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Abstract

Understanding how the presence of thermal gradients a�ects the motion of bub-

bles and drops is a subject of great relevance both from a theoretical and a practi-

cal standpoint, particularly when gravitational e�ects are minimal or completely

unin�uential. In the past half century, considerable progress has been made on

the investigation of the so-called thermocapillary phenomenon in an attempt to

clarify the mechanisms at work in multiphase systems with liquid-liquid or liquid-

gas interfaces. Given the complexity of the problem, most of these investigations

have been carried out under simpli�ed conditions, assuming unbounded �ows or

considering relatively simple geometries in which the presence of solid boundaries

was not explicitly taken into account. Additionally, even though non-Newtonian

�uids are ubiquitous in engineering and science, the majority of these works have

been carried out assuming Newtonian phases.

The aim of the present thesis is to study the thermocapillary migration of a

droplet in systems exhibiting an added level of complexity, speci�cally in terms

of wall e�ects, domain shape and rheological properties of the �uids. To accom-

plish these objectives, we rely on a concerted approach based on well-established

numerical strategies and, where possible, we derive analytical solutions. A ther-

mocapillary solver based on a hybrid Level Set-Volume of Fluid method available

in OpenFOAM has been implemented and validated against previous analytical

results, numerical solutions and experimental observations obtained in reduced

gravity conditions (Sect. 3.5). In the �rst part of the study, we investigate the

problem of a droplet interacting with the boundaries of a parallelepipedic do-

main. The case study has been assessed by releasing the droplet in proximity to

the lateral walls of the domain considering both adiabatic and purely conductive

boundary conditions. The results showed that the droplet can experience a sec-
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ondary motion perpendicular to the main direction of motion. In particular, it was

observed that the droplet can either move away or towards the walls depending

on the thermal boundary conditions at the wall (i.e., whether the wall is adiabatic

or purely conductive) and on the extent of convective phenomena. The investi-

gation was then extended by adopting more complex geometries (converging and

diverging channels), which were found to produce distortion of the thermal �eld

distribution with direct consequences on the migration process (Sect. 4.2.1 and

4.2.2). In the second part of the thesis, non-Newtonian e�ects have been expressly

considered. Speci�cally, the role played by the �uid's elasticity (while neglecting

convective transport of energy and momentum) has been accounted for by mod-

elling the continuous phase on the basis of constant-viscosity viscoelastic models,

namely the Oldroyd-B model and FENE-CR model. The numerical simulations

were carried out for a speci�c value of the Capillary number and assuming the

same material properties for both phases. We investigated the e�ects of the var-

ious model parameters (i.e., polymer concentration and extensibility parameter)

and Deborah number on the droplet motion. The results showed that the droplet

speed, evaluated as a function of the Deborah number, initially decreases follow-

ing a quadratic trend. For larger Deborah number, the trend reverts its concavity

and eventually reaches a plateau. In terms of shape, the results have shown that

under the prescribed conditions the droplet deforms in a prolate manner and,

for su�ciently large values of the Deborah number (having �xed the Capillary

number), the viscoelastic stresses localised at the rear stagnation point are re-

sponsible for the formation of a pointed tail. The viscoelastic problem was also

tackled by means of perturbation techniques under the assumption of absence of

con�nement and weak viscoelastic e�ects, which allowed the derivation of correc-

tive formulae for the droplet migration velocity and expressions describing the

shape of the deformed drop. The results of the analytical solutions were found

to be in fairly good agreement with the outcomes of the computations, both in

terms of drop shape and migration speed.
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w Domain width [m];

wcold Domain cold side width [m];
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whot Domain hot side width [m];

x Vector position;

(x, y, z) Coordinates of a Cartesian frame of reference;

Greek symbols

α Viscosity ratio;

αk Volume fraction function;

αk,mol Molli�ed volume fraction function;

α∗k,mol Molli�ed volume fraction function adopted for the adaptive mesh re�ne-

ment;

α∗k,thr Threshold of the molli�ed volume fraction function adopted for the adap-

tive re�nement;

αth Thermal di�usivity ratio;

β Viscoelastic viscosity ratio using notation β = ηs/η0;

Γ Computational cell domain, parameter adopted in the level-set method, gamma

function;

γ Density ratio;

γ̇ imposed shear rate [s−1];

∆x,∆y,∆z Grid resolution along the coordinate axes;

δ Distribution at the interface [m−1];

δij Kronecker delta;

ε Empirical parameter adopted in the Level-Set method;

ε̇ Elongational strain rate [s−1];

ζ Shape function;

ζM MULES limiter;

η Viscosity [Pa s];

η0 Zero-shear viscosity [Pa s];

η0,m Matrix �uid zero-shear viscosity [Pa s];

ηd Droplet �uid viscosity [Pa s];
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ηext Extensional viscosity [Pa s];

ηm Matrix �uid viscosity [Pa s];

ηp Polymer viscosity [Pa s];

ηp,m Matrix �uid polymer viscosity [Pa s];

ηr Drop-to-matrix viscosity ratio;

ηs Solvent viscosity [Pa s];

ηs,m Matrix �uid solvent viscosity [Pa s];

θ Degree of proximity;

κ Thermal conductivity [Wm−1K−1];

κd Drop thermal conductivity [Wm−1K−1];

κm Matrix thermal conductivity [Wm−1K−1];

κr Drop-to-matrix thermal conductivity ratio;

λ Relaxation time [s];

λr Retardation time [s];

ν relaxation time ratio;

νr Retardation time ratio;

ξ Drop axis;

ρ Fluid density [kgm−3];

ρd Drop density [kgm−3];

ρm Matrix density [kgm−3];

ρr Drop-to-matrix density ratio;

Σ Cauchy stress tensor [Nm−2];

σ Interfacial tension [Nm−1];

σT Interfacial tension temperature gradient [Nm−1K−1];

ςk,mol Generic molli�ed variable;

τ Stress tensor in tensor notation [Nm−2];

τf Fictitious time step;

τij Stress tensor in Einstein notation [Nm−2];

τmol Fictitious molli�ed time step [s];

τp Polymer stress tensor [Nm−2];

τs Solvent stress tensor [Nm−2];
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ϕ Droplet orientation angle [deg];

ϕk Level-set function;

ϕk,0 Initial level-set function;

ϕk,mol Molli�ed level-set function;

χ Generic material property;

χd Generic material property for the drop;

χm Generic material property for the matrix �uid;

χr Drop-to-matrix generic material property ratio;

Ωij Vorticity tensor [s−1];

(r, θ, φ) Spherical frame of reference coordinates;

Acronyms

AMR Adaptive mesh re�nement;

AR Overall geometry aspect ratio;

CSF Continuum surface force model;

CSS Continuum surface stress model;

ER Expansion ratio;

FVM Finite volume method;

ISS International space station;

LBM Lattice Boltzmann method;

LS, LSM Level-Set method;

MAC Marker and Cell method;

MULES Multi-dimensional limiter for explicit solution;

NC Near corner con�guration;

N-N Newtonian-Newtonian con�guration;

NS Near side con�guration;

N-V Newtonian-Viscoelastic con�guration;

PISO Pressure-implicit with splitting operator algorithm;

PROST Parabolic reconstruction of the surface tension model;
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QUICK Quadrratic upwind interpolation for convective kinematics;

SOLA-VOF Solution algorithm for transient �uid �ow with multiple free bound-

aries;

SPH Smoothed-particle Hydrodynamics method;

V-N Viscoelastic-Newtonian con�guration;

VOF Volume of Fluid method;

V-V Viscoelastic-Viscoelastic con�guration;

YGB Young, Goldstein, Block

Other symbols

∇ Gradient operator [m−1];

∇h Discrete gradient operator [m−1];

∇hT Discrete temperature gradient [Km−1];

∇∞T Imposed temperature gradient [K];

∇sσ Surface (tangential) interfacial tension gradient [Nm−2];

∇sT Surface (tangential) temperature gradient [Km−1];

∼ Used to indicate variables and material quantities referred to the the dis-

persed phase (droplet);
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Chapter 1

Introduction

This thesis focuses on the dynamics of thermocapillary motion of droplets

immersed in immiscible liquids in complex �ow con�gurations. In this chapter,

we �rst provide a brief introduction of the thermocapillary migration problem

providing a qualitative explanation of the physical mechanisms responsible for the

thermally-driven motion of a drop or a bubble. Then, we present a comprehensive

overview of the existing literature subdivided according to the various approaches

that have been used for the investigation of the �ow under discussion. Finally,

we discuss the motivation for the present work and �nalise with an outline where

we provide a detailed list of all the topics discussed in each chapter.

1.1 Literature review

Fluid particles motion is relevant in a variety of industrial processes and tech-

nological applications. Manipulation of many substances often involves the pres-

ence of two immiscible �uids in contact each other where heat and/or mass trans-

fer between the two phases can be a requirement for the desired process (see, e.g.,

Han, 1981). Such goal can be e�ciently achieved when one phase is continuously

dispersed into another (carrier phase), i.e., is in the form of small droplets (or

bubbles, when the dispersed phase is a gas). Understanding the behaviour of

these systems requires the accurate knowledge of the motion and deformation of

a single �uid particle (or the interaction between some of them) in simpli�ed con-

ditions (e.g., by neglecting inertial e�ects, as in the case of the gravitational rise

or sedimentation in isothermal Stokes �ows (Hadamard, 1911 and Rybczynski,
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1911)). Even in absence of gravity, if the system is a�ected by the presence of in-

terfacial tension gradients, the consequent imbalance of capillary stresses can also

be responsible for �uid particle displacements and/or deformations. This class of

�ows, which are usually termed Marangoni �ows, after the Italian physicist Carlo

Marangoni, who was the �rst to provide a theoretical description in his doctoral

dissertation (Marangoni, 1871), have been �rstly described by James Thomson,

who gave a basic explanation of the so-called �tears of wine� phenomenon (Thom-

son, 1855). Subsequently, a more complete theoretical treatment was provided

by the American scientist Josiah Willard Gibbs, who gave a detailed description

of the phenomenon on his work �On the equilibrium of heterogeneous substances�

(Gibbs, 1878).

Generally speaking, interfacial tension gradients can be induced, for instance

but not only, by a non-uniform distribution of surface active compounds (e.g.,

surfactants) at the interface (in such a case the �ow is termed solutal Marangoni

�ow), or due to the presence of interfacial temperature gradients, and in such

a case the motion is usually called thermocapillary, or thermal Marangoni �ow

(see, for instance Subramanian and Balasubramaniam, 2001).

The investigation of the thermocapillary motion of bubbles and drops dates

back to late 1950s, when Young et al. (1959) provided the experimental evidence

that an air bubble surrounded by a heavier immiscible liquid can be maintained

at rest (or move against the gravitational motion) under the application of an

appropriate temperature gradient in such a way that the corresponding resultant

of the thermocapillary and viscous forces balanced exactly the gravitational force.

The same authors derived a landmark solution (in analytical form) of the gov-

erning equations under some limiting assumptions (cf. Sect. 2.4 and Sect. 6.3).

In such an approach, velocity and temperature �elds were considered to be fully

established at every moment in time under the assumption of negligible inertia

and convective transport of energy. With this approximation the temperature

�eld and the �ow �eld decouple allowing the derivation of an analytical solution

to the problem (in the following also referred as YGB theory).

Following the work of Young et al. (1959), an increasing number of researchers
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over the years have addressed the problem under discussion. This was essentially

made possible by the availability of reduced gravity environment facilities, by

the increased performances of computers and to the progressive development of

sophisticated computational methodologies for the numerical representation of

problems involving moving interfaces.

In the following, we provide a thorough review of the works related to thermo-

capillary motion of bubbles and drops in reduced gravity environments produced

in the past years. Due to the variety of di�erent approaches used, we found ad-

visable to subdivide the discussion according to the technique adopted for their

investigation.

1.1.1 Experiments in reduced gravity conditions

An important implication inherent to the YGB theory, is the possibility to

use temperature gradients alone to produce droplet motion, when these are not

overwhelmed by buoyancy e�ects. Performing experiments in such conditions

is usually very problematic on Earth. One in fact should either adopt density

matched �uids (but also in this case it should be taken into account that the two

�uids might have di�erent thermal expansion coe�cients, meaning that as the

drop moves toward regions at di�erent temperature, their densities will change in

a di�erent fashion), or consider situations in which the characteristic dimension

of the �uid particles is very small, as for the case of atomised droplets (see,

e.g. Grant et al. 1990, Arienti M. and Sussman M., 2017), or in micro�uidic

devices (see, e.g., Karbalaei et al., 2016). The obvious alternative would be

conducting experiments in microgravity conditions. Here, we provide an account

of the progresses made in this particular context.

The �rst systematic study in a reduced gravity environment was conducted

by Thompson and co-workers in 1979 (Thompson, DeWitt and Labus, 1980),

20 years after the pioneering experiment of Young and co-workers (Young et

al., 1959). The investigation was conducted in a drop tower at NASA's Lewis

Research Centre using ethylene glycol, silicone oil, ethanol and water as the con-

tinuous phase, and nitrogen bubbles as the dispersed phase. The experiments
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revealed a clear Marangoni e�ect for the case of ethylene glycol, silicone oil and

ethanol, while no migration was observed in water. It is interesting to point out

that the migration velocity of the nitrogen bubbles in ethylene glycol was in agree-

ment with the YGB theory despite the �ow conditions being beyond the limit

of its applicability. Szymczyk and co-workers carried out experiments aboard of

the space shuttle in 1985 (Szymczyk, Wozniak and Siekmann, 1987). Systems of

water drops in silicone oil and air bubbles in silicone oil were considered. Also in

this case the experiments revealed absence of thermocapillary �ow in the presence

of a water phase. It is interesting to note that despite water being characterised

by strong variations of the surface tension with the temperature, in both ex-

periments discussed above, no Marangoni �ow was observed in the presence of

aqueous phases. This was attributed to the tendency of water to be contaminated

by impurities, which might prevent the activation of the mechanism necessary for

the development of thermocapillary �ows (see, e.g., Thompson et al. 1980). In a

subsequent experiment, Wozniak observed the thermocapillary motion of para�n

drops in a water-ethanol mixture during and experiment conducted aboard of a

sounding rocket (Wozniak, 1991). The results obtained for the droplet velocity

were in qualitative agreement with a numerical solution exhibiting di�erences

within 30%. A few years later, another experiment on a sounding rocket was per-

formed by Braun and co-workers (Braun et al. 1993). They considered a mixture

of 2-butoxyethanol and water with inverted miscibility gap. The system was ini-

tially kept at a temperature below the phase separation limit. Immediately after

the beginning of the experiment, the temperature was increased to 0.45 K above

the separation limit and drops rich in 2-butoxyethanol were enucleated. The

drops were observed to move toward the cold side, which is consistent with the

fact that in this speci�c system the interfacial tension is an increasing function of

the temperature. The �ow conditions were such that convective transport e�ects

were negligible and the results were in agreement with the velocity predicted by

the YGB theory. More recently, Treuner et al. (1996) studied the thermocapil-

lary motion of air bubbles in three di�erent organic liquids: n-octane, n-decane

and n-tetradecane released from a drop tower. The same authors provided a
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numerical solution used for comparison, which showed an agreement of about

20% with the experimental �ndings. Finally, several other results were obtained

during a series of experiments conducted aboard of the space shuttle Columbia

by Balasubramaniam and co-workers. The investigations were conducted in two

di�erent missions (1994 and 1996) and detailed accounts are reported in Bala-

subramaniam et al. (1996) and in Hadland et al. (1999). This latter work is

particularly relevant in the context of this thesis as it was used for the validation

of our solver (cf. Sect. 3.5.2). In the experiment of Hadland et al. (1999), a

60 mm long container having a square cross section 45 × 45 mm was �lled with

silicone oil having nominal kinematic viscosity of 10 centistokes. The two oppo-

site square sections were made of aluminium and kept at di�erent temperatures

by Peltier elements. The other four sides of the cell were made of fused silica

coated with a thin �lm of Indium. Two di�erent series of tests were performed by

injecting air bubbles or drops of �uorinert FC-75 from an injection port placed

in the middle of the �cold� aluminium element. For each test, a single bubble

(or a drop) was injected and monitored until it reached the opposite side of the

cell. Fig. 1.1 summarises the results in terms of velocity migration normalised

by the velocity provided by the YGB theory obtained for the experiments with

�uorinert drops available in Hadland et al. (1999). The abscissa represents a di-

mensionless group called Marangoni number, which provides an indication of the

relative extent of thermal convection compared to its di�usive counterpart (cf.

Sect 2.4 for a detailed description of all the parameters adopted in this thesis). It

is evident the monotonic decreasing velocity trend, however it is worth pointing

out that the dimensional drop velocity is actually increasing for increasing values

of the Marangoni number since this parameter is directly proportional to the ex-

tent of the thermocapillary driving force. Numerical simulations carried out by

Ma (1998) have been added as they also appear in the original plot available in

Hadland et al. (1999).
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Figure 1.1: Normalised droplet migration velocity as a function of the marangoni number for
a �uorinert drop embedded in silicone oil reported in the experiments Hadland et al. (1999).
The open symbols represents the results of the numerical simulations of Ma (1998).

1.1.2 Solution of the problem by means of analytical and computa-

tional techniques

After the initial study of Young et al. (1959) most ensuing works have been

devoted to assessing the role played by mechanisms which were neglected in that

initial work. As an example, Subramanian (1983) included the e�ect of convective

transport of energy as a small perturbation (setting the Reynolds number, Re,

equal to zero and using a perturbation expansion in the Marangoni number for

Ma < 1); in practice, inertial terms were neglected in the momentum equation

(as we shall see later on in Sect. 2.4, the Reynolds number measures the relative

importance of inertia in respect to viscous forces, thus, setting it to zero means

that the inertial contributions are entirely ignored) whereas they were preserved

in the energy equation (from a physical point of view this would be equivalent

to considering a �uid with Prandtl number Pr = MaRe � 1, i.e., a liquid with

a very high viscosity and a relatively small thermal di�usivity, since the Prandtl

number compares the extent of molecular di�usion of the �uid relative to its ther-

mal counterpart, therefore it actually represents a �uid property). Subramanian
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(1983) showed that in such conditions the migration speed of a drop can be re-

duced or enhanced with respect to the analytical solution by Young et al. (1959)

depending on the values of the various parameters.

The opposite case, in which convective transport of heat is ignored (in the limit

of Ma → 0) but small inertial e�ects are included in the momentum equation

(Re 6= 0), was examined by Balasubramaniam and Chai (1987), Haj-Hariri et

al. (1990), and Nadim et al. (1990), still in the framework of perturbation

techniques. In particular, Balasubramaniam and Chai (1987) extended the range

of applicability of the solution of Young et al. (1959) under the constraint or

requirement that the temperature �eld is in purely di�usive steady conditions

(this occurs when Pr � 1 and Ma remains small, i.e., Ma < 1). They also

analysed the shape of the droplet in the limit of Pr → 0, showing that droplets

of the same density as the matrix �uid do not deform, droplets less dense than

the matrix �uid tend to deform oblately, and that droplets denser than the �uid

matrix tend to elongate in the �ow direction.

For similar conditions (i.e., when convective transport of heat is neglected)

and small but �nite Re (i.e., in�uence of inertia taken into account), Haj-Hariri

et al. (1990) and Nadim et al. (1990) calculated the correction to the migration

velocity caused by the shape deformation. It was found that droplets with den-

sities higher/lower than the outside liquid deform to prolate/oblate spheroidal

shapes at small values of the Capillary and Reynolds numbers. The corrections

to the temperature �eld and the migration velocity of the droplet resulting from

this deformation were obtained using the Lorentz reciprocal theorem. These au-

thors illustrated that the migration velocity could increase, decrease, or remain

unchanged according to the value of certain controlling parameters.

An analysis dealing with the asymptotic case of very high values of Re and

Ma has been presented by Balasubramaniam and Subramanian (2000). They

analysed the steady Marangoni migration of a spherical drop in a continuous

phase under the idealised conditions (Ma → ∞ and Re → ∞), assuming that

inertial terms in the momentum equation and convective-transport terms in the

energy equation dominate over the corresponding molecular-transport terms. In
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such a mathematical context (partially based on the earlier model by Harper and

Moore, 1968), the migration velocity of the drop was obtained on the basis of a

potential-�ow theory, where the rate at which work is done by the thermocapillary

stress was equated to the rate of viscous dissipation of energy. The method of

matched asymptotic expansions was also employed to solve the conjugate heat-

transfer problem in the two phases (characterised by the presence of thin thermal

boundary layers both outside and within the drop). In physical terms it was

found that in the limit of Ma→∞ the velocity of a drop becomes proportional

to the square of the temperature gradient and the cube of the radius of the drop.

Finally, we mention the work of Jiménez-Fernández and Crespo (2002). The

authors derived an analytical solution for the case of a non-deformable gas bubble

surrounded by a viscoelastic Oldroy-B liquid undergoing motion under the e�ect

of a constant temperature gradient. The solution was obtained in the framework

of a perturbation approach under the assumption of negligible convective trans-

port and weak viscoelastic e�ects. Their results showed that the bubble speed

decreases quadratically for increasing values of the Deborah number.

More recently (essentially over the last two decades), the availability of power-

ful computers (including the possibility to resort to multi-processor computations)

and the development of modern moving-boundary methods, such as the Volume

of Fluid (VOF) or the level set (LS) techniques (see, e.g., Haj-Hariri et al. 1997,

Rudman, 1998; Guey�er et al. 1999; Sussman and Fatemi, 1999; Sussman and

Puckett, 2000; Tryggvason et al. 2001 just to mention some initial e�orts), has

made possible addressing the problem directly in the framework of direct numer-

ical discretisation and solution of the governing balance equations in the most

general (time-dependent and non-linear) form. Along these lines, for instance,

it is worth mentioning the works of Yin et al. (2008, 2012), Zhao et al. (2011),

Brady et al. (2011), Balcázar et al. (2016), who performed parametric studies

to examine the in�uence of typical non-dimensional numbers on the migrating

process of both rigid and deformable drops. As a common �nding, all these stud-

ies for �nite values of Re and Ma highlighted that when convective transport is

important, the internal circulation in the drop has a profound in�uence on the
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temperature distribution in its vicinity and hence on its migration speed. More-

over, thermal boundary layers can form in front of the droplet, and �uid-dynamic

instabilities can develop when the value of the Marangoni number is su�ciently

large.

In addition to the above mentioned strategies, it is also worth mentioning

the recent developments of lattice Boltzmann methods (LBM, Liu et al. 2017,

Liu and Zhang, 2015). Other techniques based on the phase-�eld method have

been also demonstrated to be suitable for the simulation of the thermocapillary

migration of droplets. In such a context, it is worth mentioning the work of Guo

and Lin (2015) who have adopted the phase �eld method in conjunction with

a novel approach based on a �non-classical� energy balance equation. Liu and

Valocchi (2013) combined the capabilities of the lattice Boltzmann and phase

�eld methods showing that such strategy can be successfully adopted for the

simulation of thermocapillary �ows. Similar approaches have also been used to

study the motion of droplets under the in�uence of localised sources of heat (Liu

et al. 2012 and 2013).

1.2 Motivation

The aim of this PhD research is to study the thermocapillary motion of a

droplet in complex �ow conditions, with the speci�c intent to: a) elucidate some

aspects not yet fully understood related to the motion of the droplet in proximity

of solid boundaries, b) investigate the role potentially played by the presence

of a viscoelastic phase on both speed and morphological evolution of the drop

interface. In both cases, negligible gravitational e�ects have been postulated.

Numerical simulations have been performed adopting a thermocapillary solver

speci�cally developed in the scope of the present doctoral research activity. Ad-

ditionally, in some cases, analytical solutions were obtained with the intent to

provide additional insight into the physics involved on the problems and give a

further proof of the accuracy of the numerical computations. Indeed, the ther-

mocapillary motion of �uid particles is still a relatively unexplored subject, and
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at the present stage there are several open questions to be addressed.

In experimental conditions, it is frequent to encounter complex geometries,

where the droplet is subjected to large degrees of con�nement (meant as the

ratio between the diameter of the drop and a suitable characteristic length of the

geometry), it is therefore important to understand how the motion of a droplet

(or a bubble) can be altered by its proximity to the boundaries, or how a speci�c

geometric con�guration might a�ect the thermal �eld, which in turn might alter

the droplet motion. Moreover, despite the relatively small thermal conductivities

of the materials used for the fabrication of the test facilities for the experiments

of the thermocapillary migration of drops, or for the fabrication of micro�uidic

chips (Polydimethylsiloxane (PDMS) and glass), the hypothesis of adiabaticity,

which is usually adopted on the modelling of thermocapillary �ows, might not

be realistic and seems reasonable to account for the presence of thermal �uxes at

the walls to properly describe the physics involved during the migration process.

Motivated by the necessity to evaluate the impact of all these e�ects, an entire

chapter of the present thesis (Chapter 4) is devoted to the study of the drop-walls

interaction in the presence of both adiabatic and purely conductive walls. The

role played by the domain shape on the migration process is also discussed at the

end of the chapter.

Thus far, almost the entire body of literature available on the thermocapillary

motion of droplets has been produced under the assumption of Newtonian phases.

Indeed, all the examples discussed in the previous sections lie within this category.

However, thermocapillary �ows in the presence of non-Newtonian �uids have

been already investigated for the past two decades (cf. the introductory section

of Chapter 5 for a brief account about these works) and are still attracting the

attention of the scienti�c community. Most of these works focus on �uid layers and

it is only in the analytical work of Jiménez-Fernández and Crespo (2002) that non-

Newtonian e�ects have been taken into account for the case of the thermocapillary

motion of a gas bubble in a viscoelastic �uid. By contrast, there are several

situations in which the coupling between viscoelasticity and thermocapillarity in

the presence of dispersed phases, i.e., bubbles and drops, might be observed. Here
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below we provide a brief account of some technological applications that can be

relevant in this context.

It is well known that the thermal Marangoni phenomenon can be exploited

to generate droplets on demand through the actuation of thermal instabilities by

controlling the temperature of the ink nozzle (see Furlani et al. 2006). While

inkjet �uids generally behave in a Newtonian manner in steady shear �ows (Tu-

ladhar snd Mackley, 2008), they can also exhibit viscoelastic e�ects in the working

conditions established in printers, where the characteristic time scale of the �ow is

of the order of a millisecond or less (Vadillo et al. 2010). Additionally, it is worth

emphasising the potential o�ered by micro�uidic applications. In this cases in

fact, it is not infrequent to encounter situations where the �uid involved can show

a non-Newtonian behaviour. Moreover, the adoption of thermocapillary e�ects is

widely used at the microscale for a variety of di�erent purposes such as droplet

actuation, mixing and sorting and bubble micro-oscillators (see, e.g., Karbalaei et

al. 2016). Thus, it is reasonable to suppose that under such working conditions it

is necessary taking into account for both viscoelastic and thermocapillary e�ects.

To enhance our understanding of the non-Newtonian problem, two chapters

of this thesis are dedicated to the thermocapillary migration phenomenon in the

presence of a viscoelastic �uid. The proposed problems are solved adopting both

numerical and analytical techniques.

1.3 Thesis outline

With the exception of Chapter 1 and 2, which are intended to provide a

general overview of the main subject and the theoretical background underlying

the problems addressed in the subsequent discussions, the remaining body of the

present manuscript includes original material that has already been published or

is under preparation for submission.

In Chapter 2, the equation of motion for an isothermal incompressible �ow are

introduced in general form without considering any speci�c constitutive model.

Subsequently, the Newtonian constitutive law and the viscoelastic models adopted
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for the solution of the problems discussed in Chapters 5 and 6 are provided. The

governing equations are �rstly presented in dimensional form and subsequently

reformulated in dimensionless terms. Finally, the numerical techniques adopted

in the present work are then introduced and discussed in detail.

The subsequent Chapter 3, is dedicated to the implementation and validation

of a solver for the numerical solution of non-isothermal interfacial �ows. Firstly,

a detailed description of the numerical strategies adopted for the implementation

of the code is provided. Subsequently, the solver is tested against an analytical

solution and well established experiments performed in microgravity conditions.

In Chapter 4, the interaction of the droplet with the boundaries of the domain

and the in�uence of the domain con�guration on the droplet migration process

are investigated numerically. Firstly, we consider the situation in which the drop

is forced to transit next to a single boundary. Then, the analysis is repeated by

releasing the drop in proximity to a corner. Subsequently, the interaction problem

with a single boundary is studied considering conductive boundary conditions.

In the �nal section, the thermocapillary problem in the presence of converging

and diverging channels is investigated and the results are compared with the

calculations obtained for the straight geometry.

In Chapter 5, the role played by the presence of a viscoelastic continuous phase

is investigated by means of a computational approach. Two di�erent constant-

viscosity viscoelastic models are used for di�erent �ow conditions. The Oldroyd-B

model is adopted for relatively small values of the Deborah number, while the

FENE-CR model is employed for higher values of this parameter. The simula-

tions with the Oldroyd-B model are initially carried out considering an �in�nitely

dilute� polymer solutions. Then, the problem is analysed for the cases in which

the concentration of polymer is not negligibly small (i.e., viscoelastic stress are ef-

fectively included) and a comparison between the two cases is provided. Finally,

the problem is tackled for the case of moderately large values of the Deborah

number adopting the FENE-CR model.

Finally, in Chapter 6, the viscoelastic problem is further investigated ana-

lytically by means of perturbation techniques in the limiting condition of small
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Deborah numbers. Initially, we consider the case of a non-deformable (spherical)

droplet, then, the calculation are performed assuming a deformable �uid particle.

Finally, we report a detailed discussion of the results and compare them with the

numerical calculations presented in Chapter 5.

In the last chapter of the thesis (Chapter 7), we summarise the main �ndings

and provide guidelines for future works.
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Chapter 2

Background: physical models and numerical method-

ology

2.1 Introduction

An overview of the thermal Marangoni phenomenon and a review of the rel-

evant literature on droplet migration in this context has been presented in the

previous chapter. It was clear from this discussion that the analytical solution of

the governing equations is possible only in certain simpli�ed �ow conditions (as is

indeed true for any other �uid-related problem). In this work, we adopt a theoret-

ical/numerical methodology to study thermocapillary �ows under a range of �ow

conditions, including e�ects of con�nement (and other geometric e�ects such as

the domain shape), as well as the presence of �uids that exhibit a non-Newtonian

behaviour.

In this chapter, a formal mathematical description of the thermocapillary

migration of �uid particles, which constitutes the leitmotiv of the current work,

is given and discussed in detail in order to provide the fundamental theoretical

background for a clear understanding of the problems addressed in subsequent

chapters. Important dimensionless numbers are de�ned and the Newtonian and

viscoelastic constitutive equations used to describe the �uid rheological behaviour

considered in this thesis are presented and discussed. In the �nal section of this

chapter, we review numerical techniques adopted for handling �ows involving

moving interfaces, focusing on methods based on a �single-�uid� approach, which

are employed in the simulations of the present thesis.
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2.2 Conservation laws for the �ow of an isothermal incom-

pressible �uid

We initially consider the isothermal �ow of an incompressible �uid in which we

suppose, without lack of generality, that gravity constitutes the only long range

(body) force applied to the �uid elements. We will moreover assume the existence

of contact (surface) forces exchanged between the boundaries of the �uid parcels.

