ2qy

ă 8, (1.5)

where Hp
0 “ tΦ P Hp : xΦ,ΣX

0 pΦqy P p0,8qu and Hd
0 “ tΦ P Hd : xΦ,ΣY

0 pΦqy P

p0,8qu.

Remark 1.1. (a) If tXtp¨qu are independent of tYtp¨qu, then MX,Y “ 0. Moreover,

in the special case that tXtp¨qu and tYtp¨qu are identical, MX,Y degenerates to

MX in (1.3).

(b) Under the non-functional setting where Xt P Rp and Yt P Rd, Basu and Michai-

lidis (2015) introduced an upper bound condition for their proposed cross-spectral

stability measure with p “ d, i.e.

ĂMX,Y
“ ess sup

θPr´π,πs,νPrRd
0

d

νTtfX,Yθ u˚fX,Yθ ν

νTν
ă 8, (1.6)

where rRd
0 “ tν P Rd : νTν P p0,8qu and ˚ denotes the conjugate. This measure

relates the cross-stability condition to the largest singular value of the cross-

spectral density matrix fX,Yθ . On the other hand, the non-functional analog of

(1.5) is equivalent to

ess sup
θPr´π,πs,ν1PrRp

0,ν2PrRd
0

ˇ

ˇ

ˇ
νT
1f

X,Y
θ ν2

ˇ

ˇ

ˇ

a

νT
1ν1

a

νT
2ν2

ă 8,
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whose upper bound is ĂMX,Y as justified in Lemma 1.1 in Appendix 1.B.3. This

demonstrates that, compared with (1.6), our proposed cross-stability measure

corresponds to a milder condition.

(c) For two truly infinite-dimensional functional objects, one limitation of the func-

tional analog of ĂMX,Y is that it only controls the largest singular value of fX,Yθ .

By contrast, our proposed MX,Y can more precisely characterize the effect of sin-

gular values of fX,Yθ relative to small eigenvalues of ΣX
0 and ΣY

0 . Furthermore,

it facilitates the development of finite sample theory for normalized versions of

relevant estimated cross terms, where the normalization is formed by the corre-

sponding eigenvalues in the denominator of MX,Y . See Sections 1.2.4 and 1.2.5

for details.

(d) We can generalize (1.5) to measure the serial and cross dependence structure

between a mixture of multivariate functional and scalar time series. Specifically,

consider tXtp¨qutPZ and d-dimensional vector time series tZtutPZ with autocovari-

ance matrices ΣZ
h for h P Z. We can also define fX,Zθ “ 1

2π

ř

hPZ Σ
X,Z
h expp´ihθq

with ΣX,Z
h p¨q “ CovpXtp¨q,Zt`hq. According to (1.5), the mixed cross-spectral

stability measure of tXtp¨qu and tZtu can be defined by

MX,Z
“ 2π ess sup

θPr´π,πs,ΦPHp
0,νPRd

0

ˇ

ˇ

ˇ
xΦ,fX,Zθ νy

ˇ

ˇ

ˇ

b

xΦ,ΣX
0 pΦqy

b

νTΣZ
0 ν

(1.7)

and the non-functional stability measure of tZtu reduces to

MZ
“ 2π ¨ ess sup

θPr´π,πs,νPRd
0

νTfZθ ν

νTΣZ
0 ν

, (1.8)

where Rd
0 “ tν P Rd : νTΣZ

0 ν P p0,8qu. The proposed stability measures in (1.7)

and (1.8) play an essential role in the convergence analysis of the regularized

estimates for model (1.2). See Section 1.4 for details.

For any k1-dimensional subset J of t1, . . . , pu and k2-dimensional subsetK of t1, . . . , du,

we can accordingly define the functional cross-stability measure of two subprocesses.

Definition 1.2. Consider subprocesses tpXtjp¨qq : j P JutPZ for J Ď t1, . . . , pu with

|J | ď k1 pk1 “ 1, . . . , pq and tpYtkp¨qq : k P KutPZ for K Ď t1, . . . , du with |K| ď k2

18



pk2 “ 1, . . . , dq, their functional cross-spectral stability measure is defined by

MX,Y
k1,k2

“ 2π ess sup
θPr´π,πs,Φ1PHp

0,Φ2PHd
0

}Φ1}0ďk1,}Φ2}0ďk2

ˇ

ˇ

ˇ
xΦ1,f

X,Y
θ pΦ2qy

ˇ

ˇ

ˇ

b

xΦ1,Σ
X
0 pΦ1qy

b

xΦ2,Σ
Y
0 pΦ2qy

. (1.9)

Under Condition 1.2, it is easy to verify that,

MX,Y
k1,k2

ď MX,Y

k
1

1,k
1

2

ď MX,Y
ă 8 for k1 ď k

1

1 and k2 ď k
1

2.

According to (1.4), (1.7), (1.8) and (1.9), we can similarly define MX,Z
k1,k2

and MZ
k2

for k1 “ 1, . . . , p and k2 “ 1, . . . , d, which will be used in our subsequent analysis.

1.2.3 Sub-Gaussian functional linear process

Before presenting relevant non-asymptotic results beyond Gaussian functional time

series, we introduce the definitions of sub-Gaussian process and multivariate func-

tional linear process in this section.

Provided that our non-asymptotic analysis is based on the infinite-dimensional ana-

log of Hanson–Wright inequality (Rudelson and Vershynin, 2013) for sub-Gaussian

random variables taking values within a Hilbert space, we first define sub-Gaussian

process as follows.

Definition 1.3. Let Xtp¨q be a mean zero random variable in H and Σ0 : H Ñ H be

a covariance operator. Then Xtp¨q is a sub-Gaussian process if there exists an α ě 0

such that for all x P H,
Etexx,Xy

u ď eα
2xx,Σ0pxqy{2. (1.10)

The proof of Hanson–Wright inequality for serially dependent random functions

relies on the fact that uncorrelated Gaussian random functions are also independent,

which does not apply for non-Gaussian random functions. However, we show that,

for a larger class of non-Gaussian functional time series, it is possible to develop

finite sample theory for useful estimated terms in Sections 1.2.4 and 1.2.5. We

focus on multivariate functional linear processes with sub-Gaussian errors, namely

sub-Gaussian functional linear processes:

Xtp¨q “

8
ÿ

l“0

Alpεt´lq, t P Z, (1.11)
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where Al “ pAl,jkqpˆp with each Al,jk P S and εtp¨q “ tεt1p¨q, . . . , εtpp¨quT P Hp.

tεtp¨qutPZ denotes a sequence of p-dimensional vector of random functions, whose

components are independent sub-Gaussian processes satisfying Definition 1.3. It

is worth noting that (1.11) not only extends the functional linear processes (Bosq,

2000) to the multivariate setting but also can be seen as a generalization of p-

dimensional linear processes (Li et al., 2019) to the functional domain.

Denote the polynomial Bpzqpu, vq “
ř8

l“0Alpu, vqzl for u, v P U . Under (1.11), we

can derive the spectral density matrix function as

fXθ pu, vq “
1

2π

ż ż

B
`

e´iθ
˘

pu, u1
qΣε

0pu1, v1
qB

`

e´iθ
˘˚

pv, v1
qdu1dv1 (1.12)

and the covariance matrix function as

ΣX
0 pu, vq “

8
ÿ

l“0

ż ż

Alpu, u
1
qΣε

0pu1, v1
qA˚

l pv, v1
qdu1dv1. (1.13)

Then we can express the functional stability measure MX in (1.3) based on (1.12)

and (1.13). The cross-spectral stability measure MX,Y in (1.5) or MX,Z in (1.7)

can be expressed in a similar fashion.

Condition 1.3. The coefficient functions satisfy
ř8

l“0 }Al}8 “ Op1q.

Condition 1.4. (i) ωε0 “ maxj
∫

U Σε
0,jjpu, uqdu “ Op1q; (ii) The marginal-covariance

functions of tεtp¨qu, Σε
0,jjpu, vq’s, are continuous on U2 and uniformly bounded over

j P t1, . . . , pu.

Condition 1.3 ensures functional analog of standard condition of elementwise ab-

solute summability of moving average coefficients for multivariate linear processes

(Hamilton, 1994) under Hilbert–Schmidt norm. It also guarantees the stationar-

ity of tXtp¨qu and, furthermore together with Condition 1.4, implies that ωX0 “

maxj
∫

U ΣX
0,jjpu, uqdu “ Op1q, both of which are essential in our subsequent analysis.

See Lemma 1.2 in Appendix 1.B.3 for details. In general, we can relax Conditions 1.3

and 1.4 by allowing
ř8

l“0 }Al}8 and ωε0 to grow at very slow rates as p increases,

then our subsequent non-asymptotic bounds will depend on ωX0 , or, more precisely,

these two terms, which complicate the presentation of theoretical results.
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1.2.4 Concentration bounds on sample (cross-)(auto)covariance

matrix function

We construct estimated (auto)covariance of tXtp¨qunt“1 by

pΣ
X

h pu, vq “
1

n ´ h

n´h
ÿ

t“1

XtpuqXt`hpvq
T, h “ 0, 1, . . . , pu, vq P U2,

and estimated cross-(auto)covariance matrix functions between tXtp¨qu and tYtp¨qu

by

pΣ
X,Y

h pu, vq “
1

n ´ h

n´h
ÿ

t“1

XtpuqYt`hpvq
T, h “ 0, 1, . . . , pu, vq P U ˆ V .

Theorem 1.1. Suppose that Conditions 1.1–1.4 hold for sub-Gaussian functional

linear processes, tXtp¨qu, tYtp¨qu and h is fixed. Then for any given vectors Φ1 P Hp
0

and Φ2 P Hd
0 with }Φ1}0 ď k1, }Φ2}0 ď k2 pk1 “ 1, . . . , p, k2 “ 1, . . . , dq, there exists

some constants c, c1, c2 ą 0 such that for any η ą 0,

P

#
ˇ

ˇ

ˇ

ˇ

ˇ

xΦ1, ppΣ
X

0 ´ ΣX
0 qpΦ1qy

xΦ1,Σ
X
0 pΦ1qy

ˇ

ˇ

ˇ

ˇ

ˇ

ą MX
k1
η

+

ď 2 exp
␣

´cnmin
`

η2, η
˘(

, (1.14)

and

P

#
ˇ

ˇ

ˇ

ˇ

ˇ

xΦ1, ppΣ
X,Y

h ´ ΣX,Y
h qpΦ2qy

xΦ1,Σ
X
0 pΦ1qy ` xΦ2,Σ

Y
0 pΦ2qy

ˇ

ˇ

ˇ

ˇ

ˇ

ą

´

MX
k1

` MY
k2

` MX,Y
k1,k2

¯

η

+

ď c1 expt´c2nminpη2, ηqu.

(1.15)

Remark 1.2. (1.14) extends the concentration inequality for normalized quadratic

form of pΣ
X

0 in Theorem 1 of Guo and Qiao (2022) under the Gaussianity assumption

to accommodate a larger class of sub-Gaussian functional linear processes and serves

as a starting point to establish further useful non-asymptotic results, e.g. those listed

in Theorems 1–4 and Proposition 1 of Guo and Qiao (2022), so we present some

results used in our subsequent analysis in Appendix 1.E. The concentration inequality

in (1.15) illustrates that the tail for normalized bilinear form of pΣ
X,Y

h ´ΣX,Y
h behaves

in a sub-Gaussian or sub-exponential way depending on which term in the tail bound

is dominant. Note that the sub-Gaussian condition is imposed to facilitate the use

of Hanson–Wright-type inequality in our non-asymptotic analysis. We believe a

Nagaev-type concentration bound can be derived under a weaker finite polynomial

moments condition, in which case heavy-tailed functional errors are allowed. It is
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also interesting to develop non-asymptotic results for more general non-Gaussian

functional time series under other commonly adopted dependence frameworks.

With suitable choices of Φ1 and Φ2, Theorem 1.1 facilitates the elementwise con-

centration bounds on pΣ
X,Y

h as follows.

Theorem 1.2. Suppose that conditions in Theorem 1.1 hold. Then there exists some

constants c1, c3 ą 0 such that for any η ą 0 and each j “ 1, . . . , p, k “ 1, . . . , d,

P
!

}pΣX,Y
h,jk ´ ΣX,Y

h,jk}S ą pωX0 ` ωY0 qMX,Y η
)

ď c1 exp
␣

´c3nminpη2, ηq
(

, (1.16)

where ωX0 “ maxj
∫

U ΣX
0,jjpu, uqdu, ωY0 “ maxk

∫

U ΣY
0,kkpu, uqdu and MX,Y “ MX

1 `

MY
1 ` MX,Y

1,1 . In particular, there exists some constant c4 ą 0 such that, for sample

size n Á logppdq, with probability greater than 1 ´ c1ppdq´c4 , the estimate pΣ
X,Y

h

satisfies the bound

}pΣ
X,Y

h ´ ΣX,Y
h }max À MX,Y

c

logppdq

n
. (1.17)

Remark 1.3. In the deviation bounds established above, the effects of dependence

are commonly captured by the sum of marginal-spectral and cross-spectral stability

measures, MX,Y “ MX
1 ` MY

1 ` MX,Y
1,1 , with larger values yielding a slower ele-

mentwise ℓ8 rate in (1.17). Under a mixed-process scenario consisting of tXtp¨qu

and d-dimensional time series tZtu belonging to multivariate linear processes with

sub-Gaussian errors (Sun et al., 2018), namely sub-Gaussian linear processes, it is

easy to extend (1.17) as

max
1ďjďp,1ďkďd

}pΣX,Z
h,jk ´ ΣX,Z

h,jk} À MX,Z

c

logppdq

n
, (1.18)

where MX,Z “ MX
1 ` MZ

1 ` MX,Z
1,1 . (1.18) can be justified in the proof of Proposi-

tion 1.1 in Appendix 1.B.2.

1.2.5 Rates in elementwise ℓ8 norm under a FPCA frame-

work

For each j “ 1, . . . , p, suppose that X1jp¨q, . . . , Xnjp¨q are n serially dependent ob-

servations of Xjp¨q. The Karhunen–Loève theorem (Bosq, 2000) serving as the theo-

retical basis of FPCA allows us to represent each functional observation in the form
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of Xtjp¨q “
ř8

l“1 ζtjlψjlp¨q. Here the coefficients ζtjl “ xXtj, ψjly, namely FPC scores,

are uncorrelated random variables with mean zero and Covpζtjl, ζtjl1q “ ωXjl Ipl “ l1q.

In this formulation, tpωXjl , ψjlqu8
l“1 are eigenpairs satisfying xΣX

0,jjpu, ¨q, ψjlp¨qy “

ωXjlψjlpuq. Similarly, for each k “ 1, . . . , d, we represent Ytkp¨q “
ř8

m“1 ξtkmϕkmp¨q

with eigenpairs tpωYkm, ϕkmqu8
m“1.

To estimate relevant terms under a FPCA framework, for each j, we perform an eige-

nanalysis on pΣX
0,jjpu, vq “ n´1

řn
t“1XtjpuqXtjpvq, i.e. xpΣX

0,jjpu, ¨q,
pψjlp¨qy “ pωXjl

pψjlpuq,

where tppωXjl ,
pψjlqu8

l“1 denote the estimated eigenpairs. The corresponding estimated

FPC scores are given by pζtjl “ xXtj, pψjly. Furthermore, relevant estimated terms for

tYtkp¨qu, i.e. pωYkm,
pϕkmp¨q, pξtkm, can be obtained in the same manner.

Before presenting relevant deviation bounds in elementwise ℓ8 norm, which are es-

sential under high-dimensional regime, plog p_log dq{n Ñ 0, we impose the following

lower bound condition on the eigengaps.

Condition 1.5. For each j “ 1, . . . , p and k “ 1, . . . , d, ωXj1 ą ωXj2 ą ¨ ¨ ¨ ą 0 and

ωYk1 ą ωYk2 ą ¨ ¨ ¨ ą 0. There exist some positive constants c0 and α1, α2 ą 1 such

that ωXjl ´ ωXjpl`1q
ě c0l

´α1´1 for l “ 1, . . . ,8 and ωYkm ´ ωYkpm`1q
ě c0m

´α2´1 for

m “ 1, . . . ,8.

Condition 1.5 implies the lower bounds on eigenvalues, i.e. ωXjl ě c0α
´1
1 l´α1 and

ωYkm ě c0α
´1
2 m´α2 . See also Kong et al. (2016) and Qiao et al. (2020) for similar

conditions.

In practice, the infinite series in the Karhunen–Loève expansions of Xtjp¨q and Ytmp¨q

are truncated at M1 and M2, chosen data-adaptively, which transforms the infinite-

dimensional learning task into the modelling of multivariate time series. Given

sub-Gaussian functional linear process tXtp¨qu, to aid convergence analysis under

high-dimensional scaling, we establish elementwise concentration inequalities and,

furthermore, elementwise ℓ8 error bounds on relevant estimated terms, i.e. esti-

mated eigenpairs and sample (auto)covariance between estimated FPC scores. These

results are of the same forms as those under the Gaussianity assumption (Guo and

Qiao, 2022), so we only present them in Lemmas 1.25 and 1.27 in Appendix 1.E.

In the following, we focus on sample cross-(auto)covariance between estimated FPC

scores, pσX,Yh,jklm “ pn ´ hq´1
řn´h
t“1

pζtjlpξpt`hqkm, and establish a normalized devia-

tion bound in elementwise ℓ8 norm on how pσX,Yh,jklm concentrates around σX,Yh,jklm “

Covpζtjl, ξpt`hqkmq.

Theorem 1.3. Suppose that Conditions 1.1–1.5 hold for sub-Gaussian functional

linear processes, tXtp¨qu, tYtp¨qu, and h is fixed. Let M1 and M2 be positive integers

possibly depending on pn, p, dq. If n Á logppdM1M2qpM4α1`2
1 _ M4α2`2

2 qM2
X,Y , then
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there exist some positive constants c5 and c6 such that, with probability greater than

1 ´ c5ppdM1M2q
´c6 , the estimates tpσX,Yh,jklmu satisfy

max
1ďjďp,1ďkďd

1ďlďM1,1ďmďM2

ˇ

ˇ

ˇ
pσX,Yh,jklm ´ σX,Yh,jklm

ˇ

ˇ

ˇ

plα1`1 _ mα2`1q

b

ωXjlω
Y
km

À MX,Y

c

logppdM1M2q

n
. (1.19)

In the special case that tXtp¨qu and tYtp¨qu are identical, (1.19) degenerates to

the deviation bound on pσXh,jklm under the Gaussianity assumption (Guo and Qiao,

2022). We next consider a mixed process scenario consisting of tXtp¨qu and tZtu

and establish a normalized deviation bound in elementwise ℓ8 norm on sample

cross-(auto)covariance between estimated FPC scores of tXtjp¨qu and Zpt`hqk. Define

pϱX,Zh,jkl “ pn ´ hq´1
řn´h
t“1

pζtjlZpt`hqk and ϱX,Zh,jkl “ Covpζtjl, Zpt`hqkq. We are ready to

extend (1.19) to the following mixed-process scenario.

Proposition 1.1. Suppose that Conditions 1.1–1.5 hold for sub-Gaussian functional

linear process tXtp¨qu, tZtu follows sub-Gaussian linear process and h is fixed. Let

M1 be a positive integer possibly depending on pn, p, dq. If sample size n Á

logppdM1qM
3α1`2
1 M2

X,Z , then there exist some constants c7, c8 ą 0 such that, with

probability greater than 1 ´ c7ppdM1q
´c8 , the estimates tpϱX,Zh,jklu satisfy

max
1ďjďp,1ďkďd

1ďlďM1

ˇ

ˇ

ˇ
pϱX,Zh,jkl ´ ϱX,Zh,jkl

ˇ

ˇ

ˇ

lα1`1
b

ωXjl

À MX,Z

c

logppdM1q

n
. (1.20)

We next consider tϵtp¨qunt“1, defined on V , which can be seen as the error term in

model (1.1) being independent of tXtp¨qu. Define ΣX,ϵ
h,j pu, vq “ CovtXtjpuq, ϵt`hpvqu

and its estimate pΣX,ϵ
h,j pu, vq “ pn ´ hq´1

řn´h
t“1 Xtjpuqϵt`hpvq. To provide theoreti-

cal analysis of the estimates for model (1.1), the FPCA-based representation in

Appendix 1.F suggests to investigate the consistency properties of the estimated

cross terms, i.e. pσX,ϵh,jlm “ x pψjl, xpΣ
X,ϵ
h,j ,

pϕmyy or pσX,Yh,jlm “ pn ´ hq´1
řn´h
t“1

pζtjlpξpt`hqm “

x pψjl, xpΣ
X,Y
h,j ,

pϕmyy. As tXt´hp¨q : h “ 0, . . . , Lu and tϵtp¨qu are independent and can

together determine the response tYtp¨qu via (1.1), it is more sensible to study the

former term, i.e. how pσX,ϵh,jlm deviates from σX,ϵh,jlm “ 0 in the following proposition.

Proposition 1.2. Suppose that Conditions 1.1–1.5 hold for sub-Gaussian func-

tional linear processes tXtp¨qu, tϵtp¨qu and h is fixed. Let M1,M2 be positive integers

possibly depending on pn, pq. If n Á logppM1M2qpM4α1`4
1 _ M4α2`4

2 qpMX
1 ` MY q2,

then there exist some constants c9, c10 ą 0 such that, with probability greater than
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1 ´ c9ppM1M2q
´c10 , the estimates tpσX,ϵh,jlmu satisfy

max
1ďjďp

1ďlďM1,1ďmďM2

ˇ

ˇ

ˇ
pσX,ϵh,jlm

ˇ

ˇ

ˇ

plα1 _ mα2q

b

ωXjlω
Y
m

À pMX
1 ` Mϵ

q

c

logppM1M2q

n
. (1.21)

Finally, we consider a mixed-process scenario in model (1.2), where tϵtu
n
t“1 are scalar

errors, independent of both tXtp¨qu and tZtu. In addition to Proposition 1.1 above,

the following proposition demonstrates how pϱX,ϵh,jl “ pn´hq´1
řn´h
t“1

pζtjlϵt`h converges

to ϱX,ϵh,jl “ Covpζtjl, ϵt`hq “ 0.

Proposition 1.3. Suppose that Conditions 1.1–1.5 hold for sub-Gaussian functional

linear process tXtp¨qu, tϵtu is sub-Gaussian linear process and h is fixed. Let M1 be

positive integer possibly depending on pn, pq. If n Á logppM1qM
3α1`2
1 pMX

1 q2, then

there exist some constants c11, c12 ą 0 such that, with probability greater than 1 ´

c11ppM1q´c12 , the estimates tpϱX,ϵh,jlu satisfy

max
1ďjďp,1ďlďM1

ˇ

ˇ

ˇ
pϱX,ϵh,jl

ˇ

ˇ

ˇ

b

ωXjl

À pMX
1 ` Mϵ

q

c

logppM1q

n
. (1.22)

Remark 1.4. Benefiting from the independence assumption between tXtp¨qu and

tϵtp¨qu, Proposition 1.2 leads to a faster rate of convergence in (1.21) compared with

(1.19) with d “ 1. Proposition 1.2 also plays a crucial rule in the proof of Proposi-

tion 1.7 to demonstrate that, with high probability, model (1.1) satisfies the routinely

used deviation condition. Analogously, taking an advantage of the independence as-

sumption between tXtp¨qu and tϵtu, Proposition 1.3 results in a faster rate in (1.22)

than that in (1.20) with d “ 1. In the proof of Proposition 1.8, we will apply Propo-

sition 1.3 to verify that, with high probability, model (1.2) satisfies the corresponding

deviation condition.

1.3 High-dimensional functional linear lagged re-

gression

In this section, we first develop a three-step procedure to estimate sparse func-

tional coefficients in model (1.1) and then apply our derived finite sample results

in Section 1.2.5 to investigate the convergence properties of the estimates under

high-dimensional scaling.
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1.3.1 Estimation procedure

Consider functional linear lagged regression model in (1.1), where tβhj P S : h “

0, . . . , L, j “ 1, . . . , pu are unknown functional coefficients and tϵtp¨qunt“1 are mean-

zero errors from sub-Gaussian functional linear process, independent of tXtp¨qunt“1

from sub-Gaussian functional linear process. Given observed data tYt,Xtu
n
t“1, our

goal is to estimate a vector of functional coefficients, β “ pβ01, . . . , β0p, . . . , βL1, . . . ,

βLpq
T with each βhj P S. To assure a feasible solution under a high-dimensional

regime, we impose a sparsity assumption on β. To be specific, we assume that β is

functional s-sparse with support set S “
␣

ph, jq P t0, . . . , Lu ˆ t1, . . . , pu : }βhj}S ‰

0
(

and its cardinality |S| “ s, much smaller than the dimensionality, ppL ` 1q.

Due to the infinite dimensional nature of functional data, we approximate each Xtjp¨q

and Ytp¨q under the Karhunen–Loève expansion truncated at q1j and q2, respectively,

i.e.

Xtjp¨q«

q1j
ÿ

l“1

ζtjlψjlp¨q“ζT

tjψjp¨q, Ytp¨q«

q2
ÿ

m“1

ξtmϕmp¨q“ξT

t ϕp¨q,

where ζtj “ pζtj1, . . . , ζtjq1jq
T, ψjp¨q “ tψj1p¨q, . . . , ψjq1jp¨quT, ξt “ pξt1, . . . , ξtq2qT and

ϕp¨q “ tϕ1p¨q, . . . , ϕq2p¨quT. The truncation levels q1j and q2 are carefully chosen so

as to provide reasonable approximations to each Xtjp¨q and Ytp¨q. See Kong et al.

(2016) for the selection of the truncated dimension in practice.

According to Appendix 1.F, we can represent model (1.1) in the following matrix

form

U “

L
ÿ

h“0

p
ÿ

j“1

VhjΨhj ` R ` E, (1.23)

where Ψhj “
∫

V

∫

U ψjpuqβhjpu, vqϕpvqTdudv P Rq1jˆq2 , U P Rpn´Lqˆq2 with its row

vectors given by ξL`1, . . . , ξn and Vhj P Rpn´Lqˆq1j with its row vectors given by

ζpL`1´hqj, . . . , ζpn´hqj. Note R and E are pn ´ Lq ˆ q2 matrices whose row vectors

are formed by truncation errors trt P Rq2 : t “ L ` 1, . . . , nu and random errors

tϵt P Rq2 : t “ L ` 1, . . . , nu respectively.

We develop the following three-step estimation procedure.

First, we perform FPCA on tXtjp¨qunt“1 for each j “ 1, . . . , p and tYtp¨qunt“1, thus

obtaining estimated FPC scores and eigenfunctions, i.e. pζtjl, pψjlp¨q for l ě 1 and
pξtm, pϕtmp¨q for m ě 1, respectively.

Second, it is worth noting that the problem of recovering functional sparsity struc-

ture in β is equivalent to estimating the block sparsity pattern in tΨhj : h “

0, . . . , L, j “ 1, . . . , pu. Specifically, if βhjp¨, ¨q is zero, all entries in Ψhj will be zero.

This motivates us to incorporate a standardized group lasso penalty (Simon and
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Tibshirani, 2012) by minimizing the following penalized regression criterion over

tΨhj : h “ 0, . . . , L, j “ 1, . . . , pu:

1

2
}pU ´

L
ÿ

h“0

p
ÿ

j“1

pVhjΨhj}
2
F ` λn

L
ÿ

h“0

p
ÿ

j“1

}pVhjΨhj}F, (1.24)

where pU and pVhj are the estimates of U and Vhj, respectively, and λn is a non-

negative regularization parameter. Let tpΨhju be the minimizer of (1.24).

Finally, we estimate functional coefficients by

pβhjpu, vq “ pψjpuq
T
pΨhj

pϕpvq, pu, vq P U ˆ V , h “ 0, . . . , L, j “ 1, . . . , p.

1.3.2 Theoretical properties

We begin with some notation that will be used in this section. For a block matrix

B “ pBjkq1ďjďp1,1ďkďp2 P Rp1q1ˆp2q2 with the pj, kq-th block Bjk P Rq1ˆq2 , we define

its pq1, q2q-block versions of elementwise ℓ8 and matrix ℓ1 norms by }B}
pq1,q2q
max “

maxj,k }Bjk}F and }B}
pq1,q2q

1 “ maxk
ř

j }Bjk}F, respectively. To simplify notation,

we will assume the same q1j across j “ 1, . . . , p, but our theoretical results extend

naturally to the more general setting where q1j’s are different.

Let pZ “ ppV01, . . . , pV0p, . . . , pVL1, . . . , pVLpq P Rpn´LqˆpL`1qpq1 ,Ψ “ pΨT

01, . . . ,Ψ
T

0p, . . . ,

ΨT

L1, . . . ,Ψ
T

Lpq
T P RpL`1qpq1ˆq2 and pD “ diagppD01, . . . , pD0p, . . . , pDL1, . . . , pDLpq P

RpL`1qpq1ˆpL`1qpq1 with pDhj “ tpn ´ Lq´1
pVT
hj
pVhju

1{2 P Rq1ˆq1 for h “ 0, . . . , L and

j “ 1, . . . , p. Then minimizing (1.24) over tΨhju is equivalent to the following opti-

mization task:

pB “ arg min
BPRpL`1qpq1ˆq2

"

1

2pn ´ Lq
}pU ´ pZpD´1B}

2
F ` λn}B}

pq1,q2q

1

*

. (1.25)

Then we have pΨ “ pD´1
pB with its tph ` 1qju-th row block given by pΨhj.

Before our convergence analysis, we present the following regularity conditions.

Condition 1.6. For each ph, jq P S, βhjpu, vq “
ř8

l,m“1 ahjlmψjlpuqϕmpvq and there

exist some positive constants κ ą pα1 _ α2q{2 ` 1 and µhj such that |ahjlm| ď

µhjpl ` mq´κ´1{2 for l,m ě 1.

We expand each non-zero functional coefficient βhjpu, vq using principal component

functions tψjlpuqulě1 and tϕmpvqumě1, which respectively provide the most rapidly
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convergent representation of tXtjpuqu and tYtpvqu in the L2 sense. Such condition

prevents the coefficients tahjlmul,mě1 from decreasing too slowly with parameter κ

controlling the level of smoothness in non-zero components of tβhjp¨, ¨qu. See similar

smoothness conditions in functional linear regression literature (Hall and Horowitz,

2007; Kong et al., 2016).

Condition 1.7. Denote the covariance matrix function by

rΣ
X

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

ΣX
0 ΣX

1 ¨ ¨ ¨ ΣX
L

ΣX
1 ΣX

0 ¨ ¨ ¨ ΣX
L´1

...
...

. . .
...

ΣX
L ΣX

L´1 ¨ ¨ ¨ ΣX
0

˛

‹

‹

‹

‹

‹

‹

‹

‚

and the diagonal matrix function by rDX
0 “ IL`1bdiagpΣX

0,11, . . . ,Σ
X
0,ppq. The infimum

µ of the functional Rayleigh quotient of rΣ
X
relative to rDX

0 is bounded below by zero,

i.e.

µ “ inf
ΦPH̄pL`1qp

0

xΦ, rΣ
X

pΦqy

xΦ, rDX
0 pΦqy

ą 0,

where Φ P H̄pL`1qp
0 “ tΦ P HpL`1qp : xΦ, rDX

0 pΦqy P p0,8qu.

Condition 1.7 can be interpreted as requiring the minimum eigenvalue of the corre-

lation matrix function for pXT
t´L, . . . ,X

T
t qT to be bounded below by zero. See also a

similar condition in Guo and Qiao (2022).

Before presenting the consistency analysis of pβ in Theorem 1.4, we show that the

functional analogs of the restricted eigenvalue (RE) condition and the deviation

condition in the lasso literature (Loh and Wainwright, 2012) are satisfied with high

probability in Proposition 1.4 below and Propositions 1.6–1.7 in Appendix 1.A,

respectively.

Proposition 1.4. Suppose Conditions 1.1–1.5 and 1.7 hold. Then there exist some

positive constants CΓ, c
˚
1 and c˚

2 such that, for n Á logppq1qq
4α1`2
1 pMX

1 q2, the matrix
pΓ “ pn´Lq´1

pD´1
pZT

pZpD´1 P RpL`1qpq1ˆpL`1qpq1 satisfies, with probability greater than

1 ´ c˚
1ppq1q´c˚

2 ,

θT
pΓθ ě τ2}θ}

2
´ τ1}θ}

2
1 @θ P RpL`1qpq1 , (1.26)

where τ1 “ CΓMX
1 q

α1`1
1

a

logppq1q{n and τ2 “ µ.
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(1.26) can be viewed as the functional extension of RE condition under the FPCA

framework. Intuitively, it provides some insight into the eigenstructure of the sample

correlation matrix of a vector formed by estimated lagged FPC scores of tXtjp¨qu
p
j“1.

In particular, for any θ P RpL`1qpq1 such that τ1}θ}21{τ2}θ}2 is relatively small,

θT
pΓθ{}θ}2 is bounded away from 0. Proposition 1.4 formalize this intuition by

showing (1.26) holds with high probability. Furthermore, Propositions 1.6 and 1.7

verify the essential deviation bounds for model (1.1), where further discussions can

be found in Appendix 1.A.

Now we are ready to present the main convergence result.

Theorem 1.4. Suppose that Conditions 1.1–1.7 hold with τ2 ě 32τ1q1q2s. If n Á

logppq1q2qpq4α1`4
1 _ q4α2`4

2 qpMX
1 `MY q2, then there exist some positive constants c˚

1

and c˚
2 such that, for any regularization parameter, λn ě 2C0sq

1{2
1

␣

pMX
1 ` Mϵq _

MY
(

tpq
α1`3{2
1 _ q

α2`3{2
2 q

b

logppq1q2q

n
` q

´κ`1{2
1 u and q

α1{2
1 sλn Ñ 0 as n, p, q1, q2 Ñ 8,

the estimate pβ satisfies

}pβ ´ β}1 À
q
α1{2
1 sλn
µ

, (1.27)

with probability greater than 1 ´ c˚
1ppq1q2q

´c˚
2 .

Remark 1.5. (a) The error bound of pβ under functional ℓ1 norm is determined by

sample size (n), number of functional variables ppq, functional sparsity level (s)

as well as internal parameters, e.g., the convergence rate in (1.27) is better when

truncated dimensions (q1, q2), functional stability measures (MX
1 ,Mϵ,MY ), de-

cay rates of the lower bounds for eigenvalues (α1, α2) in Condition 1.5 are small

and decay rate of the upper bounds for basis coefficients (κ) in Condition 1.6

and curvature (µ) in (1.26) are large.

(b) The serial dependence contributes the additional term pMX
1 `Mϵq _MY in the

error bound. Specifically, the presence of MX
1 ` Mϵ is due to Proposition 1.2

under the independence assumption between tXtp¨qu and tϵtp¨qu, which is used

to verify the deviation bound in Proposition 1.7. Moreover, provided that our

estimation is based on the representation in (1.23), formed by eigenfunctions

tϕmp¨qu of ΣY
0 , the term MY comes from the consistency analysis of tpϕmu in

Proposition 1.6.

(c) Note that the VFAR model can be rowwisely viewed as a special case of model (1.1).

The serial dependence in the error bound of the VFAR estimate is captured by

MX
1 partially due to its presence in the deviation bounds on estimated cross-

covariance between response tXtp¨qu and covariates tXt´hp¨q : 1 ď h ď Lu. By
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contrast, the serial dependence effect in (1.27) partially comes from estimated

cross-covariance between covariates tXt´hp¨q : 0 ď h ď Lu and error tϵtp¨qu

instead of that between tXt´hp¨q : 0 ď h ď Lu and response tYtp¨qu due to the

fact that tYtp¨qu is completely determined by tXt´hp¨q : 0 ď h ď Lu and tϵtp¨qu

via (1.1) given β. Specially, if Mϵ _ MY À MX
1 , q1 — q2 and α1 “ α2, the rate

in (1.27) is consistent to that of the VFAR estimate in Guo and Qiao (2022).

1.4 High-dimensional partially functional linear

regression

This section is organized in the same manner as Section 1.3. We first present

the three-step procedure to estimate sparse functional and scalar coefficients in

model (1.2) and then study the estimation consistency in the high-dimensional

regime.

1.4.1 Estimation procedure

Consider partially functional linear regression model in (1.2), where Bp¨q “ tβ1p¨q, . . . ,

βpp¨quT are functional coefficients of functional covariates tXtp¨qunt“1 and γ “ pγ1, . . . ,

γdq
T are regression coefficients of scalar covariates tZtu

n
t“1. tϵtu

n
t“1 are mean-zero er-

rors from sub-Gaussian linear process, independent of tZtu from sub-Gaussian linear

process and tXtp¨qu from sub-Gaussian functional linear process. To estimate Bp¨q

and γ under large p and d scenario, we assume some sparsity patterns in model (1.2),

i.e. Bp¨q is functional s1-sparse, with support S1 “ tj P t1, . . . , pu : }βj} ‰ 0u and

cardinality s1 “ |S1|, and γ is s2-sparse, with support S2 “ tj P t1, . . . , du : γj ‰ 0u

and cardinality s2 “ |S2|. Here s1 and s2 are much smaller than dimension parame-

ters, p and d, respectively.

Under the Karhunen–Loève expansion of each Xtjp¨q as described in Section 1.3.1,

model (1.2) can be rewritten as

Yt “

p
ÿ

j“1

qj
ÿ

l“1

ζtjlxψjl, βjy `

d
ÿ

j“1

Ztjγj ` rt ` ϵt,

where rt “
řp
j“1

ř8

l“qj`1 ζtjlxψjl, βjy. Let Y “ pY1, . . . , YnqT P Rn, Z “ pZ1, . . . ,Zdq P

Rnˆd, Zj “ pZ1j, . . . , Znjq
T P Rn, γ “ pγ1, . . . , γdq

T P Rd, Xj P Rnˆqj with its row
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vectors given by ζ1j, . . . , ζnj and Ψj “
∫

U ψjpuqβjpuqdu P Rqj . Then we can repre-

sent model (1.2) in the following matrix form,

Y “

p
ÿ

j“1

XjΨj ` Zγ ` R ` E, (1.28)

where R “ pr1, . . . , rnqT P Rn and E “ pϵ1, . . . , ϵnqT P Rn correspond to the trunca-

tion and random errors, respectively.

Our proposed three-step estimation procedure proceeds as follows. We start with

performing FPCA on each tXtjp¨qunt“1, and hence obtain estimated FPC scores

tpζtjlu and eigenfunctions t pψjlp¨qu. Motivated from (1.28), we then develop a reg-

ularized least square approach by incorporating a standardized group lasso penalty

for tΨju
p
j“1 and the lasso penalty for γ, aimed to shrink all elements in Ψj of unim-

portant functional covariates and coefficients of unimportant scalar covariates to

be exactly zero. Specifically, we consider minimizing the following criterion over

Ψ1, . . . ,Ψp and γ :

1

2
}Y ´

p
ÿ

j“1

pXjΨj ´ Zγ}
2

` λn1

p
ÿ

j“1

} pXjΨj} ` rλn2}γ}1, (1.29)

where pXj is the estimate of Xj, and λn1, rλn2 are non-negative regularization pa-

rameters. Let the minimizers of (1.29) be pΨ1, . . . , pΨp and pγ. Finally, our estimated

functional coefficients are given by pβjp¨q “ pψjp¨qT
pΨj for j “ 1, . . . , p.

1.4.2 Theoretical properties

We start with some notation that will be used in this section. For a block vector

B “ pbT1 , . . . , b
T
p qT P Rpq with the j-th block bj P Rq, we define its q-block ver-

sions of ℓ1 and elementwise ℓ8 norms by }B}
pqq

1 “
ř

j }bj} and }B}
pqq
max “ maxj }bj},

respectively. To simplify our notation, we denote α1 in Condition 1.5 by α and

assume the same truncated dimension across j “ 1, . . . , p, denoted by q. Let pX “

p pX1, . . . , pXpq P Rnˆpq, Ψ “ pΨT
1 , . . . ,Ψ

T
p qT P Rpq, pD “ diagp pD1, . . . , pDpq P Rpqˆpq,

where pDj “ tn´1
pX T
j
pXju

1{2 P Rqˆq for j “ 1, . . . , p. Then our minimizing task in

(1.29) is equivalent to

p pB, pγq “ arg min
BPRpq ,γPRd

"

1

2n
}Y ´ pΩB ´ Zγ}

2
` λn1}B}

pqq

1 ` λn2}γ}1

*

, (1.30)
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where pΩ “ pX pD´1 and λn2 “ rλn2{n. Then pΨ “ pD´1
pB with its j-th row block given

by pΨj.

Condition 1.8. For j P S1, βjpuq “
ř8

l“1 ajlψjlpuq and there exist some positive

constants κ ą α{2 ` 1 and µj such that |ajl| ď µjl
´κ for l ě 1.

Condition 1.8 controls the level of smoothness for non-zero coefficient functions in

Bp¨q. See also Condition 1.6 for model (1.1) and its subsequent discussion.

Condition 1.9. For the mixed process tXtp¨q,ZtutPZ, we denote a diagonal matrix

function by DX
0 “ diagpΣX

0,11, . . . ,Σ
X
0,ppq. The infimum µ˚ is bounded below by zero,

i.e.

µ˚
“ inf

ΦPH̄p
0,νPrRd

0

xΦ,ΣX
0 pΦqy ` xΦ,ΣX,Z

0 νy ` νTΣZ,X
0 pΦq ` νTΣZ

0 ν

xΦ,DX
0 pΦqy ` νTν

ą 0,

where H̄p
0 “ tΦ P Hp : xΦ,DX

0 pΦqy P p0,8qu.

This condition is similar to Condition 1.7. In the special case where each Xtjp¨q is

bj-dimensional, µ˚ reduces to the minimum eigenvalue of the covariance matrix of
`

ξt11?
ωX
11

, . . . ,
ξt1b1
b

ωX
1b1

, . . . , ξtp1?
ωX
p1

, . . . ,
ξtpbp
b

ωX
pbp

, Zt1, . . . , Ztd
˘T

P R
řp

j“1 bj`d.

We next present Proposition 1.5 below and Propositions 1.8–1.9 in Appendix 1.A to

respectively show that the RE and deviation conditions are satisfied with high prob-

ability. These results together with Proposition 1.6(i) lead to theoretical guarantees

for regularized estimates of model (1.2).

Proposition 1.5. Suppose Conditions 1.1–1.5 and 1.9 hold. Let S “ ppΩ,Zq P

Rnˆppq`dq, then there exist some positive constants CZΓ, c
˚
1 and c˚

2 such that, for

n Á logppqdqq4α`2M2
X,Z , with probability greater than 1 ´ c˚

1ppq ` dq´c˚
2 ,

1

n
θTSTSθ ě τ˚

2 }θ}
2

´ τ˚
1 }θ}

2
1, @θ P Rpq`d, (1.31)

where τ˚
1 “ CZΓMX,Zq

α`1

b

logppq`dq

n
and τ˚

2 “ µ˚.

