

A Taxonomy of Encryption and Encoding Algorithms Used by Advanced Persistent

Threats with Emphasis on Bespoke Encryption Algorithms

Copyright © 2023 Peter Bentley, School of Computing and Engineering, University of

Gloucestershire, Cheltenham, UK

Abstract – This paper reviews encryption, encoding and compression algorithms that have

been used by Advanced Persistent Threats (APT) in their attacks on Microsoft Windows

systems. These algorithms have been documented by the cyber security industry mainly in

the form of white papers. The algorithms range from established international encryption

standards to bespoke. The paper draws on Shannon’s Law for the communications theory to

support the discussion. The techniques and algorithms were analysed using C programs

written for the purpose and spreadsheets. It concludes that most APTs use a level of

encryption proportionate to the level of security needed but there are some misalignments

with Shannon’s Law.

Keywords –Microsoft Windows; Encrypt; Decrypt; Encode; Decode; Compression;

Obfuscation; Advanced Persistent Threat (APT); Malware; Monte Carlo Simulation;

1. Introduction and Literature Review

The cyber security industry publishes the outcome of their analysis of Advanced

Persistent Threats (APT) mainly in the form of white papers. Most of the documentation for

this paper is based on two repositories of white papers, company provided information,

webpages, blogs and some academic papers: the first repository is a corpus derived from web

searches that were used as the basis for previous research; the second repository is of similar

items from githib (Unknown, 2022). There is some overlap between these two repositories

but in total there are over 3,300 documents. Analysis was restricted mainly to examples that

contained high-level code, pseudo-code or a good written description. Some shorter

assembler routines were analysed but time, complexity of larger assembler routines and

report size meant that not all were.

The overlap between the two repositories creates problems in trying to compile

meaningful statistics. Duplication exists within at least one of the repositories and across

both. This was confirmed in the analysis for this paper as well as a review of papers based on

file name. Additionally, different cyber security companies are contracted to different

businesses. They may see the same attack infrastructure and report on it. The cyber security

Page 1 of 42

companies also have different names for different APTs. Hence, what may appear to be

different APTs using a similar attack is not.

Three independent advanced pdf searches on the aggregated repositories were

performed using the using the keywords “crypt”, “encode” and “decode”. Search returns were

then reviewed and analysis performed on the bespoke algorithms. The encode and decode

searches highlighted the use of Basexx (where x is a two-digit number) encoding. Nine

further searches were performed for “Base1”, “Base2”, … , “Base9”. A final search was

performed for “compress” and “obfuscat”.

This paper notes the Classification of Encryption Methods (Singh, 2013, pp. 33-38),

a malware survey (Gandotra, 2014, pp. 56-64) and a survey of Malware Obfuscation

Techniques (You, 2010, pp. 297-300). There is little observed APT use of transposition

algorithms.

Although APTs use a variety of algorithms, Shannon (Shannon, 1949, pp. 656 - 715)

asserts that:

• The amount of secrecy should be proportionate to the effort put in to

securing the message;

• The key size should be as small as possible;

• Complexity of enciphering and deciphering should minimised;

• Error propagation should be minimised;

• The encrypted message should be no longer than the message.

Some algorithms in this paper do not follow all of these rules but most seem to be strong

enough for the level of secrecy and obfuscation desired. This report demonstrates that Base64

and any encoding less than 8-bit ASCII extends the encrypted message length from the

original message and, therefore, does not align with Shannon’s fifth point.

Limitations were found in almost all of the bespoke algorithms. This paper suggests

that this does not necessarily mean poor cryptographic knowledge by the malware authors as

suggested by BlackBerry (BlackBerry, 2020, p. 23): “It was clear the original authors were

not cryptography experts, … “. This paper asserts that there is no evidence of the underlying

business philosophy of the different APTs and, therefore, what they are trying to achieve with

Page 2 of 42

respect to the demonstration of their knowledge and Intellectual Property. Poor cryptographic

knowledge is one explanation for some of the algorithms but it may be that the APTs have

selected what they consider to be the best algorithms for the task in hand as asserted by

Shannon’s first point, above. Furthermore, they may not wish to demonstrate their full level

of knowledge.

Mandiant state (Mandiant, 2020, pp. 23, 32) that in the year under report 13% of the

malware was compressed, 4% encrypted and 49% of attacks had malware obfuscated/packed.

The compression figure compares favourably to the 436 reports from the over 3,300

reviewed. The encryption figure of 15% differs from Mandiant’s and 18% of the full

repository contained a reference to obfuscation. It is noted the analysis for this report spans

multiple years and Mandiant’s report only one.

Cyber security companies may, for business reasons, not report all they observe. This

paper provides examples of each type of bespoke algorithm reported, Examples that are close

enough to those discussed in this paper are not included. Referencing every instance of

encryption and encoding would make the paper intolerably long. This structure of this paper

first lists internationally accepted algorithms, followed by bespoke algorithms. Comments on

the bespoke algorithms are provided in each sub-section. To conclude the paper there is a

short discussion and a critique.

Over 50 C programs were written in support of this paper to test the cryptography of

various APT encryption algorithms.

This paper does not claim completeness of APT encryption algorithms but it is

believed that it does provide a good insight into encryption algorithms and techniques used

by APTs.

This paper is agnostic towards the origin and intent of APTs.

2. Use of Publicly Available Encryption Algorithms

To protect malware and data extraction APTs may use encryption or encoding Some

of these encryption algorithms are publicly available such as:

• AES (Serper, 2020);

• RSA (Hromcová, 2019);

Page 3 of 42

• RC4 (sKyWIper-Analysis-Team, 2012b, pp. 8, 35), RC5 (Symantec-

Security-Response, 2014, p. 11), RC6 (Kaspersky, 2015c, pp. 27-28),

RSA-2048 (Matthieu Faou, 2020, p. 18), Spritz (Avisa-Partners, 2020a, p.

18), (D. Huss, 2017, pp. 6-7);

• CAST (Symantec, 2015a, p. 13), Camellia (FireEye, 2014b, p. 7);

• Tiny Encryption Algorithm (TEA) (Fidelis, 2014, p. 4), XTEA, XXTEA

(Kaspersky, 2015a, p. 18);

• DES (CrowdStrike, 2014b, p. 32), 3DES (Sofacy, 2015, p. 7);

• ElGamal (GovCERT.ch, 2016, p. 10);

• HC-128 (F. B. Perigaud, Boris, 2014);

• Blowfish (Levene, 2015, p. 4);

• Blowcrypt (proofpoint, 2015, p. 8);

• SALSA20 (GReAT, 2016b, p. 3);

• VEST (ptsecurity, 2021).

• RijndaelManaged (Ehrrlich, 2021, p. 15);

• OMEMO encryption and OTR encryption over XMPP (ZLAB, 2018, p.

4);

• an online PE crypter, Cassandra (Telsy, 2020, p. 4).

Others techniques are blends. For example, encryption using a hybrid encryption of

Blowfish-OFB combined with RSA (Hromcová, 2019) or TripleDES followed by AES

(Serper, 2020) or a combination of SALSA20 and Curve25519 (M-TRENDS, 2021, p. 24).

Use is also made of Windows and other software:

• CryptProtectData (Kaspersky, 2015e, p. 6), TrueCrypt (Symnatec, 2015, p.

13) and CryptEncrypt/CryptDecrypt (Elastic, 2020), (Hromcová, 2020, p.

7);

Page 4 of 42

• SSL (ClearSky-Cyber-Security-ltd, 2021, p. 21), TLS (Hegel, 2018, p. 6).

The related ChaCha stream cipher has also been seen (FireEye, 2019c),

OpenSSL (eset, 2019b, p. 19);

• the certutil utility (Breitenbacher, 2020, p. 6);

• BitLocker (profero, 2021, p. 3);

• BatchEncryption (Jazi, 2021, p. 15);

• ConfuserEx (GReAT, 2021), (Gorelik, 2019, p. 3);

• Open source NXCrypt (eset, 2019d, p. 10);

• publicly available Ransomware-as-a-Service (RaaS) Encryptor RaaS

(FireEye, 2019a, p. 48);

• JSEncrypt (welivesecurity, 2021);

• Number Theory Library (NTL) (BAe-Systems, 2014a, pp. 10, 25);

• IonCube (Huss, 2021, p. 41);

• UserForm1 encoding (McAfee-Labs, 2020);

• WolfCrypt (Matthieu Faou, 2020, p. 12).

The scope of this paper is Microsoft Windows hosted malware but it notes Apple

hosted malware: CCCrypt (ti.qianxin.com, 2019), Apple’s CommonCryptor library

(BLACKBERRY-RESEARCH-&-INTELLIGENCE-TEAM, 2020, p. 39).

 Although strictly not encryptors, use has been made of CryptStringToBinaryA

(Cyber-Geeks, 2021, p. 21), Aaencode for obfuscation (Rostovcev, 2020, p. 39) and Allatori

a Java obfuscator (Singh, 2020).

3. Use of Publicly Available Compression Algorithms

Observed compression algorithms are:

• CAB (Unknown, 2010, p. 14);

• LZip (Command-Five-Pty-Ltd, 2011, p. 2);

Page 5 of 42

https://ti.qianxin.com

• LZ77 (Nart; Wilhoit Villeneuve, Kyle 2013, p. 10), a custom Lempel-Ziv-

based algorithm (Global-Research-and-Analysis-Team, 2013, p. 10);

• EZIRIZ (Fidelis-Cybersecurity-Solutions, 2013, p. 2);

• LZO fast compression (RSA, 2014c, p. 27), bzip2 (Kaspersky, 2014b, p.

22), LZO (Novetta, 2014a, p. 13), LZO1X (Novetta, 2014c, p. 7);

• modified LZMA-compression (Fagerland, 2014, p. 19), Gzip (Antiy-

CERT, 2015, p. 3); Flex-compressed .SFX file (C. S. Pernet, Eyal, 2015,

p. 23);

• multiple compression techniques in one attack, LZJB, LZF, FastLZ, LZO,

(Kaspersky, 2015b, p. 18) and observed over a period (Cisco-Talos-

Intelligence-Group, 2021) ;

• LZ4 (Hiroaki, 2021, p. 32);

• ZWS (Bryan ; Grunzweig Lee, Josh 2015, p. 1);

• lzma (Symantec, 2014, p. 12), 7-zip (Alperovitch, 2014, p. 5);

• LZ Huffman compression algorithm (lzhuf) (Settle, 2016b, p. 24);

• LZSS (CHEREPANOV, 2016, p. 20);

• LZHAM (Cylance, 2018, p. 30);

• QuickLZ (Doctor-Web, 2020a, p. 25);

• recursively using GZip (Lifshitz, 2021, p. 10);

• ZLIB/DEFLATE (Command-Five-Pty-Ltd, 2012b, p. 2), ZLIB (Spohn,

2012, p. 23). .7Z (Chang, 2015, p. 6), ExOleObjStgCompressedAtom

(Helios-Team, 2016b, p. 24);

• PPMd format (sKyWIper-Analysis-Team, 2012a, pp. 8, 35);

• UPX (Cox, 2012, p. 11);

• RAR (Mandiant, 2013, p. 37), modified RAR software (CyCraft-Research-

Team, 2020, p. 4), WinRAR (GReAT, 2019, p. 5);

Page 6 of 42

• RtlDecompressBuffer API (LZNT1). including UCL compression (Raiu,

2013, pp. 5-6);

• NRV2e algorithm from the open-source UCL library (Kaspersky, 2013b,

p. 7), Compression library based on Nrv2d / UCL (securelist, 2015);

• An LOFDM System Peak to Average Ration Non-Linear Compression and

Expansion Algorithm (ThreatConnect-Inc.-and-Defense-Group-Inc., 2015,

p. 77);

• zip or lzh (S. N. Tomonaga, Yuu, 2015, p. 11);

• zlib, libbz2, and ppmd (Scott, 2016, p. 52);

• a “very rare compression algorithm” (Helios-Team, 2016a, p. 32) (Q.v.