The motion can be described by applying the basic conservation laws (mass and

linear momentum) expressed in di�erential form written for an in�nitesimal �uid

element (see e.g., Batchelor, 1967)

∇ · u = 0 (2.1)

ρ
Du

Dt
= ρg+∇ ·Σ (2.2)

Eq. (2.1) states that the net �ux of mass of a �uid having constant density ρ �ow-

ing through the boundaries of a material element is zero, i.e., it simply represents

the conservation of mass of an incompressible �uid particle having velocity u. Eq.

(2.2) represents the law of conservation of momentum and is known as Cauchy

equation of motion. The operator D(·)/Dt = ∂(·)/∂t + u · ∇(·) is usually called

material or substantial derivative and represents the rate of change of a generic

variable expressed in an Eulerian (or spatial) frame of reference, measured by an

observer �attached� to a particle of �xed identity moving with the local velocity

u. In this representation therefore, the acceleration Du/Dt accounts for the fact

that in a certain region (control volume) the velocity can change both in time

(∂u/∂t ) and space (u · ∇u ) as the particle is advected by the �ow. In the right

hand side of (2.2) we have the gravitational force, ρg, and a symmetric tensor Σ

(the symmetry can be veri�ed by applying the equilibrium of an element to rigid

rotations) which is called Cauchy stress tensor and represents the state of tension

of the material element. At this stage the problem is still undetermined since we

are in presence of nine variables (three velocity components and six independent

components of the stress tensor), therefore in order to close it mathematically it
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is necessary to include a constitutive equation that relates the state of stress of

the �uid element with the local velocity.

In the following a detailed derivation of the Newtonian constitutive equation

and other non-Newtonian constitutive models that are of interest for the present

work will be presented.

2.3 Constitutive equations: Newtonian vs non-Newtonian

behaviour

If a �uid is at rest, the only components of the stress tensor which are di�erent

from zero are the diagonal components, and the state of tension would be inde-

pendent of the orientation. In other words, the stress is isotropic viz., Σij = −pδij,

where δij is the Kronecker delta (in this context the Einstein convention is adopted

for convenience of notation) and p is the thermodynamic pressure. The minus

sign is introduced to indicate that the normal stresses are considered positive

if they are compressive (the normal at the interface of a �uid element is taken

positive in the outward direction) and vice versa. A �uid in motion, on the other

hand, produces additional stresses, τij, and the total stress tensor is given by

Σij = −pδij + τij. (2.3)

It will be still assumed here that p is the thermodynamic pressure although this

is not strictly correct, since now the �uid is not in thermodynamic equilibrium.

Nevertheless, the departure from the condition of equilibrium is expected to be

negligible if the relaxation time of the molecules (time required to adjust the

microstructure of the �uid after a �uid element displacement) is small compared

to the characteristic time of the �ow. The deviatoric part of the stresses can

be related to the rate-of-strain tensor Eij = 1/2 (∂ui/∂xj + ∂uj/∂xi) through a

linear relationship, τij = KijmnEmn, where Kijmn is a fourth-order tensor consti-

tuted by 81 constant elements (see, e.g., Aris, 1962) that depends on the ther-

modynamic state of the �uid. The antisymmetric part of the velocity gradient,

Ωij = 1/2 (∂ui/∂xj − ∂uj/∂xi) represents rigid rotations of the �uid elements
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thus does not contribute to the stress. The expression for τij given above, simply

states that the each component of τij is linearly related to the nine components of

the rate-of-strain tensor Emn through the coe�cients of Kijmn. Since the rate-of-

strain tensor is symmetric, under the assumption of isotropic �uid and assuming

that pure volumetric changes do not a�ect the stress (Stokes hypothesis), the

well-known Newtonian constitutive equation is retrieved

Σij = −pδij + 2ηEij (2.4)

Eq. (2.4) takes its name in honour of Isaac Newton who was the �rst to hypoth-

esise that the force exchanged between two adjacent layers of �uid in relative

motion is related to the velocity gradient orthogonal to the direction of the mo-

tion through a constant of proportionality, which he called �lack of slipperiness�.

Nonetheless, this result is actually due to George Gabriel Stokes, who derived it

about two centuries after the publication of Newton's seminal work Philosophiae

Naturalis Principia Mathematica.

Plugging Eq. (2.4) into Cauchy equation (2.2), the familiar Navier-Stokes

equation for an incompressible �uid is retrieved

ρ
Du

Dt
= −∇p+ ρg+ η∇2u (2.5)

This equation takes its name after Stokes for his contribution, and the French

scientist Claude-Luis Navier, who was the �rst to arrive to this form of the mo-

mentum equation in 1822.

�Fluids with featureless microstructures are well described by the Newtonian

constitutive equation, which states that the stress tensor is proportional to the

shear rate tensor. Fluids with complex microstructures (. . . ) exhibit a wide

variety of behaviours.� In this quote from the book of Phan-Thien (Phan-Thien,

2002), it is implicitly stated that whenever we are in presence of �uids with

non-trivial microscopic con�gurations, as for the case of colloidal suspension of

rigid particles, emulsions and polymer solutions, for instance, the Newtonian

constitutive law can be inadequate to describe the �uid behaviour. Indeed, often
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more sophisticated models are required to describe the large variety of behaviours

one would observe in complex �uid �ows.

Newtonian �uids in isothermal conditions are characterised by two material

properties, ρ and η. On the other hand, when we are interested on the description

of non-Newtonian �uids, additional information might be required. In the Newto-

nian constitutive law, the viscosity is a constant that does not depend on the �ow

conditions, however there are many situations where this is not true. For example,

in many polymeric �uids the viscosity decreases for increasing shear rates (shear-

thinning behaviour) because as the shear rate increases the polymer molecules,

which at rest are in a relaxed state, tend to align with the local �ow �eld and

o�er less resistance to the motion. In other situations, the opposite behaviour is

observed: further increments of the shear rate bring to increments of the shear

viscosity. This shear-thickening e�ect is typical of colloidal suspensions of rigid

particles heavily concentrated. The shear rate dependence of the viscosity can be

modelled using a generalisation of the Newtonian constitutive law, therefore these

�uids are usually termed �generalised Newtonian �uids�. Another phenomenon

frequently reported in suspensions is the presence of a �yield stress�. In prac-

tice, below a certain stress threshold the material behaves as a solid, while above

the critical stress a �uid-like behaviour is observed. This phenomenon is indeed

very common and many substances that are very familiar to us, like mayonnaise,

toothpaste and mud, for instance, exhibit a yield stress. These �uids are usually

called viscoplastic or Bingham �uids. Another class of non-Newtonian �uids, that

under opportune conditions exhibit both viscous and elastic behaviours (one may

also say they possess �memory�, since the elastic response of a material depends

on its past stretching history) that are of great interest in many engineering and

scienti�c applications, are viscoelastic �uids. Even without introducing their for-

mal de�nition, it is clear that an appropriate constitutive model should include

at least an additional material constant since the elastic response depends on the

time history of the �ow. However, this would be the simplest possible scenario.

In practice, these �uids can exhibit a variety of other behaviours (such as those

discussed before) in addition to the elastic response, and supplementary material
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constants are often required to characterise their behaviour.

The subject of viscoelastic modelling is very broad and in continuous devel-

opment. Providing a detailed description is beyond the scope of the current work

and here we restrict our discussion to the description of the viscoelastic models

that are of interest for the present thesis.

2.3.1 The Maxwell and the Oldroyd-B models

In Chapter 5 and 6 the thermocapillary motion of a Newtonian deformable

droplet migrating through a viscoelastic Oldroyd-B �uid will be examined. In

the present section we will provide the derivation and a brief account of the main

features of this constitutive law which, despite its simplicity and limitations, still

represents one of the most employed viscoelastic models.

The �rst attempt to derive a constitutive equation capable of describing the

behaviour of materials showing both viscous and elastic properties is due to

Maxwell, who believed that gases under certain condition might be viscoelas-

tic. The underlying physical idea behind Maxwell's derivation consists on the

superposition of the viscous (Newtonian) and elastic (Hookean) responses of a

material in a single constitutive law. The interested reader is referred to Morri-

son (2001) or any other rheology textbooks for a detailed derivation. The model

proposed by Maxwell reads (see e.g., Bird et al. Vol. 1, 1987)

τxy +
η

G

∂τxy
∂t

= 2ηExy, (2.6)

where G is the elastic modulus of a purely elastic material, while the other quanti-

ties have the same meaning provided in the foregoing sections. Under appropriate

limiting conditions the model correctly reproduce either the behaviour of a vis-

cous (Newtonian) �uid, or the response of a linear elastic (Hookean) material.

The viscous behaviour is obtained when the second term of the left hand side

becomes negligible compared to the component of the stress. This condition can

be obtained, for instance, when the material constant ratio λ ≡ η/G (notice that

this quantity has the dimension of a time) is very small. On the other hand,
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when the term containing the partial time derivative becomes predominant, the

Hookean behaviour is recovered. Despite its simplicity, the model proposed by

Maxwell highlights some of the features typical of viscoelastic �ows and provides

the existence of a characteristic relaxation time, λ, that is ubiquitous in non-

Newtonian �uid mechanics. However, its validity is restricted to those situations

where the deformation of the �uid element is small due to the limitations imposed

by the Hookean (linear) constitutive law. Additionally, it can be shown that in

some circumstances it can predict a stress that depends on the particular frame of

reference adopted (see, for instance, the �turntable experiment� discussed in Bird

et al. Vol 1, 1987). This is indeed a serious limitation common to all those con-

stitutive laws belonging to the class of �linear models�, which drastically restrict

its usefulness for �ows of practical application.

The Maxwell model can be generalised in several ways. For instance, we can

write Eq. (2.6) in a form valid for any arbitrary small �uid element displacement

by replacing the stress component τxy with the stress tensor τ

τ + λ
∂τ

∂t
= η0D (2.7)

where D ≡ 2E and η0 is the zero shear viscosity (viz., the viscosity in the limiting

condition of vanishingly small shear rates). This latter quantity has been used

in place of the usual de�nition of viscosity to highlight the fact that in non-

Newtonian �uid mechanics the viscosity is in general a variable rather than a

constant.

Starting from Eq. (2.7), one can imagine to include other material constants

to obtain alternative generalisations. A variant of Eq. (2.7) was proposed by

Je�reys for the study of wave propagation on earth's mantle (Je�reys, 1929)

τ + λ
∂τ

∂t
= η0

(
D+ λr

∂D

∂t

)
. (2.8)

The additional material constant, λr, included in Eq. (2.8) represents what is

usually called �retardation time�: its value is not arbitrary, but is related to the

relaxation time with the following restriction λ > λr. Other generalisations are
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possible but will not be discussed here.

At this point we have all the elements necessary to introduce the Oldroyd-B

model. During the description of the Maxwell constitutive law it has been men-

tioned that linear models might not be frame of reference-invariant in some partic-

ular conditions. This issue arises the necessity to build more general constitutive

equations capable to describe any arbitrary �ow irrespective of the particular ref-

erence system adopted. In fact, all the constitutive models should be invariant

with respect to rigid body motion of the spatial frame of reference (principle of

�objectivity�). The basic mathematical foundation required to build models that

respect the principle of objectivity is due to Oldroyd (Oldroyd, 1950), who set out

the basis to write the constitutive equations in a frame invariance form adopting

coordinate systems advected with the material element. It is possible to show

then (see e.g., Chapter 9 of Bird et al. 1987) that a possible frame invariant form

of the Je�reys model given in Eq. (2.8) is readily obtained by substituting the

partial time derivatives with the so-called �upper-convected� derivative. We have

then

τ + λd̂τ = η0

(
D+ λrd̂D

)
, (2.9)

where

d̂ (·) =

(
∂

∂t
+ u · ∇

)
(·)−

{
∇uT · (·) + (·) · ∇u

}
(2.10)

is the upper-convected derivative operator. Eq. (2.9) is known in the literature as

upper-convected Je�reys model or Oldroyd-B model, who was the �rst to write it

in this form (Oldroyd, 1950). When λr = 0, Eq. (2.9) yields the upper-convected

form of the Maxwell model (UCM) seen before.

With some mathematical manipulations we can split the stress tensor into the

sum of a Newtonian (solvent) contribution, and a viscoelastic (polymer) contri-
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bution, τ = τs + τp, which allows us to re-write Eq. (2.9) as

τs = ηsD (2.11)

τp + λd̂τp = ηpD (2.12)

having introduced the solvent and polymer viscosities (notice that although it

is not infrequent to encounter viscoelastic �uids that are not polymeric solu-

tions, the common practice is to refer to a polymer viscosity meant as an ad-

ditional contribution to the viscosity to be attributed to the presence of elastic

microstructures dispersed into the Newtonian solvent), ηs and ηp de�ned such

that η0 = ηs + ηp = βη0 + (1− β) η0, where β = ηs/η0. In the subsequent chap-

ters we shall make use of this latter parameter or we will adopt, alternatively,

the quantity c = 1−β = ηp/η0, which provides a measure of the concentration of

polymers dispersed into the solution, depending on the convenience of the case

discussed.

It is possible to show that the present model is able to capture several features

typical of Boger �uids, viz., viscoelastic �uids having (nearly) constant shear

viscosity (see e.g., Bird et al. 1987 or Phan-Thien, 2002). For instance, in

the steady-state simple shear �ow, the Oldroyd-B model predicts a �rst normal

stress di�erence, N1 = τyy − τxx, that is quadratic with the shear rate and a zero

second normal stress di�erence, N2 = τyy − τzz; while in unsteady shear �ows,

the model predict stresses that increase monotonically in time to their steady

values without stress overshoot. As a major drawback, in the extensional �ow

it predicts an elongational viscosity (see below for a de�nition of this quantity)

that becomes in�nite for the �nite elongational rate of ε̇ = 1/2λ, as it is shown

in the following example.

Let us consider the start-up of a purely elongational �ow de�ned in the fol-

lowing manner

∇u = diag {ε̇,−1/2ε̇,−1/2ε̇} , (2.13)

having used the notation �diag� to indicate that the o�-diagonal element of the
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velocity gradient are zero. Using Eq. (2.12) we can �nd (cf. Phan-Thien, 2002)

τp,xx + λ (τ̇p,xx − 2ε̇τp,xx) = 2ηpε̇, (2.14)

τp,yy + λ (τ̇p,yy + ε̇τ̇p,yy) = −ηpε̇, (2.15)

that can be easily integrated to �nd

τp,xx =
2ηpε̇

1− 2λε̇

(
1− e−(1−2λε̇)t/λ

)
, (2.16)

τp,yy = τp,zz = − 2ηpε̇

1 + λε̇

(
1− e−(1+λε̇)t/λ

)
. (2.17)

We notice then, if either λε̇ ≥ 1/2 or λε̇ ≤ −1, one of the two components of the

stress grows unboundedly. The extensional viscosity is given by

ηext =
τxx − τyy

ε̇
= 3ηs +

3ηp
(1− 2λε̇) (1 + λε̇)

(2.18)

which shows the presence of the singularity mentioned before.

The Oldroyd-B model is often used to evaluate the role of elasticity without

introducing any complication related to the presence of shear dependent viscosity

e�ects. However its use is limited for relatively small values of the relaxation

time, imposing a severe restriction on the range of viscoelastic regimes that can

be explored

A possible way to partially overcome such limitation consists on the adoption

of a more realistic model for the polymer �lament, which can be obtained, for

instance, by limiting its maximum elongation, as in the class of models known as

Finite Extensible Non-linear Elastic models (FENE).

2.3.2 The FENE-CR model

Before starting the description of the FENE-CR model (Chilcott and Rallison,

1988), it is advisable to rewrite the Oldroyd-B model in terms of a tensor quantity,

A, usually termed conformation (or con�guration) tensor.

All the models discussed so far have been derived on the basis of a continuum
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approach without making any assumption about the actual microstructure of

the �uid. By contrast, the viscoelastic character is conferred to the �uid by

the presence of complex elastic structures (that might be in the form of small

�uid particles, as for the case of an emulsion, or long polymer chains, as in

polymeric solutions) that undergo deformation in relation to the stretch history

of the region of �uid in which they are placed in. Appears clear, thus, the

necessity to approach viscoelastic modelling adopting a more physically sound

methodology, which can take into account the actual microstructure of the �uid

even if with some degree of approximation. For such reason, in the past years

the role of statistical mechanics became increasingly more preponderant in the

discipline of �modelling� viscoelastic �uids.

When we consider a viscoelastic �uid in the sense depicted before, the simplest

model that can be used to describe an elastic microelement subjected to the

viscous drag of a Newtonian �uid is composed of two identical spheres of mass m

connected by a massless linear spring (dumbbell). The conformation tensor can

be de�ned then as the ensemble average of the dyadic product of the radius of

gyration, r, (end-to-end vector connecting the two extremities of the dumbbell)

of the polymer chain, A = 〈rr〉. Adopting this alternative representation, it

is possible to demonstrate (see, for instance Oliveira, 2009) that the following

equation

λd̂A = − (A− I) (2.19)

is equivalent to expression (2.12). The tensor, I, represent the identity tensor,

and the "relaxed" con�guration for the polymer molecules is represented the

condition A = I. The polymer stress tensor can be retrieved then using the

following expression due to Kramers (1946)

τp =
ηp
λ

(A− I) . (2.20)

The idea of Chilcott and Rallison (1988) was to reformulate the law expressed by

Eq. (2.19) by adopting a force model in which the spring maximum elongation
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was e�ectively bounded. The proposed model was

λd̂A = −f (tr (A)) (A− I) (2.21)

where f (tr (A)) = L2/(L2 − tr (A)) and L2 represents a quantity called exten-

sibility parameter, which accounts for the actual maximum elongation that the

spring can undergo. When f (tr (A)) = 1 (notice that tr (A) can be seen as

a measure of the deformation of the dumbbell), which corresponds to an in�-

nite extensibility of the polymer molecule (L2 → ∞ ), the Oldroyd-B model is

recovered.

Whenever we aim to study a �ow that shows elongational behaviour (even

locally, as for the cases of the moving droplet considered in Chapter 5 and 6),

the FENE-CR model allows the investigation of a wider range of relaxation times

when compared to the Oldroyd-B model.

Table 2.1 summarises the models discussed so far. Linear models can be re-

trieved by replacing the upper-convected derivative with the time partial deriva-

tive.

Table 2.1: Constitutive equations for the viscoelastic �uids discussed in the present Section.
The Newtonian constitutive equation has also been included for completeness.

Model Material constants Constitutive equations

Newtonian η0 τ = η0D

UCM η0, λ τ + λd̂τ = η0D

Oldroyd-B ηs, ηp, λ
τs = ηsD

τp + λd̂τp = ηpD

FENE-CR ηs, ηp, λ, L
2

τs = ηsD

λd̂A = − L2

L2−tr(A)
(A− I)

τp = ηp
λ

(A− I)
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2.4 Governing equations for thermocapillary �ows in the

presence of two immiscible phases

To introduce the complete set of equation required for the description of the

motion of �uid particles in non-isothermal conditions, let us consider a �ow system

constituted by two incompressible isotropic, homogeneous, immiscible viscoelastic

�uids. We postulate the presence of a thermal gradient that, at least in one point,

has a component tangential to the interface (it is worthwhile to emphasise that

only surface (or tangential) interfacial tension gradients are allowed, therefore

in order to produce thermocapillary motion, tangential temperature di�erences

must exist). Additionally, we assume the absence of gravity and any other long-

distance force. The motion of such system is then described by the following

set of conservation (mass, momentum and energy, in the order reported below)

equations

∇ · u = 0 (2.22)

ρ
Du

Dt
= −∇p+∇ · τ (2.23)

ρcp
DT

Dt
= κ∇2T (2.24)

for one phase, where T represents the absolute temperature, and

∇ · ũ = 0 (2.25)

ρ̃
Dũ

Dt
= −∇p̃+ η̃∇ · τ̃ (2.26)

ρ̃c̃p
DT̃

Dt
= κ̃∇2T̃ . (2.27)

for the other �uid, having adopted a �tilde� to underline the fact that variables

and material quantities are di�erent from one phase to the other. The material

parameters appearing in the energy equations (Eqs. 2.24 and 2.27) are the heat

capacity, cp, and thermal conductivity, κ. These two equations have been written

upon the hypothesis that the �uids obey Fourier's law of thermal conduction,
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q = −κ∇T , where q is the local heat �ux density. Under the hypothesis of

homogeneous and isotropic �uids, the thermal conductivity, κ, is a scalar that is

constant on each phase. In general, however, �uids might be non-homogeneous

and/or non-isotropic, hence the conductivity should be represented by a rank

2 tensor in which any component is a function of the position rather than a

constant. In viscoelastic �uids, for instance, the internal microstructure might

assume "preferential" directions upon the e�ect of local deformations, and the

hypothesis of isotropicity and homogeneity might not be realistic. Nevertheless,

for the sake of simplicity, in the following we shall assume that the thermal

conductivity is uniform everywhere within each phase.

To characterise the system completely, it is necessary to include a viscoelastic

model for each phase (in the present discussion we refer to the Oldroyd-B model

given by Eq. 2.9, but in principle any other model can be adopted)

τ + λd̂τ = η0

(
D+ λrd̂D

)
(2.28)

τ̃ + λ̃d̂τ̃ = η̃0

(
D̃ + λ̃rd̂D̃

)
(2.29)

and a law that relates the interfacial tension to the temperature. In most of the

cases, this variation is negative (regions of the interface at higher temperature

are characterised by lower values of the interfacial tension, see, e.g., Subramanian

and Balasubramanian, 2001), viz., σT = ∂σ/∂T < 0. Additionally, the problem

requires the de�nition of interfacial boundary conditions. The �uid interface is a

two-dimensional entity de�ned in a three-dimensional region of space, thus it can

be represented by the following implicit equation

F (x, t) = 0 (2.30)

where x is the position vector. Then, if we assume absence of mass exchange

between the two phases, each �uid particle that lies at the interface at a certain

instant will remain on it as the �ow evolves in time. In other terms, the material
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derivative of Eq. (2.30) must be zero, viz.

∂F (x, t)

∂t
+ u · ∇ [F (x, t)] = 0. (2.31)

From the above equation we can then de�ne the unit normal at the interface (we

assume positive the vector pointing from the phase designed with a tilde toward

the other one) as

n =
∇F
|∇F |

. (2.32)

Then, with the aid of this de�nition, from Eq. (2.31) we obtain

u · n = ũ · n = − 1

|∇F |
∂F

∂t
(2.33)

which represents a kinematic condition for the normal component of the velocity

at the interface. If the �uid surface does not evolve in time, Eq. (2.33) �nally

becomes

u · n = ũ · n = 0. (2.34)

which states that for steady state �ows, the two normal components of the ve-

locity at the interface must be zero. Additionally, we need to prescribe another

kinematic condition for the tangential velocity. In this case, it is common prac-

tice to postulate shear-free conditions, i.e., assume that the tangential velocities

inside and outside the drop are equal (Hadamard, 1911, Rybczynski, 1911), thus

we have

u · t = ũ · t (2.35)

where t is the tangent vector at the interface.

Since the above results does not specify the velocity itself, but rather relate the

�eld on both sides of the interface, we need to introduce additional conditions. On

the basis of physical considerations we observe that the stresses at the interface
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must be discontinuous due to the presence of capillary tension. Recalling the

de�nition of total stress given in Sect. 2.2, Σ = −pI+τ , the stress jump condition

is then given by

n ·
(
Σ− Σ̃

)
= σn (∇ · n)−∇S (σ) (2.36)

where the two terms in the right hand side represent the capillary and thermocap-

illary force, respectively and ∇S = ∇−n (n · ∇) is the surface gradient operator.

Projecting expression (2.36) along the normal and tangential direction, we obtain

the normal and tangential stress balance, respectively

p̃− p+ n · (τ − τ̃ ) · n = σ (∇ · n) (2.37)

[n · (τ − τ̃ )] · t = −∇S (σ) · t (2.38)

It is worth to notice that the balance (2.37) can be satis�ed either in the presence

or not of �uid motion, since the capillary force can be balanced only by the pres-

sure di�erence between the two phases if the �uid is at rest. On the contrary, in

presence of tangential interfacial tension gradients, Eq. (2.38) clearly shows that

a �ow at the interface must exist. Assuming that σ varies only with temperature

(i.e., we are excluding the presence of any other e�ect that might cause surface

tension gradients), upon the hypothesis that its rate of change is constant the

latter stress balance condition becomes

[n · (τ − τ̃ )] · t = −σT∇ST (2.39)

Additionally to the kinematic and stress conditions de�ned before, we need to

prescribe boundary conditions for the temperature �eld. Assuming that no phase

changes are allowed, the following equations must be satis�ed at each point of
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the interface

T = T̃ (2.40)

n · q = n · q̃ (2.41)

where q is represented by the above mentioned Fourier's law, q = −κ∇T , thus

Eq. 2.41 yields

n · κ∇T = n · κ̃∇T̃ (2.42)

In addition to the previous condition at the interface, closure of the mathematical

problem requires the adoption of supplementary boundary conditions to be speci-

�ed on the basis of the speci�c problem adopted (i.e., presence of solid boundaries

or not, presence of possible symmetries, etc.). Due to the generic nature of the

present discussion, these supplementary boundary conditions will be not intro-

duced at this stage, but will be introduced in the subsequent chapters where the

particular problems to be addressed are fully de�ned.

At this stage it is useful to introduce the nondimensional form of the governing

equations to show their dependence on the dimensionless parameters adopted for

the study of thermocapillary �ows. For such a purpose, it is convenient to refer

to the speci�c problem introduced below.

Let us consider the �ow sketched in Fig. 2.1, where a spherical �uid par-

ticle of radius R translates in the upward direction driven by thermocapillary

forces generated by a constant temperature gradient, ∇∞T . We choose the ra-

dius of the drop, R, as the reference length and de�ne the reference velocity,

UT = −σTR∇∞T/η0, having assumed that the thermocapillary stresses at the

interface generates velocity gradients having order of magnitude UT/R. The

stresses, including pressure, are nondimensionalised with the characteristic vis-

cous stress, η0UT/R. The temperature is made dimensionless by subtracting to

its value the initial undisturbed temperature at in�nity taken in the plane normal

to the direction of the mean motion passing through the centre of the drop, and

dividing it by the scaling temperature, R∇∞T . Finally, time is scaled with the
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Figure 2.1: Schematic of a droplet moving in the upward direction, including the Cartesian
and the spherical frame of references attached to its centre. Note that, coherently with the
choice of the frame of references, the far-�eld �ow appears directed downward.

characteristic convective time, R/UT . Using these scaling laws, we obtain the

following dimensionless form of the governing equations (mass is momentarily

excluded for the sake of brevity, since no dimensionless parameters will appear

on its equation) in the continuous phase are (notice that for the sake of simplicity

we have represented dimensionless quantities with the same symbols adopted for

the dimensioned ones)

Du

Dt
= − η0

ρRUT
∇p+

η0

ρRUT
∇ · τ (2.43)

DT

Dt
=

κ

ρcpRUT
∇2T (2.44)

τ +
λUT
R

d̂τ = D+
λrUT
R

d̂D (2.45)
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while in the dispersed phase are given by

Dũ

Dt
= −ρ

ρ̃

η0

RρUT
∇p+

ρ

ρ̃

η0

RρUT
∇ · τ̃ (2.46)

DT̃

Dt
=
ρcp
κ

κ̃

ρ̃c̃p

κ

ρcpRUT
∇2T̃ (2.47)

τ̃ +
λ̃

λ

λUT
R

d̂τ̃ =
η̃0

η0

D̃ +
η̃0

η0

λ̃r
λr

λr
λ

λUT
R

d̂D̃ (2.48)

Finally, the dimensionless form of the interfacial stress conditions are provided

by

p̃− p+ n · (τ − τ̃ ) · n =
σ

η0UT
(∇ · n) (2.49)

n · (τ − τ̃ ) · t = ∇ST · t (2.50)

Now, we can introduce the following set of dimensionless parameters. The �rst

group reported below is the Reynolds number, which compares the relative extent

of inertia respect to the magnitude of viscous forces. Here the Reynolds number

is de�ned as

Re =
ρRUT
η0

. (2.51)

This group, which is arguably the most important number used in �uid mechanics,

takes its name after the work of the British engineer Osborne Reynolds, who

introduced it to quantify the results of his studies about the transition from

laminar to turbulent regime in pipes.

The Marangoni number, which is named after the contribution of the Italian

physicist Carlo Marangoni here is de�ned as

Ma =
ρcpRUT

κ
. (2.52)

This parameter gives a measure of the relative importance of convective transport

of energy relative to its molecular counterpart (thermal di�usion). It can be seen

as a special case of the Peclet number, Pe = ρcpRU/κ, when the characteristic
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velocity of the �ow is taken as U = UT .

The Capillary number, which compares the importance of viscous e�ects rel-

ative to the interfacial tension force is de�ned as

Ca =
η0UT
σ

. (2.53)

Finally, we introduced a parameter that has been called �thermal� Deborah num-

ber (later on simply referred as Deborah number) de�ned as

DeT =
λUT
R

. (2.54)

This group represents the ratio between the relaxation time of the �uid and the

characteristic time of thermal convection, providing a measure of the unsteady-

ness introduced by viscoelasticity. The Deborah number takes its name from a

verse of the Bible, stating: "The mountains �owed before the Lord" in a song

sang by the prophet Deborah (Reiner, 1964). This de�nition emphasises the fact

that, if the period of observation of a phenomenon is su�ciently high, even ma-

terials that are usually termed as solids, can �ow. The adoption of this quantity

instead of the usual Deborah number, which is generally de�ned considering the

droplet migration speed, U , as a scaling velocity is twofold. On the �rst hand, it

allows the dimensionless description of the problem in a �conventional� way, since

for thermocapillary problems the Reynolds and Marangoni numbers are usually

de�ned in the manner reported above, and on the other one, as it will be clear in

Chapter 6, the non-Newtonian correction to the migration velocity will depend on

the Deborah number, thus the adoption of U as a scaling velocity would provide

an implicit representation of the droplet velocity. Contrarily, the adoption of UT

will avoid such complication.