Instead of verifying RE conditions on n´1
pΩT

pΩ and n´1ZTZ separately, since pΩ is cor-

related with Z, we define S “ ppΩ,Zq and verify (1.31), which requires n´1θTSTSθ
to be strictly positive as long as τ˚

1 }θ}21{τ˚
2 }θ}2 is relatively small. Let θ “ p∆T, δTqT

with ∆ “ pB ´B and δ “ pγ ´ γ, applying Proposition 1.5 with suitable choice of τ˚
2

yields that, with high probability, n´1ppΩ∆`ZδqTppΩ∆`Zδq ě
τ˚
2

4
p}∆}`}δ}q2, which

plays a crucial role in the proof of Theorem 1.5 below. Similar to Proposition 1.7,
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Propositions 1.8 and 1.9 in Appendix 1.A verify that, with high probability, the

essential deviation bounds hold for model (1.2).

Now we are ready to present the main theorem about the error bound for pB and pγ.

Theorem 1.5. Suppose that Conditions 1.1–1.5, 1.8 and 1.9 hold with τ˚
2 ě 64τ˚

1 qps1`

s2q. If n Á logppqdqq4α`2M2
X,Z , then, for any regularization parameters, λn — λn1 —

λn2 ě 2C˚
0 s1pMX,Z `Mϵqrqα`2tlogppq` dq{nu1{2 ` q´κ`1s with qα{2λnps1 ` s2q Ñ 0

as n, p, q, d Ñ 8, the estimates pB and pγ satisfy

}pB ´ B}1 ` qα{2
}pγ ´ γ}1 À

qα{2λnps1 ` s2q

µ˚
, (1.32)

with probability greater than 1 ´ c˚
1ppq ` dq´c˚

2 .

Remark 1.6. (a) The error bound in (1.32) is governed by both dimensionality pa-

rameters (n, p, d, s1, s2) and internal parameters (MX ,MZ ,MX,Z ,Mϵ, q, α, κ, µ˚).

See also similar Remark 1.5 (a) for model (1.1).

(b) Note that the sparse stochastic regression (Basu and Michailidis, 2015; Wu and

Wu, 2016) can be viewed as a special case of model (1.2) without the functional

part. Under such scenario, the absence of tXtp¨qu degenerates (1.37) in Propo-

sition 1.9 to n´1}ZTpY ´ Zγq}max ď rC0pMZ
1 ` Mϵqplog d{nq1{2 and simplifies

the error bound to }pγ ´ γ}1 À λn2s2{τ
˚
2 with λn2 ě 2 rC0pMZ

1 ` Mϵqplog d{nq1{2

for some positive constant rC0, which is of the same order as the rate in Basu

and Michailidis (2015).

(c) In another special scenario where scalar covariates are not included in (1.2),

the error bound reduces to }pB ´ B}1 À qα{2λn1s1{τ
˚
2 with λn1 ě 2C˚

0 s1pMX
1 `

Mϵqtqα`2

b

logppqq

n
` q´κ`1u. Interestingly, this rate is consistent to that of pβ in

Theorem 1.4 under the special case where the non-functional response results in

the absence of MY and q2 in the rate.

1.5 Simulation studies

We conduct a number of simulations to evaluate the finite-sample performance of

our proposed ℓ1{ℓ2-penalized least squares estimators (ℓ1{ℓ2-LS) for models (1.1)

and (1.2) in Sections 1.5.1 and 1.5.2, respectively.
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1.5.1 High-dimensional functional linear lagged regression

We consider model (1.1) with L “ 1, where functional covariates tXtp¨qut“1,...,n

are generated from a sparse VFAR model (Guo and Qiao, 2022). Specifically, we

generate Xtjpuq “ ζT

tjψpuq for j “ 1, . . . , p and u P U “ r0, 1s, where ψp¨q “

tψ1p¨q, . . . , ψ5p¨quT is a 5-dimensional Fourier basis function and ζt “ pζT

t1, . . . , ζ
T

tpq
T P

R5p are generated from a stationary block sparse vector autoregressive (VAR) model,

ζt “ Wζt´1`ηt. The transition matrix W “ pWjkqpˆp P R5pˆ5p is block sparse such

that
řp
k“1 Ip}Wjk}F ‰ 0q “ 5 for each j, and ηt are sampled independently from

Np0, I5pq. The nonzero elements in W are sampled from Np0, 1q and we rescale

W by ιW{ρpWq with ι „ Unif[0.5,1] to guarantee the stationarity of tζtu. For

each ph, jq P S “ t0, 1u ˆ t1, . . . , 5u, we generate non-zero functional coefficients

βhjpu, vq “
ř5
l,m“1 bhjlmψlpuqψmpvq, where bhjlm’s are sampled from Unifp0, 0.4q for

h “ 0 and Unifp0, 0.15q for h “ 1. The functional responses tYtpvq : v P Vut“1,...,n

with V “ r0, 1s are then generated from model (1.1), where ϵtpvq “
ř5
m“1 etmψmpvq

with etm’s being independent Np0, 1q variables.

In our simulations, we consider n “ 75, 100, 150 dependent observations for p “

40, 80 and replicate each simulation 100 times. The truncated dimensions q1j for

j “ 1, . . . p and q2 are selected by the ratio-based method (Lam and Yao, 2012). To

select the regularization parameter λn, there exists several possible methods such

as AIC/BIC and cross-validation. The AIC/BIC requires to specify the effective

degrees of freedom, which poses a challenging task for functional data under the

high-dimensional setting and is left for future study. In this example, we generate

two separate training and validation samples of the same size n. For a sequence

of λn values, we implement the block fast iterative shrinkage-thresholding (FISTA)

algorithm (Guo and Qiao, 2022) to solve the optimization problem (1.24) on the

training data, obtain tpβ
pλnq

hj p¨, ¨quh“0,1,j“1,...,p as a function of λn, calculate the squared

error between observed and fitted responses on the validation set, i.e.
řn
t“1 }Ytp¨q ´

řL
h“0

řp
j“1

∫

U Xpt´hqjpuqpβ
pλnq

hj pu, ¨qdu}2 and choose the optimal pλn with the smallest

error.

We evaluate the performance of ℓ1{ℓ2-LS in terms of both model selection consistency

and estimation accuracy. For model selection consistency, we plot the true positive

rates against false positive rates, respectively defined as

#tph, jq : }pβ
pλnq

hj }S ‰ 0 and }βhj}S ‰ 0u

#tph, jq : }βhj}S ‰ 0u
,

#tph, jq : }pβ
pλnq

hj }S ‰ 0 and }βhj}S “ 0u

#tph, jq : }βhj}S “ 0u

34



Table 1.1: The mean and standard error (in parentheses) of AUROCs and estima-
tion errors for model (1.1) over 100 simulation runs.

n p
ℓ1{ℓ2-LS OLS-O

AUROC Estimation error Estimation error

75
40 0.849(0.006) 0.727(0.005) 1.116(0.011)
80 0.834(0.007) 0.768(0.005) 1.121(0.012)

100
40 0.898(0.005) 0.648(0.005) 0.777(0.006)
80 0.879(0.007) 0.684(0.005) 0.787(0.006)

150
40 0.953(0.004) 0.544(0.004) 0.550(0.004)
80 0.942(0.004) 0.576(0.004) 0.547(0.004)

over a grid of values of λn to produce a ROC curve, and then calculate the area un-

der the ROC curve (AUROC) with values closer to 1 indicating better performance

in support recovery. The estimation accuracy is measured by the relative estimation

error }pβ´β}F{}β}F. For comparison, we also implement the ordinary least squares

in the oracle case (OLS-O), which uses the true sparsity structure in the estimates

and does not perform variable selection. Table 1.1 gives some numerical summaries.

Several conclusions can be drawn. First, the model selection consistency and estima-

tion accuracy are improved as n increases or p decreases. Second, ℓ1{ℓ2-LS provides

substantially improved estimation accuracy over OLS-O especially in the “large p,

small n” scenario. This is not surprising, since implementing OLS-O in the sense

of (1.24) with λn “ 0 still require to estimate 10 ˆ 52 “ 250 parameters, which is

intrinsically a high-dimensional estimation problem.

1.5.2 High-dimensional partially functional linear regression

We now consider model (1.2) with p-dimensional vector of functional covariates

tXtp¨qut“1,...,n and d-dimensional scalar covariates tZtut“1,...,n, which are jointly gen-

erated in a similar procedure as in Section 1.5.1. Let Xtjpuq “ ζT

tjψpuq for j “

1, . . . , p and u P r0, 1s, and pζT

t ,Z
T
t qT P R5p`d are jointly generated from a sta-

tionary VAR(1) process with a block sparse transition matrix W˚ P Rp5p`dqˆp5p`dq,

whose pj, kq-th block is W˚
jk. In particular, for each j “ 1, . . . , p, W˚

jk P R5ˆ5

(k “ 1, . . . , p) and W˚
jk P R5 (k “ p ` 1, . . . , p ` d) such that

řp
k“1 Ip}W˚

jk}F ‰

0q “
řp`d
k“p`1 Ip}W˚

jk} ‰ 0q “ 5. For each j “ p ` 1, . . . , p ` d, pW˚
jkq

T P R5

(k “ 1, . . . , p) and W˚
jk P R (k “ p ` 1, . . . , p ` d) such that

řp
k“1 I

`

}pW˚
jkq

T} ‰

0
˘

“
řp`d
k“p`1 Ip|W˚

jk| ‰ 0q “ 5. For each j P S1 “ t1, . . . , 5u, the non-zero functional

coefficients are generated by βjpuq “
ř5
l“1 bjlψlpuq, where bjl’s are uniformly sam-

pled from r0, 0.15s. For each k P S2 “ t1, . . . , 10u, the non-zero scalar coefficients
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Table 1.2: The mean and standard error (in parentheses) of AUROCs and estima-
tion errors for model (1.2) over 100 simulation runs.

n p “ d
ℓ1{ℓ2-LS OLS-O

AUROC }pB ´ B}{}B} }pγ ´ γ}{}γ} }pB ´ B}{}B} }pγ ´ γ}{}γ}

75
40 0.901(0.004) 1.034(0.013) 0.283(0.005) 1.741(0.034) 0.196(0.005)
80 0.868(0.004) 1.051(0.012) 0.363(0.008) 1.750(0.039) 0.198(0.005)

100
40 0.919(0.003) 0.999(0.007) 0.235(0.005) 1.376(0.024) 0.151(0.004)
80 0.902(0.004) 1.025(0.008) 0.283(0.005) 1.417(0.025) 0.151(0.004)

150
40 0.945(0.003) 0.938(0.008) 0.185(0.004) 1.006(0.018) 0.113(0.003)
80 0.937(0.004) 0.972(0.009) 0.216(0.004) 1.061(0.018) 0.113(0.003)

γk’s are uniformly sampled from r0.5, 1s. Finally, we generate responses tYtut“1,...,n

from model (1.2), where ϵt’s are sampled from Np0, 1q.

We simulate the data under six different settings, where n P t75, 100, 150u and

p “ d P t40, 80u, and replicate each simulation 100 times. For a sequence of pairs of

pλn1, λn2q, following the procedure in Section 1.4.1, we truncate each functional co-

variate with qj chosen by the ratio-based method, apply the block FISTA algorithm

to minimize the criterion (1.29) on the training data and obtain tpβ
pλn1,λn2q

j p¨quj“1,...,p

and tpγ
pλn1,λn2q

k uk“1,...,d. The optimal regularization parameters ppλn1, pλn2q are selected

by minimizing the prediction error on the validation data with size n, i.e.
řn
t“1

␣

Yt´
řp
j“1

∫

U Xtjpuqpβ
pλn1,λn2q

j puqdu ´
řd
k“1 Ztkpγ

pλn1,λn2q

k

(2
.

We examine the performance of ℓ1{ℓ2-LS based on AUROCs and estimation errors,

and compare it with the performance of OLS-O, where the sparsity structures in

the estimates are determined by the true model in advance. The numerical results

are summarized in Table 1.2, where the relative estimation errors for functional and

scalar coefficients are }pB ´ B}{}B} and }pγ ´ γ}{}γ}, respectively. A few trends

are apparent. First, as expected, we obtain improved overall support recovery and

estimation accuracies as n increases or p and d decrease. Second, although ℓ1{ℓ2-

LS is outperformed by OLS-O with lower estimation errors for scalar coefficients,

it provides more accurate estimates of functional coefficients relative to OLS-O,

since, in the oracle case, the number of unknown parameters is still relatively large

especially when n is small.

1.6 Discussion

We identify several directions for future study. First, it is possible to extend our

established finite sample theory for stationary functional linear processes with sub-

Gaussian errors to that with more general noise distributions, e.g. generalized sub-

exponential process, or even non-stationary functional processes. Second, it is of
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interest to develop useful non-asymptotic results under other commonly adopted

dependence framework, e.g. moment-based dependence measure (Hörmann and

Kokoszka, 2010) and different types of mixing conditions (Bosq, 2000). However,

moving from standard asymptotic analysis to non-asymptotic analysis would pose

complicated theoretical challenges. Third, from a frequency domain perspective, it

is interesting to study the non-asymptotic behaviour of smoothed periodogram esti-

mators (Panaretos and Tavakoli, 2013) for spectral density matrix function, served

as the frequency domain analog of the sample covariance matrix function. Under a

high-dimensional regime, it is also interesting to develop the functional threshold-

ing strategy to estimate sparse spectral density matrix functions. These topics are

beyond the scope of the current chapter and will be pursued elsewhere.
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1.A Additional theoretical results

We first present the following Propositions 1.6 and 1.7, in which we show that the

essential deviation bounds for model (1.1) are satisfied with high probability.

Proposition 1.6. Suppose that Conditions 1.1–1.5 hold. Then there exist some

positive constants Cψ, Cω, Cϕ, c
˚
1 and c˚

2 such that (i) for n Á logppq1qq
4α1`2
1 pMX

1 q2,

max
1ďjďp,1ďlďq1

ˇ

ˇ

ˇ

ˇ

ˇ

tpωXjl u
´1{2 ´ tωXjl u

´1{2

tωXjl u
´1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ď CωMX
1

c

logppq1q

n
,

max
1ďjďp,1ďlďq1

} pψjl ´ ψjl} ď CψMX
1 q

α1`1
1

c

logppq1q

n
,

(1.33)

with probability greater than 1 ´ c˚
1tpq1u

´c˚
2 ; (ii) for n Á logpq2qq

4α2`2
2 pMY q2,

max
1ďmďq2

}pϕm ´ ϕm} ď CϕMY qα2`1
2

c

logpq2q

n
, (1.34)

with probability greater than 1 ´ c˚
1tq2u

´c˚
2 .

Proposition 1.7. Suppose that Conditions 1.1–1.6 hold. Then there exist some

positive constants C0, c
˚
1 and c˚

2 such that, for n Á logppq1q2qpq4α1`4
1 _q4α2`4

2 qpMX
1 `

MY q2,

pn ´ Lq
´1
›

› pD´1
pZT

ppU ´ pZpD´1Bq
›

›

pq1,q2q

max

ďC0sq
1{2
1

␣

pMX
1 ` Mϵ

q _ MY
(

#

pq
α1`3{2
1 _ q

α2`3{2
2 q

c

logppq1q2q

n
` q

´κ`1{2
1

+

,

(1.35)

with probability greater than 1 ´ c˚
1ppq1q2q

´c˚
2 .

(1.33) and (1.34) in Proposition 1.6 control deviation bounds for relevant estimated

eigenpairs of Xtjp¨q and Ytp¨q under the FPCA framework. (1.35) in Proposition 1.7

ensures that the sample cross-covariance between estimated lagged-and-normalized

FPC scores and estimated errors consisting of truncated and random errors due to

(1.23), are nicely concentrated around zero.

We next provide Propositions 1.8 and 1.9, where the essential deviation bounds for

model (1.2) hold with high probability.
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Proposition 1.8. Suppose Conditions 1.1–1.5 and 1.8 hold. Then there exist some

positive constants C˚
0 , c

˚
1 and c˚

2 such that, for n Á logppqqq4α`2pMX
1 q2,

1

n
}pΩT

pY ´ pΩB ´ Zγq}
pqq
max ď C˚

0 s1pMX
1 ` Mϵ

q

#

qα`2

c

logppqq

n
` q´κ`1

+

. (1.36)

with probability greater than 1 ´ c˚
1ppqq´c˚

2 .

Proposition 1.9. Suppose Conditions 1.1–1.5 and 1.8 hold. Then there exist some

positive constants C˚
0 , c

˚
1 and c˚

2 such that, for n Á logppqdqq3α`2M2
X,Z ,

1

n
}ZT

pY ´ pΩB ´ Zγq}max ď C˚
0 s1pMX,Z ` Mϵ

q

#

qα`1

c

logppq ` dq

n
` q´κ`1{2

+

,

(1.37)

with probability greater than 1 ´ c˚
1ppq ` dq´c˚

2 .

Intuitively, (1.36) in Proposition 1.8 (or (1.37) in Proposition 1.9) indicates the sam-

ple cross-covariance between estimated normalized FPC scores (or scalar covariates)

and estimated errors is nicely concentrated around zero.

1.B Proofs of theoretical results in Section 1.2

We provide proofs of theorems and propositions stated in Section 1.2 in Appen-

dices 1.B.1–1.B.2, followed by the supporting technical lemmas and their proofs in

Appendix 1.B.3. Throughout, we use C0, C1, . . . , c, c1, . . . , c̃1, c̃2, . . . , ρ, ρ1, ρ2, . . .

to denote positive constants. For a matrix B P Rpˆq, we denote its operator

norm by }B} “ sup}x}2ď1}Bx}2. For ϕ1, ϕ2 P H and K P S, we respectively

denote
∫

U Kpu, vqϕ1puqdu,
∫

V Kpu, vqϕ2pvqdv and
∫

U

∫

V Kpu, vqϕ1puqϕ2pvqdudv by

xϕ1, Ky, xK,ϕ2y and xϕ1, xK,ϕ2yy. For a fixed Φ P Hp, we denote MpfX ,Φq “

2π ¨ ess supθPr´π,πs |xΦ,fXθ pΦqy|.

1.B.1 Proofs of theorems

Proof of Theorem 1.1 Part (i): Define Y “ pxΦ1,X1y, . . . , xΦ1,XnyqT, then

we obtain |xΦ1, ppΣ
X

0 ´ ΣX
0 qpΦ1qy| “ 1

n
|YTY ´ EpYTYq|. Our proof is organised

as follows: We first introduce the M -truncated sub-Gaussian process XM,L,tpuq “
řL
l“0AlpεM,t´lq, where εM,tjp¨q “

řM
l“1

a

ωεjlatjlϕjlp¨q for j “ 1, . . . , p. We then ap-

ply the inequality in Lemma 1.5 on X8,L,t “ XL,tpuq “
řL
l“0Alpεt´lq by proving
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}ΠM,L} ď MpfXM,L,Φ1q and limMÑ8 MpfXM,L,Φ1q “ MpfXL ,Φ1q. Finally, we will

show that such inequality still holds as L Ñ 8.

When L and M are both fixed, we first define YM,L “ pxΦ1,XM,L,1y, . . . ,

xΦ1,XM,L,nyqT. Then YT
M,LYM,L can be represented in the same form as xeM ,KpeMqy

in Lemma 1.5, where eM “ pεT
M,n, . . . , ε

T
M,1´LqT P Hpn`Lqp. We rewrite YM,L as

YM,L “

ż ż

pIn b Φ1puq
T
qWLpu, vqΘMpvqaM,Ldudv “ ΓM,LaM,L,

where

WL “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 A0 ¨ ¨ ¨ AL´1 AL

0 0 ¨ ¨ ¨ A0 A1 ¨ ¨ ¨ AL 0

...
...

. . .
...

...
. . .

...
...

A0 A1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ AL ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

ΘMpuq “ In`L b diagpφT
M,1, . . . ,φ

T
M,pq with φM,i “

`?
ωei1ϕi1, . . . ,

?
ωeiMϕiM

˘T
and

aM,L “ pan11, . . . , an1M , . . . , anp1, . . . , anpM , . . . , ap1´Lqp1, . . . , ap1´LqpMqT P Rpn`LqpM .

Then we can write YT
M,LYM,L “ aT

M,LΠM,LaM,L with ΠM,L “ ΓM,L
TΓM,L. Lemma 1.8

implies that }VarpYM,Lq} “ }ΓM,LΓ
T

M,L} ď MpfXM,L,Φ1q, where MpfXM,L,Φ1q “

2π ¨ ess supθPr´π,πsxΦ1,f
X
M,L,θpΦ1qy and fXM,L,θp¨q is the spectral density matrix oper-

ator of process tXM,L,tp¨qutPZ.

Define YL “ Y8,L “ pxΦ1,XL,1y, . . . , xΦ1,XL,nyqT. By Lemma 1.7, (1.45) in Lemma 1.5

and rankpΓT

8,LΓ8,Lq “ n, we obtain

P t|xΦ1, ppΣ
X

L,0 ´ ΣX
L,0qpΦ1q| ą MpfXL ,Φ1qηu

“P t|YT

LYL ´ EYT

LYL| ą nMpfXL ,Φ1qηu ď 2 exp
␣

´cnmin
`

η2, η
˘(

,

where MpfXL ,Φ1q “ 2π ¨ ess supθPr´π,πsxΦ1,f
X
L,θpΦ1qy and fXL,θp¨q is the spectral

density matrix operator of tXL,tp¨qutPZ.

Next, we need to show that this result still holds as L Ñ 8. Lemmas 1.9 and

1.10 imply that limLÑ8 E
!ˇ

ˇ

ˇ
xΦ1, ppΣ

X

L,0 ´ pΣ
X

0 qpΦ1qy

ˇ

ˇ

ˇ

)

“ 0, limLÑ8xΦ1,Σ
X
L,0pΦ1qy “

xΦ1,Σ
X
0 pΦ1qy and limLÑ8 MpfXL ,Φ1q “ MpfX ,Φ1q. Combining the above results

and following the similar argument in the proof of Lemma 1.5, we obtain

P
!
ˇ

ˇ

ˇ
xΦ1, ppΣ

X

0 ´ ΣX
0 qpΦ1qy

ˇ

ˇ

ˇ
ą MpfX ,Φ1qη

)

ď 2 exp
␣

´cnmin
`

η2, η
˘(

.

(1.38)
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Provided that MpfX ,Φ1q ď MX
k1

xΦ1,Σ
X
0 pΦ1qy, we obtain

P

#ˇ

ˇ

ˇ

ˇ

ˇ

xΦ1, ppΣ
X

0 ´ ΣX
0 qpΦ1qy

xΦ1,Σ
X
0 pΦ1qy

ˇ

ˇ

ˇ

ˇ

ˇ

ą MX
k1
η

+

ď 2 exp
␣

´cnmin
`

η2, η
˘(

,

which completes the proof of (1.14). Part (ii): For fixed vectors Φ1 P Hp and

Φ2 P Hd, we denote MpfX,Y ,Φ1,Φ2q “ 2π ¨ ess supθPr´π,πs |xΦ1,f
X,Y
θ pΦ2qy|. Define

Mtp¨q “ rpXtp¨qqT, pYtp¨qqTsT. Letting Φ “ pΦT

1 ,Φ
T

2 qT, we have

xΦ1, ppΣ
X,Y

0 ´ ΣX,Y
0 qpΦ2qy “

1

2
rxΦ, ppΣ

M

0 ´ ΣM
0 qpΦqy ´ xΦ1, ppΣ

X

0 ´ ΣX
0 qpΦ1qy

´ xΦ2, ppΣ
Y

0 ´ ΣY
0 qpΦ2qys.

Applying (1.38) on tXtp¨qu and tYtp¨qu, we obtain that

P
!ˇ

ˇ

ˇ
xΦ1, ppΣ

X

0 ´ ΣX
0 qpΦ1qy

ˇ

ˇ

ˇ
ą MpfX ,Φ1qη

)

ď 2 expt´cnminpη2, ηqu,

P
!
ˇ

ˇ

ˇ
xΦ2, ppΣ

Y

0 ´ ΣY
0 qpΦ2qy

ˇ

ˇ

ˇ
ą MpfY ,Φ2qη

)

ď 2 expt´cnminpη2, ηqu.

For tMtp¨qu, MpfM ,Φq ď MpfX ,Φ1q ` MpfY ,Φ2q ` 2MpfX,Y ,Φ1,Φ2q. This,

together with (1.38) implies that

P
!ˇ

ˇ

ˇ
xΦ, ppΣ

M

0 ´ ΣM
0 qpΦqy

ˇ

ˇ

ˇ
ą tMpfX ,Φ1q ` MpfY ,Φ2q ` 2MpfX,Y ,Φ1,Φ2quη

)

ď 2 expt´cnminpη2, ηqu.

Combining the above results, we obtain

P
!ˇ

ˇ

ˇ
xΦ1, ppΣ

X,Y

0 ´ ΣX,Y
0 qpΦ2qy

ˇ

ˇ

ˇ
ą tMpfX ,Φ1q ` MpfY ,Φ2q ` MpfX,Y ,Φ1,Φ2quη

)

ď 6 expt´cnminpη2, ηqu.

(1.39)

For h ą 0, let U1,t “ Xt ` Xt`h, U2,t “ Xt ´ Xt`h, V1,t “ Yt ` Yt`h and

V2,t “ Yt ´ Yt`h. Accordingly, we have that

xΦ1,Σ
U1,V1
l pΦ2qy “ 2xΦ1,Σ

X,Y
l pΦ2qy ` xΦ1,Σ

X,Y
l´h pΦ2qy ` xΦ1,Σ

X,Y
l`h pΦ2qy,

xΦ1,Σ
U2,V2
l pΦ2qy “ 2xΦ1,Σ

X,Y
l pΦ2qy ´ xΦ1,Σ

X,Y
l´h pΦ2qy ´ xΦ1,Σ

X,Y
l`h pΦ2qy,
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and

fU1,V1
θ “ p2 ` expp´ihθq ` exppihθqqfX,Yθ ,

fU2,V2
θ “ p2 ´ expp´ihθq ´ exppihθqqfX,Yθ .

Combining these with the definition of MpfX,Y ,Φ1,Φ2q yields

4xΦ1, ppΣ
X,Y

h ´ ΣX,Y
h qpΦ2qy

“xΦ1, ppΣ
U1,V1

0 ´ ΣU1,V1
0 qpΦ2qy ´ xΦ1, ppΣ

U2,V2

0 ´ ΣU2,V2
0 qpΦ2qy,

and

MpfU1,V1 ,Φ1,Φ2q ď 4MpfX,Y ,Φ1,Φ2q.

By similar arguments, we obtain MpfUi ,Φ1q ď 4MpfX ,Φ1q and MpfVi ,Φ2q ď

4MpfY ,Φ2q, for i “ 1, 2. Then it follows from (1.39) that

P
!ˇ

ˇ

ˇ
xΦ1, ppΣ

X,Y
h ´ ΣX,Y

h qpΦ2qy

ˇ

ˇ

ˇ
ą 2tMpfX ,Φ1q ` MpfY ,Φ2q ` MpfX,Y ,Φ1,Φ2quη

)

ď

2
ÿ

i“1

P
!ˇ

ˇ

ˇ
xΦ1, ppΣ

Ui,Vi
0 ´ Σ

Ui,Vi
0 qpΦ2qy

ˇ

ˇ

ˇ
ą tMpfUi ,Φ1q ` MpfVi ,Φ2q ` MpfUi,Vi ,Φ1,Φ2quη

)

ď12 expt´cnminpη2, ηqu.

Provided that MpfX,Y ,Φ1,Φ2q ď MX,Y
k1,k2

pxΦ1,Σ
X
0 pΦ1qy ` xΦ2,Σ

Y
0 pΦ2qyq and

MpfX ,Φ1q ď MX
k1

xΦ1,Σ
X
0 pΦ1qy, we obtain

P

#
ˇ

ˇ

ˇ

ˇ

ˇ

xΦ1, ppΣ
X,Y

0 ´ ΣX,Y
0 qpΦ2qy

xΦ1,Σ
X
0 pΦ1qy ` xΦ2,Σ

Y
0 pΦ2qy

ˇ

ˇ

ˇ

ˇ

ˇ

ą

´

MX
k1

` MY
k2

` MX,Y
k1,k2

¯

η

+

ď 6 exp
␣

´cnminpη2, ηq
(

,

P

#
ˇ

ˇ

ˇ

ˇ

ˇ

xΦ1, ppΣ
X,Y

h ´ ΣX,Y
h qpΦ2qy

xΦ1,Σ
X
0 pΦ1qy ` xΦ2,Σ

Y
0 pΦ2qy

ˇ

ˇ

ˇ

ˇ

ˇ

ą 2
´

MX
k1

` MY
k2

` MX,Y
k1,k2

¯

η

+

ď 12 expt´cnminpη2, ηqu.

Letting c2 “ c{4, we complete the proof of (1.15). ˝
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Proof of Theorem 1.2 Under FPCA framework, for each k “ 1, . . . , d, we have

Ytkp¨q “
ř8

m“1 ξtkmϕkmp¨q with eigenpairs pωYkm, ϕkmq, and for each j “ 1, . . . , p, we

have Xtjp¨q “
ř8

l“1 ζtjlψjlp¨q with eigenpairs pωXjl , ψjlq. Denote MX,Y “ MX
1 `MY

1 `

MX,Y
1,1 . Let Φ1 “ p0, . . . , 0, tωXjl u

´ 1
2ψjl, 0, . . . , 0qT and Φ2 “ p0, . . . , 0, tωYkmu´ 1

2ϕkm, 0,

. . . , 0qT. Following the similar argument in the proof of Theorem 2 in Guo and Qiao

(2022) with 2
a

ωX0 ω
Y
0 ď ωX0 ` ωY0 and Theorem 1.1, we can prove

P
!

}pΣX,Y
h,jk ´ ΣX,Y

h,jk}S ą pωX0 ` ωY0 qMX,Y η
)

ď c1 expt´c3nminpη2, ηqu.

By the definition of }pΣ
X,Y

h ´ ΣX,Y
h }max “ max1ďjďp,1ďkďd }pΣX,Y

h,jk ´ ΣX,Y
h,jk}S , we have

that

P
!

}pΣ
X,Y

h ´ ΣX,Y
h }max ą pωX0 ` ωY0 qMX,Y η

)

ď c1pd expt´c3nminpη2, ηqu.

Let η “ ρ
a

logppdq{n ď 1 and ρ2c3 ą 1, which can be achieved for sufficiently large

n. We obtain that

P

#

}pΣ
X,Y

h ´ ΣX,Y
h }max ą pωX0 ` ωY0 qMX,Y ρ

c

logppdq

n

+

ď c1ppdq
1´cρ2 ,

which implies (1.17). ˝

Before presenting the proof of Theorem 1.3, we provide some useful inequalities

for estimated eigenpairs under the FPCA framework. For tXtp¨qutPZ, let δXjl “

min1ďl1ďltω
X
jl1 ´ ωXjpl1`1q

u and p∆X
jl “ pΣX

0,jl ´ ΣX
0,jl for j “ 1, . . . , p and l “ 1, 2, . . . . It

follows from (4.43) and Lemma 4.3 of Bosq (2000) that

sup
lě1

|pωXjl ´ ωXjl | ď }p∆X
jj}S and sup

lě1
δXjl }

pψjl ´ ψjl} ď 2
?

2}p∆X
jj}S . (1.40)

Similarly, for process tYtp¨qutPZ, let δYkm “ min1ďm1ďmtωYkm1 ´ ωYkpm1`1q
u and p∆Y

km “

pΣY
0,km ´ ΣY

0,km for k “ 1, . . . , d and m “ 1, 2, . . . , we have

sup
mě1

|pωYkm ´ ωYkm| ď }p∆Y
kk}S and sup

mě1
δYkm}pϕkm ´ ϕkm} ď 2

?
2}p∆Y

kk}S . (1.41)

Proof of Theorem 1.3 Recall pσX,Yh,jklm “ 1
n´h

řn´h
t“1

pζtjlpξpt`hqkm and σX,Yh,jklm “

Covpζtjl, ξpt`hqkmq “ xψjl, xΣX,Y
h,jk , ϕkmyy. Let prjl “ pψjl ´ ψjl, pwkm “ pϕkm ´ ϕkm and
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p∆X,Y
h,jk “ pΣX,Y

h,jk ´ ΣX,Y
h,jk , then

pσX,Yh,jklm ´ σX,Yh,jklm

“xprjl, xpΣ
X,Y
h,jk , pwkmyy `

´

xprjl, xp∆
X,Y
h,jk , ϕkmyy ` xψjl, xp∆

X,Y
h,jk , pwkmyy

¯

`

´

xprjl, xΣX,Y
h,jk , ϕkmyy ` xψjl, xΣX,Y

h,jk , pwkmyy

¯

` xψjl, xp∆
X,Y
h,jk , ϕkmyy

“I1 ` I2 ` I3 ` I4.

Let ΩX,Y
jk,η “

!

}p∆X,Y
h,jk}S ď pωX0 ` ωY0 qMX,Y η

)

, ΩX
jj,η “

!

}p∆X
jj}S ď 2MX

1 ω
X
0 η

)

, ΩY
kk,η “

!

}p∆Y
kk}S ď 2MY

1 ω
Y
0 η

)

and Ω1 “

!

}p∆X,Y
h,jk}S ď pωX0 ` ωY0 q

)

. By Theorem 1.2 and

Lemma 1.24, we have

P
´

pΩX,Y
jk,η q

C
¯

ď c1 expt´c3nminpη2, ηqu,

P
`

pΩX
jj,ηq

C
˘

ď 4 expt´c̃1nminpη2, ηqu,

P
`

pΩY
kk,ηq

C
˘

ď 4 expt´c̃1nminpη2, ηqu,

P
`

pΩ1q
C
˘

ď c1 expt´c3npMX,Y q
´2

u.

On the event of Ω1XΩX,Y
η,jk XΩX

jj,ηXΩY
kk,η, by Condition 1.5, (1.40), (1.41), Lemma 1.2

and the fact that pωX0 ω
Y
0 q1{2 ď 1{2pωX0 ` ωY0 q, we obtain that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I1
b

ωXjlω
Y
km

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď c´1
0 pα1α2q

1{2lα1{2mα2{2
}prjl}p}p∆X,Y

h,jk}S ` }ΣX,Y
h,jk}Sq} pwkm}

À l3α1{2`1m3α2{2`1
}p∆X

jj}S}p∆Y
kk}Sp}p∆X,Y

h,jk}S ` pωX0 ω
Y
0 q

1{2
q

À pl3α1`2
_ m3α2`2

qMX
1 MY

1 η
2,

À pl3α1`2
_ m3α2`2

qpMX
1 ` MY

1 q
2η2,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I2
b

ωXjlω
Y
km

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď c´1
0 pα1α2q

1{2lα1{2mα2{2
}p∆X,Y

h,jk}Sp}prjl} ` } pwkm}q

À lα1{2mα2{2
}p∆X,Y

h,jk}Splα1`1
}p∆X

jj}S ` mα2`1
}p∆Y

kk}Sq

À pl2α1`1
_ m2α2`1

qMX,Y pMX _ MY qη2,

À pl2α1`1
_ m2α2`1

qM2
X,Y η

2,
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By Theorem 1.1,

P

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I4
b

ωXjlω
Y
km

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě 2MXY η

,

.

-

ď c1 expt´c2nminpη2, ηqu.

Next, we consider the term I3 “ xprjl, xΣX,Y
h,jk , ϕkmyy ` xψjl, xΣX,Y

h,jk , pwkmyy. By Condi-

tion 1.5, Lemmas 1.14 and 1.26 for tXtutPZ and tYtutPZ, we obtain that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I3
b

ωXjl ω
Y
km

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÀMX
1 l

α1`1η ` pMX
1 q2lp5α1`4q{2η2 ` MY

1 m
α2`1η ` pMY

1 q2mp5α2`4q{2η2

Àplα1`1 _mα2`1qpMX
1 ` MY

1 qη ` plp5α1`4q{2 _mp5α2`4q{2qpMX
1 ` MY

1 q2η2

holds with probability greater than 1 ´ 16 expt´c̃4nminpη2, ηqu ´ 8 expt´c̃4n

ptMX
1 u2l2pα1`1q _ tMY

1 u2m2pα2`1qq´1u.

Combining the above results, we obtain that there exists positive constants ρ1, ρ2,

c̃7 and c̃8 such that

P

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pσX,Yh,jklm ´ σX,Yh,jklm
b

ωXjl ω
Y
km

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ρ1MX,Y plα1`1 _mα2`1qη ` ρ2M2
X,Y pl3α1`2 _m3α2`2qη2

,

.

-

ď c̃8 expt´c̃7nminpη2, ηqu ` c̃8 expt´c̃7M´2
X,Y npl2pα1`1q _m2pα2`1qq´1u,

where MX,Y “ MX
1 ` MY

1 ` MX,Y
1,1 . Applying the Boole’s inequality, we obtain

that

P

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

max
1ďjďp

1ďkďd
1ďlďM1

1ďmďM2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pσX,Y
h,jklm ´ σX,Y

h,jklm
b

ωX
jlω

Y
km

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ρ1MX,Y plα1`1 _ mα2`1qη ` ρ2M2
X,Y pl3α1`2 _ m3α2`2qη2

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

ď pdM1M2tc̃8 expt´c̃7nminpη2, ηqu ` c̃8 expt´c̃7M´2
X,Y npl2pα1`1q _ m2pα2`1q´1

qu.

Letting η “ ρ3

b

logppdM1M2q

n
ă 1 and ρ1 `ρ2ρ3MX,Y pM2α1`1

1 _M2α2`1
2 qη ď ρ4, there
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exist some constants c5, c6 ą 0 such that

P

$

’

&

’

%

max
1ďjďp,1ďkďd

1ďlďM1,1ďmďM2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pσX,Y
h,jklm ´ σX,Y

h,jklm
b

ωX
jlω

Y
km

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ρ3ρ4MX,Y pMα1`1
1 _Mα2`1

2 q

c

logppdM1M2q

n

,

/

.

/

-

ď c5ppdM1M2qc6 .

˝

1.B.2 Proofs of propositions

Proof of Proposition 1.1 Under a mixed-process scenario consisting of tXtp¨qu

and d-dimensional time series tZtu, we obtain the concentration bound on pΣ
X,Z

h ,

P

#
ˇ

ˇ

ˇ

ˇ

ˇ

xΦ1, ppΣ
X,Z

h ´ ΣX,Z
h qνy

xΦ1,Σ
X
0 pΦ1qy ` νTΣZ

0 ν

ˇ

ˇ

ˇ

ˇ

ˇ

ą

´

MX
k1

` MZ
k2

` MX,Z
k1,k2

¯

η

+

ďc1 expt´c2nminpη2, ηqu.

(1.42)

Provided with Lemma 1.28, the above result can be proved in similar way to (1.15)

in Theorem 1.1, hence we omit it here.

Denote σZ0,kk “
a

VarpZkq, pσZ0 q2 “ max1ďkďd VarpZkq ă 8 and MX,Z “ MX
1 `

MZ
1 `MX,Z

1,1 . Letting Φ1 “ p0, . . . , 0, tωXjl u
´ 1

2ψjl, 0, . . . , 0qT and ν “ p0, . . . , 0, tσZ0,kku
´1,

0, . . . , 0qT, we obtain that ∆h,jkl “ xΦ1, ppΣ
X,Z

h ´ΣX,Z
h qνy “ pωXjl q

´1{2pσZ0,kkq
´1xψjl, pΣ

X,Z
h,jk´

ΣX,Z
h,jky and xΦ1,Σ

X
0 pΦ1qy “ νTΣZ

0 ν “ 1. Then }ΣX,Z
h,jk´ΣX,Z

h,jk}2 “
ř8

l“1 ω
X
jl pσ

Z
0,kkq

2∆2
h,jkl.

By Jensen’s inequality, we have that

E
!

›

›pΣX,Z
h,jk ´ ΣX,Z

h,jk

›

›

2q

S

)

ď pσZ0,kkq
2q
´

8
ÿ

l“1

ωXjl

¯q´1 8
ÿ

l“1

ωXjlE
ˇ

ˇ∆h,jkl

ˇ

ˇ

2q

ď tσZ0 u
2q

tωX0 u
q sup

l
E
ˇ

ˇ∆h,jkl

ˇ

ˇ

2q
.

By (1.42), we obtain that

P t|∆h,jkl| ą 2MX,Zηu ď c1 expt´c2nminpη2, ηqu.

Combining the above results and following the similar argument in the proof of
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Theorem 2 in Guo and Qiao (2022) yields

P

"

}pΣX,Z
h,jk ´ ΣX,Z

h,jk} ą 2MX,Zσ
Z
0

b

ωX0 η

*

ď c1 expt´c3nminpη2, ηqu.

Then with the fact that 2
a

pσZ0 q2ωX0 ď pσZ0 q2 ` ωX0 , we obtain

P
!

}pΣX,Z
h,jk ´ ΣX,Z

h,jk} ą ppσZ0 q
2

` ωX0 qMX,Zη
)

ď c1 expt´c3nminpη2, ηqu. (1.43)

This also implies (1.18).

Recall that pϱX,Zh,jkl “ 1
n´h

řn´h
t“1

pζtjlZpt`hqk and ϱX,Zh,jkl “ Covpζtjl, Zpt`hqkq. Let prjl “

pψjl ´ ψjl and p∆X,Z
h,jk “ pΣX,Z

h,jk ´ ΣX,Z
h,jk. We have

pϱX,Zh,jkl ´ ϱX,Zh,jkl “ xprjl, p∆
X,Z
h,jky ` xprjl,Σ

X,Z
h,jky ` xψjl, p∆

X,Z
h,jky

“ I1 ` I2 ` I3.

Let ΩX,Z
jk,η “

!

}p∆X,Z
h,jk} ď pωX0 ` pσZ0 q2qMX,Zη

)

, ΩX
jj,η “

!

}p∆X
jj}S ď 2MX

1 ω
X
0 η

)

and

Ω1 “

!

}p∆X,Z
h,jk} ď pωX0 ` pσZ0 q2q

)

. By (1.43) and Lemma 1.24, we have

P
´

pΩX,Y
jk,η q

C
¯

ď c1 expt´c3nminpη2, ηqu,

P
`

pΩX
jj,ηq

C
˘

ď 4 expt´c̃1nminpη2, ηqu,

P
`

pΩ1q
C
˘

ď c1 expt´c3npMX,Zq
´2

u.

On the event of Ω1 X ΩX,Z
η,jk X ΩX

jj,η, by Condition 1.5, (1.40), Lemma 1.2 and pσZ0 q2 ă

8, we obtain that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I1
b

ωXjl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À lα1{2
}p∆X,Z

h,jk}}prjl} À l3α1{2`1
}p∆X,Z

h,jk}}p∆X
jj}S

À l3α1{2`1MX,ZMX
1 η

2.

