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The actual multimodal process data usually exhibit non-linear time correlation and
non-Gaussian distribution accompanied by new modes. Existing fault diagnosis
methods have difficulty adapting to the complex nature of newmodalities and are
unable to train models based on small samples. Therefore, this paper proposes a
new modal fault diagnosis method based on meta-learning (ML) and neural
architecture search (NAS), MetaNAS. Specifically, the best performing network
model of the existingmodal is first automatically obtained usingNAS, and then, the
fault diagnosis model design is learned from the NAS of the existing model using
ML. Finally, when generating newmodalities, the gradient is updated based on the
learned design experience, i.e., new modal fault diagnosis models are quickly
generated under small sample conditions. The effectiveness and feasibility of the
proposed method are fully verified by the numerical system and simulation
experiments of the Tennessee Eastman (TE) chemical process.
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1 Introduction

With the development of many sensors and industrial networks, modern chemical
industry is moving toward large-scale, hierarchical, information integration and strong
interaction, leading to frequent failures and unstable product quality in chemical production
processes, and chemical process troubleshooting is one of the effective techniques to ensure
product quality and efficient production operation [1, 2]. In the actual chemical production
process, the adjustment of the product grade or index, the fluctuation of material quality, and
the imbalance of feed ratio all lead to the multimodal characteristics of the chemical process
[3]. Therefore, multimodal characteristics are widely present in modern manufacturing
industries [4, 5]. Compared with unimodal processes, the multimodal process data are more
complex, usually manifested as non-linear time correlation and non-Gaussian distribution
accompanied by new modes [6]. If deep learning is directly applied to multimodal chemical
processes, it will be difficult to adapt to complex characteristics such as new modes and to
construct accurate fault diagnosis models under small samples [7, 8]. Therefore, the deep
learning-based fault diagnosis method for new modes in small samples is of research value.

Existing multimodal chemical process fault diagnosis methods can be classified into
statistical learning, machine learning, and deep learning methods, among which statistical
learning and machine learning methods have been studied previously. For example, Zhao

OPEN ACCESS

EDITED BY

Samir A. El-Tantawy,
Port Said University, Egypt

REVIEWED BY

Zhiwei Ji,
Nanjing Agricultural University, China
Xiaojun Chang,
University of Technology Sydney,
Australia

*CORRESPONDENCE

Saleem Riaz,
saleemriaznwpu@mail.nwpu.edu.cn

RECEIVED 17 April 2023
ACCEPTED 14 June 2023
PUBLISHED 03 July 2023

CITATION

Lei T, Hu J and Riaz S (2023), An
innovative approach based on meta-
learning for real-time modal fault
diagnosis with small sample learning.
Front. Phys. 11:1207381.
doi: 10.3389/fphy.2023.1207381

COPYRIGHT

© 2023 Lei, Hu and Riaz. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 03 July 2023
DOI 10.3389/fphy.2023.1207381

https://www.frontiersin.org/articles/10.3389/fphy.2023.1207381/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1207381/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1207381/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1207381/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1207381&domain=pdf&date_stamp=2023-07-03
mailto:saleemriaznwpu@mail.nwpu.edu.cn
mailto:saleemriaznwpu@mail.nwpu.edu.cn
https://doi.org/10.3389/fphy.2023.1207381
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1207381


et al. studied a local modal fault diagnosis method using multiple
local PCA statistical models [9], but the method requires the use of
accurate modal information in the offline modeling stage. To
address the problem of incomplete modal prior knowledge, Tan
et al. applied the clustering method to the multimodal chemical
process and effectively improved the accuracy of fault diagnosis [10].
Wang et al. proposed a stable and transitional modal fault diagnosis
method based on the transition probabilities between different
modes [11]. Natarajan et al. gave the minimum distance from
the test data to the training data center by calculating the
selection of the locally optimal PCA model criterion [12]. Deep
learning has made important progress in many fields in recent years,
but there are relatively few studies on deep learning for multimodal
chemical process fault diagnosis. In addition, the training of deep
learning fault diagnosis models usually requires a large amount of
labeled data, but new modes often have only a small amount of data
[13–16]. How to make full use of multimodal process characteristics
and model design experience of the existing modes under small-
sample conditions to rapidly construct new modal fault diagnosis
models based on deep learning is of great importance to ensure the
safety and product quality of the actual chemical processes.

