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Abstract

The construction of e�cient solvers for non self-adjoint problems, like Helmholtz equa-

tions is a challenging task. After the discretisation of the PDE by a finite element

method, the resulting linear systems are large and because of their spectral properties,

di�cult to analyse theoretically and to solve by iterative methods. Domain decomposi-

tion methods are hybrid methods, as they use an iterative coupling of smaller problems

which are solved in turn by direct methods. They rely on dividing the global problem

into local subproblems on smaller subdomains. These methods can be used as iterative

solvers but also as preconditioners in a Krylov method. Robustness with respect of the

number of subdomains is important as this is related to the notion of scalability. We

focus here on a configuration where scalability is achieved without the addition of a

coarse-space correction. However, convergence can still be improved by modifying the

transmission conditions imposed between the subdomains.

In this manuscript, we start by giving an overview of the basic domain decomposition

methods and their use as preconditioners. Then we consider these methods from an

iterative point of view and we perform a study of convergence analysis of overlapping

Schwarz methods with Dirichlet, Robin, zeroth and second order transmission conditions

for many subdomains. We also present more sophisticated methods, which implement

more e↵ective transmission conditions depending on some optimised parameters. In our

analysis, we focus on the Helmholtz problem and the magnetotelluric approximation of

Maxwell’s equation for stripwise decompositions into many domains. Our theoretical

findings are being demonstrated by the appropriate numerical evidence.



Acknowledgments

Firstly, I would like to deeply thank the reviewers of my thesis, Dr Gabriele

Ciaramella from Politecnico di Milano and Prof. John Mackenzie from University

of Strathclyde for their patience, e↵ort and determination to go through my

manuscript which will give me the opportunity to broaden my horizons on my

field of research.

I would also like to wholeheartedly express my appreciation towards Prof. Martin

Jakob Gander from the University of Geneva for his insight, ideas, remarks,

suggestions and the enthusiasm that has showed towards my work. It was a

great privilege for me to be able to have fruitful conversations with one of the

best specialists of domain decomposition methods.

I would also like to thank my parents and my brother Mario for their support

and understanding throughout this journey of life. Also I would like to include

James, Ioana, Andrew, Michael, Alistair who where the people that I first met

and I had productive conversations with them.

Last but not least, I would like to wholeheartedly express my endless gratitude

and appreciation towards my supervisor Victorita Dolean for her understanding,

patience, guidance and support of my research. Her advice and remarks helped

me in my work and in producing a good manuscript.





Contents

Introduction xiv

1 Domain decomposition methods 1

1.1 Classical Schwarz and optimised Schwarz methods . . . . . . . . . . . . 3

1.2 Scalability of Schwarz methods . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Krylov methods and preconditioning . . . . . . . . . . . . . . . . . . . . 8

1.4 Schwarz methods as preconditioners . . . . . . . . . . . . . . . . . . . . 11

2 Schwarz methods 14

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 A non-Hermitian block Toeplitz structure . . . . . . . . . . . . . . . . . 17

2.4 The one-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 The two-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.1 The Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.2 The transverse electric Maxwell’s equations . . . . . . . . . . . . 44

2.6 Numerical simulations on the discretised equation . . . . . . . . . . . . . 50

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Magneto telluric approximation of Maxwell 59

3.1 One dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



CONTENTS vii

3.1.1 Dirichlet transmission conditions . . . . . . . . . . . . . . . . . . 60

3.1.2 One dimensional problem with Robin interface conditions . . . . 65

3.2 Two-dimensional case with Dirichlet transmission conditions . . . . . . . 67

3.3 Optimizing transmission conditions for multiple subdomains . . . . . . . 70

3.3.1 Optimization for 2, 3, 4, 5 and 6 subdomains . . . . . . . . . . . 74

3.3.2 High frequency vs. low frequency convergence factor . . . . . . . 78

3.3.3 Optimization for many subdomains . . . . . . . . . . . . . . . . . 82

3.4 Second order optimised transmission conditions . . . . . . . . . . . . . . 85

3.4.1 High frequency and low frequency analysis . . . . . . . . . . . . . 87

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Numerical results 91

4.1 Optimised Schwarz method as a solver . . . . . . . . . . . . . . . . . . . 91

4.2 Optimised Schwarz method as a preconditioner . . . . . . . . . . . . . . 97

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A Matlab implementations 103

A.1 Study of the limiting spectrum . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Optimisation of the transmission conditions: zeroth order case . . . . . 105

B FreeFem++ implementations 118

B.1 Data files and definitions of macros . . . . . . . . . . . . . . . . . . . . . 118

B.2 RAS/ORAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



List of Figures

1.1 The irregular domain of the classical Schwarz algorithm . . . . . . . . . 4

2.1 Overlapping decomposition of the one-dimensional domain into N sub-

domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 The spectrum of the iteration matrix T1d for N = 160 (left) and the

convergence factor of the Schwarz algorithm for varying number of sub-

domains N (right) when � = 0.1. . . . . . . . . . . . . . . . . . . . . . . 37

2.3 The spectrum of the iteration matrix T1d for N = 160 (left) and the

convergence factor of the Schwarz algorithm for varying number of sub-

domains N (right) when � = 5. . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 The convergence factor of each Fourier mode for N = 80 (left) and the

convergence factor of the full Schwarz algorithm for varying number of

subdomains N (right) when � = 0.1, k = 30. . . . . . . . . . . . . . . . . 42

2.5 The convergence factor of each Fourier mode for N = 80 (left) and the

convergence factor of the full Schwarz algorithm for varying number of

subdomains N (right) when � = 1, k = 30. . . . . . . . . . . . . . . . . . 42

2.6 Waveguide solution with � = 1 and k = 100 . . . . . . . . . . . . . . . . 52

2.7 Waveguide solution with � = 1 and k = 100 . . . . . . . . . . . . . . . . 55

2.8 Solution using line source, with � = 1 and k = 100 . . . . . . . . . . . . 55

2.9 Solution using point source, with � = 1 and k = 100 . . . . . . . . . . . 55

3.1 Spectrum of the iteration matrix for N = 80 � = 0.6, " = 0.1 (left) and

the convergence factor vs. the number of subdomains (right) . . . . . . 64

viii



LIST OF FIGURES ix

3.2 Spectrum of the iteration matrix for N = 80 � = 5, " = 0.1 (left) and

the convergence factor vs. the number of subdomains (right) . . . . . . 64

3.3 Spectrum of the iteration matrix for N = 80 � = 0.6, " = 0.1 (left) and

the convergence factor vs. the number of subdomains (right) . . . . . . 68

3.4 Spectrum of the iteration matrix for N = 80 � = 5, " = 0.1 (left) and

the convergence factor vs. the number of subdomains (right) . . . . . . 68

3.5 Convergence factor for N = 80 � = 0.6, " = 0.1 vs. the frequency (left)

and the convergence factor vs. the number of subdomains (right) . . . . 70

3.6 Convergence factor for N = 80 � = 5, " = 0.1 vs. the frequency (left)

and the convergence factor vs. the number of subdomains (right) . . . . 70

3.7 Equioscillation in numerical optimisation with one and two optimised

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.8 Optimised constants for di↵erent subdomains for a fixed � and L = 1 as

a function of " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9 Optimised constants for di↵erent subdomains for a fixed " and L = 1 as

a function of � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.10 Equioscillation in numerical optimisation with one sided and two sided

second order optimised conditions . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Decomposition into two subdomains -uniform and METIS decomposition 92

4.2 Convergence of the RAS algorithm for � = 1, " = 1 uniform (left) and

METIS (right) decomposition . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Convergence of the RAS algorithm for � = 1, " = 1 uniform (left) and

METIS (right) decomposition for overlap � = 2h. . . . . . . . . . . . . . 93

4.4 Convergence of ORAS for the zero-th order interface conditions " = 0.1

(left) and " = 10 (right), uniform decomposition . . . . . . . . . . . . . 94

4.5 Convergence of ORAS for the zero-th order interface conditions " = 0.1

(left) and " = 10 (right), METIS decomposition . . . . . . . . . . . . . . 94

4.6 Iteration count depending on the mesh size for zero and second order

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Iteration counts as a function of subdomains for various methods. . . . . 96



LIST OF FIGURES x

4.8 Asymptotic behaviour for zero-th and second order 2 sided IC: � = 1, " = 1 96

4.9 Convergence of the RAS algorithm for � = 1, " = 1 uniform (left) and

METIS (right) decomposition . . . . . . . . . . . . . . . . . . . . . . . . 97

4.10 Convergence of the RAS algorithm for � = 1, " = 1 uniform (left) and

METIS (right) decomposition . . . . . . . . . . . . . . . . . . . . . . . . 98

4.11 Convergence of the prec. GMRES with ORAS, one sided zero order

transmission, " = 0.1 (uniform and METIS decomposition). . . . . . . . 99

4.12 Convergence of the prec. GMRES with ORAS, one sided zero order

transmission, " = 10 (uniform and METIS decomposition). . . . . . . . 100



List of Tables

2.1 Preconditioned GMRES iteration counts for varying wave number k and

number of subdomains N when � = 1. . . . . . . . . . . . . . . . . . . . 52

2.2 GMRES iteration counts for the absorption parameter fixed to k and the

overlap equal to 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 GMRES iteration counts for the absorption parameter fixed to k and the

overlap equal to 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 GMRES iteration counts for very small absorption and the overlap equal

to 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 GMRES iteration counts for the absorption parameter fixed to k and the

overlap equal to 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 GMRES iteration counts for the absorption parameter fixed to k3/2 and

the overlap equal to 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 GMRES iteration counts for the absorption parameter fixed to k1/2 and

the overlap equal to 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.8 GMRES iteration counts for the absorption parameter fixed to k and

the overlap equal to 2. Impedance conditions are imposed in all of the

boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.9 GMRES iteration counts for the absorption parameter fixed to k3/2 and

the overlap equal to 2. Impedance conditions are imposed in all of the

boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.10 GMRES iteration counts for the absorption parameter fixed to k1/2 and

the overlap equal to 2. Impedance conditions are imposed in all of the

boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xi



LIST OF TABLES xii

2.11 GMRES iteration counts overlap equal to 2. This corresponds to the

plane wave problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.12 GMRES iteration counts for the problem with a point source. The over-

lap is fixed to be 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.13 GMRES iteration counts for the problem with a line source. The overlap

is fixed to be 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.14 GMRES iteration counts for the problem with absorption k
1
2 . The over-

lap is fixed to be 2. This corresponds to the plane wave problem. . . . 57

2.15 GMRES iteration counts for the problem with a point source with ab-

sorption k
1
2 . The overlap is fixed to be 2. . . . . . . . . . . . . . . . . . 57

2.16 GMRES iteration counts for the problem with a line source with absorp-

tion k
1
2 . The overlap is fixed to be 2. . . . . . . . . . . . . . . . . . . . . 57

3.1 Asymptotic results for four subdomains: � = " = 1, L = 1, pa = pb = 1 . 77

3.2 Asymptotic results for five subdomains : � = " = 1, L = 1, pa = pb = 1 . 77

3.3 Asymptotic results for six subdomains: � = " = 1, L = 1, pa = pb = 1 . . 78

3.4 Parameter asymptotics in the high frequency regime . . . . . . . . . . . 79

3.5 Parameter asymptotics for second order transmission conditions in the

high frequency regime for second order transmission conditions . . . . . 88

4.1 One sided zeroth and second order IC, with � = 1 and " = 0.1. . . . . . 93

4.2 One sided zeroth and second order IC, with � = 1 and " = 1. . . . . . . 93

4.3 One sided zeroth and second order IC, with � = 1 and " = 10. . . . . . . 93

4.4 One sided zeroth and second order IC, with � = 1 and " = 0.1. . . . . . 95

4.5 One sided zeroth and second order IC, with � = 1 and " = 1. . . . . . . 95

4.6 One sided zeroth and second order IC, with � = 1 and " = 10. . . . . . . 96

4.7 One sided zeroth and second order IC, with � = 1 and " = 1. . . . . . . 97

4.8 One sided zeroth and second order IC, with � = 1 and " = 0.1. . . . . . 98

4.9 One sided zeroth and second order IC, with � = 1 and " = 1. . . . . . . 98

4.10 One sided zeroth and second order IC, with � = 1 and " = 10. . . . . . . 99



LIST OF TABLES xiii

4.11 One sided zeroth and second order IC, with � = 1 and " = 0.1. . . . . . 99

4.12 One sided zeroth and second order IC, with � = 1 and " = 1. . . . . . . 100

4.13 One sided zeroth and second order IC, with � = 1 and " = 10. . . . . . . 100



Introduction

Motivation

Computational electromagnetics or electromagnetic modeling is the process of modeling

the interaction of electromagnetic fields with physical objects and the environment

having precise and identified physical characteristics. A realistic environment is very

often heterogeneous, i.e. the physical properties depend on the spatial location which

makes the problem even more di�cult to solve. The typical mathematical model is

Maxwell’s equations which is a three dimensional system of PDEs for which we need

computationally e�cient approximations.

Although the principles of the propagation of electromagnetic waves are generally un-

derstood, their application to practical configurations is highly complicated and far

beyond analytical calculations in most of the cases. These complications arise from the

geometry (of a general shape or presenting singularities) of the medium, its physical

properties (heterogeneity, physical dispersion and dissipation) and the characteristics of

the sources (e.g. wires) which can condition the type of the solution. As a general rule,

whenever the model can be simplified mathematically because of one of these aspects

can be neglected in a given practical situation, it will often be.

However, in most of the cases, propagation of electromagnetic waves is three dimen-

sional in nature, the unknowns are time-dependent vector fields (or complex valued

in the case of the time-harmonic versions of these equations) and the medium is het-

erogeneous. Numerical approximation needs to take into account all these aspects.

However, the significant advances in computer modelling of electromagnetic interac-

tions that happened over the last decades have been such that nowadays the design of

electromagnetic devices heavily relies on computer simulations. Computational elec-

tromagnetics has thus taken on great technological importance and, largely due to this,

xiv



INTRODUCTION xv

it has become a central discipline in present-day computational science.

Mathematical model

The system of Maxwell’s equations modelling the propagation of electromagnetic waves

is obtained by combining a few fundamental physical laws (Gauss’, Ampère’s and Fara-

day’s)

(1)

�
@D

@t
+r⇥H = J,

@B

@t
+r⇥E = 0,

r ·D = ⇢,

r ·B = 0,

where the unknown vector fields involved are

• E the electric field,

• D the electric induction field,

• H the magnetic field,

• B the magnetic induction field.

The given quantities are ⇢, the free charge density and J, the free current density,

which are in fact related by the equation of charge conservation. Like the names of

these quantities suggest, a few of them are related by what we call constitutive relations.

For example, in the case of linear isotropic materials, these relations are given by

(2) D = "(x)E, B = µ(x)H.

where x := (x, y, z) denotes the vector of spatial coordinates. The coe�cient "(x)

is called the permittivity, which measures the ability of a material to be electrically

polarized, and µ(x) is called the permeability, which measures the ability of a material

to be magnetized. Note that, in the case of anisotropic materials " and µ are symmetric

positive definite matrices. These physical quantities do not depend on time in general

unless the propagation takes place in dispersive media like for example in the case of

nanophotonics [Dru00] 1.

1We can use the Drude model https://en.wikipedia.org/wiki/Drude_model stating that the phys-
ical properties depend on a given frequency for the Fourier transformed equations
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The law of conservation of the electric charge does not appear as a separate equation in

the classical Maxwell equations, but it is part of one of them. It states that an electric

charge can neither be created nor destroyed and can be written in di↵erential form as

(3)
@⇢

@t
+r · J = 0.

Using the constitutive relations, we can rewrite Maxwell’s equations in their classical

form containing only the unknown vector fields E and H,

"
@E

@t
�r⇥H = �J,(4)

µ
@H

@t
+r⇥E = 0,(5)

r · ("E) = ⇢,(6)

r · (µH) = 0.(7)

From this set of equations we can remove the two Gauss laws (6) and (7). The reason

is, we can easily prove that if these laws are satisfied by the electric and magnetic fields

at the initial time, this will be the case for each time t.

The time dependent Maxwell equations (4), (5), (6), and (7) need also initial conditions

of the form

(8) E(x, 0) = E0(x) and H(x, 0) = H0(x),

and what we did not observe yet is that Maxwell’s equations contain an intrinsic geo-

metric property: by applying the divergence operator to (5), we obtain for µ constant

in time

(9) r ·

✓
µ
@H

@t
+r⇥E

◆
= r ·

✓
µ
@H

@t

◆
=

@

@t
(r · (µH)) = 0,

since the divergence of the curl vanishes, r · (r⇥ E) = 0. This implies that if Gauss’

law (7) for magnetism is verified at the initial time, r · (µH0) = 0, then it is verified

for all time t, since this quantity does not change over time because of (3). Similarly,

by applying the divergence operator to (4), we obtain for " constant in time and using

the conservation of the charge (3) that

(10) r ·

✓
"
@E

@t
�r⇥H

◆
+r · J =

@

@t
(r · ("E))�

@⇢

@t
=

@

@t
(r · ("E)� ⇢) = 0.
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This implies that if Gauss’ law (6) is verified at the initial time, r · ("E0) = ⇢(0),

then is is also verified for all time t. So it su�ces to consider only the first two sets of

Maxwell’s equations

(11) "
@E

@t
�r⇥H = �J, µ

@H

@t
+r⇥E = 0,

but with initial conditions satisfying the last two,

(12) r · ("E0) = ⇢, r · (µH0) = 0.

A conforming discretisation, by finite elements for example, will need to satisfy these

laws for these assumptions to hold (i.e. we need a discrete counterpart of the divergence

and the curl which satisfy the same relations as in the continuous case) and in general

this is very di�cult to achieve. The classical Yee finite di↵erence scheme [Yee66] and

Nédélec edge finite elements [Ned01] provide naturally this discrete framework.

There is furthermore another constitutive relation called Ohm’s law, which given in its

modified form

(13) J = �E+ Je,

where � is a material dependent parameter called the conductivity. Here we consider

the presence of a possible further external current source Je. This leads to the damped

Maxwell’s equations, where the equation (4) is replaced by

(14) "
@E

@t
�r⇥H+ �E = �Je.

Second order Maxwell’s equations

It is possible to eliminate half of the unknowns in the Maxwell’s equations. For example

by applying the curl operator r⇥ to the equation (5) after dividing by µ and after

inserting into the equation (4) after taking a time derivative of this equation, and we

obtain the classical second order form of Maxwell’s equations,

(15) "
@2E

@t2
+r⇥

✓
1

µ
r⇥E

◆
= �

@J

@t
.
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Similarly, one can also obtain a second order formulation containing only the magnetic

field H:

(16) µ
@2H

@t2
+r⇥

✓
1

"
r⇥H

◆
= r⇥ J.

A further simplification is possible if " and µ are constant: in that case we obtain for

example from the second order formulation for the electric field E in (15) that

(17) "
@2E

@t2
+

1

µ
(r⇥ (r⇥E)) = �

@J

@t
,

and using the identity r⇥ (r⇥E) = r(r ·E)��E, where the Laplacian � is applied

to each component in E, we get

(18) "
@2E

@t2
+

1

µ
(r(r ·E)��E) = �

@J

@t
.

Now if the initial conditions for the first order equations satisfy the Gauss laws, then

we know that this Gauss law is satisfied: "r · (E)(x, t) = ⇢(x, t) for all time hence we

can replace the term r ·E in (18) to obtain

(19)
@2E

@t2
=

1

µ"
�E�

1

µ"
r

⇣⇢
"

⌘
�

1

"

@J

@t
.

We thus see that the electric field E satisfies component wise a second order wave

equation with wave speed c := 1p
µ"
, and a similar computation shows that also the

magnetic field H satisfies such a vector valued second order wave equation. Even we

cannot solve directly the wave equations above, from here we see that clearly the electric

and magnetic field solutions have wave character.

Time-harmonic Maxwell’s equations

In many contexts, it is of interest to study the electromagnetic field associated to

currents and charges that admit a harmonic dependence in time with a prescribed

frequency f , measured in Hz. In this case, according to the limiting amplitude principle

[Mor62], the electric and magnetic fields follow with a time harmonic source current

J := Ĵe�i!t, where ! := 2⇡f , a time harmonic behavior with the same frequency in

the long time limit, regardless of the initial conditions,

E(x, t) = <Ê(x,!)e�i!t, H(x, t) = <Ĥ(x,!)e�i!t.
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The positive real parameter ! is called the pulsation of the time harmonic wave. The

quantities Ê and Ĥ are called complex amplitudes of E and H, or time harmonic vector

fields. They satisfy the time-harmonic Maxwell’s equations

(20)
r⇥ Ĥ+ i!"Ê = Ĵ,

r⇥ Ê� i!µĤ = 0.

Eliminating Ĥ in (20), the system can also be recast as a second order PDE for Ê,

which leads to the curl-curl formulation

(21) "!2Ê�r⇥

✓
1

µ
r⇥ Ê

◆
= �i!Ĵ.

Similarly, one can also obtain a curl-curl formulation for Ĥ,

(22) µ!2Ĥ�r⇥

✓
1

"
r⇥ Ĥ

◆
= �r⇥ (

1

"
Ĵ).

In order to simplify the notation, we drop in the following the hat symbol for the

time-harmonic vector fields when there is no confusion with their time-domain coun-

terparts. If we suppose now that Gauss’ laws are satisfied we obtain the time-harmonic

counterpart of (19)

(23) �!2E�
1

µ"
�E+

1

µ"
r

⇣⇢
"

⌘
= i!J,

which is a vector valued Helmholtz equation.

In what follows, we will mostly focus on time-harmonic problems in their di↵erent

variants which can be either Maxwell’s or Helmholtz equations. We shall see that there

is another simplified model that can be used in certain situations.

The magnetotelluric approximation of Maxwell’s equations:

a complex-di↵usion model

Maxwell’s equations can also be used to model the propagation of electromagnetic waves

in the subsurface of the Earth. Radar imaging for example is based on the interaction

of waves with the subsurface which will further produce measurable responses carrying

information about the structure of the underground. This will allow geophysicists, by

solving inverse problems, to detect the presence of minerals or oil. Further simplification
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can be made by supposing there is a certain invariance with respect to one direction

parallel to the subsurface. This way the model can be reduced to a two dimensional one

and after simplification this leads to the magnetotelluric approximation of Maxwell’s

equations

(� � i")u��u = �f

where f is the source function and u can be either the complex amplitude of the

electric or magnetic field depending on the approximation used. The magnetotelluric

approximation is a well posed scalar problem, however the operators involved are not

self-adjoint and its numerical solution can present a certain number of challenges.

In this thesis we aim at designing solution methods for simplified versions of Maxwell’s

equations such as Helmholtz and complex di↵usion and generalise the methods to

Maxwell’s equations whenever possible.

Domain decomposition methods

After discretisation of the previous equations, say by a finite element method we ob-

tain linear systems whose underlying matrix is usually large and although symmetric is

non-hermitian. In this case we cannot use direct methods as the complexity increases

quickly, in the sense that the problems that arise are indefinite and ill-posed and iter-

ative methods lack robustness. Moreover, in the high frequency regime the situation

tends to be even worse making the problem even harder [GZ19]. Especially for time

harmonic equations, when we are in the high frequency regime the wavenumber is large

and this results to an ill-conditioned problem [EG12]. In addition to that, the highly

oscillatory nature of the solutions and the pollution e↵ect [BS97] add an extra di�culty

to the task. For the previously mentioned reasons, direct solvers are not appropriate for

this class of equations because they are mostly applied to well-conditioned equations,

have memory limitations and they utterly fail to handle the pollution e↵ect where the

wavenumber scales with the mesh size in a particular way.

It is well known that direct methods are usually very robust and provide the exact

solution (up to the machine precision) after a finite number of steps but they su↵er

from memory requirements and have poor parallel properties. Iterative methods, on

the other hand, are not exact and provide usually only a sequence of approximations

to the solution but their properties are dependent on the properties of the matrix (in

the case of a non-normal or non-hermitian matrix, this would be the field of values for

which is in general very di�cult to find appropriate bounds). In this case, we need a

preconditioner.
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Domain decomposition methods are hybrid methods since they have both an iterative

and direct ingredient. We usually couple iteratively smaller problems which are solved

by direct methods. By this kind of technique we usually achieve the best of the two

worlds. Domain decomposition methods are based on the simple idea of divide et

impera: reformulate the global problem into subproblems by decomposing the domain

into smaller subdomains on which problems are solved on parallel, communicate the

results and update the solutions in an iterative manner.

Among the domain decomposition methods we distinguish two di↵erent types: overlap-

ping and non-overlapping. In the second case the subdomains share only one interface

(an artificial common boundary created by the decomposition) whereas in the first sub-

domains have more in common than just the interface which usually leads to a better

convergence at the expense of a double storage of data.

Domain decomposition methods are commonly used as a preconditioners in a Krylov

type method, which means that instead of solving the global problem defined by

AU = F we solve M�1AU = M�1F .

If M�1 is a good approximation of A�1, then the spectral properties of M�1A are

much better than those of A.

They can also be used as solvers although they are rather slow and for this reason their

interest is rather limited. However convergence studies are very revealing even if they

are performed first at the iterative level to give a useful overview.

Content and contributions

One of the objectives of this thesis is the analysis of domain decomposition methods

for complex problems and the study of their scalability properties. We mainly consider

these methods from an iterative point of view (although numerical results with Krylov

acceleration are also considered) and a strip-wise decomposition in many subdomains.

The analysis of the continuous methods will give us the insight and a more general

idea, and the extensive numerical simulations of the discrete methods will provide a

quantitative idea. We start by the Helmholtz problem which is notoriously challenging

from the iterative methods point of view and we continue with the magneto-telluric ap-

proximation to the Maxwell’s equations (also called the complex-di↵usion problem) by

deriving optimised variants of Schwarz methods at the theoretical level and illustrating

the theoretical findings by numerical results.
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Chapter 2 In this chapter we analyse the iterative counterpart of the Schwarz al-

gorithm in the case of a decomposition into many subdomains. We show that

under certain conditions on the parameters, the classical Schwarz method (using

Robin transmission conditions) is scalable. The analysis is facilitated by writing

the iterative method in matrix form where the iteration matrix is in fact a non-

hermitian block-Toeplitz matrix. No results from the literature can be used to

characterise its spectrum and our first purpose is to give a close formula for the

limiting spectrum when the size of the matrix increases. We can use this result to

quantify and analyse the convergence factor of the algorithm in the case of many

subdomains for one and two dimensional Helmholtz and Maxwell’s equations.

Chapter 3 In this chapter we derive and analyse optimised variants of the Schwarz

method for the complex-di↵usion equations. We use again the idea of limiting

spectrum in order to have an estimate of the convergence factor. Then, we op-

timise this convergence factor w.r.t. the Robin parameters from the interface

transmission conditions by solving numerically a min-max problem. We are able

to provide asymptotic formulae of these parameters that can be used in numerical

implementations.

Chapter 4 In this chapter we present numerical results for the algorithms introduced

in Chapter 3.

Appendix A includes numerical optimisation with Matlab used in Chapter 3.

Appendix B contains FreeFem++ codes used to generate the numerical results in

Chapter 4.

The content of the Chapter 2 and 3 gave raise to the following contributions:

• N. Bootland, V. Dolean, A. Kyriakis, J. Pestana, Analysis of parallel Schwarz

algorithms for time-harmonic problems using block Toeplitz matrices, accepted

for publication in ETNA, see the preprint for a preliminary version https://

arxiv.org/abs/2006.08801

• V. Dolean, M.J. Gander, A. Kyriakis, Optimizing transmission conditions for mul-

tiple subdomains in the Magnetotelluric Approximation of Maxwell’s equations,

accepted for publication in the Proceedings of the 26th International Conference

on Domain Decomposition Methods, preprint https://arxiv.org/abs/2103.

07879



Chapter 1

Domain decomposition methods

and preconditioners

With the availability of supercomputers, it has become necessary to design robust and

e�cient algorithms. By robust we mean weakly dependent of the physical properties

of the medium which can be the permittivity or permeability for Maxwell’s equations

or the distribution of wave propagation speed leading to di↵erent wave-numbers for

the Helmholtz problem. Computational e�ciency and robustness (which means the

weak dependence on the the number of processors available) can be measured mathe-

matically using convergence rate and condition number estimates. The final purpose is

obtaining the solution in an optimal time given the computational resources. Domain

decomposition (DD) algorithms are very suitable candidates.

We will give a short introduction to domain decomposition methods. What we com-

monly call classical Schwarz method was introduced for the first time by the German

analyst Hermann Amandus Schwarz back in 1870 with the sole purpose of proving the

existence and uniqueness of the solution of a Dirichlet Poisson boundary value problem

on a domain composed of the union of a rectangle and a circle (as seen in Figure 1.1).

The reason is, for those domains Fourier transform techniques for the computation of

the solution were not available.

The method consisted in an alternate iteration (1.2) (that will be described in the next

section) which was converging towards the solution of the boundary value problem

(BVP). Even if the method is relatively old, as it was discovered in the 19th century,

it has regained a lot of interest in the 20th century with the advent of the parallel

computers. The initial method was not parallel (since it was not designed with parallel

1
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computers in mind), a parallel version of it was introduced by P.-L. Lions, which rep-

resents in fact only a slight modification of the original method. The seminal works of

Lions were presented on the occasion of the first domain decomposition conference (as

a reminder, the very last one was the 26th one) and since then the literature on the

topic covering various aspects of the field has considerably expanded.

Among the reference works, we would like to mention several books and reference mono-

graphs. In chronological order, the first one is [SBG96] which presents the methods

essentially from an algebraic point of view and by using matrix formulations of prob-

lems, illustrating them on di↵erent applications. This was probably the most practical

presentation of domain decomposition methods. Another reference book by Quarteroni

and Valli [QV99] defines and analyses these methods on the continuous versions of BVP

and PDE models, being less focused on computational aspects. However, it is more

focused on the analysis of simple configurations and less about computational notions

as scalability and parallel performance.

Later on, Toselli and Widlund [TW05] discuss in their monograph, domain decom-

position methods for finite element discretisations presenting rigorous analysis for a

variety of problems and an overview of the properties of these as preconditioners. In

the analysis of preconditioners, a very important aspect is the estimate of various con-

dition numbers of preconditioned operators which is a good indicator of scalability of

the algorithms.

The most recent book from this series, co-authored by V. Dolean, P. Jolivet and F.

Nataf [DJN15], includes also the optimized methods, new advances in coarse spaces

and provides implementations in the Freefem++ open-source finite element software.

As it is common practice, domain decomposition methods are used as preconditioners.

However, their analysis as iterative methods is very important as it provides a useful

insight on the behaviour of these methods. For this reason we consider in this work

both of the aspects.

In their use as solvers, we can also design more sophisticated interface transmission

conditions also called optimised transmission conditions. This research topic around

Optimised Schwarz methods has expanded considerably in the past decades, as it is

seen as a cheap way to achieve better convergence for the same computational cost as

more classical transmission conditions. Its origin can be found in [Lio90], where for the

first time more e↵ective conditions at the interfaces between the subdomains than the

usual Dirichlet or Neumann boundary conditions were used. Optimised transmission

conditions of Robin type can also be used in a non-overlapping framework not only for
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overlapping methods as initially designed. During the past decades a rich literature

developed on this topic, with applications to various equations.

However in practical applications, most of domain decomposition methods are used as

preconditioners in a Krylov method. We can cite the most popular ones like Addi-

tive Schwarz (AS) which has been extensively analysed in [TW05] for a large class of

symmetric positive definite (SPD) problems. For a SPD problem, this preconditioner

remains symmetric which makes it very easy to analyse. However there is another vari-

ant called Restricted Additive Schwarz (RAS) which was introduced by X.-C. Cai and

M. Sarkis in [CS99] and whose convergence properties were proved to be better than

those of the AS method, even if no theory is available. This preconditioner is no longer

symmetric even for SPD problems but represents the natural version corresponding to

the initial Lions algorithm. Also the Optimised Schwarz methods can also be used as

preconditioners and preconditioners are called Optimized RAS (ORAS), Optimized MS

(OMS) and Optimized AS (OAS) preconditioners. All these variants are very useful es-

pecially in the case of indefinite or non-self adjoint problems like Helmholtz or complex

di↵usion.

1.1 Classical Schwarz and optimised Schwarz methods

In this section we make a concise introduction to our desired method with the proper

definitions. The first domain decomposition method was introduced by Hermann

Schwarz back in 1870 in order to solve the following elliptic equation on an irregu-

lar domain ⌦ as shown in Figure 1.1

(1.1)

(
��u = f in ⌦

u = g on @⌦.

To solve problem (1.1) on the union of the disk (⌦1) and the rectangle (⌦2), Schwarz

constructed an iterative method which consists in computing successive approximations

repeatedly on the local subdomains on which the solution could be computed by using

Fourier series and then exchanging the data between neighbouring subdomains. He

proved the convergence of the iterative method to a solution meaning that the solution

on the whole domain exists.

This method is now known as the classical Schwarz method and can be simply described

as follows: given an initial guess u0
2
one solves iteratively by alternating the successive

solves on both subdomains
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Figure 1.1: The irregular domain of the classical Schwarz algorithm
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(1.2)

According to this definition, this algorithm is not parallel and its convergence is very

slow. Moreover, in the case of non-overlapping subdomain the algorithm does not

converge.

Lions modified the classical Schwarz method in a sequence of two seminal papers pre-

sented at the first international domain decomposition conferences [Lio89], [Lio90]

(1.2) and proposed a parallel algorithm where the transmission conditions were no

longer Dirichlet conditions. This algorithm proved to be convergent for even for non-

overlapping domains. This algorithm depends on parameters that appear in the Robin

transmission conditions and can be optimised in order to achieve faster convergence.

Even if Lions didn’t consider the optimisation of interface conditions, his work opened

up an avenue of research towards the development of even faster algorithms

(1.3)

8
>><

>>:

��un+1

1
= f in ⌦1

un+1

1
= g on @⌦1 \ @⌦

(@n1 + p1)u
n+1

1
= (@n1 + p1)u

n

2 on ⌦2 \ @⌦1
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(1.4)

8
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>>:

��un+1

2
= f in ⌦2

un+1

2
= g on @⌦2 \ @⌦

(@n2 + p2)u
n+1

2
= (@n2 + p2)u

n

1 on ⌦1 \ @⌦2

where p1, p2 are well chosen constants. The constants p1, p2 can be computed explicitly,

either by analytical or numerical techniques in order to achieve the best convergence

possible of the method.

On the other hand, due to its simplicity it can be generalised easily to a well posed

boundary value problem defined by the elliptic scalar partial di↵erential operator L

(
Lu = f in ⌦

u = 0 on @⌦.

with some further modifications to other categories of problems.

We will study in more detail this kind of algorithms applied to the Helmholtz equation

with absorption in Chapter 2 and the magnetotelluric equation in Chapter 3 respec-

tively.

In addition to the one level algorithms, there is a key element that needs to be indi-

cated. Following the work from P. L. Lions [Lio90], the transmission conditions should

be taken into account as they have a critical impact on the convergence. Since they

can accelerate the convergence of an algorithm at a minimal cost, transmission condi-

tions are an important ingredient of domain decomposition methods and they should be

used whenever possible. If information is not exchanged e�ciently between neighboring

subdomains, the iterative method is not e↵ective and might even not converge. How

good transmission conditions should be defined depends on the problem under con-

sideration. Standard Dirichlet transmission conditions, where the values of the local

solution on the interface are passed to the neighboring subdomains, work fairly well for

the Laplace equation and a simple Robin condition can further improve convergence.

For the Helmholtz equation, however, they fail to reduce the error in large parts of the

spectrum and Dirichlet conditions are therefore not suitable. Not to mention that in

the case of Helmholtz problem, Dirichlet boundary value problems might be ill-posed

and depending on the frequency and shape of the domain local problems may become

singular. The use of Robin condition is key in the case of Helmholtz problem.

From practical point of view, the general procedure of computing optimised trans-

mission condition relies on involved computations of convergence factors via Fourier

analysis in a simplified and simple framework. Very often these computations are done
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in the case of a decomposition into two unbounded subdomains and the subsequent

parameters are then used in the case of many subdomains. In this work we will show

a technique where the computation is done for many subdomains at once and in a

bounded case. We will establish the link with the results that can be obtained in the

case of two-subdomains.

1.2 Scalability of Schwarz methods

Since the main focus of the thesis is scalability of domain decomposition algorithms ap-

plied to time harmonic wave propagation problems, we will give below a few important

definitions both from a mathematical and from a computational point of view.

Domain decomposition methods are naturally parallel and are therefore perfect candi-

dates for a parallel computing environment. To be more precise, parallel computing is

the use of multiple processing elements simultaneously for solving any complex prob-

lem. From a parallel computing point of view, scalability is defined as the ability to

handle more work in an optimal time as the size of the computational units or of the

problem to solve grow. Scalability or scaling is widely used to indicate the ability

of hardware and software to deliver great computational power when the amount of

resources is increased.

We can distinguish two di↵erent aspects of scalability i.e. strong and weak scaling.

Strong scaling refers to solving a large but a fixed size problem when a large com-

putational platform is available. In an ideal world a problem would scale in a linear

fashion, which means the program would speed up by a factor of N when it runs on

a machine having N nodes. From a practical point of view this is not always the case

since communication between di↵erent processes comes into play and can further slow

down the whole process. We can aim for a nearly linear speedup or to be as close as

possible to a linear speedup.

As far as the weak scaling is concerned, both the number of processors and the problem

size are increased while keeping a constant workload per processor. Weak scaling is

mostly used for large memory bound applications where the required memory cannot

be satisfied by a single node. For an application that scales perfectly weakly, the work

done by each node remains the same as the scale of the machine increases, which means

that we are solving progressively larger problems in the same time as it takes to solve

smaller ones on a smaller machine.

There is relevant literature on strong scaling (”Amdahl’s law and strong scaling”)
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[Amd67] and weak scaling (”Gustafson’s law and weak scaling”) [Gus88]. Since our

work is focused on Schwarz algorithms, we will use compatible definitions from [CCGV18]

where scalability results are obtained for Laplacian equation, and [DJN15].