ExOleObjStgCompressedAtom above);

• .BZ, .ACE (The-Cylance-Team, 2016, p. 3);

• Jcalg1 (Global-Research-and-Analysis-Team, 2016, p. 3);

• a custom implementation of the Lempel–Ziv–Welch (LZW) algorithm

(eset, 2016, p. 73);

• aPLib, custom implemented LZW, LZM, zLibalgorithm (Draco-Team,

2020, pp. 6, 7, 8, 14, 15);

• jpeg compression (Travers, 2017, p. 25);

• the legitimate tool “mpress.exe” (Bar, 2017);

• ZPP (Trend-Micro, 2017, pp. 3, 35-36);

• COMPRESS (Falcone, 2018);

• unpack200.exe decompression for Java 8 (Co-Authored-by-Rapid7, 2019,

pp. 16-17);

• exec,powershell -Command compress-archive (Cyber-Safety-Solutions-

Team, 2019);

• system tar command (netlab.360.com, 2020);

Page 7 of 42

https://netlab.360.com

• Minedoor (ANSSI, 2020, p. 10);

• the legitimate compression utility XZ Utils (Expert; Park, 2020, p. 2);

• Webp.GetFrame() method (Microsoft, 2021).

There is a example of a small bespoke compression algorithm APT (us-cert-cisa, 2020, p. 7)

where two bytes compressed into one there is no explanation of how this might be reversed,

while another (amnesty.org, 2020, p. 8) uses a custom compressor which is not further

elaborated on.

4. Use of Base 16, 32, 64 etc. Encoding

Base64 was, by far, the most commonly used form of BaseXY encoding, where X and

Y are integers. A search for the string “Base64” revealed that approximately 22% of the

papers presented this method of encoding. However, this may not be representative. For each

of the two repositories, the percentages were about 14% and 30%. These three percentages

provide an indication of the range for the number of attacks using Base64 encoding.

Examples of non-Base64 codes are:

• Base16 (F. Perigaud, 2014a, p. 6) where each nibble is encoded using the

characters A to P;

• Base25 (welivesecurity, 2020a, p. 13) where the Base25 decode is used
with key subtraction – the code is helpfully provided;

• Base26 (BAe-Systems, 2014b, p. 3);

• Base32 (Palo-Alto-Networks-Blog, 2016), and (eset, 2020, p. 20) where a

modified base32 encoding, with a custom conversion table has been seen;

• Base36 (Singh, 2016) where a Base36 random number is used;

• Base52 (Horejsi, 2018) where a macro has been seen with strings encoded

in base52. Interestingly, one week after the original paper was published in

November 2018 the APT changed from Base52 to Bases 40, 45, and 48

(Horejsi, 2018);

• Base85 (Chen, 2021) where a shellcode is base85 and hex-encoded;

• Base91 (securityintelligence.com, 2019);

Page 8 of 42

https://securityintelligence.com
https://amnesty.org

I I I I I I I I I I I I I I I I I I

• Base128 (QuoIntelligence, 2020, p. 5).

The use of Base64 XORed with a single hex key is noted (zscaler, 2011, pp. 6-7): "...

that have been base64 encoded and then XORed. XOR keys of 0x3Cand 0x3E have been

observed.". There are a number of examples e.g (Moran, 2014, p. 3) (The-SecDev-Group,

2009, p. 37), of use of Base64 encoding enciphered (XORed) with values that, at the point of

publication, are not identified.

Some APTs use a non- canonical (custom) alphabet (FireEye, 2014c) (Moran, 2014,

p. 2), (van Dantzig, 2015, pp. 11, 29), (Denbow, 2012, p. 7), (Bar, 2016).

Another encodes the data, by byte reversing, encoded with base64, and reversed again

(Check-Point, 2015, p. 10).

Anything less than Base256 encoding for 8-bit ASCII encoding does not satisfy

Shannon’s fifth point as the encrypted message is longer than the message. For example, in

Base64 3 8-bit ASCII characters (24 bits) are encoded to 4 6-bit Base64 characters. The

example, below, illustrates how Base64 encoding converts the first three octets of a PE file

into four encoded characters and XORed with 0x3C:

Source Text M (0x4D) Z (0x5A) 0x90

Bits 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0

Base64
coded

Sextets 19 21 42 16

Character T V q Q

Octets 0x54 0x56 0x71 0x51

XOR
0x3C = 0x68 0x6A 04D 0x6D

Table 1: Selected List of APT Developed Single Key Encryption Techniques

It is clear that all ASCII characters with most significant bits of 010011 (L, M, N, O)

will Base64 encode to T. Likewise, all ASCII characters least significant bits of 010000

(0x10, P, 0x90, 0xD0) will Base64 encode to Q. Similar analysis may be performed on the

other two characters. A post-Base64 encode with XOR of 0x3C or 0x3E (note: the two most

significant bits are zero in each case) means each tetrad encodes to another tetrad of

Page 9 of 42

characters. It was hypothesised that this would mean there is an excess of equal characters at

an offset of four, eight etc. in a base64 encoded file. This was tested what might be the type

of document that an APT might download.

 A Microsoft Word document was downloaded from the University of

Gloucestershire’s website and tested at offsets 1 to 19. The 15818-long file would expect

2472 hits at random (it is noted that text is not random). A range of counts were seen, ranging

from low 2,000s to low 3,000s except for multiple of four offsets where the counts were

about 10 times as high.

A PE file contains alot of 0x00 characters which makes it easy to strip off the

characters used in any XOR operation. Identification of this technique from other files will

show excess frequency counts for every four postilions. The outcome of an XOR is a simple

substitution and is the equivalent of an XOR on every Base64 element changing the canonical

alphabet to a new alphabet.

The above test works for APTs which use a non-canonical base64 alphabet.

It is noted that any BaseXY encoded document will be restricted to XY unique

characters, which is another test for BaseXY.

Double encoded base64 has been observed (telsy, 2019), (McAfee-Labs, 2020), the

latter for a DLL implant. Base64 increases the file length by a third so a double Base64

would increase the file size by over 77%. This does not comply with Shannon’s Law.

5. Bespoke Algorithms

This paper will now review bespoke algorithms. Nearly all are shown to contain

weaknesses but their implementation may be deliberate. It is asserted that a good APT will

use the level of attack and encryption suitable for the target and also suitable for the

appearance that the APT wishes to demonstrate, if discovered.

5.1.Caesar Cipher

Although not necessarily bespoke, the Caesar cipher is used in different ways. The

Caesar cipher encodes by adding the same character to each letter of the text. For a 26 letter

Latin alphabet. This may be as simple as adding 1 (modulo 26): A becomes B, B becomes C,

…, Z becomes A. For a 256-character, 8-bit ASCII bitwise Exclusive OR (XOR) may be

used.

Page 10 of 42

The table below summarises some straightforward encryption schemes:

Encryption Algorithm Key White Paper Reference

XOR Repeating 0x66 (Trend-Micro, 2012, p. 13)

XOR Repeating 0x02 (Dela Paz, 2012, p. 6)

XOR Repeating 0x90 (with a 16-byte
key also being used)

(Alintanahin, 2015, pp. 3, 7)

XOR Repeating “1/2” (C. S. Pernet, Eyal 2015, p.
16)

Multiplication One-byte key (Alintanahin, 2015, pp. 3, 7)

Unknown Machine specific
variables e.g. MAC
address

(Villeneuve, 2012a, p. 5)

Double encryption
Repeating

0x2C and 0x7B

0x70 and 0x79

(Fidelis-Cybersecurity-
Solutions, 2015, pp. 5, 7)

Table 2: Selected List of APT Developed Single Key Encryption Techniques

However, Schneier (Schneier, 2007, pp. 10-11), states that a simple substitution can

be easily broken. and goes on to describe how.

At least two APTs (Haq, 2014b, p. 21) (Cylance, 2018, p. 30) perform a bitwise byte

inversion (NOT) for encryption. Another (Kaspersky, 2014a, p. 99) reverses the plain text

and then XORs a single byte against every four bytes. One APT (eset, 2019c, p. 13) uses

ROT13.

5.2. Lookup Table and Equivalents

There are examples of ROR (rotate right shift) or ROL (rotate left shift). It is noted

that a ROR of x bits on a 8-bit byte is the equivalent of a ROL of (8-x) bits.

One APT (GReAT, 2018a, p. 5) encodes text with 0x40 and then performs an ROR of

six bits. This is equivalent to a simple substitution. The 0x40 only inverts one bit and after the

ROR that bit is the least significant bit. Another (B. G. Levene, Josh; Ash, Brittany 2018)

performs an addition and then ROL of three bits. Again, this is equivalent to a simple

substitution.

Page 11 of 42

This use of ROL to left shift based on the encrypted character's position within the

text is seen elsewhere (TIVADAR, 2013b, p. 6): the text length is less than 1024 and each

character is ROL’ed the text length minus its position times; This has the effect that every

eight characters is plain text. As an aside, this same APT (TIVADAR, 2013a, pp. 10-12)

performs other bespoke obfuscation: “… the malware does not use the same hash for

encryption. Instead, it would interchange the first DWORD with the second one in the

structure and would re-compute the SHA-1 hash”.

 One decryption algorithm (Crowdstrike-Global-Intelligence-Team, 2015, p. 9) which

is presented by the Python code:

chr(((ord(x)^(0x1C +1)) + (0x1C +1)) & 0xFF)

A program was written to generate key for all values of x [0, 255]. These “x and key”

pairs were analysed in a spreadsheet pivot table and found to be a 1-1 mapping i.e., a simple

substitution or a one-character codebook of size 256. There is a lot of structure is observed in

the codebook when written 16 digits to a line:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 58 57 60 59 54 53 56 55 50 49 52 51 46 45 48 47
1 42 41 44 43 38 37 40 39 34 33 36 35 30 29 32 31
2 90 89 92 91 86 85 88 87 82 81 84 83 78 77 80 79
3 74 73 76 75 70 69 72 71 66 65 68 67 62 61 64 63
4 122 121 124 123 118 117 120 119 114 113 116 115 110 109 112 111
5 106 105 108 107 102 101 104 103 98 97 100 99 94 93 96 95
6 154 153 156 155 150 149 152 151 146 145 148 147 142 141 144 143
7 138 137 140 139 134 133 136 135 130 129 132 131 126 125 128 127
8 186 185 188 187 182 181 184 183 178 177 180 179 174 173 176 175
9 170 169 172 171 166 165 168 167 162 161 164 163 158 157 160 159

10 218 217 220 219 214 213 216 215 210 209 212 211 206 205 208 207
11 202 201 204 203 198 197 200 199 194 193 196 195 190 189 192 191
12 250 249 252 251 246 245 248 247 242 241 244 243 238 237 240 239
13 234 233 236 235 230 229 232 231 226 225 228 227 222 221 224 223
14 26 25 28 27 22 21 24 23 18 17 20 19 14 13 16 15
15 10 9 12 11 6 5 8 7 2 1 4 3 254 253 0 255

Table 3: Mapping

Note the repeating difference between rows (16, -48, 16, -48 …), the repeating

difference between columns: (1, -3, 1, 5, 1, -3 …) and the repeating difference at the end of

Page 12 of 42

one column to the beginning of the next (5, -59, 5, -59). All three sets of differences are

modulo 256.

