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Background: Stuttering is a childhood-onset neurodevelopmental disorder 
affecting speech fluency. The diagnosis and clinical management of stuttering 
is currently based on perceptual examination and clinical scales. Standardized 
techniques for acoustic analysis have prompted promising results for the objective 
assessment of dysfluency in people with stuttering (PWS).

Objective: We assessed objectively and automatically voice in stuttering, through 
artificial intelligence (i.e., the support vector machine – SVM classifier). We also 
investigated the age-related changes affecting voice in stutterers, and verified the 
relevance of specific speech tasks for the objective and automatic assessment of 
stuttering.

Methods: Fifty-three PWS (20 children, 33 younger adults) and 71 age−/gender-
matched controls (31 children, 40 younger adults) were recruited. Clinical data 
were assessed through clinical scales. The voluntary and sustained emission 
of a vowel and two sentences were recorded through smartphones. Audio 
samples were analyzed using a dedicated machine-learning algorithm, the SVM 
to compare PWS and controls, both children and younger adults. The receiver 
operating characteristic (ROC) curves were calculated for a description of the 
accuracy, for all comparisons. The likelihood ratio (LR), was calculated for each 
PWS during all speech tasks, for clinical-instrumental correlations, by using an 
artificial neural network (ANN).

Results: Acoustic analysis based on machine-learning algorithm objectively and 
automatically discriminated between the overall cohort of PWS and controls 
with high accuracy (88%). Also, physiologic ageing crucially influenced stuttering 
as demonstrated by the high accuracy (92%) of machine-learning analysis 
when classifying children and younger adults PWS. The diagnostic accuracies 
achieved by machine-learning analysis were comparable for each speech task. 
The significant clinical-instrumental correlations between LRs and clinical scales 
supported the biological plausibility of our findings.

Conclusion: Acoustic analysis based on artificial intelligence (SVM) represents 
a reliable tool for the objective and automatic recognition of stuttering and its 
relationship with physiologic ageing. The accuracy of the automatic classification 
is high and independent of the speech task. Machine-learning analysis would help 
clinicians in the objective diagnosis and clinical management of stuttering. The 
digital collection of audio samples here achieved through smartphones would 
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promote the future application of the technique in a telemedicine context (home 
environment).
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1. Introduction

Stuttering is a persistent childhood-onset neurodevelopmental 
disorder affecting speech fluency (1), typically manifested in 
30–48 months old children, and affecting 5%–8% of preschool 
children (M:F ratio = 1.5:1) (2). Clinically, people with stuttering 
(PWS) manifest “dysfluency,” namely the deterioration of speech 
fluency, with a variable association of involuntary, audible, or silent 
repetitions or prolongations of sounds, syllables, words, sentences, 
dysrhythmic phonation, such as blocks and prolongations, and broken 
words (1, 3). PWS may not be able to readily control the impaired 
vocalization and may also manifest involuntary movements and 
emotions including fear, embarrassment, or irritation (4–6). The 
complexity of stuttering behavior tends to change with age, and seems 
independent from sex, anxiety, or from its intrinsic clinical severity 
(7). Indeed, stuttering improves with physiologic ageing, thus reducing 
the prevalence of stuttering at 1% of younger adults starting from the 
age of 15 (M:F ratio = 4:1) (2, 8, 9). It has been suggested that 
functional changes in the phonatory apparatus occurring during 
puberty may play a role in the age-related reduction of stuttering (7). 
Stuttering is a complex and multifactorial neurodevelopmental 
disorder whose pathophysiologic mechanisms are supposed to rely on 
the impairment of several neural networks underlying speech, 
language, and emotional functions (8, 10).

Currently, the diagnosis of stuttering is based on neuropsychologic 
(i.e., perceptual) clinical examination with the aid of dedicated clinical 
scales for the assessment of additional developmental disorders (4, 11, 
12). However, clinical scales are qualitative tools which rely on the 
examiner’s skills and experiences, thus potentially biasing the 
assessment’s accuracy. To overcome these limitations, as an objective 
tool for assessing stuttering several authors have adopted acoustic 
analysis and reported several changes in specific features (13–26). 
Previous acoustic analysis, however, did not allow to detect the 
severity of stuttering and monitor its progression. Hence, novel 
approaches are required for a thorough objective evaluation and 
assessment of dysfluencies in PWS, at different ages of life.

More recently, artificial intelligence has demonstrated its potential 
utility in the objective assessment of the human voice under several 
physiologic and neurologic conditions (27) including laryngeal 
dystonia, essential tremor, and Parkinson’s disease (28–34). To date, 
only preliminary data have been reported in PWS, by using machine-
learning algorithms, thus showing promising but still preliminary and 
heterogeneous results. These studies applied automatic stuttering 
identification systems (ASIS) to a heterogenous dataset of audio 
samples without a thorough clinical characterization (35–37). Also, 
most of the previous studies have not considered the effect of ageing 
on acoustic features in stuttering. Despite a few clinical investigations 
of stuttering relative to ageing (38), a detailed data-driven analysis in 
different age-related groups in PWS has never been conducted, so far. 

