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Abstract

Honey bees play a signi�cant role both ecologically and economically, through the polli-
nation of �owering plants and crops. Additionally, honey is an ancient food source that
is highly valued by di�erent religions and cultures and has been shown to possess a wide
range of bene�cial uses, including cosmetic treatment, eye disease, bronchial asthma and
hiccups. In addition to honey, honey bees also produce beeswax, pollen, royal jelly and
propolis. In this thesis, data is studied which comes from samples of propolis from various
geographical locations.

Propolis is a resinous product, which consists of a combination of beeswax, saliva and
resins that have been gathered by honey bees from the exudates of various surrounding
plants. It is used by the bees to seal small gaps and maintain the hives, but is also an
anti-microbial substance that may protect them against disease. The appearance and
consistency of propolis changes depending on the temperature; it becomes elastic and
sticky when warm, but hard and brittle when cold. Furthermore, its composition and
colour varies from yellowish-green to dark brown, depending on its age and the sources
of resin from the environment. Propolis is a highly biochemically active substance with
many potential bene�ts in health care, which have attracted much attention.

Biochemical analysis of propolis leads to highly multivariate metabolomics data. The main
bene�t of metabolomics is to generate a spectrum, in which peaks correspond to di�erent
chemical components, making possible the detection of multiple substances simultane-
ously. Relevant spectral features may be used for pattern recognition. The purpose of
this research is to study methods used for statistical analysis of biochemical data arising
from propolis samples.

We investigate the use of di�erent statistical methods for metabolomics data from chem-
ical analysis of propolis samples using Mass Spectrometry (MS). Methods studied will
include pre-treatment methods and multivariate analysis techniques including principal
component analysis (PCA), multidimensional scaling (MDS), and clustering methods in-
cluding hierarchical cluster analysis (HCA), k-means clustering and self organising maps
(SOMs). Background material and results of data analysis will be presented from samples
of propolis from beehives in Scotland, Libya and Europe. Conclusions are drawn in terms
of the data sets themselves as well as the properties of the di�erent methods studied for
analysing such metabolomics data.
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Chapter 1

Aims and Outline

This chapter has two purposes: (i) introduce the main problem with a brief explanation,

and (ii) to outline the thesis.

The purpose of this research is to investigate statistical techniques that can be used in the

analysis of metabolomics data. More speci�cally, the aim is to assess the ability of various

clustering techniques and other multivariate methods to analyse metabolomics data by

exploring the metabolic pro�les of propolis samples. This investigation aims to con�rm

whether these clustering techniques can be used to identify any natural groupings in data

such as those consisting of metabolic pro�les.

This thesis is structured as follows. Chapter 2 provides background material on propolis

and its chemical analysis. Chapter 2 discusses methods of analysis of propolis samples. In

this chapter, mass spectrometry (MS) and liquid chromatography are discussed in detail.

In Chapter 3, metabolomics and analysis techniques, and multivariate analysis methods

used on metabolomics data are described. In addition, we use two di�erent data sets from

propolis samples throughout this thesis, where the �rst data set contains three sub-sets

of data from Scotland (Aberdeenshire, Fort William and Dunblane) and the second data

set is from propolis samples from Libya. These will be described in this chapter.

Chapter 4 discusses pre-precessing of raw data. Also, the impact of noise and convolution

3



4 Aims and Outline

are discussed. On the other hand, several methods of pre-treatment are also discussed,

such as transformation and scaling methods.

Chapter 5 contains unsupervised techniques, where data reduction is introduced and sev-

eral applications of PCA in metabolomics are studied. Chapter 6 examines another data-

projection method for reducing dimensionality, multidimensional scaling (MDS), with the

advantage over PCA that it is �exible and can be used with any dissimilarity measure. It

can be also applied to metabolomics data sets as in PCA.

In Chapter 7, clustering similarity or di�erence techniques are reviewed such as hierarchi-

cal clustering. Section 7.3 discusses similarity or di�erence measures, which this approach

reviews, while Section 7.4 covers hierarchical clustering with emphasis on agglomerative

nesting algorithms.

In Chapter 8, another category of optimal partitioning methods called hard clustering

algorithms are reviewed, and the k-means algorithm is applied to all the propolis data

sets.

Competitive learning algorithms are described in Chapter 9, with emphasis on self-

organising maps (SOM), a statistical approach, and its application to all the propolis

data sets.

Chapter 10 presents a case study, in which the best methods identi�ed are applied to a

further data set, of samples from Europe, the results are compared, and conclusions are

drown about the data.

Chapter 11 provides a summary and conclusions, including approaches, results and ad-

vantages and disadvantages of the methods, as well as suggestions for further work.

Finally, all of these techniques have been applied to all the metabolomics data to assess

their e�ectiveness in reducing the dimensionality of the input space or for the e�ective

and e�cient clustering of the data, with a view to determining the best approaches for

such metabolomics data, as well as uncovering any interesting patterns in these particular

data sets.



Chapter 2

Background: Propolis and Chemical

Analysis of Propolis Samples

Writing from over 1400 years ago in the Quran refers to bees that generate the honey as

females (the Arabic grammar is in the female mode): [Quran 16, verses 68-69] and your

Lord (Allah) revealed to the bees: Build your hives in mountains, trees and in what they

build. The Quran used "Kuli" (females).

(68) And your Lord inspired the bee: "Set up hives in the mountains, and in the trees, and

in what they construct" (69) "Then eat of all the fruits, and go along the pathways of your

Lord, with precision. From their bellies emerges a �uid of diverse colors, containing healing

5



6 Background: Propolis and Chemical Analysis of Propolis Samples

for the people. Surely in this is a sign for people who

re�ect". [Quran, surah al-nahl 16, verses 68-69].

Bees are well known for producing honey, as well as

for pollinating crops, but there are other products

of the honey bee colony. In this thesis we focus on

propolis, described below.

2.1 Overview

This chapter is divided into four parts: the �rst part, in Section 2.2, gives background

about propolis, and Section 2.3 describes extraction of propolis. Sections 2.4 describes

methods of analysis of propolis samples. Finally, conclusions are written in Section 2.5.

2.2 Introduction to propolis and its properties

In economically advanced countries, health professionals favour conventional medicine

over natural products, even though the latter can o�er a suitable alternative for some

conditions. These are of particular value in locations where conventional therapy is not

readily available. Bee products are one such natural alternative that have long been used

in traditional medicine in some parts of Africa, East Asia and South America (El-Soud,

2012), as well as in Eastern Europe. Bees have been on Earth for millions of years and the

fact that their species continues to persist is evidence of their evolutionary success. This

success can be attributed to their ability to exploit the chemistry of substances in their

environment and use these for their own products: honey, beeswax, pollen, royal jelly,

venom and propolis. Because of their biological potential, bee products can be considered

as functional foods.
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2.2.1 Composition of propolis and its uses in the hive

Propolis is one of the most interesting bee compounds, that honey bees manufacture by

combining various quantities of beeswax with resins. Honey bees harvest resins from

�ower buds, �owers and the bark of particular plants, shrubs and trees, which they mix

with beeswax. This multifunctional compound is considered to maintain the hives, by

being used as a construction material and sealing open spaces in the hive, as well as be-

ing an anti-infective substance o�ering defence against disease (Bankova, 2005; Bankova

et al., 2016; Bertelli et al., 2012; Burdock, 1998). The word propolis is a compound term

originating with ancient Greek roots: "pro" is believed to relate to 'defence', and "po-

lis" means 'city'. Therefore, the name propolis describes defending the city or, in this

instance, the hive (Ghisalberti, 1979, as reviewed by Burdock, 1998) (Bankova, 2005;

Kasiotis et al., 2017). Owing to its glue-like nature, propolis is frequently described as

'bee glue'. Bees are also protected by propolis through its anti-bacterial and anti-fungal

properties, conferring the hive with defence against diseases caused by fungi or bacteria.

The appearance of propolis is sticky and gum-like; this is consistent with being highly

resinous. It is a hydrophobic compound that undergoes temperature-related changes.

When it is cold, propolis becomes inelastic and rigid, but when warm is pliant and gluey

(Hausen et al., 1987). Usually, propolis lique�es when it is between 60◦ C and 70◦ C,

though some specimens are reported to remain solid at these temperatures and not melt

until temperatures reach 100◦ C (Kuropatnicki et al., 2013). The composition of propolis

varies between hives, districts and seasons (Toreti et al., 2013). Variation in the compo-

sition is also re�ected by variations in its colour, which can range from yellowish-green to

dark brown, depending on the botanical source of the resins (Kuropatnicki et al., 2013;

Marcucci, 1995) (Figure 2.11).

1Sources: (i)www.naturaletz.com/img/ftpropolis.gif.

(ii) www.soorganic.com/blog/a− propolis− buzz − 705.html.
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In summary, the bene�ts of propolis are:

1. To promote the defensibility of the hive by sealing alternative entrances.

2. To protect the colony against disease and parasites; inhibit bacterial and fungal

growth (Cremer et al., 2007).

3. Minimise putrefaction within the hive. Usually, bees are fastidious, cleaning waste

and removing it away from the hive. Any insect that �nds its way into the hive,

but fails to �nd its way out and dies, presents bees with a body that may be too

di�cult to remove from the hive. In such instances, the bees will instead seal the

body in propolis; this form of mummi�cation e�ectively makes the body scentless

and harmless (Qureshi et al., 2014).

2.2.2 Medical and other uses of propolis

Since ancient times, propolis has been used by humans as a remedy for various aliments.

Today, in the Balkan states, propolis continues to be used as a traditional treatment for

burns, dental caries, sore throats, stomach ulcers, wounds and other ailments (Wollenwe-

ber et al., 1990). In Europe and North Africa, this is demonstrated by the very Greek

name of propolis. The ancient Egyptians were familiar with the unique wound healing

properties of propolis and used it to preserve their dead (Lotfy, 2006). Also, the Arabs,

Incas and Romans used propolis to treat fever. Four centuries ago, it was de�ned in the

London Pharmacopoeias as being a certi�ed drug (Sforcin and Bankova, 2011).

In the writings of Bin Sina (Avicenna), two forms of beeswax are described; the �rst

he noted was 'clean' and the other he referred to as 'black wax', which is assuredly propo-

(iii) http : //www.mofaid.com/an/images/propolis.jpg.

(iv) http : //commons.wikimedia.org/wiki/F ile : Propolis.

(v) www.made− in− china.com/image/2f0j00PBsaQLdGJRgKM/Propolis.jpg.
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(i) (ii)

(iii) (iv)

(v)

Figure 2.1: Di�erent propolis morphology and colours: (i) Light brown hard propolis, (ii)

Yellow hard propolis, (iii) Fragile brown propolis, (iv) Dark brown propolis, (v) Black

hard propolis.
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lis (Lotfy, 2006). In contrast to some customary preservatives, the e�ect of propolis upon

human health is generally regarded as being bene�cial. The constituents of propolis are

usually standard constituents of food and/or food additives, which are typically consid-

ered safe to humans. Results of the research undertaken by Burdock (1998) support earlier

proposals to use propolis in the food industry. Mizuno (1989) suggested the germicide

and insecticide qualities of propolis be exploited, by using it as a preservative component

in the protective food material. Furthermore, Han and Park (1995) proposed propolis be

used in the preservation of meat products.

Since ancient times, propolis has been applied for medical purposes. Banskota et al.

(2001) report that as far back as 300 BC, propolis was used as a traditional medicine

to treat wound healing and in�ammation; it was also used as a cosmetic. Because of its

antibacterial, antifungal and antiviral properties, folk medicine applies it both internally

and externally to kill bacteria, fungi and viruses, and to treat in�ammation and ulcers

(Banskota et al., 2001; Lotfy, 2006). Propolis is also reputed to lower blood pressure and

be an immune system stimulant. According to Cuesta et al. (2012), propolis products are

used by the body to produce energy and maintain. For more than 2000 years, cultures

including Asian, European and Middle Eastern have used propolis to kill microbes and

to treat aggravated wounds like bedsores and diabetic ulcers.

2.2.3 Biochemical properties and study of propolis

The propolis most widely researched over the past ten years is temperate propolis. Table

2.1 shows the typical constituents of temperate propolis; approximately 55% of the total

is made of balsams and resinous substances, wax constitutes about 30%, 10% are aromatic

and essential oils, 5% is pollen, and the remaining 5% is made up of organic debris (Bur-

dock, 1998). However, as indicated earlier, the actual composition of propolis is variable

and re�ects the diversity of the plants, the season of harvesting and geographical location
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in which the honey bees forage to gather the materials for propolis (Crane et al., 1990).

A number of studies have explored the biological activity, chemical data and molecu-

Ingredient Group of Ingredients Amount

Resins Flavonoids, Esters and Phenolic Acids 45-55%

Waxes and Fatty Acids Beeswax and Plant Origin 23-35%

Essential Oils Volatiles 10%

Pollen Proteins (16 free amino acids>1%) 5%

Arginine and Proline, together 46% of total

Other Organics and Minerals 14 traces of minerals, zinc and iron most 5%

common; lactones, quinines, ketenes, steroids,

benzoic acid, sugar and vitamins

Table 2.1: Common compounds occurring in raw propolis (Bankova et al., 2016).

lar structures of di�erent components isolated from propolis. Modern researchers have

applied advanced technology such as mass spectrometry (MS) and nuclear magnetic res-

onance (NMR) to identify components, in addition to using gas chromatography (GS)

and medium pressure liquid chromatography (MPLC) to separate, analyse and purify the

individual constituents of propolis. Some of the chemical features that have been charac-

terised include hydrocarbons, �avonoids, phenolics, terpenes as well as mineral elements

(Inui et al., 2012; Oliveira et al., 2010; Petrova et al., 2010).

Propolis manufactured by honey bees, which is valued for its antimicrobial qualities and

has been used as a traditional pharmaceutical, is highly biochemically active (Sforcin

et al., 2000). Therefore, propolis and extracts from it have been the subject of several

studies in which researchers have analysed the compound's antibacterial action against

Gram-positive and Gram-negative pathogens. The results of these studies reveal that

propolis is active against a wide variety of Gram-positive bacteria; however, it only ex-
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erts a limited reaction against Gram-negative bacilli (Cuesta et al., 2012; Lu et al., 2005;

Sforcin et al., 2000). The �ndings obtained by Seidel et al. (2008) reinforced earlier

results, although the study focused on comparing the antibacterial activity of propolis

collected from di�erent countries spanning tropical, subtropical and temperate climate

zones. The diverse propolis was tested for e�ectiveness against six Gram-positive and two

Gram-negative microorganisms. What the study revealed was that propolis manufactured

by bees from windy, tropical locations exerted the most signi�cant antibacterial e�ect.

Subsequent research into some of the propolis constituents of the samples which Seidel

et al. (2008) collected in the Solomon Islands showed inhibitory e�ects against methicillin-

resistant Staphylococcus aureus (MRSA) (Raghukumar et al., 2010).

Other research has examined the cytotoxic e�ects of propolis and its constituents upon

inhibiting tumour cell growth. Constituent analysis of propolis reveals that the active

compounds include ca�eic acid phenethyl ester, �avonoids and terpenes (Wagh, 2013). It

has also been demonstrated that using the propolis extracts in treating cancer can reduce

the overall costs of cancer treatment (Banskota et al., 2001). Because of the antineoplas-

tic constituents of propolis, which are capable of killing cancerous cells, these propolis

extracts have been used to reduce the tumour activity of cancerous cells (Lu et al., 2005).

Several propolis compounds have also been evaluated for e�ectiveness in being used for

chemopreventive purposes. Research into the scope and e�ectiveness of propolis extracts

for use as anti-cancer interventions is still ongoing.

The bene�ts of propolis to various areas of medicine, such as its use as an antioxidant,

a molecule that can protect other molecules from the damage of oxidation radicals, have

been described by da Cunha et al. (2013). Because propolis has an antioxidative capabil-

ity, it and its derivatives o�er potential in being used as preservatives (Banskota et al.,

2001). As mentioned previously, propolis and its constituent components of ca�eic acid,

cinnamic acid and ferulic acid have antifungal capabilities that able to exert e�ects against



13 Background: Propolis and Chemical Analysis of Propolis Samples

Candida albicans. Even parasitic diseases are responsive to propolis, with reports of the

compound e�ectively curing such infections.

However, this wonder compound is not without drawbacks, and some people may ex-

hibit allergic reactions to propolis, presenting with irritation of mucous membranes and

skin (Lotfy, 2006). Nonetheless, the antibacterial and antifungal capacity of propolis

(Banskota et al., 2001; Burdock, 1998; Marcucci, 1995) and its ability to promote tissue

re-modelling have led to high demand for propolis extracts to be regularly incorporated

into dermatological and cosmetic treatments (Gulcin et al., 2010). It was also recorded

that a level of sunlight protection can be supplied by ethanolic extracts of propolis and

its components in addition to strong antioxidant activity (Gregoris et al., 2011). To-

gether, these characteristics identify propolis as a potential active ingredient to include in

cosmetics.

2.3 Extraction of Propolis

In its crude state, propolis is considered unsuitable for use in cosmetics, foods or medicine;

it needs to go through a number of puri�cation processes that remove unwanted compo-

nents, such as wax. The residual material is a �avonoid-rich concentrate and the �avonoids

are responsible for the biological activity of propolis (Vaher and Koel, 2003). Due to the

wax component, experimental analyses of propolis also need to be done using solvents to

separate the raw materials. The preferred extraction procedure uses ethanol to isolate the

waxy materials, leaving a residue of polyphenolic compounds. Extraction often uses 70%

or 80% ethanol, as it is particularly e�ective in separating propolis to isolate the extracts

that are rich in polyphenol compounds (Vaher and Koel, 2003).

The next section addresses the methods used to analyse samples of propolis.
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2.4 Methods of Analysis of Propolis Samples

2.4.1 Introduction

As described earlier, propolis is a complex substance manufactured by honey bees using

wax and secondary metabolites of a plant root. To identify the composition of propolis, it

has been subjected to several high-tech chemical analyses, including high-performance liq-

uid chromatography (HPLC), mass spectrometry (MS) and liquid chromatography-mass

spectrometry (LC-MS). Due to the diversity of propolis compositions arising from the

geographical variations in the raw materials used in its manufacture, it is not practical

to use a single-instrument strategy for analysis. Therefore, di�erent chemical techniques

are used, such as LC-MS, as it is e�ective to analyse the various �avonoid components

of propolis. This technology is considered a reliable and most adaptable procedure for

analysing the quality of di�erent propolis samples (Ivanauskas et al., 2008). Some propo-

lis samples with compounds, such as terpenoids, that have been challenging to charac-

terise using Ultraviolet-Visible (UV) spectrophotometry, have been examined using gas

chromatography-mass spectrometry (GC-MS) in conjunction with HPLC (Gardana et al.,

2007; Vaher and Koel, 2003). To identify propolis's phenolic compounds, thin layer chro-

matography (TLC) has been used. Other techniques that have been used include at-

mospheric pressure ionisation and electrospray ionisation mass spectrometry (ESI-MS)

as this enables the typical '�ngerprints' of complex materials to be characterised (Volpi,

2004). However, analyses of the composition of propolis are generally performed using tra-

ditional phytochemical methods, such as chromatographic and spectroscopic techniques,

which are capable of isolating and identifying the individual constituents. Mass spectrom-

etry is employed for structural determination, and is described below.

The purpose of mass spectrometry is to measure atoms and molecules to calculate their

molecular weight. The information of mass or weight data is sometimes enough, often
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essential, and always valuable in identifying species. Using mass spectrometers, the chem-

ical structure of the mass can be established. Typically, these instruments are employed

in industrial and academic research settings. A mass spectrometer creates charged parti-

cles from molecules. These particles are investigated for the purpose of determining the

molecular weight of the mass and its chemical structure. Mass spectrometry has applica-

tions across diverse domains including biotechnology, clinical, environment and geology

and pharmaceutics. It is also useful for metabolite �ngerprinting, or metabolome analysis,

by creating a spectral '�ngerprint' of the metabolites produced by a sample; this enables

particular metabolites, such as sul�des, hormones and vitamins to be explored.

2.4.2 Introduction of Mass Spectrometry(MS)

Mass spectrometry was invented by the English physicist and physics Nobel laureate,

Joseph John Thomson, in 1897 (Go et al., 2007). Working at Cambridge University, he

explored electrical discharges in gases. During the 20th century, the concept of Thom-

son's initial mass spectrometer was advanced by Aston, to enable analysis of isotopes; this

technology was further advanced by Dempster who developed the modern mass spectrom-

eter that used an electron beam as the ion source to ionise volatile molecules. Between

1946 and 1953, four di�erent contributions were made (Borman et al., 2003). In 1946,

at the University of Pennsylvania, Stephens introduced the concept of Time of Flight

(TOF) MS. A Time of Flight analyser is used to verify the mass of biomolecules as it has

relatively boundless mass range. Ion Cyclotron Resonance (ICR) was �rst described in

1949 by Hipple, Sommer and Thomas (Hipple et al., 1949); this technique enables ions

to be detected sequentially. M. B. Comisarow and A. G. Marshall went on to combine

ICR with Fourier Transformations (FT) to arrive at FT-ICR MS, which facilitated the

simultaneous measurement of multiple ions. In 1953, Nier and Johnson developed the

double-focusing instrument that made investigating isotopes easier. At a similar time,

the quadropole mass analyser was presented by Paul and Steinwedel (Borman et al.,
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2003); this technology o�ered considerable stability over a dynamic range, conferring the

technology with particular value in quantitatively assessing medications and drugs. The

�eld of molecular investigation has bene�tted from two key developments; the �rst is the

Electrospray ionisation (ESI) strategy, which was described in 1968 by M. Dole. In spite

of this reality, it was J. B. Fenn who connected this strategy out of the blue, in 1984, in

biomolecular analysis. The second development was the creation of the matrix-assisted

laser desorption/ionisation technique (MALDI). MALDI was �rst described in 1983 by

two di�erent research groups, Hillenkamp and Karas at the University of Frankfurt, and

Tanaka at Shimadzu Corp (Xavier and Rauter, 2008).

Figure 2.22 depicts the key accomplishments in the development of mass spectrometry

technology over the past century. In the last part of the 20th century, these MS tech-

nologies have been re�ned further, enabling coordinated exploration of pharmacokinetics,

including analysis of small drug molecules, identifying proteins and mapping peptide

mass. More recently mass spectrometry has been used in clinical investigations to screen

neonates for over thirty diseases (Borman et al., 2003).

Figure 2.2: Important timelines and contributions to Mass Spectrometry

2Source: Scripps Centre for Metabolomics and Mass Spectrometry.
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2.4.3 Description of Mass Spectrometers

There are three prime components of mass spectrometers; these are the ionisation source,

the ion analyser and the detector. The �rst step in the analysis process is to embed

the sample into the instrument's ioniser, ready for the ionisation of the molecules in the

sample. Ions are easier to work with than uncharged molecules. The ions are collected

by the mass spectrometer's ion analyser, which then separates them according to their

mass (m) - to - charge (z) ratios. Then the ions that have been isolated are recorded

by the instrument's detector, which generates a signal that is transmitted to an informa-

tion system that stores the ratios of ions and their relative abundance. These data are

presented in the form of an m
z
spectrum (Kang, 2012). The components of the mass spec-

trometer are typically maintained in a high vacuum to promote the potential of the ions

travelling through the instrument without encountering air molecules, as they present an

obstruction. Figure 2.3 shows the main components of a mass spectrometer.

Figure 2.3: Schematic of the main components of a mass spectrometer (Prelorendjos,

2014).
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The contents of the sample may be identi�able following ionisation, but often the sample

needs to be directed through a chromatography instrument as it moves through the ionisa-

tion source. In that instance, the mass spectrometer is combined with a chromatography

separation column, which makes the sample separate into its di�erent components. Then

the di�erent components sequentially enter the instrument to be analysed individually.

There are three forms of chromatography that are used most often:

1. Gas Chromatography (GC-MS) is mainly used to separate natural mixes that are

volatile. The chromatograph is usually connected to covered, capillary columns,

linked to a mass spectrometer (Kissinger, 2002; Williams and Fleming, 1995). The

prime parts of a gas chromatograph are a �owing mobile phase, which is typically an

inert gas, such as, nitrogen or helium, argon, an injection port, a separation column

containing the stationary phase, a detector and an information recorder (Figure

2.43).

Figure 2.4: Diagram of a gas chromatography mass spectrometer (GC-MS)

2. Liquid Chromatography4 (LC-MS) is generally used to isolate and purify compo-

3Source:http://upload.wikimedia.org/wikipedia/commons/8/87/Gas_chromatograph.png.
4Often high performance liquid chromatography (HPLC-MS) or ultra high pressure liquid chromatog-
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nents within a mixture. Linked with mass spectrometry, LC can be used with all

kinds of stationary phases, such as normal phase, reversed phase or ion exchange

(Kissinger, 2002; Williams and Fleming, 1995). In this scenario, the analyte's chem-

ical properties such as charge, hydrophilicity or hydrophobicity di�erentiate one

from another. On account of more logical separations of solutions with the end

goal of recognition or evaluation, more sophisticated instruments are required, such

as High-Performance Liquid Chromatography (HPLC) or Ultra High-Performance

Liquid Chromatography (UPLC) instruments. These technologies quickly provide

high-resolution data for the samples under investigation. Figure 2.55 depicts the

typical LC separation process.

Figure 2.5: Liquid chromatography (LC) separation procedure

3. Medium pressure liquid chromatography (MPLC) is a preparative separation tech-

nique. It is used where large quantities of compounds need to be isolated from

crude materials and puri�ed before being subjected to additional techniques, such

as HPLC. MPLC is suitable for this due to its low cost, high throughput capacity

and high sample loading (Cheng et al., 2010). MPLC complements ash chromatog-

raphy (UPLC-MS) is needed.
5Source: http://www.chemistry.nmsu.edu/Instrumentation/lc-schem.gif.
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raphy and the weight required is within the range of 5 − 20 bars which is created

through a cylinder pump with an adjustable rate. It can be di�erentiated from

�ash chromatography and other low weights techniques, as those techniques use low

weights ranging from 1 to 5 bars (Weber et al., 2011). MPLC uses medium pressure

that speeds up the rate at which samples elute through the column. Furthermore,

the resolution is su�ciently e�ective that compounds that have a range of polarities

can be separated from semi-puri�ed samples. The size of samples that can be loaded

in a single run can be up to 50 g. The fractions acquired can be further puri�ed by

re-chromatographing it; the reproducibility of the packing of columns and separa-

tion can all be attained (Claeson et al., 1993). A schematic representation of the

key components of MPLC systems (Figure 2.6) and should be similar for any type

of such equipment.

Figure 2.6: The main components of a medium pressure liquid chromatography system

(Claeson et al., 1993).

2.4.4 High Performance Liquid Chromatography (HPLC)

Thin-layer liquid chromatography (TLC) is one of the most straightforward and easily

applied preliminary tests that samples the polarity of a mixture, from which the solvent
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system, for example, medium pressure liquid chromatography (MPLC), can be determined

as being most suitable to separate the mix fully. Identifying and separating the compo-

nents in regular compounds with chromatography can be achieved by several techniques

including TLC and GC (gas chromatography). The HPLC system is the favoured analyt-

ical technique that produces superior outcomes for phytochemical studies. Compounds

that lack chromophores in their structure are poor absorbers of UV; therefore, for such

compounds, evaporative light scattering detection (ELSD) is typically used, making it a

semi-universal detector for HPLC. Recently, reverse phase-HPLC with ELSD detection

has become the option of choice to detect di�erent classes of common compounds; this

technology is particularly favoured for analysing food and drinks, as well as contributing

to drug development (Dvovravckova et al., 2014). Because the technology is linear and

relatively non-selective, even if the sample contains unknown compounds, the detected

quantities of diverse constituents present in a complex mixture can be approximated (Ce-

bolla et al., 1997). In phytochemical screening, the primary bene�t of using ELSD rather

than UV detectors is that it can discern diverse ranges of compounds such as glycosides,

saponins and terpenoids that are poor absorbers of UV. The biggest limitations of the

technique are that it is regarded to be destructive, and depending upon the composition

of the solvent used in the mobile phase, the results can be inconsistent (Looney, 2012).

As Figure 2.7 demonstrates, LC-ELSD is governed by three progressive techniques, which

are nebulisation in the mobile phase nebulisation, and evaporation of eluent, followed by

measuring the scattering of light by the retained analytes. The analytes are isolated in

the column containing the mobile phase; together, these are turned into a �ne spray of

uniformly sized droplets by the nebuliser. The droplets are suspended in a transporter gas

composed solely of nitrogen, forming an atomised spray. This is moved to a drift tube,

which is heated, enabling the mobile phase to evaporate, whilst keeping the particles of

interest in the evaporation tube. These form aggregates of dried particles, which can

then be identi�ed through their light scattering abilities (Young and Dolan, 2003). Light

scattering is measured in the detected unit; a photodiode or photomultiplier captures the
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data from the light scattered by the solid particles as the light source is directed at them

(Looney, 2012). As the concentration of target components in a sample increases, the

amount of scattered light increases accordingly (Campos et al., 2016). The association

between the peak region of evaporative light scattering (A) and the quantity of analyte

in the samples (m) is represented by the condition: A = a × mb, in which a and b are

constants. The plot of the log of peak area against the log of analyte concentration will

be linear (i.e., logA = c + b logm, where c = log a in which a comes from A = a ×mb)

with slope b, and y-intercept a. The estimation of b lies in the interval [1,2], and seems

to shift, from one analyser to another, depending on the speci�c design of the analyser,

particularly the nebuliser component. Useful linearity is achieved when b is close to 1

(Young and Dolan, 2003).

Figure 2.7: Principle of HPLC-ELSD detection of compounds during analysis (Campos

et al., 2016).
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2.4.5 High Resolution Mass Spectrometry

Whilst GC-MS is a valuable technique for determining the presence of unstable com-

pounds in a sample, and HPLC is e�ective for measuring substances that absorb UV,

neither of these technologies is considered particularly suited to evaluating propolis. This

is due to its composition being complex. The more e�ective means that has been used

recently is to couple HPLC to MS (LC-MS); this combination has been found e�ective to

investigate and measure the diverse range of constituents of propolis (Midorikawa et al.,

2001; Volpi and Bergonzini, 2006). This conjoined strategy is successfully applied to

analysing natural products and pharmaceuticals, in addition to being an important ad-

vancement that has facilitated in-depth analyses of changes to metabolites in biological

samples (metabolomics), genomics and proteomics. Furthermore, HPLC-MS and Tandem

mass spectrometry (MS/MS) are also the preferred methods of analysing new medicinal

compounds at every stage of their development (Korfmacher, 2005).

There are various machines that can yield ions within the mass spectrometer's ionisation

chamber. The ionisation source gives an interface between the chromatographic system

utilised for the separation of analytes and whatever remains of the mass spectrometer.

In summary, ions are produced either by ionising a neutral substance through captur-

ing or ejecting an electron, protonation or deprotonation, cationisation or by converting

molecule charge into a charged form in the gas phase (Kang, 2012). Ionisation modes

are distinguishable in their ability to fragment or broadly maintain the analytes during

ion formation. Those modes that fragment are described as hard ionisation systems (e.g.

electron impact ionisation), whilst soft ionisation strategies (e.g. electrospray ionisation)

minimally fragment the analyte. The ionisation methods used most often in LC-MS today

include:

1. Electrospray ionisation (ESI) is an Atmospheric Pressure Ionisation (API) strategy.

ESI is most e�ective when polar molecules less than 100 Dalton (Da) in mass size
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are being investigated; however, it can be used for molecules greater than 1,000

KDa. In ESI, a �ne spray of charged droplets is created by applying a high voltage

(usually about 1-4 KV) to a capillary containing a �owing liquid. The procedure

is generally improved through the use of a coaxial nebuliser gas, such as nitrogen

(Figure 2.86).

Figure 2.8: Basic diagram of an electrospray ionisation (ESI)

ESI is suitable for evaluating natural compounds, which have medium to high po-

larity. Since positive ionisation is dependent on protonation, molecules containing

essential useful gatherings function admirably in this mode. In contrast, negative

ionisation is the product of deprotonation; therefore, acidic functional groups such

as carboxylate, imide phenol and are required for negative ESI, whereas amino,

amide, ester and aldehyde groups are appropriate for positive ESI.

2. Matrix-assisted laser desorption/ ionisation (MALDI), is a laser desorption ionisa-

tion technique. The sample is combined in a saturated solution of a matrix, and a

drop of the mix is deposited on the MALDI target. After the solvent dissipates and

the matrix crystallises, the sample is put in the mass spectrometer source and is

�ashed with pulses of laser light. Energy is transferred between the excited matrix

molecules and sample molecules as a result of desorbing both from the condensed

6Source: http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial_�les/image004.gif.
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state. With molecules in the vapour phase, protons transfer between the matrix

and the sample, leading to the formation of ions, to which high potential (usually

20 KV) is applied, accelerating the ions out of the source into a series of extraction

electrodes and lenses (Figure 2.97). This technique is particularly suited to exam-

ining organic, thermolabile, non-volatile compounds and those with high molecular

masses. Consequently, MALDI is frequently used to investigate proteins, peptides,

oligonucleotides and other biochemical compounds. However, MALDI has demon-

strated its value in characterising polymers as well as large organic molecules and

organometallic complexes (Go et al., 2007).

Figure 2.9: Basic diagram of a matrix assisted laser desorption ionisation (MALDI)

A mass analyser is used to separate and recognise the ions according to their respec-

tive mass/charge ratios. The capability of a mass spectrometer to distinguish between

very similar masses determines its resolving power. Orbitraps, Fourier transform ion cy-

clotron resonance (FT-ICR) mass spectrometers and time of �ight (TOF) instruments are

7Source: http://www.chem.pitt.edu/sites/default/�les/users/Bhg5/�gure%205.jpg.
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amongst the mass analysers with the highest resolution currently available (Xian et al.,

2012).

2.4.6 Mass Analyser

After the extraction of the ions by the ioniser, ions enter the ion analyser in order to be

separated to their mass-to-charge m
z
ratios. The most commonly used mass analysers are:

1. The Orbitrap mass analyser is a recent invention, devised by Alexander Makarov

at the end of the 20th century (Hu et al., 2005); it came on the market in 2005. It

uses two specially designed electrodes; being barrel-like in shape, the outer electrode

forms a C-trap that catches and stores ions temporarily, while the inner electrode

is spindle-shaped (Figure 2.10). Applying a voltage causes the captured ions in the

C-trap to move towards the inner -shaped electrode. Here, voltage is applied locally,

causing the ions to circulate round the electrode, thereby getting caught in their

motion (Hu et al., 2005). The ions adopt a spiral motion around the spindle-shaped

electrode; this motion is sustained by balancing the outward centrifugal force caused

by the initial tangential velocity upon ion injection, with the inward electrostatic

attraction towards the central electrode. Measuring mass is contingent upon tran-

sients created by vibrating ions and their recurrence; the mass is independent of the

ions' energy or their spatial distribution.

The development of Orbitraps was inspired largely by the necessity of overcoming

the issues of resolution and precision that a�ict earlier technologies. It o�ers high

mass accuracy (about 1-2 Parts per million (ppm)), high mass resolution of around

150,000, high m
z
range around 6000 and dynamic range around 104 (Hu et al., 2005).

This dynamic range suggests that MS can distinguish di�erent concentrations of an-

alytes up to a factor of 104. This sensitivity is essential in the analysis of samples

where one analyte is at a much lower concentration of another analyte that is present
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in much higher concentrations, such as in studies of impurities. Hybrid systems that

are highly accurate and have high mass resolving capabilities can be used to screen

suspected components with or without the support of reference standards; even un-

known compounds can be analysed in this manner. The technology provides copious

data that not only addresses the mass of molecules or atoms and their molecular

formula but through fragmentation designs created by MS/MS, it can also provide

some detailed structural information (Krauss et al., 2010).

Figure 2.10: Orbitrap (Snider, 2014)

2. TOF analysers simultaneously accelerate ions, so all of the ions receive the same ki-

netic energy as each other. Therefore, the ions travelling a �xed distance through an

evacuating �ight tube separate based upon their mass-to-charge ratio and velocity.

Figure 2.118 depicts the basic layout of a simple linear TOF analyser.

8Source: http://www.kore.co.uk/graphics/MS-200_tof.gif.
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Figure 2.11: Time-of-Flight mass analyser

The prime advantages of TOF analysers are that they are capable of achieving

resolutions between 5000 and 20000 Full width at Half Maximum (FWHM) and

they are also relatively little in size, and cheap.

2.4.7 Detection of the Ions

The detector is the �nal component of the mass spectrometer. It monitors the ion current

and increases it, then the signal is rapidly transmitted to the information system where

the mass spectra are recorded. Detection of ions should be possible in a wide range

of courses, contingent upon the kind of mass spectrometer in use. The identi�ers that

are used most often are the Charge (or Inductive) Detector, the Electron Multiplier, the

Faraday Cup and the Photomultiplier Conversion Dynode (Go et al., 2007).

2.4.8 The Mass Spectrum (MS) and its Interpretation

In an MS plot, the m
z
values of the ions are plotted along with their abundance, which

is shown as intensity. This data depicts the number of components in the sample, the

molecular mass and relative abundance of each component in the sample. Figure 2.12

shows an example of an m
z
plot for a typical sample of an isolated compound. This is a
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plot of relative intensity (abundance) versus the mass-to-charge ratio m
z
. Several peaks are

Figure 2.12: Example of a Mass Spectrum for a compound (Prelorendjos, 2014).

apparent in the spectrum plot, with the most intense indicating the greatest abundance;

this is referred to as the 'base peak'. All of the other peaks are characterised relative

to the intensity of the base peak. Typically, the peak observed in the spectrum with

the highest molecular mass represents the parent molecule, named as the molecular ion.

From the plot in Figure 2.12, it is apparent that the most abundant peak is at mass 194;

this peak represents the base peak, but because it is also the highest molecular mass,

this peak also represents the molecular ion. However, this is not the norm and in most

instances, the molecular peak or peaks in an MS plot di�er from the most abundant one.

The remaining peaks in this plot are ion fragments of various masses residual from the

initial neutral molecule. The role of the spectrometer's mass analyser in presenting the

spectra is very important. The accuracy, mass range, resolving power and scan speed

of a mass spectral device are determined by the analyser (Barwick et al., 2006; Webb
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et al., 2004). Accuracy is based on the instrument's stability and resolution; it re�ects

the detail with which a mass analyser can provide m
z
information. The resolving power

is the mass spectrometer's ability to di�erentiate between ions of various m
z
ratios. With

greater resolving power, there is a superior capacity to distinguish ions. It is de�ned as:

Resolution =
M

∆M
(2.1)

where M is the mass-to-charge ratio m
z
and ∆M is the full width at half maximum

(FWHM). The mass range of an analyser is e�ectively its m
z
range. The m

z
range varies in

accordance with the type of analyser. If the resolution is su�ciently high, ions of di�erent

isotopes may be separated. The scan speed is the rate at which an analyser scans over

a particle's mass range. Typically, it takes a few seconds, but again there is variation

dependent upon the type of analyser used.

2.5 Conclusion

Within this chapter propolis and its properties have been introduced, and the main idea of

metabolomics data was explained. The chemical processes for analysis of the composition

of propolis samples were also described. In particular, mass spectrometry (MS) was

investigated and discussed in detail; this part explains the creation of the data. MS data

sets obtained from propolis samples are used in this thesis, to investigate the merits of

di�erent multivariate statistical methods for analysis of such data.

In the next chapter, metabolomics is discussed, where information about propolis as a

molecular pro�le is considered as a sort of metabolomics (Bankova et al., 2016).



Chapter 3

Metabolomics and Analysis Techniques

After discussing extensively propolis and chemical analysis of propolis samples in chapter

2, this chapter now describes metabolomics data in general and introduces our data to

be used in this thesis. This chapter is divided into four parts: the �rst part, in Section

3.1, provides an overview of metabolomics, and Section 3.2 provides an introduction to

the main multivariate statistical analysis methods used in metabolomics. Section 3.3

provides and describes the data that are used in this thesis, and Section 3.4 gives a short

conclusion.

3.1 Overview of Metabolomics

The propolis data sets to be studied in this thesis are of metabolomics type. Several

established methods can be used for metabolomics data sets. The selection of the appro-

priate technique usually depends on the context of the investigation to be done (Gri�n,

2004; Weckwerth and Morgenthal, 2005). Usually, the type of samples used in the anal-

ysis dictates the most suitable method to be used for the creation of the metabolomics

data. The common methods include Nuclear Magnetic Resonance (NMR) spectroscopy,

31
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Ultra-Violet spectroscopy (UV), Fourier Transform Infrared (FT-IR) spectroscopy and

Mass spectrometry (MS).

Nuclear Magnetic Resonance spectroscopy is used if bio�uids are involved in the analy-

sis, and the method of Ultra-Violet spectroscopy is used to study the metabolic pro�les

of plants and plant materials (Bouchereau et al., 2000). Indeed, Fourier Transform In-

frared spectroscopy is not used very often in metabolomics, where the disadvantage of

this method is that it provides a very poor distinction between the various classes of

metabolites (Gri�n, 2004; Lindon et al., 2006).

In this project, MS is more appropriate for our samples. Before using the Mass spectrom-

etry method, the Mass spectrometry requires a separation of the metabolic components.

There are many available separation methods such as gas chromatography (GC), liq-

uid chromatography (LC), high-performance liquid chromatography (HPLC), capillary

electrophoresis (CE) and ultra performance liquid chromatography (UPLC). All these

methods generate complex multivariate data sets, which need further analysis and inter-

pretation with the appropriate chemometric tools (multivariate statistical methods).

The word "metabolomics" was �rst considered in 1998 when it was used in the context of

describing the metabolic conduct of microbial systems. Following this period, the term

has been used extensively within the scienti�c community, including areas outside the

�eld of microbiology. The su�x 'ome' in the word "metabolomics" signi�es the aim of

the �eld to "direct attention to holistic abstractions" based on those observations that

are possible, although as only a part of that whole (Oldiges et al., 2013). Truly, the

principal aim of metabolomics is to identify, quantify, and classify all cellular metabolites.

Metabolomics is, a rapidly emerging �eld that can be expressed as a comprehensive study

of all metabolites�the end products of regulatory developments in a cell (Fiehn, 2001).

The level of metabolites indicates the response of biological systems to environmental and

genetic changes (Fiehn, 2002). To respond to these changes, biological systems combine a

set of metabolites which constitute its metabolome. The analysis of metabolomes can help

by providing some clari�cation to explain how metabolite levels vary in response to genetic
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and environmental changes as a single mutation (Fiehn, 2001). In a more comprehensive

view, the analysis of metabolomes is crucial for the understanding of cellular function; it

aids in uncovering the dynamic nature of metabolism. This is done through the supply of

informed knowledge about the various types and quantities of existing metabolites, and

the environment which exists in cell systems and living organisms (Tomita and Nishioka,

2006). A clearer understanding of metabolism leads to a better understanding of the

overall physiological state of organisms. In metaphorical terms, metabolomics has been

described as a direct `functional readout of the physiological state' of a living organism

(Roessner and Bowne, 2009). Thus, metabolomics is a powerful tool which is capable of

understanding the knowledge of underlying principles of the feature of living organisms.

Metabolomics has been applied in di�erent �elds such as pharmaceutical analysis, plant

science, toxicology and disease diagnosis, environmental and human nutrition research.

In the next section, a description of the main aspects of analysis of metabolomics data is

given.

3.1.1 Analysis of Metabolomics Data

There are three main approaches which are used as tools for the analysis of metabolic

networks and pathways, which are metabolite �ngerprinting, metabolite pro�ling and

metabolite target analysis (Fiehn, 2002; Nielsen and Oliver, 2005; Ryan and Robards,

2006).

More precisely, metabolite �ngerprinting is considered as spectra generated by analytical

approaches, such as NMR and MS, which provide a �ngerprint of the metabolites pro-

duced by a cell. It is used to classify a large number of samples with the aid of multivariate

statistics. This procedure has a disadvantage, which is that there is no information about

or di�erentiation of individual metabolites.

Additionally, metabolite pro�ling is concerned with the identi�cation and quantisation
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of a prede�ned group of known or unknown metabolites, which is a type of metabo-

lites belonging to a selected metabolic pathway. This is the oldest and most established

metabolite analysis approach and was considered as the precursor for metabolomics.

The main metabolite target analysis is concerned with qualitative and quantitative analy-

sis of a speci�c metabolite or metabolites which participate in a speci�c part of the living

system's metabolism. Thus, only signals from the required metabolites are retained for

analysis, while the other signals are treated as negligible.

3.1.2 Mass Spectrometry in Metabolomics

Mass spectrometry (see chapter 2) is an analytical technique that acquires spectral data in

the form of a mass-to-charge ratio (m
z
) and a relative intensity of the measured compounds.

For the spectrometer to generate the peak signals for each metabolite, the biological sam-

ple �rst needs to be ionized. The resulting ionized compounds from each molecule will

then generate di�erent peak patterns that de�ne the metabolite pro�ling of the original

molecule. A wide range of instrumental and technical variants are currently available for

MS spectrometry. These variants are mainly characterised by di�erent ionization and

mass selection methods (El-Aneed et al., 2009).

In metabolomics, MS is generally preceded by a separation step. This step reduces the high

complexity of the biological sample and allows the MS analysis of di�erent sets of molecules

at di�erent times. Liquid and gas chromatography columns (LC and GC, respectively)

are the most commonly used separation techniques (Theodoridis et al., 2011). This chro-

matographic separation technique is based on the interaction of the di�erent metabolites

in the sample with the adsorbent materials inside the chromatographic column. This

way, metabolites with di�erent chemical properties will require di�erent amounts of time

to pass through the column. The time that each metabolite requires, called "retention

time", is used together with the m
z
MS values to generate the two axes of the LC-MS and

GC-MS spectral data. Figure 3.1 shows examples of LC-MS spectra.
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Amongst the three di�erent strategies used in metabolomic studies, stated above, there are

two main research directions: metabolic pro�ling and metabolic �ngerprinting. Metabolic

pro�ling is focused on the analysis of a set of metabolites related to speci�c biochemical

pathways or a group of compounds (Dettmer et al., 2007). In pharmacology, the objective

of metabolic pro�ling is obtaining the catabolic outcome of administered drugs (Fiehn,

2002).

Figure 3.1: Examples of spectra obtained with LC-MS technologies. (C) An example

of a LC-MS spectrum with colour-coded intensity and referred to the m
z
and retention

time axes. (D) The sum of the LC-MS spectrum across the m
z
axis. (E) The total ion

chromatogram (i.e., sum of the LC-MS spectrum across the retention time axis). The

coloured regions in (E) correspond to the sum of the LC-MS spectrum limited to the m
z

ranges depicted with the same color in (D) (Alonso et al., 2015).
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Metabolic pro�ling is usually hypothesis-driven rather than hypothesis-generating: metabo-

lites are selected for investigation on the basis of the hypothesis. Therefore, the drawbacks

of metabolic pro�ling are obvious: although this method can corroborate or refute the

hypothesis, its capacity to reveal new aspects is limited. Another drawback of this method

is that it is location-limited because it focuses on speci�c groups of metabolites (Dettmer

et al., 2007).

Metabolic �ngerprinting can be carried out on a broad range of biomaterial: urine, tis-

sues, cells, amongst others. Contrary to metabolic pro�ling, metabolic �ngerprinting

is a main 'omics' approach. This is because it can be applied concurrently to a wide

range of metabolites. Strictly speaking, as highlighted in various papers in the liter-

atures, metabolic �ngerprinting is a more global approach (Dettmer et al., 2007; Ellis

et al., 2007). Metabolic �ngerprinting focuses on comparing the changing patterns of

metabolites. Metabolic �ngerprinting is widely utilised as a diagnosis tool in medicine

because it aids the identi�cation and separation of diseased subjects, as well as to assess

the dynamics of biotic, abiotic, and genetic perturbations (Ellis et al., 2007).

Metabolic �ngerprinting and metabolic pro�ling depend on various analytical tools, one

of which is nuclear magnetic resonance (NMR) technology, which aids the screening of

samples for various patterns. The principal advantage of NMR is its non-destructive

feature, meaning that the sample can be used for further analysis by other techniques.

Furthermore, it is highly selective, with the capability to distinguish between several

closely related chemical compounds. In addition, NMR requires minimal sample prepa-

ration requirements. However, the drawback of this method is that it only allows for the

identi�cation of medium and high-level metabolites, as a result of the NMR tool possess-

ing limited sensitivity. In particular, Scalbert et al. (2009) estimated that no more than

60 di�erent metabolites could be assessed in a biological sample.

This limitation of NMR, however, can be countered by performing mass spectrometry

(MS) analysis instead. MS is a highly selective and sensitive instrument. The MS method

details spectral information such as the precise mass of molecular ion and fragmentation
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patterns. This, therefore, allows for the identi�cation of the metabolites. As a conse-

quence, a rapid increase of MS-based metabolomics studies has been evident. MS analysis

is often used in conjunction with liquid chromatography (LC) analysis. The combination

is usually referred to as LC-MS-based metabolomics. In LC-MS analysis, the prepared

biological samples are admitted into a mass spectrometer through LC. In a simpli�ed de-

scription, LC-MS analysis works as follows: comparative abundances of metabolites are

estimated, data is processed, and analysis takes place (Chen et al., 2007). The creation

of the LC-MS technology was mainly driven by the pharmaceutical industry. The drive

for this was the industry's need for high sensitivity and precision, factors required for

studying drugs and their metabolic e�ects (Lindon et al., 2011). The LC method alone is

insu�cient in providing a comprehensive analysis due to its limited sensitivity and selec-

tivity. In metabolic pro�ling MS works as a separation method; it separates metabolites

based on their mass-to-charge ratio. However, when LC is combined with MS, a higher

degree of sensitivity and speci�city is achievable (Fiehn, 2002).

In metabolic �ngerprinting, the function of LC-MS analysis is not to separate the analyte

but to provide precise data for further identi�cation and analysis of biomarkers. This

function also requires a high degree of sensitivity, which the LC-MS technique allows.

The main advantage of the MS technique in metabolic �ngerprinting is its capability to

deliver high mass accuracy, which in turn produces a good anatomic structure of data. A

further implication of this is that the number of potential identities for candidate markers

is decreased (Theodoridis et al., 2013). Therefore, the overall process of identi�cation and

analysis is aided.

3.1.3 Advantages and Disadvantages of MS

Advantages, and disadvantages of MS are given below (Chao et al., 2010; Kealey and

Haines, 2002) The main advantages of MS are:
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1. Providing selective quali�cation and quanti�cation of metabolites.

2. It can simultaneously identify and measure a variety of metabolites.

3. High sensitivity.

4. O�ers rapid detection of metabolites.

However, in using the MS method, the researcher can meet the following problems:

1. The detection limits are lower if the substance to be analysed can be ionized.

2. Before applying MS it is necessary to apply a number of di�erent separation tech-

niques depending on the classes of the substances to be analysed.

3. MS methods require con�rmation from standard compounds, which is often not

available, especially for unknown compounds.

4. MS is a destructive analytical technique (unlike NMR). That means, after an MS

analysis the samples cannot be reused for other analyses.

3.1.4 Metabolomics Applications

Metabolomics has several applications, where metabolite pro�ling is performed for medi-

cal and diagnostic purposes (Gomez-Casati et al., 2013). Furthermore, metabolomics aids

the classi�cation and description of plants and fungi (Gomez-Casati et al., 2013; Hong

et al., 2016; Smedsgaard and Nielsen, 2005), such as detecting and quantifying mycotoxins

which cover a path, to characterisation of fungi. The study of mycotoxins was also utilised

to progress regulations related to food safety (Nielsen and Jewett, 2007). Additionally,

metabolomics is an important tool in functional genomics (Bino et al., 2004). Speci�cally

speaking, it aids the discovery of the functions of genes. A further example is a role

metabolomics plays in providing a classi�cation of molecular signatures, which accounts

for a phenotype of unknown and silent mutations. In addition to these, metabolome stud-



39 Metabolomics and Analysis Techniques

ies have been utilised to characterise attributes which account for a silent plant phenotype.

