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Background: Persons with Parkinson’s disease (PD) differentially progress to

cognitive impairment and dementia. With a 3-year longitudinal sample of

initially non-demented PD patients measured on multiple dementia risk factors,

we demonstrate that machine learning classifier algorithms can be combined

with explainable artificial intelligence methods to identify and interpret leading

predictors that discriminate those who later converted to dementia from those

who did not.

Method: Participants were 48 well-characterized PD patients (Mbaseline age = 71.6;

SD = 4.8; 44% female). We tested 38 multi-modal predictors from 10 domains

(e.g., motor, cognitive) in a computationally competitive context to identify

those that best discriminated two unobserved baseline groups, PD No Dementia

(PDND), and PD Incipient Dementia (PDID). We used Random Forest (RF) classifier

models for the discrimination goal and Tree SHapley Additive exPlanation (Tree

SHAP) values for deep interpretation.

Results: An excellent RF model discriminated baseline PDID from PDND

(AUC = 0.84; normalized Matthews Correlation Coefficient = 0.76). Tree SHAP

showed that ten leading predictors of PDID accounted for 62.5% of the model,

as well as their relative importance, direction, and magnitude (risk threshold).

These predictors represented the motor (e.g., poorer gait), cognitive (e.g., slower

Trail A), molecular (up-regulated metabolite panel), demographic (age), imaging

(ventricular volume), and lifestyle (activities of daily living) domains.

Conclusion: Our data-driven protocol integrated RF classifier models and

Tree SHAP applications to selectively identify and interpret early dementia risk

factors in a well-characterized sample of initially non-demented persons with

PD. Results indicate that leading dementia predictors derive from multiple

complementary risk domains.

KEYWORDS

Parkinson’s disease, dementia, risk factors, biomarkers, random forest classifier, Tree
SHapley Additive exPlanation

Frontiers in Aging Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1124232
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1124232&domain=pdf&date_stamp=2023-06-30
https://doi.org/10.3389/fnagi.2023.1124232
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1124232/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1124232 June 26, 2023 Time: 15:50 # 2

McFall et al. 10.3389/fnagi.2023.1124232

1. Introduction

Parkinson’s disease (PD) is a complex, multisystem disorder
characterized by pathological degeneration of nigrostriatal
dopaminergic neurons and the presence of Lewy bodies (Gomperts,
2016; Aarsland et al., 2017). Although PD is primarily characterized
as a movement disorder, it includes a wide variety of non-motor
symptoms (Marinus et al., 2018), including accelerated cognitive
decline leading to impairment or dementia (Guo et al., 2021). PD
patients are two to six times more likely to develop dementia than
healthy controls who are asymptomatic for neurodegenerative
disease. Notably, although not all PD patients develop dementia,
researchers estimate long-term conversion rates at between 50
and 80% of newly diagnosed PD patients (Marinus et al., 2018;
Guo et al., 2021). Parkinson’s disease dementia (PDD) includes
not only motor and cognitive impairment, but is also associated
with an increased risk of additional adverse outcomes. These
include reduced physical function, poorer quality of life, increased
caregiver burden, and increased health-related costs (Svenningsson
et al., 2012). Early identification of individuals living with PD who
are at an increased risk for dementia may enable early and targeted
interventions that offset or delay cognitive decline or impairment
and mitigate some of the additional negative outcomes of PDD.

Recent studies have investigated multiple independent (or
candidate) predictors of dementia in diagnosed PD patients. To
date, these predictors represent several risk factor and biomarker
domains (Vasconcellos and Pereira, 2015; Delgado-Alvarado et al.,
2016; Gomperts, 2016; Hanagasi et al., 2017). Examples that
increase risk of conversion to dementia in PD patients include (a)
older age (Vasconcellos and Pereira, 2015; Cereda et al., 2016), (b)
lower performance in cognitive measures such executive function,
episodic memory, and speed/inconsistency (de Frias et al., 2012;
Hanagasi et al., 2017), (c) metabolomics-based and lipidomics-
based biomarker panels (Han et al., 2017; Buzatto et al., 2021),
(d) orthostatic hypotension (defined as the drop of 10 mmHg
blood pressure when standing as compared to supine; Anang
et al., 2014), and (e) ventricular dilation (Camicioli et al., 2011).
A recent systematic review also identified several clusters of
baseline factors associated with PDD diagnosis approximately
4.4 years later, including age (older), common clinical PD factors
(gait disturbances, motor function disorder), rapid eye movement
(REM) sleep behavior disorders, orthostatic hypotension, and
hallucinations (Guo et al., 2021). Interestingly, this review
identified several additional factors that were correlated with
higher risk of PD-related cognitive impairment (not yet dementia),
including age of onset, genetic risk (Apolipoprotein E [APOE],
microtubule associated protein tau [MAPT]), Unified Parkinson’s
Disease Rating Scale (UPDRS) III scores, and anxiety. In cross-
sectional research, risk factors associated with PDD include: (a)
male sex (Cereda et al., 2016), (b) higher homocysteine level (Song
et al., 2013), and (c) higher white matter hyperintensities load
(Dadar et al., 2020).

Given that a diverse set of risk predictors have been
associated with the gradual emergence of PDD, a broad prediction
analysis that includes factors from multiple modalities evaluated
simultaneously and competitively may identify markers that
contribute most to the early detection of PDD vulnerability. An
appropriate prospective design would include a baseline sample

of PD participants with no dementia (PDND) from which two
subgroups emerge at later time points—those confirmed as having
remained as PDND and those diagnosed as having developed
PDD in the interim. At baseline, the latter unobserved subgroup
could be designated as PD incipient dementia (PDID). Relevant
baseline measures would sample from the above list of associated
factors, as well as new candidates from domains of known PD
dementia risk. Pertinent analytics would feature the capacity to
evaluate multiple predictors simultaneously in a computationally
competitive context, determine the most important predictors, and
interpret the direction and magnitude of the effects. In addition,
the analytics would be effective in both larger databases and
smaller clinical samples. In the present study, we integrate these
methodological and analytic characteristics to demonstrate their
application to a clinical sample of initially non-demented PD
patients who are followed over a 3-year period and are then
diagnosed as either PDD or PDND.

