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Abstract

Amino Acid Residues are often the focus of research on protein structures. How-

ever, in a folded protein, each residue finds itself in an environment that is defined

by the properties of its surrounding residues. The term microenvironment is used

herein to refer to these local ensembles. Not only do they have chemical prop-

erties but also topological properties which quantify concepts such as density,

boundaries between domains and junction complexity. These quantifications are

used to project a protein’s backbone structure into a series of scores.

The hypothesis was that these sequences of scores can be used to discover protein

domains and motifs and that they can be used to align and compare groups of

3D protein structures.

This research sought to implement a system that could efficiently compute mi-

croenvironments such that they can be applied routinely to large datasets. The

computation of the microenvironments was the most challenging aspect in terms

of performance, and the optimisations required are described.

Methods of scoring microenvironments were developed to enable the extraction

of domain and motif data without 3D alignment. The problem of allosteric site

detection was addressed with a classifier that gave high rates of allosteric site

detection.

Overall, this work describes the development of a system that scales well with

increasing dataset sizes. It builds on existing techniques, in order to automati-

cally detect the boundaries of domains and demonstrates the ability to process

large datasets by application to allosteric site detection, a problem that has not

previously been adequately solved.
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1 INTRODUCTION

1 Introduction

Proteins are large biological molecules that have diverse roles in the cell. They

are used for structural support, for metabolism and for signalling. They are

long chain molecules composed from an alphabet of approximately twenty amino

acids. The sequence of amino acid residues in a protein causes it to fold in a

specific way, finely tuned over the course of evolution, to perform its function.

For many proteins involved in metabolism, this precise folding brings a small

number of catalytic residues1 together in space. The exact orientations of these

residues are controlled by the fold to ensure effective catalysis. The fold, how-

ever, is flexible in evolutionary time. By mutating residues between generations,

evolution can explore subtle variations of the fold and correspondingly subtle

alterations to the orientations of the catalytic residues. This mechanism allows

for variation between species and individuals.

Proteins play an important role in drug discovery. Most drugs are designed to

selectively target proteins associated with the disease state, be it selective toxicity

targeting bacterial, viral or fungal proteins or selective balancing targeting the

patient’s own proteins for diseases of imbalance.

Traditional drug discovery often designs drug molecules to bind to the active site

to prevent the catalytic residues from performing their function. However, it is

becoming increasingly difficult to develop new drugs via this route. Since the

active site is required for the catalysis it is likely to be highly conserved across

evolution and enzyme family, making it difficult to produce drugs selective for

an individual enzyme.

With the rise of antibacterial resistant bacteria, the urgency of developing new

drugs is increasing. The search for new drug discovery techniques and modes

of action is timely, and one possible route is through the phenomenon known

as allostery. In allostery, an effect on the activity of the enzyme is caused by a

binding event remote from the active site. These allosteric sites are less likely

1A glossary of chemical terms is available in Appendix H.
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1 INTRODUCTION

to be conserved so a higher selectivity for individual proteins is theoretically

possible.

The protein folds that control the orientation of catalytic residues are dynam-

ically active and explore a number of conformations. At the extremes, some

conformations will be active or inactive, while others will simply be more effec-

tive or less effective. Nature uses allosteric effectors to change the distribution

between these conformations. This allows proteins to be turned on and off, or for

their activities to be subtly tweaked. One hope for drug discovery is to harness

this same mechanism to regulate the proteins associated with disease state.

A major challenge associated with this approach is to know which parts of the

protein’s fold can be targeted to shift the equilibrium between conformations.

This involves research into how the fold works, how it shifts between conforma-

tions and where the vulnerable points are that can be used to trap the fold in a

conformation that influences its activity.

This research considers the protein fold as a series of discrete volumes that exist

along the path of the protein chain as shown in Figure 1. The amino acid residues

that exist in these volumes determine the chemical and topological environment

of discrete points along the protein chain. By considering the protein in this way,

it becomes possible to detect boundaries and pockets or to compare the chain

topologies of different proteins.

This research investigates how these volumes (subsequently referred to as mi-

croenvironments) can be used to uncover knowledge of the protein fold and

evaluates how they can be used on large sets of protein data. The work also

evaluates the possibility of using microenvironments in the search for allosteric

drugs.

Ultimately, this research is about projecting complex 3D structure into a sim-

pler form so the human mind can more easily perceive patterns and mechanical

possibilities.

This introduction continues with an overview of microenvironments in Section

1.1. The hypothesis is presented in Section 1.2, which leads on to research

questions in Section 1.3. The contribution is outlined in Section 1.4.

2



1.1 Overview of Microenvironments 1 INTRODUCTION

Figure 1: Schematic of a protein chain with three discrete volumes (microen-
vironments) shown in red. In a typical analysis, every residue would have a
microenvironment centred on it. (i.e. there would be a microenvironment cen-
tred on every solid dot in the diagram.)

The introduction is followed by the background in Chapter 2 and preliminaries in

Chapter 3. The methodology continues in Chapter 4 with the results in Chapter

5. The discussion is presented in Chapter 6 and the conclusion in Chapter 7.

1.1 Overview of Microenvironments

Chemicals that exist as a liquid are typically composed of atoms or small molecules.

In the bulk of the liquid, these constituent particles are surrounded by others of

the same kind. In the macro scale, the differences in energies and orientations

can be rationalised by statistical distributions. The interactions at the surfaces

become negligible and the macro qualities of the liquid can be measured or cal-

culated by statistical mechanics. Liquids are approximated as these uniform

measurements and understood (at least superficially) as uniform entities.

Dilute solutions are similarly understood. Each molecule of solute is treated as

being surrounded by molecules of solvent. As with liquids, differences in energies

and interactions with the solvent can be summarised by statistical distribution

and the solution is understood in terms of its macro properties.

3



1.1 Overview of Microenvironments 1 INTRODUCTION

When considering events like chemical reactions, it is deviations from these av-

erage macro states that are considered, whether it be energy level distributions

or collisions.

These kinds of approaches become too simplistic when considering large molecules

like proteins. Technically, protein molecules (or oligomerisations of protein mole-

cules) will still be surrounded by their solvents. While this approach will still be

useful for understanding the bulk properties of the solution, the size of the protein

molecules means it will not be useful for understanding the internal mechanism

of the protein.

When considering these mechanisms, a zoomed-in view of the active site is often

presented. The alignments of key atoms are highlighted and specific interactions

between them are considered at each stage in the mechanism. When binding

events are described, a similar zoomed-in view is presented that describes specific

interactions but also areas of general influence such as hydrophobic pockets or

even simply steric influence. When considering the protein’s fold, concepts such

as a hydrophobic core and loop regions are introduced and domains and motifs

are used to classify recurring themes. All of these descriptions have in common

a focus on regions of interest.

These concepts are used to describe properties of proteins that a uniform bulk

view cannot address. However, like the bulk view, they describe parts of the

protein by characterising their immediate surroundings, that is by their chemical

context. Where a solute molecule is surrounded by identical solvent molecules,

the active site is surrounded by specific residues arranged a certain way. The

protein core is made up of residues with specific properties and binding pockets

have a defined shape from specific residues. The space in a binding pocket can

either be filled with solvent or a bound molecule.

This thesis uses the concept of a microenvironment to understand regions of a

protein. It works from the premise that every residue exists in its own microen-

vironment made from the surrounding residues. Therefore, it does not just focus

on specific sites of interest but considers the whole protein as an ensemble of

microenvironments.

4



1.2 Hypothesis 1 INTRODUCTION

The definition of microenvironment used herein uses a simple radius centred on

each residue. All residues from the protein that lie within the radius are included

in the microenvironment and all residues outside are excluded.

1.2 Hypothesis

Protein microenvironments are composed from segments of the protein chain

that are in close proximity to each other. This property suggests that microen-

vironments may be useful in elucidating characteristics of the topology that are

otherwise obscured.

On individual proteins, these microenvironments can be used to discover domains

and motifs, or can be combined with other observations to explain aspects of their

mechanism and function.

Projecting a three dimensional structure to a sequence opens the door to existing

sequence techniques such as comparisons and alignment. The hypothesis evalu-

ated here is that microenvironments can be used as a tool to compare groups of

protein structures. They can be used to detect differences in multiple conforma-

tions of the same protein (e.g. the output from molecular dynamics) or to search

for topological similarities in collections of different proteins.

1.3 Research Questions

In this work, the above hypothesis will be addressed by the following research

questions:

1. Efficient calculation of microenvironments is important for using this con-

cept as a means of exploring protein structure. This leads to the question:

In what ways can the performance of the tools for defining and processing

microenvironments be optimised? Optimisation would facilitate the study

of large datasets and increase the responsiveness of user interfaces that

5



1.4 Contribution 1 INTRODUCTION

display results as they are generated. Targets for optimisation include the

algorithm for generating microenvironments, databases for storing results

and user interfaces that post-process the data for visualisations.

2. Can the study of microenvironments elucidate useful information about

the structure of proteins? This includes detecting similarities and differ-

ences between protein structures as well as information about domains and

subdomains.

3. What information can microenvironments elucidate from large collections

of data such as the Protein Data Bank [1] (PDB), molecular dynamics or

protein families?

1.4 Contribution

The performance of computing microenvironment data has been improved, which

has had an impact on the feasibility of processing large datasets and reduced the

requirements for storing large quantities of derived data. Microenvironments

have been used to deconstruct protein structure to identify domains and motifs.

The scoring metrics for microenvironments have been expanded beyond topo-

logical scores to incorporate chemical and statistical measures. These have been

used in the training of an allosteric site classifier.

A database was designed to store the scores for all the structures in the Protein

Data Bank (PDB) However, the possibility of creating new scoring metrics for

microenvironments made a difficult trade off between the performance and ex-

tensibility of the schema. Furthermore, a naive implementation of the algorithm

would be inefficient when processing the large datasets such as the entire PDB.

This inefficiency would present a barrier to easy exploration of new ideas.

These problems were overcome by improving the performance of the calculation.

This has made calculating data on the fly when it is needed comparable in speed

to accessing the same data from a database. This virtual database makes a

traditional relational database redundant.

6



1.4 Contribution 1 INTRODUCTION

Although the initial goal was to process the PDB, these enhancements have also

been useful in processing the results from molecular dynamics. Molecular dy-

namics trajectories produce a volume of data comparable in size to the PDB. It

is now a routine task to produce scores for entire molecular dynamics simula-

tions. These performance enhancements have facilitated the protein-orientated

research.

The scoring mechanisms have been extended beyond those of pure topology. The

existing scores considered the path the protein chain made through 3D space.

They have now been extended to include chemical properties (e.g. molecular

weights and hydrophobicity), crystallographic measurements (e.g. temperature

factor) and statistical properties of proteins (e.g. druggability and β-sheet ten-

dency). Related to this, variants of all the scores have been created to take side

chain directionality into account.

In exploring protein structure, microenvironments have been decomposed to iso-

late aspects of the topology. This has been performed systematically to isolate

domains. A related technique shows considerable detail of the 3D fold in 2D and

has been used to identify common patterns in protein folds.

Microenvironment scores can be used to train classifiers to detect allosteric sites.

This has been achieved with a high rate of site detection and a low rate of false

positives.

Beyond proteins, a proof of concept has been demonstrated applying the mi-

croenvironment algorithm and scores to nucleic acids.

This chapter has outlined the hypothesis and research questions, as well as given

an overview of the main findings and the structure of the thesis. The next chapter

presents the background material related to this research.
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2 BACKGROUND

2 Background

Modern techniques for studying biological molecules produce large amounts of

data. The collation, storage and investigation of this data is the study of bioinfor-

matics [2], and the biomolecules most commonly studied in this field are nucleic

acids and proteins.

The amount of experimental data typically analysed is too large for the human

brain to consider at once. Computers are needed to process, archive and present

this data in meaningful ways. A landmark example is the elucidation of the

human genome (completed in 2000 [3].) 3323 × 106 base pairs were sequenced

using a technique known as shotgun sequencing [4]. This technique shatters the

nucleotide into random fragments which can be sequenced individually. Repeti-

tion of this technique gives overlapping sequences which can then be assembled

to give the entire sequence, rather like a one-dimensional jigsaw puzzle.

However, the statistical analysis and assembly of these fragments required the

speed of computer processors. A database was then required to store the com-

plete sequence and to allow searching and comparisons to be made.

Another example of the need for computers in processing biological data is the

growth of the Protein Data Bank [1] (PDB), a database of structural data for

biological macromolecules. In 1990, there were just over five hundred protein

structures available, while at the end of 2014 there were over one hundred thou-

sand [5]. The growth of the PDB is shown in Figure 2. This database presents a

huge informatics challenge: the atomic coordinates in just one protein can be too

much for the human mind to assimilate. Looking for patterns in over one hun-

dred thousand proteins is clearly impossible. Computer algorithms are needed

to analyse the data and present the results in a more suitable fashion.

The growth of the PDB has also enabled a change of focus in bioinformatics.

Until recently, the main focus of bioinformatics was in extracting meaningful

data from nucleic acid sequences and protein primary sequences. While this

work is still ongoing, researching the three-dimensional structures of proteins

has become much more widespread.
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Figure 2: Growth of the Protein Data Bank (PDB).

2.1 Bioinformatics Databases

A large number of databases have been established to store, curate and annotate

the various different kinds of biological data being produced.

The worldwide nucleic acid sequence archive is collaboratively held by the EMBL

Nucleotide Sequence Database [6], The National Center for Biotechnology Infor-

mation [7] and the DNA bank of Japan [8]. The sequences are determined using

techniques such as shotgun screening coupled with Dye-terminator sequencing,

and the sequence data is reproduced in each database.

Protein primary sequences databases are also provided collaboratively. The

UniProt Consortium [9] combines the efforts of the European Bioinformatics

Institute [10], the Swiss Institute of Bioinformatics [11] and the Protein In-
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formation Resource [12]. The sequences themselves can either be determined

experimentally or deduced from gene sequences [13].

Three-dimensional coordinates are usually determined from X-ray crystallog-

raphy or NMR [14]. Structures from X-ray crystallography provide molecular

models from crystals of the protein. As such, the molecular models they contain

represent the protein in solid state. Coordinates derived from NMR represent

the solution state of the protein and data files usually contain multiple alter-

native molecular models with subtle differences. The Worldwide Protein Data

Bank [15] provides this data through its members: the Research Collaboratory

for Structural Bioinformatics (RSCB) [16], the EBI Macromolecular Structure

Database [17], the Protein Data Bank Japan [18] and the Biological Magnetic

Resonance Data Bank [19].

These three-dimensional structures are classified in various ways and the results

stored in derivative databases. The Conserved Domain Database [20] contains

information on domains that are preserved through evolution. The Structural

Classification of Proteins (SCOP) database [21, 22, 23, 24] classifies proteins in a

hierarchical structure. CATH organises domains into families [25, 26]. Pfam [27]

also classifies domains by family but primarily on the basis of sequence align-

ments. PRINTS [28] uses conserved motifs as fingerprints for protein families.

In addition to these purely structural classifications, databases of functional an-

notations exist such as the Database of Interacting Proteins (DIP) [29]. Nucleic

acid-Protein Interaction DataBase (NPIDB) [30] is a similar database of nucleic

acid interactions. 3did [31] is a database of domain interactions where the three

dimensional structure is known. PROSITE [32, 33] contains functional sites in

addition to families and domains. UniProt [34] seeks to provide functional infor-

mation alongside sequences.

Drug databases differ in that they are not focussed on biopolymers but rather on

small molecules that can interact with them. These databases include structural

information on drug molecules as well as similar non-drug molecules. The latter

are included to help with the identification of pharmacophores. Examples in-

clude the National Cancer Institute Database [35] and the Cambridge Structural

Database [36].
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The AlloSteric Database [37] (ASD) is curated from reports of allostery in the

literature and has information about allosteric compounds, proteins and, where

available, allosteric sites.

2.2 Microenvironments

The term microenvironment is used herein to refer to the local ensemble sur-

rounding each residue in a protein chain. The chemical and topological potential

of a residue is dependent on the character of its neighbouring residues and the

concept of microenvironment models this phenomenon.

Techniques that focus on localities within protein structures are commonplace.

However, the lack of a common vocabulary suggests several research groups are

independently discovering their value. This research uses a precise definition

of microenvironment (a radius around an α-carbon) but this is relaxed in the

following discussion to include all techniques that identify or find application for

localities in protein structure.

LFM-Pro [38] uses microenvironments to detect local structural sites from fam-

ilies of proteins. The microenvironments and their geometries are generated

statistically and are not necessarily centred on particular atoms. The microen-

vironments are translated into a set of scores. Physicochemical parameters are

suggested but frequencies of atoms with particular properties are used in practice.

Tuples of scores are arranged into sets (i.e. there is no order to the environments).

Applications are shown in feature selection and family classification.

FEATURE [39, 40] allows proteins to be scanned for various kinds of site. It

defines sites as a sphere around a functional area of interest. Physicochemical

properties are calculated for spheres of several concentric radii inside the mi-

croenvironment. FEATURE looks for statistical differences between sites and

non-sites in each sphere radius and can scan the protein for functional sites in a

grid-based way. It is used to find ATP binding sites, Disulfide-bonding cysteines

and Redoxin active sites.
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Contact maps are related to microenvironments in that they define a contact

sphere around each residue. Other residues inside this sphere are said to be “in

contact” with the residue at the centre. Work has been done to generate three-

dimensional structures from contact maps [41, 42]. Attempts have been made to

generate contact maps using data mining techniques over sequence data, physical

constraints and evolutionary data [43, 44, 45, 46]. Software to show contact maps

alongside their 3D structure has been created [47].

2.3 Performance

Many bioinformatics algorithms are computationally expensive or have to process

so much data that optimisations are commonly reported in the literature. Even

in papers where the primary findings are biological or chemical in nature, the

methodology section often discusses optimisation. For example, ParaMEME [48]

is a tool for motif discovery that was improved by cluster computing. Also

reported is comparing the effect on performance by replacing an Intel Pentium

4 with a parallel network processor [49]. Performance enhancements can arise

from improvements in the hardware or by improvements to the bioinformatics

algorithms themselves.

Computing power has increased enormously in recent decades. Processor speed,

memory size and speed, storage, networking, etc. have all undergone revolution-

ary increases in capacity. Famously, Moore’s law [50] predicted that the density

of components on chips would double every 12–18 months. This doubling corre-

lated with increases in processor speed and memory capacity [51]. Moore’s law

turned out to be accurate for much longer than his original ten-year estimate.

More recently, there has been an increase in the availability of multi-core proces-

sors. Many bioinformatics algorithms are parallelisable, including molecular dy-

namics [52], phylogenomics[53], multiple sequence alignment [54] and RNA fold-

ing [55]. Parallelising computationally intensive algorithms is such a commonly-

used technique that this is only a small sample of its application in bioinformatics.
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Graphics Processing Units (GPUs) are specialist chips designed for performing

the sorts of matrix calculations required for rendering scenes in 3D. Because

GPUs are cheap and readily available parallel processors, they are often em-

ployed for scientific computations. However, as well as having to parallelise the

algorithm, consideration has to be given to transferring data to the GPU, and

also to expressing the algorithm in the sorts of operations for which the GPU is

optimised [56].

Charalambous et al. [57] documented their experiences in porting part of an algo-

rithm for phylogenetic tree inference to run on GPU. They commented that the

differences in programming paradigm act as a barrier to more widespread adop-

tion of GPU use in bioinformatics software. Despite this, GPU implementations

are commonplace. Some examples are in Markov clustering [58] and a parallel

implementation of BLAST which uses both multi-core CPUs and GPUs [59].