Metabolomics tools have also aided the developing of hypotheses about the impact of cer-

tain phenotypes on amino acid and carbohydrate metabolism (Nielsen and Jewett, 2007).

There are other potential applications of metabolomics in evolution studies. For example,

studies highlight that certain secondary metabolites are very species-speci�c and are con-

sidered to be potential markers for phylogenetics and taxonomy (Roessner and Bowne,

2009). As a result, they can aid in revealing the evolution of certain species. In the �eld

of pharmacology, metabolomics studies are widely used for the purposes of drug discovery

and development (Wishart, 2008). Speci�cally speaking, metabolomics is applied in lead

compound discovery. Furthermore, metabolomics aids identifying biomarkers, which are

essential in monitoring diseases as well as assessing drug e�ciency, thus, it is also used

in drug metabolism studies. Finally, metabolite research has been used in drug toxicity

assessment, clinical trials and post-approval drug monitoring (Wishart, 2008). Hence, it is

observed that metabolomics is associated with essentially all stages of drug development,

from discovery to post-approval maintenance.

In general metabolomics data sets are highly multivariate, i.e. many more variables are

recorded than the number of observations present.

3.2 Multivariate Analysis in Metabolomics

The data generated in a metabolomics experiment generally can be represented as a ma-

trix of intensity values containing N observations (samples) of K variables (peaks). In

general, analysis of metabolomics data involves the application of multivariate statistical

methods and informatics used for chemically-based data ("chemometrics"). The main aim

of metabolomics is to classify a spectrum, where the data are generated by a metabolomics

analytical technique and contain the metabolic pro�le information from a biological sam-

ple. More precisely, the bene�t of the spectrum is to identify its basic patterns of peaks,
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and also metabolites corresponding to these peaks. This approach can require reducing

the dimensionality of these complex data sets, for example by two or three-dimensional

mapping procedures to enable easy visualisation of any clustering or similarity of samples.

In addition, supervised chemometric methods can be used to model multi-parametric data

sets, so the class of separate samples can be predicted based on a series of mathematical

models derived from the original data (Green, 2014).

The aim of metabolomics is to supply a universal snapshot of biological �uids and all

small-molecule metabolites in a sample, free of observational biases present in more fo-

cused studies of metabolism. However, the huge information content of such universal

analyses generating very high dimensional data introduces another challenge, as e�ciently

drawing biologically useful conclusions from any one metabolomics data set requires spe-

cialised forms of data analysis (Chat�eld, 2018).

One path to �nding meaning in metabolomics data sets involves multivariate analysis

(MVA) methods such as principal component analysis (PCA), hierarchical clustering

analysis (HCA) and partial least squares projection to latent structures (PLS), in which

spectral features contributing most to variation or separation are identi�ed for further

analysis. However, these methods are not a panacea; Worley and Powers (2013) discuss

the use of multivariate analysis for metabolomics, as well as pitfalls and misconceptions.

Metabolomics uses various statistical methods for data analysis. The choice of the method

depends on the aims of the study. If the aim is to classify samples and if there is no prior

information about the sample identity, then principal component analysis (PCA) and

hierarchical clustering analysis (HCA) are used as exploratory methods to �nd out prop-

erties of biomarkers, while if the sample identity is known, then such supervised methods

as partial least squares (PLS) can be used (Dettmer et al., 2007).

PCA is one of the most common statistical methods used, as metabolomics data are

highly multivariate. This tool is used to reduce complexity or number of parameters, by

projecting the data onto a lower-dimensional space. PCA allows observation of di�erences

among samples and identi�cation of variables which contribute to these di�erences. Also,
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PCA is a powerful visualisation tool, which enables visual detection of sample patterns,

through the projection of multidimensional data onto 2D and 3D plots (Figure 3.2).

HCA, on the other hand, is an unsupervised method which produces a dendrogram (tree-

like diagram) to group data points. It, as well as other clustering methods, is used to

evaluate in a multivariate way the similarity of a set of samples on the basis of the

metabolite pro�les of these samples. The use of HCA can allow classifying unknown sam-

ples according to their closeness to known ones. This method, however, is criticised as

poorly reproducible and mathematically unjusti�ed. It is also claimed that this method

lacks adequate measurement for the quality of clusters (Goodacre et al., 2004).

Whilst the unsupervised nature of PCA gives a means to achieve dimensionality reduc-

tion, its only reveals group structure when within-group variation is su�ciently less than

between-group variation. Therefore, supervised forms of discriminant analysis such as

Partial Least Squares, that depend on the class membership of each observation, are also

commonly used in metabolic �ngerprinting experiments (Wold et al., 2001). However,

this requires knowledge of pre-existing classes. PCA followed by HCA or other clustering

method allows identi�cation of unknown groups that may be present in the data, and is

an approach often used in the literature (e.g. Miyagi et al., 2010; Worley and Powers,

2013).

Figure 3.2: Statistical analysis of data via PCA to group samples and indicate the marker

ions for each group (Bankova et al., 2016).
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3.3 Data Description

We use three di�erent data sets from propolis samples in this thesis. The �rst data set

used to study methodology contains three sub-sets of data from Scotland and the second

data set comes from propolis samples from di�erent sites in Libya. These are used to

compare methods of analysis, while a third data set is introduced in a case study in

Chapter 10. Each one is described below:

• Data from Scotland

Samples of propolis were collected during July and August 2014 by beekeepers from

several of their honey bee colonies, in three di�erent areas of Scotland, i.e. Aberdeen-

shire (north-east Scotland), Dunblane in central Scotland, and Fort William in the

north-west (see Figure 3.3). These samples were pro�led using liquid chromatography-

high-resolution mass spectrometry (LC-MS) in Dr David Watson's lab in SIPBS,

at the University of Strathclyde. The propolis samples contained several hundred

compounds, many of which are still unknown structures. The Aberdeenshire data

has 27 samples with 921 variables, there are 17 samples with 511 variables from Fort

William and 9 samples from Dunblane with 498 variables, from 9 hives or colonies,

6 colonies and 3 colonies respectively. Every 3 samples come from the same hive,

except for samples 10 and 11 in the Fort William data, which come from the same

hive, but sample 12 comes from the same hive as samples 13 and 14.

In all data sets, the rows are chromatographic peak areas (heights of the trace for

that sample; see Figure 3.1) for putatively identi�ed compounds. The column head-

ings relate to a label for the sample (hive or colony), with 3 repeat analyses per

hive (see Figure 3.4). I will refer to data set I, II and III for Aberdeenshire, Fort

William and Dunblane respectively. The data were transposed for analysis, so that
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metabolites relate to columns in the data and observed samples to rows. The pro-

portion of zero values are 3%, 0.94% and 0.11% for Aberdeenshire, Fort William

and Dunblane respectively.

Fort William Aberdeenshire

Dunblane

E

N

W

S

Figure 3.3: The UK map, including the locations of the colonies supplying the analysed

Scottish propolis samples.

• Data from Libya

Twelve raw propolis samples were available from di�erent geographical localities in

Libya with 300 variables (see map in Figure 3.5); Tukra (Al Aquriyah), a small

village located about 70km east of Benghazi city, Libya (P1); Qaminis (53km south

of Benghazi) (P2); Bayda (east of Benghazi city) (P3); Quba (east of Benghazi city)

(P4); Kufra A (south-east Libya) (P5); Kufra B (south-east Libya) (P6); Kufra C
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Figure 3.4: An example of a data set for propolis, where column A shows the ID for

each mass spectrum from the MassBank library (Horai et al., 2010), column B shows m
z

total ion chromatogram displayed for the detected peaks, column C shows retention time,

column D shows name of components where this is available and columns E, F, G relate

to a label for the hive (or colony).

(south-east Libya) (P7); Ghadames (south-west Libya) (P8); Tripoli (north-west

Libya) (P9); Kasser Khiar (located 80 km east of Tripoli) (P10); Khumas (located

120km east of Tripoli) (P11); and Khumas (located 120km east of Tripoli) (P12).

Samples P1-P12 were all used in this study. The proportion of zero values is 0.66%

for Libya data.

Samples P1 and P2 were collected in December 2012, samples P3-P7 were collected

in July 2013 and the other samples P8-P12 are from March 2014. In this data the

rows are also chromatographic peak areas for putatively identi�ed compounds. The

column headings relate to a label for the samples (hives or colony; see Figure 3.4).

3.4 Conclusion

In this chapter, metabolomics has been described, as well as analysis of metabolomics data

and metabolomics applications, and multivariate statistical analysis for metabolomics

data, including PCA and cluster analysis using a hierarchical approach (HCA). The data

to be used in this thesis were also introduced. These are metabolomics data sets resulting

from MS analysis of propolis samples from Scotland and Libya. A further, European,
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Figure 3.5: Map of Libya (after Siheri et al., 2016) including the locations of the colonies

supplying the analysed Libyan propolis samples: P1 (Al Aquriyah), P2 (Qaminis), P3

(Bayda), P4 (Quba), P5 (Kufra (A)), P6 (Kufra (B)), P7 (Kufra (C)), P8 (Ghadames),

P9 (Tripoli), P10 (Kasser Khiar), P11 (Khumas (A)), P12 (Khumas (B)).

data set is described and used in Chapter 10.

The next chapter of the thesis describes the most popular pre-processing and pre-treatment

methods for the enhancement of the quality and accuracy of the metabolomics data, and

the preparation of the data to make it suitable for further statistical analyses. A number

of pre-treatment methods are also evaluated on the Scottish and Libyan data sets, as part

of the applied work of this thesis.



Chapter 4

Pre-processing and Pre-treatment of

the Data

After extensive discussion concerning propolis, chemical analysis of propolis samples and

metabolomics, and introducing our data, this chapter now describes the most important

and commonly used pre-processing and pre-treatment methods for metabolomics data.

Pre-processing methods are described in Section 4.2 and pre-treatment methods can be

found in Section 4.3. These methods are applied to the data sets already described, to

compare their use.

4.1 Overview of Methods

Pre-processing and pre-treatment are an essential part of any chemometric data analysis.

They concern the application of certain operations to data, either to remove unwanted

variation or noise or to reduce it to an acceptable point. Goodacre et al. (2007) stated

that pre-processing of a data set is the general term for those processes used to convert

the raw instrumental data into clean data, in order to make it suitable for pre-treatment

46
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and further applications. These pre-processing methods include Noise Filtering, Deconvo-

lution, Peak Detection, Alignment and Baseline Corrections, among others. On the other

hand, pre-treatment involves the transformation of the pre-processed data to prepare it

for data analysis.

Metabolomics data are mostly presented in tabular form, with each row of such a ta-

ble relating to a speci�c sample and each column to a single measurement (or variable).

Pre-treatment includes scaling operations used on the rows and columns (most com-

monly Standardisation, Range scaling, Pareto-scaling, Vast scaling and Level scaling),

and transformations of individual elements of a data set (usually logarithmic or power

transformation). The e�ect of data pre-treatment will be illustrated by the application

of eight data pre-treatment methods to metabolomics data sets. Pre-processing and pre-

treatment of the data usually have either positive or negative e�ects on the outcome of

the analysis. Pre-treatment methods are also applied to data sets to convert the clean

data to a di�erent scale (for instance, relative or logarithmic scale). Therefore, they aim

to focus on the relevant (biological) information and to reduce the in�uence of disturbing

factors such as measurement noise.

4.2 Pre-processing of Raw Data

After generating the signals, it is often necessary to apply speci�c techniques to clean

the data. Pre-processing for MS data typically includes noise �ltering, baseline correc-

tion, peak alignment, peak detection, peak quanti�cation and spectral deconvolution. It

should be noted that not all of the aforementioned processing steps are included in all

methods, nor are they necessarily performed in the same order (Coombes et al., 2005).

Additionally, analytical instruments do not provide clean and comparable lists of metabo-

lites. The raw data must be processed to generate a practicable data matrix in a variety

of ways (Castillo et al., 2011). The key step is to eliminate the variance and bias in
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the data analysis, to reduce the complexity and enhance metabolically signi�cant signals

(Smith et al., 2006). Therefore, several algorithms have been developed, and multiple

open-source programs have been applied to process raw MS data acquired through liquid

chromatography-mass spectrometry (LC-MS) or gas chromatography-mass spectrome-

try (GC-MS). Among these, the following have attracted particular attention for their

practicability and e�ectiveness: XCMS (https://xcmsonline. scripps.edu/) (Coombes

et al., 2005); MZmine (http://sourceforge.net/projects /mzmine/) (Katajamaa et al.,

2006); OpenMS (http://openms. sourceforge. net/) (Sturm et al., 2008); and MetAlign

(http://www.metalign.nl) (De Vos et al., 2007). Most members of the research community

in metabolomics work with these tools, and new programmes, such as MetSign, MSFACTs

and Metabolite Detector (De Vos et al., 2007; Duran et al., 2003; Wei et al., 2011), have

been steadily developed to increase the quality and e�ciency of data pre-processing. Most

of these tools are freely available. Furthermore, through these tools, the exchange of al-

gorithms and data within the community is convenient.

In general, tools for raw data pre-processing include three basic modules, namely, noise

�ltering and baseline correction, peak detection and deconvolution and alignment. In the

following sections, we will introduce di�erent chemometric algorithms and strategies for

these modules.

4.2.1 Noise �ltering and baseline correction

Noise �ltering is designed to separate component signals from the background originating

from the chemical matrix or instrumental interference, and to remove measurement noise

or baseline distortions (Katajamaa and Oresic, 2007). Regularly, during the baseline

correction of one-way data, the two ends of a signal peak are manually identi�ed by

analysts and a piecewise linear approximation is then applied to �t a curve as the baseline

(Zhang et al., 2010). However, this procedure is time-consuming, and its accuracy highly

depends on the user's operating skills. Thus, numerous algorithms have been developed
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for better estimation of the baseline. For MS-based data sets, the methods for removing

random noise are typically implemented by traditional signal processing techniques in

chemometrics. Noise �ltering of LC-MS data is more complicated than that of GC-MS

data because chemical and random noises are both included in the former (Hilario et al.,

2006). This type of noise can lead to a baseline shift in the intermediate mass range of

LC-MS spectra. In order to resolve this problem, several �ltering methods have been

proposed. Often in MS experiments, the generated spectra may appear to show baseline

inconsistencies. Baseline o�sets from spectrum to spectrum can a�ect the outcomes of the

data analysis in many ways. They a�ect negatively the abundance of MS, hence causing

problems in the accurate peak assignment and quanti�cation (Xi and Rocke, 2008). For

example, in a PCA model, baseline e�ects may cause the introduction of extra components

in the model, and as a consequence, the results and interpretation of the analysis could be

signi�cantly altered from those taken from the actual model (Gemperline, 2006). There

are di�erent types of baseline e�ects, which vary from a simple o�set to extremely complex

shapes such as an upward or downward sloping line or even a broad curved shape. The

ways to remedy these problems depend on the type of baseline error in the spectra. In

simple o�set cases, knowing that a speci�c region in the spectra has signal values equal to

zero, it is usually su�cient to subtract the average value of the signal in this region (m
z
)

for each spectrum, from each metabolite in the respective regions. In more complex cases,

it may be necessary to �t a polynomial function through all the valleys in the spectra.

This polynomial line is then subtracted from the corresponding spectrum to correct the

baseline di�erences (Gemperline, 2006). These methods are also called frequency domain

correction methods (Xi and Rocke, 2008).

4.2.2 Peak detection and deconvolution

Peak detection and deconvolution are important to identify and quantify the signals cor-

responding to the molecules (e.g., the metabolites) in a sample (Castillo et al., 2011). A
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peak detection method can identify the true signals correctly and avoid false positives.

However, high response values do not always guarantee real peaks as some sources of

noise can also produce high signals. Conversely, low peaks may correspond to real sig-

nals. Therefore, constraints on the peak shapes and criteria of minimal intensity, area or

signal-to-noise are widely applied to distinguish real peaks from noise. Conventionally,

peak detection algorithms follow two strategies: derivative techniques or matched �lter re-

sponse. A common problem in MS metabolomics studies is the appearance of overlapping

peaks in the spectra. Deconvolution is a pre-processing technique that is used to over-

come this di�culty (Goodacre et al., 2007). In fact, the fragments, adducts and molecule

isotopes increase the di�culty of detecting peaks in the signals; therefore, it is necessary

to improve the detection procedure. In MS, it is necessary to use the pro�le resolutions

of both spectral and chromatography steps. This can be done by correlating the sample

pro�les with the retention time, in order to regroup ions coming from the same metabo-

lite. In addition, deconvolution can be used to reduce the complexity of chromatograms

obtained with soft ionisation methods by �ltering multiple charged types, clusters and

adducts (Jonsson et al., 2005). Additionally, to match the peaks extracted from �les,

all mass spectra and scans (chromatograms) have to be aligned across the total dataset

and/or matching criteria should be set, commonly the mass and retention time windows

(Dettmer et al., 2007). Recently, Tsugawa et al. (2015) proposed an open-source software

pipeline, called MS-DIAL, instead of an R package, for data independent acquisition-based

metabolite identi�cation and quanti�cation by mass spectral deconvolution.

4.2.3 Alignment

The purpose of alignment of detected features in di�erent samples is to remove shifts

in samples for a given signal, to guarantee downstream extraction of useful information.

So far, several alignment techniques have been developed to minimise run-to-run shifts

(Smith et al., 2015). To make them applicable to chromatographic systems coupled with
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sophisticated detection instruments, e.g., LC-MS, which have yielded large amounts of

two-dimensional data, the dimensionality should be reduced. The data reduction could

be accomplished by generating integrated peak areas or total ion chromatograms. For

one-dimensional data, some kinds of time alignment procedures could be employed as a

useful method for tackling this problem of retention time shifts (Johnson et al., 2003).

Other alignment methods attempt to integrate peak areas. Despite being time consuming,

this approach is recommended as the process of data cleaning because the retention time

shift, noise pollution and background shift are cleared simultaneously.

4.2.4 Conclusion

Pre-processing is concerned with the cleaning of the generated signals, to remove problems,

for instance, overlapping peaks, baseline drifts, signal phasing and the existence of an

extremely large number of metabolites in the data. A range of methods to overcome such

problems was brie�y described above, with emphasis on those methods most suitable for

MS signals, as the spectra used in this project were generated by mass spectrometry.

However, the available spectra had already been signal-processed by Dr David Watson

(the data provider) (and colleagues); therefore there was no need to apply any of the

aforementioned techniques.

4.3 Pre-treatment Methods

Once pre-processing of the data has been completed, it is quite often necessary to apply

pre-treatment methods, in order to prepare the data for processing. It is common in

metabolomics data analyses that not all the observed variation is desirable, but it is

related to biological and technical variation (sampling, sample work-up and analytical

measurement errors). Additionally, the data is more often than not heteroscedastic. Pre-
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treatment methods are used to decrease the e�ects of these problems as much as possible.

These methods depend on both the required biological information and the processing

method to be used for the statistical analysis of the data. In all data sets in this project,

the rows are a metabolite, and the columns are the samples (hives or colony) and these

were transposed for analysis. Pre-treatment methods can be applied to the columns

(column scaling), to the rows (row scaling) and to individual elements of a data set,

called transformations (Brereton, 2009). The normal order of performing the following

pre-treatment methods in a data set is usually to �rst transform individual elements of

the data set, then to apply row scaling and �nally to scale the columns (Brereton, 2009).

Mean-centring may be used as part of scaling.

4.3.1 Transformations

In general, metabolomics data su�er from heteroscedasticity and are often skewed. In

addition, interactions between the di�erent metabolites are not necessarily additive but

can be multiplicative (Boccard et al., 2010). The multivariate statistical methods used

for the analysis of metabolomics data are more e�ective when the data is symmetric,

and many statistical signi�cance tests often assume that the distribution of the data is

approximately normal. Therefore, it is useful to convert the data, so it approximates

normality as closely as possible (Brereton, 2009). Thus, the transformations of the ele-

ments of metabolomics data sets are important in helping towards this aim. There are two

common transformation approaches, which are the logarithmic and power transformation.

Logarithmic Transformation

A logarithmic transformation is important as it minimises the problem with heteroscedas-

tic data, converts multiplicative models to additive and reduces the in�uence of large data

values, for instance, outliers and occasional high peaks. This is achieved by replacing an
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element xij by log(xij). Here we use log to base 10 (van den Berg et al., 2006). Although

this has advantages, it has some limitations such as handling zeroes or very close to zero

values (especially when these values are very close to the limit of detection). If the values

are below the limit of detection, then they are considered as zero, and therefore their

logarithms are not de�ned (Brereton, 2009; van den Berg et al., 2006). Usually, a small

value is added to xij in the case of xij being zero, before taking the log, even to all values.

For instance, here we added 1 for all xij before taking the log.

Power Transformation

Power transformation has some strengths such as (Brereton, 2009):

1. It reduces the in�uence of large values such as outliers and occasional high peaks.

2. It can cope with zero values, eliminating the need to replace values below the limit

of detection.

3. Any uncertainties in small values do not a�ect the data analyses as much as in the

case of logarithmic transformation. The smaller a value is relative to other values,

the smaller its in�uence on the nth root transformed data will be. The drawbacks

of this transformation can be summarised as:

1. All values should be positive.

2. If the distribution of the data is approximately log-normal, then power transforma-

tion cannot convert the distribution of values to a symmetric one.

3. There are many options for the value of the power. Trial and error are needed to

identify the most appropriate choice. Especially in multivariate data such as in

metabolomics, where each metabolite may have a di�erent distribution, it can be

quite di�cult to decide on the power.
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Power transformation is performed by replacing xij with xnij. For n = 1/2, this is the

square root transformation, and so on (Brereton, 2009). Additionally, the most popular

of power transformation method is the square root (van den Berg et al., 2006).

Application of Transformation of Data Sets I, II and III

We now compare the e�ects of the di�erent pre-treatment methods (mean-centring, log

transformation and power transformation) on the Scottish data sets, in terms of the re-

sults of PCA (we consider the Libya data later) (Shlens, 2003). The e�ect of the various

transformation methods on the PCA scores and loadings of data set I can be seen in

Figures 4.1 and 4.2 respectively. The score plots in Figure 4.1 indicate that the scores of

the twenty-seven samples of data set I (Aberdeenshire) are quite similar in shape, with

the scores of the true data and power transformed data (for both n values) having the

highest similarity. The log data show a slightly di�erent pattern.

In this section we consider only the e�ect of transformation on the patterns seen in the

plots of the PCA results, not interpretation of the principal components themselves. The

interpretation is considered later in the thesis. Concerning the loadings plots in Figure

4.2, there is a similar pattern to that of the scores, as the loadings on both PCs in the

true data and (both) power transformed data sets are similar in shape, whereas the log

transformed plot is quite di�erent. The loadings on PC1 and PC2 of the log transformed

data (Figure 4.2) showed many large peaks, while after power transformation only a few

large peaks were present. In the other plots, there are fewer peaks, but the values of them

are higher in magnitude, hence identifying a few metabolites contributing to PC1 and

PC2.

It is evident that di�erent results will be obtained when we use di�erent means of pre-

treatment as the input for data analysis. In general, there is more variation in the loadings

of PC1 and PC2 for the log data, and the shapes of the scores and loadings plots for the

true data and both powers have the highest similarity among all plotted data sets.
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Now we will discuss which transformation methods is the best. The general idea behind

−1.5e+10 0.0e+00 1.5e+10−
6e

+
09

−
2e

+
09

2e
+

09
6e

+
09

Mean−centred true data

PC1

P
C

2
−150 −50 0 50 150

−
10

0
−

50
0

50
10

0

Log−transformed data

PC1

P
C

2
−6e+09 −2e+09 2e+09 6e+09−

3e
+

09
−

1e
+

09
1e

+
09

3e
+

09

Power−transformed (n=1/2) data

PC1

P
C

2

−6e+09 −2e+09 2e+09 6e+09−
2e

+
09

0e
+

00
1e

+
09

2e
+

09

Power−transformed (n=1/3) data

PC1

P
C

2

Figure 4.1: PC1 vs PC2 scores plots for the transformed Aberdeenshire data sets, using

mean-centring, and log transformation or power transformation after mean-centring with

n=1/2 and n=1/3.

the transformation is to make a variable more symmetric. Therefore, we can try various

transformations and test for normality, as well as using visual displays, Q-Q plots, etc.

Figure 4.3 shows histograms of the data set I values, with a normal curve superimposed

(command plotNormalHistogram from R package "rcompanion"). Looking at the grey

bars, this data is skewed strongly to the right (positively skew) and the log data looks

much more normal. The grey bars deviate noticeably from the normal curve for the true

and power transformed data (for both n values). The e�ect of the log and the power

transformations on the data as a means to correct for heteroscedasticity is seen in Figure

4.3. Compared to the true data, power transformation was not able to remove the het-

eroscedasticity. The log transformation was able to remove heteroscedasticity, however

only for the metabolites that are present in high concentrations. In contrast, the standard
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Figure 4.2: PC1 vs PC2 loadings plots for the transformed Aberdeenshire data sets, using

mean-centring, and log transformation or power transformation after mean-centring with

n=1/2 and n=1/3.

deviations of metabolites present in low concentrations were in�ated after log transfor-

mation due to the large relative standard deviation of these less abundant metabolites.

Therefore, log transforms tend to have a signi�cant e�ect on distribution shape, and in

visualisations can bring extreme outliers closer to the remainder of the data. Since data

set I has many zero values, we added one to all values before log transforming to ensure

that they are positive. This value can of course also in�uence the result (Brereton, 2009).

We now look at the Fort William data (data set II). The score plots in Figure 4.4

also indicate that the scores of the seventeen samples of data set II (Fort William) are

quite similar in shape, with the scores of the true data and power transformed data (for

both n values) having the highest similarity. Again the pattern is a bit di�erent for the

log data. Concerning the loadings plots in Figure 4.5, there is a similar pattern to that
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Figure 4.3: Histograms of the data set I values, with a normal curve superimposed.

of the scores, as the loadings on both PCs in the true and both power transformed data

sets are similar in shape, whereas the log transformed plot is quite di�erent. The loadings

on PC1 and PC2 of log transformed data (Figure 4.5) showed many large peaks, while

after power transformation, only a few large peaks were present. In the other plots there

are fewer peaks but the values of them are again higher in magnitude, hence identifying a

few metabolites contributing to PC1 and PC2. In general, there is more variation in the

loadings of PC1 and PC2 for the log data, and the shapes of the scores and loadings for

the true data and both powers have the highest similarity among all plotted data sets.

Figure 4.6 shows histograms of the data set II values, with a normal curve superimposed.

Looking at the grey bars, this data is skewed strongly to the right (positively skew) and

the log data plot looks most normal. The grey bars deviate noticeably from the normal

curve of the true and power transformed data (for both n values). The e�ect of the log

and the power transformation on the data as a means to correct for heteroscedasticity is

shown in Figure 4.6. Again, compared to the true data, the power transformation was
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Figure 4.4: PC1 vs PC2 scores plots for the transformed Fort William data sets, using

mean-centring, log transformation and power transformation with n=1/2 and n=1/3.

not able to remove heteroscedasticity. The log transformation was able to remove het-

eroscedasticity, however only for the metabolites that are present in high concentrations.

As before, the standard deviations of metabolites present in low concentrations were in-

�ated after log transformation due to the large relative standard deviation of these less

abundant metabolites. Again, as data set II has many zero values, we added one to all

values before taking the log, to ensure they are positive.

We now look at the Dunblane data (data set III). The score plots in Figure 4.7 in-

dicate that the scores of the nine samples of data set III (Dunblane) are quite similar in

shape, with the scores of the true data and power transformed data (for both n values)

having the highest similarity, although as similar as with the other data sets. Concerning

the loadings plots in Figure 4.8, there is a similar pattern to that of the scores, as the

loadings on both PCs in the true and both power transformed data sets are similar in
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Figure 4.5: PC1 vs PC2 loadings plots for the transformed Fort William data sets, using

mean-centring, log transformation and power transformation with n=1/2 and n=1/3.
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Figure 4.6: Histograms of the data set II values, with a normal curve superimposed.
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shape, and again the pattern is a di�erent for the log data. The loadings on PC1 tend to

be negative for the log data. The loadings on PC1 and PC2 of the log transformed data

showed many large peaks, while after power transformation, only a few large peaks were

present.

In general, the shapes of the scores and loadings for the true data and both power trans-

formed data sets have the highest similarity among all plotted data sets.

Figure 4.9 shows histograms of data set III, with a normal curve superimposed. This
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Figure 4.7: PC1 vs PC2 scores plots for the transformed Dunblane data sets, using mean-

centring, log transformation and power transformation with n=1/2 and n=1/3.

data is skewed strongly to the right (positively skew) and the log data looks most normal.

The grey bars deviate noticeably from the normal curve of the true and power transformed

data (for both n values). The power transformation was not able to remove heteroscedas-

ticity. The log transformation was able to remove heteroscedasticity, however, as before,

only for the metabolites that are present in high concentrations. Again, as data set III
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Figure 4.8: PC1 vs PC2 loadings plots for the transformed Dunblane data sets, using

mean-centring, log transformation and power transformation with n=1/2 and n=1/3.

has many zero values, we added one to all values to ensure they are positive, before taking

the log.

The normal order of performing pre-treatment methods in a data set is usually �rst to

transform the individual elements of the data set, then to apply row scaling and �nally

to scale the columns (Brereton, 2009). Before considering scaling, we draw conclusions

about transformations, from the comparisons made on these data sets.

Conclusions from Transformation of Data Sets I, II and III

Transformations are non-linear conversions of the data. Transformations are in general

applied to correct for heteroscedasticity (Kvalheim et al., 1994), to make skewed distri-

butions (more) symmetric, and to convert multiplicative relations into additive relations.

In biology, relationships between variables are not necessarily additive but can also be
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Figure 4.9: Histograms of the data set III values, with a normal curve superimposed.

multiplicative (Sokal and Rohlf, 1995). A transformation may be necessary to identify

such a relationship.

Since the log and the power transformation minimise big values in the data set relatively

more than small ones, the transformations have arti�cial scaling e�ect as di�erences be-

tween big and low values in the data are reduced. However, the arti�cial scaling e�ect

is not determined by the multiplication with a scaling factor, as for a real scaling e�ect,

but by the impact that these transformations have on the original values. This arti�cial

scaling e�ect is therefore rarely su�cient to adequately adjust for the magnitude of vari-

ances. Consequently, it can be useful to apply a scaling method after transformation.

However, for data sets I, II and III it was decided not to use any transformation in further

analysis. Although in every case the log transformation brought the data much closer to

a normal distribution, the log transformed data led to much less interpretable plots from

PCA. As PCA is a main part of our data analysis, it was decided the log transformation

was unsuitable. The power transformation led to results that were very similar to those



63 Pre-processing and Pre-treatment of the Data

from the raw data. Therefore, we decided to use the raw data for data sets I, II and III.

We now consider scaling.

4.3.2 Scaling

Variables are often scaled in principal component analysis. This is especially recom-

mended when variables are measured on various scales (e.g. di�erent injection volumes

in chromatography) which is very much the case with the columns of metabolomics data;

otherwise, the PCA results obtained will be badly a�ected, and dominated by the more

variable values or larger values (Jolli�e, 2011). The aim in scaling is to make the variables

comparable, which is critical while performing principal component analysis (PCA). PCA

tries to identity features with maximum variance, and the variance is high for high mag-

nitude features. This skews the PCA towards high magnitude features. Therefore, the

scaling method is a pre-treatment operation used to adjust the importance of the various

elements in the data to the model-�tting procedure. The adjustment usually involves

the weighting of the metabolites with a factor that can be estimated by using either a

dispersion criterion or a size measure (Boccard et al., 2010). To clarify, we aim to make

all metabolites on the same measurement scale to be comparable to each other. The two

common scalings that are used are row-scaling and column-scaling, with di�erent types

of scaling possible in each case. We now consider these.

Row-scaling

• Normalisation

To remove or minimise the variability from sample to sample, normalisation of the

samples can be applied. This operation puts all the samples on the same scale, thus

allowing for comparisons in the various samples. Normalisation involves dividing



64 Pre-processing and Pre-treatment of the Data

each variable of a sample vector by a constant. There are a number of di�erent

constants that can be used, such as the 1-norm of the vector (Beebe et al., 1998;

Brereton, 2009). For example, the 1-norm vector normalisation is given by:

x̃ij =
xij√√√√(

Nmetabolites∑
j=1

x2
ij)

, (4.1)

where xij is the element in the ith row and jth column. This 1-norm approach was

used in the data analysis here (with the pre-processing of data done by Dr. Watson

and his team). So the sum of squares of the elements of vector xi after the nor-

malisation is equal to one. The selection of the appropriate normalisation constant

depends on the type of systematic variation in the samples. Normalisation belongs

to the row-scaling methods (Brereton, 2009). It is an important step, as its purpose

is to remove any systematic variation, retaining all the biological information in the

data.

Column-scaling

1. Centring

Generally, centring pre-treatment methods allow the researcher to focus on the dif-

ferences but not the similarities in the data. They focus on isolating and removing

the systematic variation in the data. However, attention is needed when data are

heteroscedastic, as the e�ects from centring methods might not be su�cient. Usu-

ally, centring methods are applied in combination with other pre-treatment methods.

They belong to the column-scaling methods (Goodacre et al., 2007). The following

methods are the most commonly used column-scaling methods in metabolomics.
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• Mean Centring

This is a centring method in which each column of the data is expressed in

deviations from its mean. The mean of the columns is subtracted, translating

the centre of gravity of the data set to the origin. The formula for mean

centring is

x̃ij = xij − x̄j, where x̄j =
1

N

N∑
i=1

xij, (4.2)

where x̃ij represents the data after mean centring, x̄j is the overall mean of

variable j and N is the number of samples in the data set.

• Weighted Centring

Weighted centring aims to convert all metabolite concentrations to �uctuations

around zero instead of around their mean. Hence, it retains only the relevant

variation (the variation between the samples) for the analysis. It is also known

as reference subtraction. This method is particularly useful in PLS-DA (partial

least squares discriminant analysis) classi�cation where it takes into account

several classes with di�erent numbers of samples in each class (Brereton, 2009).

The weighted mean for a data set with Nc classes can be estimated as:

x̃ =
x̄g +

∑
h6=g

x̄h

Nc−1

2
(4.3)

where x̄g and x̄h are the mean vectors for groups g and h respectively. For two

classes, Nc = 2, the above formula becomes

x̃ =
x̄1 + x̄2

2

where x̄1 and x̄2 are the mean vectors for groups 1 and 2 respectively, and x̃ is

a global mean (but not the overall mean, which may be biased in favour of one
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of the two classes, especially when the two classes have di�erent sample sizes)

(Brereton, 2009). Weighted centring can then be achieved by subtracting the

weighted mean from each column of the data set, as long as there are Nc classes

in the column.

2. Scaling Based on Data Dispersion

These scaling methods use a dispersion measure for scaling the data and more

speci�cally the columns of a data set (Boccard et al., 2010; Goodacre et al., 2007;

van den Berg et al., 2006). In all these methods, the mean and standard deviation

are de�ned as:

x̄j =
1

N

N∑
i=1

xij, and sj =

√√√√√√
N∑
i=1

(xij − x̄j)2

N − 1
. (4.4)

The following methods are the most commonly used column-scaling methods in

metabolomics (Brereton, 2009):

• Standardisation

This is a form of scaling performed by mean-centring each metabolite value

and using afterwards the standard deviation as the scaling factor. The formula

is given by

x̃ij =
xij − x̄j
sj

(4.5)

Standardisation is also called autoscaling or unit variance scaling, as after the

standardisation procedure, all metabolites have a standard deviation equal

to one, allowing the metabolites to be compared using correlations instead

of covariances. The main advantage is that all metabolites become equally
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important (van den Berg et al., 2006). After standardisation, the data becomes

dimensionless.

• Range Scaling

The scaling factor in the range scaling method is the range within each metabo-

lite. In this way, the formula is

x̃ij =
xij − x̄j

xjmax − xjmin
(4.6)

for metabolite j. Range scaling allows the comparison of metabolites with

respect to their biological response range. In this approach, all metabolites

are equally important, and their scaling is related to the biology of the data.

However, an increase in measurement errors and sensitivity to outliers may be

noticed when applying this scaling method. As in the case of standardisation,

the data becomes dimensionless.

• Pareto Scaling

Here the square root of the standard deviation is used as the scaling factor. It

aims to reduce the in�uence of large values without losing signi�cant informa-

tion concerning the structure of the data. The formula is:

x̃ij =
xij − x̄j√

sj
. (4.7)

Pareto-scaled data is closer to the original than standardised data, but this

depends very much on the large values in the data set.
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• Vast Scaling

This is an extension of standardisation. It aims to give more importance to

those metabolites that appear to have small variances. To achieve that, the

method uses the coe�cient of variation statistic as a scaling factor. The formula

is given by:

x̃ij =
(xij − x̄j)

sj
· x̄j
sj

(4.8)

where x̄j
sj
is the inverse of the coe�cient of variation of xj . This method is not

useful when large induced variation exists, and there is no group structure in

the data.

3. Scaling Based on Average Value

• Level Scaling

Scaling based on average value methods uses a size measure instead of a spread

measure. Level scaling is one such method. It converts the changes in metabo-

lite concentrations into changes relative to the average concentration of the

metabolite by using the mean concentration as the scaling factor. The result-

ing values are changes in percentages compared to the mean concentration.

The formula for level scaling of metabolite j is given by:

x̃ij =
xij − x̄j
x̄j

(4.9)

This method is suitable for the identi�cation of biomarkers. It is however prone

to increase measurement errors. Level scaling, like the scaling methods based

on data dispersion, also belongs to the column-scaling methods.

We now apply scaling methods to our data.
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Application of Scaling to Scottish Data Sets I, II and III

Information regarding the e�ect of applying column-scaling on the PCA scores and load-

ings of data set I can be seen in Figures 4.10 and 4.11 respectively (Shlens, 2003). The

scores plots in Figure 4.10 indicate that there are some di�erences among the scores of the

six scaling methods used on data set I. These six scaling methods are standardisation,

range, Pareto, vast and level, and each one including mean-centring.

Concerning the loadings plots in Figure 4.11, the loadings on PC1 and PC2 for standardisation,

range, vast and level scaling have a similar shape. In the other two scaling methods used

on data set I, the mean-centred true and Pareto results, the loadings on both PCs have

similar shapes. In general, the shapes of the loadings for the true and Pareto cases have

the highest similarity among all plotted data sets.

The application of di�erent pre-treatment methods on data set I had a large e�ect on the

resulting data used as input for data analysis, as depicted in Figure 4.10 and 4.11. The dif-

ferent pre-treatment methods resulted in di�erent e�ects. For instance standardisation,

range, vast and level scaling showed many large peaks, while after Pareto-scaling, only

a few large peaks were present. It is evident that di�erent results will be obtained when

di�erently pre-treated data sets are used as the input for data analysis.

We will now show an objective numerical comparison between the scaling methods in

Table 4.1 for PCA, where PCA constructs orthogonal uncorrelated linear combinations of

variables that explain as much common variation as possible. From Table 4.1, it can be

observed that Pareto-scaling performed much better than the other pre-treatment meth-

ods in terms of PCA, because it explains more of the variation in the data set, and we

will use the command prcomp in R, which uses singular value decomposition (SVD) (R

Core Team, 2013; Shlens, 2003). The �rst two PCs explain 79% of the total variation of

the data set I, considerably more them for any other method. Therefore it is best for data

set I, to mean-centre and Pareto-scale prior to using PCA. We now consider data set II.

An illustration of the e�ect of applying column-scaling on the PCA scores and loadings of
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Figure 4.10: PC1 vs PC2 scores plots for the scaled Aberdeenshire data sets, using mean-

centring, Standardisation, Range, Pareto, Vast and Level scaling.

pre-treatment methods Standardisation Range Pareto Vast Level

% of variance of PC1 40.18 47.21 68.90 46.28 38.34

% of variance of PC2 19.48 17.00 10.10 15.66 19.93

Cumulative % 59.66 64.21 79.00 61.94 58.27

Table 4.1: Percentage of variance explained by the �rst two PCs of Aberdeenshire data,

using di�erent scaling approaches. The best method is shown in red.

data set II, can be seen in Figures 4.12 and 4.13 respectively. The scores plots in Figure

4.12 indicate that there are some di�erences among the scores of the six scaling methods

used on this data set. Concerning the loadings plots in Figure 4.13, the loadings on PC1

and PC2 for standardisation, range, vast and level have a similar shape. On the other

hand, the loadings of the true and Pareto-scaled data, for both PCs, have di�erent similar

shapes. In general, the shapes of the scores and loadings for the true and Pareto cases

have the highest similarity among all plotted data sets.
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Figure 4.11: PC1 vs PC2 loadings plots for the scaled Aberdeenshire data sets, using

mean-centring, Standardisation, Range, Pareto, Vast and Level scaling.

The application of di�erent pre-treatment methods on data set II had a large e�ect on

the resulting data used as input for data analysis, as seen in Figure 4.12 and 4.13. For

instance standardisation, range, vast and level scaling showed many large peaks, while

after Pareto-scaling only a few large peaks were present. It is evident that di�erent results

will be obtained when di�erently pre-treated data sets are used as the input for data anal-

ysis. From the Pareto scaling, or true data, there are many fewer peaks that are large in

magnitude, which is likely to be more interpretable in identifying important metabolites.

From Table 4.2, it can be observed that Pareto-scaling performed better than the other

pre-treatment methods in terms of PCA because the PCA explains more of the variation

in the data set, and we will use the command prcomp in R, which uses singular value de-

composition (SVD) (R Core Team, 2013; Shlens, 2003). The �rst two PCs explain 74.8%

of the total variation of the data set II. Therefore, the data set II was mean-centred and
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Figure 4.12: PC1 vs PC2 scores plots for the scaled Fort William data sets, using mean-

centring, Standardisation, Range, Pareto, Vast and Level scaling.

Pareto-scaled prior to using PCA in further analysis.

We now consider data set III. For information regarding the e�ect of column-scaling on

pre-treatment methods Standardisation Range Pareto Vast Level

% of variance of PC1 35.68 38.65 52.73 36.58 41.3

% of variance of PC2 25.64 25.41 22.05 23.57 21.99

Cumulative % 61.32 64.06 74.78 60.15 63.29

Table 4.2: Percentage of variance explained by the �rst two PCs of Fort William data,

using di�erent scaling approaches. The best method is shown in red.

the PCA scores and loadings of the data set III, see Figures 4.14 and 4.15 respectively.

The scores plots in Figure 4.14 indicate some di�erences among the scores of the six scaled

data sets. Additionally, the scores on PC1 and PC2 for standardisation and range have

similar shapes. Concerning the loadings plots in Figure 4.15, the loadings on PC1 and

PC2 for standardisation, range, vast and level scaling again have a similar shape. For
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Figure 4.13: PC1 vs PC2 loadings plots for the scaled Fort William data sets, using

mean-centring, Standardisation, Range, Pareto, Vast and Level scaling.

the other two scaling methods used on data set III, the true and Pareto-scaled data, the

loadings on both PCs have di�erent similar shapes. There are many fewer peaks that

are relatively large in magnitude, which is likely to be more interpretable in practice for

identifying important metabolites.

In general, the shapes of the scores and loadings plots for the true data and Pareto-

scaled data have the highest similarity among all plotted data sets.

From Table 4.3, it can be observed that Pareto-scaling performed better than the other

pre-treatment methods in terms of PCA (we will use the command prcomp in R, which

uses singular value decomposition (SVD) (R Core Team, 2013; Shlens, 2003)), because

the PCA explains more of the variation in the data set, where the �rst two PCs explain

76.9% of the total variation of data set III. Therefore data set III was mean-centred and

Pareto-scaled prior to using PCA in further analysis.
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Figure 4.14: PC1 vs PC2 scores plots for the scaled Dunblane data sets, using mean-

centring, Standardisation, Range, Pareto, Vast and Level scaling.

pre-treatment methods Standardization Range Pareto Vast Level

% of variance of PC1 33.47 35.45 53.38 32.81 43.01

% of variance of PC2 30.33 30.67 23.53 30.16 26.03

Cumulative % 63.80 66.12 76.91 62.97 69.04

Table 4.3: Percentage of variance explained by the �rst two PCs of the Dunblane data,

using di�erent scaling approaches. The best method is shown in red.

4.3.3 Summary and Conclusions for Pre-treatment for Data Sets

I, II and III

Before any chemometrics analysis takes place, it is necessary most of the time to process

the generated metabonomics data to remove or reduce to acceptable levels the amount

of systematic variation in the data, to make the data more suitable for statistical anal-

yses. There are two stages in the preparation of the data, the pre-processing, then pre-
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Figure 4.15: PC1 vs PC2 loadings plots for the scaled Dunblane data sets, using mean-

centring, Standardisation, Range, Pareto, Vast and Level scaling.

treatment. There was no need to apply any of the previously mentioned techniques of

pre-processing in this case, as it was already done.

Pre-treatment occurs in the second stage of data processing to remove or reduce any unin-

duced variation (due to sampling, sample work-up and analytical measurement errors) as

much as possible and, if it exists, heteroscedasticity of the data. Description of the most

well-known methods was given with respect to the three ways that the techniques can be

applied to the data: i.e. transformations of the elements of the data matrix, row-scaling

and column-scaling. Two di�erent approaches for transforming the elements of a data

matrix were discussed, i.e. the log and power transformations, and were used on the data.

The results indicated that there was no clear improvement to be made to the results for

data sets I, II and III by using either of these transformation techniques. Scaling methods

(both row and column) were classi�ed as centring, scaling based on data dispersion and

scaling based on average values. The advantages and disadvantages of applying the pre-
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treatment methods were discussed, as well as graphical representations (PC scores and

loadings) of the e�ect on the �rst two PCs of applying these to the metabolomics data

sets I, II and III.

Using these results, and considering the type of data to be analysed here, the pre-treatment

methods chosen for data sets I, II and III used for exploratory analyses and clustering in

Chapter 5-8, were mean centring with Pareto scaling of the columns, with no need found

to scale to a constant total the rows of the data matrix. More speci�cally, the elements of

each column in the data matrix were transformed by subtracting the column mean from

each element, then dividing by the square root of the standard deviation, e�ectively mak-

ing the columns more comparable to each other in the various analyses in Chapters 5-8.

No element transformation was chosen. From Tables 4.1, 4.2 and 4.3, it can be observed

that Pareto-scaling performed better than the other pre-treatment methods in terms of

PCA, because the results explain more of the variation in the data. Therefore the data

sets I, II and III were mean-centred and Pareto-scaled prior to using PCA.

4.4 Application of Transformation and Scaling on all

Three Data Sets Combined (IV)

Here we will merge the three data sets I, II and III together (as Data set IV) and look at

any relationships between location and results for the three data sets mentioned previously.

These data sets are from three di�erent sites in Scotland: the Aberdeenshire data contains

27 samples with 921 variables, Fort William has 14 samples, after removal of 3 samples

which were outliers. These were detected in analysis reported in Section 5.4.4. The Fort

William data has 511 variables, and the Dunblane data has 9 samples with 498 variables.

Therefore, data set IV contains 50 samples with 1930 variables (chemical compounds).

The data set I, II and III are organised in a one block diagonal matrix, since they were

collected at di�erent times and so the variables recorded are not necessarily the same.
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That means the columns and rows are di�erent in each matrix.

An illustration of the e�ect of the various transformation methods on the PCA scores and

loadings of data set IV can be seen in Figures 4.16 and 4.17 respectively. The score plots

in Figure 4.16 indicate that the scores of the 50 samples of data set IV are quite similar

in shape for all except the log-transformed data. The log data shown a slightly di�erent

pattern. Concerning the loadings plots in Figure 4.17, there is a similar pattern to that

of the scores, as the loadings on both PCs for the true and both power transformed data

sets are similar in shape, whereas the log transformed plot is quite di�erent. The loadings

on PC1 and PC2 of the log transformed data (Figure 4.17) show many large peaks, while

after power transformation, only a few large peaks were present. In all plots except the log

transformed one there are fewer peaks, but the values of them are higher in magnitude,

hence identifying a few metabolites contributing to PC1 and PC2. In general, the scores

and loadings for the true case and both power cases have the highest similarity among all

plotted data sets.

Figure 4.18 shows histograms of data set IV, with a normal curve superimposed. Looking

at the grey bars, this data is skewed strongly to the right (positively skew). The grey

bars deviate noticeably from the normal curve in every case, since there is a large bar

corresponding to very small values in the log plot (which is a result of the combination

of the data sets leading to the presence of many zeroes to which a value of one was then

added). Compared to the true data, the power transformation was not able to remove

heteroscedasticity. The log transformation was able to remove heteroscedasticity to some

extent, however, the spike at 0 means that a normal curve does not �t. As there is no clear

advantage to using any of these transformations, we decided to use the untransformed data

in later analysis.

The e�ect of column scaling on the PCA scores and loadings of data set IV can be seen

in Figures 4.19 and 4.20 respectively. The scores plots in Figure 4.19 indicate that there

are some di�erences among the scores of the six scalings of data set IV. Additionally,

the scores on PC1 and PC2 for standardisation and range scaling have a similar shape.



78 Pre-processing and Pre-treatment of the Data

−2e+10 0e+00 2e+10

−
6e

+
09

−
2e

+
09

2e
+

09
6e

+
09

Mean−centred true data

PC1
P

C
2

−400 −200 0 200 400

−
40

0
−

20
0

0
20

0
40

0

Log−transformed data

PC1

P
C

2
−5e+09 0e+00 5e+09−

4e
+

09
0e

+
00

2e
+

09
4e

+
09

Power−transformed (n=1/2) data

PC1

P
C

2

−6e+09 −2e+09 2e+09 6e+09−
3e

+
09

−
1e

+
09

1e
+

09
3e

+
09

Power−transformed (n=1/3) data

PC1
P

C
2

Figure 4.16: PC1 vs PC2 scores plots for the transformed data set IV, using mean-centring,

log transformation and power transformation with n=1/2 and n=1/3.

Concerning the loadings plots in Figure 4.20 the majority of loadings on PC1 for level

and standardisation are negative peaks. The loadings of the true and Pareto-scaled cases

on both PCs have fairly similar shapes. The di�erent pre-treatment methods resulted

in di�erent e�ects. For instance, standardisation, range, vast and level scaling, showed

many large peaks, while after Pareto-scaling, only a few large peaks were present. It is

evident that the Pareto-scaling result is likely to be more interpretable in practice for

identifying important metabolites.

The purpose of applying the previous methods is to remove or reduce any uninduced

variation. To verify this result, we will look at the PCA results, and we will use the

command prcomp in R, which uses singular value decomposition (SVD) (R Core Team,

2013; Shlens, 2003). From Table 4.4, it is observed that Pareto-scaling performed much

better than the other pre-treatment methods, as the �rst two PCs explain 66% of the

total variation of data set IV, which is much higher than for any of the other methods of
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Figure 4.17: PC1 vs PC2 loadings plots for the transformed data set IV, using mean-

centring, log transformation and power transformation with n=1/2 and n=1/3.
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Figure 4.18: Histograms of the data set IV values, with a normal curve superimposed.
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Figure 4.19: PC1 vs PC2 scores plots for the scaled data set IV, using mean-centring,

Standardisation, Range, Pareto, Vast and Level scaling.

scaling. Therefore, this data set was mean-centred and Pareto-scaled prior to using PCA

in later analyses. The results of the above analyses are quite consistent.

pre-treatment methods Standardisation Range Pareto Vast Level

% of variance of PC1 28.04 30.78 36.79 35.64 29.37

% of variance of PC2 22.73 26.07 29.21 20.6 19.29

Cumulative % 50.77 56.85 66.00 56.24 48.66

Table 4.4: Percentage of variance explained by the �rst two PCs of data set IV, using

di�erent scaling approaches. The best method is shown in red.