Furthermore, none of the previous studies in the field have thoroughly 
assessed the detrimental effect of linguistic issues, namely worsening 
of speech in response to specific linguistic tasks. Finally, previous 
studies on machine-learning in stuttering have not used devices for 
audio recordings in an ecological scenario.

In the present study, we applied an acoustic analysis based on 
support vector machine (SVM) classifier to detect abnormal acoustic 
features in stuttering with the aim of helping clinicians in the 
automatic and objective classification of stuttering. For this purposes, 
a large cohort of PWS and controls underwent a thorough clinical 
investigation, including dedicated clinical scales. The second aim of 
the study was to assess the effect of ageing on stuttering. Therefore, our 
cohort included two age-related groups: children (7–12 years old), and 
young adults (15–30 years old). A further aim of the study was to 
verify the detrimental effect of linguistic issues on stuttering. 
Accordingly specific speech tasks have been recorded for each 
participant. Finally, we aimed to assess the usefulness of machine 
learning analysis for telemedicine purposes, by recording audio 
samples with commonly available devices, in an ecological scenario. 
The sensitivity, specificity, positive/negative predictive values, and 
accuracy of all diagnostic tests were assessed in detail. Furthermore, 
we  calculated the area under the receiver operating characteristic 
(ROC) curves to verify the optimal diagnostic threshold as reflected 
by the associated criterion (Ass. Crit.) and Youden Index (YI). Finally, 
clinical scale outcomes were correlated with the likelihood ratios 
(LRs), continuous numerical values providing a measure of stuttering 
severity for each patient as calculated through feed-forward artificial 
neural network (ANN) analysis.

2. Materials and methods

2.1. Participants

We recruited a cohort of 53 people with stuttering (24 females, 29 
males; mean age ± SD 16.7 ± 7.6 years, range 7–30) and a group of 71 
age- and sex-matched controls (29 females, 44 males; mean age ± SD 
16.2 ± 6.5 years, range 7–30). Participants or their legal guardians gave 
consent to the study, which was approved by the local Institutional 
Review Board (0026508/2019), following the Declaration of Helsinki.
Depending on the age, PWS were included into two independent 
sex-matched subgroups: 20 children in prepubertal age (cPWS) (9 
females, 11 males; mean age ± SD 9.1 ± 1.6 years, range 7–12), and 33 
young adults in post-pubertal age (yPWS) (15 females, 18 males; mean 
age ± SD 21.3 ± 5.8 years, range 15–30). Similarly, 31 controls were 
included in the subgroup of children (cC) (12 females, 19 males; mean 
age ± SD 9.6 ± 1.5 years, range 7–12), and in the subgroup of 40 young 
adults (yC) (17 females, 23 males; mean age ± SD 21.1 ± 3.9 years, 
range 15–30). Participants were recruited at “Centro Ricerca e Cura 
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Balbuzie – Disturbi del Linguaggio e dell’Apprendimento” in Rome, 
Italy. All participants were native Italian speakers, and non-smokers, 
and did not manifest cognitive or mood impairment, unilateral/
bilateral hearing loss, respiratory disorders, and other disorders 
potentially affecting the vocal cords. None of the participants was 
taking drugs acting on the central nervous system at the time of the 
study. Demographic and anthropometric parameters were collected 
during the enrollment visit. Also, symptoms related to stuttering were 
scored using the Italian validated version of the Voice Handicap Index 
(VHI) (11, 39), the Stuttering Severity Instrument (SSI)-4 and the 
Stuttering Severity Scale (SSS) (4). In PWS and controls, cognitive 
function and mood were assessed using the Mini-Mental State 
Evaluation (MMSE) (40), the Frontal Assessment Battery (FAB) scale 
(41) and the Hamilton depression scale (HAM-D) (42). Participant 
demographic and clinical features are reported in Table 1.

2.1.1. Audio recordings and machine-learning 
analysis

The recording session started by asking participants to sit on a 
chair in the middle of a silent room, at home. By sending the written 
experimental paradigm via email, participants were instructed to 
handle and face a smartphone at about 30 cm from the mouth and 
then to speak with their usual voice intensity, pitch, and quality. For 
audio recordings, participants used smartphones currently available 
in the market (various brands including Apple®, Google®, Samsung®, 
Huawei®, Xiaomi®, and Asus®). For both patients and controls, the 
experimental design included a single recording session based on 
three separate speech tasks. The first speech task consisted of the 
sustained emission of the vowel/e/ for 5 s, whereas the second and 
third tasks consisted of the reading of samples of connected speech. 
More in detail, the second speech task was the following Italian 
phonetically balanced sentence: “Nella casa in riva al mare maria vide 
tre cani bianchi e neri” (s1) (29, 32), whereas the last speech task was 
a rich-in-occlusive-consonant Italian sentence: “Poichè la principessa 
non tornava al castello, la regina ordinò alle guardie di cercarla nal 
bosco” (s2), known to induce detrimental effects on stuttering. Audio 
recordings were collected according to a previously reported 
standardized procedure (29, 32, 43). To simplify the procedures of 
home-made audio recording, all participants were asked to save the 
audio tracks in mp4 format at the end of the recording session and 
then, to send audio tracks by encrypted e-mail to our institutional 
mail server, which was protected by password and accessible only by 