By Condition 1.5, Lemma 1.26 and }ΣXZ
h,jk} ď ω

1{2
0 σZ0,kk, we obtain that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I2
b

ωXjl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À MX
1 l

α1`1η ` pMX
1 q

2lp5α1`4q{2η2
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holds with probability greater than 1 ´ 8 expt´c̃4nminpη2, ηqu ´ 4 expt´c̃4n

ptMX
1 u´2l´2pα1`1qqu. By (1.42) and the fact that

a

pσZ0 q2ωX0 ď 1{2tpσZ0 q2 `ωX0 u, we

obtain that

P

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I3
b

ωXjl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě 2MX,Zσ
Z
0 η

,

.

-

ď c1 expt´c2nminpη2, ηqu.

Combining the above results, we obtain that there exists positive constants ρ5, ρ6,

c̃9 and c̃10 such that

P

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϱX,Zh,jkl ´ ϱX,Zh,jkl
b

ωXjl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ρ5MX,Z l
α1`1η ` ρ6M2

X,Z l
p5α1`4q{2η2

,

.

-

ď c̃10 expt´c̃9nminpη2, ηqu ` c̃10 expt´c̃9M´2
X,Znl

´2pα1`1qu.

Letting η “ ρ7

b

logppdM1q

n
ă 1 and ρ5 ` ρ6ρ7MX,ZM

1.5α1`1
1 η ď ρ8, there exist some

constants c7, c8 ą 0 such that

P

$

’

&

’

%

max
1ďjďp,1ďkďd

1ďlďM1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϱX,Zh,jkl ´ ϱX,Zh,jkl
b

ωXjl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ρ7ρ8MX,ZM
α1`1
1

c

logppdM1q

n

,

/

.

/

-

ď c7ppdM1qc8 ,

which implies (1.20). ˝

Proof of Proposition 1.2 To simplify our notation, we will denote pσX,ϵh,jlm and

σX,ϵh,jlm by pσh,jlm and σh,jlm in subsequent proofs. Recall that pσh,jlm “ x pψjl, xpΣ
X,ϵ
h,j ,

pϕmyy

and σh,jlm “ xψjl, xΣX,ϵ
h,j , ϕmy. Since we assume tXtp¨qu and tϵtp¨qu are independent

processes, σh,jlm “ 0.

Let prjl “ pψjl ´ ψjl, pwm “ pϕm ´ ϕm and p∆X,ϵ
h,j “ pΣX,ϵ

h,j ´ ΣX,ϵ
h,j .

pσh,jlm “ xprjl, xpΣ
X,ϵ
h,j , pwmyy `

´

xprjl, xp∆
X,ϵ
h,j , ϕmyy ` xψjl, xp∆

X,ϵ
h,j , pwmyy

¯

` xψjl, xp∆
X,ϵ
h,j , ϕmyy

“ I1 ` I2 ` I3.

Denote ΩX,ϵ
j,η “

!

}p∆X,ϵ
h,j }S ď pωX0 ` ωϵ0qMX,ϵη

)

, ΩX
jj,η “

!

}p∆X
jj}S ď 2MX

1 ω
X
0 η

)

, ΩY
η “
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!

}p∆Y }S ď 2MY ωY0 η
)

and Ω1 “

!

}p∆X,ϵ
h,j }S ď pωX0 ` ωϵ0q

)

. By Theorem 1.2 and

Lemma 1.24, we have

P
´

pΩX,ϵ
j,η q

C
¯

ď c1 expt´c3nminpη2, ηqu,

P
`

pΩX
jj,ηq

C
˘

ď 4 expt´c̃1nminpη2, ηqu,

P
`

pΩY
η q

C
˘

ď 4 expt´c̃1nminpη2, ηqu,

P
`

pΩ1q
C
˘

ď c1 expt´c3npMX,ϵq
´2

u.

On the event of Ω1XΩX,ϵ
j,η XΩX

jj,ηXΩY
η , by Condition 1.5, (1.40), (1.41) and Lemma 1.2,

we obtain that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I1
b

ωXjlω
Y
m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď c´1
0 pα1α2q

1{2lα1{2mα2{2
}prjl}p}p∆X,ϵ

h,j }S ` }ΣX,ϵ
h,j }Sq} pwm}

À pl3α1`2
_ m3α2`2

qMX
1 MY η2,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I2
b

ωXjlω
Y
m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À lα1{2mα2{2
}p∆X,ϵ

h,j }Splα1`1
}p∆X

jj}S ` mα2`1
}p∆Y

}Sq

À pl2α1`1
_ m2α2`1

qMX,ϵtMX
1 ` MY

uη2,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I3
b

ωXjlω
Y
m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď c´1
0 pα1α2q

1{2lα1{2mα2{2
}p∆X,ϵ

h,j }S À plα1 _ mα2qMX,ϵη.

Combining the above results, we obtain that there exists positive constants ρ9, ρ10,

c̃11 and c̃12 such that

P

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pσh,jlm
b

ωXjl ω
Y
m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ρ9MX,ϵpl
α1 _mα2qη ` ρ10MX,ϵpMX

1 ` MY qpl3α1`2 _m3α2`2qη2

,

.

-

ď c̃12 expt´c̃11nminpη2, ηqu ` c̃12 expt´c̃11M´2
X,ϵnu.

Letting η “ ρ11

b

logppM1M2q

n
ă 1 and ρ9 `ρ10ρ11tMX

1 `MY upM2α1`2
1 _M2α2`2

2 qη ď

49



ρ12, there exist some constants c9, c10 ą 0 such that

P

$

’

&

’

%

max
1ďjďp

1ďlďM1,1ďmďM2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pσh,jlm ´ σh,jlm
b

ωX
jlω

Y
m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ρ11ρ12pMX
1 ` MϵqpMα1

1 _Mα2
2 q

c

logppM1M2q

n

,

/

.

/

-

ď c9ppM1M2qc10 ,

which completes the proof. ˝

Proof of Proposition 1.3 Recall that pϱX,ϵh,jl “ 1
n´h

řn´h
t“1

pζtjlϵt`h and ϱX,ϵh,jl “

Covpζtjl, ϵt`hq. Let prjl “ pψjl ´ ψjl and p∆X,ϵ
h,j “ pΣX,ϵ

h,j ´ ΣX,ϵ
h,j . We have

pϱX,ϵh,jl ´ ϱX,ϵh,jl “ xprjl, p∆
X,ϵ
h,j y ` xψjl, p∆

X,ϵ
h,j y

“ I1 ` I2.

Let ΩX,ϵ
j,η “

!

}p∆X,ϵ
h,j } ď pωX0 ` pσϵ0q

2qMX,ϵη
)

and ΩX
jj,η “

!

}p∆X
jj}S ď 2MX

1 ω
X
0 η

)

. By

(1.43) and Lemma 1.24, we have

P
´

pΩX,ϵ
j,η q

C
¯

ď c1 expt´c3nminpη2, ηqu,

P
`

pΩX
jj,ηq

C
˘

ď 4 expt´c̃1nminpη2, ηqu.

On the event of ΩX,ϵ
η,j X ΩX

jj,η, by Condition 1.5, (1.40) and Lemma 1.2, we obtain

that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I1
b

ωXjl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À lα1{2
}p∆X,ϵ

h,j }}prjl} À l3α1{2`1
}p∆X,ϵ

h,j }}p∆X
jj}S

À l3α1{2`1MX,ϵMX
1 η

2.

By (1.42) and the fact that
a

pσϵ0q2ωX0 ď 1{2tpσϵ0q
2 ` ωX0 u, we obtain that

P

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I2
b

ωXjl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě 2MX,ϵσ
ϵ
0η

,

.

-

ď c1 expt´c2nminpη2, ηqu.

Combining the above results, we obtain that there exists positive constants ρ13, ρ14,
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c̃13 and c̃14 such that

P

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϱX,ϵ
h,jl ´ ϱX,ϵ

h,jl
b

ωX
jl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ρ13MX,ϵη ` ρ14l
3α1{2`1MX,ϵMX

1 η
2

,

.

-

ď c̃14 expt´c̃13nminpη2, ηqu.

Letting η “ ρ15

b

logppM1q

n
ă 1 and ρ13`ρ14ρ15MX

1 M
3α1{2`1
1 η ď ρ16, there exist some

constants c11, c12 ą 0 such that

P

$

’

&

’

%

max
1ďjďp

1ďlďM1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϱX,ϵh,jl ´ ϱX,ϵh,jl
b

ωXjl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ρ15ρ16MX,ϵ

c

logppM1q

n

,

/

.

/

-

ď c11ppM1qc12 ,

which implies (1.22). ˝

1.B.3 Technical lemmas and their proofs

Lemma 1.1. The non-functional version of our proposed cross-spectral stability

measure satisfies

ess sup
θPr´π,πs,ν1PRp

0,ν2PRd
0

ˇ

ˇ

ˇ
νT
1f

X,Y
θ ν2

ˇ

ˇ

ˇ

a

νT
1ν1

a

νT
2ν2

ď ĂMX,Y ,

where ĂMX,Y is defined in (1.6).

Proof. For any fixed θ P r´π, πs, we perform singular value decomposition on

fX,Yθ “ UDVT, where D is a diagonal matrix with singular values tσiu of fX,Yθ on

the diagonal. Then

max
ν1PrRp

0,ν2PrRd
0

ˇ

ˇ

ˇ
νT
1f

X,Y
θ ν2

ˇ

ˇ

ˇ

a

νT
1ν1

a

νT
2ν2

“ max
xPrRp

0,yPrRd
0

|xTDy|
?
xTx

?
yTy

px “ UTν1,y “ VTν2q

“ max
xPrRp

0,yPrRd
0

ř

xiyiσi
?
xTx

?
yTy

ď max
xPrRp

0,yPrRd
0

a

ř

x2i
ř

pyiσiq2
a

ř

x2i
a

ř

y2i

ď max
yPrRd

0

d

ř

pyiσiq2
ř

y2i
ď maxpσiq

ď max
νPrRd

0

d

νTtfX,Yθ u˚fX,Yθ ν

νTν
.
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This holds almost everywhere for θ P r´π, πs, which completes our proof. ˝

Lemma 1.2. Suppose that Conditions 1.3 and 1.4 hold, then ωX0 “ Op1q.

Proof. Recall that Xtpuq “
8
ř

l“0

∫

Alpu, vqεt´lpvqdv and εtp¨q’s are i.i.d. mean-zero

functional processes. Let Al,j denote the j-th row of Al. Then

max
1ďjďp

ż

ΣX
0,jjpu, uqdu

“ max
j

ż

E tXtjpuqXtjpuqu du

“ max
j

ż

E
”!

8
ÿ

l“0

p
ÿ

k“1

ż

Al,jkpu, vqεt´l,kpvqdv
)2ı

du

ď max
j

ż

E
”!

8
ÿ

l“0

p
ÿ

k“1

d

ż

pAl,jkpu, vqq2dv

d

ż

pεt´l,kpvqq2dv
)2ı

du

ď max
j

8
ÿ

l“0

p
ÿ

k“1

ż ż

pAl,jkpu, vqq
2dudvmax

l,k
E
!

ż

pεt´l,kpvqq
2dv

)

ď ωε0 max
j

8
ÿ

l“0

p
ÿ

k“1

}Al,jk}
2
S ď ωε0 max

j

8
ÿ

l“0

p

p
ÿ

k“1

}Al,jk}Sq
2

“ ωε0
ÿ

l“0

}Al}
2
8

ď ωε0t
ÿ

l“0

}Al}8u
2

“ Op1q,

which completes our proof. ˝

Before presenting Lemma 1.3, we define sub-Gaussian distribution and sub-Gaussian

norm as follows. A centered random variable x with variance proxy σ2 is sub-

Gaussian if for any t ą 0, P p|x| ą tq ď 2 expp´t2{p2σ2qq. The sub-Gaussian norm

of x is defined by }x}ψ2 “ inftK ą 0 : E exppx2{K2q ď 2u.

Lemma 1.3. Let x “ px1, . . . , xnq P Rn be a random vector with independent mean

zero sub-Gaussian coordinates. Without loss of generality, we assume that Ex2i “ 1

for i “ 1, . . . , n. Let A be an nˆn matrix. Then there exists some universal constant

c ą 0 such that for any given η ą 0,

P p|xTAx ´ ExTAx| ě }A}ηq ď 2 exp

"

´cmin

ˆ

η2

rankpAq
, η

˙*

. (1.44)

Proof. It follows from Theorem 1.1 of Rudelson and Vershynin (2013) and }xi}ψ2 “
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1 for i “ 1, . . . , n, that there exists a constant c ą 0 such that

P p|xTAx ´ ExTAx| ě tq ď 2 exp

"

´cmin

ˆ

t2

}A}2F
,
t

}A}

˙*

.

By }A}F ď
a

rankpAq}A} and letting t “ η}A}, we obtain (1.44). ˝

Lemma 1.4. Suppose that sub-Gaussian process tεtjp¨qutPZ follows Definition 1.3.

Under Karhunen-Loève expansion εtjp¨q “
ř8

l“1 ξtjlϕjlp¨q “
ř8

l“1

a

ωεjlatjlϕjlp¨q with

Epatjlq “ 0 and Epa2tjlq “ 1 for t P Z and j “ 1 . . . , p, atjl follows sub-Gaussian

distribution with }atjl}ψ2 “ 1, that is for all η ą 0, t P Z, j “ 1, . . . , p and l ě 1,

P r|atjl| ą ηs ď 2 expp´η2{2q.

Proof. By Definition 1.3, for all x P H, Etexx,Xyu ď eα
2xx,Σ0pxqy{2. Combining with

the choice of x “ cϕjlp¨q for c ą 0 and orthonormality of tϕjlp¨qu yields

E
´

e
c
?
ωε
jlatjl

¯

ď eα
2c2ωε

jl{2.

Without loss of generality, we assume α “ 1. By Markov’s inequality and the above

result, we have that for all c ą 0,

P patjl ą ηq ď P
´

e
c
?
ωε
jlatjl ą e

c
?
ωε
jlη
¯

ď

E
´

e
c
?
ωε
jlatjl

¯

e
c
?
ωε
jlη

ď e
c2ωε

jl{2´c
?
ωε
jlη.

Choosing c “ η{
a

ωεjl, we have P patjl ą ηq ď e´
η2

2 . In the same manner with the

choice of x “ ´cϕjlp¨q for c ą 0, we can prove P patjl ă ´ηq ď e´
η2

2 . Combining the

above results, P r|atjl| ą ηs “ P patjl ą ηq ` P patjl ă ´ηq ď 2e´
η2

2 which completes

the proof. ˝

Before presenting Lemma 1.5 below, we give some definitions:

(i) Suppose that e “ pe1, . . . , eNqT P HN is formed by N independent mean zero

sub-Gaussian processes with eip¨q “
ř8

l“1

a

ωeilailϕilp¨q under the Karhunen-Loève

expansion. Define φM,i “
`?

ωei1ϕi1, . . . ,
?
ωeiMϕiM

˘T
.

(ii) Suppose K “ pKijqNˆN with each Kij P S. For any nonempty subset G Ă Z`

= {1,2,. . . } with |G| ă 8, write G “ tg1, . . . , g|G|u with g1 ă ¨ ¨ ¨ ă g|G| and

ϕG,i “ pϕig1 , . . . , ϕig|G|
qT for each i “ 1, . . . , N . Let ΦG “ diagpϕT

G,1, . . . ,ϕ
T

G,Nq, then

53



we define

rankpKq “ sup
GĂZ`,|G|ă8

rank

ˆ
∫ ∫

ΦT

GpuqKpu, vqΦGpvqdudv

˙

.

Condition 1.10. Let ΠM “
∫ ∫

ΘT

MpuqKpu, vqΘMpvqdudv with ΘM taking the

form ΘM “ diagpφT
M,1, . . . ,φ

T
M,Nq and K “ pKijqNˆN with each Kij P S. It satisfies

that }ΠM} ď bM and limMÑ8 bM “ b.

Lemma 1.5. Suppose that max1ďiďN

∫

U Σe
iipu, uqdu ă 8 and K satisfies Condi-

tion 1.10. Then, there exists some universal constant c ą 0 such that for any given

η ą 0,

P p|xe,Kpeqy ´ Exe,Kpeqy| ě bηq ď 2 exp

"

´cmin

ˆ

η2

rankpKq
, η

˙*

. (1.45)

Proof. We organize our proof as follows: First, we truncate eip¨q to M -dimensional

process eM,ip¨q “
řM
l“1

a

ωeilailϕilp¨q, then apply Hanson-Wright inequality in Lemma 1.3

and finally show that the inequality still hold under the infinite-dimensional setting.

Rewrite eM “ peM,1, . . . , eM,NqT with eM,i “ aT
M,iφM,i and aM,i “ pai1, . . . , aiMqT.

Let aM “ paT
M,1, . . . , a

T
M,NqT P RNM , then we have xeM ,KpeMqy “ aT

MΠMaM . By

Lemma 1.4, elements in aM P RNM are i.i.d. sub-Gaussian with Epailq “ 0 and

Epa2ilq “ 1. Combining this with Lemma 1.3 yields

P p|xeM ,KpeMqy ´ ExeM ,KpeMqy| ě bMηq

ď P p|aT

MΠMaM ´ EaT

MΠMaM | ě }ΠM}ηq

ď 2 exp

"

´cmin

ˆ

η2

rankpΠMq
, η

˙*

.

(1.46)

It follows from Lemma 1.6 that xeM ,KpeMqy converges in probability to xe,Kpeqy

and limMÑ8 ExeM ,KpeMqy “ Exe,Kpeqy. These results together with Condition 1.10

imply that

xeM ,KpeMqy ´ ExeM ,KpeMqy ´ bMη

converges in distribution to

xe,Kpeqy ´ Exe,Kpeqy ´ bη.

Finally, by the fact that rankpΠMq ď rankpKq and taking M Ñ 8 on both sides of
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(1.46), we obtain (1.45), which completes the proof. ˝

Lemma 1.6. Under the same assumption and notation in Lemma 1.5 and its proof,

we have

lim
MÑ8

E
␣

}eM ´ e}
2
(

“ 0 (1.47)

and

lim
MÑ8

ExeM ,KpeMqy “ Exe,Kpeqy. (1.48)

Proof. Since }eM ´ e}2 “
řN
i“1 }eM,i ´ ei}

2 “
řN
i“1 }

ř8

l“M`1

a

ωeilailϕil}
2, it suffices

to show limMÑ8 E
␣

}
ř8

l“M`1

a

ωeilailϕil}
2
(

“ 0. By Epailail1q “ 1tl “ l1u and the

orthonormality of tϕilu, we have

E

$

&

%

ż

˜

8
ÿ

l“M`1

a

ωεilailϕilpuq

¸2

du

,

.

-

“

8
ÿ

l“M`1

ωεil.

This together with Condition 1.4 implies that above goes to zero as M Ñ 8, which

completes the proof of (1.47).

By triangle inequality, we have

|ExeM ,KpeMqy ´ Exe,Kpeqy| ď |ExeM ,KpeM ´ eqy| ` |ExpeM ´ eq,Kpeqy|. (1.49)

By Jensen’s inequality and Lemma 1.11, we have

|ExeM ,KpeM ´ eqy|
2

ď }K}
2
FEp}eM}

2
qEp}eM ´ e}

2
q,

|ExpeM ´ eq,Kpeqy|
2

ď }K}
2
FEp}e}

2
qEp}eM ´ e}

2
q.

From (1.47), we have limMÑ8 E t}eM ´ e}2u “ 0 and limMÑ8 Et}eM}2u “ Et}e}2u.

Combining these with Ep}e}2q ď N max1ďiďN

∫

U Σe
iipu, uqdu ă 8 and }K}F ă 8

implies the right side of (1.49) goes to zero when M Ñ 8, which completes the

proof of (1.48). ˝

Lemma 1.7. Suppose Conditions 1.1, 1.3 and 1.4 hold for stationary sub-Gaussian

process tXtp¨qutPZ. Let XM,L,tpuq “
L
ř

l“0

AlpεM,t´lq. Then, for any Φ1 P Hp
0 with

}Φ1}0 ď k and k “ 1, . . . , p,

lim
MÑ8

MpfXM,L,Φ1q “ MpfXL ,Φ1q.
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Proof. By the definitions of MpfXM,L,Φq and fXM,L,θpΦq in the proof of Theorem 1.1

in Appendix 1.B.1, we have

lim
MÑ8

|MpfXM,L,Φ1q ´ MpfXL ,Φ1q|

“ 2π lim
MÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ess sup
θPr´π,πs

|xΦ1,f
X
M,L,θpΦ1qy| ´ ess sup

θPr´π,πs

|xΦ1,f
X
L,θpΦ1qy|

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2π lim
MÑ8

ess sup
θPr´π,πs

ˇ

ˇ|xΦ1,f
X
M,L,θpΦ1qy| ´ |xΦ1,f

X
L,θpΦ1qy|

ˇ

ˇ

ď }Φ1}
2 lim
MÑ8

›

›

›

›

›

ÿ

hPZ

pΣX
M,L,h ´ ΣX

L,hq

›

›

›

›

›

F

(by Lemma 1.11 and | expp´ihθq| “ 1)

ď }Φ1}
2 lim
MÑ8

ÿ

hPZ

›

›ΣX
M,L,h ´ ΣX

L,h

›

›

F
.

Provided that }Φ1}
2 ă 8, it suffices to prove that

ř8

h“´8

›

›ΣX
M,L,h ´ ΣX

L,h

›

›

F
ă 8

and limMÑ8

›

›ΣX
M,L,h ´ ΣX

L,h

›

›

F
“ 0.

By triangle inequality and Lemma 1.12, we obtain that

8
ÿ

h“´8

›

›ΣX
M,L,h ´ ΣX

L,h

›

›

F
ď

8
ÿ

h“´8

}ΣX
M,L,h}F `

8
ÿ

h“´8

}ΣX
L,h}F ă 8.

We next prove limMÑ8

›

›ΣX
M,L,h ´ ΣX

L,h

›

›

F
“ 0. Write

ΣX
M,L,hpu, vq “ E

␣

XM,L,t´hpuqXT

M,L,tpvq
(

“

L´h
ÿ

l“0

ż

Al`hpu, u1
qΣεM

0 pu1, v1
qtAlpv, v

1
qu

Tdu1dv1,

ΣX
L,hpu, vq “ E

␣

XL,t´hpuqXT

L,tpvq
(

“

L´h
ÿ

l“0

ż

Al`hpu, u1
qΣε

0pu1, v1
qtAlpv, v

1
qu

Tdu1dv1.
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Then,

lim
MÑ8

›

›ΣX
M,L,h ´ ΣX

L,h

›

›

F

“ lim
MÑ8

›

›

›

›

›

L´h
ÿ

l“0

ż

Al`hpu, u1
qtΣεM

0 pu1, v1
q ´ Σε

0pu
1, v1

qutAlpv, v
1
qu

Tdu1dv1

›

›

›

›

›

F

ď

L´h
ÿ

l“0

}Al}F}Al`h}F lim
MÑ8

}ΣεM
0 ´ Σε

0}F pby Lemma 1.11q

ď

L´h
ÿ

l“0

}Al}F}Al`h}F lim
MÑ8

#

ÿ

j,k

}ΣεM
h,jk ´ Σε

h,jk}
2
S

+1{2

ď

L´h
ÿ

l“0

}Al}F}Al`h}F lim
MÑ8

ÿ

j,k

}ΣεM
0,jk ´ Σε

0,jk}S

“0 pby Lemmas 1.12 and 1.13q

which completes the proof. ˝

Lemma 1.8. Suppose that conditions in Lemma 1.7 hold. For any Φ1 P Hp
0 with

}Φ1}0 ď k and k “ 1, . . . , p, define Y “ pxΦ1,X1y, . . . , xΦ1,XnyqT. Then

}VarpYq} ď MpfX ,Φ1q ď MX
k xΦ1,Σ

X
0 pΦ1qy.

Proof. The proof follows from the proof of Theorem 1 in Guo and Qiao (2022) and

hence the proof is omitted here. ˝

Lemma 1.9. Suppose that conditions in Lemma 1.7 hold. LetXL,tpuq “
L
ř

l“0

Alpεt´lq.

For any Φ1 P Hp
0 with }Φ1}0 ď k pk “ 1, . . . , pq, define YL “ pxΦ1,XL,1y, . . . ,

xΦ1,XL,nyqT and Y “ pxΦ1,X1y, . . . , xΦ1,XnyqT, then

lim
LÑ8

E
␣

}YL ´ Y}
2
(

“ 0 (1.50)

and

lim
LÑ8

E rYT

LYLs “ E rYTYs . (1.51)

Proof of (1.50). By definitions of YL and Y, we have that

E
␣

}YL ´ Y}
2
(

“

n
ÿ

t“1

E
␣

|xΦ1,XL,t ´ Xty|
2
(
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By Lemma 1.11, we have E t|xΦ1,XL,t ´ Xty|2u ď }Φ1}
2Et}XL,t ´ Xt}

2u. With the

fact }Φ1}2 ă 8, it suffices to prove that limLÑ8 Et}XL,t´Xt}
2u “ 0 for t “ 1, . . . , n.

By Lemma 1.13, we have Ep}εt´l}q ď
?
pωε

0 . This together with Lemma 1.11 implies

that

Ep}XL,t ´ Xt}
2
q “ E

$

&

%

›

›

›

›

›

8
ÿ

l“L`1

ż

Alpu, vqεt´lpvqdv

›

›

›

›

›

2
,

.

-

ď E

˜

8
ÿ

l1“L`1

8
ÿ

l2“L`1

}Al1}F}Al2}F}εt´l1}}εt´l2}

¸

ď pωε
0

˜

8
ÿ

l“L`1

}Al}F

¸2

.

By Lemma 1.12, we have
ř8

l“0 }Al}F ă 8. This together with the above yields

lim
LÑ8

Et}XL,t ´ Xt}
2
u “ 0, (1.52)

which completes the proof of (1.50).

Proof of (1.51). Next we show that limLÑ8 E rYT
LYLs ´ E rYTYs “ 0. Write

|E rYT

LYLs ´ E rYTYs|

“ n
ˇ

ˇxΦ1, pΣ
X
L,0 ´ ΣX

0 qpΦ1qy
ˇ

ˇ

“ n

ˇ

ˇ

ˇ

ˇ

ż

ΦT

1 puqE
`

XL,tpuqXT

L,tpvq ´ XtpuqXT

t pvq
˘

Φ1pvqdudv

ˇ

ˇ

ˇ

ˇ

ď n

ˇ

ˇ

ˇ

ˇ

ż

ΦT

1E pXL,tpXL,t ´ Xtq
T
qΦ1dudv

ˇ

ˇ

ˇ

ˇ

` n

ˇ

ˇ

ˇ

ˇ

ż

ΦT

1E ppXL,t ´ XtqX
T

t qΦ1dudv

ˇ

ˇ

ˇ

ˇ

.

By Jensen’s inequality and Lemma 1.11, we have

ˇ

ˇ

ˇ

ˇ

ż

ΦT

1E pXL,tpXL,t ´ Xtq
T
qΦ1dudv

ˇ

ˇ

ˇ

ˇ

2

ď }Φ1}
4Et}XL,t}

2
uEt}XL,t ´ Xt}

2
u,

ˇ

ˇ

ˇ

ˇ

ż

ΦT

1E ppXL,t ´ XtqX
T

t qΦ1dudv

ˇ

ˇ

ˇ

ˇ

2

ď }Φ1}
4Et}Xt}

2
uEt}XL,t ´ Xt}

2
u.

Combining the above results with (1.52), we complete the proof of (1.51). ˝
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Lemma 1.10. Suppose conditions in Lemma 1.7 hold. Let XL,tpuq “
L
ř

l“0

Alpεt´lq.

Then, for any Φ1 P Hp
0 with }Φ1}0 ď k and k “ 1, . . . , p,

lim
LÑ8

MpfXL ,Φ1q “ MpfX ,Φ1q.

Proof. By definitions of MpfX ,Φq and fXθ pΦq, we have

lim
LÑ8

|MpfXL ,Φ1q ´ MpfX ,Φ1q|

“ 2π lim
LÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ess sup
θPr´π,πs

|xΦ1,f
X
L,θpΦ1qy| ´ ess sup

θPr´π,πs

|xΦ1,f
X
θ pΦ1qy|

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2π lim
LÑ8

ess sup
θPr´π,πs

ˇ

ˇ|xΦ1,f
X
L,θpΦ1qy| ´ |xΦ1,f

X
θ pΦ1qy|

ˇ

ˇ

ď }Φ1}
2 lim
LÑ8

›

›

›

›

›

ÿ

hPZ

pΣX
L,h ´ ΣX

h q

›

›

›

›

›

F

pby Lemma 1.11 and | expp´ihθq| “ 1q

ď }Φ1}
2 lim
LÑ8

ÿ

hPZ

›

›ΣX
L,h ´ ΣX

h

›

›

F
.

With }Φ1}
2 ă 8, it suffices to prove

ř8

h“´8

›

›ΣX
L,h ´ ΣX

h

›

›

F
ă 8 and

limLÑ8

›

›ΣX
L,h ´ ΣX

h

›

›

F
“ 0.

By triangle inequality and Lemma 1.12, we obtain that

8
ÿ

h“´8

›

›ΣX
L,h ´ ΣX

h

›

›

F
ď

8
ÿ

h“´8

}ΣX
L,h}F `

8
ÿ

h“´8

}ΣX
h }F ă 8.

We next prove limLÑ8

›

›ΣX
L,h ´ ΣX

h

›

›

F
“ 0. Write

ΣX
h pu, vq “ E pXt´hpuqXT

t pvqq “

8
ÿ

l“0

ż

Al`hpu, u1qΣε
0pu1, v1qtAlpv, v

1quTdu1dv1,

ΣX
L,hpu, vq “ E

`

XL,t´hpuqXT
L,tpvq

˘

“

L´h
ÿ

l“0

ż

Al`hpu, u1qΣε
0pu1, v1qtAlpv, v

1quTdu1dv1.
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Then,

lim
LÑ8

›

›ΣX
L,h ´ ΣX

h

›

›

F

“ lim
LÑ8

›

›

›

›

›

8
ÿ

l“L´h`1

ż

Al`hpu, u1
qΣε

0pu
1, v1

qtAlpv, v
1
qu

Tdu1dv1

›

›

›

›

›

F

ď pωε0 lim
LÑ8

8
ÿ

l“L´h`1

}Al}F}Al`h}F pby Lemmas 1.11 and 1.13q

ď pωε0 lim
LÑ8

8
ÿ

l“L´h`1

}Al}F

8
ÿ

l“L´h`1

}Al`h}F

“ 0 pby Lemma 1.12q,

which completes the proof. ˝

Lemma 1.11. (i)Let A “ pAijqpˆq with each Aij P S and B “ pB1, . . . , Bqq
T P Hq.

›

›

›

›

ż ż

Apu, vqBpvqdudv

›

›

›

›

ď }A}F}B}. (1.53)

Similarly, we have

›

›

›

›

ż

Apu, vqBpvqdv

›

›

›

›

ď }A}F}B}, (1.54)

(ii)Let A “ pAijqpˆq with each Aij P S and B “ pBjkqqˆr with each Bjk P S. Then
we have

›

›

›

›

ż

Apu, zqBpz, vqdz

›

›

›

›

F

ď }A}F}B}F. (1.55)

Proof of (1.53). Let C “
∫ ∫

Apu, vqBpvqdudv. Thus |Ci| “ |
ř

k

∫ ∫

Aikpu, vqBkpvqdudv| ď
ř

k }Aik}S}Bk}.

}C}
2

“
ÿ

i

|Ci|
2

ď
ÿ

i

˜

ÿ

k

}Aik}S}Bk}

¸2

ď
ÿ

i

˜

ÿ

k

}Aik}
2
S

¸˜

ÿ

k

}Bk}
2

¸

pby Cauchy-Schwarz inequalityq

ď
ÿ

i,k

}Aik}
2
S

ÿ

k

}Bk}
2

“ }A}
2
F}B}

2.
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Proof of (1.54). Let Cpuq “
∫

Apu, vqBpvqdv, then we have that Cipuq “
ř

k

∫

Aikpu, vqBkpvqdv.

}C}
2

“
ÿ

i

ż

Cipuq
2du “

ÿ

i

ż

#

ÿ

k

ż

Aikpu, vqBkpvqdv

+2

du

ď
ÿ

i

ż

#

ÿ

k

d

ż

A2
ikpu, vqdv

ż

B2
kpvqdv

+2

du

ď
ÿ

i

ż

#

ÿ

k

ż

A2
ikpu, vqdv

ÿ

k

ż

B2
kpvqdv

+

du

“
ÿ

i,k

}Aik}
2
ÿ

k

}Bk}
2

“ }A}
2
F}B}

2.

Proof of (1.55). Let Cpu, vq “
∫

Apu, zqBpz, vqdz, then we have Cijpu, vq “
ř

k

∫

Aikpu, zqBkjpz, vqdz. Following the similar argument in the proof of (1.54), we

obtain

}C}
2
F “

ÿ

i,j

ż ż

Cijpu, vq
2dudv “

ÿ

i,j

ż ż

#

ÿ

k

ż

Aikpu, zqBkjpz, vqdz

+2

dudv

ď
ÿ

i,j

ż ż

#

ÿ

k

ż

A2
ikpu, zqdz

ÿ

k

ż

B2
kjpz, vqdz

+

dudv

“ }A}
2
F}B}

2
F.

˝

Lemma 1.12. Suppose that conditions in Lemma 1.7 hold. Then we have

8
ÿ

l“0

}Al}F ă 8

and
ÿ

hPZ

}ΣX
h }F ď 2pωε0

#

8
ÿ

l“0

}Al}F

+2

ă 8.
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Proof. It follows from Condition 1.3 that

8
ÿ

l“0

}Al}F “

8
ÿ

l“0

#

ÿ

j,k

}Al,jk}
2
S

+1{2

ď

8
ÿ

l“0

ÿ

j

}Al}8 ă 8.

Provided that Xtpuq “
8
ř

l“0

∫

Alpu, vqεt´lpvqdv and εtp¨q’s are i.i.d. mean zero sub-

Gaussian processes, we have

ΣX
h pu, vq “ E tXt´hpuqXT

t pvqu

“

8
ÿ

l“0

ż

Al`hpu, u1
qE

␣

εt´lpu
1
qεT

t´lpv
1
q
(

tAlpv, v
1
qu

Tdu1dv1

“

8
ÿ

l“0

ż

Al`hpu, u1
qΣε

0pu1, v1
qtAlpv, v

1
qu

Tdu1dv1.

This together with the fact that ΣX
´hpu, vq “

␣

ΣX
h pv, uq

(T
implies that

ÿ

hPZ

}ΣX
h pu, vq}F ď 2

8
ÿ

h“0

}ΣX
h pu, vq}F

“ 2
8
ÿ

h“0

}

8
ÿ

l“0

ż

Al`hpu, u1
qΣε

0pu
1, v1

qtAlpv, v
1
qu

Tdu1dv1
}F

ď 2
8
ÿ

h“0

8
ÿ

l“0

}

ż

Al`hpu, u1
qΣε

0pu
1, v1

qtAlpv, v
1
qu

Tdu1dv1
}F

ď 2
8
ÿ

h“0

8
ÿ

l“0

}Al}F}Al`h}F}Σε
0}F pby Lemma 1.11q

ď 2pωε0

#

8
ÿ

l“0

}Al}F

+2

ă 8 pby Lemme 1.13q,

which completes the proof. ˝

Lemma 1.13. For a p-dimensional vector process tXtp¨qutPZ, whose lag-h auto-

covariance matrix function is Σh “ pΣh,jkq1ďj,kďp with each Σh,jk P S and ω0 “

max1ďjďp

∫

Σ0,jjpu, uqdu ă 8, we have

}Σh,jk}S ď ω0, }Σh}F ď pω0, Ep}Xt}q ď
?
pω0 and Ep}Xt}

2
q ď pω0.
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Let XM,tjp¨q “
řM
l“1 ξtjlϕjlp¨q be the M-truncated process, we have

lim
MÑ8

}ΣXM
h,jk ´ ΣX

h,jk}S “ 0. (1.56)

Proof. By Σh,jk “
ř8

l,m“1 Epξtjlξpt`hqkmqϕjlpuqϕkmpvq, orthonormality of tϕjlu and

Cauchy–Schwarz inequality, we obtain

}Σh,jk}
2
S “

ż

#

8
ÿ

l,m“1

Epξtjlξpt`hqkmqϕjlpuqϕkmpvq

+2

dudv

“

8
ÿ

l,m“1

Epξtjlξpt`hqkmq
2

ď

8
ÿ

l,m“1

Epξ2tjlqEpξ2pt`hqkmq ď ω2
0.

This implies that }Σh}2F “
ř

j,k }Σh,jk}
2
S ď p2ω2

0. By the similar arguments, we have

}ΣXM
h,jk ´ ΣX

h,jk}
2
S “

ż

#

8
ÿ

l,m“M`1

Epξtjlξpt`hqkmqϕjlpuqϕkmpvq

+2

dudv

“

8
ÿ

l,m“M`1

Epξtjlξpt`hqkmq
2

ď

8
ÿ

l,m“M`1

Epξ2tjlqEpξ2pt`hqkmq.

Since
ř8

l“0 Epξ2tjlq ď ω0 ă 8, the above goes to zero when M Ñ 8, completing the

proof of (1.56).

Provided that Xtjp¨q “
ř8

l“1 ξtjlϕjlp¨q, orthonormality of tϕjlu and Jensen’s inequal-

ity, we have

Ep}Xt}q “ E

$

&

%

g

f

f

e

p
ÿ

j“1

ż

X2
tjpuqdu

,

.

-

ď

g

f

f

e

p
ÿ

j“1

E
"
ż

X2
tjpuqdu

*

ď

g

f

f

e

p
ÿ

j“1

8
ÿ

l“0

Epξ2tjlq ď
?
pω0.

Similarly, we obtain that Ep}Xt}
2q “ E

!

řp
j“1

∫

X2
tjpuqdu

)

“
ř

j

ř

l Epξ2tjlq ď pω0.

˝
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Lemma 1.14. For process tXtp¨qutPZ and tYtp¨qutPZ, we have that

}ΣX,Y
h,jk}S ď

b

ωX0 ω
Y
0 ,

and

}xΣX,Y
h,jk , ϕkmy} ď

b

ωX0 ω
Y
km and }xΣX,Y

h,jk , ψjly} ď

b

ωXjlω
Y
0 .

Proof. This lemma can be proved in similar way to Lemma 8 of Guo and Qiao

(2022) and hence the proof is omitted here. ˝

1.C Proofs of theoretical results in Section 1.3

We present the proof of Theorem 1.4 in Appendix 1.C.1 and proofs of Proposi-

tions 1.4–1.7 in Appendix 1.C.2, followed by the supporting technical lemmas and

their proofs in Appendix 1.C.3. For a matrix A P Rpˆq, we denote its elementwise

maximum norm by }A}max “ maxi,j |Aij|. To simplify our notation, for a square-

block matrix B “ pBjkq1ďjďp1,1ďkďp2 P Rp1qˆp2q with the pj, kq-th block Bjk P Rqˆq,

we use }B}
pqq
max and }B}

pqq

1 to denote its block versions of elementwise ℓ8 and matrix

ℓ1 norms.

1.C.1 Proof of Theorem 1.4

Denote the minimizer of (1.25) by pB P RpL`1qpq1ˆq2 . Then

1

2pn ´ Lq
}pU ´ pZpD´1

pB}
2
F ` λn}pB}

pq1,q2q

1 ď
1

2pn ´ Lq
}pU ´ pZpD´1B}

2
F ` λn}B}

pq1,q2q

1

Let ∆ “ pB ´ B and Sc be the complement of S in the set t0, . . . , Lu ˆ t1, . . . , pu,

For matrices A,B P Rp1ˆp2 , we let xxA,Byy “ tracepATBq. Then we write

1

2
xx∆, pΓ∆yy

ď
1

n ´ L
xx∆, pD´1

pZT
ppU ´ pZpD´1Bqyy ` λnp}B}

pq1,q2q

1 ´ }B ` ∆}
pq1,q2q

1 q

ď
1

n ´ L
xx∆, pD´1

pZT
ppU ´ pZpD´1Bqyy ` λnp}∆S}

pq1,q2q

1 ´ }∆Sc}
pq1,q2q

1 q,
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where pΓ “ pn ´ Lq´1
pD´1

pZT
pZpD´1. By Proposition 1.7 and λn ě 2C0sq

1{2
1 ppMX

1 `

Mϵq _ MY
1 qtpq

α1`3{2
1 _ q

α2`3{2
2 q

b

logppq1q2q

n
` q

´κ`1{2
1 u, we have

1

n ´ L
|xx∆, pD´1

pZT
ppU ´ pZpD´1Bqyy|

ď
1

n ´ L
}pD´1

pZT
ppU ´ pZpD´1Bq}

pq1,q2q
max }∆}

pq1,q2q

1

ď
λn
2

p}∆S}
pq1,q2q

1 ` }∆Sc}
pq1,q2q

1 q.

This implies that

0 ď
1

2
xx∆, pΓ∆yy ď

3λn
2

}∆S}
pq1,q2q

1 ´
λn
2

}∆Sc}
pq1,q2q

1 ď
3

2
λn}∆}

pq1,q2q

1 .

Therefore }∆}
pq1,q2q

1 ď 4}∆S}
pq1,q2q

1 ď 4
?
s}∆}F. By Proposition 1.4 and τ2 ě 32τ1q1q2s,

we obtain

xx∆, pΓ∆yy ě τ2}∆}
2
F ´ τ1q1q2t}∆}

pq1,q2q

1 u
2

ě pτ2 ´ 16τ1q1q2sq}∆}
2
F ě

τ2
2

}∆}
2
F.

Therefore,

τ2
4

}∆}
2
F ď

3

2
λn}∆}

pq1,q2q

1 ď 6λns
1{2

}∆}F,

which implies that

}∆}F ď
24s1{2λn

τ2
and }∆}

pq1,q2q

1 ď
96sλn
τ2

. (1.57)

Here, we aim to prove the upper bound of }pβ ´ β}1. For each ph, jq P S we have,

pβhj ´ βhj “ pψjpuq
T
pΨhj

pϕpvq ´ψjpuq
TΨhjϕpvq ` Rhjpu, vq

“ ppψjpuq ´ψjpuqq
T
pΨhj

pϕpvq `ψjpuq
T
pΨhjp

pϕpvq ´ ϕpvqq

`ψjpuq
T
ppΨhj ´ Ψhjqϕpvq ` Rhjpu, vq,

65



where Rhjpu, vq “ ´
ř8

l“q1`1

ř8

m“q2`1 ahjlmψjlpuqϕmpvq. Therefore,

}pβ ´ β}1 ď
ÿ

h,j

}ppψjpuq ´ψjpuqq
T
pΨhj

pϕpvq}S `
ÿ

h,j

}ψjpuq
T
pΨhjp

pϕpvq ´ ϕpvqq}S

`
ÿ

h,j

}ψjpuq
T
ppΨhj ´ Ψhjqϕpvq}S `

ÿ

h,j

}Rhjpu, vq}S .