Using these results, the dimensionless form of the governing equations and
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constitutive law become

∇ · u = 0 (2.55)

Re
Du

Dt
= −∇p+∇ · τ (2.56)

Ma
DT

Dt
= ∇2T (2.57)

τ +DeT d̂τ = D+ βDeT d̂D (2.58)

for the continuous phase, and

∇ · ũ = 0 (2.59)

δRe
Dũ

Dt
= −∇p̃+ α∇ · τ̃ (2.60)

Ma
DT̃

Dt
= αth∇2T̃ (2.61)

τ̃ + νDeT d̂τ̃ = α
(
D̃ + νrβDeT d̂D̃

)
(2.62)

for the dispersed phase. The additional parameters appearing in Eqs 2.59, 2.62

are the density ratio, δ = ρ̃/ρ, the viscosity ratio, α = η̃0/η0, the ratio between

the two thermal di�usivities, αth = (κ̃/ρ̃c̃p)/(κ/ρcp) and the ratios of relaxation

time and of retardation time, ν = λ̃/λ and νr = λ̃r/λr, respectively. We notice

that the Capillary number does not appear explicitly into the governing equations

listed above. We notice in fact that this group arises into the dimensionless form

of the normal stress condition (Eq. 2.63), as well as in the momentum balance

when we will adopt the so-called "one-�uid" formulation (cf. Sect. 2.5.1 and

Sect. 3.2)

p̃− p+ n · (τ − τ̃ ) · n =
1

Ca
(∇ · n) (2.63)

n · (τ − τ̃ ) · t = ∇ST · t (2.64)

The general solution of the system of equations (2.22-2.29) (or equivalently,

2.55-2.62) with the addition of the required boundary conditions is not available

for any arbitrary �ow. Nevertheless, in some limiting conditions it is actually
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possible to derive analytical solutions which, in spite of their �simpli�ed charac-

ter�, provide insightful information about the physics involved in more general

situations. For these reasons, during the past years a signi�cant amount of e�ort

has been dedicated to the derivation of analytical solutions for these type of �ows.

A thorough collection of these problems can be found in the book of Subramanian

and Balasubramanian (2001). In the subsequent section the discussion will be

limited to the simplest possible case (i.e., for Newtonian �ows in the absence of

convective transport) for the obvious reason that it is the most suitable for an

introduction to the problem and also because it will be constantly used for ref-

erence throughout the next chapters. Also, in the presentation of the numerical

methods introduced in Sect. 2.5, for the sake of simplicity, viscoelastic e�ects will

not be considered in the discussion. The speci�c methodology adopted for their

numerical characterisation will be introduced later in Chapter 5.

2.4.1 The analytical solution of Young, Goldstein and Block

Let us consider the �ow depicted in Fig. 2.1. Under the following assumptions:

• Newtonian �uids;

• Steady-state conditions;

• Absence of convective transport (both in terms of momentum and energy);

• Constant material properties (i.e., indi�erent to temperature variations);

• Constant rate of change of the interfacial tension with the temperature, i.e.,

σT = const;

it is possible to obtain a solution in �closed-form� of the governing equations in a

relatively straightforward manner. The problem was originally solved by Young

et al., (1959) and a detailed derivation will be provided in Chapter 6. In the

following we will limit ourselves to show the main result and discuss some of the

characteristic features of the �ow.

It can be shown that in the absence of gravity, the steady-state velocity of

the droplet is given by (it is worth to mention the presence of a typo in the

original paper of Young at al. (1959), thus the reader is referred, for instance, to
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Subramanian and Balasubramanian, 2001 for the correct expression of the result)

UY GB =
2 (−σT )R∇∞T/η

(2 + 3η̃/η) (2 + κ̃/κ)
(2.65)

where the subscript YGB stands for the names of the authors who derived the

above equation. From an inspection of Eq. (2.55) we can infer that the droplet

speed is a linear increasing function of the drop radius, of the temperature gradi-

ent as well as of the interfacial tension variation coe�cient. On the contrary, the

droplet speed decreases when the viscosity of the continuous phase is increased.

Moreover, when the drop viscosity tends to in�nity, which resembles the case

of a hard sphere, the speed correctly tends to zero. In the opposite scenario,

i.e., when η̃ approaches zero, the �uid particle behaves as a gas bubble and the

velocity is maximised. The only condition where the model fails to predict the

drop velocity is when the continuous phase viscosity approaches zero. In this

case the drop should not move at all because the hydrodynamic force on the

drop is proportional to η → 0, and the droplet would not experience any force

from the surrounding �uid regardless of the motion that might be present at the

interface and inside the drop. To see this from another perspective, the viscous

stresses generated inside the drop are actually internal forces (per unit surface)

of the system meant as a whole (drop and surrounding �uid) which cannot ac-

tually contribute to variation of linear momentum in a global sense. It is indeed

puzzling that despite the rigorous physical and mathematical formulation, the

solution seems to violate one of the conservation laws that constitutes the basis

for its derivation.

Understanding the role played by the thermal conductivity is a bit more in-

volved to grasp. In the simplest scenario of equal thermal conductivities, one

realises that the temperature pro�le is everywhere linear. In fact, since the ab-

sence of convection has been postulated, the thermal �eld at the interface will

develop coherently with the actual value of the thermal conductivity ratio be-

tween the two phases regardless the velocity �eld established in the region of the

drop. Thus, when the two �uids have the same thermal conductivity, the temper-
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Figure 2.2: Isotherms contours near a spherical droplet for (a) κ̃/κ = 10, and (b) κ̃/κ = 0.1.

ature distribution is linear everywhere and one would not be able to recognise the

presence of the drop from a simple inspection of the isotherms. On the contrary,

when the conductivity of the two �uids are di�erent, the thermal �eld around

the interface is distorted and the velocity of the droplet is a�ected consequently

(cf. Fig. 2.2). More speci�cally, when the drop conductivity is larger than that

of the continuous phase, the migration velocity decreases because the isotherms

show the tendency to �embrace� (being tangent to) the drop surface (Fig. 2.2a).

In other words, in such conditions the normal components of the temperature

gradients become comparatively larger than the tangential ones, which, for the

reasons discussed before, constitute the actual �driving force� of the system. In

the limiting condition of in�nitely large conductivity ratios, the interfacial ther-

mal gradients are exactly normal everywhere and the droplet velocity becomes

e�ectively zero. When the conductivity of the continuous phase is much larger

than that of the drop, on the other hand, the migration speed becomes larger

because in such a case the isotherms around the interface are more prone to be

oriented in the normal direction (Fig. 2.2b), i.e., the e�ective component of the

temperature gradient is maximised.

On deriving Eq. (2.55), the authors postulated a spherical shape for the drop

introducing a great simpli�cation in the analytical treatment of the problem.

However, as it will be shown in Chapter 6, it is possible to verify a posteriori

through the application of the normal stresses balance at the interface, that the

sphere is actually a con�guration of equilibrium for the droplet, provided that
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convective transport phenomena are totally absent. In simple terms, no matter

the actual value of the interfacial tension, in steady state conditions and absence

of convection the drop interface remains spherical. It is worth to point out that

similar arguments apply to the case of a drop subjected the combined e�ect

of gravity and thermocapillarity. Indeed, in the original derivation of Young

and co-workers, the gravitational contribution was actually included into the

governing equations. In this context however, the physical formulation has been

opportunely specialised accordingly to the nature of the problems that have been

considered for the present work, i.e., without taking into account the presence of

the gravitational contribution.

2.5 Numerical methodology

In a rigorous categorisation, the �ow of a system composed of two di�erent

immiscible �uids separated by an interface should be correctly referred to as

multi-�uid or two-�uid �ow, while the term multiphase �ow refers to another

category, including systems of �uids in the presence of their gaseous phase or

in presence of solid phases (particle-laden �ows). In this work however, due to

the general nature of the methods that will be described below, which can be

applied to both multi-liquid and multiphase (in the sense of the liquid-vapour

con�guration), we will simply refer to multiphase �ows, understood the exact

meaning that such de�nition assumes in the present context.

The numerical modelling of multiphase �ows constitutes a challenging task.

This is due in large measure, but not only, to the intrinsic di�culties related to

the necessity to handle complex topological changes, presence of discontinuities

across the interface and large separation of scales. During the past years, much

e�ort has been dedicated to develop reliable, e�cient and robust methods capable

of reproducing accurately the complexity of the physics involved in multiphase

�ows. Among the extraordinary large variety of methods proposed, it is possible

to separate them into four distinct classes of models: i) smoothed-particles hy-

drodynamics (SPH), ii) lattice Boltzmann methods (LBM), iii) methods based
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on a �two-�uids� model, and iv) methods based on a �single-�uid� approach. In

the present thesis only some speci�c sub-models belonging to the latter class (iv),

which are pertinent to the present study will be analysed.

Techniques based on the single-�uid approach (the meaning of this term will

be clari�ed in the following section), can be further subdivided in two main

categories, namely interface-tracking methods and interface capturing methods

(see, e.g., Tryggvason et al. 2011). In the former case, the interface is tracked by

means of Lagrangian markers, like in front-tracking methods and marker-and-cells

(MAC) method, while in the second methodology, the evolution of the interface

is implicitly captured by advecting a suitable �indicator function�. In the present

thesis, only two of the methods belonging to the interface-capturing category will

be examined in some detail; namely the Volume of Fluid method (VOF) and the

Level-Set method (LSM), since the solver adopted in the present work is based

on a hybrid combination of these two.

The details about the speci�c hybrid LS-VOF method adopted here will be

provided in the next chapter. In the present section, only some general informa-

tion which is common to the dozen of variants of VOF and Level-Set methods

proposed in the past will be discussed.

2.5.1 One-�uid formulation

In section 2.4, it has been shown that a possible way to deal with multi-

phase �ows is to de�ne two separate systems of governing equations (or more

generally, in a number equal to the number of phases required by the speci�c

problem) together with the de�nition of appropriate boundary conditions. An

alternative route is to consider the entire system as a single �uid experiencing

material properties jump across the interface. In such a way, there would be

no need to prescribe interfacial boundary conditions since the interfacial stresses

would be directly incorporated into the momentum equation in the form of vol-

ume forces applied in the region of the interface. The momentum-balance for

a Newtonian non-isothermal multiphase system written in the framework of the
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so-called one-�uid or single-�uid approach reads (see, e.g., Lappa, 2005)

ρ
Du

Dt
= −∇p+∇ · (ηD) + σknδS + σT∇STδS (2.66)

The two additional terms appearing in Eq. (2.66) are the capillary force, σknδS,

where k is the curvature of the interface, and the thermocapillary force, σT∇STδS,

where ∇ST is the surface temperature gradient. The term, δS, is a distribution

which allows to transform surface integrals into volume integrals in the following

way

∫
S

fSdS =

∫
V

fSδSdV (2.67)

When the quantity fS assumes the role of capillary and thermocapillary stresses,

the right hand side of Eq. (2.57) yields the two terms described above. Addition-

ally, it is worth to notice that in Eq. (2.56) the viscosity (as well as any other

material property that might be present in the governing equations) must be re-

garded as a variable, thus it has been therefore retained within the divergence

operator.

2.5.2 Volume of Fluid method

Historically, the �rst work on the Volume of Fluid method (VOF) dates back

to Noh and Woodward (1976), but it was only after the introduction of the

SOLA-VOF of Hirth and Nichols (1981) that became widely employed. Nowadays

the family of VOF methods is arguably one of the most employed strategies for

the numerical representation of �uid interfaces, and is constantly experiencing a

continuous process of improvement (Mirjalili et al. 2017). The motivation of its

success is due to several reasons:

1. Excellent mass preservation;

2. Ability to deal with complex topological changes (break-up and merging of

the interface is handled in a natural way);

3. Ease of parallel implementation;
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4. Relatively simple extension from two-dimension to three-dimension.

In the following, the basic features common to all VOF method will be presented.

Since the �ow is represented by a single set of equations solved on a �xed

grid, the di�erent �uids must be clearly identi�ed. This can be accomplished by

adopting an �indicator function�, Ii (x, t), de�ned in the following way

Ii (x, t) =

 1, if x is in fluid i

0, if x is not in fluid i
(2.68)

where ��uid i � is an arbitrary reference �uid which occupies the position x at the

instant t. If no phase changes are allowed, each �uid particle retains its �identity�

as it is advected by the �ow. In other words, the derivative of the indicator

function following the trajectory of the �uid particle is zero

DI
Dt

=
∂I
∂t

+ u · ∇ (I) = 0. (2.69)

On writing Eq. (2.69), the subscript �i � has been suppressed since the indicator

function of the two �uids (�uid 1 and �uid 2, we might say) are related by the

simple equation I1 (x, t) = 1 − I2 (x, t). The indicator function can be then

integrated over the computational cell (Γ) in the following manner

αk =
1

V

∫
Γ

I (x, t) dV , (2.70)

where V is the volume of the cell. Thus, the quantity αk assumes the simple

meaning of fractional volume of �uid enclosed into the computational cell. The

interface is then simply localised in all the cells such that 0 < αk < 1.

In order to derive the advection equation for the volume fraction (i.e., for the

interface), we take advantage of the conservation of mass general form (i.e., valid

for both compressible and incompressible �uids)

∂ρ

∂t
+∇ · (ρu) = 0, (2.71)

Using the indicator function, the generic material property �eld, χ (x, t), can be
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written as a linear combination of the two constant values assumed in the separate

phases, χ1 and χ2, in the following manner

χ (x, t) = χ1I (x, t) + χ2 (1− I (x, t)) (2.72)

Substituting Eq. (2.72) written for the case of the density into Eq. (2.61), and

integrating over the computational cell volume, it can be found that

∫
Γ

(ρ1 − ρ2)
∂I (x, t)

∂t
dV +

∫
Γ

∇ · [(ρ1 − ρ2) I (x, t)u] dV = 0 (2.73)

Finally, adopting the Liebniz integration rule, and considering the de�nition of

the volume fraction given in Eq. (2.70), it is possible to obtain an evolution

equation for this latter quantity

∂αk
∂t

+∇ · (uαk) = 0 (2.74)

The intrinsic mass preservation of the method stated before is then a direct conse-

quence of the fact that the advection algorithm is based on a precise conservation

law, as it is clari�ed by the derivation of Eq. (2.74).

Through the integration of Eq. (2.72), it is �nally possible to obtain the

expression of the generic material property written as a linear combination of the

volume fraction phase

χ = χ1αk + χ2 (1− αk) . (2.75)

The system of equations (2.71), (2.74) and (2.75) constitutes the essence of the

VOF method. However, the numerical problem is still indeterminate because

we need to provide a suitable model that relates the geometrical information

contained in the de�nition of the interfacial force to the volume fraction function.

The interfacial forces introduced in the previous sections have been de�ned in

the context of a continuum approach. Indeed, the one-�uid formulation is general

and can be in principle applied even without the necessity of its discretisation.
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Nevertheless, in order to provide the mathematical closure of the numerical prob-

lem and highlight some well-known issues typical of the method under discussion,

it is necessary to see the interfacial forces from a numerical perspective. A pos-

sible way to provide their discrete representation would be through the adoption

of the so-called continuum surface force model (CSF) of Brackbill et al. (1992),

in which the distribution, δS, can be numerically approximated as δS ≈ |∇hαk|,

where the subscript �h� has been added to underline the fact that the gradient

now is a discrete operator. Other numerical descriptions are possible, like, for in-

stance, the continuum surface stress (CSS) model or the parabolic reconstruction

of the surface tension (PROST), but are not used in this thesis and will not dis-

cussed here. A possible way to represent the normal and the curvature would be

(in the following the �≈� symbol is replaced by an �=� for the sake of simplicity,

understood that the next equations are discrete, i.e., approximate quantities)

nh (αk) = − ∇hαk
|∇hαk|

, (2.76)

kh (αk) = −∇ · nh = ∇ ·
(
∇hαk
|∇hαk|

)
. (2.77)

Inserting Eqs. (2.76) and (2.77) into the expression of the interfacial forces pro-

vided before gives

(σknδS)h = σkh (αk)nh (αk) |∇hαk| , (2.78)

(σT∇STδS)h = σT [I− nh (αk)nh (αk)]∇hT |∇hαk| (2.79)

On deriving expression (2.79), the surface gradient has been explicitly written

as the projection of the discrete temperature gradient, ∇hT , over the interface

by means of the operator I − nh (αk)nh (αk). It is clear then, that a precise

computation of the interfacial forces is subordinate to the accurate evaluation of

the gradient of the volume fraction αk, which is by de�nition a �sharp� function

across the interface. Speci�cally, if the capillary force (2.78) is not properly eval-

uated, the local imbalance of stresses that may occur would originate pressure

spikes at the interface that in turn will generate spurious (non-physical) velocity
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oscillations that might compromise the accuracy of the computation. This issue,

which is common to all the methods based on the one-�uid formulation, becomes

particularly problematic whenever the interfacial tension force prevails, imposing

stringent limitations on the range of �ow regimes that can be covered with the

numerical simulations. Adopting opportune smoothing kernels (see e.g., Tryg-

gvasonn et al. 2011) or molli�cation strategies (cf. Chapter 3) can bring about a

better evaluation of ∇hαk, which in general helps to reduce the level of spurious

velocities. As it will be shown in the next section, in the Level-Set method the

above mentioned issue is partially mitigated due to the intrinsic smooth nature

of the level-set function.

2.5.3 The Level-Set method

The �rst application of the Level-Set method in the �eld of multiphase �ows

dates back to the work of Sussman, Smereka and Osher (Sussman et al. 1994), in

which the method was used for the numerical computation of rising bubbles and

falling drops, however the method was initially developed for computer graphic

applications during the 1980s by the American scientists Stanley Osher and James

Sethian.

Contrarily to the VOF approach, in the Level-Set method the interface is

represented through a smooth function ϕk (x, t) called level-set function which

reverts its sign from one phase to the other. The boundary between the �uids is

located where the condition ϕk (x, t) = 0 applies, and the interface is implicitly

captured by advecting the level-set function in the following manner

∂ϕk
∂t

+ u · ∇ϕk = 0 (2.80)

The indicator function then is reconstructed from ϕk (x, t) as

I (ϕk) =


0, if ϕk < −ε∆x

1
2

(
1 + ϕk

ε∆x
+ sin(πϕk/ε∆x)

π

)
, if |ϕk| ≤ ε∆x

1, if ϕk > ε∆x

(2.81)
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In the above equation, ∆x represents the computational cell spacing and ε is an

empirical parameter. Similarly to the VOF method, it is possible to compute any

material �eld by means of the indicator function, viz.,

χ = χ1I (ϕk) + χ2 (1− I (ϕk)) . (2.82)

On advecting the level-set function then, a crucial requisite is that the indicator

function remains spread over the same number of cells in the whole interface. This

is unfortunately not the case since, when the interface is stretched the indicator

function tends to become thinner, and vice versa. In order to deal with this issue,

Sussman et al. (1994) proposed the following re-initialisation procedure

∂ϕk
∂τf

+ sgn (ϕk,0) (|∇ϕk| − 1) = 0, (2.83)

where τf is an arti�cial or �ctitious time step, and ϕk,0 is the level-set function at

the beginning of the computation. Solving Eq. (2.83) until the steady-state has

been reached, enforcing the condition |∇ϕk| = 1 guarantees that the indicator

function conserves the same slope (meant as the jump between the two phases)

everywhere. For slow moving interfaces, Eq. (2.83) needs to be solved only few

times during the computation, while in the presence of fast topological changes it

might be necessary to solve it at each time step. Unfortunately, such procedure

results in poor mass conservation in a measure directly proportional to the number

of re-initialisation steps which can only partially mitigated by the adoption of

speci�c countermeasures but not completely resolved. In spite of this, Level-

Set methods are still widely employed and in continuous development because

of their relative simplicity and generally better accuracy on the representation

of the interface. These characteristics become even more valuable when they are

used in combination with other methodologies (hybrid methods), like for instance

the VOF method (but not only) which is in general less accurate but preserves

mass in a natural way.

The hybrid methodology adopted in the present work is peculiar in a sense that

relies on speci�c variants of the most general interface capturing methodologies
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discussed so far. For such reason, we found advisable to postpone its description in

the subsequent Chapter 3, where a detailed discussion about the implementation

of the solver will be presented.
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Chapter 3

Implementation of a multiphase solver for the anal-

ysis of thermocapillary �ows based on a hybrid LS-

VOF approach

3.1 Introduction

The mathematical modelling and numerical simulation of non-isothermal multi-

phase �ows, in which interfacial phenomena are a relevant component, are both

demanding and highly complex. A number of e�ects resulting from the presence

of temperature di�erences must be adequately taken into account to make the

results of numerical simulations consistent and realistic. Moreover, in general,

gradients of surface tension at the interface separating two liquids are a source

of numerical issues that can delay (and in some circumstances even prevent) the

convergence of the solution algorithm.

Here, we propose a fundamental and concerted approach for the simulation of

the typical dynamics resulting from the presence of a dispersed phase in an exter-

nal matrix �uid under non-isothermal conditions based on the modular computer-

aided design, modelling, and simulation capabilities of the OpenFOAM environ-

ment. In the present chapter, we lay the general foundation of the solver used and

discuss its implementation starting from an already existing algorithm for mul-

tiphase �ows (Yamamoto et al. 2016). We discuss all of the steps necessary to

expand the range of treatable physical e�ects and describe in detail the counter-

measures taken to circumvent problematic issues associated with the simulation

of this kind of �ow. It should be noted that the numerical simulations presented
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in this chapter are fully three-dimensional and rely on an adaptive mesh re�ne-

ment (AMR) strategy for reducing the computational cost given the di�erent

space scales it involves.

The resulting framework is tested considering the migration of a droplet in-

duced by thermocapillary e�ects in the absence of gravity considering Newtonian

phases. The solver is �rst validated against the analytical solution of Young et al.

(1959) valid under vanishing Marangoni and Reynolds numbers, and against ex-

isting experiments performed under microgravity conditions, in which Marangoni

and Reynolds numbers are no longer negligibly small (Hadland et al. 1999).

3.2 Governing equations

Let us consider an incompressible multiphase system composed of two New-

tonian �uids (a droplet embedded in another immiscible �uid) subjected to a

constant temperature gradient ∇∞T . It has been shown in Sect. 2.4 that a pos-

sible way to approach the problem is to introduce two distinct phases, each with

its set of balance equations, and appropriate conditions at the interface to guar-

antee inter-phase coupling. However, in the present context, we are interested on

a numerical solution of the governing equations based on an interface-capturing

approach (coupled level-set volume of �uid method) which relies on the �one-�uid�

formulation introduced in Sect. 2.5.1. Assuming negligible gravitational e�ects

and the absence of any other external body force, the conservation of momentum

for Newtonian �uids can be written (notice that on writing the viscosity, the

subscript "0" has been suppressed since we are dealing with Newtonian phases)

ρ
Du

Dt
= −∇p+∇ ·

[
η
(
∇u+ (∇u)T

)]
+ fσ (3.1)

where fσ term is the force accounting for the capillary (fσ,n) and thermocapillary

(fσ,t) forces at the interface:

fσ = fσ,n + fσ,t = σ (T0) knδS +∇Sσ (T ) δS (3.2)
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Since the interfacial tension depends on the temperature T (T0 being a suitable

reference temperature), we have explicitly included the related dependence in Eq.

3.2. Closure of the mathematical model requires consideration of the conservation

of mass for incompressible �ows (Eq. 3.3) and the temperature transport equation

(Eq. 3.4):

∇ · u = 0, (3.3)

ρcp
DT

Dt
= ∇ · (κ∇T ) , (3.4)

Following common practice for this kind of problems (see, e.g., Yin, 2012), all

material properties are assumed to be constant in each phase and are evaluated

at a suitable reference temperature. The dependence on temperature, however,

is retained for the surface tension σ via a linear relationship:

σ (T ) = σ (T0) + σT (T − T0) (3.5)

Although the governing equations are solved in dimensional form, it is useful to

provide their dimensionless counterpart to show the dependence of various terms

to the dimensionless parameters in the context of the one-�uid formulation. Even

though in such a case the material parameters appearing in Eqs. (3.1-3.4) are

de�ned everywhere in the domain, i.e., each of them can be considered as a

single (variable) entity characteristic of the �uid as a whole (cf. Eq. 2.75),

it has been seen they can undergo discontinuity at the interface, thus, to each

phase will be generally attributed a di�erent constant value of each material

parameter. Di�erently from the discussion presented in Sect. 2.5.2, where the

material parameters of the two phases were indicated with the generic subscripts

"1" and "2", we will now di�erentiate the two �uids with the subscripts "m" and

"d" to indicate they belong to the matrix or to the droplet phase, respectively.

In such a case, the dimensionless groups introduced in Sect. 2.4 need to be

slightly reformulated for consistency to the de�nitions provided above, yielding,

Re = ρmRUT/ηm, Ma = ρmcp,mRUT/κm and Ca = ηmUT/σ, being the scaling
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velocity UT = −σTR∇∞T/ηm. Using these arguments, the dimensionless form of

the momentum and energy balance equation respectively become (as usual, now

all the variables must be now regarded as nondimensional)

ρrRe
Du

Dt
= −∇p+∇ ·

[
ηr
(
∇u+∇uT

)]
+

1

Ca
knδS

+ (T − T0) knδS +∇STδS (3.6)

ρrcp,rMa
Du

Dt
= ∇ · (κr∇T ) (3.7)

having introduced the "relative" material properties, de�ned as the ratio between

the generic property relative to the drop to the one of the continuous phase,

χr = χ/χm. It is worth to notice the presence of the additional capillary stress

term (T − T0) knδS which accounts for the non uniform distribution of the surface

tension at the interface produced by temperature gradients. It is possible to show

however, that such term can be safely neglected whenever the Capillary number

is su�ciently small (refer to Chapter 6 for a more detailed explanation). In the

following we will assume that such hypothesis is always veri�ed for our purposes,

thus the term under discussion will not be included in the implementation of our

code.

3.3 The Simpli�ed LS-VOF Method

Our solver relies on a simpli�ed coupled LS-VOF code based on the hybrid

formulation originally developed by Albadawi et al. (2013), (see also Sussman and

Puckett, (2000)) implemented into the framework of OpenFOAM (Yamamoto et

al. 2016) as an extension of the standard VOF solver �interFoam�.

In the algebraic volume of �uid �interFoam� solver available in OpenFOAM,

the volume fraction phase is advected using a surface compression approach in

combination with high-resolution numerical schemes, making unnecessary the ge-

ometric reconstruction of the interface. The main advantage of such procedure

lies on its robustness and ability to handle complex interfaces with a reduced com-

putational cost. Unfortunately, despite the above mentioned bene�ts, the method
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is generally less accurate than geometric VOF codes, especially for low Capillary

number �ows, where the accuracy on the evaluation of the interface geometrical

properties (namely, the unit normal and the curvature) is imperative. A possible

strategy to partially overcome such ine�ciencies without the necessity to imple-

ment complicated and computationally expensive geometric methodologies is to

combine the excellent mass preservation (in addition to the previous mentioned

strong points) of an algebraic VOF code with a generally more accurate level-set

method. In the following we describe brie�y the simpli�ed LS-VOF methodology

introduced by Albadawi et al. (2013).

The equation for the volume fraction solved in OpenFOAM reads

∂αk
∂t

+∇ · (αku) +∇ · (αk (1− αk)uc) = 0 (3.8)

where αk is the above mentioned volume fraction and uc is an arti�cial �com-

pressive velocity� (Berberovi¢ et al. 2009). We notice that Eq. (3.8) di�ers from

Eq. (2.74) from the presence of an additional term on the right hand side, which

serves to alleviate the numerical di�usion of the interface through the compressive

term that is active only in for 0 < αk < 1. To see the e�ect of this contribution

from a "kinematic" perspective, we can imagine the compressive velocity as an

e�ective additional velocity normal at the interface acting on both sides in the

same direction but opposite orientation (i.e., at each point, the resultant vector

is zero), which prevents the interface smearing in a measure directly proportional

to the extent of the velocity uc. From a numerical point of view, on the other

side, the presence of an additional convective term serves to counterbalance the

numerical error arising from the solution of the advection equation.

Although the hybrid implementation of Yamamoto et al. (2016) improved

the solver in terms of accuracy, we had to take additional countermeasures to �x

typical �algorithm stability� issues at the interface (where Marangoni stresses of

thermal nature are produced). This was accomplished by �proper� smoothing,

both of the level set and the volume of �uid phase functions, as further described

in Section 3.4.
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The resulting time-marching procedure can be outlined as follows: in order to

calculate the level set function ϕk, we �rst calculate the �eld ϕk,0 = (2αk − 1) Γ,

where Γ = 0.75∆x and ∆x is the grid resolution (see Albadawi at al. 2013).

Subsequently, the re-initialisation equation (Eq. 2.83) is solved with the initial

condition ϕk (x, 0) = ϕk,0 (x). Once the scalar �eld ϕk is known at each point, it

is possible to evaluate the curvature at the interface

k (ϕk) = −∇ · n (ϕk) , (3.9)

with n (ϕk) = ∇ϕk/|∇ϕk| being the unit normal at the interface. Finally, the

term described by Eq. 3.2 is evaluated, leading to the momentum equation cast

in compact form as

ρ
Du

Dt
= −∇p+∇ ·

[
η
(
∇u+ (∇u)T

)]
+ σk (ϕk) I (ϕk)∇ϕk + σT∇ST |∇αk| (3.10)

where I (ϕk) is given by Eq. 2.81.

3.4 Implementation of the thermal Marangoni migration

method in OpenFOAM

The solution strategy has been based on a classical Finite Volume Method

(FVM) approach relying on the governing equations cast in integral form over a

set of control volumes. More precisely, the equations have been solved in a Carte-

sian coordinate system using a three-dimensional mesh composed of hexahedrons

with the open-source tool-box OpenFOAM.

With OpenFOAM, as for all classical techniques pertaining to the so-called

category of fractional step methods (also known under several other names, such

as projection methods or pressure-based methods), the velocity and pressure �elds

are determined in a disjoint (sequential) manner. In particular, the pressure is

computed via the solution of a Poisson-like equation obtained combining the dis-

crete momentum equation and the continuity equation (the so-called PISO algo-
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rithm, see, e.g., Jang et al. 1986 or the exhaustive book by Moukalled et al. 2016

for additional details). The implementation of the PISO method in OpenFOAM

relies on a non-staggered collocation of the di�erent problem variables on the

underlying computational grid (which means all primitive variables are located

at the same grid points); in order to prevent the code from developing spurious

oscillations (caused by a not well-resolved coupling between pressure and veloc-

ity, see, e.g., Choi et al. 1994 and 1994a and references therein), the convective

�ux at each control volume face is determined resorting to the scheme originally

developed for Cartesian grids by Rhie and Chow, (1982) which in OpenFOAM

has been extended and adapted for generalised coordinates.

All the convective and di�usive terms are treated implicitly whereas other

source terms eventually present in the equations (i.e., the surface-tension term

in the momentum equation) are discretised explicitly. The solution of the energy

equation has been implemented in the classical segregated manner (see, e.g.,

Patankar and Spalding, 1972 and Van Doormaal and Raithby, 1985), i.e., the

momentum and energy equations are solved one at a time, with the coupling

implemented in an explicit way.

For all the cases, the �rst order accurate implicit Euler temporal scheme has

been used. The di�usive terms have been discretised using a standard central

di�erence scheme, while in the momentum and energy equations the convective

terms have been discretised using the QUICK scheme (Leonard, 1979). Such

choices proved to be the best compromise in terms of 1) algorithm stability, 2)

mesh convergence, and 3) numerical accuracy (the reader is referred to the grid-

re�nement tests and the validation studies reported in Sect. 3.5.2).