Definition 1 (Strong scalability). An algorithm is strongly scalable if the acceleration

generated by the parallelization scales proportionally with the number of processors that

are used.

Definition 2 (Weak scalability). A domain decomposition method is weakly scalable if

its rate of convergence does not deteriorate when the number of subdomains grows.

From a mathematical point of view, the notion of weak scaling is more attractive since

it can be quantified by condition number or spectral radius estimates, namely we want

to achieve algebraic properties which are not varying when the number of degrees of

freedom is kept fixed per domain. Also a purely iterative Schwarz method (without a

Krylov acceleration) is weakly scalable if the spectral radius of the iteration matrix is

bounded above by a strictly positive constant strictly less than one.

This last definition will be extensively used in Chapter 2 and 3 of this manuscript where

the Schwarz algorithms are analysed in detail.

We also need to mention the special case of one-dimensional Helmholtz equation without

absorption (� = 0). In that case the impedance transmission conditions are exact

and the method will lead to convergence a number of iterations equal to the number

of domains (this situation arises only in the 1d case as in higher dimensions, exact

transmission operators are usually non local). According to the definition above, the

method is not weakly scalable although the iteration matrix is nilpotent. We will

therefore focus on the case of absorptive media (� > 0) which is a key ingredient in

proving scalability for one level methods.

In the past years, a few authors have studied extensively the scalability of one-level

methods for symmetric positive definite elliptic problems [CG18a], [CG18b], [CHS20].

We should note however that the situation is di↵erent for the Helmholtz problem (al-

though it is elliptic, it is non self adjoint). Also the study of decomposition into chains

of subdomains (or strip-wise decompositions) is justified by the geometry of a simple

yet realistic structure which is a waveguide. The work presented in this manuscript

provides a deeper understanding of the scalability analysis for Schwarz methods for

wave propagation problems.
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1.3 Krylov methods and preconditioning

In [DJN15] it is shown that purely iterative Schwarz methods are in fact stationary

iterations of block Jacobi type and for this reason their convergence is potentially

very slow. On the other side, suppose that after the discretisation the problem (either

Helmholtz of complex di↵usion), say by a finite element method, we obtain the following

linear system

AU = F ,

where A is the discretisation matrix on the domain ⌦, U is the vector of unknowns

and F is the right hand side. If we want to use a Krylov method, the behaviour of

this method depends on the mathematical properties of the matrix. To accelerate the

performance of such a method applied to this system we will consider two precondition-

ers inspired by an overlapping domain decomposition which are naturally parallelisable

[DJN15, Chapter 3].

For the sake of completeness we reproduce below some of the results presented in the

chapter Krylov methods from [DJN15]. Schwarz methods can be written as precondi-

tioned fixed point iterations

Un+1 = Un +M�1rn, rn := F�AUn

where M�1 is the method used (RAS or ASM). When convergent the iteration will

converge to the solution of the preconditioned system

M�1Ax = M�1b .

The above system which has the same solution as the original system is called a precon-

ditioned system; here M�1 is called the preconditioner. If we denote the error vector

en := Un
�U, then it verifies

en+1 = (I �M�1A)en = (I �M�1A)n+1e0.

For this reason I �M�1A is called the iteration matrix related to the stationary itera-

tion. It is known that a fixed point stationary iteration converges for arbitrary initial

error e0 (that is en ! 0 as n ! 1) if and only if the spectral radius of the iteration

matrix is inferior to 1, that is ⇢(I �M�1A) < 1.

In order to show that stationary iterative methods are slow, we start by proving that

the solution of a fixed point iteration can be written as a series.
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Lemma 1.1 (Fixed point solution as a series). Let

zn := M�1rn = M�1(b�Axn)

be the residual preconditioned by M at the iteration n for the fixed point iteration

(1.5) xn+1 = xn + zn = xn +M�1(b�Axn).

Then, the fixed point iteration is equivalent to

(1.6) xn+1 = x0 +
nX

i=0

(I �M�1A)i z0 .

Proof. In order to simplify the presentation we introduce the notation P = M � A.

Note that we have that

(1.7) xn+1 = xn +M�1rn = xn + zn ) xn+1 = x0 + z0 + z1 + . . .+ zn.

We can also see that the residual vector rn = b�Axn = �A(xn
� x) verifies

(1.8)
rn = �Aen = (P �M)(M�1P )ne0 = (PM�1)nPe0 � (PM�1)n�1Pe0

= (PM�1)n(Pe0 �Me0) = (PM�1)nr0.

From (1.8) we have that

(1.9) zn = M�1rn = M�1(PM�1)nr0 = M�1(PM�1)nMz0 = (M�1P )nz0.

From (1.7) and (1.9) we obtain

(1.10) xn+1 = x0 + z0 + (M�1P )z1 + . . .+ (M�1P )nzn = x0 +
n�1X

i=0

(M�1P )i z0.

which leads to the conclusion. Thus the error xn+1
�x0 is a geometric series of common

ratio M�1P . Note that (1.10) can be also written in terms of the residual vector.

(1.11)

xn+1 = x0 +M�1r0 + (M�1P )M�1r1 + . . .+ (M�1P )nM�1rn

= x0 +
n�1X

i=0

(M�1P )iM�1 r0.

⌅
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In conclusion the solution of a fixed point iteration is generated in a space spanned by

powers of the iteration matrix M�1P = I�M�1A applied to a given vector. The main

computational cost is thus given by the multiplication by the matrix A and by the ap-

plication of M�1. At nearly the same cost, we could generate better approximations in

the same space (or better polynomials of matrices). These polynomial spaces of matri-

ces are called Krylov spaces and give rise to di↵erent families of Kyrlov methods. The

same remark on the performance of stationary iterative methods and Krylov subspace

methods can be found in [GC21] (Theorem 32 in section 4.1).

For the reasons mentioned above, preconditioned Krylov methods can be considered as

accelerations of the stationary iterative methods. A comprehensive description of the

topic can be found in [Saa03], [LS13] or [GC21]. We give a short description below.

In 1931 N. M. Krylov introduced the Krylov subspaces [Kry31] in a paper. The Krylov

subspace methods can be distinguished into two families. Methods in the first family

are based on orthogonalization of the residual with respect to Krylov space:

• CG, the conjugate gradient method for symmetric positive definite matrices,

which was the first method of this type, invented independently by David Hestenes

and Eduard Stiefel in 1952.

• SymmLQ, for symmetric but indefinite matrices, invented by Chris Paige and

Michael Sanders in 1975. This method is based on the Lanczos process and an LQ

factorization of the obtained tridiagonal matrix and thus has a short recurrence

with low storage requirements similar to CG. The LQ factorization is the analog

of the QR factorization, but with a lower triangular matrix L instead of the upper

triangular matrix R. For SPD problems CG and SymmLQ give esentially the same

results at convergence but CG is computationally more e�cient.

• FOM, the Full Orthogonalization Method, which works for arbitrary matrices,

and was invented by Yousef Saad in 1981. The method uses Arnoldi, and thus

requires substantially more storage like GMRES.

• BiCGStab, the Bi-Conjugate Gradient method with stabilization, which is also a

method for general matrices, invented by Henk A. Van Der Vorst in 1992. The

method constructs two bi-orthogonal sequences of vectors. The method uses short

recurrences requiring therefore less storage than FOM, but it does not fully solve

the problem of orthogonalization like in FOM.

Methods in the second family are based on minimisation of the residual norm:
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• QMR, the Quasi-Minimum Residual method, also for general matrices, and using

a short recurrence based on the unsymmetric Lanczos process with storage re-

quirements similar to CG. This method was invented by Roland W. Freund and

M. Nachtigal in 1991, and only approximately solves the minimization problem.

• MINRES, the minimum residual method, for symmetric but possibly indefinite

matrices. This method was also invented by Paige and Sanders in 1975, in the

same paper as SymmLQ and uses a short recurrence based on Lanczos process

with storage requirements similar to CG.

• GMRES, the Generalized Minimum Residual method, for arbitrary matrices, in-

vented by Saad and Schultz in 1986 based on the Arnoldi process. Even though

this method needs a lot of storage, it is very popular for testing preconditioners

since it really minimizes the residual.

The Krylov method of choice for matrices with no particular property (e.g. symmetric

but non-normal) is GMRES since no a priori assumption is required. However the

study of the convergence of the GMRES methods is very involved and not always

possible from the theoretical point of view. In this work, we will use the GMRES

method for numerical simulations but at the theoretical level we will mainly focus

on iterative counterparts of Schwarz methods requiring only estimates of the spectral

radius. This is still very revealing for the overall ranking of the methods and for their

general behaviour.

1.4 Schwarz methods as preconditioners

The definition of these preconditioners relies on a few ingredients:

• Th a triangulation of the computational domain and {Th,i}
N

i=1
be a non-overlapping

partition of this triangulation. Such a partition can be typically obtained by

using a mesh partitioner like METIS [KK98].

• An overlapping partition defined as follows. For an integer value l � 0, we

build the decomposition {T
l

h,i
}
N

i=1
such that T l

h,i
is a set of all triangles from T

l�1

h,i

and all triangles from Th \ T
l�1

h,i
that have non-empty intersection with T

l�1

h,i
,

and T
0

h,i
= Th,i. With this definition the width of the overlap will be of 2l.

Furthermore, if Wh stands for the finite element space associated with Th, W l

h,i

is the local finite element spaces on T
l

h,i
that is a triangulation of ⌦i.
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• N : the set of indices of degrees of freedom (dofs) of the global finite element

space Wh and N
l
i
the set of indices of degrees of freedom of the local finite element

spaces W l

h,i
for l � 0.

• Restriction operators from the global set of dofs to the local one

Ri : Wh ! W l

h,i.

At a discrete level this is a rectangular matrix |N
l

i
| ⇥ |N | such that if V is the

vector of degrees of freedom of vh 2 Wh, then RiV is the vector of degrees of

freedom of Wh in ⌦i.

• Extension operators from W l

h,i
to Wh and its associated matrix are both then

given by RT
i
.

• A partition of unity Di as a diagonal matrix |N
l

i
|⇥ |N

l

i
| such that

(1.12) Id =
NX

i=1

RT

i DiRi,

where Id 2 R|N |⇥|N | is the identity matrix.

With these ingredients at hand we can now define the main preconditioners used in

this work (see also [DJN15, Chapter 1.4] for details)

• RAS preconditioner introduced in [CS99] :

(1.13) M�1

RAS
=

NX

i=1

RT

i Di

�
RiAR

T

i

��1

Ri.

• Optimized RAS (ORAS) preconditioner which is based on local boundary

value problem with Robin boundary conditions (absorbing boundary conditions).

In this case, letBi be the matrix associated to a discretisation of the corresponding

local BVP on the domains ⌦i with Robin boundary conditions on @⌦i \ @⌦j :

(1.14) M�1

ORAS
=

NX

i=1

RT

i DiBi
�1Ri.

In this work, we will solve the following preconditioned system by a GMRES method

M�1AU = M�1F
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where M�1 is given by (1.13) or (1.14). Both versions (1.13) or (1.14) of the Schwarz

preconditioners are called one-level preconditioners. In other words, the whole domain

is decomposed into smaller subdomains. Each local subproblem with the discretisation

matrix Ai = RiART

i
(in the case of Dirichlet transmission condifions) or Bi (Robin

transmission conditions) is solved by a direct method. If local problems are too large,

iterative methods or even domain decomposition methods can be used but we haven’t

considered this situation here.

There are multiple aspects related to the implementation of these methods, especially

when we consider the robustness with respect to physical parameters and parallel per-

formance. Especially for time harmonic problems there are various computational

challenges and finding the best numerical strategy is of critical importance. In this

case, and mainly for Helmholtz problem we refer the reader to the paper [BDJT21]

where all these aspects are carefully analysed for two level domain decomposition pre-

conditioners. This is beyond the scope of this thesis, even if we have in mind the design

of scalable methods.

Parallel implementation aspects of Schwarz algorithms can also be found in the Chapter

8 book [DJN15]. In the in the Appendix section of the thesis we provide fully com-

mented codes allowing reproducibility of the results. As a reminder the implementation

of the methods is achieved by using Freefem++, a high level programming language

for solving PDEs by variational discretisation such as the finite element method.



Chapter 2

Schwarz methods for time

harmonic problems with many

subdomains

The content of this chapter is an enriched and modified version of the preprint https:

//arxiv.org/abs/2006.08801 entitled ”Analysis of parallel Schwarz algorithms

for time-harmonic problems using block Toeplitz matrices”

2.1 Motivation

In this chapter we study the convergence properties of the one-level parallel Schwarz

method with Robin transmission conditions applied to the one-dimensional and two-

dimensional Helmholtz and Maxwell’s equations. One-level methods are not scalable in

general. However, it has recently been proven that when impedance transmission con-

ditions are used in the case of the algorithm applied to the equations with absorption,

under certain assumptions, weak scalability can be achieved for fixed-size subdomains

and no coarse space is required. We show here that this result is also true for the

iterative version of the method at the continuous level for strip-wise decompositions

into subdomains that can typically be encountered when solving wave-guide problems.

The convergence proof relies on the particular block Toeplitz structure of the global

iteration matrix. Although non-Hermitian, we prove that its limiting spectrum has a

near identical form to that of a Hermitian matrix of the same structure. We illustrate

our results with numerical experiments.

14
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2.2 Introduction

Time-harmonic wave propagation problems, such as those arising in electromagnetic

and seismic applications, are notoriously di�cult to solve for several reasons. At the

continuous level, the underlying boundary value problems lead to non self-adjoint op-

erators (when impedance boundary conditions are used). The discretisation of these

operators by a Galerkin method requires an increasing number of discretisation points

as the wave number grows in order to avoid the pollution e↵ect, that is a shift in the

numerical wave velocity with respect to the continuous one [BS97]. This leads to in-

creasingly large linear systems with non-Hermitian matrices that are di�cult to solve

by classical iterative methods [EG12].

In the past two decades, di↵erent classes of e�cient solvers and preconditioners have

been devised; see the review paper [GZ19] and references therein. One important class

is based on domain decomposition methods [DJN15], which are a good compromise

between direct and iterative methods. Some of these domain decomposition methods

rely on improving the transmission conditions, that pass data between subdomains,

to give optimised transmission conditions; see the seminal work on Helmholtz equa-

tions [GHM07] and its extension to Maxwell’s equations [DGL+15, DGG09, DLP08,

EDGL12] as well as to elastic waves [BDG19b, MDG19]. For large-scale problems, in

order to achieve robustness with respect to the number of subdomains (scalability) and

the wave number, two-level domain decomposition solvers have been developed in recent

years: they are based on the idea of using the absorptive counterpart of the equations

as a preconditioner, which in turn is solved by a domain decomposition method. These

methods were successfully applied to Helmholtz and Maxwell’s equations, which arise

naturally in di↵erent applications [BDG+19a, DJTO20, GSV17].

However, an alternative idea emerged in the last few years by observing that, when

using Robin or impedance transmission conditions, under certain assumptions involving

the physical and numerical parameters of the problem (i.e., absorption, size of the

subdomains, etc.) one-level Schwarz algorithms can scale weakly (have a convergence

rate that does not deteriorate as the number of subdomains grows) without the addition

of a second level [GGS20, GSZ20]. The notion of scalability here applies over a family of

problems rather than for a fixed problem. In essence, weak scalability is achieved such

that the convergence rate of the domain decomposition method does not deteriorate

for harder problems in the family when an appropriate number of subdomains is used.

In other words, adding more subdomains allows us to solve harder problems while

achieving the same convergence rate.
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Achieving scalability without a coarse space in the case of a decomposition into chains

of subdomains was first observed for problems arising in computational chemistry; see

[CMS13]. However, the first true scalability analysis, based on Fourier techniques, was

developed in [CG17] for a classical parallel Schwarz method on a rectangular chain

of fixed-size subdomains and provides the first concrete construction of the Schwarz

iteration operator in Fourier space. This technique was extended in [CCGV18] to other

types of one-level methods. Weak scalability results for the Laplace problem have been

proven for more general chain-type geometries using various techniques, such as the

maximum principle in [CG18a] and a fully variational analysis in [CG18b]. The most

recent work on the topic without restrictive assumptions can be found in [CHS20] where

a propagation-tracking analysis based on graph theory and the maximum principle

permitted a scalability analysis for very general decompositions. To our knowledge,

there is no such analysis on Schwarz methods for time-harmonic wave propagation

problems, where previous techniques no longer extend as the nature of the underlying

equations is very di↵erent.

In our work, we would like to explore this idea of weak scalability at the continuous

level (independent of the discretisation) for a strip-wise decomposition into subdomains

as it arises naturally in the solution of wave-guide problems. While in [GGS20, GSZ20]

the family of problems is parametrised by the wave number k and the focus is on k-

robustness, here we focus on the weak scalability aspect for a family consisting of a

growing chain of fixed-size subdomains. Nonetheless, we will see that k-robustness in

certain scenarios can easily be derived from our theory. The main contributions of the

paper are the following:

• We provide analysis of the limiting spectrum, as the number of subdomains grows,

for a one-level Schwarz method applied to a strip-wise decomposition. While our

analysis is limited to this simple yet realistic configuration (wave propagation

in a rectangular wave-guide with Dirichlet conditions on the top and bottom

boundaries and Robin condition at its ends), it is valid at the continuous level both

for one-dimensional and two-dimensional Helmholtz and Maxwell’s equations.

• We build on the formalism of iteration matrices acting on interface data intro-

duced in [CCGV18] (where Schwarz methods using strip-wise decompositions

were analysed for Laplace’s equation), but here we are able to characterise the

entire spectrum of these iteration matrices if the number of subdomains is su�-

ciently large by using their block Toeplitz structure, even if upper bounds on the

iteration matrix norm could have been derived in a similar manner.
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• Despite the fact that the block Toeplitz structure is non-Hermitian, and thus re-

sults from the standard literature on Toeplitz matrices do not apply in a straight-

forward manner, we prove that the limiting spectrum of the iteration matrices

as their size grows (corresponding to an increasing number of subdomains) tends

to the limit predicted by the eigenvalues of the symbol of the block Toeplitz ma-

trix, except perhaps for two additional eigenvalues. This novel approach, utilising

the limiting spectrum, is quite general and can be applied to other problems as

an analysis tool for domain decomposition methods where such block Toeplitz

structure arises naturally.

• We show that the limiting spectrum is descriptive of what is observed in practice

numerically, even for a relatively small number of subdomains.

• As a corollary to our theory we show that, in certain scenarios and with k-

dependent domain decomposition parameters, the one-level method can be k-

robust as the wave number k increases; in the Maxwell case we believe this to be

a novel result.

2.3 A non-Hermitian block Toeplitz structure

Consider a non-Hermitian block Toeplitz matrix T 2 C2m⇥2m of the form

T =

2

66666664

A0 A1

A�1 A0 A1

. . .
. . .

. . .

A�1 A0 A1

A�1 A0

3

77777775

,(2.1a)

where

A0 =

"
0 b

b 0

#
, A1 =

"
a 0

0 0

#
, A�1 =

"
0 0

0 a

#
,(2.1b)

for some non-zero complex coe�cients a and b. We will see in the sections that follow

that such non-Hermitian block Toeplitz structures arise naturally for iterative Schwarz

algorithms applied to wave propagation problems. We are interested in a characteri-

sation of the complete spectrum of the matrix T in (2.1) when its dimension becomes

large. This will equate to the number of subdomains N in the Schwarz method being
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large. The coe�cients a and b stem from the particular PDE and domain decomposi-

tion used; we consider them to be fixed independent of the dimension of T , and thus

N , which corresponds to fixed-size subdomains.

The so-called Szegő formula enables the asymptotic spectrum, i.e., the spectrum as

m ! 1, of a wide class of Hermitian block Toeplitz matrices to be characterised by the

eigenvalues of an associated matrix-valued function called the (block) symbol [Til98].

For non-Hermitian matrices, analogous results do not exist in general [Til98], but do

hold when the union of the essential ranges of the eigenvalues of the block symbol has

empty interior and does not disconnect the complex plane [DNSC12]. Unfortunately,

T in (2.1) has symbol F (z) = A�1z + A0 + A1z�1 and, for relevant values of a and

b, the union of essential ranges is a closed curve. Additional characterisations of the

asymptotic spectrum of (block) banded Toeplitz matrices are available [Hir67, SS60,

Wid74], but these do not provide explicit formulae for the eigenvalues, as we shall in

Theorem 2.1. Other formulae for the eigenvalues [SM13] and determinant [Tis87] of

block tridiagonal Toeplitz matrices are known, however, they are applicable only when

A1 (or A�1) is nonsingular.

We also remark that the matrix T will be an iteration matrix in the Schwarz algorithms

we later consider. Hence, to prove convergence of these Schwarz methods it would be

su�cient to bound the spectral radius of T , for example using a matrix norm. It is

straightforward to see that kT k1 = |a| + |b|, and it is also possible to show, using

[SC02, Corollary 3.5], that

kT k2  max

⇢q
|a|2 ± 2<(ab) + |b|2

�
.

However, since a and b are complex neither norm is straightforward to bound above by

1. Additionally, characterising the full spectrum provides more information than the

spectral radius alone. Accordingly, in this section we derive the limiting spectrum of

T .

In order to establish a result on the spectrum of T , we first show that the characteristic

polynomials of (2.1) for increasing m obey a three-term recurrence relation.

Lemma 2.1 (Three-term recurrence and generating function). Let pm(z) denote the

characteristic polynomial of the block Toeplitz matrix T 2 C2m⇥2m defined in (2.1).

Then pm(z) satisfies the three-term recurrence relation

pm(z) +B(z)pm�1(z) +A(z)pm�2(z) = 0, for m � 2,(2.2)
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with A(z) = a2z2 and B(z) = �z2 + b2 � a2 and where p0(z) = 1 and p1(z) = z2 � b2.

Furthermore, this recurrence relation is encoded in the generating function

1X

m=0

pm(z)tm =
N(t, z)

D(t, z)
,(2.3)

where

D(t, z) = 1 +B(z)t+A(z)t2,(2.4a)

N(t, z) = p0(z) + (p1(z) +B(z)p0(z))t.(2.4b)

Thus, in our case, D(t, z) = 1� (z2 � b2 + a2)t+ a2z2t2 while N(t, z) = 1� a2t.

Proof. We first prove the recurrence relation. Let Dm be the 2m ⇥ 2m matrix whose

determinant is the characteristic polynomial of T in the variable z. Note that the first

two characteristic polynomials are

p1(z) = det(D1) =

�����
�z b

b �z

����� = z2 � b2,(2.5a)

p2(z) = det(D2) =

����������

�z b a 0

b �z 0 0

0 0 �z b

0 a b �z

����������

= (z2 � b2)2 � a2b2.(2.5b)

To derive a recurrence relation, let us also define the intermediary determinants rm(z)

which arise as the minor of Dm having removed the second row and first column,

rm(z) :=

�������������

b a 0 0 · · ·

0

Dm�1

a

0
...

�������������

=

�������������

b a 0 0 · · ·

0 �z b a 0

a b �z 0 0

0 0 0
Dm�2... 0 a

�������������

= b pm�1(z) + a2 rm�1(z),

where we use the cofactor expansion of the determinant. Similarly, for pm(z) we obtain

pm(z) = z2 pm�1(z)� b rm(z) = (z2 � b2) pm�1(z)� a2b rm�1(z).

We can then rearrange this relation to give an expression for rm�1(z) in terms of pm(z)

and pm�1(z). Substituting this into the recurrence for rm(z) above, along with the
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equivalent expression for rm(z), yields the desired recurrence relation

pm+1(z) = (z2 � b2 + a2) pm(z)� a2z2 pm�1(z),(2.6)

where A(z) := a2z2 and B(z) := �z2 + b2 � a2. Finally, note that setting p0 = 1 is

consistent with this recurrence relation and initial characteristic polynomials (2.5).

To show the equivalence of the generating function, we multiply (2.2) by tm and sum

over m � 2 before adding relevant terms to isolate
P1

m=0
pm(z)tm as follows

1X

m=2

[pm(z) +B(z)pm�1(z) +A(z)pm�2(z)] t
m = 0

()

1X

m=0

⇥
1 +B(z)t+A(z)t2

⇤
pm(z)tm = p0(z) + (p1(z) +B(z)p0(z)) t

()

1X

m=0

pm(z)tm =
p0(z) + (p1(z) +B(z)p0(z)) t

1 +B(z)t+A(z)t2
.

Substituting in the appropriate values gives D(t, z) = 1� (z2 � b2 + a2)t+ a2z2t2 and

N(t, z) = 1� a2t in our case, as required. ⌅

Before continuing, we remark on the convergence of the Maclaurin series in t of the

generating function. Note that the Maclaurin series of any rational function (without a

pole at 0) satisfies a linear recurrence relation, which can be seen by following backwards

an analogous argument to that in the above proof. Moreover, the Maclaurin series is

convergent (to the rational function) on the open disc centred at 0 with a radius equal

to the minimum root of the denominator in absolute value; this can be discerned

from a partial fractions decomposition (over C) and noting that it is a (finite) sum of

geometric series. As such, in our present case, pm(z) are precisely the coe�cients in

the Maclaurin series for any given z since the denominator is such that 0 is never a

pole of the generating function and so there is always a non-trivial disc where the series

converges.

We now introduce a useful tool that will help us to characterise the spectrum of

(2.1): the q-analogue of the discriminant known as the q-discriminant [Tra14]. The

q-discriminant of a polynomial Pn(t) of degree n with leading coe�cient p is defined as

Disct(Pn; q) = p2n�2qn(n�1)/2
Y

1i<jn

(q�1/2ti � q1/2tj)(q
1/2ti � q�1/2tj),(2.7)
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where ti, 1  i  n, are the roots of Pn(t). A key point is that the q-discriminant is zero

if and only if a quotient of roots ti/tj equals q. Note that as q ! 1 the q-discriminant

becomes the standard discriminant of a polynomial.

In particular, we will consider the q-discriminant of the denominator D(t, z) as a

quadratic in t. Direct calculation using the quadratic formula yields

Disct(D(t, z); q) = q
�
B(z)2 � (q + q�1 + 2)A(z)

�
,(2.8)

for any q 6= 0. If q is a quotient of the two roots in t of D(t, z) then (2.8) is zero and

so q must satisfy

B(z)2

A(z)
= q + q�1 + 2,(2.9)

where, in general, q will depend on z. The q-discriminant condition (2.9) for D(t, z) will

be crucial in what follows since it will allow us to characterise roots of pm(z) in terms

of the quotient q. We now state our main result on the limiting spectrum of T as its

dimension becomes large in which we adapt some ideas from [Tra14] for finding roots

of polynomials verifying a three-term recurrence but now with a di↵erent generating

function.

Theorem 2.1 (Limiting spectrum). The limiting spectrum, as m ! 1, of the block

Toeplitz matrix T 2 C2m⇥2m, defined in (2.1), lies on the curve defined by

�±(✓) = a cos(✓)±
q
b2 � a2 sin2(✓), ✓ 2 [�⇡,⇡],(2.10)

except perhaps for the eigenvalues

� = ±

q
1

2
b2 � a2,(2.11)

which can only occur if |a2| > |
1

2
b2 � a2|.

Proof. Suppose that zm is a root of the characteristic polynomial pm(z) for m � 2.

If zm = 0 then we must have that a2 = b2. To see this, assume for a contradiction

that a2 6= b2, then B(0) 6= 0 while A(0) = 0 and pm(0) = 0 and thus the recurrence

relation (2.2) gives that pm�1(0) = 0. Following this recursion down to m = 2 gives

that p1(0) = 0, which is false as b 6= 0. Further, if pm(0) = 0 then also pm+1(0) = 0 by

(2.2) since A(0) = 0 and so a sequence of zero roots occurs as m increases giving 0 in

the limiting spectrum. This case is covered by choosing ✓ = ⇡

2
in (2.10) and noting that
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a2 = b2 must hold. As such, for the remainder of the proof we assume that zm 6= 0.

Now consider the denominator D(t, zm). Since A(zm) 6= 0 by the assumption that

zm 6= 0, the denominator as a quadratic in t has two roots t1 and t2. Note that, by

Vieta’s formula for the product of roots, neither of these two roots can be zero since

t1t2A(zm) = 1. If t1 = t2 then the (standard) discriminant of D(t, zm) is zero, giving

B(zm)2 � 4A(zm) = 0. Solving for zm given our expressions for A(z) and B(z) yields

solutions zm = ±(a± b) for all choices of signs. These cases are also covered by (2.10)

when ✓ = 0 or ✓ = ⇡.

As such, we now assume that t1 6= t2 and soD(t, zm) = A(zm)(t�t1)(t�t2). Considering

the generating function (2.3) we observe that

N(t, zm)

D(t, zm)
=

1� a2t

A(zm)(t� t1)(t� t2)
=

1� a2t

A(zm)(t1 � t2)

✓
1

t� t1
�

1

t� t2

◆

=
1� a2t

A(zm)(t1 � t2)

1X

m=0

tm+1

1
� tm+1

2

tm+1

1
tm+1

2

tm

=
1

A(zm)(t1 � t2)

1X

m=1


tm+1

1
� tm+1

2

tm+1

1
tm+1

2

� a2
tm
1
� tm

2

tm
1
tm
2

�
tm + 1.(2.12)

The sum introduced in the second line is the Maclaurin series in t and, as the di↵erence

of two geometric series, is convergent in the open disc |t| < min{|t1|, |t2|}. Note that

this is non-trivial since neither t1 or t2 are zero. In (2.12) we identify that the coe�cient

of tm is exactly pm(zm). Thus, as zm is a root of pm(z), the coe�cient of tm in (2.12)

must be zero. Now suppose t1 = qt2 for some quotient q 6= 0 (as neither t1 nor t2 is

zero), then this condition on the coe�cient of tm translates into

qm+1
� 1

qm+1tm+1

2

� a2
qm � 1

qmtm
2

= 0 =) qm+1
� 1 = a2t2q(q

m
� 1).

Since t1t2A(zm) = 1, we deduce that t2 = ±(A(zm)q)�1/2 and thus q must solve

�
qm+1

� 1
�2

=
a4

A(zm)
(qm � 1)2 q.

Let us define the coe�cient, depending on zm,

cm =
a4

A(zm)
=

a2

z2m
.(2.13)
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Then q must be a root of the 2m+ 2 degree polynomial

fm(q) = q2m+2
� cmq2m+1 + 2(cm � 1)qm+1

� cmq + 1.(2.14)

In order to characterise the roots of (2.14) we will make use of the following corollary

of Rouché’s theorem (see, e.g., [Kra99, Section 5.3.2]): for a polynomial f of degree d

with coe�cients {↵j}
d

j=0
, if R > 0 is such that for an integer 0  k  d we have

|↵0|+ . . .+ |↵k�1|R
k�1 + |↵k+1|R

k+1 + . . .+ |↵d|R
d < |↵k|R

k,(2.15)

then there are exactly k roots of f , counted with multiplicity, having absolute value

less than R. In particular, we will use this result for the polynomial fm(q) with k = 0,

k = 2m+ 1 or k = 2m+ 2.

We first point out some facts about (2.14). Note that q = 0 is not a root of fm.

Moreover, by symmetry of the coe�cients, we have (for q 6= 0)

fm(q�1) = q�(2m+2)fm(q).(2.16)

Thus, if qm is a root of fm then q�1
m is also a root. Further, since fm has a unique

factorisation in C, applying this both in the variable q�1 and q in (2.16) shows that

the multiplicities of the roots qm and q�1
m must be identical. This means that we only

need to study roots with |qm|  1, with roots outside the unit disc being precisely the

reciprocal values of those inside the unit disc, or vice versa.

We will use (2.15) to determine how many roots of fm(q) in (2.14) do not approach the

unit circle as m ! 1. This information, along with (2.9), will allow us to determine

conditions for zm. A significant challenge is that the coe�cient cm depends on m and

so we will need to consider several cases. To proceed, we let " > 0 be small. We will

show that for all m � M , for a suitable M("), all but potentially two roots of fm(q)

lie in an annulus which shrinks to the unit circle as " ! 0. The remaining two roots

can only persist if |cm| > 1 and, should they exist, consist of a root sm close to c�1
m and

the corresponding reciprocal root outside the unit circle. Given " > 0, for m � M we

consider three cases depending on cm:

1. |cm|  1,

2. 1  |cm|  (1 + ")2,

3. |cm| � (1 + ")2.
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Case 1 To start the analysis we suppose that we are in case 1 so that |cm|  1 and

define R� = 1� ". Let M1 be such that

4Rm+1

� +R2m+1

� +R2m+2

� < "

for all m � M1. Such an M1 exists since |R�| < 1. Then, for m � M1, we have that

|cm|R� + 2|cm � 1|Rm+1

� + |cm|R2m+1

� +R2m+2

�  R� + 4Rm+1

� +R2m+1

� +R2m+2

�

< 1.

Thus, for large enough m, by using k = 0 in the corollary of Rouché’s theorem we

deduce that there are no roots of fm with modulus less than R� = 1� ". In this case,

by the reciprocal nature of the roots, for m � M1 we conclude that all 2m + 2 roots

qm of fm lie in the annulus

1� "  |qm| 
1

1� "
.(2.17)

Case 2 We now turn to the analysis of case 2 where 1  |cm|  (1 + ")2. To aid

in the next case we first relax this condition to consider |cm| � 1 and prove a useful

bound for all roots of fm. Define R+ = 1 + " and let M2 be such that

R�(2m+1)

+
+R�2m

+
+ 4R�m

+
<

"

1 + "

for all m � M2. Now let R> = |cm|(1 + ") = |cm|R+. We will want to show that

1 + |cm|R> + 2|cm � 1|Rm+1

> + |cm|R2m+1

> < R2m+2

> ,(2.18)

in order to apply the corollary of Rouché’s theorem with k = 2m + 2. To do so we

consider dividing by R2m+2

> , in which case, for m � M2, we have

R�(2m+2)

> + |cm|R�(2m+1)

> + 2|cm � 1|R�(m+1)

> + |cm|R�1

>

= |cm|
�(2m+2)R�(2m+2)

+
+ |cm|

�2mR�(2m+1)

+
+

2|cm � 1|

|cm|
|cm|

�mR�(m+1)

+
+R�1

+

 R�(2m+2)

+
+R�(2m+1)

+
+ 4R�(m+1)

+
+R�1

+

<
"

(1 + ")2
+

1

1 + "
< 1.
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Thus we have the required inequality and deduce from the corollary of Rouché’s theorem

that all 2m + 2 roots qm lie in the disc given by |qm| < |cm|(1 + "). This will prove

useful later in case 3. For now we turn back to case 2 where 1  |cm|  (1+ ")2. Using

this upper bound on |cm| and the reciprocal nature of the roots, we conclude that, for

m � M2, all 2m+ 2 roots qm of fm lie in the annulus

1

(1 + ")3
< |qm| < (1 + ")3.(2.19)

Case 3 Finally, consider case 3 where |cm| � (1 + ")2. Let R+ = 1+ " and M2 be as

defined in case 2. We will want to show that

1 + |cm|R+ + 2|cm � 1|Rm+1

+
+R2m+2

+
< |cm|R2m+1

+
,(2.20)

in order to apply the corollary of Rouché’s theorem with k = 2m + 1. To do so we

consider dividing by |cm|R2m+1

> , in which case, for m � M2, we have

|cm|
�1R�(2m+1)

+
+R�2m

+
+

2|cm � 1|

|cm|
R�m

+
+ |cm|

�1R+

 R�(2m+1)

+
+R�2m

+
+ 4R�m

+
+ (1 + ")�2R+

<
"

1 + "
+

1

1 + "
= 1.

Thus we have the required inequality and deduce from the corollary of Rouché’s theorem

that 2m+1 roots qm lie in the disc given by |qm| < 1+". In this case, by the reciprocal

nature of the roots, for m � M2 we conclude that 2m roots qm of fm lie in the annulus

1

1 + "
< |qm| < 1 + ".(2.21)

We pause to note at this stage that, combining all three cases, we have just shown

that all but potentially two roots of fm lie in a small annulus around the unit circle for

m � M = max{M1,M2}, independently of the value of cm. In particular, this will be

the largest annulus of the three cases which, for small " > 0, is that in (2.19). Letting

" ! 0 we deduce that all but potentially two roots of fm must tend to the unit circle

as m ! 1.

The remaining question is what happens to the other two roots, which only appear in

case 3. We know from the bound in (2.18) that, for large enough m, all roots satisfy

|qm| < |cm|(1 + ") while all but one satisfy |qm| < (1 + "). We now show that the
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remaining root in case 3 satisfies |qm| � |cm|(1 � ") for large enough m. To do so let

R? = |cm|(1� ") = |cm|R� and note that, assuming " is small enough (" < 1

3
su�ces),

then R? > 1 since

R? = |cm|(1� ") � (1 + ")2(1� ") � 1 +
"

2
.

Now let M3 be such that

⇣
1 +

"

2

⌘�(2m+1)

+
⇣
1 +

"

2

⌘�2m

+ 4
⇣
1 +

"

2

⌘�m

< "

for all m � M3. We will want to show an identical bound to (2.20) holds but now

for R? in order to again use the corollary of Rouché’s theorem with k = 2m + 1. We

proceed in a similar manner and consider dividing by |cm|R2m+1

? , so that for m � M3

we have

|cm|
�1R�(2m+1)

? +R�2m

? +
2|cm � 1|

|cm|
R�m

? + |cm|
�1R?

 R�(2m+1)

? +R�2m

? + 4R�m

? +R�



⇣
1 +

"

2

⌘�(2m+1)

+
⇣
1 +

"

2

⌘�2m

+ 4
⇣
1 +

"

2

⌘�m

+R�

< 1.

Thus we have the required inequality and deduce from the corollary of Rouché’s theorem

that 2m+1 roots qm lie in the disc given by |qm| < |cm|(1� "). Thus, for large enough

m, we conclude that the single remaining root lies in the annulus |cm|(1� ")  |qm| <

|cm|(1 + ").

