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Abstract

Robustness is often regarded as the ability of a given system to maintain its functionality

when faced with some external perturbation or when some of its parts fail to operate.

The ability of the system to cope with disturbances vary from system to system, and

there are many examples in daily life which illustrate this concept. Communication

networks, for example, transportation and telephone networks, or the internet, often

manage to cope with errors or damage within some of their components without leading

to the system failing entirely. As an example, within a social network of employees

within a company, the absence of some employees within some given threshold will not

lead to failure of the company. However, in a financial network, economic failure in

some parts of the system could lead to the complete failure of the entire system.

In order to understand how external perturbations or failures within particular

parts of the system affect a network we can study the robustness of the network. The

robustness of a complex system in graph theory, is the ability of the network to maintain

its connectivity after the removal of some nodes or edges. The process of changing of

a graph from being connected to being disconnected, via deletion of nodes or edges,

is called graph melting. We introduce a melting phase transition for simple connected

graphs and networks faced with external perturbations with positive second largest

eigenvalue λ2 > 0.

In order to calibrate our method of studying network robustness, we consider the

network-theoretic representation of some materials which, in the real-world, are affected

by melting. In particular, we will consider granular materials. A granular material is a

material which is composed of discrete macroscopic solid particles, for example, sand,

rice, and coffee. Granular materials are commonly used in a wide range of real world
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applications. There are already various models of granular materials within network

theory, which has allowed us to study the structure and physical behaviour of such

systems when they have an external perturbations applied to them.

In this thesis, we represent granular solids by simple graphs capturing their topolog-

ical structure and ordering, in order to study their robustness and the melting process.

The melting process is related to the algebraic structure of the adjacency matrix of the

graph and the concept of network communicability. At the melting phase transition,

a graph in question transfers from being connected to being disconnected. We study

melting in graphs with the second largest eigenvalue being positive, namely, in windmill

graphs, dumbbell graphs and cycle graphs. Also, we investigate melting in complete

multipartite graphs where the second largest eigenvalue is non-positive. We found a

melting phase transition in simple connected graphs with λ2 > 0 and λ2 � λ3, which

resembles the melting process of a given system. We found that there is no melting

phase transition in complete multipartite graphs. Also, we found the spectral decom-

position for dumbbell graphs and complete multipartite graphs, which until now have

not been done.

Moreover, in this thesis, we show that crystalline-like granular materials melt at

lower temperatures and display a sharper transition between solid to liquid phases

than amorphous granular materials. In addition, we show the evolution mechanism of

melting in these granular materials with tools from network theory. In the particular

case of crystalline materials, the process starts by melting the central core of the crystal

network, then melting spreads out from the central core until the whole network (ma-

terial) transfers into a liquid. We also investigate computationally the melting process

in some real-world networks. We found that the melting process of a network correlates

well with the topological structure of the network.
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Chapter 1

Introduction

A complex system is a system comprised of many interconnected components that

interact with each other, where the behaviour of one component might be affected

by the behaviour of the other components [20]. In everyday life, we deal with such

complex systems. For example, granular materials, the human brain, power grids,

communication and transportation systems, ecosystems, and social organizations fall

into the category of complex systems. These systems are difficult to model due to

the behaviour of their components. With this mind, it can be useful to study the

relationships between such components and consider how they interact with each other

in such a system. For this reason, these complex systems are represented using network

theory, which is regarded as a powerful framework for modelling such systems.

Network theory, using graphs (or networks) consisting of vertices and edges, has

been used to model many real world systems in science and technology [16, 45, 107]. The

vertices are used to represent the components of the system, and an edge between two

given vertices represents the relationship between the two corresponding components.

Network theory has attracted a great deal of attention as a result of its applicability

to many real world systems. It is an active area throughout various disciplines of

research such as statistical and particle physics, computer science, electrical engineering,

biology, economics, finance, operational research, climatology and sociology [28, 86].

For instance, a particle of a granular material can be represented in graph theory by

a node, and two particles in contact can be represented by two nodes being connected

by an edge. However, in reality it is not always possible to determine exactly if two
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1. Introduction

particles have been in contact; therefore we need to use approximations to model this

phenomenon. There are many different approaches and experimental techniques in two

dimensions that have been developed for approximating the contact between particles

of granular materials [4]. In this thesis, using network theory, we model granular

material systems as simple graphs. We use regular and irregular graph structures

such as square lattices and Gabriel graphs, respectively, to approximate the contact

between the particles of granular solids, using the assumption that all of the particles

are identical.

Physically, melting of a solid begins when the internal energy of the solid increases

due to being subject to heat or pressure [3, 57]. We recall that the properties of a

solid depend on its chemical characterization, as well as the structure of its atoms and

molecules [98, 45]. There are many theoretical models explaining the mechanisms of

melting solids. The most successful models are based on the Lindemann and Born

criteria. Lindemann [66] found that when the temperature of the solid increases, the

amplitudes of the vibrations of the atoms become large. Once a critical temperature

is reached, the atoms break down and disturb their neighbouring atoms. This is how

the melting process starts in reality. In 1937, Born suggested a new criterion for

melting solids [11]. He found that the spaces between the atoms increase as a result

of the increase in temperature of the solids. At a critical temperature, a solid suffers

mechanical instability within its structure which initiates the melting process. Since the

work of Lindemann, many studies have been published based on these two criteria [53].

The vibrations of the atoms or molecules of solids can be interpreted using graph

theory in order to study the melting process. The first successful approach for inter-

preting this phenomenon was done in 2012 by Estrada and Hatano. They defined a

measure to capture the vibrations between the nodes by using graph theory. Estrada

and Hatano [36, 33] proved that the vibrations between the nodes can be determined

using the communicability function. They found that a network of a solid substance

melts (that is to say it becomes fully disconnected) when the communicability between

their nodes disappears. On the other hand, when the communicability between the

nodes is very high, the network is solidified.
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1. Introduction

In this work we propose a melting phase transition for some simple connected graphs

and networks when faced with external perturbations. We consider a vibrational model

of the communicability function based on the Lindemann criterion to study melting of

certain simple connected graphs. Namely, we investigate melting in certain graph fam-

ilies where the second largest eigenvalue λ2 of the graph is positive and other families

where it is non-positive. In particular, for graphs with positive second largest eigen-

value, we study the melting in windmill graphs, dumbbell graphs and cycle graphs.

Also, we investigated melting in complete multipartite graphs where the second largest

eigenvalue is non-positive. We found the melting phase transition in the communica-

bility graph structures of simple connected graphs with λ2 > 0 and λ2 � λ3, which

resembles the melting process of a given system. We found that there is no melting

phase transition in complete multipartite graphs.

Moreover, we model amorphous and crystal solids in graph theory as regular and

irregular graphs respectively, in order to investigate the differences in their melting

processes. We compare the melting percentage and melting temperature of amorphous

and crystal solids like regular and irregular graphs by applying a wide range of tem-

peratures to them. Our results satisfy the two main physical attributes for melting

these two kinds of solids, namely, the melting point and the melting percentage with

increased temperature.

We investigate computationally the melting phase transition in several real-world

networks. We find that the melting process in these networks correlates with their

topological structure. In addition, we discover and prove that melting of nodes (a node

is melted when it is disconnected from the rest of the graph) correlates well with its

corresponding eigenvector centrality. That is, melting of a network starts with the

nodes having the highest values of the Perron–Frobenius eigenvector, because these

nodes require a lower temperature to melt (to be disconnected) than the nodes with

the smaller values of the Perron–Frobenius eigenvector.

The thesis is organised as follows. In Chapter 2, we present general concepts in

graph theory including definitions of various types of graphs to be considered in the

thesis. Moreover, we find the spectrum of some of these graph types which we will

3



1. Introduction

deal with in depth in Chapter 4. For windmill graphs, we find the exact values of

the entries of the associated eigenvectors corresponding to the largest and smallest

eigenvalues. Also, we find the spectrum (eigenvalues and eigenvectors) of dumbbell

graphs. Moreover, we find the eigenvectors corresponding to λ = 0 and λ = −ηi,

i ∈ {1, 2, . . . , k} for complete multipartite graph Kη1,η2,··· ,ηk , η1 ≤ η2 ≤ · · · ≤ ηk,

and the exact entries of the normalized eigenvectors corresponding to the negative

eigenvalues λ 6= −ηi and the largest eigenvalue. Then, we discuss several topological

network properties for investigating network robustness.

In Chapter 3, we define a melting phase transition in graphs. First, we include

some fundamentals about melting solids physically. Then we include a discussion about

melting of graphs; vibrations (communicability) and pure vibrations (communicability

graphs) of nodes in graph theory.

In Chapter 4, we investigate melting in certain graph families that covers the cases

when the second eigenvalue is positive or nonpositive. We study melting in windmill,

dumbbell and complete multipartite graphs. For these graphs, we find the commu-

nicability graph functions in terms of the inverse temperature β. We can determine

explicitly the possible melting patterns for windmill and dumbbell graphs. Moreover,

we show that the communicability graph functions for complete multipartite graphs

are not connected regardless of the value of β.

In Chapter 5, we study computationally melting in cycle graphs. Again, we can

determine explicitly the possible melting patterns for these graphs. Then, we present

our result about the existence of the melting phase transition in simple connected

graphs with λ2 > 0 and λ2 � λ3. Also, we model granular material solids using graph

theory in order to study the melting process in such materials.

In Chapter 6, we analyse the melting process of a series of real-world networks as a

means of investigating the global and local structural characteristics of networks which

drive their melting processes.

Finally, Chapter 7 presents the conclusion for the entire thesis, as well as some

remarks on possible directions of future work based on our thesis. We also included, in

the appendix, details of the real world data that was employed in this work, tables of
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simulation results, and scripts used for our calculations.
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Chapter 2

Graph and Network Theory

In this chapter, we highlight some fundamental properties of networks. Moreover, we

find the spectrum of certain graph types, which we will deal with in depth in Chapter 4.

Throughout this chapter, we let In denote an n × n identity matrix, 1n a vector of n

ones, and 0n a vector of n zeros.

2.1 Networks and Graphs

The study of graphs is a branch of mathematics known as graph theory. Graph theory

is relevant to the structure of many systems [28, 47], and can, for example, be used

to represent the relationships between various components within such a given system.

In order to study complex systems in terms of graphs, we first need to review some

essential concepts that we will deal with frequently throughout this work. The main

concept we would like to establish here is that of a graph (or network). We use the

term graph or network to refer to the skeleton of the system that is considered. A

graph (or network) is comprised of nodes and links. The nodes represent the entities of

the system and the links represent the relationships between those entities. The term

network is used to refer to real world systems while the concept of a graph is usually

used as a mathematical representation of such systems. Due to strong links between

the two concepts, we will use them interchangeably.
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2. Graph and Network Theory

2.1.1 Definition of Graph

A graph Γ = (V,E) is an ordered pair of a set of vertices V and a set of edges E ⊆ V ×V ,

where vi, vj ∈ V are connected in Γ if there exists an edge e = (vi, vj) ∈ E connecting

vi to vj [28]. The sizes of V and E are denoted by |V | = n and |E| = m, respectively.

Another way to represent the graph Γ = (V,E) is via its adjacency matrix A, which is

an n× n matrix defined by

Aij =


1 if (vi, vj) ∈ E,

0 otherwise.

(2.1)

If the graph is weighted then each edge (vi, vj) ∈ E has an associated real positive

number, weight, and the Aij entry denotes that weight. An edge of the form (vi, vi) ∈ E

for some vi ∈ V is called a loop. If there is more than one edge connecting two given

vertices, then we say that those vertices are connected through multiple edges. A

directed graph is a graph whose edges are associated with a direction such that if

(vi, vj) ∈ E then (vj , vi) is not necessarily in E. However, in undirected graphs if

(vi, vj) ∈ E then necessarily (vj , vi) ∈ E, which means that both entries (vi, vj) and

(vj , vi) equal 1 in the corresponding adjacency matrix. An undirected graph is simple

if there are no multiple edges and loops in it. In the rest of this work, we will deal with

simple graphs.

2.1.2 Structural Concepts of Graphs

In this subsection, we introduce some basic notions in graph theory. There is much

literature explaining various concepts and structural properties related to graphs; e.g.

see [28, 47].

Definition 2.1.1. Adjacent and Incident Nodes

In a graph Γ = (V,E), two nodes vi and vj in V are adjacent if they are connected by

an edge e = (vi, vj) ∈ E. In this case, we say that vi and vj are incident to the edge e

and e is incident to vi and vj . Similarly, two edges eij = (vi, vj) and ejk = (vj , vk) are

adjacent if they are both incident to the same node.
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Definition 2.1.2. Neighbourhood of a Node

The neighbourhood of a node vi, denoted by N(vi), in a graph Γ = (V,E) is the set of

nodes which are adjacent to vi. That is, N(vi) = {vj ∈ V | (vi, vj) ∈ E}.

Definition 2.1.3. Degree of a Node

The degree of a node vi ∈ V , denoted by ki, in a graph Γ = (V,E) is the number of

edges incident to vi, and this is equivalent to the sum of the entries of the ith row, or

the ith column, in the adjacency matrix of Γ .

Definition 2.1.4. Regular Graph

A simple graph is regular if all its nodes have the same degree.

Definition 2.1.5. Walk and Path in a Graph

A walk of length k in a graph Γ = (V,E) is an ordered set of vertices (not necessarily

distinct) v1, v2, ..., vk+1 ∈ V such that for all 1 ≤ i ≤ k, there exists an edge in E that

connects vi and vi+1. A walk is closed if v1 = vk+1. Additionally, if a walk contains no

repeated vertices then it is called a path.

Definition 2.1.6. Connected Graph

A graph is connected if for every pair of vertices there exists a path connecting them.

A graph that is not connected is called a disconnected graph.

Definition 2.1.7. Subgraph

A graph Γ̀ = (V̀ , È) is a subgraph of Γ = (V,E), denoted by Γ̀ ⊆ Γ , if V̀ ⊆ V and

È ⊆ E.

Definition 2.1.8. Clique

A clique in a simple graph is a subgraph such that every two distinct nodes are adjacent.

Definition 2.1.9. Connected Component

A disconnected graph can be regarded as a collection of a number of connected sub-

graphs known as components, or connected components. A connected graph has one

connected component.

Definition 2.1.10. Community Structure

A network has a community structure if its nodes can be clustered into groups, where

9
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the nodes in each group are more connected with each other (internally) than with

other nodes of the network (externally), and each group is called a community.

2.2 Spectral Graph Properties

To study the structural properties of graphs, we shall use spectral graph theory. We start

by defining eigenvalues and eigenvectors [28]. Let Γ = (V,E) be a simple connected

graph (in the rest of this thesis, we deal with simple connected graphs only), where |V | =

n and |E| = m, with the adjacency matrix A. A non-zero vector x is an eigenvector

if Ax = λx. In this case, λ is an eigenvalue. The eigenvalues and eigenvectors contain

important information about the structure of the graph Γ .

If the graph Γ is simple then its adjacency matrix is symmetric, hence its eigenvalues

are real. The eigenvalues of A can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λn with corresponding

eigenvectors ψ1,ψ2, ...,ψn. A can be decomposed into the form A = SΛST , where Λ

is the diagonal matrix of the eigenvalues and S = [ψ1,ψ2, ...,ψn] is the orthonormal

matrix of the corresponding eigenvectors of A. A matrix is orthonormal if SST =

STS = In, where ST is the transpose of S. That is, each row is of length 1, and the

rows are mutually perpendicular. Similarly, each column is of length 1, and the columns

are mutually perpendicular.

The graphs considered in this work are connected, so A is irreducible and from the

Perron-Frobenius Theorem, the largest eigenvalue λ1 of A is positive and unique. Thus,

the eigenvalues of A can be written in the form λ1 > λ2 ≥ · · · ≥ λn. In addition, all

entries of the corresponding to λ1 eigenvector ψ1 can be chosen to be positive.

Another important concept in graph theory is the Laplacian matrix L that can be

defined by

Lij =


−1 if (vi, vj) ∈ E,

ki if i = j,

0 otherwise,

(2.2)

where ki is the degree of vertex vi. The adjacency and Laplacian matrices of a graph

are regarded as key tools in the study of complex networks. The Laplacian matrix is

10
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important for studying networks as its spectral properties can be used to investigate

many different aspects such as clustering and pattern recognition. The Laplacian matrix

can also be represented in terms of the adjacency matrix A of the graph by

L = K −A, (2.3)

where K is the diagonal matrix of the degrees of the nodes in the graph. The Lapla-

cian matrix is symmetric and positive semidefinite. Thus, the eigenvalues of L can be

ordered as 0 = µ1 ≤ µ2 ≤ · · · ≤ µn with the corresponding eigenvectors φ1,φ2, ...,φn.

If the graph is connected then eigenvector φ2 that corresponds to the second small-

est eigenvalue µ2 is known as the Fiedler vector. The spectral decomposition of the

Laplacian matrix is L = ΨMΨT , where M is the diagonal matrix of the eigenvalues,

and Ψ = [φ1,φ2, ...,φn] is the orthogonal matrix of the eigenvectors of L [22, 40]. For

simple connected graphs, the spectral decomposition can be more important than the

matrix itself in studying graph properties. It can help to understand the effects of a

function on the adjacency matrix of a graph.

In this thesis, we investigate the spectra of the Laplacian matrix in order to study

the robustness of graphs. The multiplicity of 0 as an eigenvalue in the Laplacian

matrix of the graph represents the number of connected components in that graph. In

addition, we consider the spectra of the adjacency matrix of the graph. We explore the

relationship between the robustness of graphs and the second largest eigenvalue λ2.

2.3 Matrix Function

There are many ways to define a function of a matrix. In this thesis, we will often

consider the following power series, which we apply to an n × n adjacency matrix A.

The power series function for x ∈ R can be expressed as [63],

f(x) =

∞∑
k=0

ckx
k,

11
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where ck ∈ R. Then, the power series function for an adjacency matrix A is

f(A) =

∞∑
k=0

ckA
k.

The power series function of f(A) converges if and only if ρ(A) < R, where R is the

radius of convergency of the power series, ρ(A) = max{|λ1| , |λ2| , . . . , |λn|} and λi are

the eigenvalues of A [63].

The adjacency matrix to the power of k can be shown to coincide with

Ak = SΛkST .

Then, the sum of the main diagonal elements of Ak is given by

tr(Ak) = tr(Λk), (2.4)

and

tr(Ak) =
n∑
i=1

λki , (2.5)

such that for any matrix function, we have

tr
(
f(A)

)
=

n∑
i=1

f(λi). (2.6)

The matrix exponential can be defined in terms of a series, which always converges

eA =
∞∑
k=0

Ak

k!
,

then

tr
(
eA
)

=

n∑
i=1

eλi . (2.7)

If the spectral gap λ1−λ2 is large then tr(eA) is dominated by the term with the largest

eigenvalue λ1 such that tr(eA) ' eλ1 .

A function f is monotonic increasing, if for all x and y such that x ≤ y, we have

12
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f(x) ≤ f(y), and if f(x) < f(y) for all x < y, then f is strictly increasing. Likewise,

a function f is monotonic decreasing, if for all x ≤ y, we have f(x) ≥ f(y), and if

f(x) > f(y) for all x < y, then f is strictly decreasing. A real-valued function f is

concave if the line segment between any two points on the graph of the function lies

below the graph between the two points.

2.4 Counting Zeros of Dirichlet Polynomials

A function of the form f(x) =
∑n

j=1 aje
pjx, x ∈ R, with aj , pj ∈ R is called (generalized)

Dirichlet polynomial. In what follows, we always assume that the coefficients in the

exponents are ordered: p1 > p2 > · · · > pn. Further, we introduce the partial sums

Ak = a1 + a2 + · · · + ak for k = 1, 2, . . . , n. We denote by S[(aj)] and S[(Aj)] the

number of sign changes in the sequences (aj) and (Aj), respectively. In other words,

the number of terms that have the opposite sign to the previous term (leaving out any

zero terms). For example, (aj) = (2,−1, 1,−2, 0,−2, 1, 0,−1, 2) has six sign changes,

hence S[(aj)] = 6. Note that, by [55, Lemma 4.1], S[(Aj)] ≤ S[(aj)]. The following

result, which is a generalization of Descartes’ Rule of Signs and basically goes back to

Laguerre, will be used in later chapters of the thesis.

Lemma 2.4.1. ([55, Theorem 4.7]) Let f(x) =
∑n

j=1 aje
pjx with p1 > · · · > pn and

aj ∈ R, and let Aj be as above. Then, the number of zeros of f in the interval (0,∞)

is not greater than S[(Aj)].

If A1, . . . , An all have the same sign, then f(x) 6= 0 for all x ∈ (0,∞).

2.5 Some Types of Graphs

In this section, we consider special types of graphs. One can find many more types in

[28]. In Figures 2.1–2.3, we present some such types.
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2.5.1 Null Graph

A graph Γ = (V,E) with n nodes is called the null graph Nn if it does not have any

edges (E is the empty set).

2.5.2 Path Graph

A path graph Pn is a simple connected graph with all vertices having degree 2, except

for two vertices that have degree 1. The adjacency matrix of Pn is an n × n matrix

that can be presented in the form

A =



0 1 0 · · · 0 0

1 0 1 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

0 0 0 · · · 1 0


.

2.5.3 Cycle Graph

A cycle graph with n nodes, denoted by Cn, is a simple connected regular graph where

each of the vertices has degree 2. The adjacency matrix of Cn is an n× n matrix that

can be presented in the form

A =



0 1 0 0 · · · 0 1

1 0 1 0 · · · 0 0

0 1 0 1 · · · 0 0

0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1

1 0 0 0 · · · 1 0


.
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The eigenvalues of A are

λ = 2 cos

(
2πj

n

)
, j = 0, 1, . . . , n− 1, (2.8)

with eigenvectors

x =
1√
n



1

ωjn

ω2j
n

...

ω
(n−1)j
n


, j = 0, 1, . . . , n− 1, with ωn = e

2πi
n .

The eigenvalues in (2.8) coincide for j and n − j. Hence the distinct eigenvalues are

obtained for j = 0, 1, . . . , n2 when n is even, and for j = 0, 1, . . . , n−1
2 when n is odd.

2.5.4 Tree

A tree is a simple connected graph that contains no cycle graphs as subgraphs.

2.5.5 Spanning Tree

A spanning tree for a connected graph Γ = (V,E) is a subgraph of Γ that is a tree and

includes all the nodes of Γ .

2.5.6 Triangle

A triangle is a cycle graph of three nodes.

2.5.7 Square Grid Graph (Lattice)

A square grid graph Pn×Pn is the Cartesian product of two path graphs Pn. Its vertices

can be labelled by {v1, v2, ..., vn2} and its adjacency matrix is an n2 × n2 matrix, that

15
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can be defined by

A(Pn × Pn) =



A(Pn) In On · · · On On

In A(Pn) In · · · On On

On In A(Pn) · · · On On
...

...
...

. . .
...

...

On On On · · · A(Pn) In

On On On · · · In A(Pn)


,

where A(Pn) is the adjacency matrix of the path graph Pn, In is an n × n identity

matrix with all entries equal to 0 except for the entries in the main diagonal which are

all 1, and On is an n× n zero matrix.

2.5.8 Complete Graph

A complete graph with η nodes, Kη, is a simple graph with η (η − 1) /2 edges. The

adjacency matrix A(Kη) of Kη is an η× η matrix with all entries equal to 1 except for

the entries in the main diagonal which are all 0. That is, A(Kη) = 1η1
T
η − I, where 1η

is the column vector of all 1s of size η and I is the η × η identity matrix.

Lemma 2.5.1. The spectrum of the adjacency matrix A of the complete graph A(Kη)

with η nodes consists of

1. the largest eigenvalue λ1 = η − 1 with the corresponding eigenvector

y1 =
1
√
η

1η.

2. the eigenvalue λ = −1 with multiplicity η − 1 and the corresponding eigenvectors

yh =
[
y

(h)
1 , y

(h)
2 , . . . , y(h)

η

]T
,

where h = {2, . . . , η}, y(h)
i ∈ R, h = 2, . . . , η and yh 6= yη.
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2.5.9 Core-satellite Graph

Let c ≥ 1, s ≥ 1 and η ≥ 2. The core-satellite graph Θ(c, s, η) is the graph consisting

of η copies of Ks (the satellites) meeting in a common clique Kc (the core). So that

every vertex in Kc is connected to every vertex in each copy of Ks; see Figure 2.3 for

an example.

2.5.10 Windmill Graph

A windmill graph W (η, s) := Θ(1, η, s) is a simple graph consisting of s copies of the

complete graph Kη with every node being connected to a common one, see Figure 2.3

for an example. The adjacency matrix of W (η, s) is an n×n matrix, where n = sη+ 1

and has the form

A =



0 1Tη 1Tη · · · 1Tη

1η A(Kη) Oη · · · Oη

1η Oη A(Kη)
... Oη

...
...

...
. . .

...

1η Oη Oη · · · A(Kη)


, (2.9)

where A(Kη) = 1η1
T
η − I is the adjacency matrix of Kη, 1η is a column vector of

all 1s of length η and Oη is an η × η zero matrix. The adjacency matrix A in (2.9)

induces a labelling of the nodes in W (η, s) which we will assume throughout this work;

in particular, node 1 will be the node of largest degree. By specializing a result from

[30, 31] about the spectrum of Θ(c, s, η) to the case of W (η, s), we obtain the following

lemma.

Lemma 2.5.2. ([31], Theorem 8) The spectrum of the adjacency matrix A of a windmill

graph W (η, s) with n = sη + 1 nodes consists of

1. the eigenvalue λ = −1 with multiplicity s(η − 1);

2. the eigenvalue λ = η − 1 with multiplicity s− 1;

3. the largest and smallest eigenvalues, λ1 and λn, given by the roots of the quadratic
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equation

λ2 − λ(η − 1)− sη = 0, (2.10)

i.e.,

λ1 =
η − 1

2
+

√(
η − 1

2

)2

+ sη, (2.11)

and

λn =
η − 1

2
−

√(
η − 1

2

)2

+ sη. (2.12)

Remark 2.5.3. The fact that λ1 and λn satisfy the quadratic equation (2.10) implies

that λ1 + λn = η − 1 and λ1λn = −sη.

Structure of the Eigenvectors

In [30, 31], the authors also describe the structure of the eigenvectors associated with the

eigenvalues considered in Lemma 2.5.2. We need to refine their results; in particular, we

derive orthonormality conditions for the eigenvectors described in [30, 31]. Throughout

this work, the eigenvectors are partitioned according to the partition of A in (2.9).

I. It is easy to verify from (2.13) and the eigenvalue equation Axk = λxk that the s−1

eigenvectors corresponding to the eigenvalue λ = η − 1 are

xk =


0

α
(k)
1 1η

...

α
(k)
s 1η

 for k = 2, 3, . . . , s, (2.13)

where [α
(k)
1 , . . . , α

(k)
s ]T are linearly independent vectors satisfying

∑s
h=1 α

(k)
h = 0. By

requiring these eigenvectors to be normalized in the 2-norm, we also get that the coef-

ficients must satisfy
s∑

h=1

(
α

(k)
h

)2
=

1

η
.

II. The s(η − 1) eigenvectors xk, k = s+ 1, . . . , n− 1, corresponding to the eigenvalue
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λ = −1 can be written in the form

xk =



0

0η
...

0η

yh

0η
...

0η



,

k = s+ (l − 1)(η − 1) + h,

h = 1, . . . , η − 1,

yh in the lth block, l = 1, . . . , s,

(2.14)

where y1, . . . ,yη−1 builds an orthonormal system of eigenvectors of A(Kη) correspond-

ing to the eigenvalue −1.

III. Finally, the eigenvectors that correspond to the eigenvalues λ1 in (2.11) and λn

in (2.12) can be written in the form

x1 =

 z1

z21sη

 (2.15)

and

xn =

 z3

z41sη

 (2.16)

respectively, where z1, z2, z3, z4 ∈ R are not all zeros.

In the next lemma, we find the explicit value of the coefficients appearing above in

order for x1 and xn to be normalized in the 2-norm.

Lemma 2.5.4. The normalized eigenvectors corresponding to the largest and smallest

eigenvalues λ1 and λn for windmill graphs W (η, s) are

x1 =
1√

λ2
n + sη

−λn
1sη

 (2.17)
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and

xn =
1√

λ2
1 + sη

−λ1

1sη

 . (2.18)

Proof. To find the entries of the normalized eigenvector corresponding to λ1 we consider

the associated eigenvalue problem:

A

 z1

z21sη

 =

 sηz2

z1 + (η − 1)z21sη

 = λ1

 z1

z21sη


which yields 

z1 + (η − 1)z2 = λ1z2

sηz2 = λ1z1

⇒ z1 = −λnz2

where we have used the expression for x1 described in (2.15) and Remark 2.5.3. By

imposing normalization of the eigenvector in the 2-norm, we get:

z2
1 + sηz2

2 = 1

which, together with the fact that z1 = −λnz2, yields z2 =
(√

sη + λ2
n

)−1
, and hence the

desired expression (2.17). The same argument yields the expression for xn in (2.18).

2.5.11 Complete Multipartite Graphs

Let 1 ≤ η1 ≤ η2 ≤ · · · ≤ ηk with k ≥ 2. A complete multipartite graph Kη1,η2,...,ηk with

n =
∑k

i=1 ηi vertices is a graph that consists of k pairwise disjoint sets V1, V2, . . . , Vk

of nodes where each set Vi has ηi nodes (i ∈ {1, 2, . . . , k}), there is no edge between

nodes in the same set and there is an edge between any two nodes in distinct subsets,

i.e. if v ∈ Vi and w ∈ Vj , then there is an edge between v and w if and only if i 6= j; see

Figure 2.3 for an example. The adjacency matrix A of Kη1,η2,...,ηk is an n × n matrix
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of the form

A =



Oη1×η1 1η1×η2 1η1×η3 . . . 1η1×ηk

1η2×η1 Oη2×η2 1η2×η3 . . . 1η2×ηk

1η3×η1 1η3×η2 Oη3×η3 . . . 1η3×ηk
...

...
...

. . .
...

1ηk×η1 1ηk×η2 1ηk×η3 . . . Oηk×ηk


, (2.19)

where Oηi×ηj is the ηi × ηj zero matrix and 1ηi×ηj is the ηi × ηj matrix with all entries

equal 1.

Spectrum of Kη1,η2,...,ηk

We start our considerations about the spectrum of the adjacency matrix for a complete

multipartite graph with two lemmas from the literature.

Lemma 2.5.5 ([101]). A graph has exactly one positive eigenvalue if and only if the

non-isolated points form a complete multipartite graph.

The following lemma is Lemma 1 and Theorem 1 in [23].

Lemma 2.5.6 ([23]). For an eigenvalue λ of the adjacency matrix of a complete mul-

tipartite graph Kη1,η2,...,ηk with n =
∑k

i=1 ηi vertices and k disjoint sets V1, V2, . . . Vk of

nodes, where set Vi has ηi nodes, i ∈ {1, 2, . . . , k}, and η1 ≤ η2 ≤ · · · ≤ ηk, the following

statements hold.

1. If ηk > 1, then λ = 0 is an eigenvalue of multiplicity n − k; the corresponding

eigenvectors are of the form

x =


y1

y2

...

yk


where yi =

[
y

(i)
1 , y

(i)
2 , . . . , y

(i)
ηi

]T
with

∑ηi
j=1 y

(i)
j = 0, i ∈ {1, 2, . . . , k}.

2. There is exactly one positive eigenvalue, λ1, and k − 1 negative eigenvalues; the
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latter satisfy

−ηk ≤ λn ≤ −ηk−1 ≤ λn−1 ≤ −ηk−2 ≤ · · · ≤ −η2 ≤ λn−k+2 ≤ −η1, (2.20)

i.e. −ηj−n+k ≤ λj ≤ −ηj−n+k−1, j ∈ {n−k+2, . . . , n}. If −ηj−n+k < −ηj−n+k−1,

then −ηj−n+k < λj < −ηj−n+k−1. The eigenvalue λ1 and those negative eigen-

values that are not in {−η1, . . . ,−ηk} satisfy the equation

k∑
i=1

ηi
λ+ ηi

= 1. (2.21)

3. If λ 6= 0, then the eigenvectors corresponding to non-zero eigenvalues λ can be

written in the form

x =


x11η1

x21η2
...

xk1ηk

 , (2.22)

where xi ∈ R, i ∈ {1, 2, . . . , k} and they satisfy

λ (xi − xj) = ηjxj − ηixi, (2.23)

for all i, j ∈ {1, 2, . . . , k}.

Throughout this work, the eigenvectors will be partitioned according to the partition

of A in (2.19). We need to refine the results about the eigenvectors and find the exact

entries of these. Let us first consider an eigenvalue λ /∈ {0,−η1, . . . ,−ηk}.

Lemma 2.5.7. Let Kη1,η2,...,ηk be the complete multipartite graph with n =
∑k

i=1 ηi

nodes and η1 ≤ η2 ≤ · · · ≤ ηk with adjacency matrix A defined in (2.19). Every eigen-

value λ /∈ {0,−η1,−η2, . . . ,−ηk} is simple. The corresponding normalized eigenvector

is given by (2.22) with

xi =
α

λ+ ηi
, i ∈ {1, . . . , k} (2.24)
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and

α =

(
k∑
i=1

ηi
(λ+ ηi)2

)− 1
2

. (2.25)

Proof. That λ is a simple eigenvalue follows from the inequalities (2.20). Since λ 6= 0,

we obtain from Lemma 2.5.6 that an eigenvector x must be of the form (2.22) where

the coefficients xi satisfy (2.23). The latter relation implies

(λ+ ηi)xi = (λ+ ηj)xj (2.26)

for all i, j ∈ {1, . . . , k}. The expression in (2.26) is independent of i and j, and therefore

must be equal to some constant α. We choose α such that the eigenvector is normalized.

From the normalization condition
∑k

i=1 ηkx
2
i = 1 we can easily derive (2.25).

In the next lemma we consider the situation when some of the ηi coincide.

Lemma 2.5.8. Let Kη1,η2,...,ηk be the complete multipartite graph with n =
∑k

i=1 ηi

nodes and η1 ≤ η2 ≤ · · · ≤ ηk with adjacency matrix A defined in (2.19). If ηi =

ηi+1 = · · · = ηi+r−1 for some i ∈ {1, 2, . . . , k} and r ≥ 2 such that i + r − 1 ≤ k, then

λ = −ηi is an eigenvalue of A with multiplicity r − 1. The corresponding complete set

of orthonormal eigenvectors is given by

xh =



0η1
...

0ηi−1

y
(h)
1 1ηi

...

y
(h)
r 1ηi

0ηi+r
...

0ηk



, h = 1, 2, . . . , r − 1, (2.27)
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where
[
y

(h)
1 , . . . , y

(h)
r

]T
, h = 1, 2, . . . , r − 1, are orthogonal vectors satisfying

r∑
j=1

y
(h)
j = 0,

r∑
j=1

(
y

(h)
j

)2
=

1

ηi
, h = 1, 2, . . . , r − 1. (2.28)

Proof. It follows from (2.20) that −ηi is an eigenvalue with multiplicity at least r − 1.

Further, Lemma 2.5.6 implies that a corresponding eigenvector x must be of the form

(2.22) where the coefficients xi satisfy (2.23). For j /∈ {i, i+ 1, . . . , i+ r− 1} we obtain

from (2.23) that −ηi(xi − xj) = ηjxj − ηixi, which implies xj = 0 since ηj 6= ηi. Hence

the eigenvector x has the form

x =



0η1
...

0ηi−1

y11ηi
...

yr1ηi

0ηi+r
...

0ηk



.

If we plug this vector into the eigenvalue equation Ax = −ηix, we obtain, for the

components in the jth block (j ∈ {i, i+ 1, . . . , i+ r}),

r∑
s=1
s 6=j

ηsys = −ηjyj ,

which yields
∑r

s=1 ys = 0. There are r − 1 linearly independent vectors satisfying

this constraint, which shows that the multiplicity of the eigenvalue is r − 1. The

normalization of the eigenvectors yields the second condition in (2.28).

In the next lemma, we find the eigenvectors that correspond to the eigenvalue λ = 0

of A for Kη1,η2,...,ηk when η1 ≤ η2 ≤ · · · ≤ ηk.

Lemma 2.5.9. Let Kη1,η2,...,ηk be the complete multipartite graph with n =
∑k

i=1 ηi
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nodes and η1 ≤ η2 ≤ · · · ≤ ηk with adjacency matrix A defined in (2.19). Then, a

complete orthonormal set of n − k eigenvectors corresponding to the eigenvalue λ = 0

is given by

xh =



0η1
...

0ηi−1

yi,j

0ηi+1

...

0ηk


,

h = 1 +
∑i−1

s=1(ηs − 1) + j,

i = 1, . . . , k,

j = 1, . . . , ηi − 1,

(2.29)

where, for each i ∈ {1, . . . , k}, the vectors yi,1, . . . ,yi,ηi−1 form an orthonormal sys-

tem such that 1Tηiyi,j = 0, j = 1, . . . , ηi − 1, i.e. if yi,j =
[
y

(i,j)
1 , . . . , y

(i,j)
ηi

]T
, then∑ηi

s=1 y
(i,j)
s = 0.

Proof. The vectors in (2.29) are eigenvectors corresponding to the eigenvalue 0 accord-

ing to Lemma 2.5.6; they are orthonormal and span a space of dimension
∑k

i=1(ηi−1) =

n − k, which is the multiplicity of the eigenvalue 0 by Lemma 2.5.6. Hence we have

found a complete orthonormal set of eigenvectors.

Spectrum of a Complete k-partite Graph with equal-sized Parts

Let us consider the case of a multipartite graph Kη1,η2,...,ηk where η1 = η2 = · · · = ηk =

η, i.e. all subgroups Vi are of equal size. (Note that, for η = 1, we obtain the complete

graph Kk.) In the next lemma, we describe the spectrum of such a multipartite graph

Kη,η,...,η.

