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Background: Patients with unstable angina (UA) are prone to myocardial infarction
(MI) after an attack, yet the altered molecular expression profile therein remains
unclear. The current work aims to identify the characteristic hypoxia-related
genes associated with UA/MI and to develop a predictive model of hypoxia-
related genes for the progression of UA to MI.
Methods and results: Gene expression profiles were obtained from the GEO
database. Then, differential expression analysis and the WGCNA method were
performed to select characteristic genes related to hypoxia. Subsequently, all 10
hypoxia-related genes were screened using the Lasso regression model and a
classification model was established. The area under the ROC curve of 1 shows
its excellent classification performance and is confirmed on the validation set. In
parallel, we construct a nomogram based on these genes, showing the risk of
MI in patients with UA. Patients with UA and MI had their immunological status
determined using CIBERSORT. These 10 genes were primarily linked to B cells
and some inflammatory cells, according to correlation analysis.
Conclusion: Overall, GWAS identified that the CSTF2F UA/MI risk gene promotes
atherosclerosis, which provides the basis for the design of innovative
cardiovascular drugs by targeting CSTF2F.
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Introduction

Coronary Heart Disease (CHD) conteins myocardial infarction (MI), angina pectoris,

and coronary arteriosclerosis (1, 2). The incidence and mortality of CHD in developing

countries, including China, are increasing year by year (3, 4). MI is one of the most

serious manifestations of coronary artery disease (CAD) and the leading cause of death

from non-infectious diseases worldwide (5). Atherosclerosis has been recognized as the

main underlying mechanism of coronary heart disease, ultimately leading to acute

coronary syndrome (ACS). ACS includes a clinical spectrum ranging from unstable

angina (UA) to acute MI (6). Currently, the treatment of UA is mainly conservative drug

treatment, such as anti-platelet aggregation, coronary artery dilation, lipid reduction, etc.,

to prevent the progress of UA, thus reducing the risk of MI (7, 8). However, the

molecular mechanism from UA to MI is still poorly understood.
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Ischemic/hypoxic injury is a common pathological basis for

CHD, atherosclerosis, and other cardiovascular diseases.

Coronary atherosclerosis can lead to narrowing of the vessel

lumen, and angina pectoris caused by this rapid, transient

myocardial ischemia and hypoxia is a common symptom in the

chest (9), and myocardium with underdeveloped collateral

circulation is susceptible to ischemic necrosis, leading to MI (10,

11). Coronary atherosclerosis is the main pathological basis of

coronary heart disease, of which atherosclerotic plaque consists

mainly of cholesterol and cholesteryl esters, which are highly

brittle and prone to rupture or dislodge and flow with the blood,

blocking small vessels or capillaries, forming thrombi, and

aggravating MI (12, 13). Atherosclerotic plaque rupture has been

identified as a major cause of ACS (14). Nevertheless, non-

atherosclerotic factors have been identified to cause ACS (15).

Therefore, further comparison of alterations in hypoxia genes in

UA progression to MI must be done with association analysis of

atherosclerosis-related protective factors and suppressors to

determine the potential role of these genes in atherosclerosis-

mediated or non-atherosclerosis-mediated ACS. Thus hypoxia-

related genes may be potential targets for CAD disease

progression and treatment.

The clinical occurrence of MI is often a sudden symptom. Early

prevention and intervention are difficult to achieve. However, early

MI has lesions such as coronary arteries, blood composition, and

hormone levels. Therefore, MI can be prevented at an early stage

by molecular level changes as markers (16). Recent studies in

transcriptomics have been continuously applied in clinical

practice, especially in routine diagnostic applications. Microarray

data and RNAseq data are widely used for disease diagnosis.