Several recent studies have tested multiple risk factors and
biomarkers to distinguish PDND from PDID (Liu et al., 2017;
Dawson et al., 2018; Phongpreecha et al., 2020). Overall, these
studies featured relatively large samples but tested relatively
few dementia predictors (ranging from 6 to 16). Although the
predictors represented a promising but selected range of potential
PD-related dementia risk factors, there was some overlap (e.g.,
age, sex, education) across studies. For example, the Montreal
Parkinson Risk of Dementia Scale (MoPaRDS) consisting of eight
risk factors [sex, age, mild cognitive impairment (MCI), bilateral
disease onset, REM sleep behavior disorder, hallucinations, falls
and/or freezing, orthostatic hypotension] distinguished PDND
from PDID, with the PDD outcome at a 4.4-year interval (Area
Under the receiver operating characteristic Curve [AUC] = 0.88
(Dawson et al., 2018), see also (Bohn et al., 2023)). In another
example, Liu et al. (2017) followed a large sample of PD patients
for approximately 9 years, testing seven baseline PD dementia
risk factors (age of onset, mini-mental state exam, education,
motor exam score, sex, depression, β-glucocerbrosidase [GBA])
for those that discriminated participants who developed dementia
(PDID at baseline) from those who did not (PDND; AUC = 0.88).
In a broader investigation, Phongpreecha et al. (2020) used a
classification model including baseline factors—10 biological (age,
education, sex, disease duration, depression, levodopa equivalent
daily dose, symptom progression, APOE, GBA, MAPT) and 6
cognitive (Montreal Cognitive Assessment [MoCA], total recall,
delayed recall, recognition discriminability, Trail A and B)—to
discriminate PDND from PDD up to 4 years later. Notably, they
observed that the cognitive variables (AUC = 0.90) were stronger
predictors than their sampling of biological factors (AUC = 0.77).
Finally, Schrag et al. (2017) grouped 22 baseline dementia-related
risk factors by domain and tested the association of each domain
with PDD 2 years later. Tested models included risk domains of (a)
clinical, (b) imaging, (c) cerebrospinal fluid, and (d) independent
variables from all three. Notably, no model simultaneously tested
all 22 risk factors. In univariate analyses, the five variables most
strongly associated with cognitive decline were age, smell, REM
sleep behavior disorder, CSF amyloid β, and caudate uptake
(AUC = 0.80). Overall, findings from these studies suggest that
multiple risk factors from several domains (e.g., demographic,
neurocognitive, gait, metabolic, imaging) may distinguish PDND
from PDID subgroups in non-demented PD patients.
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Accumulating results indicate the potential for heterogeneous
risk factors to be associated with the differential emergence of
dementia in PD patients. In this study, we integrate a machine
learning classifier approach [random forest (RF) algorithm for
leading predictor identification] and an explainable artificial
intelligence method [Tree Shapley Additive exPlanation (Tree
SHAP) for informed interpretation] to simultaneously test a large
number and diverse range of predictors representing multiple
established domains of dementia risk in PD. Similar multi-variable
biomarker prediction approaches to longitudinal data have been
suggested for related complex and dynamic neurodegenerative
diseases (Fotuhi et al., 2009; Aarsland and Kurz, 2010; Sapkota et al.,
2018; Badhwar et al., 2020; Wang et al., 2022). Machine learning
approaches use computer systems that apply algorithms and
quantitative models to analyze and draw inferences from patterns
in big or high dimensional data. The competitive computational
context of machine learning prediction models promotes the
identification of the most important predictors from a large number
of risk factors tested in relation to all other risk factors (i.e.,
considering factor dependences and interactions). An integrative
analytic workflow via Tree SHAP provides interpretation of
identified predictors (e.g., relative magnitude, direction).

The main research goal of the current study was to apply
machine learning technology, specifically RF classifier, to an
extensive multi-factorial battery of baseline dementia risk factors.
We selected RF classifier as it includes two important capacities: (a)
it is designed to test competitively a large number of multi-domain
predictors and (b) it has the capacity to do so for samples with large
or small numbers of participants. To confirm that RF classifier was
the best model for these data, we ran comparisons using Logistic
Regression and Gradient Boosting (GB) models. These prediction
analyses were followed by Tree SHAP applications for deeper
interpretation. The purpose was to identify the best predictors that
distinguish among a baseline cohort of diagnosed PD participants,
all of whom were initially non-demented, but some of whom
converted 3 years later to PDD and some of whom did not. We
refer to these two subgroups as PDID and PDND, respectively.

2. Materials and methods

2.1. Participants

Participants were PD patients with no dementia (n = 52)
recruited between 2003 and 2009 from the University of Alberta
Movement Disorders Clinic, the Parkinson’s Society of Alberta,
and community neurologists. Prior to enrollment in the study,
PD patients were evaluated by experienced neurologists to confirm
PD diagnosis based on the presence of two of three typical signs
of PD (rest tremor, bradykinesia, rigidity), consistent with UK
Brain Bank Criteria (Gibb and Lees, 1988; Clarke et al., 2016).
Potential recruits were excluded by the study neurologist (RC)
if they met criteria for atypical Parkinsonism, had a clinical
history of stroke, or an unstable health condition. Data for this
single-site longitudinal study were collected for each participant
at baseline, 18 months, and 36 months by the study neurologist
and trained research staff. The private dataset is available upon
reasonable request to RC. For the current study, participants were

excluded if they were not available (i.e., dropped out or died)
for the dementia classification protocol at 36 months (n = 4).
The final sample consisted of 48 PD patients (Mbaseline age = 71.5,
SD = 4.8; 43.8% female; see Table 1 for a complete reporting of
descriptive statistics). At baseline, all participants were classified
as non-demented based on an assessment by the study neurologist
(Camicioli et al., 2009). Specifically, they met all inclusion criteria
and did not have cognitive problems sufficient to affect activities of
daily living. At 36 months, 14 PD patients were clinically diagnosed
with dementia and retrospectively classified as PDID at baseline.
The remaining participants were classified as PDND (n = 34).
All participants provided written informed consent and all data
collection procedures were in full compliance with human research
ethics.

2.2. Dementia diagnosis

Dementia classification at 36 months was assessed by the
study neurologist using the DSM-IV criteria (Camicioli et al.,
2011). Briefly, participants were diagnosed with PDD if there was
impairment in two cognitive domains plus functional impairment.
Assessments were based on (a) clinical data, (b) independent
interviews with the PD patient and an informant, (c) the Clinical
Dementia Rating Scale (Morris, 1993), (d) Standardized Mini-
Mental Status Examination (SMMSE) (Molloy and Standish,
1997), (e) the Dementia Rating Scale (Brown et al., 1999), and
(f) the Short Blessed Information-Memory-Concentration Test
(Fillenbaum et al., 1987).

2.3. Risk factor and biomarker predictors
of PD incipient dementia

A pool of 38 baseline biomarkers and risk factors were used
in analyses for predicting PDID (vs. PDND) in the PD baseline
sample. These predictors were informally aligned with 10 domains
of dementia risk. The demographic domain (n = 3) included age
(in years), sex (male, female), and education (in years). The gait and
motor function domain (n = 4) included gait speed (standardized
average time in seconds for two trials of simple gait and two trials
of dual task gait [naming male and female names]), gait steps
(standardized average number of steps for two trials of simple gait
and two trials of dual task gait [naming male and female names]),
balance (standardized average time in seconds of keeping balance
with eyes open and eyes closed with legs in different positions [e.g.,
one leg in front of the other]), and finger dexterity (average of
left and right hand finger taps per minute). The sensory domain
(n = 2) included visual acuity (measured using a reduced Snellen
eye chart held 14 inches away from the participant’s face using
both eyes and recorded as the number of feet a normal vision
person can see in relation to what the participant can see at 20
feet) and smell (measured using the Brief Smell Identification Test,
number correct out of 12 possible odorants (Doty et al., 1996).
The genetic domain (n = 2) included APOE (rs429358, rs7412) and
methylenetetrahydrofolate reductase (MTHRF rs1801133). APOE
was categorized into the following three groups representing
increasing dementia risk: ε2 + (ε2ε2, ε2ε3), ε3ε3, ε4 + (ε3ε4, ε4ε4).
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TABLE 1 Baseline characteristics and predictors for PDND and PDID subgroups.