We now try analysis of data from a di�erent country, to see whether the same conclusions

are valid for that.
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Figure 4.20: PC1 vs PC2 loadings plots for the scaled data set IV, using mean-centring,

Standardisation, Range, Pareto, Vast and Level scaling.

4.5 Application of Transformation and Scaling for Libya

Data

An illustration of the e�ect of the various transformation methods on the PCA scores and

loadings of the Libya data set can be seen in Figures 4.21 and 4.22 respectively. The score

plots in Figure 4.21 indicate that the scores of the twelve samples of the Libya data are

similar in shape for all except the log transformed data. The log data shows a di�erent

pattern. Concerning the loadings plots in Figure 4.22, there is a similar pattern to that

of the scores, as the loadings on both PCs in the true and power transformed data sets

are similar in shape, whereas the log transformed plot is quite di�erent. The loadings

on PC1 and PC2 of all transformed data showed many large peaks, but many more

using log transformation and in that case it will be di�cult to identify a few metabolites

contributing to PC1 and PC2.
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Now we will discuss which transformation methods is the best. Figure 4.23 shows
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Figure 4.21: PC1 vs PC2 scores plots for the transformed Libya data set, using mean-

centring, log transformation and power transformation with n=1/2 and n=1/3.

a histogram of the Libya data, with a normal curve superimposed. This data is skewed

strongly to the right (positively skew) and the log data looks more normal than in the other

cases for the true and power transformed data (for both n values). The e�ect of the log and

the power transformation on the data as a means to correct for heteroscedasticity is shown

in Figure 4.23. Compared to the true data, the power transformation was not able to

remove heteroscedasticity. The log transformation was able to remove heteroscedasticity,

however only for the metabolites that are present in high concentrations. Since the Libya

data set has many zero values, we also added one for all values to ensure they are positive

when taking the log. The purpose of applying the previous methods is to remove or

reduce any uninduced variation. From the results above from the Libya data set, no

element transformation was chosen since the results indicated no signi�cant improvement

in PCA results by using any of the two transformation techniques. Hence we deal with
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Figure 4.22: PC1 vs PC2 loadings plots for the transformed Libya data set, using mean-

centring, log transformation and power transformation with n=1/2 and n=1/3.

the raw Libya data for further analysis.

The e�ect of column-scaling on the PCA scores and loadings of the Libya data set can be

seen in Figures 4.24 and 4.25 respectively. The scores plots in Figure 4.24 indicate some

di�erences among the scores of the six scalings of the Libya data set. Additionally, the

scores on PC1 and PC2 for standardisation and range have a similar shape. Concerning

the loadings plots in Figure 4.25, the majority of loadings on PC2 for vast scaling are

negative peaks. The loadings of the true and Pareto-scaled data on both PCs have similar

shapes. The di�erent pre-treatment methods resulted in di�erent e�ects. For instance,

standardisation, range, vast and level scaling showed many large peaks, while after

Pareto-scaling fewer large peaks were present. It is evident that the Pareto-scaling result

is likely to be more interpretable in practice for identifying important metabolites. To

verify this result, we will look at PCA results, and we will use the command prcomp in

R, which uses singular value decomposition (SVD) (R Core Team, 2013; Shlens, 2003).
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Figure 4.23: Histograms of Libya data set values, with a normal curve superimposed.

From Table 4.5, it is observed that Pareto-scaling performed much better than the other

pre-treatment methods, as the �rst two PCs explain 71.78% of the total variation of the

Libya data set, which is much more than for any of the other methods. Therefore, this

data set was mean-centred and Pareto-scaled prior to using PCA.

pre-treatment methods Standardisation Range Pareto Vast Level

% of variance of PC1 37.87 40.24 54.87 47.16 33.46

% of variance of PC2 19.55 19.58 16.91 15.80 21.80

Cumulative % 57.42 59.82 71.78 62.68 55.25

Table 4.5: Percentage of variance explained by the �rst two PCs of the Libya data, using

di�erent scaling approaches. The best method is shown in red.
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Figure 4.24: PC1 vs PC2 scores plots for the scaled Libya data set, using mean-centring,

Standardisation, Range, Pareto, Vast and Level scaling.

4.6 Conclusions

In the introductory part of this thesis, the main aspects of generating metabolomics data

and information about propolis have been discussed. The analysis of metabolomics data

is achieved with multivariate statistical techniques. Therefore the application of such

techniques to metabolomics data was also brie�y mentioned in this part. The problem to

be researched is to investigate statistical techniques that can be used in the analysis of

metabolomics data. Also, all propolis data sets to be used in the statistical analyses of

the problem were given. To generate a metabolomics data set from the propolis samples

taken from di�erent areas and di�erent colonies, an analytical technique must be used,

which is almost exclusively used to generate metabolic pro�les, and this was described

in detail, Mass Spectrometry (MS). For comparative purposes, the main advantages and
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Figure 4.25: PC1 vs PC2 loadings plots for the scaled Libya data set, using mean-centring,

Standardisation, Range, Pareto, Vast and Level scaling.

disadvantages of using di�erent such analytical techniques are given.

Before any chemometrics analysis takes place, it is most of the time necessary to process

the generated metabolomics data to remove or reduce to acceptable levels the amount of

systematic variation in the data, that is, to make the data more suitable for the statistical

analyses to follow. There are two stages in the preparation of the data, which are the

pre-processing and the pre-treatment.

Pre-processing is concerned with the cleaning of the generated signals, from problems such

as overlapping peaks, baseline drifts, signal phasing and existence of an extremely large

number of metabolites in the data. A range of methods to overcome such problems was

brie�y described, as the spectra used in this project were generated by MS. However, the

available spectra had been signal-processed by Dr. David Watson and his team. Therefore

there was no need to apply any pre-processing techniques.

Pre-treatment is used in the second stage of data processing to remove or reduce any unin-
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duced variation (due to sampling, sample work-up and analytical measurement errors) as

much as possible and if it exists, heteroscedasticity of the data. Description of the most

well-known methods was given with respect to the three ways that the techniques can be

applied to the data: transformations of the elements of the data matrix, row-scaling and

column-scaling. Two di�erent approaches for transforming the elements of a data matrix

were discussed, i.e. the log and power transformations and these were also used on the

data. The results indicated that there was no conclusive (if any) improvement to be made

to the data sets I, II, III, IV and the Libya data by using either of the two transformation

techniques.

Scaling methods (both row and column scaling) were classi�ed to centring, scaling based

on data dispersion and scaling based on average values. The advantages and disadvan-

tages of applying the pre-treatment methods were discussed, as well as graphical repre-

sentations (PC scores and loadings) of the e�ect on the �rst two PCs of applying these

to metabolomics data sets I, II, III, IV and the Libya data.

Using these results, and considering the type of data to be analysed, the pre-treatment

methods chosen for data sets I, II, III, IV and the Libya data used for exploratory analyses

and clustering in chapter 5-8, were mean centring with Pareto scaling of the columns,

with no need in this case to scale to a constant total the rows of the data matrix. More

speci�cally, the elements of each column in the data matrix were transformed by subtract-

ing the column mean from each element, then dividing by the square root of the standard

deviation, e�ectively making the columns more comparable to each other in the various

analyses in Chapters 5-8. Conclusions about the data in terms of the PCA are given in

Chapter 5.

In the next few chapters (5-9), the research will focus on the application of the most

commonly used unsupervised multivariate techniques to the metabolomics data described

in chapters 3, with the processing (centring methods and scaling) mentioned above. These

include both linear and nonlinear dimension reduction and visualisation methods including



88 Pre-processing and Pre-treatment of the Data

PCA and Multidimensional Scaling (MDS)/ Sammon's Non-linear Mapping (NLM). In

addition, unsupervised clustering techniques, i.e. Hierarchical Clustering Analysis (HCA),

k-means, and Self-Organising Maps (SOM), will be reviewed and applied to the selected

metabolomics data sets.



Chapter 5

Unsupervised Techniques

After investigating pre-processing and pre-treatment methods for metabolomics data, we

now consider commonly used multivariate technique for analysis of metabolomics data.

The main problem is that we have data with high dimensions and we need a technique

to reduce the dimensionality. This chapter describes the most important and commonly

used unsupervised technique for the reduction of the dimensionality of the data, which

is the Principal Component Analysis (PCA) method. Section 5.1 gives an overview of

the need for PCA in this context. PCA is described in Section 5.2, and the theoretical

background of the PCA technique is provided in Subsection 5.2.2. The application of

PCA in metabolomics is presented in Sections 5.3, 5.4 and 5.5. Section 5.6 gives the

conclusion.

5.1 Overview

The enormous amounts of data created by high-resolution MS spectra are as a result of the

information contained in biological metabolomics data. With regards to metabolomics, a

raw MS pro�le consists of as many as 500 metabolites, which are referred to as variables

89
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here. As in other research, in our study it is necessary to establish potential relationships

and/or correlations between the various variables. The level of di�culty and complexity

associated with obtaining the required results is correlated with the amount of information

available for analysis. To exemplify, the �rst data set described in Chapter 3, obtained

from the Aberdeenshire propolis, contains 921 variables (compounds) for 27 samples,

where 3 samples come from each hive (or colony). As such, it is observed that at higher

resolutions where many metabolites are being introduced to the problem, it is di�cult

to properly examine and analyse the data. Thus, it is important to utilise statistical

techniques to increase the possibility of determining potential similarities or di�erences

between the various samples in the data. Therefore, it is necessary to reduce the dimen-

sionality of the input space of the data to a smaller number of dimensions: commonly 2

or 3 dimensions are used. By doing so, the results of pattern recognition analyses of the

data can be graphically illustrated.

PCA is the most commonly used unsupervised technique for the reduction of the di-

mensionality of the data, in metabolomics data applications and in Chemometrics and

other studies in general. It �nds orthogonal linear combination of the input variables

which explain as much variation in the input data space as possible. The direction of

these principal components does not use any response variable (Y ). Therefore, it is an

unsupervised approach. This technique is reviewed in Section 5.2. The application of PCA

in metabolomics is presented in Section 5.4, 5.5 and 5.6, while the theoretical background

of the PCA technique is provided in Subsection 5.2.2.
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5.2 Data reduction

5.2.1 Overview

Principal components analysis (PCA) is the main tool used for data reduction. The PCA

method creates a new set of variables as orthogonal linear combinations of the original

variables in a data set (Horgan, 2000). PCA is a statistical method that aims to reduce

the dimensionality, p, of a data space (Diamantaras and Kung, 1996; Olive, 2017). There

is a possibility to describe the data and analyse the underlying structure of the data

variance, by using a smaller number, m, of independent variables. However, the corre-

lations between the original (observed) variables determine the intrinsic dimensionality,

m, of the data. The higher the correlations, the smaller the number of independent vari-

ables needed. Following this, without the variation of the data being lost, the p observed

variables can be represented as m functions of the observed independent variables (com-

ponents), where m < p.

In common practice, PCA is performed on a data matrix that has rows for samples and

columns for variables (i.e. R-mode PCA). On the other hand, Q-mode PCA is performed

on the transposed data matrix to study a correlation between samples instead of de-

scriptors (i.e. variables) (Legendre and Legendre, 2012). Conventionally, in most of the

literature, R-mode PCA is applied to classify or discriminate between samples by un-

covering relationships among variables, in which the loadings plot aids identi�cation of

important variables from a list of manifest variables, whereas the scores plot is used to

identify sample clusters. On the other hand, loadings and scores matrices from Q-mode

PCA are used for identi�cation of important samples and to inspect clustering of vari-

ables, respectively (Legendre and Legendre, 2012). As well as its use for dimensionality

reduction, PCA can be used before regression analysis.
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PCA is a very common unsupervised technique in metabolomics and has been widely

utilised for the extraction of important data descriptors. In addition, it has been widely

used for reducing the dimensionality of the input space. Several studies of "omics" pro�les

of samples such as Janzekovic and Novak (2012) have given a detailed description of the

application of PCA in bionomics studies; with emphasis placed on the metabolomics and

metabolic pro�les of samples.

However, a major shortcoming of PCA based on covariance matrices is the sensitivity

of the principal components to the units of measurement used for each x variable. To

clarify, if large di�erences exist between the variances of the variables, the variables with

the largest variances will tend to dominate the �rst few PCs. As such, it might become

particularly problematic to use PCs on a covariance matrix if the variables are recorded

according to di�erent measurement scales, the exception to this being if there is a strong

conviction that the units of measurements chosen are the only ones that make sense.

Nonetheless, even with this condition satis�ed, using the covariance matrix will not pro-

duce very revealing PCs as long as the variables possess very di�ering variances. This is

because the PCs are likely to recreate the variables with the largest variance. In addition,

the PC scores might be di�cult to interpret due to the di�erently scaled variables.

The standardised version of the covariance matrix is the correlation matrix. Since most

analysis uses variables with di�erent measurement scales, the analysis of the correlation

matrix allows for these di�erences in measurement scales to be taken into account. Addi-

tionally, there is the possibility that variables measured using the same scale have di�erent

variances, which could cause problems when applying PCA. The use of the correlation

matrix avoids this problem. From a statistical point of view, the analysis of the correla-

tion matrix is favoured due to the correlation coe�cients being insensitive to variations

in the dispersion of data and so, producing better-de�ned factor structures (Tinsley and

Tinsley, 1987).

Generally speaking, the results obtained using the covariance matrix di�er from those

obtained from the correlation matrix. Nonetheless, an important area of metabolic pro-
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�ling is toxicology and drug development. Keun (2006) shows how PCA of metabolic

pro�les could aid the detection of drug toxicity speci�c biomarkers. In addition, the use

of PCA as a projection method is emphasised, and the analysis of the covariance matrix,

provided that the variables are commensurable, is illustrated. In this thesis the results

from chapter 4 indicated that the best pre-treatment for the propolis data sets (I, II, III,

IV and Libya) was mean- centering and Pareto-scaling prior to using PCA. A further area

of interest is the use of PCA in various �elds of ecological research, such as in a deter-

mination of enterotypes of the human gut microbiome on the basis of specialisation of

their trophic niches (Arumugam et al., 2011). In aquatic habitat studies, PCA has been

applied for evaluation of aquatic habitat suitability, its regionalisation, analysis of �sh

abundance, their seasonal and spatial variation, and lake ecosystem organisation change

(Ahmadi-Nedushan et al., 2006; Blanck et al., 2007; Catalan et al., 2009). However, it has

also often been applied in analysing farming system changes (Amanor and Pabi, 2007).

5.2.2 Theoretical framework

There are several methods used to carry out PCA, and we will use the command prcomp

in R, which uses singular value decomposition (SVD) (R Core Team, 2013). We have a

data set that can be represented as an (n× p) matrix X. Typically, obtaining the sample

principal components is done through the following steps (Shlens, 2003):

1. First, subtract the variable mean from each of the data dimensions; this gives an

(n× p) matrix, P , with (i, j)th element (xij − X̄j).

2. Divide the square root of the variable standard deviation from each of the data

dimensions; this gives an (n× p) matrix, Q, with (i, j)th element (xij − X̄j/
√
Sj).

3. Calculate the correlation matrix of Q, Cx = 1
n
QTQ.

4. Calculate the SVD or the eigenvectors of the correlation matrix Cx (let A denote



94 Unsupervised Techniques

the (p× p) matrix of eigenvectors):

Cx = USAT

where U and A are orthonormal, and S is a diagonal matrix. The column vectors

of U are taken from the orthonormal eigenvectors of QQT , and for A are taken from

the orthonormal eigenvectors of QTQ, and ordered right to left from the largest

corresponding eigenvalue to the smallest. Also, the principal components of Q are

the eigenvectors of Cx, or the rows of A.

5. Order the eigenvectors by eigenvalues from highest to lowest and choose a set of sig-

ni�cant eigenvectors (the �rst few) which explain a large part of the total variation.

By doing this, the dimension of the matrix of eigenvectors is reduced to (p × m)

instead of (p×p), where m is the number of eigenvectors chosen. Denote the matrix

containing the chosen set of eigenvectors by A∗.

6. Finally, the required principal components scores, Z, are computed as:

Z = UA∗.

The eigenvalues of correlation matrix Cx, λ = λ1 ≥ ..... ≥ λp, are the roots of

|Cx − λI|

where
p∑
i=1

λi = tr(Cx),

p∏
i=1

λi = det(Cx),

and the eigenvectors of Cx, a = a1 ≥ ..... ≥ ap, are the normalised eigenvectors

satisfying

Cxai = λiai.

aTi aj =

 1 : i = j

0 : i 6= j.
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Principal components (principal component axes) are computed in a way such that the

sum of squared orthogonal distances between the data and their projections on the axes

is a minimum. In other words, the principal component axes minimise the sum of squared

errors in all the variables (Shlens, 2003).

The functional form of representation is a linear transformation (combination). The

general transformation necessary for a p-dimensional space can be represented as:

y1 = a11x1 + a12x2 + · · ·+ a1pxp

y2 = a21x1 + a22x2 + · · ·+ a2pxp

... =
... +

... + · · · +
...

yp = ap1x1 + ap2x2 + · · ·+ apxp

or in a matrix form as Y = AX, where Y is the p-dimensional component column vector

(y1, y2, ..., yp)
T , X is the p-dimensional column vector (x1, x2, ..., xp)

T and A is the (p× p)

matrix of coe�cients aij,


a11 a12 · · · a1p

a21 a22 · · · a2p

...
... · · · ...

ap1 ap2 · · · app


.

Geometrically, the reduction of the dimensionality of the data space represents the pro-

jection of the vector X onto an m-dimensional space. Commonly, the space is a line, a

plane or a 3-dimensional space which allows for the data to be represented graphically, as

well as to express the correlation between the variables.

Based on the transformation equations, it is observed that the elements of matrix A must

be calculated in order for the components to be evaluated. Two factors of variation in the

transformation procedure exist: the variation due to the reduction of the dimensionality
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of the data space (projection error) and the variation of each component. Since individual

components are illustrated graphically by a line in a speci�c direction, the projection error

is the variation around the line. On the other hand, the variation of the component is

represented by the spread of the data along its line. We aim to minimise the projection

error while simultaneously amplifying the component variation. Through the use of the

covariance matrix or the correlation matrix of the variables, we can evaluate the eigen-

values and eigenvectors of these matrices (Diamantaras and Kung, 1996). The estimated

eigenvectors are the columns of matrix A, and hence their eigenvalues are the loadings of

the components on the observed variables. Assuming matrix A is expressed as:

A = (a1, a2, ......, ap) (5.1)

where ai is the column vector with elements (ai1, ai2, ...aip)
T , i = 1, ..., p, we can then

estimate each component yi by the column vector ai. The correlation matrix of the com-

ponents, Cy, can be written in terms of the correlation matrix of the observed variables,

Cx, as

Cy = ACxA
T . (5.2)

Since these components are independent; the derived correlation matrix is diagonal, with

elements given by the computed eigenvalues, λi. From equation (5.2), for each vector ai

of matrix A, the following equivalent expression can be derived:

Cxai = λiai (5.3)

where λi is the eigenvalue for component yi (Diamantaras and Kung, 1996). Since it is

crucial to identify the components in decreasing order of variation, the �rst component

will have the maximum variance, V ar(y1). This is calculated from equation (5.3) as the

maximum eigenvalue, λ1. The corresponding eigenvector to this eigenvalue, a1, gives the

direction of the �rst component axis, on which the data is projected. The spread of the

projected data on this �rst component axis is given by λ1. Solving equation (5.3) for the
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second largest component variation, V ar(y2), a2 and λ2 are obtained. The eigenvectors

are orthogonal to each other: to exemplify, aTi aj = 0 for every i and j. This process

is repeated until the last component yp is found. It is also worth noting that the total

component variation is equal to the variation of the observed variables, that is

tr(Cx) =

p∑
i=1

λi . (5.4)

In addition, the portion of the total variation explained by a component, yi is expressed

as:

λi
p∑
i=1

λi

. (5.5)

As the number of PCs is p, dimension reduction is achieved by choosing a smaller number

m of PCs corresponding to the largest eigenvalues, to represent the data but still explain

a large part of the total variation.

5.2.3 Data Suitability for PCA

It is very important to evaluate the amount of information contained within a data set

before accepting any results obtained by PCA. If the amount of information contained

within the data set is very large, meaning that the descriptors in the data set are not

correlated, it would be unnecessary to apply PCA. This is because there will not be a

signi�cant data reduction by using PCA.

Two statistical approaches which can be used to con�rm the suitability or lack of it of a

data set for PCA, are the Gleason - Staelin statistic (Jackson, 2003) and the normalised

entropy, S̃, of a data set (Cangelosi and Goriely, 2007). The Gleason - Staelin statistic is

expressed by:

α =

√
‖T‖2 − p
p(p− 1)

(5.6)
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for the correlation matrix T , where p is the dimensionality of the data set. i.e. the number

of original variables in the data, and

‖T‖2 =

p∑
i=1

p∑
j=1

t2ij . (5.7)

The statistic becomes the following when the covariance matrix B is used:

α =

√√√√√√√√√
‖B‖2 −

p∑
i=1

(b2
i )

2

p∑
i=1

p∑
j 6=i

(bibj)
2

. (5.8)

Finally, α takes values in the range of [0,1]. If the variables within the data set are more

correlated, this gives higher α values. For value 0, the variables are totally uncorrelated,

and as such, it would be pointless to apply PCA to the data. However, for value 1, there

is perfect correlation among the variables and the dimensionality of the data space is 1.

So we look for a value between 0 and 1, in order to apply PCA.

The normalised entropy, S̃, of a data set is expressed as:

S̃ = − 1

log2N

N∑
i=1

rilog2ri (5.9)

where ri is the proportion of total the variation shown by component i, and N is the num-

ber of components that PCA calculated (the rank of the X data matrix). The statistic S̃

also takes values in the range [0,1]. Again, the higher the value, the more information is

contained within the data set and the less necessary it would be to use PCA. For value 1,

all variables in the data set are completely uncorrelated, and as such, the data space di-

mensionality is proportional to the number of variables in the data set. This is in contrast

to when the value is 0, where all variables are completely correlated, and the dimension-

ality is 1; therefore only one component is essential to express all the information. So we

look for a value between 0 and 1, in order to apply PCA.
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The information dimension related to the normalised entropy can be de�ned as:

I0 =
N∏
i=1

r−rii (5.10)

where; ri is the proportion of the total variation shown by component i, N is the number

of components that PCA calculated, and it can be used to assess how many components

to preserve.

5.2.4 Choosing the Number of Components to Retain

Establishing the maximum number of PCs required is a crucial part of the PCA process.

There are debates in the literature regarding the most appropriate technique for estimating

the number PCs to use. Yet, none of the proposed approaches to this problem is suitable

for every possible situation. There are large numbers of stopping rules, which can be

categorised into groups. To exemplify, the two most commonly used stopping rules are

rules based on con�dence intervals, such as parallel analysis and re-sampling methods

(Besse and De Falguerolles, 1993; Horn, 1965), as well as those based on average test

statistic values, such as the broken stick and Velicer′s MAP (Ferre, 1995; Peres et al.,

2005; Velicer, 1976). The broken stick and parallel analysis approaches are expanded

upon below, as well as the simple scree plot:

• Broken stick

This method is established on the idea that by randomly dividing the total variance

of a multivariate data set, the distribution of the eigenvalues follows a broken stick

distribution. The concept is that if a line segment is randomly split into n pieces,

the anticipated value of the length of the kth piece can be expressed as:

Ek =
1

n

n∑
u=k

1

u
. (5.11)
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The component k is retained if the eigenvalue of the component k is larger than

the respective anticipated value, Ek, of the broken stick distribution (Cangelosi and

Goriely, 2007; Legendre and Legendre, 1998; Peres et al., 2005). However, same

caution is needed when utilising this stopping rule. According to Cangelosi and

Goriely (2007), there is a tendency to underestimate the appropriate number of

principal components when using this method. As such, it would be advantageous

to compare the results obtained from this method to those obtained from other

stopping rules; to avoid retaining too few principal components.

• Parallel Analysis (PA)

PA is another method of determining the number of components in principal com-

ponents (Zwick and Velicer, 1986). The PA stopping rule was introduced by Horn

(Horn, 1965) and is based on the production of data sets with random uncorrelated

normally distributed variables of a similar size to the original data. The method

applies PCA to the generated random data set and retains the eigenvalues for indi-

vidual principal components. This process is repeated many times, .e.g. 1000 times.

The percentile intervals of eigenvalues for individual components are then estimated

at con�dence levels such as 95%. In the case that the obtained observed values ex-

ceed those of the calculated intervals at the chosen con�dence level, the component

is retained. The argument is that a component should be retained if its eigenvalue

is greater (at the 95th percentile) than that obtained at random. It is worth high-

lighting that as a result of this analysis relying on the normality of the produced

data, it may not be the most suitable method for cases where the observed data is

not normally distributed. In such instances, non-parametric re-sampling techniques

such as bootstrap methods may produce more robust observations (Besse, 1992;

Daniel, 1992).
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• Scree Plot

Another approach is based on Cattell's Scree test (Cattell, 1966), which involves

visual graphical representation of the size of the eigenvalues. In this technique, the

eigenvalues are presented in descending order and linked with a line. Then, the

graph is examined to determine the point at which the last signi�cant drop or break

takes place, in other words, where the line levels o�. The logic behind this technique

is that this point divides the essential or signi�cant factors from the minor or trivial

factors. This technique has been criticised for its subjectivity, since there is not

an objective de�nition of the cut-o� point between the essential and trivial factors.

Some cases may present di�erent drops and possible cut-o� points, such that the

graph may be ambiguous and di�cult to interpret. Zwick and Velicer (1986) mention

that when analysing how examiners understand the Scree test, the outcomes can be

very varied, depending on the nature of the solution and the training received by

the examiners. Jackson (2003) suggest using one more component after the break

in the line. Anther approach, which can be used with the scree plot is to choose the

number of components according to how many eigenvalues are above 1. This is the

Kaiser criterion.

The three techniques above (broken stick, parallel analysis and the scree plot) will be

used in the analyses within this study, and results from all the propolis data sets (I, II,

III, the combined data set IV and the Libya data) will be compared using these techniques.

5.3 E�ect of Outliers on PCA

Two types of outliers can a�ect PCA, i.e. leverage points and orthogonal outliers. The

former is related to their score distance, which is their projection's distance from the
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centre of the PCA space, and the latter to their orthogonal distance to the space de�ned

by the PCs. For example, Figure 5.1 shows that point 1 has a large orthogonal distance

to the PCA space and this kind of outlier destabilises the estimation of PCA. Point 2

has a large orthogonal distance and a large score distance, which means the projection

is far away from the centre of PCA space, and this kind of outlier is called a high (bad)

leverage point because they can a�ect the estimation of PCA space. On the other hand,

point 3 is called a good leverage point because it has a large score distance but a small

orthogonal distance, and this kind of outlier stabilises the estimation of PCA (Varmuza

and Filzmoser, 2016).

The score distance, SD, of a sample i is given by equation (5.12):

Figure 5.1: Visualisation of the di�erent kinds of outliers that can a�ect PCA (Varmuza

and Filzmoser, 2016).

SDi =

[
Npc∑
j=1

f 2
ij

υj

] 1
2

(5.12)

where Npc is the number of PCs forming the PCA space, fij are the elements of the score

matrix and vj is the variance of the jth PC (Varmuza and Filzmoser, 2016). Assuming

that the data is multivariate normally distributed, the squared score distances can be

approximated by a chi-square distribution, χ2
Npc

, with Npc degrees of freedom. A cut-o�
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value for the actual score distance can be taken as the 97.5% quantile,
√
χ2
Npc,0.975

. If the

score distance of a sample is larger than this cut-o� point, then the sample is considered

to be a leverage point. The orthogonal distance, OD, of a sample i is de�ned as:

ODi = ‖xi − LfTi ‖ (5.13)

where xi is the ith sample of the centred data matrix, L is the loadings matrix using

Npc PCs and fi
T is the transposed score vector of sample i for Npc PCs (Varmuza and

Filzmoser, 2016). A cut-o� value for the orthogonal distance is computed by Hubert

et al. (2005), using the Wilson-Hilferty approximation for a chi-square distribution. That

is, the distribution of OD
2
3 is approximately normal, with the centre (mean) and spread

(variance) of the values being robustly estimated, e.g. using the median and the me-

dian absolute deviation (MAD) respectively. The cut-o� value is then computed as

(median(OD
2
3 ) + MAD(OD

2
3 ).z0.975)

2
3 , where z0.975 is the 97.5% quantile of the stan-

dard normal distribution. If the orthogonal distance of a sample is higher than the cut-o�

value, then the sample is considered as an orthogonal outlier.

To summarise, if an orthogonal outlier with large orthogonal distance also has a large

score distance (so it is a leverage point), then the sample is a bad leverage point, as it can

a�ect negatively the correct estimation of the PCA space. A leverage point that also has

a small orthogonal distance but still is an orthogonal outlier, with a large score distance,

is a good leverage point, as it can stabilise the estimation of the PCA space.

5.4 Application of PCA on Data Sets I, II and III

5.4.1 Overview

As described earlier, the production and pre-processing processes of the mass spectrometry

(MS) pro�ling of the propolis samples were done by Dr. David Watson or his team, from
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the Institute of Pharmaceutical and Biomedical Sciences at the University of Strathclyde

(SIPBS). The original samples originate from Aberdeenshire, Fort William and Dunblane.

The data sets I, II and III are made up of 27 samples with 921 variables, 17 samples with

511 variables and 9 samples with 498 variables for data sets I, II and III (Aberdeenshire,

Fort William and Dunblane) respectively. The existence or lack of variation in the data's

composition re�ects local and regional variation in the composition of the propolis sam-

ples, caused by di�erences in the forage sources available to the honey bees. Each data

set I, II and III was column-scaled by mean-centring and Pareto scaling, to enable more

comparability in the samples. The column-scaling was done by dividing each element by

the square root of the standard deviation of the variable (metabolite), thus transforming

the variables for data I, II and III to be in the same unit of measurement.

The prospect of decreasing the number of variables to a smaller number of components,

without su�ering loss of important information from the original data, will be evaluated.

Using PCA may also reveal any relationships between the samples and the variables (com-

ponents). Examining loadings plots may also help to determine important metabolites in

the PCs. It may also be possible to determine potential clusters from the resulting scores

plots. Upon establishing the required PCs for the variables in the data sets and using

appropriate statistical criteria, it would be possible to identify how many components

would be needed to represent most of the variations in the data sets. The important in-

formation within the original data would be retained to high accuracy, by these PCs. This

could also aid the identi�cation of any determined clusters of samples and/or variables

(chemical components). Finally, the characteristics of the variables (chemical compounds)

will be evaluated to clarify potential relationship(s) between the variables (chemical com-

pounds) and the sample. In other words, we will examine the chances of PCA identifying

any natural clusters of samples, with characteristics of the important compounds in these

samples.
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5.4.2 Data Suitability of PCA for data sets I, II and III

Before doing any PCA analysis, it is necessary to test the suitability of the data sets I, II

and III for PCA. The Gleason-Staelin statistic and the normalised entropy are calculated

using equations (5.6) and (5.9) respectively. The value of the Gleason-Staelin statistic

using the correlation matrix is 0.465 for Aberdeenshire, 0.481 for Fort William and 0.480

for Dunblane, which indicate that the metabolites (variables) are su�ciently correlated to

justify data reduction using techniques such as PCA. In addition, the normalised entropies

for the Aberdeenshire, Fort William and Dunblane datasets are 0.393, 0.459 and 0.625

respectively, which also means that the metabolites are su�ciently correlated to apply

PCA, with the dimensionality of the data being close to 4, 4 and 4 respectively (the

value of the information dimension is 3.66 ≈ 4, 3.67 ≈ 4 and 3.95 ≈ 4 respectively (see

equation 5.10)). Both statistics con�rm that these data sets I, II and III (Aberdeenshire,

Fort William and Dunblane) are suitable for PCA analyses.

5.4.3 Choosing the Number of Components to Retain

After con�rming the suitability of data sets I, II and III for PCA, the next step in PCA

is to identify the number of principal components to retain. This is done for the mean-

centred and Pareto-scaled data sets I, II and III.

The percentages of the total variation in the pre-treated data sets I, II and III explained

by the �rst ten principal components can be seen in Figure 5.2. Figure 5.2 (i) for data set

I shows that about 79%, 90% and 95% of the total variation is explained by 2, 4 and 7

PCs respectively, Figure 5.2 (ii) for data set II shows that about 75%, 92% and 97% of the

total variation is explained by 2, 3 and 4 PCs respectively, and Figure 5.2 (iii) shows that

about 77%, 85% and 91% of total variation is explained by 2, 3 and 4 PCs respectively

for data set III.

Table 5.1 contains the standard deviation, the percentages of total variance explained
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Figure 5.2: Percentages of the total variation in data sets explained by the �rst ten PCs.

and the cumulative percentages of variance for the �rst ten PCs of the data sets. These

detailed results for the variance of the PCs indicate that 2 components could be retained

for further analyses, as they explain a large part of the variation in the data sets I, II and

III, approximately 79%, 75% and 77% respectively, while the variation of the remaining
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components is likely to be due to measurement and instrumentation errors.

To con�rm these �ndings, as described in Subsection 5.2.4, the broken stick, parallel

Aberdeenshire

PCs Standard Deviation % of Variance Cumulative %

PC1 1.891e+05 68.90 68.90

PC2 7.227e+04 10.10 79.00

PC3 6.106e+04 7.18 86.18

PC4 4.342e+04 3.63 89.81

PC5 3.252e+04 2.03 91.84

PC6 2.869e+04 1.59 93.43

PC7 2.755e+04 1.46 94.89

PC8 2.095e+04 0.85 95.74

PC9 1.759e+04 0.60 96.34

PC10 1.637e+04 0.52 96.86

Fort William

PCs Standard Deviation % of Variance Cumulative %

PC1 1.222e+05 52.73 52.73

PC2 7.904e+04 22.05 74.79

PC3 6.909e+04 16.85 91.64

PC4 3.877e+04 5.30 96.94

PC5 1.497e+04 0.79 97.73

PC6 1.129e+04 0.45 98.18

PC7 1.059e+04 0.39 98.58

PC8 9.713e+03 0.33 98.91

PC9 8243.6510 0.24 99.15

PC10 7.656e+03 0.20 99.36

Dunblane

PCs Standard Deviation % of Variance Cumulative %

PC1 8.934e+04 53.38 53.38

PC2 5.931e+04 23.53 76.91

PC3 3.430e+04 7.86 84.78

PC4 2.997e+04 6.00 90.79

PC5 2.556e+04 4.37 95.16

PC6 2.106e+04 2.96 98.12

PC7 1.229e+04 1.01 99.13

PC8 1.137e+04 0.87 100

PC9 2.693e-11 0.00 100

Table 5.1: Standard deviation, percentage of total variance explained, and cumulative

percentages of variance for the �rst PCs of data sets I, II and III. (There are 9 samples

in data set III).
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analysis and scree plot stopping rules will be used to identify the appropriate number of

principal components. An illustration of the broken stick model can be seen in Figures

5.3, 5.4 and 5.5 (left Figures) for data sets I, II and III respectively. Figure 5.3 (left)

for data set I shows that only one component should be retained, as only one eigenvalue

is larger than the expected value of the broken stick distribution (red line) (though the

second one is close). Cattell's scree test is also depicted in Figure 5.3 (black line in the left

Figure), con�rming that at most three components should be retained (using one more

component after change in direction of the line ((Jackson, 2003)). Figure 5.4 (left) for

data set II, shows that three components should be retained, as only three eigenvalues are

larger than the expected values of the broken stick distribution (red line). Cattell's scree

test is shown in Figure 5.4 (black line in the left Figure), con�rming that at most three

components should be retained. Also, the broken stick model seen in Figure 5.5 (left) for

data set III, shows that only two components should be retained, as only two eigenvalues

are larger than the expected values of the broken stick distribution (red line). Cattell's

scree test shown in Figure 5.5 (black line in the left Figure), con�rms that at most four

components should be retained.

Parallel analysis was performed using the mean and the 99th centile estimates for

the calculation of the con�dence intervals, and di�erent numbers of random sets of up

to 200 per variable. All runs retained 2, 4 and 1 components of data sets I, II and

III respectively, independently of the con�dence intervals and number of iterations used.

The parallel analysis plot in Figure 5.3, 5.4 and 5.5 (right �gures) for data sets I, II

and III illustrates the adjusted and unadjusted eigenvalues and suggests that 2, 4 and

1 components should be retained respectively for the three data sets. The unadjusted

eigenvalues are the eigenvalues of the observed data from an unrotated PCA. The random

eigenvalues are the estimated eigenvalues (using either the mean or centile approaches)

from 27630, 15330 and 14940 iterations of data sets I, II and III respectively, which is

the default number of iterations, given by 30∗ number of variables, as used by the R

function paran() to perform parallel analysis. The adjusted eigenvalues are given by the



109 Unsupervised Techniques

Scree Test / Broken Stick

Component

V
ar

ia
nc

e

0.
0e

+
00

1.
0e

+
10

2.
0e

+
10

3.
0e

+
10

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Ordination
Broken Stick

(i) Scree and Broken Stick plots

1 3 5 7 9 11 13 15 17 19 21 23 25 27

0
2

4
6

8
10

12
14

16
18

20
22

Parallel Analysis

Components

E
ig

en
va

lu
es

Adjusted Ev (retained)
Adjusted Ev (unretained)
Unadjusted Ev
Random Ev

(ii) Parallel Analysis plot

Figure 5.3: Stopping rules for the number of PCs for Aberdeenshire; EV denotes eigen-

value.
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Figure 5.4: Stopping rules for the number of PCs for Fort William; EV denotes eigenvalue.

adjustment in equation (5.14) (Franklin et al., 1995)

AdjustedEig = UnadjustedEig − (SimulatedEig − 1), (5.14)
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Figure 5.5: Stopping rules for the number of components of Dunblane; EV denotes eigen-

value.

and retained if their values are greater than 1.

Finally, in Table 5.2 a comparison of the results for a number of stopping rules can be

seen. Table 5.2 shows that about 90%, 95% and 99% of the total variation is explained

by 4, 7 and 18 PCs respectively for data set I. Of these, 18 is rather a large number of

PCs to keep, while 2 to 4 PCs is probably a good number. The result of retaining 1 PC,

from broken stick for the Aberdeenshire data set, although being the smallest number, if

chosen will not be particularly interesting, and probably important information contained

in the second PC will not be considered. Therefore, despite the �rst component explaining

approximately 68.9% of the total variation, one PC is most probably not the appropriate

number of PCs to retain. Retaining the �rst two or three principal components allows for

proper graphical representation of the data set I and easier identi�cation of any natural

clustering in the structure of the input space. From the results here, four PCs could also

be justi�ed.

For data set II, Table 5.2 shows that about 90%, 95% and 99% of total variation is
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explained by 3, 4 and 7 PCs respectively. Table 5.2 shows that 3 or 4 PCs should be

retained for data set II. As the �rst two components explain approximately 75% of the

total variation, two PCs is most probably an appropriate number of PCs to retain, but

three can also be justi�ed in this case.

Also, Table 5.2 shows that about 90%, 95% and 99% of the total variation is explained

by 4, 5 and 7 PCs respectively for data set III. The results from parallel analysis and

broken stick show that 1 or 2 PCs respectively should be retained. Again, the result of

retaining 1 PC will not be particularly interesting, and probably important information

contained in the second PC will not be considered. So, two PCs is most probably the

appropriate number of PCs to retain, however three or four could also be justi�ed in this

case.

Number of Components retained

Stopping rule Aberdeenshire Fort William Dunblane

Parallel Analysis 2 4 1

Brocken Stick 1 3 2

Cattel's Scree Test 3 3 4

90% of Variance 4 3 4

95% of Variance 7 4 5

99% of Variance 18 7 7

Information Dimension 4 4 4

Table 5.2: Comparison of various stopping rules for data sets I, II and III.

5.4.4 Diagnostic Plots of PCA For Data I, II and III

Having identi�ed that the �rst two or three PCs generally should be retained for further

analyses, a graphical representation of data sets I, II and III (Aberdeenshire, Fort William

and Dunblane) structure is the next step in the PCA analysis.

The PC scores (concerning the samples) and loadings (concerning the variables) can be

plotted in many ways to give a visual summary of the data. These can be in 1, 2 or

3 dimensions. Plotting the PC scores is usually the �rst step in describing the data
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graphically. The 1-dimensional scores plot is essentially a bar chart, where, for a selected

PC, each score is plotted against sample number. It is often useful to re-order the sample

in ways that can facilitate better the interpretation of the scores. Selecting a suitable

order of the samples should indicate clearly in the bar chart if a speci�c PC is in�uenced

by a speci�c grouping of the samples. One way of indicating a particular grouping of the

samples (in this case hive samples) is by using colour. In the cases of propolis data sets

I, II and III, the groupings of the samples will be de�ned by their chemical compounds of

interest (peak areas) which may be expected to re�ect location of the hives and the local

environment for foraging. In a 2-dimensional scores plot, the scores on one PC are plotted

against those of another PC for each sample. This is usually done for the �rst 2-3 PCs,

which more often than not are su�cient to explain most of the variation in the data. In

this case, the samples are plotted using the values of the scores as coordinates. This type

of plot may indicate which of the PCs appears to be the best discriminator for a speci�c

grouping of the samples. The groupings are usually represented by a di�erent symbol

and/or colour. In the cases of data sets I, II and III, whenever 2-dimensional score plots

are used here, di�erent colours will represent the groupings of samples according to their

chemical characteristics, and also every three samples are from the same hive (or colony);

for example samples 1, 2 and 3 relate to one hive and so on. Finally, if the results of the 1

and 2-dimensional plots are not conclusive, 3-dimensional scores plots can be used, such

that each axis of the plot represents one PC. Colouring of the samples can be applied in

an analogous way to that of the 1 and 2-dimensional plots.

In propolis data sets I, II and III, 3-dimensional plots will be used only if the results of

the lower dimensional plots justify it. A general visual summary of data sets I, II and

III can be seen in Figures 5.6, 5.8 and 5.11 respectively. The former scores plot describes

most of the information in the data sets, as approximately 78.7%, 74.8% and 76.9% of the

total variation are explained by the �rst two PCs of the Aberdeenshire, Fort William and

Dunblane data, as shown in Table 5.1, 5.2 and 5.3 respectively, therefore investigating

these two PCs of Aberdeenshire, Fort William and Dunblane should be su�cient.
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Now we will look at the results of the PCA in more detail below:

• Data Set I (Aberdeenshire)
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Figure 5.6: Scores plots of the Aberdeenshire data for the �rst three PCs, superimposed

with the sample numbers (hives) and each colour indicates the same hive.

A general visual summary of data set I can be seen in Figure 5.6. The most inter-



114 Unsupervised Techniques

esting plots of the three are the scores plot for the �rst two components and that

of the pair PC1 and PC3. In general components PC1 and PC3, can discriminate

the samples, where every three samples indicate the same hive (or colony) because

the chemical analysis was repeated for three samples from each hive (or colony).

As can be seen, samples 1, 2 and 3 are close, samples 4, 5 and 6 are close and

so on. The �rst two PCs score plot describes most of the information in data set

I, approximately 79% of the total variation, therefore it is necessary to investigate

these two PCs.

The most interesting plot for data set I is the scores plot for the �rst two PCs, PC1

and PC2, which indicates that there are two samples, number 1 and 3, having an

extreme negative score in PC2, which seem to be outliers in PC2. Sample 2 is a

bit di�erent from samples 1 and 3 from the same colony. Also, no samples have

a high positive score in PC2. Samples with numbers 4, 5, 6, 25, 26 and 27 have

a very high positive score in PC1. As PCA is a�ected by outliers, it is important

to con�rm whether these samples are outliers or not. Biochemically, these samples

look di�erent from the rest.

Diagnostic plots using the score distance and the orthogonal distance for the Ab-

erdeenshire samples can be seen in Figure 5.7. The cut-o� values for the score and

the orthogonal distance are equal to 2.72 and 149563.6 respectively. It can be seen

that there are samples with score distance higher than the cut-o�, namely samples

1, 2, 3, 4, 5, 6, 25, 26 and 27, all mentioned above. On the other hand, for the

orthogonal distances, there are no points with orthogonal distance higher than the

cut-o�. Hence samples 1, 2, 3, 4, 5, 6, 25, 26 and 27 are good leverage outliers

and there were no bad leverage outliers (high score distance and high orthogonal

distance). However, removing these samples from the data set and re-running the

analyses showed that there was no e�ect from the inclusion of these samples in the

PCA, as the results were similar. Therefore, the original data set of the selected 27

samples can be used for further analyses. The sample coordinates concerning the
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Figure 5.7: Outlier diagnostic plots using the score distance (SD) and the orthogonal

distance (OD) for Aberdeenshire. The numbers in the plots are the numbers of the 27

samples. The horizontal lines in the two plots represent the cut-o� values, such that any

point above these lines is a leverage point (top plot) or an orthogonal outlier (bottom

plot).

�rst two PCs, explain approximately 79% of the total variation in the Aberdeenshire

data. Therefore, the �rst two PCs of the Aberdeenshire data will be used in further

investigation.

In general, it might be proposed that the samples in the middle of the PCA plot

are tending to use several di�erent sources of propolis or more common sources,

whereas the samples towards the periphery of the plot may focus on more restricted

or unusual sources (Saleh et al., 2015). Therefore samples 1, 3, 4, 5, 6, 25, 26 and 27,

from 3 di�erent colonies, may relate to more restricted sources and the remaining

samples to di�erent sources of propolis.
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• Data Set II (Fort William)
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Figure 5.8: Scores plots of the Fort William data for the �rst three PCs, superimposed

with the sample numbers (hives) and each colour indicates the same hive.

From Figure 5.8 for Fort William, in general PC1 and PC2 can discriminate the

samples from di�erent colonies. The �rst two PCs explain approximately 75% of

the total variation of the data. The �rst two scores plots indicate that there are
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three samples, 4, 5 and 6, having a high positive score in PC1, which seem to be

outliers, in�uencing mainly PC1. Samples 1, 2 and 3 have a very high positive score

in PC2 and could impact on PC2. No samples have a very negative score in PC2.

Diagnostic plots using the score and the orthogonal distance of the Fort William
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Figure 5.9: Outlier diagnostic plots using the score (SD) and the orthogonal distance

(OD) for Fort William data. The numbers in the plots are numbers of the 17 samples.

The horizontal lines in the two plots represent the cut-o� values, such that any point

above these lines is a leverage point (top plot) or an orthogonal outlier (bottom plot).

samples in the data can be seen in Figure 5.9. The cut-o� values for the score

and the orthogonal distance are 2.72 and 1170822521 respectively. There are some

samples with score distance higher than the cut-o�, namely samples 1, 2, 3, 5 and

6, and two samples 10 and 11 close to the cut-o� value, and one sample with score

distance approximately equal to the cut-o� value (sample 4). In the case of the

orthogonal distances, there are three samples with orthogonal distances higher than
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the cut-o�, namely samples 4, 5 and 6 (and one sample with orthogonal distance

approximately equal to the cut-o� value (sample 12)).

Since samples 4, 5 and 6 with a sizeable orthogonal distance also have a large score

distance, they can a�ect the correct estimation of the PCA space negatively. Re-

moving these 3 samples from the data set and re-running the analyses showed that

there was an e�ect from the inclusion of these samples in the PCA, as the results

were dissimilar, with an increase of the variance explained by the �rst two PCs (by

approximately 9% compared to the �rst two PCs of the 17 samples (Table 5.3)).

Therefore, the data set of the selected 14 samples rather than all 17 samples can be

used for further analyses. Note that we omit samples 4, 5 and 6 from this data, so

that now samples 7 and 8 in this reduced data set come from the same hive, but

sample 9 comes from a di�erent hive, the same hive as samples 10 and 11. Apart

from samples 7 and 8, the other sets of 3 samples, i.e. samples 1-3, 4-6, 9-11 and

12-14, each come from a single hive or colony, so in total 5 colonies are now repre-

sented in the Fort William data.

The sample coordinates with respect to the �rst two PCs, which explain approx-

PCs Variance for 17 samples Variance for 14 samples

PC1 52.73 52.79

PC2 74.79 83.83

Table 5.3: Cumulative proportion of variance explained by the �rst two PCs for the Fort

William data before and after excluding outliers.

imately 84% of the total variation in the reduced Fort William data, can be seen

in Figure 5.10. Again, it might be proposed that the samples in the middle of the

PCA plot are tending to relate to several di�erent sources of propolis, whereas the

samples towards the periphery of the plot (samples 1, 2, 3, 7 and 8) may focus on

more restricted sources. Figure 5.10 shows the scores plot of the data after omitting

the 3 outliers. Again there are some di�erences in the points.
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Figure 5.10: Scores plot for the Fort William data for the �rst two PCs after excluding

outliers from the data.

• Data Set III (Dunblane)

In the last data set, from Figure 5.11, no components can discriminate all samples

well depending on every three samples from the same hive (or colony). In general

there is variation between the samples from any one hive (or colony). The �rst two

PC, explain approximately 77% of the total variation of the data. The �rst score

plot indicates that there are points having slightly high positive scores (samples 8

and 9) and somewhat high negative scores (samples 4 and 5) on PC1, which seem

to be outliers, in�uencing mainly PC1. In the PC2 dimension, points 1, 2, 3 are

separated from the rest. Diagnostic plots for the Dunblane samples can be seen in

Figure 5.12. The cut-o� values for the score and the orthogonal distance are equal
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Figure 5.11: Scores plots of the Dunblane data for the �rst three PCs, superimposed with

the numbers of the samples (hives) and each colour indicates the same hive.

to 2.72 and 99660.76 respectively. It can be seen that there are no samples with

score distance higher than the cut-o�. In the case of the orthogonal distances, there

is also no point with orthogonal distance higher than the cut-o�. Therefore, the

original data set of nine samples can be used for further analyses. If the samples in

the middle of the PCA plot are from several di�erent sources of propolis, whereas
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Figure 5.12: Outlier diagnostic plots using the score distance (SD) and the orthogonal

distance (OD) for the Dunblane data. The numbers in the plots are the numbers of the

nine samples. The horizontal lines in the two plots represent the cut-o� values, such that

any point above these lines is a leverage point (top plot) or an orthogonal outlier (bottom

plot).

the samples towards the periphery of the plot focus on more restricted sources, there

is variation in these samples. Samples 1, 2, 3, and 8, 9 and 4, 5 seem di�erent from

each other and from the other samples.

5.4.5 Contributions of Variables to PCs for Data Sets I, II and

III

Loadings plots can help to provide a general idea of relationships between variables, as

well as between samples and variables but are not easy to use with this kind of data
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because variables here are represented as names of compounds, many names of chemical

compounds in propolis are unknown until now, and there are 921, 511 and 498 compounds

for the Aberdeenshire, Fort William and Dunblane data respectively.

In PCA, the scores plot is mainly used to discover groups, while the loadings plot is mainly

used to �nd variables that are responsible for separating the groups. In the loadings plot,

we mainly check the points that are further from the origin than most other points in

the plot. In general, samples that cluster most closely together in the scores plot are

usually well correlated. The loading plots show the contribution of variables to the PCs.

