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Introduction: Alzheimer’s disease (AD) is a neurodegenerative disease that

significantly impacts the quality of life of patients and their families. Neuroimaging-

driven brain age prediction has been proposed as a potential biomarker to

detect mental disorders, such as AD, aiding in studying its e�ects on functional

brain networks. Previous studies have shown that individuals with AD display

impaired resting-state functional connections. However, most studies on brain

age prediction have used structural magnetic resonance imaging (MRI), with

limited studies based on resting-state functional MRI (rs-fMRI).

Methods: In this study, we applied a graph neural network (GNN) model on

controls to predict brain ages using rs-fMRI in patients with AD. We compared the

performance of the GNN model with traditional machine learning models. Finally,

the post hoc model was also used to identify the critical brain regions in AD.

Results: The experimental results demonstrate that our GNN model can predict

brain ages of normal controls using rs-fMRI data from the ADNI database.

Moreover the di�erences between brain ages and chronological ages were more

significant in AD patients than in normal controls. Our results also suggest that

AD is associated with accelerated brain aging and that the GNN model based on

resting-state functional connectivity is an e�ective tool for predicting brain age.

Discussion: Our study provides evidence that rs-fMRI is a promising modality

for brain age prediction in AD research, and the GNN model proves to be

e�ective in predicting brain age. Furthermore, the e�ects of the hippocampus,

parahippocampal gyrus, and amygdala on brain age prediction are verified.

KEYWORDS

Alzheimer’s disease, brain aging, resting-state functional magnetic resonance imaging,

graph neural network, age prediction

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease commonly occurring in older

adults (American Psychiatric Association and Association, 2013). People with AD usually

first develop symptoms, such as mild memory degradation, followed by a continuous

decline in cognitive function (Reitz et al., 2011), and are eventually diagnosed with AD

after experiencing a brief phase of mild cognitive impairment (MCI). As the disease

worsens, patients with reduced self-care ability become more dependent on family

members for care, which seriously affects the patients’ and their families quality of life.
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Therefore, the early diagnosis method for AD is of utmost

importance. However, the existing diagnostic methods mainly rely

on psychological tests and clinical observation for middle and

advanced patients, lacking objectivity and effective early diagnosis

methods. Therefore, it is essential to develop more accurate

identification methods and find more objective biomarkers for

early diagnosis, which will help patients receive treatment earlier

and improve cure rates (Tahami Monfared et al., 2022; Warren

and Moustafa, 2023). One such potential biomarker is brain

age estimation, which could help detect mental disorders such

as AD. Moreover, the neuroimaging-driven brain age prediction

will contribute to studying the effect of AD on brain structures

and functional networks. Meanwhile, recent studies have also

highlighted that the significant delaying of the progression of

MCI to AD will reduce both the prevalence and cost of AD

(Anderson, 2019). To this end, it is crucial to identify individuals

with accelerated brain aging by brain age prediction for precise

identification and intervention of AD. Therefore, identifying those

individuals at risk of developing AD early through accurate and

reliable brain age prediction will significantly pave the way for

developing effective preventive strategies (Villemagne et al., 2013).

With the development of artificial intelligence and medical

imaging technology, studies focusing on brain age estimation have

increased in recent years (Frizzell et al., 2022). Most of these

studies have used structural magnetic resonance imaging (MRI)

data (Gaser et al., 2013; Sajedi and Pardakhti, 2019; Bashyam

et al., 2020; Levakov et al., 2020; Lee et al., 2022). For example,

Bashyam et al. trained DeepBrainNet with two-dimensional images

obtained by T1-weighted MRI with minimal preprocessing steps

from 11,729 health control (HC) subjects. They achieved accurate

age prediction and revealed that a moderately fitted model of brain

aging was more suitable for distinguishing between AD and HC.

This proposedmethod ensured the broad applicability of the model

in clinical settings through straightforward preprocessing steps.

However, a significant limitation is that it does not identify the

anatomical regions affecting the model’s performance. Lee et al.

