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Abstract 
 

Allosteric regulatory sites are highly prized targets in drug discovery.  They remain 

difficult to detect by conventional methods, with the vast majority of known 

examples being found serendipitously.  Herein, a rigorous, wholly-computational 

protocol is presented for the prediction of allosteric sites. 

 

Previous attempts to predict the location of allosteric sites by computational means 

drew on only a small amount of data.  Moreover, no attempt was made to modify 

the initial crystal structure beyond the in silico deletion of the allosteric ligand.  This 

behaviour can leave behind a conformation with a significant structural 

deformation, often betraying the location of the allosteric binding site.  Despite this 

artificial advantage, modest success rates are observed at best.  This work 

addresses both of these issues. 

 

A set of 60 protein crystal structures with known allosteric modulators was 

collected.  To remove the imprint on protein structure caused by the presence of 

bound modulators, molecular dynamics was performed on each protein prior to 

analysis.  A wide variety of analytical techniques were then employed to extract 

meaningful data from the trajectories.  Upon fusing them into a single, coherent 

dataset, random forest – a machine learning algorithm – was applied to train a high-

performance classification model. 

 

After successive rounds of optimisation, the final model presented in this work 

correctly identified the allosteric site for 72% of the proteins tested.  This is not only 

an improvement over alternative strategies in the literature; crucially, this method 

is unique among site prediction tools in that is does not abuse crystal structures 

containing imprints of bound ligands – of key importance when making live 

predictions, where no allosteric regulatory sites are known.  
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1.1 Allostery 

 

Allostery is a biological phenomenon observed mostly in proteins where the binding of a 

ligand at one site transfers an effect to another.  It is the mechanism by which the majority 

of functions in living cells are regulated, and understanding its behaviour is an essential 

bridge between the molecular and cellular domains(1, 2).  The significance of allostery has 

become increasingly recognised, indicated by the popular caption used to describe it: “the 

second secret of life”(3).  Though simple to imagine, the process has proven to be a terrific 

challenge to comprehensively characterise. 

 

In this section, the concept of allostery is first introduced in broad terms before focussing 

on it from the perspective of medicinal chemistry.  The potential benefits of allosteric 

modulators as drugs are discussed, as well as difficulties the pharmaceutical sector has 

experienced in developing them. 

 

1.1.1 Definition and Overview 

 

Allostery was first proposed as a concept in the 1960’s(4).  Two models emerged at that 

time, and prevailed for decades since, that aimed to describe the allosteric mechanism.  

The Monod-Wyman-Changeux (MWC) model(5) proposed the existence of at least two 

distinct protein states, termed R and T, in thermodynamic equilibrium with each other.  The 

two states possessed varying affinity for substrate binding, with R being the high-affinity 

state and T being the low-affinity state.  An allosteric effector was defined as a ligand that 

stabilised the R state (allosteric activator) or the T state (allosteric inhibitor) upon binding at 

another location on the protein, shifting the equilibrium one way or another.  A simplified 

version of allosteric activation within the MWC model is shown in Figure 1.1. 
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Figure 1.1: A simplified scheme of the MWC model for allosteric activation.  There is a pre-existing 

equilibrium between the R- and T-states which possess a high- and low-affinity for the orthosteric 

ligand, respectively.  Upon binding of the allosteric activator ligand, the equilibrium is shifted in 

favour of the R state, effectively increasing the protein’s affinity for the orthosteric ligand. 

 

The competing Koshland-Nemethy-Filmer (KNF) model(6) disputed the notion of a pre-

existing equilibrium, suggesting instead that allosteric proteins existed only in the T state in 

the absence of allosteric effector.  It suggested that the inherent flexibility in the protein 

caused it to adapt its conformation around the effector as binding took place, resulting in a 

final, allosterically bound R state.  This mechanism, dominated by kinetics, is what made 

the KNF model become known as the induced-fit or sequential model.  A simplified version 

of allosteric activation within the KNF model is shown in Figure 1.2. 
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Figure 1.2: A simplified scheme of the KNF model for allosteric activation.  There is no pre-existing 

equilibrium between R- and T states.  As the allosteric activator ligand approaches, it induces the 

formation of its binding site.  The conformational shift in turn forms the orthosteric site.  The fully-

formed R state exists only in complex with the allosteric activator. 

 

Modern views have expanded on these principles.  Both of the classical models attributed 

allostery only to homo-oligomers, but today it is thought that all dynamic proteins are 

capable of displaying some form of allosteric behaviour(7).  Since the proposition of the 

pre-existing equilibrium by the MWC model, the vast majority of proteins have been shown 

to be dynamic in nature(8–13), a property that has been related to protein function and 

allostery(8, 12, 13).  Furthermore, it was shown that allostery could take place without 

conformational change between the R and T end-states(14).  This case was an important 

example of allostery that could not be characterised through the viewpoints of either MWC 

or KNF, implicating the intermediary dynamics as the cause of the change in function.  

Other research before and since has also shown that the two models can be reconciled(15–

17).  Today the prevailing thermodynamic view approaches proteins as ensembles of 

related conformations mapped onto an energy landscape, with lower energy conformations 

occupying a larger proportion of the ensemble.  Allostery is considered a consequence of an 

effector-binding event influencing the peaks and troughs of the energy landscape, in turn 
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causing a redistribution of the conformer population, as illustrated in Figure 1.3.  For 

obvious reasons, this model is known as ‘population shift.’  Like the MWC model, it allows 

for pre-existing populations of both active and inactive conformations, even in the absence 

of modulator (cf. kinetics-based models where the effector binding event causes the 

formation of activated/inhibited conformations).  Recent reviews discuss this idea in great 

detail(2, 18, 19).  

 

 

Figure 1.3: In the ensemble-based model for allostery a protein is considered as the whole 

population of different conformations it adopts, with lower-energy conformations taking up larger 

proportions.  The binding of allosteric modulators triggers a shift in the energy landscape, altering 

the population of active conformations.  In this figure, upon allosteric ligand binding (orange line), 

the energy of the active conformation has lowered; hence, the ligand increased the proportion of 

active conformations and behaved as an activator. 

 

One clear message emanating from the literature is the need to unite the different aspects 

of allostery under a single theory.  Indeed, recent studies have made strides in reconciling 

the old viewpoints with the new(20, 21).  One such study by Tsai and Nussinov took an 

interesting step towards this(22), wherein the prevalent models of allostery (R-state/T-state 

transitions, population shifts, free energy landscapes, structural pathways) were examined 

together.  Despite seemingly key differences in the models(15) such as the question of 

allosteric ligand bound 

no ligand bound 

active conformation 
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correlation or causation between effector binding and activated/inhibited conformation, it 

was shown that, in fact, these can all be distilled down to the same set of theoretical 

descriptors.  Put differently, the phenomenon of allostery has been studied from many 

different angles, each observing different pieces of the same puzzle.  This project began 

with the central idea that a wealth of knowledge of allostery already exists, but it must be 

brought together coherently in order to make full use of it. 

 

1.1.2 Biochemical Context 

  

Allosteric binding sites are naturally exploited in cells.  A classic example of the biological 

use of allostery is haemoglobin.  A haemoglobin protein comprises four subunits, each 

bearing a binding site for oxygen.  When an oxygen molecule binds to a subunit, 

conformational changes are induced throughout the remaining subunits, enhancing their 

affinities for oxygen(23, 24).  The overall result is the favourable saturation of haemoglobin 

with oxygen.  This phenomenon, illustrated in Figure 1.4, is termed allosteric cooperativity – 

at the partial pressure of oxygen exhibited in the lungs, haemoglobin would be unable to 

become fully saturated with oxygen without it, resulting in it being a far less efficient 

oxygen transporter(24).   

 

 

Figure 1.4: A scheme illustrating allosteric cooperativity in haemoglobin.  Binding of a molecule of 

O2 at A enhances the affinities of the remaining binding sites in the haemoglobin.  This effect is 
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compounded with each successive O2 molecule, allowing haemoglobin to become very easily 

saturated. 

Another notable example of allostery in nature is feedback regulation, where proteins are 

allosterically inhibited by a downstream product of the pathway they are involved in(25–

27), resulting in the maintenance of constant levels of material in the cell.  This is illustrated 

in a hypothetical example in Figure 1.5. 

 

 

 

Figure 1.5: A scheme illustrating feedback regulation.  Enzyme A converts its substrate, via complex 

B, to the product at C.  This is taken up as the substrate by a second enzyme D, forming, via 

complex E, the final product at F.  This product allosterically inhibits enzyme A, forming the inactive 

complex G.  A high concentration of final product results in a high inhibitory effect on its own 

formation, restricting further production.  Mechanisms of this type are exploited in nature to 

maintain homeostasis in cells. 

 

Allosteric sites not utilised by biological substrates also exist in proteins; these are highly 

prized targets in drug discovery.  Thanks to their position distal to the endogenous binding 



8 
 

site of a protein (hereafter referred to as the orthosteric site), ligands can bind at these 

sites without competing for position with a natural substrate.   However, it is worth noting 

that it is possible for a ligand to bind to a protein allosterically but still exhibit competitive 

inhibition(28–30), indicating that the communicative properties of coupled sites in proteins 

can apply in both directions (i.e. binding at the orthosteric site can influence binding at the 

allosteric site, as well as vice versa). 

 

Incidentally, haemoglobin was one of the first proteins for which the development of 

allosteric drugs was targeted(31, 32).  While the four oxygen-binding sites of haemoglobin 

display cooperative behaviour amongst each other, there are further allosteric sites on the 

protein that are not associated with biological substrates.  Drugs have been developed to 

bind to these sites, promoting either oxygen uptake or oxygen release(33, 34). 

 

1.1.3 Advantages of Allosteric Modulators 

 

Where nature has not harnessed them for its own purposes, allosteric sites have been 

under less evolutionary pressure to remain conserved across protein subtypes than 

orthosteric sites(35).  This means that allosteric ligands have the potential to be more 

selective(36–38) – an important implication for drug discovery, which is frequently troubled 

with drugs having a myriad of off-target effects(39, 40).  Off-target effects are a near-

ubiquitous phenomenon of pharmaceuticals, but a well-known and generic example of the 

problem is found in anti-cancer drugs.  Many of these target the ATP-binding pocket of 

kinases; due to ATP’s prevalence in all cells, and it being the natural, endogenous substrate 

of a vast number of proteins (most with highly conserved ATP-binding pockets), it is very 

difficult to design an inhibitor that selectively binds to the ATP-binding pocket of one kinase 

over the many others present in cells.  This leads to the disruption of multiple signalling 

pathways beyond the target, ultimately causing the array of all too well-known adverse 

side-effects in patients. 

 

The analogy of a dimmer switch is often used to describe the effect of allosteric 

modulators.  While orthosteric inhibitors generally shut down a protein’s activity (akin to a 

standard ‘on/off’ switch) for as long as they are bound, allosteric modulators are indeed 

capable of modulating protein activity(36, 37, 41) – that is, enhancing or dampening activity 
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without fully locking it in an ‘on/off’ position.  In terms of population shift, this 

phenomenon can be viewed as the proportion of active protein conformations in the 

ensemble being shifted to a multitude of different ratios, rather than being reduced to an 

insignificant presence. 

 

Allosteric modulators often exhibit a saturation or ‘ceiling’ effect(37, 42) – a point of 

modulator concentration beyond which no further allosteric activity occurs.  Figure 1.6, 

reproduced from the review by May et al.(37), shows the effect on the fraction of binding 

of orthosteric ligand, A, of increasing concentrations of positive, neutral or negative 

allosteric modulator, B.  The cooperativity factor, α, quantifies the magnitude of change in 

ligand affinity at a binding site induced by the binding of a ligand at another.  Values greater 

than 1 correspond to an increase in affinity, and values below 1 to a decrease.  The ceiling 

effect is revealed through a levelling off of the fractional binding of A, despite further 

increases in the concentrations of B. 

 

 

Figure 1.6: The ceiling effect exhibited by allosteric modulators, B.  At a fixed concentration of 

orthosteric ligand, A, an increase in allosteric effect, positive or negative (measured here by the 

influence on the fraction of binding of A), can be seen on increasing concentration of B.  However, 
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there comes a point where the increase in effect levels off.  This phenomenon is not observed with 

orthosteric binding.  Adapted from (37). 

 

The ceiling effect has great potential to be exploited when developing new drugs: large 

doses of allosteric modulator can, instead of having a toxic effect by causing too great a 

change in protein activity, act as reservoirs that will maintain a prolonged therapeutic 

effect, provided they are not rapidly cleared from the cell.  In other words, an effect 

equivalent to controlled release can be built in to the allosteric mode of action at the 

mechanistic level, without the need for a special formulation.  Figure 1.7 illustrates this 

point with a plot of effect on a hypothetical target protein against time.  At a glance this 

may appear similar to a plot of plasma concentration against time, but the difference is key: 

the link between efficacy and concentration breaks for allosteric modulators at 

concentrations beyond the onset of the ceiling effect. 

  

 

 

Figure 1.7: A plot of effect on a hypothetical target protein against time. For conventional 

orthosteric agonists or antagonists (blue) repeated doses must administered to maintain 

therapeutic levels, whereas for allosteric modulators exhibiting a ceiling effect within the 

therapeutic range (red) one reservoir dose can be administered, resulting in behaviour much like a 

controlled-release formulation. 
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The above applies to chronic treatments, where constant levels of protein activity must be 

maintained.  However, for physiological processes requiring fluctuating levels of active 

protein, naturally controlled by messenger molecules like hormones or neurotransmitters, 

another exploit exists.  So long as an allosteric modulator exhibits no medicinal efficacy of 

its own, it can only influence the extent and effect of binding of the endogenous substrate.  

Regardless of the time of administration of the allosteric modulator, the natural cycles of 

receptor activity can be conserved(36, 37, 43).  The plots in Figure 1.8 and Figure 1.9 

demonstrate this for the treatment of a messenger molecule deficiency by orthosteric and 

allosteric modes of action, respectively.  The same concept applies in reverse for the 

treatment of an excess of messenger molecule.  
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Figure 1.8: A, naturally fluctuating but deficient receptor activity induced by an endogenous 

messenger; B, receptor activity due to orthosteric agonist; C, receptor activity treated with 

orthosteric agonist is boosted but natural fluctuation is disrupted.  Adapted from (43). 
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Figure 1.9: A, naturally fluctuating but deficient receptor activity induced by an endogenous 

messenger; B, allosteric modulator displays no efficacy of its own; C, receptor activity treated with 

positive allosteric modulator produces a superior mimic of physiological fluctuation.  Adapted from 

(43). 

 

A further subtlety of allosteric binding is the notion of probe dependence.  In this context a 

‘probe’ is an orthosteric ligand, usually one of an array.  A single allosteric modulator can 

have a variable influence on the potency of individual orthosteric ‘probe’ ligands(44).  

Hypothetically, an allosteric modulator could cause a ten-fold increase in potency of one 

orthosteric ligand and simultaneously cause a hundred-fold decrease in potency of another. 

Viewed with the ensemble model, an allosteric binding event causes a redistribution of 
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conformational populations, in effect creating a similar but distinct orthosteric binding site; 

this has an altered set of responses to interacting ligands(45). 

 

A 2012 study demonstrated a potential use for probe dependence(46).  Acetylcholine, a 

neurotransmitter, is metabolised to form an inert compound, choline.  In the study it was 

found that an allosteric modulator was able to induce activity from choline, thereby 

modulating activity of the receptor.  This mechanism of metabolite activation provides a 

novel pathway only available to allosteric modulators. 

 

The situations discussed here demonstrate great potential advantages of allosteric drugs, 

but share the assumption that a suitable allosteric drug exists and has been located.  In 

reality there are many hurdles in the way of allosteric drug development – that is, over and 

above those of conventional orthosteric drug development.  The next section briefly 

highlights these, in particular the identification of an allosteric site, which is the focus of this 

project. 

 

1.1.4 Challenges of Discovery 

 

Historically, the identification of novel allosteric sites has proven challenging.  Attempts 

have been made with high-throughput screening (HTS), a time-consuming and expensive 

process at the best of times, but allosteric hits have been few in number and generally 

happened upon serendipitously(47).  HTS tends to perform poorly when searching for 

allosteric modulators, generating vast amounts of false positive data that are difficult to 

distinguish from genuine hits(48). Additional methods, such as kinetic assays and X-ray 

crystallography, are generally required to tease out the latter from the former(48, 49), even 

then with variable success rates. 

 

Another complication arises from probe dependence.  This dependence can be of sufficient 

variability to modulate activity in both directions, i.e. to induce both activation and 

inhibition at the active site, depending on the allosteric ligand bound(50).  This can clearly 

confuse the interpretation of experimental results on a series of potential modulators.  The 

issue can also cause problems further down the drug discovery pipeline: even after a hit 
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compound has been identified for targeting an allosteric site, its activity could flip between 

activating and inhibiting modes as it is modified(51).  

 

Computational methods have long aided the drug discovery process.  A vast array of 

methods exists, with examples including molecular visualisation, pharmacophore modelling 

and ligand docking.  A recent review by Sliwoski et al. provides a wide survey of 

methods(52).  In terms of the drug discovery pipeline, they are most often used to inform 

decisions on compound selection for screening, thus increasing the likelihood of achieving a 

hit.  An industry-standard example is the application of Lipinski’s rule of five(53) to filter 

compound libraries for ones possessing drug-like properties. 

 

An interesting publication recently used machine learning to distinguish the properties of 

allosteric and non-allosteric ligands(54), concluding that allosteric ligands are generally 

more rigid and lipophilic than non-allosteric ligands, though the magnitude of the 

differences varied by target class.  This work is clearly applicable to the enrichment of 

compound libraries for targeted allosteric modulator screens, and indirectly suggests that 

allosteric sites possess complementary properties.  

 

A more general issue with many methods in drug discovery is the false assumption that 

proteins are static structures.  While they remain a highly trusted data source for drug 

discovery from which many structural and mechanistic conclusions are drawn, the vast 

majority of protein crystal structures come with an underappreciated degree of ambiguity.  

All too often, estimations and arbitrary decisions about the observed electron densities 

result in an uncertainty of atomic coordinates(55, 56).  Moreover, proteins are highly 

dynamic in nature, assuming a large ensemble of conformations not captured by X-ray 

crystallography. 

 

Knowledge of multiple protein conformations can be highly relevant, even pivotal to 

research.  An illustrative example of this can be found in an investigation of human nicotinic 

acetylcholine receptor (AChR) (57, 58).  Researchers crystallised small molecule AChR 

inhibitors in complex with mollusk acetylcholine binding protein (AChBP), which served as a 

structural and functional proxy for AChR.  The crystal structures adopted one closed-loop 

conformation that was significantly different from the open-loop conformation observed in 
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AChBP complexes with large inhibitors such as snake neurotoxins.  These results led to the 

hypothesis that AChBP was highly dynamic and that various open- and closed-loop 

conformations were viable pharmacological targets. 

 

The above example is a fortunate one, where researchers were able to produce multiple X-

ray crystal structures of their protein of interest.  In doing so, they revealed different pocket 

conformations and gained valuable insight into the protein’s behaviour.  Such a position, 

with multiple conformers revealed through crystallography, is often not reached for other 

proteins that are more difficult to crystallise.   

 

Molecular dynamics (MD) could potentially be used to model multi-conformational protein 

ensembles, filling the experimental knowledge gap described above.  Indeed, MD has been 

successfully used to provide mechanistic insight into allosteric sites, though these have 

invariably been isolated cases requiring long/multiple simulations(59–62).  MD has never 

been used to systematically predict allosteric sites without prior knowledge of them.  
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1.2 Molecular Modelling 

 

Molecular modelling is an umbrella term referring to theoretical techniques used to 

reproduce aspects of molecular behaviour.  Today the vast majority of it is carried out with 

computers by applying physical and mathematical laws to modelled systems.  The 

computational power and time required to perform these calculations is such that 

sophisticated molecular modelling techniques are often restricted by available hardware.  It 

has thus been a historically limited field, but has seen rapid expansion in recent years as the 

power/cost ratio of computers has improved.   

 

Molecular modelling at an atomic scale consists of two main categories, quantum 

mechanics (QM) and molecular mechanics (MM).  Though it was not used in this project, 

QM is briefly introduced here for context.  MM was extensively used; specifically, it was 

applied to simulate the physical motions of molecular systems over time, a process known 

as molecular dynamics (MD).  MM is introduced in this section for comparison to QM, with 

a more detailed look at MD following in section 1.3. 

 

1.2.1 Quantum Mechanics 

 

A trade-off exists in molecular modelling between the accuracy of a technique and the 

computational cost of executing it.  The more approximations one is willing to make, the 

larger the system that can be modelled in the same time.   The defining difference between 

QM and MM is in the handling of electrons within the models: in QM, electrons are treated 

explicitly.  Orbital energies and coefficients can be modelled, as can bond breaking/making 

events and heats of formation of molecular conformations(63, 64).  This is ultimately 

achieved through solving (approximations of) Schrödinger’s equation, in many cases from 

first principles; such methods can thus be described as ab initio, though empirical and semi-

empirical methods – i.e. methods utilising some stored parameters rather than deriving 

them from first principles – exist as well(64).   

 

A prime example of an approximation used to speed up calculation time is the Born-

Oppenheimer approximation(63, 64), where the Schrödinger equation is vastly simplified by 

splitting it into electronic and nuclear components.  The rationale begins from the 
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knowledge that forces acting on electrons and nuclei are due to their respective electric 

charges, which are of the same order of magnitude.  Any changes to these particles’ 

momenta due to these forces must therefore also be of the same order of magnitude; thus 

one can reasonably assume that the electrons and nuclei have similar momenta.  Given that 

the mass of a proton – the least massive possible nucleus – is approximately 2000 times 

greater than that of an electron, and that momentum is the product of mass and velocity, 

nuclei must have a velocity approximately 2000 times smaller than electrons.  With this 

knowledge in hand, two approximations can be made when considering the motion of a 

molecular system: 

 

 On the timescale of electronic motion, nuclei can be considered as effectively 

stationary 

 On the timescale of nuclear motion, electrons can be considered to instantaneously 

adopt their ground-state (lowest-energy) configuration 

 

These approximations can be used to isolate the electronic and nuclear components of the 

Schrödinger equation.  By solving the electronic component first, the solution can be used 

to solve for the nuclear component separately. Nuclear motion can still be modelled by 

assigning a range of coordinates for the nucleus’ position and incorporating a repulsion 

term(64).  Even with this extra complication, the two successive calculations are far quicker 

to compute than the full equation. 

 

Many other approximations are utilised within QM, such as the variational method and 

perturbation theory(64), all serving to decrease the great computational cost of calculations 

by sacrificing some accuracy.  However, further, far more drastic approximations become 

necessary when modelling larger systems such as DNA, RNA or proteins.  Systems of this 

scale remain beyond the reach of quantum mechanics today, and even further so if the 

explicit modelling of surrounding solvent is desired.  A recent review aimed at non-experts 

clearly and concisely discusses many of the concepts mentioned in this section on both QM 

and MM(65). 
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1.2.2 Molecular Mechanics 

 

MM seeks to ease the computational cost associated with QM, chiefly by accounting for 

electron presence implicitly.  In MM models, each atom is treated as a single, classical 

particle of fixed point mass and charge.  Atomic motion is then approximated using 

Newtonian physics.  In such a system, a set of terms known as a force field is used to 

describe the energies of each type of interaction.   

 

Most force fields are defined such that the total energy of the system can be described by 

the sum of various interaction energies between all atoms with it: bond stretching, bond 

bending, bond torsion, van der Waals (VDW) interactions and electrostatic interactions.  A 

final ‘miscellaneous’ energy component covers a host of further corrections specific to each 

force field.  While the exact form of each force field can vary, most break down into these 

main components, summarised in Equation 1. 

  

𝐸𝑡𝑜𝑡𝑎𝑙 =  𝐸𝑏𝑜𝑛𝑑𝑠 +  𝐸𝑎𝑛𝑔𝑙𝑒𝑠 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 + 𝐸𝑣𝑑𝑤 + 𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑚𝑖𝑠𝑐  

 

 
(1) 

Common force fields include CHARMM(66), GROMOS(67) and AMBER(68).  These are 

continuously being updated and refined to better reproduce known experimental results 

and utilise ever-increasing processing power(69–71). The latest release of the AMBER force 

field at the outset of this work, ff12SB(72), was used here.   The basic form of the AMBER 

force field is shown in Equation 2. 

  

𝑈 = ∑ 𝑘𝑟(𝑟 −  𝑟0)2

𝑏𝑜𝑛𝑑𝑠

+  ∑ 𝑘𝜃(𝜃 −  𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑘𝜑

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

(1 + 𝑐𝑜𝑠(𝑛𝜑 −  𝛿))

+  ∑ 𝜖𝑖𝑗 [(
𝑅𝑖,𝑗

𝑟𝑖,𝑗
)

12

− 2 (
𝑅𝑖,𝑗

𝑟𝑖,𝑗
)

6

]
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

𝑝𝑎𝑖𝑟𝑠 𝑖𝑗

+  ∑
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖,𝑗𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑
𝑝𝑎𝑖𝑟𝑠 𝑖𝑗

 

 

(2) 
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where 𝑈 = potential energy of the modelled system, 𝑘𝑟 = bond stretching force constant, 𝑟 = 

bond length, 𝑟0 = reference bond length, 𝑘𝜃 = bond angle force constant, 𝜃 = bond angle, 𝜃0 

= reference bond angle, 𝑘𝜑 = torsional barrier, 𝑛 = periodicity, 𝜑 = torsional angle, 𝛿 = 

dihedral phase, 𝜖𝑖𝑗 = LJ well depth, 𝘙𝑖,𝑗 = interatomic distance of minimum potential between 

atoms 𝑖 and 𝑗, 𝑟𝑖,𝑗 = interatomic distance between atoms 𝑖 and 𝑗, 𝑞𝑖/𝑞𝑗 = atomic charge of 

atom 𝑖/𝑗, 𝜖0 = dielectric constant. 

  

Bonds are modelled as Hookean springs with equilibrium lengths, angles and force 

constants(63, 73).  A periodic function defining the oscillations in energy of conformations 

through a 360° bond rotation is used to model dihedral angles.  Non-bonded interactions 

are generally split into a (VDW) component, modelled with a Lennard-Jones (LJ) ‘12-6’ 

potential, and an electrostatic component based on Coulomb’s inverse square law.  These 

interactions are illustrated in Figure 1.10.  The 𝐸𝑚𝑖𝑠𝑐 term can be thought of as a ‘clean up’ 

term that accounts for weaknesses in the preceding terms.  Its components vary depending 

on the exact functional form taken by the rest of the force field, but cross-terms are 

generally required: that is, in reality, a bond’s ability to bend will depend on how stretched 

it is; a bond’s torsional barrier will depend on the angles and lengths of vicinal bonds(63). 
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Figure 1.10: The main interatomic interaction energies described by the component terms of a force 

field equation.  A sample energy profile is shown alongside each term: bond lengths and angles are 

modelled with quadratic, Hookean terms; dihedral angles are modelled with a periodic cosine 

function; van der Waals forces are modelled with a ‘12-6’ Lennard-Jones potential and 

electrostatics are modelled with a Coulombic inverse-square term.  
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With electron presence accounted for implicitly by these terms, far fewer particles need to 

be simulated; a force field therefore incurs a far lower computational cost than using QM, 

allowing for far larger and/or longer molecular simulations.  Equally though, with no explicit 

electrons, energetic calculations based on MM can be highly inaccurate(64, 74), and 

chemical reactions – which involve breaking and making bonds – cannot be modelled at all.  

Hybrid methods, employing MM to efficiently model the system at large and QM to model 

the reaction site in detail, have been developed for investigating reactions involving large 

molecules, such as enzyme catalysis.  Due to the non-trivial nature of getting the QM-based 

portions of such models to properly communicate with the MM-based portions, QM/MM 

methods are often considered a field in their own right(75–77). 
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1.3 Molecular Dynamics 

 

Molecular dynamics (MD) is the process of applying a force field to a given molecular 

system and integrating it with respect to time to determine the momenta of the system’s 

atoms.  The result is a full simulation of the system’s dynamics that can be viewed with aid 

of visualisation software or processed with further analyses as required. 

 

As is discussed in this section, the time steps over which force field equations can be 

integrated without collapsing the system due to errors is of the order of femtoseconds.  

Thus, if a simulation of meaningful length is to be produced, many successive solutions 

must be calculated. Two factors determine the time required to produce a MD simulation: 

on the software side, there is the efficiency of the algorithms solving the force field 

equation at each time step.  On the hardware side, the power of the processor performing 

the calculations is just as important a factor, if not more so.  These concepts are covered in 

this section, as are the stages of preparation involved in preparing and running a MD 

simulation in AMBER. 

 

1.3.1 Software 

 

The MM force fields mentioned 1.2.2 are implemented in MD software packages. 

Developers of each force field usually also develop their own MD software to implement it, 

so each is generally optimised to operate with its native force field.  However, a level of 

cross-compatibility exists in that most software packages are capable of working with at 

least some force fields other than their own.  This is important for users because this type 

of software is highly specialised and not trivial to operate.  If a user is familiar with one 

software package but wishes to use a ‘foreign’ force field that is better suited to model 

their system of interest, they need not learn to operate new software.   