Numerous studies have confirmed the abnormal expression levels

of some disease-related genes in the early stages of MI. Zhang

et al. have then been in the process of identifying the RNA

signature of coronary heart disease from the combined

expression profile of lncRNA and Mrna (17). A study folded into

diagnostic features byMI-related differentially expressed genes

(18). We, therefore, sought to identify hypoxia-associated genes

for molecular characterization from UA to MI while trying to

find their association with atherosclerosis in anticipation of

finding available therapeutic targets.
Materials and method

Data collection and organization

We started from GPL571, GPL6106-based platform

(GSE48060, GSE61144, GSE29111, GSE97320, GSE34781) Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.

gov/geo/) to obtain a total of 93 samples (18 UA cases and

75 IM cases) for training set analysis. A total of 24 samples

(8 UA cases and 16 MI cases) were also obtained from the

GPL6884-based platform (GSE60993) for test set validation. The

microarray data were quantile normalized to obtain

standardization (19). The microarray probes were converted to

12,285 Ensembl gene IDs using the biomaRt software package.
Frontiers in Cardiovascular Medicine 02
According to the standardized sample network connectivity

Z-score <−2, the samples defined as outliers are removed (20).

The batch effects of the expression profiles are processed using

the operational function of the SVA package in R (21). All data

processing results are shown in Supplementary Figure S1.

Furthermore, total of 25 normal samples from GSE34781,

GSE48060, and GSE97320 were used to compare the expression

levels of the core genes in the normal, UA and MI groups.

Detailed sample sizes for the GEO dataset are provided in

Supplementary Table S1 and clinical information is provided in

Supplementary Table S2.
Identification of genes related to hypoxia

In the training data, UA was compared with MI to identify genes

with significant expression differences. We use the “limma” package

R to extract differentially expressed genes (DEGs). After correction

based on the false discovery rate, the cutoff value of the P value

was set to 0.05 to obtain 3,569 differential genes considered as

disease progression genes. Subsequently, we used “ssGSEA” to

quantify the Hallmark gene set obtained from MSigDB

(gsea-msigdb.org/gsea/msigdb/). Total of 4,017 differential genes

related to hypoxic were identified by differential analysis. In

parallel, we built a weighted gene co-expression network analysis

(WGCNA) and identified hypoxia-associated modules by package

“WGCNA” (22). Interactions between unique genes with hypoxic

ssGSEA (23) scores were quantified by gene significance (GS), and

correlations between gene expression profiles and module

signature genes were indicated by module membership (MM). At

a threshold of GS p < 0.05 threshold, 630 candidate genes from the

“sapphire-colored module” were selected. Differential genes were

analyzed by “ClusterProfiler” R (24) package to perform GO,

KEGG enrichment.
Classification model construction and
validation

The ten genes with the highest coefficients in the LASSO

regression model were selected for the construction of the model

by selecting 630 modular genes for the R package “glmet” (25).

The hypoxic risk score was calculated using the corresponding

coefficients of the selected features. The formula was established

as follows.

Risk score ¼
Xn

i¼1

Coef i�xi

where Coef i denotes the coefficient and xi denotes the expression

value of each mRNA. Patients were divided into low- and high-

risk groups according to the median value of risk value, and PCA

downscaling analysis showed its distribution pattern of patients

with different risks. ROC curves were used to assess model

accuracy. A validation set was used to verify the above results.
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Estimation of immune cell infiltration

The CIBERSORT (26) algorithm was used to translate

normalized gene expression values into the composition of

immune cells in complex samples. CIBERSORT generates an

empirical P-value for the inverse convolution results using Monte

Carlo sampling, which is used to compare the statistical

significance of the inverse convolution results on all subsets of

cells. The training set of 93 samples was included in the

CIBERSORT analysis. The entire sample was included in the

follow-up analysis (all P-values less than 0.05). The specific

results are given in Supplementary Table S3. The ratio of

immune cells in significantly enriched UA and MI samples was

obtained and reported as a bar graph. We used the R package

“vioplot” to compare the levels of each immune cell type.

Spearman’s rank correlation analysis was performed to explore

the correlation between infiltrating immune cell subsets and

signature genes. The R package “ggplot2” is used to visualize plots.
eQTL mapping in GTEx

SNP loci associated with UA/MI disease were obtained from

the GWAS catalog database. The public eQTL database was

queried in the Genotype-Tissue Expression (GTEx) project

(Release V8) to determine the association between lead UA/MI

GWAS variants and CSTF2T gene expression. GTEx tissue-

specific eQTL were also identified for the GWAS variants using

48 different GTEx tissues sorted by NES value and eQTL p-value.
Western blot

Whole blood samples were obtained from 3 cases of UA and 3

cases of MI patients, and 3 cases of healthy volunteers in Ruijin

Hospital, and kept in EDTA evacuated tubes. Subsequently,

peripheral blood monocytes (PBMCs) were isolated using Ficoll-

Hypaque density gradient centrifugation (TBD Science, Tianjin,

China). Total protein was isolated from the isolated PBMCs in

ice-cold lysis buffer using a high-intensity ultrasomic processor,

according to the manufacturer’s instructions. The remaining

debris were removed by centrifugation, and the protein was

precipitated with cold 15% Trichloroacetic for 2 h at −20 °C.