There are other similar algorithms (Paul, 2013, p. 36), including two different Python

encoded algorithms (Guarnieri 2014, pp. 9-11), which have an encode and decode and, again,

are equivalent to a simple substitution.

Bitwise inversion has already been discussed but this is extended (RSA,

2014b, p. 19) where the beacon is enciphered with a byte XOR with 0x5f followed by an bit-

wise inversion of each byte. The is equivalent to taking the original text and XORing with

0xa0 i.e. the bitwise inverse of 0x5f.

As part of encoding one arithmetic addition, XOR and shifting is seen (Settle, 2016a,

p. 31). Again, this is a simple substitution.

Elsewhere is seen (Shevchenko, 2017) an XOR decryption:

buffer[i] ^= 0xCC ^ ((buffer[i] ^ 0xCC) >> 4);

This has the effect of filling the most significant nibble with 0xC and the least

significant nibble with the most significant nibble of buffer[i]. For example. Assume that

buffer[i] is 10000001. An XOR of 0xCC gives 01001101, right shift by 4 gives 00001000

and XOR with 0xCC gives 11001000 i.e. the most significant nibble of the original text is

now 0xC and the least significant nibble is the previous most significant nibble. These eight

bits are then used as the key. However, this code suggests that to decrypt the text the

enciphered text is needed i.e. buffer[i].

Another (Dr.Web, 2020b) generates key from a CRC32 table.

An encryption algorithm using arithmetic and XOR had been observed (TIVADAR,

2013a, pp. 10-12). For each 0x40 (decimal 64) positions of plain text a counter (initialised to

zero) is decremented, and then XORd to the plain message. The counter is then added to this

intermediate step. Both steps are a 1-1 mapping and again the “double encryption“ has the

effect of single encryption produced by a Vigenère Square. A program was written to

implement the encryption algorithm and produce a table for all 256 8-bit ASCII characters for

each position of plain text. In a similar manner to the previous section, much structure was

observed in the Vigenère Square. The most striking effect is the encryption of 255 (binary

Page 13 of 42

11111111, 0xFF). Any ROR of this number leaves the number the same. An XOR of any

number with 0xFF is a binary inversion of the original number. Which is a mod 256

complement of the number. When added back in the result is 256 e.g., 229 11100101 when

XOrd with 0xFF gives 00011010, decimal 26. Added to 229 is 255. The encryption algorithm

decrypts twitter links so 255 should never be seen but it provides an insight into a limitation

of the algorithm.

Another APT (Bryan; Grunzweig Lee, Josh 2015) performs three 1-1 map using

subtraction, XOR and addition. Again, this is equivalent to a 1-1 lookup table which is highly

structured. While one (Novetta, 2016b, pp. 31-32) uses addition and then XOR, and XOR

then subtraction.

One APT (DATA-SecurityLabs, 2014, pp. 7-10) appears to use two different

encipherments in the same attack: the malware obfuscation layer ROR by six bits, while

elsewhere a driver which decodes a file uses a XOR of 0x73 and then subtracts 0x57. Other

examples include (Bryan; Grunzweig Lee, Josh 2015). Another performs an ROR/ROL of

four position after zlib compression and before XOR with 0x23 (FireEye, 2015, p. 55). One

author (Gross, 2015, p. 2) notes that 4-byte XOR which is permuted using a byte rotation.

The author notes that this repeats after 256 bytes and this was conformed by analysis.

There is an example of different combining mechanism (Klijnsma, 2016, p. 34): the

text is encoded using XOR of key if the position in the text is odd and adds if the position is

even. A similar algorithm is seen (Gross, 2016, p. 5) where use is made of a single byte XOR

but the algorithm skips the zero byte and the key itself.

Elsewhere (Bitdefender, 2016, pp. 4, 16) combination of a static value and two

positional counters is seen. This has the effect of a producing highly structured key where

every other key value alternates between 250 and 251 and the other alternates have constant

differences. This same APT later uses a similar encryption algorithm which produces even

greater structure. In the first example, the structure comes partly from the combining method,

part of which uses a constant. Key at the next position is a function of two XORs of key of

the previous position. This has the effect of the constant being applied at one position to be

stripped off at the next. In the second example one of the XOR elements is 200 + i (the

positional counter). Again the 200 is XOR’d in and out every two key characters.

Page 14 of 42

One algorithm (welivesecurity, 2020b, p. 4) produced key which was limited in the

last four positions when viewed as a decimal number. A program developed for analysis

modified the sample code changing the “+” operator to “^” and then “&”. The first

manifested key limited in a similar way to “+” while the latter produced every key as decimal

17.

Similar encryption algorithms are seen across attacks and reported on by different

companies within attack (Dr.Web, 2020c), (Insikt-Group, 2020, p. 9), (F. Perigaud, 2014b).

 One (Mercer, 2020) encrypts the low order nibble with the high order nibble: byte =

byte XOR (byte >> 4).

Jscript inside a malicious SCT file has been discussed (Wueest, 2017). This is, in

effect, a simple form of obfuscation. It is also encoding but it does meet the one of Shannon’s

Principles in that the encoded stream is longer than the original. This code

“\x52\x32\x56\x30” etc. A similar algorithm is used elsewhere (MalwarebytesLABS, 2018)

who observe script obfuscated using hex code, for example “var _0x8aa6=[“\x75\x73\x65

….”

5.3.Double Encryption

 Fidelis-Cybersecurity has two examples of XOR double encryption (0x2C with 0x7B)

and (0x70 with 0x79) (Fidelis-Cybersecurity-Solutions, 2015, pp. 5, 7). In mathematical

terms, the XOR Boolean operator is a GF(2) Finite Field and therefore exhibits the properties

of commutativity and associativity – no matter which way the operations are performed the

answer is always the same e.g. Using the two bytes 0x2C with 0x7B from above to encrypt

with XOR the lower-case letter “a” (0x61) it can be seen that this is equivalent to using a

single byte for encryption:

(0x2C XOR 0x7B) XOR 0x61 = 0x57 XOR 0x61 = 0x36

(0x7B XOR 0x61) XOR 0x2C = 0x1A XOR 0x2C = 0x36

0x7B XOR (0x2C XOR 0x61) = 0x7B XOR 4D = 0x36

Similarly (Qihoo-360-Technology, 2018) there is encryption by adding 0x34 and

XORing 0xA4. Again, this is a 1-1 mapping and then another 1-1 mapping i.e. a simple

substitution.

Page 15 of 42

Many of the bespoke “Double Encryption” algorithms reduce to a simple substation

offering less protection.

5.4.Finite Repeating Key

Schneier (Schneier, 2007, pp. 13-15) states that there is no real security here and

again goes on to describe how it is broken.

The table, below, summarises some repeating encryption schemes:

Encryption Algorithm Key White Paper Reference

Unknown Repeating 16-byte key (CrowdStrike, 2014a, p. 27)

XOR Repeating 4-byte key (Wyke, 2011, p. 8), (RSA,
2014a, pp. 13, 26-27)

XOR Repeating after
bitwise NOT of the input
stream.

4-long
key’\x30\x30\x34\x31’

(said to be random)

(Haq, 2014a, p. 13)

XOR Repeating 172-byte (Falcone, 2017)

Table 4: Selected List of APT Developed Repeating Key Encryption Techniques

One APT (D. M. Huss, Matthew, 2017, pp. 6-7) uses a repeating 38-byte key, to

which is added an incremental counter and then XORd with 4-bytes to produce, in effect, a

256-long key.

Not all counters start at zero: One (Hwa, 2014) uses a counter based XOR with the

key starting at 66. A program written to trivially simulate this algorithm demonstrated the

theory that that key repeats after 256 iterations. It is possible that the technique is used on

other attacks by the same APT each with a different start for the counter.

Another (Marschalek, 2014, p. 8) does a seven-bit rotation and an XOR of an 8-digit

hex key. Elsewhere (Soo, 2017) key is created by taking the eight least significant bits from a

bitwise inverse of a right shift of 0x6121 controlled by an integer counter mod 32. This has

the effect of producing a repeating 32-long byte stream.

One APT (Trend-Micro, 2019) specifically mentions a Vigenère cipher as its method

of encipherment.

Page 16 of 42

It can be seen that some repeating key streams obviously repeat i.e. the stream is a

fixed value in a variable. Others non-obviously repeat due to the structure of the algorithm. It

is not known if the respective designers are aware of the latter effect.

5.5.Finite Non-Repeating Key

One APT (RSA-RESEARCH, 2017, pp. 23-24) encrypts using an XOR of an MD5

encoded password, then XORs with a fixed byte. The latter is presumably to obfuscate the

MD5 algorithm and deny any attempts to exploit its vulnerabilities. Base64 encoded is then

applied.

 Another APT (ESET-Research-Whitepapers, 2018, p. 17) takes a seed which is

passed to srand. Further calls to rand generate the key to be XORd with the text. This paper

notes that the same seed passed to srand will always produce the same key stream produced

by rand. This allows the attackers to produce unique key streams across their attack portfolio

but the same key stream within any of those attacks.

One APT produces key that has a difference of 17 and zero every four key production

characters when the main loop variable (a5) is initialised to zero (Lunghi, 2020, p. 16).

5.6. Positional Encoding.

This paper defines Positional Encoding as any algorithm that in order to encode the

data, each character has its positional number added to, or subtracted from, it. e.g. the nth

position has a number |”n” added or subtracted to it in a manner describe by FireEye (N. B.

Villeneuve, James T. ; Moran, Ned; Haq, Thoufique; Scott, Mike; Geers, Kenneth 2013, p.

11).

An encoded IP address (Command-Five-Pty-Ltd, 2012a, p. 5) and control port is

decoded by subtracting a single key for all positions plus the position modulo 8. This is

equivalent to subtracting a repeating 8-byte key.

Another APT (Cutler, 2012, p. 3) encodes a small amount of information by adding

each character's ASCII value to its offset from the start of the stream. There are no details

given as to what happens if the result is greater than 255 but if the text to be encoded is short

enough then this probably never happens. Should short, encrypted streams be seen this, or

variants of it, then it could be easily tested.