(2022) suggested that occlusion sensitivity analysis enhanced the

interpretability of the model. They further discovered that the

sulci and white matter were positively correlated with the brain

age gap. In contrast, the gyri and periventricular regions were

negatively correlated with the brain age gap. By conducting these

analyses, the authors shed light on the effects of AD on brain

structures. However, it is essential to note that structural changes

in hippocampal atrophy occur many years after the accumulation

of beta-amyloid (Aβ) pathology in the brain (McKhann et al., 2011;

Villemagne et al., 2013), and impairment of functional connections

in AD can be detected almost synchronously with Aβ and tau

measured using positron emission tomography (PET). Therefore,

detecting brain functional changes from resting-state functional

MRI (rs-fMRI) could be a more sensitive and earlier method for

individuals at risk of AD compared to the brain structural changes

(Gonneaud et al., 2021). Previous studies have also demonstrated

the utility of rs-fMRI data in predicting brain age and proposed

that AD leads to accelerated aging. One such study adopted a

Gaussian process regression (GPR) and obtained a mean absolute

error (MAE) of 8.195 and a root mean square error (RMSE) of

10.31 in the test set (Millar et al., 2022). However, most existing

studies using fMRI data for brain age prediction rely on traditional

machine learning methods, and only a few studies apply deep

learning networks. To the best of our knowledge, no study employs

deep learning models for age prediction trained on graph data

derived from functional connectivity (FC) and further applies those

for diagnosing AD.

To summarize, while accelerating aging has been extensively

investigated as the biomarker in the diagnosis of AD, many

unknown aspects still exist for further exploration. Most studies

have focused on structural MRI, which reveals structural changes

in the brain. However, studies have shown that the fMRI change

occurs earlier than structural changes, and resting state FC may

be a more sensitive way to detect brain changes in preclinical

AD patients (Gonneaud et al., 2021). Furthermore, while most

studies using rs-fMRI have employed machine learning models,

deep learning models may be more suitable for learning non-linear

relationships in brain imaging data (Abrol et al., 2021). Meanwhile,

the machine-learned feature may be more informative than those

extracted by experience-based artificial methods.

To address these concerns, we have developed an attention-

based graph neural networks (GNN) framework to detect

accelerated brain aging in patients with AD. First, we extracted a

Pearson correlation matrix from rs-fMRI and constructed graph

data. Then we trained the GNNmodel on the graph data to predict

brain ages in the HC group. Meanwhile, we applied the model

to predict brain ages in patients with MCI and AD. Eventually,

the results of our study were compared with those obtained from

traditional machine learning models. In this study, we hope to

make early diagnosis possible by identifying people who are likely

to develop AD as early as possible.

2. Materials and methods

2.1. The dataset

The rs-fMRI data used in our study were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (adni.loni.usc.edu)

(ADNI) (Weiner et al., 2010). The ADNI is a multi-site longitudinal

data repository, allowing researchers to access publicly available

data upon request and approval, making a significant contribution

to promoting the research related to AD. The repository contains

a large amount of MRI, PET, and other medical image data. In

addition, clinical, genomic, and biomarker data are also provided.

Our study used the first available rs-fMRI images obtained during

the medical follow-up period of 1,006 subjects from 48 sites,

including 535 patients and 471 normal controls (ages 51–97 years).

The specific demographic information is shown in Table 1.

2.2. Data preprocessing

All the rs-fMRI images in the Digital Imaging and

Communications inMedicine (DICOM) format were preprocessed

using the Brainnetome fMRI Toolkit (Xu et al., 2018). The

preprocessing steps include DICOM to Neuroimaging Informatics

Technology Initiative (NIFTI) conversion, the deletion of the

first 10 unstable time points, slice timing correction, registration,
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TABLE 1 Demographic information of the subjects.