The contributions of variables in accounting for the variability in a given principal com-

ponent are expressed as percentages, and variables that are highly correlated with PC1

(i.e., dimension.1) and PC2 (i.e., dimension.2) are the most important in explaining the

variability in the data set. Variables that do not correlate with any PC or are correlated

with the last few PCs have a low contribution, and might be removed to simplify the

overall analysis.

The function fviz_contrib() from the factoextra R package can be used to draw a bar

plot of variable contributions. As data sets I, II and III contain many variables, we can

decide to show only the top contributing variables. Figures 5.13, 5.14 and 5.15 show the

top 20 variables contributing to the principal components for Aberdeenshire, Fort William

and Dunblane respectively. The red dashed line on the graph indicates the expected av-

erage contribution. If the contribution of the variables were uniform, the expected value

would be 1/length(variables) for data sets I, II and III. Also, the eigenvalues measure the

amount of variation retained by each PC. Table 5.4 shows a comparison of contributions

of the variables to the �rst two PCs of the data sets I, II and III.

As mentioned previously, propolis is a complex mixture made by bee-released and plant-

derived compounds. In general, more than 300 constituents were identi�ed in di�erent

samples of the data sets I, II and III and new ones are still being recognised during the
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chemical characterisation of new types of propolis. Many constituents are contributing to

the �rst two PCs in the data sets I, II and III, such as cinnamoyl ca�eoyl acetyl glycerol

and benzoyl hydroxy phenylacetic acid. Also, some constituents are contributing to the

�rst two PCs in the data sets II and III (green colour in Table 5.4), such as coumaric acid,

methyl pinobanksin, cinnamoyl ca�eoyl acetyl glycerol, benzoyl hydroxy phenyl acetic

acid, benzoyl dihydroxyphenylpropionic acid, coumaric acid cinnamyl ether, C16H11O5,

ca�eic acid hextrieneoate and phenylacetic acid. Some constituents are contributing to

the �rst two PCs in data sets I and II (blue colour in Table 5.4), such as dica�eoyl

acetyl glycerol, cinnamoyl ca�eoyl acetyl glycerol, benzoyl hydroxy phenyl acetic acid,

coumaroyl feruoyl acetyl glycerol, Hydroxy phenyl acetyl dihydroxyphenylacetic acid and

pinocembrin methyl ether. Some constituents are contributing to the �rst two PCs in

the data sets I and III (red colour in Table 5.4), such as benzoyl hydroxy phenyl acetic

acid, cinnamoyl ca�eoyl acetyl glycerol, prenylated �avonoid and dimethyl pinocembrin

benzoate.

From the results in Table 5.4, the composition of the Aberdeenshire propolis samples ap-

pears to be fairly di�erent from the Dunblane samples. They di�er from each other, but

overall the compounds in Table 5.4 are in many cases not the same as the most impor-

tant variables in the Dunblane samples. Moreover, the compounds from Fort William are

di�erent again but closer in character to the Dunblane samples than the Aberdeenshire

samples. This result re�ects only 20 compounds contributing most to the �rst two PCs

in data sets I, II and III.

Regarding Figure 5.13 for the Aberdeenshire samples, variables 28, 177, 109, 190 and

147 have the highest positive loadings in PC1 (Figure 5.13, plot (iii), Appendix Table

B), thus samples number 4, 5, 6, 25, 26 and 27 will tend to have larger values on these

variables in PC1 (Figure 5.13, plot (iv)), as well as variables 8, 124, 72 and 155 in PC2,

being observed to have the highest positive loadings in PC2 (Figure 5.13, plot (iii)), thus,

samples 10, 19 and 21 will tend to have larger values on these variables (Figure 5.13,
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Figure 5.13: Variables contributing to PC1 and PC2 of data set I (Aberdeenshire).

plot (iv), Appendix Table B). On the other hand, variables 28, 104, 131 and 597 have

the highest negative loadings in PC2 (Figure 5.13, plot (iii)); thus, samples 1 and 3 will

tend to have higher values on these variables in PC2 Figure 5.13, plot (iii), Appendix

Table B). A PCA biplot shows both PC scores of samples and loadings of variables. The
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Figure 5.14: Variables contributing to PC1 and PC2 of data set II (Fort William).

further away these loadings vectors are from a PC origin, the more in�uence they have on

that PC (Kassambara, 2017). Loading plots also hint at how variables correlate with one

another: a small angle implies positive correlation such as variables 28 and 672, a large

one suggests negative correlation such as variables 28 and 703, and a 90◦ angle indicates
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Figure 5.15: Variables contributing to PC1 and PC2 of data set III (Dunblane).

no correlation between two characteristics such as variable 28 and 104. Since samples 1,

3, 4, 5, 6, 25, 26 and 27 are towards the periphery of the plot (Figure 5.13, plot (iv)), they

may focus on a more restricted source, as it was proposed that the samples in the middle

of the PCA scores plot are tending to use several di�erent sources of propolis, whereas the
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samples nearest the centre of the plot have important compounds from the other outlying

samples in moderate amounts.

Regarding Figure 5.14 for Fort William, variables 1, 10, 147, 436 and 188 have the highest

positive loadings in PC1 (Figure 5.14, plot (iii), Appendix Table C), thus, samples 1, 2

and 3 will tend to have larger values on these variables in PC1 (Figure 5.14, plot (iv)), as

well as variables 142, 318, 488 and 405 being observed to have the highest negative load-

ings in PC1 (Figure 5.14, plot (iii), Appendix Table C). In the other hand, variables 435,

261 and 265 have the highest negative loadings in PC2 (Figure 5.14, plot (iii), Appendix

Table C); thus, samples 7 and 8 will tend to have higher values on these variables in

PC2 (Figure 5.14, plot (iv)). The compositions of the Fort William propolis samples ap-

pears to be fairly di�erent from the Aberdeenshire samples (see Table 5.4, where the blue

colour indicates the common compounds between Aberdeenshire and Fort William, and

the green colour indicates the common compounds between Fort William and Dunblane).

They di�er from each other, but overall the compounds in Table 5.4 are in many cases

not the same as the most signi�cant variables in the Aberdeenshire samples. The Fort

William samples are rich in compounds putatively identi�ed as sesquiterpene acids. The

samples in the middle of the PCA plot are likely to come from several di�erent sources

of propolis, whereas the samples on the periphery may focus on a more restricted source

(such as samples 1, 2, 3, 7 and 8 in Figure 5.14, plot (iv)).

Regarding Figure 5.15 for Dunblane, variables 2, 41 and 33 have the highest positive load-

ings in PC1 (Figure 5.15, plot (iii), Appendix Table D), thus samples 8 and 9 will tend

to have larger values on these variables in PC1 (Figure 5.15, plot (iv)), while variables 1,

4, 3 and 6 are observed to have the highest negative loadings in PC1 (Figure 5.15, plot

(iii), Appendix Table D), thus, samples 4 and 5 will tend to have higher values on these

variables (Figure 5.15, plot (iv)). On the other hand, variables 5, 14 and 18 have the

highest positive loadings in PC2 (Figure 5.15, plot (iii), Appendix Table D), thus sam-

ples 1, 2 and 3 will tend to have larger positive values on these variables in PC2 (Figure

5.15, plot (iv)). The samples from Dunblane are di�erent again but closer in character to
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the Fort William samples than the Aberdeenshire samples (see Table 5.4; the red colour

indicates the common compounds between Aberdeenshire and Dunblane and the green

colour indicates the common compounds between Fort William and Dunblane). These

highest 20 variables are contributing most to the �rst two PCs in the data sets I, II and

III. We investigate this further in the next chapters.

Table 5.4 compares the top 20 variables contributing to PC1 and PC2 for data sets I, II

and III (Aberdeenshire, Fort William and Dunblane) which correspond to Figure 5.16 (the

total contribution to PC1 and PC2 is obtained with R code "fviz_contrib" from package

factoextra). In Table 5.4 some compounds such as Methyl pinobanksin (rank number 3

and 17) in the Fort William data set look like duplicates but retention time is di�erent and

we have molecules with long alkyl chains that library searches cannot di�erentiate well

between, and if we are drawing the chemical formulae of these compounds they will appear

di�erent. It is clear that there are more common compounds between Fort William and

Dunblane (shown as green in Table 5.4) and the most di�erences between Aberdeenshire

and Dunblane (shown in red in Table 5.4).

5.5 Applying PCA for the Three Data Sets combined

(data set IV)

The three data sets (Aberdeenshire, Fort William and Dunblane) are now analysed to-

gether. That is, the data set contains the selected 27, 14 (after omitting the 3 identi�ed

outliers from data set II) and 9 samples with 921, 511 and 498 variables respectively for

the three data sets. Here we want to investigate if the data sets from the three di�er-

ent locations are separated from each other depending on location. We will refer to this

data as data set IV. To construct this combined data set, a block diagonal matrix was

constructed, where each block contained the data from each location and all other entries

were set to 0. This was done because data sets resulted from chemical analysis done at
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Figure 5.16: Variables contributing to both PC1 and PC2 of data sets I, II and III.

di�erent times, so the variables recorded were not necessarily the same.

As mentioned in Subsection 5.3.2, before doing any PCA analysis it is necessary to test

the suitability of the data set IV for PCA. The Gleason-Staelin statistic and the nor-

malised entropy are calculated using equations (5.6) and (5.9) respectively. The value of
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Data

Rank Aberdeenshire Retention

Time

Fort William Retention

Time

Dunblane Retention

Time

1 benzoyl hydroxy phenyl acetic

acid

19.7 coumaric acid 9.2 benzoyl dihydroxyphenylpropi-

onic acid

18.1

2 cinnamoyl caffeoyl acetyl

glycerol

18.7 dica�eoyl acetyl glycerol 14.9 coumaric acid 8.9

3 C23H21O9 17.3 Methyl pinobanksin 13.4 ca�eic acid hextrieneoate 21.7

4 dicaffeoyl acetyl glycerol 15.9 cinnamoyl caffeoyl acetyl

glycerol

17.7 prenylated flavonoid 20.9

5 coumaroyl feruoyl acetyl

glycerol

19.0 benzoyl hydroxy phenyl acetic

acid

18.7 benzoyl hydroxy phenyl acetic

acid

18.6

6 sesquiterpene 15.0 C23H21O9 16.3 benzoyl dihydroxyphenylpropi-

onic acid

17.4

7 dicoumaroyl glycerol 15.7 benzoyl

dihydroxyphenylpropionic

acid

18.3 benzoyl dihydroxyphenylpropi-

onic acid

17.6

8 prenylated �avonoid 22.0 coumaric acid cinnamyl ether 22.3 cinnamoyl caffeoyl acetyl

glycerol

17.6

9 coumaryl acetyl glycerol 12.7 coumaroyl feruoyl acetyl glycerol 16.6 prenylated �avonoid 20.1

10 coumaroyl feruoyl acetyl glycerol 17.6 benzyl coumarate 20.4 prenylated �avonoid 20.3

11 pinocembrin 19.2 Hydroxy phenyl acetyl dihydrox-

yphenylacetic acid

15.1 phenylacetic acid 9.1

12 C15H13O5 15.4 C16H11O5 15.1 Methyl pinobanksin 13.3

13 C24H29O4 25.3 pinocembrin methyl ether 18.3 dimethyl pinocembrin benzoate 21.3

14 quercetin hexanoyl ester 19.0 hydroxyphenyl propionic acid 8.9 coumaric acid cinnamyl ether 22.1

15 Hydroxy phenyl acetyl

dihydroxyphenylacetic acid

16.2 coumaroyl feruoyl acetyl glycerol 18.0 dimethyl �avanol 21.2

16 dimethyl pinocembrin benzoate 22.4 caffeic acid hextrieneoate 22.0 C24H29O5 23.9

17 C24H29O4 23.9 Methyl pinobanksin 17.9 Methyl pinobanksin 18.5

18 C27H25O6 16.7 phenylacetic acid 9.3 C16H11O5 14.9

19 pinocembrin methyl ether 19.3 dihydroxylinoleic acid 17.1 Methyl pinobanksin 18.7

20 Ca�eic acid pentenyl ester 19.5 Galangin 19.0 prenylated �avonoid 23.7

Table 5.4: Comparison between the 20 components contributing most to the �rst two PCs

in data sets I, II and III; blue indicates common compounds between Aberdeenshire and

Fort William, red indicates common compounds between Aberdeenshire and Dunblane,

and green indicates common compounds between Fort William and Dunblane.

the Gleason-Staelin statistic using the correlation matrix is 0.39 for data set IV. Moreover,

the normalised entropy for data set IV is 0.49. Both statistics con�rm beyond any doubt

that data set IV is suitable for PCA analysis.
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The next step in PCA is to identify the number of principal components to retain for

analysis. The principal components of data set IV are shown according to the percentage

of the total variation in the data explained, for the �rst ten principal components, in Fig-

ure 5.17. The plot shows that about 66%, 82% and 90% of the total variation is explained

by 2, 4 and 7 PCs respectively. Table 5.5 contains the standard deviation, the percentage

of the total variance explained and the cumulative percentage of variance explained for

the �rst ten PCs. The detailed results for the variance of the PCs indicate that no more

than 3 components need to be retained for further analyses, as they explain most of the

variation in the data, about 77.5%. The �rst two PCs explain about 66%, which is a

little low to explain the variation in data set IV. To con�rm these �ndings, as described
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Figure 5.17: Percentages of the total variation in data set IV explained by the �rst ten

PCs.

in Section 5.2.4, the broken stick, parallel analysis and scree plot stopping rules will be

used to identify the appropriate number of principal components. An illustration of the

broken stick model can be seen in Figure 5.18 (left), showing that only three components

should be retained, as only three eigenvalues are larger than the expected values of the
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PCs Standard Deviation % of Variance Cumulative %

PC1 1.562e+05 36.46 36.46

PC2 1.406e+05 29.54 66.00

PC3 8.779e+04 11.51 77.51

PC4 5.334e+04 4.25 81.76

PC5 5.257e+04 4.13 85.88

PC6 4.002e+04 2.39 88.28

PC7 3.553e+04 1.89 90.16

PC8 3.502e+04 1.83 91.99

PC9 3.076e+04 1.41 93.41

PC10 2.457e+04 0.90 94.31

Table 5.5: Standard deviation, percentage of total variance explained, and cumulative

percentage of variance explained for the �rst ten PCs of data set IV.

broken stick distribution (red line). Cattell′s scree test is also depicted in Figure 5.18

(black line in the left �gure), con�rming that at most four components should be retained

(using one more component after the break in the line (Jackson, 2003)). Another method

to con�rm how many PCs should be retained is parallel analysis, in Figure 5.18 (right)

which suggests that 6 components should be retained. Finally, in Table 5.6, a comparison

of the results for a number of stopping rules can be seen. This shows that about 90%,

95% and 99% of the total variation is explained by 7, 11 and 25 PCs respectively. The

results stated in Table 5.6 do not show how many PCs should be retained, as there is

disagreement between methods. Despite the �rst three components explaining approxi-

mately 77.5% of the total variation, three PCs is most probably the appropriate number

of PCs to retain.

From Figure 5.19, the �rst three PCs can discriminate samples of the data set IV ac-

cording to the location of each data set. There is overlap of samples from Fort William

and Dunblane in the 2D plot (PC2 verses PC1), though PC3 separates them, while in the
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Figure 5.18: Stopping rules for the number of PCs for data set IV.

Stopping rule Number of Components retained for data IV

Parallel Analysis 6

Broken Stick 3

Cattel's Scree Test 4

90% of Variance 7

95% of Variance 11

99% of Variance 25

Information Dimension 7

Table 5.6: Comparison of various stopping rules for the selected data set IV of 50 samples

and 921 variables.

3D plot there are di�erences between data sets, where the Aberdeenshire data separates

completely from Fort William and Dunblane. Moreover, Figure 5.19 indicates that there

are many samples having a high positive or negative score on PC1 or PC2, which may be

outliers, in�uencing mainly PC1 or PC2. Diagnostic plots using the score and the orthog-

onal distance of samples in the data IV can be seen in Figure 5.20. The cut-o� values for
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Figure 5.19: Scores plot for the mean-centred and Pareto-scaled data set IV. The orange

colour shows Aberdeenshire, the blue colour shows Fort William, and the green colour

shows Dunblane samples.

the score and the orthogonal distance are equal to 24.65423 and 235317.2 respectively. It

can be seen that there are samples with score distance higher than the cut-o�, namely
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samples 4, 5, 6 and, 25, 26 and 27, and ones on the line (sample 49, equal to the cut-o�).

On the other hand, in the case of the orthogonal distances, it can be seen that there is

one point with orthogonal distance equal to the cut-o� value (sample 30). The samples

4, 5, 6, 25, 26, 27 and 49 are good leverage outliers, and there are no samples as bad

leverage outliers (with high score distance and high orthogonal distance), so there is no

need to remove these samples from the data. Therefore, the original data set IV will be

used in further investigation.

Figure 5.21 shows the top 20 variables contributing to the principal components for
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Figure 5.20: Outlier diagnostic plots of data set IV using the score distance (SD) and

the orthogonal distance (OD). The numbers in the plots are the sample numbers. The

horizontal lines in the two plots represent the cut-o� values, such that any point above

these lines is a leverage point (top plot) or an orthogonal outlier (bottom plot).

data set IV. The red dashed line on the graph indicates the expected average contri-

bution. If the contribution of the variables were uniform, the expected value would be
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1/length(variables) for data set. For a given component, a variable with a contribution

larger than this cut-o� could be considered as important in contributing to the PCs. Also,

the eigenvalues measure the amount of variation retained by each PC. From Figure 5.21

for data set IV, variables 1854 and 1420 have the highest positive loadings in PC1 (Figure

5.21, plot (iii), Appendix Table E), thus samples from Fort William and Dunblane tend

to have larger values than samples from Aberdeenshire on these variables in PC1, as well

as variables 28, 177 and 109 being observed to have the highest positive loadings in PC2,

thus, samples 4, 5, 6, 25, 26 and 27 from the Aberdeenshire data will tend to have larger

values on these variables. Samples 1 to 24 from the Aberdeenshire data, except 4, 5 and

6, will tend to have higher values for variables 710, 597, 659 and 104 than other samples.

Finally, Table 5.7 shows the top 20 variables contributing to PC1 and PC2 for data set

IV, corresponding to the information in Figure 5.22 (the total contribution to PC1 and

PC2 is obtained with R code "fviz_contrib" from package factoextra).

5.6 Applying PCA for Libya Data

Finally, we examine the Libya data using PCA. The Libya data set contains 12 samples

with 300 variables. As mentioned in Subsection 5.3.2, before doing any PCA analysis, it

is necessary to test the suitability of the Libya data set for PCA. The Gleason-Staelin

statistic and the normalised entropy are calculated using equations (5.6) and (5.9) re-

spectively. The value of the Gleason-Staelin statistic using the correlation matrix is 0.59.

Moreover, the normalised entropy for the data set is 0.62. Both statistics con�rm that

the Libya data set is suitable for PCA analysis.

After con�rming the suitability of the data, the next step in PCA is to identify the number

of principal components to retain for the analyses. The percentage of the total variation

in the data explained by the �rst ten principal components can be seen in Figure 5.23.

The plot shows that about 72%, 92% and 95% of the total variation is explained by 2, 5



137 Unsupervised Techniques

0

3

6

9

12

28 10
4

59
7

71
0

58
6

65
9

10
9

18
54 19

0
17

7
14

20 70
3

73
0

14
0

14
7

29
0

13
8

12
7

46
5

47
9

C
on

tr
ib

ut
io

ns
 (

%
)

Contribution of variables to Dim−1

(i) contribution of variables to PC1

0

1

2

3

4

71
0

59
7 28 65

9
10

4
17

7
73

0
13

1
70

3
10

9
19

0
14

7
26

2
46

5
18

0 30 13
8

37
8

26
7

10
6

C
on

tr
ib

ut
io

ns
 (

%
)

Contribution of variables to Dim−2

(ii) contribution of variables to PC2

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950

1

2 34
5
67

8

91011121314151617

18

19
2021

22

23

24

25

2627

28

29

30

31

32

33
34
35
363738

3940

4142
43444546

47

4849
50

51
5253

54

55

56

57

5859606162636465
66

67
68

69
70

71

72

7374
75
76
77

78798081
82

83
84
85

8687

88

899091

92

9394
95

96979899
100

101
102

103

104

105

106

107108

109

110111112113114115116

117

118119120121122
123

124
125126

127

128

129

130

131

132
133

134

135

136

137

138

139

140

141142
143

144

145

146

147

148149150
151

152

153

154155 156

157

158

159
160161162

163164165166167168169
170

171

172

173

174

175
176

177

178

179

180

181

182183
184185

186

187188 189

190

191

192

193194

195

196

197

198

199
200
201202203

204

205

206
207

208

209

210

211212
213214

215216217218
219

220221

222

223

224225

226

227228229
230231232

233234
235236237

238

239240241242243244245
246247

248

249
250251

252
253

254
255
256257258

259
260

261

262

263 264
265

266

267

268

269

270271272
273274275276277
278279

280
281

282

283

284285286287288

289

290

291

292293
294

295

296297298299

300

301
302303

304
305

306307308309310

311

312
313314315316

317
318319320321322323324325326327328329

330

331332333

334

335336337338339

340

341

342

343
344345346

347

348349350
351

352
353

354

355
356

357

358
359
360

361362363364365
366
367

368

369

370
371

372

373

374375

376

377

378

379

380

381382383

384

385386387388
389390391392393394395396397398

399

400401402403
404

405
406407408409

410

411

412
413414

415

416
417
418

419
420

421

422
423

424425426427428429430431
432

433
434
435

436437
438

439440

441

442
443444

445

446
447448449450

451452453454455
456

457
458459

460461
462
463

464

465

466467468469
470

471

472473474

475

476477478

479

480481482
483
484485486487488489490491492493494
495496

497

498

499
500
501502503

504505506507508

509

510

511

512
513

514
515

516
517518519

520
521

522
523

524525526
527
528

529

530

531532533534535
536
537538
539

540

541542
543

544
545546

547

548
549550
551
552553554
555556
557

558

559560
561

562

563
564565566567568

569

570571572573

574

575
576577

578

579

580

581

582

583
584

585

586

587
588589590

591
592593594

595
596

597

598

599600

601

602

603604605606607

608

609
610
611

612613

614

615
616

617

618

619

620621622623
624

625626
627628629630

631

632

633

634635636637638639640
641

642643644

645
646
647

648

649650651652653654655

656

657
658

659

660
661

662
663664

665
666667668669670

671

672

673674
675676677

678
679

680

681682683
684
685

686
687688689690

691692
693694

695
696

697

698

699

700

701

702

703

704705
706

707

708

709

710

711712

713
714
715

716
717

718719

720

721
722

723

724
725726

727

728

729

730

731
732733

734735736

737

738
739

740741742
743

744
745
746747748

749

750751752753754

755

756

757
758

759
760
761762763764765

766

767

768769
770771772

773

774

775776777778779
780
781782783784785

786787788789

790

791792

793

794795796797
798

799800
801
802
803804

805

806
807808

809810

811

812813814815816

817
818

819

820
821

822823824825

826

827
828829

830

831

832833
834

835

836
837

838839

840841
842843844845846847848849850851

852

853854

855
856

857

858

859860

861

862
863

864865
866

867868

869

870

871

872
873

874
875
876877
878
879
880881

882

883
884

885
886887

888
889
890891892

893

894
895896897898

899

900

901
902

903

904

905
906

907

908

909910911

912

913914
915

916

917
918919920921

92292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025
1026


12111212



1420

14211422142314241425142614271428

1429

14301431143214331434143514361437143814391440144114421443144414451446144714481449
1450145114521453145414551456
1457

14581459
1460

1461146214631464
1465

1466
1467

1468146914701471147214731474147514761477147814791480148114821483
14841485

1486
14871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560

15611562156315641565
1566

15671568
1569

1570
1571

15721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606

1607
1608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644

1645
1646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679

1680
16811682

1683
168416851686

16871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736

1737
1738

17391740
1741

1742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772
17731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822
1823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853

1854
1855

1856
1857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896

1897
189818991900190119021903190419051906

1907
19081909

1910
19111912191319141915191619171918191919201921192219231924192519261927192819291930

−2.5e+09

0.0e+00

2.5e+09

−9e+09 −6e+09 −3e+09 0e+00 3e+09

PCA − Biplot

(iii) biplot for �rst two PCs

−3e+05 −2e+05 −1e+05 0e+00 1e+05 2e+05

−
2e

+
05

−
1e

+
05

0e
+

00
1e

+
05

2e
+

05
3e

+
05

PC1

P
C

2

1

2

3

4
5

6

7
8 9

10

11

12

13
14

1516

1718

19

2021

2223
24

25
26

27

282930313233

3435

363738
3940
41

4243
44 45464748

4950

(iv) Score plot for �rst two PCs; the blue colour

shows Aberdeenshire, red shows Fort William,

and black shows Dunblane samples.

Figure 5.21: The top 20 variables contributing to PC1 and PC2 of data set IV, and a

biplot and scores plot.

and 6 PCs respectively.

Table 5.8 contains the standard deviation, the percentages of the total variance explained
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Figure 5.22: The top 20 variables contributing to the �rst two principal components of

data set IV.

and the cumulative percentages of variance for the �rst ten PCs. The detailed results for

the variance of the PCs indicate that no more than 2 components need to be retained

for further analyses, as they explain most of the variation in the data, about 72%. To

con�rm these �ndings, as described in Section 5.2.4, the broken stick, parallel analysis

and scree plot stopping rules will be used to identify the appropriate number of principal

components. An illustration of the broken stick model can be seen in Figure 5.24 (left),

showing that only one component should be retained, as only one eigenvalue is larger

than the expected value of the broken stick distribution (red line). Cattell′s scree test is

also depicted in Figure 5.24 (black line in the left �gure), con�rming that at most two

components should be retained (using one more component after the break in the line

(Jackson, 2003)). Parallel analysis is shown in Figure 5.24 (right) and suggests that 4

components should be retained. Finally, in Table 5.9, a comparison of the results for a

number of stopping rules can be seen. This shows that about 90%, 95% and 99% of the
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The Data Set IV

Rank name of compound Retention Time

1 hydroxyphenyl acetic acid 8.0

2 benzyl coumarate 20.4

3 dica�eoyl acetyl glycerol 14.9

4 cinnamoyl ca�eoyl acetyl glycerol 17.7

5 C23H21O9 16.3

6 Methyl pinobanksin 13.4

7 benzoyl hydroxy phenyl acetic

acid

18.7

8 coumaroyl feruoyl acetyl glycerol 16.6

9 coumaroyl feruoyl acetyl glycerol 18.0

10 benzoyl dihydroxyphenylpropi-

onic acid

18.3

11 pinocembrin methyl ether 18.3

12 coumaric acid cinnamyl ether 22.3

13 dicoumaroyl glycerol 14.6

14 C16H11O5 15.1

15 Hydroxy phenyl acetyl dihydrox-

yphenylacetic acid

15.1

16 ca�eic acid hextrieneoate 22.0

17 hydroxyphenyl propionic acid 8.9

18 prenylated �avonoid 21.1

19 benzoyl hydroxy phenyl acetic

acid

19.72017368

20 Methyl pinobanksin 17.9

Table 5.7: The 20 variables with the highest contribution to PC1 and PC2 for data set

IV.

total variation is explained by 4, 6 and 8 PCs respectively. The results stated in Table

5.9 show that 2 or 4 PCs should be retained. Despite the �rst two components explaining

only about 72% of the total variation, two PCs is most probably a su�cient number of

PCs to retain.

From Figure 5.25, the most interesting plot of the Libya data set is the score plot for the

�rst two PCs, as these components explain approximately 72% of the total variation. The

points are very scattered. Moreover, Figure 5.25 indicates that there are various samples

having a high positive or negative score on PC1 or PC2, which seem to be outliers, in-

�uencing mainly PC1 or PC2, through point 8 is a bit di�erent from the rest in terms of
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Figure 5.23: Percentages of the total variation in the Libya data explained by the �rst

ten PCs.

PCs Standard Deviation % of Variance Cumulative %

PC1 19.2770 54.87 54.87

PC2 10.7023 16.91 71.79

PC3 8.0711 9.62 81.41

PC4 7.19834 7.65 89.06

PC5 4.73949 3.32 92.38

PC6 4.01229 2.38 94.76

PC7 3.24101 1.55 96.31

PC8 3.05612 1.38 97.69

PC9 2.5503 0.96 98.65

PC10 2.26773 0.76 99.41

Table 5.8: Standard deviation, percentage of total variance explained by, and cumulative

percentages of variance for the �rst ten PCs of the Libya data.
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Figure 5.24: Stopping rules for the number of components of the Libya data.

Stopping rule Number of Components retained for data IV

Parallel Analysis 4

Brocken Stick 1

Cattel's Scree Test 2

90% of Variance 4

95% of Variance 6

99% of Variance 8

Information Dimension 4

Table 5.9: Comparison of various stopping rules for the Libya data set of 12 samples and

300 variables.

PC3. The samples in this data set seem to be quite varied. Diagnostic plots using the

score and the orthogonal distance of samples in the data can be seen in Figure 5.26. The

cut-o� values for the score and the orthogonal distance are equal to 2.72 and 288859.9

respectively. It can be seen that there are no samples with score distance higher than

the cut-o�. On the other hand, in the case of the orthogonal distances, it can be seen
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Figure 5.25: Scores plots of the Libya data for the �rst three PCs, superimposed with

numbers representing the di�erent samples, as supplied in the data set.

that there are two points with orthogonal distance higher than the cut-o� value (points

11 and 12). These two points are good leverage outliers, and there were no samples as

bad leverage outliers (high score distance and high orthogonal distance). Therefore, the

original Libya data set will be used in further investigation.

Figure 5.27 shows the top 20 variables contributing to the principal components for the
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Figure 5.26: Outlier diagnostic plots of the Libya data using the score distance (SD)

and the orthogonal distance (OD). The labels in the plots are the numbers of the twelve

samples. The horizontal lines in the two plots represent the cut-o� values, such that any

point above these lines is a leverage point (top plot) or an orthogonal outlier (bottom

plot).

Libya data set. The red dashed line on the graph indicates the expected average contribu-

tion. For a given component, a variable with a contribution larger than this cut-o� could

be considered as important in contributing to the PCs. Also, the eigenvalues measure

the amount of variation retained by each PC. From Figure 5.27, variables 2, 3, 4 and 7

have the highest positive loadings in PC1 (Figure 5.27, plot (iii), Appendix Table F), thus

samples P1 and P2 tend to have larger values in PC1, as well as variables 5, 6, 16 and 17

being observed to have the highest positive loadings in PC2, thus, samples P11 and P12

will tend to have larger values on these variables. Finally, Figure 5.28 shows the top 20

variables contributing to PC1 and PC2. Table 5.10 compares the top 20 variables con-
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Figure 5.27: Variables contributing to PC1 and PC2 of the Libya data set.

tributing to PC1 and PC2 for the Libya data set, corresponding to Figure 5.28 (the total

contribution to PC1 and PC2, was obtained with R code "fviz_contrib" from package

factoextra).
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Figure 5.28: The top 20 variables contributing to the �rst two principal components of

the Libya data set.

5.7 Conclusions

In this chapter, PCA was reviewed. Then, the �rst part of the exploratory analysis covered

the application of PCA to data sets I, II, III, IV (Aberdeenshire, Fort William, Dunblane

and the data sets combined) and the Libya data set. The data sets I, II, III, IV and

Libya were mean-centred and column-scaled by Pareto scaling to make the samples more

comparable. Results of the analyses indicated that the �rst two principal components

account for approximately 79%, 84%, 77% and 72% of the total variation in the data sets

I, II, III and Libya respectively, and the �rst three PCs account for approximately 77.5%

of the total variation of data set IV (the �rst two PCs account for 66%, which is low).

Therefore the �rst two or three PCs should be su�cient to separate the samples with

respect to every three samples indicating one hive (or colony) in data sets I, II and III

and the location of samples in data sets IV and Libya. Various stopping rules, including

the broken stick model, scree plot and parallel analysis, were used to con�rm that only
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Libya Data

Rank name of compound Retention Time

1 Dietrichequinone 14.33

2 Dietrichequinone 15.12

3 Dietrichequinone 14.13

4 C19H24O4 12.86

5 C24H40O3 12.73

6 C24H38O4 12.89

7 C24H38O3 52.59

8 C20H30O3 21.22

9 C21H34O4S 14.43

10 C30H46O4 41.74

11 C24H38O4 42.71

12 C26H44O3 9.74

13 C26H42O3 56.41

14 C20H30O3 36.99

15 C20H22O5 21.43

16 C24H40O3 57.27

17 C20H22O4 24.98

18 C24H36O4 39.97

19 C16H12O6 15.74

20 C24H36O4 37.09

Table 5.10: The 20 compounds contributing most to PC1 and PC2 of the Libya data set.

the �rst two or three PCs should be retained.

The data sets I, II, III, IV and Libya were examined for the possibility of the existence

of potential outliers, and 0, 3, 0, 0 and 0 samples were removed from the data sets I, II,

III, IV and Libya respectively, as diagnostic plots showed the omitted points to be bad

leverage outliers in data set II (Fort William). The analyses were re-run with the reduced

data set II (Fort William), con�rming that there was some e�ect of excluding these sam-

ples from the data set on the PCA results. Therefore the new data were used for data set

II (Fort William) for further analysis (14 samples instead of 17 samples), while the full

original data was used for further analyses of data sets I, III, IV (although data set IV

does contain the reduced data set II of 14 samples) and Libya. Loadings plots were used

to examine any relationship between samples and variables.
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In general, PCA has been quite helpful in obtaining a good idea of the general struc-

ture of the data sets I, II, III, IV and Libya and chemical properties of the samples as well

as location. It is clear from the analysis that the samples from Libya are much more di-

verse than these from Scotland. Libya is a very large country and this will re�ect di�erent

forage sources available to honey bees in di�erent parts of the country. Only samples P5,

P6 and P7 from the Southeast of the country gave a distinct group and they were close

to the sample P8 from the Southwest. The samples from the coast (see Figure 3.5) did

not divide according to longitude and the samples are composed of samples from the East

and West of the country, and although P10 was collected from a site close to P11 and

P12 it seems to be quite di�erent in composition. The top 20 compounds contributing

to the �rst two PCs are quite di�erent for the Libya data than they are for the Scottish

samples.

From the combined data set IV, the Fort William and Dunblane samples are more similar

than either of these to the Aberdeenshire samples (Figures 5.19, 5.21 (iv)), but using a

third PC dimension (Figure 5.19) it was possible to separate all those locations, there-

fore there are biochemical di�erences in the samples from the di�erent locations and also

within locations. Table 5.4 did show some compounds in common between the 3 di�erent

locations. For Aberdeenshire, the samples do vary. Samples 1, 2, 3, 4, 5, 6, 25, 26 and

27, may relate to more restricted forage sources and the remaining samples to di�erent

sources of forage for propolis. For Fort William, samples 4, 5 and 6 were outliers and

there was an e�ect of these samples in the �rst two PCs. The samples in the middle of

the PCA plot are from several di�erent sources of propolis, whereas the samples towards

the periphery of the plot focus on more restricted sources, such as samples 1, 2, 3, 7 and

8. For Dunblane, no components can discriminate all samples depending on every three

samples from the same hive (or colony). In general, there is variation in composition of

samples from any one hive (or colony).

In the next chapter, another unsupervised technique for data exploration and dimension
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reduction, multidimensional scaling (MDS), will be reviewed and applied to the propolis

data sets, in order to establish if it can be proved more capable of separating the samples

or o�ers any other advantage for dimension reduction of this kind of data.



Chapter 6

Multidimensional Scaling

Having examined PCA in some detail, and applied it to several data sets, in this chapter

another data-projection method, with the advantage over PCA that it is �exible and can

be used with any dissimilarity measure, is applied to the same data sets as for PCA, to

reduce dimensionality, namely, multidimensional scaling (MDS). More speci�cally, two

MDS methods are described in detail and are used, initially the classical MDS, and then,

the derived MDS con�guration was used as input to the NLM method. The structure of

the remainder of this chapter is as follows: In Section 6.2 classical scaling is described

and in Section 6.3 metric MDS is reviewed. Sections 6.4, 6.5 and 6.6 are the application

of MDS to the Scottish data and the Libya data. Section 6.7 gives conclusions.

6.1 Overview

Various di�erent multivariate statistical methods for multivariate data analysis are encom-

passed in multidimensional scaling (MDS), such as metric and non-metric MDS methods,

unfolding, correspondence analysis and individual di�erences scaling (Borg et al., 2017;

Cox and Cox, 2001). The purpose of MDS scaling is to use a plotted con�guration of

149
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points in a dimension that is lower compared to the initial data space, to represent an

observed proximity matrix, for easier visualisation or dimensionality reduction (see Figure

6.11). In other words, the dissimilarities among every object pair in a series of n objects

serve as input data in MDS. Furthermore, MDS seeks to display such di�erences as dis-

tances among the n points equivalent to the distances among the n objects, in a space

of lower dimension (typically two or three dimensions) so that maximum equivalence is

established between the obtained distances and the initial dissimilarities (Groenen and

Velden, 2004; Izenman, 2008; Williams, 2002).

However, it must be noted that not all MDS methods de�ne the equivalence between

Figure 6.1: Multidimensional scaling analysis.

distances of the points and the object dissimilarities in the same manner. The type of

data intended for analysis determines which MDS method should be chosen.

Moreover, the most suitable type of analysis is dictated by how many "modes" and "ways"

the input data have. Every series of objects occurring in the data constitutes a "mode"

in MDS. For instance, the dissimilarities ρij among samples arising from propolis repre-

sent one-mode data, while every index in inter-object measurement represents a "way".

Hence, due to the presence of two indices, i and j (where yi and yj refer to objects),

the previously mentioned dissimilarities ρij constitute two-way data. As distinguished by

Cox and Cox (2001), two-mode, two-way data are typically necessary for correspondence

1Source: https://www.sciencedirect.com/topics/medicine-and-dentistry/multidimensional-scaling.
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and unfolding analysis, scaling of individual di�erences facilitates analysis of two-mode,

three-way data, while data with a higher number of modes and ways can be managed by

other methods.

Additionally, the choice between metric or non-metric MDS depends on the scale of mea-

surement of the dissimilarities. Metric MDS is preferred in cases where the ratio or

interval scale is used for measurement of dissimilarities, whilst non-metric MDS is more

appropriate in cases of ordinal or nominal data, since its focus is not the actual values

but the ranks of the dissimilarities (Cox and Cox, 2001; Izenman, 2008). The focus here

is on metric MDS, due to the nature of the metabolomics data.

6.2 Classical Scaling

As algebraic techniques, classical scaling algorithms are employed to map n p-dimensional

objects yi into n points ýi in a space of lower dimension to produce maximum equivalence

between the initial object dissimilarities (ρij) and the distances between points (dij) (i.e.

dij ≈ ρij) in the new space. Considering yi with i = 1, ..., n as representing n p-dimensional

objects, equation (6.1) de�nes a dissimilarity (ρij) between the object yi, with coordinates

yi = (yi1, ..., yip), and yj, with coordinates yj = (yj1, ..., yjp):

ρij =

{
p∑

k=1

|yik − yjk|S
} 1

S

(S > 0). (6.1)

The Euclidean distance, which results from a S value of 2 in equation (6.1), represents

the main Lm metric in classical MDS. The Manhattan distance, which results from a S

value of 1 in equation (6.1). Other studies (Everitt (1993); Everitt and Rabe-Hesketh

(1997); Gordon (1981); Krzanowski and Marriott (1995)) have put forth several other

dissimilarity measures such as the Maximum distance or Chebyshev is:

ρij = max |yik − yjk|. (6.2)
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The Canberra distance is found using equation:

ρij =

p∑
k=1

|yik − yjk|
|yik|+ |yjk|

. (6.3)

An (n× n) matrix comprising all pairwise dissimilarities between the n objects is known

as a proximity matrix C (i.e. C = (ρij)).

The key stages of the classical MDS algorithm, are as follows (Hothorn and Everitt, 2014;

Izenman, 2008; Williams, 2002):

1. The (n × n) matrix A = (αij) is derived from the (n × n) proximity matrix C =

(ρij), with

αij = ρ2
ij, (6.4)

e.g. to give squared Euclidean distances.

2. Find the symmetric (n× n) matrix

B = −1

2
JnAJn,

with

Jn = In − n−11n1Tn ,

where In represents the (n× n) identity matrix, n is the number of objects, and 1n

represents the (n×1) vector with every element equivalent to 1, and Jn is a centring

matrix.

3. Calculation of eigenvalues and eigenvectors of B. Considering the matrix of eigen-

values λi of B and the matrix of eigenvectors vj of B in a column con�guration,

denoted by η = diag (λ1, ..., λn) and µ = (v1, ..., vn), respectively, the spectral the-

orem gives the relationship

B = µηµT .
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4. The obtained lower-dimensional con�guration of points ý represents the t-dimensional

con�guration of the n input objects y de�ned by the coordinate matrix

ý = µtη
1
2
t ,

with µt and ηt respectively denoting the matrix of t eigenvectors and the diagonal

matrix of the t largest positive eigenvalues of B (t ≤ p), where t is the speci�ed

number of dimensions to be used in the output.

5. Every eigenvalue of matrix B is positive and the t largest eigenvalues de�ne the

t-dimensional con�guration of optimal �t, if the Euclidean distance is used as the

Lm distance metric. If the criterion size given by

Mt =

t∑
i=1

λi

n−1∑
i=1

λi

,

which is a measure of the percentage of variation accounted for through the use of

t dimensions, is large (near to 1) then the �tting is considered suitable.

For cases of non-positive-semi-de�nite eigenvalues, Cox and Cox (2001) proposed

the modi�ed measure

Mt =

t∑
i=1

λi

n−1∑
i=1

(positive eigenvalues)

,

which should again be large for a good solution. Meanwhile, according to Hothorn

and Everitt (2014), Mardia's criterion is

t∑
i=1

|λi|

n−1∑
i=1

|λi|
,
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and a larger value of this is also desirable.

It is essential that, in order to avoid the loss of key information during the MDS

process, the number of dimensions that the obtained con�guration should have

must be determined in the context of MDS method implementation. Inspection

of the eigenvalues of matrix B enables determination of the maximum dimensions

necessary. The number of non-zero eigenvalues is a suitable number of dimensions in

the case of positive-semi-de�nite B, as in the context of application of the Euclidean

distance metric; under di�erent circumstances, the dimensions depend on how many

positive eigenvalues there are. Nevertheless, to ensure practicality and provided that

the criteria highlighted above are ful�lled, the �rst 2 or 3 eigenvalues are typically

used, yielding a relatively limited dimensional space for the obtained points and

easier visualisation.

6.3 The Metric MDS

In cases where the ratio or interval scale is used for measurement of the data intended for

analysis, metric MDS can be employed. If n objects with dissimilarities (ρij) are included

in the data, it will be necessary to achieve a con�guration supporting the relationship

dij ≈ f(ρij). (6.5)

In equation (6.3), the dissimilarities among the points denoting the objects in the point

mapping of the initial data space to the space of lower dimension are denoted by dij, while

f represents a continuous parametric monotonic function converting the dissimilarities

into distances. There are several choices for f , such as the a�ne transformation (dij =

βρij + γ), logarithmic transformation (dij = β log ρij + γ), exponential transformation

(dij = β exp ρij + γ), and power transformation (dij = ρxij, x > 0), with the unknown

positive coe�cients being denoted by β and γ (Hebert et al., 2006; Williams, 2002).
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6.3.1 Metric Least - Squares (LS) Scaling

The least squares technique is employed in metric LS scaling for �tting the distances

dij to the transformation f(ρij) to obtain a con�guration of points that can reduce the

STRESS function as much as possible (Izenman, 2008), where

STRESS =
∑
i<j

wij(dij − f(ρij))
2,

with wij representing suitably selected weights. Distances dij do not necessarily have to be

Euclidean. Meanwhile, the dissimilarities are attributed greater weight depending on the

selection of weights wij. For example, greater weight is attributed to small dissimilarities

between objects and related points than large dissimilarities if wij = ρ
− 1

2
ij (Borg et al.,

2017; Cox and Cox, 2001). Additionally, the STRESS function serves as a criterion for

goodness of �t.

6.3.2 Sammon's Error (STRESS)

A particular version of metric LS scaling, Sammon's non-linear mapping (NLM) is char-

acterised by the weighting system

wij =
1

ρij
∑
i<j

ρij
,

with f representing the identity function (f(ρij) = ρij) (Cox and Cox, 2001; Izenman,

2008; Sammon, 1969). Under such circumstances, the STRESS function is expressed as

(Sammon (1969); Sharaf et al. (1986)):

STRESS =
1∑

i<j

ρφij

∑
i<j

(ρij − dij)2

ρφij
.

Since the small ρij are retained in this technique, small ρij are prioritised over large ρij

when the distances dij are �tted, which could be helpful in cases where analysis is geared
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towards determining whether the data contain clusters. The prevalence of small or large

distances in weighting depends on the power φ; for example, small and large distances are

attributed identical weights when φ has a value of 2, whereas large distances are retained

at the expense of small distances when the φ value is -2 (Sharaf et al., 1986). Furthermore,

an iterative numerical process is employed to solve the series of non-linear least-squares

equations making up Sammon's metric STRESS function so as to reduce the STRESS

function value as much as possible (Izenman, 2008; Sammon, 1969).

The following steps illustrate how to minimise the STRESS function (Apostolescu and

Baran, 2016):

1. Calculate the Euclidean distance from each point Xi to each point Xj, as

dij =

√√√√ p∑
k=1

(xik − xjk)2,

where i, j = 1, 2, ..., n and k = 1, 2, ..., p.

2. Use the Singular Value Decomposition (SVD) of the X matrix. SVD decomposes

a matrix into a set of rotation and scale matrices, which is used in computing the

rank of the matrix X. The general form of SVD decomposition is: X = USV T ,

where matrix X is (n× p), matrix U is (n×n), matrix S is (n× p) and matrix V is

(p× p). The S matrix is called the singular value matrix and its elements are only

nonzero on the diagonal.

3. Estimate the mapping dimension as s < p.

4. Calculate a matrix Y = U∗S so that the dimension of Y is p× s.

5. Calculate Euclidean distance from each point Yi to each point Yj

ρij =

√√√√ s∑
k=1

(yik − yjk)2

where i = 1, 2, ..., n and j = 1, 2, ..., n.
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6. Calculate the Sammon stress function and minimise it, where

STRESS =
1∑

i<j

ρij

∑
i<j

(ρij − dij)2

ρij
.

6.4 Application of MDS to Scottish Data Sets I, II and

III

The Scottish data sets I, II and III are of type one-mode, two-way, as mentioned pre-

viously. In addition, the data consists of continuous variables of quantitative nature

measured on the ratio scale due to the nature of the data (metabolite peaks). Therefore,

the dissimilarities matrix of the samples contains also quantitative values and metric MDS

is the most appropriate to obtain a con�guration of points in a lower-dimensional space

(Izenman, 2008). An initial con�guration will be derived using classical scaling, which

will be used as input to the NLM algorithm (Section 6.3.2). The algorithm will attempt

to derive a con�guration as close as possible to the original, minimising the value of the

STRESS function described in the previous section. The data that will be used in the

MDS analyses is the same data that were used in Chapter 5, and have been described in

detail in Section 3.4.

The �rst step we will use is the classical scaling solution for data sets I, II and III. Upon

exploring the various distance measures that can be used to obtain an initial con�guration

of points, the criteria for assessing the adequacy of a 2-dimensional solution, indicated

that the best distance measure in these cases (Aberdeenshire, Fort William and Dun-

blane) is the Euclidean distance for both criteria used, as can be seen in Table 6.1. We

used the Mardia criterion and also M2 (Section 6.2). Table 6.1 shows that the Euclidean

distance leads to larger (better) criteria values than any of the other methods used. Also,

the Canberra distance gives less good results as assessed using the Mardia criterion. The

Manhattan distance gives the second best results. The Canberra method is poor when
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Data Sets Aberdeenshire Fort William Dunblane

Metric M2 Mardia M2 Mardia M2 Mardia

Euclidean 0.790 0.790 0.838 0.838 0.769 0.769

Manhattan 0.786 0.751 0.835 0.823 0.755 0.751

Maximum 0.730 0.719 0.809 0.779 0.682 0.666

Canberra 0.610 0.440 0.815 0.481 0.717 0.434

Table 6.1: Values of Mk and Mardia criteria for various Minkowski metrics in classical

scaling for data sets I, II and III (k = 2).

the Mardia criterion is used.

Using a 2-dimensional solution is justi�ed by the fact that both criteria for most met-

rics used indicate that a high proportion of the data variation is explained by using 2

dimensions. Therefore, a 2-dimensional space should be su�cient in these cases. As the

Euclidean distance metric is the most commonly used in MDS, and for both criteria its

value is 0.790 for Aberdeenshire, 0.838 for Fort William and 0.769 for Dunblane, suggest-

ing that the �t is very good, it seems that it is the most appropriate to use in classical

MDS. Results of these metrics can be compared to those from the second best metric,

Manhattan, which are similar.

The 2-dimensional con�guration derived from the classical scaling using these two dis-

tance metrics can be seen in Figure 6.2. It is clear that the plots for the Euclidean and

Manhattan distances are both similar to each other and also similar to these of the PCA

for the �rst two PCs in Figures 5.6, 5.10 and 5.11 for data sets I, II and III respectively.

That is expected, as in classical MDS using the Euclidean distance results in the same

scores derived from PCA, as seen in the left panel of Figure 6.2 (Brereton, 2009). The

use of the Manhattan metric results in the con�guration seen in the right panel of Figure

6.2, which are similar to these of the Euclidean distance. The con�gurations from the

Euclidean and Manhattan distances squeeze the points towards the bottom side of the

plot with respect to coordinate 2 for data set I. However, in all con�gurations there are
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Figure 6.2: Two-dimensional solution of classical MDS using the Euclidean (left plot) and

the Manhattan (right plot) distance metrics for data sets I, II and III. The numbers in

the plots are the original labels of the samples.

obvious similarities to those of the PCA for the �rst two PCs of the data sets I, II and

III.
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A spanning tree is useful in MDS analysis, as it can provide a graphical way of highlight-

ing any possible distortion in the MDS solution. This type of tree is de�ned as a tree

spanning Ns multi-dimensional points (samples). This is any set of straight line segments

joining pairs of points such that:

• No closed loops occur,

• Every point is visited at least once,

• The tree has paths between any pairs of points.

The sum of the lengths of the tree's segments is de�ned as the length of the tree. The

minimum spanning tree (MST) is de�ned as the spanning tree with the minimum length

(Hothorn and Everitt, 2014). The links of the minimum spanning tree can be superim-

posed on the 2-dimensional MDS con�guration. Any distortions in the MDS solution are

then identi�ed when any nearby points on the scores plot are not connected by a direct

line segment of the MST in the above MDS solution.

Figure 6.3 illustrates the minimum spanning tree for the derived MDS con�gurations

above. From the minimum spanning trees, it is clear that there are distortions in both

models. For example, samples 1 and 3 in the Euclidean model for data set I, as well in

the Manhattan model, among others, appear to be quite close in the scores plot but they

are not linked directly in the minimum spanning tree, and similarity in data set II. For

example, samples 11 and 14 in the Euclidean model for data set II, as well as 6 and 14

in the Manhattan model, among others, appear to be quite close in the scores plot but

they are not linked directly in the minimum spanning tree. In the case of data set III,

samples 6 and 7 in the Euclidean model for data set III, as well as samples 8 and 9 in the

Manhattan model, among others, appear to be quite close in the scores plot but they are

not linked directly in the minimum spanning tree.