the authors. Lastly, a segmentation procedure was applied to separate 
each audio track into single recordings of speech samples (Audacity®) 
(29). The machine-learning analysis was based on specific and 
standardized algorithms, namely the SVM, in agreement with 
previous works by our group in the field (44–47). The classification 
analysis was based on SVM built with a linear kernel for binary 
classifications. Training of SVM classifier consisted of the first 30 most 
relevant features ranked by the CAE, in order to reduce the number 
of selected features needed to perform the classification and to reduce 
the probability of overfitting. A list of the first 30 features which 
represent functionals applied to audio LLDs – extracted from the 
vowel for the comparison between PWS and controls is reported in 
Table  2. A detailed discussion on technical issues concerning the 
analysis has been provided in Supplementary material 1. Also, the 
experimental paradigm is summarized in Figure  1 and 
Supplementary file 1.

2.2. Statistical analysis

The normality of the demographic and anthropometric variables 
in patients and controls was assessed using the Kolmogorov-Smirnov 
test. Mann–Whitney U test was used to compare demographic scores 
in patients and controls. ROC analyses were performed to identify the 
optimal diagnostic cut-off values of the support vector machine 
(SVM) (selected features), for discriminating between:

 (1) controls vs. PWS during the sustained emission of the vowel 
and sentence s1;

 (2) controls vs. PWS during the emission of sentences s1 and s2;
 (3) yC vs. yPWS during the sustained emission of the vowel and 

sentence s1;
 (4) cC vs. cPWS during the sustained emission of the vowel and 

sentence s1;
 (5) cC vs. yC during the sustained emission of the vowel and 

sentence s1;
 (6) cPWS vs. yPWS during the sustained emission of the vowel and 

sentence s1.

Cut-off values were calculated as the point of the curves with the 
highest Y.I. (sensitivity + specificity −1) to maximize the sensitivity 
and specificity of the diagnostic tests. The positive and negative 

TABLE 1 Demographic and clinical characteristics of the participants.

N (F, M) Age (y) Weight 
(kg)

Height 
(cm)

MMSE FAB HAM-D SSS SSI-4 VHI LRs

PWS 53 (24, 29) 16.7 ± 7.6 51.6 ± 16.2 159.2 ± 17.6 29.5 ± 0.7 17.5 6 ± 0.8 0.6 ± 0.8 3.2 ± 1.7 20.5 ± 9.0 48.3 ± 22.32 0.84 ± 0.21

cPWS 20 (9, 11) 9.1 ± 1.6 34.5 ± 13.6 141.1 ± 15.1 29.7 ± 0.7 17.6 ± 0.7 1.1 ± 0.8 3.2 ± 1.6 20.0 ± 8.9 48.1 ± 21.7 0.62 ± 0.21

yPWS 33 (15, 18) 21.3 ± 5.8 61.9 ± 5.2 170.2 ± 6.1 29.4 ± 0.8 17.4 6 ± 0.9 0.4 ± 0.6 3.1 ± 1.8 20.8 ± 9.2 48.5 ± 22.8 0.6 ± 0.30

C 71 (29, 44) 16.2 ± 6.5 51.1 ± 16.2 157.5 ± 17.7 29.4 ± 0.8 17.4 ± 0.9 0.6 ± 0.8 – – – –

cC 31 (12, 19) 9.6 ± 1.5 37.2 ± 1.4 140.1 ± 10.5 29.2 ± 0.9 17.3 ± 0.9 0.7 ± 0.9 – – – –

yC 40 (17, 23) 21.1 ± 3.9 61.9 ± 10.7 170.6 ± 8.1 29.5 ± 0.7 17.5 ± 0.8 0.5 ± 0.7 – – – –

N, number; C, the whole group of controls (children and younger adults); cC, controls in prepubertal age; yC, younger adult controls in postpubertal age; PWS, the whole group of people with 
stuttering; cPWS, children people with stuttering in the prepubertal age; yPWS, younger adult people with stuttering in the postpubertal age; FAB, frontal assessment battery; HAM-D, 
hamilton depression rating scale; MMSE, mini-mental state evaluation; SSI-4, stuttering severity instrument 4; SSS, stuttering severity scale; VHI, voice handicap index; LR, likelihood ratio. LR 
scores were calculated from the sustained emission of a vowel in people with stuttering. Results are expressed as average ± standard deviation.
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predictive values were also calculated. According to standardized 
procedures (48), we compared the area under the curves (AUCs) in 
the ROC curves calculated from SMO (selected features) to verify the 
optimal test for discriminating within the subgroups. All ROC 
analyses were performed using MATLAB. Spearman’s rank correlation 
coefficient was used to assess correlations between clinical scores and 
LR values. p < 0.05 was considered statistically significant. Unless 
otherwise stated, all values are presented as mean ± standard deviation 
(SD). Statistical analyses were performed using Statistica version 10 
(StatSoft, Inc) and MATLAB (Mathworks, Inc.).