 

1.3.2 Solvent Treatment 

 

It is clear that the surrounding medium of any molecular system exerts a huge influence on 

its behaviour both in geometric and energetic terms; it is therefore important to 
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incorporate solvent where appropriate, such as in simulations of biomolecules.  Solvent 

molecules can be introduced either implicitly or explicitly. 

 

In implicit solvation models, no new atoms are introduced to the modelled system.  Instead 

the solvent is considered as a continuous medium with averaged properties(64, 78, 79), 

accounting for its influence on the solute through supplemental equations to the base force 

field.  Perhaps the most important solvent property, particularly for most biological 

simulations where the solvent is water, is the dielectric constant.  The Poisson-Boltzmann 

(PB) equation can be applied to such a model, treating the solute atoms as low-dielectric 

particles surrounded by a high-dielectric medium(79) and computing the interaction.  The 

PB equation is highly accurate, but very expensive to compute.  To remedy this, an 

approximation to the PB equation is often used that is quicker to compute, named the 

Generalised Born (GB) equation.  This assumes an ideal case of the PB equation where the 

solute is perfectly spherical, adjusting the radius of each solute particle to match a 

predetermined energy of solvation(78). 

 

Explicit solvation is more intuitive in theory: a layer of solvent molecules is added to the 

system, surrounding it in all dimensions.  In this scenario, some action must be taken to 

prevent the solvent molecules from scattering into empty space as soon as MD 

commences; the most common solution is to apply periodic boundary conditions.  In effect, 

the modelled system is treated as a unit cell and surrounded by exactly translated images 

of itself in all directions.  In the central, ‘real’ cell, any particle crossing a boundary has an 

exact copy reintroduced on the opposite side (Figure 1.11).  In this way the solute can 

experience conditions akin to those of bulk solution with a relatively small number of 

solvent molecules. 

 

For periodic systems, the particle mesh Ewald (PME) method is the standard method for 

handling electrostatics(80).  This is a grid-based method that splits interactions into short- 

and long-ranged, handling the former ‘normally,’ that is spatially, based on Coulomb’s 

inverse square law. The latter are handled with a fast Fourier transform.  Overall this 

method remains accurate and, thanks to the fast Fourier transform, is highly efficient when 

faced with large numbers of particles(80, 81).   This is of great significance for modelling 

explicitly solvated systems. 
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Figure 1.11: A model system shown with periodic boundaries in one dimension.  The green particle 

is on trajectory that will cross the cell boundary; at the same time, an identical copy of the particle 

will enter the system on the opposite side. 

 

Most MD software packages contain algorithms to aid in constructing explicitly solvated 

system.  In AMBER, the LeAP program can automatically surround an inputted system with 

a solvent shell of specified depth.  The fewer solvent molecules added the lesser the 

increase in computational expense of simulation; however, the dimensions of the unit cell 

must be large enough that the solute system is unable to interact with itself through the 

periodic boundary, a situation shown in Figure 1.12. 

 

 

 

Figure 1.12: A molecular system with periodic boundaries that are too small.  The two terminal 

atoms of the solute molecule, while far apart in reality, can interact with each other through the 

boundary, resulting in a highly unrealistic model. 
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Implicit solvation methods have the significant advantage of not introducing more particles, 

and so result in systems that are far quicker to simulate.  Since the number of solvent 

particles required for a sufficiently large explicit solvent shell increases exponentially with 

the size of the system (cubically, in a 3D system), this can quickly become problematic.  In 

situations where particularly large systems or particularly long simulations are required 

quickly, implicit methods may be most suitable.   

 

However, if the resources are available to simulate the equivalent system in explicit solvent, 

it is often the superior choice for biomolecules.  The dynamic behaviour of these large 

systems is highly responsive to solvent effects: proteins especially often require non-

averaged solvent phenomena such as explicit solvent-solute hydrogen bonding and 

fluctuating local solvent densities that can only be captured with an explicit model(82). 

 

1.3.3 Energy Minimisation 

 

Since approximations in force fields tend to rely on systems being in near-equilibrium 

states, a model system must generally be brought to such an energy state before 

performing MD.  This refinement step is of particular importance if any artificial alterations, 

such as addition of explicit solvent, have been made. 

 

The potential energy of an entire system is a function of each atom’s coordinates within it, 

and so is far too complex to solve and impossible to visualise for all but the very smallest 

systems(64, 83).  Without being able to produce the global minimum conformation directly, 

minimisation procedures must operate by making small, iterative adjustments to atomic 

positions such that the net force acting on them is reduced each time.   Since force is the 

gradient of energy, the system energy is minimised when a position of zero (or as close as 

possible to zero) net force is achieved.  Figure 1.13 illustrates this idea, as well as an 

undesired consequence of it:  with minimisations always seeking to reduce the energy 

gradient, they can only move towards the local minimum, which may not be the global 

minimum. 
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Figure 1.13: A hypothetical potential energy surface for a molecular system is shown, reduced to 

one coordinate.  From the initial conformation, A, energy minimisation algorithms only yield lower 

energy conformations, so conformation B cannot be reached, but conformation C can be.  Further 

iterations will drive the system to the local minimum, D, but not to the global minimum, E, since the 

latter requires high energy barriers to be crossed. 

 

Many minimisation algorithms exist(64), each of them varying in computational complexity 

and robustness.  No one method is best overall; generally, one is used to make initial 

refinements before switching to another that is more suitable for converging on the 

minimum.  A common two stage-minimisation was employed throughout this work: the 

steepest descent method followed by the conjugate gradient method.   

 

The steepest descent method utilises information from the first derivative of the potential 

energy surface (i.e. the gradient) and so is termed a first order method.  Its name is 

intuitive: it operates by moving in the direction of the steepest slope.  The method is simple 

and robust, working well for high energy conformations where direction steepest descent is 

generally clear.  However, it becomes inefficient in shallow valleys(64), so is not ideal for 

converging on the minimum.  For this purpose, the conjugate gradient method is employed.  

This method is also first order, but also retains knowledge of previous first derivatives to 

instruct the next step direction, which adds to the computation per step. However, this 
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allows the method to reach the minimum more efficiently, meaning there is efficiency to be 

gained from its combined use with a quick and robust initial method like steepest descent. 

 

Second order methods also exist, the most popular being the Newton-Raphson method(64, 

83).  These methods can be very powerful, but at the cost of great computational cost that 

scales poorly with system size; they are generally unsuitable for large biomolecular systems 

of the type found in this work. 

 

For proteins, particularly those with coordinates based on crystallographic structures, it is 

standard practice to run three sequential stages of minimisation (each consisting of a 

steepest descent phase and a conjugate gradient phase).  In the first, a restraining force is 

applied to all heavy atoms, effectively anchoring them to their initial state.  This allows the 

efficient minimisation of hydrogen positions, which will often have been added artificially 

and so are most likely to be involved in bad contacts.  In explicitly solvated systems, the 

solvent molecules – also added artificially – are generally left unrestrained as well.  The 

second phase lifts the restraints from protein sidechains, the next most poorly resolved 

regions of the system.  Finally, the whole system is unrestrained and minimised. 

 

1.3.4 Heating, Equilibration and Production Phases 

 

After minimisation of a model system, MD can begin.  At this point the system is, in effect, 

at 0 K since there are no velocities associated with its atoms.   To initiate motion in the 

system, all atoms are artificially assigned (small) velocities in randomised directions.  With 

initial velocities applied, the system can be solved in terms of the force field equation and 

new atomic positions determined.  However, without any further interference, the system 

will not behave like it would at any specific temperature.  Special thermostatic algorithms 

have been developed that impose a given temperature on the system. 

 

The Langevin thermostat(84) is a popular choice for regulating temperature for the 

purposes of system heating and equilibration. This scheme stochastically applies 

pseudorandom forces to all atoms in the system.  These forces follow a Maxwell-Boltzmann 

distribution.  The scheme therefore simulates imaginary collisions with gaseous particles at 

thermal equilibrium, evenly dispersing temperature with time. The net effect of this on the 
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system is an active thrust towards a thermally equilibrated state.  It is highly suited for the 

initial application of temperature. 

 

For biomolecules, MD simulations are performed at temperatures in the region of 300 K.  It 

is standard practice to stagger the heating of such systems, heating in portions of 

approximately 100 K and allowing a small amount of simulation time for the system to relax 

before the next increase in temperature.  For periodic systems, the system’s pressure, 

which will have invariably fluctuated wildly throughout the heating procedure, must also be 

brought under control.  This is achieved by maintaining a constant temperature and 

gradually altering the dimensions of the unit cell until the system reaches the desired 

equilibrium pressure (generally 1 bar for biomolecules). 

 

After reaching baric equilibrium the unit cell dimensions can be fixed once more.  Before 

running production MD – that is, MD simulation that is considered experimental rather 

than preparatory – it is good practice to simulate the system for a further period of time as 

a final measure to ensure the system is stable and well equilibrated.  This final equilibration 

should ideally be as long as possible, but in reality is often determined by the user’s 

hardware, and how much simulation time they are willing to discard. 

 

For production MD, it is common to switch over to the Berendsen thermostat(85).  This is 

less invasive than Langevin dynamics, maintaining the overall kinetic energy of the system 

for a given temperature by scaling velocities rather than altering both scale and direction 

through artificial collisions.  It allows more variation in temperature throughout regions of 

the system, making it beneficial for systems free of artefacts, where natural variation over 

time is desired, but is weak for ‘ironing out’ anomalies.  It is therefore best suited for 

production use after a thorough equilibration.  Moreover, Langevin dynamics have been 

shown to be unstable when used for long simulations(86).   

 

1.3.5 Integration Step Size 

 

A fundamental consequence of using a force field equation is that errors quickly 

accumulate as the time step of each integration increases(64).  This is because each particle 

can only be represented by a single set of parameters in any one step.  One can envisage 
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two atoms at a distance with velocities directed toward one another.  With a large time 

step, the next snapshot of system could show them overlapping, as determined by their 

initial velocities.  Of course, in reality they would repel each other as they approached, 

reducing velocity and eventually changing direction altogether.  Without intermediate time 

steps to capture this developing repulsion (chiefly by the increasing ‘12’ term of the LJ 

potential), the simulation would model the collision unrealistically.  This scenario is pictured 

in Figure 1.14. 

 

 

 

Figure 1.14: Two atoms (red and blue) in a simulation.  Initially, they are distant but on trajectories 

directed towards each other.  A, an excessively large time step is used to determine new positions, 

resulting in overlapping atoms; B, an excessively small time step is used – while this avoids the bad 

contact of the two atoms, it is highly inefficient; C, an appropriate time step is used, resulting in 

efficient modelling and realistic collision handling.  Adapted from(64). 
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At best this yields unrealistic, high-energy results, though it can cause total collapse of the 

system if such artefacts cause fatal errors when solving the force field equation.  Using the 

above example of two approaching atoms, two perfectly overlapping atoms have an 

interatomic distance of zero; this will cause the simulation to crash as soon as it attempts to 

divide by this value.  In practical terms, it can be argued that a fatal error is in fact the more 

preferable scenario since the user is immediately alerted to a program crash; it would be 

worse to waste time and resources producing a ‘surviving’ but nevertheless unrealistic (and 

unusable) simulation.  This can be avoided by keeping the time steps over which 

calculations are made sufficiently small. 

 

At stated, the smaller the time step, the greater the accuracy, but also the greater the 

number of successive solutions required to simulate for the same time.  An optimum 

balance of accuracy and efficiency therefore exists (Figure 1.14B cf. Figure 1.14C).  A 

popular rule of thumb is to allow around 10 time steps for the highest-frequency motion in 

the system.  For biomolecules this is the C–H stretch term, which vibrates with a frequency 

of approximately 10 fs-1, so a 1 fs step is commonly used. 

 

This presents a problem when studying large biomolecules such as proteins, where far 

larger, lower frequency motions also occur, spanning timescales of over 15 orders of 

magnitude (Figure 1.15).  A very large number of integration steps must be calculated to 

produce a simulation of adequate duration to begin to capture these motions. 
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 Figure 1.15: Timescales of molecular motions in proteins.  Adapted from (87). 

 

This means that any method allowing for a larger time step will significantly speed up the 

rate of MD simulation.  Such a method has indeed been developed, named the SHAKE 

algorithm(88).  This works by constraining bonds to their equilibrium lengths, and is usually 

applied to all covalent bonds to hydrogen since these are the fastest fluctuating.  This 

allows the time step to be raised to 2 fs, halving simulation time.  For protein simulations, 

the use of the SHAKE algorithm has become standard practice, and it was used in this 

manner for all simulations in this work. 

 

It is worth noting a 2015 publication that presents stable results for a method, 

implemented in AMBER, that raises the MD time step to 4 fs(89), immediately halving the 

time taken to produce a simulation again.  In the future, as more such evidence 

accumulates in the literature, it is likely that the ‘standard’ MD simulation of the type run in 

this project will move beyond the SHAKE algorithm to utilise methods such as this.  
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1.3.6 GPU Acceleration 

 

The harnessing of the graphical processing unit (GPU) for rapid numerical calculations has 

significantly boosted the capabilities of MD(90–92).  The boost is of such scale that a single, 

affordable desktop computer can perform simulations at speeds previously only attainable 

by high-performance computing (HPC) clusters. 

 

GPUs are a particularly noteworthy advance for the MD community because, despite their 

exceptional computing power, they remain relatively affordable.  This is because their 

development is aggressively backed by the multibillion-dollar computer gaming industry.  

The result is not only a market where GPU cards are improving quickly and constantly, but 

also one where they are priced for individual consumers rather than for research 

institutions.  In terms of ‘bang for buck,’ the GPU is a far superior platform for performing 

MD simulations than a standard central processing unit (CPU).  Figure 1.16 demonstrates 

this, displaying benchmarked performances of various modern GPU cards on an example 

molecular system against a 20-core CPU.  A CPU with this many cores is a specialist piece of 

equipment that most laboratories will not possess.  For comparison, the vast majority of 

personal computers today contain a GPU of some description. 

 

This figure is regularly updated as new GPU cards are released and can be found at 

http://ambermd.org/gpus/benchmarks.htm.  The GTX series in particular, which is primarily 

marketed (and priced) for computer gamers, still matches the performance of the more 

expensive Kepler series (cards beginning with ‘K’ in Figure 1.16), which is marketed to 

researchers for numerical calculations. 

 

 

http://ambermd.org/gpus/benchmarks.htm
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Figure 1.16: Performance of various hardware setups for the simulation of the same molecular 

system in AMBER.  The chart’s bars are ordered by processor release date and number of processors 

in the setup. The GTX series in particular, which is primarily marketed for computer gaming, still 

matches the performance of the (more expensive) Kepler series.  More significantly, a single 

modern GPU can perform MD simulations at nearly an order of magnitude greater speed than 20 

CPU cores.  This figure is regularly updated as new GPU cards are released and can be found at 

http://ambermd.org/gpus/benchmarks.htm. 

 

Even the GTX980 series GPU, the oldest in the list (though still a high-performance GPU in 

the gaming community at the time of writing), outperformed the CPU cluster in testing by 

nearly an order of magnitude.  GPUs can be used in parallel, as they were in many of the 

displayed benchmarks, though they are far from 100% efficient.  However, for producing 

many independent simulations – as was required for this project – a small number of GPUs 

can match and even outperform a HPC cluster. 

 

  

http://ambermd.org/gpus/benchmarks.htm
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1.4 Random Forest 

 

This section begins with a generic introduction to machine learning before focussing on 

Random Forest (RF), the particular technique used in this project. 

 

1.4.1 Machine Learning 

 

Machine learning is a field concerned with making decisions or predictions based on 

supplied data.  There are both significant similarities and significant differences between 

machine learning and statistics(93) – an area with which the reader is likely more familiar.  

There is no fundamental distinction between the two; indeed, statistics shares the goal of 

making decisions or predictions based on supplied data with machine learning.  The two are 

better segregated by their origins(94): statistics is a long-established field of mathematics, 

while machine learning emerged more recently as a field of computer science.  They can be 

thought of as alternative approaches to the same problems developed by people with 

different areas of expertise.   

 

The following is perhaps the closest to a dividing line between statistics and machine 

learning: whereas statistics applies explicit functions to a dataset in order to solve defined 

mathematical equations, machine learning applies an algorithm that operates on-the-fly, 

with the form of the final model adapting to each specific dataset.  In other words, statistics 

fits data to a pre-defined mathematical model.  If the chosen model is appropriate and 

aligns well with reality, there is a high chance that the statistical analysis will yield accurate 

decisions or predictions.  Machine learning, on the other hand, fits a model to data; only 

the algorithm by which it achieves this is pre-defined.   

 

Machine learning methods are thus defined by the algorithm that is performed on a given 

dataset.  A range of such algorithms have been developed, such as support vector 

machines(95) (SVM), artificial neural networks(96), genetic algorithms(97), fuzzy logic(98) 

and random forest (RF), the latter of which was used in this project and is covered in detail 

in the following sections.  No algorithm is perfect, and its performance varies depending on 

the dataset it is put to work on: a quick search of the literature reveals that no method 
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outperforms all others for all datasets, with different comparative studies each finding that 

different algorithms performed best(99–105).   

 

RF was chosen as the machine learning algorithm for this project, though there is no reason 

why another machine learning technique could not have been applied in an analogous 

manner.  There are several intricacies to RF that were advantageous for this work, although 

it is worth noting an additional, more pragmatic reason for its selection: the group has 

found historical success with RF in a variety of contexts(106–108) and a retains a relatively 

high level of expertise within it.  This project was highly multi-disciplinary, requiring 

considerable knowledge of medicinal chemistry, structural biology and molecular modelling 

as well as machine learning.  Initial support in the understanding and operation of RF was 

invaluable and saved a significant amount of time. 

 

1.4.2 RF Background 

 

Random forest (RF) is a machine learning algorithm first proposed in 2001 by Breiman(109).  

It is used to develop predictive models for tackling classification and regression problems.  

The terms classification and regression are used commonly in the context of predictive 

modelling.  A classification problem is one where data, based on known variables, must be 

assigned labels from a limited, pre-defined set, while a regression problem requires the 

data to be assigned numerical values. 

 

Before examining RF in detail, a brief introduction to some concepts of predictive modelling 

is presented, facilitated by an example dataset: Fisher’s Iris data(110).  It is a simple table 

containing information on a collection of flowers of the iris genus, and comes pre-loaded 

with the freely available R statistics package(111), used heavily throughout this work.  This 

dataset is widely used in tutorials on classification and machine learning, and is a good way 

to introduce the concepts described before applying them in the context of allosteric sites. 

 

The Iris dataset contains 150 samples of 3 species of iris (50 of each): iris setosa, iris 

versicolor and iris virginica.  For each flower there are 4 data points: the measured lengths 

and widths of its petals and sepals.  The dataset can be said to contain 𝑛 cases or 

observables, where 𝑛 = 150, and 𝑝 descriptors or variables, where 𝑝 = 4 (sepal length, sepal 



37 
 

width, petal length and petal width).  There is also a classifier variable which takes one of 3 

independent, categorical values: the species of each flower.  A sample of the dataset 

annotated with the above information is presented in Table 1.1.   

 

 

Sepal length Sepal width Petal length Petal width Species 

5.1 3.5 1.4 0.2 I. setosa 

4.9 3.0 1.4 0.2 I. setosa 

7.0 3.2 4.7 1.4 I. versicolor 

6.4 3.2 4.5 1.5 I. versicolor 

6.3 3.3 6.0 2.5 I. virginica 

5.8 2.7 5.1 1.9 I. virginica 

 

Table 1.1: A 6 case sample of Fisher’s Iris dataset, containing 4 features – sepal length, sepal width, 

petal length and petal width – and a classifier: the species of each flower.  The full set contains 150 

cases: 50 of each species. 

 

Attempting to predict the species of another iris by comparing its petal and sepal 

dimensions to those in the dataset is an example of a classification problem.  The four 

descriptors of the flowers can be considered predictor variables, or simply predictors, i.e. 

they are the variables upon which a prediction is based.  The classification of the flowers 

(i.e. the species) is the response variable, or simply the response. 

 

A regression problem is one where a continuous numerical response is desired instead of a 

categorical one, for instance the height of the flower stem instead of its species.   

 

Used to solve both classification and regression problems, RF operates by generating an 

ensemble of independent decision trees (or a forest), each with elements of randomness 

incorporated.  A query can then be run through each of the trees and the results fed back 

as a prediction.  For classification problems, the majority vote of all the trees is taken as the 

prediction by default.  For regression problems, the arithmetic mean of predictions across 

all trees is taken.  This work approached the task of predicting allosteric binding sites as a 

classification problem, categorising each examined amino acid as either part of an allosteric 

binding site or not – in other words, a response with two categories: true or false.  For this 
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reason, RF will be described in a classification context here.  The core algorithm employed 

by RF is detailed below.   

 

1.4.3 RF Algorithm 

 

The RF algorithm is described in four mains steps.  Initially, a complete 𝑛 × 𝑝 dataset is 

required, where 𝑛 is the number of cases and 𝑝 is the number of predictors.  A response 

variable 𝑦 is also required for each case. 

 

1. Draw a ‘bootstrapped’ sample of the training set with replacement 

 

Bootstrapping is the process of drawing a randomised subset of data.  During the 

construction of a bootstrap, a single datum is sampled and returned to the original pool.  

The process is repeated until the desired bootstrap sample size is reached.  In this way, it is 

highly probable that the bootstrapped sample contains some duplicated data points and 

some that have been left out; it is a random permutation of the original data. 

 

2. Optimally split the sample into two subsets by the best of 𝑚𝑡𝑟𝑦 randomly selected 

descriptors, where 𝑚𝑡𝑟𝑦 << 𝑝 

 

For classification, the default and generally optimal value of 𝑚𝑡𝑟𝑦 is √𝑝.  For each selected 

descriptor, the data are split by applying a threshold value.  The quality of the split is then 

appraised (more detail on this criterion given below) before repeating the split with every 

possible threshold.  The best split for each descriptor is determined, and the overall best 

split across all descriptors retained. 

 

The criterion for determining the quality of a data split is the Gini impurity.  This measure, 

derived from the Gini Index used to measure inequality in a society(112), quantifies the 

relative proportions of data classes in a sample.  The Gini impurity for a set of data is equal 

to 1 minus the sum of squares of the relative class proportions within it.  The quality of a 

data split is determined by the sum of Gini indices of each child node, each weighted by the 

proportion of the dataset they represent.  Figure 1.17 shows a node containing data points 

of two classes (orange and purple dots), with two different splits, A and B, performed on it.  
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Calculations for the relevant Gini impurities are shown to illustrate the concepts described 

here.  

 

 
 

 

Gini impurity = 1 −  ((
𝑐𝑙𝑎𝑠𝑠 1 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
)

2

+ (
𝑐𝑙𝑎𝑠𝑠 2 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
)

2

) 

 
 

 
Gini impurity at parent node  

 

= 1 −  ((
8

16
)

2

+ (
8

16
)

2

)  

= 1 − 0.25 − 0.25 
= 0.50 
 

Gini impurity of split A Gini impurity of split B 

 

= 𝐺𝑖𝑛𝑖(𝑐ℎ𝑖𝑙𝑑 1) ×
7

16
+ 𝐺𝑖𝑛𝑖(𝑐ℎ𝑖𝑙𝑑 2) ×

9

16
 

= 0.489 ×
7

16
+ 0.493 ×

9

16
 

= 0.214 + 0.277 
= 0.491 

 

 

= 𝐺𝑖𝑛𝑖(𝑐ℎ𝑖𝑙𝑑 1) ×
8

16
+ 𝐺𝑖𝑛𝑖(𝑐ℎ𝑖𝑙𝑑 2) ×

8

16
 

= 0.218 ×
8

16
+ 0.218 ×

8

16
 

= 0.109 + 0.109 
= 0.218 
 

 

 

Figure 1.17: A node of data points is depicted, with the two classes coloured purple and orange.  

Two splits, A and B, have been performed on the parent node.  Split B yielded a lower Gini impurity 

and so is considered the superior split. 

 

3. Repeat the splitting procedure with the subsets of cases at each node until full 

length trees form, i.e. single classes populate the terminal nodes 

 

A B 
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4. Generate new decision trees (i.e. repeat steps 1-3), each with a new bootstrapped 

sample until ntree, the specified number of decision trees to be generated, has been 

reached. 

 

With a ‘forest’ of decision trees generated, an unclassified case can be passed through the 

model, with each tree funnelling it through decisions to a terminal node associated with a 

class label.  Each tree votes on the case’s class, with the majority vote constituting the 

model’s prediction.  Alternatively, one can retain the proportions of votes and yield 

predicted probabilities of class membership for each case. 

 

1.4.4 Features of RF 

 

 Internal Validation 

 

There are distinct advantages to RF that make it highly suited for the data involved in this 

work, the first being its ability to perform internal validation.  Since any one decision tree in 

the forest is built only upon a bootstrap of the dataset, cases that remain excluded from 

the bootstrap – so called out-of-bag (OOB) data – are used to conduct on-the-fly testing, 

storing the percentage of misclassified cases.  As standard, this OOB error rate is calculated 

for every tree and aggregated, providing a good estimation of the model’s overall 

performance as it is generated. 

 

The OOB error can be used to monitor the growth of a RF model.  As the number of trees is 

increased, the OOB error initially decreases sharply.  This is due, on one hand, to the 

inherent weakness of any single semi-random decision tree’s ability to perform as a 

classification model, and on the other to the great ‘wisdom of crowds’ benefit from 

considering all trees together as an ensemble.  The OOB error tends to level off after 

sufficient trees have been added.  For many datasets, the accepted default value of 500 

trees has proven sufficient to reach this point of convergence, while others have required 

more.  There are diminishing returns to be gained from increasing the number of trees 

further beyond this point(113). 
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The OOB validation also alleviates the burden of validation from a separate dataset.  

Usually, a predictive model must be validated against a suitably sized set of external data; 

while there is no gold standard, a typical size for this is 20% of the training set.  Creating 

such a dataset requires a portion of training data to be set aside and so can no longer be 

used to train the model.  With RF, though the whole training set is utilised overall, each 

individual tree is validated against its OOB data.  External data partitioning is therefore not 

critical, allowing all of the available data to be used either for training or for carrying out a 

true, unseen test for confirmation of performance.  In this project, where data points were 

both scarce in quantity and laborious to accumulate, this was a significant advantage. 

 

 Variable Importance 

 

It is possible to obtain a measure of the importance of each variable in a RF model to its 

performance.  The premise of the measure is to adopt a null hypothesis at each node in the 

decision tree: if the chosen variable is a weak predictor, then randomly rearranging its 

values – a procedure which severs any link between the predictor and the response – will 

only weakly affect the accuracy of the model’s predictions.  The more important a variable 

is to the model’s performance, the greater the reduction in accuracy upon permutation.  

This analysis is performed as the model is generated, using the OOB data to determine 

prediction accuracy before and after permutation, subtracting the latter from the former 

and averaging across all trees. 

 

Care is required in the interpretation of this analysis(114).  The hypothesis not only 

assumes null correlation between the predictor and the response, but null correlation 

between the predictor and other predictors.  This results in variables that are correlated to 

truly important ones also yielding a high mean decrease in accuracy. 

 

The analysis is also deceptive in that it cannot be reliably used to test the consequences of 

removing a variable from the training dataset, despite this being in essence what the 

analysis does.  The term ‘variable importance’ suggests that any variable with a non-zero 

score is of value: removing it from the dataset would result in a drop in model 

performance.  In reality, removing data can be beneficial to model performance, as was 

found in section 4.7.1.  The reason for this discrepancy is that, if a model was retrained with 
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a variable removed from the dataset, each node that would have used it to make its 

decision would instead select a different real variable, rather than a make its decision based 

on a permuted variable akin to pure noise. 

 

 Partial Dependence 

 

This is a method for quantifying the effect of a given variable on a model’s positive class 

probability; in other words, how much more likely a true prediction becomes as the given 

variable changes value.  This is usually presented as a graph of so-called partial dependence 

(PD) on a given variable plotted against the variable’s values in ascending order.  An 

example graph of this type is presented in Figure 1.18.  At the same time, it is useful to note 

the overall ‘shape’ of the variable, i.e. what proportion of it takes on what values.  The 

decile ranges of the example variable are marked in Figure 1.18. 

 

 

Figure 1.18: An example partial dependence plot.  The top 3 deciles correspond to a higher PD from 

the model, meaning that high values of this example variable are more likely to result in a true 

classification.  
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This can provide great insight into the real information a model is detecting from a variable.  

In the example it can be seen that the top 3 deciles of the variable attracted a greater PD 

from the model.  The conclusion to be drawn from this would be that higher values of this 

variable are a marker of true classification. 