One strategy to facilitate the more widespread use of GPUs is to distribute im-

plementations in software libraries. An example of this is CAMPAIGN [60] which

is a library of GPU-accelerated clustering algorithms. Another approach is to

provide tools that make GPU computation readily available in programming lan-

guages the scientists already use. There are examples for R [61] and Python [62],

both of which are commonly used for scientific programming.

Distributed computing spreads computation between different computers which

each do a portion of the calculation. The term “distrubuted” describes a range

of approaches from simple job scheduling on a network [63] to specialised im-

plemetations for a single task [53]. Part of the motivation for distributed com-

puting is to make use of idle time on computers, particularly on campuses [64].

Since bioinformatics algorithms typically deal with large amounts of data, the

data must be distributed alongside the computation. Ranganathan et al. [65]

found that decoupling the computation and the data scheduling led to an in-

creased performance.

Just as with GPU optimisations, general tools for distributed computing can

be utilised. For example, Hadoop has been shown to enhance the performance
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of BLAST queries [66]. Hadoop has also been used in sequencing, gene set

enrighment analysis, multiple sequence alignments and large-scale graph pro-

ceessing [67].

The above research into bioinformatics performance focuses on exploiting hard-

ware and infrastructure. There has also been work on making benchmark suites

from a compilation of bioinformatics algorithms and test data [68, 69]. The pri-

mary goal was to evaluate the suitability of hardware for use in bioinformatics.

The authors of BioBench [69] noted that bioinformatics algorithms are atyp-

ical in that there are relatively few floating point calculations but more load

and save operations. Inspecting their list of benchmarks reveals algorithms that

exclusively process sequences, not structures. This would account for their con-

clusion. In any case, processing sequence data is important in bioinformatics,

and the authors’ hope is that their benchmarks will be used by hardware man-

ufacturers and may ultimately result in hardware architectures that are better

suited to bioinformatics computation.

2.4 Data Structures

Improvements in the performance of processing geometric data can be achieved

by using specialised data structures. The simplest data structure is a list which

can be queried by scanning. In the case of one-dimensional lookups, the perfor-

mance can be increased by sorting the list and using a binary search [70].

For multidimensional datasets, organising them into hierarchical trees of bound-

ing volumes is a common technique [71]. Quad trees [72] organise two dimen-

sional data into trees by recursively dividing the dataset into four quadrants

in the dataset’s plane. Similarly Octrees [73] organise three-dimensional data

into octants. The benefit of tree structures is that entire branches can often be

pruned from queries. The converse, including entire branches in the result, is

true in the case of range search. When the geometry defined by a branch of

the tree lies entirely within the query geometry, the entire branch can be in-

cluded without checking the leaf nodes explicitly [74]. Since larger datasets are

becoming available, these trees find application in compressing the datasets [75].
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kd-trees [76] are a more generalised tree structure that work for higher dimen-

sions. kd-trees bisect N-dimensional space recursively. Each division is placed

such that the number of points on each side is equal. This strategy guaran-

tees that the number of divisions required is based on the number of points,

regardless of the distribution in space. Each partition is orthogonal to one of

the dimension’s axis, with the partitioning axes cycled through on successive

iterations.

kd-trees perform well for between 2 and 20 dimensions [77]. For high-dimensional

datasets, projection is a common technique that allows a reduction in the di-

mensionality. Empirical evidence shows that dimension reduction can preserve

euclidean distance [78].

When working with point data, Voronoi diagrams [79] can be used to divide the

n-dimensional space into sectors around each point. Using this approach, the

entire space within each sector is closer to its parent point than to any other

point. This is useful for queries that determine nearest neighbours.

Cell based techniques quantise the space into a regular grid. In applying these

principles to processing molecular data, early recognition of the power of quantis-

ing the space of individual molecules came from Leventhal [80]. This approach

was generalised by Bentley [81] who assumed a quantisation based on search

radius. Cell based approaches are only suitable for low dimensions but are well-

suited to uniformly-distributed datasets [70]. Hashing can be used to improve

performance when the points are not uniformly distributed [82].

For datasets that define spatial objects (i.e. the objects are defined by geometries

rather than points) R-trees [83] provide a tree structure that recursively divide

the space into successively smaller bounding boxes for the objects.

2.5 Domains and Motifs

Proteins are hierarchical structures which can contain one or more domains. Do-

mains are sections of tertiary structure that are often independently stable and
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which can appear in several proteins. Although protein sequences across evolu-

tion explore a very large search space, there are relatively few domains. (CATH

had 2,738 superfamilies derived from 94,680 structures on 3rd July 2014). This

suggests that either these are the only conformations that can possibly be formed

from the standard twenty amino acids, or that there is evolutionary selectivity

against other conformations or that the full conformational space simply hasn’t

been explored by nature.

Motifs are smaller common sequences repeated across the protein landscape.

They are usually shorter and are defined in terms of sequence rather than confor-

mation. The precise definition of domains and motifs varies as suits the method

of detection or the intended use.

Several databases have been curated that list the domains discovered so far, link-

ing them to the proteins in which they are found. They are annotated with details

such as biological function and macromolecular interactions. The databases are

usually generated from a mixture of manual and in silico techniques. Annota-

tions were once almost exclusively made by hand but with the increasing volume

of sequence and structural data, the role of manual annotation has increasingly

given way to automated annotation.

The CATH and SCOP databases classify domains as they are observed in na-

ture. Classifying structures in this manner requires a number of representative

examples. Nevertheless, classifications of this sort are useful in distilling in-

formation but Porter and Rose [84] argue that a more rigorous definition of a

domain is needed. They propose thermodynamic calculations to determine sec-

tions of protein that could be stable independently of the rest. Their results

broadly correspond with CATH and SCOP. Some domains were detected that

are not present in these databases and in a few cases, domain boundaries were

significantly different.

Continuing with the theme of energetics, Lin and Zewail [85] found that hy-

drophobic forces were sufficient to reduce the effective conformational folding

space of small proteins up to about 200 residues such that this subset can be

explored in a biologically reasonable time frame. They argue that since this
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reduced folding space can be fully explored, evolutionary control of the kinetic

folding pathway is less important for small proteins. They extend their logic

to domains that make up larger proteins, stating that the conformation of these

domains is dominated by hydrophobic collapse. Further evidence for a maximum

size also suggests that this can be predicted solely from thermodynamics without

needing kinetic explanations [86].

A number of automated techniques have been developed to aid with the annota-

tion of proteins. InterDom [87] is a database of domain interactions that seeks

to solve the problem of incorrect prediction by automated methods. It combines

information from a variety of sources in order to validate and annotate the pre-

dicted results. Simple Modular Architecture Research Tool (SMART) [88, 89] is a

tool to identify and annotate protein domains. The Conserved Domain Database

(CDD) [90, 91] aggregates domains and their annotations from a variety of other

sources. Lu et al. [92] have developed techniques to map protein motifs to gene

ontologies.

InterProScan [93] automates the task of running a Basic Local Alignment Search

Tool (BLAST) [94] query (which matches sequences within a tolerance) on a pro-

tein sequence and subsequently looks up the results in various protein databases

to identify functions and domains. Ahmed et al. [95] presents DLocalMotif which

constrains the search space in motif detection by looking for motifs that occur

close in the primary sequence to previously defined biological landmarks. It fur-

ther reduces the rate of false positives by including negative data (i.e. known

non-motif regions) in its training set. The technique locates motifs that are

local sequentially to a landmark. Orenstein et al. [96] use microarray data to

detect binding site motifs. Several more techniques exist for domain and motif

detection [97, 98, 99, 100, 101, 102, 103, 104].

MOTIPS [105] searches for motifs in disordered regions in order to reconstruct

signalling pathways. It enhances a threading technique with parameters such as

surface propensity and disorder to increase the accuracy of the prediction.

It has been shown that all protein domains are evolutionarily related [106]. There

is evidence that combinations of domains are preserved throughout evolution,
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statistically more significantly than can be explained by random recombina-

tion [107].

Yang and Bourne [108] have published a method to produce dendrograms of the

evolutionary history of domains and suggest that their technique can be used to

study the emergence of protein domains. Toll-Riera and Alba [109] have looked

into the detail of the emergence of protein domains, finding that the incorporation

of new domains into a protein has a tendency to be at the N-terminus. Therefore,

proteins can gain domains over evolutionary time which infers that multi-domain

proteins can contain both old and new domains.

Domains and motifs have found applications in drug discovery. Domains were

used in the formation of compound libraries for drug development [110] and

motifs have been used in high throughput analysis for drug discovery [111]. Hong

et al. [112] have incorporated motif search into algorithms for finding genes to

improve identification of new genes in humans.

Nugent and Jones [113] describe a de novo structure prediction method that has

been undergoing incremental improvements. The algorithm works by identifying

motifs in the protein sequence and predicting residue contacts. Transmembrane

proteins are amenable to homology modelling but, as Nugent and Jones argue,

there are so few resolved structures that homology modelling can only be applied

to a small subset of transmembrane proteins. Their paper modifies their existing

technique (FILM3) for transmembrane proteins and has some promising results.

In addition to discovery and applications, effort has been geared towards de-

signing new protein domains. Ottesen and Imperiali [114] demonstrated the

successful design of a protein motif. They chose a standard motif as a template

for their creation and chose amino acids that would maximise interactions to

stabilise the target structure. The design process was iterative and with im-

provements at each stage, and they report only a 38% sequence similarity to the

original.

Fortenberry et al. [115] expanded on previous work that suggests homodimers

underwent gene duplication and fusion as a mechanism to expand proteins and
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tried to harness this mechanism in the in silico design of new proteins. They list

examples found in nature where this mechanism is likely. An interesting property

is that if the individual units have their termini in close proximity then so will

aggregates of two or more such units.

Aziotei et al. [116] demonstrates grafting a domain from an unrelated protein

onto another domain. Their results showed that the domains retained their

tertiary structures and the function of the protein was preserved.

As has been shown, there are numerous tools for detecting and annotating do-

mains and motifs. Their role in evolution has been explored and has begun to

inspire efforts in protein engineering.

2.6 Protein-Protein Interactions

Section 2.5 discusses domains which are independently stable substructures that

provide the basis for modularity. While domains within a single protein are

constrained to interact with each other, independent proteins may also interact.

The most basic case is in quaternary structures. These are separate protein

molecules complexed together to form a single structure and are discussed further

in Section 3.2.1. However, interactions which are more transient in nature are

commonplace and have biological utility in cell signalling and allosteric control,

the latter of which is discussed further in Section 2.7.

Some interacting protein pairs can be detected from sequence data by searching

for homologs in other organisms where the interacting pairs are fused into one

protein [117, 118]. In the case where they are fused, they would likely form

separate domains in that protein. However, structure-based predictions are more

powerful than sequence-based predictions [119]. Bayesian networks can be used

to predict protein-protein interactions [120] and protein interaction maps of entire

organisms have been estimated statistically [121].

Complementary to the in silico techniques above, the results can be tested in

vitro. Protein-protein interactions have been studied by grafting two domains
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from GAL4 yeast protein onto each of a pair of proteins. If the proteins inter-

act, the GAL4 domains cooperate and the transcription they regulate can be

measured [122]. Mass spectrometry can also be used to detect protein-protein

interactions [123].

A related topic, but discrete from interacting pairs, is site detection. The predic-

tion of protein-protein interaction sites has been explored by using combinations

of attributes and Support Vector Machine (SVM) classifiers [124, 125, 126]. Neu-

ral networks have also been used to predict protein-protein interaction sites from

combinations of physicochemical parameters [127].

In silico docking at interaction sites has been possible with rigid structures for

some time [128]. However, the size of the protein recognition site is related to

the conformational adjustment on binding [129]. More recent techniques allow

conformational adjustments [130, 131].

The database CORUM contains experimentally determined mammalian protein

complexes [132] and work has begun on establishing a human protein-protein

interaction map [133, 134, 135].

A curated database of non-interacting protein pairs exists which is intended to

be used to evaluate techniques for detecting interactions [136].

Clearly mapping and understanding the interactions between proteins in biolog-

ical systems is key to understanding those systems. An important mechanism

for regulation in biological systems is allosteric effects at protein binding sites.

These are explored in Section 2.7.

2.7 Allostery

Allostery is the phenomenon where a binding event remote from a protein’s active

site causes a change in activity of the protein. The effect comes about through

conformational shifts caused by binding events [137].
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Proteins are capable of having more than one allosteric site [138] and regions

on the protein surface are linked to the active site for allosteric regulation [139].

Sol et al. [140] described these links as pathways defined as the set of residues

that are in dynamic contact, linking the allosteric site to the substrate binding

site. They argue that allosteric mechanisms work by shifting the ensemble of

pathways, causing a change in functional, conformational and dynamic effects.

In multi-protein systems, allosteric action works by conformational adjustments.

The propagation of these conformational changes through a protein can be un-

derstood statistically by considering that the conformation of any protein affects

the probability of a particular conformation in the neighbouring protein [141].

The work above suggests that allosteric effects are caused through an adjustment

to the backbone of the protein. However, this is not always the case as it has

been reported that allostery can arise from side chain conformational adjustments

alone [142].

Allostery can be engineered in unregulated enzymes by forming a chimeric pro-

tein consisting of the regulatory domain from another enzyme grafted onto the

unregulated protein. This suggests a mechanism for evolution to introduce al-

losteric regulation [143].

Microenvironments have been used to screen protein data for the presence of al-

losterically active sites [144]. SVMs have been successfully used in this context to

classify allosterically active sites [145, 146]. However, current molecular models

for protein structure are only present in a small number of conformations. Al-

losteric inhibition can happen by stabilising poorly populated states, suggesting

that work on the ground state of proteins can be misleading [147]. Ideally, all

the conformations and their distribution would be known.

2.8 Context of the Research

Approaches to protein analysis in the literature are often focussed on sequence

similarity. This applies to a large range of applications from motif and function
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detection to evolutionary similarity and site detection. When 3D data is used,

the techniques are often based on alignment of local regions. Local 3D microen-

vironments have been used in some studies [38, 39, 40, 41, 42]. Their advantage

over techniques based on primary sequence is that they model regions of chemical

character composed of potentially discontinuous segments of primary sequence.

This is something that techniques based on primary sequences cannot do.

While the established microenvironment techniques are used to quantify the

local chemical environment of residues, the sequence ordering of the constituent

residues in the primary sequence have not been utilised. The power of this

topological data in analysing protein structures has not been explored by the

papers in this survey. A purely topological dataset may be used to detect the

similarity of convergent folds where both sequence and chemical data do not.

Many of the techniques used on sequence data may be applicable to this unex-

plored source of topological data. Motif detection and evolutionary relationships

are obvious candidates. Problems that have been largely unsuccessful when ap-

plied to primary sequence data such as structure prediction or allosteric site

detection may become more feasible with topological data. Although the data

is still a sequence, it is a projection of three dimensional structure data. In this

sense, it is a form of dimension reduction that may have advantages in reducing

the complexity of algorithms and may aid visual presentation and understanding.

An important aspect is the performance of the techniques used to analyse the

data. This includes both the runtime of the technique but also the accessibility

and representation of the input data and results. Better performance can re-

sult in the researcher being able to complete more experiments or to use larger

datasets. In extreme cases, it makes some experiments viable that would not

have been possible before. With the enormous rate of growth of bioinformatics

databases, this is certainly an important consideration in the development of any

new techniques.
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2.8.1 Reiteration of Contribution

This research addresses these problems, initially by improving the performance

of microenvironment determination. This facilitates their application to mass

data and eliminates lag in user interfaces for displaying and manipulating mi-

croenvironment data.

The determination of microenvironments was enhanced to highlight or exclude

sections of the protein. This latter contribution was expanded to offer a system-

atic methodology for deconstructing protein structures leading to a new definition

for protein domains.

The topological microenvironment scores were augmented with data from chem-

ical and crystallographic context, and protein statistical data. The combination

of these scores was used to train a classifier to identify allosteric sites.

Finally, as a proof of concept, the algorithms have been applied beyond proteins

to nucleic acids.
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3 Preliminaries

The previous chapter reviewed literature related to characterising protein struc-

tures with microenvironments. This chapter provides an in-depth study of the

basic techniques that are used in the research methodology which will be pre-

sented in Chapter 4.

Section 3.1 outlines the kinds of databases that have been created in the field

of Bioinformatics. The empirical data from the Protein Data Bank and the an-

notated data from the Allosteric Site Database were essential for this research.

Section 3.2 narrows the scope to proteins and contains a brief overview of pro-

tein structure and a description of allostery. Section 3.3 describes some of the

problems that are suitable for bioinformatics input. Section 3.4 discusses protein

topology and provides the precise definition that will be used for the rest of this

thesis. This section also describes the prior work in protein topology that this

research builds upon. Section 3.5 introduces data mining techniques that can be

used in processing topological data.

3.1 Bioinformatics Databases

The content of bioinformatics databases is determined through a mixture of em-

pirical measurements, theoretical calculations and manual and automated anno-

tation. Once it has been collected and archived in databases, it must be analysed

and interpreted to provide useful, human-readable information. While comput-

ers have the processing power to process the large amounts of data involved, they

can only do so under the instruction of a human. So, while computers can be

used to confirm or falsify hypotheses, the onus is still on the scientist to propose

the hypotheses to be tested.

Examples of the types of data stored in databases are: nucleic acid sequences,

protein sequences, protein three-dimensional structures, gene expressions, mi-

croarrays and drug molecules. Many of the databases and the tools for processing

them are available to the scientific community for free on the Internet.
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As well as the experimental data, database entries can contain annotations. For

example, protein databases may contain data on the biological function of the

molecule and details of its substrates and cofactors.

GenBank [148], a database of gene sequences, is, for example, annotated with the

metabolic function of gene products and their levels of expression, etc. Ideally,

these annotations would all be determined experimentally but the large sets

of data to be annotated make this impractical. For this reason, many of the

annotations are added automatically by computer algorithms.

Of particular concern is the presence and propagation of errors through databases

[13]. Sources of errors can be through either experimental errors or, in the case of

annotations, incorrect analysis of the data. This is especially problematic when

the annotations are obtained via automated means.

3.2 Proteins

Proteins are biological macromolecules synthesised in a process called protein

translation. In this process, a chain of amino acids is built up sequentially, the

order of amino acids corresponding to the order encoded in DNA. Proteins are a

diverse set of molecules with a wide range of roles in the cell. Catalytic proteins

are known as enzymes and are responsible for driving an organism’s metabolism.

Other proteins are responsible for signalling and regulation. They interact with

other proteins, tuning their activity, and often work in cascades.

For example, in the cAMP dependent pathway, when the receptor is activated,

an attached Gs alpha subunit is released which in turn activates adenylyl cyclase,

another enzyme. Adenylyl cyclase catalyses ATP −−→ cAMP and the increase

in concentration of cAMP leads to further steps which ultimately lead to effects

such as activating ion channels, glucose formation, increased heart rate, etc.

Other roles for proteins include structural proteins (e.g. keratin in nails and

hair), receptors (e.g. the adrenergic receptors which enable cells to respond to

adrenaline in the blood stream) and transport proteins (e.g. haemoglobin for

carrying oxygen in blood).
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3.2.1 Protein Structure

As mentioned above, proteins are made from amino acids. They are specifically

α-amino acids in the laevorotatory configuration (except glycine which is not

optically active). Bacterial cell walls incorporate dextrorotatory amino acids but

this is a rare exception. Twenty amino acids are encoded in DNA which differ

only in their side chains as shown in Figure 3. The properties of the side chains

determine the overall structure of the protein.
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Figure 3: Example amino acids. Top: generic formula for an α-(L)-amino acid
with R representing the side chain. Bottom (from left to right): glycine, cysteine
and proline.