After centrifugation at 20,000 × g at 4 °C for 10 min, the

supernatant was discarded. The protein was dissolved in buffer,

and the protein concentration was determined with a 2-D Quant

kit according to the manufacturer’s instructions. Equal amount

of protein samples were subjected to 10% SDS-PAGE and

transferred to PVDF membranes. After blocking at 37 °C for 2 h,

the membranes were probed with primary antibodies at 4 °C

overnight. After washing with TBST, the blots were incubated

with a secondary antibody at 37 °C for 1 h. Immunoreactivity

was visualized by enhanced chemiluminescence. The intensity of

the bands was normalized to that of GAPDH. The statistical

significance of changes in protein expression observed by

Western blotting was assessed with a two-tailed t-test using
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GrapghPad Prism 8.0.2. The data are expressed as the mean ±

standard deviation, and statistical significance was considered to

be indicated by a p-value < 0.05.
Statistical analysis

All statistical analyses were performed using R software

(version 4.0.3). The Wilcoxon test was used to compare the

differences between the two groups. The Spearman’s rank

correlation analysis was used to explore the correlation between

model genes and immune cells. Values of p < 0.05 were

considered statistically significant.
Result

Hypoxia-related gene basis of coronary
heart disease

The workflow is shown in Figure 1. Many patients with MI

have rapidly progressing disease due to UA (27). We divided the

patients into two groups based on two different clinical

phenotypes, including 18 UA patients and 75 MI samples. Using

the limma algorithm, we finally screened 3,569 DEGs between

UA and MI groups based on a corrected P value < 0.05

(Figure 2A). Atherosclerosis exacerbated by ischemia/hypoxia

eventually led to stable and UA and MI, and the differently

enrichment of pathways between the two groups is shown in the

heatmap, we then calculated the hypoxia scores of UA and MI

patients according to ssGSEA (Figure 2B), and the difference

analysis between high-hypoxia and low-hypoxia groups obtained

4,017 DEGs displayed in the volcano plot (Figure 2C). The 1966

intersecting genes were demonstrated by VENN plots

(Figure 2D). Since our results indeed show that hypoxia is a

prominent molecular feature of UA, these intersecting genes are

regarded to be the molecular basis of hypoxia-related genes in

UA to MI disease progression. We then performed GO and

KEGG on these genes, which were highly enriched in propanoate

metabolism, chronic myeloid leukemia, cell cycle, mitochondrial

ribosome, H4 histone acetyltransferase complex, and cellular

senescence pathways (Figure 2E), which are all related to oxygen

metabolism/hypoxia (28–33).
Identification of hypoxia-related genes by
weighted gene coexpression network
analysis

To further screen for reliable genes associated with hypoxia.

Based on the ssGSEA method and cancer markers from the

MsigDB dataset, the hypoxia ssGSEA Zscore was calculated for

the training set of patients in our dataset, and candidates

associated with hypoxia were screened by WGCNA. The optimal

soft threshold was determined to be 21 (Figure 3A), Dynamic

Tree Cut was set to 0.2, and 7 modules were created
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FIGURE 1

The workflow of the integrative bioinformatics analyses.
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(Figure 3B), with the turquoise-colored module having the highest

correlation with UA/MI (Figure 3C), while we compared the

correlation of hypoxia scores with the modules. The turquoise

module possessed the highest correlation with the hypoxic
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phenotype (Figure 3D). From the turquoise module, 630

promising candidates were identified (Figure 3E). We performed

GO, and KEGG analysis on these genes, and not surprisingly

these genes were associated with Thyroid hormone synthesis,
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FIGURE 2