This result makes it clear that roots which do not tend to the unit circle persist only

when we have |cm| values which stay bounded away from 1 as m ! 1, and their size is

dictated by cm. That is, for such roots to persist there must exist an infinite subsequence

with |cm| > c > 1 for some fixed c and so we now assume this condition. We further

focus on the reciprocal root which is inside the unit circle and show that it approximates

c�1
m for large m. Define this single root to be sm and note, through the reciprocal nature

of roots, we have just shown that it satisfies the bound |sm|  |c�1
m |

1

1�"
, which in turn

gives that |cmsm| 
1

1�"
. Moreover, |cm| > c yields the bound |sm|  c�1 1

1�"
, where

c > 1 is fixed, and thus choosing " > 0 small enough we have |sm| < r < 1 for a fixed

r. This provides the ingredients for the following limit:

|s2m+2

m � cms2m+1

m + 2(cm � 1)sm+1

m |
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 |sm|
2m+2 +

1

1� "
|sm|

2m + 2|sm|
m+1 +

2

1� "
|sm|

m
! 0

as m ! 1, since |sm| < r < 1. Now, by definition of sm as a root of fm, we have that

fm(sm) = 0 and hence we must have that 1 � cmsm ! 0 and thus sm � c�1
m ! 0 as

m ! 1, due to |c�1
m | being bounded above by c�1 < 1. This says that the root which

stays inside the unit circle approximates c�1
m for large m while the root which stays

outside the unit circle must approximate cm by reciprocal.

We would now like to interpret what this shows for the potential corresponding root

zm in the limit m ! 1 using the q-discriminant condition (2.9). For this we use the

definition of the coe�cient cm = a2/z2m from (2.13) and denote �m = cmsm � 1 where

�m ! 0 as m ! 1. Then, with q = sm = c�1
m (1 + �m), (2.9) becomes

B(zm)2

A(zm)
= c�1

m (1 + �m) + cm(1 + �m)�1 + 2

=)
(�z2m + b2 � a2)2

a2z2m
=

z2m
a2

(1 + �m) +
a2

z2m
(1 + �m)�1 + 2

=) b4 � 2a2b2 � 2b2z2m = �m(z4m � a4) +O(�2m),(2.22)

where we have used the binomial expansion (1 + �m)�1 = 1 � �m + O(�2m), which is

valid for large m since �m ! 0. Recall that, given we are in case 3, |cm| is bounded

below away from zero and so |zm| is bounded above for all m. Now note that (2.22) is

a singular perturbation [BO99, Section 7.2] and as �m ! 0 all possible solutions for zm

go to infinity except for those which satisfy the left-hand side being zero. As such, the

only possibility for any zm being a true root of the characteristic polynomial is that

they tend to one of the limiting roots

z = ±

q
1

2
b2 � a2.(2.23)

Note that for such zm to exist we required the condition |cm| > 1, and so |a2| > |z2m|,

to hold for arbitrarily large m. For this to hold in the limit we require |a2| > |
1

2
b2� a2|

and so the limiting roots in (2.23) may only exist when this condition is met.

We have now seen that, aside from the special case yielding the potential for limiting

roots (2.23), all remaining zm correspond to qm values which tend to the unit circle.

To complete the proof we now translate this result using the q-discriminant condition

(2.9). Since qm tends to the unit circle, the corresponding zm must tend to the limiting

curve defined by (2.9) where q = ei� for some � 2 [�⇡,⇡]. This limiting curve in the
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complex plane is given parametrically as

B(z)2

A(z)
= ei� + e�i� + 2, � 2 [�⇡,⇡]

()
(�z2 + b2 � a2)2

a2z2
= 4 cos2

✓
�

2

◆
, � 2 [�⇡,⇡]

() z2 � b2 + a2 = ±2az cos

✓
�

2

◆
, � 2 [�⇡,⇡]

() z2 � 2a cos(✓)z � b2 + a2 = 0, ✓ 2 [�⇡,⇡]

() z = a cos(✓)±
q
b2 � a2 sin2(✓), ✓ 2 [�⇡,⇡].

Thus, as roots zm of pm(z) are eigenvalues � of T 2 C2m⇥2m, we deduce that the

limiting spectrum of T must lie on the curve defined by (2.10) as m ! 1, except

perhaps for the eigenvalues in (2.11) which can only occur if |a2| > |
1

2
b2 � a2|. ⌅

We note that, while the so-called Szegő formula does not apply in our non-Hermitian

case, we have just proven that the limiting eigenvalues of T , except perhaps two, lie

on the equivalent curve defined by eigenvalues of the (block) symbol of T , which is

precisely that defined in (2.10).

2.4 The one-dimensional problem

We now turn our attention to analysing the one-level method. In this section we study

the parallel Schwarz iterative method for the one-dimensional Maxwell’s equations with

Robin boundary conditions defined on the domain ⌦ = (a1, bN ):

8
><

>:

Lu := �@xxu+ (ik�̃ � k2)u = 0, x 2 (a1, bN ),

Blu := �@xu+ ↵u = g1, x = a1,

Bru := @xu+ ↵u = g2, x = bN ,

(2.24)

where u represents the complex amplitude of the electric field, k is the wave number,

and �̃ = �Z with � being the conductivity of the medium and Z its impedance.

Here ↵ is the impedance parameter which is chosen such that the local problems are

well-posed and is classically set to ik, in which case the problem corresponds to a “one-

dimensional wave-guide” and the incoming wave or excitation can be represented by g1,

for example, with g2 being set to 0. Note that, when ↵ = ik, the problem is well-posed

even if �̃ = 0 but in the following we will assume that �̃ > 0. In order to simplify
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x
a1 a2 aj aj+1 aN aN+1

b0 b1 bj�1 bj bN�1 bN

· · ·

· · ·

· · ·

· · ·

⌦1 ⌦j ⌦N

2� L� 2� 2�

Figure 2.1: Overlapping decomposition of the one-dimensional domain into N subdo-
mains.

notation we will omit the tilde symbol for �. We remark that (2.24) can also be seen

as an absorptive Helmholtz equation where the absorption term ik� comes from the

physics of the problem.

Let us also consider two sets of points {aj}j=1,..,N+1 and {bj}j=0,..,N defining the over-

lapping decomposition ⌦ = [
N

j=1
⌦j such that ⌦j = (aj , bj), as illustrated in Figure 2.1

(and considered in [CCGV18]), where

bj � aj = L+ 2�, bj�1 � aj = 2�, aj+1 � aj = bj+1 � bj = L, � > 0.(2.25)

Note that the length of each subdomain is fixed and equal to L+ 2� while the overlap

is always 2�. This means that the family of problems we will consider solving consists

of a growing chain of fixed-size subdomains, as in [CCGV18], rather than solving on a

fixed problem domain with shrinking subdomain size.

We consider solving (2.24) by a Schwarz iterative algorithm with Robin transmission

conditions and denote by un
j
the approximation to the solution in subdomain j at

iteration n, starting from an initial guess u0
j
. We compute un

j
from the previous values

un�1

j
by solving the following local boundary value problem

8
><

>:

Lun
j
= 0, x 2 ⌦j ,

Blunj = Blu
n�1

j�1
, x = aj ,

Brunj = Bru
n�1

j+1
, x = bj ,

(2.26a)

in the case 2  j  N while for the first (j = 1) and last (j = N) subdomain we have

8
><

>:

Lun
1
= 0, x 2 ⌦1,

Blun1 = g1, x = a1,

Brun1 = Bru
n�1

2
, x = b1,

8
><

>:

Lun
N

= 0, x 2 ⌦N ,

BlunN = Blu
n�1

N�1
, x = aN ,

BrunN = g2, x = bN .

(2.26b)

In the following we wish to analyse the convergence of the iterative method that is
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defined by (2.26). We observe this iteration to be a parallel Schwarz method with Robin

transmission conditions, a label which we shall adopt in this work. In particular, we

will be interested in the convergence properties for a growing number of subdomains N

and the absorptive problem, i.e., � > 0.1 This means that we will consider asymptotic

bounds for large N and make use of the theory presented in Section 2.3.

In order to do this we define the local errors in each subdomain j at iteration n as

en
j

= u|⌦j � un
j
. They verify the boundary value problems (2.26a) for the interior

subdomains and the homogeneous analogues of (2.26b) for the first and last subdomains

(i.e., (2.26b) but with boundary conditions g1 = 0 and g2 = 0). The convergence study

will be done in two steps: first we prove that the Schwarz iteration matrix is a block

Toeplitz matrix and then that its spectral radius remains bounded below and away

from one in the limit of large N . As mentioned before, we build on the formalism of

iteration matrices acting on interface data introduced in [CCGV18]; here this will be

Robin data.

Lemma 2.2 (Block Toeplitz iteration matrix). If en
j
= u|⌦j � un

j
is the local error in

each subdomain j at iteration n and

R
n :=

⇥
R

n

+(b1), R
n

�(a2), R
n

+(b2), . . . ,R
n

�(aN�1), R
n

+(bN�1), R
n

�(aN )
⇤T

,

where

R
n

�(aj) := Ble
n

j�1(aj), R
n

+(bj) := Bre
n

j+1(bj),(2.27)

is the Robin interface data, then

R
n = T1dR

n�1,

where T1d is a block Toeplitz matrix of the form (2.1) with the complex coe�cients a

and b being given by

a =
(⇣ + ↵)2e2⇣� � (⇣ � ↵)2e�2⇣�

(⇣ + ↵)2e⇣(2�+L) � (⇣ � ↵)2e�⇣(2�+L)
,(2.28a)

b = �
(⇣2 � ↵2)(e⇣L � e�⇣L)

(⇣ + ↵)2e⇣(2�+L) � (⇣ � ↵)2e�⇣(2�+L)
,(2.28b)

1When � = 0, impedance transmission conditions are also transparent conditions, with the resulting
iteration matrix being nilpotent. Therefore, the algorithm will converge in a number of iterations equal
to the number of subdomains in this case and in the sense of the definition from Section 1.2 it is not
scalable.
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where ⇣ =
p
ik� � k2.

Proof. We first see that the solution to Len
j
= 0 is given by

enj (x) = ↵n

j e
�⇣x + �n

j e
⇣x, ⇣ =

p
ik� � k2.(2.29)

Note that we choose the principle branch of the square root here so that ⇣ always has

positive real and imaginary parts. Now the interface iterations at x = aj and x = bj

from (2.26) can be written in terms of the error as

"
Blenj (aj)

Brenj (bj)

#
=

"
Ble

n�1

j�1
(aj)

Bre
n�1

j+1
(bj)

#
.(2.30)

By introducing (2.29) into the left-hand side of (2.30) and by using the notation from

(2.27) we obtain

"
(⇣ + ↵)e�⇣aj �(⇣ � ↵)e⇣aj

�(⇣ � ↵)e�⇣bj (⇣ + ↵)e⇣bj

#"
↵n

j

�n
j

#
=

"
R

n�1

� (aj)

R
n�1

+
(bj)

#
,

which we can solve for the unknowns ↵n

j
and �n

j
to give

"
↵n

j

�n

j

#
=

1

Dj

"
(⇣ + ↵)e⇣bj (⇣ � ↵)e⇣aj

(⇣ � ↵)e�⇣bj (⇣ + ↵)e�⇣aj

#"
R

n�1

� (aj)

R
n�1

+
(bj)

#
,(2.31)

where Dj = (⇣ + ↵)2e⇣(bj�aj) � (⇣ � ↵)2e⇣(aj�bj). Note that, since bj � aj = L + 2�,

then Dj is actually independent of j and thus we simply denote it by D. The algorithm

is based on Robin transmission conditions, hence the quantities of interest which are

transmitted at the interfaces between subdomains are the Robin data (2.27). Therefore,

we need to compute the current interface values R
n
�(aj) and R

n
+(bj) by replacing the

coe�cients from (2.31) into (2.29) and then applying the formulae in (2.27), giving

R
n

�(aj) = Ble
n

j�1(aj) = (⇣ + ↵)↵n

j�1e
�⇣aj � (⇣ � ↵)�n

j�1e
⇣aj

=
1

D

h
((⇣ + ↵)2e⇣(bj�1�aj) � (⇣ � ↵)2e⇣(aj�bj�1))Rn�1

� (aj�1)

+ (⇣2 � ↵2)(e⇣(aj�1�aj) � e⇣(aj�aj�1))Rn�1

+
(bj�1)

i
,

(2.32a)

R
n

+(bj) = Bre
n

j+1(bj) = �(⇣ � ↵)↵n

j+1e
�⇣bj + (⇣ + ↵)�n

j+1e
⇣bj

=
1

D

h
(⇣2 � ↵2)(e⇣(bj�bj+1) � e⇣(bj+1�bj))Rn�1

� (aj+1)

+ ((⇣ + ↵)2e⇣(bj�aj+1) � (⇣ � ↵)2e⇣(aj+1�bj))Rn�1

+
(bj+1)

i
.

(2.32b)
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The iteration of interface values (2.32) can be summarised as follows:

"
R

n
�(aj)

R
n
+(bj)

#
= T1

"
R

n�1

� (aj�1)

R
n�1

+
(bj�1)

#
+ T2

"
R

n�1

� (aj+1)

R
n�1

+
(bj+1)

#
,

T1 =

"
a b

0 0

#
, T2 =

"
0 0

b a

#
,

(2.33a)

where a and b are given by (2.28). Note that since the homogeneous counterparts of

the boundary conditions from (2.26b) translate into R
n
�(a1) = 0 and R

n
+(bN ) = 0 for

all n, we can remove these terms. As such, the iterates for j 2 {1, 2, N � 1, N} are

prescribed slightly di↵erently as

"
0

R
n
+(b1)

#
= T2

"
R

n�1

� (a2)

R
n�1

+
(b2)

#
,

"
R

n
�(a2)

R
n
+(b2)

#
= T1

"
0

R
n�1

+
(b1)

#
+ T2

"
R

n�1

� (a3)

R
n�1

+
(b3)

#
,

"
R

n
�(aN�1)

R
n
+(bN�1)

#
= T1

"
R

n�1

� (aN�2)

R
n�1

+
(bN�2)

#
+ T2

"
R

n�1

� (aN )

0

#
,

"
R

n
�(aN )

0

#
= T1

"
R

n�1

� (aN�1)

R
n�1

+
(bN�1)

#
.

(2.33b)

With the notation from (2.27), global iteration over interface data belonging to all

subdomains becomes Rn = T1dR
n�1 where

T1d =

2

6666666666664

0 bT2

eT1 02⇥2 T2

. . .
. . .

. . .

T1 02⇥2 T2

. . .
. . .

. . .

T1 02⇥2
eT2

bT1 0

3

7777777777775

(2.34)

with eT1 =
h
b 0

iT
, eT2 =

h
0 b

iT
, bT1 =

h
a b

i
, bT2 =

h
b a

i
. We conclude

from this that the parallel Schwarz algorithm is given by a stationary iteration with

iteration matrix T1d defined by (2.34) and, therefore, convergence is determined by the

spectral radius ⇢(T1d). We also notice that T1d is a block Toeplitz matrix precisely of

the form in (2.1) where the complex coe�cients a and b are given by (2.28) and, as
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such, the limiting spectral analysis in Section 2.3 will apply. ⌅

Before proving convergence of the parallel Schwarz algorithm, we first utilise the key

result of Theorem 2.1, on the limiting spectrum of T1d, to provide a useful intermediary

lemma. This intermediary result will also aid our analysis in the two-dimensional case

to follow in Section 2.5.

Lemma 2.3 (Limiting spectral radius and su�cient conditions for convergence). The

following relation holds:

max
✓2[�⇡,⇡]

����a cos(✓)±
q
b2 � a2 sin2(✓)

���� = max{|a+ b|, |a� b|},

and thus the convergence factor R1d := limN!1 ⇢(T1d) of the Schwarz algorithm as the

number of subdomains tends to infinity verifies

R1d 

(
max {|a+ b|, |a� b|} if

��a2 � 1

2
b2
��1/2 � |a|,

max {|a+ b|, |a� b|, |a|} if
��a2 � 1

2
b2
��1/2 < |a|.

(2.35)

Further, consider the change of variables

z = 2�⇣, l =
L

2�
, � = 2�↵, v =

z � �

z + �
,(2.36)

and let z := x+ iy for x, y 2 R+. Then the condition g±(z; �, l) > 0, where

g±(z; �, l) = (e2lx � 1)(e2x � |v|2)± 4 sin(ly)(=v cos y �<v sin y)ex(l+1),(2.37)

will ensure the desired convergence bound max{|a + b|, |a � b|} < 1. Similarly, the

condition g(z; �, l) > 0, where

g(z; �, l) = (e2lx � 1)(e2x(l+2)
� |v|4) + 4 sin(ly)

·
⇥
((<v)2 � (=v)2) sin(y(l + 2))� 2<v=v cos(y(l + 2))

⇤
e2x(l+1),

(2.38)

will ensure that |a| < 1.

Proof. Since T1d is of the form T in (2.1), Theorem 2.1 provides its limiting spectrum

and thus allows us to bound R1d by the largest eigenvalue in magnitude. We first bound

�±(✓) = a cos(✓) ±
p
b2 � a2 sin2(✓). It is straightforward to see that these values are
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the eigenvalues of the matrix

T =

 
a cos(✓) b� a sin(✓)

b+ a sin(✓) a cos(✓)

!
.

A simple computation shows that the matrix

T ⇤T =

 
|a|2 + |b|2 + (ab̄+ āb) sin(✓) (ab̄+ āb) cos(✓)

(ab̄+ āb) cos(✓) |a|2 + |b|2 � (ab̄+ āb) sin(✓)

!

has the eigenvalues µ± = |a± b|2. We can now conclude that

|�±(✓)|  kTk2 =
p
kT ⇤Tk2 =

p
max{µ+, µ�} = max{|a+ b|, |a� b|},

and furthermore note that this bound is attained when ✓ = 0. Additionally, Theo-

rem 2.1 states that eigenvalues � = ±(1
2
b2�a2)1/2 may belong to the limiting spectrum

but only if they have magnitude strictly less than |a|. Together, these two cases yield

(2.35).

Let us consider now the complex-valued functions F± : C ! C

F±(z) =
(z + �)2ez � (z � �)2e�z

(z + �)2e(l+1)z � (z � �)2e�(l+1)z
±

(z2 � �2)(elz � e�lz)

(z + �)2e(l+1)z � (z � �)2e�(l+1)z
.

It is easy to see that a⌥ b = F±(z) when z, l and � are as defined in (2.36). Similarly,

we define the function G : C ! C to be the first term in F±(z) so that a = G(z). Let

us simplify in the first instance the expression of |F±(z)| without using any assumption

on z := x+ iy. For this we consider the transformation v along with its polar form

v :=
z � �

z + �
, v = w(cos(') + i sin(')), w = |v|.(2.39)

After some lengthy but elementary calculations we find that

|F±(z)|
2 = 1�

(ex(l+1)
� w)2 + 2w(1⌥ cos ((l + 1)y � '))ex(l+1)

(e2x(l+1) � w2)2 + 4w2 sin2((l + 1)y � ')e2x(l+1)
g±(z; �, l)(2.40a)

g±(z; �, l) = (e2lx � 1)(e2x � w2)± 4w sin(ly) sin('� y)ex(l+1).(2.40b)

We observe that the fraction in (2.40a) is positive, since the individual terms involved

are, and thus max{|a � b|, |a + b|} < 1 , |F±(z)|2 < 1 , g±(z; �, l) > 0. We can now

rewrite g±(z; �, l) in (2.40b) using (2.39) and convert v to Cartesian form to obtain

the required expression in (2.37). A near identical argument can be used to derive
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conditions for |G(z)|2 < 1 and results in the criterion that g(z; �, l) > 0, where g(z; �, l)

is defined by (2.38). Thus the required conclusions follow. ⌅

We are now ready to state our main convergence result for the one-dimensional problem

in the case when ↵ = ik, namely that of classical impedance conditions.

Theorem 2.2 (Convergence of the Schwarz algorithm in 1D). If ↵ = ik (the case of

classical impedance conditions), then for all k > 0, � > 0, � > 0 and L > 0 we have

that R1d < 1. Therefore the convergence will ultimately be independent of the number

of subdomains (we say that the Schwarz method will scale).

Proof. By Lemma 2.3 we see that it is enough to study the sign of g±(z; �, l) and of

g(z; �, l). We can see that if ↵ = ik and  = 2�k then for z := x+ iy (2.39) becomes

<v =
�2 + x2 + y2

(+ y)2 + x2
, =v =

�2x

(+ y)2 + x2
, |v|2 =

(� y)2 + x2

(+ y)2 + x2
< 1,

the final inequality holding since  > 0 and y > 0. We emphasise that x and y are the

real and imaginary parts of z = 2�⇣ and so are positive by the nature of ⇣ in (2.29).

Now we can further simplify (2.37) using these expressions for v to obtain

g±(z; �, l) =
4ex(l+1)

(+ y)2 + x2
g̃±(z; �, l)(2.41a)

g̃±(z; �, l) = [(2 + x2 + y2) sinh(x) + 2y cosh(x)] sinh(lx)

± [(2 � x2 � y2) sin(y)� 2x cos(y)] sin(ly).
(2.41b)

Proving positivity of g±(z; �, l) is then equivalent to positivity of g̃±(z; �, l). To proceed

we relate x and y by considering the real part of z2 = (x + iy)2 = 2i�� � 2 which

yields y2 = 2 + x2. Let us now eliminate y using this identity to obtain

g̃±(z; �, l) = 2
h
(2 + x2) sinh(x) + 

p
2 + x2 cosh(x)

i
sinh(lx)

⌥ 2
h
x2 sin(

p
2 + x2) + x cos(

p
2 + x2)

i
sin(l

p
2 + x2).

To show that this is positive we want to lower bound the hyperbolic term in the first

line (which is positive) while making the trigonometric term in the second line as large

as possible in magnitude and negative. To do this we make use of some elementary

bounds which hold for t > 0:

| sin(t)| < t < sinh(t), | cos(t)|  1 < cosh(t).(2.42)
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We can now derive the positivity bound on g̃±(z; �, l), noting that x > 0, as follows

g̃±(z; �, l) > 2
h
(2 + x2)x+ 

p
2 + x2

i
lx� 2

h
x2
p
2 + x2 + x

i
l
p
2 + x2 = 0.

Turning to g(z; �, l), we can follow a similar process, simplifying (2.38) to find that

g(z; �, l) =
4e2x(l+1)

((+ y)2 + x2)2
g̃(z; �, l)(2.43a)

g̃(z; �, l) =
⇥
((2 + x2 + y2)2 + 42y2) sinh(x(l + 2))

+ 4y(2 + x2 + y2) cosh(x(l + 2))
⇤
sinh(lx)

+
⇥
((�2 + x2 + y2)2 � 42x2) sin(y(l + 2))

+ 4x(�2 + x2 + y2) cos(y(l + 2))
⇤
sin(ly).

(2.43b)

Using the identity y2 = 2 + x2 along with the elementary bounds (2.42) we obtain

g̃(z; �, l) = 4
⇥
y2(y2 + 2) sinh(x(l + 2)) + 2y3 cosh(x(l + 2))

⇤
sinh(lx)

+ 4
⇥
x2(x2 � 2) sin(y(l + 2)) + 2x3 cos(y(l + 2))

⇤
sin(ly)

> 4
⇥
y2(y2 + 2)x(l + 2) + 2y3

⇤
lx� 4

⇥
x2(x2 + 2)y(l + 2) + 2x3

⇤
ly

= 4l(l + 2)x2y22 + 8lxy3

> 0.

Thus, we conclude that for any choice of parameters the required su�cient criteria from

Lemma 2.3 on g±(z; �, l) and g(z; �, l) hold and hence R1d < 1. Therefore the algorithm

will always converge in a number of iterations ultimately independent of the number

of subdomains. Nonetheless, note that as any problem parameter shrinks to zero the

bounds become tight and so R1d can be made arbitrarily close to one. ⌅

In order to verify this result, we compute numerically (using MATLAB) the spectrum of

the iteration matrix and compare it with the theoretical limit for di↵erent values of �.

We choose here k = 30, L = 1 and � = L/10. From Figures 2.2 and 2.3 we notice that

the spectrum of the iteration matrix tends to the theoretical limit when the number of

subdomains becomes large and the algorithm remains convergent. Additionally, when

� grows the behaviour of the algorithm improves, which is consistent with the fact that

when the absorption in the equations is important (solutions are less oscillatory) or

the overlap is large (more information is exchanged) the systems are easier to solve.

We also remark an empirical observation that the convergence factor monotonically

increases towards the limit given in Lemma 2.3, thus indicating that the algorithm will



CHAPTER 2. SCHWARZ METHODS 37

Re(λ)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Im
(λ
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Spectrum
Theoretical limit

Number of subdomains N
0 20 40 60 80 100 120 140 160

C
o
n
v
er
g
en

ce
fa
ct
o
r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence factor
Theoretical limit

Figure 2.2: The spectrum of the iteration matrix T1d for N = 160 (left) and the
convergence factor of the Schwarz algorithm for varying number of subdomains N
(right) when � = 0.1.
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Figure 2.3: The spectrum of the iteration matrix T1d for N = 160 (left) and the
convergence factor of the Schwarz algorithm for varying number of subdomains N
(right) when � = 5.

always converge for any N .

Before moving onto the two-dimensional case, we first derive a simple corollary showing

how our results can be extended in the direction of k-independence of the one-level

method within certain scenarios. In this case we consider the parameters L and �

being dependent upon the wave number k.

Corollary 2.1 (A case of k-independent convergence). Suppose ↵ = ik (the case of

classical impedance conditions) and that � = �0k for some constant �0. Consider

a k-dependent domain decomposition given by L = L0k�1 and � = �0k�1, that is the

subdomain size and overlap shrink inversely proportional to the wave number. Then the

convergence of the corresponding Schwarz method is independent of the wave number
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k. Thus the approach is k-robust and convergence will ultimately be independent of the

number of subdomains.

Proof. Inserting the relevant k-dependent parameters ↵, �, � and L into (2.28) we find

that both coe�cients a and b, and thus the iteration matrix T1d, are independent of k.

Combining this result with Theorem 2.2 shows that the convergence of the correspond-

ing Schwarz method is both k-independent and, ultimately, independent of the number

of subdomains. ⌅

We note that k-robustness of the one-level method was proved, under certain conditions,

in [GSZ20] using rigorous GMRES bounds. Here, our theory is able to directly evidence

k-robustness of the algorithm at the continuous level, independent of the discretisation,

in a simple one-dimensional scenario. We can also consider the case where k is linked

to N such that we now solve on a fixed domain a family of problems with increasing

wave number using an increasing number of subdomains, here our theory shows the

method to be k-robust and weakly scalable.

Theorem 2.2 shows that weak scalability is achieved in the one-dimensional case as

soon as the parameter � is strictly positive. Intuitively this makes sense since, in the

one-dimensional case for � = 0, the iteration matrix becomes nilpotent and therefore

a classical iterative method will need a number of iterations equal to the number of

subdomains to converge. According to the definition from Section 1.2 it is not scalable.

The complex shift brought about by � will aid convergence by damping the waves and,

when this damping parameter is large enough, robustness with respect to the wave

number can also be achieved as seen in Corollary 2.1.

2.5 The two-dimensional problem

Consider the domain ⌦ = (a1, bN )⇥(0, L̂) on which we wish to solve the two-dimensional

problem and a decomposition into N overlapping subdomains defined by ⌦j = (aj , bj)⇥

(0, L̂), where aj and bj are as given in (2.25). We will analyse the case of the Helmholtz

and then Maxwell’s equations.
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2.5.1 The Helmholtz equation

The definition of the parallel Schwarz method for the iterates un
j
in the case of the

two-dimensional Helmholtz problem is

8
>>>><

>>>>:

(ik� � k2)un
j
� (@xx + @yy)unj = f, (x, y) 2 (aj , bj)⇥ (0, L̂),

Blunj (aj , y) = Blu
n�1

j�1
(aj , y), y 2 (0, L̂),

Brunj (bj , y) = Bru
n�1

j+1
(bj , y), y 2 (0, L̂),

un
j
(x, y) = 0, x 2 (aj , bj), y 2 {0, L̂},

(2.44)

where the boundary operators Bl and Br are as defined in (2.24). For the first and the

last subdomain (j = 1 and j = N) we impose Blun1 = g1 when x = a1 and BrunN =

g2 when x = bN . We consider here the case of impedance conditions, i.e. ↵ = ik.

Note that this configuration corresponds to a “two-dimensional wave-guide” problem.

By linearity, it follows that the local errors en
j
= u|⌦j � un

j
satisfy the homogeneous

analogue of (2.44). To proceed, we make use of the Fourier sine expansion of en
j
,

as the solution verifies Dirichlet boundary conditions on the top and bottom of each

rectangular subdomain:

enj (x, y) =
1X

m=1

vnj (x, k̃) sin(k̃y), k̃ =
m⇡

L̂
, m 2 N.(2.45)

Inserting this expression into the homogeneous counterpart of (2.44) we find that, for

each Fourier number k̃, vn
j
(x, k̃) verifies the one-dimensional problem

8
><

>:

(ik� + k̃2 � k2)vn
j
� @xxvnj = 0, x 2 (aj , bj),

Blvnj (x, k̃) = Blv
n�1

j�1
(x, k̃), x = aj ,

Brvnj (x, k̃) = Brv
n�1

j+1
(x, k̃), x = bj ,

(2.46)

which is of exactly the same type as (2.26) where ik�� k2 is replaced by ik�+ k̃2� k2.

Therefore, the result from Lemma 2.2 applies here if we replace ↵ with ik and ⇣ with

⇣(k̃) =

q
ik� + k̃2 � k2.(2.47)

Let us denote the resulting iteration matrix, which propagates information for each

Fourier number k̃ independently, by T
H

1d
(k̃) and let RH

1d
(k̃) := limN!1 ⇢(T H

1d
(k̃)) with

RH

2d
= sup

k̃
RH

1d
(k̃). We can now state our main convergence result for the two-

dimensional Helmholtz problem.

Theorem 2.3 (Convergence of the Schwarz algorithm for Helmholtz in 2D). If ↵ = ik
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(the case of classical impedance conditions), then for all k > 0, � > 0, � > 0 and L > 0

we have that RH

1d
(k̃) < 1 for all evanescent modes k̃ > k. Furthermore, under the

assumption that between them �, � and L are su�ciently large we have that RH

2d
< 1.

In particular, this is true when � � k for all � > 0 and L > 0. Therefore the convergence

will ultimately be independent of the number of subdomains (we say that the Schwarz

method will be weakly scalable according to definitions in Section 1.2).

Proof. By Lemma 2.3 we see that it is enough to study the sign of g±(z; �, l) and

g(z; �, l). To assist, we use the scaled notation  = 2�k, ̃ = 2�k̃ and s = 2�� akin to

(2.36). Now g±(z; �, l) can be formally simplified identically to (2.41), however, in this

case with ⇣ as in (2.47) the real part of z2 gives the identity ̃2�2 = x2�y2. Utilising

this identity along with the bounds (2.42) yields

g̃±(z; �, l) >
⇥
(2 + x2 + y2)x+ 2y

⇤
lx�

��(2 � x2 � y2)y � 2x
�� ly

� l(2 + x2 + y2)(̃2 � 2).

Hence we always have g̃±(z; �, l) > 0 for the evanescent modes k̃ > k (equivalent to

̃ > ). Similarly, g(z; �, l) can be simplified identically to (2.43) and we find that

g̃(z; �, l) > l(l + 2)
�
x2((2 + x2 + y2)2 + 42y2)� y2|(�2 + x2 + y2)2 � 42x2|

�

+ 4lxy
�
2 + x2 + y2 � |� 2 + x2 + y2|

�

� l(l + 2)(2 + x2 + y2)2(̃2 � 2),

and so we always have g̃(z; �, l) > 0 for the evanescent modes k̃ > k too. Together this

shows that RH

1d
(k̃) < 1 for all evanescent modes. Note that, for the remaining modes

k̃  k, it is possible that RH

1d
(k̃) � 1 for some choices of problem parameters.

We now refine the above bounds. In order to do so we make use of the identities

4x2y2 = 2s2 and x2+ y2 =
p
(̃2 � 2)2 + 2s2 which arise since (by considering both

real and imaginary parts of z2 = (x+ iy)2 = is+ ̃2 � 2) we have that

2x2 =
p

(̃2 � 2)2 + 2s2 + ̃2 � 2, 2y2 =
p
(̃2 � 2)2 + 2s2 � ̃2 + 2.(2.48)

Now, if we make use of the substitution 2 + x2 = ̃2 + y2 for the terms involving

hyperbolic functions and the substitution 2 � y2 = ̃2 � x2 for the terms involving

trigonometric functions, we obtain the following:

g̃±(z; �, l) >
⇥
(̃2 + 2y2)x+ 2y

⇤
lx�

��(̃2 � 2x2)y � 2x
�� ly
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� l
�
x2(̃2 + 2y2)� y2|̃2 � 2x2|

�

=

(
l̃2(x2 + y2)

l
�
4x2y2 + ̃2(̃2 � 2)

�
if ̃2  2x2,

if ̃2 > 2x2,

=

(
l̃2
p
(̃2 � 2)2 + 2s2

l
�
̃4 + 2(s2 � ̃2)

�
if ̃2  2x2,

if ̃2 > 2x2,

and

g̃(z; �, l) > l(l + 2)
�
x2(̃2 + 2y2)2 � y2(̃2 � 2x2)2

�

+ 4lxy
�
̃2 + 2y2 � |̃2 � 2x2|

�

= l(l + 2)
�
̃4(x2 � y2) + 4x2y2(2̃2 + y2 � x2)

�

+ 4lxy
�
̃2 + 2y2 � |̃2 � 2x2|

�

=

8
>>>><

>>>>:

l(l + 2)
�
̃4(̃2 � 2) + 4x2y2(̃2 + 2)

�

+ 8l3xy

l(l + 2)
�
̃4(̃2 � 2) + 4x2y2(̃2 + 2)

�

+ 8lxy(x2 + y2)

if ̃2  2x2,

if ̃2 > 2x2,

=

8
>>>><

>>>>:

l(l + 2)
�
̃6 + 4s2 + ̃22(s2 � ̃2)

�

+ 4l4s

l(l + 2)
�
̃6 + 4s2 + ̃22(s2 � ̃2)

�

+ 4l2s
p

(̃2 � 2)2 + 2s2

if ̃2  2x2,

if ̃2 > 2x2.

From the penultimate expression in each case we see that for evanescent modes k̃ > k

(i.e. ̃ > ) we always have g̃±(z; �, l) > 0 and g̃(z; �, l) > 0. Furthermore, from the

final expressions we see that all modes k̃  � (i.e. ̃  s) also give the desired positivity.

Thus we deduce that when � � k we have positivity for all modes k̃ and hence RH

2d
< 1.

We also remark that modes k̃  k which are relatively close to k are identified as

those giving the worst bounds, suggesting these are the most problematic modes for

the algorithm.

If � < k we may still have positivity of g̃±(z; �, l) and g̃(z; �, l) for all modes so long as

x or lx is large enough so that the hyperbolic term, which is always positive, is larger

than the magnitude of the trigonometric term in both (2.41b) and (2.43b). Using (2.48)

and converting back to the original variables we have that

x = 2�

s
1

2

✓q
(k2 � k̃2)2 + �2k2 + k̃2 � k2

◆
,(2.49)
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while lx has an identical expression except with 2� replaced by L. Thus we see that,

between the parameters �, � and L, so long as they are su�ciently large we will have

g̃±(z; �, l) > 0 and g̃(z; �, l) > 0 for all modes k̃ and thus RH

2d
< 1 as desired. ⌅
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Figure 2.4: The convergence factor of each Fourier mode for N = 80 (left) and the
convergence factor of the full Schwarz algorithm for varying number of subdomains N
(right) when � = 0.1, k = 30.
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Figure 2.5: The convergence factor of each Fourier mode for N = 80 (left) and the
convergence factor of the full Schwarz algorithm for varying number of subdomains N
(right) when � = 1, k = 30.

To verify these results, we compare numerically the spectral radius of the iteration

matrix with the theoretical limit for di↵erent values of �. We choose here L = 1, L̂ = 1

and � = L/10. From Figures 2.4 and 2.5 we see that, as predicted, the Schwarz algo-

rithm is not convergent for all Fourier modes when � is small, but becomes convergent

for � su�ciently large. In particular, we see in Figure 2.5 that the method can be
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convergent for � ⌧ k. As expected from our theory, the algorithm always converges

well for evanescent modes (k̃ > k).

Similarly to the one-dimensional case we can also consider the question of k-robustness:

Corollary 2.2 (A case of k-independent convergence). Suppose ↵ = ik (the case of

classical impedance conditions) and that � = �0k for some constant �0. Consider a

k-dependent domain decomposition given by L = L0k�1 and � = �0k�1, that is the

subdomain size and overlap shrink inversely proportional to the wave number. Then

the convergence factor RH

2d
can be bounded above by a k-independent value and this

bound becomes tight as k ! 1. As such, the convergence of the corresponding Schwarz

method is ultimately independent of the wave number k as it increases. Under the

additional assumptions of Theorem 2.3 for convergence (now on �0, L0 and �0), we

thus deduce that the approach will ultimately be k-robust and independent of the number

of subdomains.

Proof. The proof is similar to the one-dimensional case except that now we must con-

sider the Fourier number k̃. To do so, we let k̃2 = �k2. In this scenario, the coe�cients

a and b of the iteration matrix depend on k only through �. However, in the final

convergence factor RH

2d
we take the supremum over all k̃, namely now over a discrete

set of positive � values. This is bounded above by the supremum over all � 2 R+,

which is then independent of k, the supremum being finite since the bounds derived

in Theorem 2.3 do not rely on the discrete nature of k̃ and so can be readily applied,

translated into �. Note that as k ! 1 the discrete set of � values becomes dense in

R+ so this supremum bound becomes tight. Thus we will ultimately have k-robustness.

Combining with Theorem 2.3 we further obtain that ultimately the convergence will

also be independent of the number of subdomains. ⌅

Remark 2.1. We note an empirical observation that, for reasonable values of �, � and

L (namely when these parameters are not too small, essentially the same conditions

required for convergence, but also neither of � or � being too large), the value of k̃

giving the supremum of RH

1d
(k̃) lies in a small neighbourhood around k (equivalent to

� = 1 in the above proof). This is consistent with other works in the literature, e.g.,

[GMN02, Con15], where the most problematic modes are those close to the cut-o↵ k.