In addition to the above careful treatment, we had to use properly molli�ed

variables to increase algorithm stability and mitigate unphysical e�ects at the

interface. More precisely, the smoothing was applied to each �relevant variable�

(representing various variables required by the LS and VOF implementation in

di�erent parts of the solver, as needed) using a �pure di�usive� evolution equation

ςn+1
k,mol = ςnk,mol +

(
∇2ςnk,mol

)
∆τmol (3.11)
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where τmol is an arti�cial or �ctitious time, to be solved with the initial condition

for a pre�xed number of cycles n (the condition n = 0 corresponding to the

recovery of the original non-smoothed function). ∆τmol is de�ned according to

the following well-known numerical stability criterion (see, e.g., Fletcher, 1991):

∆τmol =
0.52

(1/∆x)2 + (1/∆y)2 + (1/∆z)2 (3.12)

We used molli�ed quantities to evaluate the new curvature at each time step, i.e.,

kϕ,mol = −∇ · nϕ,mol = −∇ · ∇ϕk,mol
|∇ϕk,mol|

, (3.13)

where ϕk,mol is the smoothed version of ϕk.

As discussed in Section 3.2, accounting for surface-tension e�ects requires

two additional source terms in the momentum equation (see Eq. 3.2). In the

framework of an optimisation strategy based on a trial-and-error approach, we

could obtain the best results using the molli�ed level set function to determine

the unit vector perpendicular to the interface (and the corresponding tangent unit

vector) and retaining a non-molli�ed volume fraction in the gradient appearing in

the expression of the thermal contribution (see Eq. 3.13). The level set function

was also used accordingly to determine the curvature.

fσ,t = σT∇ST |∇αk| = σT (I− nϕ,molnϕ,mol)∇T |∇αk| (3.14)

Following common practice in the literature (Brackbill et al. 1992), the smoothing

philosophy can also been applied to the �uid properties (assumed to be constant in

each phase) in order to prevent the algorithm from developing spurious oscillations

due to the discontinuity established at the liquid-liquid interface. In our hybrid

implementation, we decided to rely on a standard VOF approach, expressing each

property as

χ = αk,molχd + (1− αk,mol)χm (3.15)
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In order to improve the accuracy without increasing too much the computa-

tional cost (the considered problem is 3D), we also deemed it necessary to use

an adaptive mesh re�nement technique (especially for relatively high values of

the Marangoni number for which relatively thin thermal boundary layers tend

to emerge at the matrix-droplet interface). The approach implemented in Open-

FOAM is based on the h-re�nement strategy (see, e.g., Kittur and Huston, 1989),

in which additional computational points are inserted locally in some regions

without disturbing the rest of the mesh. It is also possible to remove points from

regions in which they are no longer necessary through an �unre�nement proce-

dure�. To de�ne the regions to be enriched with additional points we have used

as a controlling variable, a molli�ed scalar �eld, α∗k,mol, expressly de�ned for such

a purpose and de�ned using the volume fraction αk (with points being dynam-

ically added to the region where α∗k,mol > α∗k,thr and removed from the rest of

the domain). The method is particularly suitable for problems with discontinu-

ous properties such as those considered here (Coelho et al., 1991 Vilsmeier and

HÄanel, 1993 and Fuster et al., 2009).

Special care has also been devoted to the solution of the energy equation.

Some mathematical manipulations were indeed necessary to increase algorithm

stability and its related ability to reproduce available test cases in the literature

(as discussed later in this chapter). We rearranged the energy equation (Eq. 3.4)

as follows: by introducing the thermal di�usivity Dth = κ/ρcp and considering

that all the �uid material properties can, in general, change across the interface

we have

∇ · (Dth∇T ) = Dth∇2T +∇Dth · ∇T (3.16)

which can be re-arranged as follow

Dth∇2T = ∇ · (Dth∇T )−∇Dth · ∇T (3.17)
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furthermore, dividing both sides of Eq. 3.4 by ρcp we �nd

1

ρcp
∇ · (κ∇T ) =

κ

ρcp
∇2T +

1

ρcp
∇κ · ∇T = Dth∇2T +

1

ρcp
∇κ · ∇T (3.18)

Finally, by substituting Eq. 3.17 into Eq. 3.18 we obtained the following equiva-

lent expression for the energy equation:

DT

Dt
= ∇ · (Dth∇T ) +

1

ρcp
∇κ · ∇T −∇Dth · ∇T. (3.19)

3.4.1 Solution procedure

The di�erent macro-steps in which our algorithm has been articulated can be

summarised as follows:

1. Set the boundary and initial conditions;

2. Solve the re-initialization equation (Eq. 2.83);

3. Solve the di�usion equation (Eq. 3.11) to obtain the smoothed level-set

function ϕk,mol;

4. Solve the equation for the volume fraction (Eq. 3.8) using the MULES

algorithm (see, e.g., the OpenFOAM user guide, 2008) to guarantee the

boundedness of the scalar �eld. Applying the Gauss theorem, the integra-

tion of Eq. 3.6 leads to

∫
Γc.i

∂αk
∂t

dV +

∫
∂Γc.i

(αku+ αk (1− αk)uc) · nfdS = 0 (3.20)

where Γc,i is the volume of the computation cell i and ∂Γc,i its boundary.

Using the forward Euler scheme, the discrete counterpart of Eq. 3.20 can

be written as

∣∣Γc,i∣∣ (αk)
n+1
c,i − (αk)

n
c,i

∆t
= −

∑
fc,i

F n
u −

∑
fc,i

ζMF
n
c (3.21)

where the �ux term Fu arises from the integration of ∇·(αku), the subscript

fc,i indicates the face of the cell i, and the term Fc is a linear combination
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of the �ux associated with the integration of the compressive term ∇ ·

(αk (1− αk)uc) and the previous �ux Fu. The coe�cient ζM appearing in

the second term in the right hand side of Eq. 3.21 is the MULES limiter.

The term Fc is active only across the interface, where ζM = 1, on the other

hand, away from the interface, ζM = 0, which makes Fc inactive. The e�ect

of the limiter is therefore to split the numerical treatment of the advection

term in two parts: away from the interface, the second summation appearing

in Eq. 3.21 is set to zero, and Fu is treated with an upwind scheme, while

across the interface, where a better accuracy is required, a higher order

scheme is employed. This strategy allows to reduce the computational e�ort

by activating the more accurate scheme only in the region of the interface,

where higher accuracy is required. Finally, the compressive velocity uc

de�ned previously takes the following form

uc = min

[
Cα
|uf · Sf |
|Sf |

,max

(
|uf · Sf |
|Sf |

)]
nf (3.22)

Here, uf , Sf and nf are the value of the velocity interpolated at the cell

face, cell face area vector and cell face normal, respectively. The numeric

constant, Cα, is a user de�ned parameter and usually is set in the range 0

(the compressive velocity is inactive) to 2. Larger values of Cα correspond

to a sharper interface but higher spurious currents. In our simulations we

used Cα = 2 for all the cases;

5. Solve the energy equation (Eq. 3.16);

6. Compute the thermal Marangoni force fσ,t (cf. Eq. 3.2);

7. Calculate the velocity and pressure �eld using a projection method (PISO

algorithm);

8. Go back to step 1 or end of calculation.
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3.5 Solver validation

3.5.1 Drop migration velocity in the absence of convective transport

As indicated in Sect. 3.4, our overall framework has been built via the inte-

gration of self-contained modules, which could be individually tested. However,

because it is crucial that the entire numerical architecture be tested as a single

integrated unit, we considered available solutions in the literature for comparison.

In order to validate our code, in particular, we focused on the thermocapillary

motion of a spherical Newtonian droplet of radius R in a constant temperature

gradient ∇∞T embedded in an uncon�ned Newtonian matrix in the limiting case

of (Ma,Re)→ 0 and negligible buoyancy e�ects. As discussed in Sect. 2.4.1, in

such a case, an analytical solution exists for the velocity of the droplet calculated

by Young et al. 1959 (Eq. 2.65). In our simulations, we assumed conditions

corresponding to the following set of (non-dimensional) characteristic numbers:

Pr = 0.1, Re = 1.0×10−4, Ma = 1.0×10−5 and Ca = 2.0×10−1. For simplicity,

we considered the �uid material parameters to be the same for both �uids (i.e.,

unit �uid property ratios). Assuming the radius of the droplet to be R = 0.5 cm,

we �xed the size of the external container to (6× 4.5× 4.5) cm3 corresponding

to a con�nement ratio C = 2R/w = 0.22, where w represents the width of the

cross-section of the domain. This size is intended to mimic the e�ective geometry

of the container used in the experiments by Hadland et al. (1999) (illustrated in

Fig. 3.1) for the reasons that will appear clear in the next section. In spite of the

presence of con�nement, it will be shown that the particular conditions consid-

ered here are such that the drop can reach the theoretical velocity predicted by

the YGB theory with su�cient accuracy.

The simulations have been performed adopting a structured mesh with 85×

64 × 64 elements adaptively re�ned in the region of the drop (cf. Fig 3.3). For

the boundary conditions, we have applied no-slip and no-through �ow conditions

for the velocity and �zeroGradient� for the pressure at each wall of the container

(a reference pressure equal to 0 has been set at the centre of the �cold� wall).

For the temperature, we set constant values at the �cold� and �hot� sides and
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Figure 3.1: Schematics of the parallelepipedic con�guration (equivalent to the experiment of
Hadland et al. 1999) and coordinate axes considered in the numerical study.

adiabatic (�zeroGradient�) conditions in the rest of the boundaries of the domain.

All simulations were executed applying two (n = 2) cycles of smoothing for the

Figure 3.2: Temporal evolution of the drop migration velocity normalised with the theoretical
value of Young et al. (1959) obtained in conditions of negligible convective transport.

Level Set function ϕk (for n < 2 the solution was found to be inaccurate, whilst

for n > 2 no appreciable improvement have been observed), whilst the time step

has been selected on the basis of stability considerations (see, e.g., Galusinski and
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Vigneaux, 2008).

∆t ≤ 0.5

C2
η∆x

σ
+

√(
C2
η∆x

σ

)2

+ 4C1
ρ∆x3

σ

 (3.23)

where C1 and C2 are coe�cients that depend on the particular solver used (as

indicated by Deshpande et al. 2012). Fig. 3.2 shows the dimensionless migration

velocity as a function of the dimensionless time t′ = ηm/|σT | ∇∞T for the same

case. After the transient, the droplet reaches a steady state in which its �nal

migration velocity is in excellent agreement with the predictions of the YGB

theory.

3.5.2 Comparison with existing experiments in microgravity condi-

tions

In the previous section, the performance of our solver has been assessed in the

limiting case of vanishing Marangoni and Reynolds numbers for which the veloc-

ity can be expressed via the so-called Young formula. In this section, we focus on

the case where thermal and momentum convective terms play a key role, i.e., �-

nite values of the Marangoni and Reynolds numbers. In particular, the reliability

and accuracy of the code are tested considering the experimental measurements

of Hadland et al. (1999) (cf. Sect. 1.2.1) obtained in microgravity conditions

during a NASA space shuttle mission in which the thermal Marangoni migration

of a �uorinert drop enclosed in a box �lled with silicone oil was examined. The

experiments were conducted using the same domain considered in Sect 3.5.1 (i.e.,

the box with a square cross-section (4.5× 4.5) cm2 and a height of 6 cm shown

in Fig. 3.1). Droplets of di�erent diameters were considered so that a relatively

large range of Marangoni numbers was covered (from approximately 10 to 4000).

An imposed temperature gradient was applied by maintaining two opposite sides

of the domain at a di�erent temperature. As the droplet moved from the cold

region to the hot region, its position was monitored and recorded using a motion

picture camera. Table 3.1 summarises the �uid properties adopted during the

experiments, which have been also considered for our numerical simulations.
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Table 3.1: Fluid properties adopted for the simulations (density and viscosity have been
calculated at the average temperature of 313K using the correlations available in Hadland et
al. 1999).

ρ [kg/m] η [Pa s] κ [W/ (m K)] cp [J/ (kg K)] Pr [-]

Matrix 918.3 0.00729 0.1339 1778 98.86

Drop 1728 0.00102 0.0630 1047 17.03

Our goal is to test the solver considering e�ective conditions, i.e., adopting the

same geometrical constraints and �ow conditions of a real experiment and per-

forming fully three-dimensional (3D) simulations (most of past results available

in the literature have been obtained under the approximation of axisymmetric

�ow). In addition, using this test case we were able to test the implementation

in the presence of property jumps at the interface, which is usually problematic

to handle with interface capturing methods.

As outlined in the previous section, to discretise the domain we have used the

adaptive mesh capabilities o�ered by the OpenFOAM platform in order to ensure

a su�ciently re�ned mesh in the region of the droplet, where a better resolution

is required (the re�nement being applied essentially to the whole drop and its

surrounding area). In order to assess the sensitivity of the solution to the mesh

density, we conducted a set of simulations (at a fairly high value of the Marangoni

number (Ma = 100) as a representative reference condition) considering three

di�erent levels of re�nement (indicated byM1,M2 andM3, cf. Table 3.2) obtained

by halving the mesh spacing at each re�nement.

Table 3.2: Characteristics of the meshes used for the mesh-independence assessment study

Mesh M1 Mesh M2 Mesh M3

Nr of cells per drop diameter 28 56 112

Grid resolution (∆x = ∆y = ∆z) 0.0003572 0.0001786 0.0000893

On the basis of the results provided by the mesh independence study sum-

marised in Fig. 3.3a, we could discern the minimum resolution needed to obtain

grid-independent results (the resolution named �M2� in Table 3.2). Note that,
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Figure 3.3: a) Outcomes of the 3D mesh re�nement study forMa = 100 (scaled droplet velocity
for three di�erent mesh resolutions); b) Adaptively re�ned 3D mesh with �local� resolution M2

in the center-lane y = 2.25.

while mesh M1 is not resolved enough to capture the thermal boundary layer es-

tablished in the front region of the droplet (we performed this study considering

Ma = 100, thus a thermal boundary layer is expected to be established in the

front region of the droplet), meshes M2 and M3 capture the physics correctly, as

shown by the migration velocity results in Fig. 3.3a, which converge to very sim-

ilar values of the �nal velocity (percentage di�erence for the �nal velocity smaller

than 1%). It is worth pointing out that a uniform 3D mesh having the same

resolution throughout the domain would have required 26 millions of cells, which

has to be regarded as an almost �prohibitive task� in the context of a parametric

analysis such as that conducted in the present work.

Figure 3.4 shows the drop migration velocity normalised with the theoretical

velocity predicted by the model of Young et al. (1959) as a function of the

dimensionless time. A range of di�erent values of the Marangoni number (from

2 up to 500) has been considered. For Ma up to 100, in agreement with previous

simulations (see e.g. Yin et al. 2012) our results have con�rmed that after an

initial transient time the droplet velocity reaches a plateau region, attaining a

steady state. For the highest values of Ma considered here (Ma = 200 and 500),

however, the size of the considered domain was not su�ciently long to allow the

droplet to reach such a state. As an example, for such values of the Marangoni

number, Yin et al. (2012) showed that after attaining the �rst plateau region
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Figure 3.4: Time evolution of the normalised droplet velocity for di�erent values of the
Marangoni number.

visible in Fig. 3.4, the velocity would rise again and tend to a second plateau).

In order to assess expressly the in�uence of the domain extension for such values

of the Marangoni number, we performed an additional simulation using a (two

times) larger domain length for the case forMa = 200. The results, summarised in

Fig. 3.5 con�rm that after the �rst plateau the droplet undergoes a second stage

of acceleration and eventually its speed converges to a �nal steady state value

(the �nal velocity obtained in our simulation has been found to be in qualitative

agreement with the result obtained by Yin et al. (2012) in similar conditions).

In order to compare our numerical results with the experiments of Hadland

et al. 1999, we followed the same procedure used in the experiments, i.e., we

considered for comparison the velocity attained by the droplet at z ∼ 4 cm. Fig.

3.6 summarises our results on the e�ect of Marangoni number on the scaled mi-

gration and compares them to previous works in the literature, showing the good

agreement between our results and the experiments of Hadland et al. (1999).

Notice also the agreement between our data and the simulations by Ma (1999)

for Marangoni up to 100. Above this value the two trends deviate considerably.

Such di�erences might be explained by the limited extension of the geometry.
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Figure 3.5: Normalised droplet velocity for Ma = 200 as a function of the dimensionless time
in a domain two times longer than that used in the previous simulations.

As previously pointed out, for Marangoni numbers larger than 100 the distance

covered by the droplet required to reach a �nal steady state increases consid-

erably and, therefore during the experiments the droplet did not have enough

time to reach the terminal velocity. By considering exactly the same domain of

the experiments in our simulations, our results are able to capture correctly the

experimental trend.

3.6 Conclusions

In this chapter, we addressed the question of how a typical numerical frame-

work for isothermal multi-phase �ows can be adequately extended to make it

suitable for the simulation of phenomena in which surface-tension gradients act

as the main �ow or pattern driver. In particular, starting from existing implemen-

tations in OpenFOAM of moving-boundary methods, some e�ort has been put

into strengthening the used approach by incorporating the possibility of account-

ing for thermal e�ects of di�erent nature in the algorithm. Special care has been

devoted to numerical stability issues that are typical of such problems (in which

the phenomena occurring in a limited neighbourhood of the interface separating
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Figure 3.6: E�ect of the Marangoni number on the normalised velocity. The dashed red line
represents a spline �t to our numerical results (open triangles), the closed triangles represent
experimental results; and the open symbols (squares and diamonds) correspond to numerical
predictions from other authors.

the two liquids play a �crucial role�). The framework has been tested against the

well established analytical results of Young et al. (1959) obtained in absence of

convective transport (i.e., for (Re,Ma) → 0), and considering the experimental

results by Hadland et al. (1999) where property jumps, e�ect of inertia and con-

vective transport of energy are considered. The numerical predictions have been

found to be in excellent agreement with all test cases considered.
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Chapter 4

Walls and domain shape e�ects on the thermocap-

illary migration phenomenon

4.1 Introduction

The thermocapillary motion of liquid droplets in �uid media depends on a

variety of in�uential factors, including the not yet fully understood role played

by the presence of the walls and other geometrical constraints, such as the e�ect

of con�nement, the initial (symmetric or asymmetric) position of the droplet and

its proximity to solid walls, and the shape of the considered container. Apart from

the general interest from the point of view of applied mathematics, wall-e�ects

and geometrical constraints in general (see e.g. Meyyappan et al. 1981) may

be an important source of discrepancies observed between idealised numerical

simulations (carried out under the assumption that the droplet motion is initially

located exactly at the �centre� of the container, e.g., the symmetry axis for a

cylindrical container) and the results provided by experiments. In fact, results

obtained in microgravity environments, such as in sounding rockets (see, e.g.,

Wozniak, 1991) or in the Space Shuttles (Balasubramaniam et al. 1996 and

Hadland et al. 1999) have provided disjoint glimpses of a range of qualitatively

and quantitatively di�erent results in widely di�erent parts of the parameter

space.

In this chapter, our �nal aim is the proper discernment of the triadic relation-

ship established among viscous phenomena, thermal e�ects and other speci�c

behaviour due to the proximity of the droplet to one or more solid boundaries.
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Di�erent geometric con�gurations are considered, including straight, converging

and diverging channels, droplets under di�erent con�nement, as well as the asym-

metric proximity of the droplets to a single or adjacent sidewalls. Distinct bound-

ary conditions and �ow regimes are also examined, including both (Ma;Re)→ 0

and non-negligible Ma �ows. In all the cases discussed in this chapter, both the

dispersed and the matrix �uids are assumed to be Newtonian and solid bound-

aries are considered to be adiabatic unless stated otherwise as in the analysis

discussed in Sect 4.3.

4.2 E�ect of the walls on the motion of an o�-centred

droplet

In this section, we study the dynamics of the wall-droplet interaction for the

same parallelepipedic domain, same droplet radius and �uid properties adopted

in the previous chapter corresponding to the experimental set-up of Hadland

et al. (1999). However, to assess the e�ect of the proximity to the wall, we

performed a series of numerical experiments releasing the drop with an initial

�o�-set� position with respect to the centre of the channel as schematically shown

in Fig. 4.1. In section 4.2.1, we analyse the case of an o�-centred droplet by

varying its initial position in the x -direction (this situation is referred to as the

droplet-near-side �NS� case, Fig. 4.1a) whilst in Section 4.2.2, we look at the

�joint� e�ects produced by the proximity of the droplet to two sidewalls (by

setting the droplet o�-set in both x - and y- directions, this con�guration will be

referred to as the droplet-near-corner �NC� case). To the best of our knowledge,

no simulations or experiments have been expressly devoted to addressing this

problem. In order to quantify the �proximity� of the droplet to the wall (i.e.,

the drop interface-wall distance), and to give a measure of how far its centre is

set away from the centre of the channel, conveniently, we de�ne the following

two dimensionless parameters: the �degree of proximity� θ = R/(s−R), and

the �o�-set parameter� e = (d− s)/d (refer to Fig. 4.1 for the de�nition of the
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Figure 4.1: a) Sketch of the domain in a plane normal to the direction of the motion: a)
o�-set droplet, with relevant variables used to de�ne its initial position. b) Initial position of
the droplets for all the con�gurations considered.

geometrical variables). These two quantities are obviously related to each other:

θ =
1

d/R (1− e)− 1
(4.1)

4.2.1 Proximity to a side-wall

In our analysis, we studied three di�erent initial con�gurations in which the

parameter e was e = 0.25 (NS1, θ = 0.42), e = 0.50 (NS2, θ = 0.8) and

e = 0.73 (NS3, θ = 4.65), with the latter corresponding to a distance d−s ∼ 3R,

in addition to the original case for e = 0 (θ = 0.286) considered previously

in Chapter 3. In order to assess wall e�ects in two di�erent cases for which

the role of the temperature �eld is expected to be di�erent, two distinct �ow

regimes with Ma = O (1) and Ma = O (102) are considered, namely Ma = 2 and

Ma = 100, (notice that for the matrix liquid Pr ≈ 100, therefore the Reynolds

number is Re < O (1) and Re = O (1), respectively). While in the �rst case,

both the convective transport of momentum and energy can be assumed to be

negligible (creeping �ow conditions), in the latter case they can not (especially the

convective transport of heat, which is expected to produce signi�cant distortions

in the temperature �eld with respect to purely di�usive, i.e., thermally strati�ed,

conditions).

The di�erences between these two regimes in terms of behaviour of the non-

centred droplet can be clearly appreciated in Fig. 4.2, which shows the droplet
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Figure 4.2: E�ect of the proximity to a side-wall on the normalised migration velocity for two
di�erent �ow regimes. The lines are a guide to the eye.

migration velocity normalised using the velocity it would reach if it was released

from the centre of the domain (i.e., the steady-state velocity for e = 0) as func-

tion of the parameter θ. The results indicate that in both regimes, as the drop

is released in a position increasingly closer to the wall, the migration velocity de-

creases. However, such a decrease is enhanced for larger values of the Marangoni

number. For Ma = 2 when e = 0.25 (θ = 0.42), the droplet does not �feel� any

wall e�ect. On the other hand, at Ma = 100, the droplet undergoes a signi�-

cant decrease in speed even for relatively small values of e. Such results suggest

that for the particular geometry adopted by Hadland et al. (1999) for large Ma,

even relatively small departures from the condition of perfectly centred droplet

might in�uence the observed droplet dynamics and velocity of migration. As an-

ticipated, this scenario can be explained by considering the speci�c behaviour of

the temperature �eld. At Ma = 2, the temperature �eld attains a quasi-linear

distribution (see Fig. 4.3a for the case in which the droplet was released at the

closest position next to the wall (e = 0.73)). In such circumstances it is clear

that most of the deceleration produced by the proximity to the side wall has to

be ascribed to kinematic e�ects (the increased viscous drag to which the droplet

is subjected owing to its interaction with the side wall, which leads to an increase

in the shear stresses in the region between the droplet and the wall). For larger
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Figure 4.3: Temperature �eld and thermocapillary force contours in the �NS3� case (e = 0.73,
θ = 4.65) for a) Ma = 2, b) Ma = 100. For Ma = 2, the thermocapillary force varies from
a minimum of 0 (blue contour) to a maximum of 0.177 Nm−3 in the region of the interface.
For Ma = 100, the thermocapillary forces varies from 0 to ∼ 6.4 Nm−3 in the region of the
interface.

values of the Marangoni number, however, the distortion of the temperature �eld

due to its interaction with the droplet motion becomes signi�cant and this, in

turn, has a back e�ect on the velocity of the droplet itself (when the droplet is

located close to the wall, such a proximity has an impact on the thermal �eld,

which becomes highly distorted as shown in Fig. 4.3b). As a natural consequence,

the distribution of thermocapillary stresses at the droplet surface changes with

respect to the case in which the droplet is far from the wall (most remarkably, the

resulting Marangoni force is no longer oriented along a direction parallel to the

imposed temperature gradient leading to the emergence of an additional droplet

velocity component perpendicular to the wall boundary as shown in Figs. 4.4 and

4.5). Hence, as the Marangoni number increases there are two di�erent factors

contributing to the decrease in velocity experienced by the droplet, one of purely

viscous nature and another of a thermal origin. Interestingly, Fig. 4.5 shows an

apparently oscillatory behaviour, which may indicate the onset of an instability

(expected to be driven by the interplay between kinematic and shape deformation

e�ects). This might be the subject of a future work entirely devoted to addressing

such aspects, which are beyond the scope of the present study.
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Figure 4.4: 3D view of the scaled y-velocity component in the �NS3� con�guration for Ma =
100 showing �ve di�erent xy-planes taken at a distance of ∼ 1.2 cm of distance between each
other.

Figure 4.5: Time evolution of the droplet y-velocity component normalised with the Young
limit for the �NS3� con�guration at Ma = 2 and Ma = 100. Note that the numerical value is
larger in the case of Ma = 100 compared to that at Ma = 2.
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4.2.2 Proximity to a corner

Since in a parallelepipedic domain, in principle, a drop may transit in a region

located near the intersection of two adjacent walls (i.e., close to a corner), in the

remainder of this section we expressly concentrate on such a case. In order to do

so, we release the drop from an initial position constrained by two adjacent walls

(indicated as case �NC� in Fig. 4.1b); because the z -axis is the axis of droplet

motion, in practice, this is equivalent to considering an equal �o�-set� parameter

in both x - and y-directions. The migration velocity for the �NC� con�guration

is compared with previous cases with e = 0 (Sect. 3.5.2) and e = 0.73 and are

shown in Figs. 4.6 and 4.7, for a range of Marangoni numbers. Fig. 4.6 provides

the scaled droplet speed as function of the dimensionless time for three di�erent

con�gurations and several values of the Marangoni number. The most interesting

Figure 4.6: Time evolution of the droplet velocity normalised with the Young limit for the
three con�gurations: e = 0 (�centre�), e = 0.73 along the y-axis (�NS3�) and e = 0.73 along
both x and y axis (�NC�): a) Ma = 2, b) Ma = 10, Ma = 50, Ma = 100.
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Figure 4.7: E�ect of the Marangoni number on the scaled migration velocity for e = 0 (centre)
and e = 0.73 (�NS3� and �NC�): a) migration velocity normalised with the Young limit, and b)
migration velocity normalised with its counterpart for e = 0, for di�erent Marangoni numbers
(Ma = 2, 10, 50, 100).

information in these �gures is the evidence they give about the enhanced droplet

�slow down� e�ect when the droplet �feels� the presence of two distinct (adjacent)

walls. Such behaviour can be justi�ed considering the wall-induced distortion

of the temperature �eld (as explained in Sect. 4.2.1). As a consequence the

droplet experiences a lift force, which �pulls� it away from the boundary with

a certain velocity. In this case, part of the available �driving force� is used to

displace the droplet from the wall (instead of accelerating it in the direction of

the imposed temperature di�erence). This interpretation is further con�rmed in

Figure 4.8: 3D view of
√
U2
x + U2

y /UY GB for 5 di�erent xy-planes taken at ∼ 1.2 cm intervals

for the �NC� con�guration for Ma = 100.

100



Fig. 4.7 where the asymptotic migration velocity of the droplet-near-corner case

(�NC�, e = 0.73), normalised by its counterpart at e = 0 has been reported as a

function of the Marangoni number. It can be noticed that the distance between

the two trends (segments shown in Fig. 4.7b) attains a minimum for Ma = 2

(where the decrease in the velocity can be ascribed only to viscous e�ects) and

increases with the Marangoni number due to the aforementioned thermal e�ect.

A 3D view of the scaled velocity magnitude
√
U2
x + U2

y /UY GB (considering the

velocity components in a plane perpendicular to the temperature gradient) for

Ma = 100 is shown in Fig. 4.8.

4.2.3 E�ect of the thermal boundary conditions: adiabatic vs con-

ductive walls

In Sect. 4.2.1 we considered the migration of the droplet near a wall assum-

ing perfectly adiabatic conditions. In order to assess the role potentially played

by the thermal boundary condition assumed at the walls, additional simulations

(here, we considered only the �NS3� con�guration) have been performed replac-

ing the adiabatic conditions with an alternative condition valid in the opposite

limit in which the boundaries behave as purely conducting walls (while from

an experimental standpoint, adiabatic conditions would be maintained only by

an exceptionally insulating material, conducting conditions can be easily imple-

mented in experiments by using walls made of a metal). To study such an e�ect,

we have imposed a constant linear temperature distribution on the boundaries (in

practice, the same linear pro�le established at the beginning of the calculation)

and performed new simulations for the case at Ma = 2 and Ma = 100.

Figures 4.9a and 4.9b show the normalised droplet velocity and normalised

distance from the wall relative to that evaluated at the initial time for both the

�adiabatic� and �conducting� cases). As evident in these �gures, when the con-

vective transport of energy is negligible (Ma = 2), the di�erence between the two

cases is limited to a quantitative modi�cation of the droplet velocity. In both

situations the droplet moves further away from the wall with a velocity that is

roughly constant, thus the droplet describes a linear trajectory. However, the
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velocity component that �pulls� the droplet away from the wall is smaller than

that for the adiabatic-wall case (as witnessed by the di�erent terminal velocity

and the di�erent inclination of the related trajectory in Figure 4.9a and in the

trajectories illustrated in Fig. 4.10 (left)). The di�erences become much more

Figure 4.9: Normalised droplet velocity (top) and distance from the wall relative to the initial
drop position (bottom) considering both �adiabatic� and �conductive� walls at Ma = 2 (a) and
Ma = 100 (b) for the con�guration �NS3�.

striking forMa = 100, with the dynamics exhibiting di�erent trends according to

the thermal boundary condition considered. For the adiabatic wall, the droplet

initially follows a linear trajectory that is qualitatively similar to the one observed

for the case Ma = 2, then the normal velocity component vanishes and the tra-

jectory becomes roughly parallel to the wall. By contrast, in the conducting-wall

case, the droplet initially moves away from the side, but at a certain stage the

velocity component perpendicular to the boundary reverses its sign. When this

happens, the droplet starts to move very quickly towards the wall until the col-

lision is observed. These behaviours are driven by the prevailing temperature

gradient across the droplet and related distribution of thermocapillary stresses.
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This gradient has two distinct components, namely an axial component (causing

the droplet to migrate from the cold wall to the hot wall) and a �perpendicular�

component induced by the droplet interaction with the wall and related thermal

conditions. As revealed by the simulations, for Re→ 0, i.e., Ma = 2, a change in

the nature of the thermal boundary conditions does not lead to qualitative modi-

�cations in the behaviour of the droplet (indeed, for such conditions the departure

of the temperature �eld from linear di�usive conditions is almost negligible re-

gardless of the thermal conditions at the wall). Nevertheless, for Ma = 100, the

assumption of conducting wall causes a sign reversal in the component of the

temperature gradient perpendicular to the solid boundary.