Protein structures are commonly considered on four different levels: primary,

secondary, tertiary and quaternary. The primary structure or primary sequence

is the order of amino acids in the chain. With the exception of post-translational

modifications, this is defined by codons in the DNA sequence. Because of this

direct relationship, it is possible to elucidate protein primary sequences from the

DNA sequence, even for proteins which have not been isolated. Now that genome

sequencing has become routine, this is the most common method of obtaining

primary sequences.

Protein chains have a tendency to form α-helices and β-strands. These are

shown in Figure 4 where the α-helices are coloured magenta and the β-strands

are coloured yellow. These two common conformations are termed secondary
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structures. They arise from limited bond rotation in the protein’s backbone

and are stabilised by hydrogen bonds. There are two dihedral bond angles per

residue in the backbone which contribute to the protein’s conformation (Φ and

Ψ). The peptide bond’s π-character means it cannot cannot rotate freely. This

is illustrated in Figure 5.

A Ramachandran plot as in Figure 6 charts these two angles against each other in

order to assess which angles are favourable. The light blue contours show allowed

conformations, that is angles where the van der Waals radii do not overlap. The

dark blue contours repeat the calculation with smaller radii.

 

Figure 4: Protein structures showing mainly α-helices and β-strands. The
molecules are sperm whale myoglobin (PDB ID: 104M [149]) and alpha-amylase
inhibitor (PDB ID: 1HOE [150]) respectively.
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Figure 5: π-character of the amide bond and possible rotations in the peptide
backbone. The green and red arrows denote the bonds around which rotation
can occur, giving rise to the dihedral angles Φ and Ψ respectively.

The allowed conformations fall into two main sections, labelled α and β. Con-

tinuous sections of the backbone which lie in the α section form α-helices while

continuous sections which fall in β form β-strands.
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β 

 

α 

Figure 6: Ramachandran plot for biotin binding protein from chicken. Image
from the RCSB PDB (www.rcsb.org) of PDB ID: 2CIQ [151].

As mentioned above, these secondary structures are stabilised by hydrogen bond-

ing. α-helices have bonds within the helix which mean that the helix has a

certain intrinsic stability. β-strands cannot form internal hydrogen bonds. In-

stead, β-strands tend to line up next to each other and the hydrogen bonds form

between the strands. These assemblies of β-strands are known as β-sheets.

The arrangement of these secondary structures is known as the tertiary struc-

ture. There are several forces which dictate a protein’s tertiary structure, in-

cluding hydrogen bonding, van der Waals forces, hydrophobic interactions, ionic

interactions and disulfide bonds.

Between the secondary structures are areas of protein chain which do not form

α-helices or β-sheets. These sections are often called loop regions and their con-

formations can be seemingly random. However, they play a crucial role in the

overall tertiary structure of the protein. Their lengths and favoured conforma-

tions combined with the forces listed above control how the secondary structures

can align in three dimensions.

There are several patterns commonly observed in tertiary structures. Since the

natural environment for proteins is aqueous, hydrophobic residues are more likely
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to be found in the core of the protein. When they are found in more exposed

areas, there is often a mechanistic reason for their placement such as to make

binding events more energetically more favourable.

Tertiary structures are often described as hierarchical. At the lower level of

the hierarchy, the secondary structures are arranged in 3D. Further up in the

hierarchy are domains which are common units of tertiary structure. Finally at

the top of the hierarchy, where a protein consists of more than one domain, is

the arrangement of domains.

Quaternary structure is the aggregation of two or more protein chains. The same

forces which determine tertiary structure hold separate chains together. Figure

7 shows a twenty-protein complex.

 

Figure 7: Eicosamer (20-mer) quaternary structure of rat GTPCHI/GFRP stim-
ulatory complex. PDB ID: 1IS7 [152]

There appears to be a limited range of tertiary structures found in nature. These

are organised into families for example in the CATH [25] database. Proteins

within a family are assumed to have a common ancestor and the sequence simi-

larity between members of the family is an indication of how closely related those

proteins are.
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3.2.2 Allostery

Allostery is the regulation of protein activity by the binding of another molecule

remote from the protein’s active site. The activity of the protein can be either

enhanced or inhibited and the allosteric effector can be another protein molecule

or a small ligand. In the case of the former, protein cascades are an example of

allosteric regulation in action. Small molecule allosteric effectors are of interest

since this class of molecule has the potential to become drug molecules.

Allostery works by the binding of the effector at a site remote from the active

site. This binding causes a conformational change in the protein which has the

knock on effect of a (possibly subtle) change in activity at the active site [137].

A variety of conformational changes have been reported in the literature. One

example transmits a change in the active site conformation via side chain adjust-

ments [153]. The backbone conformation remains unchanged. Other observed

mechanisms include hydrophobic collapse [154] and a change in the hydrogen

bonding network [155]. Yet another stabilises an inactive conformation of the

protein [156]. The common thread is that any change in the juxtaposition of

active site components has consequences for the activity of the protein.

While some of the suggested mechanisms hint at the effector forcing a change

in the conformation, it is widely thought that the molecule instead binds with a

sparsely-populated, high-energy conformation of the protein, trapping the pro-

tein molecule in an alternative conformation. Therefore, the mode of action is

not a forced change in the conformation of individual protein molecules but an

induced shift in the equilibrium [137].

Many allosteric sites are found at the interfaces between domains or in the core

of proteins [157]. This opportunistic binding to high energy states explains how

ligands can find their way into these apparently inaccessible areas of the struc-

ture. In the high energy states, crevices can open between domains allowing the

molecules access.

Since all proteins explore a range of conformations, this suggests that all proteins

may have allosteric sites [158] although it is interesting to note that new allosteric
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sites are found in proteins where an existing site is already known [138], implying

that some proteins have a higher propensity for allosteric sites than others.

Unfortunately, these observations present some problems in detecting allosteric

sites. X-Ray and NMR structures do not convey enough information about

the range of conformational states available to a protein [137]. One researcher

commented that in one specific case an allosteric site found experimentally could

not be detected from the crystal structure since side chain movements at the

site were required for the binding [159]. Furthermore, molecular models taken

from X-Ray crystallography structures represent the protein in solid state. These

structures are likely to be similar to the solution structure but the conditions in

crystal packing will impose some changes to the protein’s conformation.

Despite this, attempts to predict the locations of allosteric sites based on protein

sequence and structure have had some success [160, 161, 162].

High throughput disulfide tethering [163] is a promising in vitro technique which

also experimentally verifies the effect of inserting a molecule near the selected

residues. What it does not assess is the possibility of a molecule finding its way

and binding to that part of the protein.

There are also existing techniques such as normal mode analysis [164], relax-

ation dispersion [165] NMR and nano-picosecond X-ray crystallography [166]

which have potential in this area. More opportunistically are the crystallisation

artefacts in crystal structure files. These are often dismissed as noise but they

may provide hints as to the parts of the protein which are accessible to a small

molecule in solution [167].

In contrast to molecules that bind to an active site, allosteric effectors can come

from a wide variety of chemical classes, making it difficult to predict the type of

molecule which can bind at a specific site [168]. Rather than being concerned

with the active site chemistry, their impact is on the overall dynamics of the

protein [169].

Allosteric sites are less highly conserved than active sites giving the drugs a

greater discriminatory power and therefore potentially fewer side effects [137].
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3.3 Problems Suitable for Bioinformatics Input

Protein chains fold in a precise and reproducible way. However, predicting the

fold from first principles has eluded scientific research. The most successful re-

sults use homology modelling. This works from the principle that similar primary

sequences will have similar tertiary structures. When using homology modelling

to predict the structure of a protein, the first step is to find proteins of known

tertiary structure that have a similar amino acid sequences. These are used as a

starting point for the tertiary structure of the protein in question. Then molec-

ular dynamics is used to find a local energy minimum. The implication is that

this is likely to be close to the global energy minimum because it is based on a

known structure.

Proteins are thought of as having different classes of interactive sites. The active

site of an enzyme is the position where a chemical reaction specific to the enzyme

is catalysed. Allosteric sites are areas remote from the active site where binding

events can affect the activity of the enzyme. Protein-protein binding sites are

where two protein molecules bind to each other. These are often allosteric in

nature and often form part of signalling cascades.

The ability to detect these different kind of sites may have an important practical

application in drug discovery. However, it will also be important in understanding

how organisms regulate the activities of proteins.

Bioinformatics is relevant to many aspects of drug discovery. Active site predic-

tion and allosteric site prediction have already been mentioned in Sections 2.6

and 3.2.2 respectively. These are useful at the beginning stages of drug discovery.

However, bioinformatics will become increasingly important in the later stages of

drug discovery, especially with drug testing. Traditionally, drugs and cosmetics

have been tested for safety on animals. This practice raises concerns for animal

welfare and is becoming increasingly socially unacceptable. It has always been

desirable to keep animal testing to a minimum but as techniques that can model

the effects of compounds become better, it is important to reduce animal testing

accordingly. Already a lot of animal testing has been replaced with in vitro as-

says. However, if in the future, bioinformatics can model interactions effectively
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enough then more in vivo testing could be made obsolete. Bioinformatics may

also be able to replace in vitro techniques, which would be desirable from an

economic point of view.

Although the focus of this thesis is on proteins, nucleic acids also fall under

the domain of bioinformatics. The ribosome is a nucleic acid enzyme so the

problems that need to be solved for protein enzymes also need to be solved for

the ribosome. Now that the structure of the genome is being elucidated [170],

many of the techniques for understanding protein structures may be applicable

to the genome, although new techniques may need to be invented.

However, most of the nucleic acid techniques that have been developed work

on the sequence. Examples include locating regions that encode proteins [171],

reassembling the sequence from fragments [172] and determining evolutionary

relationships [173]. As the three dimensional structures of large nucleic acids

become available, techniques that work on the structure or topology may become

important.

3.4 Protein Topology

There are a number of approaches to the definition of protein topology depending

on whether the focus is the cavities and pockets around the molecule or the

arrangement of the chain in three dimensions. For the purposes of this work, it

is defined as the path that the chain takes through three-dimensional space. This

allows the study of how different sections of the chain contribute to the overall

topology.

Protein tertiary structure is often thought of as the arrangement of secondary

structures relative to each other, stabilised by a combination of intramolecular

forces. These forces extend only a few Ångstroms but they can hold together

residues far apart in the primary sequence. In this case they are contributing in

some way to the stability of the conformation over a large section of the protein

chain, and interfering with those forces (by binding or mutation events) has the

potential to bring about a conformational change across the protein.
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3.4.1 Quantifying Topology with Microenvironment Scores

Microenvironment scores developed herein use the above definition of topology.

Each residue is taken in turn and the nearby amino acids are considered (see Fig-

ure 8). Using the set of nearby amino acids, the algorithm determines quantities

such as how densely packed the area is, how many chain segments pass through

it and how far apart those segments are in the primary sequence.

Figure 8: A microenvironment in alcohol dehydrogenase (PDB ID 1HTB [174]).
Ile 160 is highlighted in red and the residues around it are highlighted in blue.

These quantities give important information about the topological environment

of each residue. The residue count and the number of segments provide an

indication of whether the central residue is buried in the protein or is at the

periphery.

Similarly, a residue’s chemical potential is affected by its immediate neighbours

and microenvironment scoring offers a way to quantify the effects. For example,

a positive charge on its own will behave differently than one next to a negative

charge.

The separation in the primary sequence between spatially adjacent segments is

of particular importance under this definition of topology. The magnitude of the

separations gives information about the sequential range of amino acids which

can be influenced by the central residue in the sphere. This range of amino
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acids is not a distance measured in Ångstroms. In this context, the range is

the separation in the primary sequence. A short-range interaction could exist

between neighbouring residues or between residues only a few steps along the

chain. Long-range interactions would be more like 100 residues apart (or several

hundred residues apart in large proteins).

Rather than considering these interactions as recognised forces (e.g. covalent

bonds, van der Waals forces or the hydrophobic effect), it is best to think of

them as potential for interaction or spheres of influence. Of course, these are

the forces that stabilise tertiary structure but in this discussion, potential for

interaction means the ability to influence the forces in either a constructive or

destructive manner. For example, mutations could make disulfide bridge forma-

tion possible, introduce disruptive steric bulk or restrict the possible bond angles

Φ and Ψ. Binding with a drug molecule may trap a high-energy conformation

with different interactions to the majority low-energy conformation. Although

those interactions were already present in the high-energy state, the shift in

equilibrium means that more protein molecules will have those interactions.

3.4.2 Microenvironment Scoring Algorithm

The amino acids that make up the protein chain have varying numbers of atoms

and conformations. For the algorithm to work, a reference point is needed for

each amino acid. The α-carbon was chosen as a suitable centre for calculations.

Since α-carbons are on the backbone, they are common to all amino acids. Start-

ing with the residue at the N-terminus, a sphere of a particular radius is defined

around it. All the residues that lie within that sphere are considered part of the

microenvironment. For example, the microenvironment shown in Figure 9 can

be represented by [3, 6, 7, 10, 11, 12, 18, 19]. This process is repeated for every

residue in the chain until a microenvironment is calculated for each residue.

Once all the microenvironments have been determined, individual scores can be

calculated from them:
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Figure 9: Cartoon showing the sphere of influence around residue number eleven.
The residues that lie within this sphere make up the microenvironment: [3, 6, 7,
10, 11, 12, 18, 19].

Highest − Lowest (HL) is the difference between the highest and lowest num-

bered residues in the microenvironment. This represents the longest range

of possible interaction in the central residue’s sphere of influence. In the

example microenvironment from Figure 9 this is 19− 3 = 16.

Greatest Gap (GG) is the longest section of the chain that exits and re-enters

the sphere. It is found by calculating all the gaps in the residue num-

bers and selecting the highest. In the example microenvironment this is

18 − 12 = 6. GG is similar to HL in that it gives the highest range of in-

teraction. However, the difference is that it limits this range to the largest

loop extending from this point.

Difference (Diff) is the difference between the HL score and the GG score.

Most residues have similar HL and GG scores. However, those that do not

often have several medium sized loops exiting and re-entering the sphere

instead of one loop being larger than the rest. The example microenviron-

ment has a Diff score of 16− 6 = 10.

Strand Number (SN) is the number of strands that pass through the sphere.
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In this case there are 4: [3], [6, 7], [10, 11, 12] and [18, 19].

Count is the number of residues present in the microenvironment; eight in this

case.

Exposure (Ex) is the number of empty slots in the microenvironment. This

measure assumes that the microenvironment in the protein with the high-

est Count score has no space where another residue could fit. Microen-

vironments that have a lower score than this maximum are said to have

maximumCount− Count free spaces.

These scores cover a range of topological measures. Scores that cover other

aspects of the structure such as chemical, physical and statistical properties are

discussed in Section 4.2.1.

3.4.3 Microenvironment Radius

The contents of the microenvironments and the values of the scores depend on the

radius of the sphere. However, the correct size of this sphere remains difficult

to quantify properly. By the definition above, a correctly-sized sphere would

contain only residues that are within the centroid’s sphere of influence. That

is, the microenvironments must include strands that generate intramolecular

attraction or repulsion, and exclude strands that are too far away. However,

forces do not have a finite range, rather they diminish with increasing distance.

Theoretically, distant residues can still be influenced even if only slightly.

It is therefore impossible to define a geometry separating residues which can be

an influence from those which cannot. Each residue could be placed on a sliding

scale of susceptibility. However, the score calculations require residues to be

either in or out of the microenvironment. Even with a weighting factor, there

would have to be a cut-off. In practice, the cut-off is defined by a particular sphere

size. The radius of the sphere is chosen to give a good distribution of data that

can be used to pick out important features in the protein. The graphs in Figure

10 show the distribution at three different sphere radii. At low radius, there are
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mostly low scores with the occasional spike. High radii give a similarly flat profile

with all the features overlapping. In between, there is a nice variation of scores

where interesting sections can be examined and patterns can be pulled out. This

supports previous research [175], which has indicated that seven Ångstroms gives

a good distribution.

(a) 5 Ångstroms (b) 7 Ångstroms (c) 10 Ångstroms

Figure 10: Three graphs for 1HTB [174] showing the distributions at 5, 7 and
10 Å respectively.

3.4.4 Intrasequence Difference

Initial work in intrasequence difference was originally developed [176] as a tool

to help explore protein topology. That paper used microenvironments to help

understand the folds of bovine pancreatic trypsin inhibitor, phospholipase A2,

chymotrypsin and carboxypeptidase A.

Subsequently, the techniques were extended to explore the protein topology at

binding interfaces [175]. This was applied to both protein-protein interfaces

and to bound small molecules. This allowed microenvironments to take into

account contextual information from sources other than the protein molecule

under analysis.

An initial survey into the potential to detect allosteric sites using microenviron-

ments was conducted [177]. The survey studied allosteric systems for which there

were structures in the PDB with bound allosteric ligands. From these structures,
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a set of rules of acceptable microenvironment score boundaries for allosteric sites

was formulated.

3.4.5 Microenvironment Score Operations

One of the main advantages of the microenvironment approach to topology is the

ease of manipulation of the resulting dataset. In the same way that a primary

sequence is unique and represents a fingerprint for a protein, the scores are a

fingerprint for a topology. They can be used to measure the degree of similarity

between different topologies or partial topologies.

Subtracting Subtracting scores from two different topologies or conformations

gives an immediate picture of similarity. The closer to zero the values are,

the more similar the topology is at that point in the chain; the further

from zero, the more dissimilar. Without an alignment step, this is limited

to proteins of the same lengths, most commonly different conformations of

the same protein.

This is a more powerful technique than aligning the atoms in a 3D model.

In a conformational adjustment, it is possible for a “hinge” to change the

juxtaposition of two domains. In a 3D alignment, it would be possible to

align the atoms of one domain which would mean the atoms of the other

domain are significantly displaced from their original positions. Alterna-

tively, it would be possible to make the best alignment over the entire

protein, which will fail to capture that separate conformations of the two

domains might not have changed significantly at all.

A subtraction, however, will identify a change at the interfaces between the

domains and at the “hinge” as scores of high magnitude but areas within

a domain that have not changed will be close to zero

The score Diff is defined as HL - GG and is an example of subtracting

scores for reasons other than a direct comparison of topology.

Adding Similarly, it is also possible to add scores together. This has less obvious

physical significance but it is a step in the process of averaging.
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Averaging With a set of topologies, it is possible to determine an average score.

This could be used when studying frames of molecular dynamics output

or the different members of a family. Average scores can be used to show

areas of deviation from the average in individual structures and to find a

structure that is closest to the average.

Minimum and Maximum The protein topologies we see today are the result

of billions of years of evolution. These are the successful topologies that

have survived but we can surmise that evolution has explored countless

others. By finding the minimum and maximum scores at each point in the

chain over a whole family, we can see the range of topology that evolu-

tion has allowed. Highly conserved parts of the topology will have narrow

ranges while more variable parts will have wider ranges. These may loosely

correlate with variation in primary sequence but it is possible for some mu-

tations to occur that have little effect on topology.

Sequence Alignment The operations above can only be applied to chains of

the same length and are only meaningful if the topologies are already

aligned. The trivial case is two instances of the same chain as in the Diff

score. It is possible to explore different topologies of a single chain. They

can be from an NMR experiment, simulated through molecular dynamics

relaxation experiments or induced through a binding event.