Page 17 of 42

One (Raiu, 2014, p. 3) adds the position to 0xa (i.e. decimal 10). This has the effect of

adding 10 to every enciphering position value so directly hiding that positional value. This

paper postulates that different starting constants could be used in different attacks by the

same APT. Possibly an unique serial number for each attack.

Another APT (Palumbo, 2014, pp. 9-10) XOR encrypts in 8-byte rounds. For the final

encipherment it uses a provided key stream XOR’d with a position counter. The values of the

key stream are not provided in the documentation but encipherment starts at the end of the

text and works forwards. This technique helps thwart analysis as enciphered texts are usually

aligned and analysed from the start. Use of a positional counter for the sub-key will ensure

different final key values for different plain text lengths. Only texts with the same length will

be enciphered with the same final key. However, as the APT uses the lower byte of the word

any file length 256 positions away will use the same sub-key value. This was demonstrated

programmatically for file lengths 1000 and 1512.

One APT (Benchea, 2015, p. 20) passes a constant to the encryption routine which

ensures that the encipherment routine can be re-used within the same attack. Another APT

(Dr.Web, 2020a) takes the position off 32 to generate the key.

Another APT (Lee, 2018) uses a fixed 20-long key stream, steps through this and

combines it with an inner count to produce key. A program was written for message length of

256 and key analysed/ It was rough with a chi-squared of are 6.6 x 10-153. The message length

was extended to 4096 and the key frequency table sorted by frequency, high to low and then

key value. A difference of successive key value shows strong structure with the highest

frequency (80) each appearing 15 times. A difference of the key values showed that they

were 256 apart. Similar structure was observed in the key value frequency table.

This paper asserts that positional encipherment offers little security beyond

obfuscation. Consider an IPv4 address positional encoded with the position and a single byte

XORd across all positions. This may be solved by brute force: we simply XOR off all 256

possible byte values for 256 intermediate texts and subtract a sequence of numbers from

each. The text that has only 0-9 and “.” as the plain is a likely candidate for true plain text I.e.

the IPv4 address. In addition, the key is 256 long and each value in the range [0, 255] appears

once and only once. Assume 8-bit byte output then any addition greater than 256 (and

subsequent mask) will repeat in the lower order bits. This was demonstrated

programmatically for positions 0 to 4095 and an XOR of 0xAA (alternate 0s and ones).

Page 18 of 42

5.7.Transposition

There is little reported use of bespoke transposition.

The first (FireEye, 2019b, p. 59) uses a remote administration tool designed as a .dll.

The strings are encoded using a transposition algorithm which is not elaborated on by in the

paper. The second (Microsoft-Security, 2021) “... uses a simple byte-swap decoding

algorithm …” i.e. every two bytes are positional exchanged. A similar scheme is seen

elsewhere (GReAT, 2016a) where use of a 1-byte XOR id followed by “replacement of the

Odd byte for an Even byte in several hundred bytes from the header”.

5.8.Steganography

At least one APT (Faou, 2019a, p. 21) makes use of steganography to hide a payload

but, again, this breaches Shannon’s Law. At least one APT (Brumaghin, 2019) has a PE

hidden in a bitmap.

5.9.Autokey

The use of uses the XOR and additive for encryption has been seen (F. B. Perigaud,

Boris, 2014) but the additive is the previous value of the plain text with the result that it is an

autokey cipher. This is part of four-step encryption algorithm.

One APT (Novetta, 2014b, p. 2) decodes by starting at the last byte and XORing each

previous byte with the current byte value in reverse order. This has been observed elsewhere

(Trend-Micro, 2018).

Another APT XORs the encrypted character from the previous stage XORd with a

fixed byte (0x15) as key (FALCONE, 2015, pp. 13, 17).

Differencing adjacent plain text values in a stream has been noted (Nart ; Wilhoit

Villeneuve, Kyle 2013, p. 5). The first value is not actioned. Subsequent plain values are

XORed with the previous value in the stream. The outcome here is that, statistically, a count

of the first value of the stream will be the distribution of the unenciphered text and

subsequent values with have a unenciphered difference distribution. Another (Unit-42, 2017)

XORs plain text two positions apart.

Page 19 of 42

5.10. Stream Cipher

One APT (M.Léveillé, 2019, p. 18) decrypts cipher using continuous key generated

from a seed that depends on the first two cipher position. It is inferred that these two positions

are key needed to encipher otherwise how could one encrypt when the encrypted data is

needed to seed the algorithm? The key produced did not repeat for at least 4096 positions, the

limit of the loop set in the program written for analysis.

Another APT (Doctor-Web, 2020b, pp. 45-46, 74) generates a stream key which

exhibited no obvious non-random features for initial values [0-9] each generating 4096 keys.

The exception was that each key value appeared once only. However, code later in the

document produces key with a lot of structure exhibited. The structure appears both when

BYTE1 an BYTE2 are interpreted as the lowest and second lowest bytes and also as the

second and third lowest.

Elsewhere (Avisa-Partners, 2020b, p. 17) there appears to be a strong tendency for the

key at the next position to be mainly comprised of the key right shifted 8 bits with new values

at the left most 8 bits. The coalescence to this feature is very early in the key generation

mechanism. This may be due to the use of left and right shifts in the key generator as well use

of the Boolean AND operator.

5.11. “YHCRA” Encryption

One APT (N. d. T. Villeneuve, Jessa 2013, p. 5) has been seen using an encryption

scheme where each byte is XOR-ed by every letter in the string, YHCRA, and rotated three

bits to the right after every XOR operation. One interpretation of the algorithm is the

equivalent to encrypting using the single byte 11110110 as shown in the table below:

Initial Text (Null) 00000000 P (01010000)

XOR Y (01011001) 01011001 00001001

ROR Shift 3 00101011 00100001

XOR H (01001000) 01100011 01101001

ROR Shift 3 01101100 00101101

XOR C (01000011) 00101111 01101110

Page 20 of 42

ROR Shift 3 11100101 11001101

XOR R (01010010) 10110111 10011111

ROR Shift 3 11110110 11110011

XOR A (01000001) 10110111 01000001

ROR Shift 3 11110110 01010110

Table 5: Analysis of “YHCRA” Encryption Scheme, Method 1

It can be seen that 11110110 XOR P (01010000) equals 01010110 which is the final

value of the rightmost column.

There are two other interpretations: the first is that each plain text character is XORd

with all of the YHCRA characters which are all ROR by 3. This would give a repeating key

length of 8; the second interpretation is that the plain text is encrypted as described in method

1 and the process continues, without resetting, for the next plain text character. A program

was written to emulate this and uncovered a 16-long repeating key.

Whichever of the three algorithms is correct, this example demonstrates that one must

be careful with encryption as “more complicated” or “more complex” does not necessarily

mean better, i.e. stronger, encryption. This example re-enforces Shannon’s assertions above

about the need to minimise complexity: in Method 1 the designer of the above scheme has

picked a bit shift of three which is co-prime to eight but has five times the number of XORs

needed plus five rotate shifts for each iteration i.e., a workload of at least five times for each

encipherment when all that is needed is to store 11110110 as the single byte key. Depending

on the hardware and software implementation the cost could be as much as 10 times (10

clock cycles) as much as using one byte.

5.12. Random Number Generators

A Linear Congruential Generator (LCG) (Schneier, 2007) is of the form:

Xi = (Axi-1 + B) mod m

AN LCG may be used as part of a wider encryption algorithm, for example an n-stage

encryption (Co-Authored-by-Rapid7, 2019, pp. 16-17). Here there is a rolling XOR

encryption, followed by RC4 encryption of this stream, followed by Salsa20 encryption.

Page 21 of 42

Stage 1 (the rolling XOR encryption) is a type of LCG with seeds of four and eight

and a divisor of 255; i.e.

xi+2 = (xi+0 + xi+1) mod 255;

x0 = 4; x1 = 8;

Analysis shows that this stream repeats after about 360 iterations. The sequence is:

x0 = 4; x1 = 8; x2 = 12; x3 = 20; …

… x356 = 251; x357 = 4; x358 = 0; x359 = 4; x360 = 4; x361 = 8;

It is possible that the developers are aware of the short comings of RC4 and used this

technique to overcome them.

Another APT (Symantec, 2015b, p. 10) uses an LCG directly for encryption. The

authors of the paper state that their organisation has not previously seen an LCG used for

communications encryption.

A pseudo LCG has also been observed (Unit-42, 2017). What appears to be a single

byte key and key offset are provided to a routine. Successive values of seed are generated:

seed = (seed + key_offset) % 0x100

Depending on the value of key_offset different values from different cycles are used.

For example: for key_offset equal to 1, all 256 8-byte values are stepped through; for

key_offset equal to 2, one of two 128-long cycles is used etc. Again, it is not known if the

designers of this LCG are aware of the limitation and that there is no full cycle and only sub-

cycles.

 Another use of srand has been seen (FALCONE, 2015, pp. 13, 15, 17). It is seeded

with a fixed seed and successive values from the call are reduced mod 128 with this result

being used as an XOR key. It is noted that reduction modulo 128 only provides a 7-bit key in

an 8-bit variable. A Python example demonstrates of cdll.msvcrt.rand() modulo 128 as the

byte wise XOR key. This random number generator is initialised using

cdll.msvcrt.srand(2014) to ensure that the key is the same each time. A probably related APT

(Falcone, 2016) uses srand and rand but the seed is 2563. Elsewhere srand(time(0)) has been

observed (Novetta, 2016b, pp. 31-32).

Page 22 of 42

One APT (Group-IB, 2018, p. 51) uses rand but there is no indication that srand() has

been used for initialisation.

The use of Mersenne Twister random number generator has been observed (eset,

2019a, p. 16). This implementation is a variant with unique seed for each machine stored in

the machine’s Registry.

The use of BCryptGenRandom (Tikhonova, 2021) is noted.

In another attacks (GReAT, 2018d, p. 2) log files are encrypted with a AMPRNG

based custom encryption algorithm but no further details are given.

One APT (Nart; Wilhoit Villeneuve, Kyle 2013, p. 10) uses large portions of Makoto

Matsumoto and Takuji Nishimura’s Random Number Generator for encryption functionality.

One description (JPCERT-CC, 2016) of the Python rand() function uses an encryption

seed which is twice the “config_offest”, while another description states that “All strings

inside a driver used by one are encrypted by XOR with a pre-seeded random number

generator” (securelist, 2015). There is no elaboration on this. The use of srand seeded by the

compilation timestamp is noted (Faou, 2019b, p. 10).

The selection of a random number generator should be done lightly: “Random

numbers should not be generated with a method chosen at random” (Knuth, 1981, p. 5).

5.13. Symmetric Key Generation

 One APT (S. Tomonaga, 2015, pp. 2-3) uses two 32-bit words to generate key. The

registers are initialised and modified during the key generation process by four constants: the

first appears to be a date and the other three are prime numbers which, of course, are co-

prime to the 32-bit words. The analysts note that these values may vary, presumably across

attacks. Key is generated by taking all eight non-overlapping bytes from each word and

combing them with a mixture of XOR and subtraction. It is possible that there is a

typographic error as one of the combining variables is given as the full word. There is only

one “missing” byte and this is the low order byte of that word. Analysis both ways of the first

216 65,536) key bytes generated gives the same chi-squared probability of 0.6599 i.e. non-

significant at the 99.9% level. Analysis of the stepping of the individual bytes shows structure

with, of course, the most significant bytes stepping least often.