(1.58)

Due to the orthonormality of tψjlp¨qu and tϕmp¨qu and the estimated eigenfunctions

t pψjlp¨qu and tpϕmp¨qu,

}ppψjpuq ´ψjpuqq
T
pΨhj

pϕpvq}S ď q
1{2
1 }pΨhj}F max

l
} pψjl ´ ψjl},

}ψjpuq
T
pΨhjp

pϕpvq ´ ϕpvqq}S ď q
1{2
2 }pΨhj}F max

m
}pϕm ´ ψm},

}ψjpuq
T
ppΨhj ´ Ψhjqϕpvq}S “ }pΨhj ´ Ψhj}F.

To bound the first three terms of (1.58), we start with the upper bound of
ř

h,j

}pΨhj ´

Ψhj}F “ }pΨ´Ψ}
pq1,q2q

1 and
ř

h,j

}pΨhj}F “ }pΨ}
pq1,q2q

1 . From Condition 1.6, for ph, jq P S,

}Ψhj}F “ t
řq1
l“1

řq2
m“1 µ

2
hjpl ` mq´2κ´1u1{2 ď tµ2

hj

∫ q2

1

∫ q1

1
px ` yq´2κ´1dxdyu1{2 “

Opµhjq. For ph, jq P Sc, Ψhj “ 0. Hence,

}Ψ}
pq1,q2q

1 “
ÿ

h,j

}Ψhj}F “ Opsq. (1.59)

By the definition of ωX0 , Condition 1.5 and Proposition 1.6, we have }D}max ď
a

ωX0 ,

}D´1}max ď α
1{2
1 c

´1{2
0 q

α1{2
1 and

}pD´1
´ D´1

}max ď α
1{2
1 c

´1{2
0 q

α1{2
1 CωMX

1

c

logppq1q

n
.
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Recall that pΨ ´ Ψ “ pD´1
pB ´ D´1B “ D´1ppB ´ Bq ` ppD´1 ´ D´1qpB. Then

}pΨ ´ Ψ}
pq1,q2q

1 ď }D´1
}max}pB ´ B}

pq1,q2q

1 ` }pD´1
´ D´1

}max}pB}
pq1,q2q

1

ď }D´1
}max}pB ´ B}

pq1,q2q

1 ` }pD´1
´ D´1

}max}pB ´ B}
pq1,q2q

1

`}pD´1
´ D´1

}max}B}
pq1,q2q

1

ď }D´1
}max}pB ´ B}

pq1,q2q

1 ` }pD´1
´ D´1

}max}pB ´ B}
pq1,q2q

1

`}pD´1
´ D´1

}max}D}max}Ψ}
pq1,q2q

1 .

This, together with (1.57) implies that,

}B}
pq1,q2q

1 “ Op

b

ωX0 sq, (1.60)

and

}pΨ ´ Ψ}
pq1,q2q

1 ď
96α

1{2
1 q

α1{2
1 sλn

c
1{2
0 τ2

t1 ` op1qu . (1.61)

Combining (1.59) and (1.61), we have

}pΨ}
pq1,q2q

1 “ Opsq.

To bound the fourth term of (1.58), }Rhj}S “ Op}
řq1
l“1

ř8

m“q2`1 ahjlmψjlϕm}S _

}
ř8

l“q1`1

řq2
m“1 ahjlmψjlϕm}Sq “ Opµhj minpq1, q2q

´κ`1{2q, for each ph, jq P S. For

ph, jq P Sc, }Rhj}S “ 0. Hence,
ř

h,j

}Rhj}S “ Opsminpq1, q2q´κ`1{2q.

Combining all the results with Proposition 1.6, we obtain

}pβ ´ β}1 ď }pΨ}
pq1,q2q

1

"

q
1{2
1 max

j,l
} pψjl ´ ψjl}S ` q

1{2
2 max

m
}pϕm ´ ϕm}S

*

` }pΨ ´ Ψ}
pq1,q2q

1 `
ÿ

h,j

}Rhj}S

ď
96α

1{2
1 q

α1{2
1 sλn

c
1{2
0 τ2

t1 ` op1qu ,

which completes the proof. ˝
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1.C.2 Proofs of propositions

Proof of Proposition 1.4 Define Γ “ pn ´ Lq´1D´1EtZTZuD´1. Note that

θT
pΓθ “ θTΓθ ` θT

ppΓ ´ Γqθ. Hence we have

θT
pΓθ ě θTΓθ ´ }pΓ ´ Γ}max}θ}

2
1.

By Condition 1.7, ωminpΓq ě µ, where ωminpΓq denotes the minimum eigenvalue of

Γ. This, together with Lemma 1.16, completes our proof. ˝

Proof of Proposition 1.6 This proposition can be proved in similar way to

Proposition 3 of Guo and Qiao (2022) and hence the proof is omitted here. ˝

Proof of Proposition 1.7 Notice that pU “ ZD´1B̃ ` pR ` pE, where rB “ DrΨ

and tph ` 1qju-th row block of rΨ, rΨhj “
∫

V

∫

U ψjpuqβhjpu, vqpϕpvqTdudv. The ma-

trix pR and pE are both pn ´ Lq ˆ q2 matrices whose row vectors are formed by

tprt “ pprt1, . . . , prtq2qTunL`1 and tpϵt “ ppϵt1, . . . ,pϵtq2qTunL`1 respectively, where prtm “
řL
h“0

řp
j“1

ř8

l“q1`1xxψjl, βhjy, pϕmyζtjl and pϵtm “ xϵt, pϕmy. Then we rewrite

1

n ´ L
pD´1

pZT
ppU ´ pZpD´1Bq

“
1

n ´ L
pD´1

pZT
pZD´1B̃ ´ pZpD´1Bq `

1

n ´ L
pD´1

pZT
pR `

1

n ´ L
pD´1

pZT
pE

“ I1 ` I2 ` I3.

Next, we show the deviation bounds of the above three parts.

}I1}
pq1,q2q
max

“}
1

n ´ L
pD´1

pZT
pZD´1

´ pZpD´1
qB}

pq1,q2q
max ` }

1

n ´ L
pD´1

pZTZD´1
pB̃ ´ Bq}

pq1,q2q
max

ď}
1

n ´ L
pD´1

pZT
pZD´1

´ pZpD´1
q}

pq1q
max}B}

pq1,q2q

1

` }
1

n ´ L
pD´1

pZTZD´1
}

pq1q
max}B̃ ´ B}

pq1,q2q

1

ď}
1

n ´ L
pD´1

pZT
pZD´1

´ pZpD´1
q}

pq1q
max}B}

pq1,q2q

1 ` }pΓ}
pq1q
max}B̃ ´ B}

pq1,q2q

1

` }
1

n ´ L
pD´1

pZT
pZD´1

´ pZpD´1
q}

pq1q
max}B̃ ´ B}

pq1,q2q

1 ,
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where pΓ “ pn ´ Lq´1
pD´1

pZT
pZpD´1. By Lemmas 1.15, 1.17, 1.18 and (1.60) in Ap-

pendix 1.C.1, there exist some positive constants C˚
1 , c

˚
1 and c˚

2 such that

}I1}
pq1,q2q
max ď C˚

1 sq
1{2
1 pMX

1 q
α1`3{2
1 _ MY

1 q
α2`3{2
2 q

c

logppq1 _ q2q

n
(1.62)

with probability greater than 1 ´ c˚
1ppq1 _ q2q

´c˚
2 .

By Lemma 1.19, we obtain that there exist some positive constants C˚
2 , c

˚
1 and c˚

2

such that

}I2}
pq1,q2q
max ď C˚

2 sq
´κ`1
1

(1.63)

with probability greater than 1 ´ c˚
1ppq1q2q´c˚

2 .

Let Q “ ppn ´ Lq´1UTUq1{2 “ diagptωY1 u1{2, . . . , tωYq u1{2q. It follows from Proposi-

tion 1.2 and }Q}F ď
a

ωY0 that there exist some positive constants C˚
3 , c

˚
1 and c˚

2

such that

}I3}
pq1,q2q
max ď q

1{2
1 }pD´1D}max}pn ´ Lq

´1D´1
pZT

pEQ´1
}max}Q}F

ď C˚
3 q

1{2
1 pMX

1 ` Mϵ
qpqα1

1 _ qα2
2 q

c

logppq1q2q

n

(1.64)

with probability greater than 1 ´ c˚
1ppq1q2q´c˚

2 .

It follows from (1.62)–(1.64) that there exist some positive constants C0, c
˚
1 and c˚

2

such that

1

n´ L
}pD´1

pZTppU ´ pZpD´1Bq}pq1,q2q
max

ď C0sq
1{2
1

`

pMX
1 ` Mϵq _ MY

1

˘

#

´

q
α1`3{2
1 _ q

α2`3{2
2

¯

c

logppq1q2q

n
` q

´κ`1{2
1

+

with probability greater than 1 ´ c˚
1ppq1q2q´c˚

2 , which completes the proof. ˝

1.C.3 Technical lemmas and their proofs

Lemma 1.15. }pΓ}
pq1q
max “ Opq

1{2
1 q.
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Proof. For a semi-positive definite block matrix

A “

¨

˚

˝

L X

XT M

˛

‹

‚

,

we have that }X}2F ď }L}F}M}F. This can be seen as a special case of p “ 1 in

Theorem 4.2 of Horn and Mathias (1990). Without loss of generality, we take L “ 0

as an example. Let pΓjk “ ppΓjl,kmq1ďl,mďq1 . Then for j “ k, by the diagonal struc-

ture of pΓjj, we have }pΓjj}F “ Opq
1{2
1 q. Applying the above inequality, we obtain

}pΓjk}F ď

b

}pΓjj}F}pΓkk}F “ Opq
1{2
1 q. ˝

Lemma 1.16. Suppose that Conditions 1.1–1.5 hold. Then there exist some positive

constants CΓ, c
˚
1 and c˚

2 such that

›

›pΓ ´ Γ
›

›

max
ď CΓMX

1 q
α1`1
1

c

logppq1q

n

with probability greater than 1 ´ c˚
1ppq1q

´c˚
2 .

Proof. The proof follows from Lemma 5 in Guo and Qiao (2022). ˝

Lemma 1.17. Suppose that Conditions 1.1–1.5 hold. Then there exist some positive

constants C̃Γ, c
˚
1 and c˚

2 such that

}
1

n ´ L
pD´1

pZT
pZD´1

´ pZpD´1
q}max ď C̃ΓMX

1 q
α1`1
1

c

logppq1q

n

with probability greater than 1 ´ c˚
1ppq1q

´c˚
2 .

Proof. We first consider } 1
n´L

pD´1
pZTZD´1´Γ}max. By Lemma 1.26, Proposition 1.6
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and following the similar argument in the proof of Lemma 1.27, we obtain that

max
j,k,l,m

pn ´ Lq´1
řn
t“L`1

pζpt´hqjlζtkm
b

pωXjlω
X
km

´
Epζpt´hqjlζtkmq
b

ωXjlω
X
km

À max
j,k,l,m

x pψjl, xpΣ
X
h,jk, ϕkmyy ´ xψjl, xΣX

h,jk, ϕkmyy
b

ωXjlω
X
km

À max
j,k,l,m

x pψjl ´ ψjl, xΣX
h,jk, ϕkmyy ` x pψjl, xpΣ

X
h,jk ´ ΣX

h,jk, ϕkmyy
b

ωXjlω
X
km

À MX
1 q

α1`1
1

c

logppq1q

n

holds with probability greater than 1 ´ c˚
1ppq1q

´c˚
2 . This, together with Lemma 1.16,

shows that

}
1

n ´ L
pD´1

pZT
pZD´1

´ pZpD´1
q}max

ď }
1

n ´ L
pD´1

pZTZD´1
´ Γ}max ` }pΓ ´ Γ}max

“ OP tMX
1 q

α1`1
1

c

logppq1q

n
u.

˝

Lemma 1.18. Suppose that Conditions 1.1–1.6 hold. Then there exist some positive

constants CB, c
˚
1 and c˚

2 such that

}rB ´ B}
pq1,q2q

1 ď CBsMY
1 q

α2`3{2
2

c

logpq2q

n

with probability greater than 1 ´ c˚
1pq2q´c˚

2 .

Proof. We start with the convergence rate of }rΨ ´ Ψ}
pq1,q2q

1 . Elementwisely, for

fixed h, j and l “ 1, . . . , q1,m “ 1, . . . , q2, we have that

xxψjl, βhjy, pϕmy ´ xxψjl, βhjy, ϕmy “ xxψjl, βhjy, pϕm ´ ϕmy “ I1
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Recall that βhj “
ř8

l,m“1 ahjlmψjlpuqϕmpvq and |ahjlm| ď uhjpl ` mq´κ´1{2.

I1 “ xxψjl,
8
ÿ

l1,m1“1

ahjl1m1ψjl1ϕm1y, pϕm ´ ϕmy “

8
ÿ

m1“1

ahjlm1xϕm1 , pϕm ´ ϕmy

À }pϕm ´ ϕm}uhjl
´κ`1{2.

It follows from Lemma 1.25, for ph, jq P S,

}rΨhj ´ Ψhj}F “

g

f

f

e

q1
ÿ

l“1

q2
ÿ

m“1

I21 À uhjq
1{2
2 max

1ďmďq2
}pϕm ´ ϕm}

“ OP

#

uhjMY
1 q

α2`3{2
2

c

logpq2q

n

+

.

Then }rΨ ´ Ψ}
pq1,q2q

1 “
řL
h“0

řp
j“1 }rΨhj ´ Ψhj}F “ OP

"

sMY
1 q

α2`3{2
2

b

logpq2q

n

*

. This

result, together with }D}max ď tωX0 u1{2, implies that there exists CB such that

}B̃ ´ B}
pq1,q2q

1 “ }DprΨ ´ Ψq}
pq1,q2q

1 ď }D}max}rΨ ´ Ψ}
pq1,q2q

1

ď CBsMY
1 q

α2`3{2
2

c

logpq2q

n
,

with probability greater than 1 ´ c˚
1pq2q

´c˚
2 . ˝

Lemma 1.19. Suppose that Conditions 1.1–1.6 hold. Then there exist some positive

constants CR, c
˚
1 and c˚

2 such that

}pn ´ Lq
´1

pD´1
pZT

pR}
pq1,q2q
max ď CRsq

´κ`1
1

with probability greater than 1 ´ c˚
1ppq1q2q

´c˚
2 .

Proof. Recall that we have prtm “
řL
h“0

řp
j“1

ř8

l“q1`1xxψjl, βhjy, pϕmyζtjl “
řL
h“0

řp
j“1 r̃tmhj.

The matrix pR are pn ´ Lq ˆ q2 matrices whose row vectors are formed by tprt “

pprt1, . . . , prtq2qT, t “ L ` 1, . . . , nu. By Cauchy-Schwarz inequality and the definition
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of pωXjl , we obtain

pn ´ Lq´1
řn
t“L`1

pζpt´hqjl

řL
h“0

řp
j1“1 r̃tmhj1

tpωXjl u
1{2

ď

L
ÿ

h“0

p
ÿ

j1“1

g

f

f

epn ´ Lq´1

n
ÿ

t“L`1

r̃2tmhj1

“

L
ÿ

h“0

p
ÿ

j1“1

g

f

f

eEpr̃2tmhj1q ` pn ´ Lq´1

n
ÿ

t“L`1

tr̃2tmhj1 ´ Epr̃2tmhj1qu

“

L
ÿ

h“0

p
ÿ

j1“1

a

I1,tmhj1 ` I2,tmhj1 .

Recall that Covpζtjl, ζtjl1q “ ωXjl Ipl “ l1q, βhjpu, vq “
ř8

l,m“1 ahjlmψjlpuqϕmpvq and

|ahjlm| ď uhjpl ` mq´κ´1{2. Then for ph, j1q P S,

I1,tmhj1 “ E

»

–

˜

8
ÿ

l1“q1`1

xψj1l1 , xβhj1 , pϕmyyζtj1l1

¸2
fi

fl “

8
ÿ

l1“q1`1

xψj1l1 , xβhj1 , pϕmyy
2ωj1l1

À

8
ÿ

l1“q1`1

xψj1l1 , x
8
ÿ

l2,m2“1

ahj1l2m2ψj1l2ϕm2y, ϕm ` ppϕm ´ ϕmqyy
2

À

8
ÿ

l1“q1`1

a2hj1l1m ` }pϕm ´ ϕm}
2

8
ÿ

l1“q1`1

˜

8
ÿ

m2“1

ahj1l1m2

¸2

À u2hj1pq1 ` mq
´2κ

` u2hj1}pϕm ´ ϕm}
2q´2κ`2

1 .

To provide the upper bound of I2,tmhj1 , we start with

řn
t“L`1rζtj1l1ζtj1l2 ´ Epζtj1l1ζtj1l2qs

n ´ L

“ xψj1l1 , xpΣ
X
0,j1j1 ´ ΣX

0,j1j1 , ψj1l2yy ď }pΣX
0,j1j1 ´ ΣX

0,j1j1}S “ OP tMX
1 n

´1{2
u.

Combining this result with Lemmas 1.24 and 1.25 and following the similar argument
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in the proof of the upper bound of I1,tmhj1 , we obtain that, for ph, j1q P S,

I2,tmhj1

“

8
ÿ

l1,l2“q1`1

xψj1l1 , xβhj1 , pϕmyyxψj1l2 , xβhj1 , pϕmyy

řn
t“L`1rζtj1l1ζtj1l2 ´ Epζtj1l1ζtj1l2qs

n´ L

ď }pΣX0,j1j1 ´ ΣX0,j1j1}S

$

&

%

8
ÿ

l1“q1`1

xψj1l1 , xβhj1 , pϕmyy

,

.

-

2

“ oP pI1,tmhj1q.

Then

}
1

n
pD´1

pZT
pR}

pq1,q2q
max À s max

1ďjďp

g

f

f

e

q1
ÿ

l“1

q2
ÿ

m“1

tpq1 ` mq´2κ ` }pϕm ´ ϕm}2q´2κ`2
1 u

À s max
1ďjďp

c

q´2κ`2
1 ` q´2κ`3

1 q2 max
1ďmďq2

}pϕm ´ ϕm}2

“ OP tsq´κ`1
1 u.

(1.65)

˝

1.D Proofs of theoretical results in Section 1.4

This section is organized in the same manner as Appendix 1.C. The proofs of The-

orem 1.5 and Propositions 1.5–1.9 are presented in Appendices 1.D.1 and 1.D.2, re-

spectively, followed by supporting technical lemmas and their proofs in Appendix 1.D.3.

1.D.1 Proof of Theorem 1.5

Here pB P Rpq and pγ P Rd are the minimizer of (1.30). Then

1

2n
}Y ´ pX pD´1

pB ´ Zpγ}
2

` λn1} pB}
pqq

1 ` λn2}pγ}1

ď
1

2n
}Y ´ pX pD´1B ´ Zγ}

2
` λn1}B}

pqq

1 ` λn2}γ}1.
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Letting ∆ “ pB´B, δ “ pγ´ γ, Sc1 be the complement of S1 in the set t1, . . . , pu and

Sc2 be the complement of S2 in the set t1, . . . , du , we have

1

2n
t∆T

pΩT
pΩ∆ ` 2∆T

pΩTZδ ` δTZTZδu

ď
1

n
p∆T

pΩT
` δTZT

qpY ´ pΩB ´ Zγq ` λn1p}B}
pqq

1 ´ }B ` ∆}
pqq

1 q

`λn2p}γ}1 ´ }γ ` δ}1q

ď
1

n
∆T

pΩT
pY ´ pΩB ´ Zγq `

1

n
δTZT

pY ´ pΩB ´ Zγq

`λn1p}∆S1}
pqq

1 ´ }∆Sc
1
}

pqq

1 q ` λn2p}δS2}1 ´ }δSc
2
}1q,

where pΩ “ pX pD´1. By Propositions 1.8, 1.9 and the choice of λn — λn1 — λn2 ě

2C˚
0 s1pMX,Z ` Mϵqrqα`2tlogppq ` dq{nu1{2 ` q´κ`1s, we obtain that

1

n
∆T

pΩT
pY ´ pΩB ´ Zγq ď

1

n
}∆}

pqq

1 }pΩT
pY ´ pΩB ´ Zγq}

pqq
max

ď
λn
2

p}∆S1}
pqq

1 ` }∆Sc
1
}

pqq

1 q,

1

n
δTZT

pY ´ pΩB ´ Zγq ď
1

n
}δ}1}ZT

pY ´ pΩB ´ Zγq}max

ď
λn
2

p}δS2}1 ` }δSc
2
}1q.

Combining the above results, we have

0 ď
3

2
p}∆S1}

pqq

1 ` }δS2}1q ´
1

2
p }∆Sc

1
}

pqq

1 ` }δSc
2
}1q.

This ensures }∆Sc
1
}

pqq

1 ` }δSc
2
}1 ď 3p}∆S1}

pqq

1 ` }δS2}1q. Then we have that

}∆}
pqq

1 ` }δ}1 ď 4p}∆S1}
pqq

1 ` }δS2}1q ď 4p
?
s1}∆} `

?
s2}δ}q ď 4

?
s1 ` s2p}∆} ` }δ}q.
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This, together with Proposition 1.5, }∆}1 ď
?
q}∆}

pqq

1 and τ˚
2 ě 64τ˚

1 qps1 ` s2q

implies

1

n
t∆T

pΩT
pΩ∆ ` 2∆T

pΩTZδ ` δTZTZδu

ěτ˚
2 p}∆}

2
` }δ}2q ´ τ˚

1 p
?
q}∆}

pqq

1 ` }δ}1q
2

ě
τ˚
2

2
p}∆} ` }δ}q

2
´ τ˚

1 qp}∆}
pqq

1 ` }δ}1q
2

ět
τ˚
2

2
´ 16τ˚

1 qps1 ` s2qup}∆} ` }δ}q
2

ě
τ˚
2

4
p}∆} ` }δ}q

2.

This implies

τ˚
2

8
p}∆} ` }δ}q

2
ď

3λn
2

p}∆}
pqq

1 ` }δ}1q ď 6λn
?
s1 ` s2p}∆} ` }δ}q.

Therefore, we obtain that

}∆} ` }δ} À
λn

?
s1 ` s2
τ˚
2

,

}∆}
pqq

1 ` }δ}1 À
λnps1 ` s2q

τ˚
2

.

Provided that }D´1}max ď α1{2c
´1{2
0 qα{2, the rest can be proved in a similar way to

the proof of Theorem 1.4, which shows

}pB ´ B}1 ` qα{2
}pγ ´ γ}1 ď }pΨ ´ Ψ}

pqq

1 ` qα{2
}pγ ´ γ}1 ` op1q

ď }D´1
}max} pB ´ B}1 ` qα{2

}pγ ´ γ}1 ` op1q

À
qα{2λnps1 ` s2q

τ˚
2

t1 ` op1qu .

˝
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1.D.2 Proofs of propositions

Proof of Proposition 1.5 By Lemmas 1.16, 1.20 and 1.28, we obtain

›

›

›

1

n
STS ´

1

n
EtSTSu

›

›

›

max

“ max

ˆ

›

›

›

1

n
ZTZ ´

1

n
EtZTZu

›

›

›

max
,
›

›

›

1

n
ZT

pΩ ´
1

n
EtZTΩu

›

›

›

max
, }pΓ ´ Γ}max

˙

“ OP

#

max

˜

MZ
1

c

logpdq

n
,MX

1 q
α`1

c

logppqq

n
,MX,Zq

α`1

c

logppqdq

n

¸+

“ OP

#

MX,Zq
α`1

c

logppq ` dq

n

+

.

Combining this with Condition 1.9 and following the similar argument in the proof

of Proposition 1.4 implies Proposition 1.5. ˝

Proof of Proposition 1.8 Notice that

1

n
pΩT

pY ´ pΩB ´ Zγq “
1

n
pΩT

ppΩ ´ pΩqB ` R ` Eq

where pΩ “ pX pD´1, B “ DΨ and j-th row of Ψ takes the form that Ψj “
∫

U ψjpuqβjpuqdu.

Recall that rt “
řp
j“1

ř8

l“q`1 ζtjlxψjl, βjy. Then it follows from Lemma 1.17 when

L “ 0 that there exist some positive constants C˚
11, c

˚
1 and c˚

2 such that

›

›

›

1

n
pΩT

pΩ ´ pΩqB
›

›

›

pqq

max
ď

›

›

›

1

n
pΩT

pΩ ´ pΩq

›

›

›

pqq

max
}B}

pqq

1

ď C˚
11s1MX

1 q
α`2

c

logppqq

n
,

with probability greater than 1 ´ c˚
1ppqq´c˚

2 .

Second, it follows from Lemma 1.22 that there exist some positive constants C˚
12, c

˚
1

and c˚
2 such that

›

›

›

1

n
pΩTR

›

›

›

pqq

max
ď C˚

12s1q
´κ`1,

with probability greater than 1 ´ c˚
1ppqq´c˚

2 .

Third, it follows from Proposition 1.3 that there exist some positive constants C˚
13, c

˚
1
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and c˚
2 such that

›

›

›

1

n
pΩTE

›

›

›

pqq

max
“

›

›

›

1

n
pD´1DD´1

pX TE
›

›

›

pqq

max
ď C˚

13tMX
1 ` Mϵ

uq1{2

c

logppqq

n
,

with probability greater than 1 ´ c˚
1ppqq´c˚

2 .

Combining the above results, we obtain that there exist some positive constants

C01, c
˚
1 and c˚

2 such that

1

n
}pΩT

pY ´ pΩB ´ Zγq}
pqq
max ď C01s1pMX

1 ` Mϵ
q

#

qα`2

c

logppqq

n
` q´κ`1

+

with probability greater than 1 ´ c˚
1ppqq´c˚

2 . ˝

Proof of Proposition 1.9 Notice that

1

n
ZT

pY ´ pΩB ´ Zγq “
1

n
ZT

ppΩ ´ pΩqB ` R ` Eq.

First, we show the deviation bound of 1
n
ZTpΩ ´ pΩqB. It follows from Lemma 1.21

and the fact that }Ψj}1 “
řq
j“1 ujl

´κ “ Opujq, for j P S1, that there exist some

positive constants C˚
21, c

˚
1 and c˚

2 such that

›

›

›

1

n
ZT

pΩ ´ pΩqB
›

›

›

max
ď

›

›

›

1

n
ZT

pΩ ´ pΩq

›

›

›

max
}B}1

ď

›

›

›

1

n
ZT

pΩ ´ pΩq

›

›

›

max
}D}max}Ψ}1

ď C˚
21s1MX,Zq

α`1

c

logppqdq

n
,

with probability greater than 1 ´ c˚
1ppqdq´c˚

2 .

Second, it follows from Lemma 1.23 that there exist some positive constants C˚
22, c

˚
1

and c˚
2 such that

›

›

›

1

n
ZTR

›

›

›

max
ď C˚

22s1q
´κ`1{2,

with probability greater than 1 ´ c˚
1ppqdq´c˚

2 .

Third, it follows from Lemma 1.28 that there exist some positive constants C˚
23, c

˚
1

and c˚
2 such that

›

›

›

1

n
ZTE

›

›

›

max
ď C˚

23tMZ
1 ` Mϵ

u

c

logpdq

n
,
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with probability greater than 1 ´ c˚
1pdq´c˚

2 .

Combining the above results, we obtain that there exist some positive constants

C02, c
˚
1 and c˚

2 such that

1

n
}ZT

pY ´ pΩB ´ Zγq}max ď C02s1tMX,Z ` Mϵ
qu

#

qα`1

c

logppq ` dq

n
` q´κ`1{2

+

with probability greater than 1 ´ c˚
1ppq ` dq´c˚

2 . ˝

1.D.3 Technical lemmas and their proofs

Lemma 1.20. Suppose that Conditions 1.1–1.5 hold. Then there exist some positive

constants rC1,ZΓ, c
˚
1 and c˚

2 such that

›

›

›

1

n
ZT

pΩ ´
1

n
EtZTΩu

›

›

›

max
ď rC1,ZΓMX,Zq

α`1

c

logppqdq

n

with probability greater than 1 ´ c˚
1ppqdq´c˚

2 .

Proof. Note that

›

›

›

1

n
ZT

pΩ ´
1

n
EtZTΩu

›

›

›

max
“ max

1ďjďp,1ďkďd
1ďlďq

ˇ

ˇ

ˇ
tpωXjl u

´1{2
pϱX,Zh,jkl ´ tωXjl u

´1{2ϱX,Zh,jkl

ˇ

ˇ

ˇ
.

Let psjkl “
␣

ωXjl {pω
X
jl

(1{2
, then we obtain that

tpωXjl u
´1{2

pϱX,Zh,jkl ´ tωXjl u
´1{2ϱX,Zh,jkl

“psjkl
pϱX,Zh,jkl ´ ϱX,Zh,jkl

tωXjl u
1{2

`
tωXjl u

1{2 ´ tpωXjl u
1{2

tpωXjl u
1{2

ϱX,Zh,jkl

tωXjl u
1{2
.

It follows Propositions 1.1, 1.6 and the fact EpζtjlZtkq ď σZk tωXjl u
1{2 that there exist

some positive constants rC1,ZΓ, c
˚
1 and c˚

2 such that

›

›

›

1

n
ZT

pΩ ´
1

n
EtZTΩu

›

›

›

max
ď rC1,ZΓMX,Zq

α`1

c

logppqdq

n

with probability greater than 1 ´ c˚
1ppqdq´c˚

2 . ˝
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Lemma 1.21. Suppose that Conditions 1.1–1.5 hold. Then there exist some positive

constants rC2,ZΓ, c
˚
1 and c˚

2 such that

›

›

›

1

n
ZT

pΩ ´ pΩq

›

›

›

max
ď rC2,ZΓMX,Zq

α`1

c

logppqdq

n

with probability greater than 1 ´ c˚
1ppqdq´c˚

2 .

Proof. We first consider } 1
n
ZTΩ ´ 1

n
EtZTΩu}max. By (1.42) in Appendix 1.B.2, we

obtain that

max
j,k,m

pn ´ Lq´1
řn
t“L`1 Zpt´hqjζtkm
a

ωXkm
´

EpZpt´hqjζtkmq
a

ωXkm

“ max
j,k,m

xpΣZ,X
h,jk, ψkmy ´ xΣZ,X

h,jk, ψkmy
a

ωXkm
“ OP tMX,Z

c

logppqdq

n
u.

This, together with Lemma 1.20, implies that

›

›

›

1

n
ZT

pΩ ´ pΩq

›

›

›

max
ď

›

›

›

1

n
ZTΩ ´

1

n
EtZTΩu

›

›

›

max
`

›

›

›

1

n
ZT

pΩ ´
1

n
EtZTΩu

›

›

›

max

“ OP

#

MX,Zq
α`1

c

logppqdq

n

+

.

˝

Lemma 1.22. Suppose that Conditions 1.1–1.5 and 1.8 hold. Then there exist some

positive constants CR1, c
˚
1 and c˚

2 such that

}n´1
pΩTR}

pqq
max ď CR1s1q

´κ`1

with probability greater than 1 ´ c˚
1ppqq´c˚

2 .

Proof. This lemma can be proved in a similar way to Lemma 1.19 and hence the

proof is omitted here. ˝

Lemma 1.23. Suppose that Conditions 1.1–1.5 and 1.8 hold. Then there exist some

positive constants CR2, c
˚
1 and c˚

2 such that

}n´1ZTR}max ď CR2s1q
´κ`1{2
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with probability greater than 1 ´ c˚
1ppqdq´c˚

2 .

Proof. This lemma can be proved in a similar way to Lemma 1.19 and hence the

proof is omitted here. ˝

1.E Existing results for sub-Gaussian (functional)

linear processes

For ease of reference, we present some useful existing results in Guo and Qiao (2022),

including non-asymptotic error bounds on estimated covariance matrix function,

estimated eigenpairs and estimated (auto)covariance between estimated FPC scores.

By Theorem 1.1, we can easily extend these results from Gaussian functional time

series to accommodate sub-Gaussian functional linear processes in Lemmas 1.24–

1.27. Moreover, we also present non-asymptotic error bounds on estimated (cross-

)covariance matrix in Basu and Michailidis (2015) to accommodate sub-Gaussian

linear processes in Lemma 1.28.

Lemma 1.24. Suppose that Conditions 1.1, 1.3 and 1.4 hold for sub-Gaussian linear

process tXtp¨qutPZ. Then there exists some universal constant c̃1 ą 0 such that for

any η ą 0 and each j, k “ 1, . . . , p,

P
!

}pΣX
0,jk ´ ΣX

0,jk}S ą 2ωX0 MX
1 η

)

ď 4 expt´c̃1nminpη2, ηqu.

Proof. This lemma follows directly from Theorem 1.1 and Theorem 2 of Guo and

Qiao (2022) and hence the proof is omitted here. ˝

Lemma 1.25. Suppose that Conditions 1.1, 1.3, 1.4 and 1.5 hold for sub-Gaussian

linear process tXtp¨qutPZ. Let M be a positive integer possibly depending on pn, pq.

If n Á logppMqM4α`2pMX
1 q2, then there exist some constants c̃2, c̃3 ą 0 such that,

with probability greater than 1 ´ c̃2ppMq´c̃3 , the estimates tpωXjl u and t pψjlu satisfy

max
1ďjďp,1ďlďM

#

ˇ

ˇ

ˇ

pωXjl ´ ωXjl
ωXjl

ˇ

ˇ

ˇ
`

›

›

›

pψjl ´ ψjl
lα`1

›

›

›

+

À MX
1

c

logppMq

n
. (1.66)

Proof. This lemma follows directly from Theorem 1.1 and Theorem 3 of Guo and

Qiao (2022) and hence the proof is omitted here. ˝
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Lemma 1.26. Suppose that conditions in Lemma 1.25 hold. Then there exists some

universal constant c̃4 ą 0 such that for each j “ 1, . . . , p, l “ 1, . . . , dj, any given

function g P H and η ą 0,

P
!ˇ

ˇ

ˇ

@

pψjl ´ ψjl, g
D

ˇ

ˇ

ˇ
ě ρ̃1}g

´jl
}ωMX

1 tωXjl u
1{2lα`1η ` ρ̃2}g}tMX

1 u
2l2pα`1qη2

)

ď 8 exp
!

´ c̃4nminpη2, ηq

)

` 4 exp
!

´ c̃4tMX
1 u

´2nl´2pα`1q
)

,

where gp¨q “
ř8

l“1 gjlψjlp¨q, }g´jl}ω “
`
ř

l1:l1‰lωjl1g
2
jl1

˘1{2
, ρ̃1 “ 2c´1

0 ωX0 and ρ̃2 “

4p6 ` 2
?

2qc´2
0 tωX0 u2 with c0 ď 4MX

1 ω
X
0 l

α`1.

Proof. This lemma follows directly from Theorem 1.1 and Lemma 3 of Guo and

Qiao (2022) and hence the proof is omitted here. ˝

Lemma 1.27. Suppose that conditions in Lemma 1.25 hold. Let M be a positive

integer possibly depending on pn, pq. If n Á logppMqM4α`2pMX
1 q2, then there exist

some constants c̃5, c̃6 ą 0 such that, with probability greater than 1 ´ c̃5ppMq´c̃6 , the

estimates tpσXh,jklmu satisfies

max
1ďj,kďp
1ďl,mďM

ˇ

ˇ

pσXh,jklm ´ σXh,jklm
ˇ

ˇ

pl _ mqα`1
b

ωXjlω
X
km

À MX
1

c

logppMq

n
. (1.67)

Proof. This lemma follows directly from Theorem 1.1 and Theorem 4 of Guo and

Qiao (2022) and hence the proof is omitted here. ˝

Lemma 1.28. (i)Suppose tZtu is from d-dimensional sub-Gaussian linear process

with absolute summable coefficients and bounded MZ . For any given vector ν P Rd
0

with }ν}0 ď k pk “ 1, . . . , dq, denote MpfZ ,νq “ 2π ¨ ess supθPr´π,πs ν
TfZν. Then

there exists some constants c, c̃16, c̃17 ą 0 such that for any η ą 0,

P
!ˇ

ˇ

ˇ
νT

ppΣ
Z

0 ´ ΣZ
0 qν

ˇ

ˇ

ˇ
ą MpfZ ,νqη

)

ď 2 exp
␣

´cnmin
`

η2, η
˘(

,

and

P

#
ˇ

ˇ

ˇ

ˇ

ˇ

νTppΣ
Z

0 ´ ΣZ
0 qν

νTΣZ
0 ν

ˇ

ˇ

ˇ

ˇ

ˇ

ą MZ
k η

+

ď 2 exp
␣

´cnmin
`

η2, η
˘(

.
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In particular, with probability greater than 1 ´ c̃16pdq´c̃17 ,

max
1ďj,kďd

|pΣZ
0,jk ´ ΣZ

0,jk| À MZ
1

c

logpdq

n
.

(ii)Suppose tϵtu is from sub-Gaussian linear process with absolute summable coeffi-

cients, bounded Mϵ and independent of tZtu. Then there exist some positive con-

stants c̃18, c̃19 such that with probability greater than 1 ´ c̃18pdq´c̃19 ,

max
1ďjďd

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“1

Ztjϵt{n

ˇ

ˇ

ˇ

ˇ

ˇ

À pMZ
1 ` Mϵ

q

c

logpdq

n
.

Proof. This lemma can be proved in similar way to Proposition 2.4 of Basu and

Michailidis (2015) and be extended to sub-Gaussian linear process setting following

the similar techniques used in the proof of Theorem 1.1. ˝

1.F Matrix representation of model (1.1)

It follows from the Karhunen-Loève expansion that model (1.1) can be rewritten as

8
ÿ

m“1

ξtmϕmpvq “

L
ÿ

h“0

p
ÿ

j“1

8
ÿ

l“1

xψjlpuq, βhjpu, vqyζpt´hqjl ` ϵtpvq,

This, together with orthonormality of {ϕmp¨qumě1, implies that

ξtm “

L
ÿ

h“0

p
ÿ

j“1

q1j
ÿ

l“1

xxψjlpuq, βhjpu, vqy, ϕmpvqyζpt´hqjl ` rtm ` ϵtm,

where rtm “
řL
h“0

řp
j“1

ř8

l“q1j`1xxψjlpuq, βhjpu, vqy, ϕmpvqyζpt´hqjl and ϵtm “ xϕm, ϵty

for m “ 1, . . . , q2, represent the approximation and random errors, respectively. Let

rt “ prt1, . . . , rtq2qT and ϵt “ pϵt1, . . . , ϵtq2qT. Let R and E be pn ´ Lq ˆ q2 matrices

whose row vectors are formed by trt, t “ L ` 1, . . . , nu and tϵt, t “ L ` 1, . . . , nu

respectively. Then (1.1) can be represented in the matrix form of (1.23).
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Chapter 2

Adaptive Functional Thresholding

for Sparse Covariance Function

Estimation in High Dimensions

2.1 Introduction

The covariance function estimation plays an important role in functional data anal-

ysis, while existing methods are restricted to data with a single or small num-

ber of random functions. Recent advances in technology have made multivari-

ate or even high-dimensional functional datasets increasingly common in various

applications: for example, time-course gene expression data in genomics (Storey

et al., 2005), air pollution data in environmental studies (Kong et al., 2016) and

different types of brain imaging data in neuroscience (Zhu et al., 2016; Li and

Solea, 2018). Under such scenario, suppose we observe n independent samples

Xip¨q “ tXi1p¨q, . . . , Xipp¨quT pi “ 1, . . . , nq defined on a compact interval U with

covariance function Σpu, vq “ tΣjkpu, vqupˆp “ CovtXipuq,Xipvqu1 for u, v P U ,
which can also been seen as a matrix of marginal- and cross-covariance functions.

Besides being of interest in itself, an estimation of Σp¨, ¨q is useful for numerous pro-

cedures including multivariate functional principal components analysis (Happ and

Greven, 2018), classification by functional linear discriminant analysis (Park et al.,

2022) and recovering functional graphical models (Qiao et al., 2019).

1To clarify, we reuse the symbols that are presented in the previous chapter and will redefine
the notation in Chapters 2 and 3, respectively.
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This chapter focuses on estimating Σ under high-dimensional scaling, where p can be

comparable to, or even larger than n. In this setting, the sample covariance function

pΣpu, vq “ tpΣjkpu, vqupˆp “
1

n ´ 1

n
ÿ

i“1

tXipuq ´ sXpuqutXipvq ´ sXpvqu
T, u, v P U ,

where sXp¨q “ n´1
řn
i“1Xip¨q, performs poorly, and some lower-dimensional struc-

tural assumptions need to be imposed to estimate Σpu, vq consistently. In contrast

to extensive work on estimating high-dimensional sparse covariance matrices, for

example, Bickel and Levina (2008); Rothman et al. (2009); Cai and Liu (2011);

Chen and Leng (2016); Avella-Medina et al. (2018) and Wang et al. (2021), re-

search on sparse covariance function estimation in high dimensions remains largely

unaddressed in literature.

In this chapter, we consider estimating sparse covariance functions via adaptive func-

tional thresholding. Note that the words “sparse” and “sparsity” are used to describe

the non-zero structure of the high-dimensional covariance function. To achieve this,

we introduce a new class of functional thresholding operators that combine func-

tional versions of thresholding and shrinkage based on the Hilbert–Schmidt norm of

functions, and develop an adaptive functional thresholding procedure on pΣp¨, ¨q using

entry-dependent functional thresholds that automatically adapt to the variability of
pΣjkp¨, ¨q’s. To provide theoretical guarantees of our method under high-dimensional

scaling, it is essential to develop standardized concentration results taking into ac-

count the variability adjustment. Compared with the adaptive thresholding for

non-functional data (Cai and Liu, 2011), the intrinsic infinite-dimensionality of each

Xijp¨q leads to a substantial rise in the complexity of sparsity modeling and theo-

retical analysis, as one needs to rely on some functional norm of standardized pΣjk’s,

for example, the Hilbert–Schmidt norm, to enforce the functional sparsity in pΣ

and tackle more technical challenges for standardized processes within an abstract

Hilbert space.