3. Results

The Kolmogorov–Smirnov test showed that demographic (age) 
and anthropometric (weight and height) parameters were normally 
distributed in controls and people with stuttering (p < 0.05). Mann-
Whitney U test showed comparable demographic, MMSE, FAB, and 
HAM-D scores in patients and controls (p > 0.05) (Table  1). The 
clinical assessment of stuttering was based on VHI, SSI-4, and SSS 
scales. AVHI mean ± SD score of 48.3 ± 22.32 is suggestive of moderate 
disease severity; an SSI-4 mean ± SD score of 20.5 ± 9.0 is indicative of 

TABLE 2 List of the first 30 selected features for the comparison between C and PWS during the sustained emission of a vowel.

No Group Family Low level descriptor Functional

1 Cepstral Spectral LLD MFCC 1–14 Standard deviation

2 Prosodic Energy related LLD Zero crossing rate Relative peak range

3 Prosodic Energy related LLD Sum of auditory spectrum (loudness) Relative minimum range

4 Prosodic Energy related LLD Zero crossing rate Coefficient 0 of linear prediction

5 Cepstral Spectral LLD MFCC 1–14 Absolute peak range

6 Cepstral Spectral LLD MFCC 1–14 Relative peak mean

7 Spectral Spectral LLD Spectral Variance Standard deviation of peak distances

8 Sound Quality Voicing related LLD Probability of voicing Arithmetic mean

9 Prosodic Energy related LLD Zero crossing rate Absolute peak range

10 Cepstral Spectral LLD MFCC 1–14 Absolute peak range

11 Cepstral Spectral LLD MFCC 1–14 99% percentile

12 Cepstral Spectral LLD MFCC 1–14 Range

13 Cepstral Spectral LLD MFCC 1–14 3rd coefficient of linear prediction

14 Prosodic Energy Related LLD RMS Energy Relative peak range

15 Cepstral Spectral LLD MFCC 1–14 Inter-quartile 1–2

16 Cepstral Spectral LLD MFCC 1–14 Standard deviation of rising slope

17 Spectral Spectral LLD
RASTA-PLP style auditory spectrum, bands 

1–26 (0–8 kHz)
Absolute peak range

18 Cepstral Spectral LLD MFCC 1–14 Inter-quartile 1–2

19 Cepstral Spectral LLD MFCC 1–14 99% percentile

20 Prosodic Energy Related LLD Sum of auditory spectrum (loudness) Centroid

21 Spectral Spectral LLD Spectral Flux 3rd coefficient of linear prediction

22 Prosodic Voicing Related LLD Fundamental frequency Relative duration of the LLD is above 25%

23 Spectral Spectral LLD
RASTA-PLP style auditory spectrum, bands 

1–26 (0–8 kHz)
Relative peak mean

24 Cepstral Spectral LLD MFCC 1–14 Absolute peak range

25 Spectral Spectral LLD
RASTA-PLP style auditory spectrum, bands 

1–26 (0–8 kHz)
Mean of peak distances

26 Spectral Spectral LLD Spectral Skewness Absolute peak range

27 Cepstral Spectral LLD MFCC 1–14 Absolute peak mean

28 Sound Quality Voicing related LLD Jitter (Delta/Derivative) 2nd coefficient of linear prediction

29 Spectral Spectral LLD Spectral variance Relative peak range

30 Cepstral Spectral LLD MFCC 1–14 2nd coefficient of linear prediction

C, the whole group of controls; PWS, the whole group of people with stuttering; LLD, low level descriptor, MFCC, mel-frequency spectral coefficients; RASTA-PLP, relative spectral transform-
perceptual linear prediction.
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a mild-to-moderate stuttering severity both in children and adults; An 
SSS mean ± SD score of 3.2 ± 1.7 is suggestive of mild disease severity 
(49). The recorded MMSE, FAB, and HAM-D scores in both PWS and 
controls suggest normal cognition and the absence of mood 
depression (All p values >0.05; Table 1).

3.1. Machine-learning analysis

When analyzing PWS versus controls during the sustained 
emission of the vowel, ROC curve analyses identified an optimal 
diagnostic threshold value of −0.24 (associated criterion) with Y.I. of 
0.75. Furthermore, during the sustained emission of the sentence s1, 
ROC curve analyses identified an optimal diagnostic threshold value 
of 0.12 with a Y.I. of 0.66. Then, we  compared the ROC curves 
obtained during the emission of the vowel and the sentence s1 
showing comparable results (the difference between AUCs = 0.028, 
z = 0.660, SE = 0.042, and p = 0.51) (Figure 2A, Table 3).