Page 23 of 42

One APT (Unknown, 2020, p. 7) for a stream length, again, of 4096, produced 32

values of key each with a frequency count of 128. This was program was run twice on two

different starting values with the same out but slightly overlapping key values – all in the low

4,000 range.

5.14. Stuxnet Bot Configuration Data

 This data (Matrosov, 2011, pp. 65, 74) is stored in 1860 bytes. The decryption

algorithm is presented in the paper’s Appendix B (although the paper says it is Appendix A).

The Python code in the appendix was converted to C code and comments added. All integers

were defined as int64_t to minimise buffer overflow.

It is unclear from the code the meaning of key, counter and sym. However, it may be

inferred that: key comes from a set of values (one of the two 32-byte Hex streams perhaps?)

to seed the decryption algorithm; counter is a positional counter on the 1860 long text; and

sym is the encrypted value to be decrypted. Analysing the code in segments:

v0 = key * counter;

v1 = v0 >> 0xb; /* Bitwise right shift 11 */

v1 = (v1 ^ v0) * 0x4e35; /* Bitwise XOR multiplied by 20021 */

v2 = v1 & 0xffff; /* Bitwise AND */

v3 = v2 * v2;

v4 = v3 >> 0xd; /* Bitwise right shift 13 */

v5 = v3 >> 0x17; /* Bitwise right shift 23 */

it is clear that: any combination of key and counter that is zero results in v0 being zero; and

hence v1 being zero; any value of v0 less than 211 - 1 (2047) will be result in intermediate v1

being zero (as only zeros will be right shifted); a v0 32-bit integer with the 16 least

significant bits set to zero will result in v1 being zero (there are 216 (65536) such numbers)

any combination of key and counter that is zero results in v0 being zero; and hence v1 being

zero. This paper notes that:

• any value of v0 less than 211 - 1 (2047) will be result in intermediate v1

being zero (as only zeros will be right shifted);

Page 24 of 42

• a v0 32-bit integer with the 16 least significant bits set to zero will result in

v1 being zero (there are 216 (65536) such numbers);

• any outcome which results in v3 being zero will result in v4 and v5 being

zero.

This paper postulates that there might a lot of outcomes of zero so a program was written to

exhaust all 256 values of key and counter. The decryption routine completed and returned the

value of the line one before the original code.

From all 256*256 outcomes 256 zeros would be expected, 785 were seen (expected

256) and a chi-squared test on the list of frequency counts gives a probability of 0. The

program was run for 256 possible key values and 1860 (counter) positions of

encryption/decryption. 4296 zeros seen (expected 1860) and a similar chi-squared test gives a

probability of 0. The program was run for both 31-byte hex key (Falliere, 2011, p. 22); 10

zeros were seen, 7.3 expected and a similar chi-squared test gives a probability of 0.21. Eight

zeros were seen again 7.3 expected, and a similar chi-squared test gives a probability of

0.0086.

The encryption algorithm has several limitations. These are apparent by looking at the

code. However, they are much less of an issue for a recurring key stream with well-chosen or,

at least, not poorly chosen values.

5.15. Crypto-variable Generation

 This algorithm (NTT-Security-Holdings, 2021, p. 19) shows how the malware

generates a key from a seed and has severe limitations:

Initialise seed.

val1 = (seed&1)|(seed<<16)&0xFFFFFFFF;

val2 = (seed>>16)|(seed&0x00001000);

CV = ((val1<<8)&0xFFFFFFFF) | ((val2)>>8)&0xFFFFFFFF);

Analysing the first 216 values: for val2, (seed&0x00001000) will be x00001000 if an

only if bit 3 is 1. Therefore, it will be 0 half the time on average. A 16-bit right shift brings all

zeros to the 16 least significant bits so the subsequent AND will always produce all zeros. It

is clear that there is some structure to be tested.

Page 25 of 42

The first 216 (0-65,535) were generated and found to repeat after 512 seeds. Each

crypto-variable is generated 128 times. For 217 (0-131,071) the same 512 crypto-variables

were generated. It is the same for 218. for 219, it is the same but the crypto variables are

generated 1024 times. All are even numbers. For 220 the spreadsheet was unable to read all of

the values.

For further analysis Monte Carlo sampling was used with a Confidence Level of

99.9% and 1% margin of error. For a population size of 232 a sample size of 27061 crypto-

variables would be needed. These were generated producing a data set of 21133 unique

crypto-variables each with a frequency of 1 to 6. 21133 is not an integer power of 2 and lies

between 214 (16,384) and 215 (32,768). This is approximately1/217 (1/131,072) the size of the

seed space. Given that the size of previous subsets of crypto-variables are a power of 2 the

Monte Carlo results are a little disappointing. One of the numbers with a frequency count of 6

is 2,197,815,800 which is greater than 231. It is clear that that a seed space of 232 reduces to a

crypto-variable space much smaller, possibly 216.

The Monte Carlo simulation was extended to 219 random seeds. This produced 64971

crypto-variables which is just less than 216 (65,536). A second run of this program produced

64919 crypto-variables I.e., very similar to the first run. Combining both results and

deduplicating produced 65521 unique crypto-variables, still less 216 (65,536).

It is inferred from these Monte Carlo simulations that the crypto-variable space is 216

and, therefore, within the realms of a Brute-force attack. As with the Stuxnet algorithm there

are limitations to this algorithm and it des not align with Shannon’s fourth point on

minimising error propagation.

5.16. Customised Hashing

On APT (Soo, 2017) uses a customised hashing routine.

5.17. Standard Algorithms That Have Been Modified

A Tiny Encryption Algorithm (TEA) implementation has been seen that uses a key

modified during encryption and decryption operations (Fidelis-Cybersecurity-Solutions,

2014, p. 43).

Custom implementation have been observed for example of AES-256-CBC (Marczak,

2014). RC6 key setup has been modified (Kaspersky, 2015d). Another RC4 routine was

Page 26 of 42

poorly modified (Settle, 2016b) while yet another uses modified RC4 (Grunzweig, 2018).

Another APT (D. Huss, 2017, p. 6) uses the Windows executable PowerSpritz. This hides

payload and malicious PowerShell command using a non-standard implementation of Spritz,

an RC4 variant. The modification of RC4 in at least two attacks may be accidental.

Researchers note (Talos, 2018) that the malware authors incorrectly implemented

initialisation of the S-boxes. Kaspersky imply implementation invocation of RC5 as specific

to one APT (Kaspersky, 2013a, p. 27).

One APT (Airbus-D&S-CyberSecurity-blog, 2014) modifies Base64 to avoid “/” as it

works on URLs which contain that character.

Another APT(DAHAN, 2017, p. 13) uses software that is based on DiskCryptor, a

legitimate disk encryption utility.

5.18. Use of Victim’s Machine Data

At least one APT (CrowdStrike, 2014c, p. 27) uses the infected machine’s hard disk

serial number, XOR’ed with the a eight-long key and nibble-wise encoded as upper-case

ASCII characters in the range (A-P).

Another APT (van Dantzig, 2015, pp. 11-29) encodes strings from key which is made

of dynamic values from the process stack. This will only work with static class and calling

method names are static.

Key has been derived from system variables e.g., GetTickCount (Ferrer, 2010, p. 16).

This custom algorithm encrypts again using a bitwise NOT. GetTickCount is also used to

iniitialise srand (Checkpoint-Research, 2021, p. 12). Although not an encryption method, as

such (there is no way to reverse it) the result is used to populate a variable called

“new_user_id” which is then used in the routine writefile, presumably to pass to another

stage of the attack.

In another (unspecified) encryption algorithm (Trend-Micro-Threat-Research-Team,

2012, p. 6) the key used for the is the machine’s MAC address. Use of the MAC address is

seen elsewhere (Villeneuve, 2012b, p. 5) where the values of the addressed are increased by 1

and the result used as an encryption key.

Page 27 of 42

Similarly (Raiu, 2013, pp. 5-6) states that parts of a malicious DLL file are encrypted

with system configuration related information. This ensures it will only work properly on the

victim’s system.

6. Miscellaneous

One APT (B. Levene, 2018) used HTML containing a vbscript to encode PowerShell

commands which were then executed.

Use of Metasploit’s Shikata Ga Nai encoder (Legezo, 2018, pp. 1-2, 4-6) is noted. A

wider discussion of this is published by Mandiant (MILLER, 2019). While another APT uses

Shikata Ga Nai for 32-bit shellcode and an the XOR dynamic encoder for 64-bit shellcode

(Horejsi, 2020, p. 6).

Data has been seen to be “hexified” (Falliere, 2011, p. 22) to transform binary data

into ASCII e.g.0x12, 0x34 “1234”.

One APT in a multi-stage attack (GReAT, 2018b, pp. 4, 19) has an encryption

algorithm that reminds the analysts of PKZIP encryption but seems to be modified. Also,

probably Acid Cryptofiler military grade encryption software is observed. The same APT

sends the data to the C&C server compressed with Zlib, encrypted with a modified PKZIP

stream cipher and then Base64-encoded (GReAT, 2018c, p. 6).

FireEye (Siedlarz, 2016) highlight the evolution of one APT. The APT used Base64

and RC4 later changing the algorithm to include an intermediate step of an XOR plus a 12-

byte salt.

7. Inability to Process Encryption Algorithms

Several algorithms could not be modelled, either because they appeared incomplete or

they were hard to read as they had blurry images (Qihoo-360-Technology, 2018). Most

assembler programs were not emulated (Avisa-Partners, 2020c, p. 34), (telecom.com, 2020).

One APT encrypted data with a algorithm lifted from a game server engine written by

a group named “My Destiny Team.” (FireEye, 2014a), No further information is provided.

Page 28 of 42

https://telecom.com

At least two APTs used unknown schemes, unknownVB6 crypter (Scott-Railton,

2015, p. 13) or an encryption scheme that the analysts were unable to identify (Novetta,

2016a, p. 7).

One description (Diogos, 2017, p. 29) highlights a 10-long key with the XOR

encoding “skipping every 3 bytes”. It is not clear what is meant by this and the authors state

that they have not reproduced the decryption routine to maintain brevity.

One positional decryption description (Alexander, 2017, p. 12) claims to be a

decryption algorithm but part of the algorithm looks like it uses the encrypted text to encrypt.

However, for the purpose of this paper it was assumed that the decrypted character replaces

its encrypted character in the buffer. This algorithm was programmed in C for all possible 8-

bit ASCII values at the first 10 positions, multiple values decrypted/encrypted to the same

value. Values started at a multiple of 32 and repeated after 32 steps. This discovery adds

weight to the argument that the description provided may not be correct. Another description

(cybergeeks, 2021) also suggests the need for the encrypted character to encrypt. Another

algorithm (Avisa-Partners, 2020c, p. 34) appears to be a 1to Many mapping for decryption.
]

One (ESET, 2018, p. 12) was not attempted due to complexity: an obfuscation

algorithm that even the authors of the white paper state that “the code becomes far more

complex to analyze for both malware researchers and automatic algorithms in security

software.”.