Existing small-sample data learning methods can be divided into
three categories: data augmentation-based methods, model
improvement-based methods, and algorithm optimization-based
methods [17, 18]. Data augmentation-based methods achieve the
purpose of expanding the dataset by generating new data [19], but the
manipulation of data is not universal and requires the designer to have
sufficient knowledge of the relevant domain. Model improvement-
based approaches model small data by limiting the model complexity,
reducing the hypothesis space, and reducing VC dimension [20] but
require a priori knowledge and extensive experience of the designer,
and the aforementioned two approaches cannot effectively utilize the
design experience of existing modes. Algorithm-based optimization
methods search for suitable solutions faster by improving the
optimization algorithm [21, 22], and meta-learning is an improved
optimization algorithm. The proposed meta-learning method
provides research ideas to solve the problems such as inadequate
utilization of model design experience of the existing modes and small
samples [23]. For example, Finn et al. proposed the model-agnostic
meta-learning (MAML) method, which first trains a set of
initialization parameters and then performs one or more steps of
gradient adjustment to achieve rapid adaptation to new tasks with
only a small amount of data [24, 25]. However, MAML is very
sensitive to the neural network structure and requires time-
consuming hyperparameter search to stabilize the training and
improve the model generalization power [26]. To address these
problems, Antoniou et al. optimized MAML in terms of
robustness, training stability, automatic learning of inner-loop
hyperparameters, and computational efficiency during inference
and training, which significantly improved the generalization
performance of MAML [27] but at the expense of computation
and memory. Nichol et al. replaced the process of computing
second-order differentiation in MAML with the one in which each
task is performed using the stochastic gradient descent (SGD) in a
standard form without expanding the computational graph or
computing arbitrary second-order derivatives, reducing the amount
of computation and memory required by MAML [28]. However, the
aforementioned methods have a single network structure and cannot

transform the network structure as the task changes, and meta-
learning faces problems such as cumbersome network structure
design and time-consuming parameter search.

In the field of machine learning and artificial intelligence, several
state-of-the-art (SOTA) algorithms have been developed to tackle
various tasks. Although these algorithms have their own advantages,
they also come with certain limitations. Here is a summary of the
advantages and limitations to the existing SOTA algorithms in this
area. The advantages are as follows: high accuracy: SOTA algorithms
often achieve remarkable accuracy in solving complex problems;
robustness: many SOTA algorithms exhibit robustness in handling
noisy or incomplete data; generalization: SOTA algorithms often
possess excellent generalization capabilities; and scalability: several
SOTA algorithms are designed to handle large-scale datasets
efficiently. The limitations are as follows: computational complexity:
many SOTA algorithms, particularly those based on deep learning
architecture, require significant computational resources to train and
deploy; interpretability: while SOTA algorithms often achieve
impressive performance, they can be black-box models, meaning
they lack interpretability; data dependency: SOTA algorithms
heavily rely on large and diverse datasets for training; and
overfitting: some SOTA algorithms are susceptible to overfitting,
especially when dealing with small datasets.

To solve the aforementioned problems, this paper proposes a
new modal fault diagnosis method, MetaNAS, which uses meta-
learning to find the optimal initial parameters, and the new modal
can find the network structure with optimal performance by only a
few steps of gradient update based on the optimal initial parameters.
The optimal initial parameters are to be learned so that the fault
diagnosis model is obtained by performing a few steps of updates
based on the optimal initial parameters under a small sample of the
new mode. MetaNAS solves the limitations to fault diagnosis by
NAS, such as underutilization of the existing modal design
experience and difficulty in training models under small samples.

The main contributions of this paper are as follows [1]: the
proposed MetaNAS method can automatically design fault
diagnosis network models and realize automatic fault diagnosis
under small samples of new modes [2]. To address the problems of
underutilization of the existing modal design experience and difficulty
in training models under small samples, meta-learning is used to learn
the model design experience of existing models and obtain the optimal
initial parameters so that the new modal can obtain the fault diagnosis
model with only a few steps of gradient update under small samples
[3]. Continuous relaxation optimization converts the discrete channel
selection process into a continuous optimization process, making NAS
more efficient and convenient.

2 Manuscript formatting

2.1 Model-agnostic meta-learning

The entire dataset, training set, and test set are denoted by D,
Dmeta−train, and Dmeta−test, respectively, and in meta-learning, a series
of tasks T is sampled according to the distribution p(T) ofDmeta−train,
where there are N categories in the ith task, and each category has K
samples, calling the problem an N-class K-sample problem [19]. The
data in each N-class K-sample problem are further divided into a
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training set and a test set, and in order not to be confused, the training
set in Ti is called the support set and the test set is called the query set,
denoted as Ts

i and T
q
i , respectively. The core idea of MAML is to learn

an optimal initial parameter ~ω in all tasks T such that Dmeta−test to
perform one or more steps of gradient adjustment based on ~ω to
achieve the goal of fast adaptation to new tasks and good performance
with only a small amount of data. The optimal initial parameters are
learned according to the following rules:

ωm+1
i � ωm

i − χinner
∂L Ts

i ;ω
m
i( )