Characteristic M (SD) Total sample PDND PDID % Missing at baseline

N 48 34 14 0

PD duration (years) 8.9 (4.5) 8.6 (4.4) 9.5 (5.1) 0

UPDRS part III 16.6 (8.1) 14.4 (7.0) 21.7 (8.5) 0

Modified Hoehn and Yahr 2.2 (0.7) 2.0 (0.5) 2.6 (0.7) 0

Age (years)
Range

71.6 (4.77)
65 – 84

70.0 (3.53)
65 – 77

75.4 (5.33)***
66 – 84

0

Sex n (% Female) 21 (43.8) 13 (38.2) 8 (57.1) 0

Education (years) 14.1 (2.96) 14.3 (3.20) 13.6 (2.31) 0

Gait speed (standardized time in sec) 0.411 (1.59) −0.076 (0.635) 1.59 (2.44)*** 0

Gait steps (standardized number of steps) 0.420 (1.55) −0.082 (0.568) 1.64 (2.36)*** 0

Balance (standardized time; sec) 8.82 (4.40) 10.2 (3.82) 5.57 (4.09)*** 0

Finger dexterity (number of taps in 60 sec) 114.8 (25.3) 121.6 (24.6) 98.2 (19.2)** 0

Visual acuity (feet)a 34.9 (15.5) 32.6 (13.4) 40.4 (19.2) 0

Smell (number correct out of 12) 6.60 (2.92) 6.94 (2.74) 5.79 (3.26) 2.1

APOE n (ε2 + , ε3ε3, ε4 +)b (6, 35, 7) (5, 25, 4) (1, 10, 3) 0

MTHFR n (CC, CT, TT) (20, 23, 4) (14, 17, 3) (6, 6, 1) 2.1

Third ventricle volume (cm3)c 1.08 (0.311) 0.989 (0.249) 1.34 (0.324)*** 2.1

Fourth ventricle volume (cm3)c 1.25 (0.270) 1.26 (0.291) 1.21 (0.210) 2.1

White matter hyperintensities (cm3)c 2.54 (2.55) 2.33 (2.47) 3.09 (2.77) 2.1

Cortical thickness (mm) 2.31 (0.083) 2.33 (0.073) 2.25 (0.085)** 2.1

Systolic orthostatic hypotension (mm Hg) 8.38 (15.0) 6.84 (15.2) 13.3 (14.0) 12.5

Diastolic orthostatic hypotension (mm Hg) 2.00 (10.7) 0.69 (9.44) 6.20 (13.6) 12.5

Pulse pressure (mm Hg) 47.5 (8.33) 47.1 (8.34) 48.6 (8.52) 0

Heart rate (beats/min) 69.1 (9.85) 68.8 (9.24) 69.9 (11.5) 0

Creatinine (mg/dL) 84.6 (15.2) 87.6 (14.4) 77.4 (15.3)* 0

Homocysteine (mcmol/L) 13.5 (3.73) 13.4 (4.04) 13.7 (2.96) 0

Vitamin B12 (pmol/g) 294.6 (110.7) 293.1 (102.0) 298.1 (133.9) 0

Triglyceride (mmol/L) 1.12 (0.459) 1.07 (0.430) 1.22 (0.525) 2.1

Cholesterol HDL ratio (mg/dL) 3.61 (0.825) 3.49 (0.726) 3.89 (0.995) 2.1

Up-regulated metabolite panel 1.32 (0.532) 1.17 (0.414) 1.80 (0.608)*** 12.5

Down-regulated metabolite panel 0.853 (0.647) 0.932 (0.710) 0.600 (0.281) 12.5

Immediate word recall (total correct) 37.2 (10.7) 39.8 (10.5) 31.0 (8.87)** 0

Trail A (sec) 50.7 (18.3) 44.1 (12.1) 66.9 (21.1)*** 0

Trail B (sec) 139.5 (78.8) 113.1 (63.3) 203.8 (77.5)*** 0

Simple reaction time (ms) 383.4 (101.7) 370.1 (73.3) 415.7 (148.8) 0

Four choice reaction time (ms) 1052.6 (251.7) 962.3 (141.0) 1258.9 (325.5)*** 4.2

Depression (total out of 15) 1.87 (2.38) 1.38 (1.60) 3.07 (3.45)* 0

NPI-sleep (frequency × severity) 1.50 (2.75) 1.82 (3.04) 0.71 (1.73) 0

NPI-anxiety (frequency × severity) 0.54 (1.25) 0.47 (1.19) 0.71 (1.44) 0

Activities of Daily Living (% independence) 88.6 (8.80) 91.5 (4.69) 81.8 (12.3)*** 0

Body mass index (kg/m2) 27.4 (5.14) 26.6 (4.17) 29.1 (6.82) 0

SMMSE (total out of 30) 28.1 (1.70) 28.6 (1.44) 26.8 (1.63)*** 0

MoPaRDS (total out of 8) 3.04 (1.54) 2.56 (1.42) 4.21 (1.19)*** 0

aWhat this person sees at 20 feet, an average person sees at x feet, x reported. bε2ε4 (n = 1) grouped with ε4 + . cnormalized using the proportional approach (area of interest/intracranial volume).
PDND, Parkinson’s disease with no dementia; PDID, Parkinson’s disease with incipient dementia; PD, Parkinson’s disease; UPDRS, Unified Parkinson’s Disease Rating Scale; NPI,
Neuropsychiatric Inventory Questionnaire; SMMSE, Standardized Mini Mental State Exam; MoPaRDS, Montreal Parkinson Risk of Dementia Scale. Baseline variables for PDID significantly
differed from PDND *p < 0.05, **p < 0.01, and ***p < 0.001.
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Due to low frequency and similarity of genetic risk, one ε2ε4 case
was coded as ε4 + (Goldberg et al., 2020; Guo et al., 2021). MTHRF
was categorized into the following three groups representing
increasing dementia risk: CC, CT, TT. Original genotyping was
conducted for these two candidate genes only; therefore, KEGG
pathway and Gene Ontology analysis were not undertaken.
The neuroimaging domain (n = 4) included third ventricle
volume, fourth ventricle volume, white matter hyperintensities,
and cortical thickness (average thickness of all brain area). All
imaging measures, except cortical thickness, were corrected for
intracranial volume (Sundermann et al., 2018). The cardiovascular
domain (n = 4) consisted of systolic orthostatic hypotension
(supine blood pressure minus standing blood pressure), diastolic
orthostatic hypotension, pulse pressure, and heart rate. The
candidate biomarker domain (n = 5) consisted of homocysteine,
vitamin B12, creatinine, triglyceride, and cholesterol (HDL ratio).
The metabolomics biomarker domain (n = 2) consisted of
two subpanels—up-regulated (higher levels representing increased
risk) and down-regulated (lower levels representing increased
risk)—from the metabolite panel that distinguished PDID from
PDND (Han et al., 2017) see further description of metabolite
biomarker protocols in 2.5. The neurocognitive domain (n = 5)
included indicators spanning memory (CVLT immediate word
recall (Elwood, 1995), executive function (Trail A and Trail B
(Reitan, 1986), and processing speed (simple reaction time and
four choice reaction time (de Frias et al., 2012); see (Dixon et al.,
2007) for speed data correction procedures). The psychological and
lifestyle assessments domain (n = 7) included depressive symptoms
measured by the Geriatric Depression Scale (Weintraub et al.,
2006), Neuropsychiatric inventory questionnaire (NPI)-sleep, NPI-
anxiety (Cummings et al., 1994), activities of daily living measured
by the Schwab and England Activities of Daily Living-ON (self-
reported activities when medications are working (Schwab, 1969),
body mass index (BMI), SMMSE (Molloy and Standish, 1997), and
the MoPaRDS (Dawson et al., 2018; Bohn et al., 2023).