Lemma 2.5.10. The spectrum of the adjacency matrix A of the complete k-partite

graph Kη,η,...,η with n = kη nodes consists of the following eigenvalues:

1. the largest eigenvalue λ1 = η(k− 1), which is simple, with corresponding normal-

ized eigenvector

x1 =
1√
n

1n; (2.30)
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2. the smallest eigenvalue λn−k+2 = · · · = λn = −η with multiplicity k − 1 and

corresponding orthonormal eigenvectors

xh =


x

(h)
1 1η

x
(h)
2 1η

...

x
(h)
k 1η

 , h = n− k + 2, . . . , n, (2.31)

where
[
x

(h)
1 , . . . , x

(h)
k

]T
, h = n− k + 2, . . . , n, are orthogonal vectors satisfying

k∑
j=1

x
(h)
j = 0,

k∑
j=1

(
x

(h)
j

)2
=

1

η
, h = n− k + 2, . . . , n;

3. the eigenvalue λ2 = · · · = λn−k+1 = 0 with multiplicity k(η−1) and corresponding

orthonormal eigenvectors

xh =



0η
...

0η

yj

0η
...

0η


,

h = (i− 1)(η − 1) + j + 1,

i = 1, . . . , k; j = 1, . . . , η − 1,
(2.32)

where the vector in (2.32) has a non-zero entry in the ith block and where the vec-

tors y1, . . . ,yη−1 form an orthonormal system such that, with yj =
[
y

(j)
1 , . . . , y

(j)
η

]T
,

one has
∑η

s=1 y
(j)
s = 0.

Proof.

1. The eigenvalue λ1 satisfies equation (2.21), which is

kη

λ1 + η
= 1,
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and hence λ1 = (k−1)η. The corresponding eigenvector must be of the form (2.22)

where the coefficients xi satisfy (2.23), which in our case is λ1(xi−xj) = η(xj−xi).

This implies that xi = xj for all i, j ∈ {1, . . . , k}. A normalized eigenvector is

therefore given by (2.30).

2. The statement follows directly from Lemma 2.5.8.

3. The assertion is a direct consequence of Lemma 2.5.9 with η1 = · · · = ηk. The

enumeration of the eigenvectors can be easily checked.

Spectrum of Certain Complete 3-partite Graphs

In this subsection, and in particular, in the next lemma we consider complete 3-partite

graphs where η1 = η2 = η < η3 = l.

Lemma 2.5.11. Let l > η > 0. The spectrum of the adjacency matrix A of Kη,η,l

consists of

1. the largest and smallest eigenvalues given by the roots of the quadratic equation

λ2 − ηλ− 2ηl = 0, i.e.,

λ1 =
η +

√
η2 + 8ηl

2
, (2.33)

λn =
η −

√
η2 + 8ηl

2
, (2.34)

and their corresponding eigenvectors given by

xh =

xh12η

yh1l

 , (2.35)

where xh =
(

2η + l
( 2η
λh

)2)− 1
2
, yh = 2η

λh
xh and h ∈ {1, n};
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2. the eigenvalue λ = 0 with multiplicity n− 3 with the corresponding eigenvectors

x1+i =


yi

0η

0l

 , xη+i =


0η

yi

0l

 , i = 1, 2, . . . , η − 1,

and

x2η−1+i =


0η

0η

zj

 , j = 1, 2, . . . , l − 1,

where yi =
[
y

(i)
1 , . . . , y

(i)
η

]T
, i = 1, . . . , η − 1, and zj =

[
z

(j)
1 , . . . , z

(j)
l

]T
, j =

1, . . . , l− 1, are orthonormal systems such that
∑η

s=1 y
(i)
s = 0 for i = 1, . . . , η− 1,

and
∑l

s=1 z
(j)
s = 0 for j = 1, . . . , l − 1;

3. the simple eigenvalue λ = −η with the corresponding eigenvector

xn−1 =
1√
2η


x1η

−x1η

0l

 . (2.36)

Proof. It follows from Lemma 2.5.6 (see, in particular, (2.20)) that the non-zero eigen-

values satisfy

−l < λn < −η = λn−1 < 0 < λ1.

Now let us consider the eigenvalues and the corresponding eigenvectors separately.

1. The eigenvalues λ1 and λn satisfy (2.21), i.e.,

2η

λ+ η
+

l

λ+ l
= 1,

which is equivalent to the quadratic equation λ2− ηλ− 2ηl = 0. The solutions of

the latter equation are given by (2.33) and (2.34). The corresponding eigenvectors
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must be of the form (2.22), i.e.,

x =


x11η

x21η

x31l

 ,

where x1, x2, x3 satisfy (2.23). For i = 1, j = 2 we obtain λ(x1−x2) = η(x2−x1),

which implies that x1 = x2. Hence, we can write x =

[
x12η

y1l

]
. Substituting x

into the eigenvalue equation we obtain

ηx+ ly = λx, (2.37)

2ηx = λy. (2.38)

The second equation yields y = 2η
λ x. The normalization condition is 2ηx2 + ly2 =

1, which then leads to x =
(

2η + l
(2η
λ

)2)− 1
2
.

2. The form of the eigenvectors follows directly from Lemma 2.5.9.

3. We can apply Lemma 2.5.8 with r = 2, which yields that−η is a simple eigenvalue.

The form of the eigenvector also follows from that lemma.

2.5.12 Star Graphs

A star graph Sη is a complete bipartite graph with η1 = 1 and η2 = η − 1 (i.e.

Sη = S1,η−1). The adjacency matrix of Sη is an η × η matrix that can be expressed by

A(Sη) =

 0 1Tη−1

1η−1 Oη−1

 , (2.39)

where 1η−1 is the vector of all 1s size η−1 and Oη−1 is an (η−1)× (η−1) zero matrix.

Lemma 2.5.12 ([51]). The spectrum of the adjacency matrix A(Sη) of the star graph

with η nodes consists of
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1. the largest eigenvalue is λ1 =
√
η − 1 with the corresponding eigenvector

x1 =
1√
2

 1

1√
η−1

1η−1

 ;

2. the smallest eigenvalue is λη = −
√
η − 1 with the corresponding eigenvector

xη =
1√
2

 −1

1√
η−1

1η−1

 ;

3. the eigenvalue λh = 0, 2 ≤ h ≤ η − 1 with corresponding eigenvectors

xh =
[

0, x
(h)
1 , x

(h)
2 , · · · , x(h)

η−1

]T
,

x
(h)
i ∈ R, i = {1, . . . , η − 1} and xh 6= 0η.

2.5.13 Dumbbell Graphs

A dumbbell graph Kη–Kη, where η ≥ 2, is a simple graph consisting of two copies of

the complete graph Kη with a single edge connecting these two copies. The adjacency

matrix of Kη–Kη is an n× n matrix where n = 2η, η ≥ 2, and has the form

A =



0 0 · · · 0

A(Kη)
...

...
...

0 0 · · · 0

1 0 · · · 0

0 · · · 0 1

0 · · · 0 0
...

...
... A(Kη)

0 · · · 0 0



. (2.40)

where the adjacency matrix A in (2.40) induces a labelling of the nodes in Kη–Kη,

which we will assume throughout this work; in particular, we partitioned the set of
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nodes V into subsets V1 = {1, 2, . . . , η − 1} and V2 = {η + 2, η + 3, . . . , 2η} and two

single nodes η and η + 1 (i.e V = V1 ∪ {η} ∪ {η + 1} ∪ V2). In other words, the two

cliques of a dumbbell graph are connected via the nodes η and η + 1.

In the next theorem we find the spectrum of dumbbell graphs.

Theorem 2.5.13. The spectrum of the adjacency matrix A of the dumbbell graph Kη–

Kη with η ≥ 2 and n = 2η nodes consists of:

1. the eigenvalues given by the roots of the quadratic equation λ2− (η − 1)λ−1 = 0,

λ± =
η − 1

2
±
√

(η − 1)2 + 4

2
, (2.41)

with corresponding eigenvectors given by

x± = α±


1η−1

λ± − η + 2

λ± − η + 2

1η−1

 , (2.42)

where

α± =
[
2(λ± − η + 2)2 + 2(η − 1)

]− 1
2 ; (2.43)

2. the eigenvalues given by the roots of the quadratic equation λ2 − (η − 3)λ −

(2η − 3) = 0,

λ± =
η − 3

2
±
√

(η + 1)2 − 4

2
, (2.44)

with corresponding eigenvectors given by

x± = α±


−1η−1

−(λ± − η + 2)

λ± − η + 2

1η−1

 , (2.45)

where

α± =
[
2(λ± − η + 2)2 + 2(η − 1)

]− 1
2 ; (2.46)
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3. the eigenvalue λ = −1 with the multiplicity 2η − 4 and with the corresponding

eigenvectors given by

xk =


yk

0

0

0η−1

 , x′k =


0η−1

0

0

yk

 , k = 1, . . . , η − 2, (2.47)

where the vectors y1, . . .yη−2 (of size η−1) are an orthonormal set of eigenvectors

of the complete graph Kη−1 corresponding to the eigenvalue λ = −1.

Proof. Let us consider the following vectors, x1, x2, x3 and x4, which are partitioned

according to the partition of A in (2.40).

x1 =


z11η−1

z2

z2

z11η−1

 ,

where z1, z2 6= 0,

x2 =


−z31η−1

−z4

z4

z31η−1

 ,

where z3, z4 6= 0, and

x3 =


y

0

0

0η−1

 , x4 =


0η−1

0

0

y

 ,

where, y =
[
y1, y2, · · · , yη−1

]T
6= 0η−1.
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Now, by substituting the vector x1 into the eigenvalue problem Ax1 = λx1, we obtain

(η − 2)z1 + z2 = λz1, (2.48)

(η − 1)z1 + z2 = λz2. (2.49)

Then we have

z2 = (λ− η + 2)z1, (2.50)

λ2 − (η − 1)λ− 1 = 0, (2.51)

from which we immediately obtain the two eigenvalues,

λ± =
η − 1

2
±
√

(η − 1)2 + 4

2
. (2.52)

The eigenvectors are normalized if and only if

2(η − 1)z2
1 + 2z2

2 = 1;

by (2.50), this implies

z1 =
[
2
(
(λ± − η + 2)2 + (η − 1)

)]− 1
2 , z2 = (λ± − η + 2)z1,

which yields (2.70) and (2.71).

Similarly, let us consider the vector x2, substituted into the eigenvalue problem

Ax2 = λx2. We obtain that

−(η − 2)z3 − z4 = −λz3, (2.53)

−(η − 1)z3 + z4 = −λz4 (2.54)

and hence

z4 = (λ− η + 2)z3, (2.55)

λ2 − (η − 3)λ− (2η − 3) = 0, (2.56)
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from which we obtain the two eigenvalues,

λ± =
η − 3

2
±
√

(η + 1)2 − 4

2
. (2.57)

The normalization condition for the eigenvector is

2(η − 1)z2
3 + 2z2

4 = 1,

which, by (2.55), implies

z3 =
[
2
(
(λ± − η + 2)2 + (η − 1)

)]− 1
2 ,

z4 = (λ± − η + 2)z3,

and therefore (2.72).

Finally, with the same ordering of the nodes, the adjacency matrix of Kη–Kη can

be written as the block matrix

A =



0 0 · · · 0

A(Kη−1) 1η−1
...

...
...

0 0 · · · 0

1Tη−1 0 1 0 · · · 0

0 · · · 0 1 0 1Tη−1

0 · · · 0 0
...

...
... 1η−1 A(Kη−1)

0 · · · 0 0



. (2.58)

Substitution of the vector x3 into the eigenvalue problem Ax3 = λx3, or x4 into the

eigenvalue problem Ax4 = λx4, yields

A(Kη−1)y = λy, (2.59)

η−1∑
i=1

yi = 0. (2.60)
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Explicitly, relation (2.59) can be written as

y2 +

η−1∑
i=3

yi = λy1, (2.61)

y1 +

η−1∑
i=3

yi = λy2, (2.62)

y1 + y2 +

η−1∑
i=4

yi = λy3, (2.63)

...

η−2∑
i=1

yi = λyη−1. (2.64)

Taking differences of two such equations we obtain

yi − yj = λ (yj − yi) ,

for all i, j ∈ {1, 2, . . . , η − 1} with i 6= j. At least one of the terms yi − yj must be

non-zero by (2.60), which implies λ = −1. Hence, y is an eigenvector of A(Kη−1)

corresponding to the eigenvalue −1, which has multiplicity η − 2. This shows that we

have η−2 linearly independent vectors of the form x3 and also η−2 linearly independent

vectors of the form x4, which gives a total multiplicity of 2η − 4 of the eigenvalue −1

of the matrix A. Since the total multiplicity of the eigenvectors of the forms x1, . . . ,x4

is 2 + 2 + (2η − 4) = 2η = n, we have found all eigenvalues of A.

In the next lemma, we find an ordering and bounds for the eigenvalues of a dumbbell

graph.

Lemma 2.5.14. The eigenvalues of the dumbbell graph Kη–Kη, η ≥ 2, can be ordered
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and bounded as follows

λ1 > λ2 > 0 > λ3 > λ4 = · · · = λn−1 = −1 > λn, (2.65)

η − 1 < λ1 =
η − 1

2
+

√
(η − 1)2 + 4

2
< η, (2.66)

η − 2 < λ2 =
η − 3

2
+

√
(η + 1)2 − 4

2
< η − 1, (2.67)

− 1

η − 1
< λ3 =

η − 1

2
−
√

(η − 1)2 + 4

2
< −1

η
, (2.68)

−2 < λn =
η − 3

2
−
√

(η + 1)2 − 4

2
< −1. (2.69)

Proof. Let us first consider the eigenvalues λ± = η−1
2 ±

√
(η−1)2+4

2 . Since η > 1, we

have

η − 1 =
√

(η − 1)2 <
√

(η − 1)2 + 4 <
√

(η − 1)2 + 4η =
√

(η + 1)2 = η + 1,

which implies (2.66). By Theorem 2.5.13, the eigenvalues λ+ and λ− satisfy the

quadratic equation λ2 − (η − 1)λ − 1 = 0, and therefore λ+λ− = −1, or λ− = − 1
λ+

.

Together with (2.66), this implies (2.68). For λ± = η−3
2 ±

√
(η+1)2−4

2 we use again the

fact that η > 1, which yields

η − 1 =
√

(η − 1)2 =
√

(η + 1)2 − 4η <
√

(η + 1)2 − 4 <
√

(η + 1)2 = η + 1,

and we obtain (2.67) and (2.69). Now, the inequalities in (2.65) follow easily.

Remark 2.5.15. The fact that the eigenvalues satisfy the quadratic equations in The-

orem 2.5.13 implies the following relations:

1. λ1 + λ3 = η − 1 and λ1λ3 = −1;

2. λ2 + λn = η − 3 and λ2λn = −(2η − 3).

Remark 2.5.16. The orthonormal eigenvectors corresponding to the eigenvalues λk,

36



2. Graph and Network Theory

k ∈ {1, 3}, can be written in the form

xk = αk


1η−1

(λk − η + 2)

(λk − η + 2)

1η−1

 , (2.70)

where

αk =
[
2(λk − η + 2)2 + 2(η − 1)

]− 1
2 . (2.71)

The orthonormal eigenvectors corresponding to the eigenvalues λk, k ∈ {2, n}, can be

written in the form

xk = αk


−1η−1

−(λk − η + 2)

(λk − η + 2)

1η−1

 , (2.72)

where

αk =
[
2(λk − η + 2)2 + 2(η − 1)

]− 1
2 . (2.73)

2.5.14 Random Geometric Graph

A random geometric graph is an undirected graph defined by placing n nodes randomly

and independently in RN . The nodes in a random geometric graph are connected as

follows. A disk of radius r > 0 centered at each node vi is placed, then vi is connected

to every other node found in the disk. In other words, vi is connected to a node vj if

the Euclidean distance between these nodes is at most r [43].

2.5.15 β-Skeleton Graph

A β-skeleton graph [56, 104] is a simple graph defined by forming a set V with random

points in RN . Two points p = (p1, p2, . . . , pN ) and q = (q1, q2, . . . , qN ) in a β-skeleton

graph are connected as follows. Let B(x, r) be the circle centered at x with radius r.

If the intersection of the two circles B((1 − β
2 )p + β

2 q,
β
2L) and B((1 − β

2 )q + β
2 p,

β
2L)
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A spy plot A of complete graph

(f)

Figure 2.1: Examples of graphs: (a) path graph, (c) grid graph and (e) complete
graph, and the Spy plots of their adjacency matrices in (b), (d) and (f), respectively.
The Spy(A) plots the sparsity pattern of the matrix A: the non-zero values are colored
black while zero values are white.
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Figure 2.2: Examples of graphs: (a) a spanning tree of the complete graph K9, (c) a
dumbbell graph, and the Spy plots of their adjacency matrices in (b) and (d), respec-
tively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Examples of core-satellite graphs in (a) and (b), windmill graphs in (c) and
(d), and complete multipartite graphs in (e) and (f).
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Figure 2.4: Illustration of connection between nodes in a Gabriel graph, where nodes i
and j are connected in the left picture because there is no node in the constructed disk
between i and j. In the right picture, i and j are disconnected because of the existence
of the node k inside the disk between i and j.

contains no other points from V , where β ≥ 0 and L =
√∑N

i=1(pi − qi)2 = ‖p− q‖

is the Euclidean distance between p and q, then p and q are connected by an edge in

β-Skeleton graph.

2.5.16 Gabriel Graph and Relative Neighbourhood Graph

If β = 1 in a β-skeleton graph then the resulting graph is called a Gabriel graph, and

if β = 2 then the resulting graph is called a relative neighbourhood graph. Figure 2.4

illustrates connection between nodes in this graph. In Figures 2.5 and 2.6, we give two

examples of β-skeleton graphs with n = 500 nodes for β = 1 (Gabriel graph) and β = 2

(relative neighbourhood graph) in 2 and 3 dimensions, respectively.

2.6 Network Measures

In order to investigate the robustness of a network, we examine some network structural

measures which depend on the network topology, and its global and local properties.

These measures will allow us, in this thesis, to investigate the structural properties that

affect the robustness of the studied networks.
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(a) Gabriel graph (b) Relative neighbourhood graph

Figure 2.5: Examples of two β-skeleton graphs with n = 500 nodes each in 2 dimensions
for β = 1 (Gabriel graph) and β = 2 (relative neighbourhood graph).

(a) Gabriel graph (b) Relative neighbourhood graph

Figure 2.6: Examples of two β-skeleton graphs with n = 500 nodes each in 3 dimensions
for β = 1 (Gabriel graph) and β = 2 (relative neighbourhood graph).
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2.6.1 Network Connectivity

Let Γ = (V,E) be a simple connected graph with |V | = n and |E| = m. The maximum

node degree is kmax = max
i

ki, where ki is the degree of the node vi, i = {1, . . . , n}.

The average node degree k̄ is given by

k̄ =
1

n

n∑
i=1

ki =
2m

n
. (2.74)

In addition, we will consider another aspect of node degrees called the Collatz-Sinogowitz

Index [109] given by

CS(Γ ) = λ1 − k̄. (2.75)

The CS(Γ ) is widely used to capture the regularity of the graph [109], where, in general,

the largest eigenvalue λ1 of the adjacency matrix A of Γ satisfies

kmax ≥ λ1 ≥ k̄. (2.76)

For regular graphs λ1 = k̄. According to edge connectivity, we investigate the edge

density δ given in [28]:

δ =
2m

n(n− 1)
=

k̄

n− 1
. (2.77)

The edge density is bounded between 0 and 1.

2.6.2 Average Distance

The distance dij is the shortest path length from node vi to node vj . The distance

between each pair of nodes in the graph can be displayed in a matrix form called the

distance matrix D. For simple graphs, D is a symmetric matrix. The distance dij

between vi and vj is given at the ith row (or column) and jth column (or row) of the

matrix D. Then the average distance (path length) l̄ over all pairs of nodes in a graph

can be defined as in [28]:

l̄ =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

dij . (2.78)
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2.6.3 Efficiency

The efficiency of a graph measure Ef is the averaged sum of the multiplicative inverses

of the distance over all pairs of nodes in a graph, and it is defined in [91, 62] as

Ef =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1

dij
. (2.79)

We have Ef ∈ (0, 1], where the upper bound is defined by the complete graph [28].

2.6.4 Closeness Centrality

The closeness centrality CCi of a node vi is the reciprocal of the sum of the shortest

path lengths from vi to every other node vj in the graph [42]:

CCi =
1∑

j 6=i dij
. (2.80)

2.6.5 Eigenvector Centrality

The eigenvector centrality ECi is the ith entry of the eigenvector ψ1 which corresponds

to the largest eigenvalue λ1 of the adjacency matrix A of the graph.

2.6.6 Betweenness Centrality

The betweenness centrality BCx is defined as the fraction of the shortest paths between

pairs of nodes passing through a node or an edge x, and can be defined by

BCx =

n−1∑
i=1

n∑
j=i+1

pij(x)

pij
, (2.81)

where pij(x) represents the number of shortest paths between i and j passing through

x, and pij represents the total number of the shortest paths between nodes i and j

[42, 41].
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2.6.7 Subgraph Centrality

The subgraph centrality of a node accounts for the number of closed walks in a graph.

There are many ways for characterizing this centrality measure. One approach considers

the weighted sum of the powers of the the adjacency matrix A,

f(A) =
∞∑
k=0

ckA
k. (2.82)

In order to give more weights to smaller subgraphs, we will consider in this work ck = 1
k!

[24, 38], hence

f(A) =
∞∑
k=0

Ak

k!
= eA. (2.83)

The main diagonal of Ak counts the number of closed walks of length k from each

node to itself. Each entry of the main diagonal of eA represents the weighted sum of

the numbers of closed walks of length k = 1, 2, . . ., from each node vi to itself, where

i ∈ {1, . . . , n}. Then, the subgraph centrality of node vi can be defined by

SC(i) =
(
eA
)
ii
. (2.84)

The sum of all subgraph centralities SC =
∑n

i=1 SC(i), known as the Estrada index,

considers all possible closed walks in a graph [24]. It can be related to the sum of the

eigenvalues of the adjacency matrix of the graph. By using the spectral decomposition

of the adjacency matrix A of the graph, we have that eA = SeΛST and then the average

subgraph centrality of all the nodes in the graph can be written as

SC =

∑n
i=1 e

λi

n
. (2.85)

2.6.8 Clustering Coefficient

The clustering coefficient captures the presence of triangles in a graph. This concept

was proposed by Watts and Strogatz in 1998 [112]. The clustering coefficient compares

the number of triangles to the number of connected triples. The number of triangles
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incident to the node vi of a graph can be expressed by the main diagonal of A3 and

can be evaluated as

ti =
1

2

(
A3
)
ii
. (2.86)

In general, A3 captures all paths of length 3 and the diagonal of A3 captures the number

of closed walks of length 3. However, the triangles may be counted in each direction of

vi, therefore we multiply by a half to avoid double counting. The number of all paths

of length 2 centred on a node vi is the number of all possible ways to pick two edges

from the ki edges incident to vi, and can be expressed as

P2(i) =

(
ki
2

)
=
ki(ki − 1)

2
. (2.87)

Hence, the clustering coefficient Ci of a node vi of degree ki and related number of

triangles, is calculated by

Ci =

(
A3
)
ii

ki(ki − 1)
. (2.88)

The average clustering coefficient C̄ can hence be calculated by

C̄ =
1

n

n∑
i=1

(
A3
)
ii

ki(ki − 1)
. (2.89)

The average clustering coefficient is also known as the Watts-Strogatz clustering coef-

ficient. It ranges between zero and one [112]. If, for any given graph, one has that

C̄ = 1, then this indicates that all possible triangles exist in the graph.

2.6.9 Average Resistance Distance

The resistance distance was introduced by Kirchhoff [59]. The resistance distance is

induced in graph theory by placing fixed electrical resistors on the edges of a graph and

connecting a battery across the nodes. Then the resistance distance between the nodes

can be found by using Kirchhoff’s and Ohm’s laws. The effective graph resistance is

defined based on the set of spanning trees in the graph [28]. The average effective graph

resistance (or Kirchhoff index) is the sum of effective resistances of all pairs of nodes in

the graph. It has been proven [59] that the Kirchhoff index can be written as a function
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of the non-zero eigenvalues of the Laplacian graph as

Ωij =

n∑
k=2

1

µk
(φk(i)− φk(j))2. (2.90)

Then, the average resistance distance is

Ω̄ =
∑
i<j

Ωij , (2.91)

where µk is the kth eigenvalue of the Laplacian matrix L of A and φk(i) is the ith entry

of the eigenvector φk that corresponds to µk. The values of Ω̄ can be diverse and grow

incredibly large.

2.7 Network Communicability

A measure named communicability was proposed by Estrada [25]. This measure quan-

tify how well information flows between nodes in a network. Communicability is com-

puted as the number of walks in a graph, where larger weights are given to shorter

walks. The communicability between any two vertices p, q ∈ V in a graph Γ = (V,E)

is defined mathematically as the weighted sum of the number of all possible walks

between p and q. Then, the communicability can be defined as

Gpq(Γ ) =

∞∑
k=0

(
Ak
)
pq

k!
=
(
exp(A)

)
pq

=
n∑
j=1

ψj(p)ψj(q)e
λj , (2.92)

where ψj(p) is the pth component of the jth orthogonal eigenvector associated with the

eigenvalue λj of the adjacency matrix A [33, 37]. The weight 1
k! makes the communica-

bility function focus more on the shortest walks, where recall that shorter walks receive

more weights than longer walks. In the next two sections we present communicability

in more detail and in general depth. Other two measures for investigating robustness

considered in this work (and based on communicability) are the communicability dis-

tance and communicability angle. Estrada defines these measures by considering the

distance between nodes as the Euclidean distance [26, 27].
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The meaning of communicability distance and communicability angle can be in-

duced by embedding the graph into a hypersphere, which allows us to define the Eu-

clidean distance between nodes [26, 27]. To define the Euclidean distance between

nodes p and q, let the vectors xp = e
Λ
2ψp and xq = e

Λ
2ψq be located on the surface

of a hypersphere. The matrix Λ is the diagonal matrix of eigenvalues of the adjacency

matrix A and ψp = [ψ1 (p) , ψ2 (p) , ..., ψn (p)]T , where ψi(p) is the pth entry of eigen-

vector ψi of A. Then the distance ξpq between nodes p and q can be considered as an

Euclidean distance, and the communicability angle is represented by the angle between

the two vectors xp and xq such that [26, 27]

ξ2 =‖ xp − xq ‖2,

= (xp − xq)T (xp − xq) ,

=
(
xTp − xTq

)
(xp − xq) ,

= xTp xp − xTp xq − xTq xp + xTq xq,

= xTp xp − 2xTp xq + xTq xq.

Then

ξ2
pq = Gpp +Gqq − 2

√
GppGqq cos θpq,

and

xp · xq =‖ xp ‖ · ‖ xq ‖ cos θpq,

cos θpq =
Gpq√
GppGqq

,

where p 6= q, ξpq is the communicability distance and θpq is the communicability angle

between the nodes p and q. The average communicability distance ξ̄ and the average

communicability angle θ̄ [35] are defined, respectively, by

ξ̄ =

∑
p 6=q
(
Gpp +Gqq − 2

√
GppGqq

) 1
2

n(n− 1)
, (2.93)
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θ̄ =

∑
p 6=q arccos

(
Gpq√
GppGqq

)
n(n− 1)

. (2.94)

The average communicability angle θ̄ is a measure for the spatial efficiency of a network,

and it holds 0 ≤ θ̄ ≤ 90 where a value close to the lower bound indicates high spatial

efficiency and a value close to the upper bound indicates poor spatial efficiency. The

average communicability angle and distance depend on two factors: the amount of

information which departs from p (resp., q) and then goes back to p (resp., q) as is

represented by Gpp (resp., Gqq), and the amount of information which departs from p

(resp., q) then arrives to q (resp., p) as is represented by Gpq (resp., Gqp). Therefore,

the quality of communication depends on the amount of information which arrives at

its goal Gpq while the amount of information that arrives to Gpp and Gqq represents

the information that returns to its origin and decreases the quality of communication.

Both a low value of the average communicability angle and a high value of the average

communicability distance indicate a more robust graph.

2.8 Summary

In this chapter, we reviewed the necessary background in graph theory. We provided

an overview of network theory including, in particular, definitions, structural graph

concepts, as well as relevant to us graph types.

Additionally, we found the exact values of the entries of the associated eigenvectors

corresponding to the largest and smallest eigenvalues of windmill graphs. Also, we found

the spectrum of dumbbell graphs. Moreover, we found the eigenvectors corresponding

to λ = 0 and λ = −ηi, i ∈ {1, 2, . . . , k}, for complete multipartite graph Kη1,η2,··· ,ηk ,

η1 ≤ η2 ≤ · · · ≤ ηk, and the exact entries of the normalized eigenvectors corresponding

to the negative eigenvalues λ 6= −ηi and the largest eigenvalue. Moreover, we found the

spectrum of complete k-partite graphs Kη,η,...,η and complete 3-partite graphs Kη,η,l.

Finally, we discussed several topological network properties for investigating network

robustness.
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Chapter 3

Topological Melting in Networks

3.1 Melting in Solids

In presenting the melting theory in this chapter, we follow closely [1]. Physically, the

melting or transforming from a solid to a liquid at a microscopic scale occurs as a result

of an increase in the internal energy of the solid by applying heat or pressure [3, 13].

One of the most successful criteria for explaining the melting of solids at the microscopic

level was developed by Lindemann in 1910 [67]. The Lindemann criterion states that

melting in solids occurs when the square root of the mean range of the vibrations V I

of a solid reaches a critical fraction of distance d to the nearest neighbour [67]. It can

be defined as
√
V I = Lpd,

where the critical fraction Lp is called Lindemann parameter.

According to the Lindemann criterion [57, 67], melting occurs due to vibrational

instability in the crystal lattice as a result of an increase in the temperature. In fact,

every substance is characterized by a melting point, i.e. the temperature at which the

melting process starts. We study the vibrations between nodes in graphs in order to

study the change of state resulting from raising the temperature, as described by the

Lindemann criterion.

The successful use of networks to represent several granular materials has bolstered

their ubiquity as an object of study in this area of research [89]. We understand “gran-
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ular materials” as a far ranging concept which includes, for instance, granular crystals

[93, 97], microsphere monolayers [50], soft glassy materials [6], and colloidal crystals

[100] among others [82]. An important aspect of this area of research is related to the

robustness of such networks against any external stress they may be subjected to [89].

For instance, Walker and Tordesillas [110] have studied the evolution of deformations

in granular material networks under axial strain. In their work, they have found that

measures related to the network communicability function [33, 36] perform very well

in describing such deformations. If we bear in mind the network representation as a

system of balls and springs submerged in a thermal bath at a given inverse tempera-

ture β = (kBT )−1, where kB is the Boltzmann constant, the communicability function

acquires the interpretation of being the thermal Green’s function of the network [36].

This represents the capacity of a node to transmit a perturbation to another node in

the network at a given β.

3.2 Vibrations on Graphs

In 2012 Estrada, Hatano and Benzi [36] defined a measure for the vibrations between

the nodes in graphs. They defined a communicability function which measures the

perturbations or vibrations between any two nodes in a network due to the thermal ex-

ternal stress β = (kBT )−1, where kB is Boltzmann constant and T is the temperature.

The generalized communicability function Gpq(Γ, β) is a communicability function de-

fined using the weights βk

k! . It takes into account longer walks as well as shorter walks

depending on the value of β [32, 36]. For a graph Γ = (V,E) with n nodes and

adjacency matrix A, they define

Gpq(Γ, β) =
∞∑
k=0

βk
(
Ak
)
pq

k!
= (exp(βA))pq =

n∑
j=1

ψj (p)ψj (q) eβλj (3.1)

where p, q ∈ V , β > 0 and ψj (p) is the pth entry of the eigenvector ψj that corresponds

to the eigenvalue λj of A. In what follows, we assume that λ1 > λ2 ≥ · · · ≥ λn. The

inverse temperature β might have different meanings depending on the network that

is being considered [32]. In general, using the generalized communicability function
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allows us to regard β as the strength of the links in the network. Thus, the generalized

communicability function accounts for the strength of the interactions among the nodes

with different temperatures T . When β → 0, the temperature goes to infinity, and

there is no communicability (that is, the vibrations are very high) between any two

vertices in the network. All the edges in the network vanish since all the edges are

weighted by β, and the graph will be fully disconnected, which could correspond to

a gas. However, if the temperature goes to zero, then β → ∞, which corresponds to

high communicability between the nodes in the network. In this case, there are many

routes through which information can be transferred from one node to another, where

the graph is fully connected similarly to a rigid solid. Mathematically, when β is large

and the spectral gap is significantly large then the communicability function Gpq(Γ, β)

is dominated by the term of the largest eigenvalue λ1, which is positive according to

the Perron-Frobenius Theorem for matrices.

Communicability in graph theory has many uses in a wide range of real world appli-

cations. For instance, in detecting changes in the contralesional hemisphere following

strokes in humans [19], in the detection of symptoms of multiple sclerosis [64], in the

study of variants of epilepsy [15], in the prediction of abnormal brain states [54], in

the early detection of Alzheimer’s disease [73], in the prediction of functional protein

complexes [70], in the analysis of genetic diseases [14], in the optimization of wireless

networks [17], in the evolution of granular materials [110], in the classification of grass

pollen [75] and vegetation patterns [74], and in the identification of the transcription

factor critically involved with self-renewal of undifferentiated embryonic stem cells [71].

3.3 The Communicability Graph

To study pure vibrations of nodes, or the community structure of networks, Estrada

and Hatano [25, 34] defined the communicability graph function ∆G(Γ, β) of a graph

Γ = (V,E). They decomposed the generalized communicability function into terms

depending on the sign of the components of the eigenvectors of the adjacency matrix.

The signs can be interpreted as the direction of the vibrations of the nodes. In Fig-

ure 3.1, we display a schematic representation for the eigenvectors of the adjacency
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3. Topological Melting in Networks

matrix of a small graph with n = 8 nodes. The positive (resp., negative) entries of

each eigenvector ψj , where 1 ≤ j ≤ n, are illustrated as vibrations in the positive

(resp., negative) directions of the y-axis. However, the magnitude of the entries of the

eigenvectors is not represented for the sake of simplicity. The first eigenvector ψ1 that

corresponds to the largest eigenvalue λ1 shows coordinated vibrations of all the nodes

in the graph.

The term ψ1(p)ψ1(q)eβλ1 represents the coordinated vibrations of all the nodes at the

given value β. Consequently, to obtain the pure vibrations between the nodes, they

subtracted the first term ψ1(p)ψ1(q)eβλ1 to define the communicability graph function

∆Gpq(Γ, β) by

∆Gpq(β) = Gpq(Γ, β)− ψ1(p)ψ1(q)eβλ1

=
n∑
j=2

ψj(p)ψj(q)e
βλj

=
∑
j≥2:

sgnψj(p)=sgnψj(q)

ψj(p)ψj(q)e
βλj −

∑
j≥2:

sgnψj(p)6=sgnψj(q)

∣∣ψj(p)ψj(q)∣∣eβλj .

The first term on the right-hand side represents the positive components, since both

nodes have the same sign of the jth eigenvector component. The first term is known as

the in-phase, and the second term is known as the out-of-phase, which represents the

negative components, since the two nodes in it have different signs of the jth eigenvector

component. The function ∆Gpq(β) accounts for the difference between the in-phase and

out-of-phase vibrations of the corresponding pair of nodes. This allows to define a new

graph, called the communicability graph, that represents the pure vibrations between

the nodes.

Definition 3.3.1. Communicability Graph

The communicability graph H(V,E′, β) of a graph Γ is a simple graph, which has the

same nodes as Γ = (V,E) and the edges are determined according to the values of

∆G(Γ, β). Two distinct nodes p and q are connected in H(V,E′, β) if and only if

∆Gpq(Γ, β) ≥ 0.
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3. Topological Melting in Networks

Figure 3.1: Illustration of the sign pattern of the eigenvectors in a simple graph. The
signs of the positive components of the eigenvectors are represented by blue arrows and
the negative entries by red arrows. The magnitude of the eigenvector components are
not represented. Also, the absence of an arrow implies the corresponding eigenvector
entry is zero.

3.4 Melting of Graphs

In this section, we propose a new melting phase transition for networks based on the

communicability function between nodes. We define a communicability graph function

that accounts for the vibrations between any given pair of nodes based on the Lin-

demann criterion for melting solids. We then define the melting phase transition of

networks.

Let us now reconnect with the Lindemann melting criterion: this asserts that melt-

ing should be expected when the root mean-square amplitude of vibrations exceeds a

certain threshold value [67]. We will assume that in a graph Γ such a threshold is given

by

M(Γ, β) = max
s6=t∈V

n∑
j=2

ψj (s)ψj (t) eβλj .

Therefore, we assume that an edge between the nodes p and q melts (i.e. disappears)

in the graph when the vibration between p and q at a given temperature measured by

∆Gpq (β), exceeds the value of the maximum vibration of any pair of distinct nodes in
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3. Topological Melting in Networks

that graph at the same temperature, M(Γ, β). In order to implement the Lindemann

criterion on graphs we define a new communicability graph function, the modified com-

municability graph function ∆G̃pq(β) for networks, as

∆G̃pq(β) = M(Γ, β) +∆Gpq(β). (3.2)

To illustrate the melting process of edges, we discuss the following cases.

If M(Γ, β) > 0 then we have the following scenarios. When ∆Gpq(β) ≥ 0 then

∆G̃pq(β) > 0, indicating a reinforcement of the in-phase vibrations from the two nodes.

That means that p and q are strictly connected to each other. When ∆Gpq(β) < 0 then

we have the following two cases. If ∆G̃pq(β) ≥ 0 then the difference between in-phase

and out-of-phase vibration of the nodes p and q (i.e. ∆Gpq(β)) does not exceed the

maximum in-phase vibrations of any pair of nodes in the graph; then there is an edge

between p and q. Otherwise, ∆G̃pq(β) < 0 indicating that the out-of-phase vibrations of

these two nodes have overtaken not only their in-phase vibrations but also the maximum

in-phase vibrations of any pair of nodes in the graph. In this case, the edge between p

and q is melted.

On the other hand, if M(Γ, β) < 0 then it is necessary that ∆Gpq(β) < 0, for all

p, q ∈ V, which means that ∆G̃pq(β) < 0, and the edge necessarily melts. In this case,

there are no edges between the nodes. Let us define the following representation of

∆G̃pq(β) in the form of a new graph.

Definition 3.4.1. Let Γ = (V,E) be a simple graph. The modified communicability

graph H̃ (V,E′, β) of Γ is a simple graph with the same set of nodes as Γ . Two distinct

nodes p, q ∈ V are connected in H̃ if and only if ∆G̃pq(β) ≥ 0.