∂ωm+1
i

, (1)

where χinner is the internal learning rate of parameter ω, m is the
update step in each task T, f is the parameterization function of the
network weight ω, and L is the loss function. During the internal
learning process, Ts

i is used to calculate the loss of task Ti and let the
parameter ω be updated from ωm

i to ωm+1
i , where ω0

i � ω. After M
steps, L(f(Tq

i ;ω
M
i ) in Tq

i is used to update the optimal initial
parameters, which can be expressed as follows:

~ω � ~ω − χouter
∂∑Tq

i ~p T( )L f Tq
i ;ω

M
i( )( )

∂~ω
, (2)

where χouter is the external learning rate of parameter ~ω, and
eventually, when the model converges, the optimal initial
parameter ~ω is obtained. This makes the initial parameters so
sensitive that a better model can be obtained in only a few steps
of updating on Dmeta−test.

2.2 Automatic fault diagnosis

The core idea of the automatic fault diagnosis (AutoFD) method
is to continue the discrete network search process by continuous
relaxation optimization, assigning weights to all candidate
operations separately, then optimizing the operation weights and
network parameters by gradient descent, and then using the
operation weight parameters to select the corresponding
operations to form the final network model [29, 30].

LetO be the candidate operation set, each candidate operation is
denoted as o; given the input x, the operation output �o(x) after
continuous relaxation optimization is as follows:

�o x( ) � ∑
o∈O

exp αo( )
∑o′∈O exp αo′( )o x( ), (3)

where α represents the operation weight vector, which represents the
importance of different candidate operations in the corresponding
edge. After the training is completed, the operation corresponding to
the largest weight is selected according to the operation weight
parameter as the final result.

Through continuous relaxation optimization, the NAS problem
is transformed into a double optimization problem, which can be
solved by using the two-step update algorithm.

α � α − δ
∂L ω − ξ ∂L ω,α( )

∂ω( )
∂α

, (4)

ω � ω − χ
∂L ω, α( )

∂ω
, (5)

where L denotes the loss function and ξ means the internal
learning rate.

3 The proposed method

The MetaNAS method is proposed to address the problems of
existing methods that do not fully utilize the model design
experience of the previous modes and require a large amount
of feature data, and the overall flow chart of the method is shown
in Figure 1. MetaNAS first assigns weights to the candidate
channels and transforms the discrete channel selection process
into a continuous optimization process by optimizing the
continuous weights instead of the channel selection process.
Then, MAML is used to learn the optimal initial parameters of
the required learning parameters in NAS, and when a new mode
appears, a better fault diagnosis model for the new mode is
obtained with only a few steps of updates based on the optimal
initial parameters when only a small amount of data is available
for the new mode.

3.1 Channel weight parameters

AutoFD uses multi-channel convolution to enhance the
performance of the network, but the selection of convolutional
channels is very time-consuming. In order to make NAS more
efficient, this paper uses continuous relaxation optimization to
make the discrete convolutional channel selection process
continuous. The candidate channels are denoted by C �
C1, C2,/, Cn{ } to denote the set of candidate channels, which
are used as the candidate input channels of the network,
i.e., I � I1, I2,/, In{ }, the selection process of these candidate
input channels is discrete, the channels are assigned weights
β � β1, β2,/, βn{ }, and these weights are transformed by the
Softmax function to mix all the channels in the candidate
channel set to obtain a mixed input.

Input � ∑ exp β( )
∑i′∈Iexp

β′i( ) i. (6)

Thus, each channel C is associated with a weight coefficient β
corresponding to it, and continuous relaxation optimization uses
a continuous weight coefficient to represent the discrete candidate
channels. This continuous weight coefficient indicates the
importance of the corresponding channel in the network input,
so the performance of the network on the validation set can be
updated quickly by using gradient descent for each operation,
effectively avoiding the time-consuming process of training all
network inputs and selecting the well-performing inputs. After
the search is completed, the channel corresponding to the top
three values of the weight coefficient is selected as the final
operation convolution channel. By the aforementioned method,
the NAS problem is transformed into a two-layer optimization
problem of learning the smallest values of operation weight α*,
network weight ω*, and channel weight β* with the loss function.

Lval ω*, α*, β*( ), (7)
min

α
Lval ω*|(α, β), α, β( ), (8)

s.t.ω* α( ) � argmin
ω

Ltrain ω, α( ), (9)
ω* β( ) � argmin

ω
Ltrain ω, β( ). (10)
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3.2 The proposed method

In order to make the NAS process of the new modal fault
diagnosis more efficient, this paper uses MAML to learn the
design experience of previous modes and NAS, the new modal
chemical process based on the learned design experience. In
Subsection 3.1, MAML is trained on the training set to obtain
the optimal initial parameters ~ω for fast adaptation in the new
task. Similarly, the optimal network initial parameter ~ω,
operation weight initial parameter ~α, and channel weight
initial parameter ~β are learned using the training set data in
MetaNAS, which enables MetaNAS to quickly obtain a better
model with a few steps of the gradient update on the new task,
where the parameters ~ω, ~α, and ~β are the NAS parameters defined
in Subsection 2.1 and Subsection 3.1.