In this case, a series expansion around k̃ = k shows that k� and kL being fixed are the

requirements on the domain decomposition parameters in order for the algorithm to be

k-independent; see the supplementary Maple worksheets.

For more general theory on k-robustness of the one-level method and rigorous GMRES
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bounds, see [GSZ20]. As in the one-dimensional case, we can link k and N so that we

consider solving on a fixed domain a family of problems with increasing wave number

using an increasing number of subdomains and, under the conditions of Theorem 2.3

and Corollary 2.2, our theory shows that the Schwarz algorithm will ultimately be

k-robust and weakly scalable.

Remark 2.2. We have focused here on the case of an overlapping domain decom-

position. While the algorithm can also work in the non-overlapping case, it typically

has a very poor behaviour. It is known from the literature (for example by setting the

parameters to zero in formula (3.2) from [GMN02]) that if � = 0 in the case of a de-

composition into two subdomains, the purely iterative algorithm does not converge for

evanescent modes (k̃ > k), the convergence factor being equal to 1. By increasing �,

the convergence factor can be lowered but only a little (it remains close to one) and

the algorithm continues to have very poor convergence properties for evanescent modes.

This can be proven by similar techniques to those used in the overlapping case.

We also note a fundamental di↵erence between the one-dimensional and two-dimensional

cases from the scalability point of view. Whereas in the first case independence to the

number of subdomains is achieved simply by taking � > 0, in the two-dimensional case

things become more complex. This is consistent with previous convergence studies,

starting from that in the seminal work on optimised transmission conditions [GMN02],

where it has been observed that propagative and evanescent modes behave di↵erently

and the iterative algorithm does not converge for the cut-o↵ frequency k. The maxi-

mum of the convergence factor is usually attained in a neighbourhood of k̃ = k and can

be made su�ciently small when � is taken large enough; in this case we can achieve

scalability and k-robustness. We note that this kind of discrepancy, between one- and

two-dimensional problems, is typical for the Helmholtz equation and cannot be observed

in the case of the Laplace equation.

2.5.2 The transverse electric Maxwell’s equations

We now apply the same ideas to the transverse electric Maxwell’s equations with damp-

ing in the frequency domain. For an electric field E = (Ex, Ey), these equations are

expressed as

LE := �k2E+r⇥ (r⇥E) + ik�E = 0

,

(
�k2Ex � @yyEx + @xyEy + ik�Ex = 0,

�k2Ey � @xxEy + @xyEx + ik�Ey = 0,

(2.50)
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for (x, y) 2 ⌦. The boundary conditions on the top and bottom boundaries (y = 0

and y = L̂) are perfect electric conductor (PEC) conditions, the equivalent of Dirichlet

conditions for Maxwell’s equations:

E⇥ n = 0 , Ex = 0, y = {0, L̂}.(2.51)

On the left and right boundaries (x = a1 and x = bN ) we use impedance boundary

conditions2:

(r⇥E⇥ n)⇥ n+ ikE⇥ n = g

,

(
BlE := (�@x + ik)Ey + @yEx = g1, x = a1,

BrE := (@x + ik)Ey � @yEx = �g2, x = bN .

(2.52)

The same conditions will be used at the interfaces between subdomains, akin to the

classical algorithm defined in [DJR92]. The Maxwell problem (2.50)–(2.52) constitutes

a “two-dimensional wave-guide” model.

Let us denote by En

j
the approximation to the solution in subdomain j at iteration n.

Starting from an initial guess E0

j
, we compute En

j
from the previous values En�1

j
by

solving the following local boundary value problems

8
>>>><

>>>>:

LEn

j
= 0, x 2 ⌦j ,

BlEn

j
= BlE

n�1

j�1
, x = aj ,

BrEn

j
= BrE

n�1

j+1
, x = bj ,

En

x,j
= 0, y 2 {0, L̂},

(2.53)

for the interior subdomains (1 < j < N), while for the first (j = 1) and last (j = N)

subdomain we impose BlEn
1

= g1 when x = a1 and BrEn

N
= �g2 when x = bN .

To study the convergence of the Schwarz algorithm we define the local error in each

subdomain j at iteration n as en
j
= E|⌦j �En

j
. Note that these errors verify boundary

value problems which are the homogeneous counterparts of (2.53).

Due to the PEC boundary conditions on the top and bottom boundaries of each rect-

angular subdomain we can use the following Fourier series ansatzes to compute the

2Note that in rewriting the impedance conditions we can use the three-dimensional definition of the
operators, i.e. E = (Ex, Ey, 0) and n = (1, 0, 0) for the right boundary and n = (�1, 0, 0) for the left
boundary.
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local solutions of Len
j
= 0:

enx,j =
1X

m=1

vnj (x, k̃) sin(k̃y), eny,j =
1X

m=0

wn

j (x, k̃) cos(k̃y), k̃ =
m⇡

L̂
, m 2 N.(2.54)

The first series of en
x,j

contains only the sine basis functions because of the homogeneous

Dirichlet boundary condition on the bottom and the top of the boundary. As far as en
y,j

is concerned, the cos terms comes directly from the equations and boundary conditions

in which we have replaced the series of en
x,j

. Indeed, since these equations involve

derivatives of en
x,j

w.r.t y, then the corresponding series for en
y,j

will contain the cos

basis functions.

By plugging the expressions for en
x,j

and en
y,j

into Len
j
= 0, a simple computation shows

that, for each Fourier number k̃, we have the general solutions

vnj (x, k̃) = �↵n

j

k̃

⇣
e�⇣x + �n

j

k̃

⇣
e⇣x, wn

j (x, k̃) = ↵n

j e
�⇣x + �n

j e
⇣x,(2.55)

where ⇣(k̃) =
p
ik� + k̃2 � k2. From these formulae we can see easily that

@xv
n

j = k̃wn

j , @xw
n

j =
⇣2

k̃
vnj .(2.56)

In order to benefit again from the analysis in the one-dimensional case, we first prove

the following result.

Lemma 2.4 (Maxwell reduction). For each Fourier number k̃, we have that both

vn
j
(x, k̃) and wn

j
(x, k̃) are solutions of the following one-dimensional problem:

8
><

>:

(ik� + k̃2 � k2)un
j
� @xxunj = 0, x 2 (aj , bj),

Bl,�unj (x, k̃) = Bl,�u
n�1

j�1
(x, k̃), x = aj ,

Br,�unj (x, k̃) = Br,�u
n�1

j+1
(x, k̃), x = bj ,

(2.57)

where Bl,� = �@x + ik + � and Br,� = @x + ik + �.

Proof. Let us notice first that, because of (2.56), we have

@xe
n

x,j + @ye
n

y,j =
1X

m=1

⇣
@xv

n

j � k̃wn

j

⌘
sin(k̃y) = 0.

If we use this in the error equation Len
j
= 0 we obtain that both vn

j
(x, k̃) and wn

j
(x, k̃)
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satisfy, for each k̃, the one-dimensional equation (ik�+ k̃2� k2)un
j
� @xxunj = 0. Let us

analyse now the boundary conditions. With the help of (2.56), we consider the right

boundary and note that the left one can be treated similarly:

Bre
n

j = (@x + ik)eny,j � @ye
n

x,j =
1X

m=1

((@x + ik)wn

j � k̃vnj ) cos(k̃y)

=
1X

m=1

✓
ik

k̃
@xv

n

j +

✓
⇣2

k̃
� k̃

◆
vnj

◆
cos(k̃y) =

1X

m=1

ik

k̃
Br,�v

n

j cos(k̃y).

Thus, imposing transfer of boundary data with Brenj is equivalent to that with Br,�vnj ,

for each Fourier number k̃. ⌅

It is now clear that the analysis of the two-dimensional case can again be derived

from the one-dimensional case. That is, the result from Lemma 2.2 applies here if

we replace ↵ with ik + � and with ⇣ being defined by (2.47). Let us denote the

resulting iteration matrix, for each k̃, by T
M

1d
(k̃) and let RM

1d
(k̃) := limN!1 ⇢(T M

1d
(k̃))

with RM

2d
= sup

k̃
RM

1d
(k̃). We can now state our main convergence result for the two-

dimensional Maxwell problem.

Theorem 2.4 (Convergence of the Schwarz algorithm for Maxwell in 2D). For all

k > 0, � > 0, � > 0 and L > 0 we have that RM

1d
(k̃) < 1 for all evanescent modes k̃ > k.

Furthermore, under the assumption that between them �, � and L are su�ciently large

we have that RM

2d
< 1. In particular, this is true when � � k for all � > 0 and L > 0.

Therefore the convergence will ultimately be independent of the number of subdomains

(we say that the Schwarz method will scale).

Proof. By Lemma 2.3 we see that it is enough to study the sign of g±(z; �, l) and

g(z; �, l). To assist, we use the scaled notation  = 2�k, ̃ = 2�k̃ and s = 2�� akin to

(2.36). We can see that if ↵ = ik + � then for z := x+ iy (2.39) becomes

<v =
�2 � s2 + x2 + y2

(+ y)2 + (s+ x)2
, =v =

2sy � 2x

(+ y)2 + (s+ x)2
, |v|2 =

(� y)2 + (s� x)2

(+ y)2 + (s+ x)2
,

where |v|2 < 1. We can now simplify g±(z; �, l) in (2.37) using these formulae to give

g±(z; �, l) =
4ex(l+1)

(+ y)2 + (s+ x)2
g̃±(z; �, l)(2.58a)

g̃±(z; �, l) = [(2 + s2 + x2 + y2) sinh(x) + 2(y + sx) cosh(x)] sinh(lx)

± [(2 + s2 � x2 � y2) sin(y) + 2(sy � x) cos(y)] sin(ly).
(2.58b)
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Proceeding as before, using ̃2 � 2 = x2 � y2 and the bounds (2.42), we derive that

g̃±(z; �, l) > l(2 + s2 + 2s+ x2 + y2)(̃2 � 2)

which is positive for all evanescent modes k̃ > k. Similarly, simplifying g(z; �, l) in

(2.38) we find that

g(z; �, l) =
4e2x(l+1)

((+ y)2 + (s+ x)2)2
g̃(z; �, l)(2.59a)

g̃(z; �, l) =
⇥
((2 + s2 + x2 + y2)2 + 4(y + sx)2) sinh(x(l + 2))

+ 4(y + sx)(2 + s2 + x2 + y2) cosh(x(l + 2))
⇤
sinh(lx)

+
⇥
((�2 � s2 + x2 + y2)2 � 4(x� sy)2) sin(y(l + 2))

+ 4(x� sy)(�2 � s2 + x2 + y2) cos(y(l + 2))
⇤
sin(ly),

(2.59b)

from which we can obtain the bound

g̃(z; �, l) > l(l + 2)
�
(2 + s2 + x2 + y2)2 + 4s2(x2 + y2) + 8sxy

�
(̃2 � 2)

+ 4ls
�
2 + s2 + x2 + y2

�
(̃2 � 2).

Again, this is positive for all evanescent modes and thus we deduce that RM

1d
(k̃) < 1 for

all k̃ > k.

We now refine these bounds, as in the proof of Theorem 2.3 and using the same identities

and substitutions. For g±(z; �, l) we first obtain

g̃±(z; �, l) > l
�
x2(s2 + ̃2 + 2y2)� y2

��s2 + ̃2 � 2x2
��+ 2x(y + sx)� 2y |x� sy|

�
,

and split into four cases based on the sign of each term we take the absolute value of.

Consider first the case s2 + ̃2  2x2 and x  sy, then

g̃±(z; �, l) > l
�
(s2 + ̃2)(x2 + y2) + 4xy + 2s(x2 � y2)

�

= l
⇣
(s2 + ̃2)

p
(̃2 � 2)2 + 2s2 + 2̃2s

⌘
.

Now consider the case s2 + ̃2 > 2x2 and x > sy where we find that

g̃±(z; �, l) > l
�
4x2y2 + (s2 + ̃2)(x2 � y2) + 2s(x2 + y2)

�

= l
⇣
̃2(s2 + ̃2 � 2) + 2s

p
(̃2 � 2)2 + 2s2

⌘
.

The remaining cases follow as combinations of the previous two cases and we deduce,
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in the case s2 + ̃2  2x2 and x > sy, that

g̃±(z; �, l) > l(s2 + ̃2 + 2s)
p
(̃2 � 2)2 + 2s2,

while the case s2 + ̃2 > 2x2 and x  sy gives

g̃±(z; �, l) > l̃2(s2 + ̃2 � 2 + 2s).

Turning to g̃(z; �, l), we first derive that

g̃(z; �, l) > l(l + 2)
⇥
x2((s2 + ̃2 + 2y2)2 + 4(y + sx)2)

� y2((s2 + ̃2 � 2x2)2 + 4(x� sy)2)
⇤

+ 4l
�
x(y + sx)(s2 + ̃2 + 2y2)� y

��(x� sy)(s2 + ̃2 � 2x2)
��� ,

from which we see that we need to analyse just two sets of combined cases. First

consider when both s2 + ̃2  2x2 and x  sy or both s2 + ̃2 > 2x2 and x > sy,

yielding

g̃(z; �, l) > l(l + 2)
⇥
(s2 + ̃2)2(x2 � y2) + 4x2y2(2s2 + 2̃2 + y2 � x2)

+ 4s(x2 + y2)(2xy + s(x2 � y2))
⇤
+ 4l(x2 + y2)(2xy + s(s2 + ̃2))

= l(l + 2)
h
2s2(s2 + 2) + ̃2(s2 + ̃2)(s2 + ̃2 � 2)

+ 4̃2s2
p

(̃2 � 2)2 + 2s2
i
+ 4ls(s2 + ̃2 + 2)

p
(̃2 � 2)2 + 2s2.

On the other hand, in the second set of cases when both s2 + ̃2  2x2 and x > sy or

both s2 + ̃2 > 2x2 and x  sy we have

g̃(z; �, l) > l(l + 2)
⇥
(s2 + ̃2)2(x2 � y2) + 4x2y2(2s2 + 2̃2 + y2 � x2)

+ 4s(x2 + y2)(2xy + s(x2 � y2))
⇤

+ 4l
�
2xy(s2 + ̃2 + y2 � x2) + s(4x2y2 + (s2 + ̃2)(x2 � y2))

�

= l(l + 2)
h
2s2(s2 + 2) + ̃2(s2 + ̃2)(s2 + ̃2 � 2)

+ 4̃2s2
p
(̃2 � 2)2 + 2s2

i
+ 4ls

�
2(s2 + 2) + ̃2(s2 + ̃2 � 2)

�
.

Summarising, we see that all cases give g̃±(z; �, l) > 0 and g̃(z; �, l) > 0 for all modes k̃

satisfying k̃2 � k2 � �2 (i.e. ̃2 � 2 � s2). From this we can deduce that when � � k

we have positivity for all modes k̃ and hence RM

2d
< 1. Note that � � k is far from

a necessary requirement and it is clear that there is some slack in these bounds. We
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also remark from this analysis that modes k̃ 
p
k2 � �2 which are relatively close to

p
k2 � �2 yield the poorest bounds, suggesting they are the most problematic for the

algorithm. Indeed, we may have RM

1d
(k̃) � 1 when k̃ 

p
k2 � �2 for some choices of

problem parameters. However, as in Theorem 2.4 we can force positivity of g̃±(z; �, l)

and g̃(z; �, l) for all modes so long as x or lx is large enough. Since x and lx take

the same expressions as in Theorem 2.4 we can similarly deduce that, so long as the

parameters �, � and L between them are su�ciently large, we will have g̃±(z; �, l) > 0

and g̃(z; �, l) > 0 for all modes k̃ and thus the required conclusion that RM

2d
< 1. ⌅

2.6 Numerical simulations on the discretised equation

In the following section we will show some numerical simulations which confirm our

theory within the more practical setting of using an iterative Krylov method to accel-

erate convergence, with the Schwarz method being used as a preconditioner. We focus

here on the two-dimensional Helmholtz equation, as described in Section 2.5, where a

(horizontal) plane wave is incoming from the left boundary and homogeneous Dirichlet

boundary conditions are imposed on the top and bottom boundaries, giving a wave-

guide problem. A second test case we consider is the propagation of such a wave in free

space (i.e. when impedance boundary conditions are imposed on the whole boundary).

While not covered by our theory, we will nonetheless observe similar conclusions, illus-

trating that the results apply more widely than within the restrictions of our theoretical

assumptions. In our simulations, each subdomain is a unit square split uniformly with

a fixed number of grid points in each direction. New subdomains are added on the

right so that, with N subdomains, the whole domain is ⌦ = (0, N)⇥ (0, 1).

To discretise we use a uniform square grid in each direction and triangulate to form

P1 elements. As we increase k we increase the number of grid points proportional

to k3/2 in order to ameliorate the pollution e↵ect [BS97]. We use an overlap of

size 2h, with h being the mesh size. All computations are performed using FreeFem

(http://freefem.org/), in particular using the ffddm framework. We solve the discre-

tised problem using GMRES where the parallel Schwarz method with Robin conditions

is used as a preconditioner. In particular, we use right-preconditioned GMRES and ter-

minate when a relative residual tolerance of 10�6 is reached. The construction of the do-

main decomposition preconditioner is described in detail in [BDG+19a, DJTO20]. The

preconditioner, which arises naturally as the discretised version of the parallel Schwarz

method with Robin conditions we have studied (see, e.g., [SCGT07]), is known as the

one-level optimised restricted additive Schwarz (ORAS) preconditioner. This ORAS
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preconditioner is given by

M�1 =
NX

i=1

RT

i DiB
�1

i
Ri

where {Ri}1iN
are the Boolean restriction matrices from the global to the local finite

element spaces and {Di}1iN
are local diagonal matrices representing the partition of

unity. The key ingredient of the ORAS method is that the local subdomain matrices

{Bi}1iN
incorporate more e�cient Robin transmission conditions.

Note that, unlike in [GSZ20] where the emphasis is placed on the independence of

the one-level method to the wave number, we focus here on the scalability aspect, i.e.

the independence of the one-level method with respect to the number of subdomains

N as soon as the absorption parameter k� is positive. We will observe that, beyond

a su�ciently large value of N , the iteration count does not increase further, though

in general this value will depend on the parameters of the problem, namely the wave

number and absorption as well as the overlap and subdomain size. As a side e↵ect,

when the absorption is su�ciently large, i.e. of order k, wave number independence is

also achieved.

In Table 2.1 we detail the GMRES iteration count for an increasing number of subdo-

mains N and di↵erent values of k for the wave-guide problem and the wave propagation

in free space problem. We set the conductivity parameter as � = 1 (giving an absorp-

tion parameter k). We see that, after an initial increase, the iteration counts become

independent of the number of subdomains and also independent of the wave number,

which is consistent with the results obtained in [GSZ20] where the absorption param-

eter for optimal convergence is of order k. Another possible explanation of this is that

when the absorption parameter increases, the waves are damped and their amplitude

will decrease with the distance to the boundary on which the excitation is imposed.

Hence, when additional subdomains are added, the solution will not vary much in these

subdomains.

In the following we will provide more extensive numerical evidence on the application

of the method.

In Table 2.2, Table 2.3, we perform numerical tests for a given value of the absorption

parameter, and we vary the number of subdomains for a particular selection of small

wavenumbers and definition of the local degrees of freedom. On each of these numerical

computations we use a di↵erent size of overlap. We see that the behaviour of the

method is not very sensitive to the size of the overlap. If the latter is further increased
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Table 2.1: Preconditioned GMRES iteration counts for varying wave number k and
number of subdomains N when � = 1.

Wave-guide problem Free space problem
k/N 8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
20 19 22 25 30 30 30 30 30 19 21 25 25 25 25 25 25
40 18 21 24 29 29 29 29 29 17 19 24 25 25 25 25 25
60 19 21 24 29 29 29 29 29 16 19 24 25 25 25 25 25
80 19 21 24 28 28 28 28 28 16 18 24 25 25 25 25 25
100 19 21 24 28 28 28 28 28 16 18 24 25 25 25 25 24

Figure 2.6: Waveguide solution with � = 1 and k = 100

the performance will not improve. The absorption is defined as " = k�.

nloc k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
10 11.6 17 21 24 28 28 28 28 28 11.6
20 18.5 17 22 24 29 29 29 29 29 18.5
40 29.3 19 22 24 29 29 29 29 29 29.3

Table 2.2: GMRES iteration counts for the absorption parameter fixed to k and the
overlap equal to 2.

nloc k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
10 11.6 17 20 24 28 28 28 28 28 11.6
20 18.5 17 22 24 29 29 29 29 29 18.5
40 29.3 19 22 24 29 29 29 29 29 29.3

Table 2.3: GMRES iteration counts for the absorption parameter fixed to k and the
overlap equal to 6.

In Table 2.4 we are varying the number of subdomains and using a very small absorption

parameter. We notice that the behaviour of the algorithm is very sensitive to the

wavenumber although the iteration count tent to stabilise as the number of domains is

increasing, as predicted by the theory.
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nloc k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 "
10 11.6 32 71 113 151 177 212 11.6 10�6

20 18.5 40 82 130 178 223 269 18.5 10�6

40 29.3 74 147 237 305 388 457 29.3 10�6

Table 2.4: GMRES iteration counts for very small absorption and the overlap equal to
2.

k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 19 22 25 30 30 30 30 30 20
40 18 21 24 29 29 29 29 29 40
60 19 21 24 29 29 29 29 29 60
80 19 21 24 28 28 28 28 28 80
100 19 21 24 28 28 28 28 28 100

Table 2.5: GMRES iteration counts for the absorption parameter fixed to k and the
overlap equal to 2

In Table 2.5, Table 2.6, Table 2.7, we change the absorption parameter and consider a

wider range of wavenumbers. We notice that when the damping (absorption) param-

eter increases the iteration count is considerably reduced, whereas if we decrease the

damping GMRES behaviour will deteriorate.

k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 8 8 8 8 8 8 8 8 89.44
40 6 6 6 6 6 6 6 6 253
60 5 5 5 5 5 5 5 5 464.76
80 4 4 4 4 4 4 4 4 715.54
100 4 4 4 4 4 4 4 4 1000

Table 2.6: GMRES iteration counts for the absorption parameter fixed to k3/2 and the
overlap equal to 6.

k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 32 51 63 71 82 85 86 86 4.47
40 45 68 84 93 101 109 116 117 6.325
60 66 89 106 116 125 137 148 153 7.746
80 65 101 122 138 150 160 172 183 8.9443

Table 2.7: GMRES iteration counts for the absorption parameter fixed to k1/2 and the
overlap equal to 6.

In all the previous examples we have considered the waveguide problem with Dirichlet

conditions on the top and bottom boundaries. In Table 2.8, Table 2.9, Table 2.10 we

change the boundary value problem we impose impedance conditions everywhere which
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simulates the propagation of a wave in the free space. The conclusions are consistent

with the ones obtained in the case of the waveguide except that for a smaller absorption

parameter, the behaviour doesn’t deteriorate as much as in the case of the waveguide.

k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 19 21 25 25 25 25 25 25 20
40 17 19 24 25 25 25 25 25 40
60 16 19 24 25 25 25 25 25 60
80 16 18 24 25 25 25 25 25 80
100 16 18 24 25 25 25 25 24 100

Table 2.8: GMRES iteration counts for the absorption parameter fixed to k and the
overlap equal to 2. Impedance conditions are imposed in all of the boundaries.

k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "

20 15 15 15 15 15 15 15 15 20
3
2

40 14 14 14 14 14 14 14 14 40
3
2

60 13 13 13 13 13 13 13 13 60
3
2

80 12 12 12 12 12 12 12 12 80
3
2

100 11 12 12 12 12 12 12 12 100
3
2

Table 2.9: GMRES iteration counts for the absorption parameter fixed to k3/2 and the
overlap equal to 2. Impedance conditions are imposed in all of the boundaries.

k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 20 31 43 44 47 52 57 64

p
20

40 21 34 47 58 60 62 65 69
p
40

60 21 34 48 61 67 72 75 78
p
60

80 20 35 49 64 77 82 82 82
p
80

100 21 36 51 66 81 95 99 99
p
100

Table 2.10: GMRES iteration counts for the absorption parameter fixed to k1/2 and
the overlap equal to 2. Impedance conditions are imposed in all of the boundaries.

In Table 2.11, Table 2.12, Table 2.13, Table 2.14, Table 2.15, Table 2.16 we show the

results of a series of tests obtained by varying the absorption and the source function,

while we keep the same size of the overlap. We still consider the propagation in a

waveguide where Dirichlet conditions are on top and bottom of the domain and Robin

conditions on the other two boundaries and the interfaces. The right hand-side is given

successively by a line source function

f(x, y) = 100 sin2(⇡x)e�10k(y� 1
2 )

2
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and the point source function as

f(x, y) = 100
nX

j=0

e
�10k

⇣
(x�(

1
2+8j))

2
+(y� 1

2 )
2

⌘

.

Figure 2.7: Waveguide solution with � = 1 and k = 100

Figure 2.8: Solution using line source, with � = 1 and k = 100

Figure 2.9: Solution using point source, with � = 1 and k = 100
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k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 19 22 25 30 30 30 30 30 20
40 18 21 24 29 29 29 29 29 40
60 19 21 24 29 29 29 29 29 60
80 19 21 24 28 28 28 28 28 80
100 19 21 24 28 28 28 28 28 100

Table 2.11: GMRES iteration counts overlap equal to 2. This corresponds to the plane
wave problem.

k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 23 27 30 32 32 31 32 32 20
40 24 27 29 30 31 31 31 31 40
60 25 27 28 30 30 30 31 31 60
80 25 27 28 29 29 29 29 29 80
100 24 27 28 28 29 29 29 29 100

Table 2.12: GMRES iteration counts for the problem with a point source. The overlap
is fixed to be 2.

k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 18 21 23 24 24 24 24 24 20
40 17 20 20 20 20 19 19 19 40
60 18 20 20 20 20 20 20 20 60
80 17 17 18 18 18 18 17 17 80
100 14 15 15 15 15 15 15 15 100

Table 2.13: GMRES iteration counts for the problem with a line source. The overlap
is fixed to be 2.
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k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 32 51 63 71 82 85 86 86 4.47
40 45 68 84 93 101 109 116 117 6.325
60 66 89 106 116 125 137 148 153 7.746
80 65 101 122 138 150 160 172 183 8.9443

Table 2.14: GMRES iteration counts for the problem with absorption k
1
2 . The overlap

is fixed to be 2. This corresponds to the plane wave problem.

k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 39 56 71 79 87 93 96 99

p
20

40 53 78 95 107 115 121 127 132
p
40

60 86 114 130 140 147 154 162 169
p
60

80 75 117 140 154 169 180 191 199
p
80

Table 2.15: GMRES iteration counts for the problem with a point source with absorp-
tion k

1
2 . The overlap is fixed to be 2.

k N = 8 N = 16 N = 24 N = 32 N = 40 N = 48 N = 56 N = 64 "
20 25 39 49 55 59 61 65 70

p
20

40 31 50 59 67 70 74 78 83
p
40

60 51 87 97 107 111 115 117 118
p
60

80 39 62 79 91 99 103 108 111
p
80

100 38 60 75 88 97 105 112 118
p
100

Table 2.16: GMRES iteration counts for the problem with a line source with absorption
k

1
2 . The overlap is fixed to be 2.

Numerical results in this case are consistent with the previous ones: whereas in the

case of the line source the overall behaviour degrades less quickly when increasing the

wavenumber as in the case with the point source, the key parameter in the convergence

of the algorithm remains the absorption. A physical interpretation of this phenomenon,

as illustrated in Figure 2.6 is that the waves are damped more quickly when the absorp-

tion increases and therefore nothing relevant will be computed in the domains which

are far away from the source, hence increasing the number of subdomains won’t a↵ect

the overall convergence.

2.7 Conclusions

In this chapter we have analysed a purely iterative version of the Schwarz domain de-

composition algorithm, in the limiting case of many subdomains, at the continuous

level for the one-dimensional and two-dimensional Helmholtz and Maxwell’s equations
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with absorption. The key mathematical tool which facilitated this study is the limiting

spectrum of a sequence of block Toeplitz matrices having a particular structure, for

which we proved a new result in the non-Hermitian case. The algorithm is convergent

in the one-dimensional case as soon as we have absorption and, for su�ciently many

subdomains N , its convergence factor becomes independent of the number of subdo-

mains, meaning the algorithm is also scalable. In practice, this is achieved for relatively

small N . In the two-dimensional case these conclusions remain true for the evanescent

modes of the error (i.e. k̃ > k) or when, between them, �, � and L are su�ciently large.

In particular, we proved that the stationary iteration will always converge when � � k,

giving an absorption parameter k2. The concept of the limiting spectrum proved to be

a very elegant mathematical tool and can be used, for example, in constructing more

sophisticated transmission conditions, to analyse the algorithm at the discrete level, or

to design improved preconditioners.



Chapter 3

Algorithms for the Magneto

telluric approximation of

Maxwell’s equations

Wave propagation phenomena are ubiquitous in science and engineering. In Geophysics,

the magnetotelluric approximation of Maxwell’s equations is an important tool to ex-

tract information about the spatial variation of electrical conductivity in the Earth’s

subsurface. This approximation results in a complex di↵usion equation [DGH19],

(3.1) �u� (� � i")u = f, in a domain ⌦,

where f is the source function, and � and " are strictly positive constants1.

In this chapter we analyse the parallel Schwarz algorithm with Dirichlet transmission

conditions in the case of many subdomains. In a second step we design better trans-

mission conditions of Robin type with the purpose of improving the convergence of the

algorithm.

1In the magnetotelluric approximation we have � = 0, but we consider the slightly more general
case here. Note also that the zeroth order term in (3.1) is much more benign than the zeroth order
term of opposite sign in the Helmholtz equation, see e.g. [EG12].

59
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3.1 One dimensional problem

The purpose of this section is to perform the convergence analysis in one space di-

mension. We consider that we have a growing number of overlapping subdomains

⌦j = (aj , bj) such that ⌦ = [
N
j=1

⌦j and aj = (j � 1)L � � and bj = jL + �. We note

that L+ 2� is the width of each subdomain, 2� is the size of the overlap.

3.1.1 Dirichlet transmission conditions

The Schwarz algorithm with Dirichlet transmission conditions writes:

(3.2)

8
<

:
(� � i")unj �

d2un
j

dx2
= fj , x 2 (aj , bj)

unj (aj) = un�1

j�1
(aj), u

n

j (bj) = un�1

j+1
(bj).

By linearity, it follows that the error function en
j
(x) = un

j
(x) � uj(x) satisfies the

homogeneous counterpart of (3.2)

(3.3)

8
<

:
(� � i")enj �

d2en
j

dx2
= 0, x 2 (aj , bj)

enj (aj) = en�1

j�1
(aj), e

n

j (bj) = en�1

j+1
(bj).

whose solutions are given by

(3.4) enj (x) = An

j e
��x +Bn

j e
�x, � =

p
� � i".

By introducing (3.4) into the interface iteration of (3.3) we get

"
e��aj e�aj

e��bj e�bj

#"
An

j

Bn
j

#
=

"
en�1

j�1
(aj)

en�1

j+1
(bj)

#

with the solutions

(3.5)

An

j =
1

D

⇣
e�bjen�1

j�1
(aj)� e�ajen�1

j+1
(bj)

⌘
, Bn

j =
1

D

⇣
� e��bjen�1

j�1
(aj) + e��ajen�1

j+1
(bj)

⌘
,

where D = e�(L+2�)
� e��(L+2�). By replacing (3.5) into (3.4) we obtain

(3.6)

en
j
(x) = 1

D

⇣
e�bjen�1

j�1
(aj)� e�ajen�1

j+1
(bj)

⌘
e��x + 1

D

⇣
� e��bjen�1

j�1
(aj) + e��ajen�1

j+1
(bj)

⌘
e�x

= 1

D
en�1

j�1
(aj)

⇣
e�(bj�x)

� e��(bj�x)

⌘
+ 1

D
en�1

j+1
(bj)

⇣
e�(x�aj) � e��(x�aj)

⌘
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By using (3.6) into (3.3), we see that the iteration over all interface values aj and bj

can be written as

"
en
j�1

(aj)

en
j+1

(bj)

#
= T1

"
en�1

j�2
(aj�1)

en�1

j
(bj�1)

#
+ T2

"
en�1

j
(aj+1)

en�1

j+2
(bj+1)

#

T1 =

"
a b

0 0

#
, T2 =

"
0 0

b a

#
,

a =
e2�� � e�2��

e�(2�+L) � e��(2�+L)
, b =

e�L � e��L

e�(2�+L) � e��(2�+L)
.

(3.7)

In the case where j 2 {1, 2, N � 1, N} where these are replaced by

"
0

en
2
(b1)

#
= T2

"
en�1

1
(a2)

en�1

3
(b2)

#
,

"
en
1
(a2)

en
3
(b2)

#
= T̃1

"
0

en�1

2
(b1)

#
+ T2

"
en�1

2
(a3)

en�1

4
(b3)

#
, T̃1 =

"
0 b

0 0

#
,

"
en
N�2

(aN�1)

en
N
(bN�1)

#
= T1

"
en�1

N�3
(aN�2)

en�1

N�1
(bN�2)

#
+ T̃2

"
en�1

N�1
(aN )

0

#
, T̃2 =

"
0 0

b 0

#
,

"
en
N�1

(aN )

0

#
= T1

"
en�1

N�2
(aN�1)

en�1

N
(bN�1)

#
.

(3.8)

The global iteration over all the interfaces can be summarised as follows

2

666666666666666666664

en
2
(b1)

en
1
(a2)

en
3
(b2)
...

en
j�1

(aj)

en
j+1

(bj)
...

en
N�2

(aN�1)

en
N
(bN�1)

en
N�1

(aN )

3

777777777777777777775

=

2

6666666666664

0 T̂2

T̃1 02⇥2 T2

. . .
. . .

. . .

T1 02⇥2 T2

. . .
. . .

. . .

T1 02⇥2 T̃2

T̂1 0

3

7777777777775

| {z }
T1d

2

666666666666666666664

en�1

2
(b1)

en�1

1
(a2)

en�1

3
(b2)
...

en�1

j�1
(aj)

en�1

j+1
(bj)
...

en�1

N�2
(aN�1)

en�1

N
(bN�1)

en�1

N�1
(aN )

3

777777777777777777775
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where T̃1 =

"
b

0

#
, T̃2 =

"
0

b

#
, T̂1 =

h
a b

i
, T̂2 =

h
b a

i
. If define the error

vector containing the values at the interfaces by

en = [en2 (b1), e
n

1 (a2), e
n

3 (b2) . . . e
n

j�1(aj), e
n

j+1(bj) . . . e
n

N�2(aN�1), e
n

N (bN�1), e
n

N�1(aN )]T

the interface iteration can expressed as

(3.9) en = T1de
n�1

with T1d being the following block Toeplitz matrix:

(3.10) T1d =

2

6666666666664

A0 A1

A�1 A0 A1

. . .
. . .

. . .

A�1 A0 A1

. . .
. . .

. . .

A�1 A0 A1

A�1 A0

3

7777777777775

,

where

A0 =

"
0 b

b 0

#
, A1 =

"
a 0

0 0

#
, A�1 =

"
0 0

0 a

#
.

Since (3.9) is a stationary iteration, its convergence factor is given by the spectral radius

of T1d. We can apply the result from Chapter 2 where it was proven that for matrices

of this form their characteristic polynomial is verifying a three term recurrence and one

can estimate the limiting spectrum:

(3.11)

R1d := lim
N!1

⇢(T1d) = max

(
max

✓2[�⇡,⇡]

����a cos(✓)±
q
b2 � a2 sin2(✓)

���� ,
����a

2
�

1

2
b2
����
1/2
)

= max{|a+ b|, |a� b|, |a|}.

which can be interpreted as the limiting convergence factor of the iterative version of

the Schwarz algorithm in the case of many subdomains and can be seen as a measure

of the scalability when it is bounded (necessarily independently of N).

Lemma 3.1 (Convergence of the iterative Schwarz algorithm in the one-dimensional

case). The convergence factor of the Schwarz algorithm as the number of domains tends



CHAPTER 3. MAGNETO TELLURIC APPROXIMATION OF MAXWELL 63

to infinity verifies

R1d = max{|a+ b|, |a� b|, |a|} < 1, 8�, ", �, L > 0.

therefore the convergence will ultimately be independent of the number of subdomains

(we say that the method will scale).

Proof. Let us consider the complex valued functions g±(z) : C ! C (g+ corresponds to

the + and g� corresponds to the �) which is given by the formula

g±(z) =
ez � e�z

e(l+1)z � e�(l+1)z
±

elz � e�lz

e(l+1)z � e�(l+1)z
.

Note that a± b = g±(z) with

z = 2�� = 2�
p
� � i", l =

L

2�
.

Similarly we can define the function g as being the first term in g±(z) such that a = g(z).

The maximum of |g±(z)| and |g(z)| will provide an upper bound for the convergence

factor R1d. If z = x+ iy after some tedious computations we get that

|g±(z)|2 = 1�
g̃±(x, y, l)

⇣
e2x(l+1)+1⌥ 2 cos(y(l + 1)) ex(l+1)

⌘

e4x(l+1) + 1� 2 e2x(l+1) cos(2y(l + 1))
g̃±(x, y, l) = (e2x�1)(e2lx�1)⌥ 4 sin(ly) sin(y) ex(l+1)

Since both denominator e4x(l+1) + 1� 2 e2x(l+1) cos(2y(l+ 1)) = (e2x(l+1)
� 1)2 + 2(1�

cos(2y(l+1))) e2x(l+1) and the second factor in the fraction e2x(l+1)+1⌥2 ex(l+1) cos(y(l+

1)) = (ex(l+1)
� 1)2 +2(1⌥ cos(y(l+1))) ex(l+1) are obviously positive then we see that

|g±(z)|2 < 1 , g(x, y, l) > 0. We see that this function can be further simplified to:

(3.12) g̃±(l, x, y) := 4 ex(l+1)(sinh(x) sinh(lx)⌥ sin(ly) sin(y))

In the case when x = <z = 2�<
p
� � i" and y = 2�=

p
� � i", we see that x =p

y2 + (2�)2� > |y| when �, � > 0 and therefore g̃±(l, x, y) > 0.