Group HC SMC EMCI MCI LMCI AD

Number 471 69 123 190 63 90

Age range 51–95 63–89 56–91 55–97 57–88 55–87

Mean age± STD 72.13± 8.40 74.81± 5.77 73.50± 7.02 73.40± 8.34 73.37± 7.74 74.02± 7.55

Sex (M/F) 183/288 28/41 61/62 98/92 38/25 54/36

HC, healthy control; SMC, significant memory concern; EMCI, early mild cognitive impairment; MCI, mild cognitive impairment; LMCI, late mild cognitive impairment; AD, Alzheimer’s

disease; M, male; F, female; STD, standard deviation.

normalization to MNI standard space, and denoising. Then,

based on the automatic anatomical labeling (AAL) atlas, which

divides the human brain into 116 regions (Tzourio-Mazoyer

et al., 2002), we extracted the time-series data from 116 brain

regions and calculated Pearson correlation coefficients between

two brain regions to obtain the Pearson correlation matrix. It is

worth noting that the length of the time-series data was different

because of different instruments of image acquisition. However,

the calculation of the Pearson correlation matrix was not affected.

Furthermore, we used Combat (Pomponio et al., 2020) on multi-

site data to eliminate site differences. The ablation experiment was

performed to verify the effect of Combat.

2.3. Graph data construction

In graph theory, a graph is generally denoted by a pair G =

(V,E), where V refers to the vertex set and E represents the edge

set. In this study, the FC matrix of each subject was constructed

as graph-structured data. Specifically, 116 brain regions defined

by the AAL atlas were assigned a corresponding vertex in the

graph. The edges in the graph corresponded to the connections

between brain regions. The FC values were treated as the features

of vertices, while the FC values satisfying a threshold criterion

were considered as the features of edges. A complete graph was

obtained when the threshold was set to 0. Otherwise, edges that

did not meet the threshold requirement were removed from

the graph.

2.4. Brain prediction model based on the
graph neural network

This study concerns the modeling of FC matrices as

graph data, which characterizes the spatial correlations between

diverse brain regions, as exemplified by Ktena et al. (2017).

In this context, GNN is a prevailing method employed for

feature learning of graph data by aggregating information

from neighboring regions through convolution, thus displaying

remarkable performance in graph representation learning (Zhang

et al., 2019).

This study introduces a novel approach for brain age

prediction using a GNN model based on transformer convolution

(TransformerConv) (Shi et al., 2020). The proposed framework

was trained and evaluated on the ADNI dataset, and the graphical

representation of the model is depicted in Figure 1. First, the

TransformerConv layer was utilized to aggregate and update the

node features of the graph data. To be more specific, the input

vectors from the graph data were fed into the self-attention layer

and calculated the query, key, and value for each region. Then,

the self-attention coefficient was calculated, which represented

the similarity between the query and the keyword. Finally, the

self-attention coefficient was used as the weight, and the output

vector of the layer was the weighted sum of the value. Then,

the LayerNorm layer (Ba et al., 2016) was applied to normalize

the neurons in the middle layer, ensuring distribution stability.

The following LeakyReLU (Maas et al., 2013) activation layer

was used to enhance the learning ability of the model via non-

linear mapping. Finally, the outputs of the two layers mentioned

above were used as inputs to a multilayer perceptron (MLP)

consisting of a fully connected layer, ReLU layer (Glorot et al.,

2011), BatchNorm (Ioffe and Szegedy, 2015), and another fully

connected layer, with 32 hidden nodes and one output node, to

predict the brain age.

We employed the deep learning approach for predicting age

based on graph data from the HC group. Specifically, we utilized

a batch size of 16, an initial learning rate of 0.001, and a weight

attenuation of 0.001 with the Adam optimizer (Kingma and Ba,

2014) and the cosine annealing learning rate adjustment algorithm.

Then, the model was trained based on the 10-fold cross-validation

and the mean square error cost function as the loss function. The

model’s performance was evaluated by three criteria: MAE, RMSE,

and the Pearson Correlation Coefficient (PCC) between predicted

and chronological age. In addition, we compared our approach

to the other six regression methods, namely, support vector

regression (SVR) (Vapnik, 1998), GPR (Williams and Rasmussen,

1995), random forest regression (RFR) (Cutler et al., 2012), least

absolute shrinkage and selection operator (LASSO) regression

(LR) (Tibshirani, 1996), AlexNet (Krizhevsky et al., 2017), and

autoencoder (AE) (Heinsfeld et al., 2018).