There are many applications of our proposed sparse covariance function estimation

method in neuroimaging analysis, where brain signals are measured over time at a

large number of regions of interest (ROIs) for individuals. Examples include the

brain-computer interface classification (Lotte et al., 2018) and the brain functional

connectivity identification (Rogers et al., 2007). Traditional neuroimaging analy-

sis models brain signals for each subject as multivariate random variables, where

each ROI is represented by a random variable, and hence the covariance/correlation

matrices of interest are estimated by treating the time-course data of each ROI as

repeated observations. However, due to the non-stationary and dynamic features of

85



signals (Chang and Glover, 2010), the strategy of averaging over time fails to char-

acterize the time-varying structure leading to the loss of information in the original

space. To overcome these drawbacks, we follow recent proposals to model signals

directly as multivariate random functions with each ROI represented by a random

function (Li and Solea, 2018; Qiao et al., 2019; Solea and Li, 2022; Hu and Yao,

2021). The identified functional sparsity pattern in our estimate of Σ can be used

to recover the functional connectivity network among different ROIs, which is illus-

trated using examples of functional magnetic resonance imaging (fMRI) datasets in

Section 2.5 and Section 2.C.2 of the Appendix.

This chapter makes useful contributions at multiple fronts. On the method side, it

generalizes the thresholding/sparsity concept in multivariate statistics to functional

settings and offers a novel adaptive functional thresholding proposal to handle the

heteroscedastic problem of the sparse covariance function estimation by incorpo-

rating variance effects of individual entries of the sample covariance function into

functional thresholding. Such procedure also provides an alternative of identify-

ing correlation-based functional connectivity with no need to specify the correla-

tion function, the estimation of which poses additional challenges as the inverses

of marginal-covariance functions are unbounded. On the theory side, we show that

adaptive functional thresholding estimators enjoy the convergence and support re-

covery properties under a high-dimensional regime. The proof relies on tools from

empirical process theory due to the infinite-dimensional nature of functional data

and some novel standardized concentration bounds in the Hilbert–Schmidt norm to

deal with issues of high-dimensionality and variance adjustment. Our theoretical

results and adopted techniques are general, and can be applied to other settings

in high-dimensional functional data analysis. Empirically, we demonstrate the uni-

form superiority of adaptive functional thresholding estimators over the universal

functional thresholding estimators via both simulation studies and the functional

connectivity analysis of two neuroimaging datasets.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce

a class of functional thresholding operators, based on which the adaptive functional

thresholding of the sample covariance function is proposed. Section 2.3 presents

convergence and support recovery analysis of the adaptive functional thresholding

estimator. In Sections 2.4 and 2.5, we examine the finite-sample performance of the

proposed method through simulations and the functional connectivity analysis of a

neuroimaging dataset, respectively. Section 2.6 concludes this chapter by discussing

three potential extensions. All technical proofs are relegated to the Appendix.
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2.2 Methodology

We begin by introducing some notation. Let L2pUq denotes a Hilbert space of

square integrable functions defined on U and S “ L2pUq b L2pUq, where b is the

Kronecker product. For any K P S, we denote its Hilbert–Schmidt norm by }K}S “

t
ş ş

Kpu, vq2dudvu1{2. With the aid of Hilbert–Schmidt norm, for any regularization

parameter λ ě 0, we first define a class of functional thresholding operators sλ : S Ñ

S that satisfy the following conditions:

(i) }sλpZq}S ď c}Y }S for all Z and Y P S that satisfy }Z ´ Y }S ď λ and some

c ą 0;

(ii) }sλpZq}S “ 0 for }Z}S ď λ;

(iii) }sλpZq ´ Z}S ď λ for all Z P S.

Our proposed functional thresholding operators can be viewed as the functional

generalization of thresholding operators (Cai and Liu, 2011). Instead of a simple

pointwise extension of such thresholding operators under functional domain, we

advocate a global thresholding rule based on the Hilbert–Schmidt norm of functions

that encourages the functional sparsity, in the sense that sλpZqpu, vq “ 0, for all

u, v P U , if }Z}S ď λ under condition (ii). Condition (iii) limits the amount of

(global) functional shrinkage in the Hilbert–Schmidt norm to be no more than λ.

Conditions (i)–(iii) are satisfied by functional versions of some commonly adopted

thresholding rules, which are introduced as solutions to the following penalized

quadratic loss problem with various penalties:

sλpZq “ arg min
θPS

"

1

2
}θ ´ Z}

2
S ` pλpθq

*

(2.1)

with pλpθq “ p̃λp}θ}Sq being a penalty function of }θ}S to enforce the functional

sparsity.

The soft functional thresholding rule results from solving (2.1) with an ℓ1{ℓ2 type

of penalty, pλpθq “ λ}θ}S , and takes the form of sSλpZq “ Zp1 ´ λ{}Z}Sq`, where

pxq` “ maxpx, 0q for x P R. This rule can be viewed as a functional generalization

of the group lasso solution under the multivariate setting (Yuan and Lin, 2006).

To solve (2.1) with an ℓ0{ℓ2 type of penalty, pλpθq “ 2´1λ2Ip}θ}S ‰ 0q, we obtain

hard functional threhsolding rule as ZIp}Z}S ě λq, where Ip¨q is an indicator func-

tion. As a comparison, soft functional thresholding corresponds to the maximum
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amount of functional shrinkage allowed by condition (iii), whereas no shrinkage re-

sults from hard functional thresholding. Taking the compromise between soft and

hard functional thresholding, we next propose functional versions of SCAD (Fan and

Li, 2001) and adaptive lasso (Zou, 2006) thresholding rules. With a SCAD penalty

(Fan and Li, 2001) operating on } ¨ }S instead of | ¨ | for the univariate scalar case,

SCAD functional thresholding sSCλ pZq is the same as soft functional thresholding if

}Z}S ă 2λ, and equals Ztpa ´ 1q ´ aλ{}Z}Su{pa ´ 2q for }Z}S P r2λ, aλs and Z if

}Z}S ą aλ, where a ą 2. Analogously, adaptive lasso functional thresholding rule is

sAL
λ pZq “ Zp1 ´ λη`1{}Z}

η`1
S q` with η ě 0.

Our proposed functional generalizations of soft, SCAD and adaptive lasso thresh-

olding rules can be checked to satisfy conditions (i)–(iii), see Appendix 2.B for

details. To present a unified theoretical analysis, we focus on functional threshold-

ing operators sλpZq satisfying conditions (i)–(iii). It is worth noting that, although

the hard functional thresholding does not satisfy condition (i), theoretical results

in Section 2.3 still hold for hard functional thresholding estimators under similar

conditions with corresponding proofs differing slightly.

In general, conditions (i)–(iii) are satisfied by a number of solutions to (2.1), where

the presence of }¨}S in both the loss and various penalty functions leads to functional

thresholding rules as functions of }Z}S . Such connection demonstrates the rational-

ity of imposing Hilbert–Schmidt-norm based conditions (i)–(iii). For examples of

functional data with some local spikes, one may suggest another class of functional

thresholding operators s̃λpZq satisfying three supremum-norm based conditions anal-

ogous to conditions (i)–(iii), where, for any K P S, we denote its supremum norm by

}K}8 “ supu,vPU |Kpu, vq|. In this case, s̃λpZq can not be directly derived as the so-

lution to (2.1) with pλpθq “ p̃λp}θ}8q. However, by substituting }¨}S in sSλpZq, sSCλ pZq

and sAL
λ pZq with } ¨ }8, the corresponding supremum-norm based functional thresh-

olding rules can be presented and checked to satisfy three conditions for s̃λpZq in

a similar fashion. To study theoretical properties analogous to Theorems 2.1 and

2.2 in Section 2.3, the main challenge is to establish concentration bounds on some

standardized processes in the supremum norm, where our tools and results in Ap-

pendix 2.A can be applied accordingly. In this regard, the } ¨ }S that we adopt in

sλpZq is not necessarily the unique choice, but serves as the building block for the

sparse covariance function estimation problem.

We now discuss our estimation procedure based on sλpZq.As the variance of pΣjkpu, vq

depends on the distribution of tXijpuq, Xikpvqu through higher-order moments, which

is intrinsically a heteroscedastic problem, it is more desirable to use entry-dependent

functional thresholds that automatically takes into account the variability of pΣjk’s.
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To achieve this, define the variance factors Θjkpu, vq “ Var
`

rXijpuq´EtXijpuqusrXikpvq´

EtXikpvqus
˘

with corresponding estimators

pΘjkpu, vq “
1

n

n
ÿ

i“1

”

␣

Xijpuq´ sXjpuq
(␣

Xikpvq´ sXkpvq
(

´pΣjkpu, vq

ı2

pj, k “ 1, . . . , pq.

Then the adaptive functional thresholding estimator pΣA “ tpΣA
jkp¨, ¨qupˆp is defined

by

pΣA

jk “ pΘ
1{2
jk ˆ sλ

˜

pΣjk

pΘ
1{2
jk

¸

, (2.2)

which uses a single threshold level to functionally threshold standardized entries,
pΣjk{pΘ

1{2
jk for all j, k, resulting in entry-dependent functional thresholds for pΣjk’s.

The selection of optimal λ is of practical importance and will be discussed in details

in Section 2.4.

An alternative approach to estimate Σ is the universal functional thresholding esti-

mator
pΣU “ tpΣU

jkp¨, ¨qupˆp with pΣU

jk “ sλ
`

pΣjk

˘

,

where a universal threshold level is used for all entries. In a similar spirit to Rothman

et al. (2009), the consistency of pΣU requires the assumption that marginal-covariance

functions are uniformly bounded in the nuclear norm, that is maxj }Σjj}N ď M,

where }Σjj}N “
ş

U Σjjpu, uqdu.However, intuitively speaking, such universal method

does not perform well when nuclear norms vary over a wide range, or even fails when

the uniform boundedness assumption is violated. Section 2.4 provides some empir-

ical evidence to support this intuition.

2.3 Theoretical properties

We begin with some notation. For a random variable W, define the Orlicz norm

}W }ψ “ inf
␣

c ą 0 : Erψp|W |{cqs ď 1
(

, where ψ : r0,8q Ñ r0,8q is a non-

decreasing, non-zero convex function with ψp0q “ 0 and the norm takes the value

8 if no finite c exists for which Erψp|W |{cqs ď 1. Denote ψkpxq “ exppxkq ´ 1 for

k ě 1. Let the packing number Dpϵ, dq be the maximal number of points that can

fit in the compact interval U while maintaining a distance greater than ϵ between

all points with respect to the semimetric d. We refer to Chapter 8 of Kosorok

(2008) for further explanations. For tXijpuq : u P U , i “ 1, . . . , n, j “ 1, . . . , pu,

define the standardized processes by Yijpuq “ rXijpuq ´ EtXijpuqus{σjpuq1{2, where

σjpuq “ Σjjpu, uq.
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To present the main theorems, we impose the following regularity conditions.

Condition 2.1. (i) For each i and j, Yijp¨q is a separable stochastic process with

the semimetric djpu, vq “ }Y1jpuq ´ Y1jpvq}ψ2 for u, v P U ; (ii) For some u0 P U ,
max1ďjďp }Y1jpu0q}ψ2 is bounded.

Condition 2.2. The packing numbers Dpϵ, djq’s satisfy max1ďjďpDpϵ, djq ď Cϵ´r

for some constants C, r ą 0 and ϵ P p0, 1s.

Condition 2.3. For some constant τ ą 0, minj,k infu,vPU Var
␣

Y1jpuqY1kpvq
(

ě τ.

Condition 2.4. The pair pn, pq satisfies log p{n1{4 Ñ 0 as n and p Ñ 8.

Conditions 2.1 and 2.2 are standard to characterize the modulus of continuity of

sub-Gaussian processes Yijp¨q’s, as described in Chapter 8 of Kosorok (2008). These

conditions also imply that there exist some positive constants C0 and η such that

Erexppt}Y1j}
2qs ď C0 for all |t| ď η and j with }Y1j} “ t

ş

U Y1jpuq2duu1{2, which

plays a crucial role in our proof when applying concentration inequalities within

Hilbert space. Condition 2.3 restricts the variances of YijpuqYikpvq’s to be uniformly

bounded away from zero so that they can be well estimated. It also facilitates the

development of some standardized concentration results. This condition excludes

the case of a Brownian motion Xijp¨q starting at 0 for some j. However, replacing

Xijp¨q with a contaminated process Xijp¨q ` ξij, where ξij’s are independent from

a normal distribution with zero mean and a small variance and are independent of

Xijp¨q’s, Condition 2.3 is fulfilled while the cross-covariance structure in Σ remains

the same in the sense that CovtXijpuq`ξij, Xikpvqu “ CovtXijpuq, Xikpvqu for k ‰ j

and u, v P U . Condition 2.4 allows the high-dimensional case, where p can diverge

at some exponential rate as n increases.

In the following, we establish the convergence rate of the adaptive functional thresh-

olding estimator pΣA over a large class of “approximately sparse” covariance functions

defined by

Cpq, s0ppq;Uq “

!

Σ : Σ ľ 0, max
1ďjďp

p
ÿ

k“1

}σj}
p1´qq{2
8 }σk}

p1´qq{2
8 }Σjk}

q
S ď s0ppq

)

,

for some 0 ď q ă 1, where }σj}8 “ supuPU σjpuq and Σ ľ 0 means that Σ “

tΣjkp¨, ¨qupˆp is positive semidefinite, that is
ř

j,k

ş ş

Σjkpu, vqajpuqakpvqdudv ě 0

for any ajp¨q P L2pUq pj “ 1, . . . , pq. See Cai and Liu (2011) for a similar class of

covariance matrices for non-functional data. Compared with the class

C˚
pq, s0ppq;Uq “

␣

Σ : Σ ľ 0,max
j

}σj}N ď M,max
j

p
ÿ

k“1

}Σjk}
q
S ď s0ppq

(

,
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over which the universal functional thresholding estimator pΣU can be shown to be

consistent, the columns of a covariance function in Cpq, s0ppq;Uq are required to be

within a weighted ℓq{ℓ2 ball, instead of a standard ℓq{ℓ2 ball, where the weights are

determined by }σj}8’s. Unlike C˚pq, s0ppq;Uq, Cpq, s0ppq;Uq no longer requires the

uniform boundedness assumption on }σj}N ’s and allows maxj }σj}N Ñ 8. In the

special case of q “ 0, Cpq, s0ppq;Uq corresponds to a class of truly sparse covariance

functions. Note that the constant s0ppq is allowed to depend on p and can be

regarded implicitly as the restriction on functional sparsity.

Theorem 2.1. Suppose that Conditions 2.1-2.4 hold. Then there exists some con-

stant δ ą 0 such that, uniformly on Cpq, s0ppq;Uq, if λ “ δplog p{nq1{2,

}pΣA ´ Σ}1 “ max
1ďkďp

p
ÿ

j“1

}pΣA

jk ´ Σjk}S “ OP

"

s0ppq

´ log p

n

˙
1´q
2 )

. (2.3)

Theorem 2.1 presents the convergence result in a functional version of matrix ℓ1

norm. The rate in (2.3) is consistent to those of sparse covariance matrix estimates

(Rothman et al., 2009; Cai and Liu, 2011).

We finally turn to investigate the support recovery consistency of pΣA over the pa-

rameter space of truly sparse covariance functions defined by

C0ps0ppq;Uq “
␣

Σ : Σ ľ 0, max
1ďjďp

p
ÿ

k“1

Ip}Σjk}S ‰ 0q ď s0ppq
(

,

which assumes that tΣjkp¨, ¨qupˆp has at most s0ppq non-zero entries on each row. The

theorem below shows that, with the choice of λ “ δplog p{nq1{2 for some constant

δ ą 0, pΣA exactly recovers the support of Σ, supppΣq “ tpj, kq : }Σjk}S ‰ 0u, with

high probability.

Theorem 2.2. Suppose that Conditions 2.1-2.4 hold and
›

›Σjk{Θ
1{2
jk

›

›

S ą p2δ `

γqplog p{nq1{2 for all pj, kq P supppΣq and some γ ą 0, where δ is stated in The-

orem 2.1. Then we have that

inf
ΣPC0

pr
␣

suppppΣAq “ supppΣq
(

Ñ 1 as n Ñ 8.

Theorem 2.2 guarantees that pΣA achieves the exact recovery of functional spar-

sity structure in Σ, that is the graph support in functional connectivity analysis,

with probability tending to 1. This theorem holds under the condition that the

Hilbert–Schmidt norms of non-zero standardized functional entries exceed a certain
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threshold, which ensures that non-zero components are correctly retained. See an

analogous minimum signal strength condition for sparse covariance matrices in Cai

and Liu (2011).

2.4 Simulations

We conduct a number of simulations to compare adaptive functional thresholding

estimators to universal functional thresholding estimators. In each scenario, to

mimic the infinite-dimensionality of random curves, we generate functional variables

by Xijpuq “ spuqTθij for i “ 1, . . . , n, j “ 1, . . . , p and u P U “ r0, 1s, where spuq is

a 50-dimensional Fourier basis function and θi “ pθT

i1, . . . ,θ
T

ipq
T P R50p is generated

from a mean zero multivariate Gaussian distribution with covariance matrix Ω “

pΩjkqpˆp. The functional sparsity pattern in Σ “ tΣjkp¨, ¨qupˆp with its pj, kqth

entry Σjkpu, vq “ spuqTΩjkspvq can be characterized by the block sparsity structure

in Ω. Define Ωjk “ ωjkD with D “ diagp1´2, . . . , 50´2q and hence Covpθijk, θijk1q „

k´2Ipk “ k1q for k, k1 “ 1, . . . , 50. Then we generate Ω with different block sparsity

patterns as follows.

• Model 1 (block banded). For j, k “ 1, . . . , p{2, ωjk “ p1 ´ |j ´ k|{10q`. For

j, k “ p{2 ` 1, . . . , p, ωjk “ 4Ipj “ kq.

• Model 2 (block sparse without any special structure). For j, k “ p{2`1, . . . , p,

ωjk “ 4Ipj “ kq. For j, k “ 1, . . . , p{2, we generate ω “ pωjkqp{2ˆp{2 “ B `

δIp{2, where elements of B are sampled independently from Uniformr0.3, 0.8s

with probability 0.2 or 0 with probability 0.8, and δ “ t´λminpBq, 0u ` 0.01

to guarantee the positive definiteness of Ω.

We implement a cross-validation approach (Bickel and Levina, 2008) for choosing the

optimal thresholding parameter in pΣA. Specifically, we randomly divide the sample

tXi : i “ 1, . . . , nu into two subsamples of size n1 and n2, where n1 “ np1 ´ 1{ log nq

and n2 “ n{ log n and repeat this N times. Let pΣ
pνq

A,1pλq and pΣ
pνq

S,2 be the adaptive

functional thresholding estimator with thresholding parameter λ and the sample

covariance function based on n1 and n2 observations, respectively, from the νth

split. We select the optimal λ̂ by minimizing

pRpλq “ N´1
N
ÿ

ν“1

}pΣ
pνq

A,1pλq ´ pΣ
pνq

S,2}
2
F,
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where } ¨ }F denotes the functional version of Frobenius norm, that is for any K “

tKjkp¨, ¨qupˆp with each Kjk P S, }K}F “ p
ř

j,k }Kjk}
2
Sq1{2. The optimal thresholding

parameter in pΣU can be selected in a similar fashion.

We compare the adaptive functional thresholding estimator pΣA to the universal

functional thresholding estimator pΣU under hard, soft, SCAD (with a “ 3.7) and

adaptive lasso (with η “ 3) functional thresholding rules. Here λ̂ is selected by

the cross-validation procedure with N “ 5. We also obtain the sample covariance

function pΣS, the results of which deteriorate severely compared with the com-

petitors, so we do not report their results here. We generate n “ 100 obser-

vations for p “ 50, 100, 150 and replicate each simulation 100 times. We exam-

ine the performance of nine approaches by both estimation and support recov-

ery accuracies. In terms of the estimation accuracy, Table 2.1 reports numerical

summaries of losses measured by functional versions of Frobenius and matrix ℓ1

norms. To assess the support recovery consistency, we present in Table 2.2 the

average of true positive rates (TPRs) and false positive rates (FPRs), defined as

TPR “ #tpj, kq : }pΣjk}S ‰ 0 and }Σjk}S ‰ 0u{#tpj, kq : }Σjk}S ‰ 0u and

FPR “ #tpj, kq : }pΣjk}S ‰ 0 and }Σjk}S “ 0u{#tpj, kq : }Σjk}S “ 0u. For com-

parison, we also present the support recovery accuracy of the pairwise testing for

uncorrelatedness (Zhang, 2013) with multiple testing adjustments in Table 2.3 of

Appendix 2.C. The direct implementation of such inference procedure involves the

eigen-decomposition of four-way tensors, which results in higher computational cost

especially for large p.

Several conclusions can be drawn from Tables 2.1 and 2.2. First, in all scenarios,

the adaptive functional thresholding estimator pΣA provides substantially improved

accuracy over the universal functional thresholding estimator pΣU regardless of the

thresholding rule or the loss used. Second, for support recovery, again pΣA uniformly

outperforms pΣU, which fails to recover the functional sparsity pattern especially

when p is large. Third, the adaptive functional thresholding approach using the hard

and the adaptive lasso functional thresholding rules tends to have lower losses and

lower TPRs/FPRs than that using the soft and the SCAD functional thresholding

rules.

2.5 Real Data

In this section, we aim to investigate the association between the brain functional

connectivity and fluid intelligence (gF ), the capacity to solve problems indepen-

dently of acquired knowledge (Cattell, 1987). The dataset contains subjects of
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Table 2.1: The average (standard error) functional matrix losses over 100 simulation
runs.

p “ 50 p “ 100 p “ 150

Model Method pΣA
pΣU

pΣA
pΣU

pΣA
pΣU

1

Functional Frobenius norm
Hard 5.51(0.04) 12.16(0.02) 8.08(0.04) 17.65(0.01) 10.18(0.04) 21.84(0.01)
Soft 6.41(0.06) 10.58(0.08) 9.60(0.05) 16.81(0.07) 12.12(0.06) 21.60(0.05)

SCAD 5.79(0.05) 10.73(0.08) 8.69(0.05) 16.92(0.07) 11.03(0.06) 21.63(0.04)
Adap. lasso 5.39(0.04) 11.66(0.08) 7.92(0.04) 17.64(0.01) 9.94(0.05) 21.83(0.01)

Functional matrix ℓ1 norm
Hard 4.05(0.06) 9.44(0.01) 4.62(0.05) 9.52(0.01) 4.90(0.05) 9.55(0.01)
Soft 5.16(0.07) 8.29(0.08) 6.03(0.05) 9.33(0.02) 6.38(0.05) 9.51(0.01)

SCAD 4.49(0.08) 8.46(0.07) 5.47(0.06) 9.38(0.02) 5.90(0.06) 9.52(0.01)
Adap.lasso 3.94(0.07) 9.11(0.07) 4.64(0.06) 9.51(0.01) 4.98(0.06) 9.55(0.01)

2

Functional Frobenius norm
Hard 5.78(0.03) 9.59(0.02) 9.72(0.04) 16.14(0.01) 14.38(0.06) 22.75(0.01)
Soft 6.27(0.03) 8.73(0.04) 10.50(0.05) 15.29(0.05) 15.10(0.05) 22.35(0.05)

SCAD 6.06(0.03) 8.76(0.04) 10.17(0.05) 15.33(0.05) 14.79(0.06) 22.36(0.04)
Adap. lasso 5.57(0.03) 9.29(0.04) 9.22(0.04) 16.06(0.02) 13.33(0.06) 22.74(0.01)

Functional matrix ℓ1 norm
Hard 2.94(0.03) 4.85(0.01) 4.94(0.05) 7.27(0.01) 7.86(0.07) 10.54(0.01)
Soft 3.39(0.03) 4.61(0.04) 5.51(0.04) 7.06(0.02) 8.42(0.05) 10.43(0.01)

SCAD 3.31(0.03) 4.59(0.03) 5.43(0.04) 7.06(0.02) 8.35(0.05) 10.44(0.01)
Adap. lasso 2.85(0.03) 4.76(0.02) 4.77(0.05) 7.23(0.01) 7.57(0.07) 10.54(0.01)

resting-state fMRI scans and the corresponding gF scores, measured by the 24-item

Raven’s Progressive Matrices, from the Human Connectome Project (HCP). We

follow many recent proposals based on HCP by modelling signals as multivariate

random functions with each region of interest (ROI) representing one random func-

tion (Zapata et al., 2022; Lee et al., 2021; Miao et al., 2022). We focus our analysis

on nlow “ 73 subjects with intelligence scores gF ď 8 and nhigh “ 85 subjects with

gF ě 23, and consider p “ 83 ROIs of three generally acknowledged modules in

neuroscience study (Finn et al., 2015): the medial frontal (29 ROIs), frontopari-

etal (34 ROIs) and default mode modules (20 ROIs). For each subject, the BOLD

signals at each ROI are collected every 0.72 seconds for a total of L “ 1200 mea-

surement locations (14.4 minutes). We first implement the ICA-FIX preprocessed

pipeline (Glasser et al., 2013) and a standard band-pass filter at r0.01, 0.08s Hz

to exclude frequency bands not implicated in resting state functional connectivity

(Biswal et al., 1995). Figure 2.8 in Appendix 2.C.3 displays exemplified trajectories

of pre-smoothed data. The adaptive functional thresholding method is then adopted

to estimate the sparse covariance function and therefore the brain networks.

The sparsity structures in Σ̂A for both groups are displayed in Figure 2.1. With
pλ selected by the cross-validation, the network associated with pΣA for subjects

with gF ě 23 is more densely connected than that with gF ď 8, as evident from

Fig. 2.1(a)–(b). We further set the sparsity level to 70% and 85%, and present the

corresponding sparsity patterns in Fig. 2.1(c)–(f). The results clearly indicate the
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Table 2.2: The average TPRs/ FPRs over 100 simulation runs.

p “ 50 p “ 100 p “ 150

Model Method pΣA
pΣU

pΣA
pΣU

pΣA
pΣU

1

Hard 0.70/0.00 0.00/0.00 0.66/0.00 0.00/0.00 0.63/0.00 0.00/0.00
Soft 0.89/0.07 0.48/0.17 0.85/0.04 0.24/0.05 0.83/0.03 0.06/0.01

SCAD 0.89/0.07 0.44/0.14 0.85/0.04 0.21/0.04 0.84/0.03 0.06/0.01
Adap. lasso 0.78/0.00 0.11/0.02 0.74/0.00 0.00/0.00 0.72/0.00 0.00/0.00

2

Hard 0.77/0.00 0.00/0.00 0.68/0.00 0.00/0.00 0.63/0.00 0.00/0.00
Soft 0.99/0.06 0.50/0.07 0.97/0.04 0.31/0.04 0.96/0.04 0.12/0.02

SCAD 0.99/0.06 0.48/0.06 0.97/0.05 0.29/0.04 0.96/0.05 0.11/0.02
Adap. lasso 0.91/0.00 0.11/0.01 0.85/0.00 0.02/0.00 0.83/0.00 0.00/0.00

existence of three diagonal blocks under all sparsity levels, complying with the iden-

tification of the medial frontal, frontoparietal and default mode modules in Finn

et al. (2015). We also implement the universal functional thresholding method.

However, compared with pΣA, the results of pΣU suffer from the heteroscedasticity, as

demonstrated in Section 1.5 and Section 2.C.2 of the Appendix, and fail to detect

any noticeable block structure, hence we choose not to report them here. To ex-

plore the impact of gF on the functional connectivity, we compute the connectivity

strength using the standardized form }pΣA
jk}S{t}pΣA

jj}S}pΣA
kk}Su1{2 for j, k “ 1 . . . , p.

Interestingly, we observe from Figure 2.2 that subjects with gF ě 23 tend to have

enhanced brain connectivity in the medial frontal and frontoparietal modules, while

the connectivity strength in the default mode module declines. This agrees with

existing neuroscience literature reporting a strong positive association between in-

telligence score and the medial frontal/frontoparietal functional connectivity in the

resting state (Van Den Heuvel et al., 2009; Finn et al., 2015), and lends support

to the conclusion that lower default mode module activity is associated with better

cognitive performance (Anticevic et al., 2012). See also Section 2.C.2 of the Ap-

pendix, in which we illustrate our adaptive functional thresholding estimation using

another ADHD dataset.

2.6 Discussion

We conclude this chapter by discussing three directions for future study. The first

extension considers estimating functional Gaussian graphical models targeting at

recovering the conditional dependence structure among p random functions. Qiao

et al. (2019) proposed to estimate a block sparse inverse covariance matrix by treat-

ing dimensions of random functions as approaching infinity. However, to deal with

truly infinite-dimensional Gaussian processes, it is desirable to avoid the estimation
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(a) gF ď 8 : pΣA (80% zeros)

(b) gF ě 23: pΣA (72% zeros)

(c) gF ď 8: pΣA (70% zeros)

(d) gF ě 23: pΣA (70% zeros)

(e) gF ď 8: pΣA (85% zeros)

(f) gF ě 23: pΣA (85% zeros)

Figure 2.1: Estimated sparsity structures in pΣA using soft functional thresholding rule
at fluid intelligence gF ď 8 and gF ě 23: (a)–(b) with the corresponding λ̂ selected by
fivefold cross-validation; (c)–(f) with the estimated functional sparsity levels set at 70%
and 85%.

of sparse inverse covariance function due to its unboundedness. For non-functional

Gaussian graphical models, an innovative transformation (Fan and Lv, 2016) con-

verts the problem of estimating sparse inverse covariance matrix to that of sparse

covariance matrix estimation. It is thus of great interest to generalize this transfor-

mation strategy to the functional domain and hence our proposed sparse covariance

function estimation approach can be applied.

The second topic is about the classification for multivariate functional data, where

estimating the covariance function plays a crucial role. Existing literature has fo-

cused on univariate or low-dimensional functional data, while our proposal of esti-

mating sparse covariance function can be possibly incorporated into the development

of functional classification under high-dimensional settings.

The third potential extension involves developing adaptive functional thresholding

strategy for a practical scenario where functions are sparsely or densely observed

with errors. This extension could be achieved using a nonparametric smoothing

approach (Yao et al., 2005). It is interesting to develop standardized concentra-

tion results under different measurement schedules, which would pose complicated

theoretical challenges.

These topics are beyond the scope of the current chapter and will be pursued else-

where.
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L R

L R

(a) gF ď 8: the medial frontal module in
Fig. 2.1(e)

L R

L R

(b) gF ď 8: the frontoparietal module in
Fig. 2.1(e)

L R

L R

(c) gF ď 8: the default mode module in
Fig. 2.1(e)

L R

L R

(d) gF ě 23: the medial frontal module in
Fig. 2.1(f)

L R

L R

(e) gF ě 23: the frontoparietal module in
Fig. 2.1(f)

L R

L R

(f) gF ě 23: the default mode module in
Fig. 2.1(f)

Figure 2.2: The connectivity strengths in Fig. 2.1(e)–(f) at fluid intelligence gF ď 8 and
gF ě 23. Salmon, orange and yellow nodes represent the ROIs in the medial frontal,
frontoparietal and default mode modules, respectively. The edge color from cyan to blue
corresponds to the value of }pΣA

jk}S{t}pΣA
jj}S}pΣA

kk}Su1{2 from small to large.
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2.A Technical proofs

Before stating the regularity conditions, we make some notation. For a function

Z P S, define }Z}8 “ supu,vPU |Zpu, vq|. For two sequences of real numbers tanu and

tbnu, write an À bn if there exists some constant C such that |an| ď C|bn| holds for all

n, and similarly, for two sequences of real processes tanpuq, u P Uu and tbnpuq, u P Uu,

write anpuq À bnpuq if there exists some constant C such that |anpuq| ď C|bnpuq|

holds for all n and u P U . Without loss of generality, in the following we assume

that EtXijpuqu ” 0 and both estimators pΣjkpu, vq and pΘjkpu, vq are defined as

pΣjkpu, vq “
1

n

n
ÿ

i“1

XijpuqXikpvq and pΘjkpu, vq “
1

n

n
ÿ

i“1

Xijpuq
2Xikpvq

2
´ pΣjkpu, vq

2,

respectively.

Lemma 2.1. Suppose that Conditions 2.1–2.4 hold. Then for any M ą 0, there

exists some constant ρ1 ą 0 such that

pr

#

max
j,k

›

›

›

›

›

pΘjk ´ Θjk

Θjk

›

›

›

›

›

8

ě ρ1
log2 p

n1{2

+

“ Opp´M
q.

Proof. Denote rΘjkpu, vq “ EtXijpuq2Xikpvq2u. We decompose pΘjkpu, vq ´ Θjkpu, vq

as

pΘjkpu, vq ´ Θjkpu, vq

“ Σjkpu, vq
2

´ pΣjkpu, vq
2

`
1

n

n
ÿ

i“1

!

Xijpuq
2Xikpvq

2
´ rΘjkpu, vq

)

.

By Condition 2.3, Θjkpu, vq ě τσjpuqσkpvq for each j, k “ 1, . . . , p. Hence,

ˇ

ˇ

ˇ

ˇ

ˇ

pΘjkpu, vq ´ Θjkpu, vq

Θjkpu, vq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

Σjkpu, vq2 ´ pΣjkpu, vq2

τσjpuqσkpvq

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Xijpuq2Xikpvq2 ´ rΘjkpu, vq

τσjpuqσkpvq

ˇ

ˇ

ˇ

ˇ

ˇ

“ I
p1q

jk pu, vq ` I
p2q

jk pu, vq.

First, consider the concentration bound for }I
p1q

jk }8. Denote rYijkpu, vq “ YijpuqYikpvq´

Σjkpu, vq{tσjpuq1{2σkpvq1{2u and let djkppu, vq, pu1, v1qq “ djpu, u
1q ` dkpv, v1q. Ap-
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plying Theorem 8.4 in Kosorok (2008) under Conditions 2.1 and 2.2, we obtain

that, there exists some constant C1 ą 0 such that
›

› supuPU |Y1jpuq|
›

›

ψ2
ď C1 for all

j “ 1, . . . , p. By the property of ψ1-norm, we have that

}YijpuqYikpvq ´ Yijpu
1
qYikpv1

q}ψ1

ď }YijpuqtYikpvq ´ Yikpv1
qu}ψ1

` }tYijpuq ´ Yijpu
1
quYikpv1

q}ψ1

ď }Yijpuq}ψ2
}Yikpvq ´ Yikpv1

q}ψ2
` }Yikpv1

q}ψ2
}Yijpuq ´ Yijpu

1
q}ψ2

À tdjpu, u
1
q ` dkpv, v1

qu “ djkppu, vq, pu1, v1
qq,

which implies that

›

›

›

rYijkpu, vq ´ rYijkpu
1, v1

q

›

›

›

ψ1

À djkppu, vq, pu1, v1
qq. (2.4)

Note that

Z̄jkpu, vq “
pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2
“

1

n

n
ÿ

i“1

"

YijpuqYikpvq ´
Σjkpu, vq

σjpuq1{2σkpvq1{2

*

,

and for a random variable X and any integer m ě 1, E}X}m ď m!}X}mψ1
. By Bern-

stein’s inequality and Lemma 8.3 of Kosorok (2008), we have that for u, v, u1, v1 P U ,

›

›

›
n1{2

!

Z̄jkpu, vq ´ Z̄jkpu
1, v1

q

)›

›

›

ψ1

À djkppu, vq, pu1, v1
qq.

For the semimetric djk, Dpϵ, djkq ď Dpϵ{2, djqDpϵ{2, dkq À ϵ´2r. Applying Theorem

8.4 in Kosorok (2008) with Conditions 2.1 and 2.2 again, we obtain that, there exists

some constant C2 ą 0 such that

max
1ďj,kďp

›

›

›

›

sup
u,vPU

|n1{2Z̄jkpu, vq|

›

›

›

›

ψ1

ď C2.

This immediately implies that there exist some universal constant C3 ą 0 such that

for any x ą 0,

pr

#

max
j,k

sup
u,vPU

ˇ

ˇ

ˇ

ˇ

ˇ

pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ą x

+

À p2 expt´C3n
1{2xu.
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As a result, for any M ą 0, there exists some constant ρ̃1 ą 0 such that

pr

#

max
j,k

sup
u,vPU

ˇ

ˇ

ˇ

ˇ

ˇ

pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ą ρ̃1
log p

n1{2

+

À p´M . (2.5)

Observe that

ˇ

ˇ

ˇ

ˇ

ˇ

pΣjkpu, vq2 ´ Σjkpu, vq2

σjpuqσkpvq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2

ˇ

ˇ

ˇ

ˇ

ˇ

2

` 2

ˇ

ˇ

ˇ

ˇ

ˇ

pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2

ˇ

ˇ

ˇ

ˇ

ˇ

,

since |Σjkpu, vq| ď σjpuq1{2σkpvq1{2. By the inequality (2.5), we have that

pr

"

max
j,k

}I
p1q

jk }8 ą 2ρ̃1
log p

n1{2
` ρ̃21

log2 p

n

*

À p´M . (2.6)

We next control the bound for }I
p2q

jk }8 through the truncation technique. Note that

Xijpuq2Xikpvq2 ´ rΘjkpu, vq

σjpuqσkpvq
“ Yijpuq

2Yikpvq
2

´
rΘjkpu, vq

σjpuqσkpvq
.

Define that Y ˚
ij puq “ YijpuqI

!

}Yij}8 ď C4 log1{2
pp _ nq

)

and

Z˚
ijkpu, vq “ Y ˚

ij puq
2Y ˚

ikpvq
2

´ EtY ˚
ij puq

2Y ˚
ikpvq

2
u.

By the property of ψ1-norm and |Y ˚
ij puq2 ´ Y ˚

ij pu
1q2| ď 2C4 log1{2

pp _ nq|Y ˚
ij puq ´

Y ˚
ij pu

1q|, we have that

›

›Y ˚
ij puq

2Y ˚
ikpvq

2
´ Y ˚

ij pu
1
q
2Y ˚

ikpv1
q
2
›

›

ψ1

ď
›

›Y ˚
ij puq

2
tY ˚

ikpvq
2

´ Y ˚
ikpv1

q
2
u
›

›

ψ1
`
›

›tY ˚
ij puq

2
´ Y ˚

ij pu
1
q
2
uY ˚

ikpv1
q
2
›

›

ψ1

À logpp _ nq

!

}Y ˚
ij puq}ψ2 }Y ˚

ikpvq ´ Y ˚
ikpv1

q}ψ2
` }Y ˚

ikpv1
q}ψ2

›

›Y ˚
ij puq ´ Y ˚

ij pu
1
q
›

›

ψ2

)

À logpp _ nqtdjpu, u
1
q ` dkpv, v1

qu À logpp _ nqdjkppu, vq, pu1, v1
qq,

which implies that, similar to (2.4),

›

›Z˚
ijkpu, vq ´ Z˚

ijkpu
1, v1

q
›

›

ψ1
À logpp _ nqdjkppu, vq, pu1, v1

qq.
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Let Z̄˚
jkpu, vq “ n´1

řn
i“1 Z

˚
ijkpu, vq. We apply the similar technique of Z̄jk above to

the term Z̄˚
jk and obtain that there exists some universal constant C5 ą 0 such that

for any x ą 0,

pr

#

max
j,k

sup
u,vPU

ˇ

ˇ

ˇ

ˇ

ˇ

Z̄˚
jkpu, vq

logpp _ nq

ˇ

ˇ

ˇ

ˇ

ˇ

ą x

+

À p2 expp´C5n
1{2xq.

As a result, for any M ą 0, there exists some constant ρ̃2 ą 0 such that

pr

"

max
j,k

sup
u,vPU

ˇ

ˇZ̄˚
jkpu, vq

ˇ

ˇ ą ρ̃2
log2

pp _ nq

n1{2

*

À p´M .

Now we consider the bound of the term }Yij}8. By Conditions 2.1-2.2 and Theorem

8.4 of Kosorok (2008), we immediately have that there exists some constant C6 ą 0

max
1ďiďn,1ďjďp

›

›

›
sup
uPU

|Yijpuq|

›

›

›

ψ2

ď C6,

which also implies that there exists some constant C7 ą 0 such that for any x ą 0,

pr

"

max
1ďiďn,1ďjďp

}Yijpuq}8 ą x

*

À np expp´C7x
2
q.

Hence we obtain that for any M ą 0, there exists some constant C4 ą 0 such that

pr

"

max
1ďiďn,1ďjďp

}Yij}8 ą C4 log1{2
pp _ nq

*

À pp _ nq
´M . (2.7)

On the event

Ωn0 “

!

max
1ďiďn,1ďjďp

}Yij}8 ď C4 log1{2
pp _ nq

)

,

we find that

Yijpuq
2Yikpvq

2
´

rΘjkpu, vq

σjpuqσkpvq
“ Y ˚

ij puq
2Y ˚

ikpvq
2

´ E
!

Y ˚
ij puq

2Y ˚
ikpvq

2
)

` E
!

Y ˚
ij puq

2Y ˚
ikpvq

2
´ Yijpuq

2Yikpvq
2
)

.

Note that Y ˚
ij puq2 ´ Yijpuq2 “ Yijpuq2It}Yij}8 ą C4 log1{2

pp_ nqu. By the inequality

(2.7), we can obtain that

ˇ

ˇ

ˇ
E
!

Y ˚
ij puq

2Y ˚
ikpvq

2
´ Yijpuq

2Yikpvq
2
)ˇ

ˇ

ˇ
À pp _ nq

´M .

101



Therefore, for any M ą 0, there exist some constant ρ̃3 ą 0 such that

pr

"

max
1ďjďp

}I
p2q

jk }8 ą ρ̃3
log2

pp _ nq

n1{2

*

À p´M . (2.8)

Combining (2.6) and (2.8), we obtain that for any M ą 0, there exists some constant

ρ1 ą 0 such that

pr

#

max
j,k

›

›

›

›

›

pΘjk ´ Θjk

Θjk

›

›

›

›

›

8

ě ρ1
log2

pp _ nq

n1{2

+

À p´M .

The proof is complete. ˝

Lemma 2.2. Suppose that Conditions 2.1–2.4 hold. Then for any M ą 0, there

exist some constant ρ2 ą 0 such that

max
j,k

›

›

›

›

›

Θ
1{2
jk ´ pΘ

1{2
jk

pΘ
1{2
jk

›

›

›

›

›

8

ď ρ2
log2 p

n1{2
(2.9)

with probability greater than 1 ´ Opp´Mq.