8. Discussion

It is clear from the examples that bespoke encryption does necessarily mean better

encryption. However, the use of these encryption schemes does not indicate lack of

cryptographic skill and knowledge. This paper asserts that a good APT should use an

appropriate level of encryption for the required attack and it is clear that some of these

algorithms perform that function. This paper also asserts that attackers should display to

defensive analysts a certain level of cryptographic knowledge. No more and no less. In

addition, a good APT may wish to deceive by displaying a level lower of knowledge or skill

than they, the APT, possess.

Alignment of attacks to Shannon’s Law is mixed. For example: Complexity of

enciphering and deciphering is not minimised; Error propagation has been observed; Base64

etc encoding ensures that the encrypted message is longer than the plain text. However: the

Page 29 of 42

amount of secrecy appears to be proportionate to the effort put in to securing the data; and

key sizes seem to be as small as possible.

For analysts one of the lessons of this review is that cipher text should be aligned for

analysis both from the start and the end. The former will pick up encryption that starts from

the start and works forward, the later will pick up encryption that starts from the end and

works backwards. All software used by analysts should be written to perform this function.

There is sufficient evidence to suggest that not all bespoke cryptographic algorithms

mean stronger cryptography but the level of cryptography demonstrated by APTs may be

enough for the level of secrecy and obfuscation desired.

9. A Critique of this Work and Suggested Further Lines of Work

The idea behind this paper was to review as many cryptographic methodologies as

possible and highlight potential issues. The paper is restricted mainly to Windows high-level

code and good prose descriptions. Some assembler analysis was performed but more complex

assembler routines were placed out of scope. More work needs to be done on those, and non-

Windows, routines as well as on the cryptographic variable production.

The search for encoding and decoding could have used the terms “encod” and

“decod” instead of “encode” and “decode”. The estimate for the number of attacks using

Base64 is just that - an estimate.

Not all of the algorithms could be exactly reproduced as not all white papers gave a

complete description – some, for example, did not declare variables in the code presented and

sensible choices of when to use a 32-bit or 64-bit word had to be made.

Adobe Advanced search seems to have a limit issue with respect to the number of

results with – three searches (one related to other research) returned the figure of 500 and an

error message. The “crypt” and “obfusct” searches were then performed using a Windows

Microsoft search.

There may exist white papers and hence, encryption algorithms not analysed in this

paper.

It is acknowledged that some observations may be the fault of this author, both in

interpretation of the data or C coding or analysis.

Page 30 of 42

10. Concluding Remarks

The paper has presented and discussed encryption, compression and obfuscation

techniques used by APTs. It has shown that, apart from internationally acceptable techniques,

bespoke algorithms are also used. All of the techniques and algorithms, generally, serve the

purpose. Many algorithms adhere to Shannon’s Law but some do not. However, without

evidence of the underlying business philosophy of the different APTs, it is difficult to for a

view of the rational for a few of the algorithms.

Page 31 of 42

REFERENCES

Airbus-D&S-CyberSecurity-blog. (2014) ‘Leouncia and Orcarat’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Alexander, G. D., Jakub; Crete-Nishihata, Masashi; Brooks, Matt (2017) Insider Information:
An Intrusion Campaign Targeting Chinese Language News Sites.

Alintanahin, K. (2015) Operation Tropic Trooper Relying on Tried-and-Tested Flaws to
Infiltrate Secret Keepers.

Alperovitch, D. (2014) Deep in Thought: Chinese Targeting of National Security Think Tanks.
amnesty.org (2020) German-Made Finspy Spyware Found in Egypt, and Mac and Linux

Versions Revealed.
ANSSI. (2020) ‘Development of the Activity of the Ta505 Cybercriminal Group ’ Available at:

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Antiy-CERT (2015) Analysis on Apt-to-Be Attack That Focusing on China's Government
Agency.

Avisa-Partners (2020a) The Lazarus Constellation.
Avisa-Partners (2020b) The Lazarus Constellation.
Avisa-Partners (2020c) The Lazarus Constellation.
BAe-Systems (2014a) Snake Campaign & Cyber Espionage Toolkit.
BAe-Systems (2014b) Snake Campaign & Cyber Espionage Toolkit.
Bar, T. (2017) ‘Targeted Attacks in the Middle East Using Kasperagent and Micropsia’

Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Bar, T. C., Simon (2016) ‘Prince of Persia: Infy Malware Active in Decade of Targeted Attacks’
Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Benchea, R. M., Alexandru; Vatamanu, Cristina;; Luncasu, Victor (2015) Apt28 under the
Scope a Journey into Exfiltrating Intelligence and Government Information.

Bitdefender (2016) Pacifier Apt
BLACKBERRY-RESEARCH-&-INTELLIGENCE-TEAM (2020) Bahamut: Hack-for-Hire Masters of

Phishing, Fake News, and Fake Apps.
BlackBerry (2020) Decade of the Rats. Cross-Platform Apt Espionage Attacks Targeting Linux,

Windows and Android.
Breitenbacher, D. O., Kaspars (2020) Operation in(Ter)Ception: Targeted Attacks against

European Aerospace and Military Companies.
Brumaghin, E. a. o. C. T. r. (2019) ‘Sweed: Exposing Years of Agent Tesla Campaigns’

Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st August 2023).

Chang, Z. L., Kenney ; Luo, Aaron ; Pernet, Cedric; Yaneza, Jay (2015) Operation Iron Tiger:
Exploring Chinese Cyber-Espionage Attacks on United States Defense Contractors.

Page 32 of 42

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://amnesty.org
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

Check-Point (2015) Volatile Cedar.
Checkpoint-Research (2021) Indigozebra Apt Continues to Attack Central Asia with Evolving

Tools.
Chen, J. C. L., Kenney ; Horejsi, Jaromir; Chen, Gloria (2021) ‘Biopass Rat: New Malware

Sniffs Victims Via Live Streaming’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

CHEREPANOV, A. (2016) Operation Groundbait: Analysis of a Surveillance Toolkit. eset
Cisco-Talos-Intelligence-Group. (2021) ‘Sowing Discord: Reaping the Benefits of

Collaborationapp Abuse ’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

ClearSky-Cyber-Security-ltd (2021) “Lebanese Cedar” Apt Global Lebanese Espionage
Campaign Leveraging Web Servers.

Co-Authored-by-Rapid7, I.-G. (2019) ‘Apt10 Targeted Norwegian Msp and Us Companies in
Sustained Campaign’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Command-Five-Pty-Ltd (2011) Sk Hack by an Advanced Persistent Threat.
Command-Five-Pty-Ltd (2012a) Command and Control in the Fifth Domain.
Command-Five-Pty-Ltd (2012b) Command and Control in the Fifth Domain.
Cox, A. E., Chris ; Gragido, Will ; Harrington, Chrisl Jon , McNeill (2012) The Voho Campaign:

An in Depth Analysis.
Crowdstrike-Global-Intelligence-Team (2015) Deep Panda.
CrowdStrike (2014a) Putter Panda.
CrowdStrike (2014b) Putter Panda.
CrowdStrike (2014c) Putter Panda.
Cutler, S. (2012) The Mirage Campaign.
Cyber-Geeks. (2021) ‘A Step-by-Step Analysis of the New Malware Used Byapt28/Sofacy

Called Skinnyboy’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Cyber-Safety-Solutions-Team. (2019) ‘New Slub Backdoor Uses Github, Communicates Via
Slack’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

cybergeeks (2021) A Detailed Analysis of Elmer Backdoor Used by Apt16.
CyCraft-Research-Team (2020) Apt Group Chimera - Apt Operation Skeleton Ket Targets

Taiwan Semiconductor Vendors.
Cylance (2018) The Spyrats of Oceanlotus
DAHAN, A. (2017) Night of the Devil: Ransomware or Wiper? A Look into Targeted Attacks in

Japan Using Mbr-Oni.
DATA-SecurityLabs, G. (2014) Operation “Toohash” How Targeted Attacks Work.
Dela Paz, R. (2012) The Heartbeat Apt Campaign.
Denbow, S. a. H., Jesse (2012) Pest Control: Taming the Rats.
Diogos, T. D., Sachin ; Mendrez, Rodel (2017) Operation Grand Mars: Defending against

Carbanak Cyber Attacks. Trustwave Spider Labs

Page 33 of 42

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

Doctor-Web (2020a) Study of the Shadowpad Apt Backdoor and Its Relation to Plugx.
Doctor-Web (2020b) Study of the Shadowpad Apt Backdoor and Its Relation to Plugx.
Dr.Web (2020a) Study of the Apt Attacks on State Institutions in Kazakhstan and Kyrgyzstan.
Dr.Web (2020b) Study of the Apt Attacks on State Institutions in Kazakhstan and Kyrgyzstan.
Dr.Web (2020c) Study of the Apt Attacks on State Institutions in Kazakhstan and Kyrgyzstan.
Draco-Team (2020) Dissecting a Chinese Apt Targeting South Eastern Asian Government

Institutions.
Ehrrlich, A. B. S. (2021) From Wiper to Ransomware: The Evolution of Agrius.
Elastic. (2020) ‘A Close Look at the Advanced Techniques Used in a Malaysian Focused Apt

Campaign’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

ESET-Research-Whitepapers (2018) Turla Outlook Backdoor Analysis of an Unusual Turla
Backdoor.

eset (2016) En Route with Sednit Part 2.
eset (2019a) Greyenergy: A Successor to Blackenergy.
eset (2019b) Greyenergy: A Successor to Blackenergy.
eset (2019c) Machete Just Got Sharper.
eset (2019d) Machete Just Got Sharper.
eset (2020) Invisimole: The Hidden Part of the Story Unearthing Invisimole’s Espionage

Toolset and Strategic Cooperations.
ESET, s. s. r. o. (2018) Diplomats in Eastern Europe Bitten by a Turla Mosquito.
Expert; Park, S. (2020) Lazarus Covets Covid-19-Related Intelligence.
Fagerland, S. G., Waylon (2014) The Inception Framework: Cloud-Hosted Apt.
Falcone, R. (2017) ‘Second Wave of Shamoon 2 Attacks Identified’ Available at:

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Falcone, R. (2018) ‘New Threat Actor Group Darkhydrus Targets Middle East Government’
Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

FALCONE, R., GRUNZWEIG,, JOSH; MILLER-OSBORN, JEN; OLSON, RYAN (2015) Operation
Lotusblossom.

Falcone, R. M.-O., Jen (2016) ‘Emissary Trojan Changelog: Did Lotus Blossom Cause It to
Evolve’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Falliere, N. O. M., Liam; Chien, Eric (2011) W32.Stuxnet Dossier.
Faou, M. (2020) From Agent.Btz to Comrat V4 a Ten-Year Journey.
Faou, M. (2020) From Agent.Btz to Comrat V4 a Ten-Year Journey. eset.
Faou, M. T., Mathieu ;TDupuy, homas (2019a) Operation Ghost the Dukes Aren’t Back —

They Never Left.
Faou, M. T., Mathieu ;TDupuy, homas (2019b) Operation Ghost the Dukes Aren’t Back —

They Never Left.
Ferrer, Z. C. F., Methusela (2010) In-Depth Analysis of Hydraq the Face of Cyberwar Enemies

Unfolds.
Fidelis-Cybersecurity-Solutions (2014) Intruder File Report- Sneakernet Trojan.