In general, classical MDS has con�rmed the results of PCA. The Euclidean MDS model

provides a two-dimensional con�guration which is similar to that of the Manhattan MDS
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Figure 6.3: Minimum spanning tree for the two best MDS con�gurations for data sets I,

II and III. The numbers in the plots are the numbers of the samples.
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model. However, so far MDS has not provided any additional information for the group-

ing of the samples to that obtained by PCA.

In the next step, an alternative method of implementing non-linear MDS, Sammon's non-

linear mapping (NLM) will be applied to data sets I, II and III, to investigate whether

NLM can improve the results obtained from the classical MDS analysis.

The initial con�gurations derived by classical scaling using the Euclidean and Manhattan

distance metrics, will be used as input to the NLM algorithm. The optimal NLM models

are derived when the minimum values of the STRESS function are 0.01367, 0.01328 and

0.02486 after 50, 30 and 40 iterations and 0.02491, 0.01241 and 0.02035 after 60, 40 and 30

iterations, for the Euclidean and the Manhattan NLM models respectively, for data sets I,

II and III respectively. These results are again similar for the Euclidean and Manhattan

distances. Figure 6.4 illustrates the �nal con�gurations for the two derived optimal NLM

models. Comparing the NLM con�gurations to those obtained from classical MDS (Fig-

ure 6.2), it can clearly be seen that in the cases of the Euclidean model and Manhattan

model, there are no great di�erence in the distances between the samples in the two MDS

models and in the actual topology of the two Euclidean and Manhattan con�gurations, as

most of the samples are located at approximately the same place in both models of data

sets I, II and III. On the other hand, in the case of the Manhattan models of data set I,

the compression-like, tight clustering e�ect that occurs in the classical MDS model has

been eliminated in the NLM model, and therefore there is a considerable di�erence in the

between-samples distances of the formerly compressed samples. The NLM con�gurations

are similar in their topology as in the classical MDS models, except that the NLM for

Manhattan model for data set I is still clustered but the clustering is looser. As in the case

of MDS, the two NLM models do not provide any additional information for grouping of

samples to that obtained by PCA.
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Figure 6.4: Two-dimensional solution of NLMMDS using the Euclidean (left plot) and the

Maximum (right plot) distance metrics for data sets I, II and III. As initial con�gurations,

the classical MDS models depicted graphically in Figure 6.2 have been used. The numbers

in the plots are the sample numbers.
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6.5 Application of MDS to the three Scottish Data Sets

combined (IV)

The three data sets (Aberdeenshire, Fort William and Dunblane) are now considered to-

gether as one data set, using MDS, as was done in the PCA. That is, data set IV contains

the selected 27, 14 and 9 samples with 921, 511 and 498 variables respectively. The three

data sets have been mean-centred and column-scaled by Pareto scaling before analysis.

Therefore, the dissimilarities matrix of the samples again contains quantitative values and

metric MDS is the most appropriate type of MDS to obtain a con�guration of points in

a lower-dimensional space.

Upon exploring the various distance measures that can be used to obtain an initial con-

�guration of points, the criteria for clustering the adequacy of a 2-dimensional solution

indicated that the best distance measure in this case is again the Euclidean distance, hav-

ing a value for both criteria of 0.660, as can be seen in Table 6.2. The Manhattan distance

again is the next best. The Canberra distance is poor again with the Mardia criterion.

Using a 2-dimensional solution is justi�ed as both criteria for all metrics indicate that a

Metric M2 Mardia

Euclidean 0.660 0.660

Manhattan 0.642 0.640

Maximum 0.637 0.633

Canberra 0.621 0.320

Table 6.2: Mk and Mardia criteria for various Minkowski metrics in classical scaling for

data sets IV (k = 2).

high proportion of the data variation is explained by using 2 dimensions. Therefore, a

2-dimensional space should be su�cient in this case.

As the Euclidean distance metric is the most commonly used in MDS and for both criteria
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its value is the same and the highest, being approximately 0.660, and suggesting that the

�t is good, it seems that it is the most appropriate to use in classical MDS. Results of this

metric will again be compared to those from the second best metric, Manhattan. The

2-dimensional con�guration derived from the classical scaling using these two distance

metrics can be seen in Figure 6.5. It is clear that the plot for the Euclidean and Man-

hattan distance is similar to that of the PCA for the �rst two PCs in Figure 5.21 (iv) for

data set IV, with the only di�erence being that the �rst coordinate in the MDS plot is

re�ected, as seen in the top panel of Figure 6.5. The use of the Manhattan metric results

in the con�guration seen in the bottom panel of Figure 6.5. The two patterns of clustering

are similar using the Euclidean or Manhattan distance. However, in both con�gurations

there are no obvious di�erences in groupings of the samples compared to the PCA result.

Figure 6.6 illustrates the minimum spanning tree for the derived MDS con�gurations

above. From the minimum spanning trees, it is clear that there are distortions in both

models. For example, samples 2 and 3 in the Euclidean model as well as in the Manhattan

model, among others, appear to be quite close in the scores plot but they are not linked

directly in the minimum spanning tree.

In general, classical MDS has con�rmed the results of PCA. The Euclidean MDS model

provides a two-dimensional con�guration which is similar to the Manhattan MDS model.

However, so far MDS has not provided any additional information for the grouping of the

samples to that obtained by PCA.

In the next step, an alternative method of implementing non-linear MDS, Sammon's non-

linear mapping will again be applied to data set IV, to investigate if NLM can improve

the results obtained from the classical MDS analysis. The initial con�gurations derived

by classical scaling using the Euclidean and Manhattan distance metrics will be used as

input to the NLM algorithm. The optimal NLM models are derived when the minimum

values of the STRESS function are 0.06694 after 30 iterations and 0.03023 after 50 iter-

ations, for the Euclidean and the Manhattan distances respectively. Figure 6.7 illustrates

the �nal con�gurations for the two derived optimal NLM models. Comparing the NLM
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Figure 6.5: Two-dimensional solution of classical MDS using the Euclidean (upper plot)

and the Manhattan (bottom plot) distance metrics for data set IV. The numbers in the

plots are labels of the samples.

con�gurations to those obtained from classical MDS (Figure 6.5), it can clearly be seen

that in the cases of the Euclidean and Manhattan models, there are great di�erences in

the distances between the samples in the two MDS models and in the actual topology

of the two Euclidean and Manhattan based con�gurations. The clusters are much the
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Figure 6.6: Minimum spanning tree for the two MDS con�gurations for data set IV. The

numbers in the plots are labels of the samples.

same but the points are much more widely spaced in the NLM model using Euclidean

and Manhattan distances. In the cases of the Euclidean and Manhattan models, the

compression-like e�ect that occurs in the classical MDS model has been eliminated in

the NLM model, and therefore there is a considerable di�erence in the between-samples

distances of the formerly compressed samples. The NLM con�gurations are quite di�erent
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Figure 6.7: Two-dimensional solution of NLM MDS using the Euclidean (upper plot) and

the Manhattan (bottom plot) distance metrics for data set IV. As initial con�gurations,

the classical MDS models depicted graphically in Figure 6.5 have been used. The numbers

in the plots are the sample numbers.

in their topology than in the classical MDS models. In general, there is no rotation or

re�ection of the samples in the two NLM models, compared to the classical MDS con-

�gurations. As in the case of MDS, the two NLM models do not provide any additional
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information for grouping of samples to that obtained by PCA.

6.6 Application of MDS to the Libya Data

A similar analysis was carried out on the Libya data. The best distance measure in this

case is the Euclidean distance, having a value of both criteria 0.718, as can be seen in

Table 6.3, for a 2-dimensional solution. The results are a bit di�erent from those for the

Scottish data but the Euclidean distance still gives good results. Using a 2-dimensional

Metric M2 Mardia

Euclidean 0.718 0.718

Manhattan 0.505 0.490

Maximum 0.709 0.706

Canberra 0.698 0.545

Table 6.3: Mk and Mardia criteria for various Minkowski metrics in classical scaling for

Libya data (k = 2).

solution is justi�ed by the fact that both criteria for all metrics indicate that a fairly

high proportion of the data variation is explained by using 2 dimensions. Therefore, a

2-dimensional space should be su�cient in this case. For both criteria the value is the

same using Euclidean distance, being approximately 0.718, and suggesting that the �t is

good, so it seems that it is the most appropriate to use in classical MDS.

Results of this metric will be compared to those from the second best metric, which is

Maximum in this case. The 2-dimensional con�guration derived from the classical scaling

using these two distance metrics can be seen in Figure 6.8. It is clear that the plot for the

Euclidean distance is similar to that of the PCA for the �rst two PCs in Figure 5.25 for

the Libya data, as seen in the top panel of Figure 6.8. The two panels are rather di�erent.

The use of the Maximum metric results in the con�guration seen in the bottom panel of
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Figure 6.8: Two-dimensional solution of classical MDS using the Euclidean (upper plot)

and the Maximum (bottom plot) distance metrics for Libya data. The numbers in the

plots are labels of the samples.

Figure 6.8. In the case of the Maximum distance there is some clustering of the samples,

as P5, P6 and P7 are similar and P12 is di�erent from the rest. The Maximum distance

squeezes the points towards the left side of the plot and towards zero with respect to

coordinate 1 for those samples compared to the Euclidean result in Figure 6.8.
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Figure 6.9 illustrates the minimum spanning tree for the derived MDS con�gurations

above. From the minimum spanning trees, it is clear that there are distortions in both
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Figure 6.9: Minimum spanning tree for the two MDS con�gurations for Libya data set.

The numbers in the plots are the numbers of the samples.

models. For example, samples P11 and P12 in the Euclidean model for Libya data, as

well as P5 and P6 in the Maximum model, among others, appear to be quite close in the

scores plot but they are not linked directly in the minimum spanning tree.
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In general, classical MDS has con�rmed the results of PCA. The Euclidean MDS model

provides a two-dimensional con�guration which is easier to read than the Maximum MDS

model. However, so far MDS has not provided any additional information for the grouping

of the samples to that obtained by PCA.

In the next step, Sammon's non-linear mapping will be applied to the Libya data set, to

investigate if NLM can improve the results from the classical MDS analysis. The initial

con�gurations derived by classical scaling using the Euclidean and Maximum distance

metrics will be used as input to the NLM algorithm. The optimal NLM models are

derived when the minimum values of the STRESS function is 0.01524 after 50 iterations

and 0.05513 after 110 iterations, for the Euclidean and the Maximum distance respectively.

The �rst is much better. Figure 6.10 illustrates the �nal con�gurations for the two derived

optimal NLMmodels. Comparing the NLM con�gurations to those obtained from classical

MDS, it can clearly be seen that in the case of the Euclidean model, there is little di�erence

in the distances between the samples in the two MDS models and in the actual topology of

the two Euclidean con�gurations, as most of the samples are located at approximately the

same place in both models. On the other hand, in the case of the two Maximum models,

the compression-like e�ect that occurs in the classical MDS model has been eliminated in

the NLM model, and therefore there is a considerable di�erence in the between-sample

distances of the formerly compressed samples. The classical MDS models are much closer

in their topology than in the NLM con�gurations.

6.7 Conclusions

Mathematically and conceptually, there are close correspondences between MDS and other

methods used to reduce the dimensionality of complex data, such as Principal Components

Analysis (PCA) and factor analysis. PCA is more focused on the dimensions themselves,

and seeks to maximise explained variance, whereas MDS is more focused on relations
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Figure 6.10: Two-dimensional solution of NLMMDS using the Euclidean (upper plot) and

the Maximum (bottom plot) distance metrics for Libya data set. As initial con�gurations,

the classical MDS models depicted graphically in Figure 6.5 have been used. The labels

in the plots are the sample labels.

among the scaled objects. MDS projects p-dimensional data points onto a (commonly)

2-dimensional space such that similar objects in the p-dimensional space will be close to-

gether in the two-dimensional plot, while PCA projects a multidimensional space onto the
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directions of maximum variability using the covariance or correlation matrix to analyse

the correlations between data points and variables.

In this chapter, another data-projection method, with the advantage over PCA that it is

�exible and can be used with any dissimilarity measure, is applied to the same propolis

data sets as for PCA, for clustering purposes, namely, multidimensional scaling. More

speci�cally, two MDS methods were described in detail and used, initially the classical

MDS, and then the derived MDS con�guration was used as input to the NLM method of

MDS.

In the case of the initial con�guration, results using four di�erent distance metrics, Eu-

clidean, Manhattan, Maximum and Canberra, were compared with the help of two criteria,

M2 and Mardia's criterion. Considering the results of the criteria, the Euclidean metric

was the best, giving a consistently good �t of the original distances of the samples to

the corresponding two-dimensional MDS space. The pattern recognition capability of the

classical MDS models was tested both by examining the graphical representations of the

models' con�gurations of the samples.

Results proved to be very consistent to those of PCA, but overall classical MDS did not

improve the PCA �ndings or add more information to them.

In general, the Euclidean model proved to be similar to the second best metric, which

was the Manhattan distance for data sets I, II, III and IV, and the Maximum distance

for the Libya data, in term of the model �t.

Applying the NLM method to the data sets I, II, III and Libya, using the derived classical

MDS models as the initial con�guration, showed that only slight di�erences are observed

between the classical MDS and the NLM results, when the Euclidean distance metric is

used. On the other hand, in general, the compression-like e�ect of the points that had

been observed in the classical MDS model has been remedied in the NLM and the samples

are broadly spread in the NLM models.

The two MDS models were capable of reproducing quite successfully the �ndings of PCA,

in terms of clustering the data, but they did not provide any further information on the
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potential clustering of the samples and in general neither did the two NLM models.

The next chapters, Chapters 7 and 8, describe in detail two of the essential unsupervised

classi�cation techniques, for types of data such as metabolomics data, in the areas of

hierarchical clustering, and partitioning methods such as hard clustering, in an attempt

to identify suitable clustering models for these data and interpret the results of applying

these to the various data sets studied. These methods, as they are explicitly designed to

identify groupings present in the data sets I, II, III, IV and Libya, are expected to con�rm

the �ndings of PCA in Chapter 5.



Chapter 7

Cluster Analysis

After reducing the dimensionality of the data sets by PCA (and MDS), we consider

techniques for clustering of samples of data into di�erent groups. These techniques are

unsupervised, with no samples in the data belonging to any pre-de�ned clusters and no

prior knowledge of the number of clusters that are required to identify any similarity be-

tween samples. This chapter describes chapter analysis in general, and then focuses on the

very commonly used practical method of hierarchical cluster analysis (HCA), described in

Section 7.4, and applied to the data sets in Section 7.6. The focus is on the agglomerative

clustering approach. Other techniques of clustering are considered in Chapters 8 and 9.

7.1 Overview

Cluster analysis, also known as clustering, refers to numerous statistical techniques used

to structure or partition data into di�erent groups or clusters of similar samples accord-

ing to their characteristics. These techniques are not the same as supervised classi�cation

techniques, even though they refer to classi�cation, which is a broader area of statistics.

Cluster analysis can be used in two ways. One is for subdividing the data for analysis,

176
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termed by Krzanowski and Marriott (1995) as dissection, or identifying natural groups in

the given data. Theodoridis and Koutroumbas (2003) asserted that cluster analysis can be

used in several applications, including group prediction, data reduction, and hypothesis

generation and testing. It is also used to determine natural groupings in metabolomics

data.

There are several categories of clustering algorithms, such as genetic clustering algorithms,

sequential algorithms, competitive clustering algorithms, and cost function optimisation

algorithms. Furthermore, there are subcategories of some clustering techniques, such as

hierarchical clustering algorithms, that are further split into divisive algorithms and ag-

glomerative nesting algorithms.

This chapter and Chapters 8 and 9 will examine clustering techniques that have been

determined as the most appropriate for metabolomics data (Adams, 2007; Gordon, 1981;

Lindon et al., 2001), including partitioning methods such as hierarchical agglomerative

clustering, hard clustering algorithms and competitive learning algorithms. These tech-

niques will then be applied to the metabolomics data sets used previously in Chapters

4, 5 and 6. This chapter is divided as follows: Section 7.2 will explain the di�erent fac-

tors that need to be considered when applying cluster analysis; Section 7.3 will examine

proximity measures that are used to represent data sets in cluster analysis, and Section

7.4 will discuss hierarchical clustering using the agglomerative nesting method. Chapter

8 will de�ne the partitioning methods used with the k-means hard clustering algorithm,

and chapter 9 will describe competitive learning algorithms, speci�cally SOM, a less used

approach for metabolomics data, that are also tested here on the metabolomics data.

7.2 Considerations of Clustering

As shown by Theodoridis and Koutroumbas (2003), there are six aspects to consider in a

cluster analysis: variable selection, proximity measures, clustering procedure, clustering
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algorithm, quality of the clusters and clustering interpretation.

• The selected variables: The �rst step for cluster analysis is establishing

which variables in the data are potentially relevant to the research questions. The

variables selected may be a signi�cant factor in deciding the proximity measure,

clustering procedure and clustering algorithm to be used for the analysis. The

goal of the research and the reason for applying cluster analysis should direct the

researcher to suitable variables for the analysis. Further, before the data is used, it

may need to be pre-processed and pre-treated.

• Proximity measures: The proximity measure indicates the similarity between

pairs of objects, and what is suitable will depend on the nature of the data. The

next Section, 7.3, will provide a detailed explanation of di�erent proximity measures

used in cluster analysis.

• Clustering procedure: The third step for cluster analysis is choice of the

clustering procedure, such as Hierarchical methods or Partitioning methods. We

will discuss these in Section 7.4.

• Clustering algorithm: Once the proximity measure and the clustering pro-

ceeder are selected, a clustering algorithm must be determined to obtain clusters

from the data. In this chapter, clustering algorithms considered and used are Single,

Complete, Average, McQuitty and Ward's linkage.

• Quality of the clusters: After performing cluster analysis, a measure such

as the Silhouette Coe�cient must be applied to assess the quality of the results.

Section 7.5 will provide a detailed explanation of the Silhouette Coe�cient.

• Cluster explanation: In this �nal step, the results of analysis are interpreted.

For clearer interpretation, results of other statistical techniques, such as from PCA,

may have to be used as well as cluster analysis, for example for visualisation of

results.
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It is also important to assess whether the data has a clustering tendency, that is, whether

the data is suitable for cluster analysis. This can be achieved using di�erent methods.

The clustering solutions can be a�ected by the selected variables, clustering algorithms,

or proximity measures.

7.3 Proximity Measures

Clustering indicates that objects in a data set are similar or dissimilar to each other, and

thus a proximity or di�erence measure, to express closeness of objects, is required for

clustering a set of objects into natural groups. The approach used for clustering objects

into groups depends on the way the objects are presented for analysis. Gordon (1996)

put forth two methods of representing data: the pro�le matrix and proximity matrices.

Pro�le Matrix, also known as the Pattern Matrix

The pro�le matrix is an (n×p) data or input matrix X containing elements xik, where xik

is the observed value on the ith object's kth variable (i = 1, ..., n, k = 1, ..., p). A majority

of clustering techniques use this data representation as the input for clustering. In this

thesis, xik is the intensity value that is noted in the ith sample for the kth metabolite

(variable).

Proximity Matrices

Below are the two types of proximity matrices:
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• Dissimilarity Matrix

An (n × n) matrix containing elements dij is a dissimilarity matrix D if the dis-

similarity between the ith and jth objects (i, j = 1, ..., n) is dij. Further, d is a

dissimilarity coe�cient that is a function mapping Φ×Φ to the real line R, where Φ

indicates the set of objects that are to be classi�ed (Gordon, 1981; Lukasova, 1979).

The properties of d are the following:

dij > 0; ∀ i, j ∈ Φ,

dii = 0; ∀ i ∈ Φ,

dij = dji; ∀ i, j ∈ Φ (symmetric). (7.1)

Further, as stated by Everitt (1993) and Kaufman and Rousseeuw (2009), if d

satis�es the following

dij ≤ dih + dhj ∀i, j, h ∈ Φ (triangle inequality) (7.2)

then d can be considered as a distance function. Though Gordon (1981) and Kauf-

man and Rousseeuw (2009) have asserted that for a measure to be a dissimilarity,

it need not satisfy (7.1) and (7.2), both these equations must be applicable for a

distance measure. The following equation is the Minkowski metric, the most notable

distance measure.

d
(q)
ij =

{
p∑

k=1

|xik − xjk|q
} 1

q

(q > 0). (7.3)

Equation (7.3) demonstrates the city block (Manhattan) and the Euclidean metric

for q = 1 and q = 2, respectively. Other studies (Everitt (1993); Everitt and Rabe-

Hesketh (1997); Gordon (1981); Krzanowski and Marriott (1995)) have put forth

several other dissimilarity measures, both with and without distance measures. The

Chebyshev distance or maximum metric between a pair of objects is:

dij = max |xik − xjk|. (7.4)
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The Canberra distance is found using equation:

dij =

p∑
k=1

|xik − xjk|
|xik|+ |xjk|

. (7.5)

• Similarity Matrix

An (n × n) matrix S is a similarity matrix if it consists of elements sij, wherein

the similarity coe�cient sij indicates the similarity between ith and the jth objects

(i, j = 1, ..., n). This similarity coe�cient sij implies the closeness of objects i and

j, indicating values ranging from 0 to 1, with 0 signifying complete dissimilarity be-

tween objects i and j and 1 signifying maximum similarity. Kaufman and Rousseeuw

(2009) observed that for a similarity function, the conditions given below must be

satis�ed:

0 ≤sij ≤ 1, ∀i, j ∈ 0, 1, . . . n,

sii = 1, ∀i ∈ 0, 1, . . . , n,

sij = sji, ∀i, j ∈ 0, 1, . . . , n (symmetric). (7.6)

Gordon (1981); Krzanowski and Marriott (1995); Everitt (1993); and Kaufman and

Rousseeuw (2009) determined that similarities can be changed to dissimilarities if an

appropriate transformation is used. Selecting the proximity measure for a clustering

study largely depends on the data that is used in the analysis as well as the types

of variables included in the data set.

7.4 Hierarchical Clustering Methods

This is a traditional statistical approach to cluster analysis, typically used with numerical

data.
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7.4.1 Overview

Hierarchical clustering algorithms are an important and commonly used clustering ap-

proach that requires multiple steps for establishing clusters. In this technique, every

object in the data set is designated to only one cluster during each algorithm step, and

thus this technique is a hard or crisp clustering method. Many studies have applied

hierarchical cluster analysis (HCA), including for developing models for toxicology of

drugs, such as in Harrigan et al. (2004) for classifying control rats and rats subjected

to bacterial lipopolysaccharide and ranitidine for inducing hepatotoxicity to develop a

predictive idiosyncratic toxicity model, as well as in Seltmann et al. (1994) for clinically

isolating the Salmonella enteridis bacterium. HCA has also been used for metabolite pro-

�ling, such as in Gri�n et al. (2000) for comparing and clustering metabolic pro�les of

the kidneys and urine of three wild mammals and a laboratory rat, acquired using 1H

NMR spectroscopy, and in Want et al. (2006) for identifying similar metabolite features

among several serum extraction methods applied to LC-MS generated metabolic pro�les

of human serum. David Watson has used HCA to cluster propolis samples in many of

his studies, such as in Watson et al. (2006), who analysed 43 propolis samples collected

in di�erent parts of the world (Africa, Asia, Brazil, Europe and the Solomon Islands).

The results showed chemical variation parallel to the di�erent geographical origins of the

propolis. The two important types of HCA algorithms are the agglomerative nesting and

the divisive algorithms. The former is explained in detail in Subsection 7.4.2, as it is used

in this thesis and a brief mention of the latter can be found in Subsection 7.4.3. Section

7.6 explains the HCA application on data sets I, II and III.

7.4.2 Agglomerative Nesting Algorithms

Everitt (1993) stated that the analysis in these algorithms begins with n clusters that

contain one sample each, ending with all samples combined in one cluster. During every
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step, the algorithm identi�es the closest pair of di�erent clusters using a pre-speci�ed

dissimilarity criterion, and then combines these clusters and decreases the number of

clusters by one. The process ends after all the samples are combined into one cluster,

that is, there is only one cluster left. The cluster similarity measures and the selected

distance measure determine the result of these techniques.

Agglomerative nesting techniques are typically used in HCA studies, especially in those

that concern mass spectrometry (MS) generated data such as the study by Mariey et al.

(2001). They are also used in NMR metabolomics studies, including studies that identify

similarities among metabolic pro�les that are produced by 1HNMR spectroscopy of urine

samples from control rats and rats subject to di�erent doses of model compounds, to

investigate toxicity and metabolic e�ects at various pre-speci�ed times, as in Beckonert

et al. (2003).

There are di�erent ways (linkage methods) to de�ne the closeness of any two clusters,

using the speci�ed distance or dissimilarity measure. Below are the commonly used ones:

Single Linkage

This is one of the simplest methods, and is also known as the nearest neighbour algorithm.

As shown in Figure 7.11, the distance between two clusters is shown by the closest pair

of samples, in the two clusters, wherein every pair consists of only one sample from each

group. The dissimilarity between two clusters is as follows:

dCpCq = min
i∈Cp
j∈Cq

dij,

where Cp and Cq indicate any two clusters, and i and j are samples from these clusters.

This algorithm tends to identify elongated clusters, as clusters derived from single linkage

typically form at low dissimilarities in the dissimilarity dendrogram, which illustrates the

sequence of points and clusters joining together.

1Sources: https://www.saedsayad.com/clustering hierarchical.htm
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Figure 7.1: Illustrated example of single linkage method

Complete Linkage

Complete linkage is the exact opposite of single linkage. In this method, also called the

farthest neighbour algorithm, the distance between two clusters is taken as that of the

farthest pair of samples, consisting of one sample taken from each cluster, as shown in

Figure 7.22. The equation below gives the dissimilarity between two clusters:

dCpCq = max
i∈Cp
j∈Cq

dij,

where Cp, Cq, i and j are de�ned as they were in single linkage. However, in contrast to

single linkage, the clusters obtained in complete linkage are created at high dissimilarities

in the dissimilarity dendrogram. This method is more suitable for �nding spherical,

compact, and small clusters, and is thus the preferred method if the data contains compact

clusters.

Average linkage

The distance between two clusters in this method is determined by the average of the

dissimilarities between pairs of samples in the two clusters, with each pair consisting of a

2Sources: https://www.saedsayad.com/clustering hierarchical.htm
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Figure 7.2: Illustrated example of complete linkage method

sample from each cluster. The equation below presents the distance between two clusters:

dCfCq =
1

|Cf ||Cq|
∑
f∈Cf

∑
q∈Cq

d(f, q) (7.7)

where Cf and Cq indicate any two clusters where |Cf | and |Cq| are number of samples in

clusters Cf and Cq, respectively, as stated by Mullner (2011). Kaufman and Rousseeuw

(2009) asserted that as this method provides relatively spherical clusters, it can be con-

sidered as a compromise between the single and complete linkage methods, which are two

extremes.

McQuitty Method

Similar to the average linkage method, the McQuitty method is a variant of this, which

also provides relatively spherical clusters, o�ering a compromise between the two extreme

single and complete linkage methods (Kaufman and Rousseeuw, 2009). The equation

below presents this method's measure of dissimilarity between two clusters:

dCfCq =
1

2
dCiCq +

1

2
dCjCq , (7.8)

where Cf is the newly formed cluster where f is (i∪ j) and Cq is the old cluster, as stated

by Mullner (2011).
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Ward's Method

Everitt (1993) and Krzanowski and Marriott (1995) observed that there was loss of in-

formation when two clusters were fused. Ward's method introduces a measure of cluster

tightness to minimise this loss. The distance between two clusters is given by

dCfCq =

√
|f ||q|
|f |+ |q|

‖C̄f − C̄q‖ (7.9)

where C̄f and C̄q are the centroids of each of the two clusters, and |f | and |q| are the

number of samples in clusters Cf and Cq, respectively.

The results of any of the above mentioned algorithms are usually represented graphically

by means of a plot called a dendrogram (Jambu, 1978).

Algorithm for agglomerative nesting clustering

Izenman (2008) devised the following algorithm for agglomerative nesting clustering:

1. Input Ω = {xi, i = 1, 2, ..., Nc} a set of multivariate samples, in which Nc indicates

the number of clusters (and each cluster is a single point at the start).

2. Measure the (Nc × Nc) dissimilarity matrix D = (dij) between the Nc clusters,

wherein dij = d(xi, xj), i, j = 1, 2, ..., Nc and the pre-selected dissimilarity measure

is d.

3. Determine the smallest dissimilarity, from the dissimilarity matrix, for example

dCiCj, and form a new cluster Cij by combining clusters Ci and Cj.

4. Use a pre-selected agglomerative method to calculate the dissimilarities between the

new cluster Cij and other clusters Ck 6= Ci, Cj, for example dCijCk .

5. Create a new ((Nc − 1) × (Nc − 1)) dissimilarity matrix, say D(2), removing from

matrix D rows and columns Ci and Cj and adding a new row and column Cij, using

the computed dissimilarities in step 4.
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6. Repeat steps 3, 4, and 5 Nc− 1 times such that the dissimilarity matrix D(i) at the

ith step is a symmetric matrix of size ((Nc−i+1)×(Nc−i+1)), where i = 1, 2, ..., Nc.

(i = Nc), and D(Nc) = 0 at the �nal step because all clusters will have combined

into one.

7. Output will specify which clusters have been merged at every step, depicted through

a dissimilarity dendrogram, and the dissimilarity value or height of each merge.

Methodology

A banner plot can be considered as a horizontal barplot depicting the agglomerative

clustering graphically. The values on the x-axis of the plot are the heights (levels) at

which a merge of observations or clusters occurs, values from the minimum distance for

the very �rst merge to the level of the value of the very last (�nal) merge. The overall

width of (the red part of) a banner plot is important as it gives an idea of the amount of

structure that has been found by the algorithm. When the between-cluster dissimilarities

(and consequently the highest level) are much larger than the within-cluster dissimilarities,

there is a clear cluster structure in the data, and the widths of the (red) bars in the banner

are longer as objects merge earlier on.

The agglomerative coe�cient (AC) can be calculated from such a plot, by taking the

average of all the normalised widths of the bars in the banner (Kaufman and Rousseeuw,

2009). The labels on the y-axis on the right side of the plot correspond to a permutation

of the original observations, such that the creation of a dendrogram with this ordering

and merge information does not have any crossings of the branches. A banner can be

plotted using the R function bannerplot() of package cluster.

The agglomerative coe�cient (AC), will be used to assess whether HCA �nds natural

structure in the data or not. The agglomerative coe�cient is de�ned as:

AC = 1− daverage
dfinal

, (7.10)
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where daverage is the average distance at which each object merges with one or more

objects for the �rst time, and dfinal is the distance at which all the objects are merged

into one cluster. The AC will be calculated using R function coef() of package cluster.

This coe�cient is a dimensionless quantity with values between 0 and 1. If the AC for a

speci�c agglomerative analysis is small, then no clusters exist in the data. Hence the data

consist of one big cluster. The closer to 1 the value of AC is, the clearer the clustering

structure of the data is, i.e. the better the agglomerative method worked to identify

clusters. However, the AC value can be a�ected by the existence of outliers in the data,

so that it is necessary when AC is large to examine also the graphical output of the

clustering analysis, such as dendrograms and silhouette plots, to ensure that the value of

AC is representative of the clustering structure of the data.

To con�rm the �ndings, two other statistics will be computed for all 20 methods, i.e. the

Cophenetic correlation and the Gower distance (Borcard et al., 2011). The Cophenetic

correlation is related to the dendrogram, which describes a hierarchical clustering method

(see for example Figure 7.4). More speci�cally, the Cophenetic distance between two items

in a dendrogram is de�ned as the distance at which the two items are joined to the same

group. For a pair of items, starting from one of them, climbing up the dendrogram to the

�rst node which leads down to the second item, the level of this node is the Cophenetic

distance between the two items. Consequently, a Cophenetic matrix is a matrix which

contains the Cophenetic distances between all pairs of items. It is then possible to compute

a Pearson's r correlation, which is called the Cophenetic correlation, between the original

dissimilarity matrix of a hierarchical clustering method and the Cophenetic matrix. The

method with the highest Cophenetic correlation can be considered as the agglomerative

method which produced the best clustering method for the distance matrix of the original

data. An essential aspect of this statistic is that it depends strongly on the clustering

method, independently of the data available for analysis.

Another measure of goodness of �t between the matrices is the Gower distance. This

statistic is de�ned as the sum of squared di�erences between the values in the two matrices



189 Cluster Analysis

(Legendre and Legendre, 1998). That is,

DGower =
∑
i,j

(original(dij)− cophenetic(dij))2, (7.11)

The smaller the value of this statistic, the better the �t of the method to the original

data. Similarly to the Cophenetic correlation, the Gower distance requires the results for

comparison to be from the same original distance matrix. In addition, it is not necessarily

true that both statistics (Cophenetic correlation and the Gower distance) will indicate

the same clustering method as the best.

7.4.3 Divisive Clustering Algorithms

This approach works in reverse to agglomerative clustering. In this technique at the

start, there is only one cluster that contains all samples from the data. At every step

of the algorithm, the number of clusters is increased by one, so that at the end there

are n clusters, each containing one sample. Thus, there are 2n−1 − 1 non-trivial ways to

classify the samples into two clusters for n samples present in the data. Therefore it is

computationally infeasible to examine all possible divisions, even for cases with a moderate

number of samples. As these algorithms require far more calculations than agglomerative

methods do (Tamilselvi et al., 2015), they are not so popular, and these will not be

described in detail or used in the application of HCA to the propolis metabolomics data.

7.5 The Silhouette Coe�cient

The quality of the solution from a clustering algorithm is the quality of the derived

partition, which must satisfy several requirements: the structure of the data; whether the

'within' cluster dissimilarities are smaller than the 'between' cluster dissimilarities; the

number of 'natural' clusters in the data; and how well the samples are classi�ed. This
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can be assessed an di�erent ways.

Rousseeuw (1987) developed a statistic to address these requirements named the silhouette

coe�cient. If dicj indicates the average dissimilarity of any object i in the data to its cluster

cj, in which any two clusters cj and ci contain completely di�erent objects, then

βi = min
ci 6=cj

dicj (7.12)

and the cluster, for example ck, that satis�es Equation (7.12) is the neighbour of object

i. If object i was assigned to a cluster di�erent than its cluster ci, then the neighbouring

cluster ck would be the second best option. The following presents object i ′s silhouette

width, with values ranging from −1 ≤ si ≤ 1:

si =
βi − αi

max{αi, βi}

where αi is the average dissimilarity of object i to all other objects in its own cluster,

ci. Values of si closer to 1 indicate that object i is well-clustered, whereas the object is

misclassi�ed if the value is closer to -1. The closer the value is to 0, the more unclear

it is as to which cluster object i belongs, as object i remains between the assigned and

neighbouring cluster. An average silhouette width can then be de�ned for each cluster.

The silhouette coe�cient has been de�ned as the maximum of the average silhouette

widths by Kaufman and Rousseeuw (2009), as it can be considered as a measure of the

amount of structure that the clustering algorithm reveals. They further interpreted the

silhouette coe�cient values, as follows: the silhouette coe�cient value ≥ 0.25 indicates no

substantial structure; a value between 0.26 and 0.50 indicates weak and possibly arti�cial

structure; a value between 0.51 and 0.70 indicates a reasonable structure; and a value

between 0.71 and 1.00 indicates well-structured clustering. The clustering algorithm does

not a�ect the silhouette coe�cient, as it depends on the proximity matrix and the derived

partition of objects.
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7.6 Application of HCA to Data Sets I, II and III

Here we use agglomerative HCA on the metabolomics data sets for the propolis samples,

using di�erent distance measures and several linkage methods, to compare the results.

7.6.1 Overview

The data sets I, II and III (Aberdeenshire, Fort William and Dunblane respectively) that

will be used in the hierarchical clustering analyses are the same as in the analyses of

Chapters 5 and 6. That is, the data set contains the selected 27, 14 and 9 samples with

921, 511 and 498 variables respectively. The distance matrix of the samples will be com-

puted using four di�erent distance measures, i.e. Euclidean, Manhattan, Maximum and

Canberra, for comparison purposes. Five di�erent agglomerative nesting methods will

be used in order to perform the HCA. These include Single linkage, Complete linkage,

Average linkage, the Ward's method and the McQuitty method. The aim is to examine

which method or methods are most successful on this kind of data.

To facilitate identi�cation of the best clustering method for data sets I, II and III among

the 20 combinations mentioned in the previous paragraph, various statistics will be com-

puted and plotting tools will be used to compare the results of the clustering analyses.

These tools include banner plots, the agglomerative coe�cient, the Cophenetic correla-

tion, the Gower distance and the silhouette coe�cient and plot. In addition, the optimal

number of clusters will be identi�ed with the help of plotting tools such as graphs of

silhouette widths and fusion levels. An important consideration in these analyses is that

the above mentioned tools may prove su�cient to show the best hierarchical clustering

method with regards to the available data.
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7.6.2 Comparison of Hierarchical Clustering Results of the Data

Sets I, II and III

Some banner plots are shown in Figure 7.3 for these data sets. Table 7.1 gives the ag-

glomerative coe�cient values obtained from the analyses of the 20 hierarchical clustering

methods described previously for data sets I, II and III respectively. From Table 7.1 it is

clear that the AC of data sets I, II and III has the highest value, 0.997, 0.958 and 0.923

respectively for the method obtained by the Canberra distance metric using Complete

linkage. The second best method for data sets I, II and III, obtained by the same dis-

tance metric for the Ward's linkage method, has agglomerative coe�cient 0.991 (which is

close to the best method's value), 0.927 and 0.901 respectively. In general, the Canberra

metric seems to give the best results of all the considered metrics, and Ward's method

provides the best results of the linkage methods.

In general, for data sets I, II and III, the Canberra - Complete approach gives the best

results of the methods tried. The banner plots for this combination are shown in Figure

7.3.

To con�rm the �ndings, two other statistics will be computed for all 20 methods, i.e. the

Cophenetic correlation and the Gower distance. Table 7.2 gives the Cophenetic corre-

lation values for all 20 hierarchical clustering methods for data sets I, II and III. From

Table 7.2, for the Aberdeenshire data the combination Euclidean - Average linkage has

the largest Cophenetic correlation of 0.973 among all 20 methods (shown in blue in Table

7.2). Canberra - Single linkage has the lowest (worst) Cophenetic correlation of 0.122

among all 20 methods. The clustering method Canberra - Complete indicated with the

largest AC value has Cophenetic correlation of only 0.159, shown as red in Table 7.2.

Therefore according to Cophenetic correlation, the appropriate method seems to be Eu-

clidean - Average, as for the Aberdeenshire data.

From Table 7.2 for the Fort William data, the Euclidean - Average linkage has the largest
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(i) Aberdeenshire data (data set I)

Height

0 5000 10000 15000

8

7

13

12

6

4

3

1

2

14

5

10

9

11

(ii) Fort William data (data set II)
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(iii) Dunblane data (data set III)

Figure 7.3: Banner plots of the partition of data sets I, II and III derived by Complete

linkage using the Canberra distance metric. Height corresponds to the level of merge for

a pair of observations, while the labels on the y-axis of the plot are the numbers of the

samples in the data set.



194 Cluster Analysis

Metric Euclidean Manhattan Maximum Canberra

Single 0.691 0.753 0.592 0.622

Complete 0.825 0.860 0.867 0.997

Average 0.802 0.838 0.814 0.914

Ward 0.930 0.942 0.925 0.991

McQuitty 0.786 0.828 0.788 0.900

(a) Aberdeenshire data (data set I)

Metric Euclidean Manhattan Maximum Canberra

Single 0.757 0.749 0.725 0.592

Complete 0.838 0.857 0.846 0.958

Average 0.805 0.821 0.784 0.786

Ward 0.902 0.909 0.890 0.927

McQuitty 0.813 0.825 0.811 0.798

(b) Fort William data (data set II)

Metric Euclidean Manhattan Maximum Canberra

Single 0.362 0.374 0.538 0.391

Complete 0.631 0.650 0.629 0.923

Average 0.531 0.558 0.555 0.771

Ward 0.692 0.703 0.692 0.901

McQuitty 0.566 0.561 0.565 0.768

(c) Dunblane data (data set III)

Table 7.1: Agglomerative coe�cients for data set I, II and III. The clustering method

with the largest agglomerative coe�cient is shown in red. The underlined values are the

next best.
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Metric Euclidean Manhattan Maximum Canberra

Single 0.965 0.970 0.787 0.122

Complete 0.968 0.956 0.892 0.159

Average 0.973 0.972 0.899 0.162

Ward 0.963 0.960 0.869 0.143

McQuitty 0.972 0.970 0.870 0.135

(a) Aberdeenshire data (data set I)

Metric Euclidean Manhattan Maximum Canberra

Single 0.945 0.918 0.860 0.275

Complete 0.947 0.928 0.859 0.449

Average 0.954 0.943 0.876 0.447

Ward 0.938 0.923 0.866 0.451

McQuitty 0.953 0.942 0.871 0.446

(b) Fort William data (data set II)

Metric Euclidean Manhattan Maximum Canberra

Single 0.753 0.737 0.749 0.268

Complete 0.780 0.782 0.852 0.405

Average 0.801 0.787 0.884 0.410

Ward 0.798 0.756 0.847 0.404

McQuitty 0.777 0.787 0.883 0.409

(c) Dunblane data (data set III)

Table 7.2: Pearson's r Cophenetic correlation for the 20 hierarchical clustering methods for

data sets I, II and III. The colours red and blue show the two clustering methods selected

using as criteria the agglomerative coe�cient and Cophenetic correlation respectively.
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Cophenetic correlation of 0.954 among all 20 methods (shown in blue in Table 7.2). Can-

berra - Single has the lowest (worst) Cophenetic correlation of 0.275 among all 20 methods,

shown as red in Table 7.2. Therefore according to this statistic, the appropriate method

seems to be Euclidean - Average, as for the Fort William data.

From Table 7.2 for the Dunblane data, the combination Maximum - Average linkage has

the largest Cophenetic correlation of 0.884 among all 20 methods (shown in blue in Table

7.2). Canberra - Single has the lowest (worst) Cophenetic correlation of 0.268 among all

20 methods. The clustering method Canberra - Complete indicated with the largest AC

value has Cophenetic correlation of 0.405, shown as red in Table 7.2. Therefore according

to this statistic, the appropriate method seems to be the Maximum - Average. In general

the Canberra distance gives the poorest results in the terms of the Cophenetic correlation.

The other distances all give good results in general.

From Table 7.2 for data sets I, II and III note that Manhattan - Average has the largest

Cophenetic correlation among all �ve Manhattan methods (0.972, 0.943 and 0.787 respec-

tively) and very close to the largest Cophenetic correlation for data set I. The Maximum

- Average linkage has the largest (or nearly the largest) Cophenetic correlation among all

�ve Maximum methods, and the Canberra - Average method has the largest Cophenetic

correlation among all �ve linkage methods with the Canberra metric, and also this applies

to the Euclidean metric.

In general, Average linkage has the largest Cophenetic correlation (or nearly the largest)

among all �ve linkage methods.

Figures 7.4, 7.5 and 7.6 show the dendrograms of the Euclidean - Average linkage method

for Aberdeenshire and Fort William, and the Maximum - Average method for the Dun-

blane data, because these are the best methods according to Pearson's r Cophenetic

correlation for the 20 hierarchical clustering methods. The dendrograms make it easy to

identify any patterns in their clustering solutions.
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Figure 7.4: Dendrogram for the cluster partition derived by the Euclidean-Average linkage

clustering method for the Aberdeenshire data. The labels at the end-leafs of the tree are

the original numbers of the samples in the data set.
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Figure 7.5: Dendrogram for the cluster partition derived by the Euclidean-Average linkage

clustering method for the Fort William data. The labels at the end-leafs of the tree are

the original numbers of the samples in the data set.
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Figure 7.6: Dendrogram for the cluster partition derived by the Maximum-Average linkage

clustering method for the Dunblane data. The labels at the end-leafs of the tree are the

original numbers of the samples in the data set.

The Gower distance values for all clustering methods can be seen in Table 7.3 for data

sets I, II and III. From Table 7.3, for Aberdeenshire, Fort William and Dunblane data

respectively, the Gower distance value for Canberra - Average is the smallest compared to

all other methods and each and every metric. The Euclidean - Average method had the

highest Cophenetic correlation of 0.973 and 0.954 for data sets I and II (Aberdeenshire

and Fort William) respectively, and the Maximum - Average had the highest Cophenetic

correlation for data set III (Dunblane) (as seen in Table 7.2) of 0.884. So far the best

methods in terms of the agglomerative coe�cient are given by the Canberra - Complete

method, which has the highest AC of 0.997 for Aberdeenshire, 0.958 for Fort William

and 0.923 for Dunblane. These results are summarised in Table 7.4. However, further

investigation is needed to con�rm which of the three methods, Canberra - Complete,

Euclidean - Average and Canberra - Average gives the best �t of the Aberdeenshire and

Fort William data, and which the three methods of Canberra - Complete, Maximum -
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Metric Euclidean Manhattan Maximum Canberra

Single 4.7039 1130.6650 1.2022 0.1414

Complete 1.5867 662.9914 0.8076 9.5343

Average 0.3696 101.1034 0.1798 0.1299

Ward 101.5430 26290.9900 7.6812 1.2413

McQuitty 0.5375 132.5807 0.2554 0.1306

(a) Aberdeenshire data (data set I)

Metric Euclidean Manhattan Maximum Canberra

Single 0.2459 55.6075 0.0309 0.0005

Complete 0.2327 57.5462 0.0573 0.0087

Average 0.0524 10.6052 0.0120 0.0002

Ward 3.3412 571.5541 0.2404 0.0013

McQuitty 0.0578 10.9969 0.0157 0.0003

(b) Fort William data (data set II)

Metric Euclidean Manhattan Maximum Canberra

Single 0.0914 14.5410 0.0063 0.0005

Complete 0.0877 13.2677 0.0050 0.0020

Average 0.0279 4.4877 0.0018 0.0002

Ward 0.2585 45.7569 0.0228 0.0010

McQuitty 0.0337 4.4967 0.0018 0.0003

(c) Dunblane data (data set III)

Table 7.3: Gower distance for the 20 hierarchical clustering methods for data sets I, II

and III. In red is shown the clustering method with the smallest Gower distance value.

The values shown in the table have all been divided by 1012 for ease of displaying them.
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Average and Canberra - Average gives the best �t for the Dunblane data.

Table 7.4: The di�erent methods determined as the best clustering methods for the three

data sets using 3 di�erent criteria.

Data Agglomerative coe�cient Cophenetic correlation Gower distance

Aberdeenshire Canberra-Complete Euclidean-Average Canberra-Average

Fort William Canberra-Complete Euclidean-Average Canberra-Average

Dunblane Canberra-Complete Maximum-Average Canberra-Average

7.6.3 Identi�cation of the Optimal Number of Clusters of Data

Sets I, II and III

An important part of the clustering procedure is to decide at what level to cut the dendro-

gram of a clustering solution. This decision can be taken either subjectively by choosing

the number of clusters from visual inspection of the dendrogram, or chosen to satisfy some

criteria.

We will use a command NbClust in R to compare between several indices to determine the

value of k to use in the analysis for the three clustering methods mentioned previously in

Table 7.4. The index to be calculated can be one of the following: "kl", "ch", "hartigan",

"ccc", "scott", "marriot", "trcovw", "tracew", "friedman", "rubin", "cindex", "db", "sil-

houette", "duda", "pseudot2", "beale", "ratkowsky", "ball", "ptbiserial", "gap", "frey",

"mcclain", "gamma", "gplus", "tau", "dunn", "hubert", "sdindex", "dindex", "sdbw",

"all" (all indices except GAP, Gamma, Gplus and Tau), "alllong" (all indices with Gap,

Gamma, Gplus and Tau included) (Charrad et al., 2014). Applying this command to

data sets I, II and III, according to the majority rule in Table 7.5, the best numbers of

clusters are 2, 4 and 4 for the data sets I, II and III respectively.

Silhouette widths and plots of the fusion level values are two methods which can be used
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Aberdeenshire

Canberra-Complete Euclidean-Average Canberra-Average

7 proposed 2 as the best number of clusters 7 proposed 2 as the best number of clusters 7 proposed 2 as the best number of clusters

1 proposed 3 as the best number of clusters 7 proposed 3 as the best number of clusters 1 proposed 3 as the best number of clusters

5 proposed 4 as the best number of clusters 4 proposed 4 as the best number of clusters 4 proposed 4 as the best number of clusters

2 proposed 5 as the best number of clusters 4 proposed 6 as the best number of clusters 5 proposed 5 as the best number of clusters

3 proposed 6 as the best number of clusters 1 proposed 10 as the best number of clusters 1 proposed 6 as the best number of clusters

1 proposed 7 as the best number of clusters 1 proposed 7 as the best number of clusters

2 proposed 9 as the best number of clusters 3 proposed 9 as the best number of clusters

2 proposed 10 as the best number of clusters 1 proposed 10 as the best number of clusters

Fort William

Canberra-Complete Euclidean-Average Canberra-Average

2 proposed 2 as the best number of clusters 3 proposed 2 as the best number of clusters 4 proposed 2 as the best number of clusters

1 proposed 3 as the best number of clusters 13 proposed 4 as the best number of clusters 1 proposed 3 as the best number of clusters

10 proposed 4 as the best number of clusters 2 proposed 5 as the best number of clusters 8 proposed 4 as the best number of clusters

3 proposed 6 as the best number of clusters 2 proposed 9 as the best number of clusters 1 proposed 7 as the best number of clusters

1 proposed 8 as the best number of clusters 3 proposed 10 as the best number of clusters 6 proposed 9 as the best number of clusters

6 proposed 10 as the best number of clusters 3 proposed 10 as the best number of clusters

Dunblane

Canberra-Complete Euclidean-Average Canberra-Average

1 proposed 3 as the best number of clusters 3 proposed 3 as the best number of clusters 2 proposed 3 as the best number of clusters

6 proposed 4 as the best number of clusters 6 proposed 4 as the best number of clusters 7 proposed 4 as the best number of clusters

3 proposed 5 as the best number of clusters 3 proposed 5 as the best number of clusters 1 proposed 5 as the best number of clusters

2 proposed 6 as the best number of clusters 1 proposed 6 as the best number of clusters 2 proposed 6 as the best number of clusters

11 proposed 7 as the best number of clusters 10 proposed 7 as the best number of clusters 11 proposed 7 as the best number of clusters

Table 7.5: The optimal number of clusters for data sets I, II and III, using 23 di�erent

criteria and 3 clustering methods.

to de�ne criteria for the appropriate number of clusters. As has already been described

in detail in Section 7.5, the silhouette width is a measure of the degree of membership of

an item to its cluster. This measure can be computed and the obtained values drawn in

a bar plot for all possible numbers of clusters in a clustering solution. The R function

silhouette() of package cluster will be used to obtain such a plot for the clustering solu-

tions of Aberdeenshire, Fort William and Dunblane data. This plot will be drawn for the

clustering methods for the data being discussed, namely the Euclidean - Average method,

for Aberdeenshire and Fort William, and the Maximum - Average method for Dunblane,

which have been identi�ed as those methods with most potential as the best-�tting clus-

tering using the Cophenetic correlation in Table 7.4.
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(i) Aberdeenshire data (data set I)
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(ii) Fort William data (data set II)
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(iii) Dunblane data (data set III)

Figure 7.7: Average silhouette widths for partitions of 2-27 and 2-14 clusters for data

sets I and II using Euclidean - Average clustering and 2-9 clusters for data set III using

Maximum - Average clustering (the best method using Cophenetic correlation in Table

7.4). The optimal number of clusters is indicated in red in each case.
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(i) Aberdeenshire data (data set I)
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(ii) Fort William data (data set II)
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(iii) Dunblane data (data set III)

Figure 7.8: Graphs of the fusion level values of the corresponding dendrograms for the

best clustering methods in terms of Cophenetic correlation of data sets I, II and III (in

Table 7.4). The numbers in red are the number of clusters obtained at speci�c node

heights using Euclidean - Average for data sets I and II and Maximum - Average for data

set III.
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Figure 7.7 illustrates the average silhouette widths for all partitions, from 2-27, 2-14 and

2-9 clusters for the data sets I, II and III, for the three clustering methods mentioned

previously (in Table 7.4). It is clear that in all methods the optimal number of clusters is

2 for Aberdeenshire, 4 for Fort William and 4 for Dunblane.