 

 Proximity Measure 

 

This calculation determines the frequency with which a pair of cases reaches the same 

terminal node in all trees of a RF model.  This type of data can be considered as a kind of 

‘distance’ between each pair of cases, with closer (i.e. more similar) ones having a greater 

proximity value.  Using multi-dimensional scaling (MDS) the data can be reduced to 2-3 

dimensions, allowing the user to visualise the proximities of all cases at once.   This is a 

powerful method for determining how well the model was able to separate the classes.  

However, it requires the pairwise comparison of all 𝑛 cases in the training dataset, which in 

turn requires the generation of a 𝑛 × 𝑛 matrix.  This requires exponentially greater 

computational expense to calculate as the value of 𝑛 increases; for this project, where 𝑛 = 

approximately 32 000, it proved unfeasible to perform on all models and was reserved only 

for the final one. 

 

 Stability 

 

A more general advantage of RF lies in its robustness to noise in the training data relative to 

other models.  It is apt to say that a RF model is “evolved” rather than fitted.  Instead of 

handling all predictors at once, each decision tree in RF operates by looking at a small, 

randomly selected subset of predictors at each node, ignoring the rest.  For each predictor, 

the splitting point yielding the optimum Gini impurity is calculated, and the one producing 

the lowest of these is taken forward.  A small gain is made, and the process is repeated.  

The predictors can be thought of as constantly competing for selection in the micro-

environment of each node.  Noisy predictors, less able to split the data into the correct 

classes, are naturally weeded out as the tree is constructed.  Including noisy predictors in 

the training set does not drastically affect the model’s ability to isolate the most useful 

ones; that is, unless there are so many noisy predictors that the useful ones are 

rarely/never selected.  This innate resilience of RF allowed for a less stringent approach to 
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variable inclusion for the project – a very welcome notion when it was not known in 

advance what data would prove useful. 

 

As a caveat to the above it should be made clear that, while RF is highly capable of handling 

variable noise, it is can still be affected by variable correlation.  Highly correlated variables 

contain the same or similar information; a RF model based on a highly correlated dataset 

will comprise more nodes splitting on what is effectively the same real information.  This 

leads to an artificially high emphasis being placed on the correlated data for their actual 

predictive capability. 

 

1.4.5 Method Optimisation  

 

RF has only a small number of parameters that are modifiable by the user, and default 

settings for these have already been well established that are often optimal(109, 115).  

However, these defaults were reached using datasets of roughly equal balance: that is, 

datasets containing a similar number of cases from each class (such as Fisher’s Iris dataset, 

containing 50 cases of each species).  Machine learning methods, including RF, tend to 

suffer a drop in performance when dealing with highly imbalanced datasets(116). 

 

The dataset developed for this project contained a large class imbalance, with 

approximately 95% of residues being classed as false.  This meant that a model could 

achieve a formal accuracy of approximately 95% by simply classifying all cases as false, 

despite being entirely useless.  For this reason, an optimisation of the RF parameters was 

required for this project.  Accuracy, along with many other evaluation measures, are 

described in more detail in section 1.4.7. 

 

1.4.6 Dealing with Class Imbalance 

 

There is a consensus in the literature that one’s approach to RF should be modified in cases 

of high class imbalance(116–118), but no standard procedure is known that benefits all 

situations(116).  The imbalance can be dealt with by applying a weight to the minority class, 

known as class-weighted RF(117).  A class-weighted RF is constructed in the same manner 
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as a standard RF, but with a modification made to the splitting procedure at each node, 

where the penalty to the Gini criterion for misclassifying the minority class is increased.  A 

second weight is applied when the forest comes to vote on the classification of an unknown 

case: the number of votes for the minority class is multiplied by a constant, resulting in 

fewer trees needing to vote for the minority class to gain an overall majority.  This leads to 

more cases being classified as the minority class. 

 

Another method for addressing imbalanced datasets is balanced RF(117). Before growing a 

forest of decision trees, cases are artificially added to or removed from the training set, 

known as over-sampling and down-sampling, respectively.  When over-sampling, identical 

copies of random cases of the minority class are created and added to the training set until 

the desired class balance is reached.  This results in a training set with multiple identical 

cases, which could perturb any underlying patterns in the data.  To minimise this problem 

over the forest as a whole, over-sampling is performed individually for each decision tree, 

smoothing out the number of copies made of each case. 

 

Alternatively, the class balance can be redressed with down-sampling.  Here, the minority 

class is sampled once in its entirety and cases of the majority class are randomly sampled 

(without replacement) until the desired class balance is reached.  This results in a training 

set that is both balanced and composed of unique cases, unlike over-sampling, but also in a 

training set that does not contain all of the available cases of the majority class.  As with 

over-sampling, the training set is reconstructed for each decision tree, so the over- and 

under-representation of cases over the whole forest is again minimised. 

 

Though both tend to boost the performance of ‘naïve’ RF with highly imbalanced datasets, 

down-sampling has been shown to generally outperform over-sampling(117).  Neither 

weighted RF nor balanced RF (by down-sampling) has been shown to be the superior 

technique over the other.  However, balanced RF has the added benefit of being more 

computationally efficient, since each decision tree requires only a proportion of the whole 

training set to grow.  For this reason, balanced RF was chosen as the methodology to be 

applied in this project. 
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1.4.7 Quantifying Predictive Power 

 

The OOB error rate of a RF model is a highly convenient and robust method for quantifying 

predictive power, but this is a special measurement unique to RF.  There are many other 

methods for achieving this.  The results of any classification prediction can be summarised 

as a table of correctly- and incorrectly predicted class counts.  This is termed a confusion 

matrix, and is of the form shown in Table 1.2. 

 

 
Predicted Result 

False True 

Observed 
Result 

False 𝑎 𝑏 
True 𝑐 𝑑 

 

Table 1.2: The form of a confusion matrix – the most compact output format of a classification 

prediction. 

 

Ideally, 𝑏 = 0 and 𝑐 = 0 in the above table, i.e. the class of all cases is correctly predicted. 

 

There are many evaluation measures available to quantify the predictive power of a 

classification model that are functions of the numbers in Table 1.2.  None are considered 

perfect for comprehensively capturing the information contained in the confusion matrix 

and so are generally not considered in isolation(115, 117, 119, 120).  In fact, there is no 

standard evaluation technique for classification models; instead, analyses are tailored to 

the context of a model’s application, using whatever measures are deemed suitable.  

Nevertheless, the most well-known measures of this type remain a good starting point, and 

are described below. 

 

 Precision 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑑

𝑑 + 𝑏
 

 

(3) 

Precision calculates the proportion of cases correctly called true out of the total number of 

cases predicted true(119, 120).  It ranges from a minimum value of 0 when 𝑑 = 0, i.e. no 

correctly predicted true cases, to a maximum of 1 when 𝑏 = 0. 
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 Recall / sensitivity / true positive rate (TPR) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 𝑂𝑅 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑂𝑅 𝑇𝑃𝑅 =
𝑑

𝑑 + 𝑐
 

 

(4) 

This measure, with different names in different contexts, calculates the proportion of cases 

correctly called true out of the total number of true cases(119, 120),  with minimum and 

maximum values of 0 and 1, respectively.  Note that the false positive rate (FPR) can be 

determined by taking 1 – TPR.   

 

 Inverse recall / specificity / true negative rate (TNR) 

  

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑐𝑎𝑙𝑙 𝑂𝑅 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑂𝑅 𝑇𝑁𝑅 =
𝑎

𝑎 + 𝑏
 

 

(5) 

Equivalent to TPR but operating on the negative class, this measure compares the number 

of the cases correctly called false to the total number of false cases(120),  with minimum 

and maximum values of 0 and 1, respectively.  Note that the reciprocal false negative rate 

(FNR) can be determined by taking 1 – TNR. 

 

 F measure 

   

𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1 + 𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

(𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ) + 𝑅𝑒𝑐𝑎𝑙𝑙 
 

 

(6) 

The F measure was devised to find a compromise between precision and recall(119, 120).  

The 𝛽 value is treated as a factor applying relative importance on recall against precision.  

The formula is balanced when 𝛽 = 1 and corresponds to the harmonic mean of precision 

and recall.  Its values range from 0 to 1. 

 

Since the above measures do not incorporate all 4 values 𝑎, 𝑏, 𝑐, 𝑑 they fundamentally 

cannot fully characterise the confusion matrix in isolation.  The following measures do: 

 

 Accuracy 

  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

 

(7) 
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Accuracy is the ratio of correct predictions over all predictions.  It incorporates all four 

values of the confusion matrix into a single descriptor, but can be wildly misleading for 

imbalanced sets(121).  For example, if real true cases made up a twentieth of the dataset, 

as they do in this project, a model could class every single case as false, and thus be 

completely ineffective, yet 95% accurate.  

 

 G mean 

  

𝐺 𝑚𝑒𝑎𝑛 = √𝑇𝑃𝑅 × 𝑇𝑁𝑅 = √
𝑑

𝑑 + 𝑐
×

𝑎

𝑎 + 𝑏
 

 

(8) 

Since 𝑏 and 𝑐 represent the number of incorrectly classified cases, the larger the G mean of 

the confusion matrix, the greater the predictive power of the model.  Note that this is the 

geometric mean of TPR and TNR, a measure recommended by Kubat et al.(122), rather than 

the similarly named G-measure(120), which is the geometric mean of precision and recall, 

and gives similar values to the F measure. 

 

 Cohen’s kappa 

  

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑘𝑎𝑝𝑝𝑎 =

𝑎
𝑡

+
𝑑
𝑡

− (
𝑎 + 𝑏

𝑡
×

𝑎 + 𝑐
𝑡

+
𝑐 + 𝑑

𝑡
×

𝑏 + 𝑑
𝑡

)

1 − (
𝑎 + 𝑏

𝑡
×

𝑎 + 𝑐
𝑡

+
𝑐 + 𝑑

𝑡
×

𝑏 + 𝑑
𝑡

)
 

 

(9) 

 

where 𝑡 = 𝑎 + 𝑏 + 𝑐 + 𝑑.  Cohen’s kappa(123) was designed to measure the agreement 

between two models.  Used in this context the ‘agreement’ is between prediction and 

reality.  It also incorporates chance, i.e. it accounts for class-imbalanced scenarios such as 

this one, where a high agreement on false cases is likely through chance.  It ranges from -1 

to 1, where a value of 1 indicates perfect agreement and a value of -1 indicates perfect 

disagreement.  In the context of a predictive model, the latter case would indicate that all 

cases are being classified oppositely, in which case one could simply flip the class labels and 

achieve a perfect prediction.  The true minimum in terms of predictive power is therefore 0, 

indicating purely random agreement.  There has been some dispute over the usefulness of 

Cohen’s kappa(124, 125), with some believing it to underestimate agreement in many 

cases.  However, it can be accepted that a high Cohen’s kappa value corresponds to high 

agreement. 
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 Matthews Correlation Coefficient (MCC) 

  

𝑀𝐶𝐶 =
𝑎𝑑 − 𝑏𝑐

√(𝑎 + 𝑏)(𝑎 + 𝑐)(𝑑 + 𝑏)(𝑑 + 𝑐)
 

 

(10) 

First developed by Matthews(126), the MCC is considered among the best evaluation 

measures of its kind.  It accounts for class imbalance, like Cohen’s kappa, but is not 

associated with the same underestimation of agreement.  Matthews himself used it for 

comparing predicted and observed secondary protein structure; it has since been used 

widely in the scientific community in many different contexts(127–129).  Like Cohen’s 

kappa, it ranges from -1 to 1, where a value of 1 indicates perfect agreement and a value of 

-1 indicates perfect disagreement.   

 

 Receiver operating characteristic (ROC) 

 

First used during World War II by British radio operators to help discriminate between 

random interference and signals due to approaching German bombers, the receiver 

operating characteristic (ROC) curve has since been applied in many scientific fields with 

great success.  Triballeau et al. (and references therein) provide an excellent introduction to 

the ROC curve method in the context of drug discovery(130). 

 

To produce a ROC curve for a given set of predictions, one must have a numerical value 

associated with each prediction signifying the probability of its positive classification.  In the 

context of RF, this information is available in the form of the proportion of votes cast by 

decision trees in favour of a true classification.  These numbers are readily extracted for 

each predicted case.  At this point, a cut-off value is introduced, above which all cases are 

classified as true.  Clearly, if this value is above the highest proportion of true votes, all 

cases are classified as false.  A confusion matrix can be plotted for this, yielding a TPR of 0 

and a TNR of 1.  The cut-off value is then incrementally lowered until a case is classified as 

true.  A new set of TPR and TNR values can be now be calculated.  The process is then 

repeated until all cases are finally classified as true (TPR = 1, TNR = 0).  Each instance of the 

confusion matrix is then plotted in a graphical space of TPR against FPR (FPR = 1 – TNR), 

yielding the final ROC curve.  An example curve is shown in Figure 1.19. 
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In this space, all curves necessarily begin at the origin and proceed to a final point at (1,1).  

A perfect prediction extends vertically to the point (0,1).  A straight, diagonal line through 

the graph corresponds to random noise, i.e. there is a completely zero-sum trade-off 

between sensitivity and specificity.  As with negative MCC and Cohen’s kappa values, any 

line curving below the diagonal is an anti-predictor; one can flip the class labels and thus 

flip the ROC curve into a ‘positive’ one above the main diagonal.   

 

The predictive power represented by ROC curves can be elegantly quantified by calculating 

the area under the curve (AUC).  A perfect prediction therefore has an AUC of 1, and 

completely random prediction has an AUC of 0.5.  The example model in Figure 1.19 has an 

AUC of approximately 0.8. 

 

 

Figure 1.19: An example ROC curve (red).  A perfect prediction (blue) produces a curve reaching 

(0,1).   
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The other analyses described in this section have utilised only a single confusion matrix 

with a fixed threshold value of 0.5 defining the class of each case (i.e. a majority of RF trees 

needed to classify).  While this can often be a sensible threshold to use, it is not necessarily 

optimal.  The ROC curve, in essence, monitors the changes in the confusion matrix as this 

threshold is dialled from 1 to 0.  A sharp increase in sensitivity indicates a good threshold; 

for the example model plotted in Figure 1.19, the threshold used at (0.2, 0.8) would appear 

optimal.  This type of information is highly informative, and is also captured to an extent by 

the AUC.  In this project, the ROC was used extensively to track the performance of model 

iterations as more data became available. 

 

For all of the discussed measures that consider both classes (precision, TPR and TNR only 

consider one) there is an important caveat: both classes are treated with equal importance.  

In other words, the same penalty applies for misclassifying a true result as a false result.  

Depending on the context of a prediction, this may not be desirable or appropriate.  For 

example, in document retrieval (such as Google searching), one correct hit is all that is 

needed.  If the top result of a search is correct, it does not matter if the next hundred 

results are totally irrelevant.  The user will find what they are looking for and the document 

retrieval can be considered a success. 

 

1.4.8 Allosteric Context 

 

For this project it was important not to lose sight of the overall goal when analysing 

predictive models.  Rather than becoming mired in imperfect statistical measures, it often 

proved more prudent to judge the quality of a prediction by manual, visual inspection.   

Results were often mapped onto a 3D image of the protein, rendering residues predicted as 

true and false in different colours.  The allosteric modulator could also be included for test 

cases where its binding mode and location was already known.  A glance from a trained eye 

at such an image invariably proved enough to estimate the quality of a prediction without 

calculating any evaluation measures.  This is exemplified in Figure 1.20 with UDP-glucose 

dehydrogenase (PDB code: 3PJG), an arbitrarily chosen protein with a known allosteric 

inhibitor.  Two hypothetical predictions are mapped onto the protein and, without applying 

any evaluation measures, it is clear that model B is the stronger predictor of the allosteric 
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site, since only it classified a concentrated patch of residues in the vicinity of the allosteric 

ligand as true. 

 

 

    

 predicted false  orthosteric ligand, superimposed for reference only 

 predicted true  allosteric ligand, superimposed for reference only 

 

Figure 1.20: Two hypothetical predictions, A and B, of allosteric site locations for UDP-glucose 

dehydrogenase are mapped on to the protein.  No evaluation measures are presented for these 

predictions to illustrate that it is clear by eye alone that model B is a significantly stronger predictor 

than model A.   

 

The goal of the model was to provide a medicinal chemist with a site to target: flagging 

every last residue within a pocket as true was not critical, so long as some were highlighted 

and few others in the protein were.  In some cases, a statistically poor prediction could be 

enough to point the chemist to the correct site, for instance, a sole residue being (correctly) 

flagged as true in the entire protein.  Once more using hypothetical predictions mapped on 

to UDP-glucose dehydrogenase, Figure 1.21 demonstrates this scenario where the 

statistically poorer prediction is, at least arguably, the more useful one.   

 

A B 
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 G mean =  0.826  G mean =  0.277 

Cohen’s kappa = 0.192  Cohen’s kappa = 0.138 
MCC = 0.296  MCC = 0.273 

 

     

 predicted false  orthosteric ligand, superimposed for reference only 

 predicted true  allosteric ligand, superimposed for reference only 

 

Figure 1.21: Two hypothetical predictions A and B, of allosteric site locations are presented for the 

same protein.  Model A highlights many residues near the correct site, but also many other areas of 

the protein.  Model B has only selected a single residue and is the statistically weaker prediction, 

though it is arguably more useful in that it unambiguously leads the scientist to the correct site. 

 

In essence, a model can perform well against a battery of statistical measures without 

necessarily performing well when it comes to directing the scientist to an allosteric site, and 

vice versa.  This is simply a reflection of the fact that any statistical measure answers the 

highly specific mathematical question that its equation poses, regardless of what the 

human interpreter would perhaps like them to answer.  However, these statistical 

measures can still serve as useful guides provided they are treated as such, rather than gold 

standards. 

 

A B 
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Figure 1.21 raises another pertinent issue, namely the problem of classifying residues in the 

orthosteric site.  For the purposes of calculating the evaluation measures in Figure 1.21, 

residues in orthosteric sites were deemed to be false.  Consequently, model A was 

statistically penalised for mostly classifying the orthosteric site as true and model B was 

equally enhanced (model A remained statistically superior in spite of this). Had the 

orthosteric site instead been labelled as true, the differences in performances would have 

appeared even starker, though clearly a more accurate picture lies somewhere in between. 

This issue is discussed further below. 

 

1.4.9 Classifying Orthosteric Sites 

 

Throughout this work a binary classifier (true/false) was used to define individual protein 

residues as either allosteric or non-allosteric.  In using a binary classifier, the problem of 

how to handle the residues of an orthosteric site arose.  It was not quite satisfactory to 

classify them either as true – in other words, the same category as allosteric site residues – 

or as false, suggesting that they do not belong to a site at all.  Treating them as true would 

result in RF models training to detect these residues as well as allosteric ones, when it is 

known that they do not have the same properties(131).  Moreover, a predictive model 

could prove statistically strong without returning a single correct allosteric site, so long as it 

could still detect orthosteric sites.  Equally, treating the orthosteric site as false would result 

in overly harsh statistics, since there is a clear difference between a model that highlights 

orthosteric sites and a model that highlights scattered, nonsensical residues corresponding 

to no site at all.  Both choices had their drawbacks, but there remained an advantage to 

keeping the classification problem binary.  Firstly, it allowed for the use of much simpler 

analyses in examining the results, besides which there was no guarantee that approaching 

the problem with three classes would yield an improvement.  On the contrary, RF 

classification models tend to perform better with fewer classes(132). 

 

More importantly than any of the above, one must consider the purpose of a model such as 

this.  In any ‘live’ situation where an allosteric site is being sought for a given protein, one 

would almost certainly have knowledge of the orthosteric site’s location.  Any prediction 

made by a model highlighting residues of an orthosteric site can therefore be safely 
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disregarded irrespective of the predicted classification: it is the one area of a protein that, 

by definition, cannot be allosteric. 

 

The datasets of classification problems comprise two parts, predictors and response.  

Generally, the response is definitively valid and true.  For example, in the context of the Iris 

dataset, there is no ambiguity surrounding the real species of each individual flower.  They 

are known, having been identified manually.  With a known response, one can apply 

machine learning, such as RF, to test the connection between it and the predictors.  A weak 

prediction simply reflects the weak connection of the chosen variables to the response, and 

a strong one reflects the opposite.  However, for this project, part of the work involved 

deciding upon what the response of the dataset should be.  As is discussed in section 2.4.1, 

the chosen method was neither definitive nor flawless.  In analysing the predictions of any 

constructed model, one had to be wary of the quality of the data being fed into it:  if the 

response values of the dataset contained noise, a statistically strong predictive model could 

simply have been a strong predictor of noise.  Equally, a model appearing statistically weak 

could in reality be performing fairly well.  
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1.5 Existing Methods for the Prediction of Allosteric Binding Sites 

 

There is evident value in the ability to predict allosteric sites, and a vast range of such 

methods has been described in recent years.  Generally, methods either treat proteins in 

terms of their sequence or structure.  Sequence-based methods track properties such as 

evolutionary significance of sequence positions in phylogenetic trees(133) or Shannon 

entropy, a theoretical measure of information gain(134).  Aside from MD, there are other 

methods that treat proteins in structural terms, such as the elastic network model 

(ENM)(135), which reduces protein structure to a series of nodes interconnected by 

harmonic springs, and the related normal mode analysis (NMA)(136), which assumes a 

harmonic potential energy landscape in the vicinity of the given structure.  Both of these 

methods offer fast alternatives to the application of a more complex, computationally 

expensive MM-based force field.  A recent review and references therein do a good job of 

capturing the current landscape of predictive methods(137). 

  

Below is more detailed description of a selection of predictive methods that are more 

closely comparable to the work of this project.  Specifically, they share a common starting 

point for a prediction: a ligand-free, PDB-formatted protein structure.   

 

1.5.1 PARS 

 

In 2012 Panjkovich and Daura developed a method for the prediction of allosteric sites in 

proteins based on flexibility(138).  Recently, the authors published a web interface for open 

use of their methodology, named Protein Allosteric and Regulatory Sites (PARS)(139), 

available at http://bioinf.uab.cat/pars. 

 

A set of proteins with known allosteric sites was gathered by the authors. NMA was 

performed on each protein in the apo state, using the results to derive B-factors as an 

estimation of protein flexibility.  This procedure was repeated in the presence of the 

allosteric ligands, and the two sets of B-factors were compared.  The procedure was 

considered to have detected an effect on protein flexibility due to the presence of the 

allosteric ligand if the majority of B-factors were found to be significantly different by a 

Mann-Whitney test. 

http://bioinf.uab.cat/pars
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To perform the same procedure with unknown allosteric sites, proteins were first filtered 

through LIGSITEcsc, a web server designed to detect pockets on proteins surfaces(140).  Up 

to eight candidate pockets were docked with a dummy ligand in turn, calculating B-factors 

for each complex.  Each set of B-factors was then compared to those of the apo protein as 

before. 

 

The authors concede that this methodology relies on LIGSITEcsc to select the correct cavity, 

and that it failed to do this for over a third of their original set of 91 proteins.  Their 

reported success rate of 65% is based on the remainder of the set. 

 

As well as producing the B-factor comparison, the web implementation performs a 

complementary analysis measuring the structural conservation of each pocket across 

protein families.  The rationale for incorporating this stems from earlier work by the group 

which found that structural conservation is prevalent in pockets across protein families – 

though to a lesser extent than orthosteric sites – and could aid in the identification of 

allosteric sites(141).  The results are presented as two scores per candidate pocket: a p-

value from the Mann-Whitney test and a percentage conservation score.  The algorithm 

ranked the real allosteric pocket in the top position in 44% of the test set, and in the top 

three positions in 73% of the test set.    

 

1.5.2 SPACER 

 

In 2011, with the notion of population shift in mind, Mitternacht and Berezovsky proposed 

a method to quantify the coupling of the intrinsic motions of a protein to potential binding 

sites(142, 143).  This procedure was later implemented on web server named SPACER 

(Server for Predicting Allosteric Communication and Effects of Regulation)(144), available at 

http://allostery.bii.a-star.edu.sg/. 

 

Putative binding sites are first located by moving a probe ligand over the protein in a 

course-grained Monte Carlo docking simulation.  Using a geometric measure called local 

closeness(145) to quantify the connectivity of nodes in contact with the probe, the results 

are then clustered to produce a refined list of sites.  Binding leverage, defined as the 

http://allostery.bii.a-star.edu.sg/
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energetic strain experienced by ligand-protein contacts due to the motions of low 

frequency normal modes (determined by NMA), can then be calculated.  Binding leverage is 

intended to quantify the energetic cost of deforming a ligand-bound site: a high binding 

leverage indicates a site highly correlated with the conformational states being analysed – 

in this case low frequency normal modes, which are known to be relevant to allostery(146–

148).  No performance figures were presented for this analysis, since it used only for a 

single example case. 

 

1.5.3 Allosite 

 

In this work(149), descriptors from fpocket(150), a program for the detection and 

characterisation of cavities in proteins, were derived for a set of proteins with allosteric 

sites (fpocket is discussed further in section 2.4.12).  The descriptors were calculated for all 

detected cavities in the set of proteins, classifying each as either an allosteric site or not.  A 

support vector machine (SVM) – an alternative machine learning method to RF – was 

trained to classify data produced by fpocket and thus predict which cavities were allosteric 

sites.  The authors report a success rate of approximately 83% on their test set, and have 

made their model available for use as a web server named Allosite, available at 

http://mdl.shsmu.edu.cn/AST/.  A study by Warmuth et al. utilised SVM in a drug discovery 

context, and their publication contains a short description of the technique(151). 

 

The proteins used with Allosite were taken directly from the Allosteric Database (ASD)(152), 

a database of proteins with known allosteric activity created by the same group.  The ASD is 

discussed further in section 1.6. 

 

Allosite is conceptually the closest to the work carried out in this project, in that it uses a 

machine learning algorithm to predict the location of allosteric sites.  However, there are 

key differences between Allosite and this work.  The full consequences of these differences 

are made clear in Chapters 4 and 5, where this project’s results are presented and 

discussed.  In particular, section 5.8 details the results of a test of Allosite’s performance 

and compares it to the models generated over the course of this project.   

 

http://mdl.shsmu.edu.cn/AST/
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1.5.4 Summary 

 

There are similar concepts involved across the discussed predictive methods.  All involve an 

initial detection of protein cavities/pockets, followed by some quantitative measurement.  

This is then compared either to the same protein’s apo state or to a pre-existing training 

set.  Of these methods, Allosite is most similar to this work since it also uses machine 

learning to class each tested cavity as allosteric or not. 

 

An important distinction between the above methods and this work lies in the treatment of 

the initial protein structures.  With the above methods, no alterations are made to the 

inputted structure, which tends to be, near invariably, a crystal structure.  Certainly, the 

protein structures used to train and test these methods were collections of crystal 

structures originally complexed with allosteric modulators.  While these modulators were 

deleted in silico, no steps were taken to address the perturbations to local protein 

structure.  It is highly likely that these methods were simply detecting this ‘imprint’ left 

behind by the deleted ligand, rather than any underlying signal of an allosteric site.  In any 

situation where a live prediction is made – that is, on a protein where no allosteric site is 

known – no such imprint would be present in the structure, and the model’s performance 

would be hindered.  Figure 1.22A illustrates this concept of ligand imprinting and how it can 

allow predictive models to ‘cheat’ by betraying the position of the allosteric site.  Figure 

1.22B inserts an extra step that is required to correct for this issue. 

 

This work naturally avoided the obstacle of ligand imprinting by working with proteins’ MD 

trajectories, rather than their original crystal structures.   Before any data were derived for 

use in a predictive context, the proteins had been through a thorough minimisation and 

equilibration procedure, as described in section 2.3.   



60 
 

 

 

Figure 1.22: A, a scheme of the generic procedure commonly followed by developers of allosteric 

site-predicting models.  While care is taken to remove allosteric ligands from proteins before using 

them to construct the model, the deforming effect of the ligand’s presence on the surrounding 

protein structure is not removed.  Subsequent models are able to make use of this ‘imprint’ to 

detect the location of the site. B, a scheme of a generic procedure that bypasses this issue; in this 

work the structural deformation of proteins was restored through MD. 
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1.6 Work plan 

 

Before any predictive models and subsequent analysis could take place, a dataset had to be 

constructed.  Proteins with known 3D structures, allosteric sites and orthosteric sites had to 

be collected.  Repositories such as the PDB and ASD, briefly discussed below, were to be 

used for this task.   

 

The ASD is a database of proteins with known allosteric activity(152).  Initially it appeared 

to be an ideal resource for constructing this project’s dataset.  However, the ASD’s criteria 

for the inclusion of a protein are far less stringent than those for this project.  Gaps in data 

entries are tolerated and filled in as the database is updated.  This is rightly so, since the 

ASD is intended to be a comprehensive database of proteins with allosteric properties, 

annotating entries with a variety of contextual information such as known modulators, 

binding affinities, physicochemical properties, and therapeutic areas and related biological 

data.  However, in many cases the gaps included a confirmed 3D protein structure or the 

location of the allosteric binding site.  This prevented the straightforward use of the entire 

ASD for this project.  Nevertheless, it could still be used as a starting point. 