2.4. MRI protocol

Magnetic resonance imaging (MRI) scans were acquired using
a Siemens Sonata 1.5T scanner and automatically processed using
the FreeSurfer 6.0. Automated segmentation of subcortical volumes
and ventricles was performed using the FreeSurfer image analysis
suite (Fischl et al., 2002) freely available for download (FreeSurfer,
2017). FreeSurfer was run on the Canadian Brain Imaging Research
Platform (CBRAIN), which is web-based software for distributed
computing intended for neuroimaging research (Sherif et al., 2014).
A full description of imaging procedures are documented elsewhere
(Camicioli et al., 2011; Dadar et al., 2020). Estimated intracranial
volume from the aseg file were used (Fischl et al., 2002). Cortical
thickness was the average thickness of all measured brain areas
(n = 68).

2.5. Metabolomics biomarker protocol

Blood samples were collected from all participants at baseline.
Pairwise metabolomics analyses were previously conducted with

the chemical isotope labeling liquid chromatography mass
spectrometry (CIL LC-MS) technique using a Bruker maXis impact
high-resolution quadrupole time-of-flight mass spectrometer with
electrospray ionization (Bruker, Billerica, MA) combined with
an Agilent 1,100 HPLC (for further details see (Han et al.,
2017). Two metabolite panels were developed from the original
work, such that one up-regulated (i.e., higher metabolite levels)
and the other down-regulated (i.e., lower metabolite levels)
indicate increased risk of belonging to the PDID group.
The up-regulated panel consisted of five metabolites observed
in higher concentrations in the PDID group (i.e., Hydroxy-
isoleucine, His-Asn-Asp-Ser, Alanyl-alanine, Putrescine [-2H], 3,4-
Dihydroxyphenylacetone). The down-regulated panel consisted of
three metabolites observed in lower concentrations in the PDID
group (i.e., Riboside of Purine [ + O], Desaminotyrosine, Purine
[ + O]). All the metabolite measurements in this dataset were
relative concentrations with respect to a reference sample, which
represented the averaged metabolite concentration level across
all samples (control + PDND + PDID). We then conducted
sample-wise normalization to correct systematic inter-sample
differences. Although no metabolite-wise scaling was performed,
this is not a requirement for variables used in RF models.
Each subpanel consisted of the additive score of the averaged
experimental duplicates for each normalized metabolite values for
each participant.

2.6. Analytic approach

The current combinatorial signature was undertaken as a
manual preprocessing step. Specifically, (a) for feature selection
we included variables based on their relevance to cognitive decline
or dementia and removed irrelevant or redundant variables, and
(b) for data reduction we used variable aggregation (e.g., mean
of gait measures).

We used Python (2020) (3.7.6) and compared three machine
learning algorithms from the scikit-learn package (Pedregosa
et al., 2011): (a) LogisticRegression, (b) RandomForestClassifier and
(c) GradientBoostingClassifier to identify important (out of 38)
baseline risk and biomarker predictors of PDID (vs. PDND).
Comparing the model metrics (see Figure 1) and the substantially
shared leading predictors of these models we identified RF as
the best model for the current data. RF is an ensemble method
(see Figure 2 for work flow) that combines multiple decision
trees through majority voting and is an optimal technique used
to simultaneously test a large number of predictors (Tseng et al.,
2020). As a recursive partitioning multivariate data exploration
technique, RF combines predictions across multiple classification
and regression trees, each based on a random sample of participants
and predictor variables. To accommodate a small and unbalanced
sample, we used stratified k-fold cross-validation to evaluate the
RF model for both internal and external validation (Hastie et al.,
2009; Pedregosa et al., 2011). Because smaller sample sizes preclude
a testing-training split (i.e., subsets would be too small), the k-
fold technique provides the mechanism for examining a series
of training and testing subsets within the model. Therefore, we
used a 3-fold cross-validation procedure that sequentially divided
the dataset into three folds (or subsets). The sequence of analyses
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FIGURE 1

Evaluation metrics for three machine learning models; Logistic Regression, Random Forest Classifier, and Gradient Boosting. Random Forest has the
best evaluation metrics and has been retained as the best model for the current research; Area Under the Curve (AUC) = 0.85 (95% confidence
interval (CI) [0.83, 0.86]), Accuracy = 0.81 (95% CI [0.80, 0.82]), Precision = 0.81 (95% CI [0.75, 0.86]), Recall = 0.51 (95% CI [0.46, 0.55]), normalized
Matthews Correlation Coefficient (nMCC) = 0.76 (95% CI [0.74, 0.78]), F1 = 0.60 (95% CI [0.56, 0.63]).

FIGURE 2

Machine Learning (ML) Pipeline for Random Forest (RF) classifier model and SHapley Additive exPlanation (SHAP) model. The workflow proceeds
within the ML pipeline with internal (columns four and five) and external (columns six and seven) cross-validation (CV). As represented in the second
and third columns, the dataset was sequentially divided into three folds—with each fold being used for testing one time, thus producing three CV
analyses. Two sequential steps were conducted at each of the three fold splits (a) missing data imputation and (b) hyperparameter tuning. The
hyperparameter boxes represent tuning that was conducted by performing internal CV on the training folds to find the best model (the model with
the highest Area Under the Curve [AUC]). The best model (with selected hyperparameters) was then fitted on the training folds and evaluated on the
testing fold. The average of the three fold splits (column eight) was used to estimate the performance metrics of the final tuned model fitted on all
the data. To reduce variance due to the small sample size, this procedure was repeated 10 times and averaged to obtain final performance metrics
(column nine). The lower row in the figure (in gray) represents the SHAP steps used for model interpretation. Specifically, we used TreeExplainer to
approximate the original model and calculate Tree SHAP values that were used for the interpretation plots.
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includes two folds used for training (internal validation) and one
fold used for testing (external validation); this repeats until each
fold has been used once for testing. To account for the unbalanced
sample, stratified k-fold cross-validation ensures that each fold
contains approximately the same proportion from each class as
the overall sample. Specifically, each fold contained 71% from
PDND and 29% from PDID. The best hyperparameters for the RF
model were selected by internally evaluating each combination of
hyperparameter values from the provided options (e.g., num_trees
100, 500, or 1,000) using the k-fold technique on the training folds.
The best model for each fold split was then fitted on the training
folds and evaluated on the testing fold. This was done for each
fold split and the average performance was used to estimate the
performance of the final tuned model fitted on all the data. This
procedure was repeated 10 times and averaged to reduce variance
due to the small sample size.