⌅

In order to check this result we will compute numerically the spectrum of the iter-

ation matrix and compare it with the theoretical estimate for di↵erent values of the

parameters. We have chosen here L = 1, � = L/10, " = 0.1.
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Figure 3.1: Spectrum of the iteration matrix for N = 80 � = 0.6, " = 0.1 (left) and the
convergence factor vs. the number of subdomains (right)
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convergence factor vs. the number of subdomains (right)

A few intermediate conclusions can be drawn from Figure 3.1, 3.2 and the previous

formulae

• the spectrum of the iteration matrix tends to the theoretical estimate when N is

su�ciently large and the algorithms is convergent.

• when � increases, the convergence is faster.

• We can notice also an improvement of the convergence if � increases.

• The convergence factor is always strictly less than 1 as N tends to infinity which

proves that the algorithm will scale when all the parameters are strictly positive.

We also see that for a fixed value of ", the algorithm is converging very slowly when

� is small. We conclude in this case that the Dirichlet transmission conditions do not
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seem to be su�cient especially in the case of many subdomains as the limiting value of

the convergence factor gets closer and closer to 1. At the same time, as we have seen

from the proof the positivity of � is key in having a convergent algorithm when the

number of subdomains gets larger and larger.

3.1.2 One dimensional problem with Robin interface conditions

In the same spirit and using the same configuration of the subdomains as in the previous

analysis, we investigate the convergence for the complex di↵usion problem using dif-

ferent type of transmission conditions in one dimension. More precisely, we use Robin

conditions

(3.13)

8
>>><

>>>:

(� � i")un
j
�

d
2
u
n
j

dx2 = f, x 2 (aj , bj)

Blunj := �
du

n
j

dx
+ pun

j
= �

du
n�1
j�1

dx
+ pun�1

j�1
, at x = aj

Brunj :=
du

n
j

dx
+ pun

j
=

du
n�1
j+1

dx
+ pun�1

j+1
, at x = bj

where p is positive parameter that can be further optimised, � > 0, "̃ > 0. By linearity,

it follows that the error function en
j
(x) = un

j
(x) � uj(x) satisfies the homogeneous

counterpart of (3.13). The solutions of the latter inside the domain are given by (3.4)

as in our former analysis. We introduce some useful notation

(3.14) R
n�1

� (aj) = Ble
n�1

j�1
(aj), R

n�1

+
(bj) = Ble

n�1

j+1
(bj)

which will allow us to re-write the algorithm. By introducing (3.4) into the interface

iterations of (3.13) we get

"
(�+ p)e��aj �(�� p)e�aj

�(�� p)e��bj (�+ p)e�bj

#"
An

j

Bn
j

#
=

"
R

n�1

� (aj)

R
n�1

+
(bj)

#

which we can solve for the unknowns An

j
and An

j
to give

"
↵n

j

�n

j

#
=

1

Dj

"
(�+ p)e�bj (�� p)e�aj

(�� p)e��bj (�+ p)e��aj

#"
R

n�1

� (aj)

R
n�1

+
(bj)

#
,(3.15)

where

Dj = (�+ p)2e�(bj�aj) � (�� p)2e�(aj�bj).

Note that since bj�aj = L+2� then Dj is actually independent of j and we will further

denote it by D. The algorithm is based on Robin transmission conditions, hence the
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quantities of interest which are transmitted at the interfaces between subdomains are

the Robin data. Therefore we need, in order to compute the current interface values

R
n
�(aj) and R

n
+(bj), we replace the coe�cients from (3.15) into (3.4) and then apply

the formula (3.14).

(3.16)

R
n

�(aj) =
1

D
(aRn�1

� (aj�1)+ bRn�1

+
(bj�1)), R

n

+(bj) =
1

D
(bRn�1

� (aj+1)+aRn�1

+
(bj+1)),

where

(3.17)

a =
(�+ p)2e2�� � (�� p)

2
e�2��

(�+ p)2e�(L+2�) � (�� p)2e��(L+2�)
, b = �

(�2
� p2)(e�L � e��L)

(�+ p)2e�(L+2�) � (�� p)2e��(L+2�)
.

We can re-write (3.16) in matrix form

"
R

n
�(aj)

R
n
+(bj)

#
=

1

D

"
a b

0 0

#"
R

n�1

� (aj�1)

R
n�1

+
(bj�1)

#
+

1

D

"
0 0

b a

#"
R

n�1

� (aj+1)

R
n�1

+
(bj+1)

#

= T1

"
R

n�1

� (aj�1)

R
n�1

+
(bj�1)

#
+ T2

"
R

n�1

� (aj+1)

R
n�1

+
(bj+1)

#
, T1 =

1

D

"
a b

0 0

#
, T2 =

1

D

"
0 0

b a

#
.

for j = {2, . . . , N � 1}. The situation is slightly di↵erent for the subdomains ⌦1 ⌦2,

⌦N�1 and ⌦N

"
0

R
n
+(b1)

#
= T2

"
R

n�1

� (a2)

R
n�1

+
(b2)

#

"
R

n
�(a2)

R
n
+(b2)

#
=fT1

"
0

R
n�1

+
(b1)

#
+ T2

"
R

n�1

� (a3)

R
n�1

+
(b3)

#

"
R

n
�(aN�1)

R
n
+(bN�1)

#
= T1

"
R

n�1

� (aN�2)

R
n�1

+
(bN�2)

#
+fT2

"
R

n�1

� (aN )

0

#

"
R

n
�(aN )

0

#
= T1

"
R

n�1

� (aN�1)

R
n�1

+
(bN�1)

#
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where fT1 = 1

D

"
0 b

0 0

#
,fT2 = 1

D

"
0 0

b 0

#
. As in the case of the Dirichlet conditions,

in compact form the algorithm can be written as

2

6666666666664

R
n
+(b1)

R
n
�(a2)

R
n
+(b2)
...

R
n
�(aN�1)

R
n
+(bN�1)

R
n
�(aN )

3

7777777777775

= TOS

1d

2

6666666666664

R
n�1

+
(b1)

R
n�1

� (a2)

R
n�1

+
(b2)
...

R
n�1

� (aN�1)

R
n�1

+
(bN�1)

R
n�1

� (aN )

3

7777777777775

where the iteration matrix TOS

1d
is of the same form as (3.10) but with a, b given by

(3.17). The spectral radius of TOS

1d
determines the convergence of the algorithm. As in

the case of the Dirichlet transmission conditions, the matrix is non-Hermitian but we

can still apply the results on the limiting spectrum

R1opt := lim
N!1

⇢(T OS

1d ) = max{|a+ b|, |a� b|, |a|}.

Note that we could perform a similar analysis in the case of Robin conditions in order

to understand whether we can optimise it with respect to the positive parameter p.

However, this analysis is of limited interest in the one dimensional case and we will

perform it rather in the two-dimensional case.

We will compute numerically the optimal parameter p and spectrum of the iteration

matrix. We have chosen here the same values as before for L = 1, � = L/10, and

" = 0.1. We see from the figures 3.3 and 3.4 that the convergence factor has highly

improved with respect to 3.1 and 3.2.

3.2 Two-dimensional case with Dirichlet transmission con-

ditions

The analysis that has been done in the one dimensional case is a relatively good start to

get an intuition on how a parallel method works. We are going to do the same analysis

for the two dimensional complex di↵usion problem. The di↵erence now is that we have

a chain of many rectangles of height L̂. The width of each subdomain, the size of the

overlap and the endpoints are unaltered. The domain is defined as ⌦j = (aj , bj)⇥(0, L̂).
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Figure 3.3: Spectrum of the iteration matrix for N = 80 � = 0.6, " = 0.1 (left) and the
convergence factor vs. the number of subdomains (right)
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Figure 3.4: Spectrum of the iteration matrix for N = 80 � = 5, " = 0.1 (left) and the
convergence factor vs. the number of subdomains (right)

The definition of the Schwarz method with Dirichlet transmission conditions for our

problem is

(3.18)

8
>>>>><

>>>>>:

(� � i")un
j
�

✓
@
2
u
n
j

@x2 +
@
2
u
n
j

@y2

◆
= f, (x, y) 2 (aj , bj)⇥ (0, L̂)

un
j
(aj , y) = un�1

j�1
(aj , y), y 2 (0, L̂),

un
j
(bj , y) = un�1

j+1
(bj , y), y 2 (0, L̂),

un
j
(0, x) = un

j
(L̂, x) = 0, x 2 (aj , bj).

By linearity, it follows that the error function en
j
satisfies the homogeneous counterpart

of (3.18).

We use Fourier series expansion for our error function, as we use Dirichlet boundary
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conditions on the top and the bottom of each rectangle:

(3.19) enj (x, y) =
1X

m=1

vnj (x, k̃) sin(k̃y), k̃ =
m⇡

L̂
.

By replacing it into the homogeneous counterpart of the equation (3.18) we get that

for each Fourier number k̃, vn
j
(·, k̃) verifies the one dimensional problem

(3.20)

8
>><

>>:

(� + k̃2 � i")vn
j
�

@
2
v
n
j

@x2 = 0, x 2 (aj , bj),

vn
j
(aj , k̃) = vn�1

j�1
(aj , k̃).

vn
j
(bj , k̃) = vn�1

j+1
(bj , k̃).

which is exactly of the same type as (3.3) where ⌘ is replaced by ⌘ + k̃2.

If define the error vector containing the values at the interfaces by

vn(k̃) = [vn2 (b1, k̃), vn1 (a2, k̃), vn3 (b2, k̃) . . . v
n

N�2(aN�1, k̃), vnN (bN�1, k̃), vnN�1(aN , k̃)]T

the interface iteration can expressed as

(3.21) vn(k̃) = T2dv
n�1(k̃)

with T2d being a Toeplitz matrix of the form (3.10) with a, b defined as in (3.7) in which

� is replaced by �(k̃) defined by

�(k̃) =

q
� + k̃2 � i",

as in (3.4) where we replaced � by �+ k̃2. Therefore in this case, the convergence result

in Lemma 3.1 will also hold in this case.
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Figure 3.5: Convergence factor for N = 80 � = 0.6, " = 0.1 vs. the frequency (left)
and the convergence factor vs. the number of subdomains (right)
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Figure 3.6: Convergence factor for N = 80 � = 5, " = 0.1 vs. the frequency (left) and
the convergence factor vs. the number of subdomains (right)

Similar conclusions as in the one dimensional case will hold here with respect to the

values of � and ". We also notice that the algorithm performs well in the case of high

frequencies k̃, something that is already well known from the literature.

3.3 Optimizing transmission conditions for multiple sub-

domains

Classically transmission conditions between subdomains are optimized for a simplified

two subdomain decomposition to obtain optimized Schwarz methods for many subdo-

mains. We investigate here if such a simplified optimization su�ces for the magnetotel-

luric approximation of Maxwell’s equation which leads to a complex di↵usion problem.

We start with a direct analysis for 2 and 3 subdomains, and present asymptotically op-
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timized transmission conditions in each case. We then optimize transmission conditions

numerically for 4, 5 and 6 subdomains and observe the same asymptotic behavior of

optimized transmission conditions. We finally use the technique of limiting spectra to

optimize for a very large number of subdomains in a strip decomposition. Our analysis

shows that the asymptotically best choice of transmission conditions is the same in

all these situations, only the constants di↵er slightly. It is therefore enough for such

di↵usive type approximations of Maxwell’s equations, which include the special case of

the Laplace and screened Laplace equation, to optimize transmission parameters in the

simplified two subdomain decomposition setting to obtain good transmission conditions

for optimized Schwarz methods for more general decompositions.

To study Optimized Schwarz Methods (OSMs) for (3.1), we use a rectangular domain

⌦ given by the union of rectangular subdomains ⌦j := (aj , bj)⇥ (0, L̂), j = 1, 2, . . . , J ,

where aj = (j � 1)L�
�

2
and bj = jL+ �

2
, and � is the overlap, like in [CCGV18]. Our

OSM computes for iteration index n = 1, 2, . . .

(3.22)

�un
j
� (� � i")un

j
= f in ⌦j ,

�@xunj + p�
j
un
j

= �@xu
n�1

j�1
+ p�

j
un�1

j�1
at x = aj ,

@xunj + p+
j
un
j

= @xu
n�1

j+1
+ p+

j
un�1

j+1
at x = bj ,

where p�
j

and p+
j

are strictly positive parameters in the so called 2-sided OSM, see

e.g. [GHM07], and we have at the top and bottom homogeneous Dirichlet boundary

conditions, and on the left and right homogeneous Robin boundary conditions, i.e we

put for simplicity of notation un�1

0
= un�1

J+1
= 0 in (3.22). The Robin parameters are

fixed at the domain boundaries x = a1 and x = bJ to p�
1
= pa and p+

J
= pb. By linearity,

it su�ces to study the homogeneous equations, f = 0, and analyze convergence to zero

of the OSM (3.22). Expanding the homogeneous iterates in a Fourier series

unj (x, y) =
1X

m=1

vnj (x, k̃) sin(k̃y)

where k̃ = m⇡

L̂
to satisfy the homogeneous Dirichlet boundary conditions at the top

and bottom, we obtain for the Fourier coe�cients the equations

(3.23)

@xxvnj � (k̃2 + � � i")vn
j

= 0 x 2 (aj , bj),

�@xvnj + p�
j
vn
j

= �@xv
n�1

j�1
+ p�

j
vn�1

j�1
at x = aj ,

@xvnj + p+
j
vn
j

= @xv
n�1

j+1
+ p+

j
vn�1

j+1
at x = bj .
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The general solution of the di↵erential equation is

vnj (x, k̃) = c̃je
��(k̃)x + d̃je

�(k̃)x,

where � = �(k̃) =
p
k̃2 + � � i". We next define the Robin traces,

R
n�1

� (aj , k̃) := �@xv
n�1

j�1
(aj , k̃)+p�

j
vn�1

j�1
(aj , k̃), R

n�1

+
(bj , k̃) := @xv

n�1

j+1
(bj , k̃)+p+

j
vn�1

j+1
(bj , k̃).

Inserting the solution into the transmission conditions in (3.23), we obtain for the

remaining coe�cients c̃j and d̃j the linear system

c̃je
��aj (p�

j
+ �) + d̃je

�aj (p�
j
� �) = R

n�1

� (aj , k̃),

c̃je
��bj (p+

j
� �) + d̃je

�bj (p+
j
+ �) = R

n�1

+
(bj , k̃),

whose solution is

c̃j =
1

Dj

(e�bj (p+
j
+ �)Rn�1

� (aj , k̃)� e�aj (p�
j
� �)Rn�1

+
(bj , k̃)),

d̃j =
1

Dj

(�e��bj (p+
j
� �)Rn�1

� (aj , k̃) + e��aj (p�
j
+ �)Rn�1

+
(bj , k̃)),

where

Dj := (�+ p+
j
)(�+ p�

j
)e�(L+�)

� (�� p+
j
)(�� p�

j
)e��(L+�).

We thus arrive for the Robin traces in the OSM at the iteration formula

R
n

�(aj , k̃) = ↵�
j
R

n�1

� (aj�1, k̃) + ��
j
R

n�1

+
(bj�1, k̃), j = 2, . . ., J,

R
n

+(bj , k̃) = �+

j
R

n�1

� (aj+1, k̃) + ↵+

j
R

n�1

+
(bj+1, k̃), j = 1, . . ., J � 1,

where

(3.24)

↵�
j
:=

(�+ p+
j�1

)(�+ p�
j
)e�� � (�� p+

j�1
)(�� p�

j
)e���

(�+p+
j�1

)(�+p�
j�1

)e�(L+�)�(��p+
j�1

)(��p�
j�1

)e��(L+�)
, j = 2, . . ., J,

↵+

j
:=

(�+ p�
j+1

)(�+ p+
j
)e�� � (�� p�

j+1
)(�� p+

j
)e���

(�+p+
j+1

)(�+p�
j+1

)e�(L+�)�(��p+
j+1

)(��p�
j+1

)e��(L+�)
, j = 1, . . ., J � 1

(3.25)

��
j
:=

(�+ p�
j
)(�� p�

j�1
)e��L

� (�� p�
j
)(�+ p�

j�1
)e�L

(�+p+
j�1

)(�+p�
j�1

)e�(L+�)�(��p+
j�1

)(��p�
j�1

)e��(L+�)
, j = 2, . . ., J,

�+

j
:=

(�+ p+
j
)(�� p+

j+1
)e��L

� (�� p+
j
)(�+ p+

j+1
)e�L

(�+p+
j+1

)(�+p�
j+1

)e�(L+�)�(��p+
j+1

)(��p�
j+1

)e��(L+�)
, j = 1, . . ., J � 1.



CHAPTER 3. MAGNETO TELLURIC APPROXIMATION OF MAXWELL 73

Defining the matrices

T 1

j :=

"
↵�
j

��
j

0 0

#
, j = 2, .., J and T 2

j :=

"
0 0

�+

j
↵+

j

#
, j = 1, .., J � 1,

we can write the OSM in substructured form (keeping the first and last rows and

columns to make the block structure appear), namely

(3.26)2

66666666666666666666666664

0

R
n
+(b1, k̃)

R
n
�(a2, k̃)

R
n
+(b2, k̃)

...

R
n
�(aj , k̃)

R
n
+(bj , k̃)

...

R
n
�(aN�1, k̃)

R
n
+(bN�1, k̃)

R
n
�(aN , k̃)

0

3

77777777777777777777777775

| {z }
Rn

=

2

666666666666666666666664

T 2

1

T 1

2
T 2

2

. . .
. . .

T 1

j
T 2

j

. . .
. . .

T 1

N�1
T 2

N�1

T 1

N

3

777777777777777777777775

| {z }
T

2

66666666666666666666666664

0

R
n�1

+
(b1, k̃)

R
n�1

� (a2, k̃)

R
n�1

+
(b2, k̃)
...

R
n�1

� (aj , k̃)

R
n�1

+
(bj , k̃)
...

R
n�1

� (aN�1, k̃)

R
n�1

+
(bN�1, k̃)

R
n�1

� (aN , k̃)

0

3

77777777777777777777777775

| {z }
Rn�1

.

If the parameters p±
j
are constant over all the interfaces, and we eliminate the first and

the last row and column of T , T becomes a block Toeplitz matrix. The best choice of

the parameters minimizes the spectral radius ⇢(T ) over a numerically relevant range

of frequencies K := [k̃min, k̃max] with k̃min := ⇡

L̂
(or 0 for simplicity) and k̃max := M⇡

L̂
,

M ⇠
1

h
, where h is the mesh size, and is thus solution of the min-max problem

min
p
±
j

max
k̃2K

|⇢(T (k̃, p±
j
))|.

The traditional approach to obtain optimized transmission conditions for optimized

Schwarz methods is to optimize performance for a simple two subdomain model prob-

lem, and then to use the result also in the case of many subdomains. We want to study

here if this approach is justified, by directly optimizing the performance for two and

more subdomains, and then comparing the results.
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3.3.1 Optimization for 2, 3, 4, 5 and 6 subdomains

For two subdomains, the general substructured iteration matrix becomes

T =

"
0 �+

1

��
2

0

#
.

The eigenvalues of this matrix are ±

q
�+

1
��
2

and thus the square of the convergence

factor is ⇢2 =
���+

1
��
2

��.

Theorem 3.1 (Two Subdomain Optimization). Let s:=
p
� � i", where the complex

square root is taken with a positive real part, and let C be the real constant

(3.27) C:=<
s((pb + s)(pa + s)� (s� pb)(s� pa)e�4sL)

((s� pa)e�2sL + s+ pa)((s� pb)e�2sL + s+ pb)
.

Then for two subdomains with p+
1

= p�
2
=:p and k̃min = 0, by equioscillation of the

solution, the asymptotically optimized parameter p for small overlap � and associated

convergence factor are

(3.28) p = 2�1/3C2/3��1/3, ⇢ = 1� 2 · 21/3C1/3�1/3 +O(�2/3).

If p+
1
6= p�

2
and k̃min = 0, the asymptotically optimized parameters for small overlap �

and associated convergence factor are

(3.29) p+
1
= 2�2/5C2/5��3/5, p�

2
= 2�4/5C4/5��1/5, ⇢ = 1�2·2�1/5C1/5�1/5+O(�2/5).

Proof. We obtain that the solution of the min-max problem equioscillates, ⇢(0) = ⇢(k̃⇤),

where k̃⇤ is an interior maximum point, and asymptotically p = Cp��1/3, ⇢ = 1 �

CR�1/3+O(�2/3), and k̃⇤ = Ck��2/3. By expanding for � small, and setting the leading

term in the derivative @⇢

@k̃
(k̃⇤) to zero, we get Cp =

C
2
k
2
. Expanding the maximum leads

to ⇢(k̃⇤) = ⇢(Ck��2/3) = 1�2Ck�1/3+O(�2/3), therefore CR = 2Ck. Finally the solution

of the equioscillation equation ⇢(0) = ⇢(k̃⇤) determines uniquely Ck = 21/3C1/3.

In the case with two parameters, we have two equioscillations, ⇢(0) = ⇢(k̃⇤
1
) = ⇢(k̃⇤

2
) (as

seen in Figure 3.7) where k̃⇤
j
are two interior local maxima, and asymptotically p1 =

Cp1��3/5, p1 = Cp1��1/5, ⇢ = 1�CR�1/5 +O(�2/5), k̃⇤
1
= Ck1��2/5 and k̃⇤

2
= Ck2��4/5.

By expanding for � small, and setting the leading terms in the derivatives @⇢

@k
(k̃⇤

1,2
) to

zero, and we get Cp1 = C2

k2
, Cp2 =

C
2
k1

C2
k2
. Expanding the maxima leads to ⇢(k̃⇤

1
) =

⇢(Ck��2/5) = 1� 2Ck1
C2

k2
�1/5 +O(�2/5) and ⇢(k̃⇤

2
) = ⇢(Ck��4/5) = 1� 2Ck2�

1/5 +O(�2/5)
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Figure 3.7: Equioscillation in numerical optimisation with one and two optimised pa-
rameters

and equating ⇢(k̃⇤
1
) = ⇢(k̃⇤

2
) we get Ck1 = C3

k2
and CR = 2Ck2. Finally equating

⇢(0) = ⇢(k̃⇤
2
) asymptotically determines uniquely Ck2 = 2�1/5C1/5 and then Ck1 = C3

k2

and Cp1 = C2

k2
, Cp2 = C4

k2
.

⌅

Corollary 3.1 (Two Subdomains with Dirichlet outer boundary conditions). The case

of Dirichlet outer boundary conditions can be obtained by letting pa and pb go to infinity,

which simplifies (3.27) to

(3.30) C = <
s(e2sL + 1)

(e2sL � 1)

and the asymptotic results in Theorem 3.1 simplify accordingly.

For three subdomains, the general substructured iteration matrix becomes

T =

2

66664

0 �+

1
↵+

1
0

��
2

0 0 0

0 0 0 �+

2

0 ↵�
3

��
3

0

3

77775
,

and we obtain for the first time an optimization result for three subdomains:

Theorem 3.2 (Three Subdomain Optimization). For three subdomains with equal pa-

rameters p+
1
= p�

2
= p+

2
= p�

3
= p, the asymptotically optimized parameter p for small

overlap � and associated convergence factor are

(3.31) p = 2�1/3C2/3��1/3, ⇢ = 1� 2 · 21/3C1/3�1/3 +O(�2/3),
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where C is a real constant that can be obtained in closed form. If the parameters are

di↵erent, their asymptotically optimized values for small overlap � are such that

(3.32) p+
1
, p+

2
, p�

2
, p�

3
2 {2�2/5C2/5��3/5, 2�4/5C4/5��1/5

}, p+
1
6= p�

2
, p+

2
6= p�

3
,

and the associated convergence factor is

(3.33) ⇢ = 1� 2 · 2�1/5C1/5�1/5 +O(�2/5).

Proof. The characteristic polynomial of the iteration matrix is

G(µ) = µ4
� µ2(�+

2
��
3
+ �+

1
��
2
) + �+

1
��
2
�+

2
��
3
� ↵+

1
�+

2
��
2
↵�
3
.

This biquadratic equation has the roots

µ1 = ±

r
m1 +

p
m2

2
, µ2 = ±

r
m1 �

p
m2

2

where

m1 = �+

2
��
3
+ �+

1
��
2
, m2 = (�+

1
��
2
� �+

2
��
3
)2 + 4↵+

1
�+

2
��
2
↵�
3

Therefore ⇢(T ) = max{|µ1|, |µ2|}. Following the same reasoning as in the proof of

Theorem 3.1, we observe that the solution equioscillates, and minimizing the maximum

asymptotically for � small then leads to the desired result. ⌅

Remark 3.1. Notice that the optimized parameters and the relation between them is the

same as in the two-subdomain case, the only di↵erence is the equation whose solution

gives the exact value of the constant C. The only di↵erence between a two subdomain

optimization and a three subdomain optimization is therefore the constant.

In order to be able to have a more concrete comparison, we now give a result for

Dirichlet boundary conditions at the outer boundaries.

Corollary 3.2 (Three subdomains with Dirichlet outer boundary conditions). When

Dirichlet boundary conditions are used at the end of the computational domain, we

obtain for the constant

(3.34) C = <
s(e2sL � esL + 1)

e2sL � 1
,

which is di↵erent from the two subdomain constant in (3.30).
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Table 3.1: Asymptotic results for four subdomains: � = " = 1, L = 1, pa = pb = 1

Many parameters One parameter

� ⇢ p+
1

p�
2

p+
2

p�
3

p+
3

p�
4

⇢ p
1/102 0.5206 13.1269 1.2705 10.1871 0.7748 16.5975 2.1327 0.6202 2.8396
1/103 0.6708 37.9717 1.4208 42.9379 1.6005 68.1923 2.4896 0.8022 6.0657
1/104 0.7789 152.9323 2.3266 152.0873 3.1841 161.0389 2.4919 0.9029 13.0412
1/105 0.8510 651.7536 4.1945 645.0605 4.1519 649.8928 4.1828 0.9537 28.0834

Table 3.2: Asymptotic results for five subdomains : � = " = 1, L = 1, pa = pb = 1

Many parameters One parameter

� ⇢ p+
1

p�
2

p+
2

p�
3

p+
3

p�
4

p+
4

p�
5

⇢ p
1/102 0.5273 8.5648 1.4619 9.1763 0.8030 9.1398 0.8426 15.5121 2.2499 0.6290 2.6747
1/103 0.7333 24.6097 0.9209 23.4189 0.4499 37.2200 0.8433 34.8142 0.9181 0.8072 5.7261
1/104 0.7769 156.0648 2.4223 156.0502 2.4221 161.2036 2.5009 166.3478 2.5941 0.9055 12.3166
1/105 0.8547 704.4063 4.3378 611.3217 3.7296 611.3217 3.7296 690.8837 4.2116 0.9550 26.5260

For four subdomains, we show in Table 3.1 the numerically optimized parameter values

when the overlap � becomes small.

We observe that again the optimized parameters behave like in Theorem 3.1 and The-

orem 3.2 when the overlap � becomes small. It is in principle possible to continue the

asymptotic analysis from two and three subdomains.

Continuing the numerical optimization for five and six subdomains, we get the results in

Table 3.2 and Table 3.3, which show again the same asymptotic behavior. We therefore

conjecture the following two results for an arbitrary fixed number of subdomains:

1. When all parameters are equal to p, then the asymptotically optimized parameter

p for small overlap � and the associated convergence factor have the same form

as for two-subdomains (3.28) in Theorem 3.1, only the constant is di↵erent.

2. If all parameters are allowed to be di↵erent, the optimized parameters behave for

small overlap � like

p+
j
, p�

j+1
2 {2�2/5C2/5��3/5, 2�4/5C4/5��1/5

} and p+
j
6= p�

j+1
8j = 1.., J � 1,

as we have seen in the three subdomain case in Theorem 3.2, and we have again

the same asymptotic convergence factor as for two and three subdomains, only

the constant is di↵erent.
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Table 3.3: Asymptotic results for six subdomains: � = " = 1, L = 1, pa = pb = 1

� ⇢ p+
1

p�
2

p+
2

p�
3

p+
3

p�
4

p+
4

p�
5

p+
5

p�
6

1/102 0.5460 10.5283 1.4526 7.7653 1.2124 8.2834 0.6573 7.6445 1.3410 8.0029 0.9586
1/103 0.7011 30.3314 0.9049 30.3452 1.1096 30.3010 0.9363 30.3458 0.8901 30.1139 1.1307
1/104 0.7837 145.7147 2.1126 146.4533 2.1231 145.7147 2.1126 149.1802 2.1743 146.7200 2.1909
1/105 0.8553 660.5326 3.9932 611.9401 3.7012 606.1453 3.6661 606.1144 3.6659 606.0914 3.8534

3.3.2 High frequency vs. low frequency convergence factor

Numerical optimisation for many subdomains has shown that optimised parameters

always have the same form (independently of the number of subdomains) and the

convergence factor depends on a constant only and the latter depends on the low

frequency components. Local maximum values k⇤ of the convergence factor are also

high frequency, that is of the form k⇤ = Ck��↵ with ↵ > 0. For this reason, all the

terms containing e��(k
⇤
)L will be asymptotically vanishing for small � and therefore for

high frequencies all the terms from Equation (3.24) and Equation (3.25) behave like

↵±
j
(k⇤) = 0, ��

j
(k⇤) = �

(�� p�
j
)(�+ p�

j�1
)

(�+p+
j�1

)(�+p�
j�1

)
e���, �+

j
(k⇤) = �

(�� p+
j
)(�+ p+

j+1
)

(�+p+
j�1

)(�+p�
j�1

)
e���

For this reason, in high frequency regime the general iteration matrix becomes

T =

2

6666666666664

0 �+

1
0 0 . . . 0 0

��
2

0 0 0 . . . 0 0

0 0 0 �+

2
. . . 0 0

0 0 ��
3

0 . . . 0 0

0 0 . . .
. . .

. . . 0 0

0 0 . . . 0 0 0 �+

J�1

0 0 . . . 0 0 ��
J

0

3

7777777777775

,

The eigenvalues of this matrix are given by the pairs ±

q
�+

j
��
j+1

, j = 1, .., J � 1 and

therefore the convergence factor is

⇢hf = max
j

������

q
(�� p�

j
)(�+ p�

j�1
)(�� p+

j
)(�+ p+

j+1
)(�+p+

j�1
)(�+p�

j�1
)

(�+p+
j�1

)(�+p�
j�1

)

������
e���

We therefore conjecture the following two results for an arbitrary number of subdomains

in the high frequency case
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1. When all the parameters are equal then

⇢1,hf =

����
�� p

�+ p

���� e
���

2. When the parameters verify p+
j
, p�

j+1
2 {p1, p2} and p+

j
6= p�

j+1
, j = 1.., J � 1,

⇢2
2,hf =

����
�� p1
�+ p1

·
�� p2
�+ p2

���� e
�2��

We can now make the study of the convergence factor more systematic no matter the

decomposition into subdomains based on the high frequency expression of the conver-

gence factor. In Table 3.4 we have the asymptotic behaviour of the parameters based

on the study of the convergence factor in the high frequency regime.

Case Parameter asymptotics Local maximum Convergence factor

One parameter p⇤ =
C

2
k
2
��1/3 k⇤ = Ck��2/3 ⇢ = 1� 2Ck�1/3

Two parameters

⇢
p⇤
1
= C2

k2
��3/5

p⇤
2
= C4

k2
��1/5

⇢
k⇤
1
= C3

k2
��2/5

k⇤
2
= Ck2��4/5

⇢ = 1� 2Ck2�1/5

Table 3.4: Parameter asymptotics in the high frequency regime

For example in the one parameter case, the optimal parameter p⇤ = Cp��1/3 and

as seen from the numerical optimisation, a local maximum can be found in k⇤ =

Ck��2/3 and the relation between them, based on the series development of the high

frequency component of the convergence factor (which doesn’t depend on the number

of subdomains) is Cp =
C

2
k
2
. Also the maximum of the convergence factor is given by

(3.35) ⇢(k⇤) = 1� 2Ck�
1/3 +O(�2/3).

On the other side, in the two parameter case, the optimal parameters verify p⇤
1
, p⇤

2
2

{C2

k2
��3/5, C4

k2
��1/5

} the maximum of the convergence factor is given by

(3.36) ⇢(k⇤) = 1� 2Ck2�
1/5 +O(�2/5).

The constants will depend now on the low frequency convergence factor say ⇢(kmin)

where kmin can be chosen equal to 0 and this will be dependent on the number of

subdomains. In order to compute the low frequency component of the convergence

factor we will first give the asymptotic values of Equation (3.24) and Equation (3.25)

for one and two parameters and to simplify the computation we suppose Dirichlet
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boundary conditions at the boundaries of the global domain, that is consider the limits

of pa and pb to infinity.

1. For one optimised parameter p = Cp��1/3 =
C

2
k
2
��1/3

↵+

j
(0) = ↵�

j
(0) =

4se�sL

Cp(1� e�2sL)
�1/3 =

8se�sL

C2

k
(1� e�2sL)

�1/3 := ã,

�+

j
(0) = ��

j
(0) = 1�

2s(e�2sL + 1)

Cp(1� e�2sL)
�1/3 = 1�

4s(e�2sL + 1)

C2

k
(1� e�2sL)

�1/3 =: b̃

leading to the low frequency iteration matrix

(3.37) Tlf,1par =

2

6666666666664

0 b̃ ã 0 . . . 0 0

b̃ 0 0 0 . . . 0 0

0 0 0 b̃ . . . 0 0

0 ã b̃ 0 . . . ã 0

0 0 . . .
. . .

. . . 0 0

0 0 . . . 0 0 0 b̃

0 0 . . . 0 ã b̃ 0

3

7777777777775

.

By computing the spectral radius of this matrix for J = 2, 3, 4 subdomains we

get the value for a small � and then by equating the dominant terms with Equa-

tion (3.35) we obtain the constants

(3.38)

⇢2(k
⇤) = ⇢2(0) = 1�

1

C2

k

<
4s(e2sL + 1)

(e2sL � 1)
�1/3

) Ck = 21/3
✓
<
s(e2sL + 1)

(e2sL � 1)

◆1/3

⇢3(k
⇤) = ⇢3(0) = 1�

1

C2

k

<
4s(e2sL + 1� esL)

(e2sL � 1)
�1/3

) Ck = 21/3
✓
<
s(e2sL + 1� esL)

(e2sL � 1)

◆1/3

⇢4(k
⇤) = ⇢4(0) = 1�

1

C2

k

<
4s(e2sL + 1�

p
5�1

2
esL)

(e2sL � 1)
�1/3

) Ck = 21/3
 
<
s(e2sL + 1�

p
5�1

2
esL)

(e2sL � 1)

!1/3

We note that parameters and the convergence factor for a fixed number of domains

depend only on one constant, which vary as we increase the number of domains
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and can be summarised as follows

(3.39)

C2 = <
s(e2sL + 1)

(e2sL � 1)
2 subdomains,

C3 = <
s(e2sL + 1� esL)

(e2sL � 1)
3 subdomains

C4 = <
s(e2sL + 1�

p
5�1

2
esL)

(e2sL � 1)
4 subdomains

2. For two optimised parameter p1, p2 2 {Cp1��1/5, Cp2��3/5
} = {C2

k2
��1/5, C4

k2
��1/5

}

↵+

j
(0) = ↵�

j
(0) =

2se�sL

Cp2(1� e�2sL)
�1/5 =

2se�sL

C4

k2
(1� e�2sL)

�1/5 := ã,

�+

j
(0),��

j+1
(0) 2 {�2/5C2

k2b̃,
1

�2/5C2

k2

b̃}, b̃ = 1�
s(e�2sL + 1)

C4

k2
(1� e�2sL)

�1/5

leading to the low frequency iteration matrix

(3.40) Tlf,2par =

2

6666666666664

0 b̃+ ã 0 . . . 0 0

b̃� 0 0 0 . . . 0 0

0 0 0 b̃+ . . . 0 0

0 ã b̃� 0 . . . ã 0

0 0 . . .
. . .

. . . 0 0

0 0 . . . 0 0 0 b̃+

0 0 . . . 0 ã b̃� 0

3

7777777777775

.

where in fact the couple b̃+ 6= b̃� can vary along the diagonal but still lay in

the set {�2/5C2

k2
b̃, 1

�2/5C2
k2
b̃} which won’t change the eigenvalues of the matrix. By

computing the spectral radius of this matrix for J = 2, 3, 4 subdomains we get the

value for a small � and then by equating the dominant terms with Equation (3.36)

with we obtain the constants

(3.41)

⇢2(k
⇤) = ⇢2(0) = 1�

1

C4

k2

<
s(e2sL + 1)

(e2sL � 1)
�1/5 ) Ck2 = 2�1/5C1/5

2

⇢3(k
⇤) = ⇢3(0) = 1�

1

C4

k2

<
s(e2sL + 1� esL)

(e2sL � 1)
�1/5 ) Ck2 = 2�1/5C1/5

3

⇢4(k
⇤) = ⇢4(0) = 1�

1

C4

k2

<
s(e2sL + 1�

p
5�1

2
esL)

(e2sL � 1)
�1/5 ) Ck2 = 2�1/5C1/5

4

where we note again the dependence of the constants given in Equation (3.39).
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Analytical formulae for constants in the general case are out of reach since we cannot

compute eigenvalues of matrices (3.37) and (3.40) for more than 4 subdomains. How-

ever, asymptotic formulae for these eigenvalues are computable by writing the asymp-

totic development for small � of the characteristic polynomial of (3.37) and equating

the leading term to 0. Experiments with Maple show that this is doable in all the

cases when N � 4 and the following result can be conjectured (although no proof is

available)

(3.42) CN = <

s(e2sL � 2 cos
⇣

⇡

N+1

⌘
esL + 1)

(e2sL � 1)
, N � 4.

In the sequel we will see that this result is fully consistant with the one obtained by

using the limiting spectrum approach. In this case a bound on the spectral radius can

be obtained and this can be minimised by using the same technique.