 

After collecting a set of suitable proteins – a process that would have to ultimately be 

performed manually – MD would be performed on each.  The generated trajectories would 

then be subjected to a succession of analyses (described in detail in the Methods section), 

each quantifying some property of the protein on a per-residue basis.  These would be 

formatted akin to the Iris dataset, which is compatible with RF.  The table described here is 

exemplified in Table 1.3, which is of equivalent structure to that of the Iris dataset in Table 

1.1. 
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Residue Analysis 1 Analysis 2 Analysis 𝑚 Allosteric 

Tyrosine 1.1 100.4 1.69 False 

Leucine 1.8 115.8 1.21 False 

Leucine 3.2 40.7 0.87 False 

Phenylalanine 2.1 22.3 0.17 True 

Glycine 4.1 42.2 2.55 False 

Residue 𝑛 1.7 0.0 1.94 True 

 

Table 1.3: An example of the structure of the 𝑚 x 𝑛 dataset created over the course of the project.  

Here, the cases were residues of proteins with known allosteric sites; the descriptors were the 

outputs of the various analyses performed on the proteins’ MD trajectories; the response was a 

true/false assignment denoting whether the residue was part of the allosteric site or not. 

 

With a dataset constructed, RF models could be trained to predict which residues were part 

of an allosteric site, given the corresponding descriptors.  This procedure would inevitably 

require successive rounds of optimisation, using previous results to direct the construction 

of future models.  Crucially, none of the descriptors could require knowledge of the 

location of an allosteric site, allowing them to be calculated in an identical manner for 

proteins where the allosteric site was unknown. 
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2. Methods 
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2.1 Protein Selection 

 

A dataset of proteins with known allosteric modulator sites was compiled.  These were 

obtained from the PDB, ASD and ChemBL: all freely available online databases.  For a 

protein to be included in the set, an unequivocal definition of its allosteric- and orthosteric 

binding sites was required.  An available, experimentally solved crystal structure of the 

allosteric modulator-protein complex was necessary, as was an equivalent complex with 

the natural substrate or another orthosteric ligand.  In some cases a ternary complex of the 

protein, substrate and allosteric modulator were available; this was also acceptable and 

could be used to define both binding sites.  Though it may appear obvious, experimental 

evidence of activity-modulating behaviour on the part of the allosteric molecule was also 

required.  As is discussed in this section, cases arose that appeared to meet these 

conditions at first glance, but had to be ruled out after closer inspection. 

 

2.1.1 Mevalonate Kinase 

 

The above criteria proved impossible to translate into an automated filter; instead, simple 

text searches were used to initially filter the databases before manually selecting proteins 

for inclusion.  Manual inspection proved to be important, as exemplified with the case of 

mevalonate kinase from s. pneumoniae.  Andreassi et al. published a crystal structure(153) 

of the kinase bound to diphosphomevalonate (DPM), a known allosteric inhibitor of 

mevalonate kinase (PDB code: 2OI2).  The study found that, despite it displaying the 

behaviour of an allosteric inhibitor in kinetic studies, DPM bound to the orthosteric site 

under the crystallisation conditions employed.  The crystal structure, though it could indeed 

be described as a complex of the protein and a non-competitive inhibitor, revealed no 

allosteric binding site, and so was of no use to this project.  This could potentially be picked 

up by an automated filter.  Indeed, it is listed in the ASD and was included in the dataset 

used to construct the Allosite model. 
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2.1.2 Focal Adhesion Kinase 

 

In some cases only a complex of a different isoform was available with an orthosteric 

ligand.  As the orthosteric complex was required only to assign an approximate location of 

the site, this was considered adequate so long as there was a high degree of sequence 

identity and structural overlap between the two isoforms.  One example of this is focal 

adhesion kinase (FAK).  An allosteric site is known for the Homo sapiens isoform (PDB code: 

4EBV), but, at the time of writing, the only complex available with an orthosteric ligand was 

from Gallus gallus (PDB code: 2J0L).  However, they share a sequence identity of 96% and 

the RMSD resulting from structural superimposition was 2.27 Å (Figure 2.1).  It was deemed 

acceptable to include the Homo sapiens isoform in the dataset, using the ligand from the 

Gallus gallus isoform to define the orthosteric site. 

 

Figure 2.1: The superimposed images of Homo sapiens (purple) and Gallus gallus (yellow) isoforms 

of FAK in ribbon form, including respective ligands shown in stick form.  With little discernible 

difference in structure at the orthosteric site and an overall sequence identity of 96% and a RMSD 

of 2.27 Å, it was considered appropriate to use the Gallus gallus ligand to define the orthosteric site 

of the Homo sapiens isoform.  
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2.1.3 AMP-Activated Protein Kinase 

 

Another protein excluded after close inspection was AMP-activated protein kinase (AMPK) 

(PDB code: 2V92).  The protein is critical in maintaining energetic homeostasis by 

controlling the relative concentrations of AMP and ATP in the cell.  In mammals it contains 

multiple adenyl-binding sites, which are competed for by AMP and ATP(154).  By 

responding to the relative concentrations of AMP and ATP, AMPK can trigger catabolic and 

anabolic cascades as required.  Of importance to this project, there is a further site that 

AMP binds to with very high affinity, increasing the activity of the protein, thus defining 

AMP as an allosteric activator.  However, the allosteric mechanism is believed to operate 

via a rearrangement of quaternary structure triggered by the allosteric binding event; this 

in turn inhibits the dephosphorylation of key residues which must remain phosphorylated 

to activate the protein(155).  This means that the allosteric- and orthosteric sites are not 

coupled directly, but rather through a covalent bond-forming phosphorylation event that 

cannot be modelled with classical MD; for this reason, it was excluded from the dataset.  It 

may be considered appropriate to include AMPK in other allosteric datasets, depending on 

the context of their use.  For reference, this protein was included in the Allosite dataset. 

 

2.1.4 Cdc34 

 

In 2011 Ceccarelli et al. published the solved X-ray crystal structure of human Cdc34(156), 

an enzyme in the ubiquitin-proteasome system responsible for conjugating ubiquitin to 

substrates, bound to an allosteric inhibitor (PDB code: 3RZ3).  Indeed, the inhibitor bound 

at a site 19 Å distal from the catalytic Cys93 residue and had a marked effect on Cdc34 

activity.  However, the group later published the Cdc34/ubiquitin/inhibitor complex (PDB 

code: 4MDK), where it was revealed that the putative allosteric inhibitor had been trapping 

Cdc34 and ubiquitin in an inactive conformation, with ubiquitin binding directly at the 

allosteric ligand’s location(157).  This meant that the ligand was not exerting its inhibitory 

effect at a distance but rather behaving much like a cofactor, facilitating the binding of 

ubiquitin at its own location.  Depending on the breadth of one’s definition, this could be 

considered a subtype of allostery, but the mechanism was distinct from the other proteins 

investigated, and was thus considered inappropriate to allow it into the dataset.  For 

reference, this protein was also included in the Allosite dataset.  Like the case of AMPK 
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preceding this, it depends on one’s definition of allostery whether this case ought to be 

discounted or not.   

 

2.1.5 AMPA Receptor Subunit GluA2 

 

Occasionally, mutations are deliberately made to proteins to help facilitate 

crystallisation(158) (PDB code: 1U7T).  Whilst this makes the job of the crystallographer 

easier, the full effect of mutation(s) on the overall conformation of the protein is not always 

known.  For this reason, mutated proteins were excluded from the dataset, unless there 

was evidence that the mutant retained both its activity and its responsiveness to the 

allosteric modulator.  This was the case with the ligand binding domain of GluA2, an AMPA 

receptor subunit(159) (PDB code: 4U4X), which was included in the dataset. 

 

2.1.6 Glycogen Phosphorylase 

 

Two different forms of glycogen phosphorylase were identified that could potentially be 

included in the dataset.  These proteins were liver glycogen phosphorylase A from Homo 

sapiens (PDB code: 1FA9) and muscle glycogen phosphorylase B from Oryctolagus cuniculus 

(PDB code: 1H5U).  Though 87% identical in sequence, the structures used contained 

distinct allosteric sites.  1FA9 contained the native AMP as its allosteric ligand, and 1H5U 

instead contained a novel allosteric inhibitor.  The two structures are superimposed in 

Figure 2.2 for reference.   

 

By virtue of being similar isoforms, it is possible that these proteins, in reality, share 

allosteric sites.  This is already known to be true for AMP, which binds to both isoforms at 

the same site and modulates activity; in fact, it is has a greater effect in the muscle isoform 

than it does in the liver isoform where it has been crystallised(160).  However, since the 

two sites are distinct, one can be treated as the ‘1FA9 site’ and the other as the ‘1H5U site.’  

By treating the proteins in this way – that is, as entirely unrelated proteins – predictive 

models would not receive any artificial assistance in identifying either site as a result of the 

other being included in the dataset.   
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Figure 2.2: The superimposed images of two glycogen phosphorylase isoforms.  Liver glycogen 

phosphorylase A (PDB code: 1FA9) is shown as a yellow ribbon, with its allosteric ligand in red.  

Muscle glycogen phosphorylase B (PDB code: 1H5U) is shown as a purple ribbon with its allosteric 

ligand in turquoise.  Though the structures were 87% similar, neither protein’s presence in the 

dataset would be able to artificially aid a model in detecting the other’s allosteric site. 

  



69 
 

2.2 Sequence Alignment 

 

In order to examine the diversity of the chosen set of proteins, pairwise sequence 

alignments of all studied proteins were performed.  In order to achieve this, the ClustalW 

algorithm(161) was implemented in Pipeline Pilot with the aid of Dr Murray Robertson.  The 

created protocol performed all alignments and produced a percentage-identity matrix: 

these values were used to render the plot presented in section 4.2.1. 

 

2.3 Molecular Dynamics 

 

Protein structures were downloaded as .pdb files from the PDB.  Structures were prepared 

for MD by first removing irrelevant ions and other artefacts of the crystallisation process, 

e.g. crystallisation buffer solute.  Where residues at the N- and C-termini of a chain were 

missing, the first/last present residue was capped with an acetyl/N-methyl group, 

respectively, to block the introduction of artificial ionic charges.  Small missing loops in the 

sequence were filled in by selecting the highest scoring pose produced by the Loop 

Refinement protocol within Discovery Studio (default settings).  To prevent the introduction 

of larger artificial errors, large missing loops (>20 residues in length) were not filled in, 

instead capping the loop termini.  Water molecules present in the crystal were retained if 

they were at the protein surface or buried beneath it. 

 

The AMBER 12 suite(72) was used to carry out all MD simulations.  Using tleap, the 

command line version of the LEaP module within AMBER, the ff12SB forcefield was applied 

to all protein atoms.  These were solvated in a 6 Å deep octahedral shell of TIP3P water 

molecules(162) before neutralising the net charge of the system with the appropriate 

number of Na+ or Cl- ions.  Further Na+ and Cl- ions were added to bring the system to a salt 

concentration of 150 mM to approximate cytosolic ion content(163).  Periodic boundary 

conditions were applied, with the PME(164) method used to calculate long-range 

electrostatic interaction at a cutoff distance of 10 Å.  All bonds involving hydrogen atoms 

were constrained to their equilibrium lengths with the SHAKE algorithm(88), allowing the 

stable use of 2 fs time-steps in all simulations. 

 



70 
 

A 3-stage minimisation was carried out, each consisting of 50 000 steps, the first 250 of 

which used the steepest-descent algorithm and the rest conjugate gradient.  The first stage 

allowed free movement only for hydrogens, water and ions; a harmonic restraining force of 

100 kcal mol-1 Å-2 was applied to all other atoms.  The second stage lifted the restraint from 

protein sidechain atoms and the third allowed the complete, unrestrained movement of all 

atoms.   

 

The minimised system was heated in 4 mini-stages.  Maintaining a constant volume, the 

first stage heated the system to 100 K over 20 ps; the second stage heated up to 200 K over 

40 ps and the third to 310 K over 80 ps.  The system was then switched to constant 

pressure and equilibrated for a further 80 ps at 310 K.  The Langevin thermostat(84) was 

used throughout the heating process. 

 

As an equilibration measure, a further 5 ns of dynamics was carried out on the system 

before switching over to the Berendsen thermostat(85) for the production phase.  Systems 

were simulated for at least 50 ns, saving coordinates every 2500 steps.  The trajectories of 

the first 50 ns of Berendsen dynamics were used in any subsequent analyses (10 000 saved 

frames). 
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2.4 Trajectory Analyses 

 

The following analyses were performed on every protein for which a 50 ns trajectory of 

production MD was generated.  The resulting data were used to populate a single 

spreadsheet to be used as input for machine learning.  Many of the analyses produced a 

measurement for each residue per trajectory frame.  In such cases the numbers were 

condensed into single values such as the mean, median and standard deviation. 

 

No one analysis was intended to be a ‘silver bullet’ capable of identifying all allosteric sites 

for all proteins.  All that was required of each analysis was the characterisation of some 

aspect of protein residues in the context of their environments; in fact, it was expected that 

some metrics would ultimately prove useless for allosteric site prediction. 

 

In addition, not all residues in a site defined by the method used in this work were 

necessarily relevant to binding or activity.  This, as well as no one analysis being ideal for 

the identification of allosterically important residues, meant that there was little to gain 

from manually inspecting every analytical result of every protein in the hope of detecting 

clear, overall trends.  Due to the sheer volume of data and the coarseness associated with 

any one analytical result, one would inevitably miss many important subtleties, and over-fit 

what little was observed.  It was better simply to understand what each analysis was 

capable of revealing, using RF to sift through the data in detail and detect trends emerging 

from it. 

 

Where appropriate, a plot of the output of each analysis for pyruvate dehydrogenase 

kinase 2 (PDB code: 2BU2) – a protein chosen arbitrarily from the constructed dataset – is 

included as part of its description. 

 

2.4.1 Allosteric and Orthosteric Site Definition 

 

There is no standard definition of a binding site.  Clearly the concept of a binding site refers 

to the region of the protein that is involved in the interaction between it and a ligand, but 

for this work any definition had to be resolvable to the level of individual residues, i.e. every 

residue of a protein had to be discretely classed as ‘in’ or ‘out’ of a site.  The method also 
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had to be consistent, as it was to be applied to as large and as diverse an array of proteins 

as possible.  The chosen method satisfied these criteria, though was by no means flawless; 

in all likelihood, some irrelevant residues will have been classed as part of sites, and some 

possibly important residues will have been left out. 

 

For each protein, a selection sphere was applied to every atom of the orthosteric and 

allosteric ligands.  Any residue residing wholly or partially within the spheres was classed as 

part of the relevant site.  In cases where a residue was within both sites, the allosteric 

classification was given priority.  This definition procedure is illustrated in Figure 2.3.   

 

The classification of residues as part of an allosteric site could not be achieved in this way 

for proteins with no known allosteric site; this is the variable that RF models would use as a 

response.  
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Figure 2.3: An illustration of the site definition process.  A, the crystal structure of a ligand in its 

binding site.  B, a radius is applied to every atom of the ligand.  C, the radii are extended to the 

desired length – in this case 7 Å.  D, all atoms located within the radii are selected.  E, the radii are 

removed for clarity.  F, the selection is extended to any partially-selected residues; these residues 

are defined as being part of the binding site. 

  

A B 

C D 

E F 
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2.4.2 Percent-of-Maximum Distance to the Orthosteric Site 

 

For each protein, the furthest alpha carbon atom from the orthosteric site was determined, 

defining the ‘site’ as the geometric centre of all residues previously classed as part of the 

site.  The distances from the orthosteric site to all alpha carbons in the protein were then 

determined and normalised to determine the percent-of-maximum (POM) distance.  These 

measures were produced with a custom Python script. 

 

The reasoning behind this was to uniformly quantify the distance between residues and the 

orthosteric site: perhaps a trend in the distance between allosteric and orthosteric sites 

would emerge.  No significant trend was observed in this work, though it certainly worth 

tracking this information in the future if the set of proteins analysed is expanded upon. 

 

2.4.3 Hydrophobicity Score 

 

The hydrophobicity score (HS) is a simple constant assigned to each residue based on its 

chemical identity.  These values, originally generated by Kyte and Doolittle(165), do not 

change depending on the specific environment of an individual residue.  However, they are 

based on the averaged physicochemical properties of each amino acid side-chain across 

proteins.  From a computational perspective, these data are similar to residue names in 

that they remain constant for each amino acid regardless of its environment, though 

residue names are treated as completely independent categorical data (i.e. with no relation 

to one another), whilst the HS are numerical data.  This allows a machine learning algorithm 

to relate, for example, valine, with a HS of 4.2, more closely to leucine (HS = 3.8) than lysine 

(HS = -3.9).  Table 2.1 lists the complete set of HS data used for this project. 
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Residue 
Hydrophob. 

Score 
Residue 

Hydrophob. 
Score 

ALA 1.8 LEU 3.8 

ARG -4.5 LYS -3.9 

ASN -3.5 MET 1.9 

ASP -3.5 PHE 2.8 

CYS 2.5 PRO -1.6 

GLN -3.5 SER -0.8 

GLU -3.5 THR -0.7 

GLY -0.4 TRP -0.9 

HIS -3.2 TYR -1.3 

ILE 4.5 VAL 4.2 

 

Table 2.1: The hydrophobicity scores used for each amino acid. 

2.4.4 Mass-Weighted Residue Fluctuation 

 

The average structure of the trajectory was calculated then energy-minimised to produce a 

representative conformation of the protein over its trajectory.  The root mean square 

fluctuation (RMSF) of each residue’s centre of mass from its position in the minimised 

average structure was calculated.  Calculations and minimisations were performed using 

the ptraj and sander modules within AMBER, respectively.  The minimised average 

structure produced here was also used for all subsequent analyses referring to such a 

structure.  A typical output of the analysis is shown in Figure 2.4, with the residues of the 

allosteric site highlighted.  Greater values correspond to more flexible regions of the 

protein, which explains a common artefact of this analysis: chain terminals exhibit 

extremely large fluctuations.  This is simply because chain terminals are only chemically 

tethered at one end and so are free to make large movements with no great energetic 

penalty; for the same reason these residues tend not to be part of any binding site (though 

they sometimes are). 
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Figure 2.4: The residual fluctuation values for pyruvate dehydrogenase kinase 2.  The residues of 

the allosteric site are marked with red crosses.  As well as the terminals, there are clear segments 

within the protein that display large fluctuations, indicating the presence of flexible loops. 

 

While it is tempting to focus merely on areas of large fluctuation such as residues 164-173, 

it is important to examine the whole spread of data; for example, areas of low fluctuation 

generally map to areas of defined secondary structure.  For this particular protein, the 

allosteric site comprises mainly α-helices, which could explain why most of the residues 

exhibited a low fluctuation. Of course, it may well be anomalies in such patterns – for 

example, a residue within an α-helix with a high fluctuation, despite its ordered 

environment – that are indicative of something important to allostery. 

 

2.4.5 Correlated Motion 

 

Correlated motion tracks the movement of each residue in relation to every other residue.  

For each residue, the vectors representing its movements from frame to frame are 

determined.  A correlation analysis is then performed on each pair of vectors, resulting in a 

square matrix of values.  This procedure can be performed within the ptraj module of 

AMBER.  To reduce the matrix to single values per residue, the values were averaged, 

yielding an overall value of generic correlated motion. 



77 
 

 

A further descriptor was derived by averaging a residue’s correlations only with the 

residues of the orthosteric site.  This produced an average value of correlation to the 

orthosteric site, which was perhaps more relevant than correlation to the protein as a 

whole. 

 

The above correlations of motion were also performed for the main chain atoms of each 

residue only.  The rationale for this was that the averaged motions of a whole residue 

would generally be dominated by the motions of the sidechain; in order to investigate main 

chain movements in any way these had to be filtered out.  This resulted in a total of four 

descriptors of various types of correlated motion. 

 

2.4.6 Solvent-Accessible Surface Area 

 

The solvent-accessible surface area (SASA) was calculated using Hubbard and Thornton’s 

naccess program(166) (version 2.1.1).  The program operates by applying a VDW radius to 

the coordinates of each atom in the protein and ‘rolling’ a probe sphere of a specified 

radius – in this case 1.4 Å, the VDW radius of water – over the surface.  The total area of 

each residue accessed by the probe is logged and outputted.  The SASA of each residue for 

every frame of a trajectory was calculated; the total SASA was also split into polar and 

apolar components.   All output data was then summarised, taking a minimum, maximum, 

mean (Figure 2.5), median and standard deviation value for each residue over the course of 

the trajectory. 
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Figure 2.5: The mean solvent-accessible surface areas (SASA) for pyruvate dehydrogenase kinase 2.  

The residues of the allosteric site are marked with red crosses.  Analogous plots could be produced 

for the other summary values. 

 

From Figure 2.5 it can be seen that the vast majority of allosteric residues had SASA values 

of less than 120 Å2 for the example protein, with some approaching 0 Å2 (i.e. a buried 

residue).  This trend can be rationalised: since a ligand tends to fit into a concave pocket of 

a protein, one would expect the majority of residues within the pocket to exhibit a middle-

to-low accessible surface area.  Of course, this is a broad and generalising observation; as 

discussed earlier, it is more appropriate to leave the data processing to RF. 

  

This analysis is directly affected by the chemical identity of the residues being analysed.  

Clearly, residues with large side-chains such as tryptophan, arginine and tyrosine will have a 

larger SASA than an equivalently-exposed glycine or alanine.   

 

2.4.7 Hitting Time and Commute Time 

 

Hitting times and commute times are measurements with origins in information 

theory(167), measuring the number of time steps taken to send information from one point 

to another.  In 2007, Chennubhotla and Bahar related these communicative properties to 

the equilibrium fluctuations of residues on proteins(168).  In this context, the hitting time 
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(𝑗,) is defined as the expected number of arbitrary time steps it takes to send information 

from residue 𝑖 to residue 𝑗.  The commute time (𝑖,) incorporates the ‘return journey’ of the 

information, defined as the sum of (𝑖,) and (𝑗,).  These two may not be equal in value, thus 

hitting time is directional in nature while commute time is not: 

  

𝐶(𝑖, 𝑗) = 𝐻(𝑖, 𝑗) + 𝐻(𝑗, 𝑖) = 𝐶(𝑗, 𝑖) 

 

(11) 

The study found that highly functional residues, including catalytic residues and secondary 

structure elements, displayed shorter hitting times, i.e. a fast relay of information.  

According to the authors, the commute times are indicative of more generic properties of 

signal transduction.  For this methodology a single protein structure is modelled as an 

elastic network - the minimised average structure of a trajectory was used in this work. 

 

Determining the hitting and commute times first required the calculation of the interaction 

strength, or affinity for each pair of residue 𝑖 and 𝑗.  This was defined as: 

  

𝑎𝑖𝑗 =  
𝑁𝑖𝑗

√𝑁𝑖𝑁𝑗

 

 

(12) 

where 𝑁ij is the total number of contacts made between atoms in residues 𝑖 and 𝑗 based on 

a cutoff distance of 4 Å, and 𝑁i and 𝑁j are the total number of heavy atoms in residues 𝑖 

and 𝑗, respectively.  Based on 𝑎ij the local interaction density 𝑑 for each residue 𝑗 was 

defined as: 

  

𝑑j =  ∑ 𝑎𝑖𝑗

𝑛

𝑖=1

 

 

(13) 

From the populated affinity matrix 𝐴 = {𝑎ij} and degree matrix 𝐷 = diag{𝑑j} the stiffness or 

Kirchhoff matrix 𝛤 was calculated by: 

  

𝛤 =  𝐷 − 𝐴 

 

(14) 

The hitting time is given by: 

  

𝐻(𝑗, 𝑖) =  ∑(𝛤𝑘𝑖
−1 − 𝛤𝑘𝑗

−1 − 𝛤𝑗𝑖
−1 + 𝛤𝑗𝑗

−1)𝑑𝑘

𝑛

𝑘=1

 

 

(15) 
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while commute time is given by: 

  

𝐶(𝑖, 𝑗) =  (𝛤𝑖𝑖
−1 + 𝛤𝑗𝑗

−1 − 2𝛤𝑖𝑗
−1) ∑ 𝑑𝑘

𝑛

𝑘=1

 

 

(16) 

Full derivations of these expressions can be found in the original paper(168).  The mean 

hit/commute times for each row of the outputted matrices, <(𝑗,𝑖)> and <𝐶(𝑖,𝑗)> 

respectively, yielded a single, overall measure for each residue.  These values are presented 

for an example protein below in Figure 2.6, with the residues of the allosteric site marked. 

 

 

Figure 2.6: The hitting and commute times for each residue of pyruvate dehydrogenase kinase 2.  

The residues of the allosteric site are marked with red crosses. 

 

The ratio of hitting time and commute time was also taken for each residue (Figure 2.7).  

These numbers were taken forward with the raw numbers as a means of exposing relatively 

short hitting times, even in residues with longer commute times. 
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Figure 2.7: The ratio of hitting times and commute times for each residue of pyruvate 

dehydrogenase kinase 2.  The residues of the allosteric site are marked with red crosses.  This plot 

would be a horizontal line if the graphs in Figure 2.6Error! Reference source not found. were 

roportional; evidently, residues exhibit hitting times of differing length relative to their commute 

times. 

 

𝐴 and 𝐷 matrices were generated using a custom Perl script; the calculation of 𝛤 and 

subsequent values were performed in MATLAB using a modified script.  The original Perl 

and MATLAB scripts were written by Dr Nahoum Anthony. 

 

2.4.8 Correlated Energies 

 

Introduced by Erman(169), this method relates fluctuations in energy of the surroundings 

of the protein to the fluctuations of the residue positions within it.  It was observed that 

spatial energy exchange was anisotropic, with certain residues behaving more responsively 

to incoming energy than others.  The study was able to identify so-called ‘energy gates’ – 

residues with a high tendency to propagate received energy throughout the protein.  As 

with Chennubhotla and Bahar’s hit/commute time analysis, a single protein structure 

modelled as an elastic network is required; the minimised average structure of a trajectory 

was used once more. 
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The procedure for computing the energy correlation of a protein’s residues required the 

use of a Kirchhoff matrix 𝛤 derived in the same manner as the hit/commute time 

methodology (Equations 12-14) though a cutoff distance of 7 Å was used in defining the 

affinity matrix 𝐴 instead of 4 Å.  At a fixed temperature, the correlation of energy 

fluctuations between a pair of residues i and j is proportional to the following: 

  

    2 ((𝛤𝑖𝑘
−1)

2
+ (𝛤𝑖𝑙

−1)
2

+ (𝛤𝑗𝑘
−1)

2
+ (𝛤𝑗𝑙

−1)
2

)

+ 𝛤𝑖𝑖
−1𝛤𝑘𝑘

−1 +  𝛤𝑖𝑖
−1𝛤𝑙𝑙

−1 + 𝛤𝑗𝑗
−1𝛤𝑘𝑘

−1 +  𝛤𝑗𝑗
−1𝛤𝑙𝑙

−1

− 4(𝛤𝑖𝑙
−1𝛤𝑖𝑘

−1 + 𝛤𝑗𝑙
−1𝛤𝑗𝑘

−1 + 𝛤𝑖𝑘
−1𝛤𝑗𝑘

−1 + 2𝛤𝑖𝑙
−1𝛤𝑗𝑙

−1)

− 2(𝛤𝑖𝑖
−1𝛤𝑘𝑙

−1 + 𝛤𝑗𝑗
−1𝛤𝑘𝑙

−1 + 𝛤𝑘𝑘
−1𝛤𝑖𝑗

−1 + 𝛤𝑙𝑙
−1𝛤𝑖𝑗

−1)

+ 4(𝛤𝑖𝑗
−1𝛤𝑘𝑙

−1 + 𝛤𝑖𝑘
−1𝛤𝑗𝑙

−1 + 𝛤𝑖𝑙
−1𝛤𝑗𝑘

−1) 

 

(17) 

For the full derivation of this equation, the reader is referred to Erman’s original 

paper(169).  Summation of each row of the outputted matrix yielded the overall energetic 

interaction of residue i with the rest of the protein; these were the final numbers taken 

from this analysis.  As with the hit/commute times, 𝐴 and 𝐷 matrices were generated using 

a custom Perl script (written by Dr Nahoum Anthony) and the final calculations were 

implemented in MATLAB.  Figure 2.8 shows the results of this analysis for pyruvate 

dehydrogenase kinase 2.   
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Figure 2.8: The correlated energies of each residue of pyruvate dehydrogenase kinase 2.  The 

residues of the allosteric site are marked with red crosses.  Residues more highly correlated with the 

rest are involved in the propagation of energy throughout the protein and, in theory, more likely to 

be involved in allostery.  

 

2.4.9 Dihedral Angle Analysis 

 

This analysis examined the repeating main-chain dihedral angles in a protein.  It was 

developed as part of this project and is described in detail in Chapter 3.  The final outputs of 

the analysis were of the standard form: a single value per residue.  Four such measures 

were produced, monitoring various aspects of the conformational behaviour of the 

residues. 