2.6.1. Missing data
The baseline data included 2.3% overall missing predictor

values, with specific variable missingness ranging from 2 to
12.5% (see Table 1 for percentage of missing data). For missing
data estimation, we used IterativeImputer (scikit-learn package
(Pedregosa et al., 2011)). Specifically, BayesianRidge, the default
estimator used for IterativeImputer, imputes missing values for any
predictor as a function of all other predictors by using regularized
linear regression. Imputation begins with the predictor with the
least missing data and progresses to the predictor with the most
missing data.

2.6.2. RF Classifier Model
We used the sklearn pipeline (scikit-learn package (Pedregosa

et al., 2011)) that is designed to assemble several steps that can be
cross-validated together. In this study, two sequential steps were
conducted at each fold: (a) missing data imputation and (b) RF
classifier (final parameters: n_estimators = 100, criterion = gini,
max_depth = None, max_features = sqrt). The advantage of this
approach is that missing data are imputed within each cross-
validation fold thus avoiding data leakage issues (i.e., training the
model with data from outside the training data set, such as the
testing dataset).

2.6.3. Reporting results of data-driven analyses
We report the results of the RF classifier model in two phases

of data-driven analyses: (a) general analytic model evaluation of
model fit and (b) follow-up determination of the most important
predictors contributing to the observed classification.

2.6.3.1. Analytic model evaluation metrics

The analytic model evaluation metrics are averaged across the
10 trials of the external 3-fold cross-validation. The principal metric
for evaluating the general classification (RF) is the (AUC). AUC
represents the ability of the model to distinguish between two
(unobserved) clinical classes at baseline (i.e., PDID, PDND). For
interpretation, AUC values of 0.7 to 0.8 are considered acceptable,
0.8 to 0.9 are considered excellent, and above 0.9 are considered
outstanding (Mandrekar, 2010). In this study, an AUC value in
this range would constitute a model fit sufficient to move to the
phase of evaluating the relative importance of the predictors. We

also calculated five subsidiary indicators known to be sensitive
to specific fit characteristics in the context of varying sample
features (e.g., group sizes and balance). These values are reported
in the results and interpreted for their specific indications in the
discussion. Classification accuracy represents the percentage of
baseline classifications that correctly predict the 3-year outcome
diagnosis (i.e., PDND and PDID). It is calculated as the fraction of
true positives and true negatives among all model classifications;
value range = [0–1], higher values denote better classification.
A precision metric is calculated as the fraction of true positives
among all model classified positives [i.e., true positives/(true
positives + false positives)]; value range = [0–1], higher values
denote better precision. A recall metric is a sensitivity measure that
is calculated as the fraction of model classified positives among the
true number of positives [i.e., true positives/(true positives + false
negatives)]; value range = [0–1], higher values are considered
better. An F1 score is the harmonic mean of precision and recall.
As such, it represents a useful additional evaluation metric in the
case of small and unbalanced samples; value range = [0–1], higher
values are considered more accurate for majority and minority
classes. Normalized Matthews Correlation Coefficient (nMCC) is a
metric that considers all categories of the confusion matrix and
is considered a reliable metric for evaluating binary classification,
especially for imbalanced datasets; value range = [0–1], higher
values are considered to make correct predictions for both the
majority and minority classes (Chicco and Jurman, 2020).

2.6.3.2. Integrating Tree SHAP values for interpretation of
important predictors in the RF classifier model
2.6.3.2.1. Tree SHAP values

We estimated Tree SHAP values using TreeExplainer
(Lundberg et al., 2018, 2020). Tree SHAP is an adaptation of
classic Shapley values that enhances interpretability of complex
tree-based machine learning prediction models (e.g., RF) using
a simpler model as an interpretable approximation of the more
complex model (Shapley, 2001; Molnar, 2019; Lubo-Robles et al.,
2020; Rodríguez-Pérez and Bajorath, 2020). Specifically, Tree SHAP
values (a) are computed using conditional expectations combined
with the original Shapley values to attribute refined values for each
predictor, (b) take both main (one predictor) and interaction (all
coalitions of predictors) effects into account, (c) are based on the
magnitude of predictor attributes rather than decreases in model
performance associated with permutation importance, and (d)
provide unique additive feature importance that adhere to local
accuracy, missingness, and consistency (Lundberg et al., 2018).
Local interpretable model-agnostic explanations (LIME) was not
used as an explanation model due to the (a) linear model approach
that can lead to instability of explanations and (b) assumptions of
variable independence (Elshawi et al., 2019; Gaur et al., 2022a,b).
A common assumption in aging neuroscience is that there are
expected interactions among PD-related predictors of future
dementia status (Dixon and Lachman, 2019).

2.6.3.2.2. Displaying results as Tree SHAP Plots: representation
and interpretation

In the results section, we include three Tree SHAP plots that
provide complementary visual representations of the obtained
prediction model (Lundberg et al., 2018, 2020; Molnar, 2019).
The first figure presents a global feature importance plot that
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shows the average absolute Tree SHAP values for each predictor
in descending order of importance. The remainder of the figure
includes the composition (horizontal bars) and cumulative (curved
line) ratios that depict each predictor’s contribution to the total
model. The second figure presents a Tree SHAP summary plot.
This plot displays the combination of predictor importance with
predictor magnitude, prevalence, and direction of effect. Such
summary plots show the relationship between the value of the
predictor and the specific impact it has on the prediction (i.e.,
increases or decreases the prediction). Each participant’s Tree
SHAP value for each predictor is represented by a point on the
plot. The position on the y axis is determined by the predictor
and on the x axis by the Tree SHAP value; positive values
indicate membership in the PDID group, negative values indicate
membership in the PDND group. The color of the points represents
the value of the predictor from low (blue) to high (red) showing
the distribution of the Tree SHAP values per predictor and the
direction of the effect. The third figure includes 10 Tree SHAP
dependence plots. They are designed to show the exact form
of the predictor relationship. Specifically, the predictor value on
the x axis influences the corresponding Tree SHAP value on the
y axis; the point on the x axis where the corresponding Tree
SHAP value exceed 0 indicates the threshold value related to
risk.

3. Results

Two phases of data-driven analyses were conducted: (a)
testing the overall RF classifier model fit and (b) utilizing
Tree SHAP for deeper interpretation of the most important
predictors contributing to the observed classification. In the first
phase, we simultaneously tested 38 multi-modal predictors to
discriminate within a baseline PD cohort two subtypes defined
by later diagnoses as being PDND or PDID. The AUC is the
main metric for evaluating the overall classification model fit.
According to the stipulated standards, the observed fit can
be characterized as excellent (AUC = 0.85 (95% confidence
interval (CI) [0.83, 0.86]). We note that several subsidiary
indicators, known to be sensitive to specific fit characteristics
in the context of varying sample features (e.g., group sizes
and balance), provide complementary information. The observed
metrics are: classification accuracy = 0.81 (95% CI [0.80, 0.82]);
precision = 0.81 (95% CI [0.75, 0.86]); recall = 0.51 (95%
CI [0.46, 0.55]); F1 score = 0.60 (95% CI [0.56, 0.63]); and
nMCC = 0.76 (95% CI [0.74, 0.78]). Taken together, the
AUC and supplemental indicators demonstrate a prediction
model that efficiently distinguishes between unobserved classes—
PDID from PDND at a time point 3 years prior to the
dementia diagnosis.