Machine-learning discriminated between PWS and controls 
during the emission of the sentence s1 and s2. When comparing the 
30 most relevant selected features extracted from the emission of s2, 
ROC curve analyses identified an optimal diagnostic threshold value 
of −0.09 with Y.I. of 0.62. Then, we  compared the ROC curves 

obtained during the emission of s1 and s2 showing comparable results 
(the difference between AUCs = 0.025, z = 0.589, SE = 0.042, and 
p = 0.56) (Figure 2B, Table 3).

Concerning the classification of cC vs. cPWS during the sustained 
emission of the vowel and sentence s1, for the emission of the vowel, 
ROC curve analyses identified an optimal diagnostic threshold value 
of 0.23 with YI of 0.94. Furthermore, during the sustained emission of 
the sentence s1, ROC curve analyses identified an optimal diagnostic 
threshold value of 0.06, with YI of 0.85. Then, we compared the ROC 
curves obtained during the emission of the vowel and sentence s1 
showing comparable results (the difference between AUCs = 0.023, 
z = 0.727, SE = 0.032, and p = 0.47) (Figure 2C, Table 3).

The discrimination between yC vs. yPWS, during the sustained 
emission of the vowel and sentence s1 also disclosed high accuracy. 
When comparing the 30 related most relevant selected features 
extracted from the emission of the vowel, ROC curve analyses 
identified an optimal diagnostic threshold value of 0.66 (associated 
criterion), when applying discretization and 10-folds cross-validation 
(Y.I. = 0.80). Furthermore, when comparing 30 selected features 
extracted from the sustained emission of the sentence s1, ROC curve 
analyses identified an optimal diagnostic threshold value of 0.07, 
when applying discretization and 10-folds cross-validation 
(Y.I. = 0.81). Afterwards, we  compared the ROC curves obtained 

FIGURE 1

Experimental paradigm. (A) recording of voice samples using a smartphone; (B) narrow-band spectrogram of the acoustic voice signal; (C) feature 
extraction; (D) feature selection; (E) feature classification; (F) ROC curve analysis; and (G) LR values calculated through ANN.
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during the emission of the vowel and sentence s1 showing comparable 
results (the difference between AUCs = 0.002, z = 0.071, SE = 0.029, and 
p = 0.94) (Figure 2D, Table 3).

When comparing cC and yC with sequential minimal 
optimization (SMO), we were able to obtain high results for both the 
emission of the vowel and sentence s1. For the emission of the vowel, 
ROC curve analyses identified an optimal diagnostic threshold value 
of 0.39 with Y.I. of 0.88. Furthermore, when comparing 30 selected 
features extracted from the sustained emission of the sentence s1, 

ROC curve analyses identified an optimal diagnostic threshold value 
of 0.43, when applying discretization and 10-folds cross-validation 
(Y.I. = 0.94). Then, we compared the ROC curves obtained during the 
emission of the vowel and sentence s1 showing comparable results 
(the difference between AUCs = −0.007, z = −0.700, SE = 0.010, 
p = 0.48) (Figure 2E, Table 3).

Finally, we discriminated between cPWS and yPWS with SMO. In 
this case, we were also able to obtain high results for both the emission 
of the vowel and sentence s1. For the emission of the vowel, ROC 

FIGURE 2

Support vector machine analysis of voice samples. Receiver operating characteristic curves calculated with a support vector machine to differentiate: 
(1) Controls and people with stuttering during the emission of vowel and sentence 1 (A); (2) Controls and people with stuttering during the emission of 
sentence s1 and s2 (B); (3) Younger adult controls and people with stuttering during the emission of vowel and sentence 1 (C); (4) Children controls 
and people with stuttering during the emission of vowel and sentence 1 (D); (5) Children and younger adult controls during the emission of vowel and 
sentence s1 (E); (6) Children and younger adult people with stuttering during the emission of vowel and sentence s1 (F). C, the whole group of 
controls; cC, controls in prepubertal age; yC, younger adult controls in postpubertal age; PWS, the whole group of people with stuttering; cPWS, 
children with stuttering in the prepubertal age; yPWS, younger adults with stuttering in the postpubertal age.
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curve analyses identified an optimal diagnostic threshold value of 0.20 
(associated criterion) with Y.I. of 0.86. Furthermore, during the 
sustained emission of the sentence s1, ROC curve analyses identified 
an optimal diagnostic threshold value of 0.24, with a Y.I. of 0.89. Then, 
we compared the ROC curves obtained during the emission of the 
vowel and sentence s1 showing comparable results (the difference 
between AUCs = 0.023, z = 0.542, SE = 0.042, and p = 0.59) (Figure 2F, 
Table 3).