 

2.4.10 Simple Intrasequence Differences 

 

Developed by Pritchard et al.(170), a Simple Intrasequence Differences (SID) analysis yields 

a number of metrics based on the surroundings of a residue.  These often provide some 

insight on the nature of the protein fold the residue is part of.  The algorithm proceeds 

through the sequence’s alpha carbons, defining a 7 Å sphere at each.  All other residues 

whose alpha carbons reside within the sphere are clustered.  The cluster is then scored in 

multiple ways before moving to the next residue; the scoring methods used were as 

follows: 

 

 Count: a simple count of the cluster population. This information gives some 

indication of how crowded the residue’s environment is.  In the context of 

binding site prediction, it may be that residues within ideal pockets will likely 

have a middling Count score: too low would suggest that the residue is exposed 

on a flat or convex surface and too high would suggest that the residue is 

buried. 

 

 Strands: similarly, the number of non-consecutive segments of the sequence 

within the cluster is counted. 
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 Highest – lowest (HL): this score subtracts the lowest sequence number in the 

cluster from the highest in the cluster.  A high HL scores is indicative of two or 

more parts of the polypeptide chain, distant in terms of primary sequence, 

folding into the same 3-D space. 

 

 Greatest gap (GG):  here, the cluster members are ordered by sequence 

number.  The difference between each consecutive residue number is then 

calculated, the largest of which is retained as the GG score.  A GG score of 1 

implies that only one continuous segment of residues was in the cluster.  The 

highest GG scores are obtained when exactly 2 chain segments occupy the 

cluster; further chain segments bring the GG score down. 

 

 Differential (DIFF): where there is ambiguity in the GG, it can be removed by 

subtracting it from the cluster’s HL; this is the DIFF score.  GG and HL will be 

similar in value when 2 chain segments are present in the cluster.  Further 

segments will bring down the value of GG but not HL, so between all of these 

values a good level of insight into the local topology of a residue can be 

deduced. 

 

This analysis operates on a single protein structure, and is sufficiently quick that it was 

feasible to analyse entire trajectories, generating SID scores per residue per frame.  

Minima, maxima, means, medians and standard deviations value were taken as single 

summary values for each trajectory.  To differentiate between other differences in residues’ 

spreads of SID scores, the range of scores was taken (i.e. maximum – minimum).  This range 

was also divided by the count of discrete scores.  Finally, the absolute difference between 

the mean and median were taken. 

 

2.4.11 Normalised SID 

 

The above SID data were normalised from 0-1 for each protein, allowing an even 

comparison between proteins of different sizes.  For instance, a 250 residue protein has a 

maximum theoretical HL score of 249 (if both terminals are within 7 Å of each other) while 
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a 1000 residue protein could routinely achieve scores 3 times as large, and has a theoretical 

maximum of 999.  Independently normalising the two proteins’ scores would give a 

maximum value of 1 to the first case and values of 1 or less to the latter, removing the skew 

caused by significantly different protein sizes. 

 

However, there are also drawbacks to this approach.  A GG score of 1 has the identical 

implication regardless of protein size: that only a single, continuous chain fragment is 

present in the cluster.  Normalising a protein’s GG scores would change the values to a 

proportion of the maximum, which, as mentioned above, vary from protein to protein 

according to sequence length.  Thus, while there is unique information represented in both 

the raw and normalised scores, there is also unique noise.  However, this did not pose a 

major problem for this work due the way RF naturally handled noisy data. 

 

2.4.12 fpocket 

 

The fpocket program(150) was written to identify cavities on the surfaces of proteins.  It 

operates by first performing Voronoi tessellation on the protein.  At each Voronoi vertex, a 

sphere can be drawn to fill the empty space between atoms.  These spheres, termed alpha 

spheres, are then filtered and clustered, resulting in coherent pockets.  Figure 2.9 shows 

the output structure of the pocket-finding algorithm performed on pyruvate 

dehydrogenase kinase 2 with default settings.  Based on properties of the alpha sphere 

clusters, such as the number of them in the pocket, the sphere radii and density, a host of 

metrics can be calculated to characterise each pocket.  Some chemoinformatic descriptors 

can also be determined by examining the atoms around each pocket, such as 

hydrophobicity and charge.  In total, 20 descriptors were generated by fpocket. 
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Figure 2.9: The output of the pocket-finding portion of the fpocket analysis performed on pyruvate 

dehydrogenase kinase 2.  The alpha spheres can be seen filling in the cavities of the protein surface. 

 

A complication arose with the use of this program in that the descriptors characterises 

entire pockets rather than individual residues.  A post-processing script was written to 

handle this.  Generally, all residues were assigned the scores of the pocket to which they 

belonged.  In cases where they belonged to more than one pocket – i.e. where one side of a 

residue faces one pocket and the other side faces another – the residue received the scores 

of the pocket with the largest volume.  The pocket volume was one of the descriptors 

calculated by fpocket and so was retrievable without any calculations.  

 

The fpocket analysis was performed on the minimised average structure of each trajectory.  

However, it is worth noting that the developers added a capability for fpocket to analyse 

entire trajectories, frame at a time. 
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This extension, named mdpocket, was tested extensively.  It was found that the code was 

unable to properly release memory as it progressed from frame to frame, and so could not 

analyse a complete trajectory before running out memory and crashing.  Several 

workarounds were devised, including parallelising fractions of trajectories across a HPC 

facility.  Ultimately, the results proved unreliable and could not be used.  This is mentioned 

because, if mdpocket were to be developed further, the data it generated could prove very 

powerful.  The authors were contacted; they are aware of issues with mdpocket and 

development is ongoing. 

 

2.4.13 DelPhi 

 

The DelPhi program(171, 172) is a method for calculating the distribution of electrostatic 

potential across a molecule’s surface.  It is included in Discovery Studio, a piece of software 

heavily used for preparation and visualisation of protein structures in this project.  In its 

packaged form, the algorithm efficiently solves the PB equation by a grid-based method.  It 

returns a distinct potential for each residue of the protein; this is precisely the format 

required for inclusion in the dataset.  The execution time was of the order of minutes per 

structure, so the calculation could not be extended to every frame of a trajectory.  Instead, 

potentials were calculated once for the minimised average structure of each trajectory.  

Figure 2.10 shows the result of the DelPhi analysis for pyruvate dehydrogenase kinase 2. 

 

As stated previously, it has been found that allosteric ligands tends to be less polar than 

orthosteric ligands(54).  Results from this project presented in section 4.2 complement this 

by showing allosteric sites to also be less polar than orthosteric sites.  This is rationale 

enough to include a variable based on electrostatic potential; however, such a variable 

ought to be utilised even in the absence of a working theory, since it describes a 

fundamental aspect of all molecules that surely affects allosteric behaviour. 
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Figure 2.10: The residue potentials calculated by the DelPhi analysis for pyruvate dehydrogenase 

kinase 2.  The residues of the allosteric site are marked with red crosses.   
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2.5 Random Forest 

 

The data generated from all analyses were compiled into a single text file using a Python 

script.  Separate files were created for training sets and testing sets; for training sets, the 

response, i.e. a true/false value signifying whether each residue was part of the real 

allosteric site or not, was also included.  The files were loaded into the R statistics package, 

as was randomForest(173) (version 4.6-7), the library containing the R implementation of 

RF.  Random forests could then be generated at desired parameters within R.  A further 

library, sprint(174) (version 1.0.4), was loaded which facilitated the parallelization of a 

selection of computationally intense R commands, including randomForest, over multiple 

cores and multiple computers on a cluster.   
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3. Metric Development: 

Dihedral Angle Analysis 
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3.1 Overview 

 

This short chapter details the development of a novel analysis of amino acid dihedral angles 

over the course of a MD trajectory.  The analysis outputs were tailored to the form required 

for the construction of the dataset, namely a single value per residue.  

 

Ramachandran plots are a method for visualising protein backbone dihedral angles.  There 

are three repeating dihedral angles in a peptide backbone, shown in Figure 3.1, denoted 𝜑 

(phi), 𝜓 (psi) and 𝜔 (omega).  The omega angle rarely deviates from approximately 180° 

due to the rigidity of the amide motif; for this reason, Ramachandran et al. chose to 

exclude it and plot the phi angle of a given residue against its psi angle(175).  The plots 

vividly demonstrated that amino acids in globular proteins tend to exhibit only a certain 

range of phi- and psi angle combinations, occupying only certain areas of what became 

known as the Ramachandran plot. 

 

 

 

Figure 3.1: The three repeating main chain dihedrals of a protein residue, denoted phi, psi and 

omega.  Omega angles rarely deviate from a planar 0° or 180°. 

 

An example Ramachandran plot is presented in Figure 3.2.  This was produced by querying 

the PGD (details of this procedure follow in section 3.2).  Each point represents a phi-psi 

conformation of an alanine residue in a real crystal structure; the regions of high and low 

occupancy are clearly visible.  High occupancy regions on a Ramachandran plot of this type 

are composed of those conformations that are either low in steric strain or typically found 
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in secondary structural motifs (or both).  Across the amino acids the regions corresponding 

to common secondary structural motifs (highlighted in Figure 3.2) are fairly consistent, 

though the rest of the conformational distribution varies significantly(176). 

 

Figure 3.2: A Ramachandran plot showing the typical conformational distribution for alanine.  Each 

point represents a phi-psi conformation of an alanine residue in a real crystal structure.  The 

highlighted regions corresponding to common secondary structural motifs are approximately 

consistent across the amino acids, though significant overall differences in conformational 

distributions exist for each. 

 

The terms ‘allowed’ and ‘disallowed’ are often used to describe the regions of high- and low 

occupancy, respectively, on the Ramachandran plot, though it should be made clear that 

this is merely convention.  A small proportion of residues in proteins may be found in 

disallowed regions, and are often worth investigating further.  Provided the anomalous 
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conformation is not due to an error made in the observation of the structure, unusual 

circumstances in the local environment must be the cause of it.  A particularly favourable 

hydrogen bond interaction or a strained junction between two highly structured regions are 

examples that could mitigate the energetic penalty for such a conformation being 

adopted(177). 

 

It has been proposed that residues with disallowed phi-psi combinations could be a feature 

of allosteric sites(178).   The study sought to find novel inhibitors of TEM-1 𝛽-lactamase.  

Co-crystallisation with the protein revealed that some of these inhibitors bound to a cryptic 

allosteric site.  These structures were compared with previously known high resolution 

crystal structures of TEM-1(179).  A leucine residue within the allosteric site, which 

persistently adopted a disallowed conformation in the apo protein, was observed to have 

shifted to an allowed state in the presence of the ligands.  The authors only observed this in 

hindsight, but suggested that this behaviour could be a marker of an allosteric site: residues 

under conformational strain could be relieved of it by an incoming ligand, resulting in an 

extra energetic incentive for a ligand to bind in the vicinity. 

 

With this notion at its core, it was thought that useful information pertaining to allostery 

could be obtained by monitoring the phi- and psi angles of each residue over a MD 

trajectory. 

 

The dihedral angles themselves were easily retrievable from the trajectories using the 

cpptraj module of AMBER.  However, its output was simply two text files listing the phi- and 

psi-angles for each residue in the protein at each frame.  There was no available method for 

visualising the data in phi-psi space or processing it into meaningful descriptors. 
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3.2 Data Retrieval 

 

To normalise any comparison of phi- and psi angles between different amino acids, 

standard allowed zones were required for each amino acid.  The Protein Geometry 

Database (PGD) was used to accomplish this task(180).  The PGD 

(http://pgd.science.oregonstate.edu/) is linked to repositories of protein crystal structures 

and, through a web interface, allows the user to query these for various crystallographic 

parameters, including residue dihedral angles.  A number of criteria can be specified to 

narrow the search, a significant one being the resolution of the crystal structure; this 

allowed data to be gathered only from high-quality experimental work. 

 

A PGD query first filters the structures in its repositories for specified conditions, then 

searches for a specified structural motif comprised of at least one core residue.  Preceding 

and succeeding residues can be added optionally.  The search returns all dihedral angles for 

each returned residue.  A further binning functionality is available for phi- and psi angles to 

aid the drawing of Ramachandran plots. 

 

Queries were made for each amino acid in turn, and also to all residues preceding proline in 

the protein sequence, since it has been shown that these residues experience a significant 

and often overriding conformational influence due to the neighbouring presence of proline, 

regardless of their own side-chain(176).  Hence, 21 queries were made in total.  The filter 

criteria were mostly default: a minimum resolution of 1.2 Å, a maximum sequence identity 

of 25%, a minimum R-factor of 0.25 and a minimum R-free of 0.3. 

 

For all queries, a 3-residue motif was specified.  Residue 𝑖, the residue for which results 

would be collected, was set to each amino acid in turn, with residues 𝑖–1 and 𝑖+1 set to 

include all 20.  By requiring the presence of residues 𝑖–1 and 𝑖+1, the search would return 

only non-terminal instances of residue 𝑖.  For the pre-proline search, residue 𝑖 was reset to 

all 20 amino acids, and residue 𝑖–1 was set to proline. 

 

The phi- and psi angles returned by each of the 21 queries were binned into 3° squares and 

downloaded.  All queries were performed on 5th August 2013; the raw file downloads are 

available in Appendix 1.  

http://pgd.science.oregonstate.edu/
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3.3 Post-processing 

 

Unless stated otherwise, work on this analysis was carried out using MATLAB.  For each 

query, the binned results were used to populate a 120x120 matrix, in effect forming a 

Ramachandran plot at 3° resolution.  These were stored, treating them as experimentally-

derived amino acid-specific standards of allowed and disallowed regions of phi-psi space. 

 

The cpptraj module within AMBER was used to extract the phi- and psi angles of each 

residue for every frame of its trajectory, resulting in 10 000 phi-psi angle pairs per residue.  

For each residue in turn, the phi- and psi angles of each frame where binned into 3° squares 

and stored in a matrix, analogously to the generation of standards.  Overlaying this data 

with the appropriate standard allowed for a visual indication of the conformational space 

the residue had sampled in the simulation.  An example of this is shown in Figure 3.3, using 

SER134 from pyruvate dehydrogenase kinase 2, an arbitrarily chosen residue from the 

allosteric site. 



96 
 

 

Figure 3.3: An example of the monitoring of a residue’s adopted phi-psi conformations throughout 

a MD trajectory.  The standard allowed regions obtained for serine (blue) is shown with the allowed 

(green) and disallowed (yellow) conformations sampled by SER134 overlaid. 

 

This visual analysis conveys the journey of a residue in terms of conformational change 

highly effectively.  Incorporating the frame numbers into the plot such that the path taken 

by the residue from start to finish could be seen would further enhance it.  However, it was 

not feasible to manually view the data in this way for all residues in the dataset, of which 

there were approximately 32 000.  Alternative analyses were required that could be run 

automatically.  Besides logistical reasons, single values per residue were required if any 

information from this analysis was to be compatible with the RF training set. 
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3.4 Final Metrics 

 

A number of metrics were devised to digest the vast quantities of information contained in 

this type of data.  As stated, the final outputs were required to be one-dimensional for the 

purposes of use with RF.  However, due to the information’s complexity, it was decided to 

produce several metrics, each capturing some, rather than all, aspects of the data.   

 

3.4.1 Number of Different Conformations 

 

The first metric was a simple count of the number of different conformational bins (NDC) 

that were occupied by frames of the trajectory (see Figure 3.4 for output).  The theoretical 

maximum value of this metric equals the number of frames in the analysed trajectory; if 

trajectories of varying frame totals or frame storage frequencies were to be analysed, the 

counts would have to be normalised for any comparison to be valid.  This was not required 

for this work since all trajectories were 50 ns in duration and comprised of 10 000 frames. 

 

The NDC score is indicative of a residue’s ability to sample conformational space over the 

course of the trajectory.  This information is related to but distinct from the residue’s 

fluctuation, a major difference being that fluctuation accounts for the whole amino acid 

while the NDC score focuses on the main chain dihedral angles.  The NDC score also only 

tracks unique conformations, whereas fluctuation can be increased by repeated oscillations 

around a relatively small conformational space. 
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Figure 3.4: The NDC scores of each residue of pyruvate dehydrogenase kinase 2.  The residues of the 

allosteric site are marked with red crosses. 

 

3.4.2 Ratio of Disallowed Conformations 

 

As alluded to above, the NDC score does not account for the population of occupied bins, 

nor their positions in terms of allowed and disallowed areas of the Ramachandran plot.  

These aspects are taken into account for by the ratio of disallowed conformations (RDC).  

This measure sums the populations of each bin in a disallowed region and divides it by the 

total number of frames, yielding a number between 0 and 1.  Over the course of a MD 

simulation, most residues in a protein will, transiently, sample a variety of disallowed 

states.  Of more importance is the proportion of time spent in disallowed states, which is 

given by the RDC score.  An example RDC output is presented in Figure 3.5. 

 

This notion can be seen in the example result shown above in Figure 3.3: while the different 

phi-psi bins sampled by the residue can be clearly seen, the populations of these bins are 

not displayed.  One cannot deduce how much time the residue spent in a disallowed state. 
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Figure 3.5: The RDC scores of each residue of pyruvate dehydrogenase kinase 2.  The residues of the 

allosteric site are marked with red crosses. 

 

3.4.3 Maximum Distance to Allowed Region 

 

A degree of coarseness exists with this type of phi-psi analysis, since the allowed regions 

upon which results are based are binned approximations, themselves based on a sample of 

known structures rather than comprehensive knowledge.  Clearly, a phi-psi conformation 

positioned in a bin adjacent to the allowed region is far less significant than one far out in 

the disallowed region. 

 

To quantify this notion, a method was required to monitor the distance of each occupied 

bin to the nearest allowed region.  A 𝑘-nearest neighbour (𝑘-NN) search was suitable for 

this purpose.  Given two sets of points, 𝐴 and 𝐵, the algorithm searches for the nearest 

point in 𝐴 to each point in 𝐵.  However, the distance measured by the function was the 

direct, Euclidean distance; there was no facility to account for periodic boundaries. 

 

Periodic boundaries are discussed in the context of MD simulations in section 1.3.2, though 

the issue is apparent in the example serine residue discussed in section 3.3. Two points 

with phi angles close to, but under, 180° can be seen in Figure 3.6.  The true, nearest 
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allowed region lies at (-172.5,1.5) and is circled.  However, the ‘nearest’ neighbouring point 

returned by a 𝑘-NN search would be further away than this.  Arrows in Figure 3.6 mark 

these incorrect distances to the two points in question. 

 

Figure 3.6: The ‘nearest’ allowed region to the two points on the far right of the plot, as returned by 

a 𝑘-NN search, is marked with arrows.  However, because the plot boundaries are periodic in 

reality, the true nearest allowed region is the one circled. 

 

A modification was required to allow the correct distances to be returned by the 𝑘-NN 

search.  This could have either been made to the input data, allowing the ‘naïve’ 𝑘-NN 

search to return the correct points, or the function itself, allowing it to accommodate 

periodic boundaries: the former was chosen.  For each standard 120x120 matrix of allowed 

regions, nine identical copies were concatenated into a single 360x360 matrix, forming a 

3x3 tiling of the original.  Figure 3.7 shows the result of this procedure for the serine 

standard. 
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Figure 3.7: A 3x3 tiling of the original standard allowed region for serine. 
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Figure 3.8: To make it compatible with the 3x3 version of the standard allowed regions, empty tiles 

were concatenated to the trajectory data plot as shown. 
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For trajectory data a second, empty 360x360 matrix was created, positioning the data in 

the central 120x120 tile, as shown in Figure 3.8. 

 

These modified data sets contained an extra period of data in all dimensions.  Since no 

measures were required that could theoretically cross two successive periodic boundaries, 

this was sufficient to allow the ‘naïve’ 𝑘-NN search to produce correct results despite 

treating the data with hard boundaries.  It would iterate through all nine tiles of the 

standard allowed regions for each trajectory-occupied bin, with the nearest neighbouring 

point potentially located in one of the surrounding tiles. Figure 3.9 shows the problem with 

earlier example being resolved by this method. 

 

Figure 3.9: When performed on the modified data, the 𝑘-NN search returns the correct distances for 

all nearest-neighbour pairs, including those that cross a periodic boundary in the original data. 
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A simple metric utilising this data was the maximum distance from an allowed region 

(MaxDist).  For each occupied bin, the distance to the nearest allowed region was found by 

the method detailed above and the maximum found.  This could be considered a measure 

of the maximum degree of ‘disallowance’ experienced by residues, which could in turn 

potentially translate into an energy gain upon interaction with a ligand.  An example plot of 

MaxDist scores is shown in Figure 3.10.  It should be noted that the distance values were 

based on a 120x120 matrix and so do not correspond to the scale of a Ramachandran plot. 

 

 

Figure 3.10: The MaxDist scores achieved by each residue of pyruvate dehydrogenase kinase 2.  The 

residues of the allosteric site are marked with red crosses. 

 

3.4.4 Sum of Bin Populations Weighted by Distance 

 

A final metric was developed to balance the number of frames a residue spent in a given 

phi-psi conformation with the degree of ‘disallowance’ of that conformation.  The intention 

was to score residues such that those with a similar set of scores (but different phi-psi 

behaviours) could be further resolved.  For example, residues with a large number of 

frames close to, but nevertheless outside, allowed regions, would exhibit high RDC scores. 

In many cases this could be due to the natural ‘breathing’ of the protein structure 

throughout the trajectory, while in others some local phenomenon could be the causing a 

shift in conformation.  Similarly, residues transitioning between two low-energy, allowed 
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states may exhibit a high MaxDist score if they pass through a high energy, disallowed 

state.  This scenario is distinct from one in which a residue favours a disallowed 

conformation for an extended period of time. 

 

Translating the above into terms of the available data, the metric had to incorporate the 

population of conformational bins sampled by each residue with the distance to the nearest 

allowed region.  Thus, for each residue, the product of bin population and distance to the 

nearest allowed region was taken and summed for each bin sampled over the trajectory:  

  

𝐵𝐷𝑖 =  ∑(𝑝𝑏 × 𝑑𝐴𝑅)

𝑛

𝑏=1

 

 

(18) 

where 𝐵𝐷𝑖 = the final score based on bin populations and distances (BD) for residue 𝑖, 𝑝𝑏 = 

the population of a bin of trajectory phi-psi conformations, 𝑏, and 𝑑𝐴𝑅 = distance to the 

nearest allowed region.  This effectively weighted each conformation by its distance to the 

nearest allowed region, and allowed conformations were naturally eliminated due to the 

distance of zero.  No normalisation was required, since measures were already being taken 

against the same set of standard allowed regions. 

 

The BD score represented a combined measure of the frequency and severity of torsional 

‘frustration’ experienced by a residue over the course of a trajectory.  An example plot of 

BD scores is shown in Figure 3.11.   
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Figure 3.11: The calculated BD scores for each residue of pyruvate dehydrogenase kinase 2.  The 

residues of the allosteric site are marked with red crosses. 
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3.5 Summary 

 

This analysis examined the dynamic behaviour of the main chain torsional motions of 

protein residues.  This was achieved by first defining regions of standard allowed 

Ramachandran space for each individual amino acid.  The dihedral angles of each protein 

residue could then be monitored against the appropriate standard over the course of its 

MD trajectory. 

 

Four metrics were developed to quantify different aspects of torsional motions.  The NDC 

score gives an indication of the quantity of conformation space sampled over the trajectory, 

while the RDC score measures the proportion of the simulation each residue spent in a 

disallowed state.  The MaxDist score monitored the severity of the disallowance or 

torsional ‘frustration’ experienced by a residue, while the BD score also incorporated its 

frequency. 

 

The latter two scores in particular required unusual workarounds to obtain fully accurate 

data within the environment of MATLAB.  However, they added significantly to the overall 

picture of residue behaviour.  Most importantly, this novel analysis added an entirely new 

data type to the dataset, and would surely benefit the performance of future RF models.   
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4.1 Final Selection of Proteins 

 

At total of 60 proteins were gathered and used in the dataset for this project.  Their PDB 

codes are listed below.   

 

PDB 
Code 

Protein Species 
Allosteric 
ligand in 

structure? 

Orthosteric 
ligand in 

structure? 

1FA9 
liver glycogen phosphorylase 

A 
Homo sapiens yes yes 

1FIY 
phosphoenolpyruvate 

carboxylase 
Escherichia coli yes 

no - found in 
1JQN 

1H5U 
muscle glycogen 
phosphorylase A 

Oryctolagus 
cuniculus 

yes yes 

1JLR 
uracil 

phosphoribosyltransferase 
Toxoplasma gondii yes 

no - found in 
1JLS 

1LDN lactate dehydrogenase 
Geobacillus 

stearothermophilus 
yes yes 

1PFK phosphofructokinase Escherichia coli yes yes 

1PZP TEM-1 beta-lactamase Escherichia coli yes 
no - found in 

1M40 

1S9I MAP kinase kinase 2 (MEK2) Homo sapiens yes yes 

1T4J 
protein tyrosine 
phosphatase 1B 

Homo sapiens yes 
no - found in 

1PTY 

1V4T glucokinase Homo sapiens 
no - found 

in 1V4S 
no - found in 

1V4S 

1W96 acetyl-CoA carboxylase 
Saccharomyces 

cerevisiae 
yes 

no - found in 
1DV2 

2BKK 
aminoglycoside 

phosphotransferase 
Enterococcus 

faecalis 
yes yes 

2BU2 
pyruvate dehydrogenase 

kinase 2 
Homo sapiens 

no - found 
in 2BU7 

yes 

2I80 D-ala D-ala ligase 
Staphylococcus 

aureus 
yes 

no - found in 
2I8C 

2JFZ glutamate racemase Helicobacter pylori yes yes 

2P9H lac operon repressor Escherichia coli yes 
no - found in 

1JWL 

2PIT androgen receptor Homo sapiens yes yes 

2PUV 
glucosamine-6-phosphate 

synthase 
Candida albicans yes yes 

2V4Y UMP kinase Escherichia coli yes 
no - found in 

2BNE 

2VGB erythrocyte pyruvate kinase Homo sapiens yes yes 

2XCW cytosolic 5'-nucleotidase II Homo sapiens yes yes 
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PDB 
Code 

Protein Species 
Allosteric 
ligand in 

structure? 

Orthosteric 
ligand in 

structure? 

2XO8 myosin ATPase 
Dictyostelium 

discoideum 
yes yes 

2YC3 
2-C-methyl-D-erythritol 

4-phosphate 
cytidylyltransferase (IspD) 

Arabidopsis 
thaliana 

yes 
no - found in 

1W77 

2ZD1 HIV-1 reverse transcriptase 
Human 

immunodeficiency 
virus 1 

yes 
no - found in 

1RTD 

3ALO MAP kinase kinase 4 (MKK4) Homo sapiens yes yes 

3DC2 
d-3-phosphoglycerate 

dehydrogenase 
Mycobacterium 

tuberculosis 
yes 

no - found in 
3DDN 

3ELJ MAP kinase 8 (JNK1) Homo sapiens 
no - found 
in 3O2M 

yes 

3EPS 
isocitrate dehydrogenase 

kinase/phosphatase 
Escherichia coli yes yes 

3F3U 
proto-oncogene tyrosine-
protein kinase Src (c-Src) 

Homo sapiens yes 
no - found in 

2QLQ 

3FIG 
alpha-isopropylmalate 

synthase 
Mycobacterium 

tuberculosis 
yes 

no - found in 
1SR9 

3H30 Ser/Thr kinase CK2 Homo sapiens yes 
no - found in 

1LP4 

3HRF 
3-phosphoinositide-
dependent protein 

kinase-1 (PDK1) 
Homo sapiens yes yes 

3IFC 
muscle fructose-1,6-

bisphosphatase 
Homo sapiens yes yes 

3IJG 
macrophage migration 

inhibitory factor 
Homo sapiens yes 

no - found in 
3IJJ 

3JVR Checkpoint kinase 1 (CHK1) Homo sapiens yes 
no - found in 

3TKH 

3K5V Bcr-Abl tyrosine kinase Mus musculus yes yes 

3LW0 
insulin-like growth factor 1 

receptor kinase 
Homo sapiens yes 

no - found in 
2OJ9 

3O96 
RAC-alpha Ser/Thr kinase 

(AKT1) 
Homo sapiens yes 

no - found in 
3CQW 

3PJG UDP-glucose dehydrogenase 
Klebsiella 

pneumoniae 
yes yes 

3PY1 
cyclin-dependent kinase 2 

(CDK2) 
Homo sapiens yes yes 

3R1R 
ribonucleotide reductase 

protein R1 
Escherichia coli yes 

no - found in 
4R1R 

3TYQ NS5B polymerase Hepatitis C virus 
no - found 

in 1GX5 

yes - also 
found in 

1GX5 
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PDB 
Code 

Protein Species 
Allosteric 
ligand in 

structure? 

Orthosteric 
ligand in 

structure? 