When chains of different lengths are to be compared, a sequence alignment

on the basis of score must be performed first. Then applying any of the

other operations meaningfully is trivial. The alignment itself can be done

in similar ways to primary sequence alignment but is conceptually easier. A

mutation in primary sequence causes a mismatch in aligning and it has to

be balanced against insertion and deletion. Scores provide a more analogue

signal. Instead of a complete mismatch, scores are closer together or further

apart to varying degrees. Two scores which are close but not identical

are likely to be the result of a topological shift, inferring that insertions

and deletions are elsewhere and, therefore, more easily pinpointed with

accuracy.

Access to these operations is a critical advantage of reducing a 3D structure to a
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sequence of scores. Sequences are easily manipulated and compared whether it

be programmatically, in spreadsheets or even by hand. This is not the case for

3D structures where complex algorithms are often required for these operations.

As described above for the case of alignments, sometimes only approximations

are possible if the 3D structure is not expressed as a sequence of scores.

3.4.6 Intermolecular Intrasequence Difference

The algorithm described above provides a view of a protein’s tertiary structure.

However, protein chains do not exist in isolation. Many complete proteins are

an assembly of several chains. Allosteric effectors, cofactors, coenzymes, sub-

strates, inhibitors and even the cell’s water molecules can all also interact with

the protein.

Microenvironments can be used to explore these interactions by looking at the

scores close to, for example, a bound molecule. Through inspection it is possible

to see if the atoms are near high scoring or low scoring areas of the protein and

this can give some idea of the topological effect of binding.

While this approach allows the researcher to study the interactions between a

protein chain and other molecules, it does not address the environment of the

guest molecule—only the environment of nearby residues—and depending upon

the user to choose which residues are nearby introduces a subjective element to

the analysis.

In order to more accurately describe the range of interactions possible between

the guest molecule and the host protein, the microenvironments were centred on

the atoms of the guest molecule. However, the membership of the microenviron-

ments was still taken from the protein. Now that numerical scores were being

attributed directly to the guest molecule, the subjective component had been

removed from the analysis. For example, Figure 11a shows the scores nearby the

nicotinamide adenine dinucleotide (NAD) ligand. It is obvious that one area of

the molecule is in a high-HL area while the other part is in a low-HL area. How-

ever, Figure 11b shows the intermolecular scores on the NAD molecule. Now it is
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possible to see exactly which parts of the molecule are in high-HL areas (green)

and which parts are in low-HL areas (yellow).

The optimum radius was determined experimentally to give the best distribution

of scores using the same criteria described in Section 3.4.3. Because of the

separation between two molecules, larger spheres of around 10 Å were found to

be ideal [175].

In the case of a small molecule binding to the protein, each atom is the centre

of its own microenvironment and the order of microenvironments does not have

the same physical significance as with a protein.

(a) Scores near the molecule. (b) Scores on the same molecule.

Figure 11: The difference between scores near an NAD molecule and the inter-
molecular microenvironment scores calculated on the same NAD molecule. PDB
ID: 1HTB [174] was used.

On the other hand, for determining microenvironments between protein molecules

it is appropriate to look for α-carbons on the constituent amino acids, and the

order of the scores does have meaning. However in the case of two protein

molecules, the terminology host and guest is not always appropriate. In this

case we use main chain for the chain the scores are being assigned to (analo-

gous to the guest in the small molecule version) and comp chain for the chain

the microenvironment is derived from (analogous to the host protein in the small

molecule version). In Figure 12, chain A shows standard microenvironment scores

in grey and blue while chain B shows intermolecular scores in yellow and red.

Here, chain B is the main chain and chain A is the comp chain.
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Figure 12: Intermolecular microenvironment scores between two molecules of
alcohol dehydrogenase (1HTB [174]). Chain A shows standard microenvironment
scores with low scores in grey and high scores in blue. Chain B is green with
low, non-zero scores highlighted in yellow and high scores highlighted in red.

This prior work in the area [175] focussed on microenvironments in intermolecular

interactions. However, the focus for the rest of this work is on intramolecular

interactions.

3.4.7 Potential applications

Although this work on microenvironments is fundamental research into protein

topology, it has some important practical applications.

The approach can be used to identify sites where small molecules can bind to

induce an allosteric effect. Allosteric drugs may be an effective way to increase

the selectivity and discrimination of drugs. One potential application of this is

to deal with the increasing problem of antibacterial resistance. Unfortunately,

allosteric sites are difficult to detect and many allosteric effectors could exist but

not be known. Scores can be used to detect boundaries in the protein tertiary

and quaternary structures. These boundaries may represent areas where a small

molecule could bind to stabilise a particular conformation of the protein.
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Another area where microenvironments might be applied is in protein engineer-

ing. Much of the past study of protein mechanism has focussed around the active

site. Less research has gone into understanding the role of the rest of the pro-

tein, at least not in the detail required for protein engineering. Fundamental

research into protein structures such as this work may provide the necessary un-

derstanding to start designing structural modifications to proteins, and therefore

a permanent adjustment to the catalytic site.

Related to protein engineering is fold prediction. This is a long-standing goal of

protein research which continues to elude all ab initio techniques. It is possible

that microenvironments may contribute to our understanding of protein folding

by offering quantitative ways to deconstruct protein structures.

3.5 Data Mining

Data mining concerns the search for patterns and knowledge in sets of data.

Its main use is in determining relationships and patterns which are difficult for

humans to spot. Since bioinformatics is concerned with interpreting large data

sets, data mining often plays a central role in bioinformatics techniques.

In the context of this work, protein 3D structures are stored in large reposito-

ries such as the PDB or are generated in large volumes through techniques like

molecular dynamics. Microenvironment scores provide a way to transform these

structures to tuples that are amenable to existing data mining techniques.

While output of the microenvironment scoring algorithms provides some im-

mediately-accessible information about protein topology, the human operator is

limited to viewing one or two scores over a handful of proteins at most. In

reality, the data set is both vast and multidimensional with several scores and

microenvironment radii over tens of thousands of proteins. Knowledge extraction

from a data set such as this lies in the domain of data mining.

Data mining covers a number of related areas including: classification, clustering

and association rules [178]. Classification and clustering both involve splitting a
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data set into partitions (named classes and clusters respectively). However, the

classes used in classification are defined in advance. Data items are placed into

the most appropriate class. Clustering, on the other hand, defines the clusters

based on the properties of the data set. Items close to each other are placed

into a cluster and the meaning of the cluster is often not obvious and has to be

determined by a domain expert after the process has completed.

Association rules concern looking for links or associations between items of data.

A common example is in supermarket shopping habits. Stores are often interested

in which items shoppers buy together and use the information to help decide

which items to place together on the shelf and how to design special offers.

3.5.1 Clustering and Classification

There are three main steps to clustering and classification:

1. Choosing a representation of the data.

2. Choosing a proximity measure.

3. Grouping the data.

Each data point (or pattern) has one or more fields. Often a field will be super-

fluous due to it being irrelevant to the current clustering task or it could have

a high correlation to another field. Other fields can be combined. For example,

“date of birth” and “date of death” could be combined as an “age at death” field.

Sometimes there is a choice of representation, for example polar or Cartesian co-

ordinates. The final choice of representation is often chosen by an expert with

domain-specific knowledge, although automated feature selection techniques also

exist (e.g. FEATUREMINE [179]). The dataset is ultimately represented as a

set of tuples, one for each data point, where each element in the tuple represents

a field in the data point.

The make-up of the tuples also depended on the question being asked. For

questions trying to identify particular features within proteins, the tuple will
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represent a residue with the elements being the individual scores. For questions

regarding the relationships between protein structures as a whole, the tuple will

be the whole chain (probably aligned with the other chains in the data set).

A proximity measure is used to determine which cluster or class a point belongs

to. Conceptually, a similarity measure can be used to discriminate between

candidate clusters. However, in practice it is often only possible to measure or

calculate the differences between data. Therefore, a dissimilarity measure is usu-

ally used. Euclidean Distance between points is a popular and conceptually easy

dissimilarity measure but is prone to having large features of the data obscure

smaller ones [180]. Other dissimilarity measures take into account the presence

of surrounding points [181]. Edit distance can be used as a dissimilarity measure

when the tuple is an entire chain.

3.5.2 Algorithms

There is a plethora of clustering and classifying algorithms in the literature. Jain

et al. [182]. summarise the different approaches as shown in Figure 13. The two

main divisions are hierarchical algorithms and partitional algorithms.

Hierarchical algorithms output clusters in the form of a dendrogram. The links

between patterns are shown at their relative similarity levels which allows the

user to choose clustering arrangements at different similarity thresholds.

In contrast, partitional algorithms provide a single clustering arrangement. This

means they are typically more suited for large data sets where the cost of pro-

ducing a complete structure would be prohibitive.

Squared error clustering algorithms such as k -means iteratively refine the place-

ment of cluster centres until a satisfactory clustering arrangement is found. In

k -means the number of clusters is fixed and their locations are chosen randomly.

Each data point is assigned to its closest cluster centre and the centres are re-

calculated as the average of the data points. The assignation and recalculations

are repeated until some end condition is met.
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Figure 13: A taxonomy of clustering approaches [182].

Graph theoretic clustering builds a minimal spanning tree with the dissimilarity

measure weighting the edges. The edges are removed starting with the largest

weighting until a satisfactory set of clusters is found [183].

Mixture-resolving and mode-seeking algorithms attempt to find clusters by fitting

statistical distributions to the data [182].

This summary of clustering and classifying algorithms covers basic techniques

that could be applied to microenvironment data. Factors such as the make-up

of the tuple, dissimilarity measure and chosen algorithm can all be tailored to

answer specific research questions.

The hypothesis of this work is that microenvironments can elucidate information

about the structure of proteins. Microenvironment scores can be used to quan-

tify the environment around individual residues, and to deconstruct or compare

structures. The scores can also be used as inputs to machine learning techniques.
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4 Methodology

The central hypothesis is that microenvironments contain useful information

about the topology and mechanism of proteins. Section 1.3 outlined three re-

search questions to investigate this hypothesis:

1. How can the performance of the tools for defining and processing microen-

vironments be optimised?

2. What topological features can be shown using microenvironments?

3. How can microenvironments be applied to large datasets?

The first research question is addressed in Section 4.1. which starts with an

overview of the technologies used before considering options for data storage in

Section 4.1.4. The performance of the algorithms was addressed by designing

and profiling options for determining microenvironments in Section 4.1.9.

Section 4.2 focuses on the second research question. Microenvironment topo-

logical scoring was extended with scores for physicochemical context, physical

properties and statistical properties. A method for decomposing topologies is

described in Sections 4.2.4 which is used for finding domain boundaries in Sec-

tion 4.2.5. Section 4.2.6 describes a method for revealing finer topological detail

than is usually shown by microenvironments. This is used to describe common

protein motifs in Section 4.2.8.

Section 4.3 explores the third research question: the potential for microenviron-

ments to provide information from large datasets of protein structures. Allosteric

site prediction is used as a goal for this and the performance optimisations and

physicochemical context scores developed in answer to the previous research ques-

tions were used.
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4.1 Performance of the System

The first research question from Section 1.3 asks what the performance consider-

ations of computing with microenvironments are. An optimal performance will

allow for the efficient handling of larger datasets and will yield more responsive

user interfaces.

The following subsections discuss issues surrounding the performance of the sys-

tem and outline the choices that were made. Sections 4.1.1 to 4.1.3 discuss the

technology choices and high level architectural decisions that were made. Sec-

tions 4.1.4 to 4.1.7 discuss the various options for persisting microenvironment

data including a discussion in Section 4.1.6 on an alternative to persistence. Sec-

tions 4.1.8 to 4.1.17 discuss the performance characteristics of two algorithms

for computing microenvironments and a set of experiments for determining the

optimal configuration.

4.1.1 System Design and Implementation

This section describes the design of a library to generate microenvironment data

and viewers to visualise the data. It also outlines the consideration given to using

a database for storing, retrieving and generating the microenvironment data.

The system design had to anticipate future research ideas and build in extensibil-

ity as much as possible. Points identified for future expansion were new scoring

systems, new ways of calculating microenvironments, different sources of protein

data and different kinds of molecules.

4.1.2 Language Choice

Most of the software development was done in Java. However, any general pur-

pose programming language would have been suitable. Sensible candidates could

have included C++, C#, Ruby, etc. but the two main candidates were Java and
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Python: Java because it was the language the researcher was the most familiar

with and Python because it was popular in bioinformatics.

Both languages are freely available, are general purpose, have a wide variety of

APIs available and are platform independent. One requirement was the ability

to easily interface with an existing molecular viewer. Most languages would be

able to interface with molecular viewers via exported scripts but Python and

Java have molecular viewers implemented in their own language (PyMOL [184]

and Jmol [185] respectively), making it easier to integrate them into a GUI.

Another requirement was that a library to parse PDB files should be available.

Both languages had a PDB parser available so this did not discriminate between

them.

Java was chosen due to the researcher’s familiarity with it. The performance of

Java made it a strong choice for the API and GUI.

The databases used were Oracle and SQLite. Oracle was used for larger datasets

and SQLite was used for prototyping and for smaller datasets.

4.1.3 Architecture

This section gives a broad overview of the software. A detailed specification and

design can be found in Appendix D. More information on the design can be

found in Appendix E and a user manual can be found in Appendix F.

The core algorithm is the process of assembling residues into microenvironments.

This provides data for graphical displays and animations, mining for information

or batch processing of high volumes of protein structural data. The codebase

consists of several modules:

API This section has areas of the code common to various applications. It

performs the microenvironment calculations and has data structures to

hold the results and the pertinent parts of the PDB files. All the extensions

and improvements to the algorithm are included here. This is also where

classes to read PDB files and interface with databases are found.
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Viewer An application that allows the user to view microenvironment data in

charts, in tables, superimposed on 3D molecular models and superimposed

on primary sequences. Simple animations are provided to allow the user to

compare similar but subtly different topologies and the controls for vary-

ing the parameters (such as microenvironment radius) update the displays

dynamically. The application also provides the facility to highlight sites

defined by a combination of score ranges. The viewer is shown in Figure

14 and a larger image is included in Figure 57 Appendix C.

Figure 14: Screenshot of the microenvironment viewer.

Batch Microenvironments A command line tool that calculates microenvi-

ronment scores for an entire directory of PDB files. It was developed to

compute scores for every frame generated in molecular dynamics simula-

tions.

Protein Unraveller This tool provided an interface to allow the user to ma-

nipulate bond angles in a displayed molecular model. As the display was

changed, an HL score chart was continually refreshed as were the colours

highlighting the 3D model. The unraveller is shown in Figure 15 and a
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larger image is shown in Figure 58 Appendix C.

Figure 15: Screenshot of the protein unraveller.

Data Mining The machine learning library JavaML [186] has a number of clus-

tering and classifying algorithms. Wrappers were written for microenviron-

ment data types to allow them to conform to JavaML’s interfaces.

Each section was designed with modularity and extension in mind. The API

was written to accommodate wrappers for different data sources. Similarly, the

Viewer was designed to allow new views to be plugged in and the data mining

library can be extended to include bespoke algorithms or even to wrap other

libraries.

However, the microenvironment calculation had several points of variation. Opti-

misation of the computation was one candidate and is described in Section 4.1.8.

The geometry of the microenvironment (e.g. spherical, based on the side chain)

was another candidate as was the ability to filter residues for membership into

microenvironments. These points of variation were generalised to the Decorator
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pattern in order to make them composable and to easily accommodate future

developments.

4.1.4 Database

Producing scores for microenvironments produces a lot of data. Each residue

of every protein in the PDB can have several associated scores and this project

has introduced a framework to continue expanding the number of scores open-

endedly as described in Section 4.2.1. Furthermore, there is the possibility of

incorporating other datasets such as the results of homology modelling or molec-

ular dynamics relaxation experiments. It seems natural to store large quantities

of data like this in a database. However, there are a number of problems associ-

ated with this.

The first is that excessive amounts of data can be generated from protein struc-

tures. The microenvironment radius can be adjusted to any real number. Even if

this was limited to a handful of sensible values, any number of scoring strategies

can be added and the PDB is growing almost exponentially as shown in Chart

2. The ever-increasing storage requirements would be a constant maintenance

problem.

The second is that conceptually microenvironments are a derivative of protein

structures and should ideally be generated as and when needed. This would

alleviate the problems associated with storage requirements. However, the per-

formance of the algorithm had to be optimised to make it practical.

This section continues to describe a database design for storing microenviron-

ments and their associated scores in section 4.1.5. It then discusses that these

databases store a cache of aggregated data, and are therefore optional in Section

4.1.6. Section 4.1.7 describes a protein database design intended to supply the

structural data for microenvironment determination and scoring.
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Figure 16: Entity relationship diagram of the microenvironment database. The
attribute table for this ERD is listed in Table 1.

Entity Attributes
Protein ID, name
Chain ID, protein ID, name
PDB Atom ID, residueNumber
Residue ID, name, three letter code, one letter code
Microenvironment ID, chain ID, residue number, residue ID, Central

PDB Atom ID, Encompassed PDB Atom IDs, HL
score, GG score, (and several more scores)

Table 1: Attribute table for the ERD in Figure 16.

4.1.5 Physical Database

Previous work [175] focussed on using a conventional database to store and help

manipulate the data rather than text files. In the rest of this explanation the

term “physical database” is used to denote this system. An entity-relationship

diagram of the data is shown in Figure 16.

In this entity relationship diagram, Chain represents a single protein chain. Pro-

tein represents the entire quaternary structure (which is often just a single chain).

Microenvironment represents the microenvironments around each residue. In the

physical database, the table representing this entity would contain all the scores.

PDB Atom represents the atoms that are encapsulated by the microenvironment
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and Residue is the amino acid residue that is the centroid of the microenviron-

ment.

This database design would be useful for small, targeted datasets used in experi-

ments where these problems would be alleviated by a fixed scope. However, they

would cause difficulties if this design were to be used as a general repository for

all microenvironment data for reasons discussed in the previous section.

A further consideration for a database is the source of the data. The database

in Figure 17 is geared around multiple sources of data. The motivation for its

design was to store the data from multiple molecular dynamics trajectories with

different experimental set-ups but of the same protein.

In this entity relationship diagram, Experiment is the source of the data, typically

a molecular dynamics trajectory, and Chain is just a protein chain. Residue

refers to the immutable state associated with a residue (for example, the serial

number, amino acid, etc). Score refers to microenvironment scores for a residue

at particular frames in the trajectory. For example, if a trajectory has 50,000

frames then there will be one Residue instance but 50,000 Score instances for

each class of microenvironment score. Amino acid refers to the names of the

amino acids and any associated data.

4.1.6 Virtual Database

An alternative to storing the microenvironment data is to generate it on-the-

fly. In database terms, the results of microenvironment calculations are not new

data, rather they are a derivative of the PDB. Following the argument in Section

4.1.5 it is appropriate to generate these views as and when they are needed rather

than store them.

However, this would only be practical if the calculation was fast. The initial

profiling of the microenvironment algorithm (described in section 5.1.1) showed

that microenvironment determination was the main bottleneck and that the time
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Figure 17: Entity relationship diagram designed for multiple experiments. The
attribute table for this ERD is listed in Table 2.

Entity Attributes
Experiment ID, protein, ligand, starting PDB, average PDB,

date, comments
Chain ID, experiment ID, name , residue number offset
Residue ID, chain ID, amino acid ID, serial, chain
Amino Acid ID, single letter code, three letter code
Score ID, residue ID, score name ID, value, frame
Score Name ID, name

Table 2: Attribute table for the ERD in Figure 17.

to open and parse a PDB file was also significant. Generating the scores from

the microenvironments was relatively fast.