In the second phase, we examine the full complement of
predictors in order to determine (a) their relative importance
(leading or trailing) in producing the excellent classification model
fit, (b) the specific direction of influence for predictors, and (c) the
magnitude, or risk threshold, of the leading predictors. Three Tree
SHAP plots display specific predictor-related model performance.

In Figure 3, the global feature importance plot shows the
predictors listed in descending order of importance. Blue bars

indicate the composition ratio of each predictor. The curved
blue line shows the cumulative ratio of each predictor and its
predecessors. For example, the most important predictor gait
(steps) shows a 11% composition ratio. The cumulative ratio line
starts there at 11% and progresses to 100% for the least important
predictor (sex). We focus on the 10 leading predictors of this model
because (a) there is an evident elbow (or break in the distribution)
at this point, (b) these predictors explain a substantial amount of
the model, and (c) all predictor contributions to the model after
this point are ≤ 3%. The 10 leading predictors explain 62.5% of
the model, whereas the remaining 28 predictors account for 37.5%
of the model. Specifically, the 10 leading baseline predictors of
later PDD listed in descending order of importance (% of model
explained) are: gait (steps, 11%), Trail A (8.9%), activities of daily
living (8.1%), up-regulated metabolite panel (6.4%), age (6.0%),
Trail B (5.6%), choice reaction time (4.5%), third ventricle volume
(4.4%), gait (time, 3.9%), and finger dexterity (3.6%).

The Tree SHAP summary plot is presented in Figure 4.
This plot provides detailed information pertaining to predictor
magnitude, prevalence, and direction of effect. We again focus
on the 10 leading predictors of PDID. Specifically, the figure
indicates that these leading baseline predictors of later PDD can
be further characterized in terms of direction of effects. In order,
the display shows the following effect directions: (a) worse gait
(greater number of steps), (b) more time to complete the Trail
A task, (c) fewer activities of daily living, (d) higher level of
the up-regulated metabolite panel, (e) older age, (f) more time
to complete the Trail B task, (g) more time to complete the
choice reaction time task, (h) larger third ventricle volume, (i)
slower gait, and (j) poorer finger dexterity (lower number of finger
taps).

Figure 5 shows Tree SHAP dependence plots for the 10 most
important predictors. Not only do Tree SHAP dependence plots
allow us to see the direction of risk but also the threshold at which
risk is increased. For each baseline predictor, Tree SHAP values
above 0 indicate increased risk of PDD within 3 years. Panel 1
of Figure 5 shows the results for gait (steps). As the number of
standardized steps reaches a threshold of ≥ 1 (shown on the x
axis), Tree SHAP values (shown on the y axis) become increasingly
positive, indicating substantial prediction of PD patients later
diagnosed with PDD. The threshold value for each of the 10 leading
predictors in the plots included in this figure are as follows: (a)
gait ≥ 0.8 standardized steps, (b) Trail A performance exceeding
60 ms to complete the task, (c) activities of daily living ≤ 90%
independence, (d) level of the up-regulated metabolite panel ≥ 1.4,
(e) age ≥ 74 years old, (f) Trail B performance ≥ 150 ms to
complete the task, (g) choice reaction time performance ≥ 1,050 ms
to complete the task, (h) third ventricle volume ≥ 1.2 cm3, (i)
gait measured as standardized time to complete task of ≥ 0.15 s,
and (j) < 150 finger taps. In the figure, these threshold values are
represented by gray (increased risk to the right of the line) and red
(increased risk to the left of the line) dashed line in the distributions
of every panel.

Cross-model validation analyses comparing RF and GB showed
that of the leading 10 predictors described above for RF, eight were
also in the leading 10 for GB. These common eight predictors of
(later) PDD were: gait (steps), Trail A, activities of daily living,
up-regulated metabolite panel, age, Trail B, choice reaction time,
and third ventricle volume. In addition, the ninth and tenth RF
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FIGURE 3

Tree SHAP Plot of Global Feature Importance indicating the composition and cumulative ratios for the 38 baseline predictors tested in the RF
classifier model (AUC = 0.85, Accuracy = 0.81, Precision = 0.81, Recall = 0.51, nMCC = 0.76, F1 = 0.60). Predictors are plotted as their individual
composition ratio (blue bars; scale shown at the top of the plot) in descending order of importance. Composition ratio is the amount the predictor
contributes to the model output. The blue curved line reflects the cumulative ratio with each added predictor (scale shown at the bottom of the
plot). The line arcs from approximately 12% for the most important predictor [gait (steps)] to 100% for the least important predictor (APOE). For
example, creatinine (the final predictor indicated in the black rectangle) has a composition ratio of approximately 4 (explains 4% of the model; as
indicated by the blue bar and scaled by the top x axis) and also identifies the cumulative ratio of the 10 most important predictors as 62.5 (i.e.,
together they explain 62.5% of the model, as indicated by the blue curved line and scaled by the bottom x axis). RF, Random Forest; AUC, Area Under
the Curve; nMCC, normalized Matthews Correlation Coefficient; APOE, Apolipoprotein E.; SMMSE, Standardized Mini Mental State Exam; MoPaRDS,
Montreal Parkinson Risk of Dementia Scale; NPI, Neuropsychiatric Inventory Questionnaire.

predictors ranked in the top 15 of the GB model and the ninth
and tenth GB predictors ranked in the top 14 of the RF model.
We note the additional predictors (i.e., word recall, creatinine) as
contributed by the GB model.

4. Discussion

Not all diagnosed PD patients develop dementia and those who
convert do so at different intervals and may do so as a function
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FIGURE 4

Tree SHAP Summary Plot for the 38 baseline predictors of PDID (vs.
PDND) tested in the RF classifier model. The interpretation of this
plot is based on three factors. First, in the distribution of the points
on the summary plot, each dot represents one participant’s Tree
SHAP for each predictor. Second, the position of the dots on the x
axis relates to the prediction effect. In this case, belonging to the
PDID group is indicated by a positive Tree SHAP and the more
positive the Tree SHAP the greater the dementia risk for baseline PD
patients. Third, the color of the dots indicates the direction of the
effect for each predictor (red indicates higher values; blue indicates
lower values). For example, the leading PDID risk predictor gait
(steps) has a long tail to the right made up of red dots indicating
that worse gait (greater number of steps) at baseline increases the
risk of belonging to the PDD group three years later. It is also
important to note that some predictors lower in importance also
have long tails to the right. For example, high BMI does not affect
later dementia for many PD patients at baseline, but it increases risk
of dementia for some individuals. Additional personalized
approaches can determine which of these persons with high BMI
are at elevated risk for later dementia. PDID, Parkinson’s Disease
Incipient Dementia; PDND, Parkinson’s Disease No Dementia; RF,
Random Forest; PD, Parkinson’s Disease; PDD, Parkinson’s Disease
Dementia; BMI, Body Mass Index.