3U69 thrombin Homo sapiens yes and no 
no - found in 

4RKO 

3UO9 glutaminase Homo sapiens yes yes 

3V55 
Mucosa-associated 

lymphoid tissue lymphoma 
translocation protein 1 

Homo sapiens 
no - found 

in 4I1R 
no - found in 

3V4O 

3ZG0 
penicillin binding 

protein 2A 
Staphylococcus 

aureus 
yes yes 

3ZLK 
glucose-1-phosphate 

thymidylyltransferase (RmlA) 
Pseudomonas 

aeruginosa 
yes 

no - found in 
1G0R 

4A1Z mitotic kinesin Eg5 Homo sapiens 
no - found 
in 3ZCW 

and 2X2R 
yes 

4AVC 
protein lysine 

acetyltransferase (PAT) 
Mycobacterium 

tuberculosis 
yes yes 

4BNY 
3-oxoacyl-(acyl-carrier-

protein) reductase (FabG) 
Pseudomonas 

aeruginosa 
yes 

no - found in 
4AG3 

4BQH 
Uridine diphosphate 
N-acetylglucosamine 

pyrophosphorylase (UAP) 

Trypanosoma 
brucei 

yes 
no - found in 

1JV1 

4CSM chorismate mutase 
Saccharomyces 

cerevisiae 
yes yes 

4EBV focal adhesion kinase Homo sapiens yes 
no - found in 

2J0L 

4M15 
interleukin-2-inducible T-

cell kinase (ITK) 
Homo sapiens yes yes 

4M19 
dihydrodipicolinate 

synthase 
Campylobacter 

jejuni 
yes yes 

4NL1 dihydropteroate synthase Bacillus anthracis yes yes 

4P9D deoxycytidylate deaminase 
Cyanophage S-

TIM5 
yes yes 

4R5I chaperone DnaK Escherichia coli 
no - found 

in 4R5G 
yes 

4RYL 
protein arginine 

methyltransferase 3 
(PRMT3) 

Homo sapiens yes 
no - found in 

1ORI 

4U4X 
AMPA receptor 
subunit GluA2 

Rattus norvegicus yes yes 

 

Table 4.1: The 60 proteins selected for inclusion in the dataset.  PDB codes shaded in a darker blue 

link to protein kinases.  Where ligand(s) were not present in the chosen structure, they were 

superimposed from another structure that did contain them for the purposes of defining the binding 

sites.  
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4.2 Preliminary Analysis of Protein Set 

 

This section of work sought to characterise the collected protein set with the intention of 

validating, as far as possible, the use of it as a representative sample training set of 

allosteric proteins.    

 

4.2.1 Protein Diversity 

 

A total of 60 proteins were included in the allosteric set.  Of these, 14 were protein kinases.  

To quantify the diversity of the set, a sequence alignment was performed on each pair of 

proteins using the ClustalW algorithm(181).  The values from the resulting percentage-

identity matrix were used to render a heat map for presentation purposes, shown in Figure 

4.1.  The overall similarity across the proteins was observed to be weak, with a mean 

identity of 15.8%.  As would be anticipated, a higher mean similarity of 32.2% was observed 

across the protein kinases within the dataset.   

 

An exception to the overall low similarity was found with the first and third proteins in the 

heat map (PDB codes: 1FA9 and 1H5U).  This was anticipated: the proteins were the two 

isoforms of glycogen phosphorylase discussed in section 2.1.6. 

 

An enlarged, electronic version of this matrix is available in Appendix 2, as is a version with 

the identities displayed numerically. 
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Figure 4.1: Matrix of percentage identities for each pair of the proteins in the dataset, shown as a 

heat map. An enlarged, electronic version of this matrix is available in Appendix 2, as is a version 

with the identities displayed numerically. 

 

4.2.2 Residue Abundances 

 

To validate the proportionality of the amino acid make-up in the dataset, a residue count of 

the entire PDB repository was also performed (PDB sequence repository download date: 

21/05/2015).  This would serve as an estimation of the natural abundances of amino acids. 
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While the PDB is certainly a large enough repository of protein sequences to provide this 

estimation, it must be considered that the population of residues in the PDB are likely to be 

skewed.  Firstly, by virtue of it being a repository of protein structures, the PDB is likely to 

contain an overrepresented sample of protein sequences that are easily crystallisable.  It is 

also likely to contain an overrepresented sample of proteins that are of high interest to 

researchers, such as GPCRs and protein kinases.  The PDB also does not limit the number of 

structures of a given protein.  Thus the residues of many proteins were counted multiple 

times.  Multiple copies of proteins can also be present within one PDB entry. 

 

While some of these issues could theoretically be addressed, the format of the data dump 

contained no metadata beyond the PDB code of each sequence.  There was therefore no 

quick method to filter out sequences. 

 

The UniProt Archive (UniParc)(182) presented an alternative to the PDB for use in this 

exercise.  Since a UniParc entry does not require a crystal structure, it is a far more 

expansive than the PDB.  It is also non-redundant; it is as close to a comprehensive 

database of protein sequences as can be found.  An equivalent residue count of this 

database was also performed (download date: 03/06/2015). 

 

The abundances found in the project dataset, the PDB and UniParc are shown below in 

table format (Table 4.2), followed by the same data in plot format (Figure 4.2), followed by 

a plot of the differences between the dataset and databases for each amino acid (Figure 

4.3).   
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Background Abundances 

Residue Dataset PDB UniParc 

ALA 8.2% 8.1% 8.9% 

VAL 7.5% 7.1% 6.7% 

ILE 6.3% 5.6% 5.6% 

LEU 9.4% 8.9% 9.9% 

MET 2.7% 2.4% 2.3% 

PHE 3.7% 3.9% 3.9% 

TRP 1.1% 1.3% 1.3% 

TYR 3.5% 3.4% 2.9% 

ARG 5.3% 5.2% 5.7% 

HIS 2.1% 2.7% 2.2% 

LYS 6.1% 5.9% 5.1% 

ASP 5.6% 5.6% 5.4% 

GLU 7.0% 6.7% 6.2% 

SER 5.9% 6.2% 6.9% 

THR 4.9% 5.6% 5.6% 

ASN 4.1% 4.2% 3.9% 

GLN 3.4% 3.7% 3.9% 

CYS 1.4% 1.3% 1.3% 

GLY 7.3% 7.5% 7.2% 

PRO 4.4% 4.7% 5.0% 

 

Table 4.2: The % abundances of each amino acid found in the manually-curated 60-protein dataset, 

the PDB and UniParc. 
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Figure 4.2: The % abundances of each amino acid found in the dataset, the PDB and UniParc. 

 

 

Figure 4.3: The absolute differences in % abundances of amino acids in the dataset from those in 

the entire PDB and UniParc databases. 
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the most underrepresented, but all abundances deviated from the abundance in the PDB 

by less than 1%.  There were larger variations between the dataset and UniParc.  However, 

considering that the dataset only contained 60 proteins whereas the PDB and UniParc 

contained approximately 78 000 and 93 000 000 sequences, respectively, the abundances 

were fairly closely aligned.  It was thus decided to further investigate the constitution of 

allosteric and orthosteric binding sites in terms of residue abundances. 
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4.2.3 Constitution of Binding Sites 

 

As previously described, residues with atom(s) within a given radius of a ligand’s atom(s) 

were defined as part of that ligand’s binding site.  The identity of each residue in the 

dataset was logged, as was its designation as part of an allosteric site, orthosteric site or 

neither.  The radius was then varied from 4 Å to 30 Å; this excessive upper limit was used to 

observe any detected local trends blending into background noise as the radius took in 

larger proportions of the protein.  The lower bound of 4 Å was chosen as the smallest 

integer distance that would include residues interacting with the bound ligand through 

hydrogen bonding: since hydrogen atoms were not present in crystal structures, the 

distance between atoms involved in hydrogen bonding was often >3 Å.   

 

The changing make-up of binding sites against selection radius was then compared to the 

background of the dataset by subtracting each amino acid’s background abundance from its 

abundance in a defined binding site.  These results are presented in Figure 4.4 and Figure 

4.5.  In each graph the line plots are coloured according to chemical properties (aromatic, 

aliphatic, acidic, etc.) and shaded for each amino acid.  Electronic versions of the graphs are 

available in Appendix 3, should the reader wish to examine them in greater detail.  

 

Allosteric sites (Figure 4.4) were found to contain a larger relative proportion of aliphatic 

and aromatic amino acids and a reduced proportion of hydrophilic and acidic amino acids, 

consistent with other studies that suggest an increased hydrophobic character of allosteric 

pockets(35).  Conversely, orthosteric sites displayed a more hydrophilic profile (Figure 4.5).  

Met, Tyr and Gly also stood out as overrepresented.  The particularly great overabundance 

of Gly was noteworthy.  Since glycine can be considered to bear empty space as its 

‘sidechain,’ this is evidence for the notion that orthosteric cavities are generally larger and 

more flexible than other areas of protein. 

 

In both the allosteric and orthosteric cases the broad trends evolved over the lower 

selection radii of 4-7 Å, beyond which they began to blend into the background.  Based on 

this result, 7 Å was selected as the most suitable radius for site definition.  Interestingly, 

this value of 7 Å is in agreement with previous studies suggesting it to be optimal for 

defining the sphere of influence of an amino acid(169, 170). 
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Figure 4.4: The deviation in % abundance of amino acids found in allosteric sites from the 

background on varying the selection radius.  Each series is coloured by the main property of the 

amino acid (hydrophilic, aromatic, acidic, etc.) 

 

 

Figure 4.5: The deviation in % abundance of amino acid in orthosteric sites from the background on 

varying the selection radius. Each series is coloured by the main property of the amino acid 

(hydrophilic, aromatic, acidic, etc.) 
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An interesting way to collate some of the above observations was to examine all residues in 

a defined binding site together by molecular weight.  For the dataset, the weighted average 

mass of a residue was calculated to be 129.38 g mol-1.  Figure 4.6 tracks the average 

molecular mass of residues in each type of binding site in the dataset over the range of 

selection radii.  Allosteric sites were found to be heavier than average; this was due to the 

overabundance of heavy residues such as Trp, Tyr, Phe and Arg.  Conversely, orthosteric 

sites were found to be lighter than average.  This was primarily due to the great 

overabundance of Gly, the lightest amino acid, but also due to increases in Ser and Thr, 

which are also among the lighter amino acids. 

 

These results show that allosteric cavities are generally smaller than their orthosteric 

counterparts, since a larger molecular mass (and so an approximately larger molecular 

volume) is contained in the same selection radius.  This supports the complementary study 

by Van Westen et al. that found allosteric ligands to be generally smaller than orthosteric 

ligands(54).   

 

 

Figure 4.6: The deviation in % abundance of each amino acid found in allosteric sites and 

orthosteric sites (defined by a 7 Å selection radius) from the background abundances of the dataset. 
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4.3 Descriptor Generation 

 

A 50 ns production phase of MD was performed for each of the 60 chosen proteins.  The 

full battery of analytical methods detailed in section 2.4 was then performed on every 

trajectory.  The data generated were archived on a per-analysis-per-protein basis.  With the 

aid of a custom, fully modular Python script, the results of any combination of analyses on 

any combination of proteins could be compiled into a training set as required. 

 

Extensive automation of the workflow (Figure 4.7) was necessary to produce the complete 

dataset within the timescale of this project; this was accomplished through the 

development of a number of custom scripts, written in Python, Bash and MATLAB code.  A 

small number of Perl scripts written by Dr Nahoum Anthony were also used, as were 

Pipeline Pilot protocols written with the aid of Dr Murray Robertson.  The final product was 

a database of individual protein residues, an array of descriptors associated with each and a 

final classifier designating them as part of an allosteric site or not.  Appendix 4 contains all 

descriptors generated, formatted as a tab-delimited text file. 

 

 

 

Figure 4.7: Schematic of the main workflow stages of dataset construction. 
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The above schematic (rightly) appears simple in principle.  However, in reality, this was a 

challenging and intensive task that much of the project’s time was devoted to.  As a result, 

it became feasible to recalculate descriptors if necessary and reformat the entire dataset as 

required. 

 

In generating this quantity of data, errors and setbacks were not only expected but 

inevitable; without investing the time to develop the wokflow’s ‘agility’ – its capacity to 

cycle through the different stages of analysis efficiently, reliably and with minimal 

supervision – it would have been impossible to trial successive models and test multiple 

hypotheses. 
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4.4 Random Forest Optimisation 

 

The small number of user-modifiable parameters in RF allowed for a computationally 

feasible optimisation protocol on a small dataset.  Individual forests were trained on 8-

protein training sets and tested on two proteins, PDK1 and glutamate racemase (PDB 

codes: 3HRF and 2JFZ, respectively), chosen as arbitrary examples of a kinase and non-

kinase from the set.  Three parameters were varied: the allosteric site selection radius, the 

number of false cases sampled for each true case in each bootstrap and the number of 

trees grown per RF model.  For suitable ranges, summarised in Table 4.3, every 

combination of values for each of these parameters was built and tested – a total of 210 

models.   

 

Radius / Å false/true ratio no. of trees 

4 0.5:1 1000 

5 0.75:1 5000 

6 1:1 20000 

7 1.25:1  

8 1.5:1  

9 1.75:1  

10 2:1  

 2.25:1  

 2.5:1  

 3:1  

 

Table 4.3: The ranges of RF parameter values tested in the optimisation procedure. 

 

The lower bound of 4 Å for selection radii was retained from previous analyses.  The upper 

bound, while far lower than the 30 Å used in the previous analysis on binding site 

constitution, was still chosen to be excessive, in that a radius of 10 Å was visibly a poor 

definition of a binding site, since it often captured large swathes of the entire protein.  The 

optimum radius was therefore expected to be within the chosen bounds. 

 

The range of false/true ratios to be achieved through downsampling the training set were 

chosen with less prior knowledge; if either bound of the range proved to be optimal, the 

range would have been extended further in that direction.  As detailed in this section, this 

was not the case, so the original range is presented. 
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The number of trees was varied to confirm that enough trees were being used to put the 

models in the ‘plateau’ of minimum OOB error.  If this was the case, there should have 

been little difference in performance between them.  This proved to be true, as can be seen 

(or indeed not seen, since the points almost entirely overlap) in the following series of 

graphs.   For this reason, the numbers of trees in each run are not labelled and are 

presented as equivalent data points. 

 

The results of the optimisation protocol are presented below, graphed against a series of 

established statistical measures in turn.  They were more revealing of the weaknesses in 

the majority of the evaluation measures than they were of the optimal parameters for the 

dataset.  Selection radii are represented by colour.  It has been indicated that the 𝑚𝑡𝑟𝑦 

parameter’s default value (√𝑝) is suboptimal for high-dimensional datasets only(115) – that 

is, datasets where 𝑛 << 𝑝.  For such datasets predictive power received a boost when the 

default value was increased.  Since 𝑛 > 𝑝 for the dataset constructed in this project, it was 

not deemed to be high-dimensional.  For the results described below 𝑚𝑡𝑟𝑦 was kept at 

default throughout.  In explaining many of the observed trends, the values of a model’s 2x2 

confusion matrix 𝑎, 𝑏, 𝑐, 𝑑 are frequently referred to. 

 

  

Figure 4.8: The precision of each iteration of the RF optimisation. 
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Figure 4.8 shows the precision of each iteration of the RF optimisation.  The uniform 

increase on increasing selection radius was rationalised by precision’s bias towards large 

values of 𝑑.  As the selection radius is increased, a greater proportion of a protein’s residues 

are classified as true, giving even weak models a greater statistical chance of correctly 

predicting a true residue.  A slight increase in precision was observed on increasing 

false/true ratio.  This was due to precision favouring a minimal value for 𝑏, which RF models 

weighted in favour of false naturally achieve.  An anomalously large precision was seen for 

a 7 Å radius at a false/true ratio of 1.75:1, suggesting (though by no means proving) 

optimum parameters. 

 

Figure 4.9 shows the TPR or recall of each iteration.  The false/true ratio dominated the 

trend here, which was explained by a maximal TPR requiring a maximal value for 𝑑 and a 

minimal value for 𝑐.  Models weighted in favour of true – i.e. low false/true ratios – 

inevitably produce these, regardless of how many false positives are produced with them.  

 

  

Figure 4.9: The TPR (or recall) of each iteration of the RF optimisation. 
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Figure 4.10: The TNR of each iteration of the RF optimisation. 

 

As it is the inverse of TPR, one would expect to see the inverse trend was for TNR.  This was 

found to be the case and is shown in Figure 4.10. 

 

A similar trend to this was seen when accuracy was examined (Figure 4.11).  As stated 

previously, accuracy does not account for random chance.  Exacerbating the class 

imbalance of the training set in favour of false cases, i.e. the majority class, invariably 

achieved higher levels of accuracy.  What can be gleaned from the data in Figure 4.11 is 

that, at an even balance of classes (1:1 false/true ratio), many parameter settings achieved 

accuracies over 50% (i.e. better than random chance).  Whilst not a spectacular result, only 

a small dataset was available for this procedure and highly accurate results were not 

expected.  Any indication that there was a genuine signal in the data was sufficient. 
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Figure 4.11: The accuracy of each iteration of the RF optimisation. 

 

Figure 4.12 shows the F measure of each iteration.  Here, larger selection radii yielded 

greatest F measures, as did lower false/true ratios.  In other words, models whose training 

sets contained the largest proportion of residues labelled as true prevailed.   

 

The F measure is based on precision and recall which are in turn based on 𝑑, 𝑏 and 𝑐.  It will 

thus favour models which produce the largest values of 𝑑 relative to 𝑏 and 𝑐.  Whilst this is 

indeed desirable, there is little value in a model built upon a skewed dataset containing 

mostly ‘correct’ answers (a vast proportion of residues labelled true, as is the case with a 10 

Å radius) which is then trained to further bias them through downsampling.  The situation 

observed reveals analogous problems with the F measure to accuracy.  Interestingly, the 

same anomaly in the trends can be seen as with precision: the 7 Å radius at a false/true 

ratio of 1.75:1 yielded a greater F measure than expected.  There is no artificial reason for 

this result. 
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Figure 4.12: The F measure of each iteration of the RF optimisation. 

 

The G means of the results are shown in Figure 4.13.  Here the class balance proved highly 

significant, with values between 0.75 and 1.75 (closer to an even class balance) yielding the 

greatest G means.  Although the G mean does utilise all values of the confusion matrix, this 

is only achieved indirectly through the TPR and TNR.  No cross comparisons of 𝑎 and 𝑏 with 

𝑐 and 𝑑 are involved that would help to properly account for class imbalance.  It is therefore 

possible that this peak in G mean at a 1:1 ratio, where there was no class imbalance, was 

artificial.  It is certainly interesting that smaller selection radii (4-5 Å) performed best – 

residues within these radii would certainly be of high relevance to allostery, perhaps 

indicating that this is the result of a genuine signal in the data. 
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Figure 4.13: The G mean of each iteration of the RF optimisation. 

 

Figure 4.14 and Figure 4.15 show the Cohen’s kappa and MCC respectively for each 

parameter setting.  Of all evaluation measures examined, these appeared to have come 

closest to ‘weeding out’ any intrinsic bias associated with using a particular set of 

parameters: there appeared to be no universal increase or decrease in these metrics solely 

based on selection radius or false/true ratio.  For both metrics, the 7 Å radius at a false/true 

ratio of 1.75:1 certainly appeared among the best parameter choices, if not the best.  The 7 

Å radius at false/true ratios either side of 1.75:1 (1.5:1 and 2:1) also performed well 

according to these measures – this was promising evidence that a genuine signal was being 

observed rather than a noisy outlier.  The parameters highlighted by examining the G mean 

(Figure 4.13) at a balanced class ratio also yielded high MCC’s, but not Cohen’s kappa 

values.   
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Figure 4.14: Cohen’s kappa of each iteration of the RF optimisation. 

 

 

Figure 4.15: MCC of each iteration of the RF optimisation. 

 

All of the applied evaluation measures were considered and, on balance, the optimal site 

selection radius was taken as 7 Å, and the optimal downsampling false/true class ratio was 

taken to be 1.75:1.  However, what is most evident from the results presented here is that 

the majority of these statistical measures are imperfect and tend to fundamentally favour 

certain parameter sets.  Cohen’s Kappa and MCC appeared to perform best, producing 

results apparently free of bias. 
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At the time, a method for calculating the ROC for a RF model had not been implemented, 

so these data were unavailable for use in the above optimisation exercise.  However, for 

future models it was used in place of these more flawed metrics to quantify performance. 
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4.5 Monitoring Performance by Visualisation 

 

For this project, the majority of statistical measures based upon a model’s confusion matrix 

were doomed to be artificially skewed in one way or another.  Even for those that were not, 

a fundamental issue remained in that, while the models dealt in the ‘currency’ of individual 

protein residues, the real goal was to predict an allosteric site.   

 

A deeper insight into the real effectiveness of a model was to be gained from viewing the 

prediction for each protein mapped onto its structure.  In this way, one was able to 

scrutinise the net result of the predictions, without becoming swamped in the minutia of 

flawed evaluation metrics.   

 

By using this method, it quickly became clear what was required of a prediction in order for 

it to be deemed a success.  Most important was that the viewer of the results was directed, 

through use of the predictions, to the known allosteric site.  Clearly, if this condition was 

not met, the model was a failure.  After that, the fewer further sites highlighted, the better, 

though the viewer ought to use their knowledge to assess the druggability of a predicted 

site.  There is also the potential to spot a ‘suspicious’ area that has been highlighted for an 

artificial reason and dismiss it.  An example would be if the exact residues that had been 

added artificially to fill a missing loop of the protein structure were all predicted allosteric, 

but no other residues in the vicinity were.  This would suggest that the residues had been 

introduced to the structure poorly and so exhibited abnormal properties that were 

reflected in their descriptors.  Predictions where vast regions of a protein have been 

highlighted can also be exposed; these may have appeared as strong to statistical measures 

despite being less useful. 

 

Initially, a binary colour scheme was used to highlight each residue as either true (allosteric) 

or false (not allosteric).  This was based simply on the classification given by the majority of 

votes from RF trees.  However, over the course of the project, as various parameters were 

altered and datasets expanded, some models appeared to be overly strict, with very few 

residues receiving a majority of true votes.  By this binary colour scheme, such models 

appeared weak, but closer examination revealed that predictions could sometimes be 

‘rescued’ by slightly shifting the threshold for a true classification.  More important that the 
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absolute proportion of votes classifying a residue as true was its proportion relative to 

other residues.  In other words, the more pertinent question was not which residues were 

‘allosteric,’ but rather which were ‘most allosteric.’ 

 

 

 

 

Figure 4.16: A, the prediction for penicillin binding protein 2A (PDB code: 3ZG0) entirely missed the 

allosteric site, and must be considered a failure; B, the same prediction is again rendered, this time 

lowering the probability threshold for a true classification enough to ‘flip’ two residues – these are 

in close proximity to the allosteric ligand, and arguably allow this prediction to be considered 

successful. 

 

Equally, other models classified far too many residues as true; while they did capture the 

allosteric site, they also highlighted significant portions of the whole protein.  A scoring 

function was devised to strike a balance between ‘rescuing’ predictions with few, or even 

A 

B 
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no, majority votes for true classification and keeping the incidence of false positives to a 

minimum.  As well as achieving this, the scores were required to map to colours on the RGB 

colour model.  In this model integer values of 0-255 are used to represent proportions of 

red, green and blue colour; it is commonly used in computing applications that generate 

coloured images, including PyMOL. 

 

Every tree in a RF model votes on the classification of each case that passes through it.  

Although the majority vote is generally taken forward as the overall ensemble’s prediction, 

the proportion of votes in favour of a class – in this case, true – can be taken forward 

instead.  This data can be considered as a residue’s predicted probability of being true, with 

a value between 0 and 1.  For each protein, the range of values was arranged in descending 

order and divided into three sections.  The first comprised all residues with a probability 

greater than 0.5; in no cases did these ever make up 5% or more of the total number of 

residues.  The second section took in as many more residues from the top of the list as 

required to reach 5% of the protein’s residues and the remainder formed the final section.   

For the second and third sections, the ranges of probabilities contained within them were 

each normalised to form scores in the range of 0-255.  The members of the first section 

were assigned a maximum score of 255.  These scores were mapped to RGB values 

according to the data in Table 4.4.   

 

Colour 
Residues 

with prob. 
>0.5 

Remainder of 
upper 5% of 

residues 

Lower 95% 
of residues 

Red 255 255 score 

Green 0 255 – score score 

Blue 0 255 – score 255 

 

Table 4.4: A summary of the mapping of residue scores to RGB values for rendering. 

 

The result of this scoring function is summarised visually in Figure 4.17.  The example 

protein used in Figure 4.16 is shown rendered according to this scoring function in Figure 

4.18.  It can be seen to retrieve the same key residues in the allosteric site.  This function 

was applied to all proteins that were monitored by visual inspection. 
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The scoring function was implemented to smooth the results of the RF predictions while 

minimising the incidence of false positives.  It achieved this by ranking residues by allosteric 

probability and suggesting the top 5% as the final prediction.  For the purposes of 

monitoring model performance, any protein rendered by this method that yielded at least 

one red-shaded residue in the immediate vicinity of the allosteric ligand was considered a 

success.  Any case found to be particularly ambiguous even after going through the scoring 

function was deemed a failure. 

 

 

Figure 4.17: The scoring function is summarised graphically.  The colour of the line reflects the 

result of the function for a list of residues’ probabilities. 
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Figure 4.18: The scoring function is applied to penicillin binding protein 2A (PDB code: 3ZG0), the 

same example protein shown in Figure 4.16.  It can be seen revealing the same key residues in the 

allosteric site as when the prediction was manually altered.  
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4.6 Model Iterations 

 

RF models were constructed at various stages of the project with whatever quantities of 

data were available.  Their performances were monitored by ROC AUC, plotted in Figure 

4.19.  A brief discussion of the findings contained in the graph follows.  Some RF models 

were constructed retrospectively for the purposes of confirming trends in this exercise.  

The models based on a 60-protein dataset are examined more closely in subsequent 

sections. 

 

 

Figure 4.19: A plot of ROC AUC values of various RF models produces over the course of the project.  

Some points are labelled for easier referencing in the following discussion. 

 

Following the initial optimisation of RF parameters, a 7 Å selection radius for allosteric sites 

was used initially to define the ‘correct’ classes of protein residues.  The only predictors 

available at this point were SASA, fluctuation, correlated energy, hit/commute times and 

SID/nSID.  As can be seen from Figure 4.19, the ROC AUC did not improve as more proteins 

were added to the dataset; in fact, it slightly dropped.  This stalling of model performance 

as the number of cases was expanded suggested that the quantity, or quality, of the 
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variables was the limiting factor.  Indeed, upon the addition of variables based on fpocket 

to the set, the addition of further proteins to the dataset beyond the initial ten raised the 

ROC AUC considerably. 

 

When a fully-populated dataset for 40 proteins was accumulated, the selection radius was 

varied to confirm whether it was still optimal.  Only at 5 Å did the ROC AUC increase: 

consequently, comparable versions of earlier models using a 5 Å radius were calculated to 

monitor this trend.  Indeed, a larger ROC AUC was observed using all prior datasets.  

Though not marked in Figure 4.19, a battery of models with varying false/true class ratios 

were performed – none equalled or excelled the ROC AUC of the 1.75:1 ratio already in use. 

 

Upon expanding the dataset to include 50 proteins, the jump in ROC AUC from switching to 

a 5 Å radius became more pronounced (Figure 4.19, model A).  It appeared that this radius 

was significantly superior to the originally selected one.  However, when the dataset 

reached its final size containing data on the residues of 60 proteins (Figure 4.19, model B), 

the ROC AUC of the constructed RF model fell considerably.   

 

The need to more thoroughly scrutinize model performance was apparent.  With no other 

statistical method as reliable as the ROC AUC available, the best option was to map the 

predictions of the RF model back onto each protein, as discussed in section 4.5.  By 

rendering the proteins using the devised function and inspecting the results manually, it 

was found that model A achieved successful predictions for 29 out of 50 proteins, or a 58% 

hit rate.  Model B, despite the markedly lower ROC AUC, was successful for 39 out of 60 

proteins, or a 65% hit rate.  For comparison, model B was successful for 31 out of the same 

50 proteins used in constructing model A (62%).  This demonstrated the discrepancy 

between the ROC AUC and the effective performance as observed manually.   

 

The weakness of the ROC, at least in this context, was that it treated every single residue 

equally.  This is not as useful a property as it may first sound because of the class imbalance 

in the data.  For a protein where the allosteric site has been misclassified, a high ROC AUC 

can still be achieved if the remainder of the protein was correctly classed false.  By 

inspecting them visually, it was possible to treat all predictions that failed to detect the 
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allosteric site as equally (that is, entirely) wrong, regardless of the accuracy of the rest of 

the prediction.  

 

The failure of the mean ROC AUC as a measure of performance is further highlighted by 

inspecting model C.  By mean ROC AUC, it appeared inferior to model B, but visual 

inspection revealed that it was in fact a significant improvement.  The dataset for model C 

had been filtered to remove correlated variables; the next section discusses this procedure 

and the RF model constructed from it. 
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4.7 Final Model  

4.7.1 Treatment of Variable Correlation 

 

The strongest-performing model yet (Figure 4.19, model B) contained 137 variables.  Many 

of these were known to be partially correlated, and it was most likely that more still were 

correlated to one degree or another.  To remedy this, Pearson’s correlation coefficient was 

computed using MATLAB for all variable pairs except residue names – this variable was 

categorical and not compatible with this analysis, and so was removed (but retained in 

future RF models).  The result was a matrix of correlation coefficients.  These quantify the 

linear relationship between two variables, with values ranging between -1 and 1.  Perfect 

anti-correlation achieves a score of -1 and perfect correlation achieves a score of 1.  The 

matrix is presented as a heat map in Figure 4.20.  Variables were ordered arbitrarily but not 

randomly: all variables originating from each analysis were placed side by side (analyses in 

no particular order).  For this reason, ‘solid’ blocks of consecutive correlated variables were 

likely to be observed.  The map is annotated to note the variables generating prominent 

‘hot spots.’ 