In order to learn the previous modal NAS design experience, this
paper is based on the MAML strategy to learn the optimal NAS
initial parameters ~ω, ~α, and ~β. Similar to AutoFD, the operation
weight parameter α, network parameter ω, and channel weight
parameter β cannot be trained independently, so the initial
parameters ~ω, ~α, and ~β also need to be jointly optimized. In
MetaNAS, the initial parameters ~ω, ~α, and ~β are also solved by
joint optimization. Eqs 1, 2 are used in subsection 2.1 to update the
optimal initial parameters ~ω, where Eq. 1 is used to update the
internal parameters and Eq. 2 is used to update the external initial
parameters, and similarly, MetaNAS contains two parts: internal
parameter update and external initial parameter update. In the
internal parameter update part, the NAS parameters ω, α, and β

are jointly optimized in a specific task Ts
i according to the following

equations:

ωm+1
i � ωm

i − χinner
∂L g Ts

i ; α
m
i , β

m
i ,ω

m
i( )( )

∂ωm
i

, (11)

αm+1
i � αmi − δinner

∂L g Ts
i ; α

m
i , β

m
i ,ω

m
i( )( )

∂αmi
, (12)

βm+1
i � βmi − εinner

∂L g Ts
i ; α

m
i , β

m
i ,ω

m
i( )( )

∂βmi
, (13)

where χinner is the internal learning rate of the network parameter ω,
δinner is the internal learning rate of the operational weight
parameter α, εinner is the internal learning rate of the channel
weight parameter β, and g is the parameterization function of ω,
α, and β; initially, (ω0

i � ~ω, α0i � ~α, β0i � ~β). In the external
parameter update, in order to obtain an optimal initial point,
after M steps, the loss function L(g(Ts

i ; α
m
i , β

m
i ,ω

m
i )) in task Tq

i

is calculated to jointly optimize the parameters ~ω, ~α, and ~β according
to the following equation:

~ω � ~ω − χouter
∂∑Tq

i ~p T( )L g Tq
i ; α

M
i , β

M
i ,ω

M
i( )( )

∂~ω
, (14)

~α � ~α − δouter
∂∑T

q
i ~p T( )L g Tq

i ; α
M
i , β

M
i ,ω

M
i( )( )

∂~α
, (15)

~β � ~β − εouter
∂∑Tq

i ~p T( )L g Tq
i ; α

M
i , β

M
i ,ω

M
i( )( )

∂~β
, (16)

where χouter is the external learning rate of the network parameter ~ω,
δouter is the external learning rate of the operational weight
parameter ~α, and εouter is the external learning rate of the
channel weight parameter ~β. When the results converge, the
optimal initial parameters ~ω, ~α, and ~β are obtained, and the new

FIGURE 1
Flowchart of the proposed MetaNAS method.
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task is updated on the basis of the parameters ~ω, ~α, and ~β to obtain
better results quickly.

3.3 New modal fault online diagnosis steps

The new modal chemical process fault diagnosis algorithm
proposed in this paper can be divided into four steps, namely,
model construction, search phase, training and optimization phase,
and real-time diagnosis, which are as follows:

Step 1: Model construction. The network model is a two-way
branch linked by several convolutional neural network units, the
network units within the branch and between the branches are
linked by edge operations, the data to be processed are input at the
beginning of the two branches, the fully connected layer for
outputting fault diagnosis results is also connected at the end of
the two branches, the said network units also include edge
operations and nodes, the input within the unit is also divided
into two ways, and the output is one way, the same as the network
model in the AutoFD method.

Step 2: Search phase.

Step 2.1: The raw chemical production process data on multiple
modes are normalized and dimensionally preprocessed to make data
dimensions that satisfy the structural search of the meta-learning
network.

Step 2.2: The pre-processed data are manipulated to form
candidate channels for multi-channel convolution and are
stitched with the preprocessed data to generate inputs for the
network search phase.

Step 2.3: The candidate input channels are individually assigned
weights to further obtain the mixed inputs.

Step 2.4: The set of candidate operations are defined, and a weight
is assigned to each operation.

Step 2.5: Iterating steps 2.3 and 2.4 repeatedly, the Adam/SGD
optimizer is chosen to adjust the network parameters, channel
weight parameters, and operation weight parameters by using the
cross-entropy loss function and backpropagation so as to obtain the
optimal network initial parameters, channel optimal initial
parameters, and operation optimal initial parameters as the initial
parameters of the new mode.

Step 3: Training and optimization phase.