Difference analysis showed that hypoxia was associated with the development of coronary heart disease. (A) The volcano map shows the different results
between UA and MI. (B) Hypoxia ssGSEA scores were estimated in the UA and MI cohort by performing ssGSEA with a hallmark gene set. (C) The volcano
map shows the different results between high-hypoxia scores and low-hypoxia scores. (D) Venn diagram shows that disease differential genes overlap
with hypoxia differential genes. (E) Enrichment analysis of disease-differential genes. UA: unstable angina; MI myocardial infarction; BP: Biological
Process; CC: Cellular Component; MF: Molecular Function.
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Ubiquitin mediated proteolysis, Nucleotide excision repair, Cellular

senescence, and histone acetyltransferase complex (Figure 3F),

which are related to oxygen metabolism/hypoxia (34–38).
Classification model construction and
validation

Based on the lasso algorithm, the top 10 genes with the highest

coefficients (COMMD2, CSTF2T, LNPEP, MLYCD, NEK4, NOM1,

PARG, PPP3CB, PSMD5, and SKP2) were selected (Figures 4A–B).

PCA analysis showed that the samples were divided into two clusters

(Figure 4C). The area under the ROC curve in the training set was

0.998 (Figure 4D), demonstrating its excellent classification ability,

and these results were confirmed in our test set (Figures 4E–F).

We found that age was positively associated with risk score in
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GSE29111 (R = 0.29; P < 0.05), but not gender (Supplementary

Figure S2). We also analyzed the classification ability of individual

genes (Supplementary Figure S3). Furthermore, we compared

Pearson’s correlations between these genes and risk scores, and

most of them showed high correlations, with NOM1, and LNPEP

showing a strong correlation (|R|>0.6, p < 0.05) (Figure 4G). The

high expression of most hypoxia-related model genes represents a

low risk of MI incidence in these patients (p < 0.05) (Figure 4H).
Construction of the nomogram model

The nomogram is a simple, personalized visualization tool that

has been widely used in disease diagnosis and prognosis (39). We

used the “rms” package in R to construct a nomogram model based

on 10 hypoxia-related genes to predict the prevalence of MI in UA
frontiersin.org
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FIGURE 3

The weight gene co-expression network analysis showed that hypoxia was associated with the development of coronary heart disease. (A) Soft threshold
selection process. (B) Cluster dendrogram. Each color represents one specific co-expression module. In the colored rows below the dendrogram, the
two colored rows represent the original modules and the merged modules. (C-D) The differential expression of eigengenes in UA and MI, high
hypoxia and low hypoxia (FDR corrected *P < 0.05, **P < 0.01, ***P < 0.001), respectively. (E) Turquoise gene significance and membership in hypoxia
network. (F) Gene ontology and KEGG pathways enrichment in turquoise modules.
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(Figure 5A). The column line plot c-index value is 1. The

calibration curve shows that the predicted results based on the

column line graph are in good agreement with the actual

prognostic results (Figure 5B).
Generation of hypoxia gene signatures

To further validate the precision of the hypoxia pattern,

patients with UA/MI were classified into different genomic
Frontiers in Cardiovascular Medicine 06
subtypes using a consensus clustering approach based on 10

hypoxia-associated model genes. We found the existence of

two different hypoxia gene patterns (gene cluster 1 and

gene cluster 2) (Figure 6A). The Sankey diagrams

visualized the relationship between predicted UA and MI

patients based on hypoxia-related genes and actual patients

(Figure 6B). In addition, we compared the expression of

these hypoxic genes between predicted UA and MI patients

(Figure 6C), and the results were similar to those in the

risk model, except for COMMD2, PPP3CB, and PSMB5,
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1068782
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 4

Construction of disease classification model. (A-B) The lasso regression top 10 genes in training data. (C) PCA analysis in train data and (F) test data. ROC
analysis in train (D) data and (E) test data. (G) Correlation analysis of risk scores and model genes. (H) Model gene expression in high and low-risk groups.
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which were all downregulated in MI patients (p < 0.05). This

again validates the accuracy of our grouping by the consensus

clustering method. To further explore the relationship

between these ten genes and the progression of UA/MI

disease. We found that the mRNA expression of COMMD2,

CSTF2T, LNPEP, MLYCD, NOM1, PARG, PSMD5, and

SKP2 was not significant between the normal and UA

groups, but their expressions were different between the UA

and MI groups (p < 0.05) (Figure 6D). This suggests that

these genes change as the disease progresses.
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Correlation of gene expression and immune
cell infiltration