 

Indeed, most high variable correlations were observed on an intra-analysis basis.  The most 

striking, but perhaps least surprising, result was that the vast majority of individual SID 

score permutations (maximum, minimum, mean, median, etc.) were highly correlated.  

Moreover, a high correlation was observed between each SID score and its normalised 

counterpart.  A further striking observation regarding the fpocket scores was that, whilst 

very highly correlated with one another, they were very poorly correlated with other 

variables.  This explains why the addition of these scores to the dataset dramatically 

affected model performance: the information they contained was almost entirely non-

redundant.  Similarly, the variables describing correlated motions and correlated energies 

were found to be poorly correlated with the rest of the dataset, suggesting that these too 

were supplying unique information to model. 

 

One new insight this analysis offered was the fair inverse correlation of SASA measures with 

the majority of SID-based scores.  SID scores examine topological details of a residue’s 

environment by performing various counts of surrounding residues.  In this context, surface 

residues (with high SASA scores) could be considered to have an ‘absence’ of protein 
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topology on their exposed flanks.  This could contribute to overall lower SID scores and 

explain the observed trend. 

 

 

 

Figure 4.20: A heat map of the pairwise correlation matrix for the 136 variables included in model 

B’s dataset. 

 

The distinction between correlated variables and anti-correlated variables is irrelevant in 

the context of datasets for machine learning, so the modulus of the correlation matrix was 

taken and a threshold of 0.8 chosen as sensible starting point.  The result is shown in Figure 

4.21.  For those variables with correlations over the threshold, these were removed one at 

a time, starting with the one with the most, until no more variable pairs were over the 

threshold.  A spreadsheet of the dataset is available in Appendix 5 explicitly detailing the 

complete list of variables as well as marking those that were removed by this procedure. 
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Figure 4.21: The correlation matrix with all values above a threshold of 0.8 coloured red and the 

rest in white.  Variables with correlations over 0.8 were removed one at a time, starting with the 

one with the most such correlations, until no more variable pairs were over the threshold. 

 

The dataset was reduced to 55 variables (including residue names) by the procedure.  This 

was used for the construction of model C.   

 

Despite this model yielding an inferior ROC AUC, manual inspection revealed it to correctly 

predict 43 out of 60 sites in the dataset, or a 72% hit rate.  By use of the scoring function 

and visual inspection this is the strongest performance achieved by any model, and is the 

main result of the project. 

 

With the significant boost to model performance offered by the removal of correlated 

variables, a lower correlation threshold of 0.7 was investigated.  This resulted in a dataset 

reduced to 35 variables, but the RF model constructed from this achieved only a 67% hit 

rate (40 out of 60).  For the purposes of this section of discussion, model C, which 
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performed better with a correlation threshold of 0.8 than this subsequent model, will be 

referred to as the ‘final model.’  The 60 predictions of the final model, rendered onto each 

protein using the previously described scoring function, are available as interactive PyMOL 

session files as part of Appendix 6.   

 

4.7.2 Analysis of Final Model 

 

For the final model, a variable importance plot was generated using the inbuilt function 

within the randomForest library of R.  This is presented in Figure 4.22.  The identity of each 

residue was, by a great margin, the most important variable.  It is possibly taken for granted 

how much information is encapsulated in the names of the amino acids.  From the name 

alone, one can infer a vast quantity of information about a given residue, such as mass, 

volume, functionality, hydrogen accepting/donating capability and aromaticity.  These basic 

chemical properties are the essence of all others, so it is not surprising that this, the 

simplest and most fundamental piece of data in the whole dataset, was the most heavily 

utilised by the RF model. 

 

At the other end of the spectrum, the STRANDS_Range.nUniques variable (range of values 

multiplied by the number of unique values for the STRANDS SID number) displayed a mean 

decrease in accuracy of exactly 0.  This means that the model’s performance was entirely 

unaffected by permuting this variable to noise, indicating that no node in any tree selected 

this variable to make its split.  Despite not being correlated to others in the dataset, this 

variable was redundant.  This does not necessarily mean the variable did not contain any 

real information, but merely that, at any node where it was shortlisted for use, another 

variable was found to be able to produce a superior split.   In any case, it served as an 

effective demonstration of RF’s ability to handle extraneous data.   
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Figure 4.22: Variable importance plot for the 55 variables included in the final RF model. 
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Shorthand Variable name Full Variable Name/Description 
Mean % 

Decrease in 
Accuracy  

residue Name of residue 38.5 

nDIFF_MIN Minimum DIFF score, normalised 27.3 

hit Hitting time 25.9 

ecorr Correlated energy score 22.8 

cm_sidechain 
Correlated motion score (sidechain 
included) 

22.7 

corrmot 
Correlated motion score (main 
chain atoms only) 

22.6 

fluct Residue fluctuation 22.2 

phipsi_nDiffConf Dihedral angle NDC score 21.2 

GG_MAX Maximum GG score 21.1 

hitNORM Hitting time, normalised 20.9 

o_corrmot_5 

Correlated motion (main chain 
atoms only) to orthosteric site (5 Å 
radius definition) 

20.3 

nHL_MAX Maximum HL score, normalised 19.9 

nHL_MIN Minimum HL score, normalised 19.8 

o_cm_sidechain_5 

Correlated motion (sidechain 
included) to orthosteric site (5 Å 
radius definition) 

19.6 

nDIFF_MEAN Mean DIFF score, normalised 19.1 

HydrophobScore 
fpocket metric; mean 
hydrophobicity of pocket  

19.0 

sasa_apol_MAX Maximum apolar SASA 18.7 

sasa_STDEV Standard deviation in total SASA 18.6 

nHL_Range.nUniques 

range of HL scores multiplied by 
number of unique scores, 
normalised 

18.5 

GG_Range.nUniques 
range of GG scores multiplied by 
number of unique scores 

18.2 

GG_MEAN Mean GG score 18.1 

STRANDS_MEAN Mean STRANDS score 17.8 

sasa_MEAN Mean total SASA 17.7 

hit_over_comm 
Ratio of hitting time and commute 
time 

17.1 

DIFF_MEAN Mean DIFF Score 17.0 

nDIFF_MAX Maximum DIFF score, normalised 17.0 

GG_STDEV Standard deviation in GG score 16.3 

GG_MIN Minimum GG score 15.7 
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DrugScore 

fpocket metric; composite score 
assessing durggability of pocket – 
precise basis of calculation is 
withheld by authors 

15.7 

nHL_MEAN Mean HL score, normalised  15.7 

nHL_STDEV 
Standard deviation in HL score, 
normalised 

15.5 

DelPhi DelPhi score 15.0 

DIFF_MAX Maximum DIFF score 15.0 

COUNT_MEAN Mean COUNT score 14.9 

DIFF_MIN Minimum DIFF score 14.6 

ChargeScore fpocket metric; mean pocket charge 14.5 

hydrophob Hydrophobicity score of residue 14.0 

DIFF_Range.nUniques 
range of DIFF scores multiplied by 
number of unique scores 

14.0 

LocalHydrophobDensityScore 
fpocket metric; ratio of 
neighbouring apolar alpha-sphere 
pairs and total apolar alpha-spheres 

14.0 

DIFF_STDEV Standard deviation of DIFF scores 13.8 

nDIFF_.MEAN.MEDIAN. 
Absolute difference of mean and 
median DIFF scores, normalised 

13.8 

POM_Dist2Ortho_avgmin 
Percent-of-max distance to 
orthosteric site in minimised-
average conformation 

13.1 

STRANDS_STDEV 
Standard deviation in STRANDS 
score 

12.5 

STRANDS_.MEAN.MEDIAN. 
Absolute difference of mean and 
median STRANDS scores 

12.3 

phipsi_MaxDist Dihedral angle MaxDist score 11.4 

COUNT_STDEV Standard deviation in COUNT score 11.1 

COUNT_MAX Maximum COUNT score 11.0 

STRANDS_MAX Maximum STRANDS score 10.3 

phipsi_BinxDist Dihedral angle BD score 10.2 

phipsi_FrustConfRatio Dihedral angle RDC score 10.2 

COUNT_.MEAN.MEDIAN. 
Absolute difference of mean and 
median COUNT scores 

9.4 

COUNT_RANGE Range of COUNT scores 8.8 

sasa_apol_MIN Minimum apolar SASA 6.8 

STRANDS_MIN Minimum STRANDS score 5.3 

STRANDS_Range.nUniques 

range of STRANDS scores multiplied 
by number of unique scores, 
normalised 

0.0 

 

Table 4.5: Complete list of variables included in the final model, ordered by variable importance.  A 

full name/description is provided for the shorthand names used in generating the preceding figure.  
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It was also pleasing to see one of the novel and relatively untested variables from the 

dihedral angle analysis, the NDC score (number of different phi-psi conformational bins 

sampled over the trajectory), ranked prominently in terms of importance. 

 

Aside from the two variables at the very ends of the plot, what can be seen is a notably 

gradual decline in importance.  This suggests that there was no clear subset of ‘core’ 

variables in the data that was most important to the model’s performance.  While some 

relative importance between a pair of variables could be approximated with this result, the 

overarching conclusion one should draw from this is that all variables contributed to the 

model’s performance to a greater or lesser extent.   

 

With hindsight, this result was perhaps foreseeable.  If allostery was a low-dimensional 

concept – in other words, one that could be sufficiently well characterised to make 

accurate predictions using only a small number of descriptors – it would most likely have 

been solved before now. 

 

4.7.3 Partial Dependence of Variables 

 

Had it been the case that a small subset of variables was responsible for the vast majority of 

the model’s performance, those PD plots would have been examined in this section.  

However, as was noted in the preceding section, all variables contributed to the overall 

performance of the model to at least a modest extent, save for one that was entirely 

excluded.  Based on this result, it would appear that allostery cannot be reduced to a small 

set of markers.  This is a critical caveat but, so long as it is kept in mind, it is still worthwhile 

examining a selection of variables in detail. 

 

Based on the variable importance plot in Figure 4.22, the PD plots for the three highest 

scoring variables and the lowest non-zero scoring variable are presented below.  Of note in 

all of the plots is the scale of the y-axis, which invariably ranges between approximately -

0.5 and -1.  This is because the analysis is measuring the influence of each variable on the 

model’s positive classification, i.e. on the model making a true prediction.  Since the model 

is trained with a class imbalance of 1.75:1, it is overall more likely to make a false prediction 

in all situations.  In order to reach a positive PD, a variable would have to be near-perfectly 
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correlated with allosteric sites.  Such a variable certainly did not exist in this dataset and, as 

was suggested in the preceding section, likely does not exist at all. 

 

The PD for the most important variable, the name of the residue, is shown in Figure 4.23.  

Many of the trends in this plot matched the observations in section 4.2 and the 

complementary findings of van Westen et al. on allosteric ligands(54).  Aromatic residues 

scored high and acidic residues scored low.  Tryptophan in particular was the highest 

scoring residue here and also the residue with the greatest relative increase in abundance 

in allosteric sites.  The spread of basic residues’ scores also matched (H and R high, K low). 

 

 

Figure 4.23: The PD plot of the residue variable, i.e. the name of the residue.  Several trends 

matching those observed in section 4.2, such as lower PD for acidic residues and higher PD for 

aromatic residues. 

 

Figure 4.24 shows the PD plot of the nDIFF_MIN variable.  This is the minimum, normalised 

DIFF score produced by residues over their MD trajectory.  The distribution of the dataset 

along this variable explains why it was found to be as important as it was by the RF model:  

a sharp increase in partial dependence occurs through the 4th and 5th deciles.  In other 

words, this variable was able to split the data roughly in half, with the higher values being 
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more likely to result in a true classification.  This is a powerful split for a RF node to make in 

terms of Gini purity.  Residues present in the vicinity of three or more sections of protein 

chain produce the highest DIFF scores.  It is interesting that the minimum of such scores 

should appear so important; residues that deviated from their central positions for even a 

single frame of MD would have lost their high nDIFF_MIN score.  This indicates that 

residues consistently present at multi-way interfaces in the protein structure (thus retaining 

a high nDIFF_MIN score) are more likely to result in a true classification.   

 

 

Figure 4.24: The PD plot of the nDIFF_MIN variable.  A sharp increase in PD occurred near the 

midpoint, meaning a powerful split could be made at RF nodes. 
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Figure 4.25: The PD plot of the hit variable.  A sharp increase in PD occurred near the midpoint, 

meaning a powerful split could be made at RF nodes. 

 

Figure 4.25 shows the PD plot of the hit variable (hitting time).  An even more marked 

gradient was observed, this time descending across the lower half of the dataset.  This 

indicates that low values more often led to true classifications.  This correlates well with the 

theory that residues in allosteric sites possess low hitting times. 

 

The PD plot of the least important variable, STRANDS_MIN (minimum STRANDS score of 

residue across trajectory frames), used by the final model is shown in Figure 4.26.  The 

reason for this variable’s relative unimportance can be seen by examining the spread of 

data along the x-axis.  Not only did at least 60% of the data share the identical value of 1, 

and so could fundamentally not be split at a RF node, but there was only a very slight 

impact on PD over at least 90% of the data values.  It would appear that the decision trees 

used this variable to split off the very small number of cases with a STRANDS_MIN score of 

5, where a notable increase in PD is observed.  After doing this, little information remained 

to be extracted from this variable. 
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Figure 4.26: The PD plot for the STRANDS_MIN variable.  A very shallow gradient is observed over 

the vast majority of the dataset, meaning that the decision trees in the model were rarely able to 

make a strong split on this variable. 

  

4.7.4 Proximity Measures 

 

The proximity measure quantifies the frequency with which a pair of cases received the 

same classification.  Cases that often received the same classification are positioned in 

close spatial proximity, and vice versa.  Thus, for a perfect model, cases would appear in a 

tight cluster for each real class, with a large gap segregating the clusters.   

 

For the final model the proximity measures of the dataset’s cases in the final RF model 

were computed.  These were reduced to three dimensions by MDS.  These operations are 

packaged into the randomForest library of R.  The Spotfire data visualisation suite was used 

to plot this data.  While it has the capability to present 3D data in an interactive, rotatable 

scatterplot, this does not translate well to the page.  Instead, three sequential scatterplots 

are presented, graphing dimension 2 of the MDS vs. dimension 1 (Figure 4.27), followed by 
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dimension 3 vs. dimension 1 (Figure 4.28), followed by dimension 3 vs. dimension 2 (Figure 

4.29). 

 

The results, while far from the described ideal, showed a dense cluster that the majority of 

residues (of both classes) fell into, with a wide scattering of outliers.  The true residues 

deviated from their positions within the cluster significantly less than the false ones from all 

three perspectives.  There remained too little distinction between the two for it to be of 

benefit to investigate the relationships between specific variables and positions in this 

dimension space, but it was clear that some enrichment was taking place in the model, with 

true predictions presenting in the cluster with a probability greater than random chance. 

 

More than anything else, this analysis illustrated the sheer complexity of what was being 

asked of a predictive model.  Allosteric sites have little analytical definition; they tend to be 

retrospectively defined after the location of a bound allosteric ligand has been determined 

by experiment.  Even with this information known, the ‘site’ has no rigid physical definition.  

It is an onerous demand to make of an algorithm to generate a model that, based solely on 

data derived from a MD simulation, predicts something so poorly characterised. 
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Figure 4.27: A scatter plot of the first and second dimensions of the proximity measures in MDS space.  Allosteric residues are rendered in red.  A dense cluster of 

residues, including the vast majority of allosteric residues, can be seen in the upper right of the grid.   
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Figure 4.28: A scatter plot of the first and third dimensions of the proximity measures in MDS space.  Allosteric residues are rendered in red.  A dense cluster of 

residues, including the vast majority of allosteric residues, can be seen at the lower right side of the grid. 
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Figure 4.29: A scatter plot of the second and third dimensions of the proximity measures in MDS space.  Allosteric residues are rendered in red.  A dense cluster of 

residues, including the vast majority of allosteric residues, can be seen down the right side of the grid. 
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5. Controls and Validation 
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5.1 Overview  

 

This chapter details a host of complementary experiments that reinforced the assertion 

that the final RF model was a successful step forward in the area of allosteric site 

prediction.  To compare performance, equivalent models were trained solely on data from 

single structures of proteins.  Significantly, a model trained from data based on 

crystallographic structures was produced to demonstrate the issue of ligand imprinting.  

The models are then compared and summarised together.  As a basic control experiment, a 

𝑦-randomisation was also performed; this establishes a baseline of model performance that 

could be expected when trained on noise alone.  The validity of the MD trajectories, which 

were the basis for the majority of the final dataset, was also explored. 
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5.2 Model trained and tested on original crystal structures 

 

All viable descriptors were calculated for the original protein conformations derived from 

crystal structures.  For example, SID scores could be determined, but residue fluctuations 

could not.  From the resulting dataset a RF model was trained in an equivalent manner to 

the final model.  Using the scoring function described in section 4.5 the predictions were 

visualised: a correct prediction rate of 73% was found.  Interestingly, this experiment was 

repeated using exclusively fpocket data and this rate remained unchanged at 73%.   

 

Both of these results slightly outperformed the final model.  The most significant difference 

between the final model and these two experiments was the use of crystallographic 

conformations of the proteins in the training data.  Though the ligands were deleted in 

silico, the voids left in their stead remained, as did any effect on properties of the 

surrounding residues.  In a ligand-bound state, residues in the binding site may adopt an 

artificially strained conformation, the energetic penalty for which is more than paid for by 

the accommodation of the ligand.  Solvent-accessible surface areas, for example, would 

likely change with any reorientation of residues as well as, for similar reasons, the pocket 

volume.  One can imagine the vast majority of residue properties skewed in one way or 

another by the presence of a ligand.  Passing skewed data such as this to a machine learner 

would inevitably train it to identify these exaggerated or diminished properties. 

 

It was, in all likelihood, these imprints of the removed ligands that were being detected by 

the models.  A telling clue of this was betrayed by the performance holding, rather than 

decreasing, when all but the purely geometric fpocket variables were stripped from the 

dataset; these, of all variables in the dataset, would be most directly influenced by the 

artificial contortion of a protein cavity.  A model built on a dataset comprising only these 

would therefore be the most responsive to these properties in terms of its predictions. 
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5.3 Model trained on original crystal structures and tested on 

minimised average structures 

 

The fundamental problem with constructing predictive models using ligand-bound 

conformations as training data is that, when making a live prediction, the test protein will 

not be in its allosteric ligand-bound conformation.  Proteins in the training set would 

contain an imprint of the allosteric ligand that would in turn be reflected in the altered 

values for any calculated properties.  The resulting model would thus be trained to detect 

allosteric sites by separating these imprinted properties from the rest, rather than by 

picking up on any genuine, underlying signal in the data.   

 

To test this argument, a hypothesis was posed.  A model trained on data containing 

imprints of allosteric sites should perform well when tested on data that is equally 

imprinted (and it did).  It should, however, suffer a drop in performance when presented 

with a protein conformation that is free of influence from a binding event.  While true apo 

structures of all 60 proteins were not available, an alternative was: the energy-minimised 

average structures of the same set of proteins.  Since these were free from bias due to co-

crystallisation with allosteric ligands, they could be considered ‘pseudo-apo’ structures.    

 

The described model was constructed, and performance was found to have dropped from 

73% to 63% (6 fewer proteins).  This demonstrates the significant penalty to predictive 

power incurred by using a model trained on ligand-imprinted data (from any methodology, 

not just RF). 
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5.4 Model trained and tested on minimised average structures 

 

It was thought that at least some of the performance lost in section 5.3 could be regained 

by training the model, as well as testing it, on data derived from the minimised average 

structures of MD trajectories.  This would confirm the importance of training data being as 

close as possible to testing data.  Moreover, this model would not contain ligand-imprinted 

data, and so could not be invalidated in the same way as other single-conformation models. 

 

The model achieved a performance of 70% (up from 63%) by manual inspection, confirming 

this further hypothesis.  The apparent success of this model is notable, even though it was 

built on a relatively small set of descriptors that were based only on a single conformation 

per protein.  It suggests that variables based on trajectories of MD data are not 

fundamentally necessary to begin to predict allosteric sites.  Of course, in this case the 

‘pseudo-apo’ structures originated from MD trajectories, but if true apo structures could be 

sourced from databases such as the PDB then this could be bypassed. 

 

This proved to be another situation clouded by attempts to summarise models’ 

performances numerically, requiring visual inspection in order to clarify it.  This ‘pseudo-

apo’ model, while achieving an impressive hit rate by standard criteria, did so with a large 

quantity of false positives.  The scoring function was not enough to minimise these and, 

while the allosteric site was often correctly predicted, so was a large fraction of the entire 

protein.  This is exemplified in Figure 5.1 and Figure 5.2, where the two models’ predictions 

of the same protein are compared in each case.  It should be noted that these figures were 

oriented to show as much of the relevant protein surface as possible, rather than optimise 

the view of the allosteric site; this is still visible by the superimposed ligand rendered in 

green.  They were both rendered using the same scoring function. 
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Figure 5.1: Two models’ predictions made on the same protein (human glucokinase, PDB code: 

1V4T).  Though both predicted the allosteric site correctly, the single-conformation ‘pseudo-apo’ 

model (top) also predicted a large fraction of the whole protein.  The final model (bottom) was 

more precise, selecting far fewer residues not in the allosteric site. 
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Figure 5.2: Two models’ predictions made on the same protein (myosin II heavy chain, PDB code: 

2XO8).  Similar to Figure 5.1, both predicted the allosteric site correctly. The ‘pseudo-apo’ model 

(top) also predicted a large fraction of the whole protein, while the final model (bottom) was more 

precise, selecting far fewer residues not in the allosteric site. 
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5.5 Summary of Models 

 

The performances of all models discussed so far in this chapter, as well as the final model 

utilising MD data, are summarised in Table 5.1. 

 

Training 
data 

Testing 
data 

Performance by 
visual inspection (%) 

MD MD 72 

crystal* crystal* 73 

crystal* min-avg* 63 

min-avg* min-avg* 70 

*dataset based on single conformation 

 

Table 5.1: Summary of models by data used in training, data used in testing and overall 

performance by visual inspection.  Unless MD data was utilised, all variables were based on a single 

protein conformation. 

 

Since the single-conformation models were built purely from data derived from fpocket, it 

can be surmised that differences in performance are likely due to the fpocket scores in 

proteins that proved to be the “deciders.”  A Venn diagram of the three top performing 

models is presented in to succinctly capture which ones failed to predict the allosteric sites 

of which proteins.  Proteins are listed by PDB code for brevity; the reader is referred to 

Table 4.1 for the proteins’ identities and to Appendix 6 for their structures.  An initial scan 

of the PDB codes did not reveal any significant trends: no type of protein was particularly 

poorly predicted in terms of class, isoform, size or number of chains. 

 

Proceeding to look at individual groups, it could be seen that only 6 proteins were not 

predicted correctly by any model.  These could be considered the most challenging proteins 

for RF to make a successful prediction on, regardless of the supplied training data.  An 

examination of this set of structures confirmed that the allosteric sites indeed appeared 

“awkward” to the eye.  They tended to be located in small and shallow cavities; this would 

have a significant impact on fpocket scores, which were known to be important descriptors 

across all models.  Indeed, they were the only descriptors in the non-MD-based models.  

2BKK contained another protein as its “ligand,” and was included in datasets more as a 
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curiosity to see how predictions would fare.  The allosteric site as defined in this work 

covered a large face of the protein and was likely too poor and diffuse a definition for 

models to work with. 

 

 

 

Figure 5.3: A Venn diagram depicting the three different training sets from which RF models were 

constructed and which proteins were incorrectly predicted.   

 

A total of 9 proteins were only predicted correctly by one model: 3 per model.  Once more, 

there was no particular trend in terms of the proteins’ identities.  However, it can be 

surmised that the fpocket scores varied significantly between conformations.  For example, 

for those sites only predicted successfully by the final, MD-based model (1FA9, 1V4T, 

3ALO), the fpocket scores of both the initial and average conformations must have been 

unusual and confounding to the models; only the remaining descriptors available 

exclusively to the MD-based model were able to “rescue” the predictions. 

 

The converse must be true as well:  the fpocket data must have been the “dead giveaway” 

descriptors for those predicted correctly only by single-conformation models (1W96, 2ZD1, 

3HRF, 3R1R, 4NL1), and the MD-based descriptors served only to confound that model.  
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5.6 𝑦-randomisation 

 

A simple but effective method for testing a predictive model’s ability to fit data to a 

genuine signal is 𝑦-scrambling or 𝑦-randomisation(183, 184).  If a model’s predictions are 

based upon real connections between the response, 𝑦, and predictors, 𝑥, it follows that 

severing this connection must cause a drastic drop in model performance, since there 

remains only noise upon which the model can be constructed.  This is tested by randomly 

rearranging the values of 𝑦, scrambling any meaningful signal in the data.  Figure 5.4 

illustrates the process of 𝑦-randomisation on an example dataset. 

 

Residue Analysis 1 Analysis 2 Analysis 𝑚 Allosteric 

Tyrosine 1.1 100.4 1.69 False 

Leucine 1.8 115.8 1.21 False 

Leucine 3.2 40.7 0.87 False 

Phenylalanine 2.1 22.3 0.17 True 

Glycine 4.1 42.2 2.55 False 

Aspartic Acid 1.7 0.0 1.94 True 

 

 

 

Residue Analysis 1 Analysis 2 Analysis 𝑚 Allosteric 

Tyrosine 1.1 100.4 1.69 False 

Leucine 1.8 115.8 1.21 True 

Leucine 3.2 40.7 0.87 False 

Phenylalanine 2.1 22.3 0.17 False 

Glycine 4.1 42.2 2.55 True 

Aspartic Acid 1.7 0.0 1.94 False 

 

 

 

 

Figure 5.4: An example dataset where the responses match each case correctly, indicated by colour 

(upper table).  In 𝑦-randomisation, the response values are permuted randomly, severing any 

overall link between them and the predictors (lower table).  

responses randomly permuted 
from their original positions 
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Multiple random permutations of the data are generally trialled in this way, aggregating the 

result. The genuine model must perform significantly better than the 𝑦-randomised 

permutations in order to have merit. 

 

Akin to administering a placebo in clinical trials, 𝑦-randomisation serves to provide a 

baseline of performance that can be expected from a model.  If the genuine model 

performs no better than the 𝑦-randomised models, it cannot be trusted.   It is especially 

useful to have this benchmark when dealing with atypical datasets such as the highly 

imbalanced one in this project, since it reveals the performance attainable by predicting on 

noise alone.  This is an even more important control in light of the proximity measures, 

which showed that there was little separation between the classes in terms of their 

properties in the final model. 

 

The same dataset as the one used for the final model was used for this exercise.  For each 

protein, a model was trained on the data of the remaining 59 proteins with the response 

randomly permuted (R contains a function to perform this).  Testing was performed on 

protein kept aside, noting the confusion matrix.  This procedure was repeated 10 times per 

protein, totalling 600 RF models.  For each batch of 10 confusion matrices, the values of 𝑎, 

𝑏, 𝑐, and 𝑑 were averaged to the nearest integer.  The results were conclusive: in all 60 

cases, all residues were called false on average.   Such an unambiguous result can be 

summarised with a single confusion matrix as shown in Table 5.2. 

 

 
Predicted 

False True 

Observed False 100% 0% 

True 100% 0% 

 

Table 5.2: A single confusion matrix summarises the 𝑦-randomisation procedure.  For all proteins in 

the dataset, the aggregated results showed all residues classed as false.  

 

This result is precisely what one would expect with an imbalanced dataset containing no 

link between predictors and response.  With the predictors effectively rendered 

meaningless, RF achieves maximum overall accuracy by classifying everything as the 

majority class.  This issue was discussed in Section 1.4.5.  In any case, a clear loss of signal 
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was observed upon the scrambling of the response, indicating that the original RF model 

was fitting genuine trends in the data. 
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5.7 MD Stability 

 

This section details a number of investigations into the MD trajectories generated as part of 

this project. 

5.7.1 Use of MD to equilibrate initial structure  

 

This project attempted to address a prevalent issue in the area of allosteric site prediction, 

namely the use of structures sourced from crystallographic databases without prior 

removal of ligand imprints.  The proposed solution was to perform MD on the structures.  

Such simulations entail thorough minimisation and equilibration phases which could be 

exploited to handle ligand imprinting. 

 

An imprinted protein conformation – that is, one that is unaltered save for the deletion of 

its co-crystallised ligand in silico – retains a structural deformation at an energetic cost 

without the stabilising interactions provided by the former presence of the ligand.  In terms 

of a structural ensemble, it is unlikely to reside in a local minimum of an energy landscape.  