Step 3.1: Normalization and dimensional preprocessing are
performed for the new modal chemical production process data
so that the input data dimensions satisfy the meta-learning network
structure search.

Step 3.2: The optimal network initial parameter ~ω, optimal channel
weight initial parameter ~β, and optimal operation weight initial
parameter ~α are used as initial parameters to train the new modal

chemical production process data into the network, and the
optimized network parameter ω*, channel weight parameter β*,
and operation weight parameter α* are obtained after training.

Step 3.3: The channel weight parameter β* and operation weight
parameter α* obtained by the aforementioned optimization are used
to filter the selected convolutional channels and convolutional
operations in the network, and obtain the fault diagnosis network
model corresponding to the new mode.

Step 4: Real-time diagnosis. The data obtained in real time are
normalized and preprocessed so that the input data dimensions of
the network are satisfied. Then, the data are input into the obtained
diagnosis network for real-time diagnosis.

4 Experimental verifications

For all datasets, in the network search phase, the same candidate
operations, candidate convolution channels, and the structure of the
network are used as in AutoFD, with candidate convolution
channels. The network in the empirical phase of the learning
design is determined by the operation weight parameter ~α and
the channel weight parameter ~β. The candidate operations are as
follows: 3 × 3 separable convolution, 5 × 5 separable convolution, 3 ×
3 null convolution, 5 × 5 null convolution, 3 × 3 maximum pooling,
3 × 3 average pooling, keep the original input, and clear the original
input. When there is a new task, the optimal network structures α*i
and β*i can be obtained by updating on the basis of the original
network structure parameters.

The dataset is first divided into validation and test sets, and then,
the training set is subdivided into training and validation sets, and
the test set is subdivided into training and test sets, and the
aforementioned four sets are noted as the training set in the
training phase, validation set in the training phase, training set in
the test phase, and test set in the test phase for easy distinction
[31, 32].

First, in the training set of the training phase, K data are
randomly selected from the selected N class samples as a task T.
Then, in the validation set of the training phase, 10 data are
randomly selected from each category sample as the test data in
the training phase, so there should be N*(K+10) data in task T. In
the NAS process, let the network training epoch be E1, and each
time, first, S1 independent tasks are randomly selected, and then,
the search training of the network is performed with these S1 tasks.
In the internal search phase, the ordinary SGD is chosen to
optimize the parameters of the network, the operation weight
parameters, and the channel weight parameters, and the internal
learning rates are set to χinner, δinner, and εinner in the internal
sojourn phase, and the accuracy and efficiency of the network are
weighed by adjusting the internal step size M. In the external
search phase, the Adam optimizer is chosen to optimize the initial
parameters of the network, the initial parameters of the operation
weights, and the initial parameters of the channel weights, and the
external learning rates are set to χouter, δouter, and εouter. In the
validation phase, first, K data are randomly selected from the
samples of N classes as task T in the training set of the testing
phase, so there should be N*(K + Q) data in task T. Let the network
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training epoch be E2 times, and each time, S2 independent tasks
are randomly selected first, and the final accuracy is the average
diagnostic accuracy of S2 independent tasks.

All training and verification experiments are completed on a PC
equipped with Inteli7-10875H 2.30 GHz, 16 GB DDR4, WDC
PCSN730, and NVIDIA GeForce RTX 2060. All Python codes
are completed under the PyTorch framework, using the parallel
acceleration capabilities provided by CUDA and cuDNN to achieve
fast training and diagnostic tasks.

4.1 New modal fault online diagnosis steps

In this paper, a typical multimodal numerical simulation model
proposed by Ge et al. [25] is taken for testing, which has been
adopted by many scholars to verify the effectiveness of multimodal
algorithms, and the specific structure of the model is denoted as
follows:

x1 � 0.5678s1 + 0.3766s2 + e1,
x2 � 0.7382s1 + 0.0566s2 + e2,
x3 � 0.8291s1 + 0.4009s2 + e3,
x4 � 0.6519s1 + 0.2070s2 + e4,
x5 � 0.3792s1 + 0.8045s2 + e5,

(17)

where five variables x1, x2, x3, x4, and x5 have different
distributions of s1 and s2. e1, e2, e3, e4, and e5 are five mutually
independent noises that obey the Gaussian distribution with mean
0 and standard deviation 0.01. According to the two different
distributions of s1 and s2, the model has two different modes, mode
1 (mode1) and mode 2 (mode2), which are represented as
follows [26]:

model1 s1: U −10, 7( ), s2: N −15, 1( ),
model1 s1: U 2, 5( ), s2: N 7, 1( ), (18)

where U denotes uniform distribution and N denotes Gaussian
distribution; each measured data contain five moments of data
[d1, d2, d3, d4, d5], and di is [x1, x2, x3, x4, x5] for each moment;
each data have 25 features; for eachmode, first 1,000 normal samples
are generated, followed by the next 1,000 samples generated as fault
data, and the fault data are generated according to the following
rules.