3.3.3 Optimization for many subdomains

In order to obtain a theoretical result for many subdomains, we use the technique of

limiting spectra to derive a bound on the spectral radius which we can then minimize.

To do so, we must however assume that the outer Robin boundary conditions use the

same optimized parameter as at the interfaces, in order to have the Toeplitz structure

needed for the limiting spectrum approach.

Theorem 3.3 (Many Subdomain Optimization). With all Robin parameters equal,

p�
j
= p+

j
= p, and by equioscillation of the solution, the convergence factor of the OSM

satisfies the bound

⇢ = lim
N!+1

⇢(TOS

2d )  max
n
|↵� �| , |↵+ �|

o
< 1,

where

↵ =
(�+ p)2e�� � (�� p)2e���

(�+ p)2e�(L+�) � (�� p)2e��(L+�)
, � =

(�� p)(�+ p)(e��L
� e�L)

(�+ p)(�+ p)e�(L+�) � (�� p)(�� p)e��(L+�)
.

The asymptotically optimized parameter and associated convergence factor are

(3.43) p = 2�1/3C2/3��1/3, ⇢ = 1� 2 · 21/3C1/3�1/3 +O(�2/3)
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with the constant

C := <
s(1� e�sL)

1 + e�sL
.

If we allow two-sided Robin parameters, p�
j
= p� and p+

j
= p+, the OSM convergence

factor satisfies the bound

⇢ = lim
N!+1

⇢(TOS

2d )  max
n ���↵�

p
���+

��� ,
���↵+

p
���+

���
o
< 1,

where

↵ =
(�+ p+)(�+ p�)e�� � (�� p+)(�� p�)e���

D
, �± =

(�2
� (p⌥)2)(e��L

� e�L)

D
,

with

D = (�+ p+)(�+ p�)e�(L+�)
� (�� p+)(�� p�)e��(L+�).

The asymptotically optimized parameter choice p� 6= p+ and the associated convergence

factor are

p�, p+ 2

n
CR

2/5��3/5, C4/5��1/5

o
, ⇢ = 1� 2C1/5

R
�1/5 +O(�2/5),

with the same constant

CR := <
s(1� e�sL)

1 + e�sL

as for one parameter.

Proof. As in the case of two and three subdomains, we observe equioscillation and

asymptotically that p = Cp��1/3, ⇢ = 1 � CR�1/3 + O(�2/3) and the convergence

factor has a local maximum at the point k̃⇤ = Ck��2/3. By expanding for small �,

the derivative @⇢

@k
(k̃⇤) needs to have a vanishing leading order term, which leads to

Cp =
C

2
k
2
. Expanding the convergence factor at the maximum point k̃⇤ gives ⇢(k̃⇤) =

⇢(Ck��2/3) = 1� 2Ck�1/3 +O(�2/3), and hence CR = 2Ck. Equating now ⇢(0) = ⇢(k̃⇤)

determines uniquely Ck and then Cp =
p
Ck/2 giving (3.43). By following the same

lines as for two and three subdomains, we also get the asymptotic result in the case of

two di↵erent parameters. ⌅

Remark 3.2. We notice from the previous result that limN!1CN,R = CR meaning

that when the number of subdomain is large we can use the constant from the limiting

spectrum approach. Also the constants CN,R are asymptotic values obtained in the case

where Dirichlet boundary conditions are used at the boundaries of the global domain
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Figure 3.8: Optimised constants for di↵erent subdomains for a fixed � and L = 1 as a
function of "

Figure 3.9: Optimised constants for di↵erent subdomains for a fixed " and L = 1 as a
function of �

whereas in the limiting spectrum approach we have Robin conditions. In Figures 3.8

and 3.9 we see how these constants evolve for di↵erent number of subdomains and how

they approach the limiting value as the number of subdomains increases and we notice

that as the parameters � and " increase, there is no much di↵erence with respect to the

two-subdomain case.

We can therefore safely conclude that for the magnetotelluric approximation of Maxwell’s

equations, which contains the important Laplace and screened Laplace equation as spe-

cial cases, it is su�cient to optimize transmission conditions for a simple two subdomain

decomposition in order to obtain good transmission conditions also for the case of many

subdomains, a new result that was not known so far.
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3.4 Second order optimised transmission conditions

We can design even better optimised methods if we replace the coe�cient p±
j
(3.22) by

second order di↵erential operators along the interface. In this case, by replacing the

local solution written as a Fourier series we obtain for Fourier coe�cients the equations

(3.44)

@xxvnj � (k̃2 + � � i")vn
j

= 0 x 2 (aj , bj),

�@xvnj + (p�
j
+ k̃2q�

j
)vn

j
= �@xv

n�1

j�1
+ (p�

j
+ k̃2q�

j
)vn�1

j�1
at x = aj ,

@xvnj + (p+
j
+ k̃2q+

j
)vn

j
= @xv

n�1

j+1
+ (p+

j
+ k̃2q+

j
)vn�1

j+1
at x = bj .

For these equations the same reasoning from the previous sections will hold including

the final form of the Toeplitz iteration matrix. The only di↵erence holds in the fact that

this matrix depends now on two sets of parameters T2(k̃, p
±
j
, q±

j
) := T (k̃, p±

j
+ k̃2q±

j
)

and we need to solve now the following min-max problem

min
p
±
j ,q

±
j

max
k̃2K

|⇢(T2(k̃, p
±
j
, q±

j
))|

We will follow the same path as in the case of zero order transmission conditions by

performing the optimisation in the case of two and three subdomains.

Theorem 3.4 (Two Subdomain Optimization). Let s:=
p
� � i", where the complex

square root is taken with a positive real part, and let C be the real constant

(3.45) C:=<
s((pb + s)(pa + s)� (s� pb)(s� pa)e�4sL)

((s� pa)e�2sL + s+ pa)((s� pb)e�2sL + s+ pb)
.

Then for two subdomains with p+
1
= p�

2
=: p, q+

1
= q�

2
=: q and k̃min = 0, by equioscilla-

tion of the solution , the asymptotically optimized parameters p and q for small overlap

� are

(3.46) p = 2�3/5C4/5��1/5, q = 2�1/5C�2/5�3/5

and the associated convergence factor is

⇢ = 1� 2 · 23/5C1/5�1/5 +O(�2/5).

If p+
1
6= p�

2
, q+

1
6= q�

2
, and k̃min = 0, the asymptotically optimized parameters for small
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overlap � are

(3.47)

p+
1
= 2�8/9C8/9��1/9, q+

1
= 22/9C�2/9�7/9, p�

2
= 2�2/3C2/3��1/3, q�

2
= 24/9C�4/9�5/9

and the associated convergence factor is

⇢ = 1� 2 · 2�1/9C1/9�1/9 +O(�2/9).

Proof. We obtain that the solution of the min-max problem equioscillates. Even with

an identical condition we have now two parameters and in this case we have two

equioscillations, ⇢(0) = ⇢(k̃⇤
1
) = ⇢(k̃⇤

2
), where k̃⇤

j
are two interior local maxima, and

asymptotically p = Cp��1/5, q = Cq�3/5, ⇢ = 1 � CR�1/5 + O(�2/5), k̃⇤
1
= Ck1��2/5

and k̃⇤
2
= Ck2��4/5. By expanding for � small, and setting the leading terms in the

derivatives @⇢

@k
(k̃⇤

1,2
) to zero, and we get Cp =

2C
2
k1

C2
k2

, Cq =
2

C2
k2
. Expanding the maxima

leads to ⇢(k̃⇤
1
) = ⇢(Ck1��2/5) = 1 � 8Ck1

C2
k2
�1/5 + O(�2/5) and ⇢(k̃⇤

2
) = ⇢(Ck2��4/5) =

1� 2Ck2�
1/5 +O(�2/5) and equating ⇢(k̃⇤

1
) = ⇢(k̃⇤

2
) we get Ck1 =

C
3
k2
4

and CR = 2Ck2.

Finally equating ⇢(0) = ⇢(k̃⇤
2
) asymptotically determines uniquely Ck2 = 23/5C1/5 and

then Ck1 =
C

3
k2
4

and Cp =
C

4
k2
8
, Cq =

2

C2
k2
.
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Figure 3.10: Equioscillation in numerical optimisation with one sided and two sided
second order optimised conditions

In the case of four di↵erent parameters, we have four equioscillations, ⇢(0) = ⇢(k̃⇤
1
) =

⇢(k̃⇤
2
) = ⇢(k̃⇤

3
) = ⇢(k̃⇤

4
), where k̃⇤

j
are four interior local maxima, and asymptotically

p1 = Cp1��1/9, q1 = Cq1�7/9, p2 = Cp2��3/9, q2 = Cq2�5/9 ⇢ = 1 � CR�1/9 + O(�2/9),

k̃⇤
1
= Ck1��2/9, k̃⇤

2
= Ck2��4/9, k̃⇤

3
= Ck3��6/9, k̃⇤

4
= Ck4��8/9. By expanding for �

small, and setting the leading terms in the derivatives @⇢

@k
(k̃⇤

1,2,3,4
) to zero, we get

Cp1 =
C2

k1
· C2

k3

C2

k2
· C2

k4

, Cp2 =
C2

k2
· C2

k4

C2

k3

, Cq1 =
1

C2

k4

, , Cq2 =
C2

k4

C2

k3

.
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Expanding the maxima leads to

⇢(k̃⇤
1
) = ⇢(Ck1�

�2/9) = 1� 2
Ck1 · C2

k3

C2

k2
· C2

k4

�1/9 +O(�2/9),

⇢(k̃⇤
2
) = ⇢(Ck2�

�4/9) = 1� 2
Ck2 · C2

k4

C2

k3
· C2

k4

�1/9 +O(�2/9),

⇢(k̃⇤
3
) = ⇢(Ck3�

�6/9) = 1� 2
Ck3

C2

k4

�1/9 +O(�2/9),

⇢(k̃⇤
4
) = ⇢(Ck4�

�8/9) = 1� 2Ck4�
1/9 +O(�2/9).

Equating now ⇢(k̃⇤
1
) = ⇢(k̃⇤

2
) = ⇢(k̃⇤

3
) = ⇢(k̃⇤

4
) we get Ck1 = C7

k4
, Ck2 = C5

k4
, Ck3 = C3

k4

and CR = 2Ck4. Finally equating ⇢(0) = ⇢(k̃⇤
4
) asymptotically determines uniquely

Ck4 = 2�1/9C1/9 with C given in (3.45) and the other constants are determined ac-

cordingly. ⌅

A similar asymptotic analysis can be performed for three subdomains with similar

conclusions from which we can infer the following.

Remark 3.3. Like in the case of 0th order conditions we can conjecture the following

two results for an arbitrary fixed number of subdomains:

1. When all pairs (p+
j
, q+

j
) and (p�

j
, q�

j
) of parameters are equal to (p, q), then the

asymptotically optimized parameter p for small overlap � and the associated con-

vergence factor have the same form as for two-subdomains (3.46) in Theorem 3.4,

only the constant is di↵erent.

2. If all parameters are allowed to be di↵erent, the optimized parameters behave for

small overlap � like

(p+
j
, q+

j
), (p�

j+1
, q�

j+1
) 2 {(2�8/9C8/9��1/9, 22/9C�2/9�7/9), (2�2/3C2/3��1/3, 24/9C�4/9�5/9)}

and (p+
j
, q+

j
) 6= (p�

j+1
, q�

j+1
) 8j = 1.., J � 1.

3.4.1 High frequency and low frequency analysis

We can make the study of the convergence factor more systematic by performing the

low frequency vs. high frequency analysis of the convergence factor like in Section 3.3.2.

The equivalent of the summary from Table 3.4 of the optimisation parameters in high

frequency regime reads.
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Case Parameter asymptotics Local maximum Convergence factor

One sided

(
p⇤ =

C
4
k2
8
��1/5,

q⇤ = 2

C2
k2
�3/5

(
k⇤
1
=

C
3
k2
4
��2/5,

k⇤
2
= Ck2��4/5

⇢ = 1� 2Ck2�1/5

Two sided

8
>>><

>>>:

p⇤
1
= C8

k4
��1/9,

q⇤
1
= 1

C2
k4
�7/9

p⇤
2
= C6

k4
��3/9,

q⇤
2
= 1

C4
k4
�5/9

8
>><

>>:

k⇤
1
= C7

k4
��2/9

k⇤
2
= C5

k4
��4/9

k⇤
3
= C3

k4
��6/9

k⇤
4
= Ck4��8/9

⇢ = 1� 2Ck4�1/9

Table 3.5: Parameter asymptotics for second order transmission conditions in the high
frequency regime for second order transmission conditions

Note that in the case of second order conditions even if the same conditions are used on

both sides of the interface, we still need two parameters per interface. We will therefore

call these conditions one-sided and distinguish them from the two sided where four

parameters are needed.

1. For one sided conditions p⇤ =
C

4
k2
8
��1/5, q⇤ = 2

C2
k2
�3/5 the asymptotic values of

↵±(0) and �±(0)

↵+

j
(0) = ↵�

j
(0) =

4se�sL

Cp(1� e�2sL)
�1/5 =

32se�sL

C5

k
(1� e�2sL)

�1/5 := ã,

�+

j
(0) = ��

j
(0) = 1�

2s(e�2sL + 1)

Cp(1� e�2sL)
�1/5 = 1�

16s(e�2sL + 1)

C4

k
(1� e�2sL)

�1/5 =: b̃

leading to the low frequency iteration matrix of the same form like in Equa-

tion (3.37). By computing the spectral radius of this matrix for J = 2, 3, 4

subdomains we get the value for a small � and then by equating the dominant
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terms with the high frequency components we obtain the constants

(3.48)

⇢2(k
⇤) = ⇢2(0) = 1�

16s(e�2sL + 1)

C4

k
(1� e�2sL)

�1/5

) Ck = 23/5
✓
<
s(e2sL + 1)

(e2sL � 1)

◆1/5

⇢3(k
⇤) = ⇢3(0) = 1�

1

C4

k

<
16s(e2sL + 1� esL)

(e2sL � 1)
�1/5

) Ck = 23/5
✓
<
s(e2sL + 1� esL)

(e2sL � 1)

◆1/5

⇢4(k
⇤) = ⇢4(0) = 1�

1

C4

k

<
16s(e2sL + 1�

p
5�1

2
esL)

(e2sL � 1)
�1/5

) Ck = 23/5
 
<
s(e2sL + 1�

p
5�1

2
esL)

(e2sL � 1)

!1/5

We can note again that parameters and the convergence factor for a fixed number

of domains depend only on one constant, which vary as we increase the number

of domains and this constant is given in each case in Equation (3.39).

2. For the two-sided conditions where

p⇤1 = C8

k4�
�1/9, q⇤1 =

1

C2

k4

�7/9, p⇤2 = C6

k4�
�3/9, q⇤2 =

1

C4

k4

�5/9

the asymptotic values of ↵±(0) and �±(0) are

↵+

j
(0) = ↵�

j
(0) =

2se�sL

Cp2(1� e�2sL)
�1/9 =

2se�sL

C4

k4
(1� e�2sL)

�1/9 := ã,

�+

j
(0),��

j+1
(0) 2 {�2/9C2

k4b̃,
1

�2/9C2

k4

b̃}, b̃ = 1�
s(e�2sL + 1)

C8

k4
(1� e�2sL)

�1/9

leading to the low frequency iteration matrix of the same form like in Equa-

tion (3.40) where in fact the couple b̃+ 6= b̃� can vary along the diagonal but still

lay in the set {�2/9C2

k4
b̃, 1

�2/9C2
k4
b̃} which won’t change the eigenvalues of the ma-

trix. By computing the spectral radius of this matrix for J = 2, 3, 4 subdomains

we get the value for a small � and then by equating the dominant terms with the
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high frequency components with we obtain the constants

(3.49)

⇢2(k
⇤) = ⇢2(0) = 1�

1

C8

k4

<
s(e2sL + 1)

(e2sL � 1)
�1/9 ) Ck4 = 2�1/9C1/9

2

⇢3(k
⇤) = ⇢3(0) = 1�

1

C8

k2

<
s(e2sL + 1� esL)

(e2sL � 1)
�1/5 ) Ck4 = 2�1/9C1/9

3

⇢4(k
⇤) = ⇢4(0) = 1�

1

C8

k2

<
s(e2sL + 1�

p
5�1

2
esL)

(e2sL � 1)
�1/5 ) Ck4 = 2�1/9C1/9

4

where we note again the dependence of the constants given in Equation (3.39).

Note that since we have the same constants as in the case of 0th order conditions and

the same conclusions hold.

3.5 Conclusions

In this chapter we have analysed the iterative version of Schwarz method by using the

idea of limiting spectrum for block Toeplitz matrices. Based on this, we have designed

better transmission conditions for the optimised versions of Schwarz algorithms with

overlap, obtained closed formulae for the parameters involved in these transmission

conditions and asymptotic theoretical results (for a small value of the overlapping pa-

rameter) on the predicted convergence factor. It is the first time this kind of results

have been obtained for decompositions into many subdomains and complex versions

of the di↵usion problems as in most of the works from the literature, only the decom-

position into two subdomains are considered. These conditions can be one sided and

two-sided, zero-th and second order, increasing the complexity usually leads to a better

convergence. Numerical implementations of these new algorithms will be shown in the

next chapter.



Chapter 4

Numerical assessment of

optimised Schwarz methods

In this chapter we focus on the numerical assessment of optimised Schwarz algorithms

introduced in the previous chapter when using zero and second order transmission

conditions.

4.1 Optimised Schwarz method as a solver

For our tests, first we focus on a decomposition into two overlapping domains, that can

be uniform (two rectangles) or a more general decomposition using METIS as shown in

Figure 4.1. In the first series of tests we consider one sided Robin interface conditions

(i.e. depending only on one parameter) which can be zero-th and second order and

we increase locally the number of degrees of freedom (denoted by nloc in the tables)

which leads to an decreasing value of the mesh size h. We report the iteration number

in order to achieve a relative quadratic L2 norm of the error of 10�6.

In order to fully understand the benefits of the optimised transmission conditions we

start by performing a few numerical simulation with the RAS method as an iterative

solver. In Figure 4.2 we see that the convergence deteriorates when the mesh size is

decreased and the iteration count increases considerably.

In order to quantify this increase we plot the asymptotic dependence of the iteration

count with respect to the mesh size in Figure 4.3 and we notice that the iteration count

behaves like h�1, hence by refining the mesh size by a factor of 2, the iteration count

91



CHAPTER 4. NUMERICAL RESULTS 92

Figure 4.1: Decomposition into two subdomains -uniform and METIS decomposition
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Figure 4.2: Convergence of the RAS algorithm for � = 1, " = 1 uniform (left) and
METIS (right) decomposition

doubles, which is quite a strong dependence.

We move on now to the iterative version of the ORAS algorithm (Optimised Restricted

Additive Schwarz). We will see that with the same computational complexity, i.e. by

only changing the interface transmission conditions, the algorithm will converge much

faster.

We consider three case scenarios for a fixed value of � = 1 and di↵erent values of

" = 0.1, 1, 10. Results are reported in Tables 4.1, 4.2 and 4.3. We notice that there is

slight di↵erence between the uniform and METIS decomposition but that the overall

iteration count is far smaller than in the case of the RAS method for the same kind of

problem. (we have chosen to show iteration counts for the RAS method only in one

case in order to illustrate the stark di↵erence with respect to ORAS). Secondly, when

imposing second order transmission conditions in the case of a uniform decomposition

we can notice a further decrease in the iteration count whereas in the case of METIS

decomposition, the number of iterations might even increase. This can be explained

by the presence of tangential derivatives in the interface conditions which are not well

approximated in the case of jagged interfaces.
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Figure 4.3: Convergence of the RAS algorithm for � = 1, " = 1 uniform (left) and
METIS (right) decomposition for overlap � = 2h.

Zero order-one sided Second order-one sided
nloc h METIS UNIFORM METIS UNIFORM
50 1

49
12 12 12 7

100 1

99
16 14 18 9

200 1

199
19 18 24 11

400 1

399
24 22 29 13

Table 4.1: One sided zeroth and second order IC, with � = 1 and " = 0.1.

Zero order-one sided Second order-one sided RAS
nloc h METIS UNIFORM METIS UNIFORM METIS UNIFORM
50 1

49
12 12 11 7 46 40

100 1

99
16 14 18 9 103 78

200 1

199
19 18 23 11 197 154

400 1

399
24 22 29 13 386 306

Table 4.2: One sided zeroth and second order IC, with � = 1 and " = 1.

Zero order-one sided Second order-one sided
nloc h METIS UNIFORM METIS UNIFORM
50 1

49
10 10 10 9

100 1

99
13 12 15 11

200 1

199
16 15 19 11

400 1

399
21 19 24 11

Table 4.3: One sided zeroth and second order IC, with � = 1 and " = 10.

The convergence curves for zero-order conditions in the case of the uniform and METIS

decompositions corresponding to Tables 4.1 and 4.3 are shown in Figures 4.4 and 4.5

for two di↵erent values of ". We can see that when " is increasing the convergence of
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the algorithm improves.
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Figure 4.4: Convergence of ORAS for the zero-th order interface conditions " = 0.1
(left) and " = 10 (right), uniform decomposition
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Figure 4.5: Convergence of ORAS for the zero-th order interface conditions " = 0.1
(left) and " = 10 (right), METIS decomposition

And finally, if we want to quantify the asymptotic behaviour of the iteration count as a

function of the mesh size h, we see in Figure 4.6 that this is consistent with the theory

i.e. in the case of zero-th order transmission conditions, the iteration count increases

like h�1/3 and in the case of second order condition like h�1/5. This kind of increase is

therefore far weaker than in the case of the RAS algorithm.

We now perform the same kind of experiments but with an increasing number of subdo-

mains and a stripwise decomposition. In Tables 4.4, 4.5 and 4.6 we report the iteration

count for � = 1 and di↵erent values of ", zero and second order conditions for uniform

and METIS decompositions.

We notice that after a slight increase in iterations when the number of subdomains

increases, this iteration count stabilises which is consistent to the theoretical results
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Figure 4.6: Iteration count depending on the mesh size for zero and second order
conditions

Zero order-one sided Second order-one sided
N METIS UNIFORM METIS UNIFORM
2 12 12 12 7
4 17 15 19 9
6 17 16 20 9
8 17 16 20 9
10 18 16 21 9
12 18 16 21 9

Table 4.4: One sided zeroth and second order IC, with � = 1 and " = 0.1.

Zero order-one sided Second order-one sided
N METIS UNIFORM METIS UNIFORM
2 12 12 11 7
4 17 15 19 9
6 17 16 20 9
8 17 16 19 9
10 18 16 21 9
12 18 16 20 9

Table 4.5: One sided zeroth and second order IC, with � = 1 and " = 1.

and show that the method is scalable. This slight increase is barely visible when the

parameter " gets larger. We report illustrate the results from the previous tables in the

graphs from Figure 4.7.

We conclude this section by showing a few results with the two-sided conditions. We

see in Table 4.7 and Figure 4.8 that as predicted by the theory, the behaviour of

zeroth order two-sided condition is very similar (asymptotically) to second order one-
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Zero order-one sided Second order-one sided
N METIS UNIFORM METIS UNIFORM
2 10 10 10 9
4 11 10 12 10
6 11 10 12 10
8 11 10 11 10
10 11 10 12 10
12 11 10 12 10

Table 4.6: One sided zeroth and second order IC, with � = 1 and " = 10.

Figure 4.7: Iteration counts as a function of subdomains for various methods.

sided conditions from Figure 4.2 but with an added robustness in the case of METIS

decompositions since we don’t have any derivatives in the interface conditions.
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Figure 4.8: Asymptotic behaviour for zero-th and second order 2 sided IC: � = 1, " = 1

As shown in Table 4.7 In the case two-sided second order transmission conditions, we

obtain a better convergence as in the case of the zero-th order method. The asymptotic

behaviour is the one prescribed by the theory (iteration count behaving like h�1/9).

Note that for the results in Table 4.7 we have redefined the tolerance of the iterative to

be 10�12 whereas in our initial tests, the tolerance has been 10�6. Such a tolerance is



CHAPTER 4. NUMERICAL RESULTS 97

Zero order- two sided Second order-two sided
nloc h METIS UNIFORM METIS UNIFORM
50 1

49
20 17 15 12

100 1

99
26 23 21 16

200 1

199
34 27 26 19

400 1

399
37 32 33 21

Table 4.7: One sided zeroth and second order IC, with � = 1 and " = 1.

usually not necessary in practical computations we have use it with the only purpose

to be more accurate in our estimates of the asymptotic behaviour since the overall

iteration count is not very important.

4.2 Optimised Schwarz method as a preconditioner

In this section we perform exactly the same kind of tests as in the previous one but

when using the Schwarz method as a preconditioner in a GMRES iterative method.

In order to fully understand the benefits of the optimised transmission conditions we

start by performing a few numerical simulations with the RAS method as preconditioner

in a GMRES solver. In Figure 4.9 we see that the convergence deteriorates when the

mesh size is decreased and the iteration count increases considerably.
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Figure 4.9: Convergence of the RAS algorithm for � = 1, " = 1 uniform (left) and
METIS (right) decomposition

In order to quantify this increase we plot the asymptotic dependence of the iteration

count with respect to the mesh size in Figure 4.10 and we notice that the iteration

count behaves like h�1/2, which is quite a strong dependence, even stronger than the

purely iterative version of the optimised algorithm.

We consider again three case scenarios for a fixed value of � = 1 and di↵erent values of
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Figure 4.10: Convergence of the RAS algorithm for � = 1, " = 1 uniform (left) and
METIS (right) decomposition

" = 0.1, 1, 10 and we illustrate now the behaviour of the optimised method when used

as a preconditioner in a GMRES iterative solver. Results are reported in Tables 4.8,

4.9 and 4.10. (again we have chosen to show iteration counts for the RAS method only

in one case in order to illustrate the di↵erence in iterations with respect to ORAS). We

should notice that in this case there is less di↵erence between RAS and ORAS but the

advantage of ORAS increases the mesh is refined.

Zero order-one sided Second order-one sided
nloc h METIS UNIFORM METIS UNIFORM
50 1

49
8 8 8 5

100 1

99
10 9 12 6

200 1

199
12 12 14 8

400 1

399
14 13 16 9

Table 4.8: One sided zeroth and second order IC, with � = 1 and " = 0.1.

Zero order-one sided Second order-one sided RAS
nloc h METIS UNIFORM METIS UNIFORM METIS UNIFORM
50 1

49
8 8 8 6 12 10

100 1

99
10 10 12 7 18 15

200 1

199
12 12 14 8 25 21

400 1

399
14 13 16 9 35 30

Table 4.9: One sided zeroth and second order IC, with � = 1 and " = 1.

We also show the convergence history for two of the cases (zero-th order transmission

conditions in the case of uniform and METIS decompositions for " = 0.1 and " = 10)

in Figures 4.11 and 4.12. We notice that because of the Krylov acceleration, the

methods is even less sensitive to the mesh size and the di↵erences between uniform and
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Zero order-one sided Second order-one sided
nloc h METIS UNIFORM METIS UNIFORM
50 1

49
8 8 8 6

100 1

99
10 10 11 7

200 1

199
12 11 13 8

400 1

399
15 14 15 9

Table 4.10: One sided zeroth and second order IC, with � = 1 and " = 10.

METIS decompositions are barely visible. This is not the case when we use METIS

decomposition in the case of second order transmission conditions.
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Figure 4.11: Convergence of the prec. GMRES with ORAS, one sided zero order
transmission, " = 0.1 (uniform and METIS decomposition).

We move on now to the case of many subdomains. Results are reported in Tables

4.11,4.12 and 4.13.

Zero order-one sided Second order-one sided
N METIS UNIFORM METIS UNIFORM
2 8 8 8 5
4 10 10 12 7
6 11 10 12 7
8 11 10 13 7
10 11 10 13 7
12 11 10 13 7

Table 4.11: One sided zeroth and second order IC, with � = 1 and " = 0.1.

Again in this case we see that the behaviour of the method is consistent with the theory

i.e. the iteration count stabilises as the number of subdomains gets larger, which means

the method is scalable without further modification.
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Figure 4.12: Convergence of the prec. GMRES with ORAS, one sided zero order
transmission, " = 10 (uniform and METIS decomposition).

Zero order-one sided Second order-one sided
N METIS UNIFORM METIS UNIFORM
2 8 8 8 6
4 10 10 11 7
6 11 10 12 7
8 11 10 12 7
10 11 10 12 7
12 11 10 13 7

Table 4.12: One sided zeroth and second order IC, with � = 1 and " = 1.

Zero order-one sided Second order-one sided
N METIS UNIFORM METIS UNIFORM
2 8 8 8 6
4 10 9 10 7
6 10 9 9 7
8 9 9 9 7
10 10 9 9 7
12 10 9 9 7

Table 4.13: One sided zeroth and second order IC, with � = 1 and " = 10.

4.3 Conclusions

In this chapter we have seen that developing optimised conditions is very important in

this kind of hybrid direct-iterative methods as for the same computational cost we get

a much better behaviour. Secondly, even in the case of many subdomains, the analysis

shows that stripwise decompositions for this kind of problem can lead to robustness

w.r.t to the number of subdomains and hence to scalability without further addition of
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a coarse space. This is an important feature that can be exploited in larger and more

realistic computations. But also, this kind of analysis is applicable to other equations

and one could for example design better transmission conditions for the Helmholtz

problem for example where the behaviour gets worse as the wave-number increases. And

to conclude, all these estimates were possible due to the limiting spectrum technique

which proved to be a very accurate theoretical tool for block Toeplitz matrices arising

from the decomposition into subdomains.
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Appendix A

Matlab implementations

A.1 Study of the limiting spectrum

Construction of the iteration matrix.

1 func t i on [M, S ] = i t e r a t i o n matrix (n , a , b )

2

3 d1 = b∗ ones (2∗n�3 ,1) ;

4 d1 ( 2 : 2 : end ) = 0 ;

5 d2 = a∗ ones (2∗n�4 ,1) ;

6 d2 ( 2 : 2 : end ) = 0 ;

7 d3 = a∗ ones (2∗n�4 ,1)�d2 ;

8

9 M = diag (d1 , 1 )+diag (d1 ,�1)+diag (d2 , 2 )+diag (d3 ,�2) ;

10 S = e i g (M) ;

Testing the limiting spectrum bounds in the one dimensional case

1 c l e a r a l l , c l o s e a l l , c l c

2

3 e ps i l o n = 0 . 1 ;

4 sigma = 5 ;

5

6 L = 1 ;

7 de l t a = L/10 ;

8

9 lambda = sq r t ( sigma�1 i ∗e ps i l o n ) ;

10 Dt = exp ( lambda ∗(2∗ de l t a+L) )�exp(�lambda ∗(2∗ de l t a+L) ) ;

11 a = ( exp (2∗ lambda∗ de l t a ) � exp(�2∗ lambda∗ de l t a ) ) /Dt ;

12 b = ( exp (L∗ lambda ) � exp(�L∗ lambda ) ) /Dt ;

103
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13 rhoe s t = max( abs ( a�b) , abs ( a+b) ) ;
14

15 theta = �pi : 1 /100 : p i ;

16 L1 = cos ( theta ) ∗a + sq r t (� s i n ( theta ) .ˆ2∗ aˆ2 + bˆ2) ;

17 L2 = cos ( theta ) ∗a � s q r t (� s i n ( theta ) .ˆ2∗ aˆ2 + bˆ2) ;

18

19 n = [2 5 10 20 40 60 8 0 ] ;

20 i = 1 ;

21 f o r n i = n

22 [M, S ] = i t e r a t i o n matrix ( ni , a , b ) ;

23 rho ( i ) = max( abs (S) ) ;

24 i = i +1;

25 p lo t ( r e a l (S ) , imag (S) , ’ bx ’ , r e a l (L1) , imag (L1) , ’ r� ’ , r e a l (L2) , imag (L2) , ’ r� ’ )

26 end

27 f i g u r e (1 )

28 p lo t ( r e a l (S ) , imag (S) , ’ bx ’ , r e a l (L1) , imag (L1) , ’ r� ’ , r e a l (L2) , imag (L2) , ’ r� ’ )

29 l e g end ( ’ Spectrum of T1d ’ , ’ Theo r e t i c a l e s t imate ’ )

30 t i t l e ( ’ Spectrum of the Schwarz i t e r a t i o n matrix vs . t h e o r e t i c a l e s t imate ’ )

31 g r id on

32 saveas ( gcf , ’ Spectrum Schwarz ’ , ’ e ps c ’ )

33

34 f i g u r e (2 )

35 p lo t (n , rho , ’b∗� ’ ,n , rhoe s t ∗ ones ( s i z e (n) ) , ’ r� ’ )

36 l e g end ( ’ Convergence f a c t o r ’ , ’ L imit ing s p e c t r a l r ad iu s ’ )

37 x l a b e l ( ’Number o f subdomains ’ )

38 y l a b e l ( ’ Convergence f a c t o r ’ )

39 t i t l e ( ’ Convergence o f the a lgor i thm f o r d i f f e r e n t number o f subdomains ’ )

40 g r id on

41 saveas ( gcf , ’ Conv Schwarz ’ , ’ e ps c ’ )

Testing the limiting spectrum bounds in the two dimensional case

1 c l e a r a l l , c l o s e a l l , c l c

2

3 e ps i l o n = 0 . 1 ;

4 sigma = 0 . 6 ;

5 L = 1 ;

6 de l t a = L/10 ;

7

8 n = [2 5 10 20 40 60 8 0 ] ;

9 j = 1 ;

10 f r e q = 0 : 0 . 5 : 1 0 ;

11 f o r n i = n

12 i = 1 ;

13 rhoe s t = 0 ;

14 f o r m= f r e q
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15 kt = m∗ pi /L ;

16 lambda = sq r t ( ktˆ2+sigma�1 i ∗e ps i l o n ) ;

17 Dt = exp ( lambda ∗(2∗ de l t a+L) )�exp(�lambda ∗(2∗ de l t a+L) ) ;

18 a = ( exp (2∗ lambda∗ de l t a ) � exp(�2∗ lambda∗ de l t a ) ) /Dt ;

19 b = ( exp (L∗ lambda ) � exp(�L∗ lambda ) ) /Dt ;

20 rhoe s t = max( rhoest ,max( abs ( a�b) , abs ( a+b) ) ) ;
21

22 theta = �pi : 1 / 5 0 : p i ;

23 L1 = cos ( theta ) ∗a + sq r t (� s i n ( theta ) .ˆ2∗ aˆ2 + bˆ2) ;

24 L2 = cos ( theta ) ∗a � s q r t (� s i n ( theta ) .ˆ2∗ aˆ2 + bˆ2) ;

25

26 [M, S ] = i t e r a t i o n matrix ( ni , a , b ) ;

27 rho ( i ) = max( abs (S) ) ;

28 i = i +1;

29 end

30 rhomax ( j ) = max( rho ) ;

31 j = j +1;

32 end

33

34 f i g u r e (1 )

35 p lo t ( f r e q ∗ pi /L , rho , ’b∗� ’ ) , g r i d on

36 x l a b e l ( ’ Frequency ’ )

37 y l a b e l ( ’ Convergence f a c t o r ’ )

38 saveas ( gcf , ’ Conv factor ’ , ’ e ps c ’ )

39

40 f i g u r e (2 )

41 p lo t (n , rhomax , ’b∗� ’ ,n , rhoe s t ∗ ones ( s i z e (n) ) , ’ r� ’ ) , g r i d on

42 l e g end ( ’ Convergence f a c t o r ’ , ’ L imit ing s p e c t r a l r ad iu s ’ )

43 x l a b e l ( ’Number o f subdomains ’ )

44 y l a b e l ( ’ Convergence f a c t o r ’ )

45 t i t l e ( ’ Convergence o f the a lgor i thm f o r d i f f e r e n t number o f subdomains ’ )

46 saveas ( gcf , ’ Conv Schwarz ’ , ’ e ps c ’ )

A.2 Optimisation of the transmission conditions: zeroth order case

Convergence factor in the two subdomain case

1 func t i on R = rho2sub ( a l )

2 % RHO eva luate the maximum of the convergence f a c t o r R = rhoNsub (p) ;

3

4 g l oba l kmin kmax sigma e ps i l o n L de l t a pa pb ;

5

6 N = 1000 ;

7 k = logspace ( log10 ( kmin+0.01) , log10 (kmax) ,N) ;
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8 %k=l i n s p a c e (kmin , kmax ,N) ;

9

10 lambda = sq r t ( k.ˆ2+sigma�1 i ∗e ps i l o n ) ;

11 %p = a l (1 )+1 i ∗ a l (2 ) ;
12 p = a l (1 ) ;%+k .ˆ2∗ a l (2 ) ;

13

14 e1 = exp(�2∗ lambda∗L) ;
15 e2 = exp(�2∗ lambda ∗(L + de l t a ) ) ;

16

17 r1 = ( ( lambda+p) . ∗ ( lambda�pa ) .∗ e1�(lambda�p) . ∗ ( lambda+pa ) ) .∗ exp(�lambda∗ de l t a ) . / . . .

18 ( ( lambda+p) . ∗ ( lambda+pa )�(lambda�p) . ∗ ( lambda�pa ) .∗ e2 ) ;

19 r2 = ( ( lambda+p) . ∗ ( lambda�pb) .∗ e1�(lambda�p) . ∗ ( lambda+pb) ) .∗ exp(�lambda∗ de l t a ) . / . . .