of differentially accumulating risk across multiple domains (Guo
et al., 2021). With a well-characterized clinical sample of recently
diagnosed PD patients, we demonstrate the usefulness of Python-
based machine learning prediction models (RF) to discriminate, at

baseline, those dementia-free PD patients who were diagnosed with
dementia 3 years later (PDID) from those who remained dementia
free (PDND). The prediction model included 38 multi-modal
dementia risk factors. The analyses produced excellent classification
results (AUC = 0.85). We identified 10 predictors of leading feature
importance in discriminating at baseline PDID from PDND, which
collectively explained 62.5% of the RF classifier model. We used
Tree SHAP applications to interpret the direction and magnitude
of risk for these 10 leading predictors. Most complex machine
learning classifier approaches have been described as black-box
models because they predominantly focus on prediction accuracy
as the main performance metric (Lundberg and Lee, 2017). The
recent artificial intelligence-based development of the Tree SHAP
application allows a deeper interpretion of the models in regard
to the direction of predictor effects and magnitude of risk (see
Figures 3, 4). The 10 identified leading predictors have been
empirically associated with dementia outcomes for PD patients,
and many of them have been reported by investigators in other
prediction models (Liu et al., 2017; Schrag et al., 2017; Dawson
et al., 2018; Marinus et al., 2018; Phongpreecha et al., 2020; Guo
et al., 2021). Collectively, these variables spanned 6 of the 10 risk
domains considered in the present study. Below we discuss the
10 leading predictors of subsequent PDD that were identified in
the competitive context of machine learning, organized by their
respective domains, and interpreted by the Tree SHAP approach.

4.1. Gait and motor function domain

Important predictors from the gait and motor function domain
included two gait measures and one motor function measure: (a)
number of steps, ranked as the most important predictor, (b) time
to complete a walking task, ranked as the ninth, and (c) finger
dexterity, ranked as the tenth most important predictor. First, more
steps and longer time to complete the walking tasks at baseline
predicted an increased risk of PDD at follow-up (i.e., belonging to
the unobserved PDID group). The gait risk characteristics may be
an early indication of the shuffling walk that is a clinical predictor
of PD and the resulting postural-instability-gait disorder. Indeed, a
recent meta-analysis reported that postural-instability-gait disorder
predicted PDD (Guo et al., 2021). Previous associations between
mobility and cognitive decline and MCI in PD have been reported
(Brandão et al., 2020). In contrast, balance and gait velocity have
demonstrated associations with risk of dementia in persons without
PD but not in patients with PD (Horne et al., 2021). Nevertheless,
our study has identified these variables as leading predictors, one of
which is the most important, from a 38-item risk factor inventory.
Specifically, we found that the gait measures accounted for 15%
of the model with number of steps being the most important
predictor that accounted for 11%. Our findings show that these
basic measures of gait contributed to the prediction of membership
in the PDID group, suggesting that more complex measures of gait
disorders may not distinguish PDND from PDID until closer to
dementia diagnosis. These findings add evidence to the literature
that reported posture and gait measures, but not bradykinesia
and tremor measures, predicted dementia (Domellöf et al., 2015).
Second, a slower rate of finger tapping (fewer finger taps per
minute) predicted membership in the unobserved PDID group
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FIGURE 5

Tree SHAP Dependence plots for the 10 leading baseline predictors of PDID. These plots display the threshold at which the risk for each predictor is
exacerbated. Predictor values are represented on the × axis and Tree SHAP values attributed to the predictor are represented on the y axis. Each
point represents one participant. For gait (steps; 1), Trail A (2), up-regulated metabolite panel (4), age (5), Trail B (6), choice reaction time (7), third
ventricle volume (8), and gait (time; 9) values on the right side of the gray dashed line indicate increased risk of PDD. For activities of daily living (3)
and finger dexterity (10) values on the left side of red dashed line indicate increased risk of PDD. For example in panel 1, as the number of steps for
gait at baseline increases (x axis), Tree SHAP values increase (y axis). The threshold of PDD risk elevation for this leading predictor is identified as the
point at which the number of standardized steps at baseline approaches 1.0, Tree SHAP values > 0 (visually indicated by dashed blue line). The text
identifies the actual threshold values for each of the predictors.

at baseline. Although little research has been reported for finger
dexterity in regard to PDD, hand dexterity, measured by the nine-
hole peg test, has previously been reported to be slower for Lewy
body dementia and PDD than for those with PD (Fritz et al., 2016).

4.2. Neurocognitive domain

Leading predictors from the neurocognitive domain included
Trail A (ranked second), Trail B (ranked sixth), and choice reaction
time (ranked seventh). Specifically, increased time to complete
these three neurocognitive speed measures predicted membership

in the PDID group. These neurocognitive speed measures have
previously been identified as predictors of PDD. Specifically, in a
group of PD patients with MCI at baseline, attention and mental
flexibility (i.e., Trail A, Trail B) as well as measures of episodic
memory, visuospatial function, and verbal fluency predicted
conversion to PDD (59%) within 5 years (Domellöf et al., 2015).
A study identifying global cognition, verbal fluency, memory, and
attention as predictors of PDD, reported that choice reaction time
declined faster in a PDID group over 5 years compared to a PDND
group (Lawson et al., 2021). When MCI was controlled for at
baseline, choice reaction time became a predictor of developing
PDD at follow-up. A risk scale including neurocognitive measures
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(AUC = 0.90) out-performed an alternate risk scale using only
biological measures (AUC = 0.71) in distinguishing PDID from
PDND (Phongpreecha et al., 2020). Further investigation of early
signals of exacerbated cognitive decline in non-demented PD
patients may contribute to differentiating those with elevated PDD
risk.

4.3. Metabolomics biomarker domain

The remaining four domains represented in the 10 leading
predictors consisted of one predictor each. In the metabolite
domain, the up-regulated metabolite panel, consisting of five
metabolites, ranked as the fourth most important predictor.
Higher levels of our baseline up-regulated metabolite panel
predicted PDID. Our panel was based on an earlier comprehensive
metabolomics analyses of an 8-metabolite panel that discriminated
PDID from PDND patients at baseline with 86% accuracy
(Han et al., 2017). The five metabolites in our up-regulated
metabolite panel included Hydroxy-isoleucine, His-Asn-Asp-Ser,
Alanyl-alanine, Putrescine [-2H], 3,4-Dihydroxyphenylacetone.
Hydroxy-isoleucine, an oxidized end product of leucine or
hydroperoxyleucines, may be a useful marker of protein oxidation
leading to cellular protein and membrane damage (Yu et al., 2013).
Protein oxidation has been associated with aging and a number of
aging related diseases.

4.4. Demographic domain

An important predictor of PDID in the demographic domain
was age (ranked fifth). Not surprisingly, older chronological age
predicted PDID membership. Previous research has implicated
older chronological age to be among the most consistent predictor
of PDD (Horne et al., 2021). Younger age of onset of PD symptoms
has also been identified as a predictor of PDD (Brandão et al.,
2020; Oxtoby et al., 2021). Our findings show that chronological age
remained a leading predictor even when tested in large inventory of
risk factors.