One solution for this bottleneck was to store all of the required data from the

PDB in main memory. This way, the files could be opened and parsed once when

the computer was turned on, effectively removing this stage from the repeated

generation of the view at the expense of a longer startup time.

Despite the rapid increase in available computer memory, a memory-efficient

representation of the information is critical since the protein structure datasets

are expanding at an exponential rate. A careful analysis of the data types used to

represent the protein data can result in significant differences in memory usage.
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Table 3 shows the estimated memory requirements of storing the PDB data

with and without the microenvironment data. The first row shows the storage

requirements using an unoptimised data structure. The second row represents

the storage requirements of a space-optimised data structure and the third shows

a realistic compromise.

The smallest representation used three bytes for each coordinate value. However,

Java does not have a three-byte primitive. While it is possible to provide such

an implementation, it would involve poor coding practices which would make

the code difficult to read and maintain. Expanding to four bytes per coordinate

value as a compromise does not increase the storage requirements significantly

and Java’s “int” primitive can be used.

Memory Requirements / GB
Coordinate representation Just PDB Including Microenvironments

double (8 bytes) 6.2 12.1
(3 bytes) 2.9 6.2

int (4 bytes) 3.8 7.1

Table 3: Estimated memory requirements for PDB data in the virtual database.

4.1.7 Caching Protein Coordinates in a Local Database

Microenvironments and their scores are properly represented as a view of pro-

tein structure data. This requires a source of data and the industry standard

is PDB files. However, despite having a formal specification document, many

examples of non-conformant files are in existence, often generated by software

that transforms protein structures (e.g. molecular dynamics). The Protein Data

Bank has introduced an XML-based format to help solve these issues but the

common usage is still PDB text files.

This section introduces a database design for storing protein structure data that

is suitable for use in generating microenvironment views. This approach places an

abstraction layer between the research and problems associated with file formats.
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Figure 18: Entity relationship diagram based on the PDB file format. The
attribute list for this ERD is in Table 4.

Entity Attributes
Protein Data Bank ID, Name
PDB Entry ID, Protein Data Bank ID, name
Sequence ID, PDB Entry ID, residue names
Model ID, PDB Entry ID
Atom ID, Model ID, x, y, z, symbol, charge, temperature

factor, occupancy, name, sequence number

Table 4: Attribute table for the ERD in Figure 18.

The PDB is organised along the following lines. Each biological assembly is given

a separate PDB file. A section of an example PDB file is given in Appendix A.

The two sections of interest in the files are the Primary Structure Section and

the Coordinate Section. The former lists the sequence (i.e. the order of protein

residues and nucleic acid nucleotides) and the latter lists every atom detected

by the experimental technique used to generate coordinate data. In each atom’s

record, the atomic coordinates are listed as well as other data such as symbol,

charge, temperature factor and occupancy. If the atom is part of a polymer,

the residue name and sequence number are listed and if it is part of a small

molecule, a three-letter molecule ID is listed (e.g. HOH for water). If more

than one snapshot (termed model in the PDB specification) was determined by

the experiment, all the atom entries are duplicated for each model with updated

coordinates, temperature factors, etc. Figure 18 shows an entity–relationship

model for the PDB file format organisation.
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There are a number of problems with this approach. The sequence data is re-

produced in the primary sequence section and implicitly in each of the models.

From a practical point of view, it is awkward to write SQL queries for retrieving

the atoms or residues from a single chain.

Figure 19 shows an alternative approach in which the structures of the molecules

are represented by the Protein, Chain and Atom entities.

Periodic Table Element represents classes of atom (such as Hydrogen, Carbon,

etc) and Residue represents biopolymer residues like glycine, uracil or glucose as

well as small molecules like water or ATP. The optionality shown in the diagram

is because the concepts of Residue and Periodic Table Element can exist without

any Atom entities to represent them. For example, the entire periodic table could

be included in the database even though most elements would never appear in a

protein.

Coordinate data is represented by the Location entity. If a PDB file contains two

models, each atom in the new structure will relate to two locations. Locations

also represent alternate locations when an atom is found in more than one site

in a crystal structure.

Since this database is designed for microenvironment generation, the Parameter

entity was included to represent residue parameters such as hydrophobicity, size

and druggability, as described in Section 4.2.1.
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Figure 19: Revised entity relationship diagram for the PDB database. The
attribute table is listed in Table 5.

Entity Attributes
Data Source id, name
Protein ID, Name, data source ID
Chain ID, protein ID, name
Atom ID, chain ID, residue ID, PT element ID
Location ID, Atom ID, alternative location index, x, y, z,

temperature factor, occupancy
Residue ID, name
Parameter ID, residue ID, name, value
PT Element ID, atomic number, name, symbol

Table 5: Attribute table for the ERD in Figure 19.

4.1.8 Performance

Since the microenvironments were generated on the fly at runtime, performance

was critical for processing all but the smallest datasets. Section 4.1.9 describes

the initial profiling that was done to determine the location of bottlenecks. It

then goes on to describe generating microenvironments via an exhaustive search

and explains why this was not suitable. Section 4.1.13 describes optimisations

that were made and is followed by an analysis of algorithm complexity in Section

4.1.16.
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4.1.9 Profiling

The first stage in optimising the performance of software is locating the bottle-

necks. Codebases tend to have a small number of bottlenecks where optimisations

can make a noticeable difference. Optimising other parts is futile since they only

take a small fraction of the total runtime. Optimisations also tend to introduce

complexity into the code so unless there is a substantial performance benefit to

be gained, the loss of clarity and maintainability is too high a price.

There are three main steps in generating the microenvironment scores:

1. Load the protein structure.

2. Determine which residues are members of each microenvironment.

3. Calculate the scores for each microenvironment.

The program was run and these three sections were timed to determine where the

bottlenecks were. The results from this experiment informed the methodology

for the rest of the performance section.

4.1.10 Dataset

A list of all the four-letter PDB codes was obtained and a thousand were chosen

at random to benchmark the different algorithms. However, it soon became

obvious that this was still too many to run the various experiments. This is not

because the algorithms were particularly slow but, in order to make an accurate

measurement, each run has to be repeated several times over (thousands of times

in some cases). In the end, all the chains present in those 1000 PDB files were

divided into class intervals of width 50 residues. One chain was chosen at random

from each. The final dataset is shown in Table 6.
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Class Interval PDB File Chain ID Chain Length
1–50 1D9M A 18

51–100 1AZP A 66
101–150 2I8T B 149
151–200 3DEE A 197
201–250 1J2Q B 223
251–300 2QPQ C 296
301–350 1MIQ B 327
351–400 2OF6 B 400
401–450 1JRP G 450
451–500 2HLD S 480
501–550 1ZPU E 529
551–600 1EFK A 553
601–650 2AHX B 615
651–700 1UYT A 681
701–750 1N7O A 721
751–800 1JRP B 760
801–850 2QN1 A 813
851–900 2VC9 A 882
901–950 1WZ2 B 948
951–1000 2IX3 B 972
1001–1050 1BGL F 1021
1101–1150 2PPB M 1119
1301–1350 2PPB N 1314
2051–2100 2UVC G 2060

Table 6: Sample dataset used for benchmarking the microenvironment creation
algorithms.
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4.1.11 Exhaustive Search

A key stage in the generation of microenvironments is to determine which of the

protein’s alpha carbons are contained within each locality. A simple approach

to find the microenvironment around a single residue takes each α-carbon in

turn and applies Pythagoras’ theorem to determine which lie within the sphere.

The process is repeated to determine the microenvironment around the second

residue, and then for the third and so on until microenvironments have been

determined for every residue in the chain. An algorithm for this exhaustive

search is shown in Figure 20.

1: for each residue in the chain do
2: Create an empty microenvironment.
3: for each α-carbon in the chain do
4: distance =

√
∆x2 + ∆y2 + ∆z2

5: if distance < sphere radius then
6: add this residue centre to the microenvironment
7: end if
8: end for
9: end for

Figure 20: Exhaustive search algorithm for microenvironment determination.

This algorithm was simple to implement, robust and it was easy to design effective

automated tests. These qualities made it a useful test vehicle for alternative

algorithms. However, as described above, this algorithm caused a bottleneck

which is undesirable in processing large batches of protein structures.

The time complexity of the algorithm gives some insight into why this is the

case. In order to analyse the algorithm, distance calculation is taken as the

characteristic operation. In determining a single microenvironment, a distance

is calculated for every residue in the chain. So, n residues means n distance

calculations for each microenvironment. Because there are n microenvironments

determined, that means there are n2 distances calculated. This is usually written

as O(n2). For small chains, this algorithm is fast because the value of n2 is low

but as the chain length grows, the number of calculations grows as the square of

the length.
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With a sphere radius of 7 Å, the average microenvironment size is around 8

residues. Considering the average protein comprises around 300 amino acids,

clearly a lot of time is spent calculating distances to residues that lie far outside

the sphere.

4.1.12 Alternatives to Exhaustive Search

An overview of data structures suitable for range searches was presented in Sec-

tion 2.4. The protein coordinate datasets are naturally fixed to three dimensions

and, due to the physical constraints of protein folding, occupy a narrow range

of density. These qualities make them amenable to cell-based techniques which

work well for datasets with low-dimensionality and uniform distribution.

Octrees and kd-trees would have also been suitable. However, since the dataset

was close to a uniform distribution, the leaf nodes (or branches near the depth

of the leaf nodes) would have described similar spatial regions as the cells in the

cell-based approach. Additionally, building and traversing the tree structures

would have incurred extra overhead compared to indexed-based lookups for the

cells.

Similarly, Voronoi diagrams would also have been suitable but would have in-

curred extra overhead compared to a cell-based approach.

4.1.13 Boxed Search

The number of comparisons can be reduced by pre-organising the data so that

only nearby residues are considered as candidates. If the space the protein exists

in is divided into a 3D grid, each residue can be placed into the appropriate

cell. When it comes to determining a microenvironment, a candidate set of

residues can be formed from the surrounding cells. This immediately excludes

distant residues from consideration. Only residues within a sensible distance of

the sphere centre become candidates. As with the exhaustive search, all the

distances between the candidates and the sphere centre are calculated and the
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appropriate residues are included in the sphere. The optimisation is that the

number of candidates is far fewer than in the exhaustive search.

In the example shown in Figure 21, if a residue belongs in cell 40, candidate

residues are pulled from all the shaded cells. In this example, all the cells in

the shaded area could contribute microenvironments centred in cell 40. The

shaded area includes row 62–66 and column 18–66. Even though the illustrated

microenvironment does not overlap them, other microenvironments centred on

residues in cell 40 could. A possible optimisation for some box sizes and sphere

radii could omit cells at the corners. 
 

1 2 3 4 5 6 7 8 9 10 11 12 

13 14 15 16 17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 33 34 35 36 

37 38 39 40 41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 71 72 

73 74 75 76 77 78 79 80 81 82 83 84 

85 86 87 88 89 90 91 92 93 94 95 96 
 

Figure 21: Two-dimensional representation of boxes. If box number 40 contains
a microenvironment centroid, the shaded area provides all the candidates for the
microenvironment.

Combining the contents of the cells means that the natural ordering of residues

will be lost and the resulting microenvironment will be scrambled. Several of the

calculations in later steps depend on this natural ordering. A simple approach is

to sort the microenvironment once its contents have been determined. However,

this sorting stage can be avoided by placing references to all nearby residues into

the cell.

To prepare an index that would help reduce the search space, each cell references

its own residues as well as those from nearby cells. For example, cell 40 references

all the residues from the shaded area. Therefore, when cell 40 is looked up,

all the nearby residues are in a single list with the natural order preserved.

Consequently, the microenvironment formation step is simplified by only needing
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to look up one cell. However, the box population step is complicated by references

to residues being placed in several cells. The algorithm is listed in Figure 22.

1: Create a 3D array of boxes encompassing the protein.
2: calculate the length of the grey area by 2× dmicroenvironment radius

box length
e+ 1

3: for Each residue in the chain do
4: for each plane of cells in the grey area (x-axis) do
5: for each line of cells in the plane (y-axis) do
6: for each cell in the line (z-axis) do
7: Place a reference to the residue in this box.
8: end for
9: end for

10: end for
11: end for
12: for each microenvironment centre in the chain do
13: Create an empty microenvironment.
14: Determine which box this residue belongs in. This box contains all the

candidate residues.
15: for each residue in the candidate list do
16: distance =

√
∆x2 + ∆y2 + ∆z2

17: if distance < sphere radius then
18: add this residue centre to the microenvironment
19: end if
20: end for
21: end for

Figure 22: Algorithm for the boxed microenvironment calculator.

This algorithm can be tuned by altering the size of the boxes. At one extreme,

a single huge box will place all the residues together, effectively making this

algorithm equivalent to the exhaustive search method. On the other end of the

spectrum, if the box size is too small, each residue will have its own box. Since

there is a cost in both time and space in making the boxes, this negates the

advantage of cutting down the distance calculations.

4.1.14 Boxed Search Configuration

The boxed search is more configurable than the exhaustive search. Before direct

comparisons can be made, the boxed algorithm must be optimally tuned. Slight
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variations of the algorithm, parameters and data structures could all impact the

running time and memory requirements. Since the driving force was optimising

the performance, it only made sense to use the most efficient settings. The

following four factors were considered in tuning the algorithm:

Box Size Obviously boxes which are too small will take a long time to create

while very large boxes will approach the O(n2) exhaustive search algorithm

in terms of performance. Somewhere between these two extremes must lie

the maximum efficiency.

Box Recycling When the microenvironment creation algorithm is called re-

peatedly, there is the option to reuse the boxes and their data structures

(see below). It was not obvious if clearing the data structures for reuse

would be faster or slower than discarding them and creating new ones

afresh. Below, the term recyclable boxes refers to boxes that are cleared

and reused while disposable boxes refers to boxes which are discarded and

created afresh on each run.

Data Structure Two options were considered for the internal representation of

the boxes: linked lists and array lists. Linked lists can grow and shrink with

the data but the items in the list can only be accessed sequentially. Array

lists are of a fixed maximum size. When the contents of the list grows

above this limit, the array structure must be discarded and reallocated.

Java had both these data structures built into its API. However, a look at

the source code suggests that the clear() methods were doing unnecessary

work: array list set every array element to null instead of just allocating

a new array while linked list unlinked all the nodes instead of just setting

the root node to null.

Due to implications in the recyclable boxes, additional versions of these

data structures with streamlined clear() methods were implemented and

tested. These additional versions are subsequently referred to as ‘cut down’.

Presorting Adding the residues to the boxes and then forming microenviron-

ments from those boxes scrambles the microenvironment’s natural ordering.
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This can be resolved by sorting the microenvironment as explained in Sec-

tion 4.1.13. An alternative approach is to have overlapping boxes so that

the residues in the candidate list will always be from the same box. This

approach preserves the natural ordering through the algorithm. Although

these algorithms produce the same result, one does more work up front so

it was unclear which approach would be most efficient.

Of these four variables, only the box size is a scalar. Experiments were set up

to determine the best box size for every combination of the other variables. Al-

though using the cut down data structures with recyclable boxes would have

been possible, those combinations made little sense. The only reason for im-

plementing cut down versions of the data structures was to make clearing them

more efficient. Since disposable boxes were never cleared, only discarded, the

cut down data structures would have been identical to the standard ones. The

twelve configurations in Table 7 were tested.

Presorting Recycling Data Structure
No No Linked List
No No Array List
No Yes Linked List
No Yes Array List
No Yes Cut Down Linked List
No Yes Cut Down Array List
Yes No Linked List
Yes No Array List
Yes Yes Linked List
Yes Yes Array List
Yes Yes Cut Down Linked List
Yes Yes Cut Down Array List

Table 7: Configurations of the boxed search algorithm benchmarked.

4.1.15 Box Size

Each of the twelve configurations above was timed with the box size varied

between 0.475 Å and 30 Å. It was suspected that the optimum box size would
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be sensitive to the microenvironment radius so the experiments were repeated

with radii of 4 Å, 7 Å and 10 Å. Although the length of the protein chain would

certainly affect how long the algorithm took to run, it would not have an effect

on the optimum box size parameters. 1ZPU, chain E was used throughout which

had a length of 529 residues.

4.1.16 Time Complexity

There are two distinct parts to this algorithm: populating the boxes and deter-

mining the sphere contents. It is easiest to calculate the time complexity of each

separately. The approach outlined below assumes that residues in proteins are

distributed evenly in space and that their density is constant. While this may

not be strictly true, the distribution does lie within a reasonable range. The

steric bulk of the atoms prevents them getting too close together and the forces

that cause the protein to fold prevent them from spacing out too far.

In the box population stage, each residue in the chain is placed into a number

of boxes. The number of boxes (b) is determined by the sphere radius and box

length. These two values are fixed until the algorithm finishes running so b is a

constant. Therefore, the number of boxes each residue is added to is b×n where

n is the number of residues in the chain. This stage of the algorithm is therefore

O(n).

The next stage is microenvironment formation. For a chain length of n there are

n microenvironments but the number of distances calculated is reduced. With

a constant density, each box will have the same number of residues (r) meaning

the number of calculations is r × n. In the real world, r will not be a constant

but will have a narrow range of possible values. The important thing is that r is

not affected by the length of the protein chain and the time taken for this part

of the algorithm to run will grow linearly with the length of the chain. As above,

this section is also O(n), making the overall algorithm O(n).

It is important to note, however, that time complexity is not the same as running

time. If a very small box size is chosen, it will take a long time for the boxes to
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be populated and the exhaustive search algorithm will be faster for reasonable

chain sizes. The boxed algorithm will still eventually overtake the exhaustive

search algorithm for very large chain lengths. (Indeed, any O(n2) algorithm will

be slower than an O(n) algorithm for large values of n.) However, in this case

the chain length required to see any benefit would be far larger than that of the

longest chain in the PDB.

At the other extreme, if the box size is too large, too many residues will be in

each box and the algorithm will tend towards O(n2). The optimum box size

would need to be experimentally determined.

Table 8 compares the time complexities of the exhaustive search and the boxed

index with kd-trees and triangulation. The theoretical worst case scenario of a

grid-based index is O(n) for a single lookup and O(n2) for N lookups. However,

the domain limits the data to three dimensions and ensures the density of the

tuples is more or less constant. Because of this, the observed time complexity

improves to O(1) and O(n) respectively, which is better than the alternatives.

In practice, the grid index improved the performance sufficiently so the other

techniques were not considered. However, for higher dimensions or more obvi-

ously clustered tuples the boxed approach would not scale well and the other

techniques would become more favourable.

Exhaustive Grid Kd-tree Triangulation
Create index - O(n) O(n.log(n)) O(n.log(n))

Range search O(n) O(1) O(n
2
3 ) O(log(n))

N range searches O(n2) O(n) O(n
5
3 ) O(n.log(n))

Table 8: Time complexities for different approaches of microenvironment cre-
ation.

4.1.17 Memory Usage

Although speed was the most important factor, a comparison of the algorithms

is incomplete without discussing their memory requirements. Unfortunately,
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memory usage in Java is notoriously difficult to measure. However, it is possible

to get an approximate value for the amount of free memory available to the Java

Virtual Machine and use that to calculate how much has been used [187].

The program was run for different chain lengths and the memory usage was

measured for both the exhaustive search and the boxed search. Results for the

analysis of boxed search performance are shown in Section 5.1.

4.2 Applications for Individual Protein Structures

The second research question from Section 1.3 asks if the study of microenvi-

ronments can elucidate useful information about the structure of proteins. This

research question is discussed in the following subsections which explore new

scoring systems and methods for manipulating microenvironments.