Remark 3.4.1. In the modified communicability graph there could be edges connecting

pairs of nodes which are not connected in the original graph Γ. In a similar way, for

some β, there could be pairs of nodes not connected in H̃ (V,E′, β) which correspond to

edges in Γ . In other words, Γ is not necessarily a subgraph of H̃ (V,E′, β).

In the graph presented in Figure 3.2, at β = 0.25 the pairs of nodes (5,6), (5,8)

and (6,8) are not connected in the modified communicability graph whereas they are
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3. Topological Melting in Networks

Figure 3.2: Modified communicability graphs in the middle column at different values
of β for the small graph Γ with degree sequence 1, 1, 1, 2, 2, 4, 4, 5, presented in
the last column with black thin lines. In the right column the edges of the Lindemann
graph are represented as thick blue lines over the edges of the original graph Γ .

connected in the original graph. These nodes can be seen to be the out-of-phase.

However, there are paths connecting those nodes such as 5-4-6, 8-3-7-5 and 8-3-7-6.

These nodes could vibrate in phase at temporal stages of the process, so then the

modified communicability graph could be connected in this case. For this reason we

introduce the following definitions.

Definition 3.4.2. Let Γ = (V,E) be a simple graph and let H̃ (V,E′, β) be its modified

communicability graph. For p, q ∈ V we say that there exists a Lindemann path Lp,q

between the nodes p and q in Γ at a given value of β if there is a path connecting these

nodes in H̃ (V,E′, β).

Now we define a graph that contains all the information about the in- and out-of-

phase nature of the vibrations in Γ .

Definition 3.4.3. Let Γ = (V,E) be a simple graph and let H̃ (V,E′, β) be its modified

communicability graph. The Lindemann graph F (V,E′′, β) of Γ is a subgraph of Γ

with the same set of vertices as Γ . The two distinct nodes p, q ∈ V are connected in F

if and only if (p, q) ∈ E and there exists a Lindemann path Lp,q.
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3. Topological Melting in Networks

Next, we state the definition of the modified communicability graph melting.

Definition 3.4.4. A modified communicability graph of a graph Γ starts melting

when deleting one or more edges makes it transfer from being a connected graph to a

disconnected graph. The modified communicability graph is fully connected when the

communicability between the nodes is very high (i.e. ∆G̃pq(β) ≥ 0, for all p, q ∈ V ).

However, the communicability between the nodes decreases as β decreases, where the

modified communicability graph is disconnected when ∆G̃pq(β) < 0, for some p, q ∈ V .

To illustrate the previously defined concepts we return to the small graph with 8

nodes and degree sequence 1, 1, 1, 2, 2, 4, 4, 5 at different values of β as illustrated

in Figure 3.2. For β = 0.25 the modified communicability graph has many more edges

than the original graph Γ, but there are missing edges which connect the pairs of nodes

(5,6), (5,8) and (6,8) in the original graph. However, the Lindemann graph at this

value of β is connected with the same edges as in the original graph Γ, since there is a

path between every pair of nodes in the corresponding modified communicability graph.

The modified communicability graphs are in the middle column and the Lindemann

graphs are in the right column represented as thick blue lines over the edges of the

original graph Γ in Figure 3.2. When β = 0.2 the modified communicability graph is

disconnected with two components of four nodes each. Then, the Lindemann graph

consists of all the edges of Γ, except the edges that connect the pairs of nodes (6,8) and

(5,8), because there is no path connecting these pairs of nodes in the corresponding

modified communicability graph. At this value of β, we can say that the melting process

of the modified communicability graph has already started.

If we decrease β to 0.15, then more edges vanish, where the modified communica-

bility graph at this point consists of four isolated nodes and one clique of four nodes.

Although, there are paths connecting the nodes in the clique, there are no paths con-

necting the isolated nodes in the modified communicability graph. In this case, the

Lindemann graph is disconnected. Finally, when β is dropped to 0.05 then all edges in

the modified communicability graph vanish, where now the modified communicability

graph consists of eight isolated nodes as does the Lindemann graph. At this point

there is no connections between any pair of nodes and the Lindemann graph is the null
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3. Topological Melting in Networks

graph. Physically, the modified communicability graph is completely melted.

In Figure 3.3, we plot the number of connected components of the Lindemann

graphs versus the values of β. At the point β ≈ 0.2, there is a transition between

connected and disconnected Lindemann graphs. Let us call this critical value of β

which we identified previously βc; this is the melting temperature of the graph.

Remark 3.4.2. The modified communicability graph is null graph when the communi-

cability between the nodes is very low (i.e. ∆G̃pq(β) < 0, for all p, q ∈ V ). However,

the communicability between the nodes increases as β increases. The nodes p and q are

connected (freeze) by an edge in the modified communicability graph if ∆G̃pq(β) ≥ 0.

We will call this process freezing.

Definition 3.4.5. The critical value βc (melting temperature or the melting phase

transition) of a graph Γ is the value of β by which ∆G̃pq(β) makes the modified com-

municability graph and Lindemann graph of Γ transfer from being connected to dis-

connected graphs. The lower the value of βc the more robust is the graph.

Definition 3.4.6. Let Γ = (V,E) be a simple connected graph. The melting signature

of Γ is the sequence of inverse temperatures β, starting with the lowest, at which the

structure of the associated modified communicability graph changes.

Remark 3.4.3. We compute βc for a simple connected graph by finding the number of

connected components of its modified communicability graph as the value of β changes.

The number of connected components of a graph is equal to the multiplicity of the zero

eigenvalue of its Laplacian matrix. Then βc is the value of β by which the modified

communicability graph transfers from one connected component to more than one com-

ponent.

In the next chapter, we will study and investigate melting of graphs in some graph

families, before that we need to include the following results.

Lemma 3.4.4. The existence of the transition in Lindemann graphs from connected

to disconnected, is sufficient for the existence of the transition in the modified commu-

nicability graphs of a simple connected graph.
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3. Topological Melting in Networks

Figure 3.3: Illustration of the transition between connected (for all β ≥ 0.2) and
disconnected (for all β < 0.2) Lindemann graphs as a function of β for the simple
graph illustrated in Figure 3.2

Proof. When the modified communicability graph is connected, so is the Lindemann

graph, due to the fact that there is a path between every pair of nodes in the connected

graph. In the same way, if the modified communicability graph is disconnected, so

is the Lindemann graph because there will be pairs of adjacent nodes of the original

graph for which there are no paths connecting them in the modified communicability

graph.

Lemma 3.4.5. Let Γ = (V,E) be a simple connected graph with adjacency matrix A,

and λ1 > λ2 ≥ · · · ≥ λn be the eigenvalues of A, with the corresponding eigenvectors

ψ1, ψ2, . . . , ψn. Then the modified communicability graph function

∆G̃pq(β) = M(Γ, β) +

n∑
j=2

ψj (p)ψj (q) eβλj ,

where M(Γ, β) = maxs6=t∈V
∑n

j=2 ψj (s)ψj (t) eβλj , is a continuous function of β.

Proof. It is clear that ∆G̃pq(β) is a finite sum of exponential functions and the maxi-
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mum of exponential functions. Thus, ∆G̃pq(β) is a continuous function.

3.5 Summary

In this chapter, we defined a melting phase transition in graphs. This transition takes

place when we consider a Lindemann-like model on graphs, which is based on the vibra-

tional approach to the problem. First, we discussed some basics about melting solids

physically. Then we discussed melting of graphs including vibrations (communicability)

and pure vibrations (communicability graphs).
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Chapter 4

Melting in some Graph Families

In this chapter, we study and investigate melting in some graph families which could

allow us to cover the cases when the second eigenvalue is positive or nonpositive. Hence,

we can find a generalization about the melting phase transition in graphs.

In the next two sections, we study melting in two families of graphs, windmill

and dumbbell graphs introduced in Chapter 2. The reason for this choice is that in

these families of graphs, on the one hand, the second eigenvalue λ2 is positive and,

on the other hand, the number of different types of edges in the associated modified

communicability graph is very low: it is at most 3 in the case of windmill graphs and at

most 5 in the case of dumbbell graphs. Even in these relatively simple cases the analysis

of monotonicity and ordering of the elements of ∆G(β) and ∆G̃(β) as β changes is non-

trivial. In the case of windmill graphs it is made easier by the fact that the smallest

and the largest eigenvalues are solutions to a quadratic equation. Also, in the case of

dumbbell graphs the eigenvalues are related algebraically. However, in both cases of

windmill graphs and dumbbell graphs not everything can be done analytically. Though

we can determine explicitly possible patterns of melting. Somewhat surprisingly we will

show that the case when s = 2 is different from the case when s > 2 in windmill graphs.

Also, in dumbbell graphs there are two possible patterns of melting, when η > 2 and

η = 2.
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4. Melting in some Graph Families

4.1 Windmill Graphs

Windmill graphs are core-satellite graphs with c = 1; see Section 2.5.10. Therefore,

in windmill graphs W (η, s) there are s cliques of size η which share a common node.

Hence, there are at most three different types of edges in the modified communicability

graph of W (η, s): edges between vertices in a clique, edges connecting vertices in a

clique to the common node, and edges connecting vertices in different cliques.

To discuss melting, we use the explicit formulae for eigenvalues and normalized

eigenvectors of the adjacency matrix of a windmill graph in Section 2.5.10 to construct

the communicability function and hence the functions ∆G(β) and ∆G̃(β).

4.1.1 Communicability Function

To understand melting in windmill graphs, we need to compute the off-diagonal entries

of ∆G̃(β). The diagonal elements of this matrix are uninteresting for the purposes

of this work, since we are concerned with communicability measures between different

nodes, and are therefore ignored. Moreover, since the case of W (1, s) is that of a star

graph, from now on we assume η ≥ 2, in which case the second eigenvalue λ2 = η − 1

is strictly positive.

We begin by finding an explicit expression for the off-diagonal entries of the matrix

function G(β) = eβA. The result is summarized in the following lemma.

Lemma 4.1.1. Let W (η, s) = (V,E) be a windmill graph and assume the nodes to be

labelled as in the definition of A in (2.9). Moreover, suppose that the set V \ {1} is

partitioned into s subsets V1, V2, . . . , Vs, each corresponding to a clique of η nodes in

the graph. The communicability function G(β) for all p, q ∈ V , p 6= q, is given by

Gpq(β) =


−λnα2

1e
βλ1 − λ1α

2
2e
βλn if p = 1, q 6= 1 or p 6= 1, q = 1,

α2
1e
βλ1 − 1

sηe
β(η−1) + α2

2e
βλn if p ∈ Vi, q ∈ Vj , 1 ≤ i 6= j ≤ s,

α2
1e
βλ1 + s−1

sη e
β(η−1) − 1

ηe
−β + α2

2e
βλn if p, q ∈ Vj , 1 ≤ j ≤ s,
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4. Melting in some Graph Families

where

α1 =
1√

λ2
n + sη

and α2 =
1√

λ2
1 + sη

,

and λ1 and λn are as in (2.11) and (2.12), respectively.

Proof. Throughout the proof, we make use of the results presented in Lemma 2.5.2 on

the eigenvalues of A in (2.9), as well as the explicit expressions for the associated or-

thonormal eigenvectors described in (2.13)–(2.18). We also recall that the eigenvectors

are partitioned according to the partition of A. First, we consider the case p = 1, q 6= 1;

by symmetry of A, the result holds also for p 6= 1, q = 1. It is straightforward to see

that

G1q(β) =
n∑
k=1

xk(1)xk(q)e
βλk = −λnα2

1e
βλ1 − λ1α

2
2e
βλn .

Suppose now that p ∈ Vi and q ∈ Vj , i 6= j ∈ {1, 2, . . . , s}; we want to evaluate the

expression

Gpq(β) = x1(p)x1(q)eβλ1 + eβ(η−1)
s∑

k=2

xk(p)xk(q)

+ e−β
n−1∑
k=s+1

xk(p)xk(q) + xn(p)xn(q)eβλn .

We first note that xk(p)xk(q) = 0 for all k = s + 1, . . . , n − 1, since the two nodes

under consideration belong to distinct cliques, namely p ∈ Vi and q ∈ Vj , and that

xk(p)xk(q) = α
(k)
i α

(k)
j for all k = 2, . . . , s. Let X = [x1,x2, . . . ,xn] be the orthonormal

matrix of eigenvectors of A. Then, it is easy to verify that

0 = (XXT )pq = α2
1 +

s∑
k=2

α
(k)
i α

(k)
j + α2

2 ⇐⇒
s∑

k=2

α
(k)
i α

(k)
j = −(α2

1 + α2
2).

We therefore have

Gpq(β) = α2
1e
βλ1 − (α2

1 + α2
2)eβ(η−1) + α2

2e
βλn ,
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from which the desired expression follows by noticing that

α2
1 + α2

2 =
1

sη
. (4.1)

We now consider the final case, where the two nodes belong to the same clique p, q ∈ Vj ,

j ∈ {1, 2, . . . , s}. Again, we want to evaluate

Gpq(β) = x1(p)x1(q)eβλ1 + eβ(η−1)
s∑

k=2

xk(p)xk(q)

+ e−β
n−1∑
k=s+1

xk(p)xk(q) + xn(p)xn(q)eβλn .

The eigenvectors yh of A(Kη) that appear in (2.14) are orthogonal to the eigenvector 1η

corresponding to the eigenvalue η− 1. Let Y =
[

1√
η 1,y1, . . . ,yη−1

]
be the orthogonal

matrix of eigenvectors of A(Kη). Then,

0 = (Y Y T )pq =
1

η
+

η−1∑
h=1

yh(p)yh(q)

and hence
n−1∑
k=s+1

xk(p)xk(q) =

η−1∑
h=1

yh(p)yh(q) = −1

η
.

Moreover, from the orthonormality of the eigenvectors of A and (4.1) we can also deduce

that

0 = (XXT )pq = α2
1 −

1

η
+

s∑
k=2

(
α

(k)
j

)2
+ α2

2 ⇐⇒
s∑

k=2

(
α

(k)
j

)2
=
s− 1

sη
,

and hence
s∑

k=2

xk(p)xk(q) =
s∑

k=2

(
α

(k)
j

)2
=
s− 1

sη
.

Overall, we thus have

Gpq(β) = α2
1e
βλ1 +

s− 1

sη
eβ(η−1) − 1

η
e−β + α2

2e
βλn .
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This concludes the proof.

Now that the communicability function G(β) between any two distinct nodes has

been computed, we immediately obtain ∆G(β) by removing the eβλ1 terms from G(β).

As a result, we have:

∆Gpq(β) =


−λ1α

2
2e
βλn if p = 1, q 6= 1 or p 6= 1, q = 1,

− 1
sηe

β(η−1) + α2
2e
βλn if p ∈ Vi, q ∈ Vj , 1 ≤ i 6= j ≤ s,

s−1
sη e

β(η−1) − 1
ηe
−β + α2

2e
βλn if p, q ∈ Vj , 1 ≤ j ≤ s,

Next we need to understand the order relations among the different entries in ∆G(β).

This will allow us to describe maxp 6=q∆Gpq(β) for β > 0 and, hence, define ∆G̃(β).

We set

f1(β) = −λ1α
2
2e
βλn ,

f2(β) = − 1

sη
eβ(η−1) + α2

2e
βλn ,

f3(β) =
s− 1

sη
eβ(η−1) − 1

η
e−β + α2

2e
βλn .

Claim 4.1.2. The function f3(β) is strictly increasing in β.

Proof. Consider the derivative of f3(β),

f ′3(β) =
(s− 1) (η − 1)

sη
eβ(η−1) +

1

η
e−β + α2

2λne
βλn .

We will show, using Lemma 2.4.1, that this function has no zeros for β ∈ [0,∞). We

have (s−1)(η−1)
sη > 0, and (s−1)(η−1)

sη + 1
η > 0, since s, η ≥ 2. Hence to use the above

theorem, we need to show that (s−1)(η−1)
sη + 1

η + α2
2λn > 0. Using the relations in
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Remark 2.5.3 we get:

(s− 1) (η − 1)

sη
+

s

sη
+

λn
sη + λ2

1

=
λ1λn + λ1 + λn

λ1λn
+

λn
λ1 (λ1 − λn)

=
(λ1 − λn) (λ1λn + λ1 + λn) + λ2

n

λ1λn (λ1 − λn)

=
λ2

1λn + λ2
1 − λ1λ

2
n

λ1λn (λ1 − λn)
=
λ1 (1 + λn)− λ2

n

λn (λ1 − λn)
> 0,

since λn < −1. Therefore f ′3(β) has constant sign. Since for large β, f ′3(β) is dominated

by the positive eβ(η−1) term, this means that f3(β) is strictly increasing.

Claim 4.1.3. f3(β) > f2(β) for all β ∈ (0,∞).

Proof. Since the derivative of f2(β) is always negative and, by Claim 4.1.2, f3(β) is

strictly increasing, f3(β)− f2(β) is a strictly increasing function. Furthermore,

f3(0)− f2(0) =
s

sη
− 1

η
= 0,

so that f3(β) > f2(β) for all β > 0.

Claim 4.1.4. f3(β) > f1(β) for all β ∈ [0,∞).

Proof. Here, again, we use Lemma 2.4.1 and the equations described in Remark 2.5.3.

The derivative of f3(β)− f1(β) is

(
f3(β)− f1(β)

)′
=

(s− 1) (η − 1)

sη
eβ(η−1) +

1

η
e−β + α2

2 (1 + λ1)λne
βλn ,

(s−1)(η−1)
sη > 0 and (s−1)(η−1)

sη + 1
η > 0 since s, η ≥ 2. To show that the derivative is of

one sign, we need to prove that (s−1)(η−1)
sη + 1

η + α2
2 (1 + λ1)λn > 0. We have

(s− 1)(η − 1)

sη
+

s

sη
+

λn(1 + λ1)

−λ1λn + λ2
1

=
λ1λn + λ1 + λn

λ1λn
+

λn(1 + λ1)

λ1(λ1 − λn)

=
λ2

1λn + λ2
1

λ1λn (λ1 − λn)
=

λ2
1 (1 + λn)

λ1λn(λ1 − λn)
> 0,

since λn < −1. So the derivative of f3(β)−f1(β) has constant sign; hence this function

must be monotonic increasing as for large β the positive eβ(η−1) term dominates. Now,

67



4. Melting in some Graph Families

since

f3(0)− f1(0) =
(s− 1)

sη
− 1

η
+ α2

2 (1 + λ1) =
λ1 (1 + λn)

λ1λn (λ1 − λn)
> 0

as λn < −1, we can conclude that f3(β) > f1(β) for all β ≥ 0.

The take-home message from the previous three claims is that, for all β ∈ [0,∞), the

maximum value of ∆Gpq(β) is attained by f3(β), i.e., at entries of ∆G(β) corresponding

to two nodes that belong to the same clique. Hence, we have proved the following result.

Theorem 4.1.5. Let W (η, s) = (V,E) be a windmill graph and suppose that s, η ≥ 2.

Moreover, assume that the nodes are labelled as in the definition of A in (2.9) and that

the set V \{1} is partitioned into s subsets V1, V2, . . . , Vs, each corresponding to a clique

of η nodes in the graph. Then, for all p 6= q ∈ V ,

∆G̃pq(β) =


s−1
sη e

β(η−1) − 1
ηe
−β + (1− λ1)α2

2e
βλn if p = 1, q 6= 1 or p 6= 1, q = 1

s−2
sη e

β(η−1) − 1
ηe
−β + 2α2

2e
βλn if p ∈ Vi, q ∈ Vj , 1 ≤ i 6= j ≤ s

2
(
s−1
sη e

β(η−1) − 1
ηe
−β + α2

2e
βλn
)

if p, q ∈ Vj , 1 ≤ j ≤ s.

4.1.2 Melting in Windmill Graphs

To characterize melting in windmill graphs, we need to understand in what order the

functions f1(β) + f3(β), f2(β) + f3(β) and 2f3(β), corresponding to the three different

values appearing in the off-diagonal entries of ∆G̃(β), cross the β-axis and to ensure

that such crossing point is unique for each function. We will show that these conditions

are satisfied for 2f3(β) and f1(β)+f3(β), while they are satisfied for f2(β)+f3(β) only

when s > 2.

First of all, we have the following result.

Claim 4.1.6. The function 2f3(β) crosses the β-axis first and once.

Proof. Note that

f3(0) = − 1

sη
+

1

sη + λ2
1

< 0.

The result follows from Claim 4.1.2 and the fact that for large β the function is domi-

nated by the positive eβ(η−1) term. The fact that this function crosses the β-axis first
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follows immediately from Claims 4.1.3 and 4.1.4

We have already proved that

f1(0) < f3(0) = f2(0) < 0; (4.2)

see Claims 4.1.3 and 4.1.4. We also have the following result.

Claim 4.1.7. The function f1(β) + f3(β) is strictly increasing and crosses the β-axis

once.

Proof. Monotonicity is obvious as both f3(β) and f1(β) are strictly increasing; the first

by Claim 4.1.2 and the second by inspection. The fact that f1(β) + f3(β) crosses the

β-axis once follows immediately as well, using (4.2) and the presence of the positive

term eβ(η−1) which dominates the function for large values of β.

It remains to deal with f2(β) + f3(β).

Claim 4.1.8. The function f2(β) + f3(β) is monotonic increasing.

Proof. Consider the derivative

(
f2(β) + f3(β)

)′
=

(s− 2) (η − 1)

sη
eβ(η−1) +

1

η
e−β + 2α2

2λne
βλn .

Again, we apply Lemma 2.4.1. We will need to consider two separate cases: s = 2 and

s > 2.

Suppose s > 2; the proof for s = 2 follows the same lines. We have (s−2)(η−1)
sη > 0

and (s−2)(η−1)
sη + 1

η > 0. Now, we need to show that

(s− 2) (η − 1)

sη
+

1

η
+ 2α2

2λn =
(s− 2) (η − 1)

sη
+

1

η
+

2λn
sη + λ2

1

> 0.

Note that
2λn

sη + λ2
1

=
2λn

λ1(λ1 − λn)
=

2λn
(η − 1− λn)(η − 1− 2λn)

.
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Now, consider the function

g(x) =
2x

(η − 1− x)(η − 1− 2x)

for x < 0. This function has a global minimum at some point xmin < 0 and hence for

all x we have that g(x) ≥ g(xmin). Differentiating, we have xmin = −
√

2

2
(η − 1) and

g(xmin) = − b

η − 1
, where

b =
2
√

2

(1 +
√

2)(2 +
√

2)
.

Clearly,

(s− 2) (η − 1)

sη
+

1

η
+ 2α2

2λn ≥
(s− 2) (η − 1)

sη
+

1

η
− b

η − 1
> 0,

as η ≥ 2.

The proof just presented shows that there are two separate cases to consider when

studying the zeros of f2(β) + f3(β), namely, s = 2 and s > 2. The following result

shows that, depending on the value of s, the function f2(β) + f3(β) may or may not

cross the β-axis.

Claim 4.1.9. The function f2(β) + f3(β)

• crosses the β-axis once when s > 2; and

• never crosses the β-axis when s = 2.

Proof. Suppose that s > 2. The result follows from (4.2) and from the fact that the

function is dominated by the positive term eβ(η−1) for large values of β. The result for

the case s = 2 follows from (4.2), Claim 4.1.8, and the fact that

lim
β→∞

f2(β) + f3(β) = 0.
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(a) 0 ≤ β < β3 (b) β3 ≤ β < β1 (c) β ≥ β1

Figure 4.1: Illustration of the structure of the modified communicability graph of
W (3, 2) for different values of β.

4.1.3 Melting Signatures of Windmill Graphs

We want to discuss here how the structure of the modified communicability graph

associated to a given W (η, s) changes with β ∈ [0,∞). Throughout this section, we

denote by βi = βi(η, s) the unique point, if it exists, where the function fi(β) + f3(β)

crosses the β-axis, for i = 1, 2, 3. The simplest case to treat is when s = 2. In this

case, Claims 4.1.4 and 4.1.9 allow us to conclude that the melting signature of W (η, 2)

is (β3, β1) for all η ≥ 2. The melting of the associated modified communicability graph

goes as follows. At β = β3 the modified communicability graph of W (η, 2) changes

from being the null graph Nn to a collection of s complete graphs Kη, and at β = β1

the modified communicability graph becomes just the graph W (η, 2) itself. This means

that there is no temperature at which the modified communicability graph of W (η, 2)

is the complete graph Ksη+1. As an example of this behaviour, in Figure 4.1 we show

the evolution of the modified communicability graphs of W (3, 2) as β varies.

Suppose now that s > 2. The graphs W (η, s) have two possible melting signa-

tures: (β3, β2, β1) and (β3, β1, β2). Below, we show that both are possible, and that

most windmill graphs have (β3, β2, β1) as signature; however all W (η, 3) graphs have

(β3, β1, β2) as signature.

We start with yet another claim:

Claim 4.1.10. The graphs of f1(β) + f3(β) and f2(β) + f3(β) always cross.

This is obvious because f1(0) < f2(0) by (4.2), and for large enough β, f1(β)+f3(β)

grows faster as s− 1 > s− 2.
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4. Melting in some Graph Families

The point of intersection β∗ is unique, and in fact has a very neat expression:

β∗(η, s) =
1

λ1
ln

[
sη(1 + λ1)

sη + λ2
1

]
. (4.3)

Hence, the locus of points separating the values of (η, s) of graphs W (η, s) with

the (β3, β2, β1) signature from the ones with the (β3, β1, β2) signature, is given by

F (η, s) = 0, where

F (η, s) := f1

(
β∗(η, s)

)
+ f3

(
β∗(η, s)

)
.

Indeed, when F (η, s) < 0 this means that the functions f1(β)+f3(β) and f2(β)+f3(β)

intersect before crossing the β-axis, and hence the melting signature of the associated

graph will be (β3, β1, β2). On the other hand, when F (η, s) > 0, the two functions

will intersect after having crossed the β-axis, and thus the melting signature of the

associated windmill graph will be (β3, β2, β1).

The zero set F (η, s) = 0 defines s as a function of η, s = E(η), which can be plotted

in the (η, s) plane. The graphs with (η, s) below the curve exhibit the (β3, β1, β2) signa-

ture. On the other hand, all graphs with (η, s) above the curve exhibit the (β3, β2, β1)

signature.

In windmill graphs with the (β3, β1, β2) melting signature the transitions of the

modified communicability graph are, as we increase β from 0, as follows: at β3 there

is a transition from the null graph to s separate Kη graphs, at β1 the graph changes

to a connected graph identical to W (η, s) itself, and finally, at β2 to the Ksη+1 graph.

In windmill graphs with melting signature (β3, β1, β2), as we increase β from 0, the

sequence is different: at β3 there is a transition from the null graph to s separate Kη

graphs, at β2 the graph changes to a disconnected graph with two connected compo-

nents, namely Ksη and an isolated node, and finally at β2, the modified communicability

graph coincides with Ksη+1. In Figure 4.2, we show the evolution of the structure of

the modified communicability graph of W (3, 3), which exhibits the (β3, β2, β1) melting

signature, while in Figure 4.3, we show the changes in the structure of the modified

communicability graph of W (4, 5), which has melting signature (β3, β1, β2).

The zero set F (η, s) = 0 is easily found numerically: it is found that E(η) behaves
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4. Melting in some Graph Families

(a) 0 ≤ β < β3 (b) β3 ≤ β < β1

(c) β1 ≤ β < β2 (d) β ≥ β2

Figure 4.2: Illustration of the structure of the modified communicability graph of
W (3, 3) for different values of β.

(a) 0 ≤ β < β3 (b) β3 ≤ β < β2

(c) β2 ≤ β < β1 (d) β ≥ β1

Figure 4.3: Illustration of the structure of the modified communicability graph of
W (4, 5) for different values of β.
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as

E(η) ≈ 3 +
4.2

η
+O

(
1

η2

)
,

and moreover the following statement has been verified numerically.

Conjecture 4.1.11. E(η) is a monotonically decreasing function of η, E(2) ≈ 5.06

and

lim
η→∞

E(η) = 3.

As we noted above, the graph of the function E(η), plotted in magenta in Figure 4.4,

separates, for s > 2, windmill graphs into two classes with different melting signatures.

Let us call S1 the smaller class that has the (β3, β1, β2) signature and S2 the bigger

one.

Now, the locus of points in the (η, s) plane, such that λn = −3 is given by

s = 3 +
6

η
.

We plot this function in blue in Figure 4.4. It is striking to see that, with the one

exception of W (4, 5), the set of windmill graphs having λn ≤ −3 coincides with the set

S2. In this section, we have thus proved the following result which fully characterizes

the melting signature of windmill graphs assuming Conjecture 4.1.11 is true.

Theorem 4.1.12. Assuming Conjecture 4.1.11 is true, all graphs W (η, 2) with η ≥ 2

have the (β3, β1) melting signature; only the graphs W (η, 3) for all η ≥ 2, W (2, 4),

W (2, 5), W (3, 4), and W (4, 4) have the (β3, β1, β2) signature; all other windmill graphs

exhibit the (β3, β2, β1) signature.

Conjecture 4.1.13. The values of βi for i = 1, 2, 3 in the melting signatures (β3, β1, β2),

(β3, β2, β1) and (β3, β1) go to zero as η goes to infinity.

4.1.4 Conclusions

We have been able to give a complete picture of the melting process in windmill graphs

basically for two reasons: there are very few (just three) different types of edges, only
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2 3 4 5 6 7 8 9
3

4

5

6

s

W(5,4)

s=E( )

n
=-3

Figure 4.4: Graphs of the functions s = E(η) (blue curve) and s = 3 + 6
η or λn = −3

(magenta curve).

four eigenvalues to deal with, so only three terms remain in ∆G(β) so that the Theorem

of Jameson in Lemma 2.4.1 is relatively easy to apply, and finally the smallest eigenvalue

λn and the largest one λ1 are related by a quadratic equation.

We have proved analytically, and using numerical investigations, that for the whole

class of windmill graphs W (η, s) there are three types of melting signatures: (β3, β1) in

the case of s = 2 and (β3, β2, β1) or (β3, β1, β2) in the case of s > 2. The evolution of

the modified communicability graph of a graph with s > 2, as temperature is decreased

to a sufficiently low value, gives us a modified communicability graph that is a complete

graph, while for s = 2, we can only recover the graph W (η, 2) itself and not K2η+1.

Also, the evolution of the modified communicability graph (β3, β1, β2) will include the

graph W (η, s), while that of (β3, β2, β1) will not include it.

4.2 Dumbbell graphs

Recall that in dumbbell graphs Kη–Kη there are two cliques of size η connected by an

edge. Hence, there are at most five different types of edges in the modified commu-

nicability graph of Kη–Kη: edges between vertices in a clique, edges connecting the
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two cliques, edges connecting vertices in a clique to the vertices in the other clique

that connects the two cliques in the graph, and edges connecting vertices in different

cliques. To discuss melting, we use the explicit formulae for eigenvalues and normalised

eigenvectors of the adjacency matrix of a dumbbell graph in Section 2.5.13 to construct

the communicability function of the graph and hence the functions ∆G(β) and ∆G̃(β).

As the case of K2–K2 is that of a path graph which has four different types of edges

in the modified communicability graph, and the case of η ≥ 3 is that of a dumbbell

graph which has five different types of edges in the modified communicability graph,

we will consider the two cases separately, where in both cases the second eigenvalue λ2

is positive.

4.2.1 Communicability Function

To understand melting in dumbbell graphs with η ≥ 3, we need to compute the matrix

function ∆G̃(β). First, we need the matrix function ∆G(β). We begin by finding an

explicit expression for the off-diagonal entries of the matrix function G(β) = eβA by

using the explicit formulae for eigenvalues and normalised eigenvectors of the adjacency

matrix of a dumbbell graph in Section 2.5.13. The result is summarized in the following

lemma.

Lemma 4.2.1. Let Kη–Kη = (V,E) be a dumbbell graph, and assume that the labelling

of nodes is given by the matrix of A in (2.40). Moreover, suppose that the set V

is partitioned into V = V1 ∪ {η} ∪ {η + 1} ∪ V2, where V1 = {1, 2, . . . , η − 1}, and

V2 = {η + 2, η + 3, . . . , 2η}. The communicability function Gpq(β), for all p 6= q ∈ V ,
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of Kη–Kη is given by

Gpq(β) =



∑
k∈{1,2,3,n} α

2
ke
βλj − e−β

η−1

∑
k∈{1,2,3,n}(−1)k+1α2

ke
βλk

∑
k∈{1,2,3,n}(λk − η + 2)α2

ke
βλk

∑
k∈{1,2,3,n}(−1)k+1(λk − η + 2)α2

ke
βλk

∑
k∈{1,2,3,n}(−1)k+1(λk − η + 2)2α2

ke
βλk

if p, q ∈ V1 or

p, q ∈ V2

if p ∈ V1, q ∈ V2

if p ∈ V1, q = η or

p ∈ V2, q = (η + 1)

if p ∈ V1, q = η + 1 or

p ∈ V2, q = η

if p = η, q = η + 1

(4.4)

where λ1, λ2, λ3, and λn are defined in (2.66), (2.67), (2.68), and (2.69), respectively,

and αk for all k ∈ {1, 2, 3, n} are defined in (2.71) and (2.73).

Proof. Throughout the proof, we will make use of the results presented in Theo-

rem 2.5.13 and Lemma 2.5.14 on the eigenvalues in (2.66)–(2.69) and their associated

orthonormal eigenvectors in (2.70), (2.72) and (2.47) of A in (2.40). We also recall

that the eigenvectors are partitioned according to A. First, we consider the case when

p, q ∈ V1 or p, q ∈ V2. We want to evaluate the expression

Gpq(β) =
∑

k∈{1,2,3,n}

xk(p)xk(q)e
βλk +

n−1∑
k=4

xk(p)xk(q)e
−β. (4.5)

The non-zero entries of the eigenvectors of A corresponding to λ = −1, the vectors yη−1

are the orthonormal eigenvectors of A(Kη−1) of the complete graph Kη−1 associated

to the eigenvalue −1. Thus, if we let Y =
[

1√
η−1

1,y1, . . . ,yη−2

]
be the orthonormal

matrix of eigenvectors of A(Kη−1), it follows that

(Y Y T )pq =
1

η − 1
+

η−2∑
h=1

yh(p)yh(q) = 0, (4.6)
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and hence,
n−1∑
k=4

xk(p)xk(q) =

η−2∑
h=1

yh(p)yh(q) = − 1

η − 1
. (4.7)

Thus, by substituting (4.7), the eigenvalues λk, for k = {1, 2, 3, n}, and the entries

xk(p), xk(q) of their corresponding orthonormal eigenvectors into (4.5), the desired

expression follows immediately

Gpq(β) =
∑

k∈{1,2,3,n}

α2
ke
βλk − e−β

η − 1
, (4.8)

where αk for k ∈ {1, 2, 3, n} are defined in (2.71) and (2.73).

Consider now the case when p ∈ V1, q ∈ V2 or q ∈ V1, p ∈ V2. Again, we want to

evaluate the expression

Gpq(β) =
∑

k∈{1,2,3,n}

xk(p)xk(q)e
βλk +

n−1∑
k=4

xk(p)xk(q)e
−β. (4.9)

The entry xk(p)xk(q) = 0, for all k ∈ {4, . . . , n − 1}, of all the eigenvectors that

correspond to λ = −1. We have that

n−1∑
k=4

xk(p)xk(q) = 0. (4.10)

Thus, by substituting the eigenvalues λk , for k = {1, 2, 3, n}, and the entries xk(p), xk(q)

of their corresponding orthonormal eigenvectors into (4.9), the desired expression fol-

lows immediately

Gpq(β) =
∑

k∈{1,2,3,n}

(−1)k+1α2
ke
βλk , (4.11)

where αk for k ∈ {1, 2, 3, n} are defined in (2.71) and (2.73).

In the last three cases where at least one of p and q is in {η, η + 1}, we substitute

the eigenvalues and eigenvectors of A into Gpq(β) =
∑n

k=1 xk(p)xk(q)e
βλk , to obtain

Gpq(β) =
∑

k∈{1,2,3,n}

xk(p)xk(q)e
βλk , (4.12)
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since the entries η and η + 1 of all the eigenvectors that correspond the eigenvalue

λ = −1, are zeros and so xk(η) = xk(η + 1) = 0 for all k ∈ {4, 5, . . . , n− 1}. Thus, by

substituting the eigenvalues λk, k = {1, 2, 3, n}, and their corresponding orthonormal

eigenvectors into (4.12), the desired expressions follow immediately. In particular,

• when p ∈ V1, q = η or p ∈ V2, q = (η + 1), we have

Gpq(β) =
∑

k∈{1,2,3,n}

(λk − η + 2)α2
ke
βλk ;

• when p ∈ V1, q = η + 1 or p ∈ V2, q = η, we have

Gpq(β) =
∑

k∈{1,2,3,n}

(−1)k+1(λk − η + 2)α2
ke
βλk ;

• when p = η, q = η + 1, we have

Gpq(β) =
∑

k∈{1,2,3,n}

(−1)k+1(λk − η + 2)2α2
ke
βλk ,

where αk, for k ∈ {1, 2, 3, n}, are defined in (2.71) and (2.73) and λ1, λ2, λ3, and

λn are defined in (2.66), (2.67), (2.68), and (2.69), respectively. So, we obtain the

desired result.

Once the communicability function G(β) has been computed, we immediately ob-

tain ∆G(β) by removing the eβλ1 terms from G(β). As a result, we have:
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∆Gpq(β) =



∑
k={2,3,n} α

2
ke
βλk − e−β

η−1

∑
k={2,3,n}(−1)k+1α2

ke
βλk

∑
k={2,3,n}(λk − η + 2)α2

ke
βλk

∑
k={2,3,n}(−1)k+1(λk − η + 2)α2

ke
βλk

∑
k={2,3,n}(−1)k+1(λk − η + 2)2α2

ke
βλk

if p, q ∈ V1 or

p, q ∈ V2

if p ∈ V1, q ∈ V2

if p ∈ V1, q = η or

p ∈ V2, q = (η + 1)

if p ∈ V1, q = η + 1 or

p ∈ V2, q = η

if p = η, q = η + 1.