3.2. Correlation analysis

In the group of PWS, the Spearman test disclosed a negative 
correlation between age and HAM-D (r = −0.35, p = 0.012), i.e., young 
PWS manifest a higher psychological burden of disease. Also, 
we found highly relevant positive correlations among scores at clinical 
scales for the multidimensional assessment of stuttering. More in 
detail, VHI significantly correlated with SSS (r = 0.95, p < 0.01) and 
SSI-4 (r = 0.97, p < 0.01), i.e., the higher impairment of stuttering, the 
greater the stuttering-related complaint. Lastly, SSS positively 
correlated with SSI-4 (r = 0.94, p < 0.01).

Concerning the clinical-instrumental correlations, we found a 
positive correlation between LRs collected in the overall group of PWS 
during the sustained emission of vowel/e/ as well as during the reading 
of sentences S1 and S2 and SSS (r = 0.31, p = 0.02, for the vowel; 
r = 0.30, p = 0.03, for S1; r = 0.44, p < 0.01, for S2), SSI-4 (r = 0.32, 
p = 0.02, for the vowel; r = 0.36, p < 0.01, for S1; r = 0.46, p < 0.01, for S2) 
and VHI (r = 0.32, p = 0.02, for the vowel; r = 0.35, p = 0.01, for S1; 
r = 0.43, p < 0.01, for S2). The higher the LR values attributed by 
machine-learning, the higher disability and severity of overall 
stuttering and voice symptoms. When considering subgroups of cPWS 
as well as yPWS, we reported a higher positive correlation between 
LRs calculated during the emission of speech tasks and scores at 
clinical scales (i.e., SSS, SSI-4, and VHI). More in detail, in cPWS and 
yPWS, LRs positively correlated with SSS during the emission of the 
vowel (r = 0.67, p < 0.01, and r = 0.43, p = 0.02, respectively), S1 (r = 0.53, 

p = 0.02, and r = 0.54, p < 0.01, respectively) and S2 (r = 0.67, p < 0.01, 
and r = 0.42, p = 0.02, respectively). Still, in cPWS and yPWS, LRs 
positively correlated with SSI-4 during the emission of the vowel 
(r = 0.63, p < 0.01, and r = 0.54, p < 0.01, respectively), S1 (r = 0.56, 
p = 0.02, and r = 0.51, p < 0.01, respectively) and S2 (r = 0.62, p < 0.01, 
and r = 0.42, p = 0.02, respectively). Lastly, in cPWS, LRs also positively 
correlated with VHI during the emission of the vowel (r = 0.64, 
p < 0.01, and r = 0.51, p < 0.01, respectively), S1 (r = 0.57, p = 0.02, and 
r = 0.50, p < 0.01, respectively) and S2 (r = 0.61, p < 0.01, and r = 0.41, 
p = 0.02, respectively).

4. Discussion

In this study, we objectively recognized people with stuttering by 
using artificial intelligence (i.e., the SVM algorithm). We identified 
relevant acoustic features altered in stuttering, achieving high 
classification accuracy in discriminating between PWS and controls. 
We also found a significant effect of ageing in modifying abnormal 
acoustic features reported in stuttering, as shown by high classification 
accuracy when discriminating between independent ageing groups, 
among PWS and controls. Our analysis was highly consistent and 
reliable as suggested by the lack of linguistic-related detrimental 
effects exerted by speech tasks on stuttering. Lastly, we  found 
significant clinical-instrumental correlations pointing to the great 
medical relevance of our analysis. Overall, our findings support the 
role of machine learning in the objective recognition of specific voice 
disorders (50–52).

To collect homogeneous audio recordings in PWS and controls, 
we carefully controlled for several methodological factors. Participants 
were all native Italian speakers, non-smokers, and did not report 
pathologic conditions affecting voice emission, thus allowing for the 
exclusion of possible confounding factors. All young adults (e.g., both 
people with stuttering and controls) completed the pubertal 
development, thus excluding incomplete development of systems 
involved in voice emission. Patients with stuttering had similar 

TABLE 3 Performance of the machine-learning algorithm.