In addition to the scores described in Section 3.4, a number of additional kinds

of score (described below) were incorporated to expand beyond pure topologi-

cal data. The physicochemical context of microenvironments was incorporated

through the use of amino acid/residue parameters in Section 4.2.1. Snipped

microenvironments in Section 4.2.4 and stripped microenvironments in Section

4.2.6 allowed different aspects of the topology to be explored. The first allowed

isolation of segments of the chain and the second allowed masked details of the

topology to be uncovered.

In order to detect domains, a methodology for dissociating sections of protein

chain from each other was developed in Section 4.2.4. This was applied in Section

4.2.5 to automatically dissect a protein chain in such a manner as to disrupt the

largest boundaries first, unravelling the protein chain hierarchically.

Microenvironment Stripping reveals the internal topology of the structure that

is normally eclipsed by the overall topology. For example, where two domains

meet, the microenvironments at the boundaries will include residues from both

domains. However, these domains have topologies independent of each other. By

using microenvironment stripping, the layers of topological information can be

elucidated. This was used in Section 4.2.8 to identify motifs in protein topology.
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4.2.1 Physicochemical Context

The scores discussed in Section 3.4 summarise the topological context of each

microenvironment. The scores presented here expand on this by incorporating

the physicochemical context of the microenvironment. Three broad classes of

information were considered: properties derived from the chemical formula of

the residues (e.g. molecular weight); measured or statistical properties of the

residues (e.g. refractive index and β-sheet tendency); and properties of residues

based on the structure under analysis (e.g. temperature factor).

Derived From Chemical Formulae The first was information derived from

the chemical formulae of the residues, e.g. molecular weight, positive or

negative charges and hydrogen bond acceptors or donors. This category

also included data derived from the formula such as the free energy of the

side chain or the polarity.

Information derived from formulae are accurate and precise. The data

for each amino acid is final. Once the molecular weights are known, for

example, they can be assumed correct and will not introduce errors into

subsequent calculations.

Measured and Statistical The second category was data that had to be de-

termined experimentally. This included properties of the amino acids such

as the refractive index, hydrophobicity and partition coefficient. It also

included probabilities of amino acids appearing in different contexts, such

as druggable sites, or alpha or beta conformations. This category of in-

formation is more susceptible to experimental error. In general, physical

quantities of amino acids have been measured with high accuracy. The con-

textual information, however, is sensitive to the dataset. Particular care

must be taken when using datasets from old publications. Often the con-

cepts are useful but the data is calculated from a small number of proteins,

either because the calculations were done by hand or because that was all

the data available at the time.
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Relating to Structural Features These first two categories deal with prop-

erties that can be attributed to atoms and amino acids as categories. For

example, every carbon has atomic number 6. Lysine is considered to be

positively charged at pH 7.4. The third category is for information that

can only be observed in the context of an individual protein. For example,

is the residue at the surface? (As opposed to the probability of it occurring

at the surface from the second category) What is the temperature factor?

Are there disulfide bridges? Are there positive or negative charges that are

not forming salt bridges?

Similar to the first category, information observed in individual proteins

can be considered correct and final, or at least as accurate as the molecular

model. In this case, however, the data cannot be calculated once for each

amino acid. It must be calculated individually for each atom or residue in

the chain. Furthermore, if there are several models for a particular protein,

they must be calculated individually for each model.

Once the physicochemical context data has been obtained, it can be summarised

into a single value per microenvironment. Sensible operations include summing

them, averaging them, counting them or identifying the minimum and maximum.

While these parameters introduce information about physicochemical context

into microenvironments, they offer no information on the juxtaposition of side

chains which is important for active sites and other binding sites. This loss of

detail is a trade-off for the bigger picture view of the microenvironment data

across the whole protein.

The paper Important amino acid properties for enhanced thermostability from

mesophilic to thermophilic proteins by Gromiha et al.[188] is a valuable source

of data for these new scores since it contains a large table of diverse properties.

4.2.2 Parameter Distributions

In order to assess microenvironment scores based on physicochemical context,

the distributions of two scores were measured. Alpha helix tendency and beta
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sheet tendency were chosen for ease of validation. Since the presence of secondary

structures is flagged in PDB files, it would be simple to validate the results.

The entire PDB was scanned and microenvironment scores were calculated for

every residue. Alpha helix tendency and beta sheet tendency scores were calcu-

lated with and without microenvironments. The range was divided into evenly

sized class intervals and the frequency of scores for each interval was calculated.

For Alpha Helix Tendency, two frequency tables were generated: one for residues

that were part of alpha helices and another for residues that were not part of

alpha helices.

The HELIX records from the PDB files were used to determine whether the

residues were helix or non-helix. However, this record was optional according to

the format specification so files with no HELIX records were discarded.

The experiment was repeated for the Beta Structure Tendency score using SHEET

records to determine which residues formed part of beta sheets. As above, PDB

entries without the optional SHEET records were omitted from the experiment.

4.2.3 Reducing the Scope

The inclusion of physicochemical context data expands the ways of scoring mi-

croenvironments enormously. One of the driving principles behind microenviron-

ments was the simplification of structural data. Expanding this simplified view

into a high-dimensional data set seems counter to this principle. However, at

this stage it it not possible to tell which parameters would be the best to answer

future research questions.

Previous work [189] on quantifying the relationships with physicochemical con-

text data has shown high correlations between scores. This can be used to

partition the scores into broad categories:

Mass or bulk e.g. molecular weight, side chain volume, refractive index.
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Polarity e.g. partition coefficient, hydropathy index, exposure preference, chro-

matographic index.

Secondary Structure e.g. helix tendency, turn tendency, coil tendency.

Some parameters did not fit into any of the broad categories, for example: codon

count, compressibility, charge and melting point. However, since most of the

parameters studied did belong to one of these three categories, the dimensionality

of the data set can be reduced by choosing one representative from each family.

This section has expanded the range of scoring systems. The following section

discusses general techniques for processing microenvironment scores.

4.2.4 Snipped Chains

Snipped chains allow the researcher to isolate portions of the protein for individ-

ual study. Suggested uses include isolating domains or representing the protein

in a partially folded state without recalculating atomic coordinates.

In the case of isolating a domain, this could be achieved by removing all of the

atoms that do not make up the domain from the model. However, in terms of

microenvironments, the same effect can be achieved by excluding those atoms

from the microenvironments.

To represent a partially folded structure, it would be possible to simulate bond

rotations starting from a folded structure. As above, the effect in terms of

microenvironments would be to remove residues.

Snipped chains simulate these two circumstances by considering a protein chain

as being cut into two or more sections. Each section is considered separately for

the purpose of microenvironments. For example, Figure 23 shows the schematic

of a chain that has been split in two. In this example, the microenvironments

from the solid section will not contain residues from the dotted section. Likewise,

the dotted section’s microenvironments will not contain residues from the solid
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section. These two sections could represent different domains or they could

represent two sections of an unravelled protein using the point where they join

as a pivot.

Figure 23: Schematic for snipped chains. The solid and dotted lines denote the
two portions of the chain after snipping. The microenvironments at the right
hand side show the contents of the microenvironments before snipping (top) and
after snipping (bottom).

A single cut would divide the chain into a left portion and a right portion. All

of the residues from the right portion would be removed from the left portion’s

microenvironments and vice versa. The chain would be left intact and several

cuts could be made to isolate the topologies of all the domains of interest.

4.2.5 Locating Domains Automatically

Snipped chains can be used to decompose protein chains by making a series of

cuts. If protein tertiary structure is viewed as a hierarchy then the domains

are the top level in the hierarchy. Separating them through snipping would

remove the longest-range intrasequence interactions. The size of the interaction
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(i.e. distance in primary sequence) can be measured by the HL score which is

described in Section 3.4.

Cutting the chain recursively is similar to systematically unfolding it. If the

points chosen to cut or unfold by this algorithm are points in between domains,

straightening out the chain at those points will have the effect of pulling those

domains apart in space. The end point of the algorithm, where the chain is cut

at every residue, represents a completely unfolded chain and all the points in

between are representations of partially folded states.

The most important part is determining where to make the cuts. If A is the score

sequence for the whole chain and B is the score sequence for the chain cut at one

point, the overall difference in topology would be
∑
|B − A|. This is because

the difference between the scores of each residue gives a sequence of differences

in topology and summing these differences combines this into a single score for

the protein. Taking the absolute value of each difference ensures that positive

and negative differences do not cancel each other out.

By isolating separate domains, the largest scores will be removed as shown in

Figure 23. Therefore, by splitting the protein where the difference function is

at a maximum the largest scores will have been removed and the domains will

have been separated. It is therefore possible to scan the protein to determine

the effect of cutting at each point. Once the maximum has been located, the cut

chain is used for the next iteration.

It is possible to optimise the difference function. All of the changes to the

topology made by snipping are destructive. This means that all of the differences

will be negative so we can omit the absolute value operation to give
∑

(A−B).

Since the A term is constant within each iteration, it suffices to find the minimum

of
∑
B.

4.2.6 Stripped Microenvironments

The topological scores such as HL arise from different aspects of the protein

topology. Isolated α-helix and β-strand residues have low scores. Combinations

77



4.2 Applications for Individual Protein Structures 4 METHODOLOGY

of these single-strand structures like β-sheets and zinc fingers have higher scores.

Larger domains produce even greater scores and the highest scores arise when

the edges of these domains are brought together in three dimensional space. It

is therefore possible to get a rough idea of the kinds of structures present in the

protein from the scores. Taking HL (highest − lowest) scores as an example,

α-helices can be differentiated from loops and β-strands by their slightly higher

scores. As shown in Figure 24 Antiparallel β-strands can be identified by a V

shape present in the graph (usually with the bottom of the V cut off to make a
\ / where the strands diverge). The join in omega loops appear as two ‘pillars’

in the graph, their scores being approximately equal to their separation in the

primary sequence. Larger sections of topology have more complex fingerprints.

Figure 24: Conceptual view of motifs detectable in HL scores. From left to right:
antiparallel strands appear as a V shape; helices that are only partially close
enough to a neighbouring strand appear as a pulsing signal; and parallel strands
appear as pillars.

Unfortunately, the scores can only give indications of the longest range interac-

tions. For example, an α-helix at the periphery of a protein will have a partic-

ular score; it would be possible to identify it from a chart. However, an α-helix

deeper in the structure, maybe adjacent to an antiparallel β-strand, could not

be identified. The scores would only show the interactions between these sec-

ondary structures. If another structure, more distant in the primary sequence,

was within the sphere then interactions with that structure would be represented

by the score in place of the antiparallel motif.

When a microenvironment contains two or more strands, information about local
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structures is lost. This information can be regained by limiting which residues

are included in the microenvironment. Initially, only residues which are close

to the central residue in the primary sequence are considered. This gives us

the scores for α-helices and β-strands. Then progressively more distant residues

are included to extract the information about motifs, domains and eventually

interactions between domains.

In practice, instead of limiting the number of residues, the microenvironments

are determined as normal. They typically consist of between one and five strands

which can then be combined in different combinations to reveal all the interac-

tions.

For example, the microenvironment in Figure 25 has four strands. Taking strand

B by itself gives the score for the single strand, be it a loop, β-strand or α-helix.

Scores from strands A and B will show the antiparallel structure and all four

strands together will show the interaction between this and the distant antipar-

allel strands.

 

A B 

C 

D 

Figure 25: Sample microenvironment with four strands.
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4.2.7 Choosing the Strands

With the aid of a diagram like Figure 25 it can be seen that choosing strands B

and D is of little interest. Excising the intervening strand C does not represent

a useful physical state. While individual proteins could be hand-calculated, this

laborious process would not be suitable for routine analysis. Instead, a strategy

needed to be implemented for choosing sensible stripped microenvironments.

 
[B] 

 
[A, B] 

 
[B, C] 

 
[B, D] 

 

 
[A, B, C] 

 

 
[A, B, D] 

 

 
[B, C, D] 

 

 
[A, B, C, D] 

 
Figure 26: Examples of stripped microenvironments derived from Figure 25.

Firstly, it seems obvious to always include the central strand in the microen-

vironment, that is the strand that contains the residue at the centre of the

microenvironment. Beyond that, there are several choices. Assuming the central

residue is on strand B:

1. Produce stripped microenvironments from every possible combination of

strands. This would give: [B], [A, B], [B, C], [B, D], [A, B, C], [A, B, D],

[B, C, D] and [A, B, C, D].

2. Produce stripped microenvironments as above but do not allow gaps. For

example, if B and D are included in the microenvironment, C must be in-

cluded too. In this case, all the microenvironments above would be included

except for [A, B, D] because it has a gap.
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3. Strip off the strands in order starting from the C-terminus. Since proteins

are synthesised from the N-terminus to the C-terminus, as later amino

acids are added to the chain, residues closer to the N-terminus will already

have had an opportunity to begin folding. While they might not already

have adopted their final conformation, it is worth considering that there

may be similarities. Even if there are not, whatever structures are formed

transiently may help direct the overall fold of the complete protein.

If the assumption is made that residues on the N-terminus side of the

central residue are completely folded, they are always included in the mi-

croenvironments giving [A, B], [A, B, C] and [A, B, C, D].

4. Finally, strands can be stripped from the N-terminus. This does not appear

to have the same physical significance as stripping from the C-terminus and

is only included in this discussion for the sake of completion.

Microenvironment stripping is related to chain snipping. The difference is that

stripping was designed to show all the layers of topology together whereas snip-

ping was designed to isolate sections of the chain. By way of illustration, it would

be possible to combine the two techniques by using snipping to isolate a domain

and stripping to inspect the domain’s internal structure.

4.2.8 Common Motifs in HL

Section 4.2.6 described slopes and pillars that were commonly observed in HL

scores. An algorithm was written to detect these patterns. It scanned the HL

scores from the first residue to the last residue. If the gradient was +2 then

the neighbouring residues were assumed to form part of an upward slope. If the

gradient was −2 then they formed part of a downward slope and of the gradient

was zero they they formed part of a pillar. The algorithm allowed a small number

of missing residues in the slopes and pillars and there was a small tolerance in

deviations from these ideal gradients. Stripped microenvironments were used

as input data to the algorithm, otherwise longer-range structures would have

obscured the slopes and pillars from the shorter-range structures.
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4.3 Applications for Large Collections of Protein Data

The third research question from Section 1.3 asks how microenvironments can

be used to elucidate information from large collections of protein data. Section

4.3.1 uses microenvironment scores to detect allosteric sites in proteins. The

answer to this final research question built upon the performance optimisations

from research question one and the new scoring systems from research question

two.

4.3.1 Allosteric Site Detection

Allostery detection was chosen to explore the utility of microenvironments for use

with large datasets of protein structures. The problem requires use of topological

scores and physicochemical context scores. A solution to this problem would be

useful to industry as it could have uses in drug design.

The ability to detect allosteric sites reliably is a problem that has only been

partially solved. This experiment attempts to provide allosteric site predictions

by classifying residues based on their microenvironment scores.

The list of known allosteric sites was taken from the Allostery Database [37]

(ASD). This produced a list of residues reported in the literature to be in al-

losteric sites. This list was cross referenced with the PDB but many of the residue

numbers from the ASD did not match the residue numbers from the PDB. Some

of the ones that did not match could be reconciled with a simple offset.

After this data cleansing, there were 369 usable PDB files containing known

allosteric sites. These PDB files were randomly allocated between the test and

training sets. The training set had 184 structures while the test set had 185.

The partitioning was done at the level of PDB ID rather than tuple to ensure

that structures would not be split between the training and test sets.

Tuples took the form {HL, SN, Ex, Druggability, Beta Sheet propensity}. HL

(High − Low) ranked the boundaries between protein folds. This was chosen be-

cause allostery communicates across the three dimensional structure of proteins
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and the separation in primary sequence will change the nature of the communi-

cation.

SN (Strand Number) represented the complexity of sites. Active sites are often

formed by several strands converging at one point in space. This allows evolu-

tion to adjust the site components more or less independently through mutation

elsewhere in the chain. Due to the induced fit model, active sites can be thought

of as allosteric in the sense that a binding event will induce changes in topol-

ogy throughout the protein. SN was chosen to enrich the HL scores with the

complexity of the interface.

Ex (Exposure) represented the amount of empty space in the environment. This

was chosen as allosteric sites may have upper and lower tolerances of free space

for binding.

Druggability [190] was chosen to allow the probabilistic druggability of a site to

act as a discriminator. The druggability score is based on the statistical likelihood

of particular residues being found in drug binding sites. The assumption made

here is that allosteric drug molecules will have similarities with existing drug

compounds. Many of the allosteric sites in the ASD are for small molecule al-

lostery. Similarly, Beta Sheet propensity was included because allostery through

protein-protein interactions is one way nature regulates protein activity.

Four classifiers that represent a range of sophistication were chosen for the ex-

periment. These were:

Nearest Mean A single point is assigned to each class based on the mean of

the points in the training set. Each point in the test set is assigned the

class of the nearest mean.

k-D Tree K Nearest Neighbours (kNN) A kNN classifier locates, for each

point in the test set, the k nearest points in the training set. The class

assigned is the most common from these k. The k-D tree kNN produces

the same results but is optimised for runtime.
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Naive Bayes A classifier that assigns different probabilities to classes based on

the distributions of each class.

Random Forest A Random forest classifier builds several decision trees based

on subsets of the training set and on subsets of the feature space (i.e.

the scores included in the tuples). The classes predicted are based on an

aggregation of all the decision trees’ predictions.

Implementations of these algorithms were used from The Java ML library [186].

They were each trained and tested with the training set and test set respectively.

For classifiers with parameter options, several configurations were used.

Naive Bayes had a flag to specify whether the dataset was sparse. The experiment

was run with this flag set to false and again with it set to true. kD Tree KNN

allowed the value of k to be set. Experiments were run with k set to 1, 5, 10, 20,

30, 40 and 50. The number of trees for Random Forest was set to 10, 20, 30, 40,

50, 60, 70, 80, 90 and 100.

In order to compare the classifiers, a confusion matrix was built for each classifier

and the accuracy, precision, recall, specificity and F1 measure was calculated.

F1 score is a weighted average of precision and recall, given by the formula in

Equation 1.

F1 = 2

(
precision× recall
precision+ recall

)
(1)

precision =
true positives

true positives+ false positives
(2)

recall =
true positives

true positives+ false negatives
(3)

4.4 Summary of Methodology

This methodology section outlines algorithms and experiments that are designed

to answer the research questions set out in section 1.3. The first research question
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asked about what optimisations could be made to the defining and processing

of microenvironments. Section 4.1 addressed this by giving an overview of the

system. It explained the options for representing and storing microenvironments

and their scores as well as the alternative of generating them on the fly. It then

tackled the issues around the performance of on-the-fly calculations by testing

an improved algorithm for the determination of microenvironments.

The second research question asked what aspects of the structure can be eluci-

dated by microenvironments. Section 4.2 described new microenvironment scores

to represent non-topological features such as physical and physicochemical con-

text. It then described some experiments which compared these scores’ predic-

tive powers with and without microenvironments. This section then described

the concept of snipped chains which allows the topology to be systematically

deconstructed, leading to a new definition of protein domain. Stripped microen-

vironments allow all the levels of detail in the topological hierarchy of the protein

to be scored which led to a technique for automatically detecting some common

topological arrangements within the protein chain.

The third research question asks what information microenvironments can eluci-

date from large collections of protein data. Section 4.3.1 describes an experiment

combining data from the PDB and ASD to predict allosteric sites.