The fusion level values of a dendrogram can also be plotted, and from this plot, the

optimal number of clusters can be identi�ed. A fusion level value is the distance at which

a merge or fusion between two branches of a dendrogram occurs. Figure 7.8 shows the

fusion level values corresponding to the dendrograms of the best clustering methods from

Cophenetic correlation (in Table 7.4) of data sets I and II. Reading the graphs from right

to left for the Aberdeenshire data (2 clusters to 27 clusters) and (2 clusters to 14 clusters)

for the Fort William data, it can be seen that for Euclidean - Average there is a large jump

after the two-clusters fusion and the four-clusters fusion for data sets I and II respectively.

Therefore, plotting tools indicate that the optimal number of clusters is 2 and 4 for data

sets I and II.

From Figure 7.8, reading the graphs from right to left for the Dunblane data (2 clusters to

9 clusters) for the best clustering methods of Cophenetic correlation (in Table 7.4) of data

set III, it can be seen that for Maximum - Average there is a large jump after the three

and four-clusters fusion (it is not clear which is the best). Therefore, this plotting tool

indicates that the optimal number of clusters is 3 or 4, and from Table 7.5, the majority

vote for the number of clusters is 4 for data set III.

7.6.4 Identi�cation of the Best Method for data sets I,II and III

Although dendrograms (e.g. Figure 7.4) and heat maps (e.g. Figure 7.11) illustrate the

clustering results achieved by the application of a clustering method to data sets I, II and

III, another type of graphical tool, the silhouette plot (based on the silhouette widths)

can show how well each and every sample has been assigned to its respective cluster after

the classi�cation process, i.e. to what degree a sample is a member of its cluster. I will
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discuss and determine which result obtained in Table 7.4 should be retained for further

analyses of data sets I, II and III, as follows:

• Aberdeenshire data (I)
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(iii) Canberra-Average method

Figure 7.9: Silhouette plot for the 2-cluster partition derived by three clustering methods

for the Aberdeenshire data.

The silhouette plots for the three clustering methods for the Aberdeenshire data

can be seen in Figure 7.9 for the Canberra - Complete, Euclidean - Average and

Canberra - Average methods. The silhouette width values of all samples can be

seen in the silhouette plot as bars. It is, therefore, clear, which samples lie well

within their cluster. The wider the silhouette bar for a sample is, the larger the

silhouette value for this sample and the better the sample lies in the cluster, that is,

the within cluster dissimilarity of the sample is much smaller than the smallest dis-

similarity of the sample to other clusters. On the other hand, the Average Silhouette

widths for the clusters di�er considerably for the three methods, as the number of

samples in the two clusters are not the same. The clustering methods have Average

Silhouette widths for the entire data of 0.27, 0.60 and 0.56 respectively (which is

also the Silhouette coe�cient for the three methods respectively), therefore there
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is a di�erence between them, as the method that has 0.60 (Euclidean - Average) is

better than the other methods (Canberra - Complete) and (Canberra - Average). In

addition, the silhouette plot for method Canberra - Complete shows that there are

10 samples clearly misclassi�ed (highly negative silhouette widths) as members of

cluster 1, while according to the silhouette plot these should have been members of

cluster 2. Model Canberra - Average is de�nitely more balanced, with only 1 sam-

ple misclassi�ed in cluster 2 (actually belonging to cluster 1) and having in general

smaller negative silhouette widths than the misclassi�ed samples in method Can-

berra - Complete. Euclidean - Average is de�nitely the best method, without any

samples misclassi�ed. The �ndings and the information obtained by the silhouette

plots practically mean that only the Euclidean - Average method should be retained

for further analyses of Aberdeenshire data, as it is seen to be the best.

To illustrate the clustering solution derived by the Euclidean - Average method for

Aberdeenshire, a number of graphical tools will be used. A two-dimensional projec-

tion of the clustering solution can be seen in Figure 7.10 (i). The �rst two principal

component scores (according to the results from Chapter 5) can be seen superim-

posed with the partition derived by the Euclidean - Average method. In the scores

plots, colours represent the samples clustered to the cluster such that points labelled

correspond to the sample numbers. From Figure 7.10 (i) it can be seen that the

scores plot show clearly that there is no clear separation between samples according

to each group of three samples coming from the same hive. However, the samples

(hives) were located on two di�erent sites (colonies) where sample numbers 4, 5, 6

and 25, 26, 27 were on Site 1, and the rest of the hives were on site 2 (Saleh et al.,

2015). In the plot, there is a clear separation based on the site, since 4, 5, 6 and 25,

26, 27 are in the same cluster and are separated from the other samples.

Figure 7.10 (i) shows the most clearly clustered samples, which were obtained from

the twenty-seven hives sampled in Aberdeenshire, based on the Euclidean - Average

linkage clustering method. To some extent samples 1-3 are also di�erent from the
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(ii) Dendrogram

Figure 7.10: (i) Scores plots of the �rst two PCs, superimposed with the 2-cluster partition

derived by the Euclidean - Average clustering method for Aberdeenshire data. Blue and

red points represent samples in the �rst and second cluster. The labels of the points in

the plot correspond to sample numbers. (ii) Dendrogram for the cluster partition derived

by the Euclidean - Average linkage clustering method of Aberdeenshire data. The labels

at the end-leafs of the tree are the numbers of the samples in the data set. The blue and

red rectangles show the two clusters.

others.

A dendrogram for the clustering partition derived by the Euclidean - Average method

for Aberdeenshire can be seen in Figure 7.10 (ii). The labels at the end-leafs of the

tree correspond to the numbers of samples. A dendrogram can also be represented,

perhaps more accurately, by a heat map, a square matrix of coloured pixels such

that the colour intensity represents the similarity among the samples. The heat

map of the distance matrix re-ordered according to the dendrogram of Figure 7.10

(ii) can be seen in Figure 7.11. The re-ordering of the heat map sorts the matrix

such that most of the darker values representing high similarities are located closer
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to the main diagonal.

Despite the optimal number of clusters being 2, it might be useful to examine
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Figure 7.11: Heat map of the distance matrix of the Euclidean - Average clustering method

according to the dendrogram of Figure 7.10 (ii) for Aberdeenshire. The colour intensity

represents the similarity among the samples, such that the darker the colour the closer

the similarity.

whether partitions of larger number of clusters than 2 can provide an insight into

the discrimination based on location or compounds. Figure 7.12 shows the results of

the partitions of 3-6 clusters, obtained from clustering method Euclidean - Average,

for the Aberdeenshire data. The colours of the points in the scores plots correspond

to the clusters in each partition. In the 3-cluster partition, the right cluster (red

points) is the cluster of size 6, which remains unchanged up to and including the

6-clusters partition, and the top cluster (black points) is the cluster of size 3, which

changed in the 4-cluster partition, then is unchanged until the 6-clusters partition.

The left most cluster (green points) is the largest cluster in all partitions, which

keeps being broken into smaller partitions until the 6-cluster partition. As in the

2-cluster partition, Figure 7.12 shows that there is no clear discrimination between
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Figure 7.12: Scores plots of the �rst two PCs, superimposed with the cluster partitions

for 3-6 clusters for Aberdeenshire data, derived by the Euclidean - Average clustering

method. The labels of the points in the plots correspond to the sample numbers, and the

colours indicate di�erent clusters.

samples depending on individual hive in any of the four partitions (where each group

of 3 samples belongs to the same hive) but again points 4, 5, 6 and 25, 26, 27 are

shown as di�erent from the others in the space given by the �rst 2 PCs.

The most important compounds distinguishing hives 4, 5, 6 and 25, 26, 27 from

the rest are �avonoids and in particular methylated �avonoids (Saleh et al., 2015).
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From the second group (coloured blue in Figure 7.10 (i)) samples 19, 20, 21, which

are separated from 4, 5, 6 and 25, 26, 27, have glycerol esters of phenylpropanoid

compounds as important compounds. Sample numbers 10, 11, 12 and 13, 14, 15 are

characterised by esters of pinobanksin. In general, the second group has esters as

important compounds.

• Fort William data (II)
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(iii) Canberra-Average method

Figure 7.13: Silhouette plot for the 4-cluster partition derived by three clustering methods

for Fort William data.

The silhouette plots for the three clustering methods for Fort William data can be

seen in Figure 7.13 for the Canberra - Complete, Euclidean - Average and Canberra -

Average methods. Silhouette width values of all samples can be seen in the silhouette

plot as bars. The Average Silhouette widths for the clusters di�er considerably

between the three methods, as the number of samples in the four clusters are not

the same. The three clustering methods have Average Silhouette width for the entire

data set of 0.33, 0.66 and 0.43 respectively (which is also the Silhouette coe�cient),

therefore there is a di�erence between them as the method that has a width of

0.66 (Euclidean - Average) is better than the other methods (Canberra - Complete)

and (Canberra - Average). In addition, the silhouette plot for method Canberra
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- Complete shows that there are 2 samples clearly misclassi�ed (highly negative

Silhouette widths) as members of cluster 2 and 3 respectively. Model Canberra

- Average is de�nitely more balanced, without any samples misclassi�ed. Model

Euclidean - Average is de�nitely the best method, without any samples misclassi�ed,

and it has the best Average Silhouette width of 0.66. The �ndings practically mean

that only the Euclidean - Average method should be retained for further analyses

of the Fort William data.

To illustrate the clustering solution derived by the Euclidean - Average method for

Fort William, again a number of graphical tools will be used. A two-dimensional

projection of the clustering solution can be seen in Figure 7.14 (i). The �rst two

principal component scores can be seen superimposed with the partition derived by

the Euclidean - Average method. From Figure 7.14 (i), the scores plots show clearly

that there is some discrimination between samples in Fort William, according to the

hive replicates, as samples such as 1, 2 and 3 cluster near each other. Figure 7.14 (i)

shows that the fourteen samples of propolis from Fort William could be classi�ed

into four groups by hierarchical cluster analysis without splitting the replicates. In

this case, the samples 4, 5 and 6 had the most average composition and the same

samples are duplicate samples taken from the same hive.

The composition of these propolis samples appears to be fairly di�erent from the

Aberdeenshire samples. They di�er from each other, but overall the compounds in

Table 5.4 are in many cases not the same as most of the Aberdeenshire samples. The

Fort William samples are rich in compounds putatively identi�ed as sesquiterpene

acids. Since the third group (blue colour) is towards the centre of the plot, that

means it has important compounds from the other outlying groups in more moderate

amounts. Thus the samples (hives) in the middle of the PCA plot are likely to come

from several di�erent sources of propolis, whereas the groups towards the periphery

of the plot may focus on more restricted sources, such as samples 1, 2, 3, 7, and 8.

A dendrogram for the partition derived by the Euclidean - Average clustering
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(ii) Dendrogram

Figure 7.14: (i) Scores plots of the �rst two PCs, superimposed with the 4-cluster partition

derived by the Euclidean - Average clustering method for the Fort William data. Coloured

points represent the samples in the clusters. The labels of the points in the plot correspond

to sample numbers. (ii) Dendrogram for the cluster partition derived by the Euclidean -

Average linkage clustering method for the Fort William data. The labels at the end-leafs

of the tree are the numbers of the samples in the data set. The coloured rectangles mark

the clusters chosen.

method can be seen in Figure 7.14 (ii). The heat map of the distance matrix re-

ordered according to the dendrogram of Figure 7.14 (ii) can be seen in Figure 7.15.

Figure 7.16 illustrates the results derived from 2, 3, 5 and 6 cluster partitions for

the Fort William data, for comparison. In the 2-cluster partition, the right cluster

(black points) is the cluster of size 3, which remains unchanged up to and including

the 6-clusters partition, and the left cluster (red points) is the cluster of size 11,

which keeps being broken into smaller partitions until the 6-cluster partition, where

the left-most partition is broken for the sixth cluster partition. Figures 7.14 (i) and

7.16 show clearly that there is discrimination between groups of samples from the
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Figure 7.15: Heat map of the distance matrix of the Euclidean - Average clustering method

according to the dendrogram of Figure 7.14 (ii) for Fort William. The colour intensity

represents the similarity among the samples, such that the darker the colour the closer

the similarity.

same hive in the second, third and fourth partition solutions. Note that samples 7

and 8 in this data set come from the same hive, but sample 9 comes from a di�erent

hive, the same one as samples 10 and 11. Conversely, also the 5 and 6 cluster

partitions do not keep all samples from the same hive together in the same cluster.

• Dunblane data (III)

The silhouette plots for the three clustering methods for the Dunblane data can be

seen in Figures 7.17 for the Canberra - Complete, Maximum - Average and Can-

berra - Average methods. Silhouette width values for all samples can be seen in the

silhouette plot as bars. The Average Silhouette widths for the clusters again di�er

considerably between the methods, as the numbers of samples in the four clusters

are not the same. The three clustering methods have Average Silhouette widths for

the entire data set of 0.35, 0.40 and 0.45 respectively (which are also the Silhouette
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Figure 7.16: Scores plots of the �rst two PCs, superimposed with the cluster partitions

for 2-6 clusters for the Fort William data, derived by the Euclidean - Average clustering

method. The labels of the points in the plots correspond to the numbers of samples, and

the colours indicate di�erent clusters.

coe�cients). The method that has a width of 0.45 (Canberra - Average) is better

than the other methods (Canberra - Complete) and (Maximum - Average). In ad-

dition, the silhouette plot for the three methods shows that there are no samples
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Figure 7.17: Silhouette plot for the 2-cluster partition derived by three clustering methods

for the Dunblane data.

misclassi�ed (highly negative Silhouette widths). The �ndings practically mean that

only the Canberra - Average method should be retained for further analyses of the

Dunblane data, as it is deemed to be the best.

To illustrate the clustering solution derived by Canberra - Average for the Dun-

blane data set, a two-dimensional projection of the clustering solution can be seen

in Figure 7.18 (i). The �rst two principal component scores (according to the re-

sults from Chapter 5) can be seen superimposed with the partition derived by the

Canberra - Average method. From Figure 7.18 (i), it can be seen that the scores

plots show clearly that each set of three samples belonging to one hive is not clearly

separated from the others, for example, samples 1, 2 and 3 belong to the same hive,

and samples 4, 5 and 6 to the same hive and so on. Sample number 7 clusters on its

own, but it belongs to the group of samples numbered 7, 8, 9. Also, sample number

6 is separated from its group (numbered 4, 5, 6) and is grouped with samples 8 and

9. In general, the samples from one hive are far from each other.

Since samples 6 and 7 lie towards the centre of the plot, that means that they
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have important compounds from the other outlying samples in moderate amounts.

Thus it might be proposed that the samples 6 and 7 in the middle of the PCA plot

are tending to use several di�erent sources of propolis, whereas the samples towards

the periphery of the plot may focus on more restricted sources.
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Figure 7.18: (i) Scores plots of the �rst two PCs, superimposed with the 4-cluster partition

derived by the Canberra - Average clustering method for the Dunblane data. Coloured

points represent the samples in the clusters. The labels of the points in the plot corre-

spond to the sample numbers. (ii) Dendrogram for the 4-cluster partition derived by the

Canberra - Average linkage clustering method. The labels at the end-leafs of the tree are

the sample numbers in the Dunblane data set.

A dendrogram for the clustering partition derived by the Canberra - Average clustering

method can be seen in Figure 7.18 (ii). The labels at the end-leafs of the tree correspond

to sample numbers. The heat map of the distance matrix re-ordered according to the

dendrogram of Figure 7.18 (ii) can be seen in Figure 7.19. Figure 7.18 (ii) shows the

most clearly clustered samples, which were obtained from nine of the hives sampled in
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Figure 7.19: Heat map of the distance matrix of the Canberra - Average clustering method

according to the dendrogram of Figure 7.18 (ii) for Dunblane. The colour intensity rep-

resents the similarity among the samples, such that the darker the colour the closer the

similarity.

Dunblane. The samples from Dunblane are di�erent again but are closer in character

to the Fort William samples than the Aberdeenshire samples (see Table 5.4). Despite

the optimal number of clusters being 4, it might be useful to examine whether partitions

of a smaller number of clusters than 4 can provide an insight into the discrimination

based on location or compounds. The heat map illustrates the clustering result achieved

by application of a clustering method to the data. Figure 7.19 shows the heat map, in

which most of the darker values representing high similarities are located closer to the

main diagonal. Figure 7.20 illustrates the scores plots for the partition of the Dunblane

data. The colours of the points in the scores plots correspond to the clusters. It shows

clearly that there is no clear discrimination between samples in the two and three cluster

partitions depending on the sets of three samples belonging to a hive.



218 Cluster Analysis

−2e+05 −1e+05 0e+00 1e+05 2e+05−
15

00
00

0
10

00
00

Partition of  2  clusters

PC1

P
C

2

12

3

45
6

7

8

9

−2e+05 −1e+05 0e+00 1e+05 2e+05−
15

00
00

0
10

00
00

Partition of  3  clusters

PC1

P
C

2

12

3

45
6

7

8

9

Figure 7.20: Scores plots of the �rst two PCs, superimposed with the cluster partitions for

2 and 3 clusters for Dunblane data, derived by the Canberra - Average clustering method.

The labels of the points in the plots correspond to the sample numbers. The points are

colour-coded by the cluster.

7.6.5 Application of HCA to the three Data Sets Combined (IV)

The three data sets (Aberdeenshire, Fort William and Dunblane) are again now com-

bined, as in the analyses of Chapter 5. That is, the data set contains the selected 27,
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14 and 9 samples (hives) with 921, 511 and 498 variables respectively. Here I investigate

if each data set from the three data sets is separated from the rest depending on the

location or chemical compounds. The distance matrix of the samples will be computed

using four di�erent distance measures, Euclidean, Manhattan, Maximum and Canberra,

for comparison purposes. Five di�erent agglomerative nesting methods will be used in

order to perform HCA. These include Single linkage, Complete linkage, Average linkage,

Ward's method and the McQuitty method. To facilitate identi�cation of the best clus-

tering method for data set IV, various statistics will be computed and plotting tools will

be used to compare the results of the clustering analyses, including the agglomerative

coe�cient, the Cophenetic correlation, the Gower distance and the silhouette coe�cient

and plot. In addition, the optimal number of clusters will be identi�ed with the help of

plotting tools such as silhouette widths.

The agglomerative coe�cient (AC), will be used to assess whether HCA �nds natural

Table 7.6: Agglomerative coe�cients for data set IV. The red coluor shows the clustering

method with the largest agglomerative coe�cient.

Metric Euclidean Manhattan Maximum Canberra

Single 0.753 0.818 0.716 0.745

Complete 0.863 0.898 0.888 0.998

Average 0.846 0.882 0.858 0.932

Ward 0.948 0.962 0.946 0.993

McQuitty 0.841 0.878 0.844 0.937

structure in data set IV or not. Table 7.6 gives the AC values obtained from the analyses

of the 20 hierarchical clustering methods described above for data set IV. From Table 7.6,

it is clear that the AC has the highest value, 0.998, for the method using the Canberra

distance metric and Complete linkage. In general, the Canberra metric seems to give the

best results for all the available agglomerative methods, and Ward's method gives the best

results for all metrics. The second best method, obtained by the same distance metric
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with Ward's linkage, has AC of 0.993.

To con�rm the �ndings, two other statistics will be computed for all 20 methods, i.e. the

Cophenetic correlation and the Gower distance (Borcard et al., 2011). Table 7.7 gives the

Cophenetic correlation values for all 20 hierarchical clustering methods for data set IV.

From Table 7.7 for data set IV, the model Manhattan - Average has the largest Cophenetic

Table 7.7: Pearson′s r Cophenetic correlation for the 20 hierarchical clustering methods

for data set IV. The blue and red colours show the two clustering methods selected using

as criteria the agglomerative coe�cient and, Cophenetic correlation respectively.

Metric Euclidean Manhattan Maximum Canberra

Single 0.897 0.947 0.630 0.109

Complete 0.954 0.957 0.821 0.215

Average 0.962 0.965 0.867 0.216

Ward 0.869 0.895 0.744 0.171

McQuitty 0.959 0.962 0.821 0.164

correlation of 0.965 among all 20 methods. The Cophenetic correlation for this method

is shown in blue in Table 7.7. Canberra - Single has the lowest Cophenetic correlation of

0.109 among all 20 methods. Therefore according to this Cophenetic correlation statistic

the appropriate method seems to be the model Manhattan - Average. More speci�cally,

Euclidean - Average has the largest Cophenetic correlation among all �ve Euclidean meth-

ods, 0.962, and it is very close to the largest Cophenetic correlation. The Maximum -

Average method has the largest Cophenetic correlation among all �ve Maximum methods,

and the Canberra - Average method has the largest Cophenetic correlation among all �ve

Canberra methods.

The Gower distance values for all the clustering methods can be seen in Table 7.8 for data

set IV. From Table 7.8, the Gower distance value for the Canberra - Average method is

the smallest in comparison to all other methods and in each and every metric. As the

Manhattan - Average method had the highest Cophenetic correlation (as seen in Table
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Table 7.8: Gower distance for the 20 hierarchical clustering methods for three data. In

bold is shown the clustering method with the smallest Gower distance value. The values

shown in the table have all been divided by 1012 for ease of displaying them.

Metric Euclidean Manhattan Maximum Canberra

Single 17.0068 3773.3710 4.5606 0.1773

Complete 8.4542 2257.7310 2.7119 40.1239

Average 1.4034 329.0425 0.8111 0.1497

Ward 892.0404 214062.9000 76.8373 3.0204

McQuitty 1.5663 366.0636 1.1385 0.1498

7.7), it seems so far that the best method for the agglomerative coe�cient is given by the

Canberra - Complete method, with the highest agglomerative coe�cient of 0.998 for data

set IV, However, further investigation is needed to con�rm which of the three methods,

Canberra - Complete, Manhattan - Average and Canberra - Average gives the best �t of

data set IV.

Before con�rming which method gives the best �t of data set IV, we look to identi�cation

of the optimal number of clusters using the silhouette widths method.

We use command NbClust in R to compare between several indices to determine the

best number of clusters to use in the analysis for the three clustering methods (Canberra

- Complete, Manhattan - Average and Canberra - Average). The results are shown for

data set IV in Table 7.9. According to the majority rule in Table 7.9, the best number

data set IV

Canberra-Complete Manhattan-Average Canberra-Average

2 proposed 2 as the best number of clusters 1 proposed 2 as the best number of clusters 2 proposed 2 as the best number of clusters

5 proposed 3 as the best number of clusters 2 proposed 3 as the best number of clusters 4 proposed 3 as the best number of clusters

12 proposed 4 as the best number of clusters 18 proposed 4 as the best number of clusters 11 proposed 4 as the best number of clusters

1 proposed 5 as the best number of clusters 1 proposed 6 as the best number of clusters 3 proposed 6 as the best number of clusters

3 proposed 7 as the best number of clusters 1 proposed 7 as the best number of clusters 1 proposed 7 as the best number of clusters

Table 7.9: The optimal number of clusters of data set IV.

of clusters is 4 for data set IV.
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Figure 7.21: Silhouette plot for the 4-cluster partition derived by the Manhattan - Average

clustering method for data set IV.

To con�rm the result in Table 7.9, Silhouette widths can be used to de�ne a criterion for

the appropriate number of clusters. Figure 7.21 illustrates the average silhouette widths

for ten partitions, from 2-10 clusters for data set IV, for the Manhattan - Average cluster-

ing method. It is clear that for this method the optimal number of clusters is 4 for data

set IV. In fact, this is true for all 3 clustering methods.

We will now discuss which result obtained should be retained for further analyses of data

IV as follows:

The silhouette plots for the three clustering methods for data set IV can be seen in Figure

7.22 for the Canberra - Complete, Manhattan - Average and Canberra - Average methods.

Silhouette width values for all samples can be seen in the silhouette plot as bars. It is

therefore clear which samples lie well within their cluster. In fact, the Average silhouette

widths for the clusters di�er considerably, as the numbers of samples in the four clusters

are not the same. The clustering methods have Average Silhouette widths for the entire

data set of 0.16, 0.51 and 0.39 respectively, which are also the Silhouette coe�cients for
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Figure 7.22: Silhouette plot for the 4-cluster partition derived by three clustering methods

for data set IV.

these methods, therefore there is a di�erence between them. The method that has value

0.51 (Manhattan - Average) is better than the other methods (Canberra - Complete and

Canberra - Average). In addition, the silhouette plot for method Canberra - Complete

shows that there are 16 samples clearly misclassi�ed (highly negative silhouette widths)

as members of cluster 1 and 2 (7 samples in cluster 1 and 9 samples in cluster 2). Model

Canberra - Average is de�nitely more balanced, with 8 samples misclassi�ed in cluster

1 and 2 and having in general smaller negative silhouette widths than the misclassi�ed

samples in method Canberra - Complete. Model Manhattan - Average is de�nitely the

best method, without any misclassi�ed samples.

The �ndings and the information obtained by the silhouette plots practically mean that

only the Manhattan - Average method should be retained for further analyses of data set

IV, as it is deemed to be the best. A dendrogram for the clustering partition derived by

the Manhattan - Average method clustering method can be seen in Figure 7.23.

To illustrate the clustering solution derived by the Manhattan - Average method for

data set IV, a number of graphical tools will be used. A two-dimensional projection of

the clustering solution can be seen in Figure 7.24. The �rst two principal component

scores (according to the results from Chapter 5) can be seen superimposed with the par-
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Figure 7.23: Dendrogram for the 4-cluster partition derived by the Manhattan - Average

linkage clustering method. The labels at the end-leafs of the tree are the sample numbers

in the three data sets. The colour coding shows the di�erent clusters.

tition derived by the Manhattan - Average method. From Figure 7.24, the scores plots

show that there is no clear discrimination between the samples of the three data sets

based on location. Figure 7.24 shows the 50 samples of propolis, where samples 1 to

27 indicate Aberdeenshire, samples 28 to 41 indicate Fort William, and samples 42 to
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Figure 7.24: Scores plots of the �rst two PCs, superimposed with the 4-cluster partition

derived by the Manhattan - Average clustering method for data set IV. Coloured points

represent the samples in the clusters. The labels of the points in the plot correspond to

the sample numbers.

50 indicate Dunblane. They could be classi�ed into four groups by hierarchical cluster

analysis without splitting the replicates. In this case the samples for Aberdeenshire split

into three groups. The �rst group for Aberdeenshire includes samples 1, 2 and 3 and

the second group includes samples 4, 5, 6, 25, 26 and 27, and the third group includes

the remaining samples. Moreover, the samples from Fort William and Dunblane cluster

together because the compounds of these two data sets have more similarity.
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7.6.6 Application of HCA to the Libya Data set

The Libya data set that will now be used in the hierarchical clustering analyses is the

same as in the analyses of Chapter 5. The Libya data set contains the selected 12 sam-

ples with 300 variables. The distance matrix of the samples will be computed using the

same four di�erent distance measures, Euclidean, Manhattan, Maximum and Canberra,

as above. Five di�erent agglomerative nesting methods will be used in order to perform

HCA, namely Single linkage, Complete linkage, Average linkage, Ward's method and the

McQuitty method. The best clustering method for the Libya data set among the 20

mentioned in the previous, will be examined using various statistics and plotting tools,

including the agglomerative coe�cient, the Cophenetic correlation, the Gower distance

and the silhouette coe�cient and plot. Also, the optimal number of clusters will be iden-

ti�ed with the help of plotting tools such as silhouette widths.

The agglomerative coe�cient (AC) will be used to assess whether HCA �nds natural

structure in the Libya data set or not. Table 7.10 gives the AC values from the analyses

of the 20 hierarchical clustering methods above. From Table 7.10, it is clear that the AC

Table 7.10: Agglomerative coe�cients for the Libya data. The red coluor shows the

clustering method with the largest agglomerative coe�cient.

Metric Euclidean Manhattan Maximum Canberra

Single 0.737 0.739 0.704 0.812

Complete 0.867 0.845 0.885 0.992

Average 0.819 0.809 0.824 0.951

Ward 0.888 0.883 0.895 0.986

McQuitty 0.824 0.808 0.833 0.946

of the Libya data set has the highest value, 0.992, for the result obtained by the Canberra

distance metric using Complete linkage. In general, the Canberra metric seems to give

the best results for all the tested agglomerative methods, and Ward's linkage gives the
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best results for all metrics used. The second best method, obtained by the same distance

metric for the Ward's agglomerative method, has an AC of 0.986.

To con�rm the �ndings, the Cophenetic correlation and the Gower distance are computed

for all 20 methods. Table 7.11 gives the Cophenetic correlation values for all 20 hierar-

chical clustering methods for the Libya data set. From Table 7.11, the model Euclidean

Table 7.11: Pearson's r Cophenetic correlation for the 20 hierarchical clustering methods

for the Libya data set. The blue and red colours show the two clustering methods selected

using as criteria the agglomerative coe�cient and Cophenetic correlation respectively.

Metric Euclidean Manhattan Maximum Canberra

Single 0.769 0.732 0.798 0.341

Complete 0.825 0.772 0.831 0.377

Average 0.843 0.831 0.835 0.387

Ward 0.805 0.765 0.808 0.380

McQuitty 0.835 0.819 0.831 0.386

- Average has the largest Cophenetic correlation of 0.843 among all 20 methods. The

Cophenetic correlation value of this method is shown in blue in Table 7.11. Canberra -

Single has the lowest Cophenetic correlation of 0.341 among all 20 methods. The clus-

tering method Canberra - Complete indicated by the largest AC value has Cophenetic

correlation of 0.377 shown as red in Table 7.11. Therefore according to this Cophenetic

correlation statistic the most appropriate method seems to be Euclidean - Average. More

speci�cally, the Manhattan- Average method has the largest Cophenetic correlation among

all �ve Manhattan methods, 0.831. Also, Maximum - Average has the largest Cophenetic

correlation among all �ve Maximum methods, and Canberra - Average has the largest

Cophenetic correlation among all �ve Canberra methods.

The Gower distance values for all the clustering methods can be seen in Table 7.12 for

the Libya data set. From Table 7.12, the Gower distance value for the Canberra- Average

method is the smallest compared to all other methods and in each and every metric. While
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Table 7.12: Gower distance for the 20 hierarchical clustering methods for the Libya data

set. In bold is shown the clustering method with the smallest Gower distance value. The

values shown in the table have all been divided by 1012 for ease of displaying them.

Metric Euclidean Manhattan Maximum Canberra

Single 2.8378 4.9810 2.2821 9.6567e-09

Complete 4.0078 6.6597 3.7788 1.3545e-07

Average 0.7907 1.4237 0.6664 7.0439e− 09

Ward 8.4379 17.2718 6.0409 4.2521e-08

McQuitty 0.9045 1.6324 0.7437 7.0798e-09

the Euclidean - Average method had the highest Cophenetic correlation (seen in Table

7.11), the best agglomerative coe�cient is given by the Canberra - Complete method,

which has the highest AC of 0.992 for the Libya data set, However, further investigation

is needed to con�rm which of the three methods, Canberra - Complete, Euclidean - Av-

erage and Canberra - Average gives the best �t of the Libya data set.

Before con�rming which method gives the best �t of the Libya data set, we look to iden-

ti�cation of the optimal number of clusters using the silhouette widths method.

We use the command NbClust in R to compare between several indices to determine the

best number of clusters to use in the analysis for three clustering methods (Canberra -

Complete, Euclidean - Average and Canberra - Average), with the results shown in Table

7.13. According to the majority rule in Table 7.13, the best number of clusters is 3 for

data set IV

Canberra - Complete Manhattan - Average Canberra - Average

4 proposed 2 as the best number of clusters 2 proposed 2 as the best number of clusters 4 proposed 2 as the best number of clusters

14 proposed 3 as the best number of clusters 8 proposed 3 as the best number of clusters 8 proposed 3 as the best number of clusters

3 proposed 4 as the best number of clusters 5 proposed 4 as the best number of clusters 5 proposed 4 as the best number of clusters

2 proposed 6 as the best number of clusters 5 proposed 5 as the best number of clusters 1 proposed 5 as the best number of clusters

3 proposed 7 as the best number of clusters 3 proposed 6 as the best number of clusters

Table 7.13: The optimal number of clusters for the Libya data set.

the Libya data set.
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Figure 7.25: Average silhouette widths for partitions of 2-10 clusters for the Libya data set

derived by the Euclidean - Average method. The optimal number of clusters is indicated

by the dashed line.

To con�rm the result in Table 7.13, Figure 7.25 illustrates the average silhouette widths

for ten partitions, from 2-10 clusters for this data set, for the Euclidean - Average clus-

tering method. It is clear that for this method the optimal number of clusters is 3 for the

Libya data set. In fact, this is true for all 3 clustering methods.

We will now discuss which result obtained should be retained for further analyses of the

Libya data as follows:

The silhouette plots for the three clustering methods for the Libya data set can be seen

in Figure 7.26 for the Canberra - Complete, Euclidean - Average and Canberra - Average

methods. All sample silhouette width values can be seen in the silhouette plot as bars.

The Average Silhouette widths for the clusters di�er considerably, as the numbers of sam-

ples in the three clusters are not the same. The three clustering methods have Average

Silhouette width for the entire data set of 0.57, 0.61 and 0.81 respectively, which are also

the Silhouette coe�cients for the three methods, therefore there is a di�erence between
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Figure 7.26: Silhouette plot for the 3-cluster partition derived by three clustering methods

for the Libya data set.

them. The method that has a value of 0.81 (Canberra - Average) is better than the other

methods (Canberra - Complete and Euclidean - Average). In addition, the silhouette plots

for the three methods show that there are not any samples clearly misclassi�ed (negative

Silhouette widths) as members of a cluster.

The �ndings practically mean that only the Canberra - Average method should be retained

for further analyses of the Libya data set. A dendrogram for the clustering partition de-

rived by the Canberra - Average method clustering method can be seen in Figure 7.27.

To illustrate the clustering solution derived by the Canberra - Average method for the

Libya data set, a two-dimensional projection of the clustering solution can be seen in

Figure 7.28. In order to get an overview of the di�erences in the chemical composition

of the di�erent propolis samples PCA, was used. This method reduces the 300 variables

(chemical compounds) in the samples to a few principal components using the correlations

within the Libya data set, essentially mapping the samples according to how close they

are in composition. The �rst two principal component scores (according to the results

from Chapter 5) can be seen superimposed with the partition derived by the Canberra -

Average method. The data was �rst mean-centred and Pareto-scaled. Only samples P5,

P6 and P7 from the South-east of the country and P8 from the South-west gave a distinct
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Figure 7.27: Dendrogram for the 3-cluster partition derived by the Canberra - Average

linkage clustering method. The labels at the end-leafs of the tree are the names of the

samples in Libya data set. The colours show the clusters found.

group and they were grouped. The samples from the coast did not divide according to

longitude, and the two groups P1, P2, P3, P4, P9, P10, and the second group, P11, P12,

are composed of samples from the East and West of the country, and although P10 was

collected from a site close to P11 and P12 it seems to be quite di�erent in composition.

7.7 Summary and Conclusions

This chapter has involved the application of hierarchical clustering algorithms to the

propolis data sets. After extensive investigation of the literature, the algorithms deemed

to be the most appropriate for metabolomics data included hierarchical clustering, hard

clustering methods, and competitive learning algorithms. The last two methods will be

applied in Chapters 8 and 9. The main aim was to assess the possible existence of any

natural groupings in the data, and consequently identify any patterns of the samples, and
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Figure 7.28: Scores plots of the �rst two PCs, superimposed with the 3-cluster partition

derived by the Canberra - Average clustering method for the Libya data set. Coloured

points represent the samples in the clusters. The labels of the points in the plot correspond

to sample numbers.

in particular any discrimination of samples concerning their location.

Hierarchical methods (HCA) involved the clustering of the data with a range of agglomer-

ative nesting algorithms, single linkage, complete linkage, average linkage, the McQuitty

method and Ward's method. These algorithms cover most types of clusters from non-

compact elongated (single linkage) to compact spherical clusters (Ward's method). Four

di�erent distance metrics were used in the construction of the agglomerative clustering

models, namely the Euclidean, Manhattan, Maximum and Canberra distances. Therefore,

to improve the chances of HCA identifying any natural groupings, 20 clustering models

were constructed and their clustering results were compared.

After extensive experimentation with a range of statistics to assess the quality of �tting

of the data by the clustering models (such as the Silhouette width, the agglomerative

coe�cient and the Cophenetic correlation), the overall best �tting results found were the
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2-cluster partition derived by the Euclidean - Average model for data set I, the 4-cluster

partition derived by the Euclidean - Average model for data set II, the 4-cluster partition

derived by the Canberra - Average model for data set III, the 4-cluster partition derived

by the Manhattan - Average model for data set IV, and the 3-cluster partition derived by

the Canberra - Average model for the Libya data set. The Silhouette coe�cients of 0.60,

0.66, 0.45, 0.51 and 0.81 were the highest among all models for data sets I, II, III, IV and

Libya respectively.

Some of the clustering models, with many clusters found, were capable of discriminating

the samples according to their hives for data sets I, II and III, also according to their

geographical location in data sets IV and Libya.

The next chapter describes in detail the second method of the most important unsu-

pervised classi�cation techniques, for types of data such as metabolomics data, in the

area of hard clustering, in a further attempt to devise suitable clustering models for these

data. This k-means method is applied in Chapter 8 to identify groupings present in the

data sets I, II, III, IV and Libya, to investigate whether it con�rms the �ndings of HCA

in Chapter 7.



Chapter 8

Partitioning Algorithms

We now consider a di�erent approach to clustering. The most popular clustering tech-

niques are hierarchical and partitioning methods (Xu and Wunsch, 2005). Clustering

methods can be divided into hard clustering and fuzzy clustering. Hard clustering fur-

nishes a partition in which each object of the data set is assigned to one and only one

cluster (De Carvalho et al., 2012). HCA is an example of hard clustering. Fuzzy cluster-

ing generates a fuzzy partition that furnishes a degree of membership of each pattern in

a given cluster. After an investigation of pre-treatment, PCA and MDS, the algorithms

deemed to be the most appropriate to use on the propolis data sets included hierarchical

clustering, partitioning methods and competitive learning algorithms. The partitioning

approach will be applied in this chapter using the k-means method.

The main aim is to assess the possible existence of any natural groupings in the data and

consequently to identify any patterns in the samples and in particular any discrimination

of samples concerning their location. Moreover, the results will be compared between

HCA and k-means. Section 8.2 gives a description of k-means, the most commonly used

partitioning algorithm. Section 8.3 describes methods to determine the optimal number

of clusters. For this study, k-means has been applied to the di�erent propolis data sets.

The outcomes are outlined in Sections 8.4, 8.5 and 8.6.

234
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8.1 Overview of Hard Clustering

In hard clustering, every input vector xi of a data set in a matrix X ends up matched

with a single cluster. A hard m-clustering of data set of matrix X is de�ned by:

mc : X → A, c = 1, ....., K

where A = {0, 1}, and K is the number of clusters. A common form of a cost function

for hard clustering algorithms is given by:

Ns∑
i=1

K∑
j=1

mijd(xi, ϑj) (8.1)

subject to the constraints

mij ∈ {0, 1}, i = 1, ....., Ns, j = 1, ....., K

K∑
j=1

mij = 1,

where Ns is the number of samples, mc is a membership coe�cient de�ning the degree of

membership of vector xi to a cluster c, d is a suitable distance measure between cluster

centroids ϑj and input vector xi, M = {mij} is an (Ns × K) matrix, which signi�es

the dissimilarity between cluster centroids ϑj and input vector xi using elements (i, j) =

(mj(xi), d(xi, ϑj)), and

mij =


1, if d(xi, ϑj) = min

1,...Ni
d(xi, ϑj)

0, otherwise
· (8.2)

According to Theodoridis and Koutroumbas (2003), the importance of calculation (8.1) is

minimised when each input vector xi has been matched with its closest cluster. Ultimately,

for every input vector xi only one mij is equivalent to 1 and the remaining associated

coe�cients are equivalent to zero. The most common hard clustering algorithm, k-means

is described in detail in the next section.
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8.2 The k-means Clustering Algorithm

The k-means hard clustering algorithm is one of the most common and widely applied

(Ding and He, 2004; Hartigan and Wong, 1979; Lloyd, 1982). Point representatives (cen-

troids, ϑ) are utilised, and squared Euclidean distance is employed as a way to calculate

the distance between the ϑj and the input vectors xi. All resulting clusters remain as

compact as possible due to ϑj being the mean vector for cluster j. Theodoridis and

Koutroumbas (2003) and Izenman (2008) describe k-means in the following manner:

1. Given a series of objects, xi, i = 1, 2, ..., Ns and if K is the number of clusters,

k-means is implemented with the processes below:

• Arrange the objects into K randomly selected clusters. For every cluster c,

calculate the existing point centroid, x̄c.

• Pre-prescribe K cluster centroids, x̄c, c = 1, 2, ..., K randomly from among the

data points or randomly in the data space.

2. Calculate the squared Euclidean distance between every object and its existing point

centroid, giving the within cluster sum of squares

WSS =
K∑
i=1

‖ xi − x̄c ‖2

where x̄c denotes the centroid of the cluster containing xi.

3. Re-allocate every object back to its nearest cluster centroid in order to decrease the

size of WSS. Then re-compute the cluster centroids.

4. Repeat Stages 2 and 3 again until there are no more objects to allocate.

The bene�ts of employing the k-means clustering method are as follows:

• The technique tends to generate more compact clusters than HCA because it at-

tempts to minimise the size of the sum of squares within clusters and maximise the
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sum of squares between clusters.

• This technique is computationally faster than HCA if the number of variables is

large, as in the study of metabolomics data.

As Myatt (2007) explains, k-means is faster and better at tackling large volumes of ob-

servations than hierarchical clustering. However, it also comes with some signi�cant

downsides, including:

• k-means cannot produce any kind of hierarchical organisation.

• The clusters cannot be generated before the number of clusters is speci�ed.

• The quality of an optimal clustering may be a�ected by an outlier.

• Di�erent last stage clusters may be created by di�erent starting partitions. There-

fore, using a number of di�erent starting partitions or centroids and then choosing

the best �nal solution is recommended. (The default in R is to use 10 random

starts).

• It is not considered the most logical way to cluster data, especially if the cluster

shapes are unlikely to be multivariate normal. The method is a better choice for

�nding compact spherical clusters.

As explained, k-means is a widely used algorithm, particularly among scientists. How-

ever, it is not yet broadly employed within the chemometrics �eld and HCA is much more

common there. It is normally used in conjunction with additional visualisation and clus-

tering techniques because there is a distinct lack of diagnostic and speci�c visualisation

resources that are compatible with k-means.

The algorithm created by Hartigan and Wong (1979) will be applied in this research on

the data sets I, II, III, IV and Libya. As Hartigan (1975) states, this is a highly e�cient

version of k-means, referred as algorithm AS 136. The modi�ed algorithm commands

a great deal of trust and almost all the authors of R functions implementing k-means
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currently believe it is a superior choice to alternatives like those in the work of Lloyd

(1982) and MacQueen (1967). AS 136 (Hartigan and Wong, 1979) is de�ned by two key

phases. They are Quick Transfer (or QTRAN) and Optimal Transfer (or OPTRA). These

make it possible to look for a k-cluster partition with a locally optimal (lowest) sum of

squares within clusters. This is achieved by moving objects between clusters. Once all

objects have been randomly allocated between the available clusters and a locally optimal

solution has been discovered, the whole process may be performed for a pre-determined

number of iterations (normally 100) (Legendre and Legendre, 1998). It is important to

begin every run from a randomly selected con�guration. If these steps are followed, it

increases the probability of �nding a global minimum. The ideal solution is any iteration

with the lowest sum of squares within clusters across every run.

The work of Hartigan and Wong (1979) describes the phases of algorithm AS 136 as

follows (Lithio and Maitra, 2018):

Initialising: The data matrix X of xi, i = 1, ..., Ns objects is given an initial

centroid conformation in p-dimensional space, where p is the number of variables.

This may refer to the set of initial centroids corresponding to the necessary number

of clusters or just the number of clusters required, K. For the former, a random set

of rows in X is selected to serve as the initial centroids, for example, C̄j, j = 1, ..., K.

The number of points within a single cluster, say c, is denoted by NSc. To �nd the

points in each cluster, the Euclidean distance is used between the object xi and the

cluster centroid C̄j, denoted by d(xi, C̄j).

Phase 1: For every object xi, i = 1, ..., Ns, �nd its nearest and second nearest

centroids, which are C̄1i and C̄2i respectively. Match up object xi with Cluster C1.

Phase 2: Update the centroids to be the averages of the points assigned to them

above.

Phase 3: Initially, all clusters should be considered part of the live set.
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Phase 4 - OPTRA: Take every object xi in order and assign it to the live set

only if cluster C is updated in the �nal QTRAN phase, then it belongs to live set

in this phase. Otherwise, the object should not be changed in the �nal Ns optimal

transfer phases or treated as part of the live set. Assign object xi to cluster Cj. If

Cj is not live set, go to Phase 4B. If it is part of the live set, go to Phase 4A.

Phase 4A: Calculate the minimum of the quantity

R2 =
NScd(xi, C)2

NSc + 1

for every Cluster C (C = Cj, j = 1, ..., K). Cluster Cl denotes the one with the

lowest value of R2. If the value is equal to or larger than

NSCjd(xi, Cj)
2

NSCj − 1
,

no re-allocation is required and, Cl becomes the updated C̄2i. If this is not the

case, object xi must be allotted to cluster Cl and Cj becomes the updated C̄2i.

The centroids are updated to become the means of the objects allotted to them if

re-allocation has occurred. At this point, the two clusters linked to the transfer of

object xi are now in the live set.

Phase 4B: The same as Phase 4A, with the di�erence that the minimum R2 is

calculated only for clusters in the live set.

Phase 5: If the live set is empty, do not proceed with the next phase. If it is not

empty, start Phase 6 after one pass through the data set.

Phase 6-QTRAN: In order, let Cj=C̄1i and Cl=C̄2i for every object xi. Cal-

culate the values

R1 =
NSCjd(xi, Cj)

2

NSCj − 1

and

R2 =
NSCld(xi, Cl)

2

NSCl + 1
.
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If R2 is greater than R1, cluster Cj still carries object xi. If this is not the case,

swap C̄1i and C̄2i around. Then, renew the central points for both clusters.

Phase 7: Return to phase 4 if no re-allocations were made within the last Ns

phases. If this is not the case, return to phase 6.

8.3 Identifying the Optimal Number of Clusters

In hard clustering, identifying the optimal number of clusters is a vital process. Certainly,

when using k-means clustering, it is necessary to state beforehand the number of clusters

K that will be found. The problem is that there is no de�nite rule to use to chooseK. The

optimal number of clusters is, to some degree, subjective. It is a�ected by the constraints

associated with partitioning, and the measure chosen for calculating similarities (through

this is generally Euclidean distance).

In this section, we will describe di�erent methods for determining the optimal number of

clusters for k-means. These include direct techniques and statistical testing, as follows

(Kassambara, 2017):

• Direct Techniques: The goal here is to choose K to give a suitable value of a

criterion, for instance, the average silhouette width or the within cluster sums of

squares. These are called the silhouette and elbow methods, respectively.

• Statistical Techniques: The aim here is to contrast data evidence for clustering with

the null hypothesis of there being no clustering in the data. This is called the Gap

statistic method.

For this study, the �rst of these kinds of techniques is applied, using for example the

average silhouette width and the elbow methods. Using several criteria allows a more

accurate estimation of the optimal number of clusters. Figure 8.1 shows a plot used to

identify the number of clusters, by plotting the criterion value against K. There are
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over twenty techniques and indices that can be used to determine the optimal number of

clusters (as in the command NbClust in R, for example).

8.3.1 The Elbow Technique

As explained, the simple premise behind partitioning techniques such as k-means clus-

tering is to form the clusters in a way that minimises intra-cluster variation or total

within-cluster sum of squares (WSS). Crucially, the elbow technique treats the total WSS

(or other suitable measure) as a function of the number of clusters. Therefore, it is im-

portant to select the number of clusters to give a low total WSS, yet not give a larger

than necessary number of clusters. The optimal number of clusters is determined using

the following process (Kassambara, 2017):

1. Decide on the clustering algorithm. In this case, it is k-means, for various values

of K (such as 1-10 clusters). With every K, apply the algorithm and calculate the

total within cluster sum of squares (WSS).

2. Using the number of clusters K, plot WSS against K, to form a curve.

3. If there is a bend or elbow within the plot, its position may be considered as a

signi�er of the most suitable number of clusters (see the plots in Figure 8.1).

8.3.2 The Average Silhouette Technique

This method is also used to calculate clustering quality. According to Kaufman and

Rousseeuw (2009), it determines the typical silhouette for possible and varied values of

K. Speci�cally, the technique identi�es how successfully each object is positioned within

its corresponding cluster. A high value of the silhouette width (see Section 7.5) implies a

satisfactory degree of clustering (Kaufman and Rousseeuw, 2009). The optimal number

of clusters K is the value that most increases the typical silhouette across a selection
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of potential values of K. The Average Silhouette technique is comparable to the elbow

technique. It is applied in the following way:

1. Choose the clustering algorithm, in this case, k-means, and apply it for various

values of K (such as 1-10 clusters).

2. Determine the average silhouette width for each K value.

3. Using the number of clusters K, plot average silhouette width against K to form a

curve.

4. The optimal number of clusters is equivalent to the position of the maximum value

(see the plots in Figure 8.2).

8.4 Application of the k-means Algorithm for the Data

Sets I, II and III

We now apply the methods above to the propolis data sets.

8.4.1 Overview

The data sets I, II and III (used in the HCA analyses) will now be analysed by k-means

clustering. Data sets I, II and III include 27, 14 and 9 samples respectively (for Aberdeen-

shire, Fort William and Dunblane), and have been mean-centred and column-scaled by

Pareto scaling before analysis.
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8.4.2 Computing the Optimal Number of Clusters for Data Sets

I, II and III

The algorithms described in Section 8.3 will be used to provide the number of clusters for

k-means. To determine the optimal number of clusters, two di�erent techniques will be

used, to evaluate the derived k-means partitions of 2-10 clusters. First the elbow method

is used. Figure 8.1 shows the results for this method for data sets I, II and III. The dashed

line shows the point which corresponds to the optimum number of clusters. The optimum

solutions marked by the R software are 2 clusters for the Aberdeenshire data, 3 clusters

for the Fort William data and 4 clusters for the Dunblane data. To compare to the re-
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Figure 8.1: Values of the within cluster sum of squares for k-means partitions of 2-10

clusters for data sets I, II and III. The dashed line represents the optimum number of

clusters.

sults of the elbow method, the silhouette values for the k-means partitions of clusters are

also computed for data sets I, II and III. Figure 8.2 gives the overall average silhouette

widths of the clusters. The dashed line shows the optimal number of clusters determined

in R. From the silhouette information and the elbow method values, it can be concluded

that the optimum numbers of clusters are 2 for Aberdeenshire, 4 for Fort William and 4

for Dunblane. There is a di�erence between the results for Fort William, where the opti-
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Figure 8.2: Average silhouette widths of clusters for k-means clustering method for data

sets I, II and III. The optimal number of clusters is indicated by the dashed line.

mum numbers of clusters are 3 from the Elbow method and 4 from the silhouette method.