Fault 1: Addition of a step signal of amplitude 4 at the beginning
of the 1001st sample.

Fault 2: Adding a ramp signal of 0.02 (i-400) at the beginning of
the 1001st sample.

Fault 3: A sinusoidal signal with amplitude, offset, and frequency
of 1 is added at the beginning of the 1001st sample.

Here, 1,000 data were generated for each mode of normal and
fault 1, 2, and 3, respectively, where 4,000 data of mode1 were used
as the training set and the data were divided into training and
validation sets in the ratio of 7:3 to learn the optimal initial
parameters. mode2 also contained 4,000 data, and the data were
divided into training and test sets in the ratio of 7:3.

The dataset is divided according to the category N � 4; the
number of data itemsK � 10, 50, 100, and 150; the network training
epoch is E1 � 10; the number of randomly selected independent
tasks S1 � 100; the internal learning rate χinnner � 0.05, δinnner � 15,
and εinnner � 15; the internal step size M � 4; the external learning
rate χouter � 10−3, δouter � 10−3, and εouter � 10−3; test data size Q �

150 for the validation phase; E2 � 5 for the network training epoch;
and the number of randomly selected independent tasks S2 � 80.
The results of the numerical system multi-fault experiments are
shown in Table 1 and Figure 2.

It can be seen that as the training set size increases on
mode2 data, the amount of knowledge learned by each method
from the data increases accordingly and the diagnostic accuracy of
MetaNAS, MAML++ [21], Reptile [22], and MAML [19] also
increases. The diagnostic accuracy of MetaNAS with a training
set size of 3 × 10 was as high as 74%, while the highest of the
compared methods was 68.17% for MAML++. The diagnostic
accuracy of MetaNAS with a training set size of 3 × 50 was
85.27%, and none of the compared methods exceeded 76%. The
diagnostic accuracy of MetaNAS with a training set size of 3 ×
100 was 86.35%, and all the compared methods exceeded 80%. At a
training set size of 3 × 150, the diagnostic accuracy of MetaNAS was
88.34%, and all the compared methods exceeded 84%. MetaNAS
achieved the highest diagnostic accuracy in each category of the
training set size.

4.2 TE multi-modal simulation

The TE chemical process is a standard experimental simulation
platform. This paper adopts the TE simulation platform provided by
http://depts.washington.edu/control/LARRY/TE/download.html.
The TE process is presented in Figure 3. In the multimodal process
fault diagnosis experimental study, the TE process simulation
platform is set up with six G/H product ratios to obtain the
process data under normal and fault conditions in six modes as
mentioned in Table 2 and verify the performance of MetaNAS
through multimodal TE process fault diagnosis experiments. In each
mode normal operating condition, simulation for 72 h with a
sampling interval of 3 min, 1,440 normal samples were obtained.
In total, 15 kinds of faults were set when collecting fault samples,
including seven step change faults (faults 1–7), five random change
faults (faults 8–12), one slow drift fault (fault 13), and two blockage
faults (faults 14 and 15); faults were introduced after 10 h of
simulation in the normal operating condition, and the simulation
was continued for 62 h with a sampling interval of 3 min,
i.e., 200 normal samples and 1,220 fault samples were collected
each time during the simulation of collecting fault samples.

In the multimodal process fault diagnosis experiment, for the six
modal process data obtained, 1,000 normal samples (6,000 normal
samples) and 1,000 samples for each fault (i.e., 6,000 samples for
each fault) are selected to form the dataset to be used; each data
contains 12 operational variables and 41 process variables, and the
variable dimension of each data is 53, which is filled with 0 at the end
of the data and then converted into an 8 × 8 two-dimensional matrix
as the candidate input of the network.

The data onmodes 1, 2, 3, 4, and 5were used as the training set, and
the data on mode 6 were used as the test set. First, single-fault diagnosis
experiments are performed on the multimodal dataset with the division
N = 2; the number of data entries K = 10, 50, 100, and 150; E1 � 12 for
the network training epoch; the number of randomly selected
independent tasks S1 � 200; the internal learning rate χinner � 0.05,
δinner � 15, and εinner � 15; the internal step size M = 4; the external
learning rate χouter � 10−3, δouter � 10−3, and εouter � 10−3; the test data
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TABLE 1 Multi-fault diagnosis accuracy of numerical simulation with different training set sizes.

Training set Test set MetaNAS (%) MAML++ Reptile MAML

4*10 4*150 74.00 68.17% 64.54% 62.75%

4*50 4*150 85.27 75.53% 73.25% 71.95%

4*100 4*150 86.35 79.16% 77.39% 74.98%

4*150 4*150 88.34 81.69% 83.96% 84.93%

That the bold values indicates the results of our proposed MetaNAS method.