Page 34 of 42

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

Fidelis-Cybersecurity-Solutions, G.-D. (2013) Fidelis Threat Advisory #1009 “Njrat”
Uncovered.

Fidelis-Cybersecurity-Solutions, G.-D. (2015) Dissecting the Malware Involved in the
Inocnation Campaign.

Fidelis (2014) New Cdto: A Sneakernet Trojan Solution.
FireEye. (2014a) ‘Forced to Adapt: Xslcmd Backdoor Now on Os X’ Available at:

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

FireEye (2014b) Poison Ivy: Assessing Damage and Extracting Intelligence.
FireEye. (2014c) ‘Trojan.Apt.Seinup Hitting Asean’ Available at:

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January2023).

FireEye (2015) Apt30 and the Mechanics of a Long-Running Cyber Espionage.
FireEye (2019a) Double Dragon Apt41, a Dual Espionage and Cyber Crime Operation.
FireEye (2019b) Double Dragon Apt41, a Dual Espionage and Cyber Crime Operation.
FireEye. (2019c) ‘Mahalo Fin7: Responding to the Criminal Operators’ New Tools and

Techniques’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Gandotra, E. B., Divya ; Sofat, Sanjeev (2014) 'Malware Analysis and Classification: A Survey',
Journal of Information Security, 5, pp. 56-64.

Global-Research-and-Analysis-Team (2013) The Nettraveler (Aka ‘Travnet’).
Global-Research-and-Analysis-Team (2016) The Projectsauron Apt. Technical Analysis 2-16.
Gorelik, M. G., Alon; Braga, Bruno (2019) New Campaign Delivers Orcus Rat. Available at:

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
GovCERT.ch (2016) Apt Case Ruag Technical Report.
GReAT. (2016a) ‘Cve-2015-2545: Overview of Current Threats’ Available at:

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

GReAT (2016b) Projectsauron: Top Level Cyber-Espionage Platform Covertly Extracts
Encrypted Government Comms. Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

GReAT (2018a) “Red October”. Detailed Malware Description 1. First Stage of Attack.
GReAT (2018b) “Red October”. Detailed Malware Description 3. First Stage of Attack.
GReAT (2018c) “Red October”. Detailed Malware Description 4. First Stage of Attack.
GReAT (2018d) “Red October”. Detailed Malware Description 5. Second Stage of Attack.
GReAT (2019) Gaza Cybergang Group1, Operation Sneakypastes.
GReAT, E. (2021) ‘Apt10: Sophisticated Multi-Layered Loader Ecipekacdiscovered in A41apt

Campaign’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Gross, J. (2015) Cylance Spear Team: A Threat Actor Resurfaces.
Gross, J. e. a. (2016) Operation Dust Storm.
Group-IB (2018) Silence Moving into the Darkside.
Grunzweig, J. (2018) ‘The Tophat Campaign: Attacks within the Middle

Page 35 of 42

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://GovCERT.ch
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

East Region Using Popular Third-Party Services’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Guarnieri , C. S., Mark (2014) Keyboy, Targeted Attacks against Vietnam and India.
Haq, T. M., Ned ; Vashisht, Sai; Scott, Mike (2014a) Operation Quantum Entanglement.
Haq, T. M., Ned ; Vashisht, Sai; Scott, Mike (2014b) Operation Quantum Entanglement.
Hegel, T. (2018) Burning Umbrella, an Intelligence Report on the Winnti Umbrella and

Associated State-Sponsored Attackers.
Helios-Team (2016a) Operation Oniondog.
Helios-Team (2016b) .
Hiroaki, H. L., Ted (2021) Earth Baku an Apt Group Targeting Indo-Pacific Countries with New

Stealth Loaders and Backdoor.
Horejsi, J. (2018) ‘New Powershell-Based Backdoor Found in Turkey, Strikingly Similar to

Muddywater Tools’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2030).

Horejsi, J. C., Joseph C. (2020) Operation Overtrap Targets Japanese Online Banking Users
Via Bottle Exploit Kit and Brand-New Cinobi Banking Trojan.

Hromcová, Z. (2019) ‘Eset Discovers Attor, a Spy Platform with Curious Gsm Fingerprinting’
Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Hromcová, Z. C., Anton (2020) Invisimole: The Hidden Part of the Story Unearthing
Invisimole’s Espionage Toolset and Strategic Cooperations.

Huss, D. (2017) North Korea Bitten by Bitcoin Bug.
Huss, D. L., Selena (2021) Triple Threat: North Korea-Aligned Ta406 Steals, Scams and Spies.
Huss, D. M., Matthew (2017) Operation Rat Cook: Chinese Apt Actors Use Fake Game of

Thrones Leaks as Lures |
Hwa, C. R. (2014) ‘Trojan.Apt.Banechant: In-Memory Trojan That Observes for Multiple

Mouse Clicks’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Insikt-Group (2020) Chinese State-Sponsored Group ‘Reddelta’ Targets the Vatican and
Catholic Organizations.

Jazi, H. (2021) Lazyscripter: From Empire to Double Rat.
JPCERT-CC. (2016) ‘Asruex: Malware Infecting through Shortcut Files’ Available at:

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Kaspersky (2013a) The Regin Platform Nation-State Ownership of Gsm Networks.
Kaspersky (2013b) The Regin Platform Nation-State Ownership of Gsm Networks.
Kaspersky (2014a) Crouching Yeti — Appendixes.
Kaspersky (2014b) Unveiling “Careto” - the Masked Apt.
Kaspersky (2015a) The Duqu 2.0 Technical Details Version: 2.1. Kaspersky.
Kaspersky (2015b) The Duqu 2.0 Technical Details Version: 2.1 (11 June 2015).
Kaspersky (2015c) Equation Group: Questions and Answers.
Kaspersky (2015d) Equation Group: Questions and Answers.

Page 36 of 42

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

Kaspersky (2015e) Wild Neutron – Economic Espionage Threat Actor Returns with New
Tricks,.

Klijnsma, Y. H., Danny ; Sahertian,, Mitchel ; de Mik, Krijn ; van Dantzig, Maarten ; Yun Zheng
Hu, Haagsma, Lennart ; van Hensbergen, Martin de Jong, Erik (2016) Mofang. A
Politically Motivated Information Stealing Adversary.

Knuth, D. E. (1981) The Art of Computer Programming. 2nd Edn. Vol. 2. Reading, Mass:
Addison-Wesley (Addison-Wesley series in computer science and information
processing).

Lee, B. G., Josh. (2018) ‘Sofacy Attacks Multiple Government Entities’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Lee, B. G., Josh (2015) ‘Bbsrat Attacks Targeting Russian Organuzations Linked to Roaming
Tiger’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Lee, B. G., Josh (2015) Watering Hole Attack on Aerospace Firm Exploits Cve-2015-5122 to
Install Isspace Backdoor.

Legezo, D. (2018) Luckymouse Hits National Data Center to Organize Country-Level
Waterholing Campaign.

Levene, B. (2018) ‘Sure, I’ll Take That! New Combojack Malware Alters Clipboards to Steal
Cryptocurrency’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Levene, B. F., Robert; Miller-Osborn, Jen (2015) Musical Chairs: Multi-Year Campaign
Involving New Variant of Gh0st Malware.

Levene, B. G., Josh; Ash, Brittany (2018) ‘Patchwork Continues to Deliver Badnews to the
Indian Subcontinent’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Lifshitz, N. E., Asaf Eitani, Amitai Ben Shushan ; Kushnir,Amnon ; Biton, Gil ; Korman, Martin;
Shohat, Itay; Zilberstein, Arie (2021) Tg1021: “Praying Mantis” Dissecting an
Advanced Memory-Resident Attack.

Lunghi, D. P., Cedric ; Lu, Kenney ; Yaneza, Jamz (2020) Uncovering Drbcontrol Daniel Lunghi,
Cedric Pernet, Kenney Lu, and Jamz Yaneza inside the Cyberespionage Campaign
Targeting Gambling Operations.

M-TRENDS (2021) Special Report M-Trends.
M.Léveillé, M.-E. T., Mathieu (2019) Connecting the Dots Exposing the Arsenal and Methods

of the Winnti Group.
MalwarebytesLABS (2018) Cybercrime Tactics and Techniques: Q2 2018.
Mandiant (2013) Apt1 Exposing One of China’s Cyber Espionage Units.
Mandiant, F. (2020) M-Trends 2020. MANDIANT, F. Available at:

https://mandiant.widen.net/s/5pwlhgqt5t/m-trends-2020-report (Accessed: 29th
April 2022).

Marczak, W. R. S.-R., John; Marquis-Boire, Morgan ; Paxson, Vern (2014) 23rd USENIX
Security Symposium. San Diego, CA.

Marschalek, M. (2014) Evilbunny Suspect #4.

Page 37 of 42

https://mandiant.widen.net/s/5pwlhgqt5t/m-trends-2020-report
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

Matrosov, A. R., Eugene; Harley, David; Malcho, Juraj (2011) Stuxnet under the Microscope
Revision 1.31.

McAfee-Labs. (2020) ‘Operation () North Star a Job Offer That’s Too Good to Be
True?’ Available at: (Accessed: 31st January 2023).

Mercer, W. R., Paul; Ventura, Vitor. (2020) ‘Promethium Extends Global Reach with
Strongpity3 Apt’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Microsoft-Security. (2021) ‘Breaking Down Nobelium’s Latest Early-Stage Toolset’ Available
at: https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Microsoft. (2021) ‘Foggyweb: Targeted Nobelium Malware Leads to Persistentbackdoor’
Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

MILLER, S. R., EVAN ; CARR, NICK (2019) ‘Shikata Ga Nai Encoder Still Going Strong’ THREAT
RESEARCH, Available at: https://www.mandiant.com/resources/blog/shikata-ga-nai-
encoder-still-going-strong (Accessed: 9th May 2023).

Moran, N. a. V., Nart (2014) ‘Survival of the Fittest: New York Times Attackers Evolve
Quickly’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

netlab.360.com. (2020) ‘Dacls, the Dual Platform Rat’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Novetta (2014a) Derusbi (Server Variant) Analysis
Novetta (2014b) Derusbi (Server Variant) Analysis
Novetta (2014c) Hikit Analysis.
Novetta (2016a) Operation Blockbuster Destructive Malware Report.
Novetta (2016b) Operation Blockbuster Destructive Malware Report.
NTT-Security-Holdings (2021) Report on Apt Attacks by Blacktech.
Palo-Alto-Networks-Blog. (2016) ‘New Webkey Attacks Use Dns Requests as Command and

Control Mechanism’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Palumbo, P. (2014) W64/Regin, Stage #1.
Paul, R. (2013) Apt1: Technical Backstag.
Perigaud, F. (2014a) Plugx: Some Uncovered Points.
Perigaud, F. (2014b) Plugx: Some Uncovered Points.
Perigaud, F. B., Boris. (2014) ‘Vinself Now with Steganography’ Airbus D&S CyberSecurity

blog, Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Pernet, C. S., Eyal (2015) The Spy Kittens Are Back: Rocket Kitten 2.
Pernet, C. S., Eyal (2015) The Spy Kittens Are Back: Rocket Kitten 2.
profero (2021) Apt27 Turns to Ransomware.