We will also now use the command NbClust in R to compare between many indices

to determine which value of K to use in the analysis. The index to be calculated

will be one of the following: "kl", "ch", "hartigan", "ccc", "scott", "marriot", "tr-

covw", "tracew", "friedman", "rubin", "cindex", "db", "silhouette", "duda", "pseudot2",

"beale", "ratkowsky", "ball", "ptbiserial", "gap", "frey", "mcclain", "gamma", "gplus",

"tau", "dunn", "hubert", "sdindex", "dindex", "sdbw", "all" (all indices except GAP,

Gamma, Gplus and Tau), and "alllong" (all indices with Gap, Gamma, Gplus and Tau

included) (Charrad et al., 2014). Applying this command gave results for data sets I, II

and III as follows in Table 8.1. According to the majority rule, the best number of clusters

are 2 for the Aberdeenshire data, 4 for the Fort William data and 4 for the Dunblane

data.

It remains to be seen whether this clustering method can discriminate the samples de-

pending on their location, where each three samples came from the same hive (or colony).

The clusters are examined in more detail below.
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Among all indices for Aberdeenshire

8 proposed 2 as the best number of clusters

7 proposed 3 as the best number of clusters

1 proposed 4 as the best number of clusters

2 proposed 5 as the best number of clusters

3 proposed 6 as the best number of clusters

2 proposed 14 as the best number of clusters

Among all indices for Fort William

3 proposed 2 as the best number of clusters

1 proposed 3 as the best number of clusters

12 proposed 4 as the best number of clusters

4 proposed 5 as the best number of clusters

2 proposed 6 as the best number of clusters

1 proposed 9 as the best number of clusters

Among all indices for Dunblane

3 proposed 2 as the best number of clusters

7 proposed 3 as the best number of clusters

8 proposed 4 as the best number of clusters

5 proposed 5 as the best number of clusters

Table 8.1: The optimal number of clusters for data sets I, II and III, using 23 di�erent

criteria.

8.4.3 Cluster Validation

As mentioned previously in Section 8.3.2, the silhouette coe�cient measures how well

an observation is clustered and it estimates the average distance between clusters. The

silhouette plot displays a measure of how close each point in one cluster is to points in
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the neighbouring clusters, and this method is now used to con�rm the results of k-means

for data sets I, II and III:

• Aberdeenshire data (I)

A silhouette plot for the cluster partition can be seen in Figure 8.3 for the Aberdeen-

shire data. The average silhouette width values for clusters 1 and 2 are 0.75 and

0.56, respectively, and the average silhouette width for the entire data set is 0.60.

Although these values are the same as from HCA clustering (see Figure 7.9 for the

Euclidean-Average method, which was the best method for HCA), in the k-means

clustering solution there are no misclassi�ed samples (Figure 8.3). Samples 1, 2 and

3 have low silhouette values in cluster 2, whereas there are not any samples with

similarly low values in cluster 1. The silhouette plot also shows that the �rst and

second clusters contain 6 and 21 samples respectively, exactly as in the HCA clus-

tering case. Also, k-means is as good as the HCA method is in �tting the data, as

the HCA method's overall average silhouette width of 0.60 (for Euclidean-Average

method) is the same as for the k-means clustering method (0.60). Comparing k-

means with the HCA clustering method, the samples in the k-means partition �t

as well, as cluster 2's silhouette widths are 0.60 and 0.60 for k-means and HCA

respectively. In addition, the plot con�rms that there is no discrimination of the

samples 1, 2 and 3 with low silhouette values.

The derived optimal 2-cluster k-means partition is the same as was obtained by the

optimal HCA clustering partition, therefore the results of any extra analysis will be

the same as in the HCA clustering case. Figure 8.4 also illustrates the clustering

solution derived by the 2-cluster k-means method, that is, a two-dimensional projec-

tion of the clusters such that the �rst two principal component scores (according to

the results from Chapter 5) can be seen according to the partition from the selected

k-means clustering method. In the scores plot, blue and red represent the samples
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Figure 8.3: Silhouette plot for the 2-cluster partition from the k-means clustering method

for the Aberdeenshire data. The x-axis shows the sample numbers. The average silhouette

widths for clusters 1 and 2 are 0.75 and 0.56 respectively, and the average silhouette width

for the entire data set is 0.60 (shown by the dashed red line).

assigned to the �rst and second cluster respectively. Similarly to HCA clustering,

the cluster is compact for group 1 (Figure 8.4). Also, there is a distinction among

samples in this clustering. Therefore, as in the HCA methods, this algorithm has

classi�ed samples according to their hives and samples from the same hive are not

separated, but it has only separated samples 4, 5, 6, 25, 26 and 27 from the rest.

• Fort William data (II)

A silhouette plot for the cluster partition is shown in Figure 8.5 for the Fort William

data. The average silhouette width values for clusters 1, 2, 3 and 4 are 0.52, 0.76,

0.91 and 0.64 respectively, and the average silhouette width for the entire data

set is 0.66. Although these values are the same as from HCA clustering (Figure
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Figure 8.4: Scores plot of the �rst two PCs, superimposed with the 2-cluster partition

from k-means clustering for the Aberdeenshire data. Blue and red points represent the

samples in the �rst and second cluster. The labels of the points in the plot correspond to

the numbers of the samples.

7.13 for the Euclidean-Average method, which was the best method for HCA), in

the k-means clustering solution there are no misclassi�ed samples (Figure 8.5). The

silhouette plot also shows that the clusters contain 6, 3, 2 and 3 samples respectively,

exactly the same points as in the HCA clustering case, and k-means is as good as

the best HCA method is in �tting the data, as the HCA method's overall average

silhouette width of 0.66 (for the Euclidean-Average method) is the same to that

of the k-means clustering method (0.66). Moreover, k-means is better than the

two methods Canberra-Complete and Canberra-Average for HCA, as these have

silhouette widths of 0.33 and 0.43 respectively (see Figure 7.13). Comparing the

results of k-means with the best HCA clustering method, the samples in each case

are �tted as well, since the average silhouette widths are 0.66 for the both HCA

and k-means. The derived optimal 4-cluster k-means partition is the same as was



249 Partitioning Algorithms

obtained by the optimal HCA clustering, therefore the results of any extra analysis

will be the same as in the HCA clustering case.

Figure 8.6 shows the clustering solution from the 4-cluster k-means, in terms of the

0.00

0.25

0.50

0.75

1.00

6 12 5 4 14 13 3 2 1 7 8 9 10 11

S
ilh

ou
et

te
 w

id
th

 S
i

cluster

1

2

3

4

Clusters silhouette plot 
 Average silhouette width: 0.66

Figure 8.5: Silhouette plot for the 4-cluster partition from the k-means clustering of the

Fort William data. The x-axis shows the sample numbers. The average silhouette widths

for clusters 1, 2, 3 and 4 are 0.52, 0.76, 0.91 and 0.64 respectively, and the average

silhouette width for the entire data set is 0.66 (shown by the dashed red line).

�rst two principal component scores. In the scores plot, blue, green, brown and red

represent the samples assigned to the four clusters. Similarly to HCA clustering,

all of the clusters are compact. Also, there is a distinction among locations in this

clustering but there is no separation of samples from the same hive. (Note that

samples 7 and 8 in this data set came from the same hive, but sample 9 cames a

di�erent hive). Therefore, as in HCA, this algorithm has been e�cient in classifying

samples according to their location (their colony).
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Figure 8.6: Scores plot of the �rst two PCs, superimposed with the 4-cluster partition

from k-means clustering for the Fort William data. Coloured points represent the di�erent

clusters. The labels of the points in the plot correspond to the numbers of the samples.

• Dunblane data (III)

A silhouette plot for the cluster partition can be seen in Figure 8.7 for the Dunblane

data. The average silhouette width values for clusters 1, 2, 3 and 4 are 0.27, 0.52,

0.48 and 0.16 respectively, and the average silhouette width for the entire data set

is 0.35. The silhouette plot also shows that the four clusters contain 3, 2, 2 and

2 samples respectively. This solution is not quite the same as was obtained from

HCA clustering (Figure 7.17). From Figure 8.7, there are no misclassi�ed samples

in the k-means clustering solution. Samples 6 and 7 have very low silhouette values

in cluster 4. Comparing the k-means results with the HCA clustering, the samples

in the HCA clustering are slightly better �tted as the average silhouette widths are

0.45 and 0.35 for HCA and k-means respectively. Also, there are di�erent numbers

of samples in each cluster for k-means and HCA, such as samples 6 and 7 belonging
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to cluster number 4 in k-means clustering while in HCA only sample 7 belongs to

cluster 4. Figure 8.8 illustrates the clustering solution derived by the 4-cluster k-
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Figure 8.7: Silhouette plot for the 4-cluster partition derived by the k-means clustering

method of Dunblane. The average silhouette width for clusters 1 to 4 are 0.27, 0.52, 0.48

and 0.16 respectively, and the average silhouette width for the entire data set is 0.35.

means method, in terms of the �rst two principal component scores. In the scores

plot, the di�erent colours represent the clusters. Samples 1, 2 and 3 are kept together

but the rest are not. There is a separation of some of the samples that belong to

the same hive. For instance, samples 4, 5 and 6 are from the same hive but they

are separated in the clustering solution.
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Figure 8.8: Scores plot of the �rst two PCs, superimposed with the 4-cluster partition

from k-means for the Dunblane data. Colours represent the clusters in the four clusters.

The labels of the points in the plot correspond to the numbers of the samples.

8.5 Application of the k-means Algorithm to the three

Data Sets Combined (IV)

The three data sets (Aberdeenshire, Fort William and Dunblane) are now considered

together as one data set, using k-means clustering, as was done in the HCA analyses. That

is, data set IV contains the selected 27, 14 and 9 samples with 921, 511 and 498 variables

respectively. The three data sets have been mean-centred and column-scaled by Pareto

scaling before analysis. To determine the optimal number of clusters, Figure 8.9 (left

plot) shows the results for the Elbow method on data set IV. The dashed line shows the

point which corresponds to the optimum number of clusters. The optimum solution is 4

clusters for data set IV. To con�rm the result of the Elbow method, the average silhouette

value for the k-means partitions of clusters will be computed for data set IV. Figure 8.9
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(right plot) gives the overall average silhouette widths of the clusters. The dashed line

shows the optimal number of clusters. From the average silhouette information and the

Elbow method, it can be concluded that the optimum number of clusters is 4 for data set

IV. A silhouette plot for the cluster partition can be seen in Figure 8.10 for data set IV.
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Figure 8.9: K-means partitions of 2-10 clusters for data set IV. The dashed line represents

the optimum number of clusters.

The average silhouette width values for clusters 1, 2, 3 and 4 are 0.70, 0.39, 0.45 and 0.42

respectively, and the average silhouette width for the entire data set is 0.49. From Figure

8.10 for k-means and Figure 7.22 for the Manhattan-Average method for HCA, there are

no misclassi�ed samples in both methods, but the silhouette plot also shows that the four

clusters from k-means contain 6, 14, 21 and 9 samples respectively, which is completely

di�erent from the HCA clustering. However, the k-means clustering method does �t the

data IV almost as well as HCA. It is approximately as good as the HCA method is in

�tting data set IV, as the HCA method's overall average silhouette width of 0.51 is quite

close to that of the k-means clustering method (0.49).

A two-dimensional projection of the clustering solution can be seen in Figure 8.11 in



254 Partitioning Algorithms

0.00

0.25

0.50

0.75

1.00

52742625639334132313837403628302935341620212223121971882417911101415131 2 3474349504842464544

S
ilh

ou
et

te
 w

id
th

 S
i

cluster

1

2

3

4

Clusters silhouette plot 
 Average silhouette width: 0.49

Figure 8.10: Silhouette plot for the 4-cluster partition derived by the k-means clustering

method on data set IV. The average silhouette width for the four clusters are 0.70, 0.39,

0.45 and 0.42 respectively, and the average silhouette width for the entire data set is 0.49.

principal component space. In the scores plot, the colours represent the di�erent clusters

of points and the points are labelled with the sample numbers. Figure 8.11 shows the

three data sets I, II and III divided from each other. Also, it separates the Aberdeenshire
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Figure 8.11: Scores plots of the �rst two PCs, superimposed with the 4-cluster partition

derived by the k-means clustering method for data set IV. Coloured points represent the

samples in the clusters. The labels of the points in the plot correspond to sample numbers.

data (samples 1 to 27) into two clusters, keeps the Fort William data (samples 28 to

41) as one cluster and also the Dunblane data (samples 42 to 50) as one cluster. These

samples can be clustered into four groups by k-means and hierarchical cluster analysis

without splitting the replicates from each hive. The �rst group for the Aberdeenshire

data set includes samples 4, 5, 6, 25, 26 and 27, and the second group includes the

remaining samples. Although, k-means provides a completely di�erent result from HCA

(Figure 7.24), the k-means method seems to be better than HCA here because it is able

to separate samples of data set IV depending on location, even though 4 clusters were

optimal for both methods.
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8.6 Application of the k-means Algorithm to the Libya

Data

To determine the optimal number of clusters, the Elbow technique will be used in the

derived k-means partitions of 2-10 clusters. Figure 8.12 (left plot), shows the results

for the Elbow method on the Libya data set. The dashed line shows the point which

corresponds to the optimum number of clusters. The optimum solution is 3 clusters for

the Libya data.

To con�rm the result of the Elbow method, the average silhouette value for the k-means
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Figure 8.12: Elbow method and Average silhouette widths for k-means partitions of 2-10

clusters for the Libya data, where the dashed line represents the optimum number of

clusters.

partitions of clusters will be computed for the Libya data set. Figure 8.12 (right plot)

gives the overall average silhouette widths of clusters. The dashed line shows the optimal

number of clusters. From the average silhouette information and the Elbow method, it
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can be concluded that the optimum number of clusters is 3 for the Libya data set.

The silhouette coe�cient measures how well an observation is clustered and it estimates

the average distance between clusters. The silhouette plot displays a measure of how

close each point in one cluster is to points in the neighbouring clusters. A silhouette

plot for the cluster partition can be seen in Figure 8.13 for the Libya data. The average
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Figure 8.13: Silhouette plot for the 3-cluster partition derived by the k-means clustering

method from the Libya data. The average silhouette widths for the 3 clusters are 0.67,

0.44 and 0.60 respectively, and the average silhouette width for the entire data set is 0.61.

silhouette width values for clusters 1, 2 and 3 are 0.67, 0.44 and 0.60 respectively, and

the average silhouette width for the entire data set is 0.61. From Figure 8.13 for k-means
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and Figure 7.26 for the Canberra-Average method for HCA, there are no misclassi�ed

samples (negative silhouette widths) in both methods. The silhouette plot also shows

that the three clusters contain 6, 2 and 4 samples respectively, the same as for the HCA

clustering case. However, the HCA method is better than k-means, as the HCA method's

overall average silhouette width of 0.81 is high compared to that of the k-means clustering

method (0.61).

A two-dimensional projection of the clustering solution can be seen in Figure 8.14 in

principal component space. In the scores plot, the colours represent the di�erent clusters

of points and the points are labelled with the sample numbers. There is no clear distinction

among locations in this clustering. The principal component analysis (PCA) based on the

300 features was constructed, from the mean-centred and Pareto scaled data. Samples

P5, P6 and P7 from the South-east of the country and also P8 from the South-west were

grouped fairly close together (see Figure 3.5 for the location of samples). The samples

from the coast did not divide according to longitude. Samples P1, P2, P3, P4, P9 and P10

are in the �rst group, the second group is P11 and P12, and the third group is P5, P6, P7,

and P8, composed of samples from the East and West of the country. Although P10 was

collected from a site close to P11 and P12, it seems to be quite di�erent in composition

as it is separated from them in the plot.

8.7 Conclusions from the k-means Method

In the case of hard partitioning, the k-means method was the obvious choice, as it is

the most popular in metabolomics data analyses. The k-means algorithm described in

Section 8.2 was used on the propolis data sets and the optimum number of clusters was

determined with the aid of a range of stopping rules, such as the Elbow technique and

the average Silhouette coe�cient. The 2, 4, 4, 4 and 3 cluster partitions derived by the

k-means clustering were the best hard partition of data sets I, II, III, IV and Libya. The
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Figure 8.14: Scores plots of the �rst two PCs, superimposed with the 3-cluster partition

derived by the k-means clustering method for the Libya data. Coloured points represent

the samples in the clusters. The labels of the points in the plot correspond to the names

of samples.

2-cluster k-means partition of the Aberdeenshire data is exactly the same as in the 2-

cluster HCA clustering, and the silhouette widths in the two methods are the same. In

addition, the 4-cluster k-means partition for the Fort William data is exactly the same as

the 4-cluster HCA clustering. On the other hand, the 4-cluster k-means partition for the

Dunblane data is di�erent from the 4-cluster HCA clustering with regard to number of

samples contained in the four clusters of the partitions, as there are di�erent numbers of
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samples in each cluster for the two methods, and the silhouette widths of the samples and

the average silhouette widths di�er between the two methods. For data set IV, k-means

provides a completely di�erent result from HCA, and k-means seems to be better than

HCA because it is able to separate samples of data depending on their location. Finally

the HCA method is better than k-means for the Libya data set, as the HCA method's

overall average silhouette width of 0.81 is much higher than that of the k-means clustering

method (0.61) and both methods cannot clearly discriminate samples depending on their

location.

The next chapter describes in detail a relatively new method for types of data such

as metabolomics data, i.e. Self Organising Maps (SOM), in another attempt to devise

suitable clustering models. It is also applied there to identify groupings present in the

data sets I, II, III, IV and Libya, and the results are compared to those of HCA and

k-means.



Chapter 9

Competitive Learning Algorithms

As a particular type of arti�cial neural networks, self-organising maps (SOMs) are a

machine learning method which are trained using an unsupervised, competitive learning

algorithm to produce a mapping from a multidimensional input space onto a lattice of

clusters (or neurons). We will compare the results here with the previously used methods.

This chapter describes Self Organising Maps in Section 9.1, application of SOMs to data

sets I, II, III in Section 9.2, and also application of SOMs to data sets IV and Libya in

Sections 9.3 and 9.4 respectively.

9.1 Self Organising Maps (SOMs)

9.1.1 Overview

The Self- Organising Map (or SOM) is one of the most prominent competitive learning

algorithms. It was outlined by Kohonen, who describes it as a numerical method of data

visualisation and cluster analysis (Honkela et al., 1995; Kohonen, 1990). He �rst show-

cased the concept of SOMs in the 1970s. Over the decades, its primary algorithms have

261
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been extensively updated and enhanced. The work of Wang et al. (2002), Wang et al.

(2005), Dittenbach et al. (2002), Salas et al. (2007) and Jin et al. (2004) describes some of

these evolutions. One of the biggest changes is their increased suitability and tolerability

of diverse input types and �elds of application.

For example, SOMs can be used for the ordering of representative species observed as

part of multivariate ecological research (Park et al., 2006). As Kalteh et al. (2008) proves,

SOMs may be employed as part of attempts to investigate water source complications.

They can even be used to assess the metabolic indicators of patients with chronic con-

ditions like diabetes (Makinen et al., 2008) and cardiovascular dysfunction (Suna et al.,

2007). This method has much in common with Arti�cial Neural Networks (ANN) and

corresponding learning processes (Taner, 1997). As Izenman (2008) points out, SOMs

are utilised as a tool for generating basic facsimiles of the human brain and its complex

neural connections.

In the �eld of chemistry, SOMs are valuable and highly regarded. While there is a steadily

expanding collection of studies about its application (Miljkovic, 2017), its methods and

processes have not been fully investigated. Certainly, SOMs are not as well known or

as explored as partial least squares (PLS) and PCA. This may be due to a preference

for mainstream plugin packages among contemporary chemists, which do not o�er SOM

analysis. Despite this, it is clear that SOMs o�er remarkable levels of tractability. With

this method, many of the constraints typically associated with analytical chemistry (like

technological capabilities) become redundant or signi�cantly lessened. Within this �eld,

SOMs may be shaped to �t a variety of scenarios. For instance, this method can be used

for quality control or by using supervised SOMs. Consequently, it has a much broader

scope than simple visualisation of clusters (Li and Pan, 2013).

The basic premise underpinning SOMs is very straightforward. Given a series of represen-

tatives wi, i = 1, ...,m, if input vector x is presented to the algorithm, every representative

wi must then compete with each other to be nearest to x (using the relevant distance

measure). The one that is nearest to x is considered to be the 'winning' representative
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(Theodoridis and Koutroumbas, 2003). It gets to stay there, in close proximity to x, while

the other representatives advance at a delayed pace or remain unaltered.

The SOM technique relies on unsupervised learning to generate a mapping of high dimen-

sional input space within much simpler 2D or 3D planes. According to Brereton (2009),

it seeks to locate clusters such that any two clusters sharing the same output area end

up with representatives very near to one another on the input plane (Dittenbach et al.,

2002). When visualising a suitable input area for SOM, there needs to be a substantial

network containing many linked nodes (see Figure 9.1). The two dimensional demonstra-

tion of this algorithm would be as nodes linked to form a rectangle, oblong, hexagon,

or square. At all times, the topological correlations between the input data components

must remain as static and authentic as possible. Makinen et al. (2008) explains that, for

researchers of chemometrics, the technique is useful for gathering information about rela-

tionship between samples. It is also an e�cient way to visualise characteristic variables,

speci�c samples of interest or groups of samples (Suna et al., 2007).

As Silva and Marques (2007) explain, there are two common forms of SOMs. They

are batch and on-line (Izenman, 2008). The batch technique uses all input vectors si-

multaneously. On-line SOM, on the other hand, sees input vectors used in a carefully

controlled manner. They are still selected arbitrarily, but they get added one by one.

Before an investigation can begin, the researcher must decide on the dimensions of the

SOM diagram. Crucially, this decision tends to be inaccurate because it is common to

pick a node (map unit) volume that is much greater than the predicted number of clusters

within the data set. This is because, at �rst, the researcher simply does not know the

requisite volume of nodes. It takes a little guessing and a lot of testing to get to a place

where the SOM diagram has a more feasible shape. The diagram is repeatedly altered

and this decreases the volume of nodes which it contains until they o�er a more realistic

prototype. Every node is linked to a representative (or prototype or codebook vector)

within the input plane, for instance wc. When a weight vector is applied (see below), the

net weight of all nodes aligns with the number of factors considered as part of the initial
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Figure 9.1: Graphical illustration of a self-organising map

data area. Consequently, this stratum of weight linked to every signi�cant factor may be

treated as the third dimension of the SOM diagram. At the start, all wc vectors and their

assigned elements are con�gured as arbitrary numbers. They are selected and ordered

using a random number tool that picks any number, as long as it is covered by the scope

of the available data.

9.1.2 Classic On-line SOM Algorithm

If a researcher wishes to operate an on-line SOM investigation, they must adhere to the

following process:
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Select the Best Matching Unit

• First, an initial representative is chosen. Some of the choices that can be made

include random samples from the data, random vectors with elements from a N(0,1)

distribution, and vectors from the direction of the �rst two principal components of

the data. Usually a sample vector, xk, is selected randomly from the data set, with

or without replacement.

• Following this, there is a calculation of a dissimilarity a distance d(xk, wij) between

the arbitrarily picked sample xk and every one of the unit weights for the map wij.

Much the most common distance metric used for that purpose is the Euclidean

distance measure:

d(xk,wij) = ‖xk − wij‖ =

√√√√ n∑
j=1

(xkj − wij)2

where xkj is the value of variable j for sample xk, wij stands for the weight of

variable j for map unit i, and n represents the total number of samples. The map

unit with the lowest d(xk, wij) for vector xk is highlighted and renamed the Best

Matching Unit (or BMU) of sample xk for this particular investigation. That is:

d(xk,wBMU ) = min
k
{d(xk,wij)}

where

BMU = arg min
k
{d(xk,wij)}.

Determine and Adjust the Nearest Map Unit

• The best way to determine which map unit is nearest to the BMU is to consider the

concept of neighbourhood and corresponding neighbourhood units. Assuming the

Euclidean distance of the codebook vectors wU and wBMU for map unit U ∈ M is

lower than a pre-established limit β known as the 'neighbourhood width,' it may be
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considered a neighbour of the BMU unit (UBMU). However, this newly con�gured

neighbourhood set (or NBMU) must carry units that meet the conditions below:

NBMU = {u : d(wBMU ,wu) < β}.

• According to Izenman (2008), learning rate frequency represents the degree to which

the targeted map is due to be changed during every new repetition or run through. It

does this to approximate a sample as well as it can. It is only necessary to adapt and

adjust the weight vectors for units that are deemed part of a BMU neighbourhood

group. This is achieved by applying a distance weighted equation in which φ is a

learning frequency signi�er and βf is a neighbourhood factor:

wu+1 = wu + φβf (xk − wu)

There are other similar processes, and some of the most common are as follows:

Linear : φj = φ0

(
1− j

J

)

Exponential : φj = φ0

(
e
−j ln(β0)

J

)

Power : φj = φ0

(
0.005

φ0

) j
J

Inverse : φj =
φ0(

1 + 100j
J

)
where j represents the latest algorithm repetition, J is the total number of rep-

etitions or versions, φ0 is the preliminary learning frequency and β0 signi�es the

earliest neighbourhood width. If any of the above mentioned are applied as func-

tions, learning frequency is seen to decline monotonically right through to the close

of the investigation. It is necessary to adjust or calculate a new neighbourhood

width every time the algorithm is repeated. Normally, β has a large value initially.
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However, as the investigation advances, it is expected that the function will slowly

drop in size. Eventually, just the BMU and its contiguous neighbours are left to be

adjusted and renewed. Some neighbourhood functions that are suitable for SOM

testing are as follows:

Exponential : βj = β0e
−j ln(β0)

J

Gaussian : βj = e
−|wu−wBMU |

2

2(rβ)2

and

Square(or bubble) : βj =

 1, if |wu − wBMU | ≤ rβ

0, if |wu − wBMU | > rβ

. (9.1)

According to Brereton (2009), J is often used to signify a number 500 times the

number of units on the map for β0 equal to half the width of the map and for φ0

of 0.1. In some instances, a k-means algorithm is applied as an adjustment phase.

When rβ represents the neighbourhood radius, the algorithm is repeated until the

predetermined number of tests or versions (J) have been completed.

9.1.3 Classic Batch SOM Algorithm

Batch SOM works by adjusting and renewing the weight vectors only after each learning

phase is complete. In this case, a phase is the application of the entire training data set to

the algorithm. The adjusted weights and optimal BMU are calculated with the formula

below:

wú =

∑
(βf́xk)∑
βf́

and the winner unit (BMU) can then be found using equations

d(xk,wú) = ‖xk − wú‖2 =

√√√√ n∑
j=1

(xkj − wú)2
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and

d(xk,wBMU ) = min
k
{d(xk,wú)}.

The batch algorithm process is much faster than the on-line one. For one thing, learning

frequency is no longer a necessary consideration, as it is for batch techniques. Therefore,

the likelihood of low convergence and related problems is much smaller, although, it

does need the entire series of input vectors throughout the training phase, not just a

partial selection. Lastly, the sequence of the input vectors and their application is not

as signi�cant here because each weight vector is renewed at the end of the iteration. It

means that the �nal input vectors have no real e�ect on the eventual outcome. This

process is replicated, from the start, over and over until it reaches the predetermined

convergence requirements. Here, the neighbourhood function is the same as it is for the

on-line process.

9.1.4 Quality of Mapping

As Villmann et al. (1997) states, self-organising maps (or SOMs) seek to maintain the

topological characteristics of the input plane. The quality of a map may be in�uenced

by the fact that this process involves vector quantisation algorithms. It is de�ned by the

application of the multidimensional input area to a 2D or 3D output plane, as normally

occurs when working with biological data spaces (Vesanto, 1999). It is very important that

the algorithm is seen to protect input space topology. If mapping continues uninterrupted,

samples that are near to the input plane get positioned close together within its topology

and the output space. If the map is of a high quality, this process is conducted with a

similarly high degree of accuracy. No samples that are not close together on the input

are placed together in the output (Bauer et al., 1999; Pölzlbauer, 2004). Brereton (2009)

explains that, even though the probability variation of the input plane is unlikely to be

presented poorly by a SOM algorithm, it is still necessary to account for other factors
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that may have an impact on mapping quality. They include mapping resolution (Brereton,

2009; Polani, 1999) and continuity (Kiviluoto, 1996; Neme and Miramontes, 2005). Other

indicators of metabolomics and chemometric accuracy are as follows:

The Mean Quantisation Error (EMQ)

Mean Quantisation Error (or EMQ) is a quality signi�er that is used to test the

e�cacy and accuracy of any type of clustering algorithm or vector quantisation. It

considers the mean distance between the sample vectors and their assigned cluster

centroids. According to Pölzlbauer (2004), for SOM, this means the typical distance

between every sample and its corresponding BMU, but it must be calculated after

the �nal SOM algorithm has been performed, as EMQ, de�ned as:

EMQ =
1

m

m∑
k=1

d(xk,wBMU )

where m is the number of units (centroids) in the SOM. Brereton (2009) points

out that EMQ relies on the training data and initialisation processes. Therefore, it

is most useful when the number of map units is equivalent to or bigger than the

number of training samples. It should be noted that EMQ is not a suitable way

to test SOMs with varying grid or diagram dimensions. The bigger the map, the

smaller the value of EMQ, as it reduces monotonically as the dimensions increase.

Topographic Error (ETE)

Topographic Error (or ETE) is an indicator of topological conservation (Pölzlbauer,

2004). To be precise, it determines the degree of stability within SOMs. It is fair

to consider a map locally preserved and unbroken if, for a sample x, the closest

and second closest representatives are contiguous units. If this is not the case, the

topology has been altered and is, therefore, not fully preserved. As with EMQ, this

measure of quality becomes more reliable as the size of the map increases. The

work of Kiviluoto (1996) calculates topological accuracy by counting and regulating

the amount of local inaccuracies across all samples. This generates a measure of
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topological continuity. ETE is represented by the following equation:

ETE =
1

m

m∑
k=1

σ(xk,wu)

where m is the number of units (centroids) in the SOM. u = 1, ..., U , U is the last

unit in the map and ui stands for the vector of unit i (Neme and Miramontes, 2005;

Villmann et al., 1997). If the neuron winner wu of vector xk is near the neuron,

the distance from xk to it is the smallest one, regardless of the neuron winner, then

σ(xk,wu) = 0, otherwise, σ(xk,wu) = 1. While this formula can reveal the degree of

accuracy across all local neighbourhoods, it is not a suitable way to measure the

nature of these inaccuracies (Kiviluoto, 1996). On the other hand, it is reasonable

to assume that a great many errors indicate a breakdown of topology across the

input plane. In this case, the SOM should be considered carefully, as many of its

features may be imprecise.

9.1.5 Visualisation

Before talking about visualisation, we should determine the shape and size of a grid for

the SOM, as follows:

Identify the grid of the SOM

The shape of the SOM grid may be chosen to be hexagonal, to avoid a preference

of the SOM algorithm towards horizontal or vertical directions (Park et al., 2006).

In addition, the size of the map must not be such that it has more units than the

number of samples in the data set, to ensure a better response from the map quality

criteria. In this work, the classic online SOM algorithm was used. The map size is

important to detect any deviation in the data. If the map size is too small, it might

not explain some important di�erences that should be detected. Conversely, if the

map size is too big, the di�erences are too small (Wilppu, 1997). The map size

depends on the number of samples to be trained. Although no strict rules exist to
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de�ne the optimal map size, there are several possible methods. First, setting the

number of output neurons approximately equal to the number of the input samples

seems to be a useful rule-of-thumb for many applications where the data sets are

relatively small (Kaski, 1997). However, attention should be paid to over-�tting

problems when a large map size is used. This may happen when the number of

output units is as large as or larger than the number of samples. A second method

to determine the map size is by using Vesanto's heuristic formula (Vesanto et al.,

2000) which states that the total number of map units, NU , is given by:

NU = 5
√

number of samples .

In this case, the lengths of the grid sides can be calculated by setting the ratio of

the lengths of the sides similar to that of the two largest eigenvalues of the training

data such that the product of the lengths is as close as possible to NU .

There is more than one way to demonstrate the outcomes of SOM investigations.

Some of the most common are outlined below and illustrated using the Scottish and

Libya data sets used previously in this thesis, before a formal analysis of those data

sets.

Uni�ed Distance Matrix (U-matrix)

The Uni�ed Distance Matrix is a particular kind of visualisation process. It helps

the researcher to accurately locate any clustering on the map. This is achieved with

a highlighting technique, like assigning a colour to the Euclidean distance between

adjacent representatives, for example. When map nodes are positioned near to one

another on both the output and input planes, a lower value is generated. As Brereton

(2009) points out, only units with a substantial distance produce the bigger values.

Figure 9.2 shows an example of a U-matrix for the Aberdeenshire, Fort William,

and Dunblane data. The con�guration sizes were chosen as described in Section

9.2.2. For the Fort William results (the middle plot) the upper right cell in the plot
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is highlighted in white and represents units that are far away from one another. The

generated values are vast (> 1.8e+10), particularly when compared with the dark

red markers and smaller values (< 5e+9) in the upper and bottom left side areas.

Looking at the data set for Aberdeenshire, the largest plot is highlighted with one

white and three yellow markers. It suggests that their points are positioned far

from one another on the input plane and that the values generated are substantial

(> 4e+10). They are certainly bigger than for the points highlighted with red markers

right in the plot (< 2e+10). Finally, the Dunblane data set shows yellow and white

markers at the upper left side and the middle right of the map (Figure 9.2). The

colours indicate distant points (samples), with substantial values (> 1.4e+10). As

with the other two data sets, the red marker indicates units or samples with lower

values (< 1e+10).

U−matrix of Aberdeenshire

1e+10

2e+10

3e+10

4e+10

5e+10

U−matrix of Fort William

5e+09

1e+10

1.5e+10

2e+10

U−matrix of Dunblane

8e+09

1e+10

1.2e+10

1.4e+10

1.6e+10

Figure 9.2: Examples of Uni�ed Distance matrices (U-matrices) for the Scottish propolis

data sets.
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Hit Histogram

The hit histogram is applied when a researcher needs to visualise the BMU for ev-

ery one of the samples upon completion of testing. It assigns every unit a value.

This value represents the frequency with which each unit has been selected as Best-

matching unit at the end of training (Brereton, 2009). The process may involve a

2D or 3D plot. Both are a valid way to calculate this measure. When using a 3D

histogram, the height of each hexagonal bar is proportional to the number of hits.

When using a 2D plot (shown below), the number of BMU hits is shown by the

size of the shaded map units. Preferably, when several classes are contained in a

data set, only one or at least a small number of map units should match the BMU

of all samples from the same class and therefore correlate with a large number of

hits. When there is a high number of hits on a map, it tends to give a concentration

of samples around its units and these units are mainly on the periphery of a SOM

grid. Furthermore, regions of the map that show high numbers of hits tend to link

with areas of similarity within a U-matrix plot.

Figure 9.3 shows an example of a 2D colour-coded hit histogram for a grid of di-

mensions 9 × 3 for Aberdeenshire, 7 × 2 for Fort William and 3 × 3 for Dunblane.

For example, for the Aberdeenshire data (the top plot in Figure 9.3), the six yellow

units in the hit histogram have a value of 3, meaning that these special units were

the best-matching unit of any sample three times when the training �nished. The

grey units contain no samples. The three orange units had two hits each. Concern-

ing the Fort William data (the middle plot in Figure 9.3), the plot shows a top left

unit marked in yellow. It carries a value of three, which means that this special unit

was the BMU of a sample three times when the training �nished. The four orange

units had two hits each. Finally, the Dunblane data set shows three units marked

in yellow, with a BMU value of two. The three units marked in red carry a value of

one. The grey units are not considered valuable for this test.
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hit histogram of Aberdeenshire

1

2

3

hit histogram of Fort William

1

2

3

hit histogram of Dunblane

1

2

Figure 9.3: Examples of hit histograms for Aberdeenshire, Fort William and Dunblane,

respectively from top to bottom.

Component Planes

Unfortunately, the U-matrix and Hit Histogram are not complete tools. They have

a key weakness, that neither is able to demonstrate the signi�cance of variables

within the input plane. Nevertheless, it is important to investigate the in�uence

these variables have on the shape and implications of the map (in a similar way to

PCA). Component planes are employed as a way to demonstrate the e�ects which

each input variable has on the map, and correlations between samples and variables

(Brereton, 2009). The biggest advantage of employing component planes is the ca-

pacity to determine whether a variable can be used to understand a class and, if

this is not the case, whether it can make distinctions between classes. If the data

set contains just two classes, any variable that can be used to de�ne a class may

also be considered an e�ective distinguisher and identi�er. If there are more than

two classes, this may not be the case (Makinen et al., 2008).

It works by building a single element plane for every one of the variables. Then, their
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respective weight or signi�cance is represented with a coloured marker in relation to

their usefulness for expanding a particular part of the map. Consequently, correla-

tions between variables and samples are demonstrated with colour-coded highlights.

Each map unit, k, is given a speci�c colour signifying its proportionality to the sig-

ni�cance of wkj of unit k for the selected variable j.

Figures 9.4, 9.5 and 9.6 show component planes for three variables contained in the

Aberdeenshire, Fort William and Dunblane data respectively. Each plane depicts

the size of the respective map unit in�uences or weights, in this case, phenylacetic

acid, hydroxybenzoate, and benzoic acid. This is the case for both the Dunblane

and Fort William data sets. Where the map is coloured in a darker tone, the vari-

ables carry bigger values and match areas of similarly higher value in the U-matrix

plot. To be speci�c, the higher variables in the U-matrix are more strongly linked

to those samples with a dark colour on the component plane. It means that, for

the examples provided, the three variables have a dark colour code but quite small

values ( < −5000 for the �rst variable, < 0 for the second variable and < −2000

for the third variable) and contain samples which are strongly associated with these

variables. However, considering the white colours with values > 1e+4 for the �rst

variable, > 3e+4 for the second variable and > 4000 for the third variable of the Ab-

erdeenshire data, the samples contained in these units are related to these speci�c

variables.

From Figures 9.4, 9.5 and 9.6, it can be seen that their respective planes show

areas in which particular variables carry high values, but they also show the oppo-

site - areas with rather small values. This is another reason why component planes

are such a valued tool. They make it easy to recognise the areas of higher values

and lower values in these �gures.
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Figure 9.4: Examples of component planes of the Aberdeenshire data for the �rst three

variables.
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Figure 9.5: Examples of component planes of the Fort William data for the �rst three

variables.
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Figure 9.6: Examples of component planes of the Dunblane data for the �rst three vari-

ables.

9.2 Application of SOMs to Data Sets I, II and III

9.2.1 Overview

As the SOM maps that are produced are completely dependent on the input data used for

the analyses and the various learning parameters, there are no standard rules established

to produce a good quality map, i.e. a highly accurate and well-ordered map in every case.

This does make the method hard to use. The SOM seeks to produce a low-dimensional

representation of samples. For example, in the cases of the three propolis data sets

(Aberdeenshire, Fort William and Dunblane), it is probably more important to obtain

a highly accurate map (as good a representation as possible of the input space in the

output space) than to preserve the topological order of the input space, whereas in a

data-mining application the order would logically be more important than the accuracy,

as it commonly involves documents. Therefore, in the cases of the propolis data sets I,
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II and III, the mean quantisation error is probably more important than the topographic

error (Brereton, 2009). With these considerations in mind, the following SOM analyses

were chosen to investigate whether the SOM algorithms can be used to identify any

classi�cation of samples depending on the chemical properties or location, and not to �nd

the best possible mapping of the data.

9.2.2 Initialisation

Before the analyses, the samples were normalised by mean-centring and Pareto scaling, to

eliminate the possibility of any in�uence on the SOM results by any of the metabolites.

In our case, the total number of map units NU is approximately 26 (w 5
√

27) for Ab-

erdeenshire (27 samples), and 19 (w 5
√

14) > 14 (number of samples) for Fort William,

therefore the size of the map is taken as 14 for Fort William, and 15 (w 5
√

9) > 9 (num-

ber of samples) for Dunblane, therefore the size of the map is taken as 9 for Dunblane,

to ensure better response from the map quality criteria for Fort William and Dunblane.

The ratio of the two largest eigenvalues of the covariance matrix is approximately 7
1
for

Aberdeenshire, 4
1
for Fort William and 2

1
for Dunblane. Thus the grid dimension can be

13 × 2 for Aberdeenshire data, 7 × 2 for Fort William and 3 × 2 for Dunblane (3 × 3

gives poor quality of the grid), to approximate as closely as possible the map size without

violating the ratio rule for these three data sets (Park et al., 2006; Vesanto et al., 2000).

9.2.3 Training

The term training for SOMs refers to be the process of iteratively updating the map unit

weights to become more similar to vectors representing the original samples. The training

parameters used here are taken as the following: the learning rate initially has a value of

0.05 and decreases monotonically until it reaches the value 0.01 at the end of iterations

for the three data sets. The initial radius of the neighbourhood function is approximately
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2
3
of the estimated map width, to allow for a large part of the map to be updated initially.

A su�cient initial radius value will usually cover 2
3
of all unit-to-unit distances (Brereton,

2009). Thus, the initial radius for the 13 × 2 grid is approximately 9 for Aberdeenshire,

the initial radius for the 7 × 2 grid is approximately 5 for Fort William, and the initial

radius for the 3× 2 grid is 2 for Dunblane. The �nal value of the radius of the data sets

I, II and III is 0 at the end of the algorithm.

The initial representatives were chosen randomly without replacement from data sets I,

II and III. A series of runs was performed using the recommended values for the training

parameters (Brereton, 2009; Tan and George, 2004). Thus, the total number of iterations

was chosen in each case to be 500 times the map size of the three data sets. One map

size was used for each data set, speci�cally the 13× 2, 7× 2 and 3× 3 maps were chosen

for further investigation for Aberdeenshire, Fort William and Dunblane respectively. The

neighbourhood width function converges to a small number close to 0 after 25000, 20000

and 26000 iterations respectively for the estimated maps of data sets I, II and III (Figure

9.7 shows the convergence for the grids for Aberdeenshire, Fort William and Dunblane).

9.2.4 Quality of mapping

The quality of the mapping can be examined by using speci�c plots to illustrate how closely

to the prototype codebook vectors in each unit the samples in the unit have been mapped.

The mean distance of samples mapped in each unit to the codebook vector of that unit can

be illustrated using colour-coding such that the smaller the distances (darker colouring),

the better the samples in the unit are represented by this unit's codebook vector. We will

investigate the analysis of data sets I, II and III by SOMs as follows:

Aberdeenshire (I)

In Figure 9.8 the quality map is illustrated for the Aberdeenshire samples. It can

be seen that in general, the quality of the mapping is quite good, as in most of the



280 Competitive Learning Algorithms

0 5000 10000 15000 20000 25000 30000

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

Training progress

Iteration

M
ea

n 
di

st
an

ce
 to

 c
lo

se
st

 u
ni

t

(i) Aberdeenshire data (data set I)
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(ii) Fort William data (data set II)
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(iii) Dunblane data (data set III)

Figure 9.7: Convergence of the neighbourhood width function for the selected maps (13×2

grid) of the Aberdeenshire data, (7× 2 grid) of the Fort William data and (3× 3 grid) of

the Dunblane data.

map units the samples are quite close to the respective codebook vectors (the colour

is dark). However, clearly, two of the units have not been mapped accurately, with

the worst approximation being in the top right unit (white). The bottom right map
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unit (in light yellow) has also been mapped badly.

In addition, the Uni�ed Distance matrix can be used to illustrate the average

Quality plot

1e+09
2e+09
3e+09

Figure 9.8: Illustration of the quality of mapping for the Aberdeenshire samples. A grey

unit in the quality map means that there is no sample mapped to this unit.

distance of each map unit to all immediate neighbour units. Units near a cluster

boundary are expected to have higher average distances to their neighbour units

(Figure 9.9). The black lines indicate a two-cluster solution using hierarchical clus-

tering, to allow comparison of the SOM clustering to the best HCA solution. The

units on the right side of the U-matrix are closer to each other than those on the

left side of the matrix, however there is no indication from this matrix that there

is a big number of clusters in the data according to the 13 × 2 SOM analysis. A

5e+091e+101.5e+102e+102.5e+103e+103.5e+10

(i) Uni�ed Distance matrix

1
2
3

(ii) Hit histogram

Figure 9.9: Uni�ed Distance matrix and Hit histogram for Aberdeenshire for the 13 × 2

grid.

two-dimensional colour-coded hit histogram for the SOM solution can be seen in

Figure 9.9. The units with three hits indicate the existence of clusters in the areas

surrounding these units, and the concentration of samples around these units is ex-

pected to be far larger than elsewhere in the map. Four such units are (2,10), (1,1),



282 Competitive Learning Algorithms

(1,8) and (1,13), where the �rst number corresponds to the row and the second to

the column in which the unit is located in the map. (with (1,1) being the bottom

left-most unit and (2,13) the top right-most unit in the map). The results of the

hit histogram for these four units correspond to those regions in the U-matrix with

high similarity, e.g. the single unit (1,1) at the bottom-left of the map and the 3

units (1,8), (1,13) and (2,10) at the right part of the U-matrix plot. As they are

separated by the black lines of the best two-cluster HCA partition, these indicate

the existence of clusters in these areas.

The mapping of the samples assigned to each of the two groups provided by the

2× 1 map, as well as the colour-coded samples map (using the corresponding label

colours of the groups obtained by the 2 × 1 map) for the 13 × 2 grid can be seen

in Figure 9.10. The cluster sizes of the map on the left are 6 and 21 for groups 1-2

respectively. In the 2× 1 grid, group 1 corresponds to the bottom unit, while group

2 corresponds to the top unit. In the 13 × 2 grid, the corresponding groups to the

2× 1 grid are 1 and 2 from left to the right in the map. Comparing the clustering

results of the 13× 2 map to those of the hierarchical clustering in the U-matrix plot

(Figure 9.9), it is clear that there is identical clustering in both solutions.

To examine how the variables in�uence the map and what is the relationship

between each variable and the samples in the data, component planes have been

created for a selected number of variables. The maps for the ten variables with

the largest mean values can be seen in Figure 9.11. Most of these variables are also

among the ten variables with the largest variance. The darker a unit in a component

plane for a variable is, the closer the relation of this variable to the unit is. Upon

investigation of the component planes, the following can be deduced:

� The most commonly appearing variables are 117, 147 and 177, i.e. these

metabolites appear to be very closely related to almost all units in the map.
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Figure 9.10: Illustration of clustering of the Aberdeenshire data to two groups using SOM.

� The least common variables are 57 and 569. Very few units appear to be asso-

ciated with these metabolites, with the �rst variable being the least associated

to the map, of the two.

� The samples with consistently high intensity values in all component planes

are samples 4, 5, 6, 25, 26 and 27 in cluster 2 and samples 1, 2 and 3 in cluster

1.

� Samples 7, 8, 9, 19, 20 and 21 in cluster 1, are the samples least associated

with the variables.

� None of the component planes is capable of describing the two clusters.

A two-dimensional projection of the Aberdeenshire data superimposed with the

clustering solution derived by the 2-cluster SOM partition can be seen in Figure

9.12. We can compare between the �rst two principal component scores according

to the results from HCA and k-means, which both indicate the same result, and

SOM with the partition derived by the selected SOM clustering model. We can see
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Figure 9.11: Component planes for 10 selected variables among the chemical compo-

nents of the Aberdeenshire samples, labelled by number of the chemical components for

Aberdeenshire.

roughly the same proximities and clusters. But there is a linear constraint in the

PCA (the components are linear combinations of the initial variables) that does not

exist in SOM. This constraint, as well as the orthogonality between the PCs, can

be a drawback for the handling of nonlinear problems. Unlike PCA, the output of

SOM is very often in 2D space.

Fort William (II)

In Figure 9.13 the quality map for the Fort William samples is illustrated. It can

be seen that, in general, the quality of the mapping is quite good, as in most of

the map units the samples are quite close to the respective codebook vectors (the

colour is dark). However, clearly, two of the units have not been mapped accurately,

with the worst approximation being in units (1,2) and (2,4). The top left map unit
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Figure 9.12: HCA, k-means and SOM clustering of the Aberdeenshire data to two groups.

(in yellow) has also been mapped badly. In addition, the Uni�ed Distance matrix

Quality plot

2e+08
4e+08
6e+08
8e+08
1e+09

Figure 9.13: Illustration of the quality of mapping with regard to the samples of the Fort

William data. The grey units in the quality map mean that there is no sample mapped

to those units.

can be used to illustrate the average distance of each map unit to all immediate

neighbour units. Units near a cluster boundary are expected to have higher average

distances to their neighbouring units (Figure 9.14). The black lines indicate the best

four-cluster solution using hierarchical clustering, to allow comparison of the SOM

clustering to the HCA solution, however there is no indication from this matrix
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that there is a smaller number of clusters in the data according to the 7 × 2 SOM

analysis. A two-dimensional colour-coded hit histogram for the SOM solution can

5e+09

1e+10

1.5e+10

2e+10

(i) Uni�ed Distance matrix

1

2

3

(ii) Hit histogram

Figure 9.14: Uni�ed Distance matrix and Hit histogram for Fort William for the 7 × 2

grid.

be seen in Figure 9.14. The units with three hits indicate the existence of clusters

in the areas surrounding these units, and the concentration of samples around these

units is expected to be far larger than elsewhere in the map. The only such unit is

(2,1), where the �rst number corresponds to the row and the second to the column in

which the unit is located in the map (with (1,1) being the bottom left-most unit and

(2,7) the top right-most unit in the map). The result of the hit histogram for this

unit corresponds to this region in the U-matrix (Figure 9.14) with high similarity.

The mapping of the samples assigned to each of the four groups provided by the

2 × 2 map, as well as the colour-coded samples map using the corresponding label

colours of the groups obtained by the 2 × 2 map for the 7 × 2 grid, can be seen

in Figure 9.15. The cluster sizes of the left map are 9, 2, 1 and 2 for groups 1-4

respectively. In the 2 × 2 grid, group 1 corresponds to the bottom-left unit, while

group 4 corresponds to the top-right unit, counting from left to right and then from

the bottom to the top row of the map. In the 7× 2 grid, the groups corresponding

to the 2 × 2 grid are 1, 2, 4 and 3 from left to right in the map. Comparing the

clustering results of the 7 × 2 map to those of the hierarchical clustering in the

U-matrix plot (Figure 9.14), it is clear that cluster 1 at the left and middle-most

side of the map, is split into two groups where the �rst group contains samples 9, 10

and 11, and the second group contains samples 4, 5, 6, 12, 13 and 14. Also, cluster
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2 is identical in both solutions, with the other cluster having large di�erences e.g.

clusters 3 and 4 at the right part of the map have been merged to one cluster in the

hierarchical clustering solution (see Figure 9.14 and 9.15).

To examine how the variables in�uence the map and what is the relationship
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45
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(i) Samples - 2× 2 map
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5 6 78

91011 12
13

14

(ii) Samples - 7× 2 map

Figure 9.15: Illustration of clustering the Fort William data to four groups using SOM.

between each variable and the samples in the data, component planes have been

created for a selected number of variables. Again the maps for the ten variables

with the largest mean values can be seen in Figure 9.16. Most of these variables are

also in the group of ten variables with the largest variance. Upon investigation of

the component planes, the following can be deduced:

� The most commonly appearing variables are 265, 491, 190 and 79, i.e. these

metabolites appear to be very closely related to almost all units in the map.