2.5. Estimated age di�erence in the patient
group

We applied the model to analyze independent test samples of

individuals categorized into distinct groups, including significant

memory concern (SMC), early mild cognitive impairment

(EMCI), MCI, late mild cognitive impairment (LMCI), and AD

groups. Additionally, the brain age gap (BAG) as the difference

between model-predicted and chronological age was calculated to

investigate the potential impact of AD on the brain function.
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FIGURE 1

Overview of our proposed framework. First, the function connection matrices were extracted from the rs-fMRI data. Then, the graph data for each

subject was constructed and fed into the network. The network contained TransformerConv layers, which updated the aggregated node features of

the graph data. Finally, following one layer of MLP, the output was the predicted brain age.

TABLE 2 Comparison with other methods.

Method MAE RMSE PCC

SVR 6.38± 0.72 7.90± 0.70 0.39± 0.08

GPR 6.55± 0.72 8.24± 0.80 0.40± 0.11

RFR 6.14± 0.65 7.59± 0.59 0.43± 0.11

LR 6.03± 0.65 7.46± 0.64 0.47 ± 0.10

Alexnet 5.98± 0.59 7.57± 0.72 0.42± 0.10

AE 7.65± 1.04 10.04± 1.07 0.25± 0.14

Our proposed model using data before the Combat 6.68± 0.52 8.48± 0.72 0.35± 0.13

Our proposed model using data after the Combat 5.92 ± 0.62 7.56 ± 0.78 0.44± 0.11

SVR, support vector regression; GPR, Gaussian process regression; RFR, random forest regression; LR, least absolute shrinkage and selection operator (LASSO) regression; AE, autoencoder;

MAE, mean absolute error; RMSE, root mean square error; PCC, Pearson Correlation Coefficient.

2.6. Post hoc model based on perturbation

Deep learning is widely used in the diagnosis and treatment

of AD. However, its lack of transparency hinders its clinical

application as doctors need to understand the impact of changes

in FC on patients with AD (Ahmedt-Aristizabal et al., 2021). GNN

explainability methods have emerged as a promising solution to

address this issue. In recent years, GNN explainability methods

have developed rapidly. Existing methods can be divided into two

categories: instance-level methods and model-level methods. The

former includes the gradient/feature-based, perturbation-based,

decomposition, and surrogate methods (Yuan et al., 2022), and the

latter includes XGNN (Yuan et al., 2020). In this study, we used

the post hoc model based on perturbation GNNExplainer (Ying

et al., 2019) to explain networks and help doctors analyze pathology

images related to AD. First, the features of each individual

graph were perturbed, and the generated node feature mask was

multiplied with the input graph element by element to obtain the

masked graph. Then, the masked graph was used as the input

of the trained model to evaluate and train the mask. The loss

function was defined as the mean square error of predicted brain

ages using the original graph and masked graph. When nodes

with important information were retained, there was little change

between the output before and after the perturbation, which would

reveal the significant brain regions in the prediction task. Finally,

we obtained the explainable weight matrix of each subject. The

rows and columns represented the brain region corresponding to

the node and the explainable weight of the brain region.

3. Results

3.1. Results of age prediction based on FC

This study evaluated a brain age prediction model based on

GNN using a 10-fold cross-validation technique. A total of 471 data

from the ADNI dataset were randomly divided into 10 groups for

cross-validation. The test set comprised one group of data, while

the remaining nine groups served as the training set, which was

repeated 10 times. The performance of the model was assessed

using the mean and standard deviation of the results obtained from

10-fold cross-validation. The results demonstrated that the model

could effectively predict brain age, with an MAE of 5.92 ± 0.62,

RMSE of 7.56± 0.78, and PCC of 0.44± 0.11.

Meanwhile, the results using the data before and after

performing the Combat operation were compared. We also
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presented a comparative study of our GNN-based brain age

prediction model against the other six methods (i.e., SVR, GPR,

RFR, LR, Alexnet, and AE). It is important to note that traditional

machine learning models utilize a one-dimensional vector as input.