Proof. Let the event Ωnpsq “ t}ppΘjk ´ Θjkq{Θjk}8 ď slog2 p{n1{2 ď 1{2u. For any

M ą 0, it follows from Lemma 2.1 that there exists some constant ρ1 ą 0 such that

prtΩnpρ1qu ě 1 ´ Opp´Mq. Since

›

›

›

›

›

Θjk

pΘjk

›

›

›

›

›

8

“

›

›

›

›

›

Θjk ´ pΘjk

pΘjk

` 1

›

›

›

›

›

8

ď

›

›

›

›

›

Θjk ´ pΘjk

Θjk

›

›

›

›

›

8

›

›

›

›

›

Θjk

pΘjk

›

›

›

›

›

8

` 1,

hence, on the event Ωnpρ1q, we have that }Θjk{pΘjk}8 ď 2. As a result, on the event

Ωnpρ1q, it follows that

›

›

›

›

›

Θ
1{2
jk ´ pΘ

1{2
jk

pΘ
1{2
jk

›

›

›

›

›

8

“

›

›

›

›

›

Θjk ´ pΘjk

pΘjk ` pΘ
1{2
jk Θ

1{2
jk

›

›

›

›

›

8

ď

›

›

›

›

›

Θjk ´ pΘjk

Θjk

›

›

›

›

›

8

›

›

›

›

›

Θjk

pΘjk

›

›

›

›

›

8

ď 2ρ1
log2 p

n1{2
.

Take ρ2 “ 2ρ1 and the proof is complete. ˝

Lemma 2.3. Suppose that Conditions 2.1–2.4 holds. Then for any M ą 0, there

exist some positive constant ρ3 ą 0 such that

max
j,k

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ď ρ3

ˆ

log p

n

˙1{2
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with probability greater than 1 ´ Opp´Mq.

Proof. Let rYijkpu, vq “ YijpuqYikpvq ´ Σjkpu, vq{tσjpuq1{2σkpvq1{2u and

Z̄jkpu, vq “
pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2
“

1

n

n
ÿ

i“1

rYijkpu, vq.

We first derive the concentration bound of }Z̄jk}S . It follows from the proof of Lemma

2.1 that there exists some constant C8 ą 0 such that

max
j,k

›

›

›

›

sup
u,vPU

ˇ

ˇ

ˇ

rY1jkpu, vq

ˇ

ˇ

ˇ

›

›

›

›

ψ1

ď C8.

which further implies that maxj,k

›

›

›

›

›rY1jk
›

›

S

›

›

›

ψ1

ď C8. As a result, it follows from

Theorem 2.5 of Bosq (2000) that there exists some universal constant C9 ą 0 such

that for any x ą 0

pr
`
›

›Z̄jk
›

›

S ě x
˘

ď 2 expt´C9nminpx2, xqu.

For any M ą 0, there exists some constant ρ̃ ą 0 that

›

›Z̄jk
›

›

S ď ρ̃

ˆ

log p

n

˙1{2

(2.10)

with probability greater than 1 ´ Opp´Mq.

Now we derive the bound of
›

›

›

`

pΣjk ´ Σjk

˘

{pΘ
1{2
jk

›

›

›

S
. Note that Condition 2.3 implies

that Θjkpu, vq ě τσjpuqσkpvq. We obtain that

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ď

›

›

›

›

›

pΣjk ´ Σjk

Θ
1{2
jk

›

›

›

›

›

S

›

›

›

›

›

Θ
1{2
jk

pΘ
1{2
jk

›

›

›

›

›

8

ď
›

›τ´1{2Z̄jk
›

›

S

˜
›

›

›

›

›

Θ
1{2
jk ´ pΘ

1{2
jk

pΘ
1{2
jk

›

›

›

›

›

8

` 1

¸

.

Hence, together with (2.10) and Lemma 2.2, the lemma follows. The proof is com-

plete. ˝

Proof of Theorem 2.1. For easy representation, define

pΦjkpu, vq “
pΣjkpu, vq

pΘjkpu, vq1{2
, rΦjkpu, vq “

Σjkpu, vq

pΘjkpu, vq1{2
and Φjkpu, vq “

Σjkpu, vq

Θjkpu, vq1{2
.
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Let

Ωn1 “

!

max
j,k

}pΦjk ´ rΦjk}S ď λ
)

,Ωn2 “

#

max
j,k

›

›

›

›

›

pΘjk ´ Θjk

Θjk

›

›

›

›

›

8

ď
1

2

+

.

It is immediate to see that under the event Ωn2, 2´1}Θjk}8 ď }pΘjk}8 ď 2}Θjk}8 for

all j and k. By Conditions 2.1–2.3, we have Θjkpu, vq ď C 1σjpuqσkpvq and Θjkpu, vq ě

τσjpuqσkpvq Then under the event Ωn1 X Ωn2 and Conditions (i)-(iii) on SλpZq, we

obtain that

p
ÿ

k“1

}pΣA

jk ´ Σjk}S

“

p
ÿ

k“1

}pΣA

jk ´ Σjk}SIt}pΦjk}S ě λu `

p
ÿ

k“1

}Σjk}SIt}pΦjk}S ă λu

ď

p
ÿ

k“1

!

}sλppΦjkq ´ pΦjk}S ` }pΦjk ´ rΦjk}S

)

›

›pΘ
1{2
jk

›

›

8
It}pΦjk}S ě λ, }rΦjk}S ě λu

`

p
ÿ

k“1

›

›

›

“

sλppΦjkq ´ rΦjk

‰

pΘ
1{2
jk

›

›

›

S
It}pΦjk}S ě λ, }rΦjk}S ă λu `

p
ÿ

k“1

}Σjk}SIt}rΦjk}S ă 2λu

ď

p
ÿ

k“1

2λ
›

›pΘ
1{2
jk

›

›

8
It}rΦjk}S ě λu `

p
ÿ

k“1

p1 ` cq}rΦjk}S}pΘ
1{2
jk }8It}rΦjk}S ă λu

`

p
ÿ

k“1

}rΦjk}S
›

›pΘ
1{2
jk

›

›

8
It}rΦjk}S ă 2λu

À λ1´q
p
ÿ

k“1

›

›pΘjk

›

›

1{2

8
}rΦjk}

q
S À λ1´q

p
ÿ

k“1

›

›σj
›

›

p1´qq{2

8

›

›σk
›

›

p1´qq{2

8
}Σjk}

q
S À s0ppq

ˆ

log p

n

˙

1´q
2

.

Since there exists some constant δ ą 0 such that prtΩC
n1u ` prtΩC

n2u À p´M , the

theorem follows. ˝

Proof of Theorem 2.2. We consider two sets: Sn1 “ tpj, kq : }pΣA
jk}S ‰ 0 and }Σjk}S “

0u and Sn2 “ tpj, kq : }pΣA
jk}S “ 0 and }Σjk}S ‰ 0u. It suffices to prove that

pr
`

|Sn1| ą 0
˘

` pr
`

|Sn2| ą 0
˘

Ñ 0,

as n, p Ñ 8. By Conditions (i)-(iii) on SλpZq,

Sn1 “

#

pj, kq :

›

›

›

›

›

pΣjk

pΘ
1{2
jk

›

›

›

›

›

S

ą λ and }Σjk}S “ 0

+

Ă

#

pj, kq :

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ą λ

+
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Therefore, with the choice λ “ δplog p{nq1{2, we obtain

P p|Sn1| ą 0q ď P

#

max
j,k

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ą λ

+

À p´M . (2.11)

for some prespecified M ą 0. Similarly, we have

Sn2 “

#

pj, kq :

›

›

›

›

›

pΣjk

pΘ
1{2
jk

›

›

›

›

›

S

ď λ and }Σjk}S ‰ 0

+

.

Note that }Σjk}S ‰ 0 implies that

p2δ ` γq

ˆ

log p

n

˙1{2

ă

›

›

›

›

›

Σjk

Θ
1{2
jk

›

›

›

›

›

S

ď

«
›

›

›

›

›

Σjk ´ pΣjk

pΘ
1{2
jk

›

›

›

›

›

S

`

›

›

›

›

›

pΣjk

pΘ
1{2
jk

›

›

›

›

›

S

ff
›

›

›

›

›

pΘ
1{2
jk

Θ
1{2
jk

›

›

›

›

›

8

. (2.12)

Let Ωn3 “

!

}ppΘ
1{2
jk ´Θ

1{2
jk q{pΘ

1{2
jk }8 ď ϵ

)

for some small constant 0 ă ϵ ă γ{p4δ`2γq.

Conditioned on the event of Ωn3, the inequality

›

›

›

›

›

pΘ
1{2
jk

Θ
1{2
jk

›

›

›

›

›

8

ď

›

›

›

›

›

pΘ
1{2
jk ´ Θ

1{2
jk

pΘ
1{2
jk

›

›

›

›

›

8

›

›

›

›

›

pΘ
1{2
jk

Θ
1{2
jk

›

›

›

›

›

8

` 1

implies that }pΘ
1{2
jk {Θ

1{2
jk }8 ď 1{p1 ´ ϵq. This together with (2.12) shows that

Sn2 X Ωn3 Ă

#

pj, kq :

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ą δ

ˆ

log p

n

˙1{2
+

.

As a result,

prp|Sn2| ą 0q ď prpΩC
n3q ` pr

#

max
j,k

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ą δ

ˆ

log p

n

˙1{2
+

À p´M . (2.13)

Combining (2.11) and (2.13), we complete our proof. ˝
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2.B Examples of functional thresholding opera-

tors

In Section 2.B.1, we verify that our proposed soft, SCAD and adaptive lasso func-

tional thresholding rules satisfy conditions (i)–(iii) in Section 2.2. We then present

the derivations of these three functional thresholding rules in Section 2.B.2.

2.B.1 Condition verification

It is directly implied from the thresholding rules that the soft, SCAD and adaptive

lasso functional methods satisfy condition (ii). Since the soft functional threshold-

ing has the largest amount of functional shrinkage in the Hilbert–Schmidt norm

compared with SCAD and adaptive lasso methods, it suffices to show that the soft

functional thresholding satisfies condition (iii). For }Z}S ď λ, the thresholding effect

leads to }0 ´ Z}S ď λ. When }Z}S ą λ, we obtain that }Zλ{}Z}S}S “ λ.

We next show that the above three thresholding methods satisfy condition (i). By

the triangle inequality, }Z´Y }S ď λ in condition (i) implies that
ˇ

ˇ}Z}S ´λ
ˇ

ˇ ď }Y }S .

• Soft functional thresholding: If }Z}S ď λ, 0 ď c}Y }S directly holds for all

Y P S and c ą 0. When }Z}S ą λ, we have }sSλpZq}S “ }Z}S ´ λ ď }Y }S with

the choice of c “ 1.

• SCAD functional thresholding: When }Z}S ď 2λ, sSCλ pZq is the same as the

soft functional thresholding rule. For }Z}S ą 2λ, we have }sSCλ pZq}S ď }Z}S ď

}Y }S ` λ ď }Y }S ` }Z}S{2 and hence }sSCλ pZq}S ď }Z}S ď 2}Y }S . Combining

the above results, we take c “ 2.

• Adaptive lasso functional thresholding: Let rηs denote the smallest integer

greater than or equal to η. For }Z}S ď λ, this condition holds for all Y P S
and c ą 0. For }Z}S ą λ, we have that }sAL

λ pZq}S “ }Zp1 ´ λη`1{}Z}
η`1
S q}S “

p}Z}
η`1
S ´ λη`1q{}Z}

η
S ď p}Z}

rηs`1
S ´ λrηs`1q{}Z}

rηs

S “ p}Z}S ´ λqp}Z}
rηs

S `

}Z}
rηs´1
S λ ` ¨ ¨ ¨ ` λrηsq{}Z}

rηs

S ď prηs ` 1q}Y }S . Hence, for any η ě 0, we can

find c “ rηs ` 1. In the special case of η “ 0, sAL
λ pZq degenerates to the soft

functional thresholding rule with c “ 1, which is consistent with our finding

for the soft functional thresholding.
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2.B.2 Derivations of the functional thresholding rules from

various penalty functions

Soft functional thresholding can be obtained via

sSλpZq “ arg min
θPS

"

1

2
}θ ´ Z}

2
S ` λ}θ}S

*

. (2.14)

First, we show that if }Z}S ď λ, then }sSλpZq}S “ 0 and hence sSλpZq “ 0. This

results from the fact that, for any θ,

1

2
}θ ´ Z}

2
S ` λ}θ}S ě

1

2

`

}θ}S ´ }Z}S
˘2

` λ}θ}S

“
1

2
}θ}

2
S ` pλ ´ }Z}Sq}θ}S `

1

2
}Z}

2
S ě

1

2
}Z}

2
S .

Second, we show that if }Z}S ą λ, then }sSλpZq}S ‰ 0. In fact, we can find θc “ cZ

with c “ 1 ´ λ{}Z}S ą 0 such that

1

2
}θc ´ Z}

2
S ` λ}θc}S “

1

2
p1 ´ cq2}Z}

2
S ` λc}Z}S ă

1

2
}Z}

2
S .

As a result, we are able to take the first derivative of (2.14) with respect to θ and

set p1
λpθq “ θ ´ Z ` λθ{}θ}S “ 0. Thus, pθ “ Z}pθ}S{

`

}pθ}S ` λ
˘

, which implies that

}pθ}S “ }Z}S ´ λ. Combining the above results, we have that pθ “ Zp1 ´ λ{}Z}Sq`.

The SCAD and adaptive lasso functional thresholding rules can be derived in a

similar fashion. Hence, we only present their penalty functions here. The functional

version of SCAD penalty takes the form of

pλpθq “λ}θ}SIp}θ}S ď λq `
2aλ}θ}S ´ }θ}2S ´ λ2

2pa ´ 1q
Ipλ ă }θ}S ď aλq

`
λ2pa ` 1q

2
Ip}θ}S ą aλq,

for a ą 2. For the functional version of adaptive lasso penalty, we use pλpθq “

λη`1}Z}
´η
S }θ}S , for η ě 0. A similar adaptive lasso penalty function operating on | ¨ |

for the univariate scalar case can be found in Rothman et al. (2009).
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2.C Additional empirical results

2.C.1 Simulation studies

Table 2.3 presents the average TPRs/FPRs of pairwise testing over 100 simulation

runs with two multiple testing adjustments: Benjamini-Hochberg Procedure (B-H)

and Bonferroni correction. The B-H procedure attains similar FPRs/FPRs with the

adaptive functional thresholding estimator pΣA under the adaptive lasso functional

thresholding rule, which also demonstrate the effectiveness of the proposed adaptive

thresholding idea. As expected, the Bonferroni correction procedure provides much

lower TPRs due to its conservative nature. Figures 2.3 and 2.4 plot the heat maps

of the frequency of the zeros identified for the Hilbert–Schimidt norm of each entry

of the estimated covariance function, when p “ 50, out of 100 simulation runs.

The true nonzero patterns of Model 1 and 2 are presented in Figures 2.3(a) and

2.4(a), respectively. Figure 2.5 displays the average receiver operating characteristic

(ROC) curves (plots of true positive rates versus false positive rates over a sequence

of λ values) for both the adaptive functional thresholding and universal functional

thresholding methods. These results again demonstrate the uniform superiority of

the adaptive functional thresholding method in terms of graph selection consistency.

Table 2.3: The average TPRs/ FPRs of pairwise testing over 100 simulation runs.

Model Method p “ 50 p “ 100 p “ 150

1
B-H 0.80/0.01 0.75/0.00 0.73/0.00

Bonferroni 0.65/0.00 0.58/0.00 0.54/0.00

2
B-H 0.87/0.00 0.79/0.00 0.75/0.00

Bonferroni 0.60/0.00 0.43/0.00 0.30/0.00

2.C.2 ADHD dataset

In this section, we illustrate our adaptive functional thresholding estimation us-

ing the ADHD-200 Sample, collected by New York University Medical Center.

This dataset consists of resting-state fMRI scans with Blood Oxygenation Level-

Dependent (BOLD) signals recorded every 2 seconds in the whole brain with L “ 172

locations in total, for nADHD “ 90 patients diagnosed with attention-deficit/hyperactivity

disorder (ADHD) and nTDC “ 87 typically-developing controls (TDC). The prepro-

cessing of the raw fMRI data is performed by Neuro Bureau using the Athena
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(a) True (b) Hard pΣA (c) Hard pΣU

(d) Soft pΣA (e) Soft pΣU (f) SCAD pΣA

(g) SCAD pΣU (h) Adap. lasso pΣA (i) Adap. lasso pΣU

Figure 2.3: Heat maps of the frequency of the zeros identified for the Hilbert–Schimidt
norm of each entry of the estimated covariance function (when p = 50) for Model 1 out of
100 simulation runs. White and black correspond to 100/100 and 0/100 zeros identified,
respectively.
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(a) True (b) Hard pΣA (c) Hard pΣU

(d) Soft pΣA (e) Soft pΣU (f) SCAD pΣA

(g) SCAD pΣU (h) Adap. lasso pΣA (i) Adap. lasso pΣU

Figure 2.4: Heat maps of the frequency of the zeros identified for the Hilbert–Schimidt
norm of each entry of the estimated covariance function (when p = 50) for Model 2 out of
100 simulation runs. White and black correspond to 100/100 and 0/100 zeros identified,
respectively.
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Figure 2.5: Model 1 (top row) and Model 2 (bottom row) for p “ 50, 100, 150: Comparison
of the average ROC curves for adaptive functional thresholding (solid line) and universal
functional thresholding (dotted line) over 100 simulation runs.

pipeline (Bellec et al., 2017). See Figure 2.7 in Section 2.C.3 for plots of pre-

smoothed BOLD signals at a selection of ROIs. Following Li and Solea (2018)

based on the same dataset, we treat the signals at different ROIs as multivariate

functional data. Our goal is to construct resting state functional connectivity net-

works among p “ 116 ROIs (Tzourio-Mazoyer et al., 2002), with the first 90 ROIs

from the cerebrum and the last 26 ROIs from the cerebellum, for ADHD and TDC

groups, respectively. To this end, we implement adaptive and universal functional

thresholding methods to discover the networks for two groups.

Figure 2.6 plots the sparsity patterns in estimated covariance functions correspond-

ing to identified functional connectivity networks. We observe several interesting

patterns. First, with λ̂ selected by the cross-validation, pΣA in Fig. 2.6(a)–(b) reveal

clear blockwise connectivity structures with two blocks coinciding with the regions

of the cerebrum and the cerebellum, while pΣU in Fig. 2.6(c)–(d) result in very sparse

networks. Second, under the same sparsity levels as those of pΣA in Fig. 2.6(a)–(b),
pΣU in Fig. 2.6(e)–(f) only retain edges related to large marginal-covariance func-

tions but fail to identify some essential within-network connections, e.g., those of

the cerebellar region (Dobromyslin et al., 2012) on the bottom right corner. Third,

the ADHD group has increased connections relative to the TDC group, which is in

line with the finding in Konrad and Eickhof (2010) that ADHD patients tend to
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(a) ADHD: pΣA (57.50% ze-
ros)

(b) TDC: pΣA (71.24% zeros)

(c) ADHD: pΣU (98.94% ze-
ros)

(d) TDC: pΣU (98.85% zeros)

(e) ADHD: pΣU (57.50% ze-
ros)

(f) TDC: pΣU (71.24% zeros)

Figure 2.6: The sparsity structures in pΣA and pΣU for ADHD and TDC groups: (a)–(d) with
the corresponding λ̂ selected by fivefold cross-validation using soft functional threosholding
rule; (e)–(f) with the same sparsity levels as those in (a)–(b). Black corresponds to non-
zero entries of pΣA and pΣU (identified edges connecting a subset of ROIs).
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exhibit abnormal spontaneous functional connectivity patterns.

2.C.3 Additional real data results

Figures 2.7 and 2.8 display the pre-smoothed BOLD signal trajectories at a selection

of ROIs of subjects from the ADHD and HCP datesets, respectively. Figures 2.9

and 2.10 plot the connectivity strengths at fluid intelligence gF ď 8 and gF ě 23 in

Fig. 2.1(a)–(b) and Fig. 2.1(c)–(d), respectively. We observe that as gF increases,

the connectivity strengths in the medial frontal and frontoparietal modules tend to

increase while those in the default mode module decrease, which is consistent with

our finding in Section 2.5.
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Figure 2.7: ADHD dataset: the smoothed BOLD signals at the first 5 ROIs of two subjects
in ADHD and TDC groups respectively. The 5.73-minute interval with 172 scanning points
is rescaled to r0, 1s.
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Figure 2.8: HCP dataset: the smoothed BOLD signals at the first 5 ROIs of one subject.
The 14.40-minute interval with 1200 scanning points (14.40 mins) is rescaled to r0, 1s.
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L R

L R

(a) gF ď 8: the medial frontal module in
Fig. 2.1(a)

L R

L R

(b) gF ď 8: the frontoparietal module in
Fig. 2.1(a)

L R

L R

(c) gF ď 8: the default mode module in
Fig. 2.1(a)

L R

L R

(d) gF ě 23: the medial frontal module in
Fig. 2.1(b)

L R

L R

(e) gF ě 23: the frontoparietal module in
Fig. 2.1(b)

L R

L R

(f) gF ě 23: the default mode module in
Fig. 2.1(b)

Figure 2.9: The connectivity strengths in Fig. 2.1(a)–(b) at fluid intelligence gF ď 8
and gF ě 23. Salmon, orange and yellow nodes represent the ROIs in the medial frontal,
frontoparietal and default mode modules, respectively. The edge color from cyan to blue
corresponds to the value of }pΣA

jk}S{t}pΣA
jj}S}pΣA

kk}Su1{2 from small to large.
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L R

L R

(a) gF ď 8: the medial frontal module in
Fig. 2.1(c)

L R

L R

(b) gF ď 8: the frontoparietal module in
Fig. 2.1(c)

L R

L R

(c) gF ď 8: the default mode module in
Fig. 2.1(c)

L R

L R

(d) gF ě 23: the medial frontal module in
Fig. 2.1(d)

L R

L R

(e) gF ě 23: the frontoparietal module in
Fig. 2.1(d)

L R

L R

(f) gF ě 23: the default mode module in
Fig. 2.1(d)

Figure 2.10: The connectivity strengths in Fig. 2.1(c)–(d) at fluid intelligence gF ď 8
and gF ě 23. Salmon, orange and yellow nodes represent the ROIs in the medial frontal,
frontoparietal and default mode modules, respectively. The edge color from cyan to blue
corresponds to the value of }pΣA

jk}S{t}pΣA
jj}S}pΣA

kk}Su1{2 from small to large.
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Chapter 3

On the modelling and prediction

of high-dimensional functional

time series

3.1 Introduction

Functional time series typically refers to continuous-time records that are naturally

divided into consecutive time intervals, such as days, months or years, over which

the observed curves are treated as serially dependent realizations of an underlying

stochastic process. With recent advances in data collection technology, multivariate

or even high-dimensional functional time series are rising ubiquitously in many ap-

plications. Typical examples include daily pollution concentration curves (Hörmann

et al., 2015a) and annual temperature curves (Aue et al., 2018) collected at a number

of stations, annual age-specific mortality rates for different prefectures (Gao et al.,

2019b) and intraday energy consumption trajectories (Cho et al., 2013) for thou-

sands of households, to list a few. These modern applications call for new methods

to tackle problems involving high-dimensional functional time series.

We consider p-dimensional functional time series Ytpuq “ tYt1puq, . . . , YtppuquT for

i “ 1, . . . , n defined on a compact set U . Under a high-dimensional regime, not

only Ytjp¨q’s are infinite-dimensional objects exhibiting the serial dependence across

observations, the dimension p is comparable to, or even larger than, the sample size

n, posing a challenging learning task that is largely unexplored in the literature.
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Hence, it is of fundamental importance to develop an effective procedure to model

and predict Ytpuq with large p.

A standard procedure in the existing literature is to firstly extract features by per-

forming dimension reduction for each component series Ytjp¨q separately via, e.g.,

functional principal component analysis (FPCA) or dynamic FPCA (Hörmann et al.,

2015a) or the method of Bathia et al. (2010), and then considers modelling p vector

time series separately or applying high-dimensional techniques to model p vector

time series jointly under some lower-dimensional structural assumptions, e.g., regu-

larized vector autoregressions (Guo and Qiao, 2022; Chang et al., 2022) and factor

model (Gao et al., 2019b). However, modelling the p vector time series separately

fails to account for the cross serial dependence among different component series of

Ytp¨q that is essential in predicting future values of Ytp¨q, while the gain from incor-

porating those cross-(auto)covariance in a high-dimensional joint model is typically

not enough to compensate the errors accumulated from estimating a large number

of parameters. Alternatively, one can concatenate multiple functions to perform di-

mension reduction for Ytp¨q directly via, e.g., multivariate FPCA (Chiou et al., 2014;

Happ and Greven, 2018) when p is fixed or sparse FPCA (Hu and Yao, 2021) when p

is large. However, these methods do not consider the serial dependence information

and the subsequent modelling of extracted features under high-dimensional scaling

remains untrapped.

In this chapter, we decompose Ytp¨q as follows:

Ytpuq “ Xtpuq ` εtpuq, u P U , (3.1)

where Xtpuq “ tXt1puq, . . . , XtppuquT is the finite-dimensional curve dynamics, εtpuq “

tεt1puq, . . . , εtppuquT is white noise in the sense that Etεtpuqu “ 0 and EtεtpuqεspvqTu “

0 for any u, v P U and t ‰ s. Note tXtp¨qunt“1 and tεtp¨qunt“1 are uncorrelated and

unobservable. Under the decomposition (3.1), the linear dynamic structure of Ytp¨q

is entirely driven by a finite number of scalar coefficients under suitable basis expan-

sion of Xtp¨q, while no parts of Xtp¨q are white noise since those parts are absorbed

into εtp¨q. Therefore, the problem of modelling Ytp¨q is reduced to that of modelling

the associated finite-dimensional vector time series of Xtp¨q. Efficient strategies can

be implemented to predict vector time series, which can be further re-transformed

to predict multivariate functional time series.

When the dimension p is moderate or large, the intrinsic dimensionality of Xtp¨q

is large, thus leading to less efficient predictions of the associated high-dimensional

vector time series of Xtp¨q. Our first segmentation step proposes to transform Ytp¨q
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into a new p-dimensional functional times series by a contemporaneous linear trans-

formation. The estimation of the proposed transformation boils down to the eige-

nanalysis of a positive definite matrix, formed by the double integral and sum of

quadratic forms in (auto)covariance functions of Ytp¨q from different time lags. A

maximum-pairwise-covariance-based permutation is further developed to segment

the p transformed curve series into multiple groups, where curves from different

groups are uncorrelated across all time lags. Hence, the overall linear dynamics is

effectively converted into the cross serial dependence among subseries from the same

group, and an initial effective dimension reduction is achieved. Within each group,

the transformed curves can also be decomposed in the same form of (3.1), i.e. the

sum of two uncorrelated and latent components, one finite-dimensional dynamic and

one white noise. Inspired by the fact that the autocovariance function automatically

filters out the noise, the proposed second step is applied to each group of transformed

curve subseries based on the eigenanalysis of a positive-definite operator defined in

terms of their autocovariance functions. Such proposal is targeted to estimate the

finite-dimensional dynamic structure and based on which predict low-dimensional

transformed curve subseries in a groupwise fashion. Finally, owing to the one-to-one

linear transformation in the segmentation step, the good predictive performance of

transformed curve series can be groupwisely transformed back to the prediction of

the original high-dimensional functional time series.

This chapter makes useful contributions at multiple fronts. First, the segmentation

transformation ensures zero cross serial correlations among curve subseries from dif-

ferent groups while maintaining the useful cross dynamical information within each

group. Hence our proposal is more advantageous than predicting each Ytjp¨q sep-

arately. It also avoids predicting Ytp¨q directly based on a joint model, thus not

suffering from the ‘curse of dimensionality’. Second, despite the basic idea of the

proposed transformation being similar to the so-called PCA for scalar time series of

Chang et al. (2018), our proposal relies on the double integral to take full advantage

of the functional nature of the data by gathering the (auto)covariance information

at each pu, vq P U2 and then integrating over U2. Third, aided by the enforced spar-

sity, we propose a novel functional thresholding procedure, which guarantees the

consistent estimation under a high-dimensional regime. Fourth, the autocovariance-

based dimension reduction approach makes the good use of the serial dependence

information in our estimation, which is most relevant in the context of time se-

ries modelling and prediction. Our proposal extends the univariate approach of

Bathia et al. (2010) by taking into account the cross-autocovariance to accommo-

date multivariate functional time series and by allowing different component series

with different domains.
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Literature review. Our work lies in the intersection of two strands of literature:

functional time series and high-dimensional time series. In the context of functional

time series, many standard univariate or vector time series theory and methods have

been adapted to the functional domain, see, e.g., Bathia et al. (2010); Hörmann

and Kokoszka (2010); Cho et al. (2013); Panaretos and Tavakoli (2013); Aue et al.

(2015); Hörmann et al. (2015a); Aue et al. (2018); Li et al. (2020); Chen et al.

(2022); Jiao et al. (2021), among many others. In the context of high-dimensional

scalar time series, the available methods to reduce the number of parameters can be

loosely divided into two categories: (i) regularization (Han et al., 2015; Basu and

Michailidis, 2015; Guo et al., 2016; Lin and Michailidis, 2017; Ghosh et al., 2019;

Wilms et al., 2021) and (ii) dimension reduction via factor model (Pena and Box,

1987; Bai and Ng, 2002; Forni et al., 2005; Pan and Yao, 2008; Lam et al., 2011; Lam

and Yao, 2012; Stock and Watson, 2012; Fan et al., 2016) or independent component

analysis (Tiao and Tsay, 1989; Back and Weigend, 1997; Matteson and Tsay, 2011;

Chang et al., 2018), each of which corresponds to a large body of literature and

hence an incomplete list of the relevant references is presented here.

The remainder of the paper is organized as follows. In Section 3.2, we develop an

estimation procedure for the first step of segmentation transformation with the help

of permutation and functional thresholding. Section 3.3 specifies the methodology

for the second dimension reduction step that can be applied to estimate the finite-

dimensional dynamical structure within each segmented group. We investigate the

associated theoretical properties of the proposed two-step procedure in Section 3.4.

The finite-sample performance of our methods are examined through extensive sim-

ulations in Section 3.5. Section 3.6 applies our proposal to three real datasets,

revealing its superior predictive performance over the competitors. All technical

proofs are relegated to Section 3.A of the Appendix.

3.2 Segmentation transformation

3.2.1 Model setting

In this section, we focus on the case where p is large or moderately large. Our

first segmentation step transforms linearly observed curves Ytp¨q in (3.1) into p-

vector of new functional time series Ztp¨q “ tZt1p¨q, . . . , Ztpp¨quT in the form of (3.2)

below such that p new curve series can be divided into q groups of sizes p1, . . . , pq

respectively, and the curves from different groups are uncorrelated across all time
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lags, where q ď p, pl ě 1 and
řq
l“1 pl “ p. To be specific, we consider that Ytpuq

admits a latent segmentation structure:

Ytpuq “ AZtpuq “ A
␣

Zt,1puq
T, . . . ,Zt,qpuq

T
(T
, u P U , (3.2)

where A is a pˆ p unknown constant matrix, the l-th group is formed by pl-vector

of functional time series Zt,lpuq, and CovtZt,lpuq,Zs,l1pvqu “ 0 for all t, s, l ‰ l1 and

u, v P U . Write A “ pA1, . . . ,Aqq, where Al has pl columns. To simplify the matter

concerned, we restrict to orthogonal transformation only, i.e., ATA “ AAT “ Ip

(an p ˆ p identity matrix), which together with (3.2) implies that

Zt,lpuq “ AT

l Ytpuq, l “ 1, . . . , q. (3.3)

Hence, it holds that

Σz,kpu, vq ” CovtZtpuq,Zt`kpvqu

“ ATCovtYtpuq,Yt`kpvquA ” ATΣy,kpu, vqA for any u, v P U0,

(3.4)

where Σz,kpu, vq is block-diagonal with the main block sizes p1, . . . , pq.

Remark 3.1. (i) There is an identifiable issue among A and Ztp¨q, since (3.2) and

the block-diagonal structure of Σz,kpu, vq (i.e., q subseries Zt,lp¨q are uncorrelated

with each other both contemporaneously and serially) remain unchanged if tA,Ztp¨qu

is replaced by tAΓ,Γ´1Ztp¨qu for any invertible matrix Γ “ diagpΓ, . . . ,Γqq, where

Γl is a pl ˆ pl submatrix. With the additional constraint that A is an orthogonal ma-

trix, A and Ztp¨q still can not be determined uniquely, but the linear spaces spanned

by the columns of Al, denoted by CpAlq for l “ 1 . . . , q, and the latent segmentation

structure of Ztp¨q can.

(ii) To guarantee the orthogonality of A while maintaining the block-diagonal struc-

ture, we can adopt a normalization step to Ytp¨q. Define Vy “
ş

U0
Σy,0pu, uq du

and Vz “
ş

U0
Σz,0pu, uq du. We then replace Ytp¨q and Ztp¨q by V

´1{2
y Ytp¨q and

V
´1{2
z Ztp¨q, respectively. It follows from (3.2) that V

´1{2
y Ytp¨q “ A˚tV

´1{2
z Ztp¨qu

with the normalized transformation matrix A˚ “ V
´1{2
y AV

1{2
z and

Ip “

ż

U0

VartV´1{2
y Ytpuqu du “ A˚

ż

U0

VartV´1{2
z ZtpuquA˚T du “ A˚

tA˚
u
T,

which implies that A˚ is an orthogonal matrix. Moreover, the block diagonal struc-

ture of the autocovariance matrices of V
´1{2
z Ztp¨q is the same as that of Ztp¨q, there-
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fore V
´1{2
z Ztp¨q maintains the latent segmentation structure of Ztp¨q. In practice,

we apply such normalization idea as a preliminary step by substituting Ytp¨q with
pV

´1{2
y Ytp¨q, where pVy “ n´1

řn
t“1

ş

U0
tYtpuq´ȲpuqutYtpuq´ȲpuquT du is the sample

estimator for Vy. It is noteworthy that the above normalization relies on Vy instead

of the double integral via rVy “
ş

U0

ş

U0
Σy,0pu, vq dudv, since the positive-definiteness

no longer holds for rVy.

Remark 3.2. Combining (3.1) and (3.3) implies that the transformed curves sub-

series Zt,lpuq arises as the sum of one dynamical component rXt,lpuq and one white

noise component rεt,lpuq :

Zt,lpuq “ AT

l Xtpuq ` AT

l εtpuq ” rXt,lpuq ` rεt,lpuq, (3.5)

which takes same form of (3.1) with rXt,lp¨q and rεt,lp¨q being uncorrelated and la-

tent. Within each of the q groups, our second dimension reduction step applies

techniques in Section 3.3 to estimated curve series of Zt,lp¨q, thus identifying the

finite-dimensional structure of rXtlp¨q and based on which predicting future values

of Zt,lp¨q. According to the transformation in (3.2), we finally make predictions for

original curve series Ytp¨q. See also Remark 3.6 and Section 3.3.4.

3.2.2 Estimation procedure

To identify the latent segmentation structure in (3.2), we need to estimate A “

pA1, . . . ,Aqq, or more precisely, the spanned linear spaces, CpA1q, . . . , CpAqq. Given

some prespecified positive integer κ0, let

Wz “

κ0
ÿ

k“0

ż

U0

ż

U0

Σz,kpu, vqtΣz,kpu, vqu
T dudv,

Wy “

κ0
ÿ

k“0

ż

U0

ż

U0

Σy,kpu, vqtΣy,kpu, vqu
T dudv.

(3.6)

It follows from (3.4), (3.6) and the orthogonal constraint AAT “ Ip that

Wz “ ATWyA. (3.7)

To highlight the key idea, we first consider the case with q “ p, i.e., Zt1p¨q, . . . , Ztpp¨q

are p uncorrelated functional time series across all time lags. Then Σz,kpu, vq in

(3.4) reduces to a diagonal matrix, and so does Wz. Hence the columns of A are
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the eigenvectors of matrix Wy; see (3.7). We show below that this is still the case

when q ă p. Noting that all Σz,kpu, vq for k ě 0 and u, v P U0, are block diagonal

matrices with the main block sizes p1, . . . , pq, it is easy to see from (3.6) that Wz,

is also a block diagonal matrix of the same sizes. Let Γz be the orthogonal matrix

consisting of orthonormal eigenvectors of Wz, i.e.,

WzΓz “ ΓzD, (3.8)

where D is a diagonal matrix consisting of p eigenvalues. Arranging the diagonal

elements of D based on the order of the blocks in Wz, Γz is also a block diagonal

matrix of the same type as Wz. Then (3.7) implies that

WyAΓz “ AWzΓz “ AΓzD.

Thus the columns of Γy ” AΓz are the orthonormal eigenvectors of Wy. Combining

this with (3.2) yields that

ΓT

yYtp¨q “ ΓT

zA
TYtp¨q “ ΓT

zZtp¨q. (3.9)

Since Γz is a block diagonal orthogonal matrix with q blocks, ΓT

zZtp¨q effectively ap-

plies orthogonal transformation within each of the q groups of Ztp¨q such that neither

contemporaneous nor serial correlation exists across the q groups in ΓT

zZtp¨q. This

implies that knowing ΓT

zZtp¨q is as good as knowing the latent segmentation Ztp¨q.

Hence Γy can be seen as a column-permutation of the latent matrix A. We summa-

rize the above finding in a proposition below. Note that the order of eigenvectors in

Γz is unknown.

Proposition 3.1. (i) The orthogonal matrix Γz in (3.8) can be taken as a block-

diagonal orthogonal matrix with the same block structure as Wz.

(ii) An orthogonal matrix Γz satisfies (3.8) if and only if its columns are a permuta-

tion of the columns of a block-diagonal orthogonal matrix described in (i), provided

that any two different main diagonal blacks in Wz do not share the same eigenvalues.

The above proposition appears to be the same as Proposition 1 of Chang et al.

(2018), though it deals with a different segmentation problem. Its proof is therefore

omitted.

To discover the latent segmentation Zt, we perform the following two steps of oper-

ations:
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1. Let pΣy,kpu, vq be the consistent estimator of Σy,kpu, vq for k “ 1, . . . , κ0. Replac-

ing Σy,kpu, vq in (3.6) by pΣy,kpu, vq, we obtain an estimator of Wy via

xWy “

κ0
ÿ

k“0

ż

U0

ż

U0

pΣy,kpu, vqtpΣy,kpu, vqu
T dudv, (3.10)

and calculate its orthonormal eigenvectors ppη1, . . . , pηpq corresponding to the or-

dered eigenvalues λ1pxWyq ě ¨ ¨ ¨ ě λppxWyq.

2. We construct pA “ ppA1, . . . , pAqq with the corresponding columns being a permu-

tation of ppη1, . . . , pηpq such that pZtp¨q ” pATYtp¨q can be divided into q uncorre-

lated groups pAT
1Ytp¨q, . . . , pAT

qYtp¨q.

Remark 3.3. (i) We have developed the estimation procedure assuming that the

number of groups q is known or can be identified correctly. In practice, q is unknown.

We will see in Sections 3.2.3 and 3.4 that q as well as the segmentation structure of

Ztp¨q can be well estimated.

(ii) To ensure pA in Step 2 a valid estimator in the sense that CppAjq is consistent

to CpAjq for j “ 1, . . . , q, it is essential to make use of the consistent estimators

for Σy,kpu, vq in Step 1 under different asymptotic scenarios. When p is fixed or

p “ opn´1{2q, the sample versions of Σy,kpu, vq for k “ 1, . . . , κ0,

pΣS

y,kpu, vq “
1

n ´ k

n´k
ÿ

t“1

tYtpuq ´ ȲpuqutYt`kpvq ´ Ȳpvqu
T, (3.11)

are consistent and hence can be plugged in (3.10) to obtain xWy. When p grows

faster than n1{2, some sparsity assumptions on A can be imposed, which facilitates

the development of a thresholded estimator for Σy,kpu, vq to retain the consistency.

See details in Section 3.2.4.

(iii) Note that Wy in (3.6) relies on the double integral and the sum to accumulate

the (auto)covariance information as much as possible from each pu, vq P U2
0 and

from lags k “ 0 to κ0, whereas fixing at certain pu, vq or time lag may lead to

spurious estimation results. One can define an alternative positive definite matrix

by integrating along the diagonal path u “ v P U0,

|Wy “

κ0
ÿ

k“0

ż

U0

Σy,kpu, uqtΣy,kpu, uqu
T du.

However |Wy suffers from the loss of (auto)covariance information for u ‰ v in-

curred by the single integral. Note that all integrated terms in Wy are non-negative

124



definite. Hence there is no information cancellation over different lags, leading to

the results insensitive to the choice of κ0. In practice a small κ0 is often sufficient,

provided that the first κ0 lags carry sufficient information on the block diagonal

structure, while enlarging κ0 will add more noise to estimate Wy.

3.2.3 Permutation

In this section, we adopt a maximum cross-(auto)covariance method to divide the

components of pZtp¨q into q uncorrelated groups, where q and the group sizes p1, . . . , pq

are unknown. Recall that for curves Ztip¨q and Ztjp¨q within the same latent group,

one would expect that the lag-k cross-(auto)covariance function, that is Σ
pkq

z,ijpu, vq “

CovtZtipuq, Zpt`kqjpvqu to be significantly different from zero for some k, and u, v P

U0, thus leading to at least one large }Σ
pkq

z,ij}S , where }¨}S denotes the Hilbert–Schmidt

norm, i.e., for any B P S “ L2pU0q b L2pU0q, }B}S “ t
ş

U0

ş

U0
Bpu, vq2dudvu1{2. Let

pZtjp¨q “ pηT

jYtp¨q for j “ 1, ¨ ¨ ¨ , p. Inspired by the above fact, we define the maximum

cross-(auto)covariance over the lags between prespecified ´m and m for any pair

i ‰ j under the Hilbert–Schmidt norm as

pTij “ max
|k|ďm

}pΣ
pkq

z,ij}S “ max
0ďkďm

max
␣

}pηT

i
pΣy,kpηj}S , }pη

T

i ppΣy,kq
T
pηj}S

(

, (3.12)

and take pZtip¨q and pZtjp¨q as a pair of significantly cross-correlated curves if pTij is

greater than an appropriate threshold level τ ą 0. To be specific, we rearrange p0 “

ppp ´ 1q{2 values of pTij (1 ď i ă j ď p) in the descending order, pTp1q ě ¨ ¨ ¨ ě pTpp0q

and compute

ϱ̂ “ argmax
1ďjďcϱp0

pTpjq{
pTpj`1q, (3.13)

where cϱ P p0, 1q is a prescribed constant. Corresponding to pTp1q, . . . , pTpϱ̂q, we identify

ϱ̂ pairs of cross-correlated curves.

Remark 3.4. The intuition behind (3.13) is clear as follows. Let Tp1q ě ¨ ¨ ¨ ě

Tpp0q be the ordered true cross-(auto)covariances under the Hilbert–Schmidt norm.