Atherosclerosis is a chronic inflammatory disease. It is

characterized by complex immune interactions between resident

vascular cells and specialized immune cells (40). For example,

type 2 macrophages are also associated with repair and

reconstruction at sites of inflammation (41). Therefore, we

sought to find differences in the immune environment between

UA and MI. The CIBERSORT algorithm was performed to
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FIGURE 5

Construction of the nomogram. (A) Comprehensive nomogram of 10 risk genes. (B) Calibration curve.
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assess the ratio of immune cell subsets in the training set. Total of

22 immune cell subpopulations are shown in Figure 7A. We found

that the relative percentage of T.cells.CD4.naive was higher in the

MI group compared to UA, while the relative percentages of

CD4 memory resting, T cells gamma delta and relative

percentages were significantly less (p < 0.05) (Figure 7B). In

addition, we compared high and low-risk groups with immune

cells and obtained the same results as disease groups

(Figure 7C). Furthermore, we performed a correlation analysis of

risk scores and immune cells. As shown in Supplementary

Figure S4, among the above immune cells with differences,

except for macrophage M2, which does not correlate with a risk

score, the remaining 4 immune cells include T cells CD4 naive,

T cells CD4 memory resting, T cells gamma delta and

Eosinophils were all correlated with risk score (|R|>0.2; P < 0.05).

We then did a correlation analysis of immune cells and 10

hypoxia-related genes (Figure 7D). An interesting phenomenon

caught our attention, all hypoxia genes showed a negative

correlation with memory B cells (|R|>0.2; p < 0.05), and we found

that macrophage M2 showed a negative correlation with CSTF2F

and PARG (p < 0.05), and CD8+ T cells MLYCD, CSTF2F,

PSMD5 and PPP3CB showed a positive correlation (p < 0.05).

Evidence for an important role of B lymphocytes in human CVD

is limited. In patients with acute myocardial infarction (MI), high

levels of the B-cell specific cytokines and B-cell activating factor,

predict increased risk of death and recurrent MI (42). B cells are

important in immune homeostasis.

These findings indicated that the hypoxia-related model

composed of 10 genes may affect the infiltration and proportion

of immune cells by driving the hypoxic state of immune cells,

thereby regulating the immune homeostasis of UA/MI patients.
UA/Mi-associated risk variants in the
CSTF2T locus are associated with reduced
CSTF2T gene expression

To further identify key genes driving UA/MI development, we

intersected the genes in the model with disease risk genes and

identified 7 genes that were strongly associated with disease
Frontiers in Cardiovascular Medicine 08
development (Figure 8A). Notably, these 7 genes were

negatively associated with the expression of atherogenic genes

(CCL2, BMP4, and SELE) and positively associated with

multiple atherosclerosis-protective genes (KLF2 and GCH1)

(Figure 8B). Further western blot validation was performed,

and the results indicated that the expression levels of seven

genes (NEK4, MLYCD, LNPEP, NOM1, COMMD2, CSTF2T,

PARG) related to disease and hypoxia were significantly

reduced in MI patients compared with healthy volunteers, but

their expression were not significant between the healthy and

UA samples (Figures 8C–D). The 902 SNPs associated with

UA/MI were identified by mining the GWAS catalog database

to take intersections with these 7 gene SNP loci. We found that

only the rs2879627 variant in the CSTF2T locus was associated

with UA/MI occurrence (Figure 8E) and determined the

mutation type of CSTF2T expression (Figure 8F). By mining

genotype and transcriptome data in the Genotype-Tissue

Expression (GTEx) database, we mapped the main GWAS risk

variants associated with CSTF2 expression (rs2879627 locus) in

human tissues and determined that the rs2879627 mutation was

associated with CSTF2 expression in whole blood (NES < −0.1;
p < 0.05) (Figure 8G).
Discussion

One of the major diseases that endanger human health is CAD.

The most common reason for death in people with cardiovascular

disease is MI, in particular (43). Therefore, rapid implementation

of successful treatment requires an early, quick, and correct

diagnosis and assessment of MI (44). We report for the first time

that blood markers of MI from UA can be identified and a MI

warning issued.