Thus, we flattened the upper triangular region of a symmetric

116∗116 matrix by row, excluding the main diagonal. We then

fed a one-dimensional vector with 6,670 features for each subject

into the traditional models. Our results in Table 2 indicate that our

GNN-based model outperformed other models in terms of MAE

and RMSE, and the Combat operation enhanced the performance

of the model. Furthermore, to ensure the consistency of different

parameters, we also conducted experiments to investigate the

influence of the number of heads on model performance. The

results presented in Table 3 indicated that the model with a single

head achieved the best performance. Additionally, we compared

the performance of models with different numbers of self-attention

layers, ranging from 1 to 4. The results, shown in Table 4,

indicated that the model with two self-attention layers performed

the best.

TABLE 3 Comparison of the performances of models with di�erent

numbers of heads in the self-attention layer.

Number of
heads

MAE RMSE PCC

1 5.92 ± 0.62 7.56 ± 0.78 0.44 ± 0.11

2 6.89± 0.31 8.73± 0.51 0.31± 0.16

4 6.92± 0.48 8.71± 0.61 0.34± 0.14

8 7.09± 0.58 8.96± 0.54 0.33± 0.11

TABLE 4 Comparison of the performances of models with di�erent

numbers of self-attention layers.

Number of
self-attention

layers

MAE RMSE PCC

1 7.07± 0.61 9.49± 0.72 0.30± 0.14

2 5.92 ± 0.62 7.56 ± 0.78 0.44 ± 0.11

3 6.70± 0.79 8.48± 0.93 0.34± 0.12

4 6.95± 0.52 8.97± 0.79 0.28± 0.14

3.2. Accelerated functional brain aging in
patient groups

Our study aimed to investigate the relationship between BAG,

defined as the difference between predicted and chronological age,

and the diagnosis of AD using an independent test set comprising

five groups of data, including SMC, EMCI, MCI, LMCI, and AD.

We calculated criteria and BAG and analyzed the results using

various statistical measures such as MAE, RMSE, and PCC. The

findings of our study indicated a significant increase in the values

of MAE, RMSE, and BAG in the AD group compared to the HC

group, accompanied by a decrease in the PCC value, suggesting

accelerated brain function aging in AD patients. Thus, BAG could

serve as a valuable biomarker to evaluate the severity of AD and

facilitate early diagnosis. The detailed results of each data group are

summarized in Table 5.

3.3. The explainability of our model

To account for the neural substrates that impact the age

prediction model and to elucidate functional changes that underlie

deviations in brain age from typical aging trajectories in individuals

with AD, we ranked the average explanatory weight coefficients

in the HC and AD groups, respectively, and subsequently found

the shared and distinct brain regions. We specifically focused

on the top 30% of shared regions, which were primarily located

in the medial and paracingulate gyrus, inferior and superior

temporal gyrus, transverse temporal gyrus, anterior cingulate

and paracingulate gyrus, anterior central gyrus, thalamus, and

other brain regions, all of which made notable contributions to

age prediction. Additionally, we observed that functional areas

implicated in the diagnosis of AD, including the parahippocampal

gyrus and amygdala, were also represented among these shared

regions. These findings are reported in Table 6. Furthermore, our

results revealed five distinct brain regions between the two groups

shown in Figure 2 visualized using the BrainNet Viewer (Xia et al.,

2013). Specifically, the HC group mainly focused on the inferior

middle temporal gyrus, insula, globus pallidum, and two regions

of the inferior cerebellum, which were not present in the AD

group. In contrast, the AD group mainly focused on the inferior

paracentral lobules, supplementary motor areas, fusiform gyrus,

inferior cerebellum, and hippocampus, which were not observed in

the HC group.

TABLE 5 Results in HC, SMC, EMCI, MCI, LMCI, and AD groups.

Group MAE RMSE PCC BAG

HC 5.92± 0.62 7.56± 0.78 0.44± 0.11 −0.07± 1.25

SMC 5.96± 0.55 7.18± 0.58 0.14± 0.07 −1.39± 1.52

EMCI 5.99± 0.56 7.55± 0.68 0.29± 0.08 −0.14± 1.48

MCI 6.86± 0.48 8.77± 0.62 0.26± 0.06 −0.46± 1.26

LMCI 6.57± 0.47 8.35± 0.56 0.23± 0.09 −0.41± 1.44

AD 6.72± 0.53 8.14± 1.14 0.19± 0.08 0.06± 1.66
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TABLE 6 Top 35 brain regions with their weights in HC and AD.