(4.13)

Next, we need to understand the order relations among the different entries in

∆Gpq(β). This will allow us to describe maxp 6=q∆Gpq(β) for β > 0 and, hence, define

∆G̃pq(β). We introduce the following functions, which are equal to the entries in

∆G̃pq(β):

f1(β) =
∑

k∈{2,3,n}

α2
ke
βλk − e−β

η − 1
, (4.14)

f2(β) =
∑

k∈{2,3,n}

(−1)k+1α2
ke
βλk , (4.15)

f3(β) =
∑

k∈{2,3,n}

(λk − η + 2)α2
ke
βλk , (4.16)

f4(β) =
∑

k∈{2,3,n}

(−1)k+1(λk − η + 2)α2
ke
βλk , (4.17)

f5(β) =
∑

k∈{2,3,n}

(−1)k+1(λk − η + 2)2α2
ke
βλk . (4.18)

Claim 4.2.2. For all η ≥ 2, we have that

∑
k∈{1,2,3,n}

α2
k =

1

η − 1
and

∑
k∈{1,2,3,n}

(−1)k+1α2
k = 0, (4.19)

where αk, for k ∈ {1, 2, 3, n}, are defined in (2.71) and (2.73).
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Note that n is an even number.

Proof. Let p, q ∈ V1 or p, q ∈ V2. From the orthonormality of the eigenvectors of A of

a dumbbell graph, we can deduce that

∑
k∈{1,2,3,n}

xk(p)xk(q) +
n−1∑
k=4

xk(p)xk(q) = 0

⇒
∑

k∈{1,2,3,n}

α2
k +

n−1∑
k=4

xk(p)xk(q) = 0

⇒
n−1∑
k=4

xk(p)xk(q) = −
∑

k∈{1,2,3,n}

α2
k,

and from (4.7) we obtain the first relation in (4.19).

Now, let p ∈ V1, q ∈ V2 or q ∈ V1, p ∈ V2. From the orthonormality of the

eigenvectors of A of a dumbbell graph, we can also deduce that

∑
k∈{1,2,3,n}

xk(p)xk(q) +

n−1∑
k=4

xk(p)xk(q) = 0

⇒
∑

k∈{1,2,3,n}

(−1)k+1α2
k +

n−1∑
k=4

xk(p)xk(q) = 0

⇒
n−1∑
k=4

xk(p)xk(q) = −
∑

k∈{1,2,3,n}

(−1)k+1α2
k.

We now obtain the second relation in (4.19) from (4.10).

Claim 4.2.3. For η ≥ 2 and B = {1, 2, 3, n}, we have

∑
k∈B

λmk α
2
k =

Pm(η)

η − 1
,

∑
k∈B

(−1)k+1λmk α
2
k = Qm(η), m = 0, 1, 2, 3, 4, (4.20)
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4. Melting in some Graph Families

where

P0(η) = 1,

P1(η) = η − 2,

P2(η) = η2 − 3η + 3,

P3(η) = η3 − 4η2 + 6η − 4,

P4(η) = η4 − 5η3 + 10η2 − 9η + 4,

and

Q0(η) = 0, Q1(η) = 0, Q2(η) = 0, Q3(η) = 1, Q4(η) = 2(η − 2).

Proof. Set

am(η) = λm1 α
2
1 + λm3 α

2
3, bm(η) = λm2 α

2
2 + λmn α

2
n, m = 0, 1, 2, . . . .

From Claim 4.2.2 we obtain

a0(η) =
1

2

[ ∑
k∈{1,2,3,n}

α2
k +

∑
k∈{1,2,3,n}

(−1)k+1α2
k

]
=

1

2(η − 1)
,

b0(η) =
1

2

[ ∑
k∈{1,2,3,n}

α2
k −

∑
k∈{1,2,3,n}

(−1)k+1α2
k

]
=

1

2(η − 1)
.

A lengthy but elementary calculation yields

a1(η) = b1(η) =
η − 2

2(η − 1)
.

Since λ1, λ3 satisfy the quadratic equation (2.51), we obtain the recurrence relation (for

82



4. Melting in some Graph Families

m ≥ 2):

am(η) = λ2
1λ

m−2
1 α2

1 + λ2
3λ

m−2
3 α2

3

=
[
(η − 1)λ1 + 1

]
λm−2

1 α2
1 +

[
(η − 1)λ3 + 1

]
λm−2

3 α2
3

= (η − 1)am−1(η) + am−2(η).

In a similar way, we can use (2.56) to deduce the recurrence relation

bm(η) = (η − 3)bm−1(η) + (2η − 3)bm−2(η)

for m ≥ 2. With these recurrence relations we obtain

a2(η) =
η2 − 3η + 3

2(η − 1)
, b2(η) =

η2 − 3η + 3

2(η − 1)
,

a3(η) =
η3 − 4η2 + 7η − 5

2(η − 1)
, b3(η) =

η3 − 4η2 + 5η − 3

2(η − 1)
,

a4(η) =
η4 − 5η3 + 12η2 − 15η + 8

2(η − 1)
, b4(η) =

η4 − 5η3 + 8η2 − 3η

2(η − 1)
.

Now, with

∑
k∈B

λmk α
2
k = am(η) + bm(η) and

∑
k∈B

(−1)k+1λmk α
2
k = am(η)− bm(η)

we arrive at the relations (4.20) with the stated Pm(η) and Qm(η).

Claim 4.2.4. Let αk, for k ∈ {1, 2, 3, n}, be as in (2.71) and (2.73). For all η ≥ 3, we

have

α2
2 > α2

3 > α2
n; (4.21)

for η = 2, we have

α2
2 = α2

3 > α2
n = α2

1. (4.22)
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4. Melting in some Graph Families

Proof. Define the function

h(x) =
1

2(x− (η − 2))2 + 2(η − 1)
.

This function has a unique maximum at x = η−2 and is even around the line x = η−2.

Further, we have h(λk) = α2
k for k ∈ {1, 2, 3, n}. For η ≥ 3 the result follows from the

inequalities

|λ2 − (η − 2)| < 1 ≤ η − 2 < |λ3 − (η − 2)| < η − 1 < |λn − (η − 2)|,

which, in turn, are obtained from Lemma 2.5.14. For η = 2, we have λ1 = 1
2 +
√

5
2 = −λn

and λ2 = −1
2 +

√
5

2 = −λ3, which yields (4.22).

Claim 4.2.5. f1(β) is strictly increasing in β for η ≥ 3.

Proof. Consider the derivative of f1(β),

f ′1(β) =
∑

k∈{2,3,n}

λkα
2
ke
βλk +

e−β

η − 1
.

We shall use Lemma 2.4.1 to show that the function f ′1(β) has no zeros in (0,∞). First,

we have λ2α
2
2 > 0. Second, we consider λ2α

2
2 + λ3α

2
3. The bounds in Lemma 2.5.14

imply that λ2 > η−2 ≥ 1 and −1 < λ3 < 0 and hence λ2+λ3 ≥ 0. Further, Claim 4.2.4

yields α2
2 > α2

3. Hence, we obtain

λ2α
2
2 + λ3α

2
3 ≥ (λ2 + λ3)α2

3 ≥ 0.

This, in turn, also implies

λ2α
2
2 + λ3α

2
3 +

1

η − 1
> 0.

Finally, we use 1
η−1 =

∑
k∈{1,2,3,n} α

2
k (see Claim 4.2.3), λ2 + λn = η − 3, and α2

2 > α2
n
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(see Claim 4.2.4) to obtain

∑
k∈{2,3,n}

λkα
2
k +

1

η − 1
= λ2α

2
2 + λ3α

2
3 + λnα

2
n +

∑
k∈{1,2,3,n}

α2
k,

= λ2α
2
2 + λ3α

2
3 +

(
(η − 3)− λ2

)
α2
n +

∑
k∈{1,2,3,n}

α2
k

= (α2
2 − α2

n)λ2 + (η − 2)α2
n + (1 + λ3)α2

3 + α2
2 + α2

1 > 0.

Hence, f ′1(β) has constant sign by Lemma 2.4.1. Since, for large β, f ′1(β) is dominated

by the positive eβλ2 term, we can deduce that f ′1(β) > 0 for β ∈ (0,∞), and therefore

f1 is strictly increasing.

Claim 4.2.6. f3(β) is strictly increasing in β.

Proof. Consider the derivative of f3(β),

f ′3(β) =
∑

k∈{2,3,n}

(λk − η + 2)λkα
2
ke
βλk .

We shall use, again, Lemma 2.4.1 to show that the function f ′3 has no zero in (0,∞).

Using the bounds for the eigenvalues in Lemma 2.5.14 we have that (λ2−η+2)λ2α
2
2 > 0,

(λ3 − η + 2)λ3α
2
3 > 0, (λn − η + 2)λnα

2
n > 0, and therefore

(λ2 − η + 2)λ2α
2
2 + (λ3 − η + 2)λ3α

2
3 > 0,

(λ2 − η + 2)λ2α
2
2 + (λ3 − η + 2)λ3α

2
3 + (λn − η + 2)λnα

2
n > 0.

Now, Lemma 2.4.1 implies that f ′3 has no zero in (0,∞). Since for large β, f ′3(β) is

dominated by the positive eβλ2 term, this implies that f ′3(β) > 0 for all β ∈ (0,∞), and

hence f3(β) is strictly increasing.

Claim 4.2.7. f1(β) > f3(β) for all β ∈ [0,∞).

Proof. We rewrite the function f1(β)− f3(β) to be in the form

f1(β)− f3(β) = e−β

 ∑
k∈{2,3,n}

(−λk + η − 1)α2
ke
β(λk+1) − 1

(η − 1)

 . (4.23)
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4. Melting in some Graph Families

Let H(β) be the expression within the square brackets, i.e.

H(β) =
∑

k∈{2,3,n}

(−λk + η − 1)α2
ke
β(λk+1) − 1

η − 1
,

and consider the derivative of H,

H ′(β) =
∑

k∈{2,3,n}

(−λk + η − 1)(λk + 1)α2
ke
β(λk+1).

We will show that the functionH ′(β) has no zeros in (0,∞). The bounds in Lemma 2.5.14

yield η − 2 < λ2 < η − 1 and −1 < λ3 < 0 and hence

(−λ2 + η − 1)(λ2 + 1)α2
2 > 0,

(−λ2 + η − 1)(λ2 + 1)α2
2 + (−λ3 + η − 1)(λ3 + 1)α2

3 > 0.

Further, we obtain from Claim 4.2.3 that

∑
k∈{2,3,n}

(−λk + η − 1)(λk + 1)α2
k

=
∑

k∈{1,2,3,n}

(−λk + η − 1)(λk + 1)α2
k + (λ1 − η + 1)(λ1 + 1)α2

1

=
∑

k∈{1,2,3,n}

(
−λ2

kα
2
k + (η − 2)λkα

2
k + (η − 1)α2

k

)
+ (λ1 − η + 1)(λ1 + 1)α2

1

= −η
2 − 3η + 3

η − 1
+

(η − 2)2

η − 1
+
η − 1

η − 1
+ (λ1 − η + 1)(λ1 + 1)α2

1

= (λ1 − η + 1)(λ1 + 1)α2
1 > 0.

Therefore, H ′(β) has constant sign by Lemma 2.4.1. Since, for large β, H ′(β) is dom-

inated by the positive eβλ2 term, we obtain that H ′(β) > 0 for β ∈ (0,∞), and hence
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H is strictly increasing on [0,∞). We use, again, Claim 4.2.3 to obtain

H(0) =
∑

k∈{2,3,n}

(−λk + η − 1)α2
k −

1

η − 1

=
∑

k∈{1,2,3,n}

(−λk + η − 1)α2
k + (λ1 − η + 1)α2

1 −
1

η − 1

=
∑

k∈{1,2,3,n}

(
−λkα2

k + (η − 1)α2
k

)
+ (λ1 − η + 1)α2

1 −
1

η − 1

= −η − 2

η − 1
+
η − 1

η − 1
+ (λ1 − η + 1)α2

1 −
1

η − 1

= (λ1 − η + 1)α2
1 > 0,

which, together with the monotonicity of H, implies that H(β) > 0 for β ∈ [0,∞).

Now (4.23) shows that f1(β) > f3(β) for β ∈ [0,∞).

Claim 4.2.8. f3(β) > f4(β) for all β ∈ (0,∞).

Proof. Consider the function

f3(β)− f4(β) = 2(λ2 − η + 2)α2
2e
βλ2 + 2(λn − η + 2)α2

ne
βλn .

Both summands on the right-hand side are strictly increasing functions of β since

λ2 > 0, λ2 − η + 2 > 0, λn < 0 and λn − η + 2 = −λ2 − 1 < 0. Hence f3(β)− f4(β) is

strictly increasing in β. It follows from Claim 4.2.3 that

α2
2 + α2

n =
1

2

 ∑
k∈{1,2,3,n}

α2
k −

∑
k∈{1,2,3,n}

(−1)k+1α2
k

 =
1

2(η − 1)

and

λ2α
2
2 + λnα

2
n =

1

2

 ∑
k∈{1,2,3,n}

λkα
2
k −

∑
k∈{1,2,3,n}

(−1)k+1λkα
2
k

 =
η − 2

2(η − 1)
.
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From this we obtain

f3(0)− f4(0) = 2(λ2 − η + 2)α2
2 + 2(λn − η + 2)α2

n

= 2
(
λ2α

2
2 + λnα

2
n

)
− 2(η − 2)

(
α2

2 + α2
n

)
=
η − 2

η − 1
− (η − 2)

1

η − 1
= 0.

Together with the monotonicity of f3(β) − f4(β), this implies that f3(β) − f4(β) > 0

for β ∈ (0,∞).

Claim 4.2.9. f2(β) is strictly decreasing in β.

Proof. Consider the derivative of f2(β), f ′2(β) =
∑

k∈{2,3,n}(−1)k+1α2
kλke

βλk . We will

use Lemma 2.4.1 to show that the function f ′2(β) has no zeros for β ∈ (0,∞). Since

λ2 > 0 and λ3 < 0, we have −α2
2λ2 < 0 and −α2

2λ2 + α2
3λ3 ≤ 0. Further, from

Claim 4.2.3, we obtain

−α2
2λ2 + α2

3λ3 − α2
nλn =

∑
k∈{1,2,3,n}

(−1)k+1α2
kλk − α2

1λ1 = −α2
1λ1 < 0.

Therefore, f ′2(β) has constant sign on (0,∞) by Lemma 2.4.1. Since for large β, f ′2(β)

is dominated by the negative eβλ2 term, f ′2(β) < 0 for β ∈ (0,∞) and hence f2(β) is

strictly decreasing.

Claim 4.2.10. f3(β) > f5(β) for all β ∈ [0,∞).

Proof. Let us consider

f3(β)− f5(β) =
∑

k∈{2,3,n}

[
(λk − η + 2)− (−1)k+1(λk − η + 2)2

]
α2
ke
βλk .

We use Lemma 2.4.1 to show that its derivative,

(
f3(β)− f5(β)

)′
=

∑
k∈{2,3,n}

[
(λk − η + 2)− (−1)k+1(λk − η + 2)2

]
λkα

2
ke
βλk ,
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has no zero in (0,∞). First, we know from Lemma 2.5.14 that λ2−η+2 > 0 and hence

[
(λ2 − η + 2) + (λ2 − η + 2)2

]
λ2α

2
2 > 0.

Lemma 2.5.14 also implies that λ3 < 0 and λ3 − η + 2 < 0, which yields

[
(λ2 − η + 2) + (λ2 − η + 2)2

]
λ2α

2
2 +

[
(λ3 − η + 2)− (λ3 − η + 2)2

]
λ3α

2
3 > 0.

Finally, we obtain from Claim 4.2.3 that

∑
k∈{2,3,n}

[
(λk − η + 2)− (−1)k+1(λk − η + 2)2

]
λkα

2
k

=
∑

k∈{1,2,3,n}

[
(λk − η + 2)− (−1)k+1(λk − η + 2)2

]
λkα

2
k

−
[
(λ1 − η + 2)− (λ1 − η + 2)2

]
λ1α

2
1

=
∑

k∈{1,2,3,n}

[
λ2
kα

2
k − (η − 2)λkα

2
k − (−1)k+1λ3

kα
2
k + 2(η − 2)(−1)k+1λ2

kα
2
k

− (η − 2)2λkα
2
k

]
+
[
(λ1 − η + 2)2 − (λ1 − η + 2)

]
λ1α

2
1

=
η2 − 3η + 3

η − 1
− (η − 2)

η − 2

η − 1
− 1 +

[
(λ1 − η + 2)2 − (λ1 − η + 2)

]
λ1α

2
1

=
[
(λ1 − η + 2)2 − (λ1 − η + 2)

]
λ1α

2
1 > 0;

the last inequality follows since λ1 − η + 2 > 1 by Lemma 2.5.14. Hence, Lemma 2.4.1

implies that (f3(β) − f5(β))′ does not change sign in (0,∞). Since (f3(β) − f5(β))′ is

dominated by the positive eβλ2 term, (f3(β)− f5(β))′ > 0 for β ∈ (0,∞), and therefore

f3(β)−f5(β) is monotonic increasing. Now we consider the value at 0: with Claim 4.2.3

we obtain

f3(0)− f5(0) =
∑

k∈{2,3,n}

[
(λk − η + 2)− (−1)k+1(λk − η + 2)2

]
α2
k

=
∑

k∈{1,2,3,n}

[
(λk − η + 2)− (−1)k+1(λk − η + 2)2

]
α2
k

−
[
(λ1 − η + 2)− (λ1 − η + 2)2

]
α2

1
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Figure 4.5: Plot of f5(β).

=
∑

k∈{1,2,3,n}

[
λkα

2
k − (η − 2)α2

k − (−1)k+1λ2
kα

2
k + 2(η − 2)(−1)k+1λkα

2
k

− (η − 2)2(−1)k+1α2
k

]
+
[
(λ1 − η + 2)2 − (λ1 − η + 2)

]
α2

1

=
η − 2

η − 1
− (η − 2)

1

η − 1
+
[
(λ1 − η + 2)2 − (λ1 − η + 2)

]
α2

1

=
[
(λ1 − η + 2)2 − (λ1 − η + 2)

]
α2

1 > 0.

Together with the monotonicity of f3(β)− f5(β), this shows that f3(β)− f5(β) > 0 for

all β ∈ [0,∞).

Remark 4.2.11. f5(β) is not necessarily monotonic for η ≥ 2. For example, in

Figure 4.5 we plot f5(β) when η = 3.

Proposition 4.2.12. For all β ∈ (0,∞), f1(β) > fj(β), j = 2, 3, 4, 5.

Proof. We prove the four inequalities separately.

1. The case j = 2. It follows from Claims 4.2.5 and 4.2.9 that f1 − f2 is strictly
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increasing on [0,∞). Moreover, we have

f1(0)− f2(0) = 2α2
2 + 2α2

n −
1

(η − 1)

=
1

(η − 1)
− 1

(η − 1)
= 0,

since
∑

k∈{1,2,3,n} α
2
k = 1

(η−1) , and α2
2 + α2

n = α2
3 + α2

1. From this, we obtain that

f1(β) > f2(β) for β ∈ (0,∞).

2. The case j = 3. The inequality f1(β) > f3(β), β ∈ [0,∞), is proved in Claim 4.2.7.

3. The case j = 4. It follows from the case j = 3 and Claim 4.2.8 that f1(β) >

f3(β) > f4(β) for β ∈ (0,∞).

4. The case j = 5. Claims 4.2.7 and 4.2.10 together imply that f1(β) > f3(β) >

f5(β) for β ∈ [0,∞).

The take-home message from Proposition 4.2.12 and Claims 4.2.2–4.2.10 is that for

all β ∈ [0,∞) the maximum value of ∆Gpq(β) is attained by f1(β), i.e., at entries of

∆G(β) corresponding to two nodes that belong to the same clique V1 or V2. Hence, we

have proved the following result.

Theorem 4.2.13. Let Kη–Kη = (V,E) be a dumbbell graph and suppose that η ≥ 3.

Moreover, assume that the labeling of nodes is given by the matrix of A in (2.40). Then,

for all p 6= q ∈ V,

∆G̃pq(β) =



2
∑

k∈{2,3,n} α
2
ke
βλk − 2e−β

η−1 ,

2α2
3e
βλ3 − e−β

η−1 ,∑
k∈{2,3,n}(λk − η + 3)α2

ke
βλk − e−β

η−1 ,

∑
k∈{2,3,n}

[
(−1)k+1(λk − η + 2) + 1

]
α2
ke
βλk − e−β

η−1 ,

∑
k∈{2,3,n}

[
(−1)k+1(λk − η + 2)2 + 1

]
α2
ke
βλk − e−β

η−1 ,

if p, q ∈ V1 or

p, q ∈ V2

if p ∈ V1, q ∈ V2

if p ∈ V1, q = η or

p ∈ V2, q = (η + 1)

if p ∈ V1, q = η + 1 or

p ∈ V2, q = η

if p = η, q = η + 1.
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Note that the entries in ∆G̃pq(β) are

2f1(β), f1(β) + f2(β), f1(β) + f3(β), f1(β) + f4(β), f1(β) + f5(β), (4.24)

respectively.

4.2.2 Melting in Dumbbell Graphs

To characterize melting, we need to understand in what order the functions in (4.24),

corresponding to the different values appearing in the off-diagonal entries of ∆G̃(β),

cross the β-axis and to ensure that such crossing point is unique for each function. We

will show that these conditions are verified for all of these function.

Claim 4.2.14. The function 2f1(β) crosses the β-axis exactly once and before all the

functions f1(β) + f2(β), f1(β) + f3(β), f1(β) + f4(β) and f1(β) + f5(β).

Proof. Note that from Claim 4.2.2 we have

f1(0) =
∑

k∈{2,3,n}

α2
k −

1

η − 1
= −α2

1 < 0. (4.25)

That 2f1(β) crosses the β-axis exactly once, follows now from Claim 4.2.5 and the fact

that, for large β, the positive eβλ2 term dominates and therefore f1(β)→∞ as β →∞.

Finally, Proposition 4.2.12 implies that 2f1(β) crosses the β-axis first.

Claim 4.2.15. The function f1(β) + f3(β) is monotonic increasing and crosses the

β-axis once.

Proof. Monotonicity is obvious as both f1(β) and f3(β) are monotonic increasing by

Claims 4.2.5 and 4.2.6, respectively. It follows from (4.25) and Claim 4.2.7 that

f3(0) < f1(0) < 0.

For large β the positive term eβλ2 dominates and hence f1(β) + f3(β) has crosses the

β-axis exactly once.
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Figure 4.6: Plot for f1(β) + f2(β).

Claim 4.2.16. f1(β) + f2(β) crosses the β-axis once.

Proof. By direct computations, the solution of f1(β) + f2(β) = 2α2
3e
βλ3 − e−β

η−1 = 0 is

β =
log

[
(2(η−1)α2

3)
−1

]
λ3+1 , which is positive since 2(η−1)α2

3 < 1 by (2.71) and the inequality

λ3 > −1.

Note that

lim
β→∞

f1(β) + f2(β) = 0.

In Figure 4.6, we plot f1(β) + f2(β) when η = 3.

Claim 4.2.17. The function f1(β) + f4(β) is monotonic increasing and crosses the

β-axis once.

Proof. To prove that f1(β) + f4(β) is monotonic increasing for all β ∈ [0,∞), consider

the derivative of f1(β) + f4(β):

(
f1(β) + f4(β)

)′
=

∑
k∈{2,3,n}

[
(−1)k+1(λk − η + 2) + 1

]
α2
kλke

βλk +
e−β

η − 1
.
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We will show, using Lemma 2.4.1, that (f1(β) + f4(β))′ has no zeros for β ∈ [0,∞).

We have that [
−(λ2 − η + 2) + 1

]
λ2α

2
2 > 0, (4.26)

since from the bounds in Lemma 2.5.14 we have λ2−η+ 2 < 1. Further, the inequality

(λ3 − η + 2) + 1 < 0 implies

[
−(λ2 − η + 2) + 1

]
λ2α

2
2 +

[
(λ3 − η + 2) + 1

]
λ3α

2
3 > 0, (4.27)[

−(λ2 − η + 2) + 1
]
λ2α

2
2 +

[
(λ3 − η + 2) + 1

]
λ3α

2
3 +

1

η − 1
> 0.

Moreover, by Claim 4.2.3, we have

∑
k∈{2,3,n}

[
(−1)k+1(λk − η + 2) + 1

]
λkα

2
k

=
∑

k∈{2,n}

[
−(λk − η + 2) + 1

]
λkα

2
k +

[
(λ3 − η + 2) + 1

]
λ3α

2
3

= −
∑

k∈{2,n}

λ2
kα

2
k + (η − 1)

∑
k∈{2,n}

λkα
2
k +

[
(λ3 − η + 2) + 1

]
λ3α

2
3

= −η
2 − 3η + 3

2 (η − 1)
+

(η − 1) (η − 2)

2 (η − 1)
+
[
(λ3 − η + 2) + 1

]
λ3α

2
3

=
−1

2 (η − 1)
+
[
(λ3 − η + 2) + 1

]
λ3α

2
3

and

∑
k∈{2,3,n}

[
(−1)k+1(λk − η + 2) + 1

]
λkα

2
k +

1

η − 1

=
[
(λ3 − η + 2) + 1

]
λ3α

2
3 −

1

2 (η − 1)
+

1

η − 1

=
1

2(η − 1)
+
[
(λ3 − η + 2) + 1

]
λ3α

2
3 > 0,

where we have used (λ3−η+2)+1 < 0. Now, Lemma 2.4.1 implies that (f1(β)+f4(β))′

does not change sign. Since, for large β, (f1(β) + f4(β))′ is dominated by the positive

[−(λ2 − η + 2) + 1]α2
2e
βλ2 term, we can deduce that (f1(β)+f4(β))′ > 0 for β ∈ (0,∞)
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and hence f1(β) + f4(β) is strictly increasing. From Claim 4.2.3, we obtain

f1(0) + f4(0) =
∑

k∈{2,3,n}

[
α2
k + (−1)k+1(λk − η + 2)α2

k

]
− 1

η − 1

=
∑

k∈{1,2,3,n}

[
α2
k + (−1)k+1(λk − η + 2)α2

k

]
− α2

1 − (λ1 − η + 2)α2
1 −

1

η − 1

=
1

η − 1
− α2

1 − (λ1 − η + 2)α2
1 −

1

η − 1

= −(λ1 − η + 3)α2
1 < 0.

This implies that f1(β) + f4(β) crosses the β axis exactly once.

Claim 4.2.18. The function f1(β)+f5(β) has exactly one zero in (0,∞); this function

is negative to the left and positive to the right of this zero.

Proof. Let us consider the function

g(β) =
(
f1(β) + f5(β)

)
eβ

=
∑

k∈{2,3,n}

[
1 + (−1)k+1(λk − η + 2)2

]
α2
ke

(λk+1)β − 1

η − 1
.

We show that g(β) is monotonic increasing. In what follows, we use Lemma 2.4.1 to

show that the derivative,

g′(β) =
∑

k∈{2,3,n}

[
1 + (−1)k+1(λk − η + 2)2

]
(λk + 1)α2

ke
(λk+1)β,

does not change sign. Since 0 < λ2 − η + 2 < 1 by Lemma 2.5.14, we have

[
1− (λ2 − η + 2)2

]
(λ2 + 1)α2

2 > 0.

Again, by Lemma 2.5.14, we know that λ3 + 1 > 0 and hence

[
1− (λ2 − η + 2)2

]
(λ2 + 1)α2

2 +
[
1 + (λ3 − η + 2)2

]
(λ3 + 1)α2

3 > 0.

Finally, we obtain, from Lemma 2.5.14, that (λn − η + 2)2 > 1 and that λn + 1 < 0,
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which yields

[
1− (λ2 − η + 2)2

]
(λ2 + 1)α2

2 +
[
1 + (λ3 − η + 2)2

]
(λ3 + 1)α2

3

+
[
1− (λn − η + 2)2

]
(λn + 1)α2

n > 0.

Now, Lemma 2.4.1 implies that g′(β) does not change sign. Since, for large β, the

positive e(λ2+1)β term dominates, we obtain that g′(β) > 0 for all β ∈ (0,∞), and

hence g(β) is strictly increasing on [0,∞). Further, we obtain from Claim 4.2.3 that

g(0) =
∑

k∈{2,3,n}

[
1 + (−1)k+1(λk − η + 2)2

]
α2
k −

1

η − 1

=
∑

k∈{1,2,3,n}

[
1 + (−1)k+1(λk − η + 2)2

]
α2
k −

[
1 + (λ1 − η + 2)2

]
α2

1 −
1

η − 1

=
∑

k∈{1,2,3,n}

[
α2
k + (−1)k+1λ2

kα
2
k − 2(η − 2)(−1)k+1λkα

2
k + (η − 2)2(−1)k+1α2

k

]
−
[
1 + (λ1 − η + 2)2

]
α2

1 −
1

η − 1

=
1

η − 1
−
[
1 + (λ1 − η + 2)2

]
α2

1 −
1

η − 1

= −
[
1 + (λ1 − η + 2)2

]
α2

1 < 0.

Since, for large β, g(β) is dominated by the positive e(λ2+1)β term, the monotonicity

of g(β) implies that g(β) has exactly one zero, it is negative to the left and positive

to the right of this zero. Multiplying by the positive factor e−β we can deduce that

g1(β) + g5(β) has the same properties.

Proposition 4.2.19. For every j = 1, 2, 3, 4, 5, the function f1(β) + fj(β) crosses the

β axis exactly once.

Proof. For j = 1, 2, 3, 4, 5 the assertions follow from Claims 4.2.14, 4.2.16, 4.2.15, 4.2.17

and 4.2.18, respectively.

For i = 1, 2, 3, 4, 5, let us denote by βi = βi(η) the unique point where the function

f1(β) + fi(β) crosses the β-axis. These points are well defined by Proposition 4.2.19.

Next, we discuss the order of these points βi.
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Figure 4.7: The semilogy plot for f1(β2) + f4(β2) and f1(β2) + f5(β2) versus η.

Proposition 4.2.20. The following inequalities are true:

1. β1 < βi for i = 2, 3, 4, 5;

2. β3 < β4, β3 < β5.

Proof. The inequalities in item 1. follow directly from Claim 4.2.14. Further, the

relations in item 2. follow from Claims 4.2.8 and 4.2.10, respectively.

Conjecture 4.2.21. We conjecture that β5 < β4 < β2.

There is some computational evidence that β2 > β4 and β2 > β5. Namely, we know

from Claim 4.2.16 that β2 =
log[(2(η−1)α2

3)−1]
λ3+1 . As can be seen from Figure 4.7, the

values f1(β2) + f4(β2) and f1(β2) + f5(β2) are positive for η ∈ [3, 10]. This implies that

β4 < β2 and β5 < β2 for those η. We also computed β4 and β5 for η ∈ [3, 10], which

are displayed in Figure 4.8; this gives computational evidence that β5 < β4 for those η.

Claim 4.2.22. β2(η)→∞ as η →∞.

Proof. It follows from Lemma 2.5.14 that λ3 → 0 as η →∞. Hence,

2(η − 1)α2
3 =

η − 1

(λ3 − η + 2)2 + η − 1
∼ η − 1

(η − 2)2 + η − 1
∼ 1

η
.
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Figure 4.8: Plot of β4 and β5 versus η.

Now, Claim 4.2.16 implies

β2(η) =
log[(2(η − 1)α2

3)−1]

λ3 + 1
∼ log η →∞

as η →∞.

Claim 4.2.23. We have that βi(η)→ 0 as η →∞ for i = 1, 3, 4, 5.

Proof. It is sufficient to prove that β4(η) → 0 and β5(η) → 0 since we know from

Proposition 4.2.20 that β1(η) < β5(η) and β3(η) < β5(η).

Let us first determine the asymptotic behaviour of λ2 as η →∞. With the asymp-

totic formula
√

1− x = 1− x
2 +O(x2) we obtain
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λ2 =
η − 3

2
+

√
(η + 1)2 − 4

2
=

1

2

[
η − 3 + (η + 1)

√
1− 4

(η + 1)2

]

=
1

2

[
η − 3 + (η + 1)

(
1− 2

(η + 1)2
+O

(
1

(η + 1)4

))]
=

1

2

[
η − 3 + η + 1− 2

η + 1
+O

(
1

(η + 1)3

)]
= η − 1− 1

η + 1
+O

( 1

η3

)
as η →∞. From this we deduce that

1− (λ2 − η + 2) = η − 1− λ2 =
1

η + 1
+O

( 1

η3

)
,

1− (λ2 − η + 2)2 =
[
1 + (λ2 − η + 2)

][
1− (λ2 − η + 2)

]
=

[
2− 1

η + 1
+O

( 1

η3

)][ 1

η + 1
+O

( 1

η3

)]
=

2

η + 1
+O

( 1

η2

)
(4.28)

and

α2
2 =

1

2[(λ2 − η + 2)2 + η − 1]
∼ 1

2[1 + η − 1]
=

1

2η
. (4.29)

Now, let us fix β > 0. We show that

f1(β) + f5(β) =
∑

k∈{2,3,n}

[
1 + (−1)k+1(λk − η + 2)2

]
α2
ke
βλk − e−β

η − 1
(4.30)

tends to infinity as η → ∞. The last term on the right-hand side converges to 0 as

η →∞. For k ∈ {3, n}, we have that η − 2 ≤ η − 2− λk ≤ η and hence

∣∣∣[1 + (−1)k+1(λk − η + 2)2
]
α2
ke
βλk
∣∣∣ ≤ [1 + (η − 2− λk)2

] 1

2[(η − 2− λk)2 + η − 1]

≤ 1 + η2

2[(η − 2)2 + η − 1]
,
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Figure 4.9: Plot of β1,β3 β4 and β5 versus η.

which is bounded. For the term in (4.30) with k = 2 we use (4.28) and (4.29) to obtain

[
1− (λ2 − η + 2)2

]
α2

2e
βλ2 ≥

[
1− (λ2 − η + 2)2

]
α2e

β(η−2)

∼ 2

η + 1
· 1

2η2
eβ(η−2) →∞

as η → ∞. This implies that f1(β) + f5(β) → ∞ as η → ∞ for each fixed β > 0. In

particular, for every fixed β > 0, we have f1(β) + f5(β) > 0 for large enough η and

therefore β5(η) < β. This shows that β5(η)→ 0 as η →∞.

The proof for the fact that β4(η)→ 0 is very similar and even slightly simpler.

Conjecture 4.2.24. The values of βi in the melting signature for i = 1, 3, 4, 5, go to

zero as η goes to infinity.

In Figure 4.9, we see that β1 < β3 < β5 < β4 and βi → 0 as η →∞ for i = 1, 3, 4, 5.

4.2.3 Melting Signatures of Dumbbell Graphs

We recall that the melting signature is the sequence of inverse temperatures β, start-

ing with the lowest, at which the structure of the associated modified communicability
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graph changes. In this section we discuss how the structure of the modified communi-

cability graph associated with a given Kη–Kη, for η ≥ 3, changes with β ∈ [0,∞).

From Propositions 4.2.19 and 4.2.20, and Conjecture 4.2.21 it follows that f1(β) +

fi(β), i = 1, 2, 3, 4, 5, crosses the β-axis exactly once, and that the functions f1(β) +

fi(β), i = 1, 2, 3, 4, 5, cross the β-axis in the following order: 2f1(β), f1(β) + f3(β),

f1(β) + f5(β), f1(β) + f4(β) and, lastly, f1(β) + f2(β). The graphs Kη–Kη have one

possible melting signature: (β1, β3, β5, β4, β2). The melting of the associated modified

communicability graph proceeds as follows. At β = β1, the modified communicability

graph of Kη–Kη changes from being the null graph Nn to a collection of two complete

graphs Kη−1 and two single nodes, and at β = β3, the modified communicability

graph becomes a collection of just two complete graphs Kη. At β = β5, the modified

communicability graph becomes the graph Kη–Kη itself, and at β = β4, the modified

communicability graph becomes a core-satellite graph Θ(2, η−1, 2). Finally, at β = β2,

the modified communicability graph becomes the complete graph K2η. In Figure 4.10,

we show the evolution of the modified communicability graphs of K5–K5 as β varies,

which exhibits the (β1, β3, β5, β4, β2) melting signature.

4.2.4 Melting in K2–K2

The graph K2–K2 is the path graph with 4 vertices, and the spectrum of its adjacency

matrix can be found from Theorem 2.5.13 by setting η = 2. The communicability

function Gpq(β) for K2–K2 is given by (4.4) in Lemma 4.2.1 with η = 2. There are

four different types of edges; the first case in (4.4) does not appear because V1 and V2

are singletons. Hence, we can write the communicability function as follows:

Gpq(β) =



∑
k∈{1,2,3,4}(−1)k+1α2

ke
βλk∑

k∈{1,2,3,4} λkα
2
ke
βλk∑

k∈{1,2,3,4}(−1)k+1λkα
2
ke
βλk∑

k∈{1,2,3,4}(−1)k+1λ2
kα

2
ke
βλk

if p, q ∈ {1, 4},

if p, q ∈ {1, 2} or p, q ∈ {3, 4},

if p, q ∈ {1, 3} or p, q ∈ {2, 4},

if p, q ∈ {2, 3},
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(a) 0 ≤ β < β1 (b) β1 ≤ β < β3 (c) β3 ≤ β < β5

(d) β5 ≤ β < β4 (e) β4 ≤ β < β2 (f) β ≥ β2

Figure 4.10: Illustration of the structure of the modified communicability graph of
K5–K5 versus β.

where

λ1 =
1 +
√

5

2
, λ2 =

−1 +
√

5

2
, λ3 =

1−
√

5

2
, λ4 =

−1−
√

5

2
, (4.31)

αk =
(
2λ2

k + 2
)− 1

2 (4.32)

for k ∈ {1, 2, 3, 4}.

Remark 4.2.25. It is straightforwardly verified that λ1 = −λ4, λ2 = −λ3, α1 = α4

and α2 = α3.

Now, by removing the eβλ1 terms from Gpq(β), we obtain ∆Gpq(β):

∆Gpq(β) =



∑
k∈{2,3,4} α

2
ke
βλk∑

k∈{2,3,4} λkα
2
ke
βλk∑

k∈{2,3,4}(−1)k+1λkα
2
ke
βλk∑

k∈{2,3,4}(−1)k+1λ2
kα

2
ke
βλk

if p, q ∈ {1, 4},

if p, q ∈ {1, 2} or p, q ∈ {3, 4},

if p, q ∈ {1, 3} or p, q ∈ {2, 4},

if p, q ∈ {2, 3},

where the four terms of ∆Gpq(β) for K2–K2 correspond to the functions f2, f3, f4 and
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f5 in (4.15), (4.16), (4.17) and (4.18) when η = 2, respectively.

Next, to understand the order relations among the different entries in ∆Gpq(β), we

have the following result.