The next chapter presents the results of the experiments described here which

are further discussed in Chapter 6.
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5 Results

The hypothesis of this work is that microenvironments are useful in elucidating

characteristics of protein topology that are otherwise obscured. This is investi-

gated in experiments described in Chapter 4. These experiments fit into three

main categories. The first was the profiling and optimisation of the main al-

gorithms. Then it described techniques that had been developed to process

individual protein structures. These included new scoring systems, snipped mi-

croenvironments and stripped microenvironments. Finally, the methodology de-

scribed an experiment to train a classifier for allosteric site detection. The results

presented in this section mirror the order in the methodology.

The performance of the approach was investigated by profiling it to find the

bottlenecks. This confirmed that the microenvironment computation required

optimisation. Results showed that the exhaustive search algorithm conformed to

a O(n2) time complexity which was improved to O(n) by implementing a boxed

index. Several configurations of the boxed index were profiled showing that the

best size for the boxes was when the box length was equal to the microenviron-

ment radius. The memory implications were measured and were not found to be

significant.

Microenvironment scoring was extended beyond topological scores to include

physicochemical parameters and statistical scores. The results from applying

the snipped chains algorithm from Section 4.2.4 were applied and used to locate

domain boundaries. The results from the snipped chains algorithm in Section

4.2.6 are presented as is the clustering used to locate motifs.

For allostery prediction, a dataset was obtained and cleaned from the Allostery

Database [37] and Protein Data Bank [1]. It was used to test and evaluate

classifiers. The best predictions were provided by Random Forest classifiers which

identified most of the allosteric sites in the test set with few false positives.

Section 5.1 explores the performance of the microenvironment determination

algorithm. Section 5.1.1 presents the initial profiling of the algorithm that shows
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the microenvironment generation is the bottleneck. Section 5.1.2 profiles the

exhaustive search in more detail and Section 5.1.3 presents the results from

profiling the boxed search. Section 5.1.4 compares different data structures for

representing the boxes. Memory requirements are discussed briefly in Section

5.1.5 and Section 5.1.6 consolidates the findings of the previous Sections and

presents a pragmatic configuration.

Extensions to microenvironment scores are discussed in Section 5.2. The section

begins with stripped microenvironments in Section 5.2.3. Section 5.2.4 presents

the results of an algorithm that finds structural features in microenvironment

data. Section 5.3.1 evaluates the use of microenvironments with large amounts

of data by training classifiers to detect allosteric sites and a summary of the

results is presented in Section 5.4.

5.1 Performance of the System

Microenvironment determination was a key computation that was used fre-

quently in all of the investigations of this work. As such, it was important

to optimise this part of the process.

The algorithms were profiled to determine the bottlenecks. File parsing and

microenvironment computation were found to be the main bottlenecks. Per-

formance problems with file parsing could be solved by caching the structures

in memory but the microenvironment computation was much slower for longer

chains. The results in Section 5.1.2 showed it to be consistent with O(n2) relative

to chain length.

The boxed search was optimised by testing how different configurations per-

formed on real data. The best configuration was shown in Sections 5.1.3 and

5.1.4 to be when the box length matched the microenvironment radius, when the

candidates were presorted and when Array Lists were used to represent the boxes.

The memory requirements were also measured in Section 5.1.5 and although the

boxed search’s memory usage was linear with chain length, the measured values

were low enough that it was considered acceptable.
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5.1.1 Profiling

The aim of profiling was to locate performance bottlenecks and guide optimisa-

tion. Determining microenvironment contents and their scores consists of three

distinct sections: opening and parsing the PDB file, generating the microenvi-

ronments, and calculating the scores. Time profiles were generated for different

chain lengths and the results are shown in Figure 27.
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Figure 27: Initial profiling of microenvironment view calculation. A table of the
results is included in Appendix B.

This chart shows that generation of the scores is relatively fast, that opening and

parsing the PDB file takes up a significant proportion of time but that most of the

runtime, at least for longer chains, is spent on microenvironment generation. The

system design allowed for various data sources, including replacing file parsing

with in-memory caching of protein structures. Given the performance time of the

process of generating microenvironments, this step offers the best opportunity

for improving the overall algorithm performance.
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5.1.2 Exhaustive Search

Figure 28 shows the performance of the exhaustive search. A table of the results is

included in Appendix B. The time for completion is plotted against length of the

chain. Each line shows the experiment repeated at a different microenvironment

radius. It can be seen that the radius does not affect the time this algorithm

takes to run. However, the curve of the time taken with respect to the chain

length is characteristic of an O(n2) algorithm as deduced in Section 4.1.11.

To put the values into context, chain length of 500 residues took around 0.05 s

with this algorithm. This seems acceptable but the longer chains took almost a

whole second. Batch calculations involving large quantities of long chains would

take a long time to complete and even processing individual chains on-the-fly

would make a user interface seem sluggish.
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Figure 28: Performance of the exhaustive search: variation of running time with
respect to chain length.
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5.1.3 Boxed Search

Figure 29 shows the time taken at different box lengths for microenvironments

at 4 Å, 7 Å and 10 Å. The full results can be found in Appendix B. The data in

the chart is for disposable array lists but the same trends can be seen for other

configurations. For each microenvironment size, the optimum box length is equal

to the microenvironment radius.
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Figure 29: Determining the optimal Box Size.

When the radius is 4 Å, the best box size is also 4 Å. A 7 Å box size is best

for radii of 7 Å and similarly, 10 Å is best for a 10 Å radius. Therefore, the box

length should always be chosen to equal the microenvironment radius.

This graph has a characteristic shape that warrants further explanation. As

the box size increases, the time for the algorithm to run converges to the same
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value, independent of the microenvironment radius. This is consistent with the

algorithm taking on the character of the exhaustive search algorithm. At the

opposite end of the scale, for very small box sizes the time required increases

rapidly. This is because many more boxes are required and the time reflects the

time taken to create or recycle all of the data structures.

Between these two extremes, there are steps in the graphs. This happens when a

threshold is crossed and an extra layer of boxes is required to form the candidate

set. For example, if determining the microenvironment at a 7 Å radius. When

the box size is also 7 Å, the candidate list is drawn from the central box and all

of the surrounding boxes. If the box size is increased to, for example, 8 Å the

process still needs to check the central box and all of the surrounding ones. It

is slightly less efficient because the candidate set of residues is slightly larger.

This explains why the algorithm gets slower as the box size increases. Going

in the other direction, if the box size is decreased to 6 Å the central box and

the surrounding ones still have to be checked. However, now the range of the

microenvironment can include residues up to two boxes away. If the size decreases

below 3.5 Å (half the original size), residues up to three boxes away have to be

considered. Under 1.75 Å (a quarter of the original size) residues 4 boxes away

have to be considered and so on. These effects are shown in Figure 30. Checking

an extra layer of boxes at these cutoffs increases the number of candidate residues

for the microenvironment and results in longer computation time. 

6 Å 7 Å 8 Å 

Figure 30: Effects of box size deviating from the microenvironment radius. The
microenvironment radius is fixed at 7 Å and the box size is shown at 6 Å, 7 Å
and 8 Å. The candidates for the microenvironment are drawn from the boxes
shaded grey.
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As a consequence of this, a poor choice of box size could have serious perfor-

mance consequences. If too large a box size is chosen, the performance will tend

towards that of the exhaustive search algorithm. If too small a box size is chosen,

the performance can be far worse than the exhaustive search algorithm. These

effects can be seen in Figure 29. As the box size increases, the curve reaches

a plateau but for very small numbers the curve rises sharply. The worst values

measured were over an order of magnitude worse than the brute force calculator.

Conversely, at the optimum box size, the performance gains can be over an order

of magnitude better than the exhaustive search.

5.1.4 Box Data Structures

The twelve configurations described in Figure 7, Section 4.1.14 were profiled. To

recap, the configurations were combinations of:

• sorting the residues in the index (presorted vs non-presorted)

• reusing the same boxes when multiple proteins are processed (recycled vs

non-recycled)

• data structure to represent the boxes (linked list vs array list)

• data structure optimised for quick clearing (cut-down vs not cut down).

Cut down structures were not used in combination with non-recycling.

Each configuration was timed for each of the protein chains in the data set. The

experiments were repeated at microenvironment radii of 4 Å, 7 Å and 10 Å with

the optimal box size used for each run. The time taken for the algorithm to run

was plotted against the chain length.

Figure 31 shows the result for presorted configurations at 7 Å. The results for dif-

ferent microenvironment radii and non-presorted indexes follow the same trends.

Charts for these can be found in Appendix B, Figures 50–55. As can be seen in
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(a) Comparing the boxed search to the exhaustive search.
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(b) Truncating the Y-axis to show the differences between the boxed search
configurations.

Figure 31: Sample graphs comparing a selection of microenvironment creation
algorithms operating at a radius of 7 Å.
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Figure 31a, all of the configurations are much faster than the exhaustive algo-

rithm. Even a poor choice of configuration would give much better performance

than the exhaustive search. Figure 31b shows the differences between the algo-

rithms in more detail.

Figure 31 shows that all of the configurations using Array Lists were faster than

those using Linked Lists. Within each of those groups, the recycled versions were

faster than the disposable versions, and the cut down versions were faster than

the standard data structure.

5.1.5 Memory Requirements

Figure 32 shows how the memory requirements of some of the configurations

change with chain length. The errors in the values themselves are quite large as

evidenced by the exhaustive search’s requirements being measured as between

−160 bytes to 176 bytes. The range seems quite large and the negative numbers

are obviously incorrect. Nevertheless, the chart does show that the exhaustive

search algorithm’s memory requirements are constant and close to zero while the

boxed versions’ requirements increase linearly with the chain length. Although

the boxed search used more memory than the exhaustive search, the worst case

scenario uses less than 1 MB of memory, a small amount on today’s computers.

Therefore, even though the boxed calculator has a detrimental effect on the space

complexity, in practice, the constant is small enough that the extra memory

requirements are negligible. The benefits in time complexity are much more

significant so they alone should be the deciding factor when choosing which

algorithm to use.
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Figure 32: Comparison of the memory requirements of the best boxed configu-
rations when calculating microenvironments at 7 Å.

5.1.6 Final Choice of Configuration

The final experiment compared the best configurations from the presorted set to

the best from the non-presorted set. Presorting is described in Section 4.1.14.

Since the array lists were consistently the fastest, they were chosen for this direct

comparison. Both the cut down and standard versions were included. Again,

the algorithm was timed at three different microenvironment radii and for every

protein chain in the sample data set. The results are shown in Figure 33.

It is clear that the presorted configurations are faster then their non-presorted

counterparts, and that the cut down versions are again marginally faster. How-

ever, the decision was made to use the presorted configuration with standard

array lists.

In creating the cut down data structures, functionality present in Java was being

duplicated. The Java libraries have been tested extensively by developers and are

unlikely to have serious bugs in such ubiquitous data structures. Implementing
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Figure 33: Comparison between the best presorted and non-presorted configura-
tions at 7 Å microenvironment radius

new versions introduces the risk of new bugs. Furthermore, the new versions

did not implement all the functionality usually expected of lists, only the parts

required by the boxed search. Since the cut down array list only provided a tiny

performance enhancement, it was felt that the standard array list implementation

was a better choice overall.

The final choice of configuration was presorted array lists since this gave the best

balance between performance and reliability.

5.2 Applications for Individual Protein Structures

This section describes the results of applying microenvironments to individual

protein chains. Section 5.2.1 describes the distributions of scores for physico-
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chemical context scores. Sections 5.2.2 describe the results for snipped chains

and systematically deconstructing chains. Section 5.2.4 describes the results of

using stripped microenvironments to uncover topological motifs.

5.2.1 Physicochemical Context

As described in Section 4.2.2, the aim of this section was to analyse the predictive

power of the physicochemical context scores.

The residues in the PDB were partitioned between those in alpha helix structures

and those not in alpha helix structures, and the Alpha Helix Tendency microenvi-

ronment score was calculated for each residue. The score range was divided into

100 class intervals and the frequency was calculated for each. The frequencies of

the scores without microenvironments was calculated for comparison.

These experiments involved processing the entire PDB. Of the 109747 structures

available, only 342 failed to be processed by the parser. More than 99% of the

PDB was processed successfully.

Of the 99% of the PFB that was successfully parsed, 6,069 files did not include the

optional HELIX records. These files were omitted. This left 103,336 structures

from which to calculate the distributions.

Figure 34 shows the distributions of Alpha Helix Tendency scores. The fre-

quencies provided by the scores are represented by spikes and the frequencies

represented by microenvironment scores are represented by lines. The latter ap-

pear to be normally distributed apart from some small bumps in the line. These

bumps correspond with the positions of single-residue scores.

The distribution of scores for residues in alpha helices is slightly to the right

(higher score) than the distribution for residues not in alpha helices. However,

there is a high degree of overlap between the distributions so this measure would

not offer prediction on its own. However, alongside other scores in a tuple, the

shift in distribution may be useful in machine learning.
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Figure 34: Distributions of alpha helix tendency scores.

A similar experiment was conducted for beta sheets as described in Section 4.2.2.

The distribution of scores is shown in Figure 35. The distribution of the scores

is wider than for alpha helices but this represents the wider range of single-score

values. The peaks of the distributions are further apart than above but the

distributions still overlap. Again, this shift in distribution may aid with machine

learning.

Beta sheet tendency has a greater shift in distribution than alpha helix tendency.

This makes intuitive sense since the residues that make up alpha helices are hy-

drogen bonded primarily to their neighbours in the chain while the hydrogen

bonding in beta sheets is between strands. An alpha helix can exist as a single

strand but a beta sheet requires a collaboration between beta strands. This col-

laboration means that the microenvironment will contain more than one strand

contributing to a beta sheet. This is not necessarily the case for alpha helices.
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Both of the scores analysed showed the same pattern, that the use of microen-

vironment scoring improved the predictive power of the score. However, the

separation in the distributions of scores means that they cannot be used to reli-

ably predict the secondary structure at the centre of the microenvironment.
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Figure 35: Distributions of beta sheet tendency scores.

5.2.2 Snipped Chains and Systematic Deconstruction

Chain Snipping is described in Section 4.2.4. Snipped chains approximate un-

folding by partitioning the chain between “left of the snip” and “right of the

snip”. The residues on the left side are removed from the microenvironments on

the right side of the snip and vice versa.

As described in Section 4.2.5, the algorithm systematically searches for a point

to cut. This approximates unfolding by “cutting” the protein chain in two, or
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rather partitioning atom data. In order to choose the best place to cut, the

program traverses the entire protein, cutting at each residue in turn. Each cut

will remove or reduce some microenvironment scores. Therefore, each cut can

be measured by the sum of remaining scores. As described in Section 4.2.5, the

cut with the most disruption to the overall score removes the largest boundaries.

This point was therefore chosen as the point to cut. This algorithm was repeated

recursively for each part until the entire protein was deconstructed.

This process effectively removes interfaces from the protein by dissecting the

chain in a top-down manner on the basis of long-range interactions.

Figure 36 shows the disruption that snipping at each residue would cause in

alcohol dehydrogenase. The global minimum was at residue 116 so this was

chosen as the position for the first cut. Figure 37 shows the left and right halves

of the molecule after this snip.

Figure 36: Choosing the first point for cutting in alcohol dehydrogenase (PDB
code 1HTB [174]). The x-axis shows the residue number and the y-axis shows
the overall HL score.
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Figure 37: The first snip of 1HTB [174] corresponding to the minimum in Fig-
ure 36. The red section is for residues 1–116 and the gray area is for residues
117–374. The green sphere shows where the chain was cut.

This process was repeated left and right of residue 116 which resulted in the

protein being split into four sections. This was repeated recursively and the

result of the complete deconstruction is shown in Figure 38. Each line in Figure

38 represents part of the protein that has not yet been deconstructed. Figures

39 and 40 show molecular models for the isolates sections of chain.

The top line represents the entire protein in its fully-folded state. As in Figure

38 the height of the line represents the overall score of the protein if it were to

be snipped at that residue: that is the summation of all the scores in the left

partition plus the summation of all the scores in the right partition. The mini-

mum of this line is the point that causes the most disruption to the topological

scores and is chosen as the point to snip the protein.

Moving vertically down from this line, there are two lines that represent the

snipped partitions (one from residues 1 to 116 and the other for residues 117 to
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374). As above, the minimum of each line represents the point where the chain

is snipped and so on. The lines at the bottom represent single residues which

are the logical conclusion of this process.

Figure 38: Complete systematic deconstruction for alcohol dehydrogenase (PDB
code 1HTB [174]). The x-axis shows the residue number and the y-axis shows
the log of the overall score. Each line represents an isolated part of the topology
which are represented in molecular models in Figures 39 and 40. The minimum of
each line represents the point where cutting would remove the largest boundaries.
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Figure 39: Isolated parts of the molecule from the experiment in Figure 38. Each
molecular model here represents one line in the previous figure. The isolated part
of the molecule is in red spacefill while the rest of the model is included in grey
cartoon. This tree stops when the microenvironment contents are single strands
whereas the topologies in Figure 38 are snipped until single residues were isolated.
A a subset of this tree is shown in Figure 40 where more detail can be seen.

103



5.2 Applications for Individual Protein Structures 5 RESULTS

Figure 40: A subset of the tree shown in Figure 39.
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5.2.3 Stripped Microenvironments

As described in Section 4.2.6, stripped microenvironments reveal the structure

of each microenvironment by providing scores based on combinations of their

constituent strands. An example graph of stripped microenvironments is shown

in Figure 41. The columns in the bar graph are shaded to allow several scores to

be displayed for a single residue. The magnitudes of the scores represents a pro-

gression from high to low. Boundaries created at the interfaces between domains

have the highest scores. Single strands have the lowest scores and, ensembles

of secondary structures have intermediate scores. Without stripped microenvi-

ronments, the scores for single strands are obscured by the scores for ensembles

of secondary features. Likewise the scores from these ensembles are obscured

by scores from the interfaces between domains. The graph using microenviron-

ments clearly shows these medium and low scoring features which are obscured

by higher scores on the standard graph.

5.2.4 Common Motifs in HL

Microenvironments have an element of symmetry associated with them. Any

given residue would be a member in the microenvironments of all the residues in

its own microenvironment. That is to say that if residue A is part of residue B’s

microenvironment then B is also part of A’s microenvironment.

This symmetry appeared to manifest itself strongly in the HL scores, especially

when using stripped microenvironments. In charts of HL vs. residue number,

slopes and pillars were a common occurrence. Slopes appeared where the HL

score increased or decreased linearly along a section of the chain and pillars

where the HL score remained constant along a section of the chain.

The clustering algorithm described in Section 4.2.8 identifies these patterns. It

looks for points that lie on three gradients (−2, 0 and 2). The maximum distance

between the points is controlled by an equation that allows greater gaps as the

scores increase. The maximum deviation from the gradient that a point within
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(a) Standard Scores

(b) Scores with stripped microenvironments

Figure 41: Microenvironment score graphs with and without stripped microen-
vironments for alcohol dehydrogenase (PDB code 1HTB [174]).
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the cluster may have is also defined by a similar equation. The coefficients

of these equations were adjusted until the algorithm fitted a range of different

proteins.

The deviation from the gradient is controlled by Equation 4. The coefficients

were chosen to have a maximum deviation of 2 when HL = 10 and a maximum

deviation of 4 when HL = 100.

Max deviation = 0.869× ln(HL) + 2.220× 10−16 (4)

The maximum distance between points in a cluster was similarly defined to be

1 when HL = 1 and 5 when HL = 100 as shown in Equation 5.

Max gap = 0.869× ln(HL) + 1.0 (5)

Figures 42 and 43 shows the results of the algorithm on two proteins of different

sizes. Lines connecting the dots show clusters while circled dots identify points

which do not belong to a cluster (or technically form a cluster of their own).