Comparisons Speech-
task

Assoc. 
criterion

Youden 
index

Se (%) Sp (%) PPV (%) NPV (%) Acc (%) AUC

PWS vs. C

Vowel −0.24 0.75 88.7 86.3 90.0 84.6 87.7 0.934

S1 0.12 0.66 85.7 80.8 85.7 80.8 83.6 0.906

S2 −0.09 0.62 81.3 80.9 87.1 73.1 81.1 0.881

cC vs. cPWS
Vowel 0.23 0.94 93.8 100 100 90.0 96.0 0.993

S1 0.06 0.85 90.6 94.4 96.7 85.0 92.0 0.970

yC vs. yPWS
Vowel 0.66 0.80 92.3 87.9 90.0 90.6 90.3 0.975

S1 0.07 0.81 88.4 93.1 95.0 84.4 90.3 0.973

cC vs. yC
Vowel 0.39 0.88 93.3 95.5 93.3 95.5 94.3 0.991

S1 0.43 0.94 96.7 97.5 96.7 97.5 97.1 0.998

cPWS vs. yPWS
Vowel 0.20 0.86 94.4 91.2 85.0 96.9 92.3 0.956

S1 0.24 0.89 100 88.9 80.0 100 92.3 0.933

C, the whole group of controls; cC, controls in prepubertal age; yC, younger adult controls in postpubertal age; PWS, the whole group of people with stuttering; cPWS, children people with 
stuttering in the prepubertal age; yPW, younger adult people with stuttering in the postpubertal age; Acc, accuracy; AUC, area under the curve; NPV, negative predictive value; PPV, positive 
predictive value; Se, sensitivity; Select Sent., selective sentence which consists of the emission of the sentence of the connected speech supposed to induce stuttering in patients; Sp, specificity; 
Stand. Sent., standard sentence which is the sentence of the connected speech used in our previous papers in the field of voice analysis. Instances refer to the number of subjects considered in 
each comparison. Cross-validation refers to standardized procedures of a machine-learning algorithm (see the text for details).

https://doi.org/10.3389/fneur.2023.1169707
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Asci et al. 10.3389/fneur.2023.1169707

Frontiers in Neurology 08 frontiersin.org

demographic and anthropometric characteristics (e.g., height, weight, 
and BMI) as compared with controls, thus excluding confounding 
related to these physiologic factors. Subjects with cognitive impairment 
and mood disorders were excluded from the study cohort. 
Furthermore, since the worsening of dysfluencies during the day, 
we asked participants to record audio samples in the morning, when 
possible. The stuttering diagnosis was based on current international 
guidelines. As speech tasks, we selected the sustained emission of a 
vowel and sentences according to standardized procedures, respectively. 
All samples were recorded through smartphones currently available on 
the market and able to save audio tracks in the required file format. 
Corrupted recordings were excluded from the analysis.

4.1. Clinical evaluation In people with 
stuttering

Clinically, both cPWS and yPWS showed mild-to-moderate 
disease severity in terms of stuttering, and absent depression, thus 
confirming developmental stuttering. The mild-to-moderate stuttering 
severity measured in our sample of PWS is in line with the literature 
findings of a full recovery during the first four years of age reported in 
up to 75% of pre-schoolers with developmental stuttering (2, 53), thus 
showing a milder form of the disease once grown-up. We found that 
young PWS manifest a trend towards a higher psychological burden 
of disease, though without reaching statistical significance. Also, 
we found highly relevant positive correlations among scores at clinical 
scales for the multidimensional assessment of stuttering (VHI, SSS, 
and SSI-4), independently from the specific age groups.

4.2. Machine-learning analysis in people 
with stuttering

In this study, we objectively recognized PWS by acoustic analysis 
based on SVM. This finding is highlighted by the high reliability and 
accuracy of results achieved during the emission of speech tasks when 
classifying controls and PWS. As shown by the most relevant acoustic 
features selected by machine-learning, our methodology fits with 
previous studies based on spectral analysis, thus confirming the 
biological plausibility of our observations. It should be mentioned that 
all previous studies aiming at the objective analysis of stuttering were 
based on standardized spectral analysis and were able to find multiple 
abnormal acoustic features in stuttering (13–26). These investigations 
have certainly contributed to improve current knowledge of stuttering 
by reporting specific changes in acoustic features (13–26). However, 
standard acoustic analysis does not allow for dynamically combining 
selected features extracted from a large dataset, and it does not offer the 
opportunity to automatically learn and improve from experience (29, 
32, 33). Therefore, other authors have applied automatic tools to detect 
speech impairment in the field of stuttering, for classification purposes. 
Historically, the first attempt to automatically and objectively detect 
stuttering through machine-learning comes from the automatic speech 
recognition (ASR) analysis, consisting of a preliminary process that 
converts audio signals to text, and then a second phase used to detect 
and identify linguistic abnormalities related to stuttering (54–56). The 
main limitation of this approach was the great number of errors. 
Therefore, authors have begun to apply machine-learning to acoustic 
features extracted from audio recordings in patients with stuttering, 

using several approaches including but not limited to the Mel frequency 
cepstral coefficients (MFCC), the ANN, the hidden Markov model 
(HMM), and finally the SVM (57–62). Despite the achievements in the 
objective analysis of stuttering, previous research in the field was 
characterized by several limitations. Machine-learning studies in 
stuttering have included small and heterogeneous cohorts of audio 
samples collected in a dataset of patients with stuttering. Also, the large 
part of datasets of audio recordings from stutterers lacks relevant 
clinical as well as anthropometric parameters which are known to 
be involved in voice emission. Also, it has been documented that PWS 
show difficulties in coordinating airflow, articulation, and resonance, 
and minor asynchronies have been found even during fluent speech 
(63). Hence, we  believe that our study demonstrates the ability of 
acoustic analysis to objectively recognize PWS. The acoustic features 
selected by our classifier and used for further classification purposes 
correspond to those considered in previous seminal works in the field, 
using spectral and cepstral analysis (see also Table  2) (57–62). 
Moreover, our study showed for the first-time significant clinical-
instrumental correlations: the higher the LR values attributed by 
machine-learning, the higher severity of symptoms in PWS. Hence, 
we demonstrated that the degree of voice changes in PWS correlates 
with disease severity, and finally, LR values can be considered reliable 
scores to express the severity of PWS.