Proposition 4.2.26. The following statements are true.

1. The equation f2(β) = f3(β) has a unique solution β0 ≈ 0.10029; this solution also

satisfies f2(β0) = f3(β0) < 0. Moreover, 0 > f2(β) > f3(β) for β ∈ [0, β0), and

f2(β) < f3(β) for β > β0.

2. f3(β) > f4(β) for all β ∈ (0,∞).

3. f3(β) > f5(β) for all β ∈ [0,∞).

Proof. Let us consider the statements in item 1. The function f2 is strictly decreasing

by Claim 4.2.9; f3 is strictly increasing by Claim 4.2.6. To obtain their values at 0, we

use Claim 4.2.3:

f2(0) =
∑

k∈{2,3,4}

(−1)k+1α2
k =

∑
k∈{1,2,3,4}

(−1)k+1α2
k − α2

1 = −α2
1,

f3(0) =
∑

k∈{2,3,4}

λkα
2
k =

∑
k∈{1,2,3,4}

λkα
2
k − λ1α

2
1 = −λ1α

2
1,

which yields f3(0) < f2(0) < 0 since λ1 > 1. This implies that there is a unique β0 > 0

such that f2(β0) = f3(β0). From the monotonicity of f2 we obtain that f2(β0) < 0. A

numerical computation yields β0 ≈ 0.10029. Clearly, 0 > f2(β) > f3(β) for β ∈ (0, β0),

and f2(β) < f3(β) for β > β0.

The assertions in items 2. and 3. were proved in Claims 4.2.8 and 4.2.10, respec-

tively.

From Proposition 4.2.26 we know that, for all β ≥ β0 ≈ 0.10029, the maximum value

of ∆Gpq(β) for K2–K2 is attained at the pair of nodes p, q ∈ {1, 2} or p, q ∈ {3, 4}, which

correspond to the function f3(β). Hence, for all β ≥ β0, the modified communicability
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graph function ∆G̃pq(β) of K2–K2 is given by

∆G̃pq(β) =



∑
k∈{2,3,4}

(
λk + (−1)k+1

)
α2
ke
βλk∑

k∈{2,3,4} 2λkα
2
ke
βλk

2λ3α
2
3e
βλ3∑

k∈{2,3,4}
(
λk + (−1)k+1λ2

k

)
α2
ke
βλk

if p, q ∈ {1, 4},

if p, q ∈ {1, 2} or p, q ∈ {3, 4},

if p, q ∈ {1, 3} or p, q ∈ {2, 4},

if p, q ∈ {2, 3}.

Proposition 4.2.26 implies that fj(β) < 0 for β ∈ (0, β0] and j = 2, 3, 4, 5, and that

the entries of the modified communicability graph function ∆G̃pq(β) are of the form

f2(β) + fj(β), j = 2, 3, 4, 5, which are all negative. We can therefore ignore the interval

(0, β0] and concentrate on values β in (β0,∞). Let us set yj(β) = f3(β) + fj(β),

j = 2, 3, 4, 5, which are the entries in∆G̃pq(β) for β ∈ (β0,∞); explicitly, these functions

are given by

y1(β) =
∑

k∈{2,3,4}

(
λk + (−1)k+1

)
α2
ke
βλk , (4.33)

y2(β) =
∑

k∈{2,3,4}

2λkα
2
ke
βλk , (4.34)

y3(β) = 2λ3α
2
3e
βλ3 , (4.35)

y4(β) =
∑

k∈{2,3,4}

(
λk + (−1)k+1λ2

k

)
α2
ke
βλk . (4.36)

Let us derive some properties of these functions.

Claim 4.2.27. The function y2(β) is strictly increasing and crosses the β axis exactly

once.

Proof. From Claim 4.2.6 with η = 2 we obtain that y2(β) = 2f3(β) is strictly in-

creasing on [0,∞). For large β, y2(β) is dominated by the positive eβλ2 term. By

Proposition 4.2.26, we have y2(0) = 2f3(0) < 0. Hence y2(β) has exactly one zero.

Claim 4.2.28. The function y4(β) is strictly increasing and crosses the β axis exactly

once.

Proof. Consider the derivative y′4(β) =
∑

k∈{2,3,4}
(
λk + (−1)k+1λ2

k

)
λkα

2
ke
βλk . Since
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λ4 < −1 < λ3 < 0 < λ2 < 1, we have

(
λ2 − λ2

2

)
λ2α

2
2 > 0,

(
λ3 + λ2

3

)
λ3α

2
3 > 0,

(
λ4 − λ2

4

)
λ4α

2
4 > 0,

and hence (
λ2 − λ2

2

)
λ2α

2
2 +

(
λ3 + λ2

3

)
λ3α

2
3 > 0

and (
λ2 − λ2

2

)
λ2α

2
2 +

(
λ3 + λ2

3

)
λ3α

2
3 +

(
λ4 − λ2

4

)
λ4α

2
4 > 0.

Lemma 2.4.1 implies that y′4(β) does not change sign. Since, for large β, y′4(β) is

dominated by the positive eβλ2 term, we have y′4(β) > 0 for β ∈ (0,∞), and therefore

y4(β) is strictly increasing. From Proposition 4.2.26, we obtain y4(0) = f3(0) + f5(0) <

0, and hence y4(β) has exactly one zero.

Claim 4.2.29. We have y1(β) < 0 for all β ∈ [0,∞).

Proof. Since 0 < λ2 < 1, λ3 = −λ2, λ4 < 0 and α2
2 = α2

3, we have

(λ2 − 1)α2
2 < 0, (λ2 − 1)α2

2 + (λ3 + 1)α2
3 = 0,

(λ2 − 1)α2
2 + (λ3 + 1)α2

3 + (λ4 − 1)α2
4 < 0.

Hence, the function y1(β) =
∑

k∈{2,3,4}
(
λk + (−1)k+1

)
α2
ke
βλk does not change sign in

(0,∞) by Lemma 2.4.1. For large β, y1(β) is dominated by the negative eβλ2 term, and

therefore y1(β) < 0 for β ∈ (0,∞). Moreover,

y1(0) = (λ2 − 1)α2
2 + (λ3 + 1)α2

3 + (λ4 − 1)α2
4 < 0,

which finishes the proof.

Claim 4.2.30. We have y2(β) > y4(β) for all β ∈ [0,∞).

Proof. Let us consider the derivative

(
y2(β)− y4(β)

)′
=

∑
k∈{2,3,4}

(
λk − (−1)k+1λ2

k

)
λkα

2
ke
βλk .
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Since λ2 > 0 and λ3 > −1, we have

(
λ2

2 + λ3
2

)
α2

2 > 0,
(
λ2

2 + λ3
2

)
α2

2 +
(
λ2

3 − λ3
3

)
α2

3 > 0.

Moreover, from Claim 4.2.3, we obtain

∑
k∈{2,3,4}

(
λ2
k − (−1)k+1λ3

k

)
α2
k =

∑
k∈{1,2,3,4}

(
λ2
k − (−1)k+1λ3

k

)
α2
k −

(
λ2

1 − λ3
1

)
α2

1

= 1− 1−
(
λ2

1 − λ3
1

)
α2

1 =
(
λ3

1 − λ2
1

)
α2

1 > 0.

Hence, by Lemma 2.4.1, (y2(β) − y4(β))′ does not change sign in (0,∞). Since, for

large β, (y2(β) − y4(β))′ is dominated by the positive eβλ2 term, we can deduce that

(y2(β)−y4(β))′ > 0 for β ∈ (0,∞), and therefore y2(β)−y4(β) is monotonic increasing.

Finally, we obtain again from Claim 4.2.3 that

y2(0)− y4(0) =
∑

k∈{2,3,4}

(
λk − (−1)k+1λ2

k

)
α2
k

=
∑

k∈{1,2,3,4}

(
λk − (−1)k+1λ2

k

)
α2
k −

(
λ1

1 − λ2
1

)
α2

1 =
(
λ2

1 − λ1

)
α2

1 > 0,

which implies that y2(β)− y4(β) > 0 for all β ∈ [0,∞).

Let us denote by β2 the unique zero of y2 and by β4 the unique zero of y4; they

both exist by Claims 4.2.27 and 4.2.28.

Now, denote by β2 (resp., β4) the unique point, if it exists, where the function y2(β)

(resp., y4(β)) crosses the β-axis. Next, we discuss the order in which the different curves

y2(β) and y4(β) cross the β-axis.

Proposition 4.2.31. The following statements are true:

1. y1(β) < 0 and y3(β) < 0 for all β ∈ [0,∞).

2. Each of y2 and y4 has a unique zero in (0,∞).

3. Let us denote the zeros of y2 and y4 by β2 and β4 respectively; then β2 < β4.

Proof.
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(a) 0 ≤ β < β2 (b) β2 ≤ β < β4 (c) β ≥ β4

Figure 4.11: Illustration of the structure of the modified communicability graph of
K2–K2 versus β.

1. That y1(β) < 0 for all β ∈ [0,∞) is proved in Claim 4.2.29. Since λ3 < 0, it is

clear that y3(β) < 0 for all β ∈ [0,∞).

2. These statements are proved in Claims 4.2.27 and 4.2.28.

3. From Claim 4.2.30 we know that y2(β) > y4(β) for β ∈ [0,∞). This, together

with the monotonicity of y2 and y4 implies that β2 < β4.

4.2.5 Melting Signatures of K2–K2

Let β2 and β4 be as in Proposition 4.2.31. It follows from the latter that β2 < β4.

Hence, the graph K2–K2 has one possible melting signature: (β2, β4). The melting

of the associated modified communicability graph goes as follows. At β = β2, the

modified communicability graph of K2–K2 changes from being the null graph N4 to

two complete graphs K2, and at β = β4, the modified communicability graph becomes

just the graph K2–K2 itself, the path graph. In Figure 4.11, we show the evolution of

the modified communicability graphs of K2–K2 as β varies, which exhibits the (β2, β4)

melting signature. In Figure 4.12, we plot the modified communicability function of

K2–K2 as β varies, which exhibits the (β2, β4) melting signature.

Thus, in this section, we have proved the following result which fully characterizes

the melting signature of dumbbell graphs.
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Figure 4.12: Modified communicability graph function ∆G̃pq(β) of K2–K2 versus β.

Theorem 4.2.32. All graphs Kη–Kη with η ≥ 3 have the (β1, β3, β5, β4, β2) melting

signature; only the graph K2–K2 has the (β2, β4) signature.

4.2.6 Conclusions

As in the case of windmill graphs, a rather complete picture could be given for melting

of dumbbell graphs. Rigorous proofs for most claims were possible because of the

small number of different types of edges and the fact that eigenvalues of the adjacency

matrix were related by algebraic relations; see Theorem 2.5.13. As in the section about

windmill graphs, the main tool we used was Lemma 2.4.1.

However, even in this case there were results, such as the ordering of β4 and β5,

where we had to rely on numerics to generate conjectures (see Conjecture 4.2.21 and

Figure 4.8). The difficulty is that entries in ∆G̃pq(β) corresponding to different edge

types can intersect as β increases, and determining the place of their intersection with

respect to the axis is not possible analytically. The final result of our combined analytic

and numerical investigation is that the whole class of dumbbell graphs has two types

of melting signatures: (β1, β3, β5, β4, β2) in the case of η ≥ 3 and (β2, β4) in the case

of η = 2. The reader is referred to Figure 4.10 to see the evolution of the modified

108
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communicability graph as temperature is decreased; in particular, note the core-satellite

graph Θ(2, η − 1, 2) in (e).

Also, note that starting at β = 0 and decreasing the temperature in the case of

η ≥ 3 to a sufficiently low value gives us a modified communicability graph that is a

complete graph, while for η = 2, we can only recover the graph K2–K2 itself and not

K4.

In the next two chapters we will discuss in more detail this simple fact and will also

consider the following observation: in dumbbell graphs, all entries in ∆G̃pq(β) that

correspond to edges that are present in the original graph, are monotone increasing

and do not intersect (see, e.g. f1(β) + f3(β) and f1(β) + f5(β) in the case when η ≥ 3,

or indeed y2(β) and y4(β) when η = 2). As in the case of windmill graphs, in this

section, the same entry in ∆G(β) provided the maximum for all β in the case when

η ≥ 3 (when η = 2 this was the case for all β ≥ β0). We will discuss an interpretation

of this fact in terms of an edge-centrality measure in Chapter 6.

4.3 Melting in Complete Multipartite Graphs

In this section, we investigate melting in complete multipartite graphs Kη1,η2,...,ηk where

k ≥ 2 and ηi ≥ 1, i ∈ {1, 2, . . . , k}. Recall that Kη1,η2,...,ηk consists of k sets of

vertices, Vi, i = 1, . . . , k, consisting of ηi nodes; if v ∈ Vi and w ∈ Vj , then there is

an edge between v and w if and only if i 6= j. We consider these graphs in order to

cover the case when the second eigenvalue is non-positive. There are k(k+1)
2 different

types of edges in the modified communicability graph of Kη1,η2,...,ηk ; k different types

of edges between the vertices in the same set Vi, and k(k−1)
2 different types of edges

between the vertices from different sets. We use the explicit formulas for eigenvalues

and normalized eigenvectors of the adjacency matrix of complete multipartite graphs to

find the communicability function in order to study melting in these graphs. This allows

us to find the modified communicability graph function in three cases: for Kη1,η2,...,ηk

when η1 < η2 < · · · < ηk, for Kη,η,...,η, and for Kη,η,l with η < l. In the two cases

of Kη,η,...,η and Kη,η,l, all the analysis of monotonicity and ordering of the elements

of ∆G(β) and ∆G̃pq(β) can be done analytically since we found the eigenvalues and
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4. Melting in some Graph Families

their associated eigenvectors for these graphs; see Section 2.5.11. However, in the

case of Kη1,η2,...,ηk when η1 < η2 < · · · < ηk, it is very difficult to do the analysis of

monotonicity and ordering analytically due to the lack of information about the k − 1

negative eigenvalues in this situation. However, we can determine explicitly that the

modified communicability graphs for these graphs are not connected regardless of the

value of β.

4.3.1 Complete Multipartite Graphs Kη1,η2,...,ηk with Pairwise Distinct

Parts Sizes

In this subsection, we consider the case of a complete multipartite graph Kη1,η2,...,ηk

when η1 < η2 < · · · < ηk. First we find the communicability function for Kη1,η2,...,ηk .

For this we need the eigenvalues and the orthonormal eigenvectors from Section 2.5.11.

It follows from Lemma 2.5.6 that A has one positive eigenvalue λ1, the eigenvalue 0

with multiplicity n− k, and k − 1 negative eigenvalues satisfying

−ηk < λn < −ηk−1 < λn−1 < −ηk−2 < · · · < −η2 < λn−k+2 < −η1.

The non-zero eigenvalues satisfy equation (2.21), and the corresponding eigenvectors

have the form

xh = αh



1
λh+η1

1η1
1

λh+η2
1η2

...

1
λh+ηk

1ηk


with αh =

(
k∑
i=1

ηi
(λh + ηi)2

)− 1
2

,

h ∈ {1, n− k + 2, n− k + 3, . . . , n}.

(4.37)

The eigenvectors corresponding to the eigenvalue 0 are given by (2.29).

Communicability Function for Kη1,η2,...,ηk

In the next lemma we find the explicit expression for the communicability function

G(β) = eβA for Kη1,η2,...,ηk when η1 < η2 < · · · < ηk. We denote by Vi the subgroups

of nodes of the graph, which have size ηi.
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Lemma 4.3.1. Let Kη1,η2,...,ηk = (V,E) be a complete multipartite graph with n =∑k
i=1 ηi nodes such that η1 < η2 < · · · < ηk. Assume the nodes to be partitioned

into subgroups V1, V2, . . . , Vk, and let A be the adjacency matrix defined in (2.19). The

communicability function Gpq(β) of Kη1,η2,...,ηk for all p, q ∈ V with p 6= q at the inverse

temperature β is given by

Gpq(β) =


α2
1

(λ1+ηi)2
eβλ1 +

n∑
h=n−k+2

α2
h

(λh+ηi)2
eβλh − 1

ηi
if p, q ∈ Vi,

α2
1

(λ1+ηi)(λ1+ηj)
eβλ1 +

n∑
h=n−k+2

α2
h

(λh+ηi)(λh+ηj)
eβλh if p ∈ Vi, q ∈ Vj , i 6= j,

where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of A and αh are as in (4.37).

Proof. First, we consider the case when p, q ∈ Vi for some i ∈ {1, 2, . . . , k}. We substi-

tute the eigenvalues and the eigenvectors of A into

Gpq(β) = x1(p)x1(q)eβλ1 +

n−k+1∑
h=2

xh(p)xh(q) +

n∑
h=n−k+2

xh(p)xh(q)eβλh

=
α2

1

(λ1 + ηi)2
eβλ1 +

n∑
h=n−k+2

α2
h

(λh + ηi)2
eβλh +

n−k+1∑
h=2

xh(p)xh(q).

Since p, q ∈ Vi, in the last sum only terms from the ith block of eigenvectors cor-

responding to the eigenvalue 0 can be non-zero, i.e., only terms with h = hi + j,

j ∈ {1, 2, . . . , ηi− 1} where hs = 1 +
∑i−1

s=1(ηs− 1); cf. (2.29). The vectors yi,j in (2.29)

build an orthonormal system such that 1Tηiyi,j = 0. Hence, with yi,ηi = 1√
ηi

1ηi , the

matrix Yi = [yi,1,yi,2, . . . ,yi,ηi ] is orthogonal. Since p 6= q, we have

0 = (Y Y T )pq =

ηi∑
j=1

y(i,j)
p (p)y(i,j)

q =

ηi−1∑
j=1

xhi+j(p)xhi+j(q) +
1

ηi
, (4.38)

which gives the desired result.
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Now we consider the case when p ∈ Vi, q ∈ Vj , i 6= j. Again, we want to evaluate

Gpq(β) = x1(p)x1(q)eβλ1 +
n−k+1∑
h=2

xh(p)xh(q) +
n∑

h=n−k+2

xh(p)xh(q)eβλh

=
α2

1

(λ1 + ηi)(λ1 + ηj
eβλ1) +

n∑
h=n−k+2

α2
h

(λh + ηi)(λh + ηj)
eβλh

since the entries for the eigenvectors corresponding to the eigenvalue 0 satisfy the

relation xh(p)xh(q) = 0.

Modified Communicability Graph Function of Kη1,η2,...,ηk

We will find the modified communicability graph function of Kη1,η2,...,ηk , when η1 <

η2 < · · · < ηk. First of all, we find the value of ∆Gpq(β) for all pairs of distinct

nodes in the complete multipartite graphs Kη1,η2,...,ηk by removing the eβλ1 terms from

Gpq(β). Thus,

∆Gpq(β) =



n∑
h=n−k+2

α2
h

(λh + ηi)2
eβλh − 1

ηi
if p, q ∈ Vi,

n∑
h=n−k+2

α2
h

(λh + ηi)(λh + ηj)
eβλh if p ∈ Vi, q ∈ Vj , i 6= j,

where the αh are as in (4.37). Next, we need to understand the order relations among

the different entries in ∆Gpq(β). This will allow us to find maxp6=q∆Gpq(β) for β > 0

and hence ∆G̃pq(β). We set

fi(β) =
n∑

h=n−k+2

α2
h

(λh + ηi)2
eβλh − 1

ηi
(4.39)

fi,j(β) =
n∑

h=n−k+2

α2
h

(λh + ηi)(λh + ηj)
eβλh . (4.40)

The function fi(β) is monotonic decreasing for all i ∈ {1, 2, . . . , k} since eβλh is mono-

tonic decreasing for all h ∈ {n−k+2, n−k+3, . . . , n}, and we have limβ→∞ fi(β) = − 1
ηi

.

Let i ∈ {1, 2, . . . , k} and let p ∈ Vi be arbitrary. With a similar calculation as in (4.38)
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we obtain

1 =

ηi−1∑
j=1

(
xhi+j(p)

)2
+

1

ηi
=

n−k+1∑
h=2

(
xh(p)

)2
+

1

ηi
,

which, together with the orthogonality of the adjacency matrix A, implies

fi(0) =
n∑

h=n−k+2

α2
h

(λh + ηi)2
− 1

ηi
=

n∑
h=n−k+2

(
xh(p)

)2 − 1

ηi

=
n∑
h=2

(
xh(p)

)2 − 1 = −
(
x1(p)

)2
= − α2

1

(λ1 + ηi)2
< 0.

In a similar way we can deduce that, for i 6= j,

fi,j(0) =

n∑
h=n−k+2

α2
h

(λh + ηi)(λh + ηj)
= − α2

1

(λ1 + ηi)(λ1 + ηj)
< 0.

Based on some numerical experiments we make the following conjecture about the

maximal values of fi(β) and fi,j(β).

Conjecture 4.3.2. We conjecture that the following statements are true.

1. The graphs of the functions fk,k−1(β) and fk(β) intersect at a value β0 > 0 and

fk,k−1(β0) = fk(β0) < 0.

2. For β ≥ β0 the maximum of ∆Gpq(β) is attained for p ∈ Vk, q ∈ Vk−1, i.e., by

the value fk,k−1(β).

In Figure 4.13, we illustrate that the graphs of the functions f3,2(β) and f3(β) of

K2,3,5 intersect in the negative area at β0 and that f3,2(β) gives the maximal value for

β ≥ β0.

From Conjecture 4.3.2 we have that, for all β ≥ β0, the maximum value of ∆Gpq(β)

should be attained by fk,k−1(β), i.e. at entries of ∆G(β) corresponding to two nodes

that belong to the sets of largest size: Vk and Vk−1. Hence, we have the following result.

Theorem 4.3.3. Let Kη1,η2,...,ηk = (V,E) be a complete multipartite graph with n =∑k
i=1 ηi nodes such that η1 < η2 < · · · < ηk and assume the nodes to be partitioned by

V1, V2, . . . , Vk with adjacency matrix A defined in (2.19). Assuming Conjecture 4.3.2 is
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Figure 4.13: The components of the function ∆Gpq(β) of K2,3,5 as functions of β.
The green and the purple curves represent the functions f3,2(β) and f3(β) respectively.
These curves intersect at β0 = 0.01889 such that f3,2(β0) = f3(β0) = −0.083. The
functions f3,1(β) (dark blue), f2,1(β) (light blue), f2(β) (red) and f1(β) (black) are
given as well.

true, for all p 6= q ∈ V , ∆G̃pq(β) is given by


n∑

h=n−k+2

(
α2
h

(λh+ηk)(λh+ηk−1) +
α2
h

(λh+ηi)2

)
eβλh − 1

ηi
if p, q ∈ Vi,

n∑
h=n−k+2

(
α2
h

(λh+ηk)(λh+ηk−1) +
α2
h

(λh+ηi)(λh+ηj)

)
eβλh if p ∈ Vi, q ∈ Vj , i 6= j,

where αh is defined in (4.37).

To investigate melting, we use another conjecture, which is also based on computa-

tional results.

Conjecture 4.3.4. The function

fk,k−1(β) + fi,1(β) =
n∑

h=n−k+2

(
α2
h

(λh + ηk)(λh + ηk−1)
+

α2
h

(λh + ηi)(λh + η1)

)
eβλh

is strictly increasing for all i ∈ {2, . . . , k}.

In Figure 4.14, we illustrate that the functions f3,2(β)+f3,1(β) and f3,2(β)+f2,1(β)
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Figure 4.14: The modified communicability graph functions f3,2(β)+f3,1(β) (blue) and
f3,2(β) + f2,1(β) (green) of K2,3,5 as functions of β.

of K2,3,5 are strictly increasing functions.

From Conjecture 4.3.4 it follows that fk,k−1(β) + fi,1(β) < 0 for all β > 0 and

i ∈ {2, . . . , k} since the limit of this function if 0 as β →∞. Therefore, we can deduce

that the smallest set V1, which has size η1, cannot be connected to other sets in the

modified communicability graphs of Kη1,η2,...,ηk for any β ≥ 0. Thus, we have the

following result.

Theorem 4.3.5. Let Kη1,η2,...,ηk = (V,E) be a complete multipartite graph with n =∑k
i=1 ηi nodes such that η1 < η2 < · · · < ηk, and assume the nodes to be partitioned by

V1, V2, . . . , Vk with adjacency matrix A defined in (2.19). Assuming Conjecture 4.3.4

is true, the modified communicability graph of Kη1,η2,...,ηk is not connected regardless of

the value of β.

4.3.2 Complete k-partite Graphs with equal-sized Parts

In this subsection, we consider the case of Kη1,η2,...,ηk when η1 = η2 = · · · = ηk = η.

Recall from Lemma 2.5.10 that the adjacency matrix A has one positive eigenvalue
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λ1 = η(k − 1), one negative eigenvalue λn = −η with multiplicity k − 1, and 0 as

eigenvalue with multiplicity n− k. The eigenvectors are also given in that lemma.

Communicability Function of Complete k-partite Graphs with equal-sized

Parts

In the next lemma, we find the communicability function for every pair of distinct nodes

in Kη,η,...,η.

Lemma 4.3.6. Let Kη,η,...,η = (V,E) be a complete k-partite graph with n = ηk nodes

and assume the nodes to be partitioned by V1, V2, . . . , Vk, with adjacency matrix A de-

fined in (2.19) where η1 = η2 = · · · = ηk = η. The communicability function Gpq(β) of

Kη,η,...,η, for all p 6= q ∈ V , at the inverse temperature β, is given by

Gpq(β) =


1

n
eβ(k−1)η − 1

n
e−βη if p ∈ Vi, q ∈ Vj , i 6= j,

1

n
eβ(k−1)η +

k − 1

n
e−βη − 1

η
if p, q ∈ Vj .

Proof. First, we consider the case when p ∈ Vi, q ∈ Vj , i 6= j. Then,

Gpq(β) = x1(p)x1(q)eβ(k−1)η +
n−k+1∑
h=2

xh(p)xh(q) +
n∑

h=n−k+2

xh(p)xh(q)e−βη

=
1

n
eβ(k−1)η +

n∑
h=n−k+2

xh(p)xh(q)e−βη,

since the entries of all eigenvectors corresponding to λ = 0 satisfy xh(p)xh(q) = 0 for

all h ∈ {2, 3, . . . , n − k + 1}. In order to simplify the sum, let X = [x1,x2, . . . ,xn] be

the orthogonal matrix of eigenvectors of A(Kη,η,...,η). It is easy to verify that

(XXT )pq =
1

n
+

n∑
h=n−k+2

xh(p)xh(q) = 0,

and hence
n∑

h=n−k+2

xh(p)xh(q) = − 1

n
,
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which implies the desired result.

Now, we consider the case when p, q ∈ Vj , 1 ≤ j ≤ k. Again, we want to evaluate

Gpq(β) = x1(p)x1(q)eβ(k−1)η +
n−k+1∑
h=2

xh(p)xh(q) +
n∑

h=n−k+2

xh(p)xh(q)e−βη.

In exactly the same way as in the proof of Lemma 4.3.1, we can show that

n−k+1∑
h=2

xh(p)xh(q) =

η∑
l=2

yh(p)yh(q) = −1

η
.

Now, if we let again X = [x1,x2, . . . ,xn] be the orthogonal matrix of eigenvectors of

A(Kη,η,...,η), then

(XXT )pq =
1

n
− 1

η
+

n∑
h=n−k+2

xh(p)xh(q) = 0.

Thus,
n∑

h=n−k+2

xh(p)xh(q) =
−1

n
+

1

η
=
k − 1

n
,

since n = ηk, and we get the desired result.

Modified Communicability Graph Function of Complete k-partite Graph

To find the modified communicability graph function of Kη,η,··· ,η, we first find the value

of ∆Gpq(β) for all pairs of distinct nodes in the complete multipartite graph Kη,η,...,η

by removing the eβλ1 terms from Gpq(β). Thus,

∆Gpq(β) =


− 1

n
e−βη if p ∈ Vi, q ∈ Vj , i 6= j,

k − 1

n
e−βη − 1

η
if p, q ∈ Vj .

Next, we need to understand the order relations among the different entries in ∆Gpq(β).

This will allow us to describe maxp 6=q∆Gpq(β) for β > 0 and, hence, define ∆G̃(β).
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We set

f1(β) = − 1

n
e−βη,

f2(β) =
k − 1

n
e−βη − 1

η
.

Clearly, f2(β) is monotonic decreasing, and f1(β) is monotonic increasing. Now, since

f1(0) = f2(0) = − 1
n , we have f1(β) ≥ f2(β) for all β ∈ [0,∞), and therefore the

maximal term in ∆Gpq(β) is the term that corresponds to pairs p ∈ Vi, q ∈ Vj , i 6= j.

Hence, we have proved the following result.

Theorem 4.3.7. Let Kη,η,...,η = (V,E) be a complete k-partite graph with n = ηk

nodes and assume the nodes to be partitioned by V1, V2, . . . , Vk, with adjacency matrix

A defined in (2.19). Then, for all p 6= q ∈ V ,

∆Gpq(β) =


− 2

n
e−βη if p ∈ Vi, q ∈ Vj , i 6= j,

k − 2

n
e−βη − 1

η
if p, q ∈ Vj .

Now, assume that k ≥ 2. Then f1(β) + f2(β) is monotonic decreasing in β and does

not cross the β axis since f1(0) + f2(0) = − 2
η < 0. The function 2f1(β) is monotonic

increasing but does not cross the β axis since limη→∞ 2f1(β) = 0. Thus, for all p 6= q ∈

V , ∆G̃pq(β) < 0 for all β. Thus, we have proved the following result.

Theorem 4.3.8. Let Kη,η,...,η = (V,E) be a complete k-partite graph with n = ηk nodes

where k ≥ 2 and assume that the nodes are partitioned by V1, V2, . . . , Vk, with adjacency

matrix A defined in (2.19). Then, the modified communicability graph of Kη,η,...,η is

Nn regardless of the value of β.

4.3.3 A Class of Complete 3-partite Graphs

In this subsection, we consider the case of complete 3-partite graphs when η1 = η2 = η

and η3 = l, i.e., we have three subsets: V1,V2 of size η, and V3 of size l with l > η. The
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4. Melting in some Graph Families

adjacency matrix of a complete 3-partite graph Kη,η,l is an n× n matrix of the form

A =


Oη×η 1η×η 1η×l

1η×η Oη×η 1η×l

1l×η 1l×η Ol×l

 . (4.41)

Recall from Lemma 2.5.11 that A has one positive eigenvalue λ1 given in (2.33), the

simple eigenvalue −η, another simple negative eigenvalue λn ∈ (−l,−η) given in (2.34),

and the eigenvalue 0 with multiplicity n− 3.

Communicability Function of Complete 3-partite Graphs

We find the explicit expression for the communicability function G(β) = eβA for any

distinct pair of nodes of Kη,η,l in order to find the modified communicability graph

functions for this graph. We have the following result.

Lemma 4.3.9. Let Kη,η,l = (V,E) be a complete 3-partite graph with n = 2η+ l nodes

and assume the nodes to be partitioned by V1, V2 and V3. The communicability function

Gpq(β) of Kη,η,l, for all p 6= q ∈ V , at the inverse temperature β, is given by

Gpq(β) =



λ21
2ηλ21+4η2l

eβλ1 + λ2n
2ηλ2n+4η2l

eβλn + 1
2ηe
−βη − 1

η if p, q ∈ V1 or p, q ∈ V2,

4η2

2ηλ21+4η2l
eβλ1 + 4η2

2ηλ2n+4η2l
eβλn − 1

l if p, q ∈ V3,

λ21
2ηλ21+4η2l

eβλ1 + λ2n
2ηλ2n+4η2l

eβλn − 1
2ηe
−βη if p ∈ V1, q ∈ V2,

2ηλ1
2ηλ21+4η2l

eβλ1 + 2ηλn
2ηλ2n+4η2l

eβλn if p ∈ V1 ∪ V2, q ∈ V3,

where λ1 and λn are given in (2.33) and (2.34), respectively.

Proof. Throughout the proof, we shall make use of the results presented in Lemma 2.5.11.
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4. Melting in some Graph Families

First, we consider the case when p, q ∈ V1 or p, q ∈ V2 with p 6= q. Then

Gpq(β) = x1(p)x1(q)eβλ1 +
n−2∑
h=2

xh(p)xh(q) + xn−1(p)xn−1(q)e−βη + xn(p)xn(q)eβλn

=
λ2

1

2ηλ2
1 + 4η2l

eβλ1 +

n−2∑
h=2

xh(p)xh(q) +
λ2
n

2ηλ2
n + 4η2l

eβλn +
1

2η
e−βη.

For the term corresponding to the eigenvalue 0 we can use calculations that are similar

to the one in the proof of Lemma 4.3.1 to show that
∑n−2

h=2 xh(p)xh(q) = − 1
η .

Next, we consider the case when p, q ∈ V3, p 6= q. Using again the form of the

eigenvectors in Lemma 2.5.11, we obtain

Gpq(β) = x1(p)x1(q)eβλ1 +
n−2∑
h=2

xh(p)xh(q) + xn−1(p)xn−1(q)e−βη + xn(p)xn(q)eβλn

=
4η2

2ηλ2
1 + 4η2l

eβλ1 +
n−2∑
h=2

xh(p)xh(q) +
4η2

2ηλ2
n + 4η2l

eβλn

=
4η2

2ηλ2
1 + 4η2l

eβλ1 − 1

l
+

4η2

2ηλ2
n + 4η2l

eβλn ,

where we used again a similar calculation as in the proof of Lemma 4.3.1 and the fact

that the term corresponding to the eigenvalue λn−1 = −η satisfies xn−1(p)xn−1(q) = 0.

The third case is when p ∈ V1 and q ∈ V2, where we have

Gpq(β) = x1(p)x1(q)eβλ1 +
n−2∑
h=2

xh(p)xh(q) + xn−1(p)xn−1(q)e−βη + xn(p)xn(q)eβλn

=
λ2

1

2ηλ2
1 + 4η2l

eβλ1 +
λ2
n

2ηλ2
n + 4η2l

eβλn − 1

2η
e−βη

since the entries for all the eigenvectors that correspond to the eigenvalue λ = 0 satisfy

xh(p)xh(q) = 0 for all h ∈ {2, 3, . . . , n− 2}.

Finally, we consider the case when p ∈ V1 or q ∈ V2, and q ∈ V3. With similar
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4. Melting in some Graph Families

considerations as above we obtain

Gpq(β) = x1(p)x1(q)eβλ1 +

n−2∑
h=2

xh(p)xh(q) + xn−1(p)xn−1(q)e−βη + xn(p)xn(q)eβλn

=
2ηλ1

2ηλ2
1 + 4η2l

eβλ1 +
2ηλn

2ηλ2
n + 4η2l

eβλn .

This finishes the proof.

Modified Communicability Graph Function of Complete 3-partite Graphs

First of all, we find the value of ∆Gpq(β) for all pairs of distinct nodes in the complete

3-partite graphs:

∆Gpq(β) =



λ2n
2ηλ2n+4η2l

eβλn + 1
2ηe
−βη − 1

η if p, q ∈ V1 or p, q ∈ V2,

4η2

2ηλ2n+4η2l
eβλn − 1

l if p, q ∈ V3,

λ2n
2ηλ2n+4η2l

eβλn − 1
2ηe
−βη if p ∈ V1, q ∈ V2,

2ηλn
2ηλ2n+4η2l

eβλn if p ∈ V1 ∪ V2, q ∈ V3.

Next, we need to understand the order relations among the different entries in ∆Gpq(β).

This will allow us to describe maxp6=q∆Gpq(β) for β > 0 and hence, to define ∆G̃pq(β).

We set

f1(β) =
λ2
n

2ηλ2
n + 4η2l

eβλn +
1

2η
e−βη − 1

η
,

f2(β) =
4η2

2ηλ2
n + 4η2l

eβλn − 1

l
,

f3(β) =
λ2
n

2ηλ2
n + 4η2l

eβλn − 1

2η
e−βη,

f4(β) =
2ηλn

2ηλ2
n + 4η2l

eβλn .

Claim 4.3.10. We have f4(β) > f3(β) for all β ∈ [0,∞).

Proof. First we observe that λn + η < 0 and λn + l > 0. Hence, for all β ∈ [0,∞), we
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4. Melting in some Graph Families

have

f4(β)− f3(β) =
2ηλn − λ2

n

2η(λ2
n + 2ηl)

eβλn +
1

2η
e−βη

= e−βη
[

2ηλn − λ2
n

2η(λ2
n + 2ηl)

eβ(λn+η) +
1

2η

]

≥ e−βη
[

2ηλn − λ2
n

2η(λ2
n + 2ηl)

+
1

2η

]

= e−βη
2ηλn − λ2

n + λ2
n + 2ηl

2η(λ2
n + 2ηl)

= e−βη
λn + l

λ2
n + 2ηl

> 0,

which proves the claim.

Claim 4.3.11. We have f3(β) ≥ f1(β) for all β ∈ [0,∞).

Proof. For β ∈ [0,∞), we have

f3(β)− f1(β) = −1

η
e−βη +

1

η
=

1

η

(
1− e−βη

)
≥ 0.

Claim 4.3.12. The function f2(β) is strictly decreasing; the function f4(β) is strictly

increasing. There is a unique point β0 > 0 where the graphs of f2 and f4 intersect, i.e.,

a unique number such that f2(β0) = f4(β0). Further, f4(0) < f2(0) < 0.

Proof. The function f2(β) is strictly decreasing and f4(β) is strictly increasing since

the coefficients of eβλn are positive and negative respectively. For the values at 0 we

have

f2(0) =
2η

λ2
n + 2ηl

− 1

l
= − λ2

n

(λ2
n + 2ηl)l

< 0

and

f2(0)− f4(0) = − λ2
n

(λ2
n + 2ηl)l

− λn
λ2
n + 2ηl

= − λn(λn + l)

(λ2
n + 2ηl)l

> 0

since λn + l > 0. Moreover, we have limβ→∞ f2(β) = −1
l and limβ→∞ f4(β) = 0, which

implies that the graphs of f2 and f4 intersect at a unique positive point β0 > 0.

Proposition 4.3.13. We have the following relations among the functions fi(β).
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4. Melting in some Graph Families

1. f4(β) ≥ f3(β) ≥ f1(β) for all β ∈ [0,∞).

2. For β0 > 0 as in Claim 4.3.12 we have f2(β) > f4(β) for β ∈ [0, β0), and

f2(β) < f4(β) for β ∈ [β0,∞).