FIGURE 2
Multi-fault diagnosis accuracy of numerical simulation with different training set sizes.

TABLE 2 TE operation mode single-fault description.

Fault condition Serial number Process variation Interference type

Fault 1 1 A/C material feeding ratio perturbed and B unchanged Step interference

Fault 2 2 B changes, and the A/C feed ratio remains the same Step interference

Fault 3 3 Feed temperature variation of D (stream 2) Step interference

Fault 4 4 Condenser cooling water inlet temperature Step interference

Fault 5 5 Reactor cooling water inlet temperature Step interference

Fault 6 6 A feed loss (stream 1) Step interference

Fault 7 7 Component C pressure drop disturbance Step interference

Fault 8 8 A, B, and C feed ingredients (stream 4) Random interference

Fault 9 9 Feed temperature of D (stream 2) Random interference

Fault 10 10 Feed temperature of C (stream 4) Random interference

Fault 11 11 Condenser cooling water inlet temperature Random interference

Fault 12 12 Reactor cooling water inlet temperature Random interference

Fault 13 13 Reaction dynamics Drift interference

Fault 14 14 Reactor cooling water valve Blocking interference

Fault 15 15 Condenser cooling water valve Blocking interference
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FIGURE 3
Tennessee Eastman process.

TABLE 3 TE single-fault diagnosis accuracy with different training set sizes.

Fault Training set 2 × 10 test set 2*150 Training set 2 × 100 test set 2 × 150

MetaNAS MAML++ Reptile MAML MetaNAS MAML++ Reptile MAML

1 96.70% 94.30% 88.33% 85.45% 100.00% 96.70% 100.00% 93.00%

2 93.30% 83.35% 80.00% 63.33% 100.00% 96.70% 88.67% 88.33%

3 73.34% 76.66% 66.55% 67.00% 79.00% 86.67% 73.34% 74.66%

4 96.70% 97.30% 96.00% 93.30% 100.00% 98.34% 100.00% 94.00%

5 93.30% 75.70% 88.67% 90.00% 96.70% 90.67% 90.67% 93.30%

6 100.00% 100.00% 99.00% 97.66% 100.00% 100.00% 100.00% 100.00%

7 100.00% 96.00% 100.00% 98.00% 100.00% 99.30% 100.00% 98.34%

8 100.00% 100.00% 96.34% 93.00% 100.00% 100.00% 97.66% 97.30%

9 76.66% 73.34% 69.34% 73.34% 80.00% 76.66% 80.00% 75.00%

10 83.35% 63.00% 80.00% 73.00% 93.60% 82.00% 93.30% 78.30%

11 73.34% 64.65% 76.66% 69.70% 85.35% 81.70% 78.65% 83.35%

12 100.00% 73.00% 100.00% 89.00% 100.00% 90.33% 100.00% 92.70%

13 96.70% 100.00% 90.67% 81.00% 100.00% 100.00% 91.00% 95.00%

14 76.66% 60.35% 80.00% 72.30% 84.67% 82.67% 82.00% 81.23%

15 76.66% 80.00% 69.70% 61.00% 84.35% 83.35% 73.34% 75.34%

Top 9 6 4 0 14 4 6 1

It can be seen that MetaNAS achieves the highest diagnostic accuracy for nine faults when the training size is 2 × 10, which is better than six faults for MAML++, four faults for Reptile, and zero

faults for MAML. As the training size increases, MetaNAS achieves the highest diagnostic accuracy for 14 out of 15 faults when the training size is 2 × 100, compared to four faults for MAML++,

six faults for Reptile, and one fault for MAML. Moreover, MetaNAS achieves 100% diagnostic accuracy on faults 1, 2, 4, 6, 7, 8, 12, and 13 when the training set size is 2 × 100.

That the bold values indicates the results of our proposed MetaNAS method.
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size Q = 150 in the validation phase; E2 � 6 in the network training
epoch, and the number of randomly selected independent tasks
S2 � 90; the results of the single-fault diagnosis are shown in Table 3.

Then, the multimodal dataset is subjected to multiple fault
diagnosis experiments, and a total of five operating conditions,
normal 0, fault 1, fault 8, fault 13, and fault 15, are selected as
the study objects, covering common step disturbances, random
disturbances, drift disturbances, blocking disturbances, and other
faults. The division of the dataset N = 5; the number of data entries
K = 10, 50, 100, and 150; the training epoch E1 � 10; the number of
randomly selected independent tasks S1 � 500; the internal learning
rate χinner � 0.1, δinner � 30, and εinner � 30; the internal step sizeM =
5; the external learning rate χouter � 10−3, δouter � 10−3, and
εouter � 10−3; the test data size Q = 150 in the validation phase;
the training epoch E2 � 10; and the number of randomly selected
independent tasks S2 � 100; the multi-fault diagnosis results are
shown in Table 4 and Figure 4.