20 ( ( lambda+p) . ∗ ( lambda+pb)�(lambda�p) . ∗ ( lambda�pb) .∗ e2 ) ;

21 rho = sq r t ( r1 .∗ r2 ) ;

22

23 semi logx (k , abs ( rho ) , ’� ’ ) ;

24 %plo t (k , abs ( rho ) , ’� ’ ) ;

25 drawnow

26 R = max( abs ( rho ) ) ;

and the test file with the numerical optimisation algorithm

1 c l e a r a l l , c l o s e a l l , c l c

2 g l oba l kmin kmax sigma e ps i l o n L de l t a pa pb ;

3

4 e ps i l o n = 1 ;

5 sigma = 1 ;

6 pa = 1 ;

7 pb = 1 ;

8 L = 1 ;

9

10 % h = [1/10 1/100 1/1000 1/10000 1/100000]

11 % p = [1 . 8 818 , 3 . 7 696 , 7 . 9 749 , 1 7 . 1 093 , 36 . 8255 ]

12 % ks = [ 6 . 5 27 .5 127 580 2700 ]

13 % R = [0 . 2 877 , 0 . 5 764 , 0 . 7 767 , 0 . 8 896 , 0 . 9 472 ]

14 % we get ks = Ck∗hˆ(�2/3) , R = 1� CR∗hˆ(1/3) and p = Cp∗hˆ(�1/3)

15

16 % Constants computed by Maple

17 % s = sq r t ( sigma+1 i ∗e ps i l o n ) ;

18 % Ck = 2ˆ(1/3) ∗( r e a l ( s ∗ ( ( pb + s ) ∗( pa + s )�(s � pb) ∗( s � pa ) ∗exp(�4∗ s ∗L) ) / . . .

19 % ( ( ( s � pa ) ∗exp(�2∗ s ∗L)+ s + pa ) ∗ ( ( s � pb) ∗exp(�2∗ s ∗L)+s+pb) ) ) ) ˆ(1/3) ;

20 % Cp = Ckˆ2/2 ;

21 % CR = 2∗Ck ;
22

23 % log l o g (h , p , ’ rx� ’ , h ,Cp∗h.ˆ(�1/3) , ’ b∗� ’)

24 % log l o g (h , ks , ’ rx� ’ , h ,Ck∗h.ˆ(�2/3) , ’ b∗� ’)
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25 % log l o g (h,1�R, ’ rx� ’ ,h ,CR∗h . ˆ ( 1/3 ) , ’ b∗� ’)

26

27 kmin = 0 . 0 0 1 ;

28

29 h = 1/1000;

30 de l t a = h ;

31

32 kmax = pi /h ;

33

34 [ p ,R] = fminsearch ( ’ rho2sub ’ ,20)

35

36 x l a b e l ( ’ $\ t i l d e {k}$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )

37 y l a b e l ( ’ $\ rho$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )

38 t i t l e ( ’One parameter op t im i sa t i on ’ )

Convergence factor in the three subdomain case

1 func t i on R = rho3sub ( a l )

2 % RHO eva luate the maximum of the convergence f a c t o r R = rho3sub (p) ;

3

4 g l oba l kmin kmax sigma e ps i l o n L de l t a pa pb rho ;

5

6 N = 1000 ;

7 k = logspace ( log10 ( kmin+0.01) , log10 (kmax) ,N) ;

8 %k=l i n s p a c e (kmin , kmax ,N) ;

9

10 p1m = pa ; p3p = pb ;

11 p1p = a l (1 ) ;

12 p2m = a l (2 ) ;

13 p2p = a l (3 ) ;

14 p3m = a l (4 ) ;

15

16 lam = sq r t ( k.ˆ2+sigma�1 i ∗e ps i l o n ) ;

17 e1 = exp(�lam∗L) ; e12 = exp(�2∗ lam∗L) ;
18 e2 = exp(�lam∗ de l t a ) ; e22 = exp(�2∗ lam∗ de l t a ) ;

19 e3 = exp(�2∗ lam ∗(L + de l t a ) ) ;

20

21 D1 = (p1p+lam) . ∗ (p1m+lam)�(p1p�lam ) . ∗ (p1m�lam ) .∗ e3 ;

22 D2 = (p2p+lam) . ∗ (p2m+lam)�(p2p�lam ) . ∗ (p2m�lam ) .∗ e3 ;

23 D3 = (p3p+lam) . ∗ (p3m+lam)�(p3p�lam ) . ∗ (p3m�lam ) .∗ e3 ;

24

25 a1p = ( ( lam+p2m) . ∗ ( lam+p1p )�(lam�p2m) . ∗ ( lam�p1p ) .∗ e22 ) .∗ e1 . /D2 ;

26 a3m = (( lam+p2p ) . ∗ ( lam+p3m)�(lam�p2p ) . ∗ ( lam�p3m) .∗ e22 ) .∗ e1 . /D2 ;

27

28 b1p = ( ( lam+p1p ) . ∗ ( lam�p2p ) .∗ e12�(lam�p1p ) . ∗ ( lam+p2p ) ) .∗ e2 . /D2 ;

29 b2m = (( lam+p2m) . ∗ ( lam�p1m) .∗ e12�(lam�p2m) . ∗ ( lam+p1m) ) .∗ e2 . /D1 ;
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30 b2p = ( ( lam+p2p ) . ∗ ( lam�p3p ) .∗ e12�(lam�p2p ) . ∗ ( lam+p3p ) ) .∗ e2 . /D3 ;

31 b3m = (( lam+p3m) . ∗ ( lam�p2m) .∗ e12�(lam�p3m) . ∗ ( lam+p2m) ) .∗ e2 . /D2 ;

32

33 f o r zz=1: l ength (k )

34 T3sub=[0 b1p ( zz ) a1p ( zz ) 0 ;

35 b2m( zz ) 0 0 0 ;

36 0 0 0 b2p ( zz ) ;

37 0 a3m( zz ) b3m( zz ) 0 ] ;

38 rho ( zz )=max( abs ( e i g (T3sub ) ) ) ;

39 end

40

41 semi logx (k , rho , ’� ’ ) ;

42 %plo t (k , abs ( rho ) , ’� ’ ) ;

43 drawnow

44 R = max( rho ) ;

and the test file with the numerical optimisation algorithm

1 c l e a r a l l , c l o s e a l l , c l c

2 g l oba l kmin kmax sigma e ps i l o n L de l t a pa pb ;

3

4 e ps i l o n = 1 ;

5 sigma = 1 ;

6 pa = 1 ;

7 pb = 1 ;

8 L = 1 ;

9

10 % Optimisat ion f o r the one parameter case . Asymp : �1/3, �2/3, 1/3

11 % h = [1/10 1/100 1/1000 1/10000 1/100000]

12 % p = [1 . 5 0 30 , 3 .1485 6 .7083 14 .4155 31 . 0395 ]

13 % R = [0 . 3 3 44 , 0 .6046 0 .7931 0 .8982 0 . 9 514 ]

14

15 % Two parameters case ( per i n t e r f a c e ) p1p = p2m, p2p = p3m => only one

16 % h = [1/10 1/100 1/1000 1/10000 1/100000]

17 % p1 = [1 . 5 031 3 .1485 6 .7083 14.4154 31 . 0395 ]

18 % p2 = [1 . 5 029 3 .1485 6 .7084 14.4155 31 . 0395 ]

19 % R = [0 . 3 312 0 .6046 0 .7931 0 .8982 0 . 9 514 ]

20

21 % Two parameters case ( per domain ) : p1p = p2p = p1 , p2m = p3m =p2

22 % h = [1/100 1/1000 1/10000 1/100000]

23 % p1 = [1 . 1 611 1 .9033 2 .9897 4 . 7 031 ]

24 % p2 = [9 . 5 285 43.9797 173.4325 686 . 5970 ]

25 % R = [0 . 5 158 0 .6497 0 .7661 0 . 8 466 ]

26

27 % Four parameter case : p1p , p2m, p2p , p3m => p1p = p2p = p1 , p2m = p3m =p2

28 % h = [1/100 1/1000 1/10000 1/100000]
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29 % p1p = [0 . 9 628 1 .9017 2 .9496 5 . 0 114 ]

30 % p2m = [10 . 5361 43.9702 172.3793 672 . 0082 ]

31 % p2p = [1 . 2 811 1 .9032 3 .0352 4 . 5 121 ]

32 % p3m = [11 . 5478 43.9686 172.0470 672 . 5054 ]

33 % R = [0 . 5 025 0 .6497 0 .7669 0 . 8 481 ]

34

35 kmin = 0 . 0 0 1 ;

36

37 h = 1/100000;

38 de l t a = h ;

39

40 kmax = pi /h ;

41

42 [ p ,R] = fminsearch ( ’ rho3sub ’ , [ 5 650 650 5 ] )

Convergence factor in the four subdomain case

1 func t i on R = rho4sub ( a l )

2 % RHO eva luate the maximum of the convergence f a c t o r R = rho3sub (p) ;

3

4 g l oba l kmin kmax sigma e ps i l o n L de l t a pa pb rho ;

5

6 N = 1000 ;

7 k = logspace ( log10 ( kmin+0.01) , log10 (kmax) ,N) ;

8 %k=l i n s p a c e (kmin , kmax ,N) ;

9

10 p1m = pa ; p4p = pb ;

11 p1p = a l (1 ) ;

12 p2m = a l (2 ) ;

13 p2p = a l (3 ) ;

14 p3m = a l (4 ) ;

15 p3p = a l (5 ) ;

16 p4m = a l (6 ) ;

17

18 lam = sq r t ( k.ˆ2+sigma�1 i ∗e ps i l o n ) ;

19 e1 = exp(�lam∗L) ; e12 = exp(�2∗ lam∗L) ;
20 e2 = exp(�lam∗ de l t a ) ; e22 = exp(�2∗ lam∗ de l t a ) ;

21 e3 = exp(�2∗ lam ∗(L + de l t a ) ) ;

22

23 D1 = (p1p+lam) . ∗ (p1m+lam)�(p1p�lam ) . ∗ (p1m�lam ) .∗ e3 ;

24 D2 = (p2p+lam) . ∗ (p2m+lam)�(p2p�lam ) . ∗ (p2m�lam ) .∗ e3 ;

25 D3 = (p3p+lam) . ∗ (p3m+lam)�(p3p�lam ) . ∗ (p3m�lam ) .∗ e3 ;

26 D4 = (p4p+lam) . ∗ (p4m+lam)�(p4p�lam ) . ∗ (p4m�lam ) .∗ e3 ;

27

28 a1p = ( ( lam+p2m) . ∗ ( lam+p1p )�(lam�p2m) . ∗ ( lam�p1p ) .∗ e22 ) .∗ e1 . /D2 ;

29 a2p = ( ( lam+p3m) . ∗ ( lam+p2p )�(lam�p3m) . ∗ ( lam�p2p ) .∗ e22 ) .∗ e1 . /D3 ;
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30

31 a3m = (( lam+p2p ) . ∗ ( lam+p3m)�(lam�p2p ) . ∗ ( lam�p3m) .∗ e22 ) .∗ e1 . /D2 ;

32 a4m = (( lam+p3p ) . ∗ ( lam+p4m)�(lam�p3p ) . ∗ ( lam�p4m) .∗ e22 ) .∗ e1 . /D3 ;

33

34 b1p = ( ( lam+p1p ) . ∗ ( lam�p2p ) .∗ e12�(lam�p1p ) . ∗ ( lam+p2p ) ) .∗ e2 . /D2 ;

35 b2m = (( lam+p2m) . ∗ ( lam�p1m) .∗ e12�(lam�p2m) . ∗ ( lam+p1m) ) .∗ e2 . /D1 ;

36 b2p = ( ( lam+p2p ) . ∗ ( lam�p3p ) .∗ e12�(lam�p2p ) . ∗ ( lam+p3p ) ) .∗ e2 . /D3 ;

37 b3m = (( lam+p3m) . ∗ ( lam�p2m) .∗ e12�(lam�p3m) . ∗ ( lam+p2m) ) .∗ e2 . /D2 ;

38 b3p = ( ( lam+p3p ) . ∗ ( lam�p4p ) .∗ e12�(lam�p3p ) . ∗ ( lam+p4p ) ) .∗ e2 . /D4 ;

39 b4m = (( lam+p4m) . ∗ ( lam�p3m) .∗ e12�(lam�p4m) . ∗ ( lam+p3m) ) .∗ e2 . /D3 ;

40

41 f o r l = 1 : l ength (k )

42 T4=[0 b1p ( l ) a1p ( l ) 0 0 0 ;

43 b2m( l ) 0 0 0 0 0 ;

44 0 0 0 b2p ( l ) a2p ( l ) 0 ;

45 0 a3m( l ) b3m( l ) 0 0 0 ;

46 0 0 0 0 0 b3p ( l ) ;

47 0 0 0 a4m( l ) b4m( l ) 0 ] ;

48 rho ( l ) = max( abs ( e i g (T4) ) ) ;

49 end

50

51 semi logx (k , rho , ’� ’ ) ;

52 %plo t (k , abs ( rho ) , ’� ’ ) ;

53 drawnow

54 R = max( rho ) ;

and the test file with the numerical optimisation algorithm

1 c l e a r a l l , c l o s e a l l , c l c

2 g l oba l kmin kmax sigma e ps i l o n L de l t a pa pb rho ;

3

4 e ps i l o n = 1 ;

5 sigma = 1 ;

6 pa = 1 ;

7 pb = 1 ;

8 L = 1 ;

9

10 % One parameter p1p = p2p = p3p = p2m = p3m = p4m = p

11 % h = [1/100 1/1000 1/10000 1/100000 ] ;

12 % p = [2 . 8 396 6 .0657 13 .0412 2 8 . 0 8 3 4 ] ;

13 % log l o g (h , p , ’ rx� ’ , h , h .ˆ(�1/3) , ’ b∗� ’)

14 % R = [0 . 6 202 0 .8022 0 .9029 0 . 9 5 3 7 ] ;

15 % log l o g (h,1�R, ’ rx� ’ ,h , h . ˆ ( 1 /3 ) , ’ b∗� ’)

16

17 % Two parameters p1p = p2p = p3p = p1 , p2m = p3m = p4m = p2

18 % h = [1/100 1/1000 1/10000 1/100000 ] ;
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19 % p1 = [7 . 0 602 40.9958 163.1013 646 . 3896 ]

20 % log l o g (h , p1 , ’ rx� ’ , h , h .ˆ(�3/5) , ’ b∗� ’)

21 % p2 = [1 . 1 809 1 .6560 2 .6452 4 . 1 691 ]

22 % log l o g (h , p2 , ’ rx� ’ , h , h .ˆ(�1/5) , ’ b∗� ’)

23 % R = [0 . 5 604 0 .6599 0 .7725 0 . 8 509 ]

24 % log l o g (h,1�R, ’ rx� ’ ,h , h . ˆ ( 1 /5 ) , ’ b∗� ’)

25

26 % Di f f e r e n t parameters => only 2 and same asymptotes as be f o r e

27 % h = [1/100 1/1000 1/10000 1/100000 ] ;

28 % p1p = [13 . 1269 37.9717 152.9323 651 . 7536 ]

29 % p2m = [1 . 2 705 1 .4208 2 .3266 4 . 1 945 ]

30 % p2p = [10 . 1871 42.9379 152.0873 645 . 0605 ]

31 % p3m = [0 . 7 748 1 .6005 3 .1841 4 . 1 519 ]

32 % p3p = [16 . 5975 68.1923 161.0389 649 . 8928 ]

33 % p4m = [2 . 1 327 2 .4896 2 .4919 4 . 1 828 ]

34

35 % R = [0 . 5 206 0 .6708 0 .7789 0 . 8 510 ]

36

37 kmin = 0 . 0 0 1 ;

38

39 h = 1/100000;

40 de l t a = h ;

41

42 kmax = pi /h ;

43

44 [ p ,R] = fminsearch ( ’ rho4sub ’ , [ 2 . 3 4 6 1 396.3355 1 .6427 414.2898 397.1038 1 . 5 7 4 8 ] )

Convergence factor in the five subdomain case

1 func t i on R = rho5sub ( a l )

2 % RHO eva luate the maximum of the convergence f a c t o r R = rho3sub (p) ;

3

4 g l oba l kmin kmax sigma e ps i l o n L de l t a pa pb rho ;

5

6 N = 1000 ;

7 k = logspace ( log10 ( kmin+0.01) , log10 (kmax) ,N) ;

8 %k=l i n s p a c e (kmin , kmax ,N) ;

9

10 p1m = pa ; p5p = pb ;

11 p1p = a l (1 ) ;

12 p2m = a l (2 ) ;

13 p2p = a l (3 ) ;

14 p3m = a l (4 ) ;

15 p3p = a l (5 ) ;

16 p4m = a l (6 ) ;

17 p4p = a l (7 ) ;
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18 p5m = a l (8 ) ;

19

20 lam = sq r t ( k.ˆ2+sigma�1 i ∗e ps i l o n ) ;

21 e1 = exp(�lam∗L) ; e12 = exp(�2∗ lam∗L) ;
22 e2 = exp(�lam∗ de l t a ) ; e22 = exp(�2∗ lam∗ de l t a ) ;

23 e3 = exp(�2∗ lam ∗(L + de l t a ) ) ;

24

25 D1 = (p1p+lam) . ∗ (p1m+lam)�(p1p�lam ) . ∗ (p1m�lam ) .∗ e3 ;

26 D2 = (p2p+lam) . ∗ (p2m+lam)�(p2p�lam ) . ∗ (p2m�lam ) .∗ e3 ;

27 D3 = (p3p+lam) . ∗ (p3m+lam)�(p3p�lam ) . ∗ (p3m�lam ) .∗ e3 ;

28 D4 = (p4p+lam) . ∗ (p4m+lam)�(p4p�lam ) . ∗ (p4m�lam ) .∗ e3 ;

29 D5 = (p5p+lam) . ∗ (p5m+lam)�(p5p�lam ) . ∗ (p5m�lam ) .∗ e3 ;

30

31 a1p = ( ( lam+p2m) . ∗ ( lam+p1p )�(lam�p2m) . ∗ ( lam�p1p ) .∗ e22 ) .∗ e1 . /D2 ;

32 a2p = ( ( lam+p3m) . ∗ ( lam+p2p )�(lam�p3m) . ∗ ( lam�p2p ) .∗ e22 ) .∗ e1 . /D3 ;

33 a3p = ( ( lam+p4m) . ∗ ( lam+p3p )�(lam�p4m) . ∗ ( lam�p3p ) .∗ e22 ) .∗ e1 . /D4 ;

34

35 a3m = (( lam+p2p ) . ∗ ( lam+p3m)�(lam�p2p ) . ∗ ( lam�p3m) .∗ e22 ) .∗ e1 . /D2 ;

36 a4m = (( lam+p3p ) . ∗ ( lam+p4m)�(lam�p3p ) . ∗ ( lam�p4m) .∗ e22 ) .∗ e1 . /D3 ;

37 a5m = (( lam+p4p ) . ∗ ( lam+p5m)�(lam�p4p ) . ∗ ( lam�p5m) .∗ e22 ) .∗ e1 . /D4 ;

38

39 b1p = ( ( lam+p1p ) . ∗ ( lam�p2p ) .∗ e12�(lam�p1p ) . ∗ ( lam+p2p ) ) .∗ e2 . /D2 ;

40 b2m = (( lam+p2m) . ∗ ( lam�p1m) .∗ e12�(lam�p2m) . ∗ ( lam+p1m) ) .∗ e2 . /D1 ;

41 b2p = ( ( lam+p2p ) . ∗ ( lam�p3p ) .∗ e12�(lam�p2p ) . ∗ ( lam+p3p ) ) .∗ e2 . /D3 ;

42 b3m = (( lam+p3m) . ∗ ( lam�p2m) .∗ e12�(lam�p3m) . ∗ ( lam+p2m) ) .∗ e2 . /D2 ;

43 b3p = ( ( lam+p3p ) . ∗ ( lam�p4p ) .∗ e12�(lam�p3p ) . ∗ ( lam+p4p ) ) .∗ e2 . /D4 ;

44 b4m = (( lam+p4m) . ∗ ( lam�p3m) .∗ e12�(lam�p4m) . ∗ ( lam+p3m) ) .∗ e2 . /D3 ;

45 b4p = ( ( lam+p4p ) . ∗ ( lam�p5p ) .∗ e12�(lam�p4p ) . ∗ ( lam+p5p ) ) .∗ e2 . /D5 ;

46 b5m = (( lam+p5m) . ∗ ( lam�p4m) .∗ e12�(lam�p5m) . ∗ ( lam+p4m) ) .∗ e2 . /D4 ;

47

48 f o r l = 1 : l ength (k )

49 T5 = [0 b1p ( l ) a1p ( l ) 0 0 0 0 0 ;

50 b2m( l ) 0 0 0 0 0 0 0 ;

51 0 0 0 b2p ( l ) a2p ( l ) 0 0 0 ;

52 0 a3m( l ) b3m( l ) 0 0 0 0 0 ;

53 0 0 0 0 0 b3p ( l ) a3p ( l ) 0 ;

54 0 0 0 a4m( l ) b4m( l ) 0 0 0 ;

55 0 0 0 0 0 0 0 b4p ( l ) ;

56 0 0 0 0 0 a5m( l ) b5m( l ) 0 ] ;

57 rho ( l ) = max( abs ( e i g (T5) ) ) ;

58 end

59

60 semi logx (k , rho , ’� ’ ) ;

61 %plo t (k , abs ( rho ) , ’� ’ ) ;

62 drawnow
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63 R = max( rho ) ;

and the test file with the numerical optimisation algorithm

1 c l e a r a l l , c l o s e a l l , c l c

2 g l oba l kmin kmax sigma e ps i l o n L de l t a pa pb rho ;

3

4 e ps i l o n = 1 ;

5 sigma = 1 ;

6 pa = 1 ;

7 pb = 1 ;

8 L = 1 ;

9

10 % One parameter p1p = p2p = p3p = p2m = p3m = p4m = p4p = p5m = p

11 % h = [1/100 1/1000 1/10000 1/100000 ] ;

12 % p = [ ] ;

13 % log l o g (h , p , ’ rx� ’ , h , h .ˆ(�1/3) , ’ b∗� ’)

14 % R = [ ] ;

15 % log l o g (h,1�R, ’ rx� ’ ,h , h . ˆ ( 1 /3 ) , ’ b∗� ’)

16

17 % Two parameters p1p = p2p = p3p = p1 , p2m = p3m = p4m = p2

18 % h = [1/100 1/1000 1/10000 1/100000 ] ;

19 % p1 = [7 . 0 602 40.9958 163.1013 646 . 3896 ]

20 % log l o g (h , p1 , ’ rx� ’ , h , h .ˆ(�3/5) , ’ b∗� ’)

21 % p2 = [1 . 1 809 1 .6560 2 .6452 4 . 1 691 ]

22 % log l o g (h , p2 , ’ rx� ’ , h , h .ˆ(�1/5) , ’ b∗� ’)

23 % R = [0 . 5 604 0 .6599 0 .7725 0 . 8 509 ]

24 % log l o g (h,1�R, ’ rx� ’ ,h , h . ˆ ( 1 /5 ) , ’ b∗� ’)

25

26 % Di f f e r e n t parameters => only 2 and same asymptotes as be f o r e

27 % h = [1/100 1/1000 1/10000 1/100000 ] ;

28 % p1p = [13 . 1269 37.9717 152.9323 651 . 7536 ]

29 % p2m = [1 . 2 705 1 .4208 2 .3266 4 . 1 945 ]

30 % p2p = [10 . 1871 42.9379 152.0873 645 . 0605 ]

31 % p3m = [0 . 7 748 1 .6005 3 .1841 4 . 1 519 ]

32 % p3p = [16 . 5975 68.1923 161.0389 649 . 8928 ]

33 % p4m = [2 . 1 327 2 .4896 2 .4919 4 . 1 828 ]

34

35 % R = [0 . 5 206 0 .6708 0 .7789 0 . 8 510 ]

36

37 kmin = 0 . 0 0 1 ;

38

39 h = 1/100000;

40 de l t a = h ;

41

42 kmax = pi /h ;
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43

44 [ p ,R] = fminsearch ( ’ rho5sub ’ , [ 6 51 . 7536 4 .1945 645.0605 4 .1519 649.8928 4 .1828 650 4 ] )

Convergence factor in the six subdomain case

1 func t i on R = rho6sub ( a l )

2 % RHO eva luate the maximum of the convergence f a c t o r R = rho3sub (p) ;

3

4 g l oba l kmin kmax sigma e ps i l o n L de l t a pa pb rho ;

5

6 N = 1000 ;

7 k = logspace ( log10 ( kmin+0.01) , log10 (kmax) ,N) ;

8 %k=l i n s p a c e (kmin , kmax ,N) ;

9

10 p1m = pa ; p6p = pb ;

11 p1p = a l (1 ) ;

12 p2m = a l (2 ) ;

13 p2p = a l (3 ) ;

14 p3m = a l (4 ) ;

15 p3p = a l (5 ) ;

16 p4m = a l (6 ) ;

17 p4p = a l (7 ) ;

18 p5m = a l (8 ) ;

19 p5p = a l (9 ) ;

20 p6m = a l (10) ;

21

22 lam = sq r t ( k.ˆ2+sigma�1 i ∗e ps i l o n ) ;

23 e1 = exp(�lam∗L) ; e12 = exp(�2∗ lam∗L) ;
24 e2 = exp(�lam∗ de l t a ) ; e22 = exp(�2∗ lam∗ de l t a ) ;

25 e3 = exp(�2∗ lam ∗(L + de l t a ) ) ;

26

27 D1 = (p1p+lam) . ∗ (p1m+lam)�(p1p�lam ) . ∗ (p1m�lam ) .∗ e3 ;

28 D2 = (p2p+lam) . ∗ (p2m+lam)�(p2p�lam ) . ∗ (p2m�lam ) .∗ e3 ;

29 D3 = (p3p+lam) . ∗ (p3m+lam)�(p3p�lam ) . ∗ (p3m�lam ) .∗ e3 ;

30 D4 = (p4p+lam) . ∗ (p4m+lam)�(p4p�lam ) . ∗ (p4m�lam ) .∗ e3 ;

31 D5 = (p5p+lam) . ∗ (p5m+lam)�(p5p�lam ) . ∗ (p5m�lam ) .∗ e3 ;

32 D6 = (p6p+lam) . ∗ (p6m+lam)�(p6p�lam ) . ∗ (p6m�lam ) .∗ e3 ;

33

34 a1p = ( ( lam+p2m) . ∗ ( lam+p1p )�(lam�p2m) . ∗ ( lam�p1p ) .∗ e22 ) .∗ e1 . /D2 ;

35 a2p = ( ( lam+p3m) . ∗ ( lam+p2p )�(lam�p3m) . ∗ ( lam�p2p ) .∗ e22 ) .∗ e1 . /D3 ;

36 a3p = ( ( lam+p4m) . ∗ ( lam+p3p )�(lam�p4m) . ∗ ( lam�p3p ) .∗ e22 ) .∗ e1 . /D4 ;

37 a4p = ( ( lam+p5m) . ∗ ( lam+p4p )�(lam�p5m) . ∗ ( lam�p4p ) .∗ e22 ) .∗ e1 . /D5 ;

38

39 a3m = (( lam+p2p ) . ∗ ( lam+p3m)�(lam�p2p ) . ∗ ( lam�p3m) .∗ e22 ) .∗ e1 . /D2 ;

40 a4m = (( lam+p3p ) . ∗ ( lam+p4m)�(lam�p3p ) . ∗ ( lam�p4m) .∗ e22 ) .∗ e1 . /D3 ;

41 a5m = (( lam+p4p ) . ∗ ( lam+p5m)�(lam�p4p ) . ∗ ( lam�p5m) .∗ e22 ) .∗ e1 . /D4 ;
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42 a6m = (( lam+p5p ) . ∗ ( lam+p6m)�(lam�p5p ) . ∗ ( lam�p6m) .∗ e22 ) .∗ e1 . /D5 ;

43

44 b1p = ( ( lam+p1p ) . ∗ ( lam�p2p ) .∗ e12�(lam�p1p ) . ∗ ( lam+p2p ) ) .∗ e2 . /D2 ;

45 b2m = (( lam+p2m) . ∗ ( lam�p1m) .∗ e12�(lam�p2m) . ∗ ( lam+p1m) ) .∗ e2 . /D1 ;

46 b2p = ( ( lam+p2p ) . ∗ ( lam�p3p ) .∗ e12�(lam�p2p ) . ∗ ( lam+p3p ) ) .∗ e2 . /D3 ;

47 b3m = (( lam+p3m) . ∗ ( lam�p2m) .∗ e12�(lam�p3m) . ∗ ( lam+p2m) ) .∗ e2 . /D2 ;

48 b3p = ( ( lam+p3p ) . ∗ ( lam�p4p ) .∗ e12�(lam�p3p ) . ∗ ( lam+p4p ) ) .∗ e2 . /D4 ;

49 b4m = (( lam+p4m) . ∗ ( lam�p3m) .∗ e12�(lam�p4m) . ∗ ( lam+p3m) ) .∗ e2 . /D3 ;

50 b4p = ( ( lam+p4p ) . ∗ ( lam�p5p ) .∗ e12�(lam�p4p ) . ∗ ( lam+p5p ) ) .∗ e2 . /D5 ;

51 b5m = (( lam+p5m) . ∗ ( lam�p4m) .∗ e12�(lam�p5m) . ∗ ( lam+p4m) ) .∗ e2 . /D4 ;

52

53 b5p = ( ( lam+p5p ) . ∗ ( lam�p6p ) .∗ e12�(lam�p5p ) . ∗ ( lam+p6p ) ) .∗ e2 . /D6 ;

54 b6m = (( lam+p6m) . ∗ ( lam�p5m) .∗ e12�(lam�p6m) . ∗ ( lam+p5m) ) .∗ e2 . /D5 ;

55

56

57 f o r l = 1 : l ength (k )

58 T6 = [0 b1p ( l ) a1p ( l ) 0 0 0 0 0 0 0 ;

59 b2m( l ) 0 0 0 0 0 0 0 0 0 ;

60 0 0 0 b2p ( l ) a2p ( l ) 0 0 0 0 0 ;

61 0 a3m( l ) b3m( l ) 0 0 0 0 0 0 0 ;

62 0 0 0 0 0 b3p ( l ) a3p ( l ) 0 0 0 ;

63 0 0 0 a4m( l ) b4m( l ) 0 0 0 0 0 ;

64 0 0 0 0 0 0 0 b4p ( l ) a4p ( l ) 0 ;

65 0 0 0 0 0 a5m( l ) b5m( l ) 0 0 0 ;

66 0 0 0 0 0 0 0 0 0 b5p ( l ) ;

67 0 0 0 0 0 0 0 a6m( l ) b6m( l ) 0 ] ;

68 rho ( l ) = max( abs ( e i g (T6) ) ) ;

69 end

70

71 semi logx (k , rho , ’� ’ ) ;

72 %plo t (k , abs ( rho ) , ’� ’ ) ;

73 drawnow

74 R = max( rho ) ;

and the test file with the numerical optimisation algorithm

1 c l e a r a l l , c l o s e a l l , c l c

2 g l oba l kmin kmax sigma e ps i l o n L de l t a pa pb rho ;

3

4 e ps i l o n = 1 ;

5 sigma = 1 ;

6 pa = 1 ;

7 pb = 1 ;

8 L = 1 ;

9

10 % One parameter p1p = p2p = p3p = p2m = p3m = p4m = p4p = p5m = p
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11 % h = [1/100 1/1000 1/10000 1/100000 ] ;

12 % p = [ ] ;

13 % log l o g (h , p , ’ rx� ’ , h , h .ˆ(�1/3) , ’ b∗� ’)

14 % R = [ ] ;

15 % log l o g (h,1�R, ’ rx� ’ ,h , h . ˆ ( 1 /3 ) , ’ b∗� ’)

16

17 % Two parameters p1p = p2p = p3p = p1 , p2m = p3m = p4m = p2

18 % h = [1/100 1/1000 1/10000 1/100000 ] ;

19 % p1 = [7 . 0 602 40.9958 163.1013 646 . 3896 ]

20 % log l o g (h , p1 , ’ rx� ’ , h , h .ˆ(�3/5) , ’ b∗� ’)

21 % p2 = [1 . 1 809 1 .6560 2 .6452 4 . 1 691 ]

22 % log l o g (h , p2 , ’ rx� ’ , h , h .ˆ(�1/5) , ’ b∗� ’)

23 % R = [0 . 5 604 0 .6599 0 .7725 0 . 8 509 ]

24 % log l o g (h,1�R, ’ rx� ’ ,h , h . ˆ ( 1 /5 ) , ’ b∗� ’)

25

26 % Di f f e r e n t parameters => only 2 and same asymptotes as be f o r e

27 % h = [1/100 1/1000 1/10000 1/100000 ] ;

28 % p1p = [13 . 1269 37.9717 152.9323 651 . 7536 ]

29 % p2m = [1 . 2 705 1 .4208 2 .3266 4 . 1 945 ]

30 % p2p = [10 . 1871 42.9379 152.0873 645 . 0605 ]

31 % p3m = [0 . 7 748 1 .6005 3 .1841 4 . 1 519 ]

32 % p3p = [16 . 5975 68.1923 161.0389 649 . 8928 ]

33 % p4m = [2 . 1 327 2 .4896 2 .4919 4 . 1 828 ]

34

35 % R = [0 . 5 206 0 .6708 0 .7789 0 . 8 510 ]

36

37 kmin = 0 . 0 0 1 ;

38

39 h = 1/100000;

40 de l t a = h ;

41

42 kmax = pi /h ;

43

44 [ p ,R] = fminsearch ( ’ rho6sub ’ , [ 6 00 4 600 4 600 4 600 4 600 4 ] )

Convergence factor in the N subdomain case using the limiting spectrum

1 func t i on R = rhoNsub ( a l )

2 % RHO eva luate the maximum of the convergence f a c t o r R = rhoNsub (p) ;

3

4 g l oba l kmin kmax sigma e ps i l o n L de l t a ;

5

6 N = 1000 ;

7 k = logspace ( log10 ( kmin+0.01) , log10 (kmax) ,N) ;

8 %k=l i n s p a c e (kmin , kmax ,N) ;

9
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10 lambda = sq r t ( k.ˆ2+sigma�1 i ∗e ps i l o n ) ;

11 p = a l (1 ) ;

12

13 e1 = exp(�lambda∗L) ;
14 e2 = exp(�2∗ lambda ∗(L + de l t a ) ) ;

15

16 D = ( lambda+p) .ˆ2�( lambda�p) . ˆ 2 . ∗ e2 ;

17 a = ( ( lambda+p) .ˆ2� ( lambda�p) . ˆ 2 . ∗ exp(�2∗ de l t a ∗ lambda ) ) .∗ e1 . /D;

18 b = ( lambda.ˆ2�pˆ2) . ∗ ( e1 .ˆ2�1) .∗ exp(�lambda∗ de l t a ) . /D;

19 rho = max( abs ( a�b) , abs ( a+b) ) ;
20

21 semi logx (k , abs ( rho ) , ’� ’ ) ;

22 %plo t (k , abs ( rho ) , ’� ’ ) ;

23 drawnow

24 R = max( abs ( rho ) ) ;



Appendix B

FreeFem++ implementations

In this section we discuss the FreeFem++ implementation of the methods from Chapter 3 and show

the main parts of codes we used. All the details about the choice the solver, discrete spaces, boundary

conditions, are described in the exhaustive comments from the codes. We use the build-in polynomial

finite element spaces.

The main program needs the routines (of decomp.idp and createPartition.idp) to create a decom-

position of the domain and to build the restriction and partition of unity matrices. We do not in-

clude here the files decomp.idp and createpartitionVec.idp as they can be downloaded here http:

//www.victoritadolean.com/p/book.html.

These methods are used as solvers and preconditioners.