3. fi(β) < 0 for all β ∈ [0,∞) and i = 1, 2, 3, 4.

Proof. The first two items follow directly from Claims 4.3.10 4.3.11 and 4.3.12.

Now let us consider the statements in item 3. Since f4(β) is strictly increasing and

limβ→∞ f4(β) = 0, it follows that f4(β) < 0 for all β ∈ [0,∞). The fact that f2(0) < 0

(proved in Claim 4.3.12) and the monotonicity of f2(β) imply that f2(β) < 0 for all

β ∈ [0,∞). Finally, we use item 1. to obtain f1(β) ≤ f3(β) ≤ f4(β) < 0 for all

β ∈ [0,∞).

From Proposition 4.3.13, we see that, for β ∈ [0, β0), the maximum value of ∆Gpq(β)

is attained by f2(β), and for β ∈ [β0,∞), the maximum value of ∆Gpq(β) is attained

by f4(β); for β ∈ [0, β0) this corresponds to pairs of nodes p, q ∈ V3, and for β ∈ [β0,∞)

this corresponds to pairs of nodes p ∈ V1 ∪ V2 and q ∈ V3. Hence we have proved the

following result.

Theorem 4.3.14. Let Kη,η,l = (V,E) be a complete 3-partite graph with n = 2η + l

nodes. Assume that the nodes are partitioned by V1, V2, V3 with η < l, and let the

adjacency matrix A be as in (4.41). The modified communicability graph function

∆G̃pq(β) of Kη,η,l is, for all p, q ∈ V , p 6= q, given by

∆G̃pq(β) =



λ2n+4η2

2ηλ2n+4η2l
eβλn + 1

2ηe
−βη − 1

η −
1
l if p, q ∈ V1 or p, q ∈ V2,

8η2

2ηλ2n+4η2l
eβλn − 2

l if p, q ∈ V3,

λ2n+4η2

2ηλ2n+4η2l
eβλn − 1

2ηe
−βη − 1

l if p ∈ V1, q ∈ V2,

2ηλn+4η2

2ηλ2n+4η2l
eβλn − 1

l if p ∈ V1 ∪ V2, q ∈ V3
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4. Melting in some Graph Families

when β ∈ [0, β0), and

∆G̃pq(β) =



λ2n+2ηλn
2ηλ2n+4η2l

eβλn + 1
2ηe
−βη − 1

η if p, q ∈ V1 or p, q ∈ V2,

4η2+2ηλn
2ηλ2n+4η2l

eβλn − 1
l if p, q ∈ V3,

λ2n+2ηλn
2ηλ2n+4η2l

eβλn − 1
2ηe
−βη if p ∈ V1, q ∈ V2,

4ηλn
2ηλ2n+4η2l

eβλn if p ∈ V1 ∪ V2, q ∈ V3

when β ∈ [β0,∞).

From Proposition 4.3.13, fi(β) < 0 for all β ∈ [0,∞) and all i ∈ {1, 2, 3, 4}. Hence,

all entries of the modified communicability graph function ∆G̃pq(β) are negative, i.e.,

none of the entries crosses the β axis. Thus, we proved the following result.

Theorem 4.3.15. Let Kη,η,l = (V,E) be a complete 3-partite graph with n = 2η + l

nodes. Assume that the nodes are partitioned by V1, V2, V3 with η < l, and let the

adjacency matrix A be as in (4.41). Then, the modified communicability graph of Kη,η,l

is Nn regardless of the value of β.

4.3.4 Conclusions

Finding the explicit formulas for eigenvalues and normalized eigenvectors of the adja-

cency matrix allowed us to find the communicability function and the modified com-

municability graph function for complete multipartite graphs Kη,η,...,η and Kη,η,l. In

the two cases of Kη,η,...,η and Kη,η,l, all the analysis of monotonicity and ordering of

the elements of ∆G(β) and ∆G̃pq(β) can be done analytically. However, in the case

of Kη1,η2,...,ηk when η1 < η2 < · · · < ηk, it was very difficult to do the analysis of

monotonicity and ordering analytically. We found the maximum of ∆G(β) and the

connectivity of the function ∆G̃pq(β) for Kη1,η2,...,ηk when η1 < η2 < · · · < ηk based on

experiments; see Conjunctures 4.3.2 and 4.3.4. To sum up, we determined explicitly

that, in the cases considered in this section, the modified communicability graph for

complete multipartite graphs is not connected regardless the value of β.
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Chapter 5

Melting Phase transition

5.1 Melting in Cycle Graphs

In Chapter 4, we studied melting in three families of graphs. Two families, namely,

windmill graphs and dumbbell graphs, have the property that the second largest eigen-

value λ2 is positive and the number of different types of edges in the associated modified

communicability graph is very low. In this section, we study the melting of cycle graphs

Cn, n ≥ 5, in which case the second largest eigenvalue is positive and the number of

different types of edges in the associated modified communicability graph is increasing

as n increases; it is n−1
2 if n is odd and n

2 if n is even. Based on the considerations

below, we conjecture that all functions corresponding to different types of edges in

the associated modified communicability graph function of Cn, n /∈ {6, 8} change sign

(cross the β-axis) as β increases, except one function, which is concave and either does

not cross the β-axis at all or crosses it twice, which is inconsistent with our proposed

melting theory for graphs. However, if we exclude this concave function, we can deter-

mine computationally that there is one possible melting signature when n is even and

one possible melting signature when n is odd for the modified communicability graph

of Cn. We also determine the melting signatures for C6 and C8; for both graphs, there

are two functions that do not cross the β-axis: one is concave and one is monotonic

increasing and converging to 0.

Let n ∈ N with n ≥ 5 and consider the cycle graph Cn = (V,E) with n vertices.
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5. Melting Phase transition

Recall from (2.8) that the spectrum of the adjacency matrixA consists of the eigenvalues

λk = 2 cos

(
2π(k − 1)

n

)
,


k = 0, 1, . . . , n+1

2 if n is odd,

k = 0, 1, . . . , n+2
2 if n is even.

(We have shifted the index by one so that the largest eigenvalue is λ1.) The eigenvalue

λ1 = 2, and in the case of even n also λn+2
2

= −2, are simple with eigenvector x1 and

xn+2
2

respectively; all other eigenvalues have multiplicity two with eigenvectors xk and

xn−k where

xk =
1√
n



1

ωk−1
n

ω
2(k−1)
n

...

ω
(n−1)(k−1)
n


, k = 1, 2, . . . , n, with ωn = e

2πi
n .

Let us find the communicability function Gp,q when n is odd. Since the eigenvectors

we chose have nonreal entries, we have

Gpq(β) = x1(p)x1(q)eβλ1 +

n+1
2∑

k=2

[
xk(p)xk(q) + xn−k(p)xn−k(q)

]
eλkβ

=
1

n
e2β +

n+1
2∑

k=2

1

n

[
ω(p−1)(k−1)
n ω−(q−1)(k−1)

n + ω(p−1)(n−k−1)
n ω−(q−1)(n−k−1)

n

]
eλkβ

=
1

n
e2β +

n+1
2∑

k=2

1

n

[
ω(p−q)(k−1)
n + ω−(p−q)(k−1)

n

]
eλkβ

=
1

n
e2β +

n+1
2∑

k=2

2

n

[
e

2πi(p−q)(k−1)
n + e−

2πi(p−q)(k−1)
n

]
eλkβ

=
1

n
e2β +

n+1
2∑

k=2

2

n
cos

(
2π|p− q|(k − 1)

n

)
eλkβ,

where we have used that ωnn = 1. In a similar way, we can consider the case when n is
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even, where we also have a term corresponding to the eigenvalue λn+2
2

= −2 and hence

obtain

Gpq(β) =
1

n
e2β +

n
2∑

k=2

2

n
cos

(
2π|p− q|(k − 1)

n

)
eλkβ +

1

n
(−1)|p−q|e−2β.

By subtracting the term corresponding to λ1 = 2 we obtain

∆Gpq(β) =



2

n

n+1
2∑

k=2

cos

(
2π|p− q|(k − 1)

n

)
eλkβ if n is odd,

2

n

n
2∑

k=2

cos

(
2π|p− q|(k − 1)

n

)
eλkβ +

1

n
(−1)|p−q|e−2β if n is even.

(5.1)

Let us introduce the functions fd(β) = ∆G1,1+d(β), which correspond to pairs of nodes

that are distance d apart:

fd(β) =



2

n

n+1
2∑

k=2

cos

(
2πd(k − 1)

n

)
eλkβ if n is odd,

2

n

n
2∑

k=2

cos

(
2πd(k − 1)

n

)
eλkβ +

1

n
(−1)de−2β if n is even,

(5.2)

d = 1, . . . , n2 if n is even, and d = 1, . . . , n−1
2 if n is odd. In the following subsections

we consider different values of n.

5.1.1 Melting in C5

The graph C5 = (V,E) is a simple graph with 5 vertices, and the spectrum of its

adjacency matrix consists of λ1 = 2, λ2 = 2 cos
(

2π
5

)
=
√

5−1
2 ≈ 0.618 and λ3 =

2 cos
(

4π
5

)
= −

√
5+1
2 ≈ −1.618 where λ2 and λ3 have multiplicity two. The functions

fd(β) from (5.2) become

fd(β) =
2

5
cos

(
2πd

5

)
eλ2β +

2

5
cos

(
4πd

5

)
eλ3β, d = 1, 2,
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which yields

f1(β) = aeλ2β + beλ3β,

f2(β) = beλ2β + aeλ3β,

where a = 2
5 cos

(
2π
5

)
= 2

5 cos
(

8π
5

)
≈ 0.1236 and b = 2

5 cos
(

4π
5

)
≈ −0.3236. The

derivatives of f1(β) and f2(β) satisfy

f ′1(β) = aλ2e
λ2β + bλ3e

λ3β > 0,

f ′1(β) = bλ2e
λ2β + aλ3e

λ3β < 0,

and hence f1(β) is strictly increasing, and f2(β) is strictly decreasing. Moreover, we

have

f1(0) = f2(0) = a+ b =

√
5− 1

10
−
√

5 + 1

10
=

1

5
,

which implies that f1(β) ≥ f2(β) for all β ∈ [0,∞). This shows that the maximum

value of ∆Gpq(β) is attained by f1(β), which corresponds to pairs of nodes (p, q) that

are connected in the graph C5. Hence the modified communicability graph function

∆G̃pq(β) of C5, for all β ≥ 0, is given by

∆G̃pq(β) =


2aeλ2β + 2beλ3β if (p, q) ∈ E,

(a+ b)eλ2β + (a+ b)eλ3β if (p, q) /∈ E.

In Figure 5.1, we show the modified communicability graph function ∆G̃pq(β) of C5

versus β. Since a+ b = −1
5 < 0, we have f1(β) + f2(β) < 0 for all β ∈ [0,∞), whereas

2f1(β) is strictly increasing and crosses the β-axis exactly once. Thus, the graph

C5 has one possible melting signature, (β1). The melting of the associated modified

communicability graph goes as follows. At β = β1, the modified communicability graph

of C5 changes from being the null graph N5 to C5.
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Figure 5.1: Modified communicability graph function ∆G̃pq(β) of C5 versus β.

5.1.2 Melting in C6

The graph C6 = (V,E) is a simple graph with 6 vertices, and the spectrum of its

adjacency matrix consists of λ1 = 2, λ2 = 1, λ3 = −1 and λ4 = −2 where λ2 and λ3

have multiplicity two. It follows from (5.1) that

∆Gpq(β) =
1

3
cos

(
π|p− q|

3

)
eβ +

1

3
cos
(2π|p− q|

3

)
e−β +

1

6
(−1)|p−q|e−2β

=


1
6

(
eβ − e−β − e−2β

)
if (p, q) ∈ E,

1
6

(
−eβ − e−β + e−2β

)
if |p− q| = 2 or |p− q| = 4,

1
6

(
−2eβ + 2e−β − e−2β

)
if |p− q| = 3.

As in (5.2) let us define fd(β) as follows:

f1(β) =
1

6

(
eβ − e−β − e−2β

)
,

f2(β) =
1

6

(
−eβ − e−β + e−2β

)
,

f3(β) =
1

6

(
−2eβ + 2e−β − e−2β

)
.
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Claim 5.1.1. The function f2(β) is monotonic decreasing in β.

Proof. Consider the derivative of f2(β),

f ′2(β) = −1

6
eβ +

1

6
e−β − 1

3
e−2β.

It follows from Lemma 2.4.1 that f ′2(β) < 0 since−1
6 < 0, −1

6+ 1
6 = 0 and−1

6+ 1
6−

1
3 < 0.

This implies that f2(β) is monotonic decreasing.

Claim 5.1.2. The function f3(β) is monotonic decreasing in β.

Proof. Consider the derivative of f3(β),

f ′3(β) = −1

3
eβ − 1

3
e−β +

1

3
e−2β.

We can, again, use Lemma 2.4.1 to show that f ′3(β) < 0 since −1
3 < 0, −1

3 −
1
3 < 0 and

−1
3 −

1
3 + 1

3 < 0. Hence, f3(β) is monotonic decreasing.

We also know that f1(β) is strictly increasing since f ′1(β) = 1
6e
β + 1

6e
−β + 1

3e
−2β is

clearly positive. Further, f1(0) = f2(0) = f3(0) = −1
6 . This, together with Claims 5.1.1

and 5.1.2, implies that maximum value of ∆Gpq(β) is attained by f1(β), which corre-

sponds to pairs (p, q) that are connected in the graph C6. Hence the modified commu-

nicability graph function ∆G̃pq(β) of C6 is, for all β ≥ 0, given by

∆G̃pq(β) =


1
3

(
eβ − e−β − e−2β

)
if (p, q) ∈ E,

−1
3e
−β if |p− q| = 2 or |p− q| = 4,

1
6

(
−eβ + e−β − 2e−2β

)
if |p− q| = 3.

The function 2f1(β) is monotonic increasing in β and crosses the β-axis exactly once.

On the other hand, the function f1(β)+f2(β) is monotonic increasing but does not cross

the β-axis. The function f1(β) + f3(β) is concave and does not cross β-axis. The latter

can again be seen by applying Lemma 2.4.1 since −1
6 < 0, −1

6 + 1
6 = 0 and −1

6 + 1
6−

1
3 < 0

and hence f1(β) + f3(β) < 0. In Figure 5.2, we show the modified communicability

graph function ∆G̃pq(β) of C6 versus β. Thus, the graph C6 has one possible melting
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Figure 5.2: Modified communicability graph function ∆G̃pq(β) of C6 versus β.

signature, (β1). The melting of the associated modified communicability graph goes as

follows. At β = β1 the modified communicability graph of C6 changes from being the

null graph N6 to C6.

5.1.3 Melting in Cn

Let us now consider the general case Cn, n ≥ 5. We have studied the melting in Cn for

n = 7, 8, . . . , 13. In the following conjecture we summarize what we believe happens in

the general case. The cases n = 5 and n = 6 have actually been discussed rigorously

above.

Conjecture 5.1.3. We conjecture that, for the cycle graph Cn = (V,E), n ≥ 5, the

following statements are true.

1. For all β, the maximum of ∆Gpq(β) for Cn is the function f1(β), which corre-

sponds to the pairs (p, q) that are connected in the graph Cn (i.e. (p, q) ∈ E).

Hence, the entries of the modified communicability graph function ∆G̃pq(β) are

f1(β) + fd(β), d = 1, . . . , n2 if n is even, and d = 1, . . . , n−1
2 if n is odd.

2. For C5, the function 2f1(β) is strictly increasing and crosses the β-axis exactly
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once. The function f1(β) + f2(β) is concave and does not cross the β-axis.

3. For C6, the function 2f1(β) is strictly increasing and crosses the β-axis exactly

once. The function f1(β) + f2(β) is strictly increasing and converges to 0 and

hence does not cross the β-axis. The function f1(β) + f3(β) is concave and does

not cross the β-axis.

4. For C7, the functions 2f1(β) and f1(β) + f2(β) are strictly increasing and cross

the β-axis exactly once. The function f1(β) +f3(β) is concave and does not cross

the β-axis.

5. For C8, the functions 2f1(β) and f1(β) + f2(β) are strictly increasing and cross

the β-axis exactly once. The function f1(β) + f3(β) is strictly increasing and

converges to 0 and hence does not cross the β-axis. The function f1(β) + f4(β)

is concave and does not cross the β-axis.

6. For Cn with n ≥ 9, the functions f1(β) + fd(β), d = 1, . . . , n2 − 1 when n is even,

and d = 1, . . . , n−1
2 − 1 when n is odd, are strictly increasing and cross the β-axis

exactly once. The function f1(β) + fn
2
(β) when n is even, or f1(β) + fn−1

2
(β)

when n is odd, is concave and crosses the β-axis twice.

The graphs C5 and C6 have melting signature (β1) as discussed above. Moreover,

the graphs C7 and C8 have melting signature (β1, β2); in both cases the modified

communicability graph changes at β = β1 from being the null graph Nn to Cn (which

is a regular graph with average degree 2), and at β = β2 it becomes a regular graph

with average degree 4 (vertices are connected in the modified communicability graph

if the distance of the vertices is 1 or 2 in Cn).

For n ≥ 9, we encounter the problem that the function f1(β) + fn
2
(β) (when n

is even) or f1(β) + fn−1
2

(β) (when n is odd) crosses the β-axis twice. However, if we

exclude this concave function with two crossings, then we can still obtain a sensible

melting signature, namely (β1, β2, . . . , βn−2
2

) if n is even and (β1, β2, . . . , βn−3
2

) if n is

odd. The modified communicability graph changes at β = β1 from being the null graph
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Figure 5.3: Modified communicability graph function ∆G̃pq(β) of C9 and C10 versus β
in (a) and (b), respectively.

Nn to Cn; at β = β2 it becomes a regular graph with average degree 4; at β = β3 it

becomes a regular graph with average degree 6, etc.

In Figure 5.3, we plot the modified communicability functions for C9 and C10 as

β varies, which exhibits the (β1, β2, β3) and (β1, β2, β3, β4) melting signatures, respec-

tively. The term f1(β) + f4(β) (red curve) in the modified communicability graph

function for C9 is a concave function and crosses the β-axis twice. Similarly, in the

modified communicability graph function for C10, the function f1(β) + f5(β) (cyan

curve) is concave and crosses the β-axis twice. In both examples, we ignore this func-

tion to obtain sensible melting signatures. In Figure 5.4, we show the evolution of the

modified communicability graphs of C10 as β varies, which exhibits the (β1, β2, β3, β4)

melting signature.

5.2 Freezing order of the edges

We recall that the modified communicability graph is the null graph when the communi-

cability between the nodes is very low (i.e. ∆G̃pq(β) < 0 for all p, q ∈ V ). However,

the communicability between the nodes increases as β increases from zero. The nodes

p and q are connected (freeze) by an edge in the modified communicability graph if

∆G̃pq(β) ≥ 0. We call this process freezing of an edge. The modified communicability

graph is fully connected when the communicability between the nodes is very high (i.e.

∆G̃pq(β) ≥ 0 for all p, q ∈ V ).
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(a) 0 ≤ β < β1 (b) β1 ≤ β < β2 (c) β2 ≤ β < β3

(d) β3 ≤ β < β4 (e) β ≥ β4

Figure 5.4: Illustration of the structure of the modified communicability graph of C10

versus increase β.

Figure 5.5: Small graph Γ with degree sequence 3, 4, 4, 4, 5, 5, 5.
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In this section, we consider a small graph Γ with 7 nodes and degree sequence

3, 4, 4, 4, 5, 5, 5 presented in Figure 5.5. We investigate the order of freezing of

the edges as β increases from zero. The second largest eigenvalue of the adjacency

matrix A of the graph Γ is λ2 ≈ 0.9246, and the number of different types of edges

in the associated modified communicability graph is n(n−1)
2 = 21; in other words, each

edge freezes at a different value of β. We find, computationally, that freezing in the

modified communicability graph of Γ starts with the existing edges in Γ and then

freezing continues to other possible edges as β increases, one by one, until the modified

communicability graph changes to be the complete graph K7. In Table 5.1, we label

the edges according to their freezing order such that the first edge (3, 5) freezes at

β ≈ 0.17 and when β increases to be 0.2, the second edge (1, 5) freezes and so on until

all the possible edges freeze. The values of β by which the corresponding edges freeze

are in the fourth column. In the last column, we include the communicability for the

corresponding edges (i.e. the communicability function at β = 1). In the third column,

d1, we include the sum of end nodes degrees of the edge, such as

d1(vi, vj) = d(vi) + d(vj),

where d(vi) is the degree of the node vi. We find that freezing of the edges in the

modified communicability graph of Γ can be ordered according to d1 starting from the

edge of the lowest d1. Moreover, the freezing order for the edges of the graph Γ explains

that the maximum value of the modified communicability graph function is a function

that corresponds to edges that are connected in the original graph, and that is what

we observed in all windmill graphs, dumbbell graphs, complete multipartite graphs

and cycle graphs. In Figure 5.6, we plot the freezing values of β = β(e) of the edges

in x-axis versus the communicability of the corresponding edges in y-axis. However,

it was really difficult to find a relationship that could relate that freezing values β(e)

of edges in the modified communicability graph of Γ and the communicability of the

corresponding edges. This could be related to some other structural characterization

of nodes that connect these edges. In the next chapter, we will investigate this further.
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Freezing order Edge d1 β(e) Comm.

1 (3,5) 7 0.17 7.7046

2 (1,5) 8 0.2 9.4583

3 (7,5) 8 0.224 9.1912

4 (3.4) 8 0.248 9.6801

5 (2,4) 8 0.255 10.9212

6 (3,1) 9 0.285 11.4798

7 (6,4) 9 0.2976 12.7005

8 (7,2) 9 0.306 12.8015

9 (6,3) 9 0.315 11.7866

10 (6,2) 9 0.325 13.169

11 (7,4) 9 0.334 12.1266

12 (2,1) 9 0.38 12.4079

13 (1,7) 9 0.41 14.1928

14 (6,7) 9 0.465 14.6984

15 (6,1) 9 0.468 14.5145

16 (3,7) 9 1.3 11.0304

17 (6,5) 9 1.4 8.9513

18 (1,4) 9 1.55 11.5193

19 (3,2) 10 2.2 9.5579

20 (5,4) 10 10.3 7.1664

21 (2,5) 10 10.5 7.4788

Table 5.1: Labelling for the edges according to their freezing order. The values of β by
which the corresponding edges freeze are in the fourth column. In the last column we
include the communicability for the corresponding edges. In the third column d1 we
include the sum of end node degrees of the corresponding edge.
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Figure 5.6: Plot for the freezing values of β of the edges in x-axis versus the commu-
nicability of the corresponding edges in y-axis.

5.3 Melting Phase Transition

We recall that the critical value βc (melting temperature or the melting phase transi-

tion) of a graph Γ is the value of β which makes the modified communicability graph

of Γ transfer from being connected to being a disconnected graph. The modified com-

municability graph of a graph Γ starts melting when deleting one or more edges. The

modified communicability graph is a complete graph when the communicability be-

tween the nodes is very high (i.e. ∆G̃pq(β) ≥ 0 for all p, q ∈ V ). The communicability

between the nodes decreases as β decreases, where the modified communicability graph

is the null graph when ∆G̃pq(β) < 0, for all p, q ∈ V .

However, in the modified communicability graph there could be edges connecting

pairs of nodes which are not connected in the original graph Γ. Also, in reality there is

no disconnection in the edges but just change in the communicability of the edges. That

is, in reality there is no disconnection of edges in the network at βc, but a significant

change in the behavior of the communicability for the different edges of the network.

For this reason, we examine what exactly is this change that is taking place in the

communicability function, where the communicability is accounting for all walks that

137



5. Melting Phase transition

permit the flow of information from one node to another.

In this section, we state our results about the existence of the melting phase tran-

sition in simple graphs. In Chapter 4, we found in Theorem 4.3.5 (which is based on

Conjecture 4.3.4) that for complete multipartite graphs where the second largest eigen-

value of their adjacency matrix λ2 ≤ 0, the modified communicability graph is not

connected regardless of the value of β. Thus, we can deduce that there is no melting

phase transition (value of β) in the modified communicability graphs of complete mul-

tipartite graphs by which the modified communicability graph changes from connected

to disconnected.

Moreover, in Chapter 4 we considered two graph families that have λ2 > 0: wind-

mill and dumbbell graphs; the cycle graphs considered in Section 5.1 also have this

property. We found that the modified communicability graph functions for windmill

graphs, dumbbell graphs and cycle graphs change sign as β increases and the modi-

fied communicability graphs turn to be connected as β increases in Theorem 4.1.12,

Theorem 4.2.32 and Conjecture 5.1.3, respectively. Thus, we have the following two

conjectures about the existence of the melting phase transition in the modified com-

municability graphs and the maximum of ∆Gpq(β) for simple graphs with λ2 > 0.

Conjecture 5.3.1. Let ∆G̃pq(β) be the modified communicability graph function for a

simple connected graph Γ = (V,E) with adjacency matrix A, and λ1 > λ2 ≥ · · · ≥ λn

be the eigenvalues of A such that λ2 > 0 and λ2 � λ3. Then, there exists βc ∈ (0,∞),

a melting phase transition for Γ , such that

1. ∆G̃pq(β) is disconnected for all β < βc,

2. ∆G̃pq(β) is connected for all β ≥ βc.

Conjecture 5.3.2. The maximum of ∆Gpq(β) for a simple connected graph Γ = (V,E)

is a function that corresponds to pairs (p, q) which are connected in Γ (i.e. (p,q) ∈ E)

for all β.

It is important to mention that in reality the melting point for a substance is not

affected by increasing the size. However, our proposed melting phase transition is
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affected by increasing the size (number of nodes). For instance, in Conjuncture 4.1.13

for windmill graphs, the melting signatures go to zero as the number of the nodes goes

to infinity. Moreover, in Claim 4.2.22 and Conjuncture 4.2.24 for dumbbell graphs, the

melting signatures go to zero or infinity as the number of the nodes goes to infinity.

5.4 Granular Materials in Network Theory

A granular material is a collection of discrete and microscopic particles, where two

particles interact when they are in contact. Examples of such materials are sands and

grains. These materials are non-equilibrium materials due to their lack of rearrange-

ment when they have thermal fluctuations applied to them [89].

Early work in the study of the theory surrounding granular materials was done by

Maxwell [77]. Traditionally, granular materials have been commonly modelled using

either particulate-based or continuum-based frameworks. It is challenging to model the

structural organization of granular materials due to their component behaviour.

In 1998, tools from network theory [85, 10] and mathematics were used successfully

to study the properties of such kind of materials. Smart and Ottino [99] were the first

to suggest the formal use of graph theory to study the physical behaviour of granular

materials.

In graph theory, a contact network is the simplest way to represent granular mate-

rials [4, 89]. In this network, each particle is represented by a node and two particles

are connected by an edge if they are in contact with each other. However, determining

the physical contact may not be possible; so we need to approximate the contact of

particles. For instance, we can approximate the contact based on particle positions and

the particle size. Granular materials have been successfully modelled using different

approaches in network theory in order to study the structure and physical behaviour of

these systems when applied to external perturbations [4, 89]. However, it is Newton’s

laws of motion that are most commonly used to model the contact of particles [89, 94].

In this work, we model the granular material systems as simple networks and we assume

that the particles are identical.
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5.5 Melting of Granular Solids

In this section, we study the influence of order and randomness on the melting phase

transition in granular materials, an aspect at the basis of many physical problems. In

particular, here we are interested in comparison between the physical properties and

our melting phase transition of granular materials with ordered structures and random

structures. The classical example of an ordered system is a crystal, and the amorphous

solids are good examples of random-like materials.

5.5.1 Crystalline and Amorphous Solids

Crystalline solids or crystals are defined as solids which have highly regular and ordered

microscopic structures of atoms or molecules. Crystalline atoms are organized and

packed to be very close to each other and form a crystalline lattice. Crystals have

sharp melting points which occur at high temperatures. There are many examples of

this kind of solids including sugar, diamond, zinc oxide, and sodium chloride [108, 116].

Crystals can be represented using regular lattices in which atoms correspond to nodes

and the interactions between them correspond to the edges [90].

Amorphous solids are solids that have a particular lack of arrangement among their

atoms or molecules and so an unspecified geometrical structure. In this kind of solid,

the distances between the atoms vary and are irregular. Amorphous solids are gradually

and softly melted generally at higher temperature than many other solids. Common

examples of amorphous solids are glass, plastics, and solid polymers [2, 116]. In order to

model a random-like granular material, we consider here a type of random graph known

as Gabriel graph (see Chapter 2 for more details). The reason why we consider random

neighbourhood graphs, like Gabriel graphs, instead of other types of random graphs is

as follows. To keep the analogy with solid granular materials we should maintain certain

geometric disposition of the nodes. This geometric arrangement of nodes is possible in

so-called random geometric graphs (RGG) as well as in random neighbourhood graphs

(RNG). The RGG are nonplanar graphs, which means that a node A can interact with

another node B, even in the case of a third node C being exactly in the middle between
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A and B. This, of course, is not a realistic scenario for the interaction between granular

particles and not appropriate for representing a granular material. However, Gabriel

graphs are planar graphs and avoid the interaction between such nodes. Consequently,

they are appropriate for modelling amorphous granular materials.

The differences between ordered and random arrangements of particles in crystalline

and amorphous granular materials mean that they differ significantly in the way that

they change from solid to liquid. This dichotomy between the manner in which crys-

talline and amorphous solids transition is one of the fundamental differences between

them. While a crystalline solid has a sharp transition from solid to liquid, the amor-

phous solid does not. Instead, it displays a very smooth transition for a long range of

temperatures [116]. The second characteristic feature is that for the same material in

amorphous and crystalline forms, the amorphous one melts at a higher temperature

than the crystalline one [116]. For instance, crystalline quartz melts at 1,550 and amor-

phous quartz melts in the range of 1,500–2,000. We are interested in investigating this

physical phenomenon here as an analogy for our crystalline and amorphous granular

material graphs.

5.5.2 Melting of Crystalline versus Amorphous Solids Networks

In this subsection, we investigate and compare the physical properties of crystalline

and amorphous solids networks with resilience to increase temperature, the number of

connected components and evolution of the melting process.

Resilience to an Increase in Temperature

In order to investigate the physical phenomenon that the amorphous solids are more

resilient to an increase in temperature than other types of solids, we plot, in Figure 5.7,

the change in the number of connected components in the modified communicability

graph against the change of β for a 10 × 10 square grid and a Gabriel graph with

n = 100 nodes and m = 180 edges. The main difference between these two kinds

of graphs resides in the order/randomness of the nodes in a unit square. The main

observation from this experiment is that the crystalline granular material (green curve)
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displays a sharp increase in the number of connected components with a decrease in β

(increase in the temperature). On the other hand, the amorphous solids graph (blue

curve) displays a very smooth increase in the number of connected components with a

decrease in β. Thus, the amorphous solids graphs are more resilient to an increase in

temperature than crystalline graphs.

Melting Temperature

The second important observation from Figure 5.7 is that the structure of the crys-

talline graph is destroyed more quickly than that of the amorphous one. For instance,a

crystalline graph melts approximately 50% and 100% of its nodes at β = 0.0017 and

β = 0.0005, respectively (see Figure 5.7). On the other hand, an amorphous solid

graph melts approximately 50% and 100% of the nodes at β = 0.0001 and β = 0.001,

respectively (see Figure 5.7), which are less than that observed for the crystal graph.

Thus, an amorphous solids graph needs a higher temperature to complete melting 50%

and 100% of its nodes than a crystal graph. If we consider the temperature at which all

the nodes in these graphs melt, as a melting temperature for these two materials, then

that reflects the physical phenomenon for melting of the solids. That is, the melting

temperature of amorphous solids is higher than that of crystal.

Evolution of Melting Process

Another feature of the current approach is that it allows us to visualize the evolution of

the topological melting process in granular materials in order to gain insights into the

mechanism. In Figure 5.8 (a), (b) and (c) we illustrate some snapshots of the change

in the Lindemann graph structure with the change of β for the square lattice. We

represent in red the nodes for which all of their edges have been removed, and which

are disconnected from the giant connected component, that is, those particles which are

in the liquid state. In blue, we represent those nodes which form the giant connected

component of the graph, i.e. the nodes still in the solid phase.

When the temperature is very high at β = 0.00005 (see Figure 5.8 (c)) the Lin-

demann graph structure is almost melted (i.e. most of the nodes are isolated), so the
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Figure 5.7: Change in the number of connected components in the modified commu-
nicability graph for the 10 × 10 square lattice (green curve) and Gabriel graph (blue
curve) with n = 100 nodes and m = 182 edges as β increases.

material is almost in the liquid state. As the temperature drops, β increases, certain

patterns start to emerge. In particular, for β = 0.000075 (Figure 5.8 (b)), an annulus

external part of the lattice is solidified into a single connected component and only the

central part of the granular material remains melted. As the temperature drops below

β = 0.000085 (Figure 5.8 (a)), the melted region (red nodes) shrinks to the very centre

of the lattice. The observed pattern of melting the square lattice is similar to the one

observed experimentally for crystalline granular (colloidal) material.

In Figure 5.8 (d), we illustrate the results of Wang et al. [100] for the melting of

colloidal crystals, which show such patterns of central melting. In the case of amorphous

granular materials, there is no repeating pattern in them, and it is impossible to find

a general structural pattern of the evolution of the melting process. A few snapshots

of the process are given in Figure 5.9. The temperature needed to melt these graphs is

significantly higher (smaller β) than the ones needed to melt square lattices of the same

size, which coincides with our previous observations as well as with the experimental

results for crystalline and amorphous solids.
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(a) (b) (c)

(d)

Figure 5.8: Illustration of melting of Lindemann graph of a 25 × 25 square lattice at
β = 0.000085 (a), β = 0.000075 (b) and β = 0.00005 (c). Results for melting of colloidal
crystals obtained by Wang et al. [100]. In plots (a)–(c), the nodes not in the giant
connected component are in red.
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Figure 5.9: Nodes in each of the connected components of the Lindemann graph cor-
responding to the Gabriel graph with n = 625 nodes studied here for β = 10−9, 10−10

and 10−11 from left to right. The nodes not in the giant connected component are in
red.

5.6 Summary

In this chapter, we have studied computationally melting in Cn, n ≥ 5, where the

second largest eigenvalue is positive and the number of different types of edges in the

associated modified communicability graph is not low and increases as n increases. We

found that all corresponding functions of equivalence classes of edges in the associated

modified communicability graph function of Cn, n ≥ 9, cross the β-axis exactly once

as β increases except for one function, which crosses the β-axis twice and is concave.

Thus, we excluded this concave function and found computationally that there is one

possible melting signature when n is even and one possible melting signature when n is

odd for the modified communicability graphs of Cn. Also, we determined the melting

signatures for C5, C6, C7 and C8. In these latter cases, there are one or two functions

that do not cross the β-axis.

The main observation from this chapter is that the maximum of ∆Gpq(β) is a

function that corresponds to connected edges in the original graph for all β and that

freezing of the edges starts from the existing edges in the original graph. Also, we

found that freezing of the edges in the modified communicability graph can be ordered

according to the sum of end node degrees of the edges (d1) starting from the edge of the

lowest d1. Moreover, from the work in graph families that we considered in Chapter 4
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and the work for Cn, we stated our conjecture about the existence of the melting phase

transition in simple graphs when λ2 > 0 and λ2 � λ3.

Furthermore, we included some basics about melting solids physically, namely,

about granular materials in network theory, and melting of crystalline versus amor-

phous solids networks. In this way, regular-like graphs such as square lattices are easier

to melt than more irregular structures, such as spatial random graphs. These differ-

ences resemble the known dissimilarities between crystalline and amorphous granular

materials in their melting process.
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Chapter 6

Topological Melting Analysis of

Complex Networks

The use of graphs and networks to represent many physical, biological, social and engi-

neering systems has triggered their relevance as an object of study in applied mathemat-

ics and physics. In this context, many physical metaphors are typically used to study

processes taking place in complex systems represented by networks. This includes, for

instance, the use of theoretical tools developed in polymer physics, spin glass studies,

Ising model simulations, discrete scaling and the theory of liquids to study complex

systems [28, 29, 86]. In this chapter, we point out that the study of melting processes

of graphs can bring some insights in analysing and studying the robustness of complex

systems.

We provide an interpretation of the melting process of communicability paths in

complex networks, when the parameter β is changed systematically towards zero. We

also study the existence and characteristics of this phenomenon in real-world networks.

We discover in this chapter that the main driver for node melting (node getting dis-

connected) is the eigenvector centrality of the corresponding node. That is, nodes with

higher values of the Perron–Frobenius eigenvector melt (get disconnected) at lower tem-

peratures than those with smaller values of it. Thus, being “more central” according

to the eigenvector centrality also indicates to be “more at risk” of triggering a “melt

down” of the network communicability, which is an abrupt variation in the rate of
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change of this function with the parameter β.

6.1 Interpretation of Melting Graphs Based on

Communicability

We proposed (in Chapter 5) that for simple connected graphs with λ2 > 0 and λ2 � λ3,

there is a melting point βc. However, in reality there is no disconnection in the edges

but just change in the communicability of the edges. In this section, we study that

change in the communicability of the edges. In other words, we study the effects of β

on the communicability of the edges. In this section, we provide an interpretation of

the phenomenon of graph melting based on the communicability. We should start by

remarking that the idea of graph melting should be interpreted as a physical metaphor

for a completely mathematical phenomenon taking place in network communicability

when the parameter β is approaching zero. That is, in reality there is no disconnection

of edges in the network at βc, but also a significant change in the behaviour of the

communicability for the different edges of the network. We explore what exactly this

change is that is taking place in the communicability function.

The first thing we need to consider here is that, for p, q ∈ V , p 6= q,

Gpq(Γ, 0) = (e0A)pq = (I)pq = 0, (6.1)

where I is the n × n identity matrix. Thus, because Gpq(Γ, β) > 0, for p 6= q and

β > 0, we have a natural decreasing trend in the communicability when β → 0. That

is, when β decreases, the communicability for any pair of distinct nodes also decreases

up to the point where it reaches the value of zero when β = 0. Therefore, the difference

between one graph and another is in the rate at which the communicability decays as

a function of β. In Figure 6.1, we illustrate the decay of Gpq(Γ, β) as a function of

β for three graphs with n = 8, in which we have selected an edge from each of the

graphs for calculating the communicability. As can be seen from Figure 6.1, the decay

of the communicability with β follows two trends, for larger values of β it follows an

exponential decay and then a power law. The power law behaviour starts, for these
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three graphs, at approximately close to β = 1. If we select the straight line in the

log-log plot between β = 1 and βc > 0, we can obtain the slope of this line by

s =
log(Gpq(Γ, 1))− log(Gpq(Γ, βc))

− log(βc)
.