It can be seen that the diagnostic accuracy of MetaNAS, MAML++,
Reptile, and MAML increases as the size of the mode6 training set
increases. The diagnostic accuracy ofMetaNASwith a training set size of
5 × 10 is 72.35%, while the highest diagnostic accuracy of the comparison
method is 57.07% for MAML++. The diagnostic accuracy of MetaNAS
with a training set size of 5 × 50 is 80.47%, while the comparisonmethod
does not exceed 66%. The diagnostic accuracy of MetaNAS with a
training set size of 5 × 100 is 84.29%, and the comparisonmethods are all

over 76%. The diagnostic accuracy ofMetaNASwith a training set size of
5 × 150 is 85.34%, and all the comparison methods exceed 77%.
MetaNAS achieves the highest diagnostic accuracy in each category
of the training set size.

Because MetaNAS has the advantage of using design experience
to design a unique network structure for new modes, unlike
MAML++, Reptile, and MAML, which use fixed network models,
it usually requires additional time overhead for network model
generation. During TE multi-fault experiments, the number of
model parameters of MetaNAS, MAML, MAML++, and Reptile
are 2.4 megabytes, 3.2 megabytes, 3.2 megabytes, 3.2 megabytes, and
3.2 megabytes, respectively, and MetaNAS takes about 1.5 s more
than MAML for network model generation in each batch during the
validation phase, where the number of model parameters is
calculated by the thop.profile () function and the model runtime
is calculated by the time.time () function.

Summarizing the aforementioned three experiments, it can be
concluded that the diagnostic accuracy of MetaNAS is higher than
that of the compared MAML++, Reptile, and MAML methods in
most faults. MetaNAS uses AutoFD for NAS based on MAML,
which provides a rich candidate network structure for MAML and
solves the problem of a single meta-learning network structure, and
MetaNAS’s network model does not require a complex and time-
consuming design process. Comparing the results of MetaNAS and
MAML in the three experimental results, we can see that the

TABLE 4 TE multi-fault diagnosis accuracy with different training set sizes.

Training set Test set MetaNAS MAML++ Reptile MAML

5 × 10 5 × 150 72.35% 57.07% 53.14% 51.25%

5 × 50 5 × 150 80.47% 65.50% 64.36% 62.65%

5 × 100 5 × 150 84.29% 74.10% 75.29% 72.18%

5 × 150 5 × 150 85.34% 73.60% 76.64% 74.63%

FIGURE 4
TE multi-fault diagnosis accuracy with different training set sizes.
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diagnostic results of MetaNAS are higher than those of the base
method MAML in the case of different training set sizes of the same
dataset, which indicates that MetaNAS can obtain better fault
diagnosis capability after adding AutoFD because the network
model structure can be learned, and the fault diagnosis results of
MetaNAS in many faults are better than those of MAML++ and the
Reptile algorithm, which are improved on the basis of MAML,
proving the effectiveness of the MetaNAS method.

5 Conclusion

The MetaNAS method is proposed to find the optimal initial
parameters to be learned in NAS by meta-learning, and the new
mode can find the best performing network structure with only a few
gradient updates based on the optimal initial parameters. MetaNAS
uses NAS to provide a rich learnable network architecture for meta-
learning method so that the network structure of meta-learning is no
single. It also automates the network design, making it possible to
quickly obtain fault diagnosis models with better performance even
for new modes with small samples. MetaNAS solves the limitations
to fault diagnosis through NAS, such as underutilization of the
existing modal design experience and difficulty in training models
with small samples. The effectiveness and superiority of the
proposed method in fault diagnosis under the small samples of
new models are demonstrated by numerical system and TE process
simulations. However, the existing model design experiences are
obtained from different modes of the same chemical process, and the
learning of different industrial process model design experiences is
lacking. The next work will focus on the study of learning algorithms
about different industrial process model design experiences and
NAS algorithms on unbalanced datasets.

Moving forward, there are several potential avenues for future
research and improvement. First, expanding the application of
MetaNAS to different fault diagnosis domains and datasets would
provide a broader evaluation of its effectiveness and generalizability.
Second, investigating the integration of additional data sources or
modalities could enhance the diagnostic capabilities of MetaNAS.
Furthermore, exploring the interpretability of the MetaNAS
approach is an important direction for future research. Last,
considering the scalability of the MetaNAS approach to handle
larger and more complex fault diagnosis tasks would be valuable. By

pursuing these future research directions, we can further advance
the field of real-time fault diagnosis with small sample learning and
continue to improve the performance, applicability, and
interpretability of the MetaNAS approach.
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