Thus, procedures that drive a molecular conformation towards an energy minimum, such as 

the standard phases of MD simulation, are suitable for removing the ligand imprint. 

 

The results presented here are for Ser/Thr kinase CK2 (PDB code: 3H30), chosen arbitrarily 

from the proteins in the dataset as a representative case.   To confirm that the preparatory 

phases of the MD simulation had sufficiently equilibrated the initial structure, the trajectory 

frames were aligned to the initial frame and the RMSD was tracked over the simulation.  A 

plot of this result is shown in Figure 5.5, with a close-up of the key first portion following in 

Figure 5.6.  The green line in these figures marks the point at which the simulation entered 

its production phase. 
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Figure 5.5: A RSMD trace of 3H30’s MD trajectory against its initial state.  By the time the 

production phase commenced (marked by the green line) the protein’s fluctuations had stabilised. 

 

 

Figure 5.6: A close-up of the plot in Figure 5.5.  By the end of the heating phase alone (marked by 

the orange dashed line), the protein’s fluctuations had not yet stabilised, indicating the importance 

of an intermediate equilibration phase. 
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It can be seen from the RMSD trace that the fluctuations immediately before the 

production phase did not differ significantly from those observed after.  This suggested that 

the protein had transitioned to a ‘steady’ dynamic state – that is, a state equilibrated with 

the ambient temperature, pressure and solvent – prior to entering the production phase.  

Interestingly, the close-up view in Figure 5.6 showed that the heating phase alone (marked 

with a dashed orange line) did not adequately prepare a protein for production MD, 

highlighting the importance of the intermediate equilibration phase. 

 

5.7.2 Multiple simulations from a single starting structure 

 

Before a MD simulation commences the atoms of the system are stationary.  They have 

three-dimensional coordinates associated with them, i.e. a position in space, but no 

velocities.  The software must artificially create initial velocities for the system, from which 

it can proceed to calculate new ones on application of the force field equation.  Initial 

velocities are determined by a random seed, effectively giving each atom a ‘push’ in a 

random direction.  It is probable that the magnitudes and directions of the initial velocities 

affected the regions of conformational space sampled by each trajectory.  For the purposes 

of this project, this in itself was not an issue so long as the final prediction was not 

drastically affected.  To investigate this, a small number of proteins were chosen arbitrarily.  

For each protein, a further two MD trajectories were simulated using the identical starting 

structure, totalling three.  A different random seed was used each time, thus generating 

sets of three non-identical trajectories. 

 

The trajectory sets were then compared directly by overlaying the RMSD traces from the 

first frame (which was identical for all three).  The results presented in Figure 5.7 and 

subsequent figures are for one of the four proteins investigated, phosphoenolpyruvate 

carboxylase (PDB code: 1FIY).  The findings for this protein are representative of the 

others’.  It can be seen that broadly similar, though by no means identical, RMSD traces 

were produced for all three trajectories.  It was perfectly acceptable to encounter 

variations of this scale since the protein was on different trajectory in each case.  What was 

important was whether the three trajectories, which appeared similar by this simple 

analysis, produced widely differing descriptors, in turn resulting in different predictions 

when passed to a RF model. 
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Figure 5.7: The RMSD traces of three MD trajectories of 1FIY.  The starting structure was identical 

for all three, but a different random seed was chosen in each case, leading to non-identical 

trajectories. 

 

The simplest way to proceed was to recalculate all descriptors for this protein using the 

alternative trajectories, make the predictions and view the results.  It should be noted that 

this exercise was not performed on the final model but an intermediate one.  However, this 

was acceptable since it was the model’s consistency, rather than its performance, that was 

being tested here. 

 

The three predictions for 1FIY were rendered using the scoring function described in 

Chapter 4 and are shown below.  Figure 5.8 shows the prediction for the original trajectory 

(‘1fiy_1’ in Figure 5.7), with Figure 5.9 and Figure 5.10 showing the other two predictions 

(‘1fiy_2’ and ‘1fiy_3’ respectively in Figure 5.7).  Some minor variances can be seen among 

them, more so between the first and the other two.  However, the overall ‘hot’ and ‘cold’ 

regions of the protein appeared broadly consistent across the three predictions. 
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Figure 5.8: The prediction produced with descriptors derived from the first trajectory of 1FIY. 

 

 

Figure 5.9: The prediction produced with descriptors derived from the second trajectory of 1FIY. 
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Figure 5.10: The prediction produced with descriptors derived from the third trajectory of 1FIY. 

 

This investigation showed that the model was fairly stable to the inevitable random chance 

involved in initiating a MD simulation.  Minor variations could be discerned, but nothing 

major enough to alter the guidance offered by the prediction.  These small differences did 

not necessarily betray a weakness in the model; in fact, quite the opposite, they indicated 

that the descriptors used by the model are sensitive enough to the movements made by 

the protein over the simulation.  However, this conclusion inevitably implied that there was 

a potential vulnerability in the model due to insufficient sampling. 

 

This vulnerability was expected from the outset.  Ideally, far longer trajectories (at least an 

order of magnitude longer) would be generated for all proteins included in the dataset.  

This would have dampened the impact that minor fluctuations in a trajectory had on the 

final descriptors for a protein.  It was out of necessity rather than choice that the 

trajectories in this project were limited to 50 ns of production MD.  An immediate lesson to 

be learned from this investigation was that, when making a live prediction, several MD 

trajectories ought to be prepared, as they were here.  The predictions could then be 
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compared and cross-examined with their RMSD traces to determine the causes of any 

variations in predictions before making a manual judgement. 

 

5.7.3 Different starting structures 

 

A similar investigation to the above was performed, this time examining the variation in 

predictions obtained when different starting structures were used.  A second, alternative 

starting structure was identified for two proteins in the dataset.  The proteins were CDK2 

(PDB code: 3PY1) and NS5B RNA polymerase (PDB code: 4NLD); in both cases the 

alternative structure was the crystallised apo form of the protein (PDB codes: 3PXR and 

3TYQ, respectively).  The alternative structures were treated as distinct proteins: MD 

trajectories of each were simulated, and all required descriptors were calculated in order to 

allow predictions to be made.  The results are shown below, with Figure 5.11 comparing 

3PY1 and 3PXR and Figure 5.12 comparing 4NLD and 3TYQ. 

 

 

Figure 5.11: The predictions for 3PY1 (left) and 3PXR (right). Both are conformations of CDK2, with 

3PXR being the apo form.  The ligand from 3PY1 was superimposed onto the structure for reference.  

A fair similarity in predictions can be seen between the two structures, despite them being treated 

independently. 

3PXR 

(apo) 

3PY1 

(holo) 
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In Figure 5.11, the predictions made for 3PY1 and 3PXR appeared highly similar.   A few 

extra residues were predicted to be allosteric in 3PXR (shaded red by the scoring function), 

but the major features of the predictions – the residues in the vicinity of the allosteric site, 

and the large patch of red residues directly to the right of it – were consistent.  Considering 

that these predictions were made entirely independently from different starting structures, 

this was an encouraging sign.  It suggested that influence on the descriptors due to the 

starting structure was being successfully removed by MD. 

 

Figure 5.12 shows the predictions for 4NLD and 3TYQ.  These were undoubtedly 

unsuccessful predictions: no residues in the vicinity of the allosteric site were predicted 

correctly.  However, this was an exercise in consistency rather than accuracy.  So long as 

the prediction remained approximately the same when an alternative structure was used, 

the analysis could be considered a success. Indeed, this was the case: both predictions 

highlighted little beyond the central cavity of the protein, which is the orthosteric site. 

 

It should be noted that, originally, the allosteric ligand in 3TYQ was superimposed from 

4NLD, but this did not align well and resulted in major overlap with the protein structure.  

Instead, another allosteric ligand was taken from a third structure of NS5B RNA polymerase 

(PDB code: 1GX5).  1GX5 could have been used for this analysis just as well, but 3TYQ was 

chosen over it because the crystal structure was solved at a higher resolution and it 

contained fewer missing loops. 
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Figure 5.12: The predictions for 4NLD (top) and 3TYQ (bottom). Both are conformations of NS5B 

RNA polymerase, with 3TYQ being the apo form (with ligands superimposed to highlight the binding 

sites).  Though both predictions were unsuccessful, they were nevertheless consistent enough to 

demonstrate the model’s stability to the precise conformation of the tested protein.  

3TYQ 

(apo form with 

superimposed 

ligands from 

alternative 

structure) 

4NLD 

(holo) 
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5.8 Comparison to Allosite 

 

As detailed in 1.5.3, Allosite is a web-based, automated workflow that first calculates 

fpocket scores on an inputted protein structure.  The scores for each cavity are then passed 

to a pre-trained SVM-based predictive model to detect pockets containing allosteric 

ligands.  There are key similarities between Allosite and the crystal structure-based RF 

model described in section 5.2.  Firstly, descriptors are calculated from original 

crystallographic data.  The descriptors used are the same, namely the outputs of the 

fpocket program.  Finally, machine learning is utilised to detect trends in the data and 

predict allosteric binding sites.  Aside from the choice of machine-learning algorithm the 

underlying concept of Allosite is similar to that of the project. 

 

With its fast, web-based implementation, Allosite offered an interesting opportunity to 

compare methodologies.  The main difference is that Allosite works purely on the output of 

fpocket, which identifies and subsequently determines properties of sites rather than 

individual residues.  Thus Allosite operates in terms of sites, rather than individual residues, 

and so deals with a much smaller number of cases.  In this project’s dataset of 60 proteins, 

the number of sites per protein, as determined by fpocket, varied from 8 for the smallest to 

approximately 500 for the largest (cf. approximately 250 to >2000 residues per protein).  If 

it was classified as allosteric by the SVM model, a site was filled with dummy atoms 

(originating from the fpocket analysis) to mark its contours on the protein and returned in 

.pdb and .pml formats.  An example output from Allosite, which is in essence the same as 

the output of fpocket, is shown in Figure 5.13. 
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Figure 5.13: An example output of the Allosite web server, with the protein structure rendered as a 

ribbon.  The predicted site is filled with dummy atoms originating from the fpocket analysis that 

mark its contours. 

 

The authors do not enter into any lengthy discussion on their criteria for a successful 

prediction, but they claim to an accuracy of approximately 95%.  However, accuracy can be 

a misleading measure when dealing with an imbalanced dataset.  The authors do cede this, 

reporting sensitivities and specificities of >83% as well.  Together, these two measures are 

the basic of the ROC curve, which indeed accounts for class imbalance.  Unfortunately, this 

level of performance was not reflected when the 60 proteins forming this project’s dataset 

were passed to the Allosite server for a prediction – both the original crystal structures and 

the ‘pseudo-apo’ minimised-average structures of MD simulations.   

 

Applying a similar criterion to that imposed on the RF-based models constructed in this 

project, an Allosite prediction was deemed to be successful if the selected pocket(s) at least 
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partially overlapped with the allosteric ligand.  The example prediction shown above was 

indeed successful, as shown below in Figure 5.14 with the ligand superimposed. 

 

 

Figure 5.14: The allosteric ligand is superimposed onto the Allosite prediction.  In this case, the 

prediction was successful. 

 

By visual inspection, the Allosite server returned a 46% success rate for the original crystals 

structures and a 48% success rate for the ‘pseudo-apo’ minimised average structures.  

These results were comparable to the results of the crystal structure-based RF model 

trained for this project: the former against the 73% success rate detailed in section 5.2 and 

the latter against the ‘pseudo-apo’ data tested in section 5.3 – this achieved a 63% success 

rate.  Like Allosite, the RF model only utilised fpocket data but achieved a significantly 

greater success rate for both sets of data. 

 

It must be noted that some of the Allosite prediction requests failed.  This was likely for 

benign reasons such as an input file not being formatted precisely as required, but with no 
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debugging information returned by the server, the problem could not be corrected.  

Consequently, the figure of 46% success rate for the original crystal structure set is based 

on 25 correct predictions out of 54, with 6 cases failing to return.  It was therefore 

theoretically possible for Allosite to attain 52% (31 out of 60) if the failed cases, having 

been debugged, were predicted correctly.  Equally, the figure of 48% for the ‘pseudo-apo’ 

set is based on 25 correct predictions out of 52, with 8 cases failing to return.  It was 

therefore theoretically possible for Allosite to attain 55% (33 out of 60).  The results 

described in this section are summarised in Table 5.3. 

 

Test Set 
Allosite prediction 

rate 
Potential Allosite 

prediction rate 
Equivalent prediction 

rate of RF model 

crystal 25/54 = 46% 31/60 = 52% 44/60 = 73% 

min-avg 25/52 = 48% 33/60 = 55% 38/60 = 63% 

  

Table 5.3: Summary of Allosite performance against the original crystal structures and ‘pseudo-apo’ 

structures of the 60 protein dataset.  Since some predictions failed to run, the maximum potential 

performance is calculated, assuming that all of these would have been returned as correct 

predictions.  These are compared to the appropriate RF-based model constructed for this project. 

 

It has already been discussed that crystal structures retain significant imprints of ligands 

even after they have been removed in silico.  This would invalidate the results of both 

Allosite and the equivalent, RF-based version of it constructed as part of this project, since 

these were trained from data based on crystal structures.  At the very least, this 

comparison offers strong evidence for the superiority of RF over SVM for this type of data. 
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6. Conclusions and Future 

Work 
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6.1 Final Model Performance 

 

The main result of the project was the production of a RF model that predicted the location 

of allosteric sites in proteins with, by what is proposed to be fair criteria, a 72% success 

rate.  The model was trained on data derived from MD trajectories, granting access to 

dynamic information from the proteins.  Success was achieved with no prior knowledge of 

the sites’ locations, utilising instead only data that could be determined equally well from 

an apo structure.  This is a critical detail.  The use of data obtained from proteins in their 

bound conformation is a trap that most predictive methods to date have fallen into, and 

one that a significant portion of the work in this project was devoted to avoiding. 

 

The conformations of crystallised, ligand-bound proteins are generally highly contorted in 

order to accommodate the interacting ligand, particularly in the close vicinity of it.  The 

ligand’s presence provides an energetic ballast that stabilises the conformation and makes 

it viable.  Without it, the protein would generally ‘exhale,’ at least partially collapsing the 

cavity left by the ligand and reorienting to a lower energy state.  It is not sufficient to delete 

the ligand from a ligand-protein complex in silico and treat the remaining protein as though 

its binding site has been concealed.  A small selection of metrics from the literature can be 

enough to detect the abnormalities left behind by such crude treatment.  Passing the data 

to a machine learning algorithm such as RF can quickly lead to spectacular results: in this 

project, 73% success rate was achieved using only data from fpocket.   

 

Unfortunately, models trained on such data do not match their tested performance when 

faced with a protein that is not in a similarly contorted conformation.  This was 

demonstrated by testing the same model with the minimised average structures of each 

protein’s MD trajectory rather than the original crystal structures.  The result was a 

substantial drop in performance from 73% to 63%.   

 

Encouragingly, the issues of ligand imprinting and loss of performance were both resolved 

by constructing an equivalent model based on minimised average structures of MD 

trajectories.  This model achieved a success rate of 70% when making predictions on non-

imprinted structures, an increase from the 63% attained by the model based on crystal 

structures.  However, this success rate came with a large number of false positive 
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predictions and, crucially, required MD to produce the minimised average structures.  If one 

has gone to the trouble of generating MD trajectories, there is little merit in opting to use 

this model over the final model developed in this project.  The final model made more 

extensive use of the data: this was reflected in the slightly improved success rate and vastly 

improved incidence of false positives. 

 

Nevertheless, a simple model could potentially be developed with further investigation.  It 

would be of some value to the community to produce a model that could proceed from 

initial input to final prediction with a quick turnaround.  Such a model could be 

implemented as a web-based service akin to PARS, SPACER or Allosite.   However, in order 

for this to be worthwhile endeavour a more efficient method for removing a ligand imprint 

from a protein would be required. 
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6.2 Dataset 

 

The results showed that the variables used to train this model were indeed effective 

predictors of the residues in the vicinity of allosteric sites.  Each variable quantified a 

directly measureable structural, topological or energetic property that required no prior 

knowledge of the location of an allosteric site.  These could therefore be calculated in an 

identical manner for proteins with no known allosteric site. 

 

The array of variables used was indeed diverse; in particular, the dihedral angle analyses 

were novel, having been developed specially for this project.  However, many other 

analyses that could produce potential descriptors were inevitably excluded.  There was no 

reason for this beyond there being too little time or too little expertise available to 

implement them.  A specific example is the COREX/BEST algorithm(185, 186), a 

methodology that has received much attention in the field.  This was identified at an early 

stage of the project as a method that yielded the correct type of variable, i.e. a single value 

per residue, and so could be utilised.  However, it was not successfully implemented; if this 

were revisited in the future, it would likely be a valuable addition to the dataset. 

 

The variables produced by SPACER, named local closeness and binding leverage, are again 

of the correct format for immediate addition to the dataset.  In fact, many of the project’s 

60 proteins were submitted to the SPACER server for analysis, though the results were not 

presented here due to the large number of cases returning with errors.  This was likely due 

to bugs concerning the format of the .pdb files used as input.  Solving this problem would 

not only allow for comparison of the SPACER model’s performance to the final proposed 

model in this work, but also provide two new variables for inclusion in the dataset. 

 

Provided the dataset remains filtered for correlated or noisy variables, a RF model trained 

from it can only improve as it grows.  The dataset can be grown either by increasing the 

number of cases or the number of variables.  There is only one way to increase the number 

of cases in the dataset, and that is to identify more proteins with known allosteric sites.  It 

is recommended that this search is performed manually, or at least that any automated 

search is followed by a manual filter, since many subtly unsuitable (or potentially 

misleading) candidate protein structures exist in the literature. 
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The addition of more proteins to the dataset steadily improved model performance in the 

project.  There may be a ceiling to this improvement; this situation was encountered in the 

initial stages of the project when only a small number of descriptors were available.  

However, when more descriptors were implemented the performance continued to rise as 

the number of cases did. 

 

Further analyses that generate descriptors for the dataset must also be sought from the 

literature.  If this work were to be continued, as much focus ought to be devoted to 

identifying these as to identifying more proteins.  It was upon incorporating a powerful new 

set of variables, such as those from fpocket, that the greatest boosts to performance were 

observed. 

 

Of course, each time a new protein was added to the dataset, all descriptors had to be 

calculated for its residues, and when a new descriptor was added, it had to be calculated 

for all residues.  The logistics of growing the dataset became increasingly challenging as it 

grew.  The next section reflects on these aspects of the project. 
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6.3 Workflow Automation 

 

A vast quantity of programming was required to make the volume of data calculated for 

this project feasible.  Most stages in a protein’s journey from initial download as a .pdb file 

to a full list of calculated variables in a formatted dataset required some support from 

custom scripts.  These scripts varied from performing minor editing of file formats in order 

to fit the requirements of the next piece of software using them to performing entire 

analyses wrapped into functions.  The preparation of proteins for MD was, out of necessity, 

entirely automated in the latter stages of the project.  The ‘1-in-1-out’ RF cycles that 

became the standard method to produce predictions on all 60 proteins were automated. 

 

A further necessary development of this project was a script to automatically compile a 

formatted dataset that was ready for use with R.  Over the course of the project a great 

number of datasets, each containing different combinations of residues and variables, was 

required; the time invested in coding this script was likely the most valuable use of any time 

on the project.  Its structure was fully modular, such that it was trivial to update as new 

variables or proteins were introduced. 

 

It was for more than merely pragmatic reasons that much time was devoted to automating 

the project workflow.  In doing so, all written code remained in place after producing the 

final dataset.  As a result, aside from being able to quickly pick up the project from where it 

was left, the successor would also be able to make any desired alterations and additions to 

the dataset by modifying the appropriate code in the workflow.   

 

To that end, it would be interesting to modify the model to operate on sites rather than 

individual residues.  The majority of alternative models in the literature, such as PARS and 

Allosite, are site-centric.  Throughout this work, residues were chosen as the cases of the RF 

dataset.  This is because no ambiguity is associated with the identity of a protein residue: 

each is a rigidly defined chemical entity.  This provided a stable anchor point from which to 

embark on the gathering of data.  However, provided a suitable definition for them is 

reached, approaching the problem in a site-centric manner could allow access to a host of 

properties that, for all is known at the time of writing, could be more relevant to the 

prediction of allosteric sites. 
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This suggestion is indeed a worthwhile avenue of future work, though it cannot be denied 

that it would require a thorough overhaul of the present workflow.  However, it also cannot 

be denied that this task is far more preferable to beginning again from nothing. 
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6.4 Random Forest 

 

The initial optimisation procedure suggested that a radius of 7 Å was the best choice of 

those suggested.  This indeed seemed appropriate, since it had already been found to be 

the approximate sphere of influence (from the alpha carbon) of an amino acid in a 

protein(169, 170), and also agreed with observations made in section 4.2.3 that the amino 

acid composition of an allosteric site deviated most from the standard for proteins up to a 

distance of approximately 7 Å.  A later round of optimisation found that a 5 Å radius yielded 

better results.  As this was found empirically the underlying reason for it was not known, 

but the sphere of influence of an amino acid could perhaps be split into inner and outer 

layers, with 5 Å roughly marking the inner layer where frequent and major interactions 

occur.   

 

The initial optimisation also showed that a downsampling false/true class ratio of 1.75:1 

was optimal.  There was no artificial reason for this value to appear statistically optimal, 

lending some credence to its selection.  The later round of optimisation did not reveal a 

superior ratio.  Once again, this is a purely empirical finding: with no rationale for this 

specific ratio to be optimal, it should be monitored closely if the dataset is extended, since 

it could drift. 

 

It was mentioned in earlier sections that there was a large subjective component to 

quantifying the true effectiveness of the model.  Extreme care was required in the 

interpretation of evaluation measures, and even then they provided only rough guidance.  

However, a few conclusions could safely be made, the first being that the model was 

significantly better than random chance.  The evaluation measures confirmed this 

statistically (and were capable of doing so).  In particular, the mean ROC AUC of the model 

iterations showed a clear upward trend in ROC AUC, i.e. away from the baseline of random 

chance, as the dataset expanded.  The 𝑦-randomisation procedure, which tested precisely 

the hypothesis that predictive power is due to random chance, provided a final 

confirmation.  

 

However, any statistical measure based solely on the counts of true and false cases came 

with the important caveat that the ‘real’ true/false classifications of the protein residues 
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were the result of a fairly crude definition based on the proximity to a ligand in the original 

crystal structure.  It is unlikely that a simple radius around the binding site accurately 

captures all residues participating in an allosteric event.  Many residues relevant to the 

allosteric phenomenon may reside outside this radius and, conversely, residues within the 

radius may in fact be of little relevance at all.  This is discussed further in the next section. 
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6.5 Site Definition 

 

Conclusions must be drawn very carefully when dealing with predictive models, and doubly 

so when the response has been artificially generated and bears an element of ambiguity.  

The reason there is a need for work such as this is that allosteric sites have not been fully 

characterised.  They can only be defined empirically: in relation to ligands they bind with 

and the orthosteric sites they are coupled with.  If a ligand binds to a protein and 

modulates activity at the orthosteric site, its location is considered allosteric.  Little about a 

site itself tangibly defines it as allosteric, making it problematic to train a model to identify 

one. 

 

The site definitions used in this project were based on a very simple, distance-based 

algorithm, though allosteric effects were already known to be more complex.  Residues far 

from the allosteric site can play a pivotal role in relaying an allosteric signal, and some 

proximal residues can be irrelevant, though there is no known way to determine this from a 

crystal structure of the allosteric-bound complex. 

 

It was for this reason that the optimisation protocol described was necessary.  Iteration 

over downsampling class ratios in training sets was performed to determine which would 

yield the best predictions of response classes; however, the response classes themselves 

were also varied according to different site selection radii.  Optimum predictive power was 

desired, of course, but it was important to consider the implications of using each radius as 

well as the ability of the model to classify sites according to it.  For example, a model well 

able to classify residues at 50 Å site selection radius should not be considered a good model 

for the prediction of allosteric sites, since 50 Å is a very poor radius for site definition that 

likely encompasses the majority of a protein.  Such a model would be predicting nothing of 

value even if it predicted it well and was, by all evaluation measures, powerful and high-

performing. 

 

Put differently, an answer can only be as good as the question.  The question asked of a 

constructed model – in this case, “which residues in the dataset are allosteric?” – had to be 

as carefully monitored as the answer it produced.  After all, what exactly is an “allosteric” 

residue?   
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The requirement that the allosteric definition be reduced to rigid, binary states, i.e. to 

“allosteric” and “non-allosteric” residues, for the purposes of performing RF potentially 

exacerbated the problem, though it is an unavoidable consequence of using any 

classification-based method that data be put into discrete categories.  

 

In summary, there was most likely a significant, though unknowable and unavoidable, level 

of noise in the response that the RF models were being trained to match data to.  While the 

precise definition of an allosteric site is likely the most capricious area of this project and 

the most challenging to improve upon, it is also one of the most important.  The 𝑦-

randomisation procedure in section 5.5 emphatically demonstrated the destructive effect 

that noise in the response can have on model performance.  Thus, eliminating noise in the 

response would surely lead to a great leap in model performance. 
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6.6 MD Trajectories 

 

50 ns trajectories of production MD with 5 ns of equilibration time were the greatest that 

could be produced at the outset of this project with the computational power available.  

Though it can be said of virtually all MD-based research, it is worth stating that longer 

simulations would improve the reliability of the model.  The danger of retaining the imprint 

of a removed ligand on a protein structure has been discussed at length, and the most 

certain method to minimise this danger (through MD simulation) is to give the protein as 

much time as possible to move away from its initial conformation.  The longer the overall 

simulation is, the longer the initial portion that can be discarded.  Furthermore, a protein 

will access more conformational space with a longer simulation, which can only enhance 

the quality of data derived from the trajectory. 

 

Most investigations use upwards of 1 μs of simulation time to characterise a single 

allosteric site.  Since the dataset built for this project was based on 60 proteins, it was not 

feasible to devote this much simulation time to each.  Considering the aggressive rate at 

which GPU cards are improving, as well as the MD software itself – the release of AMBER 

14 boasted a 30% increase in simulation speeds simply through code optimisation(187) – 

this quantity of simulation time per protein could soon be attainable with an affordable 

setup. 

 

Though these improvements are constantly increasing the reach of ‘brute force’ MD of the 

type performed in this project – that is, constant volume and temperature simulations 

performed for as long a time period as possible – it would be wise to investigate alternative 

methods for enhanced sampling of the conformational landscape of a protein.  Examples of 

such methods include accelerated MD(188), replica exchange(189) and Markov state 

models(190).  While methods such as these will most likely not eliminate the issue of poor 

sampling entirely, they could certainly help to alleviate it.  The latter two can also make 

better use of parallelised computational resources than conventional MD, which may suit 

individual research groups. 
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6.7 Summary 

 

Much of the work described in this report constituted the construction of a robust dataset 

of residue features in proteins with known allosteric sites.  The project culminated in the 

development of a RF-based model that demonstrated a 72% success rate in the prediction 

of allosteric binding sites in proteins. 

 

The main result demonstrated the feasibility of using RF as a method for predicting the 

location of allosteric sites from a set of residue properties.  The correct prediction rate is 

competitive with existing techniques.  Moreover, unlike many existing techniques, this 

method does not inadvertently abuse skewed properties derived from the allosteric ligand-

bound complex crystal structure to achieve its predictions.  In a live situation where an 

allosteric site is genuinely unknown, this method should retain its level of performance. 

 

It is perhaps a testament to the sensitivity of available metrics that ligand-imprinting is even 

an issue.  It means that current methods are capable of homing in on these perturbed 

regions of protein structure.  This can serve as a platform from which new methods such as 

the one presented here can be fine-tuned. 

 

While allostery has been historically difficult to characterise, many successful strides have 

been made.  Individual groups of researchers have approached the area from a great 

variety of angles, and many of their methodologies were utilised in this project to construct 

the dataset.  The overarching goal was to demonstrate that a data-driven approach to 

characterising allostery was feasible, and this was certainly achieved with the use of RF.   
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7. Appendices 
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All appendices are deposited in Pure, the University's research information management 

system.   These can be accessed electronically at http://pure.strath.ac.uk/portal/ by 

searching for the author (Antony Vassileiou), or directly at 

http://dx.doi.org/10.15129/d40aa95f-cd9a-47e2-abd4-a08381668b47.  The contents of 

each Appendix are summarised below. 

 

 Appendix 1 

Raw data downloaded from the PGD 

 

 Appendix 2 

Percent-identity matrix including a numerical version 

 

 Appendix 3 

Graphs of deviations in site residue abundances against site selection radius 

 

 Appendix 4 

Tab-delimited text file containing all descriptors generated for the final 60-protein dataset 

 

 Appendix 5 

correlation analysis showing eliminated variables 

 

 Appendix 6 

a set of 60 PyMOL sessions with each protein’s rendered prediction from the final model 

  

http://pure.strath.ac.uk/portal/
http://dx.doi.org/10.15129/d40aa95f-cd9a-47e2-abd4-a08381668b47
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