Region name
(HC)

Weight
(HC)

Region name
(AD)

Weight
(AD)

Median cingulate and paracingulate gyri, right 0.5232 Inferior temporal gyrus, left 0.5212

Inferior temporal gyrus, left 0.5220 Heschl gyrus, right 0.5200

Heschl gyrus, right 0.5208 Precentral gyrus, right 0.5192

Anterior cingulate and paracingulate gyri, left 0.5208 Median cingulate and paracingulate gyri, left 0.5159

Superior occipital gyrus, left 0.5202 Median cingulate and paracingulate gyri, right 0.5158

Angular gyrus, right 0.5198 Superior temporal gyrus, left 0.5154

Median cingulate and paracingulate gyri, left 0.5194 Thalamus, right 0.5145

Precentral gyrus, right 0.5191 Superior occipital gyrus, left 0.5137

Thalamus, right 0.5171 Superior occipital gyrus, right 0.5136

Cerebelum_9, right 0.5171 Inferior frontal gyrus, triangular part, right 0.5125

Superior temporal gyrus, left 0.5169 Cerebelum_Crus1, left 0.5123

Inferior frontal gyrus, triangular part, right 0.5168 Inferior frontal gyrus, opercular part, left 0.5121

Inferior occipital gyrus, right 0.5167 Anterior cingulate and paracingulate gyri, left 0.5121

Parahippocampal gyrus, left 0.5166 Angular gyrus, right 0.5120

Cerebelum_Crus1, left 0.5159 Parahippocampal gyrus, left 0.5118

Parahippocampal gyrus, right 0.5142 Amygdala, right 0.5113

Superior occipital gyrus, right 0.5135 Cerebelum_9, right 0.5111

Cerebelum_8, left 0.5133 Thalamus, left 0.5094

Amygdala, right 0.5121 Postcentral gyrus, right 0.5086

Thalamus, left 0.5121 Inferior occipital gyrus, right 0.5085

Inferior frontal gyrus, opercular part, left 0.5115 Paracentral lobule, left 0.5073

Lingual gyrus, right 0.5092 Cerebelum_4_5, left 0.5072

Vermis_6 0.5087 Vermis_6 0.5065

Caudate nucleus, left 0.5085 Parahippocampal gyrus, right 0.5063

Temporal pole: superior temporal gyrus, right 0.5083 Temporal pole: superior temporal gyrus, right 0.5058

Cerebelum_4_5, left 0.5082 Lingual gyrus, right 0.5053

Middle temporal gyrus, left 0.5078 Supplementary motor area, left 0.5047

Insula, left 0.5075 Fusiform gyrus, right 0.5047

Postcentral gyrus, left 0.5070 Superior frontal gyrus, dorsolateral, right 0.5044

Cuneus, left 0.5049 Cerebelum_8, left 0.5041

Superior frontal gyrus, dorsolateral, right 0.5049 Postcentral gyrus, left 0.5034

Postcentral gyrus, right 0.5043 Cerebelum_10, right 0.5032

Lenticular nucleus, pallidum, right 0.5039 Cuneus, left 0.5029

Cerebelum_7b, left 0.5039 Hippocampus, left 0.5025

Cerebelum_Crus2, right 0.5038 Caudate nucleus, left 0.5012

4. Discussion

In this study, we proposed a prognostication model that

leverages GNN augmented with an attention mechanism that can

adeptly anticipate brain age. Compared with machine learning

methods that employ one-dimensional features, our proposed

model retains the topological data of brain regions in the rs-

fMRI data, thereby fortifying its FC representation. Furthermore,

the attention network manifests superior capability in extracting

global features.