4.5 Psychological and lifestyle
assessment domain

In the broader research area of dementia risk in aging, growing
research attention has been directed at determining the relevance of
engagement in cognitive, physical, and social activities in delaying
or preventing dementia (Anstey et al., 2019; Dixon and Lachman,
2019; Livingston et al., 2020). The results are promising but
mixed and most often reported in the context of Alzheimer’s
disease dementia. In the present study, one marker representing
this general domain was the Schwab and England Activities of
Daily Living Scale that measures independence in performing daily
activity chores. This feature was the third most important predictor.
We observed a prediction direction that is consistent with the
approach featured in the broader dementia risk literature, viz.,
lower levels of activities were associated with membership in the
unobserved baseline PDID group.

4.6. Neuroimaging domain

Larger third ventricle volume at baseline ranked as the eighth
leading predictor of increased likelihood of belonging to the PDID
group (and converting to dementia after 3 years). There has been
debate about the usefulness of ventricle volume in particular and
imaging markers in general for prediction of PDD. Although
some previous research has implicated ventrical measures in the
development of PDD (Camicioli et al., 2011; Dong et al., 2017), the
evidence to date has not be strong enough for ventricle volume to be
considered a biomarker but rather as an assessment tool to be used
in the presence of other markers (Behnke et al., 2019). Our results
contribute evidence in favor of using third ventricle volume as a
biomarker. A recent review of the ability of neuroimaging to predict
dementia in PD concluded that imaging markers were not currently
sufficient to accurately predict dementia, although this may change
with the development of more sensitive imaging techniques in
combination with other dementia risk markers (Lanskey et al.,
2018). Abnormal accumulation of brain proteins associated with
PD (e.g., Lewy body accumulation or AD-related pathology such as
amlyloid β and tau) may account for more widespread cortical and
subcortical atrophy and therefore ventricular enlargement (Dong
et al., 2017).

4.7. Non-predicting dementia risk
domains

We note four dementia risk domains that were not represented
by markers in the leading predictor group: cardiovascular,
candidate biomarker domain, genetic, and sensory. Risk factors
associated with these four domains were (a) previously associated
in one or more studies with PDD outcomes and (b) represented
in the current computationally competitive analyses as among the
trailing predictors. We recommend that representative markers
from these domains continue to be used in clinical screening work
or in larger-sample validation studies. Among the additional and
occasionally observed dementia risk predictors most noticeably
missing from the leading cluster in this study were: (a) orthostatic
hypotension (Anang et al., 2014; Guo et al., 2021), (b) REM
sleep disorder (Dawson et al., 2018), (c) sex (Dawson et al.,
2018; Phongpreecha et al., 2020), and (d) APOE (Cereda et al.,
2016).

4.8. Strengths and limitations

There are several strengths and limitations associated with
our study. First, this was a longitudinal study with a well
characterized, homogenous sample of initially non-demented PD
patients (Camicioli et al., 2011; de Frias et al., 2012; Hussain and
Camicioli, 2018; McDermott et al., 2018; Sapkota et al., 2018). We
assembled a large number of potential baseline risk factors and
biomarkers (>35) of PDD with relatively complete data (2% overall
missing data). Second, we used a powerful data-driven protocol
that integrated machine learning analytics (i.e., RF classifier)
with artificial intelligence interpretion models. This approach is
well suited to larger and smaller sample sizes and is designed
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to accommodate multiple predictors and high-dimensional data.
Specifically, the RF classifier is a recursive partitioning multivariate
data exploration technique that averages and incorporates multiple
diverse classification models, effectively reduces overfitting of the
training data, and results in good accuracy for the testing data
(Strobl et al., 2009; Yang et al., 2010). Third, RF classifier models
provide limited interpretation of specific predictors (Lundberg
et al., 2020). Accordingly, we used Tree SHAP—a computationally
efficient approach to providing deeper interpretations than
typically available in RF classification models (Lundberg and Lee,
2017). By evaluating a unique solution, the Tree SHAP approach
allowed us to interpret each of the leading predictors in terms of
their relative importance, direction of risk, and magnitude of risk
threshold. Although there are other model explanation approaches
that could have been used, Tree SHAP provides a strong and
complete summary of the model characteristics (Covert et al.,
2021; Mitchell et al., 2022). Specifically, Tree SHAP builds on
previous methods to produce a unified framework that compared
favorably with alternatives such as DeepLIFT or LIME and was
the only additive feature attribution method that did not violate
local accuracy or consistency (Lundberg and Lee, 2017; Chen et al.,
2021).

Fourth, as noted, a limitation is that these analyses were
conducted on a relatively small and unbalanced sample. We
compared Linear Regression, GB, and RF algorithms. RF provided
the best model metrics. The analytic approaches we used
have been established as suitable for a wide range of samples
varying in characteristics and number of predictors. In the
case of the RF algorithm, this accommodation is accomplished
by its low vulnerability to noise and overtraining (Breimen,
2001; Thanh Noi and Kappas, 2017). Furthermore, the model
evaluation was conducted with stratified 3-fold cross-validation
which is recommended for smaller and unbalanced samples
over the standard training, validation, and testing splits (Hastie
et al., 2009). Specifically, the 3-fold cross-validation method
maintained group proportions to accommodate the unbalanced
sample (i.e., 71% from PDND and 29% from PDID). Model
metrics were estimated from testing each fold. Fifth, an issue
that occurs with unbalanced samples is that commonly used
model evaluation metrics may be over-estimated (Brownlee,
2020). In the present unbalanced study, there may be a bias
toward classification in the majority group (PDND) resulting
in an overestimation of accuracy. As reported, we examined
the recall value, an indicator of membership in the minority
group (PDID) that is more likely to be low in unbalanced
samples. However, normalized Matthews Correlation Coefficient,
a reliable metric for small and unbalanced samples (Chicco and
Jurman, 2020), was strong. Although all other model indicators
were strong, the observed moderate recall value underscores a
recommendation for further replication in larger or more balanced
samples.

5. Conclusion

Dementia is a clinically impactful non-motor outcome of PD.
There is considerable heterogeneity in how rapidly and broadly
dementia develops after a diagnosis of PD. Early identification

of those most at risk—as well as characterization of the leading
dementia predictors—is an important priority of PD research.
The present well-characterized clinical sample of newly diagnosed
and non-demented PD patients allowed us to test a large battery
of 38 dementia risk factors in a single RF classifier model.
From this full collection of candidate dementia predictors we
identified 10 leading biomarkers and risk factors for PDD at 3-
year follow-up. Although the present PD sample is small, our
use of (a) powerful data-driven classification analytics combined
with (b) cutting-edge Tree SHAP graphical interpretation provided
valuable insights into the important risk characteristics that
distinguished the two unobserved baseline PD groups (PDND,
PDID). This study provides promising insights into potential
mechanisms associated with emergence of dementia in persons
with PD. The present omics-related results were promising.
Future research should consider integration of other omics data
(e.g., lipidomics, proteomics) as predictors of emerging dementia
in PD. With replication and extension, new clinical indicators
of modifiable targets for early risk detection and intervention
can be validated.
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