Such behaviour can be clari�ed by observing the distribution of the isotherms

(that in turn a�ect the thermocapillary stresses) shown in Fig. 4.10 (top). When

the wall is adiabatic, the isotherms are symmetrically distributed around the axis

ξ of the drop and consequently the Marangoni stresses are also roughly symmetric

and the resulting integral is a vector that points toward the direction of the axis

of symmetry of the droplet (cf. the vector FMS at the bottom of the same �gure).

In the presence of a conductive wall, on the contrary, the thermocapillary stresses

are no longer symmetrically distributed because the temperature �eld in the area

near the wall is di�erent from that established on the opposite side. In particular,

we can imagine to subdivide the droplet in three di�erent regions: an �upper�

area, away from the wall (region I as shown in Fig.4.10), and two �bottom� areas

near the wall (region II and III). We notice that in the upper part the temper-

ature �eld is similar to that established in the case with adiabatic conditions.

The lower parts, however, are considerably di�erent. In region II the isotherms

tend to �embrace� the surface of the droplet as a consequence of the temperature

of the wall being imposed. Consequently, in that area the temperature gradient

is mainly directed perpendicularly to the interface and has a strong component

perpendicular to the solid wall as well. This gradient obviously gives only a small

contribution in terms of thermocapillary stresses. On the contrary, in region III

the isotherms are distributed roughly normally to the interface, therefore their

contribution to the thermocapillary stresses is maximised (in this case the tem-
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Figure 4.10: Comparison between the thermal �eld with superimposed thermocapillary
stresses around the droplet (top) and trajectories (bottom) in the �NS3� con�guration and
Ma = 100 in the case of adiabatic and non-adiabatic walls.

perature gradient is mainly directed tangentially to the interface). This uneven

stress distribution is responsible to the occurrence of a net force with a component

directed toward the surface (see the vector FMS depicted in the bottom �gure)

that eventually causes the droplet to approach the boundary.

In the case of an actual experiment, where the side walls are expected to

behave intermediately between the two ideal conditions considered here, one may

expect the droplet to behave in a manner somehow intermediate, depending on the

e�ective thermal �ux established between the �uid and the external environment

and the relative droplet-wall distance.

4.3 E�ect of domain con�guration: converging and diverg-

ing geometries

In this section, we consider a set-up similar to the previous parallelepipedic

container, but with the widths of the square cross-section decreasing (converging

case) or increasing (diverging case) linearly along the domain from the cooled

to the heated wall. Accordingly, we de�ne the average container width w̄ as
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Figure 4.11: Schematics of the container with converging a) and diverging b) adiabatic side-
walls.

w̄ = (whot + wcold)/2 where whot and wcold are the dimensional widths of the

hot and cold side, respectively. The overall system aspect ratio (AR), in turn,

is introduced as its length-to-average-width ratio (AR = L/w̄) (refer to Fig.

4.11). Another relevant characteristic geometrical parameter is the expansion ra-

tio ER = whot/wcold, which can be greater than 1 (diverging geometry) or smaller

than 1 (converging geometry), while for ER = 1 one would recover the classi-

cal case with parallel boundaries considered in earlier sections. Such cases are

of special interest because it might be argued in advance that for such contain-

ers the temperature �eld has to play a signi�cant role even under creeping �ow

conditions. In such a context, before starting to deal with the droplet migration

problem, it is instructive to consider the behaviour of the temperature �eld in the

limit as Re → 0. For such a case, indeed, an analytic solution can be found for

the temperature �eld. Our interest in such an expression stems from a two-fold

purpose. First, it can be used to show that the assumption of linear temperature

increase along the vertical (z -axis) valid in the case of straight containers with
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uniform cross-section, no longer holds. Second, such an analytical expression can

be used as a relevant initial condition to accelerate the convergence of the algo-

rithm relating to the numerical solution of the momentum and mass conservation

equations in the more general case for which both Re and Ma have �nite values

and ER 6= 1.

Most conveniently, we start from the balance of energy cast in its simplest

form, that is, the conservation of energy �ux along the vertical direction:

w∗(z)
dT ∗

dz∗
= c1 (4.2)

where T ∗ = (T − Tcold) / (Thot − Tcold) in this context is the non-dimensional tem-

perature , T is the dimensional temperature and w∗ (z∗) is the nondimensional

extension (using the average width w̄ as reference length) of the generic cross

section, which in turn can be expressed as:

w∗(z∗) = w∗cold +

[
w∗hot − w∗cold

AR

]
z∗ = w∗cold

[
1 + (ER− 1)

z∗

AR

]
(4.3)

Substituting Eq. (4.3) into Eq. (4.2) gives:

dT ∗

dz∗
=

c1

w∗cold [1 + (ER− 1) z∗/AR]
(4.4)

which, once integrated, yields

T ∗(z∗) =
c1AR

w∗cold (ER− 1)
ln [1 + (ER− 1) z∗/AR] + c2 (4.5)

The two constants c1 and c2 can be determined forcing Eq. (4.5) to satisfy the

boundary conditions at the two sidewalls, namely

(z∗ = 0, T ∗ = 0) → c2 = 0 (4.6)

(z∗ = AR, T ∗ = 1) → c1 =
w∗cold (ER− 1)

AR [ln (ER)]
(4.7)
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Accordingly, Eq.(4.5) can be cast in compact form as

T ∗(z∗) =
ln [1 + (ER− 1) z∗/AR]

ln (ER)
(4.8)

where, obviously

lim
ER→1

ln [1 + (ER− 1) z∗/AR]

ln (ER)
=

z∗

AR
(4.9)

The temperature pro�les obtained from Eq. (4.8) (see Fig. 4.12) for di�erent

Figure 4.12: Exact solution for the temperature pro�le for AR = 2.66 and Re = 0 (a dashed
line is used for the corresponding ideal linear temperature pro�le obtained for ER = 1): a)
ER < 1 (converging walls); b) ER > 1 (diverging walls).

values of the parameter ER clearly show a departure from the purely linear

distribution of the temperature pro�le theoretically established for ER = 1. The

resulting pro�le is concave or convex for ER < 1 or ER > 1 respectively.

Fig. 4.13a shows the numerical results in the case of creeping �ow (vanish-

ingly small Marangoni and Reynolds numbers) for a converging and a diverging

geometry with aspect ratio AR = 2.66 together with the related results for the

corresponding straight geometry (ER = 1 to be used for comparison). The latter

is considered for three di�erent values of the con�nement parameter: θ = 0.286

(which corresponds to the geometry used in the experiments by Hadland et al.,

(1999)), θ = 0.42 and θ = 0.8. For both converging and diverging geometries,

the parameter θ, evaluated using the larger side as a reference is assumed to be

θ = 0.8. The interpretation of the results shown in Fig. 4.13 is not as straight-

107



Figure 4.13: Time evolution of the scaled droplet migration velocity for converging and
diverging geometries (aspect ratio AR = 2.66): a) in the limiting case of creeping �ow (the �ow
conditions are the same as those considered in Sect. 3.5.1) compared to the droplet velocity for
a �straight� geometry and di�erent con�nements; b) for Ma = 100 compared to the �straight�
geometry used in the experiments of Hadland et al. (1999).

forward as �rst expected. On the basis of purely kinematic considerations, in

the limit as Re → 0, one would expect the droplet to undergo deceleration in

the converging channel case, and vice versa for the diverging channel, due to the

frictional increased or reduced in�uence of walls, respectively.

Fig. 4.13a shows just the opposite trend: droplet velocity increasing for a con-

tracting geometry and decreasing when there is an expansion of the cross section

(later, the droplets converge to a similar speed). Such a counterintuitive scenario,

however, can be justi�ed on the basis of the arguments provided earlier about

the behaviour of the temperature �eld in such geometries in the case Re < O (1).

In such circumstances, the initial di�usive temperature pro�le is not signi�cantly

modi�ed or disturbed by the migration of the droplet. As the temperature pro-

�le is convex for ER > 1, the gradient is initially larger than that established in

the case with ER < 1 (see Fig. 4.12b) and this makes the droplet velocity (at

least in an initial stage) higher than the corresponding migration velocity of the

droplet in the geometry with converging walls (Fig. 4.13a). Since for this case

the temperature gradient decreases as the droplet moves through the channel,

its velocity progressively decreases accordingly. These trends are reversed for the

case with converging walls (concave temperature pro�le, Fig. 4.12a). The tem-

perature gradient is initially relatively small and it then increases as the droplet

108



Figure 4.14: Dimensional temperature pro�le along a line crossing the geometry in the middle
of the channel for the converging (ER = 0.5) and diverging (ER = 2) geometries at Ma =
100 (solid lines), and temperature distribution for the convergent and box-shaped domains at
Ma = Re = 0 (dashed lines).

moves from the cold wall towards the hot one. This causes an acceleration of the

droplet (Fig. 4.13a) (curve at Ma = 0 for the case ER = 0.5). A considerable

di�erent behaviour occurs when the convective transport of energy becomes more

important. Figure 4.13b shows the temporal evolution of the migration velocity

for the two geometrical con�gurations under discussion when Ma = 100 (in the

same plot we have also included the results about the straight channel for com-

parison). It can be seen that the two trends are qualitatively similar up to a

dimensionless time t′ = 40 (even though in the case ER = 0.5 the velocity is al-

ways slightly higher). Most notably, after this instant the velocity of the droplet

which is migrating within the converging channel starts to decrease at a constant

rate (vice versa it was increasing in the case Re < O (1).

This behaviour can be explained by observing that, while for Re < O (1) the

temperature gradients were the main �drivers� determining the droplet behaviour,

we are now in the presence of several distinct e�ects. Along these lines, it is

instructive to begin the related discussion by examining Fig. 4.14, which shows

the temperature distribution on a segment passing through the centre of the

domain for the two cases under discussion (in addition the �undisturbed� linear

pro�le in the case of the straight channel and the pro�le for the converging channel
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when Re → 0 are also included). It can be seen that the temperature gradients

in front of the drop for the case ER = 0.5 are higher than those established

in the case ER = 2, as it was observed for Re < O (1); it can be noticed as

well, however, that the temperature pro�les are no longer logarithmic, and the

di�erences in the gradients are much less pronounced than those seen for Re <

O (1). This is also witnessed by the temperature �elds shown in Fig. 4.15a

(taken at the corresponding dimensionless time t′ = 40). Although the isotherms

tend to be more condensed near the front of the drop in the case of converging

geometry (which means that they give rise to larger Marangoni stresses), the

related patterns for the converging and diverging geometries are qualitatively

similar.

These mechanisms, however, are not the only at play in the considered dynam-

ics. For the case ER = 0.5, as the droplet is forced to move through a converging

geometry, at a certain stage it will feel an increasing e�ect of blockage due to the

presence of the approaching walls. On the contrary, the scenario in the diverging

channel is exactly the opposite: while the thermocapillary stresses are smaller

because of the smaller temperature gradients, the droplet moves through a chan-

nel that o�ers a decreasing e�ect of blockage. In light of these arguments, the

similar trends of the migration velocity visible in the central part of the channel

in Fig. 4.13b can be ascribed to these two compensating e�ects (in the second

portion of the domain the two in�uential factors still �counteract�: in the con-

verging arrangement the propulsive temperature gradient and the blockage e�ect

become increasingly larger while in the diverging geometry the opposite applies).

To further clarify these aspects, Fig 4.15b shows the temperature gradient pro�les

along z. Near the interface (corresponding to the vertical dashed lines shown in

Fig. 15b) the temperature gradients are fairly similar because of the development

of a thermal boundary layer in the front region and a thermal �wake� in the rear

region; analogous considerations apply in the rest of the interface. It can be seen

how the main thermal convection a�ects the temperature gradients at the droplet

surface to make it less dependent on the value of the parameter ER relative to the

scenario seen for Re→ 0. The di�erences between the temperature gradients for
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Figure 4.15: a) Temperature distribution near the region of the droplet for the diverging and
converging channels when Ma = 100 at t′ ∼ 65, b) Temperature gradient component evaluated
along the line crossing the channel through its centreline.

ER < 1 and ER > 1 are now less pronounced and, accordingly, the velocity evo-

lutions are relatively similar in the central region of the channel. After a certain

stage, however, the e�ect of blockage in the case ER = 2 becomes predominant

and the droplet velocity inevitably starts to decrease.

In summary, while for Ma = O(1) (Re < O(1)) the di�erence between the

straight geometry and the two cases with ER 6= 1 have to be ascribed essentially

to thermal e�ects, in the case Ma = O(100) (Re = O(1)), the e�ects of a non-

linear temperature distribution are partially mitigated by the presence of thermal

convection, which results in a similar temperature distribution around the droplet

regardless of the value of ER, thereby making blockage e�ects more in�uential in

determining the velocity evolution.

4.4 Conclusions

The e�ect of the wall-droplet interaction and domain shape on the thermal

Marangoni migration of droplets has been analysed in three-dimensional geome-

tries using a coupled LS-VOF approach implemented in the framework of the

OpenFOAM computational platform. We have studied several geometrical con-
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�gurations, for di�erent Marangoni numbers: droplet released in the proximity

of a single adiabatic or purely conducting wall (�NS� con�guration) and droplet

released in proximity of two adjacent adiabatic walls (i.e., close to a corner, �NC �

con�guration). Moreover, the e�ect of the geometry shape has been accounted

for considering the motion of the droplet in converging and diverging containers.

All the computations have been performed allowing the Marangoni number to

span a relatively wide range, with the extremes of such an interval corresponding

to the situation of �creeping �ow� (in which thermal e�ects are expected to play

a negligible role) and a situation in which Re ≥ O (1) (Ma up to 100 for which

signi�cant distortions in the temperature �eld are expected).

In the case of the wall-droplet interaction for adiabatic conditions, the results

show that for both con�gurations (�NS� and �NC�) the migration speed decreases

with the Marangoni number when compared to the velocity one would observe

for the droplet migrating in the centre of the channel. In addition, we have

also noticed the presence of a velocity component directed along the direction

perpendicular to the wall, which tends to �pull� the droplet away from the wall.

We infer that such a velocity component is the result of wall-induced distortions

present in the temperature �eld with increasing magnitude as the Marangoni

number is increased (such distortions being weak or negligible when Re < O(1)

where the only mechanism responsible for the droplet slowdown is of a viscous

nature).

In the case of the interaction with a conducting wall (�NS3� con�guration), the

results have revealed that the migration process is strongly sensitive to the value

of the Marangoni number. More speci�cally, for Ma = 2 the scenario remains

substantially unchanged with respect to the case with adiabatic walls, the main

di�erence being related to a relatively small decrease in the velocity component

that pulls the droplet away from the boundary. For Ma = 100 however, the

distortion of the temperature �eld in the region between the droplet and the

wall in the case of conducting sidewalls results in a uneven distribution of the

thermocapillary stresses that is responsible for the occurrence of a net force with

a component directed toward the surface (pulling the droplet towards the wall i.e.,
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in the opposite direction with respect to that observed for adiabatic conditions).

With regard to the e�ect of the shape of the domain, our numerical experi-

ments have revealed apparently counterintuitive results. For adiabatic sidewalls

and Re < O (1) the temperature pro�le is essentially logarithmic (in line with

the analytic solutions that can be obtained integrating the energy equation in

the absence of convection) and the droplet undergoes acceleration or deceleration

depending on the concavity of such a pro�le for ER 6= 1. When Re = O(1),

however, the di�erences between the cases ER < 1 and ER > 1 in terms of tem-

perature gradients are mitigated by the presence of strong thermal convection

inside and around the droplet. Accordingly, the velocity displayed by the droplet

in the two cases is relatively similar until blockage e�ects (due to the narrowing

channel for the case ER > 1) start to play a dominant role in the dynamics.
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Chapter 5

Thermocapillary motion of a Newtonian drop in

dilute Viscoelastic �uids � A numerical approach

5.1 Introduction

All the simulations presented so far have been carried out considering Newto-

nian phases. Nevertheless, many �uids encountered in engineering and scienti�c

applications may show non-Newtonian behaviour. There is indeed a large body

of literature dedicated to the study of the motion of bubbles and drops in the

presence of non-Newtonian �uids (see, e.g., Chhabra, 2006 for a detailed review),

owing to its relevance for engineering applications (often, the manipulation of

di�erent �uid phases for industrial purposes involve non-Newtonian �uids), and

to the variety of unexpected, and, in some cases, not yet fully understood features

that viscoelastic e�ects might confer to the motion and shape of deformable �uid

particles. Among the diversity of non-Newtonian e�ects that might be encoun-

tered, viscoelasticity is arguably one of the most interesting.

The �rst documented experimental investigation on the motion of bubbles

in viscoelastic �uids can be attributed to Philippo� (1937) who investigated the

motion of air bubbles rising through elastic solutions made of rubber dissolved in

organic solvents. The experiments revealed that the bubbles assumed a charac-

teristic tear-like shape with the presence of a trailing cusp which was observed to

become more pronounced when the relaxation time of the �uid was increased. For

such reason, the behaviour was attributed to the presence of time-dependent ef-

fects. Subsequently, similar problems have been investigated by a number of other
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authors (see, e.g., Warshay et al. 1959, Mhatre and Kintner, 1959, Astarita and

Apuzzo, 1965, Calderbank, 1967, Calderbank et al. 1970, Zana and Leal, 1978

and Hassager, 1979). In particular, Hassager (1979) was the �rst to realise that

the cusp might not be axisymmetric even though the �ow conditions were such

that there was no apparent motivation to predict such asymmetry. Later, Liu

et al. (1995) conducted systematic experiments considering air bubbles rising

through viscoelastic solutions in containers having di�erent cross-sections (i.e.,

rounded, squared and rectangular) and discovered that the trailing cusp might

actually assume a variety of di�erent shapes. Another interesting phenomenon

that can be observed on the motion of both solid and �uid particles translating

in a viscoelastic liquid, is the presence of a �negative wake� (Hassager, 1979) (cf.

Fig. 5.1). The term `negative' originates from the fact that although very close

to the rear stagnation point the velocity is in the direction of the particle motion,

immediately further away from the trailing end the �ow reverts direction. When

the continuous phase is Newtonian, on the contrary, the velocity in the wake is

everywhere in the same direction of the motion of the particle.

Figure 5.1: Illustration of the negative wake behind a bubble moving in the upward direction.

Lastly, it is worth mentioning another interesting phenomenon which has at-
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tracted the attention of a number of scientists throughout the past decades and

that is still not yet entirely understood. It is well documented that when the

volume of a bubble surrounded by a viscoelastic �uid exceeds a certain critical

value, the rising velocity might increase abruptly (Astarita and Apuzzo, 1965).

A similar phenomenon can also be encountered for Newtonian �uids, but the

typical velocity jump is less steep and is attributable to the transition from �no-

slip� conditions (when the bubble is very small) to shear-free conditions (see,

e.g., Chhabra, 2006). In the presence of a non-Newtonian phase however, the

sudden jump seems to be ascribed to a number of concomitant phenomena (in

addition to the above mentioned transition from no-slip to shear-free regime) such

as shear thinning e�ects (Zana and Leal, 1978), shape deformations (Liu et al.

1995, Pillapakkam et al, 2007) and possible presence of surfactants. Furthermore,

Herrera-Velarde et al. (2003) observed that the phenomenon is associated to the

presence of the negative wake, which seems to appear only after the bubble has

reached the critical volume. Although there is a certain consensus on attributing

the phenomenon under discussion to all these mechanisms discussed before, to

date it is not yet possible to predict a priori the extent of the velocity increment

or whether such a discontinuity will occur or not in a new experiment.

Despite the fact the mechanism responsible for the particle motion considered

in this thesis is considerably di�erent from the one mentioned before, it is reason-

able to assume that in the presence of a viscoelastic continuous phase and under

certain �ow conditions, similar non-Newtonian behaviour can also be expected

for the thermal migrations of a bubble or a drop. Although there is a relevant

amount of literature dedicated to the study of thermocapillary �ows of �uid lay-

ers in the presence of viscoelastic �uids (see, e.g., Getachew and Rosenblat, 1985;

Martinez-Mardones and Perez-Garcia, 1990; Parmentier et al. 2000; Hu et al.

2018), the non-Newtonian thermocapillary problem for bubbles and drops seems

to be relatively unexplored. The analytical solution of Jiménez-Fernández and

Crespo (2002) mentioned in the introductory chapter appears to be the only work

known to the author of this thesis which add some details that are relevant for

the present work.
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With the intent to investigate the role potentially played by the presence

of elasticity on the thermocapillary motion of drops, in this chapter we present

numerical computations obtained assuming absence of convective phenomena,

i.e., for vanishingly small Re andMa, considering a Newtonian drop embedded in

a viscoelastic continuous �uid. In order to avoid further complications that might

arise from the presence of shear thinning e�ects, the problem has been tackled

adopting two di�erent constant viscosity models (i.e., Oldroyd-B and FENE-CR

models) which have been adopted for di�erent ranges of Deborah numbers due

to the limitations on solving the Oldroyd-B model (cf. Sect. 2.3.1) imposed by

the presence of a straining �ow localised next to the rear stagnation region of the

drop.

5.2 Statement of the problem

We consider here the thermocapillary incompressible �ow of a Newtonian

droplet surrounded by an unbounded immiscible viscoelastic liquid assuming neg-

ligible convective transport and absence of gravitational e�ects. The droplet is

deformable and is assumed to have the same volume of an equivalent sphere of

radius R. The outer viscoelastic phase is characterised by a constant zero-shear

viscosity, η0,m = ηs,m + ηp,m, given as the sum of a Newtonian (solvent) contribu-

tion, ηs,m, and a viscoelastic (polymer) contribution, ηp,m. The droplet viscosity

is indicated with the symbol, ηd. Similarly to the cases discussed so far, a con-

stant temperature gradient, ∇∞T , is maintained by external means. Assuming

that the interfacial tension, σ, decreases with the temperature with a rate of

change σT = dσ/dT < 0 (assumed constant in the present study), the droplet

will translate along the positive direction of the imposed thermal gradient.

Using the same considerations discussed in Sect. 3.2 (i.e., by labelling the

variables with the subscripts �m� and �d � to distinguish the two phases) one can

obtain a set of dimensionless parameters formally identical to the one introduced

in Sect 2.4, i.e., the Reynolds number, Re = ρRUT/η0,m, the Marangoni number,

Ma = ρcp,mRUT/κm, the Capillary number, Ca = η0,mUT/σ, and the thermal
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Deborah number, DeT = λUT/R (notice that no subscript has been added to the

relaxation time, λ, since it is understood that this quantity is thereafter de�ned

only for the continuous phase).

Under such assumptions, the complete dimensionless set of governing equation

required for the description of the thermocapillary viscoelastic problem considered

here can be written as

ρrRe
Du

Dt
= −∇p+∇ · [(1− c)η0,rD+ τ ] +

1

Ca
knδS + (I− nn)∇TδS (5.1)

ρrcp,rMa
Du

Dt
= ∇ · (κr∇T ) (5.2)

d̂A = − 1

λrDeT
f (tr (A)) (A− I) (5.3)

τ =
cηr,0
λrDeT

f (tr (A)) (A− I) (5.4)

Notice that, similarly to the problems discussed in Chapter 3 and 4, we neglect the

capillary force arising from the variation of the interfacial tension. Furthermore,

we adopted the polymer concentration parameter, c = 1 − β, rather than β for

convenience in the subsequent discussions.

For the solution of the viscoelastic models, we adopted a multiphase version

of the viscoelasticFluidFoam solver of Favero et al. (2010), kindly provided by

the author in a private conversation. To the best of our knowledge, the two-

phase adaptation of their code has never been released o�cially. The original

library is based on a stress tensor formulation of the constitutive models, however

for our purposes we required the re-formulation of the equations in terms of the

conformation tensor, A. The solution procedure of the viscoelastic model remains

identical to the one adopted in the original solver of Favero et al. (2010), with

the only substantial di�erence lying on the introduction of Eq. 5.4, which serves

to update the stress tensor before solving the momentum equations.

Due to the lack of experimental works devoted to the study of the thermocapil-

lary motion of droplets in non-Newtonian �uids, we assess under which particular

circumstances elasticity is likely to play a role.

We consider as an ideal candidate for our viscoelastic phase a Boger �uid
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having a relaxation time and total viscosity (both measured in SI units) such

that λ/η0,m = O (1) (notice that these conditions can be achieved experimentally

using ad hoc recipes for the preparation of viscoelastic solutions (see, for instance

the �uids adopted in the experiment reported in Rothstein and McKinley, 2001)).

On the basis of the data available from previous experimental measurements

with Newtonian �uids, it is reasonable to assume that the interfacial tension

coe�cient, σT , might vary in a range
[
10−5, 10−4

]
N/mK (for instance, Ross,

1950 reported σT = −9.89 × 10−5N/mK for the surface tension coe�cient of

glycerol, while Hadland et al., reported σT = −3.6×10−5N/mK for the interfacial

tension between silicone oil and �uorinert). Furthermore, typical values of the

temperature gradient∇∞T range between O (103) and O (104) K/m (larger values

are expected for small scales applications), thus, DeT is expected to be in the

range between O (10−2) and O (1).

Additionally, although the hypothesis that material properties do not change

signi�cantly with the temperature usually holds fairly well for Newtonian �uids

(see, e.g., Yin et al. 2012), in the presence of a polymer solution caution should

be exercised. In fact, viscosity and relaxation time of a polymer solution changes

with temperature following the equation (see, e.g., Rothstein and McKinley, 2001)

aT (T, T0) =
ηp,m (T )

ηp,m (T0)
=

λ (T )T

λ (T0)T0

(5.5)

where aT is an exponentially decreasing function which depends on the temper-

ature known as �shift factor�. This quantity is usually modelled adopting the

so-called WLF equation (Williams et al., 1955) or adopting an Arrhenius-type

law (see, e.g., Rothstein and McKinley, 2001)). Due to the exponential nature of

aT , decrements of the relaxation time can be signi�cant in the range of variation

of temperature that can be typically encountered in usual experiments (e.g., in

the experiments of Hadland, 1999, ∆T ' 60 K), therefore the Deborah number

can decrease in a signi�cant manner. On the contrary, if we think about mi-

cro�uidic experiments, large temperature gradient can be established with small

temperature di�erences, and the above mentioned issue should not constitute a
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real problem.

5.3 Viscoelastic solver validation

To test the capability of our implementation of the multiphase viscoelastic

solver, we analyse the deformation of a two-dimensional droplet subjected to a

shearing, inertialess motion either in presence of one, or both viscoelastic phases

(see, for instance, the cases discussed in Pillapakkam and Singh, 2001 and in

Chinyoka et al., 2005). Here, we compare our results with the numerical �ndings

of Chinyoka et al. (2005).

A circular droplet of radius R is placed at the centre of a domain of height h

and width πh (cf. Fig. 5.2) delimited by two parallel walls moving in opposite

directions along the x -axis direction with a constant velocity U0. At the moving

walls, we imposed no-slip and no-through �ow boundary conditions for the veloc-

ity, while the pressure is extrapolated by assigning their values calculated at the

neighbour cells centre. At the two lateral boundaries, periodic conditions have

been applied. The �ow �eld is initialised by imposing fully developed uniform

shear �ow in the whole domain (including also the interior of the droplet) and

zero viscoelastic stresses (i.e., A = I). Even though the initial condition for the

stresses is not consistent with the imposed velocity �eld, this does not impact the

steady state solution as long as the Capillary number is low enough to guarantee

relatively moderate droplet deformations (for more details about this assumption,

see Chinyoka et al. 2005). In all the simulations a uniformly spaced mesh having

resolution 2R/∆x = 50 has been employed.

The e�ect of the elasticity on the droplet deformation is studied adopting

the Oldroyd-B viscoelastic model. Four di�erent �ow con�gurations have been

considered: Newtonian droplet in a Newtonian phase (N-N), viscoelastic droplet

and Newtonian matrix phase (V-N) and the other two possible con�gurations,

N-V and V-V. The �ow conditions are such that, Re = ρmγ̇R
2
/
η0,m = 3× 10−4,

Ca = η0,mγ̇R/σ = 0.24, Dei = λiγ̇ = 0.4, β = ηs,i/η0,i = 0.5 (the subscript

�i � stands for �m� or �d � depending on the �ow con�guration, i.e., whether the
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Figure 5.2: Schematic of the domain and initial �ow conditions (top) considered for the shear
�ow test case. Steady state deformed droplet shape (bottom), showing the major and minor
axes and the orientation angle ϕ.

viscoelastic phase is the matrix or the droplet one), where γ̇ = 2U0/h is the

imposed shear rate. The two �uids are assumed to have the same density and same

viscosity (i.e. η0,d/η0,m = 1 and ρd/ρm = 1), while the geometric con�nement is

set to R/h = 0.125, as in Chinyoka et al. (2005).

Fig.5.3 shows the deformation parameter D = (a− b)/(a+ b), with a and b

being the major and minor axes as indicated in Fig. 5.2, as a function of the

dimensionless time, t′ = γ̇t. We compare the results of our simulations (open

diamonds) with those of Chinyoka et al. (2005) (open triangles). Apart from a

slightly di�erent transient, at the steady state the two set of results are in good

agreement with maximum percentage di�erence about 4%, as shown in Table 5.1.

Table 5.1 also highlights the good agreement between the two sets of computations

also in terms of the orientation angle ϕ.
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Figure 5.3: Time evolution of the deformation parameter for the di�erent cases considered
adopting the Oldryd-B model for the viscoelastic phase. The blue triangles represent the results
of Chinyoka et al. (2005), while the current �ndings are represented by the black diamonds.

Table 5.1: Comparison between pur results and those of Chinyoka et al. (2005) in terms of
deformation and orientation angle. Values are taken at steady state.