B.1 Data files and definitions of macros

The data file in both cases is dataMagnetotelluric.edp

1 load ”metis ”

2 load ”medit”

3

4 //Boundary cond i t i on s

5 i n t D i r i c h l e t = 1 ;

6 i n t Robin = 2 ;

7 i n t order = 2 ;

8

9 s t r i n g method = ”ORAS” ; // p r e c ond i t i on e r RAS or ORAS

10 i n t nn = 2 , mm = 1 ; // number o f the domains in each d i r e c t i o n

118
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11 i n t npart = nn∗mm; // t o t a l number o f domains

12 bool withmetis = 0 ; // = 1 (Metis decomp) =0 (un i f orm decomp)

13 r e a l s i z e o v r = 2 ; // s i z e o f the over lap

14 i n t n loc = 400 ; // l o c a l no o f dof per domain in one d i r e c t i o n

15 mesh Th ;

16 r e a l a l l ong ;

17

18 r e a l L = 1 ;

19 func f = 1 ;

20 r e a l h = 1 . / ( nloc �1) ;

21 r e a l d e l t a = s i z e o v r ∗h ; // s i z e o f the over lap

22 r e a l sigma = 1 ;

23 r e a l e ps i l o n = 1 ;

24 r e a l kmin = pi ;

25 //kmin = 0 ;

26 complex s = sq r t ( sigma +kminˆ2�1 i ∗e ps i l o n ) ;

27 complex C;

28 complex p , q ;

29

30 i f ( nn == 2) {
31 C = r e a l ( s ∗(1+exp (2∗ s ∗L) ) /( exp (2∗ s ∗L)�1) ) ;

32 }
33 e l s e i f (nn ==3){
34 C = r e a l ( s ∗(1+exp (2∗ s ∗L)�exp ( s ∗L) ) /( exp (2∗ s ∗L)�1) ) ;

35 }
36 e l s e {
37 C = r e a l ( s ∗(1+exp (2∗ s ∗L)�2∗cos ( p i /(nn+1) ) ∗exp ( s ∗L) ) /( exp (2∗ s ∗L)�1) ) ;

38 }
39

40 i f ( order == 0)

41 {
42 p = 2 .ˆ ( �1 . /3 . ) ∗Cˆ ( 2 . / 3 . ) ∗ de l t a ˆ( �1 ./3 . ) ;

43 q = 0 ;

44 }
45 e l s e

46 {
47 p = 2.ˆ( �3/5 . ) ∗Cˆ ( 4 . / 5 . ) ∗ de l t a ˆ( �1 ./5 . ) ;

48 q = 2.ˆ(�1/5 . ) ∗Cˆ( �2 ./5 . ) ∗ de l t a ˆ ( 3 . / 5 . ) ;

49 }
50

51 complex pbc = 10 . 0 ;

52 cout << ”p= ” << p << end l ;

53

54 i n t [ i n t ] chlab = [ 1 , D i r i c h l e t ,2 , D i r i c h l e t ,3 , D i r i c h l e t ,4 , D i r i c h l e t ] ; //Robin

cond i t i on s f o r l a b e l = 2
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55 macro Grad (u) [ dx (u) , dy (u) ] // EOM

56

57 // I t e r a t i v e s o l v e r parameters

58 r e a l t o l = 1e�12; // t o l e r an c e f o r the i t e r a t i v e method

59 i n t maxit = 400 ; // maximum number o f i t e r a t i o n s

The two sided equivalent of the data file is dataMagnetotelluric-2sd.edp

1 load ”metis ”

2 load ”medit”

3

4 //Boundary cond i t i on s

5 i n t D i r i c h l e t = 1 ;

6 i n t Robin = 2 ;

7 i n t order = 2 ;

8

9 s t r i n g method = ”ORAS” ; // p r e c ond i t i on e r RAS or ORAS

10 i n t nn=2, mm=1; // number o f the domains in each d i r e c t i o n

11 i n t npart = nn∗mm; // t o t a l number o f domains

12 bool withmetis = 0 ; // =1 (Metis decomp) =0 (un i f orm decomp)

13 r e a l s i z e o v r = 2 ; // s i z e o f the over lap

14 i n t n loc = 50 ; // l o c a l no o f dof per domain in one d i r e c t i o n

15 mesh Th ;

16 r e a l a l l ong ;

17

18 r e a l L = 1 ;

19 func f = 1 ;

20 r e a l h = 1 . / ( nloc �1) ;

21 r e a l d e l t a = s i z e o v r ∗h ; // s i z e o f the over lap

22 r e a l sigma = 1 ;

23 r e a l e ps i l o n = 1 ;

24 r e a l kmin = pi ;

25 kmin = 4 ;

26 complex s = sq r t ( sigma +kminˆ2�1 i ∗e ps i l o n ) ;

27 complex C;

28 complex [ i n t ] p (2 ) , q (2 ) ;

29

30 i f ( nn == 2) {
31 C = r e a l ( s ∗(1+exp (2∗ s ∗L) ) /( exp (2∗ s ∗L)�1) ) ;

32 }
33 e l s e i f (nn ==3){
34 C = r e a l ( s ∗(1+exp (2∗ s ∗L)�exp ( s ∗L) ) /( exp (2∗ s ∗L)�1) ) ;

35 }
36 e l s e {
37 C = r e a l ( s ∗(1+exp (2∗ s ∗L)�2∗cos ( p i /(nn+1) ) ∗exp ( s ∗L) ) /( exp (2∗ s ∗L)�1) ) ;

38 }
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39

40 i f ( order == 0) {
41 p [ 0 ] = 2 .ˆ ( �2 . /5 . ) ∗Cˆ ( 2 . / 5 . ) ∗ de l t a ˆ( �3 ./5 . ) ;

42 p [ 1 ] = 2 .ˆ ( �4 . /5 . ) ∗Cˆ ( 4 . / 5 . ) ∗ de l t a ˆ( �1 ./5 . ) ;

43 // f i l e p << ”p1=” << r e a l (p [ 0 ] ) << end l ;

44 // f i l e p << ”p2=” << r e a l (p [ 1 ] ) << end l ;

45 q = 0 . ;

46 }
47 e l s e {
48 p [ 0 ] = 2 .ˆ ( �8 . /9 . ) ∗Cˆ ( 8 . / 9 . ) ∗ de l t a ˆ( �1 ./9 . ) ;

49 p [ 1 ] = 2 .ˆ ( �2 . /3 . ) ∗Cˆ ( 2 . / 3 . ) ∗ de l t a ˆ( �1 ./3 . ) ;

50 q [ 0 ] = 2 . ˆ ( 2 . / 9 . ) ∗Cˆ( �2 ./9 . ) ∗ de l t a ˆ ( 7 . / 9 . ) ;

51 q [ 1 ] = 2 . ˆ ( 4 . / 9 . ) ∗Cˆ( �4 ./9 . ) ∗ de l t a ˆ ( 5 . / 9 . ) ;

52 }
53

54 complex pbc = 10 . 0 ;

55 cout << ”p= ” << p << end l ;

56

57 i n t [ i n t ] chlab =[1 , D i r i c h l e t ,2 , D i r i c h l e t ,3 , D i r i c h l e t ,4 , D i r i c h l e t ] ; //Robin cond i t i on s

f o r l a b e l = 2

58 macro Grad (u) [ dx (u) , dy (u) ] // EOM

59

60 // I t e r a t i v e s o l v e r parameters

61 r e a l t o l = 1e�12; // t o l e r an c e f o r the i t e r a t i v e method

62 i n t maxit = 30 ; // maximum number o f i t e r a t i o n s

We also need to define the domain decomposition data structures and the global variational formulation

as shown in defMagnetotelluric.edp

1 // De f i n i t i o n i n g r e d i e n t s � numerica l s o l u t i o n o f magne to t e l l u r i c equat ion

2 // Mesh o f a r e c t angu l a r domain

3

4 a l l ong = r e a l (nn ) / r e a l (mm) ; // aspect r a t i o o f the g l oba l domain

5 Th = square (nn∗nloc ,mm∗nloc , [ x∗ a l long , y ] ) ;

6

7 f e spac e Ph(Th, P0) ;

8 f e spac e Vh(Th, P1) ; // s c a l a r fem space

9 f e spac e Uh(Th, P1) ; // s c a l a r fem space

10 Ph part ; // p i e c ew i s e constant func t i on

11 i n t [ i n t ] l p a r t (Ph . ndof ) ; // g i v i ng the decompos it ion

12

13 // Domain decomposit ion data s t r u c t u r e s

14 mesh [ i n t ] aTh( npart ) , aTh0( npart ) ; // sequence o f ovr . mesh es

15 matrix<complex>[ i n t ] Rih ( npart ) ; // l o c a l r e s t r i c t i o n ope ra to r s

16 matrix<complex>[ i n t ] Dih ( npart ) ; // p a r t i t i o n o f unity ope ra to r s
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17 matrix [ i n t ] Dih r e a l ( npart ) , Rih r e a l ( npart ) ,Dih r e a l 0( npart ) , Rih r e a l 0( npart ) ,Dih r e a l r ( npart )

;

18 i n t [ i n t ] Ndeg ( npart ) ,Ndeg0 ( npart ) ; // number o f dof f o r each mesh

19 r e a l [ i n t ] AreaThi ( npart ) , AreaThi0 ( npart ) ; // area o f each subdomain

20 matrix<complex>[ i n t ] aA( npart ) ,aR( npart ) ; // l o c a l D i r i c h l e t /Robin matr i ce s

21

22 Th=change (Th, r e f e=chlab ) ;

23 // g l oba l v a r i a t i o n a l f o r mulation

24 va r f vag loba l (u , v ) =

25 i n t 2d (Th) (Grad (u) ’ ∗Grad (v )+(sigma�1 i ∗e ps i l o n ) ∗u∗v )
26 + in t 1d (Th, Robin ) ( pbc∗u∗v )
27 + in t 2d (Th) ( f ∗v )
28 + on ( D i r i c h l e t , u=0) ; // EOM

29

30 matrix<complex> Aglobal ;

31 Vh<complex>rh sg l oba l , uglob ;

B.2 RAS/ORAS

The main script file for the iterative versions of RAS and ORAS algorithms for the one-sided interface

conditions is Solver-Magnetotelluric.edp

1 /∗# debutPar t i t i on #∗/
2 i n c lude ” . / dataMagneto te l lu r i c . edp”

3 i n c lude ” . / de fMagne to t e l l u r i c . edp”

4 i n c lude ” . / decomp . idp ”

5 i n c lude ” . / c r e a t ePa r t i t i o n . idp ”

6 SubdomainsPart it ionUnity (Th, part [ ] , s i z eov r , aTh , Rih r e a l ,Dih r e a l ,Ndeg , AreaThi ) ;

7

8 //Build a new pa r t i t i o n o f unity

9 SubdomainsPart it ionUnity (Th, part [ ] , 0 , aTh0 , Rih r e a l 0 ,Dih r e a l 0 ,Ndeg0 , AreaThi0 ) ;

10 f o r ( i n t i =0; i < npart ; i++) {
11 mesh Thi = aTh [ i ] ;

12 mesh Thi0 = aTh0 [ i ] ;

13 matrix Maux1 , Maux2 , Maux3 ;

14 Maux1 = Rih r e a l 0 [ i ]∗Rih r e a l [ i ] ’ ;

15 Maux2 = Dih r e a l 0 [ i ]∗Maux1 ;

16 Maux3 = Rih r e a l 0 [ i ] ’ ∗Maux2 ;

17 Dih r e a l r [ i ] = Rih r e a l [ i ]∗Maux3 ;

18 // p l o t (Thi0 , wait=1) ;

19 // p l o t (Thi , wait=1) ;

20 }
21

22
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23 f o r ( i n t i =0; i<npart ; i++) {
24 Rih [ i ] = Rih r e a l [ i ] ;

25 Dih [ i ] = Dih r e a l r [ i ] ;

26 //Dih [ i ] = Dih r e a l [ i ] ;

27 // t e s t the p a r t i t i o n o f unity

28 /∗ Vh<complex> ux , vx ;

29 ux [ ] = 1 . ;

30 matrix Maux1 , Maux2 ;

31 Maux1 = Dih r e a l r [ i ]∗Rih r e a l [ i ] ;

32 mesh Thi = aTh [ i ] ;

33 f e spac e Vhi (Thi , P1) ;

34 Vhi<complex> uxi ;

35 uxi [ ] = Maux1∗ux [ ] ;

36 p lo t ( uxi , va lue=1, f i l l =1,dim=3,wait=1) ; ∗/
37 //Maux2 = Rih r e a l [ i ] ’∗Maux1 ;

38 //vx [ ] = Maux2∗ux [ ] ;

39 // p l o t ( vx , va lue=1, f i l l =1,dim=3,wait=1) ;

40 }
41

42 /∗# end Pa r t i t i o n #∗/
43 /∗# debutGlobalData #∗/
44 Aglobal = vag loba l (Vh,Vh, s o l v e r = UMFPACK) ; // g l oba l matrix

45 r h s g l oba l [ ] = vag loba l (0 ,Vh) ; // g l oba l rhs

46 uglob [ ] = Aglobalˆ�1∗ r h s g l oba l [ ] ;
47 r e a l ug l2 = uglob [ ] . l 2 ;

48 // Vh r e a l uglob = r e a l ( uglob ) ;

49 //medit (” So lu t i on ” ,Th, r e a l uglob ) ;

50 /∗# finGlobalData #∗/
51

52 /∗# debutLocalData #∗/
53 f o r ( i n t i = 0 ; i<npart;++ i ) {
54 mesh Thi = aTh [ i ] ;

55 f e spac e Vhi (Thi , P1) ;

56 cout << ” Domain : ” << i << ”/” << npart << end l ;

57 i f (method == ”ORAS” ) {
58 va r f v a l o c a l (u , v ) =

59 i n t 2d (Thi ) (Grad (u) ’ ∗Grad (v )+(sigma�1 i ∗e ps i l o n ) ∗u∗v )
60 + in t 1d (Thi , Robin ) ( pbc∗u∗v )
61 + in t 1d (Thi , 1 0 ) (p∗u∗v )
62 + in t 1d (Thi , 1 0 ) ( q∗dy (u) ∗dy (v ) )
63 + on ( D i r i c h l e t , u=0) ;

64 aR [ i ] = va l o c a l (Vhi , Vhi , s o l v e r = UMFPACK) ;

65 }
66 i f (method == ”RAS”) {
67 matrix<complex> temp = Aglobal ∗Rih [ i ] ’ ;
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68 aR [ i ] = Rih [ i ]∗ temp ;

69 s e t (aR [ i ] , s o l v e r = UMFPACK) ;

70 }
71 }
72 /∗# finLoca lData #∗/
73 /∗# debutSchwarzIter #∗/
74 ofstream f i l e i (method+” ovr ”+s i z e o v r+” s i g ”+sigma+” ep ”+eps i l o n+” n”+nloc+” .m” ) ;

75 Vh<complex> un = 0 ; // i n i t i a l guess

76 f o r ( i n t i = 0 ; i<Vh. ndof;++ i )

77 {
78 un [ ] [ i ] = rand r e a l 1 ( )+1 i ∗ rand r e a l 1 ( ) ;

79 }
80 Vh in t ern ;

81 i n t ern = (x>0) && (x<a l l ong ) && (y>0) && (y<1) ;

82 un [ ] . r e = un [ ] . r e .∗ i n t ern [ ] ;

83 Vh<complex> rn = rh sg l oba l ;

84 Vh<complex> er , dr ;

85 f o r ( i n t i t e r = 0 ; i t e r<maxit;++ i t e r )

86 {
87 r e a l e r r = 0 , r e s ;

88 dr = 0 ;

89 f o r ( i n t i = 0 ; i<npart;++ i )

90 {
91 complex [ i n t ] b i = Rih [ i ]∗ rn [ ] ; // r e s t r i c t i o n to the l o c a l domain

92 complex [ i n t ] u i = aR [ i ] ˆ�1 ∗ bi ; // l o c a l s o l v e

93 bi = Dih [ i ]∗ ui ;

94 dr [ ] += Rih [ i ] ’ ∗ bi ;
95 }
96 un [ ] += dr [ ] ; // bu i ld new i t e r a t e

97 rn [ ] = Aglobal ∗un [ ] ; // computes g l oba l r e s i d u a l

98 rn [ ] = rn [ ] � r h s g l oba l [ ] ;

99 rn [ ] ∗= �1;

100 er [ ] = un []� uglob [ ] ;

101 // cout << ”Error = ”<< er [ ] [ 2 5 ] << end l ;

102 e r r = er [ ] . l 2 / ugl2 ;

103 r e s = rn [ ] . l 2 / ugl2 ;

104 cout << ” I t : ”<< i t e r << ” Res idua l = ” << r e s << ” Re la t i v e L2 Error = ”<< e r r

<< end l ;

105 Vh [ abser ] = [ abs ( er ) ] ;

106 p lo t ( abser , va lue=1,dim=3, f i l l =1,wait=0,cmm=”e r r o r ”) ;

107 // p l o t ( abser , va lue=1,dim=3, f i l l =1,cmm=”e r r o r ”) ;

108 i n t j = i t e r +1;

109 // Store the e r r o r and the r e s i d u a l in Matlab/ Sc i l ab /Octave f o rm

110 f i l e i << method+”(”+ j+”)=” << e r r << ” ;” << end l ;

111 i f ( e r r < t o l ) break ;
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112 }
113 /∗medit (” Error ” ,Th, abs ( er ) ) ;

114 medit (” Absolute va lue o f the s o l u t i o n ” ,Th, abs (un) ) ;∗/

and its two-sided equivalent

1 // Implementation o f the i t e r a t i v e ve r s i on

2 // o f the two�s ided i n t e r f a c e t ransmi s s i on cond i t i on s

3

4 i n c lude ” . / dataMagnetote l lu r i c�2sd . edp”

5 i n c lude ” . / de fMagne to t e l l u r i c . edp”

6 i n c lude ” . / decomp . idp ”

7 i n c lude ” . / c r e a t ePa r t i t i o n . idp ”

8 SubdomainsPart it ionUnity (Th, part [ ] , s i z eov r , aTh , Rih r e a l ,Dih r e a l ,Ndeg , AreaThi ) ;

9 // p l o t ( part , wait=1, f i l l =1,ps=”Pa r t i t i o n ”) ;

10

11 //Build a new pa r t i t i o n o f unity

12 SubdomainsPart it ionUnity (Th, part [ ] , 1 , aTh0 , Rih r e a l 0 ,Dih r e a l 0 ,Ndeg0 , AreaThi0 ) ;

13 f o r ( i n t i =0; i < npart ; i++) {
14 matrix Maux1 , Maux2 , Maux3 ;

15 Maux1 = Rih r e a l 0 [ i ]∗Rih r e a l [ i ] ’ ;

16 Maux2 = Dih r e a l 0 [ i ]∗Maux1 ;

17 Maux3 = Rih r e a l 0 [ i ] ’ ∗Maux2 ;

18 Dih r e a l r [ i ] = Rih r e a l [ i ]∗Maux3 ;

19 }
20

21 p lo t ( part , wait=1, f i l l =1,ps=” Pa r t i t i o n ” ) ;

22

23 f o r ( i n t i =0; i<npart ; i++) {
24 Rih [ i ] = Rih r e a l [ i ] ;

25 //Dih [ i ] = Dih r e a l [ i ] ;

26 Dih [ i ] = Dih r e a l r [ i ] ;

27 }
28

29 /∗# end Pa r t i t i o n #∗/
30 /∗# debutGlobalData #∗/
31 Aglobal = vag loba l (Vh,Vh, s o l v e r = UMFPACK) ; // g l oba l matrix

32 r h s g l oba l [ ] = vag loba l (0 ,Vh) ; // g l oba l rhs

33 uglob [ ] = Aglobalˆ�1∗ r h s g l oba l [ ] ;
34 r e a l ug l2 = uglob [ ] . l 2 ;

35 /∗# finGlobalData #∗/
36

37 /∗# debutLocalData #∗/
38

39 complex [ i n t ] i n i t (Vh . ndof ) ;

40 f o r ( i n t i = 0 ; i<Vh. ndof;++ i ) {
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41 i n i t [ i ] = rand r e a l 1 ( )+1 i ∗ rand r e a l 1 ( ) ;

42 }
43

44 f o r ( i n t i = 0 ; i<npart;++ i ) {
45 mesh Thi = aTh [ i ] ;

46 f e spac e Vhi (Thi , P1) ;

47 i n t i 0 = fmod ( i , 2 ) ;

48 i f (method == ”ORAS” ) {
49 va r f v a l o c a l (u , v ) =

50 i n t 2d (Thi ) (Grad (u) ’ ∗Grad (v )+(sigma�1 i ∗e ps i l o n ) ∗u∗v )
51 + in t 1d (Thi , Robin ) ( pbc∗u∗v )
52 + in t 1d (Thi , 1 0 ) (p [ i 0 ]∗u∗v )
53 + in t 1d (Thi , 1 0 ) ( q [ i 0 ]∗ dy (u) ∗dy (v ) )
54 + on ( D i r i c h l e t , u=0) ;

55 aR [ i ] = va l o c a l (Vhi , Vhi , s o l v e r = UMFPACK) ;

56 }
57 i f (method == ”RAS”) {
58 matrix<complex> temp = Aglobal ∗Rih [ i ] ’ ;

59 aR [ i ] = Rih [ i ]∗ temp ;

60 s e t (aR [ i ] , s o l v e r = UMFPACK) ;

61 }
62 }
63 /∗# finLoca lData #∗/
64 /∗# debutSchwarzIter #∗/
65 ofstream f i l e i (method+” ovr ”+s i z e o v r+” s i g ”+sigma+” ep ”+eps i l o n+” n”+nloc+” 2sd .m” ) ;

66 Vh<complex> un = 0 ; // i n i t i a l guess

67 un [ ] = i n i t ;

68 Vh<complex> rn = rh sg l oba l ;

69 Vh<complex> er , dr ;

70 i n t n i t e r ;

71 r e a l e r r = 0 , r e s ;

72 f o r ( i n t i t e r = 0 ; i t e r<maxit;++ i t e r ) {
73 dr = 0 ;

74 f o r ( i n t i = 0 ; i<npart;++ i ) {
75 complex [ i n t ] b i = Rih [ i ]∗ rn [ ] ; // r e s t r i c t i o n to the l o c a l domain

76 complex [ i n t ] u i = aR [ i ] ˆ�1 ∗ bi ; // l o c a l s o l v e

77 bi = Dih [ i ]∗ ui ;

78 dr [ ] += Rih [ i ] ’ ∗ bi ;
79 }
80 un [ ] += dr [ ] ; // bu i ld new i t e r a t e

81 rn [ ] = Aglobal ∗un [ ] ; // computes g l oba l r e s i d u a l

82 rn [ ] = rn [ ] � r h s g l oba l [ ] ;

83 rn [ ] ∗= �1;

84 er [ ] = un []� uglob [ ] ;

85 // cout << ”Error = ”<< er [ ] [ 2 5 ] << end l ;
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86 e r r = er [ ] . l 2 / ugl2 ;

87 r e s = rn [ ] . l 2 / ugl2 ;

88 cout << ” I t : ”<< i t e r << ” Res idua l = ” << r e s << ” Re la t i v e L2 Error = ”<< e r r

<< end l ;

89 Vh [ abser ] = [ abs ( er ) ] ;

90 p lo t ( abser , va lue=1,dim=3, f i l l =1,wait=0,cmm=”e r r o r ”) ;

91 // p l o t ( abser , va lue=1,dim=3, f i l l =1,cmm=”e r r o r ”) ;

92 n i t e r = i t e r +1;

93 // Store the e r r o r and the r e s i d u a l in Matlab/ Sc i l ab /Octave f o rm

94 f i l e i << method+”(”+n i t e r +”)=” << e r r << ” ;” << end l ;

95 i f ( e r r < t o l ) break ;

96 }
97 /∗# f inSchwarz I t e r #∗/

and of the preconditioned version is Precond-GMRES-Magnetotelluric.edp

1 /∗# debutPar t i t i on #∗/
2 i n c lude ” . / dataMagneto te l lu r i c . edp”

3 i n c lude ” . / de fMagne to t e l l u r i c . edp”

4 i n c lude ” . / decomp . idp ”

5 i n c lude ” . / c r e a t ePa r t i t i o n . idp ”

6 SubdomainsPart it ionUnity (Th, part [ ] , s i z eov r , aTh , Rih r e a l ,Dih r e a l ,Ndeg , AreaThi ) ;

7

8 //Build a new pa r t i t i o n o f unity

9 SubdomainsPart it ionUnity (Th, part [ ] , 1 , aTh0 , Rih r e a l 0 ,Dih r e a l 0 ,Ndeg0 , AreaThi0 ) ;

10 f o r ( i n t i =0; i < npart ; i++) {
11 matrix Maux1 , Maux2 , Maux3 ;

12 Maux1 = Rih r e a l 0 [ i ]∗Rih r e a l [ i ] ’ ;

13 Maux2 = Dih r e a l 0 [ i ]∗Maux1 ;

14 Maux3 = Rih r e a l 0 [ i ] ’ ∗Maux2 ;

15 Dih r e a l r [ i ] = Rih r e a l [ i ]∗Maux3 ;

16 }
17

18 // p l o t ( part , wait=1, f i l l =1,ps=”Pa r t i t i o n ”) ;

19

20 f o r ( i n t i =0; i<npart ; i++) {
21 Rih [ i ] = Rih r e a l [ i ] ;

22 Dih [ i ] = Dih r e a l r [ i ] ;

23 //Dih [ i ] = Dih r e a l [ i ] ;

24 // t e s t the p a r t i t i o n o f unity

25 /∗ Vh<complex> ux , vx ;

26 ux [ ] = 1 . ;

27 matrix Maux1 , Maux2 ;

28 Maux1 = Dih r e a l r [ i ]∗Rih r e a l [ i ] ;

29 mesh Thi = aTh [ i ] ;

30 f e spac e Vhi (Thi , P1) ;
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31 Vhi<complex> uxi ;

32 uxi [ ] = Maux1∗ux [ ] ;

33 p lo t ( uxi , va lue=1, f i l l =1,dim=3,wait=1) ; ∗/
34 //Maux2 = Rih r e a l [ i ] ’∗Maux1 ;

35 //vx [ ] = Maux2∗ux [ ] ;

36 // p l o t ( vx , va lue=1, f i l l =1,dim=3,wait=1) ;

37 }
38

39 /∗# end Pa r t i t i o n #∗/
40 /∗# debutGlobalData #∗/
41 Aglobal = vag loba l (Vh,Vh, s o l v e r = UMFPACK) ; // g l oba l matrix

42 r h s g l oba l [ ] = vag loba l (0 ,Vh) ; // g l oba l rhs

43 uglob [ ] = Aglobalˆ�1∗ r h s g l oba l [ ] ;
44 r e a l ug l2 = uglob [ ] . l 2 ;

45 // Vh r e a l uglob = r e a l ( uglob ) ;

46 //medit (” So lu t i on ” ,Th, r e a l uglob ) ;

47 /∗# finGlobalData #∗/
48

49 /∗# debutLocalData #∗/
50 f o r ( i n t i = 0 ; i<npart;++ i ) {
51 mesh Thi = aTh [ i ] ;

52 f e spac e Vhi (Thi , P1) ;

53 cout << ” Domain : ” << i << ”/” << npart << end l ;

54 i f (method == ”ORAS” ) {
55 va r f v a l o c a l (u , v ) =

56 i n t 2d (Thi ) (Grad (u) ’ ∗Grad (v )+(sigma�1 i ∗e ps i l o n ) ∗u∗v )
57 + in t 1d (Thi , Robin ) ( pbc∗u∗v )
58 + in t 1d (Thi , 1 0 ) (p∗u∗v )
59 + in t 1d (Thi , 1 0 ) ( q∗dy (u) ∗dy (v ) )
60 + on ( D i r i c h l e t , u=0) ;

61 aR [ i ] = va l o c a l (Vhi , Vhi , s o l v e r = UMFPACK) ;

62 }
63 i f (method == ”RAS”) {
64 matrix<complex> temp = Aglobal ∗Rih [ i ] ’ ;

65 aR [ i ] = Rih [ i ]∗ temp ;

66 s e t (aR [ i ] , s o l v e r = UMFPACK) ;

67 }
68 }
69 /∗# finLoca lData #∗/
70

71 ofstream f i l e i (method+” ovr ”+s i z e o v r+” s i g ”+sigma+” ep ”+eps i l o n+” n”+nloc+” .m” ) ;

72

73 i n c lude ”MTGMRES. idp ”

74 Vh<complex> un ; // i n i t i a l guess

75 f o r ( i n t i = 0 ; i<Vh. ndof;++ i )
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76 {
77 un [ ] [ i ] = rand r e a l 1 ( )+1 i ∗ rand r e a l 1 ( ) ;

78 }
79 Vh in t ern ;

80 i n t ern = (x>0) && (x<a l l ong ) && (y>0) && (y<1) ;

81 un [ ] . r e = un [ ] . r e .∗ i n t ern [ ] ;

82 un [ ] . im = un [ ] . im .∗ i n t ern [ ] ;

83

84 Vh <complex> so l , e r ;

85 s o l [ ] = GMRES(un [ ] , to l , maxit ) ;

86 er [ ] = un []� uglob [ ] ;

The details of the implementation of these preconditioners as well as the complex version of the Krylov

solver used here (GMRES with a left preconditioning) are shown in MTGMRES.idp

1

2 // Precond i t ioned GMRES algor i thm Applied to the system

3 // Mˆ{�1}Aglobal x = Mˆ{�1}b
4 // Here Aglobal denotes the g l oba l matrix

5 // Mˆ{�1} i s the RAS pr e cond i t i on e r based on domain decompos it ion

6 // In order to use the GMRES rout in e d e f i n e f i r s t the matrix�vec to r product

7 /∗# debutGlobalMatvec #∗/
8 func complex [ i n t ] A( complex [ i n t ] &vec )

9 {
10 // Matrix vec to r product with the g l oba l matrix

11 Vh<complex> Ax;

12 Ax[ ]= Aglobal ∗vec ;
13 re turn Ax [ ] ;

14 }
15 /∗# finGlobalMatvec #∗/
16 /∗# debutRASPrecond #∗/
17 // and the app l i c a t i o n o f the p r e c ond i t i on e r

18 func complex [ i n t ] PREC( complex [ i n t ] &l )

19 {
20 // Appl i ca t i on o f the p r e c ond i t i on e r

21 // Mˆ{�1}∗y = \sum RiˆT∗Di∗Aiˆ{�1}∗Ri∗y
22 // Ri r e s t r i c t i o n operators , Ai l o c a l matr i ce s

23 Vh<complex> s = 0 ;

24 f o r ( i n t i =0; i<npart ; ++i ) {
25 complex [ i n t ] b i = Rih [ i ]∗ l ; // r e s t r i c t s rhs

26 complex [ i n t ] u i = aR [ i ] ˆ�1 ∗ bi ; // l o c a l s o l v e s

27 bi = Dih [ i ]∗ ui ; // p a r t i t i o n o f unity

28 s [ ] += Rih [ i ] ’ ∗ bi ; // pro longat i on

29 }
30 re turn s [ ] ;
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31 }
32 /∗# finRASPrecond #∗/
33

34 /∗# debutGMRESso l v e #∗/
35 func complex [ i n t ] GMRES( complex [ i n t ] x0 , r e a l e ps , i n t nb i t e r )

36 {
37 i n t i n t metis = withmetis ;

38 ofstream f i l e i (”GMRES ovr”+s i z e o v r+” s i g ”+sigma+” ep”+eps i l o n+” n”+nloc +”.m”) ;

39

40 Vh<complex> r , z , v ,w, er , un ;

41

42 Vh<complex>[ i n t ] [V] ( nb i t e r+1) , [Vp ] ( nb i t e r+1) ; // orthonormal ba s i s

43 complex [ i n t , i n t ] Hn( nb i t e r +2, nb i t e r+1) ; // Hessenberg matrix

44 Hn = 0 . ;

45 complex [ i n t , i n t ] ro t (2 , nb i t e r+2) ;

46 ro t = 0 . ;

47 complex [ i n t ] g ( nb i t e r+1) , g1 ( nb i t e r+1) ;

48 g = 0 . ; g1 = 0 . ;

49 r [ ] = A( x0 ) ;

50 r [ ] �= rh sg l oba l [ ] ;

51 r [ ] ∗= �1.0;

52

53 z [ ] = r [ ] ;

54 g [ 0 ] = z [ ] . l 2 ; // i n i t i a l r e s i d u a l norm

55

56 // f i l e i << ” r e l r e s (”+1+”)=” << g [ 0 ] << ” ;” << end l ;

57 V[ 0 ] [ ]= 1 / g [ 0 ] ∗ z [ ] ; // f i r s t b a s i s vec to r

58 f o r ( i n t i t =0; i t<nb i t e r ; i t++){
59 Vp[ i t ] [ ] = PREC(V[ i t ] [ ] ) ;

60 v [ ] = Vp[ i t ] [ ] ;

61 w [ ] = A(v [ ] ) ; // w = A∗Mˆ{�1}V it

62

63 f o r ( i n t i =0; i< i t +1; i++) {
64 Hn( i , i t ) = w [ ] ’ ∗V[ i ] [ ] ;

65 w [ ] �= conj (Hn( i , i t ) ) ∗V[ i ] [ ] ;

66 }
67 Hn( i t +1, i t ) = sq r t ( r e a l (w [ ] ’ ∗w [ ] ) ) ;

68

69 complex aux = Hn( i t +1, i t ) ;

70 f o r ( i n t i =0; i< i t ; i++){ // QR decomposit ion o f Hn

71 complex aa = conj ( ro t (0 , i ) ) ∗Hn( i , i t )+conj ( ro t (1 , i ) ) ∗Hn( i +1, i t ) ;

72 complex bb = �ro t (1 , i ) ∗Hn( i , i t )+rot (0 , i ) ∗Hn( i +1, i t ) ;

73 Hn( i , i t ) = aa ;

74 Hn( i +1, i t ) = bb ;

75 }
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76 complex sq = sq r t ( conj (Hn( i t , i t ) ) ∗Hn( i t , i t ) + Hn( i t +1, i t ) ∗Hn( i t +1, i t ) ) ;

77 ro t (0 , i t ) = Hn( i t , i t ) / sq ;

78 ro t (1 , i t ) = Hn( i t +1, i t ) / sq ;

79 Hn( i t , i t ) = conj ( ro t (0 , i t ) ) ∗Hn( i t , i t )+conj ( ro t (1 , i t ) ) ∗Hn( i t +1, i t ) ;

80 Hn( i t +1, i t ) = 0 . ;

81 g [ i t +1] = �ro t (1 , i t ) ∗g [ i t ] ;

82 g [ i t ] = conj ( ro t (0 , i t ) ) ∗g [ i t ] ;

83

84 complex [ i n t ] y ( i t +1) ; // Reconstruct the s o l u t i o n

85 f o r ( i n t i=i t ; i>=0; i��) {
86 g1 [ i ] = g [ i ] ;

87 f o r ( i n t j=i +1; j< i t +1; j++){
88 g1 [ i ] = g1 [ i ]�Hn( i , j ) ∗y [ j ] ;
89 }
90 y [ i ]=g1 [ i ] /Hn( i , i ) ;

91 }
92 un [ ] = x0 ;

93 f o r ( i n t i =0; i< i t +1; i++){
94 un [ ]= un [ ]+ conj ( y [ i ] ) ∗Vp[ i ] [ ] ;
95 }
96 er [ ] = un [ ] � uglob [ ] ;

97 r e a l r e l r e s = abs ( g [ i t +1]) ;

98 r e a l r e l e r r = er [ ] . l 2 / uglob [ ] . l 2 ;

99 Vh abser = abs ( er ) ;

100 Vh absun = abs (un) ;

101 // p l o t ( abser , dim=3, cmm=”Error at s tep ” + i t , va lue=1, f i l l =1) ;

102 // p l o t ( abser , dim=3, cmm=”Error at s tep ” + i t , va lue=1, f i l l =1,

wait=1) ;

103 // p l o t ( absun , dim=3, cmm=”So lu t i on at s tep ” + i t , va lue=1,

f i l l =1) ;

104 cout << ” I t : ”<< i t << ” Res idua l = ” << r e l r e s << ” Re la t i v e L2 Error = ”<<

r e l e r r << end l ;

105 i n t j = i t +2;

106 i n t l = j �1;

107 f i l e i << ”GMRES ovr”+s i z e o v r+” s i g ”+sigma+” ep”+eps i l o n+” n”+

nloc+” (”+ l +”)=” << r e l e r r << ” ;” << end l ;

108 i f ( r e l e r r < e ps ) {// r e l r e s

109 cout << ”GMRES has converged in ” + i t + ” i t e r a t i o n s ” << end l ;

110 cout << ”The r e l a t i v e r e s i d u a l i s ” + r e l r e s << end l ;

111 break ; }
112 V[ i t +1][ ]=1/ aux∗w [ ] ;

113

114 }
115 re turn un [ ] ;

116 }
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117 /∗# finGMRESso l v e #∗/
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[CS99] X.-Ch. Cai and M. Sarkis. A restricted additive Schwarz preconditioner

for general sparse linear systems. SIAM J. Sci. Comput., 21(2):792–797

(electronic), 1999.

[DGG09] V. Dolean, L. Gerardo Giorda, and M. J. Gander. Optimized Schwarz

methods for Maxwell equations. SIAM J. Scient. Comp., 31(3):2193–2213,

2009.

[DGH19] Fabrizio Donzelli, Martin J. Gander, and Ronald D. Haynes. A Schwarz

method for the magnetotelluric approximation of Maxwell’s equations,

2019.

[DGL+15] Victorita Dolean, Martin J. Gander, Stephane Lanteri, Jin-Fa Lee, and

Zhen Peng. E↵ective transmission conditions for domain decomposition

methods applied to the time-harmonic curl-curl Maxwell’s equations. J.

Comput. Phys., 280:232–247, 2015.

[DJN15] V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decompo-

sition methods. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 2015. Algorithms, theory, and parallel implementation.



BIBLIOGRAPHY 135

[DJR92] Bruno Després, Patrick Joly, and Jean E. Roberts. A domain decompo-

sition method for the harmonic Maxwell equations. In Iterative methods

in linear algebra (Brussels, 1991), pages 475–484. North-Holland, Amster-

dam, 1992.

[DJTO20] V. Dolean, P. Jolivet, P.-H. Tournier, and S. Operto. Iterative frequency-

domain seismic wave solvers based on multi-level domain-decomposition

preconditioners. In 82th Annual EAGE Meeting (Amsterdam), volume

arXiv:2004.06309, 2020.

[DLP08] V. Dolean, S. Lanteri, and R. Perrussel. A domain decomposition

method for solving the three-dimensional time-harmonic Maxwell equa-

tions discretized by discontinuous Galerkin methods. J. Comput. Phys.,

227(3):2044–2072, 2008.

[DNSC12] Marco Donatelli, Maya Neytcheva, and Stefano Serra-Capizzano. Canon-

ical eigenvalue distribution of multilevel block Toeplitz sequences with

non-Hermitian symbols. In Spectral Theory, Mathematical System Theory,

Evolution Equations, Di↵erential and Di↵erence Equations, pages 269–291.

Springer, 2012.

[Dru00] Paul Drude. Zur elektronentheorie der metalle. Annalen der Physik,

306(3):566–613, 1900.

[EDGL12] M. El Bouajaji, V. Dolean, M. J. Gander, and S. Lanteri. Optimized

Schwarz methods for the time-harmonic Maxwell equations with dampimg.

SIAM J. Scient. Comp., 34(4):2048–2071, 2012.

[EG12] O. G. Ernst and M. J. Gander. Why it is di�cult to solve Helmholtz prob-

lems with classical iterative methods. In Numerical analysis of multiscale

problems, volume 83 of Lect. Notes Comput. Sci. Eng., pages 325–363.

Springer, Heidelberg, 2012.

[GC21] M. Gander and G. Ciaramella, editors. Iterative Methods and Precondi-

tioners for Systems of Linear Equations. SIAM, 2021.

[GGS20] Shihua Gong, Ivan G. Graham, and Euan A. Spence. Domain decompo-

sition preconditioners for high-order discretisations of the heterogeneous

Helmholtz equation. arXiv:2004.03996, 2020.



BIBLIOGRAPHY 136

[GHM07] Martin J Gander, Laurence Halpern, and Frédéric Magoules. An opti-

mized Schwarz method with two-sided Robin transmission conditions for

the Helmholtz equation. International journal for numerical methods in

fluids, 55(2):163–175, 2007.

[GMN02] Martin J Gander, Frédéric Magoulès, and Frédéric Nataf. Optimized

Schwarz methods without overlap for the Helmholtz equation. SIAM J.

Sci. Comput., 24(1):38–60, 2002.

[GSV17] I. G. Graham, E. A. Spence, and E. Vainikko. Recent results on domain

decomposition preconditioning for the high-frequency Helmholtz equation

using absorption. Lahaye D., Tang J., Vuik K. (eds) Modern Solvers for

Helmholtz Problems. Geosystems Mathematics. Birkhäuser, Cham, pages
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