Our machine-learning approach would further help in clarifying the 
pathophysiological underpinning of stuttering. Recent clinical and 
experimental observations have raised the hypothesis that stuttering 
reflects impaired sensorimotor integration in specific brain networks (64, 
65), to the point that it may be even considered as a form of focal/segmental 
action dystonia (66, 67). Hence, we conjecture that future experimental 
investigations combining machine-learning analysis of voice with 
neurophysiological and neuroimaging techniques would help in better 
assessing voice-related changes in sensorimotor integration in PWS (34).

4.3. Effect of ageing in people with 
stuttering

Concerning the effect of ageing on acoustic features in stuttering, 
this is the first study to demonstrate a significant role of ageing in 
changing acoustic features known to be altered in stuttering as shown by 
previously unreported high accuracy in classifying children (i.e., 
7–12 years) and younger adults (i.e., 15–30 years) among PWS and 
controls. The observation that machine-learning can achieve high 
classification accuracy when discriminating between cC and yC allows 
us to confirm and expand data reported in a previous publication by our 
groups on healthy controls in which we showed that objective acoustic 
analysis distinguished between younger and older adults, with a high 
level of accuracy (29). In this study, we demonstrated a similar effect of 
human ageing on acoustic features in PWS, as suggested by the high 
accuracy when classifying cPWS and yPWS. As previously demonstrated 
for healthy controls, similar age-related changes in physiological 
functions may explain our findings in PWS. More in detail, the 
physiological basis underlying our results is prominently linked to 
age-related changes in the phonatory apparatus, including the effects of 
hormone molecules during the transition from pre-pubertal to post-
pubertal age. Still, we found significant clinical-instrumental correlations 
also in cPWS and yPWS: the greater the LR values, the higher severity of 
PWS. Interestingly, when classifying cC and cPWS as well as yC and 
yPWS we  obtained higher results than those achieved during the 
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comparison between PWS and the overall group of controls. These 
results confirm previous data reported by our group showing that the 
accuracy of the machine-learning algorithm tended to further improve 
when comparing the groups of subjects with a narrower age band (29).

4.4. Effect of speech task in people with 
stuttering

We observed similar classification accuracy for each speech task 
considered in the analysis, namely the sustained emission of the vowel 
and sentences. This issue could be possibly judged controversial since 
it is known that several types of dysfluencies in PWS, including 
involuntary, audible, or silent, repetitions or prolongations of sounds, 
syllables, words, sentences, dysrhythmic phonation, such as blocks, and 
prolongations tend to worsen in response to specific speech task (i.e., 
the detrimental effect of linguistic issues). However, as already reported 
for other disorders affecting voice, including laryngeal dystonia and 
Parkinson’s disease, we speculate that machine learning is able to detect 
subtle changes in acoustic features occurring even during a simple 
voice task (i.e., the sustained emission of a vowel). This finding is of 
great relevance since it testifies the transveral applicability of machine 
learning analysis among different languages. With the present study 
we  showed the wide applicability of our analysis for telemedicine 
purposes, as shown by the results achieved using smartphone-recorded 
audio samples, in an ecologic scenario. The importance of the 
application of telemedicine to research on stuttering has been 
previously suggested, although with some technical limitations (68), 
which have been resolved in the present study. It is well-known that 
telemedicine and telepractice can be  used as complementary 
therapeutic methods for neurologic diseases in general (69), and for 
stuttering in particular (68), hence we are confident that our study will 
lay the foundation for future therapeutic efforts in this field.

5. Conclusion

We achieved high classification accuracy when discriminating 
between PWS and controls. We also demonstrated a significant effect 
of ageing, as shown by high accuracy when discriminating between 
children and younger controls as well as PWS. Furthermore, 
we showed that our analysis was highly consistent and reliable as 
suggested by the lack of linguistic-related detrimental effects on 
stuttering. In addition, we  demonstrated the applicability of our 
analysis for telemedicine purposes. Lastly, we  found significant 
clinical-instrumental correlations pointing to machine-learning 
analysis as a consistent and reliable tool to objectively diagnose 
stuttering. To date, therapeutic strategies for stuttering mostly rely on 
non-pharmacological approaches based on speech therapy or on 
stuttering devices, which alter the voice frequency or slow the rate of 
speech using auditory feedback (53).Within this clinical and 
therapeutic context, we believe that acoustic analysis could be highly 
useful for checking and monitoring PWS over time (e.g., before and 
after a given therapeutic approach). This aspect is valuable and 
innovative, due to the significant lack of studies on the objective 
assessment of treatment outcomes in PWS. Ultimately, we  are 
confident that future studies using machine-learning techniques and 
automated acoustic analysis, may further help clinicians in the 

classification and management of stuttering as well as other 
neurodevelopmental disorders of speech production (53).
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