Chinyoka et al. (2005) Current results Deviation %

D ϕ [deg] D ϕ [deg] D ϕ

N-N 0.288 32.3 0.283 31.8 < 2 < 2

V-N 0.282 31.2 0.271 31.9 < 4 ≈ 2

N-V 0.265 28.2 0.265 28.2 < 1 ≈ 0

V-V 0.260 28.2 0.258 29.2 < 1 < 4

5.4 Numerical set-up

In the present work we aim to investigate the role potentially played by elastic

e�ects on the thermocapillary motion of droplet in absence of gravity. In order

to accomplish our goal, we ran a series of three-dimensional simulations for a
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single Newtonian drop translating in an otherwise stagnant viscoelastic �uid.

To investigate a broad range of Deborah numbers, the computations have been

carried out by modelling the viscoelastic phase by adopting: a) the Oldroyd-

B model, for relatively small Deborah numbers (up to DeT = 3.75), b) and

the FENE-CR model, for DeT ≥ 3.75. The reason for this twofold choice is

dictated by the presence of a singularity on the solution of the Oldroyd-B model in

extensional �ows, which in this speci�c case develops at the rear stagnation point

of the drop. Apart from the mesh independency study (see, Sect. 5.4.1), which

was performed using 2D grids, all simulations are three-dimensional and have been

carried out considering the parallelepipedic computational domain considered for

the Newtonian cases discussed in the previous Chapters (i.e., using the same

geometric con�guration adopted in the experiments of Hadland et al. 1999). We

adopt also the same �ow conditions as in Sect. 3.5.1, with the only di�erence

that now we account for the elasticity of the continuous phase.

5.4.1 E�ect of the grid resolution and time-step

In Chapter 3, it has been seen that in VOF based methods integration in time

of the advection equation for the volume fraction using explicit time schemes

might impose severe restriction on the maximum Courant number. Additionally,

as noted in Sect. 3.4.1, in OpenFOAM the solution of Eq. 3.8 is handled with

the MULES method, which is explicit in time. In such an approach, the above

mentioned restriction can be partially mitigated by using a time step sub-cycling

technique, which essentially allows to split the solution of the advection equation

for the volume fraction in a number of user-de�ned sub-cycles. Roughly speak-

ing, the e�ective time step employed at each sub-iteration is given by the actual

time step divided by the number of prescribed sub-cycles. In addition, the pos-

sible occurrence of spurious velocities at the interface should also be taken into

account when Ca � 1. The spurious velocities decrease, in general, by lowering

the time integration step, but tend to become larger when the resolution of the

grid is increased. Clearly, these issues can impose strict limitations on the time

integration step which might drastically increase the overall time of calculation.
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In the remainder of this section we will show the e�ect of the spatial resolution

and time step on our computations, and we shall see that the smoothed LS-VOF

method employed here allows us to achieve mesh independent accurate results.

The time step limitation has been found to be very restrictive as the droplet

shape seems to be extremely sensitive to this speci�cation. By setting a su�-

ciently small maximum Courant number however, the algorithm guaranteed an

acceptable prediction of the droplet shape.

Although the adoption of the dynamic grid re�nement reduces considerably

the computational e�ort, the mesh and time step study we are about to show

would require months of calculation (in comparison to the several days required

for a 2D study) to be carried out using the most re�ned three-dimensional mesh

and the smallest time step adopted here. For this reason, the present study was

necessarily carried out with an �equivalent� (we set the same geometric constrains

in terms of con�nement adopted for the 3D geometry of Hadland et al. 1999)

two-dimensional con�guration. The results then are used to determine the ap-

propriate geometric (mesh size) and time step settings to be employed for the

three-dimensional calculations.

The e�ect of the grid spacing has been assessed for three di�erent mesh reso-

lutions, namely M1, M2 and M3 (as indicated in Table 5.2) considering the New-

tonian con�guration and setting the maximum Courant number, CoMax = 0.02.

The time step is already very restrictive, but this was deemed necessary to guar-

antee acceptable droplet shapes (as discussed below). The results summarised in

Table 5.2 show the good convergence of the results in terms of migration velocity.

In particular, the relative di�erence between the cases M1 and M3 is already less

than 1%, while between M3 and M2 is about 0.2%.

The e�ect of the time integration step has been investigated adopting mesh

M2. We ran di�erent simulations by considering four di�erent values of the

maximum Courant number, namely, CoMax = 0.1, 0.04, 0.02, 0.01 for both a

Newtonian-Newtonian system and a viscoelastic-Newtonian con�guration using

the Oldroyd-B constitutive equation to model the continuous phase (the parame-

ters adopted for this case are summarised in Table 5.3). As pointed out previously,
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Table 5.2: Characteristics of the 2D meshes used for the mesh-independence assessment study.
The velocity di�erence is evaluated relatively to the case M3.

M1 M2 M3

Nr of cells per droplet diameter 37 56 84

Grid spacing (∆x = ∆y) 0.000268 0.0001786 0.0001191

Relative velocity di�erence at t ' = 40 [%] 0.437 0.175

we observed a dependence of the droplet shape on the time step. In order to quan-

tify the magnitude of the deformation relative to the circular shape, we de�ne the

droplet aspect ratio, Da, as the ratio between the droplet major and minor axes,

D1 and D2 (unlike the case for the shear �ow discussed before, where the droplet

assumes ellipsoidal shapes, a Newtonian droplet migrating in a viscoelastic �uid

can be a�ected by loss of fore-and-aft symmetry, therefore we found advisable

to describe the droplet deformation adopting di�erent quantities), respectively.

Table 5.3 shows the values of Da and the terminal droplet velocity for the four

Courant numbers considered. We notice that the departure from the reference

circular shape (Da = 1) decreases by decreasing the maximum time step allow-

able for the simulation. In particular, for CoMax = 0.1 the relative percentage

deviation from the circular shape is 6.4%, while reaches a minimum value of 0.8%

for the smallest CoMax. Additionally, we tested the e�ect of the grid spacing and

noticed that by using a �ner mesh, keeping the same maximum Courant number,

does not have appreciable in�uence on the droplet shape. For completeness, we

did the same tests also for the viscoelastic con�guration. The results indicate a

good convergence both in terms of deformation and the terminal velocity, when

the time step is decreased (cf. Table 5.2).

In light of these results, we run all the subsequent three-dimensional simu-

lations adopting the mesh M2 and setting CoMax = 0.02, keeping in mind that

the shapes we are about to show might be a�ected by a small (on the order of

1% or less) error. It is also worth mentioning that the e�ect of the time step

used to integrate Eq. 3.8 has also been investigated. In particular, we considered

the con�guration mesh M2 and CoMax = 0.02 by changing systematically the
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number of sub-cycles (in a number of 2, 5 and 10), but no appreciable di�erences

on the shape have been observed, providing the evidence that the droplet shape

is insensitive to the time step adopted for the integration of Eq. 3.8.

As an additional remark, it should be reminded that in our implementation

we neglected the capillary force term that includes temperature e�ects. It is

reasonable to suppose that this can have an impact on the drop deformation,

since the Capillary number adopted here is not exceedingly small (refer to Sect.

6.4.1 for the de�nition of the criterion necessary to neglect the capillary term

under discussion). Nevertheless, the result for the mesh M3 reported in Table

5.3 is in support of our hypothesis that neglecting such term does not bring to

excessively wrong shapes (in such a case, the relative di�erence with respect to

the circular shape is less than 1%).

126



Table 5.3: E�ect of the time integration step on the droplet aspect ratio and terminal velocity. We consider a two-dimensional
droplet for a Newtonian case and a viscoelastic case using the Oldroyd-B model. All the simulations have been carried out by
employing mesh M2. The relative di�erence has been evaluated considering the results obtained for CoMax = 0.01 as a reference.
*The prolate shape is consistent with the presence of the viscoelastic stresses that acts to deform the droplet along the direction of
the motion.

CoMax = 0.1 CoMax = 0.04 CoMax = 0.02 CoMax = 0.01

Newtonian

Droplet aspect ratio Da 0.936 0.973 0.986 0.992

Relative aspect ratio di�erence [%] 5.60 1.90 0.60

Terminal velocity [mm/s] 2.223 2.284 2.288 2.296

Relative velocity di�erence [%] 3.18 0.52 0.35

Viscoelastic (DeT = 3.75, c = 0.5)

Droplet aspect ratio Da 0.967 0.997 1.008* 1.014*

Relative aspect ratio di�erence [%] 7.70 4.00 0.60

Terminal velocity [mm/s] 2.040 2.079 2.113 2.132

Relative velocity di�erence [%] 4.30 2.49 0.89
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5.5 Thermocapillary motion of a Newtonian droplet in a

dilute viscoelastic �uid

For the time step and mesh independence study presented in the previous

section we considered the thermocapillary migration of a two-dimensional New-

tonian droplet surrounded by a viscoelastic Oldroyd-B �uid for one speci�c value

of the thermal Deborah number, DeT , and the parameter c. We have observed

that the presence of the viscoelastic stresses acts to slow down the droplet speed

and also deform its shape (cf. Tab. 5.3).

In this section we present a systematic study aimed to reveal the e�ect of

the various dimensionless parameters involved in the problem (i.e. DeT , c and

L2) for three-dimensional con�guration when the surrounding viscoelastic phase

is modelled using either the Oldroyd-B (L2 →∞) or the FENE-CR models.

5.5.1 Oldroyd-B matrix �uid

5.5.1.1 In�nitely diluted solution

Firstly, we consider the case of the Oldroyd-B �uid (L2 →∞) in the limiting

condition in which the concentration of polymer molecules present in the solution

is in�nitely small, i.e., c→ 0 (in practice, we set c = 0 in our simulation). In such

conditions, we can still compute the con�guration tensor evolution by solving Eq.

5.3. However, in this case no viscoelastic stresses are produced and the �ow �eld

evolves in a Newtonian-like manner. The advantage of considering an �in�nitely

diluted� viscoelastic phase consists on the fact that we can analyse the polymer

molecules deformation and orientation as they �ow around the droplet, without

having to take into account the presence of viscoelastic stresses that would modify

the �ow �eld and the droplet shape. In Sect 5.5.1.2 we shall repeat the analysis

for �nite values of the concentration parameter and same DeT , and we will see

that the presence of visocoelastic stresses alters the deformation in a signi�cant

manner.

Fig. 5.4a shows the temporal evolution of the scaled droplet velocity for

c = 0 and DeT = 3.75. After a relatively short transient, the droplet velocity
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Figure 5.4: (a) Scaled droplet migration velocity for the case DeT = 3.75 and c = 0 as
a function of the dimensionless time adopting the Oldroyd-B model. (b) Flow domain and
contour of the level set function showing half of the droplet in the x = 2.25 plane.

approaches the theoretical (Newtonian) value described by Eq. (2.65). In this

case the shape was found to be nearly spherical (the small departure from the

exact shape has to be ascribed to the issues discussed in the previous section).

To analyse the distribution of the con�guration tensor around the droplet, we

consider the x = 2.25 plane passing through the centre of the drop, as shown in

Fig. 5.4b.

In Fig. 5.5 we show the three components of the conformation tensor on such

plane. The xx -component was not considered in the present analysis since it

was observed to remain nearly constant throughout the drop surface. Moreover,

it is worth pointing out that the if we would repeat the analysis for any other

plane passing through the axis of the drop, qualitatively similar results would

be expected; the only (small) quantitative di�erences should be ascribed to the

presence of the boundaries of the domain characterised by a square cross-sectional

area. We stress the fact that the adoption of the geometry considered in the

experiment of Hadland et al. (1999) is dictated by the fact that we have used it

in all previous investigations, allowing us to make a direct comparison with the

Newtonian results presented in the previous chapter. To provide a direct visual

representation of the deformation and orientation of the polymer molecule as it

�ows around the droplet, in Fig. 5.5a we have also represented the con�guration
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Figure 5.5: Normal and shear components of the con�guration tensor, Azz, Ayy, Azy for the
case DeT = 3.75 and c = 0 (a) and its trace in the region of the droplet surface (b) in the plane
x = 2.25. All the results have been obtained adopting the Oldroyd-B model. In the inset of plot
(a) the conformation tensor has been represented at four di�erent locations by drawing ellipses
that have major and minor axes parallel to the eigenvectors of A and lengths proportional to
the corresponding eigenvalues. The abscissa z/D1 is representative of the droplet extension
along the direction of the motion, z, normalized by D1. The origin of the axes is taken in a way
that z/D1 = 0 corresponds to the rear stagnation point, and z/D1 = 1 to the front stagnation
point. The component Azz has been cut o� in correspondence of the origin of the axes to make
the representation more intelligible, since its maximum value is far larger than the maximum
value of the other components.

tensor including ellipses having axes parallel to the principal axes de�ned by the

eigenvectors of A, while the extensions are proportional to the corresponding

eigenvalues (see, e.g. Harlen, 2002).

By analysing the distribution of the components of A in an orthogonal Carte-

sian coordinates system positioned at the centre of the �cold side�, and axes par-

allel to the sides of the domain, we notice that as the polymer chain approaches

the front stagnation point, it initially experiences a bi-axial extension along the

y-direction while being compressed along the other direction (cf. the ellipsoid

shown at z/D1 = 0). Subsequently, when the molecule moves further toward

the rear of the drop, Ayy gradually decreases and reaches a minimum until the

deformation becomes �compressive� (Ayy < 1). On the other hand, Azz follows

the opposite trend: gradually increases, becomes extensional and reaches a peak

(approximately at the same location where the other component assumes its min-

imum value. i.e., at z/D1 ≈ 0.6). As the molecule moves further downward, it

keeps extending along the y-direction, with Ayy reaching a maximum and �nally
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vanishing as it approaches the rear stagnation point. On the other hand, Azz ini-

tially decreases and reaches a minimum (here Azz ≈ 1, indicating a nearly relaxed

state along the z -direction). Subsequently, the deformation suddenly increases

and eventually assumes its largest value when z/D1 is almost zero. The values

assumed for small z/D1 are not shown in the present plot for sake of represen-

tation (cf. the caption in Fig. 5.5). Regarding the shear component, Azy, it

is worth to notice its sudden decrease near the rear region, which is responsible

for the change of the orientation of the molecule along the z -direction. If we in

fact observe the ellipse depicted in correspondence of such area (at z/D1 ∼ 0.04),

although the polymer �lament is relatively close to the rear region, its orientation

is still far from being aligned with the z -axis. The large shear component will

guarantee that the molecule will be oriented with the direction of motion when

it reaches the rear stagnation point.

Fig. 5.5b shows the evolution of the trace of the con�guration tensor, tr(A)

providing an indication of the degree of stretching of the molecule. We notice that

the largest deformation occurs in a narrow region near the rear stagnation point,

where the �ow �eld is essentially a uniaxial straining �ow. The fact that the

largest molecule stretching (and so the largest viscoelastic stresses, if we would

consider a �nite dilution) occurs at the rear of the droplet, is qualitatively similar

to what can be observed for the analogous case of the buoyant �ow of a Newtonian

drop in a viscoelastic liquid, where the drop assumes a tear-drop shape with a

characteristic pointed tail (see e.g., the collection of experimental images available

in Chhabra, 2006, or the numerical results of Pillapakkam et al. 2007). In such

cases, in fact, the viscoelastic stresses tend to concentrate in a small area around

the rear of the drop, with signi�cant consequences on the morphological evolution

of the droplet and distribution of the velocity �eld immediately downward the

rear stagnation point.

5.5.1.2 E�ect of the polymer concentration

In this section we focus on the e�ect of �nite, non vanishingly small polymer

concentrations on the motion of the drop. In contrast to the case studied in the
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previous section, the molecule deformation associated with the �ow �eld generates

viscoelastic stresses, which are proportional to the amount of polymer molecules

present in the viscoelastic phase.

Fig. 5.6a shows the comparison between the normal components of the con�g-

uration tensor for three di�erent values of the polymer concentration parameter,

c = 0, c = 0.5, c = 0.89, and for a �xed value of the Deborah number, DeT = 3.75.

We notice that, irrespective of the value of c, the trends for Azz remain qualita-

tively similar, with the main quantitative di�erence being a small increment of

the peak observed in the region of the front half of the droplet (0.5 < z/D1 < 1)

as the concentration is increased. On the contrary, Ayy remains substantially

unvaried in the front half, then, as the polymer molecule move towards the rear

region, the trends appear remarkably di�erent. In particular, we note that for

c = 0, the maximum extent of the elongation along the y-direction appears just

before the rear stagnation point. As the polymer concentration parameter is

increased, the maximum is gradually shifted towards higher values of z/D1.

Fig. 5.6b shows the trace of A for the same three values of c. As the molecules

approach the rear of the drop, tr(A) decreases substantially as the concentration

parameter is increased (at the stagnation point, the value of tr(A) for c = 0.89 is

about four times smaller than that for the case c = 0), showing that the maximum

elongation decreases when the concentration of polymer is increased. Such result

does not have a straightforward and simple explanation due to a number of factors

in�uencing the �ow �eld downstream the droplet. First, we should consider that

in all the simulations considered the total viscosity is always the same, thus the

introduction of a certain amount of polymer results in a reduced solvent viscosity

(ηs = (1− c) η0) which corresponds to a reduction of the Newtonian contribution

to the total stress. Simultaneously, the presence of polymers generates viscoelastic

stresses, which are mainly concentrated in a small area near the rear stagnation

point where they are essentially purely extensional. These stresses �pull back� the

droplet interface and, if they are large enough to overcome the capillary force,

they can contribute to increase the local interface curvature. This circumstance

in turn results in a localised increment of the pressure jump across the droplet
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surface a�ecting the �ow conditions immediately downstream the droplet.

In Sect. 5.4.1 we have anticipated that the presence of the viscoelastic stresses

a�ects the droplet velocity. Fig. 5.7a shows the scaled droplet speed as a function

of the dimensionless time for di�erent values of the polymer concentration param-

eter, c (also in this analysis, we consider DeT = 3.75). Initially, the droplet speed

increases rapidly, exhibiting an overshoot before reaching steady state conditions.

We notice that the magnitude of the velocity peak depends on the parameter c,

becoming larger when c is increased. Such behaviour can be explained consider-

ing that the viscoelastic stresses need a certain amount of time to develop, and

thus initially the stresses at the interface are mainly of a �Newtonian nature�. In

other words, since the concentration parameter is given by the ratio of the poly-

mer viscosity to the total viscosity, having assumed the latter property constant

for each simulation, a larger value of c implies a smaller solvent viscosity, thus

the Newtonian stresses prevailing at the �rst stage of the transient determine the

observed behaviour. Fig. 5.7b shows the steady state velocity for the same cases

Figure 5.6: Normal components of the con�guration tensor, Azz, Ayy (a) and trace of the
conformation tensor A in the region of the droplet surface in the plane x = 2.25 (b) for three
di�erent polymer molecule concentration parameters (c = 0, 0.5, 0.89) and for DeT = 3.75

under discussion. The simulations have shown that when the amount of polymer

is increased, the droplet speed decreases monotonically and two di�erent trends

can be recognized. Initially, when c is small, the droplet velocity decrease is

relatively steep, then, by further increasing the amount of polymer, the velocity
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decreases less abruptly and follows a linear trend.

Figure 5.7: Time evolution of the scaled droplet speed for di�erent polymer concentration
parameters (a) and scaled steady state velocity as a function of the concentration parameter c
(b). In both cases the Oldoyd-B model has been used considering DeT = 3.75.

As a concluding remark, it is worth noticing that despite the fact that in

VOF based methods the interface is �sharp� in a sense that the volume fraction

changes abruptly between the phases, the area occupied by the interface itself

lies in a �nite region where 0 < αk < 1. The actual interface however, should be

ideally represented by the contour αk = 0.5, thus the analyses presented so far

have been conducted adopting this value. It is worth to note that similar analysis

conducted adopting any other value of the volume fraction representative of the

interface, would provide qualitatively similar, but quantitatively di�erent results.

In light of this, it is easy to realise that if we would compute the viscoelastic

stresses distribution around the drop adopting the �eld A evaluated for a certain

value of 0 < αk < 1, the stress �eld obtained would be di�erent from that over

the actual drop boundary since the polymer viscosity and the relaxation time are

interpolated through the interface by means of Eq. (2.75).

5.5.1.3 E�ect of the Deborah number

Fig. 5.8a shows the steady state droplet velocity as a function of DeT for

two di�erent values of the polymer concentration parameter, c = 0.5 and c =

0.89. The plot indicates that in both cases the droplet velocity decreases with

DeT and the two trends can be well approximated by a quadratic polynomial,

U/UY GB ≈ 1 − k1 × DeT − k2 × De2
T , with k1 and k2 being two constants that
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depend on the value of c. In Fig. 5.8b we show some of the steady state droplet

shapes obtained for di�erent values of DeT and c. As anticipated previously, in

the presence of a viscoelastic surrounding phase, the droplet tends to be stretched

along the direction of the motion. For DeT = 1.5 the droplet is nearly spherical,

while for the largest value ofDeT , on the contrary, a loss of fore-and-aft symmetry

is evident, with the droplet exhibiting a �pointed end� (similarly to the gravity-

driven motion discussed in the introduction of the chapter) generated by the

large viscoelastic stresses localized at the rear stagnation point. The e�ect of the

concentration on the shapes is only minimal under those conditions (even though

for larger concentrations, slightly larger deformations are observed). The e�ect

of the thermal Deborah number, on the other hand, is more pronounced.

It is �nally worth showing the comparison between the Newtonian �ow �eld

and some representative viscoelastic cases. Fig 5.9 shows the streamlines for the

Newtonian case (a) and for di�erent values of DeT (b, c and d) in the diagonal

plane passing though to opposite corners of the domain. In the absence of elastic-

ity, a large portion of the �ow �eld is occupied by two main recirculations passing

through the droplet, while a second pair of minor rolls is established next to the

�cold� wall. When DeT is increased, the latter two recirculations tend to shrink

and two new rolls become visible in the opposite wall. Finally, for the largest

Figure 5.8: (a) Scaled migration velocity for a droplet surrounded by the Oldroyd-B �uid
as a function of the Deborah number. (b) Droplet shapes for di�erent values of the thermal
Deborah for c = 0.5 (top), and for c = 0.89 (bottom) (b). Note the presence of a �pointed end�
for the largest values of the Deborah number.
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Figure 5.9: Streamlines in the plane passing through two opposite corners of the domain for
three di�erent conditions: a) Newtonian, b) DeT = 1.5, c = 0.5, c) DeT = 2.25, c = 0.5 and d)
DeT = 3.75, c = 0.5. The droplets are moving upward.

DeT considered, the region covered by the new vortices embrace the whole area

adjacent to the �hot� wall.

5.5.2 FENE-CR matrix �uid

As discussed in Sect. 2.3.1 the Oldroyd-B model imposes severe restriction

on the maximum value of the Deborah number allowable because of the singular

nature of its solution when the �ow �eld is extensional. For such reason, the

simulation shown in the previous section were limited to a maximum value of
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the thermal Deborah of 3.75. To be able to study the impact of larger Deborah

numbers, we ran a series of simulations adopting the FENE-CR model. This

constitutive law bounds the maximum elongation of the polymer chain through

the extensibility parameter, L2, allowing the investigation of �ows at signi�cantly

higher Deborah numbers.

Fig. 5.10a shows the scaled migration velocity as a function of DeT for

L2 = 100 and two values of the concentration parameter: c = 0.5 and c = 0.89.

Similarly to what has been observed for the case of the Oldroyd-B model, the

steady-state droplet velocity decreases monotonically with increasing DeT , and to

larger values of the polymer concentrations parameter correspond smaller termi-

nal velocities. For the smallest Deborah considered (DeT = 3.75), no substantial

di�erences have been observed between the results shown here for the FENE-CR

model with L2 = 100 and those obtained for L2 → ∞ (Fig. 5.8) obtained with

the Oldroyd-B model. In fact, the relative velocity di�erence between these two

case is about 1%. Such result suggests that, for relatively small Deborah number,

the maximum extensibility of the molecule does not a�ect the migration velocity

signi�cantly. The main qualitative di�erence in the trends shown in Fig. 5.8 for

low DeT and in Fig. 5.9 for higher DeT is the di�erent concavity of the curve.

Contrarily to the low−DeT regime, in the present situation the droplet speed

initially decreases with DeT in a relatively steep manner, with the decrease be-

coming less pronounced and tending to a plateau region as the Deborah number

is further increased.

In order to investigate the in�uence of the extensibility parameter, we ran a

series of simulations for some representative values of L2, considering DeT = 7.5

and c = 0.5. Fig. 5.10b shows how the terminal migration velocity decreases

monotonically as the maximum allowable molecule extension is increased. It is

interesting to notice that the for L2 = 400, the velocity reduction relative to

the YGB limit is about 20%, while for L2 = 10, the relative velocity decrease is

about 10%, highlighting the large impact of the extensibility parameter on the

migration velocity.

Fig. 5.11 shows the contours of the trace of the conformation tensor for di�er-
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ent values of the extensibility parameter, showing, as expected, that the normal

stresses increase as the extensibility parameter L2 is increased. Additionally, ap-

pears evident how the con�guration tensor distribution around the droplet surface

is largely a�ected by the value of L2. In particular, for L2 = 10 (Fig. 5.11a),

we notice that the region of the interface characterised by larger values of tr (A)

occupy a wide portion of the rear of the droplet. As L2 is increased, the maximum

values of tr (A) tend to be localised in a narrower region. Arguably, this have

direct consequences on the deformation of the droplet surface, and we can infer

that the mechanism of formation of the cusp is strongly a�ected by the maximum

molecule elongation allowable.

Figure 5.10: Scaled steady state migration velocity obtained with the FENE-CR model as a
function of DeT for two values of the polymer concentration parameter, c, and L2 = 100 (a),
and as a function of the extensibility parameter, L2, for DeT = 7.5 and c = 0.5 (b).

Fig. 5.12 shows the droplet shape evolution for the cases c = 0.5 (a) and

c = 0.89 (b) for DeT = 30 and L2 = 100, showing the di�erent transients

experienced by the drop, both in terms of migration velocity and morphological

evolution. Initially (instant t1), the drop is not yet a�ected by a large deformation,

and its shape is a prolate ellipsoid. Afterwards (instant t2), the viscoelastic

stresses, which are mainly developing around the second half of the droplet (the

conformation tensor distribution was found to be qualitatively similar to that

observed for the case of the Oldroyd-B model, thus, for the sake of brevity we do

not repeat the analysis shown before) are responsible for the loss of fore-and-aft

symmetry, but the pointed end is not yet visible. It is worth to notice that at
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Figure 5.11: Contours of the trace of the conformation tensor,A, at steady state forDeT = 7.5
and c = 0.5 for: (a) L2 = 10, (b) L2 = 100, (c) L2 = 200 and (d) L2 = 400

this stage the rear of the drop is more �attened for the case c = 0.89 than for the

case for c = 0.5, suggesting that during the transient the viscoelastic stresses tend

to be distributed di�erently depending on the value of the parameter c. At the

instant t3, for the case c = 0.5 we notice the presence of a pointed end, which is

not yet visible for the higher concentration parameter c = 0.89. Finally, the last

stage (instant t4) shows the steady state con�guration assumed by the droplets, in

which the presence of the pointed end can also be noticed for the larger value of c.

Despite the terminal velocities being larger for smaller values of c, it is interesting

to notice that between instants t1 and t2 the droplet has travelled for a longer

distance in the case c = 0.89 rather than in the case c = 0.5. Such di�erence

has to be ascribed to the the fact that the viscoelastic stresses require a certain

amount of time to develop. Initially, in fact, the contribution to the hydrodynamic

resistance is mainly due to the presence of viscous stresses which are proportional
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to the solvent viscosity, ηs,m, therefore, since for the case c = 0.89, ηs,m (i.e., the

magnitude of the viscous stress tensor) is lower than that for the case c = 0.5,

the velocity is initially larger.

Figure 5.12: Droplet shape temporal evolution for DeT = 30 and L2 = 100, for c = 0.5 (a),
and for c = 0.89 (b). The time frames are the same for the two pictures, evidencing the di�erent
droplet transient velocity evolution.

5.6 Conclusions

In this chapter we focused on the numerical investigation of the thermocapil-

lary motion of a Newtonian deformable droplet surrounded by a viscoelastic im-

miscible liquid. The impact of viscoelasticity on the droplet velocity and shape

has been analysed in di�erent viscoelastic �ow conditions adopting two separate

viscoelastic constitutive laws. The Oldroyd-B model has been used for relatively

small values of the thermal Deborah number, while for the �ow regimes where

the latter model was no longer successfully applicable, the viscoelastic behaviour

was modelled with the FENE-CR model.

In the �rst case, two distinct �ow conditions have been considered, namely the

case of an "in�nitely diluted" solution, which allows us to analyse the deformation

history of the polymer molecule �owing in a Newtonian �ow �eld i.e., in absence of

viscoelastic stresses, and the case of a �nite, non-vanishingly small dilution, where

the coupling between the viscoelastic stresses and the �ow �eld was expected to
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modify the process and the extent of the deformation as they �ow around the

drop. The numerical experiments have shown that regardless of the polymer

concentration, quanti�ed by the parameter c, the viscoelastic stresses always tend

to be concentrated in proximity of the rear stagnation point, where the extensional

nature of the �ow determines the larger polymer molecule deformation. On the

contrary, the value of the parameter c was found to be in�uential on the maximum

dumbbell elongation, which was found to decrease for increasing values of the

concentration.

For �nite values of the parameter c, it has been observed a remarkable in�u-

ence of the viscoelastic stresses on both the migration velocity and droplet shape.

In particular, the numerical results have shown that the droplet speed decreases

in a quadratic manner by increasing the relaxation time of the viscoelastic phase,

and to larger values of the polymer concentration parameter correspond larger

decrement of the migration velocity. In terms of shape, as the Deborah number

increases, the droplet initially becomes a prolate ellipsoid, then, for subsequent

increments of the relaxation time, a certain degree of loss of fore-and-aft symme-

try has been observed. Speci�cally, for the largest value of the thermal Deborah

number considered with the Oldroyd-B model, the concentration of viscoelastic

stresses near the rear stagnation point were found to be responsible of the devel-

opment of a �pointed tail� (it is worth noticing however, that in a strict sense the

shape depends on the product CaDeT rather than DeT alone, thus the actual

local variation of the curvature is expected to be sensitive to variation of both

these two parameters). A comparison between di�erent values of the parame-

ter c for constant values of DeT , has shown that the droplet velocity decreases

monotonically also for increments of this latter parameter. On the other hand,

only little di�erences on the steady state droplet shape can be observed when the

parameter c is changed.

The FENE-CR model has been adopted for DeT up to the maximum value of

30. No remarkable phenomenological di�erences in comparison to the previous

cases have been encountered. In particular, the viscoelastic stresses have shown

the same tendency to be localized next to the rear stagnation point, bringing to
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similar consequences on the droplet shape. The velocity of the droplet has been

found to be a monotonic decreasing function of DeT also in this case, however

the trend observed is qualitatively di�erent from the one seen for the case of the

Oldroiyd-B model. Seems reasonable to hypothesise however, that the di�erent

behaviour should be ascribed to the fact that the two �ow regimes are substan-

tially di�erent, rather than attribute it to the adoption of di�erent models.