Suppose there are only ϱ cross-correlated pairs among total p0 pairs, i.e., Tpϱq ą 0 and

Tpϱ`1q “ 0, then the ratio Tpjq{Tpj`1q “ 8 for j “ ϱ. To avoid the case of arbitrary

large ratio pTpjq{
pTpj`1q for j ą ϱ, we consider cϱ P p0, 1q. See other applications of

such ratio-based estimator in Lam and Yao (2012); Ahn and Horenstein (2013) and

Chang et al. (2018).
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The permutation in Step 2 can then be performed as follows. We start with p groups

with each pZtjp¨q in one group and then repeatedly merge two groups if two cross-

correlated curves are split over the two groups. The iteration is terminated until

all the cross-correlated pairs are within one group. Hence we obtain the estimated

group structure of pZtp¨q with the number of the final groups q̂ being the estimated

value for q. It is worth mentioning that in practice, one could repeat the permutation

step multiple times within each of the discovered groups to enhance the accuracy

of segmentations when p is large. See Section 3.5.2 for more technical details and

empirical evidence to support this proposal.

3.2.4 Functional thresholding

Our problem of interest now becomes how to estimate Σy,k for k “ 0, . . . , κ0 and Wy

in (3.6) consistently. When p diverges faster than n1{2, the sample (auto)covariance

function pΣS
y,k in (3.11) is no longer a consistent estimator for Σy,k. In such high-

dimensional case, we impose the sparsity condition below on the transformation

matrix A.

Condition 3.1. For A “ pAijqpˆp, there has some constant α P r0, 1q, such that

max1ďiďp

řp
j“1 |Aij|

α ď s1 and max1ďjďp

řp
i“1 |Aij|

α ď s2.

The parameters s1 and s2 determine the row and column sparsity levels of A, re-

spectively. We may allow s1 and s2 to grow at slow rates as p increases. The row

sparsity with small s1 entails that each component of Ytp¨q is a linear combination

of a small number of components in Ztp¨q, while the column sparsity with small s2

corresponds to the case that each Ztjp¨q has impact on only a few components of

Ytp¨q. The parameter α also controls the sparsity level of A with a smaller value

yielding a sparser A. It can be inferred from the fact Σy,kpu, vq “ AΣz,kpu, vqAT

that our imposed sparsity constraint in A is inherited by the functional sparsity

structure in Σy,k as justified in the following lemma.

Lemma 3.1. Let Σy,kpu, vq “ tΣ
pkq

y,ijpu, vqupˆp. Under Condition 3.1,
řp
i“1 }Σ

pkq

y,ij}
α
S ď

Ξ and
řp
j“1 }Σ

pkq

y,ij}
α
S ď Ξ for k “ 1, . . . , κ0, where Ξ “ s1s2

`

2 max1ďlďq pl ` 1
˘

.

Lemma 3.1 relies on the Hilbert–Schmidt norm to encourage the functional spar-

sity pattern in Σy,k in the sense that, for some i, j, k, }Σ
pkq

y,ij}S “ 0 if and only if

Σ
pkq

y,ijpu, vq “ 0 for all u, v P U0. This lemma reveals that the functional sparsity

structures in columns/rows of Σy,k are determined by s1, s2 and α with smaller

values yielding functional sparser Σy,k.
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Inspired by the spirit of thresholded estimator for large covariance matrix (Bickel

and Levina, 2008), we apply the functional thresholding rule, that combines the

functional generalizations of hard thresholding and shrinkage with the aid of the

Hilbert–Schmidt norm of functions, on entries of the sample autocovariance func-

tion pΣS
y,kpu, vq “ tpΣS

y,k,ijpu, vqupˆp in (3.11). Hence we construct the functional

thresholding estimator by

Tωk
ppΣS

y,kqpu, vq “

”

pΣS

y,k,ijpu, vqI
␣

}pΣS

y,k,ij

›

›

S ě ωku

ı

pˆp
, u, v P U0, (3.14)

where Ip¨q is the indicator function and ωk ě 0 is the thresholding parameter at lag

k. Taking pΣy,k in (3.10) as Tωk
ppΣS

y,kq yields

xWy “

κ0
ÿ

k“1

ż

U0

ż

U0

Tωk
ppΣS

y,kqpu, vqtTωk
ppΣS

y,kqpu, vqu
T dudv. (3.15)

Remark 3.5. The thresholding parameter ωk for each k “ 1, . . . , κ0 can be selected

using a K-fold cross-validation approach. Specifically, we sequentially divide the set

t1, . . . , nu into K validation sets V1, . . . , VK of approximately equal size. For each

j “ 1, . . . , K, let pΣ
S,pjq

y,k pu, vq and pΣ
S,p´jq

y,k pu, vq be the sample lag-k autocovaraince

functions based on the j-th validation set tYtp¨q : t P Vju and the remaining K ´ 1

sets tYtp¨q : t P Vi, i ‰ ju, respectively. We select the optimal ω̂k by minimizing

Rpωkq “
1

K

K
ÿ

j“1

›

›Tωk
ppΣ

S,pjq

y,k q ´ pΣ
S,p´jq

y,k

›

›

2

S,F,

where } ¨ }S,F denotes the functional version of Frobenius norm, i.e, for any B “

pBijqpˆp with each Bij P S, }B}S,F “ p
ř

i,j }Bij}
2
Sq1{2. Given the time break from the

leave-out validation set, the autocovariance estimation based on the remaining K´1

groups is affected by κ0 misutilized lagged terms. However, this effect is negligible

especially for sufficiently large n.

3.3 Estimate finite-dimensional structure

3.3.1 Model setting

Recall that the transformed curve subseries Zt,lpuq is expressed as the sum of

two uncorrelated and latent components, one finite-dimensional dynamic and one
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white noise, in the sense of (3.5). The goal of our second dimension reduction

step is to identify the finite-dimensional structure of rXt,lpuq and based on which

to predict future values of Zt,lpuq. Observe that both Zt,lpuq in (3.5) and Ytpuq

in (3.1) are decomposed in the same form. To present the methodology, we fo-

cus on a general model setup in this section for p-vector of functional time series

Ytpuq “ tYt1pu1q, . . . , YtppupquT satisfying

Ytpuq “ Xtpuq ` εtpuq, u “ pu1, . . . , upq P U “ U1 ˆ ¨ ¨ ¨ ˆ Up, (3.16)

where Xtpuq “ tXt1pu1q, . . . , XtppupquT is the latent and finite-dimensional dy-

namical component, and is uncorrelated with the white noise component εtpuq “

tεt1pu1q, . . . , εtppupquT. Note that (3.16) takes the same form of (3.1) but allows dif-

ferent component curves to be defined on the different sets U1, . . . ,Up, which are all

subintervals of the real line.

Remark 3.6. Under this general setting when p is small, say p ď 3, we can di-

rectly perform the dimension reduction approach developed in Section 3.3 on observed

Ytpuq to estimate the finite-dimensional structure of Xtpuq and based on which to

predict future values of Ytpuq. The appealing of this approach is that the dimension-

ality of Xtpuq is small. When p is large or moderately large, it is unrealistic to expect

this dimensionality to be still small. Therefore, under a common setting in practice

where all component series of Ytp¨q share the same support U0, we first adopt the

segmentation step in Section 3.2 on Ytp¨q such that the transformed curve series

are segmented into q uncorrelated groups. Then, within each group l “ 1, . . . , q, the

second dimension reduction step applies the methodology in this section to estimated

transformed curve subseries

pZt,lpuq “ pAT

l Ytpuq, u P U0, (3.17)

See details in Section 3.3.4 below.

Under (3.16), we also assume that both µpuq ” EtXtpuqu and

Mkpu,vq ” ErtXtpuq ´ µpuqutXt`kpvq ´ µpvqu
T
s pk “ 0, 1, . . .q, (3.18)

do not depend on t and
ş

U E
“

tXtpuquTXtpuq ` tεtpuquTεtpuq
‰

du ă 8. Then Xtpuq

admits the Karhunen–Loéve expansion:

Xtpuq ´ µpuq “

8
ÿ

j“1

ξtjφjpuq, u P U , (3.19)
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where φjpuq “ tφj1pu1q, . . . , φjppupquT for j ě 1 are a sequence of deterministic or-

thonormal functions in L2pUq satisfying
ş

UtφipuquTφjpuq du “ 1 if i “ j and 0 other-

wise, and ξtj are scalar random variables defined as ξtj “
ş

UtXtpuq´µpuquTφjpuq du

for j ě 1. Furthermore it holds that Epξtjq “ 0, Varpξtjq “ λj and Covpξti, ξtjq “ 0

for i ‰ j. We rank tξtjujě1 such that λ1 ě λ2 ě ¨ ¨ ¨ ě 0. We refer to Chiou et al.

(2014) and Happ and Greven (2018) for further details on the Karhunen–Loéve

expansion for multivariate functional data. Note that tφjpuqujě1 are the eigenfunc-

tions of the covariance function M0pu,vq defined in (3.18). They do not reflect the

serial correlations of the curves across different times.

Let L2pUjq be a Hilbert space of squared integrable functions defined on Uj for j “

1, . . . , p. We denote the p-fold Cartesian product by L2pUq “ L2pU1q ˆ ¨ ¨ ¨ ˆL2pUpq.
For F,G P L2pUq, we denote the inner product by

xF,Gy “

ż

U
tFpuqu

TGpuq du, (3.20)

with induced norm } ¨ } “ x¨, ¨y1{2. Note Mk in (3.18) can be regarded as the kernel

of an induced linear operator acting on L2pUq in the sense that it maps Gp¨q P L2pUq

to MkpGqp¨q “
ş

U Mkp¨ ,vqGpvq dv P L2pUq. To abuse the notation a bit, we use

Mk to denote both the kernel function and the induced operator. Provided that

tpλj,φjpuqqujě1 are the eigenpairs of M0pu,vq, it then holds that

ż

U
M0pu,vqφjpvq dv “ λjφjpuq, u P U and j ě 1. (3.21)

Remark 3.7. Now we give an heuristic interpretation of inner product (3.20) and

eigen-equation (3.21), which lead to a simple and direct way to calculate eigenval-

ues and eigenfunctions in Section 3.3.3 below. If we view each element in L2pUq

as a matrix with p columns and each column being a curve, (3.20) can be viewed

as the ‘standard’ inner product for vectors applying to the long vectors obtained by

stacking the p ‘columns’ together for each element of L2pUq. On the other hand,

M0pu,vq “
“

CovtXtipuiq, Xtjpvjqu
‰

pˆp
, see (3.18). Now we view each curve Xtip¨q

as an infinitely long vector, and we inflate M0 above by replacing its pi, jq-th element

by CovtXtip¨q, Xtjp¨qu, a covariance matrix of two infinitely long vectors. Then eigen-

equation (3.21) may be conceptually ‘recasted’ as M0bj “ λjbj pj “ 1, . . . , rq, where

M0 is a block matrix with infinite sizes and its pi, jq-th block is CovtXtip¨q, Xtjp¨qu,

and bj is a long vector obtained by stacking all the component curves of φjp¨q to-

gether. This transforms the eigen-problem in a space of curve bundles into an eigen-

problem of a matrix (of infinite sizes).
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The goal of the dimension reduction approach is to model and predict Ytpuq based

on some latent low-dimensional structure when p is small. We assume that Xtpuq

is r-dimensional in the sense that λr ą 0 and λr`1 “ 0 (Bathia et al., 2010). We

then estimate this low-dimensional structure based on autocovariance of the curve

series. Specifically, this requires to identify r and to estimate the dynamic space,

Cpφq, spanned by the orthonormal functions φ1puq, . . . ,φrpuq. See Sections 3.3.2

and 3.3.3 below.

3.3.2 Methodology

When Xtp¨q is r-dimensional, it follows from (3.16) and (3.19) that

Ytpuq “ µpuq `

r
ÿ

j“1

ξtj φjpuq ` εtpuq. (3.22)

Given some prescribed positive integer k0, put

xMkpu,vq “
1

n ´ k0

n´k0
ÿ

t“1

tYtpuq ´ ȲpuqutYt`kpvq ´ Ȳpvqu
T for k “ 0, 1, . . . , k0,

(3.23)

where Ȳp¨q “ n´1
řn
t“1Ytp¨q. Based on (3.21), a natural way to estimate the finite-

dimensional structure (3.22) is to perform an eigenanalysis for the operator xM0.

Unfortunately, xM0 is not a consistent estimator for M0, as CovtYtpuq,Ytpvqu “

M0pu,vq ` Covtεtpuq, εtpvqu. Motivated from the fact that CovtYtpuq,Yt`kpvqu “

Mkpu,vq for any k ě 1, which ensures that xMk is a legitimate estimator for Mk,

we proceed to estimate (3.22) based on xMk for k ě 1 instead.

Define a nonnegative operator to pull together the autocovariance information at

different lags:

Kpu,vq “

k0
ÿ

k“1

ż

I
Mkpu,wqtMkpv,wqu

T dw, u,v P U , (3.24)
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whose sample counterpart is

pKpu,vq “

k0
ÿ

k“1

ż

I

xMkpu,wqtxMkpv,wqu
T dw

“
1

pn ´ k0q2

n´k0
ÿ

t,s“1

k0
ÿ

k“1

tYtpuq ´ ȲpuqutYspvq ´ Ȳpvqu
T
xYt`k ´ Ȳ,Ys`k ´ Ȳy,

(3.25)

see (3.23). Note the non-negativity of Kpu,vq ensures no cancellation of the infor-

mation accumulated from lags 1 to k0, thus making the estimation not sensitive to

the choice of k0. In practice, we tend to select small k0, as the strongest autocorre-

tions usually appears at the small time lags.

Let ξt “ pξt1, . . . , ξtrq
T and Ωk “ Epξtξ

T

t`kq.Denote byψjpuq “ tψj1pu1q, . . . , ψjppupquT

for j “ 1, . . . , r the orthonormal eigenfunctions of Kpu,vq corresponding to the r

largest eigenvalues θ1 ě ¨ ¨ ¨ ě θr ą 0 of Kpu,vq. Let Cpψq “ spantψ1puq, . . . ,ψrpuqu.

Then it follows from Proposition 1 of Bathia et al. (2010) that operator K only has r

positive eigenvalues with θi “ 0 for i ě r` 1 under model (3.22), and Cpψq “ Cpφq,

provided that Ωk is a full-ranked matrix for some k ď k0. Therefore, Xtp¨q can be

expanded using r basis functions ψ1p¨q, . . . ,ψrp¨q, i.e.,

Xtpuq ´ µpuq “

r
ÿ

j“1

ζtjψjpuq, u P U ,

where ζtj “ xXt ´ µ,ψjy. As a result, the linear dynamic structure of Ytp¨q is fully

captured by that of the r-dimensional vector process ζt “ pζt1, . . . , ζtrq
T.

Based on the above findings, we propose the following procedure to predict Ytp¨q

consisting of three steps:

a. Carry out an eigenanalysis on pKpu,vq to obtain r̂ non-zero estimated eigenvalues

and estimated eigenfunctions pψ1puq, . . . , pψr̂puq, see details in Section 3.3.3. The

corresponding estimated coefficients are ζ̂tj “ xYt ´ Ȳ,ψjy for j “ 1, . . . , r̂.

b. Model the r̂-dimensional vector process ζ̂t “ pζ̂t1, . . . , ζ̂tr̂q
T based on VAR or

other vector time series models and obtain h-step ahead prediction as ζ̂t`h.

c. Recover h-step ahead functional prediction as

pYt`hpuq “ Ȳpuq `

r̂
ÿ

j“1

ζ̂pt`hqjψ̂jpuq, h ě 0. (3.26)
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3.3.3 Eigenanalysis and estimation of r

Performing an eigenanalysis in a Hilbert space consisting of multiple curves is not

a trivial matter. To overcome the difficulties due to multiple curves, Happ and

Greven (2018) first calculate each of p component eigenfunctions separately using

the existing methods for univariate curves and then construct the required multiple

eigenfunctions from those univariate ones based on the theory of integral equations

(Zemyan, 2012).

Drawing the inspiration from Remark 3.7 above, we propose a simple and direct

method for estimating the eigenfunctions of operator K. We transform the eigen-

analysis for K to that for a matrix (of finite sizes) based on a well-known matrix

duality property that ABT and BTA share the same non-zero eigenvalues for any

matrices A and B of the same sizes, which also holds for operators in a Hilbert

space. When d “ 1, the proposal reduces to the method of Bathia et al. (2010) for

univariate functional time series.

We present a heuristic argument first. To view the operator pKp¨, ¨q defined in (3.25)

as ABT, denote by yt the vector of infinite length obtained by stacking p curves

Yt1p¨q ´ Ȳ1p¨q, . . . , Ytpp¨q ´ Ȳpp¨q together. Here we view each curve Ytjp¨q as an in-

finitely long vector, and thus yt is viewed as consisting of p infinitely long vectors.

Naturally we view yT
t ys as xYt ´ Ȳ,Ys ´ Ȳy. Put Yk “ py1`k, . . . ,yn´k0`kq for

k “ 0, 1, . . . , k0. Then pK may be represented by an 8 ˆ 8 matrix

pK “
1

pn ´ k0q2
Y0

k0
ÿ

k“1

YT

kYkY
T

0 .

Furthermore pψpuq “ tψ̂1pu1q, ¨ ¨ ¨ , ψ̂ppupquT is an eigenfunction of pK if and only

if the 8 ˆ 1 vector obtained by stacking p curves ψ̂1p¨q, ¨ ¨ ¨ , ψ̂pp¨q together is the

eigenvector of pK. Now applying the aforementioned duality, pK shares the same

non-zero eigenvalues with pn ´ k0q ˆ pn ´ k0q matrix

qK “
1

pn ´ k0q2

k0
ÿ

k“1

YT

kYkY
T

0Y0. (3.27)

For each j “ 1, . . . , r, let γj “ pγ1j, . . . , γnjq
T be the eigenvector of qK corre-

sponding to its j-th largest eigenvalue. The duality also implies that pψjpuq “

t pψj1pu1q, ¨ ¨ ¨ , pψjppupquT is the eigenfunction of pK corresponding to its j-th largest
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eigenvalue, where

pψjipuiq “

n´k0
ÿ

t“1

γtjtYtipuiq ´ Ȳipuiqu, i “ 1, . . . , p, j “ 1, . . . , r. (3.28)

Note that the eigenfunctions pψjp¨q, . . . , pψrp¨q obtained above may not be orthonor-

mal. But they may be made orthonormal by applying a Gram-Schmidt algorithm.

The heuristic argument presented above is justified by Proposition 1 below. Its proof

is similar to that of Proposition 2 of Bathia et al. (2010), and is therefore omitted.

Proposition 3.2. The operator pK shares the same non-zero eigenvalues with matrix
qK defined in (3.27) with the corresponding eigenfunctions given in (3.28).

In practice we need to estimate r (i.e. the number of non-zero eigenvalues). Let

λ1pqKq ě ¨ ¨ ¨ ě λn´k0pqKq ě 0 be the eigenvalues of qK. We take the commonly-

adopted ratio-based estimator for r as:

pr “ argmax
1ďjďcrpn´k0q

λjpqKq

λj`1pqKq
, (3.29)

where cr P p0, 1q is a prescribed constant. In empirical studies, we take cr “ 0.75

to avoid the fluctuations due to the ratios of extreme small values. See further

discussion in Lam and Yao (2012). The above method also applies to the cases

where Uj, for different j, have different dimensions, as in Happ and Greven (2018).

3.3.4 Dimension reduction and prediction for moderate and

large p

When p is moderate or large, after the first segmentation step in Section 3.2, our

second dimension reduction step applies the techniques in Sections 3.3.2 and 3.3.3

to each estimated transformed curve subseries pZt,lp¨q in (3.17) instead of Zt,lp¨q for

l “ 1, . . . , q. Specifically, following the same spirit as (3.24), we define a nonnegative

operator,

Klpu, vq “

k0
ÿ

k“1

ż

U0

Mk,lpu,wqtMk,lpv, wqu
T dw, u, v P U0, (3.30)
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for the l-th group, where Mk,lpu, vq “ CovtZt,lpuq,Zt`k,lpvqu. With the aid of (3.17),

the estimators of Mk,lpu, vq and Klpu, vq are respectively defined by

xMk,lpu, vq “ pAT

l
pΣy,kpu, vqpAl, (3.31)

pKlpu, vq “

k0
ÿ

k“1

ż

U0

xMk,lpu,wqtxMk,lpv, wqu
T dw. (3.32)

Implementing the three-step procedure in Section 3.3.2 on pKlpu, vq for each l, we

obtain the h-step ahead prediction for transformed curve subseries pZt`h,lp¨q and

hence the h-step ahead prediction for original curve subseries pYt`h,lp¨q “ pAl
pZt`h,lp¨q.

It is noteworthy that (3.31) requires the consistent estimators of Σy,kpu, vq for k “

1, . . . , k0. Its implementation under the high-dimensional setting can thus be done

by setting pΣy,k “ Tωk
ppΣS

y,kq.

3.4 Theoretical properties

In this section, we present theoretical analysis of our estimation procedure consisting

of the segmentation step followed by the dimension reduction step.

Before imposing the regularity conditions, we solidify some notation and definition.

For any B “ pBijqpˆq with each Bij P S, we denote its functional version of matrix l8

norm by }B}S,8 “ maxi
ř

j }Bij}S . Denote the p-fold Cartesian product defined on

U0 by H “ L2pU0qˆ¨ ¨ ¨ˆL2pU0q. We define the functional version of sub-Gaussianity

that facilities the development of non-asymptotic results for Hilbert space-valued

random elements.

Definition 3.1. Let Xtp¨q be a mean zero random variable in L2pU0q and Σ0 :

L2pU0q Ñ L2pU0q be a covariance operator. Then Xtp¨q is a sub-Gaussian process if

there exists a constant c ą 0 such that Erexptxx,Xt´EpXtqyus ď expt2´1c2xx,Σ0pxqyu

for all x P L2pU0q.

Condition 3.2. (i) Ytp¨q is a sequence of multivariate functional linear processes

with sub-Gaussian errors, i.e., Ytp¨q “
8
ř

l“0

Dlpϵt´lq, where Dl “ pDl,ijqpˆp with each

Dl,ij P S and ϵtp¨q “ tϵt1p¨q, . . . , ϵtpp¨quT with independent components of mean-zero

sub-Gaussian processes satisfying Definition 3.1; (ii) The coefficient functions satisfy
ř8

l“0 }Dl}S,8 “ Op1q; (iii) maxj
ş

U0
Covtϵtjpuq, ϵtjpuqu du “ Op1q.
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Condition 3.3. The spectral density operator f y,θ “ 2π´1
ř

kPZΣy,kexpp´ikθq for

θ P r´π, πs exists and the functional stability measure defined in (3.33) is finite, i.e.,

My “ 2π ess sup
θPr´π,πs,ΦPH0

xΦ,f y,θpΦqy

xΦ,Σy,0pΦqy
ă 8, (3.33)

where H0 “ tΦ P H : xΦ,Σy,0pΦqy P p0,8qu.

Condition 3.4. κ0, m and k0 are fixed positive integers.

Condition 3.3 places a finite upper bound on the functional stability measure, which

characterizes the effect of small decaying eigenvalues of Σy,0 on the numerator of

(3.33), thus being able to handle infinite-dimensional functional objects Ytjp¨q. See its

detailed discussion in Guo and Qiao (2022). Condition 3.2 (i) can be viewed as the

functional (or multivariate) generalization of the multivariate (or functional) linear

process. Condition 3.2 (ii) and (iii) guarantees the covariance-stationarity of tYtp¨qu

and implies that maxj
∫

U0
Σ

p0q

y,jjpu, uqdu “ Op1q (Fang et al., 2022). Both conditions

are essential to derive the convergence rate for pΣy,k under the functional version of

ℓ8 norm, maxi,j }pΣ
pkq

y,ij ´ Σ
pkq

y,ij}S “ Op

␣

Myplog p{nq1{2
(

, which plays a crucial rule

in our theoretical analysis. In general, we can relax Conditions 3.2(ii) and (iii) by

allowing
ř8

l“0 }Dl}S,8 and maxj
ş

U0
Covtϵtjpuq, ϵtjpuqu du to diverge slowly with p,

then our established rates below will depend on these two terms.

We first establish the group recovery consistency of the segmentation step. We refor-

mulate the permutation step in Section 3.2.3 in an equivalent graph representation

way. With an appropriate level τn ą 0, we build an estimated graph pG, pEq with

vertex set G “ t1, . . . , pu and edge set

pE “
␣

pi, jq : pTij ą τn
(

, (3.34)

and split it into multiple connected subgraphs p pGl1 , pEl1q for l1 “ 1, . . . , q̂. Note that

p vertexes in G corresponds to the ordered eigenvectors ppη1, . . . , pηpq. Denote by

tpλjpWyq,ηjqu
p
j“1 the (eigenvalue, eigenvector) pairs of Wy with λ1pWyq ě ¨ ¨ ¨ ě

λppWyq. The true segmented groups specified as G1, . . . , Gq forms a partition of G

such that

ΓGl
“ pηjqjPGl

P Rpˆpl with |Gl| “ pl and CpΓGl
q “ CpAlq for l “ 1, . . . , q. (3.35)

Condition 3.5. For each l and every possible Hl “ phl,1, . . . ,hl,plq P Rpˆpl with

CpHlq “ CpΓGl
q “ CpAlq, there exists a connected graph

`

t1, . . . , plu, El
˘

, some
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ςl ą 0 and fixed m such that

max
0ďkďm

max
!

}hT

l,iΣy,khl,j}S , }h
T

l,ipΣy,kq
Thl,j}S

)

ě ςl, @pi, jq P El.

Condition 3.5 formalizes the supporting intuition of the permutation step in Sec-

tion 3.2.3. To be specific, due to the fact that A “ pA1, . . . ,Aqq in (3.2) is not

uniquely defined, this condition ensures that the group Gl is inseparable at the min-

imal signal level ςl ą 0 given any legitimate transformation Hl for each l. Recall

that Wz “ diagpWz,1, . . . ,Wz,qq in (3.7) is a block diagonal matrix, where Wz,l is

a pl ˆ pl matrix. For each l “ 1, . . . , q, we further define the minimum difference

between eigenvalues of Wz,l and those of other Wz,j’s as

ρl “ min
j‰l

min
λ̃lPλpWz,lq,λ̃jPλpWz,jq

|λ̃l ´ λ̃j|,

where λpBq denotes the set of eigenvalues of the matrix B. Let ρ “ min1ďlďq ρl ą 0

and ς “ min1ďlďq ςl ą 0.

Theorem 3.1. Let Conditions 3.1–3.5 hold and νn “ Ξ2M1´α
y plog p{nqp1´αq{2, where

Ξ is specified in Lemma 3.1. There exits some constant c ą 0 such that cρ´1Ξνn ă

τn ă ς ´ cρ´1Ξνn, then Gl for each l in (3.35) is detected by (3.34) in the sense of

max1ďlďq P p pGl1 ‰ Glq Ñ 0 for some l1 P t1, . . . , qu.

Theorem 3.1 guarantees the group recovery consistency of our segmentation step,

which further implies that q̂ “ q and p̂l “ pl for l “ 1, . . . , q hold with high proba-

bility. Supported by Theorem 3.1, our subsequent theoretical results are developed

by assuming that the group structure of Ztp¨q, (i.e., tGl, l “ 1, . . . , qu) is correctly

identified or known.

To evaluate the errors in estimating CpAlq “ CpΓGl
q for l “ 1, . . . , q, we use a dis-

crepancy measure (Chang et al., 2018) of two linear spaces spanned by the columns

of Bi P Rpˆp̃ with BT
iBi “ Ip̃ for i “ 1, 2 as

D
␣

CpB1q, CpB2q
(

“
a

1 ´ p̃´1tracepB1BT
1B2BT

2 q P r0, 1s. (3.36)

Then D
␣

CpB1q, CpB2q
(

is equal to 0 if and only if CpB1q “ CpB2q, and to 1 if and

only if the two spaces are orthogonal.

Theorem 3.2. Let Conditions 3.1–3.4 hold and pΓGl
“ pη̂jqjPGl

. There exists some

constants ck ą 0 for k “ 1, . . . , κ0 such that, with the choice of threshold levels
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ωk “ ckMyplog p{nq1{2,

max
1ďlďq

ρlD
␣

CppΓGl
q, CpΓGl

q
(

“ Op

`

νn
˘

, (3.37)

where νn is specified in Theorem 3.1.

Remark 3.8. Theorem 3.2 presents the uniform convergence rate over l “ 1, . . . , q

for ρlD
␣

CppΓGl
q, CpΓGl

q
(

, which is determined by both dimensionality parameters

(n, p, s1, s2) and internal parameters (My, α). It is easy to see that the rate is faster

for smaller values of ts1, s2,My, αu, while enlarging the minimum eigen-gap between

Wz,l and other blocks (i.e., larger ρl) reduces the difficulty of estimating CpΓGl
q.

We now turn to investigate the theoretical properties of the second dimension reduc-

tion step. Inherited from the segmentation step, tZt,lp¨q, l “ 1, . . . , qu in (3.6) relies

on the specific form of A “ pA1, . . . ,Aqq, and thus is not uniquely defined. Yet

intuitively, we only require a certain transformation matrix to make our subsequent

analysis related to the set tη̂j, j “ 1, . . . , pu mathematically tractable.

Denote by tΠGl
, l “ 1, . . . , qu the particular set of legitimate transformation we

are interested in. To save space and avoid confusion, we defer the construction of

ΠGl
to (3.44) in Section 3.A of the Appendix. Note that CpΠGl

q “ CpAlq for each

l. Let Zt,lp¨q “ ΠT

Gl
Ytp¨q. Recall that the primary goal of this step is to identify

rl and to estimate the dynamic space spanned by ψl,1p¨q, . . . ,ψl,rl
p¨q, denoted by

Cpψlq “ spantψl,1p¨q, . . . ,ψl,rl
p¨qu, for each l, where ψl,j “ pψl,j1, . . . , ψl,jplq

T for

j “ 1, . . . , rl are the orthonormal eigenfunctions of Kl in (3.30) corresponding to

non-zero eigenvalues θl,1, . . . , θl,rl . Also denote by tθ̂l,j, pψl,jp¨qujě1 the (eigenvalue,

eigenfunction) pairs of pKl in (3.32). Note we always arrange the eigenvalues in

descending order. Our asymptotic results are based on the following regularity

conditions:

Condition 3.6. max1ďlďq E
`

}Zt,l}
2
˘

“ Op1q and max1ďlďq pl “ Op1q.

Condition 3.7. For each l, all rl non-zero eigenvalues of Kl are different, i.e.,

θl,1 ą ¨ ¨ ¨ ą θl,rl ą 0 “ θl,rl`1 “ . . . .

In the spirit of (3.29), we can obtain ratio-based estimator r̂l for rl based on the

eigenanalysis of pKl for each l. To facilitate the consistency analysis of r̂l and to avoid

cases of ‘0/0’, we propose a modified estimator

r̂l “ argmax
1ďjďn´k0

λjppKlq ` δn

λj`1ppKlq ` δn
, (3.38)
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where δn ą 0 provides an upper bound correction to λjppKlq for j ą rl and all l.

Theorem 3.3. Suppose Conditions 3.1–3.4 and 3.6–3.7 hold, δn “ ρ´1Ξνn and

δn maxl θl,1{ minl θ
2
l,rl

Ñ 0. Then for r̂l defined in (3.38), we have that min1ďlďq P pr̂l “

rlq Ñ 1.

Theorem 3.3 shows that rl can be correctly identified via (3.38) with probability

tending to one uniformly over t1, . . . , qu. In practice, provided that δn is usually

hard to be specified, we instead adopt (3.29) operating on pKl to estimate rl for each

group. This theorem also provides support for the assumption that rl “ r̂l or is

known for all l to facilitate further convergence results.

Let Cppψlq “ span
␣

pψl,1p¨q, . . . , pψl,rl
p¨q
(

be the dynamic space spanned by rl estimated

eigenfunctions. To measure the discrepancy between Cpψlq and Cppψlq, we introduce

the following metric. For two r-dimensional subspaces Cpb1q “ spantb11p¨q, . . . ,b1rp¨qu

and Cpb2q “ tb21p¨q, . . . ,b2rp¨qu of H satisfying xbij,biky “ 1 if j “ k and 0 oth-

erwise for i “ 1, 2, the discrepancy measure between Cpb1q and Cpb2q is defined

as

D
␣

Cpb1q, Cpb2q
(

“

g

f

f

e1 ´ r´1

r
ÿ

j,k“1

`

xb1j,b2ky
˘2

P r0, 1s.

This measure equals 0 if and only if Cpb1q “ Cpb2q and 1 if and only if two spaces are

orthogonal. It is worth noting that this can be seen as a multivariate generalization

of the discrepancy measure used in Bathia et al. (2010) and also the generalization

of (3.36) to the functional domain.

Theorem 3.4. Let Conditions 3.1–3.4 and 3.6–3.7 hold. Then we have that

max
1ďlďq

ρlD
␣

Cpψ̂lu, Cpψlq
(

“ Op

`

Ξνn
˘

. (3.39)

Comparing with (3.37), the uniform convergence rate in (3.39) is slower by a multi-

plicative factor Ξ. This comes from controlling the additional term Σy,k (recall (3.31))

in the sense of }Σy,k}S,8 ď Ξ maxi,j }Σ
pkq

y,ij}
1´α
S “ OpΞq as required to bound }xMk,l ´

Mk,l}S for each l.

3.5 Simulation studies

We conduct a series of simulations to illustrate the finite sample performance of the

proposed methods for cases when p is moderate and large in Sections 3.5.1 and 3.5.2,

respectively.
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3.5.1 Moderate p

In each simulated scenario, we generate p-vector of observed functional time series

Ytpuq for t “ 1, . . . , n and u P U0 “ r0, 1s by (3.2), where the entries of A are sam-

pled from Uniformr´3, 3s and p-vector of transformed functional time series Ztpuq is

decomposed as the sum of a dynamic element Xtpuq “ tXt1puq, . . . , XtppuquT and a

white noise element εtpuq “ tεt1puq, . . . , εtppuquT according to (3.1). Each curve com-

ponent of εtp¨q is generated by εtjpuq “
ř10
l“1 2´pl´1qetjlψlpuq for j “ 1, . . . , p, where

etjl are independent standard normal and tψlp¨qu10l“1 is a 10-dimensional Fourier basis

function. To generate Ztp¨q with predesigned group structure, we need to generate

its finite-dimensional dynamic element Xtp¨q with the same group structure. Specif-

ically, let ϑtgpuq “
ř5
l“1 ζtglψlpuq be 5-dimensional curve dynamics for g “ 1, . . . , 30.

The basis coefficients ζtg “ pζtg1, . . . , ζtg5q
T are generated from a stationary VAR

model ζtg “ Ugζpt´1qg ` et for each g. The entries of Ug P R5ˆ5 are sampled from

Uniformr´3, 3s and rescaled by ι{ρpUgq with ρpUgq being the spectral radius of Ug

and ι „ Uniformr0.5, 1s to guarantee the stationary of ζtg. The components of the

innovation et are sampled independently from N p0, 1q. We consider the following

three examples to generate Xtp¨q with different group structures for p “ 6, 10, 15

based on ϑt1p¨q, . . . , ϑt5p¨q.

Example 1. Xt1p¨q “ ϑt1p¨q, Xtjp¨q “ ϑpt`j´2q2p¨q for j “ 2, 3 and Xtjp¨q “

ϑpt`j´4q3p¨q for j “ 4, 5, 6.

Example 2. Xtjp¨q for j “ 1, . . . , 6 are the same as those in Example 1 and

Xtjp¨q “ ϑpt`j´7q4p¨q for j “ 7, . . . , 10.

Example 3. Xtjp¨q for j “ 1, . . . , 10 are the same as those in Example 2 and

Xtjp¨q “ ϑpt`j´11q5p¨q for j “ 11, . . . , 15.

Therefore, Xtp¨q consists of q “ 3, 4 and 5 uncorrelated groups of curve subseries in

Examples 1, 2 and 3, respectively, where the number of component curves per group

is pl “ l for l “ 1, . . . , q. The white noise sequence εtp¨q ensures that Ztp¨q shares

the same group structure as Xtp¨q. Unless otherwise stated, we set k0 “ κ0 “ m “ 5

and cr “ cϱ “ 0.75 in our simulations, as our simulation results suggest that they

are insensitive to the maximum lag orders and the prescribed constants used in

ratio-based estimators.

The performance of our proposed procedure is examined in terms of linear space

specification, group identification and post-sample prediction. We start with the

definition of an ‘effective’ specification of the q linear spanned spaces CpAlq for

l “ 1, . . . , q. Since the ranks of Ai and pAi are not necessarily the same, we use a
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general discrepancy measure (Chang et al., 2018) of two linear spaces spanned by

the columns of Bi P Rpˆp̃i with rankpBiq “ p̃i for i “ 1, 2 as

rD2
`

CpB1q, CpB2q
˘

“ 1 ´
1

minpp̃1, p̃2q
tracepQ1Q2q P r0, 1s,

where Qi “ BipB
T
iBiq

´1BT
i , for i “ 1, 2. Then rD2pCpB1q, CpB2qq is equal to 0 if and

only if CpB1q Ă CpB2q or CpB2q Ă CpB1q, and to 1 if and only if the two spaces are

orthogonal. We call ppA1, . . . , pAq̂q an effective specification for A “ pA1, . . . ,Aqq if

(i) 1 ă q̂ ď q; (ii) After pairing each Al (l “ 1, . . . , q) with pAj for which

l1 “ fplq :“ argmin
jPp1,...,q̂q

rD2
`

CpAlq, CppAjq
˘

,

the ranks of Al paired with that of the pAl1 satisfy
ř

l:fplq“l1 rankpAlq “ rankppAl1q

for each l1 “ 1, . . . , q̂. Intuitively, such specification for A leads to an effective

segmentation for Ztp¨q in the sense that each identified group in pZtp¨q contains at

least one, but not all, groups in Ztp¨q. To ease reference, we call the above situation

‘effective segmentation’ hereafter. For the special case of complete segmentation

(q̂ “ q), we compute the maximum and averaged estimation errors for ppA1, . . . , pAq̂q,

respectively defined as

maxD2
ppA,Aq “ max

1ďlďq

rD2
pCpAlq, CppAfplqqq and D̄2

ppA,Aq “
1

q

q
ÿ

l“1

rD2
pCpAlq, CppAfplqqq,

respectively, to assess the ability of our method in fully recovering the spanned

spaces, CpA1q, . . . , CpAqq.

To evaluate the post-sample predictive accuracy, we integrate segmentation trans-

formation and dimension reduction in Sections 3.2 and 3.3 into the VAR estimation

(denoted as SegV) to obtain h-step ahead prediction consisting of three steps below.

i. Treat the first n ´ h observations as training data, adopt the normalization

step in Section 3.2.1 to obtain rYtp¨q “ pV
´1{2
y Ytp¨q, implement the segmentation

transformation step in Section 3.2.2 on trYtp¨qu
n´h
t“1 and the permutation step in

Section 3.2.3 to calculate ppA1, . . . , pAq̂q and to identify q̂ uncorrelated groups,
pZt,1p¨q, . . . , pZt,q̂p¨q.

ii. Following Section 3.3.4, within each identified group, apply the three-step ap-

proach in Section 3.3.2 on tpZt,lp¨qu
n´h
t“1 to achieve the h-step ahead prediction

pZn,lp¨q for l “ 1, . . . , q̂. In particular, for each l, select the best VAR that best fits

each lower-dimensional vector process tζ̂t,lu
n´h
t“1 according to the AIC criterion.
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iii. Obtain the h-step ahead prediction for normalized curves rYn “ pYT
n,1, . . . ,Y

T
n,q̂q

T

with each rYn,lp¨q “ pAl
pZn,lp¨q and hence for original curves pYnp¨q “ pV

1{2
y

rYnp¨q.

Compute the mean squared prediction error (MSPE), defined as

MSPE “
1

pN

p
ÿ

j“1

N
ÿ

i“1

tŶnjpviq ´ Ynjpviqu
2, (3.40)

where v1, . . . , vN are equally spaced time points in r0, 1s.

We compute the relative prediction error as the ratio of MSPE in (3.40) to that

under the ‘oracle’ case, which uses the true A and the embedded group structure

in the estimation. For comparison, we also implement an univariate functional

prediction method on each Ytjp¨q separately by performing univariate dimension

reduction (Bathia et al., 2010), then predicting vector time series based on the best

fitted VAR model and finally recovering functional prediction (denoted as UniV).

We generate n “ 200, 400, 800, 1600, 3200 observations for each example and repli-

cate each simulation 500 times. Table 3.1 provide numerical summaries, including

the relative frequencies of the effective segmentation with respect to q̂ “ q and

q̂ ě q ´ 1, and the estimation errors for pA under the complete segmentation case.

Note that due to the normalized model assumption, we shall use a transformed ver-

sion of A in computing the estimation errors. Let A˚ “ V
´1{2
y AV

1{2
z “ pA˚

1 , . . . ,A
˚
q q

and rA “ V
´1{2
y A “ prA1, . . . , rAqq. Since Vz is a block-diagonal matrix, it holds that

CprAlq “ CpA˚
l q for l “ 1, . . . , q. Hence, rD2pCppAq, CpAqq can be calculated by re-

placing A by V
´1{2
y A. As one would expected, the proposed method provides higher

proportions of effective segmentation and lower estimation errors as n increases, and

performs fairly well for reasonably large n as p increases. For pp, nq “ p6, 200q, we

observe 62.6% complete segmentation with D̄2ppA,Aq as low as 0.079. Furthermore,

the proportions of effective segmentation with q̂ ě q´ 1 are above 93% for n ě 200.

Similar results can be found for cases of pp, nq “ p10, 800`q and p15, 1600`q, whose

proportions of effective segmentation with q̂ ě q ´ 1 remain higher than 87.4% and

83%, respectively. Table 3.1 also reports the relative h-step ahead prediction errors.