� The least common variable is 358. Very few units appear to be associated with

this metabolite.

� The samples with consistently high intensity values in all component planes

are samples 7 and 8 in cluster 2.
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� Samples 5 and 14 in cluster 1, are the samples least associated with the vari-

ables.

� None of the component planes is capable of describing the four clusters.
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Figure 9.16: Component planes for 10 selected variables among the chemical components

of the Fort William samples, labelled by number of the chemical components of Fort

William.

A two-dimensional projection of the Fort William data superimposed with the clus-

tering solution derived by the 4-cluster SOM partition can be seen in Figure 9.17.

We can compare between the �rst two principal component scores according to the

results from HCA and k-means, which both indicate the same result, and SOM with

the partition derived by the selected SOM clustering model. We can see roughly

the same proximities and clusters.
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Figure 9.17: HCA, k-means and SOM clustering of the Fort William data to your groups.

Dunblane (III)

In Figure 9.18 the quality map is shown for the 3 × 3 and 3 × 2 solutions for the

Dunblane samples. It can be seen that, in general, the quality of the 3 × 3 grid is

bad. However, clearly from the 3× 2 grid, two of the units have not been mapped

accurately, with the worst approximation being in the middle and right bottom map

units (in light yellow). The top left map unit (in orange) has also been mapped badly.

On the other hand, the quality of the 3× 2 grid is quite good. Therefore, the 3× 2

map is chosen for further investigation for Dunblane. The Uni�ed Distance matrix

for Dunblane can be seen in Figure 9.19. The black lines indicate the four-cluster

solution using hierarchical clustering to allow comparison of the SOM clustering to

the HCA solution, however there is no indication from this matrix that there is a

smaller number of clusters in the data according to the 3 × 2 SOM analysis. A

two-dimensional colour-coded hit histogram for the SOM solution for Dunblane can

be seen in Figure 9.19. The units with two hits indicate the existence of clusters in

the areas surrounding these units, and the concentration of samples around these
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Figure 9.18: Illustration of the quality of two mappings for the samples of the Dunblane

data. A grey unit in the quality map means that there is no sample mapped to this unit.
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Figure 9.19: Uni�ed Distance matrix and Hit histogram for Dunblane for the 3× 2 grid.

units is expected to be far larger than elsewhere in the map. Three such units

are (1,2), (1,3) and (2,1), where the �rst number corresponds to the row and the

second to the column in which the unit is located in the map. The results of the

hit histogram for units (1,2) and (1,3) correspond to those regions in the U-matrix
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with high similarity. The unit (1,2), and units (1,3) and (2,1) of the U-matrix plot

are separated by the black lines of the four-cluster HCA partition, indicating the

existence of clusters in these areas.

The mapping of the samples assigned to each of the four groups provided by the

2× 2 map, as well as the colour-coded samples map (using the corresponding label

colours of the groups obtained by the 2 × 2 map) for the 3 × 2 grid can be seen

in Figure 9.20. The cluster sizes of the left map are 2, 2, 3 and 2 for groups 1-4

respectively. In the 2 × 2 grid, group 1 corresponds to the bottom-left unit, while

group 4 corresponds to the top-right unit counting from left to right and then from

the bottom to the top row of the map. In the 3× 2 grid, the corresponding groups

to the 2 × 2 grid are 4, 1, 2 and 3 from left to right in the map. Comparing the

clustering results of the 3 × 2 map to those of the hierarchical clustering in the

U-matrix plot (Figure 9.19), it is clear that clusters 1, 2, 3 and 4 are identical in

both solutions.

To examine how the variables in�uence the map and what is the relationship

123
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(ii) Samples - 3× 2 map

Figure 9.20: Illustration of clustering the Dunblane data to four groups using SOM.
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between each variable and the samples in the data, component planes have been

created for a selected number of variables. The maps for the ten variables with the

largest mean values can be seen in Figure 9.21. Again most of these variables are

also in the group of ten variables with the largest variance. Upon investigation of

the component planes, the following can be deduced:

� The most common variables are 19, 33 and 105, i.e. these metabolites appear

to be very closely related to almost all units in the map.

� The least common variables are 9 and 21. Very few units appear to be asso-

ciated with these metabolites, with 9 being the least associated to the map of

the two.

� The samples with consistently high intensity values in all component planes

are samples 3 in cluster 3, sample 7 in cluster 4 and sample 4 and 5 in cluster

2.

� Samples 8 and 9 in cluster 1 are the samples least associated with the variables.

� None of the component planes is capable of describing the four clusters.

A two-dimensional projection of the Dunblane data superimposed with the cluster-

ing solution derived by the 4-cluster SOM partition can be seen in Figure 9.22, to

compare between the results from HCA and k-means and SOM with the partition

derived by the selected SOM clustering model. We can see that the SOM clustering

model has been capable of discriminating the samples in the same way as k-means

clustering. Also, there is a small di�erence between the results from HCA and SOM,

where samples 6 and 7 have been merged to one cluster in the SOM solution.
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Figure 9.21: Component planes for 10 selected variables in the chemical components of

the Dunblane samples, labelled by number of the chemical components of Dunblane.

9.3 Application of SOM to the three data sets com-

bined (IV)

The data used here is the combined data set (Aberdeenshire samples 1:27, Fort William

samples 28:41 and Dunblane samples 42:50). Before the analyses, the samples were nor-

malised to eliminate the possibility of any in�uence on the SOM results by any of the

variables due to a variable's large variance. The shape of the SOM grid was chosen to

be hexagonal, as before. The map size is important to detect any deviation in the data.

If the map size is too small, it might not explain some important di�erences that should

be detected. Conversely, if the map size is too big, the di�erences are too small (Wilppu,

1997). The lengths of the grid sides can be calculated by setting the ratio of the lengths of

the sides similar to that of the two largest eigenvalues of the training data, such that the
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Figure 9.22: HCA, k-means and SOM clustering of the Dunblane data to groups.

product of the lengths is as close as possible to the total number of map units (NU). In

our case, NU is approximately 35 (5
√

50), whereas the ratio of the two largest eigenvalues

of the covariance matrix is approximately 3
2
, thus the grid dimension can be 7 × 5, to

approximate as closely as possible the map size without violating the ratio rule (Park

et al., 2006; Vesanto et al., 2000). The training parameters used here are the following:

the learning rate initially has a value of 0.05 and decreases monotonically until it reaches

the value 0.01 at the end of the number of epochs. The initial radius of the neighbourhood
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function is approximately 2
3
of the estimated map width, to allow for a large part of the

map to be updated initially. A su�cient initial radius value is usually to cover 2
3
of all

unit-to-unit distances. Thus, the initial radius for the 7 × 5 grid is approximately 5 for

data set IV. The �nal value of the radius of data set IV is 0 at the end of the algorithm.

The initial representatives were chosen randomly without replacement from the data set

IV. A series of runs was performed using the recommended values for the training pa-

rameters (Brereton, 2009; Tan and George, 2004). The total number of iterations was

chosen in each case to be 500 times the map size of data set IV. One map size was used,

speci�cally the 7 × 5 map was chosen for further investigation for these combined data.

The neighbourhood width function converges to a small number close to 0 after 20000

iterations respectively for the estimated maps (Figure 9.23 shows the convergence for the

grid of these data).

In Figure 9.24 the quality map is illustrated where samples 1 to 27 indicate Aberdeen-

shire, samples 28 to 41 indicate Fort William and samples 42 to 50 indicate Dunblane. It

can be seen that, in general, the quality of the mapping is quite good, as in most of the

map units the samples are quite close to the respective codebook vectors (the colour is

dark). However, clearly, two of the units have not been mapped accurately, with the worst

approximation being in the bottom right unit (1,7) (in white) (where the �rst number

corresponds to the row and the second to the column in which the unit is located in the

map. For example (1,1) is the bottom left-most unit and (5,7) the top right-most unit in

the map). The unit (5,4) (in yellow) has also been mapped badly.

In addition, the Uni�ed Distance matrix is shown in Figure 9.25. The black lines indicate

a four-cluster solution using hierarchical clustering, to allow comparison of the SOM clus-

tering to the HCA solution. The units on the top left side of the U-matrix are closer to

each other than those on the bottom left side of the matrix, however there is no indication

from this matrix that there is a big number of clusters in the data according to the 7× 5

SOM analysis. A two-dimensional colour-coded hit histogram for the SOM solution can

be seen in Figure 9.25. The units with four or �ve hits indicate the concentration of sam-
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Figure 9.23: Convergence of the neighbourhood width function for the selected map (13×2

grid) of data set IV.
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Figure 9.24: Illustration of the quality of mapping for the samples of data set IV. A grey

unit in the quality map means that there is no sample mapped to this unit.

ples around these units is expected to be far larger than elsewhere in the map. Two such

units are (3,7) and (5,1). The results of the hit histogram for these two units correspond
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Figure 9.25: Uni�ed Distance matrix and Hit histogram for data set IV for the 7×5 grid.

to those regions in the U-matrix with high similarity. In the U-matrix plot (Figure 9.25),

as they are separated by the black lines of the four-cluster HCA partition, this indicates

the existence of clusters in these areas.

The mapping of the samples assigned to each of the four groups provided by the 2 × 2

map, as well as the colour-coded samples map (using the corresponding label colours of

the groups obtained by the 2 × 2 map) for the 7 × 5 grid, can be seen in Figure 9.26.

The cluster sizes of the left map are 20, 21, 2 and 4 for groups 1-4 respectively. In the

2× 2 grid, group 1 corresponds to the bottom-left unit, while group 4 corresponds to the

top-right unit counting from left to right, and then from the bottom to the top row of the

map. In the 7× 5 grid, the corresponding groups to the 2× 2 grid are 3, 4, 1 and 2 from

left to right in the map, then from the bottom to the top of the map. Comparing the

clustering results of the 7× 5 map to those of the hierarchical clustering in the U-matrix

plot (Figure 9.25), it is clear that cluster 1 at the right side of the map is split into two

clusters that separate Fort William (samples 28:41) and Dunblane (samples 42:50). Also,

cluster 2 at the left side of the map is identical in both solutions. The other clusters have

large di�erences, e.g. clusters 3 and 4 at the bottom - left part of the map have been

merged to one cluster in the hierarchical clustering solution (in colours yellow and blue).

To examine how the variables in�uence the map and what is the relationship between

each variable and the samples in the data, component planes have been created for se-
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Figure 9.26: Illustration of clustering of data set IV to four groups using SOM.

lected variables. The maps for the ten variables with the largest mean values can be

seen in Figure 9.27. Most of these variables are also in the group of ten variables with

the largest variance. Upon investigation of the component planes, the following can be

deduced:

� The most commonly appearing variables are 435, 106 and 436, i.e. these metabolites

appear to be very closely related to almost all units in the map.

� The least common variables are 155, 128 and 569. Few units appear to be associated

with these metabolites.

� The samples with consistently high intensity values in all component planes are Fort

William samples 28:41.

� Samples 4, 5, 6, 25, 26 and 27 from Aberdeenshire are the samples least associated

with the variables.

� None of the component planes is capable of describing the four clusters.

A two-dimensional projection of data set IV superimposed with the clustering solution
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Figure 9.27: Component planes for 10 selected variables among the chemical components

of data set IV samples, labelled by numbers of the chemical components for data set IV.

derived by the 4-cluster SOM partition can be seen in Figure 9.28, to compare between

the results from HCA and k-means and SOM with the partition derived by the selected

SOM clustering model. We can see that the SOM clustering model has been capable

of discriminating the samples as in the result of k-means clustering. Also, there is a big

di�erence between the results from HCA and SOM, where samples from Fort William and

Dunblane have been merged to one cluster in the HCA solution. Also, the Aberdeenshire

data have been separated into three groups in the HCA solution.
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Figure 9.28: HCA, k-means and SOM clustering of data set IV to groups.
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9.4 Application of SOM to the Libya data set

The lengths of the grid sides are again calculated by setting the ratio of the lengths of

the sides similar to that of the two largest eigenvalues of the training data such that the

product of the lengths is as close as possible to the total number of map units (NU).

In this case, NU is approximately 17 (5
√

12) > 12 (number of samples), therefore, the

size of the map is taken as 12 for the Libya data, whereas the ratio of the two largest

eigenvalues of the covariance matrix is approximately 3
2
, thus the grid dimension can

be 4 × 3, to approximate as closely as possible the map size without violating the ratio

rule (Park et al., 2006; Vesanto et al., 2000). The training parameters are taken as the

following: the learning rate initially has a value of 0.05 and decreases monotonically until

it reaches the value 0.01 at the end of the number of epochs. The initial radius of the

neighbourhood function is approximately 2
3
of the estimated map width, to allow for a

large part of the map to be updated initially. A su�cient initial radius value is usually

taken to cover 2
3
of all unit-to-unit distances. Thus, the initial radius for the 4 × 3 grid

is approximately 3 for the Libya data. The �nal value of the radius of the Libya data is

0 at the end of the algorithm. The initial representatives were chosen randomly without

replacement from the Libya data. A series of runs was performed using the recommended

values for the training parameters (Brereton, 2009; Tan and George, 2004). The total

number of iterations was chosen in each case to be 500 times the map size of the Libya

data. Speci�cally, the 4× 3 map were chosen for further investigation for the Libya data.

The neighbourhood width function converges to 0 after 25000 iterations for the estimated

maps (Figure 9.29 shows the convergence for the grid of the Libya data).

Figure 9.30 illustrates the quality map. It can be seen that in general the quality of the

mapping is quite good, as in most of the map units the samples are quite close (see the

red colour). However, clearly, two of the units have not been mapped accurately, with the

worst approximation being in the top left unit (1,3), and unit (3,1) (in white) has also
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Figure 9.29: Convergence of the neighbourhood width function for the selected map (4×3

grid) of the Libya data.

been mapped badly. In addition, the Uni�ed Distance matrix is shown in Figure 9.31.

The black lines indicate the best three-cluster solution using hierarchical clustering, to

allow comparison of the SOM clustering to the HCA solution. A two-dimensional colour-

coded hit histogram for the SOM solution can also be seen in Figure 9.31. The units with

two hits indicate the existence of clusters in the areas surrounding these units, and the

concentration of samples around these units is expected to be far larger than elsewhere

in the map. Several such units are (1,3), (3,1) and (3,2), which have 2 samples in each

unit. In the U-matrix plot (Figure 9.31), as they are separated by the black lines of the

three-cluster HCA partition, this indicates the existence of clusters in these areas.

The mapping of the samples assigned to each of the three groups provided by the 3 × 1
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Figure 9.30: Illustration of the quality of mapping for the samples of the Libya data set.

A grey unit in the quality map means that there is no sample mapped to this unit.
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1
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Figure 9.31: Uni�ed Distance matrix and Hit histogram for the Libya data set for the

4× 3 grid.

map, as well as the colour-coded samples map (using the corresponding label colours of

the groups obtained by the 3× 1 map) for the 4× 3 grid can be seen in Figure 9.32. The

cluster sizes of the bottom map are 2, 4 and 6 for groups 1-3 respectively. In the 3 × 1

grid, group 1 corresponds to the bottom unit, while group 3 corresponds to the upper

unit, counting from the bottom to the top of the map. In the 4×3 grid, the corresponding
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groups to the 3×1 grid are 1, 2 and 3 from left to right in the map, then from the bottom

to the top of the map. Comparing the clustering results of the 4× 3 map to those of the

hierarchical clustering in the U-matrix plot (Figure 9.31), it is clear that samples P12 and

P11 at the left and lower-most side of the map in Figure 9.32 are split into two groups,

as P12 is in one group and samples P1, P2, P3, P4, P9, P10 and P11 combine in another

group. Also, cluster 2 is identical in both solutions (points marked in red in Figure 9.32).

To examine how the variables in�uence the map and what is the relationship between

P5
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(i) Samples - 1× 3 map
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(ii) Samples - 4× 3 map

Figure 9.32: Illustration of clustering of the Libya data to three groups using SOM.

each variable and the samples in the data, component planes have been created for selected

variables. The maps for the ten variables with the largest mean values can be seen in

Figure 9.33. Most of these variables are also in the group of ten variables with the largest

variance. Upon investigation of the component planes, the following can be deduced:

� The most commonly appearing variables are 105, 122 and 183, i.e. these metabolites

appear to be very closely related to almost all units in the map.

� The least common variables are 50 and 166. Very few units appear to be associated

with these metabolites.
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� The samples with consistently high intensity values in all component planes are

samples P11 and P12 in cluster 1, and P1 and P2 in cluster 3.

� Samples P5 and P6 in cluster 2 are the samples least associated with the variables.

� None of the component planes is capable of describing the three clusters.
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Figure 9.33: Component planes for 10 selected variables among the chemical components

of the Libya data samples, labelled by numbers of the chemical components for the Libya

data.

A two-dimensional projection of the Libya data superimposed with the clustering solution

derived by the 3-cluster SOM partition can be seen in Figure 9.34, to compare between

the results from HCA, k-means and SOM with the partition derived by the selected SOM

clustering model. We can see that the SOM clustering has a small di�erence from the

results from HCA and k-means, as sample 11 has been merged with the third cluster
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Figure 9.34: HCA, k-means and SOM clustering of the Libya data to groups.

(black colour) in the SOM solution.

9.5 Summary and Conclusions from the SOM Method

A category of clustering algorithms which have not been used widely in metabolomics

is that of the competitive learning algorithms. The classic online Self organising maps

(SOM) algorithm was chosen, as it has some innovative advantages compared to the other

clustering methods. Apart from allowing visualisation of the data in a map-like graph, it

provides a range of visualisation tools for assessing the quality of the derived map, such as

uni�ed distance matrix plots, hit histograms, quality maps and component planes. One

map size was chosen for the data sets for comparison and analysis purposes. The map

size was 13 × 2 for Aberdeenshire, 7 × 2 for Fort William, 3 × 2 for Dunblane, 7 × 5 for

data set IV and 4 × 3 for the Libya data set. The available visualisation tools showed

that the quality of the mappings of the data sets I, II, III, IV and Libya were quite good.

The sizes of the two clusters for the Aberdeenshire maps were 6 and 21 for clusters 1-2,
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respectively, the sizes of the four clusters for the Fort William maps were 9, 2, 1 and 2 for

clusters 1-4 respectively, and the sizes of the four clusters for the Dunblane maps were 2,

2, 3 and 2 for clusters 1-4 respectively, the sizes of the four clusters for the data set IV

maps were 6, 9, 14 and 21 for clusters 1-4 respectively, and the sizes of the three clusters

for the Libya data maps were 2, 8 and 2 for clusters 1-3 respectively. Component planes

showed the variables that were very closely related to almost all map units, and also the

least commonly associated variables, as well as, the samples that were the most closely

associated with the previously mentioned variables.

None of these clustering methods were able to completely discriminate the samples de-

pending on location for data data sets III and Libya. In general, the SOM solution was

more like the k-means solution than that of HCA, where these were di�erent, as for data

sets III and IV. For the Libya data, the SOM result was slightly di�erent from those of

HCA and k-means.



Chapter 10

Case study on data from Europe

After studying two methods (PCA and MDS) to reduce the dimensionality of the data set,

cluster analysis (HCA, k-means and SOM) was used to �nd a natural grouping of samples

and compare between methods. Brie�y, we will now try to apply the best identi�ed

methods in this study to data from the UK (England and Northern Ireland) and Eastern

Europe and see the results to �nd out about this data set. The main objective here is

not so much to study the methods but to use them for data analysis and to interpret the

results. The data will be explained in Section 10.1, followed by a discussion of the data

analysis in Section 10.2, and a conclusion in Section 10.3.

10.1 The European data

Samples of propolis were collected by beekeepers from several of their honey bee colonies,

located in many di�erent areas of the UK (England and Northern Ireland), but also a

few from elsewhere (Eastern Europe), for comparison (see Figure 10.1). These samples

were pro�led using liquid chromatography high resolution mass spectrometry, as for the

previous data sets used, in Dr David Watson's lab in SIPBS, at the University of Strath-

308
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clyde. The propolis samples contain several hundred compounds, many of which are still

Figure 10.1: Map of Europe, including the locations of the colonies supplying the analysed

propolis samples (Map created in R).

unknown structures. The data consists of 35 samples, 30 from various locations in Eng-

land and Northern Ireland, and 5 from eastern Europe. In the data set, as before, the

285 rows are chromatographic peak areas for putatively identi�ed compounds, while the

column headings represent the label for each sample (hive or colony). The code and origin

of each sample is shown in Table 10.1. The data were transposed for analysis.

10.2 The analysis of the European data by PCA

Each metabolite in the European data set was column-scaled by mean-centering and

Pareto scaling, as was identi�ed in Chapter 4 as being the best approach to pre-treatment,

to enable more comparability in the samples. Column-scaling was done by dividing each
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Sample Code Sample Origin from UK

1 Su�olk 4, UK

3 Su�olk 2, UK

4 North Yorkshire 1, UK

5 Northamptonshire 1, UK

6 Essex 1, UK

7 Essex 2, UK

8 Norfolk 1, UK

9 Devon 1, UK

10 Leicstershire 1, UK

11 Leicstershire 2, UK

12 Derbyshire, UK

15 Su�olk 1, UK

16 Su�olk 3, UK

19 Cambridgeshire 1, UK

20 Norfolk 2, UK

21 Northamptonshire 2, UK

22 Cambridgeshire 2, UK

23 North Yorkshire 2, UK

24 Northern Ireland, UK

25 North Yorkshire 3, UK

26 North Yorkshire 4, UK

27 North Yorkshire 5, UK

28 North Yorkshire 6, UK

29 Essex 3, UK

30 Berkshire, UK

31 Midlands, UK

32 Devon 2, UK

33 Buckinghamshire, UK

34 Norfolk 3, UK

35 Norfolk 4, UK

Sample Code Sample Origin form Europe

2 Bulgaria 1

13 Lithuania 1

14 Lithuania 2

17 Bulgaria 2

18 Bulgaria 3

Table 10.1: The sample origin for the European data set, as it was provided.
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element by the square root of the standard deviation of the variable, thus transforming

the variables into the same unit of measurement. Since PCA gives the best results for

metabolomic data, and is useful for determining the important compounds in the data, it

is selected here rather than MDS (see the conclusion of Chapter 6). The Gleason-Staelin

statistic and the normalised entropy are calculated using equations (5.6) and (5.9) respec-

tively. The values of the Gleason-Staelin statistic and the normalised entropy are 0.56

and 0.40 respectively. Both statistics con�rm that the European data set is suitable for

PCA analysis.

After con�rming the suitability of the data set for PCA, the next step is to identify the

number of principal components to retain. Table 10.2 and Figure 10.2 show the results
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Figure 10.2: Percentages of the total variation in the European data explained by the

�rst ten PCs.

of PCA. These detailed results for the variance of the PCs indicate that no more than

two or three components need to be retained for further analysis, as they explain most of

the variation in the data set; approximately 72.43%, 82.23% and 86.86% in total for one,

two and three PCs respectively. Having identi�ed that the �rst two PCs are su�cient for
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PCs % of Variance Cumulative %

PC1 72.43 72.43

PC2 9.79 82.23

PC3 4.63 86.86

PC4 3.49 90.35

PC5 1.97 92.32

PC6 1.39 93.72

PC7 1.07 94.79

PC8 0.79 95.57

PC9 0.67 96.24

PC10 0.60 96.84

Table 10.2: Percentage of total variance explained by, and cumulative percentages of

variance for, the �rst ten PCs of the European data.

further analysis, creating a graphical representation of the data set structure is the next

step in the PCA process (see Figure 10.3). Figure 10.3 shows the spread of the propolis

samples in PCA space. The samples are broadly spread in terms of PC1 and PC2. The

most interesting plot is the score plot for the �rst two PCs. We can see from Figure 10.3

that the samples from Bulgaria (samples 2, 17 and 18) are close together and also the

samples from Lithuania (samples 13 and 14) are close together and at opposite ends of the

PC1 axis. There is a spread of samples from the UK on the PC1 axis, likely to be because

of the sources of di�erent propolis from many locations in the UK. Also, the samples from

Lithuania overlap with samples 4, 10 and 16 from di�erent places in the UK.

As PCA is a�ected by outliers, it is important to determine whether or not any of these

samples are outliers, and this is itself of interest to identify any unusual points in the

data. Diagnostic plots using the score distance and the orthogonal distance for the Eu-

ropean samples in the data can be seen in Figure 10.4. As Figure 10.4 shows, there are

no bad leverage outliers (high score distance and high orthogonal distance). However,
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Figure 10.3: Scores plots of the European data for the �rst three PCs, superimposed with

the sample numbers (hives) and the brown colour indicates the samples from the UK, the

blue shows the samples from Bulgaria and the black shows samples from Lithuania.

removing samples 2, 10, 13, 14, 16, 17, 18, 23 (detected as outliers) from the data set and

re-running the analyses showed that there was no e�ect from the excluding or inclusion
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Figure 10.4: Outlier diagnostic plots using the score distance (SD) and the orthogonal

distance (OD) for the European data. The numbers in the plots are the numbers of the

35 samples. The horizontal lines in the two plots represent the cuto� values, such that

any point above these lines is a leverage point (top plot) or an orthogonal outlier (bottom

plot). Table 10.1 shows the location of each sample.

of these samples in the PCA, as the results obtained were similar. Therefore, the original

data set of the selected 35 samples can be used for further analysis.

Regarding Figure 10.5 for the European data set there are positive and negative loadings

on PC1 and PC2. However, variables 6, 27, 10, 25, 7 and 51 respectively have the highest

positive loadings in PC1 (see Appendix, Table G), thus samples from Bulgaria (2, 17 and

18) and samples from the UK numbers 5 and 35 tend to have larger values on these vari-

ables, as well as variables 15, 18, 13, 14 and 29 being observed to have the most negative

loadings in PC1, thus, the samples from Lithuania (13 and 14) and the samples from the

UK numbered 4, 10 and 16 tend to have larger values on these variables.
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In the second step, hierarchical agglomerative cluster analysis will be employed to create
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Figure 10.5: Biplot of variables for the �rst two principal components of the European

data set.

a group of samples. From the results of the investigation in Chapter 7, the best combina-

tions of distance and linkage method to use with the propolis data set were identi�ed as

Euclidean-Average (for Aberdeenshire and Fort William), Canberra-Average (Dunblane

data and Libya) and Manhattan-Average (data set IV). These methods will be compared

in order to determine which is most suitable for the European data set.

Before con�rming which method gives the best �t of the European data set, the optimal

number of clusters should be identi�ed. The command NbClust in R was used to compare

between the number of clusters chosen using 30 indices. From Table 10.3 it is clear that,

for all three clustering methods, the optimal number of clusters is 5 for the European

data set.
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Among all indices for Euclidean-Average

2 proposed 2 as the best number of clusters

3 proposed 3 as the best number of clusters

4 proposed 4 as the best number of clusters

8 proposed 5 as the best number of clusters

2 proposed 8 as the best number of clusters

2 proposed 9 as the best number of clusters

2 proposed 10 as the best number of clusters

Among all indices for Canberra-Average

4 proposed 2 as the best number of clusters

5 proposed 3 as the best number of clusters

1 proposed 4 as the best number of clusters

6 proposed 5 as the best number of clusters

1 proposed 6 as the best number of clusters

3 proposed 7 as the best number of clusters

1 proposed 8 as the best number of clusters

1 proposed 9 as the best number of clusters

1 proposed 10 as the best number of clusters

Among all indices for Manhattan-Average

2 proposed 2 as the best number of clusters

6 proposed 4 as the best number of clusters

7 proposed 5 as the best number of clusters

1 proposed 12 as the best number of clusters

1 proposed 13 as the best number of clusters

3 proposed 14 as the best number of clusters

3 proposed 15 as the best number of clusters

Table 10.3: Comparison between several methods of determining the optimal number of

clusters, using hierarchical clustering.
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Figure 10.6: Average silhouette widths for partitions of 2-10 clusters for the European data

set using the Euclidean-Average method. The optimal number of clusters is indicated by

the dashed line.

Figure 10.6 also illustrates the average silhouette widths for ten partitions, from 2-10

clusters for the Euclidean-Average method. It is clear that the optimal number of clusters

is 5 for the European data set. In fact, this is true for all 3 clustering methods.

Which results should be retained for further analysis of the European data set will be

discussed and determined as follows:

The silhouette plots for a 5 cluster solution from the three clustering methods for the Eu-

ropean data set can be seen in Figures 10.7 for the Euclidean-Average, Canberra-Average,

and Manhattan-Average methods. The silhouette width values of all samples are depicted

in the silhouette plot as bars. The average silhouette widths for clusters 1 to 5 are 0.66,

0.62, 0.44, 0.56 and 0.40 respectively of Euclidean-Average, 0.43, 0.58, 0.61, 0.76 and 0.00

respectively of Canberra-Average method and 0.48, 0.75, 0.55, 0.40 and 0.56 respectively
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(ii) Canberra-Average method.
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Figure 10.7: Silhouette plots for the 5-cluster partition derived by the three clustering

methods for the European data set.

of Manhattan-Average. The three clustering methods have an average silhouette width for

the entire data of 0.54, 0.48 and 0.55 respectively, which are also the respective silhouette

coe�cients for the three methods. Therefore, there is a slight di�erence between them

(the best ones are Manhattan-Average and Euclidean-Average with 0.55 and 0.54). In

the case of Manhattan-Average, with the highest average silhouette width, there is one

misclassi�ed member of a cluster (with negative silhouette width) which is sample 6 in

cluster 1. Also, Canberra-Average has misclassi�ed sample 12 in cluster 3. The �ndings

and the information obtained by the silhouette plots indicate that the Euclidean-Average

method is best for the European data set, because it does not misclassify any points and

also as it has an average silhouette width of 0.54. A dendrogram for the clustering parti-

tion derived by the Euclidean-Average method can be seen in Figure 10.8, showing the 5

clusters.

Following HCA, k-means will be used, to compare results of these methods, and the main

question is whether k-means gives the same groups of samples as HCA or not. According

to the majority rule in Table 10.4, the best number of clusters found by the R software

is again 5 for k-means. A silhouette plot for the 5 cluster partition from k-means can

be seen in Figure 10.9 for the European data. Although the average silhouette width
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Figure 10.8: Dendrogram for the 5-cluster partition derived by the Euclidean - Average

linkage clustering method. The labels at the end-leafs of the tree are the numbers of the

samples in the European data set. The 5 clusters are indicated by the coloured rectangles.

for k-means is very slightly smaller than was obtained from HCA clustering (Figure 10.7

for Euclidean-Average, which was the best method for HCA), in the k-means clustering

solution there are no misclassi�ed samples (Figure 10.9). The derived optimal 5-cluster

k-means partition and average silhouette width are the same as were obtained by the

optimal HCA clustering partition. From the above results and Figure 10.10, it is clear

that HCA and k-means give a slight di�erence where samples 5 and 35 in HCA belong
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Among all indices for the European data set

4 proposed 2 as the best number of clusters

2 proposed 3 as the best number of clusters

10 proposed 5 as the best number of clusters

3 proposed 7 as the best number of clusters

1 proposed 8 as the best number of clusters

3 proposed 10 as the best number of clusters

Table 10.4: Comparison between several methods of determining the optimal number of

k-means clusters.
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Figure 10.9: Silhouette plot for the 5-cluster partition derived by the k-means clustering

method for the European data. The average silhouette widths for the �ve clusters are

0.66, 0.62, 0.44, 0.56 and 0.39 respectively, and the average silhouette width for the entire

data set is 0.54.
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to the green cluster and in k-means they merge with the Bulgaria samples 2, 17 and 18.

HCA is able to discriminate the samples from Bulgaria in one group. There is a spread of

samples from the UK. Also, there is an overlap between samples 13 and 14 from Lithuania

and samples 4, 10 and 16 from the UK in both methods.

In general, k-means clustering is faster to run than that of HCA, and requires fewer choices

to be made, so is simpler to use.

Self-organising map (SOM) analysis represents another unsupervised multivariate tech-

nique suitable for the cluster metabolomics data. SOM will now be used and the results

compared with those from HCA and k-means. In this case, NU is approximately 30 (5
√

35)

< 35 (number of samples) (see Section 9.1.5 in chapter 9); therefore, the size of the map

is taken as 30 to ensure a better response from the map quality criteria, whereas the

ratio of the two largest eigenvalues of the covariance matrix is approximately 3
1
, thus the

grid dimension can be 6 × 5, to approximate the map size as closely as possible without

violating the ratio rule.

A two-dimensional projection of the European data superimposed with the clustering

solution derived by the 5-cluster SOM partition can be seen in Figure 10.10 (iii). Com-

paring the clusters in terms of the �rst two principal component scores (Figure 10.10)

according to the results from HCA, k-means and the partition derived by the selected

SOM clustering model, it can be seen that the SOM clustering model discriminates the

samples much like k-means clustering, and the clusters of samples are the same as for the

k-means method. However, SOM is a less easily understood method for general use and

so again the k-means method has an advantage.

10.3 Conclusions

This chapter has applied a range of linear and non-linear pattern recognition techniques

attempting to identify any natural clustering in the European honey bee propolis data



322 Case study on data from Europe

set and compare between the results of three clustering approaches. More speci�cally,

initially, a linear dimension-reduction technique, i.e. PCA, was applied to the Europe

data set, to reduce the dimensionality of the input space of the data to two or three

dimensions, making the pattern recognition procedure easier by visualising the data in

a lower dimensional representation. Results indicated that two PCs (or dimensions) are

su�cient to describe most of the total variation of the Europe data. In general, PCA was

useful in obtaining a good picture of the general structure of the Europe data set. The

�rst PCs explain 82.23% of the variation in European data. The samples are broadly

spread in terms of PC1 and PC2 because the samples have di�erent composition, so the

bees may have used di�erent plant sources (Alotaibi et al., 2019). PC1 discriminates the

samples from Bulgaria (2, 17 and 18) and samples 13 and 14 from Lithuania, which are

at opposite ends of the PC1 axis.

The next step involved application of a range of unsupervised clustering techniques to

the Europe data set, to classify if possible, the samples to groups in terms of their loca-

tion, and particularly exploring the possibility of �nding any clustering of the samples.

These clustering techniques were hierarchical agglomerative algorithms, optimal parti-

tioning using k-means clustering, and self-organising maps (Chapter 7, 8 and 9).

For hierarchical clustering (HCA), the overall best �tting result found was the cluster par-

tition derived by the Euclidean - Average method for the European data. The Silhouette

coe�cient was 0.54, 0.48 and 0.55 for methods Euclidean- Average, Canberra- Average

and Manhattan- Average respectively. The best method was Euclidean - Average and the

cluster sizes were 9, 5, 8, 7 and 6. The best de�ned cluster for the European data is the

red group in Figure 10.10(i). This plot represents regions which are geographically far

apart.

The k-means algorithm described in chapter 8 was also used on the Europe data set.

As for the HCA results, a 5-cluster partition was the best partition for k-means. The
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cluster sizes found were 9, 7, 5, 6 and 8. From the HCA and k-means results, HCA and

k-means give a slight di�erence where UK samples 5 and 35 in HCA belong to the green

cluster and in k-means they merge with the Bulgaria samples 2, 17 and 18. HCA is able

to discriminate the samples from Bulgaria in one group, separate from the rest. There is

a spread of samples from the UK in both clustering methods. Also, there is an overlap

between samples 13 and 14 from Lithuania and samples 4, 10 and 16 from the UK in both

clustering methods.

Finally, a category of clustering algorithms which has not been used widely in metabolomics

is that of the competitive learning algorithms. The classic self-organising maps (SOM)

algorithm was used here. One map size was chosen for the data set for comparison and

analysis purposes. The map size was 6 × 5 for the Europe data set. The sizes of the

5-clusters for the Europe map were 9, 5, 8, 7 and 6 for clusters 1-5, respectively.

Comparing the three clustering approaches, the k-means and SOM methods gave the same

results for the Europe data set with 5 clusters, while k-means is a simpler method to un-

derstand. The k-means method is simpler to implement than HCA and gave a similar

but not identical solution to HCA. HCA did separate the Bulgaria samples than the rest.
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Figure 10.10: Results of SOM and HCA (using the Euclidean-Average method) and k-

means clustering on the European data; the colour coding shows the groups of samples.



Chapter 11

Conclusions and Further work

In this chapter the approaches used are summarised, as are the results, advantages and

disadvantages of the methods, and further work is suggested.

11.1 Approaches

This thesis studies a wide range of unsupervised multivariate statistical procedures, which

are reviewed. The intention was to study the application of these to metabolomics data

from honey bee propolis samples. A review and explanation of MS (an essential analyt-

ical technique in metabolomics) is presented. A detailed description is also given of the

available pre-processing and pre-treatment methods for metabolomics data. The analysis

involved a novel assessment of pre-treatment methods and of statistical clustering method-

ologies and an evaluation of their appropriateness for examining the MS metabolomics

data from propolis. For MS metabolomics data, the methods mostly utilised include

PCA, HCA and k-means clustering. Novel methods rarely implemented in analysis of

metabolomics data include MDS and SOM, both of which were also examined here. These

methods were used on highly multivariate metabolomics data to systematically compare
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how useful the methods are for such data and to identify what each method could o�er

in this context.

11.2 Results

The data used for the analyses was generated by MS and before the application of any

statistical technique, the data was pre-processed (by Dr.Watson with his team). In this

thesis the data sets were pre-treated in ways such as column-scaling, as well as element

transformations of the data matrix. Various scaling and transformation methods were

compared on the data, with the conclusion that column-scaling by mean-centring and

Pareto scaling of the variables was best. The variables are considerably more correlated,

and consequently more suitable for PCA, in the mean-centred and Pareto-scaled data

than when using other column-scaling methods.

Two unsupervised exploratory data methods, namely principal components analysis (PCA)

and multi-dimensional scaling (MDS), were used initially (the techniques and their results

are described in detail in Chapters 5 and 6 respectively), to project the original input space

for the data to 2D or 3D output space to facilitate any pattern identi�cation in the data.

PCA is restricted to Euclidean space, but on the other hand it allows the investigation

of any relationship between variables and samples. MDS can be used with any dissim-

ilarity (or similarity) measure, but it is very di�cult to extract any information about

variables from the results of the MDS analysis. In general, PCA has been proved to be a

useful method for visualisation or dimensionality reduction of the data, with the ability

to extract any relationship between samples and variables.

The second data visualisation and data reduction techniques used was the classical MDS

method, and the derived 2-dimensional con�guration was used as input to Sammon's non-

linear mapping (NLM) method. An important advantage of these methods is that the

required between-samples distances can be calculated using any dissimilarity (or similar-
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ity) measure. Comparing the MDS con�gurations derived by various distance metrics,

it was shown that classical MDS was not capable of giving more information than PCA

about the clustering behaviour of the samples. Nevertheless, two MDS con�gurations,

based on the the Euclidean and the Manhattan distances for data sets I, II, III and IV,

and on the Euclidean and the maximum distances for the Libya data were retained, with

both having better results in locating the cluster patterns for the samples compared to

any other distance matrix that had been previously examined and implemented for future

analysis as an input to NLM. It was found that the results derived were very consistent

with those of the PCA; however, on the whole MDS does not improve any �ndings of

PCA or even add information. From a general point of view, the results of the Euclidean

model showed some resemblance to the second-best metric. On data sets I, II, III, IV and

Libya, results of the classical MDS were slightly di�erent from NLM. The two mentioned

models were capable of successfully reproducing some of the PCA �ndings, in terms of

clustering the data; however, they did not provide further information on the clustering

of the samples compared to the two models of NLM.

The data exploration part of the thesis gave good indications concerning the dimension-

ality reduction and visualisation of the samples. The next step was to apply the data

clustering methods. Four di�erent categories of unsupervised classi�cation methods were

assessed. More speci�cally, in the relevant literature for metabolomics data, hierarchical

clustering algorithms, optimal partitioning methods and competitive learning algorithms

are generally the most popular and suitable unsupervised classi�cation techniques, there-

fore they were chosen for the clustering analysis of the propolis data.

Hierarchical clustering algorithms such as agglomerative nesting algorithms are important

in the area of metabolomics and are commonly used. These methods involve more than

one step to establish the clustering patterns of the data, and each sample is assigned to

one and only cluster. The data is clustered in the form of a dendrogram, showing the

relationships between the samples. The procedure initially assigns one sample per cluster
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and ends when all samples are contained in a single group. Four distance measures were

used to calculate the distances between the samples, and �ve agglomerative nesting algo-

rithms were used, so that 20 HCA methods were constructed and their results compared.

Among these clustering methods, the best approach was found to be the 2-cluster parti-

tion derived by the Euclidean-Average combination for data set I. The 4-cluster solution

derived by the Euclidean-Average method for data set II, the 4-cluster partition obtained

by the Canberra-Average method for data set III, the 4-cluster separation derived by the

Manhattan-Average method for data set IV, and the 3-cluster partition acquired by the

Canberra-Average method for the Libya data set, were found to be best. The best linkage

method with all data sets was Average linkage. These methods provided the best overall

�t to the data sets.

The k-means hard clustering algorithm was used in the analysis of the propolis data sets,

also a common clustering approach, although not widely used until now in metabolomics

applications. Because of the nature of optimisation, it usually produces tighter clusters

than HCA. The results of the analyses showed that the 2, 4, 4, 4 and 3 cluster partitions

were the best partitions derived by k-means clustering of data sets I, II, III, IV and Libya

respectively, and these were found to be the same partitions as the best HCA clustering

partitions, although there were some di�erences in the discriminating of samples and the

silhouette width values of the two methods. Therefore, HCA and k-means have di�erent

clustering ability for samples for data sets III and IV.

Competitive learning algorithms form a di�erent category of clustering methods than

those previously mentioned. In this case, for each object presented to the algorithm,

all the prede�ned representatives in a set compete with each other, and the winner is

the closer representative, using some distance measure, to the object. Consequently, the

winner representative is being updated to be closer to the target, with the procedure

continuing for all objects until no updates can occur in any representatives. The self-

organising maps (SOM) technique, which was used to analyse the propolis data sets, is
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one such algorithm. In this case, the representatives are called codebook vectors.

The methods (HCA, k-means and SOM) were able to discriminate the samples according

to the replicate analysis where a set of three samples come from the same hive (or colony)

for data sets I, II and IV (excluding data set III). Also, SOM discriminates the samples

depending on their location, for data set IV. In some cases k-means gave the same results

as SOM, for data sets III and IV.

11.3 Advantages and Disadvantages of the methods

11.3.1 Advantages

• Principal components analysis investigates the relationship between variables and

samples of data.

• An essential advantage of MDS is that the sample distance required can be calculated

by using any similarity or dissimilarity measures.

• An essential advantage of HCA algorithms is that the derived clusters are not re-

stricted to a spherical shape; therefore, depending on the data in question, they

might be more useful and �exible than other clustering methods. For example, a

single linkage produces non-compact elongated clusters, whereas Ward's method

produces compact spherical clusters.

• We do not need to specify in advance the number of clusters required for HCA

algorithms.

• The dendrogram produced from HCA can be very useful in understanding the data.

• K-means is computationally faster than HCA when the number of variables is con-

siderable, as in the case of metabolomics data.
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• K-means usually produces tighter clusters than HCA, due to the nature of the

optimisation, which may be considered to be an advantage.

• An advantage of SOM is that the data can be expressed in a map-like visualization

form; however, such a map needs to contain several units exceeding two nodes to

accurately describe the data.

11.3.2 Disadvantages

• Multi-dimensional scaling is implemented with similarity or dissimilarity measures;

however, it becomes di�cult to extract information about the variables from the

MDS results already analysed.

• The time complexity for HCA clustering can result in very long computation times,

in comparison with e�cient algorithms, such as k-means.

• If we have a large data set, HCA can become di�cult to interpret in terms of

determining a suitable number of clusters from the dendrogram.

• HCA requires more choices than k-means (assuming that the Euclidean distance is

used in k-means).

• K-means does require the number of clusters to be speci�ed before starting.

• The 1D (proven) topological ordering property of SOM does not extend to 2D.

• SOM clustering is less transparent than k-means or HCA.

11.4 Further work

There is a lot of possible future work which could be done. The following are some

suggestions:
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• Look at propolis samples from more geographical areas and compare results with

those from this study.

• Look at other types of metabolomics data from other �elds such as food (Cevallos

et al., 2009).

• Consider Nuclear Magnetic Resonance Spectroscopy (NMR Spectroscopy) data as

well as MS data (Chao et al., 2010; Kealey and Haines, 2002). There are various

advantages to using NMR data, such as:

1. It is a non-destructive technique.

2. After an NMR analysis, the samples can be reused for other analyses.

3. In "omics" studies involving complex bio-mixtures, measurements can often be

made with minimal sample preparation.

4. NMR can provide detailed information on molecular structure for pure com-

pounds and complex mixtures.

5. It can provide information on absolute or relative concentrations.

6. It can be conducted in vivo on whole live organisms, which is useful when

metabolic pro�ling for studies of diseases is required.

7. It is particularly useful for distinguishing isomers, for obtaining molecular in-

formation and for studies of molecular dynamics and compartmentation.

• Further research study of supervised methods could also be done such as using PLS

(Partial Least Squares) (Salerno Jr et al., 2017).

• Finally, extending the work done in Chapter 6, other clustering methods could be

applied such as fuzzy clustering (Theodoridis and Koutroumbas, 2003).
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Aberdeenshire

Variables PC1 Variables PC2

28 3.023264e-01 8 2.937449e-01

710 -1.830806e-01 28 -2.842272e-01

177 1.745528e-01 124 2.009967e-01

597 -1.717367e-01 72 1.859650e-01

109 1.648305e-01 104 -1.723078e-01

659 -1.592129e-01 155 1.520515e-01

190 1.558905e-01 295 1.490662e-01

147 1.449312e-01 182 1.472805e-01

730 -1.416703e-01 128 1.357622e-01

262 1.348034e-01 183 1.348234e-01

138 1.345622e-01 586 1.342230e-01

30 1.303075e-01 290 1.175583e-01

140 1.267925e-01 206 1.165936e-01

703 -1.250714e-01 458 1.165124e-01

131 -1.247750e-01 420 1.125211e-01

104 -1.240556e-01 591 1.109521e-01

180 1.236175e-01 226 1.047067e-01

127 1.138927e-01 131 -1.044153e-01

106 1.124810e-01 597 -9.836205e-02

267 1.124453e-01 174 9.138940e-02

Table B: Loadings of top 20 variables, contribution for the �rst 2 PCs of the Aberdeenshire

data set.
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Fort William

Variables PC1 Variables PC2

1 2.640640e-01 435 -4.000679e-01

10 2.508412e-01 91 1.991250e-01

147 2.130767e-01 79 1.845410e-01

436 2.121357e-01 261 -1.738810e-01

188 1.929692e-01 413 1.640545e-01

142 -1.864050e-01 265 -1.635933e-01

48 1.678272e-01 318 -1.621488e-01

150 1.604268e-01 354 -1.566707e-01

38 1.489143e-01 17 1.557720e-01

226 1.437981e-01 142 -1.519627e-01

16 1.416007e-01 488 -1.448385e-01

152 1.352637e-01 15 1.300509e-01

41 1.349252e-01 25 1.270345e-01

318 -1.298792e-01 478 -1.256072e-01

488 -1.270778e-01 404 -1.227070e-01

46 1.249067e-01 467 1.213367e-01

67 1.191299e-01 491 -1.192057e-01

405 -1.183279e-01 465 1.148107e-01

437 1.146619e-01 319 -1.137072e-01

192 1.145292e-01 111 1.082623e-01

Table C: Loadings of top 20 variables, contribution for the �rst 2 PCs of the Fort William

data set.



334 Conclusions and Further work

Dunblane

Variables PC1 Variables PC2

1 -3.176318e-01 5 3.184075e-01

2 2.418677e-01 14 1.701281e-01

4 -2.204017e-01 18 1.646092e-01

3 -2.165158e-01 407 -1.540400e-01

290 -2.081985e-01 13 -1.498369e-01

291 -2.081985e-01 2 -1.481781e-01

6 -1.988893e-01 22 1.447486e-01

19 -1.773254e-01 41 -1.446827e-01

105 -1.773254e-01 43 1.384270e-01

15 -1.690997e-01 21 -1.347753e-01

10 -1.484089e-01 6 -1.341368e-01

12 -1.421798e-01 39 1.327072e-01

41 1.417223e-01 9 -1.321058e-01

33 1.412573e-01 35 1.273445e-01

16 -1.371802e-01 62 1.171151e-01

7 -1.358884e-01 32 1.164324e-01

25 1.322734e-01 33 -1.136759e-01

493 1.317611e-01 366 -1.133593e-01

11 -1.279336e-01 12 -1.123830e-01

50 1.257055e-01 50 -1.118863e-01

Table D: Loadings of top 20 variables, contribution for the �rst 2 PCs of the Dunblane

data set.



335 Conclusions and Further work

Data set IV

Variables PC1 Variables PC2

28 -0.34197683 710 -0.21617334

104 -0.20154529 597 -0.20205004

597 -0.14933172 28 0.19463689

710 -0.13673366 659 -0.18736138

586 -0.12922662 104 -0.16948687

659 -0.12631046 177 0.16402134

109 -0.12205404 730 -0.16312456

1854 0.11899703 131 -0.14710513

190 -0.10955477 703 -0.14580545

177 -0.10785221 109 0.14404208

1420 0.10613728 190 0.13911488

703 -0.10458065 147 0.13120155

730 -0.10332095 262 0.12517052

140 -0.10127861 465 -0.12375504

147 -0.09791590 180 0.12016597

290 -0.09639725 30 0.11866233

138 -0.09635535 138 0.11825102

127 -0.09374130 378 -0.11245931

465 -0.09331245 267 0.10932637

479 -0.09215044 106 0.10836259

Table E: Loadings of top 20 variables, contribution for the �rst 2 PCs of data set IV.
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Libya Data set

Variables PC1 Variables PC2

2 0.23442901 2 -0.1892930

3 0.21158097 3 -0.1661720

4 0.19912671 4 -0.1640764

7 0.18380293 7 -0.1511923

11 0.17644545 1 -0.1500795

13 0.17467132 5 0.14580270

19 0.15292024 6 0.14515552

22 0.14864540 11 -0.1446442

1 -0.14126536 13 -0.1440468

29 0.13328688 8 -0.1363142

8 -0.13253284 16 0.13387707

12 -0.12767630 12 -0.1301353

9 -0.11710957 19 -0.1236243

51 0.10911097 17 0.12319929

38 0.10883625 22 -0.12186181

49 0.10695338 9 -0.11732736

10 -0.10677448 18 -0.11187630

18 -0.10649155 10 -0.10742843

63 0.10124756 26 -0.10464477

26 -0.09953632 30 0.10434028

Table F: Loadings of top 20 variables, contribution for the �rst 2 PCs of the Libya data

set.
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Libya Data set

Variables PC1 Variables PC2

6 0.31186751 15 -0.65874132

27 0.28011028 29 -0.30636089

10 0.27679186 28 -0.21290451

25 0.26403997 63 -0.21106910

7 0.25407788 35 -0.15477690

51 0.24931476 20 -0.14052841

2 0.21039137 109 -0.13563744

11 0.18225787 13 -0.13343524

3 0.17730861 23 -0.11988440

38 0.15204046 123 -0.11892614

8 0.14904500 44 -0.11856306

52 0.14788887 226 -0.10779035

57 0.14466075 53 -0.10042005

34 0.12894093 55 -0.09762297

4 0.11882182 52 -0.08855174

23 0.10848704 51 -0.08660413

40 0.10679517 8 -0.08521822

15 -0.10644823 84 -0.08020147

21 0.10295879 70 -0.07982559

12 0.10024946 18 -0.07864044

Table G: Loadings of top 20 variables, contribution for the �rst 2 PCs of the European

data set.
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