Page 38 of 42

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://netlab.360.com
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://www.mandiant.com/resources/blog/shikata-ga-nai
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

proofpoint (2015) The Shadow Knows: Malvertising Campaigns Use Domain Shadowing to
Pull in Angler Ek.

ptsecurity. (2021) ‘Lazarus Group Recruitment: Threat Hunters Vs Head Hunters’ Available
at: https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Qihoo-360-Technology. (2018) ‘Analysis of Cve-2018-8174 Vbscript 0day and Apt Actor
Related to Office Targeted Attack,’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

QuoIntelligence (2020) Winnti Group: Insights from the Past.
Raiu, C. B., Kurt (2014) Nettraveler Apt Gets a Makeover for 10th Birthday.
Raiu, C. S., Igor ; Baumgartner, Kurt ; Kamluk, Vitaly (2013) The Miniduke Mystery: Pdf 0-Day

Government Spy Assembler 0x29a Micro Backdoor (or ‘How Many Cool Words Can
You Fit into One Title’).

Rostovcev, N. (2020) The Footprints of Raccoon: A Story About Operators of Js-Sniffer
Fakesecurity Distributing Raccoon Stealer.

RSA-RESEARCH (2017) Kingslayer– a Supply Chain Attack.
RSA (2014a) Shell_Crew.
RSA (2014b) Shell_Crew.
RSA (2014c) Shell_Crew.
Schneier, B. (2007) Applied Cryptography: Protocols, Algorithms, and Source Code in C. john

Wiley & Sons.
Scott-Railton, J. M.-B., Morgan ; Guarnieri, Claudio Marschalek, Marion (2015) Packrat:

Seven Years of a South American Threat Actor.
Scott, J. S., Drew (2016) Know Your Enemies
securelist. (2015) ‘Inside the Equationdrug Espionage Platform’ Available at:

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

securityintelligence.com. (2019) ‘More_Eggs, Anyone? Threat Actor Itg08 Strikes Again’
Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Serper, A. (2020) ‘Who's Hacking the Hackers: No Honor among Thieves’ maliciouslife,
Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Settle, A. D., Bapadittya; Griffin, Nicholas; Toro, Abel (2016a) Jaku. Analysis of a Botnet
Campaign.

Settle, A. D., Bapadittya; Griffin, Nicholas; Toro, Abel (2016b) Jaku. Analysis of a Botnet
Campaign.

Shannon, C. E. (1949) 'Communication Theory of Secrecy Systems', The Bell System Technical
Journal 28(4), pp. 656 - 715.

Shevchenko, S. N., Adrian (2017) ‘Lazarus’ False Flag Malware’ BAE SYSTEMS THREAT
RESEARCH BLOG, Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Siedlarz, M. D., Kristen. (2016) RSA Conference 2016. Singapore.

Page 39 of 42

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://securityintelligence.com
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

Singh, G. S. (2013) 'A Study of Encryption Algorithms (Rsa, Des, 3des and Aes) for
Information Security', International Journal of Computer Applications (0975 – 8887),
67(April 2013), pp. 33-38.

Singh, S. (2020) ‘Attack on Indian Government, Financial Institutions’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Singh, S. Y. H. C. (2016) ‘Targeted Attacks against Banks in the Middle East’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

sKyWIper-Analysis-Team (2012a) Skywiper (A.K.A. Flame A.K.A. Flamer): A Complex Malware
for Targeted Attacks. Lab), L. o. C. a. S. S. C.

sKyWIper-Analysis-Team (2012b) Skywiper (A.K.A. Flame A.K.A. Flamer): A Complex Malware
for Targeted Attacks. Lab), L. o. C. a. S. S. C.

Sofacy (2015) Sofacy Apt Hit High Profile Targets.
Soo, J. G., Josh (2017) ‘Recent Inpage Exploits Lead to Multiple Malware Families’ Available

at: https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st August 2023).

Spohn, M. G. (2012) Know Your Digital Enemy Anatomy of a Gh0st Rat.
Symantec-Security-Response (2014) Regin: Top-Tier Espionage Tool Enables Stealthy

Surveillance.
Symantec (2014) Dragonfly: Cyberespionage Attacks against Energy Suppliers 2014, P Xx.
Symantec (2015a) The Waterbug Attack Group.
Symantec (2015b) The Waterbug Attack Group.
Symnatec (2015) Butterfly: Corporate Spies out for Financial Gain.
Talos. (2018) ‘New Vpnfilter Malware Targets at Least 500k Networking Devices Worldwide’

Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st August 2023).

telecom.com. (2020) ‘Lolsnif – Tracking Another Ursnif-Based Targeted Campaign’ Available
at: https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

telsy. (2019) ‘The Lazarus’ Gaze to the World: What Is Behind the First Stone?’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Telsy (2020) When a False Flag Doesn’t Work: Exploring the Digital-Crime Underground at
Campaign Preparation Stage.

The-Cylance-Team (2016) Nigerian Cybercriminals Target High-Impact Industries in India Via
Pony.

The-SecDev-Group (2009) Tracking Ghostnet: Investigating a Cyber Espionage Network.
ThreatConnect-Inc.-and-Defense-Group-Inc. (2015) Camerashy Closing the Aperture on

China’s Unit 78020.
ti.qianxin.com. (2019) ‘Ttps://Ti.Qianxin.Com/Blog/Articles/Oceanlotus-Attacks-to-

Indochinese-Peninsula-Evolution-of-Targets-Techniques-and-Procedure/’ Available
at: https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Page 40 of 42

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://Ttps://Ti.Qianxin.Com/Blog/Articles/Oceanlotus-Attacks-to
https://ti.qianxin.com
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://telecom.com
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

Tikhonova, A. K., Dmitry. (2021) ‘The Art of Cyberwarfare’ blog.group-ib.com, Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

TIVADAR, M. B., Bíró ; ISTRATE, Cristian (2013a) Closer Look at Miniduke
TIVADAR, M. B., Bíró ; ISTRATE, Cristian (2013b) Closer Look at Miniduke
Tomonaga, S. (2015) Analysis of a Recent Plugx Variant - “P2p Plugx”.
Tomonaga, S. N., Yuu (2015) Revealing the Attack Operations Targeting Japan.
Travers, T. (2017) From Shamoon to Stonedrill Wipers Attacking Saudi Organizations and

Beyond.
Trend-Micro-Threat-Research-Team (2012) The Taidoor Campaign: An in-Depth Analysis.
Trend-Micro (2012) 2q Report on Targeted Attack Campaigns.
Trend-Micro. (2018) ‘Lazarus Continues Heists, Mounts Attacks on Financial Organizations in

Latin America’ blog.trendmisro.com, Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Trend-Micro. (2019) ‘Ta505 at It Again: Variety Is the Spice of Servhelper and Flawedammyy’
TrendLabs Security Intelligence Blog, Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Trend-Micro, C.-C.-S. (2017) Operation Wilted Tulip Exposing a Cyber Espionage Apparatus.
Unit-42. (2017) ‘Threat Actors Target Government of Belarus

Using Cmstar Trojan’ Available at:
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Unknown (2010) Shadows in the Cloud: Investigating Cyber Espionage 2.0.
Unknown (2020) Grandoreiro: How Engorged Can an Exe Get?
Unknown. (2022) Cybermonitor/Apt_Cybercriminal_Campagin_Collections. Available at:

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections]
us-cert-cisa (2020) Mar-10292089-1.V2 – Chinese Remote Access Trojan:Taidoor. Available

at: https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
van Dantzig, M. H., Danny; Ruiz, Frank; Klijnsma, Yonathan; Yun Zheng Hu; de Jong Erik; de

Mik, Krijn; Haagsma, Lennart (2015) Ponmocup. A Giant Hiding in the Shadows.
Villeneuve, N. a. B., J. (2012a) Detecting Apt Activity with Network Traffic Analysis. .
Villeneuve, N. a. B., J. (2012b) Detecting Apt Activity with Network Traffic Analysis. Trend

Micro.
Villeneuve, N. B., James T. ; Moran, Ned; Haq, Thoufique; Scott, Mike; Geers, Kenneth

(2013) Operation “Ke3chang”: Targeted Attacks against Ministries of Foreign Affairs.
Villeneuve, N. d. T., Jessa (2013) Fakem Rat Malware Disguised as Windows®Messenger and

Ahoo!® Messenger.
Villeneuve, N. W., Kyle (2013) Safe a Targeted Threat.
Villeneuve, N. W., Kyle (2013) Safe a Targeted Threat.
welivesecurity (2020a) Guildma: The Devil Drives Electric.
welivesecurity (2020b) Winnti Group Targeting Universities in Hong Kong.
welivesecurity. (2021) ‘Strategic Web Compromises in the Middle East with a Pinch of

Candiru’ Available at:

Page 41 of 42

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://Mar-10292089-1.V2
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://blog.trendmisro.com
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://blog.group-ib.com

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
(Accessed: 31st January 2023).

Wueest, C. A., Himanshu (2017) Living Off the Land and Fileless Attack Techniques.
Wyke, J. (2011) What Is Zeus? (Accessed: 28th January 20).
You, I. Y., K. (2010) Proceedings of International conference on Broadband, Wireless

Computing, Communication and Applications. Fukuoka.
ZLAB (2018) A Long-Term Espionage Campaign in Syria.
zscaler (2011) Alleged Apt Intrusion Set: “1.Php” Group.

Page 42 of 42

https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

	Document
	A Taxonomy of Encryption and Encoding Algorithms Used by Advanced Persistent Threats with Emphasis on Bespoke Encryption Algorithms
	1. Introduction and Literature Review
	2. Use of Publicly Available Encryption Algorithms
	3. Use of Publicly Available Compression Algorithms
	4. Use of Base 16, 32, 64 etc. Encoding
	5. Bespoke Algorithms
	5.1.Caesar Cipher
	5.2. Lookup Table and Equivalents
	5.3.Double Encryption
	5.4.Finite Repeating Key
	5.5.Finite Non-Repeating Key
	5.6.Positional Encoding.
	5.7.Transposition
	5.8.Steganography
	5.9.Autokey
	5.10. Stream Cipher
	5.11. “YHCRA” Encryption
	5.12. Random Number Generators
	5.13. Symmetric Key Generation
	5.14. Stuxnet Bot Configuration Data
	5.15. Crypto-variable Generation
	5.16. Customised Hashing
	5.17. Standard Algorithms That Have Been Modified
	5.18. Use of Victim’s Machine Data

	6. Miscellaneous
	7. Inability to Process Encryption Algorithms
	8. Discussion
	9. A Critique of this Work and Suggested Further Lines of Work
	10. Concluding Remarks
	REFERENCES