From this we can obtain log βc,

log βc =
log(Gpq(Γ, βc))− log(Gpq(Γ, 1))

s
,

and hence also the value of βc,

βc =

(
Gpq(Γ, βc)

Gpq(Γ, 1)

)1/s

. (6.2)

However, an obvious problem is that we do not know the value of βc, and so we cannot

determine the value of Gpq(Γ, βc) for a given graph. We found computationally that, for

the three graphs considered in Figure 6.1, Gpq(Γ, βc) follows a power law as a function

of Gpq(Γ, 1),

Gpq(Γ, βc) ≈ 0.006761
(
Gpq(Γ, 1)

)2.117
.

Thus, with (6.2) we obtain an estimate for βc,

βc ≈
(

0.006761
(
Gpq(Γ, 1)

)1.117
)1/s

.

An important remark here is that an increase in s causes a decrease in βc. That is,

a large value of s indicates a fast decay of the communicability with β. When this

happens, the graph has a relatively small value of βc. On the other hand, if s is small,

or close to zero, then the graph has a relatively high value of βc. In order to interpret

these results physically we again borrow a metaphor from the physics of melting. In this

case, we use the differences in melting between crystalline and amorphous materials. In

graphs resembling more a crystalline material, and thus having a more regular structural

patterns, the melting process occurs like in the case (c) in Figure 6.1 with a more abrupt

transition of the communicability with β and at higher values of βc. On the other hand,
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ln(δ) l̄ ln(Ef)

ln(βc) r = 0.795 r = −0.716 r = 0.722

Table 6.1: Pearson correlation coefficient r of semi-log correlations between ln(βc)
and the parameters ln(δ), l̄ and ln(Ef) of 47 complex networks arising from different
scenarios (see Appendix A, Table A.1).

those graphs resembling more an amorphous solid, in other words those having more

irregular structural patterns, will have melting more similar to that of case (a) in

Figure 6.1 with a slow change of the communicability with β and a smaller value of βc.

6.2 Global Analysis of Melting in Complex Networks

In this section, we consider a collection of 47 complex networks arising from different

scenarios (see Appendix A, Table A.1). In order to analyse the melting properties based

on our communicability phase transition βc, we will correlate global properties of these

networks with their melting phase transition βc. The global parameters investigated

in this section are: edge density δ, average degree k̄, maximum degree Kmax, average

Watts–Strogatz clustering coefficient C̄, average path length l̄, shortest path efficiency

Ef , second largest eigenvalue of the adjacency matrix λ2, spectral gap λ2−λ3, number

of nodes n, average communicability distance ξ̄, average resistance distance Ω̄, and

average communicability angle θ̄ (see Chapter 2). We review more details about these

parameters. Further, see Appendix B for MATLAB codes for the computation of these

parameters.

We start by explicitly computing, for each network, the value of β = βc at which

the Lindemann graph transfers from connected to disconnected. Then, we will relate

the values of βc to some simple global descriptors of the network, in order to shed light

on the structural dependence of this transition. We investigate any correlation between

these measures and the values of βc for the 47 complex networks (see Appendix A, Table

A.2 and Table A.3). The most significant correlations are noted in Table 6.1. Further-

more, in Figure 6.2 we illustrate these correlations in a log-log plot; more explicitly, we

plot βc against (a) δ (b) Ef and (c) l̄. The correlations observed for ln(βc) in Table
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Figure 6.1: Illustration of the variation of Gpq(Γ, β) with β for a single edge (highlighted
by blue colour) in three different graphs with n = 8 nodes. The values of βc for
the corresponding graphs are: 0.01 (a), 0.23 (b) and 0.71 (c), and these values are
represented by the intersection of the vertical red dashed line with x axis. The plots
are in log - log scale.

151



6. Topological Melting Analysis of Complex Networks

6.1 with some of the previous structural parameters may encode something about the

real structural characteristic of networks that influence their melting properties, such

as the positive correlation between δ and βc. Our intuition tells us that, under all other

structural conditions being the same, high density networks should melt at higher tem-

peratures, (lower βc), than less dense ones. This is exactly what has been observed in

molecular crystals of nonpolar molecules, such as linear alkanes [9]. Then, the fact that

smaller and denser real-world networks in our data set are the ones having the largest

βc, implies that Lindemann graphs are easier to disconnect. This may indicate that

the homogeneity in degree of these networks, rather than their sizes or densities, is the

real driver of their melting.

In order to capture these degree irregularities, we use the heterogeneity [49] to

combine some structural parameters in order to find a new index that may reflect the

reality of graph melting. We start by recalling the definition of the average degree of a

network k̄ in matrix form

k̄ =
2m

n
=

1TA1

1T1
.

The right-hand side of the previous equation is useful to think about the spectral radius

of the adjacency matrix as a sort of average degree, where

λ1 =
ψT1 Aψ1

ψT1ψ1

.

Notice that k̄ ≤ λ1 [28]; thus the term λ1
k̄

is the ratio between the global environment

of a node to its local one. That is, the ratio λ1
k̄

indicates how a node “sees” on average

its global environment in relation to its nearest neighbours. In a regular graph we have

λ1 = k̄, and hence λ1
k̄

=1. Therefore, we define the following index of global to local

degree heterogeneity,

%(G) =
λ1

k̄
, (6.3)

where (n−1)%(G) = λ1
δ , which may explain the previously observed correlation between

ln(βc) and ln(δ). We use %(G) as an indicator of the global to local heterogeneity of

the 47 real-world networks studied in this chapter. In Figure 6.2(d) we show the plot

of %(G) versus βc which has Pearson correlation coefficient r = −0.776.
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Figure 6.2: Changes in βc for 47 real-world networks as a function of edge density δ, (a),
shortest path efficiency Ef , (b), average path length l̄, (c) and global to local degree
heterogeneity %(G), (d).

The most important insight of this section is the following. The disconnection of

the Lindemann graph of a given graph (its melting), is correlated with the differences

between global and local degree heterogeneities of the network. Regular graphs are

easier to melt than non-regular ones, and the more irregular in terms of global to local

degree heterogeneities, the more robust the graph with the smallest value of βc is, in

other words, it is more difficult to melt.
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6.3 Local Analysis of Melting in Complex Networks

We investigate computationally the effects of a decrease in β on the topological structure

of the Lindemann graph. Our analysis is divided into two subsections.

6.3.1 How Do the Nodes of a Network Melt?

We begin by investigating how nodes in a network melt (get disconnected). We consider

some of the real-world networks which were studied in the last section. We find the

value of β for each node by which it is disconnected from the giant connected component

of the modified communicability graph. Also, we create a melting barcode plot in which

we plot the number of melted nodes in the y-axis versus the values of β in the x-axis. In

Figure 6.3, we illustrate the melting barcodes of four real-world networks: Neurons (a),

Little Rock (b), Corporate elite (c), and Roget (d). To understand the melting process

of these networks in their plots, we need to read it from right to left as the melting

process starts at higher values of β. There are significant differences in the four barcodes

presented in Figure 6.3 which point to differences existing in their melting processes.

First, we observe that the shapes of the melting barcodes are different. Whilst in

Neurons (Figure 6.3(a)) and Roget (Figure 6.3(d)) the decay resembles an exponential

curve, in Little Rock (Figure 6.3(b)) it is almost linear and the Corporate elite network

(Figure 6.3(c)) displays a more skewed shape.

We investigate the rate of change of the melting process in the networks analysed

by considering the shape of the histogram of the number of nodes melted at a given

temperature. In general, we observe that the decay of the number of nodes of these

networks at a given temperature, are exponentially related to inverse temperature

η = a exp(ζβ), (6.4)

where η is the number of nodes melted at a given value β and a, ζ are constants.

However, in the smallest networks it was not possible to find regularities or any

particular law of the decay of the number of melted nodes η as a function of β. These

were the cases of the networks of Benguela (n = 29), Coachella (n = 30), Social3
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Network a ζ |r|
Prison 88.25 -2299 0.92

Neurons 345.3 −6.836.104 0.80

Small World 395 −1.025.104 0.72

Ythan1 182.5 -3596 0.87

Electronic1 121.2 −4.885.104 0.90

PIN H. pylori 694.2 −2.678.106 0.73

Macaque 89.24 -176 0.97

Stony 236 -3090 0.98

PIN B. subtilis 82.23 -9685 0.71

Roget 974.8 −2.703.106 0.85

Software Abi 932.3 -7.063 0.54

Corporate elite 1398 −2.492.108 0.87

Table 6.2: Values of the fitting parameters for equation (6.4) displaying the relation
between the number of nodes melted at a given value of β as a function of β for
several real-word networks. The values |r| are the absolute values of Pearson correlation
coefficient for these relations

(n = 32), and St.Marks (n = 48) as well as for the network of Little Rock, which is

not so small (n = 181) but it also has a very disperse histogram. For the rest of the

networks analysed we display the parameters of fitting equation (6.4) as an exponential

function with the values of β, and the absolute values of Pearson correlation coefficient

|r| for these relations in Table 6.2.

The fitting parameters given in Table 6.2, indicate the differences in the rates of

melting of the networks analysed. These rates of melting represent a new measure for

the robustness of networks to the effects of the external stress (the inverse temperature

β) to which the network is submitted.

In comparing these networks in their βc (see Appendix A, Table A.3), it is clear

that the social network of Prison and the food web Ythan1 networks are significantly

less robust to the external stress than the protein–protein interaction network PIN

H.pylori. Furthermore, the Macaque network, which represents the visual cortex of

macaque, melts very quickly and at a much lower temperature when compared to the

other networks analysed. This indicates that once the external stress has triggered the

melting process, the nodes of this network get disconnected very quickly from the giant

connected component of the modified communicability graph.
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Figure 6.3: Number of melted nodes vesus some values of β, where β ≤ βc for the
networks Neurons (a), Little Rock (b), Corporate elite (c), and Roget (d).

6.3.2 Which Structural Parameter Drives the Melting Process of the

Nodes?

We investigate in this subsection the main factors that affect the melting process of

the nodes. In particular, we consider the role of node centrality in the melting of the

corresponding node. We analyse the relationship between the value of β at which a node

becomes disconnected from the giant component of the modified communicability graph

with some node centralities such as closeness centrality CC, betweenness centrality

BC, eigenvector centrality EC and subgraph centrality SC (see Chapter 2 for more

details and see Appendix B for MATLAB codes for these parameters). In general, we

observed that the value of β at which a node melts from the giant connected component

of the network presents the highest correlation with the corresponding entry of the

eigenvector centrality EC. The larger size networks (see Table 6.3) studied have a

Pearson correlation coefficient higher than 0.9, between the values of β at which the

nodes melt and their corresponding EC entries, with one exception of the network of

the Macaque visual cortex. In Table 6.3, we list the values of the Pearson correlation
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coefficient and the variation in CV of the values of β at which the nodes melt from

the giant connected component, estimated from a linear regression with EC. The

coefficient of variation CV measures the dispersion to the values of β, at which the

nodes of each graph melt with their corresponding EC entries. The coefficients of

variation CV for the listed graphs are in general very small, the small values of CV

indicate that there is no dispersion in these correlations. Consequently, the small values

of CV indicate a more reliable (consistent) measurement, since all the values of CV are

less than 5. According to the values of the Pearson correlation coefficient r in Table 6.3,

we found that the correlation between the values of β, at which the nodes melt, with

its corresponding EC entries are very strong for all the networks.

Furthermore, in Figure 6.4, we plot the relation between values β at which the

nodes melt versus their corresponding EC entries, for some of the networks as, Small

World (a), Electronic1 (b), PIN B. subtilis (c) and Prison (d).

In general, we observed that when βc is arbitrarily small, the correlation between

the melting values of β of the nodes and EC is better than when βc is relatively large.

The reason for that difference is the following.

Let us recall the modified communicability graph function ∆G̃pq(β), that is

∆G̃pq(β) =
n∑
j=2

ψj(p)ψj(q)e
βλj +M(Γ, β),

=

n∑
j=2

ψj(p)ψj(q)e
βλj + max

s 6=t∈V

n∑
j=2

ψj(s)ψj(t)e
βλj .

As βc → 0, we have eβcλj → 1, j ∈ {1, 2, . . . , n}, and thus

∆G̃pq(βc) =

n∑
j=2

ψj(p)ψj(q) + max
s 6=t∈V

n∑
j=2

ψj(s)ψj(t), (6.5)

= −ψ1(p)ψ1(q)− min
s 6=t∈V

ψ1(s)ψ1 (t) , (6.6)

since
∑n

j=1 ψj (p)ψj (q) = 0 for all p 6= q ∈ V . Equation (6.6) explains the dependency

of ∆G̃pq(βc) on the eigenvector centrality EC entries, especially when βc for a given

graph is arbitrarily small. Then also ∆G̃pq(β̀) depends on the corresponding entries
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of EC, where β̀ is the melting value of β of a node p ∈ V and β̀ ≤ βc. This then

represents the dependency of the value of β̀ by which the node p disconnects from the

giant connected component of the modified communicability graph on the correspond-

ing eigenvector centrality entry of the node. That clearly explains the observed high

positive correlation between the values of β at which a node p melts and ψ1(p) for the

networks which have βc very close to zero. Also, this explains why those networks for

which βc is not sufficiently small display bad correlation between the values of β at

which a node melts and ψ1(p).

This result has important consequences for the robustness of networks. Those

networks displaying a high robustness to external stresses, for which we expect βc is

very close to zero, start their melting process from the nodes that are most central

according to EC. That is, if we consider a network like the USA air transportation

network, which has βc to the order of 10−7, we will observe that the first airports

to be disconnected from the giant connected component are the most important ones

in terms of their EC. Here we give the list of the first airports separated from the

giant connected component in the modified communicability graph: Chicago O’Hare,

Dallas/Forth Worth Int., The William B. Hartsfield (Atlanta), Detroit Metropolitan,

Pittsburgh Intel., Lambert-St. Louis, Charlotte/Douglas Int. (see Figure 6.5).
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Figure 6.4: The values of β at which the nodes melt versus their corresponding EC
entries, for the networks of Small World (a), Electronic1 (b), PIN B. subtilis (c) and
Prison (d).
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(a) (b)

(c)

Figure 6.5: Snapshots of the melting process of the USAir97 network at three different
values of β, β = 1.5.10−7 (a), β = 1.25.10−7 (b) and β = 1.0.10−7 (c). The red
coloured nodes represent the melted nodes at the corresponding values of β, and the
blue coloured nodes represent the giant connected component of the network. The
melting starts at Chicago O’Hare and propagates through the central eastern area of
the US.
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Network r CV

Benguela 0.96 0.403

Coachela 0.93 0.402

Social3 0.95 0.595

Macaque 0.81 0.365

St. Marks 0.97 0.48

Prison 0.993 0.70

PIN B. subtilis 0.998 1.232

Stony 0.945 0.428

Electronic1 0.992 1.082

Ythan1 0.989 0.761

Small World 0.99 0.722

Little Rock 0.987 0.475

Neurons 0.998 0.841

Roget 0.997 1.164

PIN H. pylori 0.997 1.383

Software Abi 0.9958 2.163

Corporate elite 0.9901 1.295

Table 6.3: Illustration of the values of Pearson correlation coefficient r and the coeffi-
cient of variation CV to the values of β at which the nodes melt with its corresponding
EC entries.

6.4 Summary

The analysis of a series of real-world networks has given us the possibility of exploring

the global and local structural characteristics of networks which drive their melting

process. At the global topological level, we have shown that the value βc at which the

melting of a network occurs depends mainly on the differences between the local and

global degree heterogeneities existing in the graph. At the local level we have observed

that the melting is triggered by the nodes having the higher eigenvector centrality in

the network, particularly in those cases of networks where the melting phase transition

(βc) is very close to zero. This means that “being too central is too dangerous” as it

may trigger a catastrophic melt down of the network.
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Chapter 7

Conclusions

In this work, we considered the communicability function as a new approach in order

to find a melting phase transition for networked systems. This phase transition allows

us to study network robustness. The communicability function that we consider in our

work is based on the Lindemann criterion for melting solids, which allows us to define

the melting process of a networked system in graph-theoretical terms. The Lindemann

criterion for melting solids states that melting in substances is initiated when the vibra-

tions between nodes exceed a critical threshold. In graph theory, the vibrations between

nodes can be related to the communicability function of pairs of nodes. We proposed

a new communicability graph function which considers the maximum vibration of all

pairs of distinct nodes in the graph as the critical threshold for melting.

In this work we found a topological melting phase transition in simple connected

graphs with λ2 > 0 and λ2 � λ3, which resembles the melting process of a given

system. We found that there is a critical threshold in the connectivity of the modified

communicability graphs of simple connected graphs with λ2 > 0 and λ2 � λ3.

Mathematically, our work is based on the spectral properties of the adjacency matrix

of the graph and the change in its exponential matrix function, exp (βA), where β ∈

[0,∞). The melting phenomenon considered in this work is driven by the parameter β

(inverse temperature) which acts as a thermal bath for the whole network.

We study and investigate melting in certain graphs with positive second largest

eigenvalue, namely, melting in windmill graphs, dumbbell graphs and cycle graphs.
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Also, we investigated melting in complete multipartite graphs where the second largest

eigenvalue is non-positive. We found a melting phase transition in simple connected

graphs with λ2 > 0 and λ2 � λ3, which resembles the melting process of a given system.

We found that there is no melting phase transition in complete multipartite graphs.

Through that we found the spectral decomposition for dumbbell graphs and complete

multipartite graphs, which until now have not been done. The spectral decomposition of

the adjacency matrices are, in general, very useful in studying different areas of research

in graph theory. Also, we found mathematical expressions for the communicability

functions of windmill and dumbbell graphs.

Moreover, we examined the melting phase transition in two different kinds of graphs,

namely, random and regular graphs. We have modelled amorphous and crystalline

solids within a graph-theoretical framework theory. There are many differences be-

tween these two kinds of solids. The main difference is related to their structures and

particular arrangements of their atoms and molecules. Crystalline solids can be mod-

elled in graph theory by a square lattice (grid graph), whereas amorphous solids are

represented by Gabriel graphs.

We observed that the differences in the melting phase transitions of regular and

irregular graphs resemble the differences in melting of crystalline and amorphous solids.

The melting phase transition satisfies the main two physical phenomena of melting these

two kinds of solids. That is, the melting temperature of an amorphous solid is higher

than that of a crystalline solid. Additionally, amorphous solids are more resilient than

crystalline solids when faced with an increase in temperature. Crystalline solids also

display a sharp increase in melting percentage with an increase in the temperature,

while amorphous solids softly melt in contrast.

We found correlations between the melting phase transition and certain global and

local properties of the network by investigating a number of real-world networks. Our

analysis addresses the following two main questions: How do nodes of a network melt?

And which structural parameter drives this melting process of the nodes?

At the global topological level, we have found that the critical phase transition of

a graph, βc, correlates well with the difference between the local and global degree
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heterogeneity in the graph. We have observed, at a local topological level, that melting

of graphs with βc close to zero is initiated by the nodes having a higher eigenvector

centrality in the network.

7.1 Future Work

The analysis of network melting based on the communicability function opens up many

new areas for further analysis. There are many mathematical and computational ques-

tions, that remain open, about the study of network robustness based on the com-

municability between the nodes when they are subjected to external stresses. These

questions and research directions include, but are not limited to the following:

1. Does there exist a unique value βc ∈ (0,∞) for the modified communicability

graphs of a simple connected graph Γ = (V,E) with adjacency matrix A, and

λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn the eigenvalues of A such that λ2 > 0 and λ2 ' λ3?

2. Conduct a more exhaustive analysis of the topological (global and local) drivers

that could drive network melting.

3. Can real world networks be systematically classified according to their melting

processes?

4. Archimedean lattices are 2-dimensional regular planar graphs, which tile the plane

uniformly with one type or more of polygons. These lattices are described and

classified into 11 (Archimedean) lattices [58]. Three of these lattices have identical

polygons (one type of face), which are square (44), triangular (36), the hexagonal

(63) lattices, while the other eight have more than one polygon, see Figure 7.1.

The notation for each lattice refers to the polygons around a node in the clockwise

direction. For example, the notation (33, 42) indicates that around each node,

there are 3 triangles and 2 squares. We distinguish the lattices by the type

of polygons. For instance, the lattices (33, 42) and (32, 4, 3, 4) have the same

polygons but are different types (see Figure 7.1).
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(a) (3, 122) (b) (3, 6, 3, 6) (c) (4, 82) (d) (32, 4, 3, 4)

(e) (33, 42) (f) (34, 6) (g) (36) (h) (3, 4, 6, 4)

(i) (44) (j) (4, 6, 12) (k) (63)

Figure 7.1: The 11 Archimedean lattices.

By studying the melting phase transition on the 11 Archimedean lattices, one

could explore and determine the relationship between βc and the specific kind of

lattice or even the dimension of the lattice. I have already started working on

this problem, by creating MATLAB codes for the 11 Archimedean lattices (see

Appendix B).

5. Studying the melting phase transition on the β-skeleton graphs when β = 2

(relative neighbourhood graphs) in 2 and in 3 dimensions.

6. Investigating the effects of adding some edges randomly or systematically to a

network on the communicability function.
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Appendix A

Datasets and Tables

Real-World Networks Datasets

The real-world networks used in this work belong to different domains: ecological

(includes food webs and ecosystems), social (networks of friendships, communication

networks, corporate relationships), technological (internet, transport, software develop-

ment networks), informational (vocabulary networks, citations) and biological (protein-

protein interaction networks, transcription regulation networks, brain networks). The

dataset comprises networks of different sizes, ranging from n = 29 to n = 1586 nodes,

which are listed in Table A.1.

Table A.1: Networks Datasets

Dataset Domain Description and reference

1 Benguela ecological Marine ecosystem of Benguela off the

southwest coast of South Africa [114].

2 Coachella ecological Wide range of highly aggregated taxa from the

Coachella Valley desert in southern California

[111].
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Table A.1: Networks Datasets

Dataset Domain Description and reference

3 Sicail3 social Social network among college students

participating in a course about leadership. The

students choose which three members they

want to have on a committee [117].

4 Macaque biological The brain networks of macaque visual cortex

and cat cortex, after the modifications

introduced by Sporn and Kötter [102].

5 PIN A. fulgidus biological Protein-protein interaction network in A.

fulgidus [83].

6 Hitech ecological Friendship ties among the employees in a small

high-tech computer firm which sells, installs,

and maintains computer systems [18].

7 Chesapeake social The pelagic portion of an eastern U.S. estuary,

with an emphasis on larger fishes [60].

8 Zackary social Social network of friendship between members

of the Zackary karate club. [115].

9 Skipwith ecological Invertebrates in an English pond [114].

10 Sawmill social Social communication network within a

sawmill, where employees were asked to

indicate the frequency with which they

discussed work matters with each of their

colleagues [79].

11 St. Martin ecological Birds and predators and arthropod prey of

Anolis lizards on the island of St. Martin,

which is located in the northern Lesser Antilles

[76].
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Table A.1: Networks Datasets

Dataset Domain Description and reference

12 Trans Urchin biological Developmental transcription network for sea

urchin endomesoderm development [80].

13 St. Marks ecological Mostly macroinvertebrates, fishes, and birds

associated with an estuarine seagrass

community, Halodule wrightii, at St. Marks

Refuge in Florida [44].

14 Reef Small ecological Caribbean coral reef ecosystem from the

Puerto Rico-Virgin Island shelf complex [88].

15 PIN KSHV biological Protein-protein interaction networks in Kaposi

sarcoma herpes virus[106].

16 Dolphins social Social network of a bottlenose dolphins

(Tursiops truncates) population near New

Zealand [69].

17 Prison social Social network of inmates in prison who chose

“Which fellows on the tier are you closest

friends with?” [72].

18 Bridge Brook ecological Pelagic species from the largest of a set of 50

New York Adirondack lake food webs [92].

19 World Trade economic World trade network of miscellaneous

manufacture of metals (MMM) in 1994 [8].

20 Shelf ecological Marine ecosystem on the northeast US shelf

[68].

21 PIN B. subtilis biological Protein-protein interaction network in B.

subtilis [87].

22 Ythan2 ecological Reduced version of Ythan1 with no parasites

[46].
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Table A.1: Networks Datasets

Dataset Domain Description and reference

23 Canton ecological Primarily invertebrates and algae in a

tributary, surrounded by pasture, of the Taieri

River in the South Island of New Zealand [105].

24 Stony ecological Primarily invertebrates and algae in a

tributary, surrounded by pasture, of the Taieri

River in the South Island of New Zealand in

native tussock habitat [5].

25 Electronic1 technological Electronic sequential logic circuits parsed from

the ISCAS89 benchmark set, where nodes

represent logic gates and flip-flops [81].

26 Ythan1 ecological Mostly birds, fishes, invertebrates, and

metazoan parasites in a Scottish Estuary [52].

27 Software Digital technological Software network development for Digital [84].

28 Scotch Broom ecological Trophic interactions between the herbivores,

parasitoids, predators and pathogens associated

with broom, Cytisus scoparius, collected in

Silwood Park, Berkshire, England, UK [78].

29 El Verde ecological Insects, spiders, birds, reptiles and amphibians

in a rainforest in Puerto Rico [95].

30 Little Rock ecological Pelagic and benthic species, particularly fishes,

zooplankton, macroinvertebrates, and algae of

the Little Rock Lake, Wisconsin, U.S. [48].

31 PIN Malaria biological Rock Lake, Wisconsin, USA. Protein-protein

interaction network in P. falciparum (malaria

parasite) [61].

32 PIN E. coil biological Protein-protein interaction network in E. coli

[12].
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Table A.1: Networks Datasets

Dataset Domain Description and reference

33 Small World informational Citation network of papers that cite S.

Milgram’s 1967 Psychology Today paper or use

Small World in title [7].

34 Electronic2 technological Electronic sequential logic circuits parsed from

the ISCAS89 benchmark set, where nodes

represent logic gates and flip-flops [81].

35 Neurons biological Neuronal synaptic network of the nematode C.

elegans. Included all data except muscle cells

and using all synaptic connections [113].

36 Trans E. coli biological B. subtilis. Protein-protein interaction network

in E. coli [80].

37 USAir97 technological Airport transportation network between

airports in the US in 1997 [7].

38 Electronic3 technological Electronic sequential logic circuits parsed from

the ISCAS89 benchmark set, where nodes

represent logic gates and flip-flops [81].

39 Drugs social Social network of injecting drug-users (IDUs)

who have shared a needle in the last six

months [8].

40 Trans Yeast biological Zealand. Transcriptional regulation between

genes in Saccaromyces cerevisiae [80].

41 PIN H. pyroli biological Protein-protein interaction network in H.

pyroli [65].

42 Software VTK technological MySQL. Software network development for

VTK [84].

43 Software XMMS technological VTK. Software network development for

XMMS [84].
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Table A.1: Networks Datasets

Dataset Domain Description and reference

44 Roget informational Vocabulary network of words related by their

definitions in Roget’s Thesaurus of English.

Two words are connected if one is used in the

definition of the other [96].

45 Software Abi technological Software network development for Abi [84].

46 Software MySQL technological Software network development for MySQL [84].

47 Corporate elite social American corporate elite formed by the

directors of the 625 largest corporations that

reported the compositions of their boards,

selected from the Fortune 1,000 in 1999 [21].

Tables of Simulation Results

Values of several topological parameters of networks, namely, edge density δ, average

degree K̄, maximum degree Kmax, average Watts-Strogatz clustering coefficient C̄, av-

erage path length l̄, shortest path efficiency Ef, and the spectral radius of the adjacency

matrix λ1 for 47 complex real-world networks are used in this work. These parameters

are listed in Table A.2. In Table A.3, we illustrate the values of several other global

structural parameters for the 47 networks, namely, the second largest eigenvalue of the

adjacency matrix λ2, spectral gap of the adjacency matrix ∆, average communicability

distance ξ̄, average resistance distance Ω̄, average communicability angle θ̄ and melting

phase transition βc.

171



A. Datasets and Tables

Table A.2: Topological parameters of networks

Network Nodes edges δ k kmax C̄ l̄ Ef λ2

Benguela 29 191 0.47 13.17 24 0.57 1.62 0.72 4.0807

Coachella 30 241 0.554 16.7 25 0.71 1.46 0.77 5.0895

Sicail3 32 80 0.161 5 13 0.33 2.30 0.51 3.8096

Macaque 32 194 0.391 12.13 22 0.65 1.66 0.69 7.3329

PIN A. fulgidus 32 36 0.072 2.25 9 0.06 3.60 0.35 2.7694

Hitech 33 91 0.172 5.52 16 0.45 2.36 0.51 4.0791

Chesapeake 33 71 0.134 4.30 10 0.20 2.80 0.45 4.5301

Zackary 34 78 0.139 4.59 17 0.57 2.41 0.49 4.9771

Skipwith 35 353 0.593 20.17 32 0.63 1.42 0.79 3.4282

Sawmill 36 62 0.098 3.44 13 0.31 3.14 0.4 3.2714

St. Martin 44 218 0.23 9.91 27 0.33 1.93 0.59 6.972

Trans Urchin 45 80 0.08 3.56 14 0.21 3.22 0.39 2.9482

St. Marks 48 218 0.193 9.08 19 0.28 2.09 0.55 4.9313

Reef Small 50 503 0.41 20.12 39 0.61 1.6 0.70 8.5789

PIN KSHV 50 114 0.093 4.56 16 0.13 2.84 0.42 3.6109

Dolphins 62 159 0.084 5.13 12 0.26 3.36 0.38 5.9363

Prison 67 142 0.064 4.24 11 0.31 3.35 0.36 4.616

Bridge Brook 75 542 0.195 14.45 41 0.20 2.17 0.54 12.9665

World Trade 80 875 0.276 21.88 77 0.75 1.72 0.64 10.6077

Shelf 81 1451 0.447 35.83 69 0.59 1.57 0.72 11.7232

PIN B. subtilis 84 98 0.028 2.33 17 0.04 4.05 0.29 3.7738

Ythan2 92 416 0.099 9.04 50 0.22 2.25 0.49 6.1364

Canton 108 707 0.122 13.09 47 0.05 2.35 0.49 7.035

Stony 112 830 0.133 14.82 45 0.07 2.34 0.49 6.2789

Electronic1 122 189 0.025 3.10 10 0.06 4.93 0.25 3.6308

Ythan1 134 593 0.066 8.85 65 0.23 2.40 0.46 7.4653

Software Digital 150 198 0.017 2.64 25 0.05 4.85 0.25 4.8417
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Table A.2: Topological parameters of networks

Network Nodes edges δ k kmax C̄ l̄ Ef λ2

Scotch Broom 154 366 0.031 4.75 36 0.14 3.39 0.33 6.2284

El Verde 156 1439 0.119 18.45 83 0.21 2.30 0.5 9.4123

Little Rock 181 2318 0.142 25.61 105 0.35 2.22 0.51 26.1729

PIN Malaria 229 604 0.023 5.28 35 0.17 3.38 0.33 7.9178

PIN E. coil 230 695 0.026 6.04 36 0.22 3.78 0.31 8.5681

Small World 233 994 0.036 8.53 147 0.56 2.37 0.45 14.7231

Electronic2 252 399 0.012 3.17 14 0.06 5.81 0.2 3.9621

Neurons 280 1973 0.05 14.09 77 0.28 2.63 0.42 14.0663

Trans E. coli 328 456 0.008 2.78 72 0.11 4.83 0.25 6.2972

USAir97 332 2126 0.038 12.81 139 0.63 2.74 0.41 17.3085

Electronic3 512 819 0.006 3.20 22 0.05 6.86 0.17 4.1209

Drugs 616 2012 0.010 6.53 58 0.55 5.28 0.23 14.2338

Trans Yeast 662 1062 0.004 3.21 71 0.05 5.20 0.22 8.4518

PIN H. pyroli 710 1396 0.005 3.93 55 0.02 4.15 0.26 8.2499

Software VTK 771 1357 0.004 3.52 83 0.06 4.53 0.24 8.7069

Software XMMS 971 1802 0.003 3.71 36 0.05 6.35 0.18 8.9324

Roget 994 3640 0.007 7.32 28 0.15 4.08 0.27 9.8092

Software Abi 1035 1719 0.003 3.32 89 0.06 5.08 0.22 7.6764

Software MySQL 1480 4190 0.003 5.66 220 0.16 5.47 0.23 14.4141

Corporate elite 1586 11540 0.009 14.55 65 0.50 3.51 0.31 19.2296

173



A. Datasets and Tables

Table A.3: Topological parameters and βc of networks

Network % βc λ1 − λ2 λ2 − λ3 ξ̄ θ̄ Ω̄

Benguela 1.156 4.0.10−3 11.1477 1.6585 160.9 1.22 104.3

Coachella 1.129 6.7.10−3 13.0578 1.404 622.1 0.25 71.6

Sicail3 1.194 22.3.10−3 2.1617 0.4974 3.61 52.1 288.8

Macaque 1.158 18.1.10−3 6.7087 3.2987 91.5 3.6 119.1

PIN A. fulgidus 1.557 3.2.10−3 0.7359 0.5219 2.1 79.3 1233.2

Hitech 1.440 29.7.10−4 3.8629 1.1479 7.2 39.2 416.5

Chesapeake 1.335 1.3.10−3 1.2151 1.5505 3.7 60.6 575.4

Zackary 1.465 11.5.10−3 1.7486 2.0606 4.6 45.4 470.2

Skipwith 1.094 2.9.10−2 18.6481 0.4785 3327.9 0.015 66.1

Sawmill 1.443 3.0.10−3 1.7004 0.1365 2.9 71.4 879.07

St. Martin 1.264 7.1.10−3 5.5589 3.6695 41.7 6.1 354.4

Trans Urchin 1.879 9.0.10−5 3.7353 0.1617 4.2 61.8 2002.8

St. Marks 1.306 5.7.10−3 6.9337 0.1482 33.2 8.2 396.1

Reef Small 1.180 7.4.10−3 15.1769 3.3023 8975.4 0.04 175.2

PIN KSHV 1.624 3.6.10−3 3.7953 0.2489 5.17 51.5 1380.2

Dolphins 1.402 1.8.10−4 1.2573 1.106 5.9 65.3 1864.3

Prison 1.319 1.6.10−3 0.9748 0.4963 3.8 76.5 2352.7

Bridge Brook 1.428 6.0.10−5 7.9428 8.957 2041.5 2 829.4

World Trade 1.3774 8.4.10−3 19.5234 1.2534 185830 0.006 439.01

Shelf 1.169 3.5.10−3 30.1925 5.0688 61317000 0.00003 234.6

PIN B. subtilis 2.035 8.3.10−4 0.9766 0.2854 2.5 81.7 8801

Ythan2 1.743 2.7.10−3 9.6343 0.2525 180.7 2.03 2202.1

Canton 1.493 6.2.10−4 12.5243 0.9162 1103.8 0.46 2781.7

Stony 1.531 9.9.10−4 16.4232 0.8835 5372 0.09 2784.1

Electronic1 1.325 1.1.10−4 0.4755 0.1264 2.6 86.1 1308.2

Ythan1 1.891 1.6.10−3 9.2716 0.7321 251.8 2.1 5066.1

Software Digital 2.538 3.0.10−6 1.8603 1.3521 3.2 81.6 33732
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Table A.3: Topological parameters and βc of networks

Network % βc λ1 − λ2 λ2 − λ3 ξ̄ θ̄ Ω̄

Scotch Broom 3.095 1.8.10−5 8.4851 0.9613 95.2 30.3 18878

El Verde 1.707 5.3.10−5 22.0819 0.9165 393310 0.006 4554.7

Little Rock 1.593 4.2.10−4 14.6429 11.2706 37086000 0.05 4022.7

PIN Malaria 1.854 1.6.10−4 1.8626 1.9766 8.6 55.03 21314

PIN E. coil 2.636 6.2.10−8 7.363 1.6578 147.9 39.7 43692

Small World 2.456 9.1.10−4 6.2385 6.1129 1459.4 5.05 17115

Electronic2 1.376 3.6.10−5 0.3979 0.0809 2.7 87.9 58313

Neurons 1.652 9.0.10−5 9.2266 3.124 4575.4 1.5 10342

Trans E. coli 3.259 9.0.10−9 2.7664 1.1304 5.1 77.4 136090

USAir97 3.219 1.6.10−7 23.9249 7.3098 37249000 0.002 45538

Electronic3 1.565 3.9.10−6 0.8891 0.0468 2.82 88.8 251490

Drugs 2.757 1.8.10−9 3.7761 0.6647 245.2 64 348790

Trans Yeast 3.109 2.0.10−8 1.5243 0.6435 7.1 83.3 450470

PIN H. pyroli 2.661 6.0.10−6 2.2159 1.4565 7.1 67.5 370530

Software VTK 3.255 2.0.10−6 2.7514 0.6763 9.7 70.1 563410

Software XMMS 2.770 9.0.10−10 1.3513 1.7303 6.4 84.3 1011600

Roget 1.642 3.0.10−6 2.2181 0.7447 14.8 65.7 316670

Software Abi 3.596 2.0.10−6 4.269 0.3969 9.2 72.8 1233700

Software MySQL 3.835 2.0.10−14 7.3001 1.9879 895.5 45.6 1700500

Corporate elite 1.596 2.0.10−8 3.9 1.004 2099.8 15.5 337470

Statistical Tools for Correlation

To investigate the relationship between network robustness and network’s structural

properties, we use two correlation coefficients. There are many measures of correlations

in the literature, however, in this thesis we consider the Pearson correlation coefficient

and the coefficient of variation [39, 103].
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Definition A.0.1. The Pearson correlation coefficient r between two variables X =

(x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) is defined by

r =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
√
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
. (A.1)

The Pearson correlation coefficient is bounded by 0 ≤ |r| ≤ 1. A positive value of

r indicates that Y increases as X increases, and a negative value implies that X and

Y are inversely related where Y decreases as X increases. If |r| = 0, then there is no

relationship between the variables X and Y . If |r| = 1 then X and Y are completely

correlated.