It is evident that SegV significantly outperforms UniV in all settings, demonstrating

the effectiveness of our proposed segmentation transformation and dimension reduc-

tion in predicting future values. Although the proportions of complete segmentation

are not high especially when p “ 15, the corresponding proportions of q̂ ě q ´ 1

become substantially higher, and SegV performs very similarly to the oracle case

with its relative prediction errors being close to 1.
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Table 3.1: Examples 1, 2 and 3: The relative frequencies of effective segmentation
with respect to q̂ “ q and q̂ ě q ´ 1, and the means (standard deviations) of

maxD2ppA,Aq, D̄2ppA,Aq, and relative MSPEs over 500 simulation runs.

p n = 200 n = 400 n = 800 n = 1600 n = 3200

6

pq “ q 0.626 0.722 0.772 0.88 0.972
pq ě q ´ 1 0.93 0.988 0.998 1 1

maxD2ppA,Aq 0.128(0.088) 0.089(0.066) 0.053(0.048) 0.035(0.037) 0.023(0.027)

D̄2ppA,Aq 0.079(0.052) 0.053(0.038) 0.030(0.025) 0.019(0.019) 0.012(0.014)
SegV 1.081(0.172) 1.048(0.105) 1.026(0.065) 1.014(0.048) 1.010(0.036)
UniV 1.584(0.453) 1.598(0.423) 1.596(0.379) 1.651(0.443) 1.623(0.430)

10

pq “ q 0.324 0.444 0.644 0.806 0.898
pq ě q ´ 1 0.490 0.688 0.874 0.972 0.994

maxD2ppA,Aq 0.301(0.108) 0.193(0.09) 0.117(0.064) 0.072(0.049) 0.035(0.025)

D̄2ppA,Aq 0.183(0.059) 0.115(0.047) 0.069(0.035) 0.041(0.024) 0.019(0.013)
SegV 1.291(0.271) 1.174(0.215) 1.089(0.143) 1.059(0.091) 1.037(0.070)
UniV 1.708(0.404) 1.836(0.410) 1.841(0.436) 1.862(0.392) 1.863(0.397)

15

pq “ q 0.032 0.178 0.410 0.622 0.790
pq ě q ´ 1 0.086 0.344 0.616 0.832 0.948

maxD2ppA,Aq 0.426(0.091) 0.347(0.121) 0.241(0.113) 0.157(0.091) 0.090(0.059)

D̄2ppA,Aq 0.273(0.054) 0.195(0.05) 0.128(0.042) 0.077(0.033) 0.041(0.019)
SegV 1.477(0.313) 1.363(0.277) 1.166(0.156) 1.091(0.098) 1.056(0.069)
UniV 1.805(0.370) 1.967(0.394) 2.033(0.394) 2.001(0.384) 2.064(0.413)

3.5.2 Large p

Under a high-dimensional large p scenario, a natural question to ask is whether the

segmentation method still perform well, and if not, whether a satisfactory improve-

ment is attainable via the functional-thresholding developed in Section 3.2.4. To

this end, we generate Ytp¨q for p “ 30, 60 and n “ 200, 400 by the same procedure

as in Section 3.5.1. Specifically, we let Xtp3l´2qp¨q “ ϑtlp¨q, Xtp3l´1qp¨q “ ϑpt`1qlp¨q,

Xtp3lqp¨q “ ϑpt`2qlp¨q for l “ 1, . . . , q. This setting ensures q uncorrelated groups of

curve subseries in Xtp¨q with pl “ 3 component curves per group and hence q “ 10

and 20 correspond to p “ 30 and 60, respectively. Let the pˆp transformation matrix

A “ ∆1 ` δ∆2. Here ∆1 “ diagp∆11, . . . ,∆1pp{6qq with elements of each ∆1i P R6ˆ6

being sampled from Uniformr´3, 3s for i “ 1, . . . , p{6, and ∆2 is a matrix with two

randomly selected non-zero elements from Uniformr´1, 1s each row. We set δ “ 0.1

and 0.5. It is notable that our setting results in a very high-dimensional learning

task in the sense that the intrinsic dimension 30 ˆ 5 “ 150 or 60 ˆ 5 “ 300 is large

relative to the sample size n “ 200 or 400..

We assess the performance of ordinary segmentation (Seg) with functional-thresholding-

based segmentation (FTSeg) in discovering the group structure. The optimal thresh-

olding parameters ω̂k in FTSeg are selected by the five-fold cross validation as dis-

cussed in Remark 3.5(i). Tables 3.2 and 3.3 report the relative frequencies of the

effective segmentation with respect to different levels of group identification q̂ ě q{2

and q̂ ě 3q{5. To enhance the accuracy of identified group structure, we propose to
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Table 3.2: The relative frequencies of effective segmentation with respect to q̂ ě q{2
over 500 simulation runs.

pp, ωq
Seg FTSeg

n “ 200 n “ 400 n “ 200 n “ 400
(30,0.1) 0 0 0.704 0.990
(30,0.5) 0 0 0.564 0.820
(60,0.1) 0 0 0.296 0.978
(60,0.5) 0 0 0.192 0.712

refine the estimated groups by repeating FTSeg R (ě 2) times. To be precise, the

i-th round of refinement via FTSeg is performed within each group discovered in

the pi ´ 1q-th round with cϱ “ 1 in (3.13) for i “ 1, . . . , R, and hence ppA1, . . . , pApqq

is updated after each iteration. The segmentation results for R “ 5 and 10 are also

provided in Table 3.3. Finally, we compare the predictive performance of UniV,

SegV with FTSegV and its refined versions, which substitute Seg in Step i with

FTSeg and its R-round refinements, respectively, before Steps ii and iii. Table 3.4

presents the relative prediction errors for all five comparison methods.

Several conclusions can be drawn from Tables 3.2, 3.3 and 3.4. First, the perfor-

mance of Seg severely deteriorates under the high-dimensional setting. Specifically,

this procedure fails to detect any effective segmentation, thus leading to the el-

evated prediction errors. By comparison, FTSeg does a reasonably good job in

recovering the group structure of Ztp¨q as evident from Table 3.2, and FTSegV ex-

hibits superior predictive performance over SegV and UniV in all scenarios. Second,

comparing the results among different R, we observe that repeating the segmen-

tation step can largely refine the identified group structure, whereas its influence

on improving the predictive accuracy is limited. For example, under the setting

pp, ω, nq “ p60, 0.1, 400q, the proportion of effective segmentation with q̂ ě 3q{5

jumps to 0.772 and 0.9 from the initial 0.012 after 5 and 10 iterations, respectively,

implying that q̂ tends to q as R increases, while the relative prediction error only

decreases slightly from 1.11 to 1.099. This phenomenon highlights the success of

FTSegV when p is large in the sense that it performs comparably well to the oracle

method especially for sufficiently large n. Although FTSeg fails to efficiently recover

the group structure in Ztp¨q under this case, it achieves an effective dimension reduc-

tion to provide significant improvement in high-dimensional functional prediction.

If the main purpose lies in the group identification with enhanced accuracy, one can

apply FTSeg to pZtp¨q repeatedly with a moderate value of R.
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Table 3.3: The relative frequencies of effective segmentation with respect to q̂ ě 3q{5
over 500 simulation runs. The highest values are in bold font.

pp, ωq

Seg FTSeg

n “ 200 n “ 400 n “ 200 n “ 400
R “ 5 R “ 10

n “ 200 n “ 400 n “ 200 n “ 400
(30,0.1) 0 0 0.080 0.002 0.468 0.630 0.492 0.772
(30,0.5) 0 0 0.076 0.002 0.368 0.510 0.378 0.660
(60,0.1) 0 0 0.084 0.012 0.144 0.772 0.144 0.900
(60,0.5) 0 0 0.066 0.008 0.078 0.650 0.072 0.786

Table 3.4: Means (standard deviations) of relative MSPEs over 500 simulation runs.
The lowest values are in bold font.

Method pp, ωq n =200 n =400 pp, ωq n =200 n =400
FTSegV

(30,0.1)

1.243(0.162) 1.095(0.105)

(60,0.1)

1.249(0.122) 1.110(0.073)
FTSegV (R “ 5) 1.225(0.153) 1.091(0.101) 1.250(0.123) 1.104(0.071)
FTSegV (R “ 10) 1.222(0.151) 1.087(0.099) 1.249(0.122) 1.099(0.071)

SegV 1.814(0.376) 1.901(0.368) 1.813(0.271) 1.907(0.265)
UniV 1.631(0.313) 1.735(0.317) 1.599(0.214) 1.682(0.210)

FTSegV

(30,0.5)

1.268(0.176) 1.134(0.134)

(60,0.5)

1.285(0.134) 1.149(0.101)
FTSegV (R “ 5) 1.255(0.171) 1.128(0.130) 1.282(0.136) 1.142(0.098)
FTSegV (R “ 10) 1.250(0.168) 1.128(0.127) 1.281(0.136) 1.141(0.099)

SegV 1.815(0.377) 1.903(0.369) 1.813(0.271) 1.905(0.264)
UniV 1.635(0.315) 1.740(0.317) 1.603(0.215) 1.684(0.209)

3.6 Real data analysis

In this section, we apply our proposed SegV and FTSegV to three real data ex-

amples arising from different fields. Our main goal is to evaluate the post-sample

predictive accuracy of both methods. By comparison, we also implement componen-

twise univariate prediction method (UniV) and the multivariate prediction method

of Gao et al. (2019b) (denoted as GSY) to jointly predict p component series by

fitting a factor model to estimated scores obtained via eigenanalysis of the long-run

covariance function (Hörmann et al., 2015a). To evaluate the effectiveness of the seg-

mentation step, we also consider cases of under-segmentation and over-segmentation

for both SegV and FTSegV. In particular, after Step i, the under-segmentation up-

dates the identified groups by merging two groups with the largest Tij for i and j

from two groups before subsequent analysis, while the over-segmentation regards

each component of the transformed curve series as an individual group and then

applies UniV componentwisely. For a fair comparison, the orders of VAR models

adopted in SegV, FTSegV and UniV are determined by the AIC criterion without

any fine-tuning being applied, whereas GSY is implemented using the R package

ftsa.

To examine the predictive performance, we apply an expanding window approach
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to the observed data Ytjpviq for t “ 1, . . . , n, j “ 1, . . . , p, i “ 1, . . . , N. We split

the dataset into a training set and a test set respectively consisting of the first

n1 and the remaining n2 observations. For any positive integer h, we implement

each comparison method on the training set, obtain h-step ahead prediction on the

test data based on the fitted model, increase the training size by one and repeat the

above procedure n2`1´h times and finally compute the h-step ahead mean absolute

prediction error (MAPE) and mean squared prediction error (MSPE), respectively,

defined as

MAPEphq “
1

pn2 ` 1 ´ hqpN

n
ÿ

t“n1`h

p
ÿ

j“1

N
ÿ

i“1

ˇ

ˇŶtjpviq ´ Ytjpviq
ˇ

ˇ,

MSPEphq “
1

pn2 ` 1 ´ hqpN

n
ÿ

t“n1`h

p
ÿ

j“1

N
ÿ

i“1

␣

Ŷtjpviq ´ Ytjpviq
(2
.

(3.41)

3.6.1 UK annual temperature data

The first dataset, which is available at https://www.metoffice.gov.uk/research/

climate/maps-and-data/historic-station-data, consists of monthly mean tem-

perature collected at p “ 22 measuring stations across Britain from 1959 to 2020

(n “ 62). Let Ytjpviq (t “ 1, . . . , 62, j “ 1, . . . , 22, i “ 1, . . . , 12) be the mean

temperature during month vi “ i of year 1958 ` t measured at the j-th station.

The observed temperature curves are smoothed using a 10-dimensional Fourier ba-

sis that characterizes the periodic pattern over the annual cycle. See Figure 3.1

in Appendix 3.B for plots of smoothed annual temperature curves. We divide the

smoothed dataset into the training set of size n1 “ 41 and the test set of size n2 “ 21.

Since the smoothed curve series exhibit very weak autocorrelations beyond k “ 3

and the training size is relatively small, we use k0 “ κ0 “ m “ 3 in this example.

The values of MAPE and MSPE for h “ 1, 2, 3 defined in (3.41) are summarized

in Table 3.5. Several obvious patterns are observable. First, our proposed SegV

and FTSegV perform similarly well and both provide the highest predictive accura-

cies among all comparison methods for all h. This demonstrates the effectiveness

of reducing the number of parameters via the segmentation in predicting high-

dimensional functional time series, while the latent transformation matrix may not

be approximately sparse in practice. Second, although the cases of under- and

over-segmentation are slightly inferior to the correct-segmentation case, they sig-

nificantly outperform UniV and GSY in one- and two-step-ahead predictions. It

is worth noting that the over segmentation ignores all the correlations among dif-

ferent components of transformed curves, whereas UniV neglects those of original
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curves. This observation reveals that the transformation step can also improve the

prediction efficiently.

Table 3.5: Comparison of MAFEs and MSFEs for three versions of SegV, FTSegV,
and two competitors on the UK temperature curves for h “ 1, 2, 3. The lowest values
are in bold font.

Method
MAFE MSFE

h “ 1 h “ 2 h “ 3 h “ 1 h “ 2 h “ 3
SegV 0.786 0.806 0.827 1.073 1.075 1.155

Under.SegV 0.805 0.826 0.883 1.152 1.135 1.266
Over.SegV 0.797 0.821 0.845 1.101 1.126 1.174
FTSegV 0.789 0.806 0.828 1.077 1.073 1.158

Under.FTSegV 0.791 0.820 0.872 1.105 1.112 1.250
Over.FTSegV 0.797 0.821 0.845 1.101 1.126 1.174

UniV 0.936 0.951 0.976 1.450 1.450 1.458
GSY 0.894 0.884 0.854 1.346 1.338 1.219

3.6.2 Japanese mortality data

The second dataset, which can be downloaded from https://www.ipss.go.jp/

p-toukei/JMD/index-en.html, contains age-specific and gender-specific mortality

rates for p “ 47 prefectures in Japan during 1975 to 2017 (n “ 43). Following

the recent proposal of Gao et al. (2019b), we model the log transformation of the

mortality rate of people aged vi “ i ´ 1 living in the j-th prefecture during year

1974 ` t as a random curve Ytjpviq (t “ 1, . . . , 43, j “ 1, . . . , 47, i “ 1, . . . , 96) and

perform smoothing for observed mortality curves via smoothing splines. Figure 3.2

in Appendix 3.B displays exemplified trajectories of smoothed mortality curves.

The post-sample prediction are carried out in an identical way to Section 3.6.1. We

choose k0 “ κ0 “ m “ 3 in our estimation and treat the smoothed curves in the

first n1 “ 33 years and the last n2 “ 10 years as the training sample and the test

sample, respectively.

Table 3.6 reports the MAPEs and MSPEs for Japanese females and males. Again it

is obvious that SegV and FTSegV provide the best predictive performance uniformly

for both females and males, and all h. One may also notice that, compared with

SegV and Under.SegV, Over.SegV does not perform well for males. In most cases,

the decorrelated curve series for males admits q̂ “ 44 groups with 43 groups of size

1 and one large group of size 4. However, Over.SegV fails to account for the cross

serial dependence within such large group, thus leading to less accurate predictions.

On the other hand, the transformed curves for females reveal a common structure

with one group of size 2 and the remaining groups of size 1. As expected, Over.SegV
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performs slightly better in this case. This finding again confirms the effectiveness of

our procedure, in particular, the within group cross dependence information is also

valuable in the post-sample prediction.

Table 3.6: MAFEs and MSFEs for eight competing methods on the Japanese female
and male mortality curves for h “ 1, 2, 3. All numbers are multiplied by 10. The
lowest values are in bold font.

Method
MAFE MSFE

h “ 1 h “ 2 h “ 3 h “ 1 h “ 2 h “ 3

Female

SegV 1.393 1.414 1.468 0.482 0.470 0.486
Under.SegV 1.537 1.661 1.853 0.528 0.560 0.642
Over.SegV 1.427 1.610 1.814 0.482 0.520 0.588
FTSegV 1.392 1.417 1.468 0.484 0.471 0.484

Under.FTSegV 1.542 1.661 1.846 0.533 0.560 0.638
Over.FTSegV 1.433 1.617 1.816 0.484 0.523 0.588

UniV 1.602 1.858 2.136 0.523 0.618 0.737
GSY 1.618 1.691 1.682 0.678 0.733 0.706

Male

SegV 1.374 1.461 1.543 0.436 0.453 0.481
Under.SegV 1.394 1.491 1.608 0.443 0.464 0.503
Over.SegV 1.506 1.678 1.897 0.468 0.514 0.603
FTSegV 1.376 1.444 1.521 0.435 0.446 0.473

Under.FTSegV 1.389 1.482 1.596 0.440 0.460 0.499
Over.FTSegV 1.512 1.673 1.894 0.470 0.512 0.604

UniV 1.568 1.855 2.167 0.485 0.595 0.743
GSY 1.550 1.581 1.576 0.669 0.663 0.628

3.6.3 Energy consumption data

Our third dataset contains energy consumption readings (in kWh) taken at half

hourly intervals for thousands of London households, and is available at https://

data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households.

In our study, we select households with flat energy prices during the period between

December 2012 and May 2013 (n “ 182) after removing samples with too many

missing records, and hence construct 4000 samples of daily energy consumption

curves observed at T “ 48 equally spaced time points. To alleviate the impact of

randomness from individual curves, we randomly split the data into p groups of

equal size, then take the sample average of curves within each group and finally

smooth the averaged curves based on a 15-dimensional Fourier basis. See Figure 3.3

in Appendix 3.B for some examples of the smoothed intraday consumption curves.

We target to evaluate the h-day ahead predictive accuracy for intraday energy con-

sumption curves in May 2013 based on the training data from December 2012 to

the previous day. The eight comparison methods are built in the same manner as

Section 3.6.1 with k0 “ κ0 “ m “ 5.
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Table 3.7 presents the mean prediction errors for h “ 1, 2, 3 and p “ 40, 80. A few

trends are apparent. First, the prediction errors for p “ 80 are higher than those

for p “ 40 as higher dimensionality poses more challenges in prediction. Second,

likewise in previous examples, SegV and FTSegV attain the lowest prediction errors

in comparison to five competing methods under all scenarios. All segmentation-

based methods consistently outperform UniV and GSY by a large margin. Third,

despite being developed for high-dimensional functional time series prediction, GSY

provides the worst result in this example.

Table 3.7: MAFEs and MSFEs for eight competing methods on the energy con-
sumption curves for h “ 1, 2, 3 and p “ 40, 80. All numbers are multiplied by 102.
The lowest values are in bold font.

Method
MAFE MSFE

h “ 1 h “ 2 h “ 3 h “ 1 h “ 2 h “ 3

p “ 40

SegV 1.639 1.748 1.793 0.047 0.053 0.054
Under.SegV 1.669 1.766 1.794 0.048 0.054 0.054
Over.SegV 1.709 1.873 1.964 0.049 0.058 0.062
FTSegV 1.637 1.747 1.791 0.047 0.053 0.054

Under.FTSegV 1.669 1.766 1.793 0.048 0.054 0.054
Over.FTSegV 1.708 1.872 1.963 0.049 0.058 0.062

UniV 1.867 2.009 2.109 0.058 0.067 0.072
GSY 2.142 2.264 2.32 0.099 0.110 0.119

p “ 80

SegV 1.996 2.058 2.071 0.070 0.075 0.075
Under.SegV 2.025 2.092 2.104 0.072 0.077 0.077
Over.SegV 2.022 2.132 2.187 0.070 0.078 0.081
FTSegV 2.012 2.055 2.070 0.071 0.074 0.074

Under.FTSegV 2.040 2.087 2.104 0.073 0.076 0.077
Over.FTSegV 2.045 2.138 2.190 0.072 0.078 0.081

UniV 2.221 2.362 2.463 0.083 0.093 0.100
GSY 2.833 2.826 2.781 0.159 0.159 0.159
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3.A Additional Results and Proofs

We begin by introducing some notation. For a vector b P Rp, we denote its ℓ2 norm

by }b}2 “ p
řp
j“1 |bj|

2q1{2. For a matrix B P Rpˆq, we let }B}2 “ λ
1{2
maxpBTBq, where

λmaxpMq denotes the largest eigenvalue of the matrix M. For B “ pBijqpˆp with

its pi, jq-th component Bij P S, we define the functional version of matrix ℓ1 norm

by }B}S,1 “ maxj
ř

i }Bij}S . We use b to denote the Kronecker product. For two

positive sequences tanu and tbnu, we write an À bn or bn Á an if there exist a positive

constant c such that an{bn ď c. Throughout, we use c, c0 to denote generic positive

finite constants that may be different in different uses.

3.A.1 Proofs of main theorems

Proof of Theorem 3.1. Recall Wy in (3.6) and xWy in (3.15). It follows from

Lemma 3.4 and fixed κ0 under Condition 3.4 that

}xWy ´ Wy}2

ď

κ0
ÿ

k“0

›

›

›

›

ż ż

Tωk
ppΣS

y,kqpu, vqtTωk
ppΣS

y,kqpu, vqu
T

´ Σy,kpu, vqtΣy,kpu, vqu
T dudv

›

›

›

›

2

“Op

#

Ξ2M1´α

ˆ

log p

n

˙
1´α
2

+

.

(3.42)

Due to the fact that max1ďjďp |λjpxWyq ´ λjpWyq| ď }xWy ´ Wy}2, we obtain

max1ďjďp |λjpxWyq ´ λjpWyq| Ñp 0 given Ξppq2M1´α plog p{nq
p1´αq{2

“ op1q. Re-

call Wy and Wz “ diagpWz,1, . . . ,Wz,qq share the same eigenvalues, and Wz,l1

and Wz,l2 do not share same eigenvalues if l1 ‰ l2. Therefore, there exists a map

π : t1, . . . , pu Ñ t1, . . . , qu such that each λjpxWyq converges to some eigenvalue

of Wz,πpjq. Recall pηj is the eigenvector of xWy associated with λjpxWyq. For each

l “ 1, . . . , q, we let pAl be a pˆ pl matrix whose columns are pηj with πpjq “ l. If we

view pAl, xWy and Wy as Q1, B and B`E in Lemma 3.7 respectively, then the cor-

responding Q‹
1, denoted by Hl, provides an orthonormal basis of CpAlq. Therefore,

applying Lemma 3.7 yields that, for each l,

}pAl ´ Hl}2 ď 8ρ´1
l }xWy ´ Wy}2. (3.43)

Write pΓGl
“ pη̂jqjPGl

P Rpˆpl . Note that the columns of pAl are also permutation of
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tη̂j, j P Glu. By (3.43), we have that

›

›pΓGl
pΓ

T

Gl
´ ΓGl

ΓT

Gl

›

›

2
“
›

› pAl
pAT

l ´ HlH
T

l

›

›

2

ď
›

› pAl ´ Hl

›

›

2

2
` 2

›

›Hl

›

›

2

›

› pAl ´ Hl

›

›

2

À ρ´1
l

›

›xWy ´ Wy

›

›

2
.

Let Udiagpd1, . . . , dplq
pUT be the SVD of ΓGl

ΓT

Gl
pΓGl

pΓ
T

Gl
where d1 ě ¨ ¨ ¨ ě dpl . Define

ΠGl
“ UpUT

pΓGl
, l “ 1, . . . , q. (3.44)

Hence, there exists a p ˆ p matrix Π ” pγ1, . . . ,γpq such that ΠGl
“ pγjqjPGl

.

Following the same techniques as in the proof of Theorem 2 in Han et al. (2021), we

have that ΠGl
ΠT

Gl
“ ΓGl

ΓT

Gl
and

max
1ďjďp

ρl}η̂j ´ γj}2 ď max
1ďlďq

ρl}pΓGl
´ ΠGl

}2 ď max
1ďlďq

?
2ρl}pΓGl

pΓ
T

Gl
´ ΓGl

ΓT

Gl
}2

À }xWy ´ Wy}2,

(3.45)

Denote by E “

!

pi, jq : max0ďkďm max
“

}γT
iΣy,kγj}S , }γ

T
i tΣy,kuTγj}S

‰

ą 0
)

the

edge set of G “ t1, . . . , pu under Π. The true segmented groups in (3.35), defined

according to the ordered eigenvectors of Wy, can also be found via splitting tG,Eu

into multiple connected subgraphs pGl, Elq, for l “ 1, . . . , q.

Defineϖn “ ΞM1´αplog p{nqp1´αq{2. Consider the event Ωn “
␣

max0ďkďm }Tωk
ppΣS

y,kq´

Σy,k}S,1 ď c0ϖn

(

. By (3.42) and (3.45), it is immediate to see that there exists some

constant c such that max1ďjďp }η̂j´γj}2 ď cρ´1νn, where νn “ Ξ2M1´α
y plog p{nqp1´αq{2.

By Condition 3.5 and Lemma 3.6, for each pi, jq P E,

pTij “ max
0ďkďm

max
!

}pηT

i Tωk
ppΣS

y,kqpηj}S , }pη
T

i tTωk
ppΣS

y,kqu
T
pηj}S

)

,

ě ς ´ max
1ďjďp

}η̂j ´ γj}2 max
0ďkďm

}Σy,k}S,1 ´ max
0ďkďm

}Tωk
ppΣS

y,kq ´ Σy,k}S,1,

where ς “ min1ďlďq ςl. Combining the above results with (3.49) (in the proof of

Lemma 3.4) under the event Ωn yields that

min
pi,jqPE

pTij ě ς ´ cρ´1Ξνn,
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where ρ “ min1ďlďq ρl. Similarly, we have that

max
pi,jqRE

T̂ij ď cρ´1Ξνn.

Letting cρ´1Ξνn ă τn ă ς ´ cρ´1Ξνn, we obtain the exact recovery of the true seg-

mentation tG1, . . . , Gqu in the sense of Ê “ E. Note it follows from Lemma 3.3 that

P pΩC
n q “ op1q. Hence we complete the proof of Theorem 3.1. ˝

Proof of Theorem 3.2. By (3.42), (3.43) and the remark for Lemma 1 of Chang

et al. (2018), we obtain that

max
1ďlďq

ρlDpCppAlq, CpAlqq À }xWy ´ Wy}2 “ Op

#

Ξ2M1´α

ˆ

log p

n

˙
1´α
2

+

,

which completes the proof. ˝

Proof of Theorem 3.3. We follow the same notation as in the proofs of The-

orems 3.1 and 3.2. Recall that pΓGl
“ pη̂jqjPGl

” pη̂l,1, . . . , η̂l,plq and ΠGl
“

pγjqjPGl
” pγ l,1 . . . ,γ l,plq. We now focus our analysis based on Π in the sense that

Mk,lpu, vq “ ΠT

Gl
Σy,kpu, vqΠGl

” tM
pk,lq
ij pu, vquplˆpl for each true group l “ 1, . . . , q.

Recall that

xMk,lpu, vq “ pAT

l Tωk
ppΣS

y,kqpu, vqpAl “ pΓ
T

Gl
Tωk

ppΣS

y,kqpu, vqpΓGl
” txM

pk,lq
ij pu, vquplˆpl .

Notice that

xM
pk,lq
ij ´ M

pk,lq
ij “ η̂T

l,iTωk
ppΣS

y,kqη̂l,j ´ γT

l,iΣy,kγ l,j “ I1 ` I2 ` I3 ` I4 ` I5,

where I1 “ pη̂l,i ´ γ l,iq
TtTωk

ppΣS
y,kq ´ Σy,kuη̂l,j, I2 “ pη̂l,i ´ γ l,iq

TΣy,kpη̂l,j ´ γ l,jq,

I3 “ pη̂l,i´γ l,iq
TΣy,kγ l,j, I4 “ γT

l,itTωk
ppΣS

y,kq´Σy,kuη̂l,j and I5 “ γT
l,iΣy,kpη̂l,j´γ l,jq.

By (3.45), (3.49), the orthonormality of pηl,j, γ l,j and Lemmas 3.3, 3.6, we obtain

that

max
i,j,l

ρl|I1| “ OppΞ
´1ν2nq, max

i,j,l
ρ2l |I2| “ OppΞν

2
nq,

max
i,j,l

|I4| “ OppΞ
´1νnq, max

i,j,l
ρlp|I3| ` |I5|q “ OppΞνnq.
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The above results lead to

max
i,j,l

ρl}xM
pk,lq
ij ´ M

pk,lq
ij }S “ OppΞνnq,

which together with Condition 3.6 implies that

max
1ďlďq

ρl}xMk,l ´ Mk,l}S,F “ OppΞνnq.

Write Zt,lp¨q “ pZ
plq
t,1p¨q, . . . , Z

plq
t,pl

p¨qqT. It follows from Cauchy–Schwartz inequality

and Condition 3.6 that

max
l

}Mk,l}S,F “ max
l

d

ÿ

i,j

ż ż

tM
pk,lq
ij pu, vqu2dudv

ď max
l

d

ÿ

i

ż

ErtZ
plq
t,i puqu2sdu

d

ÿ

j

ż

ErtZ
plq
t`k,jpuqu2sdu ď max

l
E
`

}Zt,l}
2
˘

“ Op1q.

Combining the above results, we have

max
1ďlďq

ρl}pKl ´ Kl}S,F

ď max
l

k0
ÿ

k“1

ρl}xMk,l ´ Mk,l}
2
S,F ` 2 max

l
ρl

k0
ÿ

k“1

}Mk,l}S,F}xMk,l ´ Mk,l}S,F

“OppΞνnq.

(3.46)

This, together with Theorem 2 of Chiou et al. (2014), implies that

max
1ďlďq

ρl|θ̂l,j ´ θl,j| “ OppΞνnq, max
1ďlďq

ρl}ψ̂j,l ´ψj,l} “ OppΞνnq. (3.47)

Recall that

r̂l “ argmax
1ďjďn´k0

θ̂l,j ` δn

θ̂l,j`1 ` δn
.

The condition δn maxl θl,1{ minl θ
2
l,rl

Ñ 0 with δn “ ρ´1Ξνn, implies that δn “

opminl θl,rlq. Combining this with (3.47), we obtain for j ă rl,

max
1ďlďq

θ̂l,j ` δn

θ̂l,j`1 ` δn
“ max

1ďlďq

θ̂l,j ´ θl,j ` θl,j ` δn

θ̂l,j`1 ´ θl,j`1 ` θl,j`1 ` δn
Ñp

max1ďlďq θl,1
min1ďlďq θl,rl

.
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For j “ rl,

min
1ďlďq

θ̂l,rl ` δn

θ̂l,rl`1 ` δn
“ min

1ďlďq

θ̂l,rl ´ θl,rl ` θl,rl ` δn

θ̂l,rl`1 ` δn
Ñp

min1ďlďq θl,rl
δn

.

For j ą rl, we have

max
1ďlďq

θ̂l,j ` δn

θ̂l,j`1 ` δn
Ñp C.

Hence, under the condition of δn maxl θl,1{ minl θ
2
l,rl

Ñ 0, rl is correctly identified via

r̂l uniformly over t1, . . . , qu. ˝

Proof of Theorem 3.4. By (3.47), the definition of D
␣

Cpψ̂lq, Cpψlq
(

and the

orthonormality of ψj,l, we obtain that

max
1ďlďq

ρl
?

2rlD
␣

Cpψ̂lq, Cpψlq
(

“ max
1ďlďq

ρl

›

›

›

›

›

rl
ÿ

j“1

´

ψ̂l,j b ψ̂
T

l,j ´ψl,j bψT

l,j

¯

›

›

›

›

›

S,F

ď max
1ďlďq

ρl

rl
ÿ

j“1

}ψ̂j,l ´ψj,l}
2

` 2 max
1ďlďq

ρl

rl
ÿ

j“1

}ψj,l}}ψ̂j,l ´ψj,l}

“OppΞνnq.˝

3.A.2 Technical lemmas and their proofs

Proof of Lemma 3.1. Recall that
∫

ErtZtjpuqu2sdu “ 1 as discussed in Sec-

tion 3.2.1. Hence,

}Σ
pkq

z,ij}
2
S “

ż ż

rEtZtipuqZpt`kqjpvqus
2dudv

ď

ż

ErtZtipuqu
2
sdu

ż

ErtZpt`kqjpvqu
2
sdv ď 1.
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By the inequality pa ` bqα ď aα ` bα for x, y ě 0 and α P r0, 1q, we obtain that

p
ÿ

i“1

}Σ
pkq

y,ij}
α
S ď

p
ÿ

i“1

p
ÿ

l,m“1

|Ail|
α
|Ajm|

α
}Σ

pkq

z,lm}
α
S

ď max
l,m,k

}Σ
pkq

z,lm}
α
S max

l

p
ÿ

i“1

|Ail|
α

ÿ

|l´m|ďmaxl pl

|Ajm|
α

ď s2 max
l,m,k

}Σ
pkq

z,lm}
α
Sp2 max

l
pl ` 1q

p
ÿ

m“1

|Ajm|
α

ď s1s2p2 max
l
pl ` 1q

In the same manner, we can prove the second result in this lemma. ˝

Lemma 3.2. Suppose that Conditions 3.2 and 3.3 hold for sub-Gaussian linear

process tYtp¨qutPZ. Then, for k “ 1, . . . , κ0, there exists some universal constant

c̃ ą 0 such that for any η ą 0 and each i, j “ 1, . . . , p,

P
!

}pΣ
pkq

y,ij ´ Σ
pkq

y,ij}S ą Mη
)

ď 8 expt´c̃nminpη2, ηqu.

In particular, if sample size n Á logppq, then for any M ą 0, there exist some

positive constant c̃1 ą 0 such that

max
i,j

›

›

›

pΣ
pkq

y,ij ´ Σ
pkq

y,ij

›

›

›

S
ď c̃1M

c

log p

n

with probability greater than 1 ´ Opp´Mq.

Proof. This lemma follows directly from Theorem 1 of Fang et al. (2022) and

Theorem 2 of Guo and Qiao (2022) and hence the proof is omitted here. ˝

Lemma 3.3. Suppose that Conditions 3.1–3.3 hold. Then there exists some constant

δ ą 0 such that for k ď κ0, if ωk “ δ
a

log p{n, it holds that

}Tωk
ppΣS

y,kq ´ Σy,k}S,1 “ Op

#

ΞM1´α

ˆ

log p

n

˙
1´α
2

+

,

}Tωk
ppΣS

y,kq ´ Σy,k}S,8 “ Op

#

ΞM1´α

ˆ

log p

n

˙
1´α
2

+

.

Proof. Denote by Tωk
ppΣ

pkq

y,ijq the pi, jq-th component of Tωk
ppΣS

y,kq. Under the event
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of maxi,j

›

›

›

pΣ
pkq

y,ij ´ Σ
pkq

y,ij

›

›

›

S
ď ωk, we have that

max
j

p
ÿ

i“1

}Tωk
ppΣ

pkq

y,ijq ´ Σ
pkq

y,ij}S

“ max
j

p
ÿ

i“1

}Tωk
ppΣ

pkq

y,ijq ´ Σ
pkq

y,ij}SIt}pΣ
pkq

y,ij}S ě ωku

` max
j

p
ÿ

i“1

}Tωk
ppΣ

pkq

y,ijq ´ Σ
pkq

y,ij}SIt}pΣ
pkq

y,ij}S ă ωku

ď max
j

p
ÿ

i“1

!

}Tωk
ppΣ

pkq

y,ijq ´ pΣ
pkq

y,ij}S ` }pΣ
pkq

y,ij ´ Σ
pkq

y,ij}S

)

It}pΣ
pkq

y,ij}S ě ωk, }Σ
pkq

y,ij}S ě ωku

` max
j

p
ÿ

i“1

}Tωk
ppΣ

pkq

y,ijq ´ Σ
pkq

y,ij}SIt}pΣ
pkq

y,ij}S ě ωk, }Σ
pkq

y,ij}S ă ωku

` max
j

p
ÿ

i“1

}Σ
pkq

y,ij}SIt}pΣ
pkq

y,ij}S ă ωku

ď2ωk

p
ÿ

i“1

It}Σ
pkq

y,ij}S ě ωku ` max
j

p
ÿ

i“1

}pΣ
pkq

y,ij ´ Σ
pkq

y,ij}SIt}pΣ
pkq

y,ij}S ě ωk, }Σ
pkq

y,ij}S ă ωku

` max
j

p
ÿ

i“1

}Σ
pkq

y,ij}SIt}Σ
pkq

y,ij}S ă 2ωku

“ : Q1 ` Q2 ` Q3

By Lemma 3.1, we have that

Q1 ` Q3 ď Cαω
1´α
k

p
ÿ

i“1

}Σ
pkq

y,ij}
α
S À ω1´α

k Ξ. (3.48)

To bound Q2, for θ̃ P p0, 1q, we write

Q2 ď max
j

p
ÿ

i“1

}pΣ
pkq

y,ij ´ Σ
pkq

y,ij}SIt}pΣ
pkq

y,ij}S ě ωk, }Σ
pkq

y,ij}S ď θ̃ωku

` max
j

p
ÿ

i“1

}pΣ
pkq

y,ij ´ Σ
pkq

y,ij}SIt}pΣ
pkq

y,ij}S ě ωk, θ̃ωk ă }Σ
pkq

y,ij}S ă ωku

ďωk max
j

p
ÿ

i“1

It}pΣ
pkq

y,ij ´ Σ
pkq

y,ij}S ą p1 ´ θ̃qωku ` ω1´α
k θ̃´αΞ
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By Lemma 3.2, we obtain that, for n Á logppq,

P
”

p
ÿ

i“1

It}pΣ
pkq

y,ij ´ Σ
pkq

y,ij}S ą p1 ´ θ̃qωku

ı

“ P
!

max
1ďi,jďp

}pΣ
pkq

y,ij ´ Σ
pkq

y,ij}S ě p1 ´ θ̃qωk

)

ď 8p2 expt´c̃p1 ´ θ̃q
2 log pu Ñ 0,

Hence, Q2 À ω1´α
k Ξ. This, together with (3.48), implies that

max
j

p
ÿ

i“1

}Tωk
ppΣ

pkq

y,ijq ´ Σ
pkq

y,ij}S “ Op

#

ΞM1´α

ˆ

log p

n

˙
1´α
2

+

.

The second result can be proved in the similar manner. Hence, the proof is complete.

˝

Lemma 3.4. Suppose Conditions 3.1–3.3 hold. Then we have that

›

›

›

›

ż ż

”

Tωk
ppΣS

y,kqpu, vqtTωk
ppΣS

y,kqpu, vqu
T

´ Σy,kpu, vqtΣy,kpu, vqu
T

ı

dudv

›

›

›

›

2

“ Op

#

Ξ2M1´α

ˆ

log p

n

˙
1´α
2

+

Proof. It follows from Lemma 3.5 that

›

›

›

›

ż ż

”

Tωk
ppΣS

y,kqpu, vqtTωk
ppΣS

y,kqpu, vqu
T

´ Σy,kpu, vqtΣy,kpu, vqu
T

ı

dudv

›

›

›

›

2

ď2
b

}Σy,k}S,1}Σy,k}S,8}Tωk
ppΣS

y,kq ´ Σy,k}S,1}Tωk
ppΣS

y,kq ´ Σy,k}S,8

`}Tωk
ppΣS

y,kq ´ Σy,k}S,1}Tωk
ppΣS

y,kq ´ Σy,k}S,8.

By Lemma 3.1, we have that

}Σy,k}S,1 “ max
j

p
ÿ

i“1

}Σ
pkq

y,ij}S ď Ξ max
i,j

}Σ
pkq

y,ij}
1´α
S À Ξ,

}Σy,k}S,8 “ max
i

p
ÿ

j“1

}Σ
pkq

y,ij}S ď Ξ max
i,j

}Σ
pkq

y,ij}
1´α
S À Ξ.

(3.49)

Combining the above results with Lemma 3.3, we complete the proof. ˝

Lemma 3.5. Let B1 “ pB1,ijqpˆp with each B1,ij P S and B2 “ pB2,ijqpˆp with each
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B2,ij P S. Then

›

›

›

›

ż ż

B1pu, vqtB2pu, vqu
Tdudv

›

›

›

›

2

ď

b

}B1}S,8}B1}S,1

b

}B2}S,8}B2}S,1.

Proof. Notice that

›

›

›

›

ż ż

B1pu, vqtB2pu, vqu
Tdudv

›

›

›

›

1

“ max
1ďjďp

p
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż ż

ÿ

k

B1,ikpu, vqB2,jkpu, vqdudv

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
1ďjďp

p
ÿ

i“1

p
ÿ

k“1

}B1,ik}S}B2,jk}S

ď max
1ďkďp

p
ÿ

i“1

}B1,ik}S max
1ďjďp

p
ÿ

k“1

}B2,jk}S

“ }B1}S,1}B2}S,8.

(3.50)

By similar argument, we obtain that

›

›

›

›

ż ż

B1pu, vqtB2pu, vqu
Tdudv

›

›

›

›

8

ď }B1}S,8}B2}S,1. (3.51)

Combining (3.50), (3.51) and the matrix norm inequality }E}2 ď }E}8}E}1 for any

matrix E P Rpˆp, we complete the proof. ˝

Lemma 3.6. Let B “ pBijqpˆp with each Bij P S, b1 P Rp and b2 P Rp. Then

}bT

1Bb2}S ď }b1}2}b2}2

b

}B}S,8}B}S,1.

Proof. By elementary calculation and Lemma 3.5, we obtain that

}bT

1Bb2}
2
S “

ż ż

bT

1Bpu, vqb2b
T

2tBpu, vqu
Tb1dudv

ď

ż ż

}b2b
T

2 }2}b
T

1Bpu, vq}
2
2dudv ď }b2}

2
2

ż ż

bT

1Bpu, vqtBpu, vqu
Tb1dudv

ď}b1}
2
2}b2}

2
2}B}S,8}B}S,1,

which completes our proof. ˝

Lemma 3.7. Suppose B and B ` E are m ˆ m symmetric matrices and that

Q “ pQ1,Q2q, where Q1 is an m ˆ l matrix and Q2 is an m ˆ pm ´ lq matrix,

is an orthogonal matrix such that CpQ1q is an invariant subspace for B (that is,
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B ¨ CpQ1q Ă CpQ1q). Partition the matrices QTBQ and QTEQ as follows:

QTBQ “

¨

˚

˝

D1 0

0 D2

˛

‹

‚

and QTEQ “

¨

˚

˝

E11 ET
21

E21 E22

˛

‹

‚

.

If seppD1,D2q “ minµ1PλpD1q,µ2PλpD2q |µ1 ´ µ2| ą 0, where λpMq denotes the set

of eigenvalues of the matrix M, and }E}2 ď seppD1,D2q{5, then there exists a

matrix P P Rpm´lqˆl with }P}2 ď 4}E21}2{seppD1,D2q such that the columns of

Q‹
1 “ pQ1 ` Q2PqpI ` PTPq´1{2 define an orthonormal basis for a subspace that is

invariant for B ` E.

This is Theorem 8.1.10 of Golub and Van Loan (1996). From Lemma 3.7, we have

}Q‹
1 ´ Q1}2 “ }tQ1 ` Q2P ´ Q1pI ` PTPq

1{2
upI ` PTPq

´1{2
}2

ď }Q1tI ´ pI ` PTPq
1{2

u}2 ` }Q2P}2

ď 2}P}2 ď
8

seppD1,D2q
}E21}2 ď

8

seppD1,D2q
}E}2.

3.B Additional real data results

Figures 3.1–3.3 display exemplified trajectories of smoothed curves from the UK

annual temperature data, Japanese mortality data and energy consumption data,

respectively.
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Figure 3.1: UK annual temperature data: the smoothed annual temperature data mea-
sured at the Cambridge station from 1959 to 1968.
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Figure 3.2: Japanese mortality data: Log smoothed female mortality rate in the Kyoto
prefecture from 1975 to 1984.
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Figure 3.3: Energy consumption data: the smoothed intraday group-averaged consump-
tion curves of Group 1 in December 2012.
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Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional data. The

Annals of Statistics, 38(3):1845–1884.

Horn, R. A. and Mathias, R. (1990). Cauchy-Schwarz inequalities associated with

positive semidefinite matrices. Linear Algebra and its Applications, 142:63–82.
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