Finally, the e�ect of the extensibility parameter on the terminal velocity has

been investigated for some selected cases. The results have shown that the steady

state droplet speed decreases monotonically for increasing values of L2.
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Chapter 6

Thermocapillary motion of a Newtonian drop in

a weakly viscoelastic Oldroyd-B �uid � Analytical

solution

6.1 Introduction

In Chapter 5, the thermocapillary motion of a Newtonian droplet surrounded

by a viscoelastic �uid was investigated numerically for a fairly large range of Deb-

orah numbers adopting two di�erent viscoelastic models. It was observed that

for all the conditions considered, the droplet speed always decreases monotoni-

cally as DeT is increased. Additionally, the velocity decrease is larger for higher

polymer concentrations c. Although the usefulness of a numerical approach is

undeniable, since it allows one to investigate arbitrary values of Deborah num-

ber (within the limitations discussed in Sect. 2.3.1), an exhaustive parametric

study that would account for the variation of each material parameter would be

excessively time demanding. Additionally, it has been also pointed out that with

the present methodology, it is not possible to simulate �ows for arbitrary small

Capillary number with a desired accuracy due to the increasing level of spurious

velocities in surface tension-dominated �ows (see. e.g., Galusinski and Vigneaux,

2008). For these reasons, together with the lack of experimental results, in the

present chapter we seek an analytical solution to the problem for a Newtonian

droplet surrounded by an unbounded viscoelastic �uid in the form of a pertur-

bation expansion in DeT (i.e., assuming DeT < 1) in the limit of (Re,Ma)→ 0.

Interface deformations are also allowed in some cases by considering �nite, non
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vanishingly small values of the Capillary number.

6.2 Governing equations

To describe the problem under discussion, we shall make use of the results

obtained is Sect. 2.4. In particular, we consider the governing equations written

in dimensionless form (Eqs. 2.55-2.62) bearing in mind that now the droplet

phase (we recall that the following discussion is general, and pertains its validity

also for the case of a gas bubble) is Newtonian, thus Eq. 2.62 simply yields

τ̃ = αD̃. Using this result, the complete dimensionless system of equation reads

∇ · u = 0 (6.1)

Re
Du

Dt
= −∇p+∇ · τ (6.2)

Ma
DT

Dt
= ∇2T (6.3)

τ +DeT d̂τ = D+ βDeT d̂D (6.4)

∇ · ũ = 0 (6.5)

δRe
Dũ

Dt
= −∇p̃+ α∇ · D̃ (6.6)

Ma
DT̃

Dt
= αth∇2T̃ (6.7)

In this work, we assume a steady-state and ignore convective transport of mo-

mentum and energy. In such case, the above system of equations becomes

∇ · u = 0 (6.8)

∇p = ∇ · τ (6.9)

∇2T = 0 (6.10)
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for the continuous phase, and

∇ · ũ = 0 (6.11)

∇p̃ = α∇ · D̃ (6.12)

∇2T̃ = 0 (6.13)

for the droplet phase. The viscoelastic model has been momentarily left out

of the discussion since it will be treated in a special manner, as it will appear

clear in Sect. 6.2.1. Solution of Eqs. (6.8-6.13) requires the adoption of suitable

boundary conditions. Since the continuous phase is unbounded, in a spherical

coordinate system moving with the translating drop (cf. Fig. 2.1), the boundary

conditions for the velocity and temperature �elds at in�nity read, respectively

u|r=∞ → U (6.14)

T |r=∞ → r cos θ (6.15)

while at the drop surface we have (cf. the conditions introduced in Section 2.4)

ur = ũr = 0 (6.16)

uθ = ũθ (6.17)

T = T̃ (6.18)

∂T

∂r
= γ

∂T̃

∂r
(6.19)

p̃− p+ n · (τ − α τ̃ ) · n =
1

Ca
(1− CaT )∇ · n (6.20)

n · (τ − α τ̃ ) · t =
∂T

∂θ
(6.21)

where γ = κ̃/κ. Finally, to characterise the problem completely, we need to

include two additional constrains at the centre of the drop for the velocity and
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temperature �eld, namely

ũ|r=0 <∞ (6.22)

T̃
∣∣∣
r=0

<∞ (6.23)

In writing the normal stress condition (6.20), we have taken into account the fact

that the interfacial tension depends on the temperature following the law given

by Eq. (3.5) (see e.g., Subramanian and Balasubramanian, 2001), providing two

separate contributions, as already observed in Sect. 3.2.

The solution of the problem is made di�cult by the fact that the position of the

interface is generally not known, and it should be found as a part of the solution.

Nevertheless, for the class of problems considered here, the usual strategy is to

seek a solution by assuming that the shape of the interface is known a priori

by replacing the condition (6.20) with another suitable constrain, as explained

further below. Once the �ow �eld is known, we verify a posteriori whether the

choice made for the shape is consistent by assessing whether the normal stress

balance condition, Eq. (6.20) is satis�ed. If a mismatch is found, a correction to

the droplet shape is found from the linearised version of Eq. (6.20), as explained

in the following.

An axisymmetric droplet shape can be conveniently represented in a dimen-

sionless manner as (Taylor and Acrivos, 1965)

r = 1 + ζ (θ) (6.24)

where ζ (θ) is an unknown function to be determined as a part of the solution

(ζ (θ) = 0 being the case of a the spherical particle). In such a case then, the

normal stress balance (6.20) can be linearised in the following manner (Landau

and Lifshitz, 1959)

p̃− p+ n · (τ − α τ̃ ) · n =

1

Ca
(1− CaT (s)|r=1)

{
2− 2ζ − d

ds

[(
1− s2

) dζ
ds

]}
(6.25)
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where s = cos θ. Once the pressure and stresses are known, Eq.(6.25) becomes

a simple ODE for the shape function ζ. Unfortunately, its analytical solution

is made problematic by the presence of the temperature-dependent contribution,

which in turn depends on the variable s. In Sect. 6.2.4 we shall illustrate under

which particular conditions this term can be safely neglected.

6.2.1 Asymptotic expansion

In the present mathematical treatment we are concerned with a viscoelastic

�uid that is only slightly non-Newtonian. In this case, we seek the solution by

adopting a perturbation scheme, expanding all the relevant variables around the

small parameter DeT < 1. In the present work, we expanded up to the second

order in DeT , nevertheless one can in principle apply the methodology up to any

order. Also, the radius of convergence of perturbation expansions, like the one

we use here, is typically low, thus higher order terms are rather useless. For

these reasons, the usual practice is to truncate the expansion at the �rst few

contributions.

To second order, the expansion for the velocity, pressure and stress �elds are

given by

u = u0 +DeTu1 +De2
Tu2 +O

(
De3

T

)
(6.26)

p = p0 +DeTp1 +De2
Tp2 +O

(
De3

T

)
(6.27)

τ = τ0 +DeTτ1 +De2
Tτ2 +O

(
De3

T

)
(6.28)

Similarly, observing that the operator d̂ (·) also depends on the velocity, we de�ne

d̂j (·) = uj · ∇ (·)−
{
∇ujT · (·) + (·) · ∇uj

}
(6.29)

where j = 0,1,2; here, we neglected the time derivative since we are considering

steady-state conditions, as noted before. Substituting the above expressions for

the velocity and the stress tensor into the Oldroyd-B viscoelastic model (Eq.

6.4) and using equation (6.29), we obtain the following expressions for the stress
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tensor at each order

τ0 = D0 (6.30)

τ1 = D1 − (1− β) d̂0D0 (6.31)

τ2 = D2 − (1− β)
[
d̂0D1 + d̂1D0 − d̂2

0D0

]
(6.32)

Finally, for the migration velocity we have

U = U0 +DeTU1 +De2
TU2 +O

(
De3

T

)
(6.33)

Recalling that the non-Newtonian �ow perturbation does not a�ect the tempera-

ture �eld, one realises that the variable T should not be perturbed (in other terms,

the solution of the energy equation is required only at order zero in DeT ). Since

the viscoelastic exterior �ow �eld will a�ect the interior through the boundaries,

similar expansions (cf. Eqs. 6.26-6.27) apply also for the droplet phase. Using

these results, the system of governing equation at order zero for the continuous

phase becomes

∇ · u0 = 0 (6.34)

∇p0 = ∇2u0 (6.35)

∇2T = 0 (6.36)

whilst, at �rst order

∇ · u1 = 0 (6.37)

∇p1 = ∇2u1 + f1 (u0) (6.38)

and �nally, for the second order

∇ · u2 = 0 (6.39)

∇p2 = ∇2u2 + f2 (u0,u1) (6.40)
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where the functions f1 (u0), f2 (u0,u1) are given by

f1 (u0) = − (1− β)∇ ·
(
d̂0D0

)
(6.41)

f2 (u0,u1) = − (1− β)
[
∇ ·
(
d̂0D1 + d̂1D0

)
− d̂2

0D0

]
(6.42)

Finally for the droplet phase, we have

∇ · ũi = 0 (6.43)

∇p̃i = ∇2ũi (6.44)

∇T̃i = 0 (6.45)

being T1 = T2 = 0 for the reasons explained above.

6.2.2 Streamfunction formulation

Since the �ow is incompressible and axisymmetric, it is convenient to re-

formulate the problem adopting the Stokes streamfunction. The continuity equa-

tion in spherical coordinates reads

∇ · u =
1

r2

∂

∂r

(
r2ur

)
+

1

r sin θ

∂

∂θ
(uθ sin θ) (6.46)

From a direct inspection of Eq. (6.46), it is easy to see that the velocity �elds

de�ned as

ur = − 1

r2 sin θ

∂ψ

∂θ
, uθ =

1

r sin θ

∂ψ

∂r
(6.47)

where ψ (r, θ) is an arbitrary function, automatically satisfy the incompressibility

condition. In the present context (three-dimensional and axisymmetric �ow)

ψ (r, θ) takes the name of Stokes streamfunction, and has the property to be

constant along each streamline (see, e.g., Leal 2007). Using the above results, the
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system of equation at order zero in DeT becomes (see, Bird et al. 1987)

E4ψ0 = 0, ∇2T = 0 (6.48)

E4ψ̃0 = 0, ∇2T̃ = 0 (6.49)

having introduced the bi-harmonic operator

E2 =

(
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

))
(6.50)

such that E2E2ψ ≡ E4ψ. Analogously, for the other two expansions it is possible

to eliminate pressure in a similar fashion, providing

E4ψ1 − [∇× f1 (u0)] r sin θ · êφ = 0 (6.51)

E4ψ̃1 = 0 (6.52)

at �rst order, whilst at second order

E4ψ2 − [∇× f2 (u0,u1)] r sin θ · êφ = 0 (6.53)

E4ψ̃2 = 0 (6.54)

where êφ is the unit vector in the azimuthal direction.

6.2.3 Solution techniques for the streamfunction and temperature dif-

ferential equations

The solution of the equation for the streamfunction, written in a general form

as E4ψ (r, s) = g (r, s) is given by the sum of the solution for the homogeneous

problem (i.e., E4ψ (r, s) = 0) (Happel and Brenner, 1983) and a particular solu-

tion, ψp (r, s), viz.

ψ (r, s) =
∞∑
n=2

[(
Anr

n +Bnr
−n+1 + Cnr

n+2 +Dnr
−n+3

)
G−1/2
n (s)

]
+ ψp (6.55)
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where An, Bn, Cn, Dn are the constants to be determined according to the bound-

ary conditions adopted for the speci�c problem, and G
−1/2
n (s) are Gegenbauer

functions of the �rst kind and degree −1/2. The general form of the Gegenbauer

polynomials is provided by the formula reported below (see, eg., Djordjevi¢ and

Milovanovi¢, 2014)

Gλ
n (s) =

n/2∑
`=0

(−1)`
Γ (n− `+ λ)

Γ (λ) `! (n− 2`)!
(2s)n−2` (6.56)

with the starting values Gλ
0 (s) = 1 and Gλ

1 (s) = 2λs and Γ being the gamma

function.

The solution of the Laplace equation in spherical coordinates is also straight-

forward (see, e.g., Subramanian and Balasubramanian, 2001)

T (r, s) =
∞∑
k=0

(
Akr

k +Bkr
−k−1

)
[Pk (s) + CkHk (s)] (6.57)

where Ak, Bk, Ck, are constants and Pk (s), Hk (s) are Legendre functions of the

�rst and second kind, respectively. Similarly to Gegenbauer polynomials, the

functions Pk (s) can be de�ned as

Pk (s) =

k/2∑
`=0

(−1)`
(2k − 2`− 1)!!

2k−``! (k − 2`)!
(2s)k−2` (6.58)

Gegenbauer and Legendre function of �rst kind are related, since it can be veri�ed

from Eqs. (6.56 and 6.58) that the following relationship holds

Pn (s) = G1/2
n (s) (6.59)

Legendre functions of second kind, Hk (s), are singular for s = ±1, that is, at

the two stagnation points at the droplet surface in the present case (so that, for

θ = 0, π). For this reason, the constant Ck will be immediately set to zero when

solving the temperature equations appearing in Eqs. (6.48-6.49).
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6.3 Newtonian solution

Before addressing the viscoelastic problem, we need to obtain the Newtonian

�ow �eld required to calculate the stress tensor at �rst order (Eq. 6.31). The

solution of the present problem is well known (Young et al. 1959), and here we

limit ourselves to describing the general procedure and report the main �ndings.

The problem under examination is described by Eqs. (6.48-6.49) with the

boundary conditions (6.14-6.23) specialised for the Newtonian �eld. The �rst

step is to calculate the temperature which in turn will serve to de�ne the thermo-

capillary stresses appearing in the tangential stress condition (6.21). By direct

application of Eq. (6.55) with the conditions (6.15, 6.18, 6.19 and 6.23) it can be

shown that the temperature �eld outside and inside the drop are given by (see,

Subramanian and Balasubramanian, 2001)

T (r, s) =

(
r +

1− γ
2 + γ

1

r2

)
P1 (s) (6.60)

T̃ (r, s) =
3r

2 + γ
P1 (s) (6.61)

(note that P1 (s) = s = cos θ), therefore at the droplet surface we have T (1, s) =

T̃ (1, s) = 3
2+γ

cos θ, thus Eq. (6.21) becomes

n ·
(
D0 − α D̃0

)∣∣∣
r=1
· t = D0,rθ − αD̃0,rθ

∣∣∣
r=1

=
3

2 + γ
sin θ (6.62)

To solve for the streamfunction, we use Eq. (6.55) with the remaining boundary

conditions. However, before it has been stated that the droplet shape is supposed

to be already known at this stage. In such case, i.e., when the interface shape is

inferred a priori, the ability to satisfy the normal stress condition (6.20) is lost

(Levan and Newman, 1976), therefore in order to calculate the droplet velocity

we must include another condition. We require that at the steady-state the total

force applied to the droplet by the �uid is equal to the external force acting on it

F0,z =

∫ π

0

[
(−p0 + τ0,rr)|r=1 cos θ − τ0,rθ|r=1 sin θ

]
sin θdθ (6.63)
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In the present case, F0,z = 0 because we are considering a neutrally buoyant

�ow and no external forces are applied to the drop. The solution for the two

streamfunctions can then be shown to be given by

ψ0 = 2A

(
r2 − 1

r

)
G
−1/2
2 (s) (6.64)

ψ̃0 = 3A
(
r4 − r2

)
G
−1/2
2 (s) (6.65)

where we introduced A = 1/[(2 + 3α) (2 + γ)] for convenience. The velocity

components are then obtained from Eqs. (6.47)

u0,r = −2A

(
1− 1

r3

)
cos θ, u0,θ = 2A

(
1 +

1

2r3

)
sin θ (6.66)

ũ0,r = 3A
(
1− r2

)
cos θ, ũ0,θ = −3A

(
1− 2r2

)
sin θ (6.67)

and the dimensionless droplet migration velocity is found to be U0 = 2A. Finally,

the pressure is obtained by integrating the equations of motion (Eqs. 6.35 and

6.44)

p = p∞ (6.68)

p̃ = k1 − 30αAr cos θ (6.69)

where p∞ is the pressure at in�nity and k1 is a constant that at this stage is

still unknown. By taking advantage of the above solution, it is straightforward

to verify that for the prescribed conditions, i.e., in absence of inertial e�ects, the

spherical boundary identically satis�es the normal stress balance (6.20) and the

constant in Eq. (6.69) can be veri�ed to be, k1 = p∞ + 2/Ca.

6.4 First-order perturbation solution

The problem to be solved at �rst order is given by Eqs. (6.61-6.62). Tak-

ing advantage of the solution for the Newtonian velocity, we can evaluate the

term f1 (u0) = − (1− β)∇ ·
(
d̂0D0

)
and apply the solution strategy for the
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streamfunction di�erential equation provided at the end of Sect. 6.2.3 with the

application of the relevant boundary conditions. Also at this stage, we shall ini-

tially assume that the spherical shape is a con�guration of equilibrium for the

droplet, therefore we cannot rely on the normal stress balance, instead we shall

make use of the macroscopic force balance (6.63) written for the speci�c case

under consideration. Additionally, by recalling that the viscoelastic stresses do

not a�ect the thermocapillary process, the tangential stresses must be continuous

at the interface, i.e.,

τ1,rθ|r=1 − α τ̃ 1,rθ|r=1 = 0 (6.70)

We �nd that f1 (u0) = 0, and the problem is formally identical to the one solved

in the previous section, with the only di�erence that now there are viscoelastic

stresses that will a�ect the tangential stress through the boundary condition

(6.70). The calculations required to arrive to the �nal solution are straightforward

but rather lengthy and will be omitted here (the expression of each relevant term

can be found in the appendix). The �nal result for the streamfunctions is found

to be

ψ1 =
108(1− β)A2

5(α + 1)

(
1− 1

r2

)
G
−1/2
3 (s) (6.71)

ψ̃1 =
216A2 (1− β)

10(α + 1)

(
r5 − r3

)
G
−1/2
3 (s) (6.72)

which can be used to evaluate the velocity and pressure �eld corrections. Despite

the presence of viscoelastic stresses that a�ect the �ow, it is interesting to note

that they do not have any impact on the migration velocity of the drop,viz.

U1 = 0.

6.4.1 Account for the departure from the spherical shape on the mi-

gration velocity

Until now we have assumed that the droplet shape remains spherical. We

have seen that this is veri�ed for the Newtonian case as long as the inertial
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e�ects are neglected. In the present context, however, the presence of viscoelastic

stresses acts to deform the drop and the assumption of spherical con�guration is

reasonable only in the limit of vanishingly small Capillary numbers. The shape

function ζ should ideally be obtained by solving Eq. (6.25); however, previously

we have pointed out that its mathematical treatment is made di�cult by the

presence of an additional contribution proportional to CaT (r = 1, s). We shall

now illustrate under which conditions this term can be neglected. From the

expression of the temperature at the interface provided in Sect. 6.3 it is easy to

verify that the additional contribution to the normal stress balance can be safely

neglected provided that the condition 1/Ca� 3s/(2 + γ) holds. The right hand

side of the previous inequality is bounded, max {3s/(2 + γ)} = 3/2 , therefore we

simply require that the Capillary number is su�ciently small to assume that the

previous assumption is veri�ed, but large enough to allow deformations. Under

these assumptions, Eq. (6.25) becomes

p̃− p+ n · (τ − α τ̃ ) · n =
1

Ca

{
2− 2ζ − d

ds

[(
1− s2

) dζ
ds

]}
(6.73)

which can be solved considering that ζ must satisfy the conditions

∫ 1

−1

ζds = 0,

∫ 1

−1

sζds = 0 (6.74)

These equations are the linearisation of the conditions that the droplet volume

must be constant because of incompressibility, and that the centre of mass of

the drop has to coincide with the origin of the coordinate system, respectively.

Solution of Eq. (6.73) with the conditions (6.74) is straightforward, provided

that the right hand side of equation (6.73) can be written as a sum of Legendre

polynomials (Brignell, 1973). That is, if

p̃− p+ n · (τ − α τ̃ ) · n = ϕ0 +
∞∑
n=1

ϕnPn (s) (6.75)
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the solution of Eq. (6.73) is given by

ζ = α1P1 (s) + α2

[
1

2
s log

(
1 + s

1− s

)
− 1

]
− ϕ0

2
+
ϕ1

6
s log

(
1− s2

)
−
∞∑
n=2

ϕnPn (s)

(2 + n) (1− n)
(6.76)

By application of the conditions (6.74), it can be veri�ed that the constants α1,

α2, ϕ0 and ϕ1 must be identically zero, thus

ζ = −
∞∑
n=2

ϕnPn (s)

(2 + n) (1− n)
(6.77)

At the terminal velocity of the drop (U0 = 2A) we found

6 (β − 1)A2DeT + 4ϕ2DeTP2 (s) =
1

Ca

{
2− 2ζ − d

ds

[(
1− s2

) dζ
ds

]}
(6.78)

where ϕ2 = 3A2(1−β)(13α+22)
5(α+1)

. Using this result and applying Eq. (6.77), the

expression for the drop radius (Eq. 6.24) gives

r = 1 + ϕ2CaDeTP2 (s) . (6.79)

As we shall see, this is an equation of a prolate spheroid by virtue of the fact that

β < 1 and all the other terms in the expression for ϕ2 are positive.

Now we adopt a domain perturbation scheme (Joseph and Fosdick, 1972) to

obtain the migration velocity correction for the deformed drop. We consider the

previous �ow �eld obtained around the spherical drop and perturb it around the

small parameter CaDeT

u = u(0) + CaDeTu
(1) (6.80)

ũ = ũ(0) + CaDeT ũ(1) (6.81)

The adoption of the product CaDeT as a perturbation parameter is consistent

with the fact that the function ζ goes to zero either when DeT → 0, for any
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arbitrary �nite value of the Capillary number (Newtonian case), or when Ca→ 0,

for any arbitrary �nite value of the Deborah number. Therefore, the product

CaDeT represents the appropriate choice for the perturbation parameter. The

new correction �elds, u(1) , ũ(1) will satisfy the Stokes equations

E4ψ(1) = 0 (6.82)

E4ψ̃(1) = 0 (6.83)

The boundary conditions should now be satis�ed at r (θ) = 1 + ζ (θ). To �rst

order in CaDeT they read

u(1)
r − ϕ2P2 (cos θ)

∂u0,r

∂r
− 3ϕ2 cos θ sin θu0,θ = 0 (6.84)

ũ(1)
r − ϕ2P2 (cos θ)

∂ũ0,r

∂r
− 3ϕ2 cos θ sin θũ0,θ = 0 (6.85)

u
(1)
θ − ϕ2P2 (cos θ)

∂u0,θ

∂r
+ 3ϕ2 cos θ sin θu0,r =

= α

(
ũ

(1)
θ − ϕ2P2 (cos θ)

∂ũ0,θ

∂r
+ 3ϕ2 cos θ sin θũ0,r

)
(6.86)

τ
(1)
rθ − ϕ2P2 (cos θ)

∂τ0,rθ

∂r
+ 3ϕ2 cos θ sin θ

(
τ0,rr − τ0,θθ

)
=

= α

(
τ̃

(1)
rθ − ϕ2P2 (cos θ)

∂τ̃0,rθ

∂r
+ 3ϕ2 cos θ sin θ

(
τ̃0,rr − τ̃0,θθ

))
(6.87)

where these expansions are evaluated at r = 1 (see, e.g., Leal, 2007). By solving

equations (6.82-6.83) with the above boundary conditions, we obtain the following

expressions for the streamfunction

ψ(1) =
6A3(β − 1)(21αr3 − 16r3 − 30α + 10)(13α + 22)

25(α + 1)(3α + 2)r
G
−1/2
2 (s)

+
54A3(β − 1)(13α + 22)(13αr2 + 10r2 + α + 4)

175(α + 1)2r3
G
−1/2
4 (s) (6.88)
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ψ̃(1) =
18A3(β − 1)(13α + 22)(15αr2 − 20r2 − 21α + 16)r2

(150α2 + 250α + 100)
G
−1/2
2 (s)

− 351A3(β − 1)(αr2 + 4r2 − 15α− 18)(13α + 22)r4

1225(α + 1)2 G
−1/2
4 (s) (6.89)

Unlike the previous cases, now the contribution to the migration velocity is dif-

ferent from zero, and is found to be

U (1) = −6A3(1− β)(13α + 22)(21α− 16)

25 (α + 1) (3α + 2)
(6.90)

From inspection of Eq. (6.90), we realise that the correction to the droplet speed

can either be positive or negative depending on the value assumed by the viscosity

ratio, α, since β < 1 and the remaining terms are positive.

This correction �eld will further contribute to the deformation of the bound-

ary, therefore we need to add the stresses τ (1) and τ̃ (1) to the normal stress

condition (6.20). The adoption of the domain perturbation technique then pro-

vides

n ·
(
τ (1) − ατ̃ (1)

)∣∣
r=1
· n = τ (1)

rr − ϕ2P2 (cos θ)
∂τ0,rr

∂r
− 6ϕ2τ0,rθ cos θ sin θ

− α
(
τ̃ (1)
rr − ϕ2P2 (cos θ)

∂τ̃0,rr

∂r
− 6ϕ2τ̃0,rθ cos θ sin θ

)
(6.91)

We shall make use of this expression in the evaluation of the droplet shape at

O (CaDe2
T ).

6.5 Second-order perturbation solution

The procedure for �nding the solution atO (De2
T ) closely resembles the method

applied in the previous case at O (DeT ) (i.e., also in this case, we are initially

assuming Ca → 0). The equations of motion are provided by Eqs. (6.53-6.54),

which will be solved adopting the relevant boundary conditions (formally, the

same conditions used for the �rst order correction specialised for the present ex-

pansion order). The solution to the problem for the two streamfunctions is given
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by

ψ2 = h2 (r, θ)G
−1/2
2 (s) + h4 (r, θ)G

−1/2
4 (s) + ψpart2 (6.92)

ψ̃2 = h̃2 (r, θ)G
−1/2
2 (s) + h̃4 (r, θ)G

−1/2
4 (s) (6.93)

where

h2 =
324A3 (1− β)

25r (α + 1) (3α + 2)
×{(

−965r3

858
+

145

78

)
α2 +

[(
−651

286
+ β

)
r3 − 2β +

9

2

]
α

+

(
2

3
β − 9

11

)
r3 − 4

3
β +

77

39

}
(6.94)

h4 =
972A3(1− β)

25(α + 1)2r3
×{(

−5r2

39
+

245

1053

)
α2 +

[(
β − 2008

273

)
r2 − 3β +

70498

7371

]
α

+

(
−58

7
β +

562

273

)
r2 +

44

7
β +

26

567

}
(6.95)

ψpart2 = Φ0 (r)
[
Φ1 (r) cos2θ + Φ2 (r)

]
G
−1/2
2 (s) (6.96)

with

Φ0 =
243 (1− β)A3

5r9 (α + 1)
(6.97)

Φ1 = (β − 1) r5 − 5

81
(α + 1) r3 +

10

1053
(α + 1) (6.98)

Φ2 =
1

9
(1− β) r5 − 5

81
(α + 1) r3 +

80

11583
(α + 1) (6.99)

whilst

h̃2 =
756A3 (1− β) r2 (r2 − 1)

195α + 130
(6.100)

h̃4 =
972 (β − 1)A3 (169β + 111α− 58) (r + 1) r4 (r − 1)

455(α + 1)2 (6.101)
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Finally, by enforcing the force balance condition, the correction to the migration

velocity at this order is found to be

U2 = −108A3 (1− β) (965α2 − 858αβ + 1953α− 572β + 702)

3575 (3α2 + 5α + 2)
(6.102)

Unlike the �rst order �eld, even in absence of deformation the above result in-

dicates that the viscoelastic stresses at this order have an impact on the droplet

speed. In particular, contrarily to the previous correction, it can be shown that,

regardless the other parameters, the droplet always slows down for increasing

values of the Deborah number.

6.6 Higher-order drop deformation

Taking into account the values of the streamfunctions calculated in Sect. 6.4,

expression (6.91) for the normal stresses at O(CaDeT ), and having already ne-

glected all the terms that do not contribute to the deformation, for the reasons

explained in Sect. 6.4.1, the normal stress balance (Eq. 6.73) can �nally be

written for all the contributions calculated so far as

4ϕ2DeTP2 (s) + 10ϕ
(1)
3 CaDeTP3 (s) + 10ϕ3DeT

2P3 (s) =

1

Ca

{
2− 2ζ − d

ds

[(
1− s2

) dζ
ds

]}
(6.103)

where

ϕ
(1)
3 =

A3 (1− β) (2592α2 + 4122α + 1476) (13α + 22)

70(α + 1)2 P3 (s) (6.104)

ϕ3 =
54A3 (1− β) (4481α2 + 4017αβ + 5944α + 5538β − 58)

455(α + 1)2 P3 (s) (6.105)

while the expression for ϕ2 was provided in Sect. 6.4.1. The equation describing

the droplet shape �nally is

r = 1 + ϕ2CaDeTP2 (s)− ϕ(1)
3 Ca2DeTP3 (s)− ϕ3CaDe

2
TP3 (s) (6.106)
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Before going through the discussion of the results, it is useful to rewrite the

droplet speed normalised with respect to the velocity U0 ≡ 2A, in a similar fashion

as in the discussion made in Chapter 5 (we recall that 2A = UY GB/UT ), viz.

Ū ≡ U

U0

= 1 +DeT Ū1 + CaDeT Ū
(1) +DeT

2Ū2 (6.107)

where

Ū1 = 0, (6.108)

Ū (1) = −3A2(1− β)(13α + 22)(21α− 16)

(75α2 + 125α + 50)
(6.109)

Ū2 = −54A2 (1− β) (965α2 − 858αβ + 1953α− 572β + 702)

3575 (3α2 + 5α + 2)
(6.110)

6.7 Discussion

In the previous sections, analytical solutions for the thermocapillary viscoelas-

tic problem have been obtained for both the spherical and for the deformed drop

assuming negligible convective transport in the limit of weak viscoelastic e�ects

adopting a perturbation approach. In particular, it has been seen that by in-

cluding terms up to second order in DeT , the viscoelastic correction to the drop

speed comprises two separate terms, as it is summarised by Eqs. (6.108-6.110).

In order to discern between the two contributions, we �rst analyse the results

for the spherical con�guration, then we shall include the second correction in or-

der to highlight the di�erences produced by shape deformations. Finally, we shall

compare the analytical solution with the outcomes of the numerical computations

presented in the previous chapter and other simulations speci�cally performed for

the present purpose.

6.7.1 Viscoelastic correction for the case of a spherical drop

Before addressing the discussion of the results, it is useful to show the explicit

dependence of the normalised velocity (Eq. 6.107) on the �uid parameters. Since
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the quantity A depends on the viscosity and thermal conductivity ratios, α and

γ respectively, we have

Ū = Ū (α, β, γ) (6.111)

Each of these parameters represents a degree of freedom for the problem, hence the

subsequent discussion should be ideally carried out considering them separately.

Nevertheless, due to the restrictions reported below, it is convenient to limit the

discussion for selected classes of �uids.