ACS is the most serious medical emergency caused by

myocardial ischemia/hypoxia following coronary atherosclerotic

plaque formation, with clinical manifestations of UA and acute

MI (45). Hypoxia is an inevitable manifestation of atherosclerosis

due to vessel wall thickening (46). Given this, we investigated the

potential value of hypoxic gene signatures in this study. The

hypoxic status of UA/MI was assessed by using ssGSEA and
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FIGURE 6

Consensus clustering of 10 important hypoxia-related genes in UA/MI. (A) Consensus matrices for k = 2. (B) Sankey diagram showing the relationship
between UA, MI, and UAp, MIp modes. (C) Expression of 10 hypoxia-related genes in UAp, MIp modes. (D) Expression of 10 hypoxia-related genes
among CN, UA, and MI groups.
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WGCNA methods, respectively, to select hypoxia-associated genes.

Our discovery that differential genes based on hypoxia scores were

largely the same as those of UA and MI, especially the conversion

process to MI, demonstrates that hypoxia is intimately related to
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UA/MI. Regarding these frequent genes, GO and KEGG analyses

revealed that they were enriched in propanoate metabolism,

chronic myeloid leukemia, cell cycle, mitochondrial ribosome, H4

histone acetyltransferase complex, and cellular senescence
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FIGURE 7

Immune cell subsets analysis in UA/MI. (A) The proportion of immune cell subsets in UA/MI samples. (B) Differences in analysis of immune cell infiltration
between UA and MI patients. (C) Differences in analysis of immune cell infiltration between high- and low-risk groups. (D) 10 hypoxia-related genes
associated immune cells. NES: normalized enrichment score.

FIGURE 8

Correlation between mutations at disease-associated hypoxia gene loci and their expression. (A) Venn diagram among model genes, hypoxia differential
genes, and differential genes between UA and MI. (B) Association of seven disease-related hypoxia genes with atherosclerosis. (C) Western blot validation
for the relative protein expression levels of seven disease-related hypoxia genes (NEK4, MLYCD, LNPEP, NOM1, COMMD2, CSTF2T, PARG) among healthy
volunteers, UA and MI patients. (D) Statistical results of protein bands in C. (E) VENN plot of CAD GWAS and eQTL analysis results of seven disease-related
hypoxia genes. (F) Boxplots showing expression quantitative trait locus data from the GTEx dataset for a genome-wide association study of the SNP
(rs2879627) association. (G) Normalized effect sizes for single-tissue expression quantitative trait loci normalized effect sizes for rs2879627 are shown
for 48 different tissues in GTEx.
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pathways, which are all related to oxygen metabolism/hypoxia

(28–33). These hypoxia-related pathways and functions were

strengthened. In UA/MI patients, this guarantees the exclusivity
Frontiers in Cardiovascular Medicine 10
and specificity of our identified gene signature. Then, to reflect

the categorical gene profile of patients going from UA to MI, our

WGCNA technique identified the most relevant modules for
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hypoxic characteristics and chose the top 10 genes with the highest

weights by the LASSO regression model. The categorization

algorithm was applied to forecast the risk that UA patients

would advance to MI. PCA analysis showed that the

classification model had different distribution patterns. The area

under the ROC curve for the training set was 1 and the area

under the ROC curve for the test set was 0.758, indicating that

the classification model has satisfactory performance. In addition,

we constructed a nomogram model based on 10 candidate

hypoxia-related genes and the calibration curves showed that the

decisions based on the nomogram model were accurate. We

found that most of the genes in the model were significantly

associated with risk scores and high and low-risk groupings in

our study, and two disease patterns (cluster1 and cluster2) were

identified based on 10 significant hypoxia-related genes using

consensus clustering methods. These two patterns were reflected

as UA prediction (UAp) and MI prediction (MIp). The Sankey

diagram shows that the UAp and MIp determined based on the

consensus clustering of these 10 genes are highly consistent with

the actual UA, and MI patients. And the UAp and MIp

groupings had the same expression levels of the 10 hypoxic genes

as those of high- and low-risk patients. Thus, these results

confirm the reliability of the 10 hypoxia-gene signatures for

differentiating UA and MI patients.

Inflammation is a key factor in the development and

progression of atherosclerosis (47). Myocardial infarction has

always been considered an inflammatory disease, and the

occurrence, development, and prognosis of MI are closely related

to the overexpression of inflammatory cytokines (48, 49).