Definition A.0.2. The coefficient of variation CV of the variables X1, X2, . . . , Xn is

the standard deviation divided by the mean of these variables,

CV =

√∑n
i=1(Xi−

∑n
i=1

Xi
n

)2

n∑n
i=1Xi
n

. (A.2)
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Appendix B

MATLAB c© Scripts

B.1 Script for Global to Local Degree Heterogeneity In-

dex and some basic Parameters for the Adjacency

Matrix of Simple Connected Networks.

1 % A is adjacency matrix of the network

2 A=max(A,A’);

3 A=A-diag(diag(A));

4 [V,D]=eig(A);

5 b=sort(diag(D))

6 n=length(A) % number of nodes

7 m=sum(sum(A))/2 % number of links

8 k=(2*m)/n % average -degree(A)

9 t=sum(A);

10 k_max=max(t) % max -degree(A)

11 h=2*m/(n*(n-1)) % edge density

12 lambda1=b(n) % lambda_1 of A

13 lambda2=b(n-1) % lambda_2 of A

14 c1=b(n)-b(n-1) % Spectral gap

15 % global to local degree heterogeneity

16 q=n*lambda1/k;

B.2 Script for calculating the Kirchhoff Index Kf
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1 L=diag(sum(A))-A ; % L Laplacian Matrix , % A is adjacency matrix

of the network

2 [V,D]= eig(L);

3 b=sort(diag(D));

4 un = b(end);

5 u2 = b(2) ;

6 n=length(A);

7 D=zeros(n,n);

8 for i=1:n;

9 for j=1:n;

10 D(i,j)==0;

11 for k=2:n;

12 D(i,j)=D(i,j)+((1/b(k))*((V(i,k)-V(j,k))^2));

13 end

14 end

15 end

16 D;

17 Kf=0;

18 for i=1:n-1;

19 for j=i+1:n;

20 Kf=Kf+D(i,j);

21 end

22 end

23 Kf % kirchhoff index
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B.3 Script for calculating the Clustering Coefficient and

some other Parameters.

1 deg = sum(A); % A is adjacency matrix of the network

2 B=(1/2)*diag(A^3);

3 n=length(A) ;

4 cc=zeros(n,1);

5 for i=1:n

6 if deg(i) >1

7 cc(i)=(1/n)*(2*B(i)/(deg(i)*(deg(i) -1)));

8 end

9 end

10 cl=sum(cc) % clustering coefficient cl

11 G=expm(A) ; % Communicability matrix

12 sc=diag(G) ; %Vector of self -communicabilities

13 u=ones(n,1);

14 CD=(sc*u’+u*sc ’-2*G);

15 %Squared Communicability distance matrix

16 X=CD .^0.5 ; %Communicability distance matrix

17 An=acosd(G./((sc*u’).*(u*sc ’)).^0.5);

18 Average_Angle=sum(sum(An))/(n*(n-1)) % Average communicability

angle

19 Average_dist=sum(sum(X))/(n*(n-1)) % Average communicability

distance
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B.4 Script for calculating Diameter and Shorteast Path

Length Efficiency.

1 A=sparse(A); % A is adjacency matrix of the network

2 D=graphallshortestpaths(A,’Directed ’,false);

3 Di=max(D(:)); % Diameter Di

4 % average path length l

5 n=length(A);

6 l = sum(sum(D))/(n^2-n)

7 % shorteast path length efficiency l1

8 r=zeros(n);

9 r=(1./D);

10 for i=1:n

11 r(i,i)=0;

12 end

13 l1 =( 1/(n^2-n))*(sum(sum(r)))

B.5 Script for calculating the Pearson Correlation Coef-

ficient.

1 r; b; % r, b are vectors

2 n=length(r); br=zeros(n,1);

3 for k=1:n

4 br(k)=b(k)*r(k); % finding br

5 end

6 rr=zeros(n,1);

7 for k=1:n

8 rr(k)=r(k)*r(k); % finding r^2

9 end

10 bb=zeros(n,1);

11 for k=1:n

12 bb(k)=b(k)*b(k); % finding b^2

13 end

14 p=(n*sum(br)-sum(b)*sum(r))/(sqrt((n*sum(rr)-sum(r)^2))*

15 sqrt((n*sum(bb)-sum(b)^2))) % pearson correlation coefficient p
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B.6 Script for calculating the Beta Critical and Number

of Connected Components.

1 A=A-diag(diag(A)); % A is adjacency matrix

2 for beta= 0.000025 ;

3 [a,b] = sort(diag(D));

4 lambda1 = D(b(end),b(end)) ;

5 gamma1 = V(:,b(end));

6 gamma1=abs(gamma1) ;

7 C1=( gamma1*exp(beta*lambda1)*gamma1 ’);

8 H=diag(exp(beta*diag(D)));

9 G=V*H*V’;

10 DG=G-C1 ;

11 DG=DG-diag(diag(DG)); HH=DG+max(max(DG));

12 n=length(A);

13 sgnDG=zeros(n,n);

14 for i=1:n;

15 for j=1:n;

16 if HH(i,j) >=0

17 sgnDG(i,j)=1;

18 else sgnDG(i,j)=0;

19 end;end;end;

20 AC=sgnDG -diag(diag(sgnDG));

21 L=diag(sum(AC))-AC;

22 [V,D]= eig(L);

23 [a1 ,b2] = sort(diag(D));

24 nc=numel(find(a1 <10^( -5))) % number connected components

25 h=beta

26 end
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B.7 Script for calculating the Coefficient of Variation and

some other Parameters.

1 % finding melted nodes

2 % AC is the communicability graph adjacency matrix

3 % A is adjacency matrix of the network

4 n=length(AC);

5 beta_melt=zeros(n,1);

6 for r=1:n;

7 if AC(r,:) ==0

8 beta_melt(r,1)=beta ;

9 end;

10 end;

11 beta_melt;

12 % highlighting melted nodes

13 h =plot(graph(A),’Layout ’,’force’,’EdgeColor ’,’b’,

14 ’NodeColor ’,’b’, ’MarkerSize ’,7,’NodeLabel ’,{},

15 ’LineWidth ’ ,0.75)

16 highlight(h,[ melted nodes],’NodeColor ’,’r’)

17 axis off

18 % Eigenvector Centrality EC

19 G=graph(A); EC=centrality(G,’eigenvector ’)

20 % Supgraph Centrality SE

21 B=expm(A); SE=diag(B);

22 % Coefficient of variation cv

23 % r is vector

24 n=length(r); m=sum(r)/n; Se=0;

25 for i=1:n

26 Se=Se+(r(i)-m)^2;

27 end

28 d=sqrt(Se/n); cv=(d/m);
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B.8 Script for Communicability Function of Dumbbell Graphs

1 n=5; % n is number of nodes in each clique

2 z1=ones(n,n); z1=z1-eye(n);

3 A=blkdiag(z1 ,z1); A(n,n+1) =1;

4 A=max(A,A’); A=A-diag(diag(A))

5 [V,D]= eig(A); b=sort(diag(D))

6 format long

7 G=expm(A);

8 y1=1/( sqrt ((2*(1+((n-1)/(b(2*n)-n+2) ^2)))));

9 x1 =(1/(b(2*n)-n+2))*y1;

10 y2=1/( sqrt ((2*(1+((n-1)/(b(2*n-1)-n+2) ^2)))));

11 x2 =(1/(b(2*n-1)-n+2))*y2;

12 y3=1/( sqrt ((2*(1+((n-1)/(b(2*n-2)-n+2) ^2)))));

13 x3 =(1/(b(2*n-2)-n+2))*y3;

14 y2n =1/( sqrt ((2*(1+((n-1)/(b(1)-n+2) ^2)))));

15 x2n =(1/(b(1)-n+2))*y2n;

16 G3=((x1)^2)*exp(b(2*n))+((x2)^2)*exp(b(2*n-1))+((x3)^2)*exp(b(2*n-2))

+((x2n)^2)*exp(b(1))-exp(-1)*((x1)^2+(x2)^2+(x3)^2+( x2n)^2)

17 G4=(y1*x1)*exp(b(2*n))+(y2*x2)*exp(b(2*n-1))+(y3*x3)*exp(b(2*n-2))+(

y2n*x2n)*exp(b(1))

18 G5=(y1*x1)*exp(b(2*n)) -(y2*x2)*exp(b(2*n-1))+(y3*x3)*exp(b(2*n-2)) -(

y2n*x2n)*exp(b(1))

19 G6=((x1)^2)*exp(b(2*n)) -((x2)^2)*exp(b(2*n-1))+((x3)^2)*exp(b(2*n-2))

-((x2n)^2)*exp(b(1))+exp(-1)*(-(x1)^2+(x2)^2-(x3)^2+( x2n)^2)

20 G7=((y1)^2)*exp(b(2*n)) -((y2)^2)*exp(b(2*n-1))+((y3)^2)*exp(b(2*n-2))

-((y2n)^2)*exp(b(1))

21 figure (1)

22 h=plot(graph(A),’Layout ’,’force’,’EdgeColor ’,’b’,’NodeColor ’,’r’,’

MarkerSize ’,12,’LineWidth ’,1,’NodeLabel ’ ,{})

23 axis off
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B.9 Script for Communicability Function of Windmill Graphs

1 % n is number of nodes in each clique.

2 % d is number of cliques.

3 n=2; d=3;

4 z2=ones(n,n); c=eye(d);

5 B=kron(c,z2); A=blkdiag(0,B) ;

6 A(1,2:d*n+1)=1; A=max(A,A’);

7 A=A-diag(diag(A)); [V,D]= eig(A);

8 b=sort(diag(D))

9 format long

10 G=expm(A)

11 p = [1 (1-n) -d*n];

12 r = roots(p)

13 x1=1/ sqrt(d*n+(r(1)-n+1) ^2);

14 y1=(r(1)-n+1)*x1;

15 x2=1/ sqrt(d*n+(r(2)-n+1) ^2);

16 y2=(r(2)-n+1)*x2;

17 x3=1/ sqrt(d*n);

18 r(3)=n-1;

19 G3=(x1*y1)*exp(r(1))+(x2*y2)*exp(r(2))

20 G4=((x1)^2)*exp(r(1))- ((x1)^2+(x2)^2 -(1/n))*exp(r(3))+((x2)^2)*exp(r

(2))-exp(-1)*(1/n)

21 G5=((x1)^2)*exp(r(1))+((x2)^2)*exp(r(2)) -((x1)^2+(x2)^2)*exp(r(3))

22 figure (1)

23 h =plot(graph(A),’Layout ’,’force’,’EdgeColor ’,’b’,’NodeColor ’,’r’,’

MarkerSize ’,12,’LineWidth ’,1,’NodeLabel ’ ,{})

24 axis off
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B.10 Script for Archimedean Lattice (3, 122).

1 n=12; % n is natural number

2 A=[0 1 1

3 1 0 1

4 1 1 0];

5 n=n^2; c=eye(n);

6 d=kron(c,A); d=max(d,d’); m=sqrt(n);

7 for j=0:m-1;

8 for i=3:3:3*m-3

9 d(i+3*m*j,i+3*m*j+1)=1;

10 d(i+3*m*j+1,i+3*m*j)=1;

11 end

12 end

13 for j=0:2:m-2;

14 for i=2:6:3*m-1

15 d(i+3*m*j,i+3*m*(j+1))=1;

16 d(i+3*m*(j+1),i+3*m*j)=1;

17 end

18 end

19 for j=1:2:m-2;

20 for i=5:6:3*m-1

21 d(i+3*m*j,i+3*m*(j+1))=1;

22 d(i+3*m*(j+1),i+3*m*j)=1;

23 end

24 end

25 d=max(d,d’);

26 hold on

27 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0.6,0]’, ’

MarkerSize ’,6,’EdgeColor ’, ’[0.3, 0.5 ,0.1]’,’LineWidth ’, 5 )

28 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0.6,0]’, ’

MarkerSize ’,6,’EdgeColor ’, ’[0.3, 0.6 ,0.2]’,’LineStyle ’,’:’,’

LineWidth ’,3 )

29 hold off

30 axis off
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B.11 Script for Archimedean Lattice (3, 6, 3, 6).

1 n=23; % n is natural number

2 A=[0 1 1

3 1 0 1

4 1 1 0];

5 n=n^2; c=eye(n);

6 d=kron(c,A); d=max(d,d’); n=sqrt(n)

7 for j=0:n-1;

8 for i=3:3:3*n-3;

9 d(i+3*j*n,i+3*j*n+1)=1;

10 d(i+3*j*n+1,i+3*j*n)=1;

11 end;

12 end;

13 for j=0:2:n-2;

14 for i=5:3:3*n-1;

15 d(i+3*j*n,i+3*(j+1)*n-2)=1;

16 d(i+3*j*n,i+3*(j+1)*n-1)=1;

17 end;

18 end;

19 for j=0:2:n-2;

20 d(2+3*j*n ,2+3*(j+1)*n-1)=1;

21 d(2+3*(j+1)*n-1 ,2+3*j*n)=1;

22 end;

23 for j=1:2:n-2;

24 for i=2:3:3*n-4;

25 d(i+3*j*n,i+3*(j+1)*n+1)=1;

26 d(i+3*j*n,i+3*(j+1)*n+2)=1;

27 d(i+3*(j+1)*n+1,i+3*j*n)=1;

28 d(i+3*(j+1)*n+2,i+3*j*n)=1;

29 end;

30 end;

31 for j=1:2:n-2;

32 for i=3*n-1;

33 d(i+3*j*n,i+3*(j+1)*n+1)=1;

34 d(i+3*(j+1)*n+1,i+3*j*n)=1;

35 end;
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36 end;

37 d=max(d,d’);

38 hold on

39 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’EdgeColor ’, ’[0.3, 0.1 ,0.5]’,’LineWidth ’, 5 )

40 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’EdgeColor ’, ’[0.3, 0.2 ,0.6]’,’LineStyle ’,’:’,’

LineWidth ’,3 )

41 hold off

42 axis off

B.12 Script for Archimedean Lattice (4, 82).

1 n=5; % n is natural number

2 A=[0 1 1 0

3 1 0 0 1

4 1 0 0 1

5 0 1 1 0];

6 n=n^2; c=eye(n);

7 f=kron(c,A); f=max(f,f’); c=zeros(n*4);

8 for i=4:4:n*4-1;

9 c(i,i+1)=1;

10 end

11 m=sqrt(n);

12 for i=m*4:m*4:n*4-1;

13 c(i,i+1)=0;

14 end

15 c=max(c,c’);

16 c2=zeros(n*4);

17 for i=2:4:4*n-4*m;

18 c2(i,i+4*m+1) =1;

19 end

20 c2=max(c2,c2 ’);

21 r=c+f+c2; r=max(r,r’);

22 hold on

23 h = plot(graph(r),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

187



B. MATLAB c© Scripts

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.1 ,0.5]’,’

LineWidth ’, 5 )

24 h = plot(graph(r),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.2 ,0.6]’,’

LineStyle ’,’:’,’LineWidth ’,3 )

25 hold off

26 axis off

B.13 Script for Archimedean Lattice (32, 4, 3, 4).

1 n= 40; % n is even number

2 el =zeros(n-1,3);

3 el = [[1:n-1]’ [2:n]’ ones(n-1,1)];

4 nodes=sort(unique ([el(:,1) el(:,2)])); % get all nodes , sorted

5 n=numel(nodes) % number of unique nodes

6 A=zeros(n); % initialize adjacency matrix

7 for i=1: size(el ,1); % across all edges

8 A(find(nodes==el(i,1)),find(nodes==el(i,2)))=el(i,3);

9 end

10 A=max(A,A’); A=A-diag(diag(A)); c=eye(n);

11 d=kron(c,A)+kron(A,c);

12 for j=0:n-2;

13 for i=1:n;

14 d(i+j*n,i+(j+1)*n)=0;

15 d(i+(j+1)*n,i+j*n)=0;

16 end;

17 end;

18 for j=0:8:n-2;

19 for i=1:3:n-1;

20 d(i+j*n,i+(j+1)*n)=1;

21 d(i+j*n,i+(j+1)*n+1)=1;

22 end

23 end

24 for j=0:8:n-2;

25 for i=1:3:n;

26 d(i+j*n,i+(j+1)*n)=1;
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27 end

28 end

29 for j=0:8:n-2;

30 for i=2:3:n-1;

31 d(i+j*n,i+(j+1)*n+1)=1;

32 d(i+j*n+1,i+(j+1)*n+1)=1;

33 end

34 end

35 for j=4:8:n-2;

36 for i=1:3:n-1;

37 d(i+j*n,i+(j+1)*n)=1;

38 d(i+j*n+1,i+(j+1)*n)=1;

39 end

40 end

41 for j=4:8:n-2;

42 for i=1:3:n;

43 d(i+j*n,i+(j+1)*n)=1;

44 end

45 end

46 for j=4:8:n-2;

47 for i=3:3:n;

48 d(i+j*n,i+(j+1)*n-1)=1;

49 d(i+j*n,i+(j+1)*n)=1;

50 end

51 end

52 for j=3:4:n-1;

53 d(n*j,n*j+1)=1;

54 end

55 for j=2:4:n-2;

56 for i=1:3:2*n-3

57 d(i+j*n,i+j*n+2)=1;

58 d(i+j*n+1,i+j*n+3)=1;

59 end

60 end

61 for j=2:4:n-2;

62 for i=1:3:2*n-2

63 d(i+j*n,i+j*n+2)=1;
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64 end

65 end

66 for j=2:4:n-2;

67 for i=5:6:2*n-3

68 d(i+j*n,i+j*n+1)=0;

69 d(i+j*n+1,i+j*n)=0;

70 end

71 end

72 for j=2:4:n-2;

73 for i=4:6:2*n-3

74 d(i+j*n,i+j*n+3)=1;

75 end

76 end

77 for j=1:8:n-3;

78 for i=1:3:n-1;

79 d(i+j*n,2*i+(j+1)*n)=1;

80 d(i+j*n+1,2*i+(j+1)*n)=1;

81 end

82 end

83 for j=1:8:n-3;

84 for i=1:3:n;

85 d(i+j*n,2*i+(j+1)*n)=1;

86 end

87 end

88 for j=1:8:n-3;

89 for i=2:3:n-2;

90 d(i+j*n,2*i+1+(j+1)*n)=1;

91 d(i+j*n+1,2*i+1+(j+1)*n)=1;

92 d(i+j*n+2,2*i+1+(j+1)*n)=1;

93 end

94 end

95 for j=4:8:n-2;

96 for i=1:3:n-1;

97 d(i+j*n,2*i+1+(j-2)*n)=1;

98 d(i+j*n+1,2*i+1+(j-2)*n)=1;

99 end

100 end
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101 for j=4:8:n-2;

102 for i=2:3:n-2;

103 d(i+j*n,2*i+2+(j-2)*n)=1;

104 d(i+j*n+1,2*i+2+(j-2)*n)=1;

105 d(i+j*n+2,2*i+2+(j-2)*n)=1;

106 end

107 end

108 for j=5:8:n-3;

109 for i=1:3:n-2;

110 d(i+j*n+1,2*i+(j+1)*n)=1;

111 d(i+j*n+2,2*i+(j+1)*n)=1;

112 end

113 end

114 for j=5:8:n-3;

115 for i=1:3:n-1;

116 d(i+j*n+1,2*i+(j+1)*n)=1;

117 end

118 end

119 for j=5:8:n-2;

120 for i=2:3:n-3;

121 d(i+j*n+1,2*i+1+(j+1)*n)=1;

122 d(i+j*n+2,2*i+1+(j+1)*n)=1;

123 d(i+j*n+3,2*i+1+(j+1)*n)=1;

124 end

125 end

126 for j=5:8:n-2;

127 for i=2:3:n-1;

128 d(i+j*n+1,2*i+1+(j+1)*n)=1;

129 end

130 end

131 for j=5:8:n-2;

132 for i=2:3:n-2;

133 d(i+j*n+2,2*i+1+(j+1)*n)=1;

134 end

135 end

136 for j=8:8:n-2;

137 for i=1:3:n-2;
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138 d(i+j*n+1,2*i+1+(j-2)*n)=1;

139 d(i+j*n+2,2*i+1+(j-2)*n)=1;

140 end

141 end

142 for j=8:8:n-2;

143 for i=1:3:n-1;

144 d(i+j*n+1,2*i+1+(j-2)*n)=1;

145 end

146 end

147 for j=8:8:n-2;

148 for i=2:3:n-3;

149 d(i+j*n+1,2*i+2+(j-2)*n)=1;

150 d(i+j*n+2,2*i+2+(j-2)*n)=1;

151 d(i+j*n+3,2*i+2+(j-2)*n)=1;

152 end

153 end

154 for j=8:8:n-2;

155 for i=2:3:n-1;

156 d(i+j*n+1,2*i+2+(j-2)*n)=1;

157 end

158 end

159 for j=8:8:n-2;

160 for i=2:3:n-2;

161 d(i+j*n+2,2*i+2+(j-2)*n)=1;

162 end

163 end

164 d=max(d,d’);

165 hold on

166 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0.6,0]’, ’

MarkerSize ’,5,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.5 ,0.1]’,’

LineWidth ’, 5 )

167 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0.6,0]’, ’

MarkerSize ’,5,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.6 ,0.2]’,’

LineStyle ’,’:’,’LineWidth ’,3 )

168 hold off

169 axis off
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B.14 Script for Archimedean Lattice (33, 42).

1 n=40; % n is natural number

2 el =zeros(n-1,3);

3 el = [[1:n-1]’ [2:n]’ ones(n-1,1)];

4 nodes=sort(unique ([el(:,1) el(:,2)])); % get all nodes , sorted

5 n=numel(nodes) % number of unique nodes

6 A=zeros(n); % initialize adjacency matrix

7 for i=1: size(el ,1); % across all edges

8 A(find(nodes==el(i,1)),find(nodes==el(i,2)))=el(i,3);

9 end

10 A=max(A,A’); A=A-diag(diag(A));

11 c=eye(n);

12 d=kron(c,A)+kron(A,c);

13 for j=0:4:n-2;

14 for i=2:n;

15 d(i+j*n,(j+1)*n+i-1)=1;

16 end

17 end

18 for j=2:4:n-2;

19 for i=1:n-1;

20 d(i+j*n,(j+1)*n+i+1)=1;

21 end

22 end

23 d=max(d,d’);

24 hold on

25 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0.6,0]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.5 ,0.1]’,’

LineWidth ’, 5 )

26 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0.6,0]’, ’

MarkerSize ’,6,’EdgeColor ’, ’[0.3, 0.6 ,0.2]’,’LineStyle ’,’:’,’

LineWidth ’,3 )

27 hold off

28 axis off
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B.15 Script for Archimedean Lattice (34, 6).

1 n=40; % n=10, 16, 22 ,..

2 el =zeros(n-1,3);

3 el = [[1:n-1]’ [2:n]’ ones(n-1,1)];

4 nodes=sort(unique ([el(:,1) el(:,2)])); % get all nodes , sorted

5 n=numel(nodes) % number of unique nodes

6 A=zeros(n); % initialize adjacency matrix

7 for i=1: size(el ,1); % across all edges

8 A(find(nodes==el(i,1)),find(nodes==el(i,2)))=el(i,3);

9 end

10 A=max(A,A’); A=A-diag(diag(A));

11 c=eye(n);

12 d=kron(c,A)+kron(A,c);

13 for j=0:3:n-1;

14 for i=2:6:n-1;

15 d(i+j*n,i+j*n+1)=0;

16 d(i+j*n+1,i+j*n)=0;

17 end;

18 end;

19 for j=1:3:n-1;

20 for i=6:6:n-1;

21 d(i+j*n,i+j*n+1)=0;

22 d(i+j*n+1,i+j*n)=0;

23 end;

24 end;

25 for j=2:3:n-1;

26 for i=4:6:n-1;

27 d(i+j*n,i+j*n+1)=0;

28 d(i+j*n+1,i+j*n)=0;

29 end;

30 end;

31 for j=0:3:n-2;

32 for i=2:6:n-1;

33 d(i+j*n,i+(j+1)*n-1)=1;

34 d(i+(j+1)*n-1,i+j*n)=1;

35 end;
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36 end;

37 for j=0:3:n-2;

38 for i=3:6:n-3;

39 d(i+j*n,i+(j+1)*n+1)=1;

40 d(i+j*n+1,i+(j+1)*n+2)=1;

41 d(i+j*n+2,i+(j+1)*n+3)=1;

42 d(i+(j+1)*n+1,i+j*n)=1;

43 d(i+(j+1)*n+2,i+j*n+1)=1;

44 d(i+(j+1)*n+3,i+j*n+2)=1;

45 end;

46 end;

47 for j=1:3:n-2;

48 for i=6:6:n-3;

49 d(i+j*n,i+(j+1)*n-1)=1;

50 d(i+j*n+1,i+(j+1)*n+2)=1;

51 d(i+(j+1)*n+2,i+j*n+1)=1;

52 d(i+(j+1)*n-1,i+j*n)=1;

53 d(i+j*n-5,i+(j+1)*n-4)=1;

54 d(i+j*n-4,i+(j+1)*n-3)=1;

55 d(i+j*n-3,i+(j+1)*n-2)=1;

56 d(i+(j+1)*n-4,i+j*n-5)=1;

57 d(i+(j+1)*n-3,i+j*n-4)=1;

58 d(i+(j+1)*n-2,i+j*n-3)=1;

59 end;

60 end;

61 for j=1:3:n-2;

62 for i=6:6:n;

63 d(i+j*n-5,i+(j+1)*n-4)=1;

64 d(i+j*n-4,i+(j+1)*n-3)=1;

65 d(i+j*n-3,i+(j+1)*n-2)=1;

66 d(i+(j+1)*n-4,i+j*n-5)=1;

67 d(i+(j+1)*n-3,i+j*n-4)=1;

68 d(i+(j+1)*n-2,i+j*n-3)=1;

69 end;

70 end;

71 for j=1:3:n-2;

72 for i=6:6:n;
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73 d(i+j*n-5,i+(j+1)*n-4)=1;

74 d(i+j*n-4,i+(j+1)*n-3)=1;

75 d(i+j*n-3,i+(j+1)*n-2)=1;

76 d(i+(j+1)*n-4,i+j*n-5)=1;

77 d(i+(j+1)*n-3,i+j*n-4)=1;

78 d(i+(j+1)*n-2,i+j*n-3)=1;

79 end;

80 end;

81 for j=1:3:n-2

82 d(n-2+j*n,n+(j+1)*n-1)=1;

83 d(n-1+j*n,n+1+(j+1)*n-1)=1;

84 d(n+1+(j+1)*n-1,n-1+j*n)=1;

85 d(n+(j+1)*n-1,n-2+j*n)=1;

86 end

87 for j=0:3:n-2

88 i=n-1;

89 d(i+j*n,i+1+(j+1)*n)=1;

90 d(i+1+(j+1)*n,i+j*n)=1;

91 end

92 for j=2:3:n-2;

93 for i=1:6:n-3;

94 d(i+j*n,i+(j+1)*n+1)=1;

95 d(i+j*n+3,i+(j+1)*n+2)=1;

96 d(i+(j+1)*n+1,i+j*n)=1;

97 d(i+(j+1)*n+2,i+j*n+3)=1;

98 end;

99 end;

100 for j=2:3:n-2;

101 for i=5:6:n-3;

102 d(i+j*n,i+(j+1)*n+1)=1;

103 d(i+j*n+1,i+(j+1)*n+2)=1;

104 d(i+j*n+2,i+(j+1)*n+3)=1;

105 d(i+(j+1)*n+1,i+j*n)=1;

106 d(i+(j+1)*n+2,i+j*n+1)=1;

107 d(i+(j+1)*n+3,i+j*n+2)=1;

108 end;

109 end;
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110 d=max(d,d’);

111 hold on

112 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0.6,0]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.5 ,0.1]’,’

LineWidth ’, 5 )

113 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0.6,0]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.6 ,0.2]’,’

LineStyle ’,’:’,’LineWidth ’,3 )

114 hold off

115 axis off

B.16 Script for Archimedean Lattice (36).

1 n=40; % n is natural number

2 el =zeros(n-1,3);

3 el = [[1:n-1]’ [2:n]’ ones(n-1,1)];

4 nodes=sort(unique ([el(:,1) el(:,2)])); % get all nodes , sorted

5 n=numel(nodes) % number of unique nodes

6 A=zeros(n); % initialize adjacency matrix

7 for i=1: size(el ,1); % across all edges

8 A(find(nodes==el(i,1)),find(nodes==el(i,2)))=el(i,3);

9 end

10 A=max(A,A’); A=A-diag(diag(A));

11 c=eye(n);

12 d=kron(c,A)+kron(A,c);

13 % j=0:((n-1)/2) -1 if n is odd or j=0:(n/2) -1 if n is even

14 for j=0:((n)/2) -1;

15 for i=2:n;

16 d(i+2*j*n,(2*j+1)*n+i-1)=1;

17 end

18 end

19 % j=0:((n-1)/2) -1 if n is odd or j=0:(n/2) -2 if n is even

20 for j=0:((n)/2) -2;

21 for i=2:n;

22 d((2*j+1)*n+i-1,i+2*(j+1)*n)=1;

23 end
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24 end

25 d=max(d,d’);

26 hold on

27 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.1 ,0.5]’,’

LineWidth ’, 5 )

28 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.2 ,0.6]’,’

LineStyle ’,’:’,’LineWidth ’,3 )

29 hold off

30 axis off

B.17 Script for Archimedean Lattice (3, 4, 6, 4).

1 n=40; % n is natural number

2 el =zeros(n-1,3);

3 el = [[1:n-1]’ [2:n]’ ones(n-1,1)];

4 nodes=sort(unique ([el(:,1) el(:,2)])); % get all nodes , sorted

5 n=numel(nodes) % number of unique nodes

6 A=zeros(n); % initialize adjacency matrix

7 for i=1: size(el ,1); % across all edges

8 A(find(nodes==el(i,1)),find(nodes==el(i,2)))=el(i,3);

9 end

10 A=max(A,A’); A=A-diag(diag(A));

11 c=eye(n);

12 d=kron(c,A)+kron(A,c);

13 for j=0:n-2;

14 for i=1:n;

15 d(i+j*n,i+(j+1)*n)=0;

16 d(i+(j+1)*n,i+j*n)=0;

17 end;

18 end;

19 for j=0:4:n-2;

20 for i=1:3:n-1;

21 d(i+j*n,i+(j+1)*n)=1;

22 d(i+j*n,i+(j+1)*n+1)=1;
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23 d(i+(j+1)*n,i+j*n)=1;

24 d(i+(j+1)*n+1,i+j*n)=1;

25 end

26 end

27 for j=0:4:n-2;

28 for i=2:3:n-1;

29 d(i+j*n,i+(j+1)*n+1)=1;

30 d(i+j*n+1,i+(j+1)*n+1)=1;

31 d(i+(j+1)*n+1,i+j*n)=1;

32 d(i+(j+1)*n+1,i+j*n+1)=1;

33 end

34 end

35 for j=2:4:n-2;

36 for i=1:3:n-1;

37 d(i+j*n,i+(j+1)*n)=1;

38 d(i+j*n+1,i+(j+1)*n)=1;

39 d(i+(j+1)*n,i+j*n)=1;

40 d(i+(j+1)*n,i+j*n+1)=1;

41 end

42 end

43 for j=2:4:n-2;

44 for i=3:3:n;

45 d(i+j*n,i+(j+1)*n-1)=1;

46 d(i+j*n,i+(j+1)*n)=1;

47 d(i+(j+1)*n-1,i+j*n)=1;

48 d(i+(j+1)*n,i+j*n)=1;

49 end

50 end

51 for j=1:4:n-2;

52 for i=1:3:n-1;

53 d(i+j*n,i+(j+1)*n)=1;

54 d(i+j*n+1,i+(j+1)*n+1)=1;

55 d(i+(j+1)*n,i+j*n)=1;

56 d(i+(j+1)*n+1,i+j*n+1)=1;

57 end;

58 end;

59 for j=3:4:n-2;
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60 for i=2:3:n-1;

61 d(i+j*n,i+(j+1)*n)=1;

62 d(i+j*n+1,i+(j+1)*n+1)=1;

63 d(i+(j+1)*n,i+j*n)=1;

64 d(i+(j+1)*n+1,i+j*n+1)=1;

65 end;

66 end;

67 d=max(d,d’);

68 hold on

69 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.1 ,0.5]’,’

LineWidth ’, 5 )

70 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.2 ,0.6]’,’

LineStyle ’,’:’,’LineWidth ’,3 )

71 hold off

72 axis off

B.18 Script for Archimedean Lattice (44).

1 n=4; % n is natural number

2 el =zeros(n-1,3);

3 el = [[1:n-1]’ [2:n]’ ones(n-1,1)];

4 nodes=sort(unique ([el(:,1) el(:,2)])); % get all nodes , sorted

5 n=numel(nodes) % number of unique nodes

6 A=zeros(n); % initialize adjacency matrix

7 for i=1: size(el ,1); % across all edges

8 A(find(nodes==el(i,1)),find(nodes==el(i,2)))=el(i,3);

9 end

10 A=max(A,A’); A=A-diag(diag(A));

11 c=eye(n);

12 d=kron(c,A)+kron(A,c);

13 d=max(d,d’);

14 hold on

15 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.1 ,0.5]’,’
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LineWidth ’, 5 )

16 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.2 ,0.6]’,’

LineStyle ’,’:’,’LineWidth ’,3 )

17 hold off

18 axis off

B.19 Script for Archimedean Lattice (4, 6, 12).

1 n=40; % n is even number

2 el =zeros(n-1,3);

3 el = [[1:n-1]’ [2:n]’ ones(n-1,1)];

4 nodes=sort(unique ([el(:,1) el(:,2)])); % get all nodes , sorted

5 n=numel(nodes) % number of unique nodes

6 A=zeros(n); % initialize adjacency matrix

7 for i=1: size(el ,1); % across all edges

8 A(find(nodes==el(i,1)),find(nodes==el(i,2)))=el(i,3);

9 end

10 A=max(A,A’);

11 A=A-diag(diag(A));

12 c=eye(n);

13 d=kron(c,A)+kron(A,c);

14 [V,D]= eig(d);

15 b=sort(diag(D));

16 for j=0:n-2;

17 for i=1:n;

18 d(i+j*n,i+(j+1)*n)=0;

19 d(i+(j+1)*n,i+j*n)=0;

20 end;

21 end;

22 for j=n:2*n:n*n-n;

23 d(j,j+1)=1;

24 d(j+1,j)=1;

25 end;

26 for j=0:4:n/2-2;

27 for i=1:6:2*n;
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28 d(i+j*2*n,i+(j+1)*2*n)=1;

29 d(i+j*2*n+1,i+(j+1)*2*n+1)=1;

30 d(i+(j+1)*2*n,i+j*2*n )=1;

31 d(i+(j+1)*2*n+1,i+j*2*n+1)=1;

32 end;

33 end;

34 for j=0:4:n/2-2;

35 for i=3:6:2*n-3;

36 d(i+j*2*n,i+(j+1)*2*n+2)=1;

37 d(i+j*2*n+1,i+(j+1)*2*n+3)=1;

38 d(i+(j+1)*2*n+2,i+j*2*n)=1;

39 d(i+(j+1)*2*n+3,i+j*2*n+1)=1;

40 end;

41 end;

42 for j=2:4:n/2-2;

43 for i=1:6:2*n;

44 d(i+j*2*n,i+(j+1)*2*n)=1;

45 d(i+j*2*n+1,i+(j+1)*2*n+1)=1;

46 d(i+(j+1)*2*n,i+j*2*n )=1;

47 d(i+(j+1)*2*n+1,i+j*2*n+1)=1;

48 end;

49 end;

50 for j=2:4:n/2-2;

51 for i=5:6:2*n-3;

52 d(i+j*2*n,i+(j+1)*2*n-2)=1;

53 d(i+j*2*n+1,i+(j+1)*2*n-1)=1;

54 d(i+(j+1)*2*n-2,i+j*2*n)=1;

55 d(i+(j+1)*2*n-1,i+j*2*n+1)=1;

56 end;

57 end;

58 for j=1:4:n/2-2;

59 for i=3:6:2*n-1;

60 d(i+j*2*n,i+(j+1)*2*n)=1;

61 d(i+j*2*n+1,i+(j+1)*2*n+1)=1;

62 d(i+(j+1)*2*n,i+j*2*n )=1;

63 d(i+(j+1)*2*n+1,i+j*2*n+1)=1;

64 end;
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65 end;

66 for j=3:4:n/2-2;

67 for i=5:6:2*n-1;

68 d(i+j*2*n,i+(j+1)*2*n)=1;

69 d(i+j*2*n+1,i+(j+1)*2*n+1)=1;

70 d(i+(j+1)*2*n,i+j*2*n )=1;

71 d(i+(j+1)*2*n+1,i+j*2*n+1)=1;

72 end;

73 end;

74 d=max(d,d’);

75 hold on

76 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.1 ,0.5]’,’

LineWidth ’, 5 )

77 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.2 ,0.6]’,’

LineStyle ’,’:’,’LineWidth ’,3 )

78 hold off

79 axis off

B.20 Script for Archimedean Lattice (63).

1 n=20; % n is natural number

2 el =zeros(n-1,3);

3 el = [[1:n-1]’ [2:n]’ ones(n-1,1)];

4 nodes=sort(unique ([el(:,1) el(:,2)])); % get all nodes , sorted

5 n=numel(nodes) % number of unique nodes

6 A=zeros(n); % initialize adjacency matrix

7 for i=1: size(el ,1); % across all edges

8 A(find(nodes==el(i,1)),find(nodes==el(i,2)))=el(i,3);

9 end

10 A=max(A,A’); A=A-diag(diag(A));

11 c=eye(n);

12 d=kron(c,A)+kron(A,c);

13 for j=0:2:n-2;

14 for i=2:2:n;
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15 d(i+j*n,i+(j+1)*n)=0;

16 d(i+(j+1)*n,i+j*n)=0;

17 end

18 end

19 for j=1:2:n-2;

20 for i=1:2:n;

21 d(i+j*n,i+(j+1)*n)=0;

22 d(i+(j+1)*n,i+j*n)=0;

23 end

24 end

25 d=max(d,d’);

26 hold on

27 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.1 ,0.5]’,’

LineWidth ’, 5 )

28 h = plot(graph(d),’EdgeColor ’,’k’, ’NodeColor ’,’[0.3, 0 ,0.6]’, ’

MarkerSize ’,6,’NodeLabel ’,{},’EdgeColor ’, ’[0.3, 0.2 ,0.6]’,’

LineStyle ’,’:’,’LineWidth ’,3 )

29 hold off

30 axis off
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