First, we consider the case of an arbitrarily small viscosity ratio, α→ 0, which

can be achieved either when the drop phase is characterised by a �nite value of

the viscosity, while the continuous phase viscosity is in�nitely large, or when the

latter is �nite and the viscosity of the droplet is close zero. Although from a

mathematical stand point the two situations are equivalent, the �rst situation

can be seen as the idealisation of the case of a liquid drop entrapped in a solid

matrix. On the other side, the latter example can be seen as representative of a

gas bubble embedded in a viscous or, as in the present case viscoelastic continuous

phase. Extending the analysis to the thermal conductivity, we notice that γ → 0

either when κ̃ → 0 and κ is �nite, or for κ → ∞ and �nite values of κ̃. The

latter condition should be regarded as the case of an exceptionally conductive

continuous phase (e.g., a liquid metal) surrounding a viscous drop, while the

former can be seen as representative of the case of a gas bubble surrounded by

a viscous or viscoelastic liquid. Since liquid metals in usual conditions can be

regarded as Newtonian (see, e.g., Lappa and Ferialdi, 2017) in the subsequent

discussions the situation (α, γ)→ 0 will be considered representative of the case

of a gas bubble migrating in a viscoelastic �uid phase.

The opposite case, α → ∞, is obtained when the viscosity of the continuous

phase should approaches zero, assuming a �nite drop viscosity, or in the presence

of a solid particle surrounded by a viscous or viscoelastic �uid. In the latter

situation, no particle motion would be observed, while the other condition was

shown to be inadmissible since the the analytical solution of Young et al. (1959)
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seems to fail the prediction, as explained in Sect. 2.4.1. As for the thermal con-

ductivity, although in principle the condition γ → ∞ can be achieved assuming

for the droplet phase a very large thermal conductivity, again, for example with

the adoption of liquid metals, the physical problem would be rather "anomalous".

Alternatively, the same condition could be obtained with a perfectly insulating

continuous phase, which cannot obtained in this context for obvious motivations.

For these reasons, the case (α, γ) → ∞ will not be discussed in the present

context. All the remaining situations lie somewhere between the limiting cases

discussed above and their behaviour will be analysed for some selected cases.

Fig. 6.1 shows the migration velocity, Ū , when the correction term Ū (1) is

absent (i.e., in the limit of Ca → 0) as a function of the Deborah number for

di�erent values of the parameter β and α = γ = 1. We note that for each

Figure 6.1: Normalised migration velocity as a function of DeT for α = 1 and Ca = 0 and
di�erent values of β

value of β shown in the �gure, the migration velocity decreases monotonically

quadratically for increasing values of the Deborah number. We observed that

smaller values of β correspond to larger velocity decrements, analogously to what

was observed in Chapter 5 for a broader range of Deborah numbers and for a

deformable drop. As explained before, this behaviour might be ascribed to the

fact that the viscoelastic stresses, which are acting against the drop motion,
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increase when the polymer contribution to the total viscosity becomes larger,

assuming �xed the total viscosity. The trivial Newtonian case β = 1 is not

shown.

Fig. 6.2 shows the normalised velocity for a �xed value of β for various

combinations of the parameters α and γ (apart from the case of the gas bubble,

γ is set to unity for the sake of simplicity). The results indicate that for the case

Figure 6.2: Normalised migration velocity as a function of DeT for β = 0.5 and Ca = 0 and
di�erent values of α

of the gas bubble, the droplet speed decreases up to a maximum of about 10%

with respect to it initial value for DeT = 0. On the other hand, as the viscosity

ratio is increased, the drop slow down in a less steep manner and, in the limit

of large viscosity ratios, the Newtonian behaviour is recovered (notice that for

α = 10, the curve is already approximately �at) for the simple reason that the

migration velocity approaches zero when the continuous phase viscosity becomes

predominant. The simple mathematical explanation of such behaviour is due to

the presence of the term A2 appearing in Eq. (6.110), which is maximised when

the viscosity and thermal conductivity ratio are equal to zero. The opposite

happens when these two quantities tend to in�nity. Therefore, we can infer

that the elastic e�ects are proportional to the product ADeT rather than DeT

alone, suggesting the possibility to represent the results in an alternative manner
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adopting a "reduced" Deborah number, D̄eT = ADeT , which would be equivalent

to consider UY GB as a scaling velocity instead of UT .

Fig. 6.3 shows the comparison between the streamlines for three di�erent cases

drawn in a frame of reference attached to the moving drop. The Newtonian �ow

pattern is shown on the left, while the remaining two are for DeT = 0.9 and β =

0.1 but di�erent values of the viscosity ratio: α = 1 at the center, and α = 0.25 on

the right. As expected, the Newtonian �ow �eld is fore-and-aft symmetric since

Figure 6.3: Images of the streamlines in the region of the drop for (a) the Newtonian case,
(b) α = 1 and β = 0.1 and (c) α = 0.25 and β = 0.1. For both viscoelastic cases, DeT = 0.9

we are considering the idealised situation in which convective transport is exactly

absent (i.e., Re = Ma = 0), thus the �ow must be time-reversible, meaning that

one would not be able to infer the direction of the motion (i.e., whether the drop

is moving upward or downward, in the speci�c case) by inspecting the streamlines

alone. On the contrary, when viscoelastic e�ects are considered, the streamlines

are no longer symmetric. Although for both viscoelastic cases we are considering

the same value of Deborah and β, it is interesting to notice the large impact played

by the viscosity ratio, α. We notice, in fact, that for the �rst case the di�erences

with respect to the Newtonian �ow �eld are minimal, while as the viscosity of

the drop is decreased, the streamlines are profoundly modi�ed both inside and

outside the drop. In particular, if we look at the �ow �eld in the continuous phase
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in the region behind the drop, the streamlines appear to be "compressed", while

as we move further downward, the �ow �eld tends to become more "thinned out".

This behaviour might be ascribed to memory e�ects played by elasticity, because

the polymer molecules deformation is a�ected by their past �ow history as they

move around the drop with direct consequences on the normal stress distribution

around the drop. As explained before, the large di�erence obtained when the

same Deborah and same β are assumed, is due to the presence of the term A

in the equations of the streamfunction (Eqs. 6.71-6.72 at �rst order, and Eqs.

6.92-6.93 at second order in DeT ).

6.7.2 Account for the departure from the spherical shape

In the present section we include into the analysis the correction to the mi-

gration velocity which depends on the product CaDeT (expression 6.109), thus

shape deformations are allowed as long as the Capillary number is not zero.

Figure 6.4: Normalised migration velocity as a function of DeT for α = 1 and Ca = 0.2 and
di�erent values of β

Fig. 6.4 shows the normalised migration velocity as a function of the Deborah

number for α = γ = 1, Ca = 0.2 and di�erent values of β. From a direct compar-

ison with Fig. 6.1, we do not notice substantial di�erences. Also in this case, the

velocity decreases monotonically as De2
T (although now the correction comprises
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the linear term in DeT which accounts for the departure from the spherical shape

through the presence of Ca) and to smaller values of β correspond larger velocity

variations. In particular, it was found that the relative di�erence between the two

conditions for the case of the maximum relative velocity decrement (i.e., for β = 0

and DeT = 1) is about 0.2%, showing that when the two phases have similar vis-

cosities and thermal conductivities, the e�ect of the deformation on the migration

velocity is negligible. In fact, the small di�erence is essentially due to the fact

that for those conditions, the departure of the droplet's shape from spherical are

hindered by the presence of the terms dependent on A appearing in the equation

for the shape function (6.106) through the functions ϕi. Contrarily, when we look

Figure 6.5: Normalised migration velocity as a function of DeT for β = 0.5 and Ca = 0.2 for
di�erent values of α

at the trends for �xed β (equal to 0.5 in the present example) considering α as

a parameter (see, Fig. 6.5), the di�erence with respect to the previous case in

absence of deformations becomes striking. We notice, in fact, that for these par-

ticular values of the viscosity ratio, the velocity migration initially increases with

respect to the limit given by the velocity provided by Eq. (2.65), reaches a max-

imum and then decreases. From a mathematical point of view, such behaviour is

due to the presence of the term (21α− 16) appearing in Eq. (6.109). Since the

sign of the other terms is �xed regardless the values assumed by each variable,
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this term obviously reverts its sign depending on the value of the viscosity ratio.

From a physical point of view however, the justi�cation of this behaviour seems

to be quite involved. In the following we propose a possible interpretation of this

unexpected behaviour. In Sect. 6.7.1 we highlighted the remarkable in�uence

played by the normal stresses on the �ow pattern, especially when the viscosity

ratio becomes relatively small. In the previous examples no deformations were

allowed, thus the only e�ect of the normal stress distribution was to modify the

exterior �ow �eld and consequently the interior one through the stresses exerted

around the drop boundary. In the present case, however, the distribution of the

normal stresses acts to modify both the �ow �eld and the droplet shape with the

direct consequences for the hydrodynamic resistance to the particle's motion. We

have observed that the �rst order shape function always provides prolate ellipsoid

particle shapes. Furthermore, from the inspection of the term ϕ2 appearing in

Eq. (6.79), the drop becomes more elongated for smaller values of α through the

term proportional to A. Therefore, we might infer that after a certain "critical"

viscosity ratio (speci�cally, for α < 16/21), the resistance to the motion o�ered by

the deformed droplet becomes smaller due to the reduced cross-sectional area of

the drop, providing the initial velocity increment shown in Fig. 6.5. This hypoth-

esis is further con�rmed by the fact that the extent of the maximum increment

decreases by increasing α and the relative maximum moves towards smaller DeT .

Keeping α �xed, for further increments of DeT the subsequent droplet slow down

can be justi�ed by the increased contribution of the viscoelastic stresses that after

a certain threshold starts to prevail against the above mentioned reduction of the

hydrodynamic resistance.

6.7.3 Comparison with the numerical solutions

In this section we compare some of the results presented in the previous section

with the numerical computations obtained for the conditions similar to those

adopted in Chapter 5. In particular, we ran a series of additional simulations

adopting the Oldroyd-B model for Re = 10−4 and Ma = 10−5 for an increased

domain (both the horizontal and vertical dimensions have been increased by a
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factor of 1.5 with respect to the case examined in Chapter 5) to reduce possible

e�ects of the boundaries on the droplet motion. Additionally, as it has anticipated

in the introductory part of this section, we shall make use of some of the previous

calculations of Chapter 5 to make further comparisons.

Figure 6.6: Comparison between the numerical simulations and the analytical solution in
terms of normalised velocity as a function of the Deborah number, for the cases (a) α = γ = 1
and β = 0.5, (b) α = γ = 1 and β = 0.11, (c) α = 0.1, γ = 1 and β = 0.5

Fig. 6.6 shows the comparison between the normalised migration velocity as

a function of DeT for three selected cases. Figs. 6.6a,b show the normalised

velocity as a function of the Deborah number for two di�erent values of β, α =

γ = 1 and Ca = 0.2. Although the results of the numerical experiments are

slightly scattered due to numerical errors (the dashed red lines represent �tting

curves), the results show a fairly good agreement between the two approaches.

In Fig. 6.6c, the comparison has been made for the case β = 0.5, α = 0.1

and γ = 1 adopting the same Capillary number considered before. The results
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indicate qualitative agreement, as witnessed by the fact that both the analytical

and numerical solutions initially increase with DeT . Nevertheless, the numerical

simulations seem to overestimate the trend provided by the analytical solution.

Such discrepancy might be ascribed to the fact that, as explained in Chapter 5,

the present numerical approach shows lack of accuracy in predicting the droplet

shape even in the absence of viscoelastic e�ects (cf. the data shown in Table

5.3). Additionally, observing that the �rst order shape function depends on A2

through the term ϕ2 appearing in Eq. (6.79), the source of numerical error arising

from the interpolation of the two viscosities through Eq. (2.75) can have a non-

negligible impact on the migration velocity. When α = 1, on the contrary, the

deformations are limited and the source of error mentioned above is absent, as

witnessed by the better agreement shown by the data in Figs. 6.6a,b.

Figure 6.7: Comparison between the droplet shapes obtained from the simulations and those
obtained with the analytical approach for β = 0.5 and β = 0.89 and three di�erent Deborah
numbers, DeT = 1.5, 2.25, 3.75.

Additionally, we present the comparison between the droplet shapes obtained

from the simulations discussed in Chapter 5 for the case of the Oldroyd-B model,

with the mathematical prediction provided by Eq. (6.106) (see, Fig. 6.7). From a
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direct inspection of the shapes depicted in the �gure, there appears to be a good

agreement for the smallest Deborah number considered. For DeT = 3.75 how-

ever, the shapes obtained from the numerical computations show the character-

istic "pointed tail", which is not present in the analytical solution. Nevertheless,

the perturbation solution provided shapes that are not fore-and-aft symmetric,

which is in qualitative agreement with the numerical experiments. It is worth

emphasising though, that although the condition CaDeT < 1 is veri�ed for all

the cases, the condition DeT < 1 is nonetheless violated, thus one would expect

a certain discrepancy. Nevertheless, we have observed that the reduced Deborah

number ADeT represents a more appropriate choice (as con�rmed by the depen-

dence on the parameter A < 1). Thus, even though DeT > 1, for the case shown

in Fig. 6.7, ADeT < 1 and the perturbation method remains applicable.

6.8 Conclusions

The analytical treatment of the steady-state thermocapillary motion of a New-

tonian droplet translating in an otherwise quiescent Oldroyd-B �uid has been

conducted adopting perturbation techniques in the limit of small Deborah num-

bers. The analysis is carried out assuming the absence of any convective transport

e�ects, ignoring inertia and decoupling the solution of the energy equations from

the velocity �eld. Speci�c non-Newtonian correction formulae for the droplet

migration velocity are obtained in the limit of Ca → 0, i.e., assuming a spheri-

cal drop, as well as in the presence of small boundary deformations by allowing

the Capillary number to be small, but �nite. Equations describing the droplet

shape are also provided. In the absence of deformation, the results show that

the migration speed always decreases monotonically with DeT irrespective of

the other parameters. In particular, it was shown that when the viscosity and

thermal conductivity of the drop become much smaller than their values on the

continuous phase, the e�ect of elasticity becomes increasingly more important

and the migration velocity is signi�cantly decreased. When the shape deviations

are allowed, the velocity, evaluated as a function of the Deborah number, either
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initially increases with respect to the Newtonian value or behave in a manner

qualitatively similar to that observed for the spherical particle depending on the

speci�c value of the viscosity ratio. The hypothesis that the reduction of the

drop cross-sectional area induced by the reduction of the viscosity ratio might

impact the hydrodynamic resistance to the extent that the velocity can become

larger than UY GB was proposed. Finally, we reported a comparison with some of

the simulations performed in Chapter 5, as well as with other numerical experi-

ments carried out adopting an increased domain. The analysis shows that when

the two phases are characterised by the same viscosity, the droplet migration

velocity obtained from the numerical computations are in good agreement with

the analytical predictions. On the contrary, for smaller values of α, the numeri-

cal approach seems to overestimate the migration velocity, although qualitatively

similar trends are observed. The comparison in terms of droplet shapes is carried

out and qualitative agreement between the outcomes of the two approaches is

observed.
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Chapter 7

Conclusions and future directions

In the present work the study of the thermocapillary motion of deformable

droplets in complex �ow con�gurations for both Newtonian and viscoelastic �uids

was assessed by means of numerical and analytical techniques. A solver based on

a hybrid Level Set-Volume of Fluid methodology available in OpenFOAM was

developed with the speci�c intention to investigate particular aspects of the ther-

mal Marangoni migration phenomenon which were previously little understood or

almost entirely unexplored. The code was �rst tested against the well-established

analytical solution of Young et al. (1959), which holds for Newtonian �uids under

the assumption of negligible convective transport and unbounded �ow. Then, the

capability of the solver on handling more challenging �ow conditions (i.e., includ-

ing the presence of convective transport phenomena) was evaluated considering

the experimental observations obtained in microgravity conditions by Hadland et

al. (1999). The results of the tests have highlighted the reliability of the code on

handling the speci�c problems considered.

In the context of future work, it is worth emphasising that the current imple-

mentation is still susceptible to further improvements, which would enhance the

e�ciency and the accuracy of the solver and would allow the possibility to in-

vestigate �ows in di�erent con�gurations. In particular, throughout this thesis it

was pointed out that on modelling the e�ect of the temperature on the interfacial

tension, the term that takes into account the variation of the capillary force along

the interface was not included in the numerical implementation. Although in cer-

tain �ow conditions such simpli�cation does not lead to inaccurate results, as
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con�rmed by the validations discussed in Chapter 3, in other situations it might

be a source of non-negligible errors, as it was pointed out during the discussion

of the results presented in Chapters 5 and 6. The implementation of the term

under discussion would simultaneously lead to a better prediction of the droplet

interface, which in turn would bring substantial improvements in the evaluation

of the migration speed in all those problems where this latter quantity is strongly

a�ected by interface deformations. Moreover, at this stage the solver cannot rely

on the adaptive mesh re�nement capability if used in parallel calculations. Since

the possibility to use both features (adaptive meshing and parallel computation)

arguably would contribute to reduce signi�cantly the time of computation, this

is a very interesting prospect for future work.

Finally, it is worth pointing out that the present hybrid LS-VOF implemen-

tation, as in the version of Yamamoto et al. (2016), was found to be inadequate

to deal with problems involving interfaces in contact with solid boundaries. In-

deed, a number of works on the thermocapillary motion of droplets nowadays is

focused on problems involving contact angles, due to their potential to be ex-

ploited for applications on Earth (see, e.g., micro�uidic applications). For such

reason, it is highly desirable to �ll this gap in order to increase the potential of

the thermocapillary solver in the context of future lines of investigation.

In all the numerical investigation considered in this work, the same geometric

constrains adopted by Hadland et al. (1999) were used, with the only exception

of the problems discussed in the last section of Chapter 4, where converging and

diverging channels were considered. The e�ect of the solid boundaries on the

migration phenomenon was investigated in di�erent o�-centre conditions. The

problem was analysed using di�erent con�gurations, to consider the e�ect of wall

proximity, by releasing the drop in positions progressively closer to a single wall

and next to a corner for a broad range of Marangoni numbers. Both adiabatic and

conductive walls were adopted to assess the impact of the presence of possible

wall heat �uxes on the dynamics of the droplet. In the absence of wall heat

�uxes and for relatively small Reynolds and Marangoni numbers, the temperature

pro�le remains quasi-linear for all the o�-centred con�gurations. Consequently,
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the thermocapillary stresses tend to be symmetrically distributed around the

surface of the drop, and the resulting driving force is mainly in the direction of

the applied temperature gradient. For larger values of Ma, the migration speed

was found to decrease relatively to case where the drop was released exactly at

the centre of the channel. The results have shown that the migration velocity

comprises two separate contributions. In addition to the component generated by

the mean temperature gradient, i.e., directed from the cold side to the hot side,

another component arising from the distortion of the temperature �eld around

the drop that �pulls� the particle toward the centre of the channel was observed.

The additional contribution was found to be related to the distortion of the

thermal �eld established between the drop and the adjacent wall, which in turn

generates a component of the thermocapillary force directed from the wall toward

the center of the channel. For the case of the conductive wall, the migration

phenomenon was found to be very sensitive to the value of the Marangoni number.

For relatively small Ma, the behaviour of the drop is found to be essentially

unvaried relative to the situation in which adiabatic boundaries were considered.

For large Marangoni numbers, on the contrary, the distortion of the thermal �eld

generates a thermocapillary component of the force that pulls the droplet toward

the conductive wall, which eventually leads to the collision of the drop with the

boundary.

Subsequently, we addressed the thermocapillary problem adopting converging

and diverging containers for both small and moderately large Marangoni numbers.

When convective e�ects are negligible, we observed that the velocity distribution

along the extension of the channel is essentially logarithmic, and the drop accel-

erates or slows down relative to the case of a linear temperature pro�le depending

on the concavity assumed by the temperature distribution, i.e., if the channel is

converging or diverging, respectively. On the other hand, when convective trans-

port is important, the temperature distribution established in the region of the

thermal boundary layer, i.e., next to the drop interface, is dictated by the e�ect of

convection rather than the distortion imposed by the geometric con�guration of

the domain. In such a case, the migration process is observed to be equivalent for
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the two con�gurations until the blockage e�ect o�ered by the narrowing channel

in the converging arrangement leads to an unavoidable velocity decrease.

In the second part of the thesis, viscoelastic e�ects were taken in consideration

by modelling the continuous phase employing two di�erent viscoelastic models.

The problem was initially tackled numerically, then analytical solutions were de-

rived for the steady-state axisymmetric �ow assuming an unbounded domain. In

both cases, negligible inertia and convective transport of energy were postulated.

With regard to the numerical experiments, for relatively small Deborah numbers

the viscoelastic phase was modelled adopting the Oldroyd-B constitutive law,

while, for �ow conditions where this model was found to be no longer applicable,

the non-linear model (FENE-CR) of Chilcott and Rallison (1988) was employed.

For the case of the Oldroyd-B model, two di�erent �ow con�gurations were in-

vestigated. First, the problem was solved assuming an in�nitely dilute solution

(i.e., c→ 0), which allowed to study the deformation of the polymer �lament in

a �ow that essentially behaves in a Newtonian-like manner. Subsequently, the

analysis was repeated for �nite values of the polymer concentration, where vis-

coelastic stresses are produced. The numerical simulations have highlighted that

regardless of the values of the concentration, larger molecule deformations always

occur in a narrow region next to the rear stagnation point, where the �ow is

essentially a uniaxial straining �ow. On the contrary, the value of concentration

was observed to have non-negligible in�uence on the extent of the deformation,

which was found to decrease as the parameter c is increased (i.e., the largest de-

formations occur when the viscoelastic stresses are vanishingly small). In terms

of droplet velocity, the computations obtained for �nite values of the polymer

concentration have shown that the droplet slows down in a quadratic manner

with DeT , and that to larger values of c correspond smaller velocities. Due to

the presence of a singularity in the solution of the Odroyd-B model, the maxi-

mum Deborah number employed was limited to DeT = 3.75. For larger values of

DeT , the viscoelastic behaviour was modelled with the FENE-CR model. Sim-

ilarly to the previous situation, the droplet speed decreases monotonically for

increments of the Deborah number. However, in such a case the trends observed
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were qualitatively di�erent from those obtained with the Oldroiyd-B model. The

di�erent behaviour, however, should be ascribed to the di�erent �ow conditions,

rather than to the adoption of di�erent models. Finally, in terms of interface

deformation, we observed that the droplet always deforms in a prolate manner

independently of the values assumed for the various parameters and, for su�-

ciently large values of DeT it assumes a characteristic �tear-drop� shape with the

presence of a pointed tail.

In the last chapter of the thesis, the viscoelastic problem was tackled by means

of perturbation techniques in the limit of small Deborah numbers and absence of

con�nement. Corrective formulae for the migration speed were obtained assuming

�rst a non-deformable spherical drop and then allowing for small deformations.

For the spherical particle, it has been observed that the droplet speed always de-

creases with the square of the Deborah number regardless of the values assumed

for all the material parameters, which were found to be in�uential only on the

extent of the velocity decrease. Speci�cally, for the case of a gas bubble, i.e.,

the situation in which the particle viscosity and thermal conductivity are much

smaller than those assumed by the continuous phase, the e�ect of elasticity is

maximised and the particle migration velocity is largely reduced. In the pres-

ence of interface deformations, the migration velocity, plotted as a function of

DeT , either initially speed up or slows down relative to the Newtonian situation

depending on the value assumed by the viscosity ratio α. It was observed, in

fact, the presence of a �critical� value of α which reverts the sign of the �rst or-

der velocity correction. Such behaviour seems to be ascribed to the competition

between viscoelasticity, that hinders the migration speed, and the reduced hydro-

dynamic resistance resulting from the reduction of the cross-sectional area of the

prolate drop, which has been found to be inversely proportional to the viscosity

ratio. Comparisons between the analytical solution and numerical computation

showed that when the two �uids are characterised by the same viscosity and same

thermal conductivity, the results of the computations are in good agreement with

the analytical solution. On the contrary, for a speci�c computation obtained for

a value of the viscosity ratio smaller than the critical one, the agreement is only
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qualitative, the di�erence being ascribed to the limitation of the speci�c interface

capturing methodology discussed in Chapter 5 and possible source of errors stem-

ming form the presence of discontinuities in the material properties (i.e., viscosity

and thermal conductivity) and from neglecting the dependence of the capillary

force from the temperature. In terms of shape deformations, both approaches

have shown that the drop initially assumes the con�guration of a prolate ellip-

soid, then, when the product CaDeT is further increased, a loss of fore-and-aft

of symmetry was observed. The presence of the cusped tail was detected only in

the results of the numerical simulations.

Performing experimental campaigns is suggested on future works to verify the

accuracy of the proposed investigations, especially in the case of the migration in

viscoelastic �uids. This is a challenging task, as it would ideally be performed in

reduced gravity environments, which can be extremely complicated and expen-

sive as they required specialised facilities not widely available. The possibility to

resort to micro�uidic applications appears to be a valid alternative to the above

mentioned experiments in microgravity. New lines of inquiry are currently un-

der consideration at the James Weir Fluid Laboratory to design and perform

experiments in micro�uidic chips involving non-Newtonian �uids.
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Appendices
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Terms at the order DeT

(1− β) [d0D0]rr = −12 (1− β)A2(12cos2θr3 − 4r3 + 3cos2θ + 1)/r8 (1)

(1− β) [d0D0]rθ = (1− β)A2(−96r3 − 12)sinθcosθ/r8 (2)

(1− β) [d0D0]θθ = (6 (1− β)A2(14(cos2θ)r3 − 6r3 − 5(cos2θ)− 9))/r8 (3)

(1− β) [d0D0]φφ = 6 (1− β)A2(10cos2θr3 − 2r3 − 13cos2θ − 1)/r8 (4)

p1 = 18DeTA
2(1− β)(−18cos2θr5 + 6r5 + 10cos2θα + 10cos2θ

+ 5α + 5)/(5r8(α + 1)) (5)

p̃1 = 1134A2DeT (cos2θ − 1/3)(β − 1)r2/(5α + 5) (6)

f1 = 0 (7)

Terms at the order CaDeT

τ (1)
rr = A3CaDeT (27378((2/3 + α)((r2 + 5/39)α + 10r2(1/13) + 20/39)cos2θ

+ (−491r2(1/585)− 1/13)α2 + (−1792r2(1/1755)− 14/39)α− 80r2(1/351)

− 8/39))(β − 1)cosθ(α + 22/13)/((35(2/3 + α))(α + 1)2r6) (8)

τ̃ (1)
rr = 8424A3CaDeT (β − 1)cosθ(α + 22/13)((α + 2/3)((r2 − 15/2)α + 4r2

− 9)cos2θ + (−3r2(1/5) + 10/3)α2 + (−14r2(1/5) + 791/90)α− 8r2(1/5)

+ 232/45)r/((35(2 + 3α))(α + 1)2) (9)

p(1) = −A3CaDeT (27(5cos2θ − 3))(13α + 10)(β − 1)(13α

+ 22)cosθ/(70(α + 1)2r4) (10)
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p̃(1) = A3CaDeT (6318((2/3 + α)(α + 4)r2cos2θ + (−3r2(1/5)− 35/9)α2

+ (−14r2(1/5) + 35/27)α− 8r2(1/5) + 140/27))α(β − 1)cosθ(α+

22/13)r/((35(2 + 3α))(α + 1)2) (11)

Terms at the order De2T

(1− β) [d0D1]rr = 432(β − 1)2A3cosθ(18cos2θr5−50cos2θr3−12r5+9cos2θr2

+ 30r3 − 4cos2θ − 3r2)/(5r9(α + 1)) (12)

(1− β) [d0D1]rθ = −(324(−β+ 1))A3(β−1)sinθ(16cos2θr5−50cos2θr3−4r5

+ 5cos2θr2 + 10r3 + 2cos2θ − 3r2 + 6)/(5r9(α + 1)) (13)

(1− β) [d0D1]θθ = (216(−β + 1))(21cos2θr5 − 65cos2θr3 − 15r5 − 3cos2θr2

+ 45r3 + 17cos2θ − 9r2 + 15)(β − 1)A3cosθ/(5r9(α + 1)) (14)

(1− β) [d0D1]φφ = (648(−β + 1))A3cosθ((r5 − (7/3)r3 − r2 + 7/3)cos2θ

− 3r5(1/5) + r3 + (1/5)r2 − 1/5)(β − 1)/(r9(α + 1)) (15)

(1− β) [d1D0]rr = (3888(−β + 1))((r2

+ 4/3)cos2θ − r2)cosθ(β − 1)A3/(5r9(α + 1)) (16)

(1− β) [d1D0]rθ = (972(−β + 1))A3sinθ(β − 1)(5cos2θr2

+ 3cos2θ − r2 + 1)/(5r9(α + 1)) (17)
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(1− β) [d1D0]θθ = −(648(−β + 1))(9cos2θr2 − 2cos2θ − 3r2

− 6)A3cosθ(β − 1)/(5r9(α + 1)) (18)

(1− β) [d1D0]φφ = −(648(−β + 1))A3cosθ(β − 1)(9cos2θr2 − 10cos2θ

− 3r2 + 2)/(5r9(α + 1)) (19)

(1− β)
[
d2

0D0

]
rr

= −(24(1− β))A3cosθ(100cos2θr6 − 60r6 + 40cos2θr3

− 5cos2θ − 3)/r12 (20)

(1− β)
[
d2

0D0

]
rθ

= −(36(1− β))A3sinθ(50cos2θr6 − 10r6 + 5cos2θr3

− 9r3 + 2cos2θ + 4)/r12 (21)

(1− β)
[
d2

0D0

]
θθ

= (24(1− β))A3cosθ(65cos2θr6 − 45r6 − 40cos2θr3

− 48r3 + 29cos2θ + 48)/r12 (22)

(1− β)
[
d2

0D0

]
φφ

= (24(1− β))A3cosθ(35cos2θr6 − 15r6 − 100cos2θr3

+ 12r3 + 65cos2θ + 12)/r12 (23)

p2 = 27De2
TA

3(β − 1)(12215cos2θα2 + 19383cos2θαβ − 19928cos2θα

− 18642cos2θβ + 5882cos2θ + 735α2 − 4641αβ + 21096α + 18174β

− 2454)cosθ/(455(α + 1)2) (24)
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p̃2 = −A3De2
T (113724((2/3 + α)(β + 111α(1/169)− 58/169)cos2θ

− 27953α2(1/68445) + (−3β(1/5)− 5848/68445)α− 2β(1/5)

+ 8416/68445))cosθ(β − 1)/((7(2 + 3α))(α + 1)2) (25)

f2 = −(11664(((β − 1)r5 + (−25α(1/54)− 25/54)r3 + 10α(1/27)

+ 10/27)cos2θ + ((1/15)β − 1/15)r5 + (−125α(1/162)− 125/162)r3

+ 28α(1/81) + 28/81))(β − 1)sinθA3/(r13(α + 1)) (26)
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