Recent studies have identified the accumulation of Aβ plaques

and tau protein chain accumulation as pathological markers of AD

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1222751
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gao et al. 10.3389/fnins.2023.1222751

FIGURE 2

Visualization of the di�erence between HC and AD in the top 35 brain regions. Insula_L, Insula, left; Pallidum_R, Lenticular nucleus, pallidum, right;

Temporal_Mid_L, Middle temporal gyrus, left; Cerebelum_Crus2_R, Cerebelum_Crus2, right; Cerebelum_7b_L, Cerebelum_7b, left;

Supp_Motor_Area_L, Supplementary motor area, left; Hippocampus_L, Hippocampus, left; Fusiform_R, Fusiform gyrus, right; Paracentral_Lobule_L,

Paracentral lobule, left; Cerebelum_10_R, Cerebelum_10, right.

that are strongly associated with accelerated brain aging (Gonneaud

et al., 2021; Mecca and van Dyck, 2021). Although structural MRI is

commonly used to detect brain atrophy in AD patients, rs-fMRI is

more sensitive to preclinical brain changes that occur earlier in the

disease progression (Gonneaud et al., 2021). In this study, rs-fMRI

data were used to develop a model based on graph neural networks

to predict brain age in HC and different groups of patients. The

resulting model achieved relatively accurate predictions, with an

MAE of 5.92 as reported in Tables 2–4. However, our study found

that the accuracy of brain age prediction based on rs-fMRI data

was generally lower than that of studies using structural MRI data.

This finding is consistent with previous research indicating that

structural MRI is usually more accurate in predicting brain age

(Liem et al., 2017; Bashyam et al., 2020; Cole, 2020; Levakov et al.,

2020; Dunas et al., 2021; Hwang et al., 2022; Lee et al., 2022). The

reason is due to the dynamic nature of rs-fMRI, which captures

functional aging changes that may occur earlier than structural

changes in the normal population, leading to our predicted older

brain age in the subjects.

In this study, we aimed to identify the most critical brain

regions for predictive tasks and AD diagnosis by explaining the

model. The regions of considerable interest in neuroscience include

the cingulate cortex, hippocampal structure, precuneus, inferior

temporal gyrus, angular gyrus, and pivotal brain areas involved
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in default mode networks. Additionally, the supraoccipital gyrus

within visual networks, the anterior and posterior central gyrus

within sensorimotor networks, as well as the thalamus within the

limbic system and other brain regions have garnered considerable

attention within the field (Yao et al., 2010; Lei et al., 2020; Ma

et al., 2022; Han et al., 2023; Zhou et al., 2023). These regions

are crucial for understanding various neural processes and their

interconnectivity. In addition, the medial temporal lobe is a vital

region implicated in brain senescence and cognitive deterioration

in individuals with AD. Our investigation also validated the

considerable impact of specific brain regions, including the

hippocampus, parahippocampal cortex, and amygdala, on the

predictive capacity of our model, as previously demonstrated by

Hrybouski et al. (2023). Consistent with an earlier study by Libby

et al. (2012) and Liu et al. (2016), our results emphasize the

critical role of parahippocampal gyrus connectivity in memory

function and its association with AD severity. Furthermore, a

positive correlation between cognitive decline and reduced FC

between the amygdala and specific brain regions was observed in

the studies by Yao et al. (2013) and Yao et al. (2014). Previous studies

have consistently shown that hippocampal structure and function

changes are closely linked to core memory deficits in individuals

with AD (Khazaee et al., 2017; Ibrahim et al., 2021). The middle

temporal gyrus, fusiform gyrus, paraventral lobule, cerebellum, and

auxiliary motor area have been identified as regions displaying

functional alterations that may be associated with accelerated brain

aging in individuals with AD (Frisoni et al., 2009; Yao et al.,

2010; Brier et al., 2012; Eavani et al., 2018; Hojjati et al., 2019;

Ibrahim et al., 2021). These findings validate the utility of our

interpretation prediction model as a valuable tool for investigating

the advancement of AD.

5. Conclusion

In this study, we introduced a GNN-based prediction

model that utilized rs-fMRI data for brain age estimation. Our

comparative experiments revealed that our proposed approach

outperformed other machine learning and deep learning prediction

methods. Additionally, we confirmed the potential of the BAG as a

diagnostic marker for AD. Moreover, our post hoc interpretation

of the model identified crucial functional brain regions that

contributed to age prediction and investigated possible reasons

for accelerated brain aging. We anticipate that our research will

facilitate the early detection of AD.
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