Therefore, we tried to find the consensus and uniqueness of the

immune signature of UA and MI. The percentage of immune

cells in patients with UA and MI was calculated using the

CIBERSORT algorithm. T cells CD4.naive was found to be

higher in the MI group compared to UA, while the relative

percentages of CD4 memory resting, T cell gamma delta, and

macrophage M2 were significantly lower in the MI group. Recent

studies have shown that the infiltrating macrophages polarization

affects the expression of pro- and anti-inflammatory cytokines in

the epicardial adipose tissue from UA/MI patients and that the

ratio of M1/M2 macrophages is positively correlated with the

severity of CAD (50). This is consistent with the phenomenon of

reduced macrophage M2 in patients with MI found in our study.

In addition, we found that all model genes were highly correlated

with B cells. Although B cells were not previously reported to be

the predominant immune cell type found in atherosclerotic

lesions (51). However, they are abundant in perivascular adipose

tissue, which, in addition to the spleen and bone marrow, serves

as a niche for immunoglobulin (Ig) production (52). Cell

production of cytokines and Ig by B-cell production of cytokines

and Ig at these sites is thought to be an important regulator of

inflammation in atherosclerotic lesion formation (53). B-cell

depletion reduced the development of atherosclerosis in mice

(53). At the same time, we learned that the hypoxia and

hypoxia-inducible factor (HIF) signaling pathways are critical for

B cell development and function, such as survival, proliferation,

and cytokine production of B cells (54), and that improper
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regulation of this B cell can lead to a variety of diseases,

including atherosclerosis. In patients with acute MI, high levels

of the B-cell specific cytokines and B-cell activating factor,

predict increased risk of death and recurrent MI (42). B cells are

important in immune homeostasis. Therefore, our findings

indicated that the hypoxia-related model composed of 10

hypoxia-associated genes may affect the infiltration and

proportion of immune cells by driving the hypoxic state of B-cell

activity, thereby regulating the immune homeostasis of UA/MI

patients.

The pathological underpinning for CAD is atherosclerosis,

and by crossing model genes with disease-associated hypoxia

genes, we were able to identify 7 shared genes. These 7 genes

were shown to be positively correlated with several

atherosclerosis preventive genes and negatively correlated with

the expression of atherogenic genes (CCL2, BMP4, and SELE),

according to correlation analysis (KLF2 and GCH1). A large-

scale genome-wide association study (GWAS) is currently

being conducted has found hundreds of potential loci linked to

the risk of UA and MI risk (55). However, the genetic

mechanisms and causative genes of the UA/MI locus have not

been fully resolved, so we sought to find correlations between

UA/MI causative genes and our findings. We integrated GWAS

and whole-tissue Expression Quantitative Trait Loci (eQTL)

analysis to explore hypoxia-related gene expression and its

disease SNP association.
Strengths and limitations

Strengths of this study focused on that we found that CAD

GWAS risk variants at the CSTF2T locus were closely associated

with increased CSTF2T expression in whole blood tissue,

suggesting that CSTF2T may promote atherosclerosis, which may

be a future direction for the treatment of atherosclerosis.

However, the present study had the following limitations. First,

the study was a single-centered study; therefore, the results

cannot be generalized to other populations with varying

demographics. Second, the less number of patients and further

research is required to determine whether CSTF2T could be a

better indicator for predicting the incidence of MI in UA

patients. Despite these meaningful findings, we had to face some

limitations. Our study is based on publicly available data.

Therefore, more external cohorts are needed to validate our

findings. Again, due to the difficulty of obtaining clinical

information, we were unable to describe the association of risk

scores with more clinical features including reinfarction, the

presence of atherosclerosis.
Conclusion

In conclusion, the current study provides insight into hypoxia-

related genes and establishes 10 hypoxia-related gene signatures to

predict the incidence of MI in patients with UA. At the same time,

a nomogram was constructed based on these genes, showing the
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risk of MI in patients with UA. Immune subsets analysis showed

that these ten genes were mainly associated with B cells and

some inflammatory cells. Furthermore, the UA/MI risk gene

CSTF2F identified by GWAS promotes atherosclerosis, which

provides a rationale for designing innovative cardiovascular drugs

by targeting CSTF2F.
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