This algorithm identifies the slopes and pillars effectively, demonstrating that

it can locate the structures that are easily picked out by eye. The slopes and

pillars represent the motifs described in Section 4.2.8. The ability to detect these

structures automatically is essential to be able to use them in automated analysis

of large sets of proteins.

These slopes and pillars were more apparent with stripped microenvironments

because they overlapped. One slope or pillar with relatively high scores would

completely or partially overlap and obscure features with lower scores.

Due to the symmetry of the microenvironments, these features were related to

each other. Slopes commonly had a corresponding slope with the opposite gra-

dient, and if the slopes were to be extrapolated, they would meet at the baseline

making a V shape. Often, there would be two, three or more of these V shapes
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(a) Stripped microenvironments

(b) Clusters

Figure 42: Clusters for T cell surface binding protein (PDB ID: 1CDH [191]).
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(a) Stripped microenvironments

(b) Clusters

Figure 43: Clusters for Alcohol Dehydrogenase (PDB ID: 1HTB [174]).
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in a repeating pattern along the chain and when this was the case, there were

usually larger V shapes above them with higher scores.

The pillars behaved similarly. They came in pairs, their magnitudes matching

almost exactly the number of residues between them. Sometimes there was a

third pillar in-between, usually near the midpoint.

5.3 Applications for Large Collections of Protein Data

The third research question asks how microenvironments could be used to elu-

cidate information from large datasets. Allosteric site detection was chosen to

explore this.

5.3.1 Allostery Prediction

The aim of this work on allostery prediction was twofold: to evaluate the use

of microenvironments in machine learning and to provide a useful prediction for

allosteric sites.

Table 9 shows the confusion matrices and F1 score for the allosteric classifiers.

The training and test sets are in Appendices B.1 and B.2. Figure 44 shows a

summary of the best results for each type of classifier. F1 score is a weighted

average of precision and recall, as described in Section 4.3.

The table shows that classifiers which are more likely to identify most of the

allosteric residues (the true positives) are also likely to have a large number of

false positives. Some of the K-Nearest Neighbours and Random Forest classifiers

have low numbers of false positives while retaining many of the true positives.

The Random Forest with 70 trees was the best, with 1302 true positives (47%

recall) and only 74 false positives. Although the recall seems low, the fact that

allosteric sites are made up from several residues may mean the predicting power

of this classifier is very high if the true positives are distributed between all (or
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Name TP TN FP FN F1
Zero R 0 168840 0 2775 -
Nearest Mean 2726 11280 157560 49 3%
Naive Bayes 1688 149275 19565 1087 14%
Naive Bayes (sparse) 1689 149268 19572 1086 14%
kD Tree KNN (k = 1) 1548 166920 1920 1227 50%
kD Tree KNN (k = 5) 719 168572 268 2056 38%
kD Tree KNN (k = 10) 475 168622 218 2300 27%
kD Tree KNN (k = 20) 126 168785 55 2649 9%
kD Tree KNN (k = 30) 69 168815 25 2706 5%
kD Tree KNN (k = 40) 27 168817 23 2748 2%
kD Tree KNN (k = 50) 17 168833 7 2758 1%
Random Forest (10 trees) 1389 166721 2119 1386 44%
Random Forest (20 trees) 1342 168137 703 1433 56%
Random Forest (30 trees) 1264 168724 116 1511 61%
Random Forest (40 trees) 1303 167755 1085 1472 50%
Random Forest (50 trees) 1326 166669 2171 1449 42%
Random Forest (60 trees) 1292 168446 394 1483 58%
Random Forest (70 trees) 1302 168766 74 1473 63%
Random Forest (80 trees) 1329 167546 1294 1446 49%
Random Forest (90 trees) 1302 168371 469 1473 57%
Random Forest (100 trees) 1325 167100 1740 1450 45%

Table 9: Confusion matrices for representative examples of allostery classifiers.
The columns from left to right are: the name of the classifier, count of True
Positives (TP), count of True Negatives (TN), count of False Positives (FP),
count of False Negatives (FN), and F1 measure.
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Figure 44: Comparing the best configuration from each classifier.

most) of the allosteric sites. The number of sites detected by each classifier is

discussed below.

The value of k in the K-Nearest Neighbours algorithm is related to the number

of true and false positives as shown in Figure 45. Since k refers to the number of

nearest neighbours, and the number of residues that make up an allosteric site

is small, larger numbers of k will include increasing numbers of non-allosteric

residues.

Trends in the Random Forest results are not as clear. The number of true

positives fluctuates between 1264 and 1389 but the more noticeable difference

is in the number of false positives which fluctuated between 74 and 2171. This

effect was seen in the F1 scores which also fluctuated across the results.

Since the Random Forest is not a deterministic algorithm, the experiment was

repeated ten times for each number of trees to mitigate the variability of the
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results. Figure 46 shows the overall trend and a table of the full results is

included in Appendix B.2.

A more useful measure of the power of these classifiers is the extent to which

they provide useful predictions of allosteric sites. Although the ideal case would

identify every allosteric residue in each site, as long as at least one residue from

the site is identified then the general area of the site has been detected. Table 10

divides the test set of PDB files into four categories based on the true positives

and false positives. The first column (All True) shows the number of PDB

files where all the residues labelled as “allosteric” by the classifier really were

allosteric. For these files, even if only part of the site was identified, the medicinal

chemist would have been guided to the correct part of the molecule and the

classifier has been a success.

Classifier All True All False True & False None
Random Forest 113 0 8 64
kD Tree KNN 46 32 36 71
Naive Bayes 20 18 147 0
Nearest Mean 0 5 180 0

Table 10: The predictive power of selected classifiers. The columns represent the
number of PDB files for which the positive classifications were: all true, all false,
a mixture of true and false. The final column shows the number of PDB files for
which each classifier had no positive predictions.

The second column (All False) shows the number of PDB files where the clas-

sifier’s allosteric predictions were all false positives. The dataset is partitioned

between “known allosteric” and “unknown”. These residues may represent real

allosteric sites that have not yet been discovered or they may be parts of the

protein that are not allosterically active. In the case of the latter, the classifier

was dangerously wrong as the medicinal chemist has been guided away from the

allosteric site.

The third column shows the number of PDB files where the predicted allosteric

sites are a mixture of true positives and false positives. As above, the nature of

the false positives is unknown.
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The final column (None) lists the number of PDB files for which the classifier

predicted no allosteric sites. It is certain that the classifier is wrong in these

cases since the files all had allosteric sites.

The Random Forest classifier has the highest number of correct predictions.

However, only a small number of new allosteric sites were predicted. There is

not enough data at this point to determine whether the sparsity of new sites

in the Random Forest predictions was correct or due to overfitting. The KNN

classifier did not predict as many known sites but it did highlight more unknowns

which may or may not be allosteric. In both cases, answering these questions

will have to be left to future work as more allosteric sites are reported in the

literature.

The Naive Bayes and Nearest Mean classifiers performed poorly at predicting

the known allosteric sites. It would therefore be unreasonable to assign meaning

to the false positives they have identified.

5.4 Summary of Results

This chapter has presented results that pinpoint microenvironment determina-

tion as a bottleneck. A comparison of the performance of an exhaustive search

algorithm and a boxed index show the latter to give a substantial improvement

in performance.

In order to evaluate physicochemical parameters, two were chosen and the distri-

butions of their microenvironment scores were compared with their point scores.

The distribution of their microenvironment scores was close to a normal distri-

bution. However, the predictive power of these two scores was shown to be poor

when used in isolation.

An example of deconstructing the topology with snipped microenvironments was

shown, and stripped microenvironments were demonstrated to reveal details of

the hierarchy of the topology. These extra layers of detail allowed motifs in the

microenvironment scores to be discovered.
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Finally, the results of various allostery classifiers were illustrated. The classifica-

tion algorithms had various levels of success but at least some of them produced

promising results from tuples based on microenvironment data.

Chapter 6 discusses these results with reference to the research questions and

hypothesis.
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6 Discussion

The overall hypothesis is that microenvironments are a useful tool for under-

standing protein topology. Scores derived from microenvironments can be used

to reveal the details of individual protein structures or can be used to compare

several protein structures. They can also be used in the makeup of tuples for

data mining.

This discussion starts with a reflection upon the major themes of this research.

Following this, other techniques are discussed followed by limitations, challenges

and future work.

Section 6.1 discusses the issues relating to performance. The rest of the system

is discussed in Section 6.2. A key software element was the protein unraveller,

discussed in Section 6.3. Snipping and stripping are discussed in Section 6.4 and

allostery prediction in Section 6.5. Section 6.6 discusses other approaches before

the limitations of microenvironment scoring are outlined in Section 6.7. The key

challenges are in Section 6.8 and proposed future work in Section 6.9.

6.1 Performance

There were several options for persisting microenvironments and their scores.

Section 4.1.4 presented various database designs. The first was a database to

store the microenvironments and their scores. An alternative option was to

generate the microenvironments and their scores at runtime.

However, in order for this to be practical, the performance of the computation

had to be fast. The intended use of the data was for processing large collections

of protein structures. Accordingly, it was important to be able to process them

quickly which meant the execution had to be as fast as possible.

Profiling showed up two areas that had potential to cause a bottleneck. The first

was parsing the protein structure from PDB files. This was the main bottleneck
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for proteins with low chain lengths. The second bottleneck was determining

the contents of the microenvironment and this was the dominant bottleneck for

larger proteins.

The system design took care of the file parsing bottleneck by providing an in-

terface to plug in different sources of data. This facility was implemented to

get around deviations in the PDB file format. However, it was convenient to be

able to implement an in-memory cache using this mechanism. This effectively

eliminated the step of file parsing from the system.

This left microenvironment contents determination as the remaining bottleneck.

Exhaustive search as described in Section 4.1.11 is a simple algorithm for this task

but it scales poorly having a time complexity of O(n2). The source of this time

complexity is the number of comparisons that have to be made in determining

the microenvironment contents. The exhaustive search compares every α-carbon

with every other α-carbon.

The solution to the problem was to reduce the number of these comparisons.

Several data structures are available for this. Tree structures would have been

suitable but the almost-uniform distribution and low-dimensionality of the data

indicated cell-based techniques would eliminate some of the overhead associated

with tree building and traversal.

The α-carbons were indexed into a three dimensional grid. This way, the can-

didates for each microenvironment could be drawn from nearby cells. This ap-

proach took advantage of the nature of the dataset. For an arbitrary dataset

the time complexity would have been O(n2) but the physical constraints of the

protein limits the residue density to a narrow range, making the time complexity

O(n). This is consistent with the results in Section 5.1.3.

The boxed search is configurable and the results in Section 5.1.6 show the best

configuration is for the box length to be equal to the microenvironment radius, for

the boxes to be represented with array lists that are cleared and reused each time

a protein is processed and for the microenvironment candidates to be presorted

in the index.
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Most of these configurations are implementation-specific. However, the optimal

box size is fundamental to the problem. If the boxes are thought of as being

arranged in concentric layers, the box containing the centre of the microenviron-

ment is in the middle then the boxes in the next layer are the 26 immediately

adjacent (including the ones touching corners). The boxes in the layer after are

the next 98 adjacent and so on.

For any microenvironment, the candidate set must come from at least the middle

box and all those in the first layer. This is because microenvironments centred

in the middle box can always overlap the adjacent boxes. If the boxes are small

enough then the microenvironments can overlap boxes in the second layer. This

happens when the box length falls below the microenvironment radius and results

in the sharp increase in time shown in Figure 29 in Section 5.1.3. This happens

again when the box size falls below one third. In general, it happens every time

the box size falls below R
N

where R is the microenvironment radius and N is a

natural number. Local minima occur when the box length is exactly equal to R
N

and the global minimum for this implementation occurs when N equals one.

An analysis of the boxed index has been presented before [81]. However, that

analysis was entirely theoretical and therefore did not include empirical measure-

ments. Although the R
N

relationship was hinted at, the optimum value for N was

not suggested and the behaviour for non-integer values of N was not discussed

at all. Furthermore, the ordering of the results from a query was not considered.

This research has gathered empirical data to determine the best configuration

while preserving the ordering of the residues.

Before conducting the experiment, it was not obvious which value of N would be

optimal. Increasing the value of N would constrain the search space in terms of

volume but have the detrimental effect of increasing the number of boxes which

would impose a penalty when creating the index. In a situation where the index

was retained for future use, this may be a good tradeoff. However, in this research

it was not retained once the microenvironment contents were determined.

In terms of memory, the boxed calculator has linear space complexity whereas

the exhaustive search has constant space complexity. Although this suggests
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that the exhaustive search has an advantage in space complexity, the largest

protein measured used less than 1 MB of memory which is negligible on today’s

computers.

Overall, the performance of the system worked very well. In-memory caching of

the protein structures combined with fast calculation of the microenvironments

made the system suitable for processing large collections of protein structures.

Alternatives to the boxed calculator included kd-tree with a time complexity

of O(n
5
3 ) and Delaunay triangulation with O(n.log(n))time complexity. These

techniques are not as simple as the boxed search and have worse time complex-

ities. However, this is only because the nature of the dataset fixes its density

within a narrow range. For an arbitrary dataset, the boxed search’s time com-

plexity would be O(n2) instead of O(n) and these other techniques would be

more favourable.

The optimisations described have aided in running experiments on large datasets

but they were also advantageous in designing user interfaces. The longest chain

in this analysis was 2060 residues and it took 0.85 s for the exhaustive search to

determine the microenvironments. This is too slow for a user interface that feels

responsive. The boxed search took 0.02 s for the same protein which is much

more acceptable.

6.2 System Implementation

The system implementation was designed to support future research through

modularity and extensibility. The modularity was achieved by implementing a

small core (herein termed the API) that represents the essential elements for

working with microenvironments. Separate applications were built on top of

the API: the Viewer for visualising and manipulating microenvironment scores

for protein structures; the Batch runner for producing tables of scores for large

numbers of structures; the Protein Unraveller which was an interactive tool for

exploring how changes in structure effect microenvironment scores; and Data

mining experiments.
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Extensibility was provided in the API via two mechanisms. The first was a two-

layered implementation. The API comprised of a façade and an implementation.

This allowed the implementation to be replaced in whole or in part and was used

to experiment with the exhaustive search and boxed index microenvironment

determination described in Section 4.1.8, and when refining the PDB file parser.

The second mechanism was a plugin architecture for selected components. The

ability to plug in new scoring schemes was particularly successful as it facilitated

experimenting with new scoring schemes. A plugin architecture was also used

for the viewer as it allowed new protein views to be added.

6.3 Protein Unraveller

The protein unraveller allowed the user to manually manipulate protein molecular

models and observe in real time the effect on charts of microenvironment scores.

This allowed the observation that unravelling the chain at some points made

very little difference to the scores on the chart while unravelling at other points

had a very large effect across the whole protein. When such large effects were

observed, the scores did not drop to zero but instead reflected what remained of

the parts of the topology that were undisturbed.

The insight gained by watching as the chart reacted to folds being teased apart

inspired microenvironment stripping described in Section 4.2.6 and the system-

atic deconstruction of topology by chain snipping in Section 4.2.4.

Although the unraveller did not directly produce quantitative results, it did

allow observations that led to a greater insight. The performance improvements

described above were essential in providing real time feedback.

6.4 Chain Snipping and Stripping

Snipping is a tool for exploring and quantitatively measuring the topological

effects of cutting or unfolding a chain at specific positions. Stripping is a related
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technique that exposes levels of detail of the tertiary structure. Where standard

microenvironment scores highlight the greatest boundary, stripped scores show

the detail by giving scores as if strands were successively removed from the

microenvironment.

One feature of these approaches is that they have no concept of the patterns

that are classically identified in proteins. There are no assumptions about when

domains, motifs or even secondary structures are formed. Instead, the protein

is considered as a whole and quantification is based on the short, medium and

long range interactions present before and after snipping. This approach en-

ables the deconstruction of topology based on systematic removal of long range

interactions.

Section 5.2.2 describes a procedure to systematically deconstruct a protein start-

ing with the largest boundary. The reverse of this process may have some value

in investigating the folding pathway for the protein. As the mRNA is translated,

the protein under synthesis will begin to fold. This means that the short-range

(and possibly medium-range) interactions near the N-terminus will have formed

in intermediate folds before translation has even completed. By stripping the

microenvironments from the C-terminus (as in Section 4.2.6), the interactions

from the N-terminus side of the residue can be considered. By only considering

the N-terminus side of the protein, this attempts to limit the interactions consid-

ered to those which can exist during protein synthesis. However, this technique

will not be able to accommodate intermediate folds which are not preserved in

the final structure.

A new definition of a protein domain has been introduced: that defined by the

topological boundaries exposed by topological scores. Existing techniques use

thermodynamics [84] which is computationally expensive or rely on comparing

structures which requires a lot of data and is is also computationally expensive.

Delineating domain boundaries using topological scores requires only the protein

structure of interest and is computationally simple. One feature of this new

definition is that it can be used to deconstruct proteins which are currently

considered to be single-domain proteins.
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6.5 Allostery Prediction

Allosteric sites arise from a combination of residues which are arranged to form

a binding site, along with a mode of interaction with the orthosteric site. This

approach to classification is intrinsically limited to judging the residues indi-

vidually. Even though microenvironments take into account the context of the

residue for scoring purposes, each residue is classified as either “allosteric” or

“unknown”. A classification model that partitions individual residues into pos-

itives and negatives risks positive predictions that have the correct character to

form part of a site but do not have surrounding residues with which to form a

site.

The best classifiers presented here only identify around half of the allosteric

residues. While this may be enough to partially identify the sites, it suggests

that more than one character of residue is required to make up an allosteric site,

and that these classifiers have honed in on a subset of them. A possible future

experiment might be to train new classifiers to identify allosteric residues with

these other characters.

A related caveat is that the predictions are purely statistical with no mechanistic

rationale. Even if the classifiers have useful predictive power, they do not in

themselves enhance the understanding of allostery. This is a common criticism

of black box techniques. In most cases it is difficult to work out the rules they

use to classify data, let alone generalise them.

There are also limitations in the model of allostery that can be built using the

available data. The dataset identifies known allosteric residues but it does not

include examples of residues that have been shown to not have an allosteric

effect. The remainder of the residues must be a mixture of genuine non-allosteric

residues and residues that have not yet been discovered to be allosteric. The

residues were partitioned between “Known Allosteric” and “Unknown”. It’s

therefore highly likely that some of the residues in the “Unknown” set really are

part of undiscovered allosteric sites.
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If a trained classifier correctly discovers a new allosteric site, the confusion matrix

will incorrectly designate this as a false positive making the classifier appear

worse than it is.

This will have negatively impacted the quality of the classifiers produced from the

training set since they will have tried to distinguish between the known allosteric

residues and the undiscovered allosteric residues, creating false boundaries where

there should be none.

It will also have negatively impacted the confusion matrix analysis of the classi-

fier. For example, if unknown sites have been correctly identified by the classifier,

these will be counted as false positives. It is therefore impossible to distinguish

between new discoveries and bona fide incorrect classifications.

This problem would be alleviated by the existence of a dataset which identifies

residues that are known to not be part of allosteric sites. This negative dataset

could be combined with the allosteric residues identified in the ASD to give

concrete “Allosteric” and “Not Allosteric” categories for the training and test

sets.

These factors will combine to make the approach seem worse than it is. With

a better quality of training data, it is highly likely that the classifiers produced

would have been intrinsically higher quality and it is a certainty that the statis-

tical analysis of the classifiers would reflect their true quality. However, the most

important improvement would be a dataset of residues known to not have an al-

losteric effect (similar to the negatome database [136] which lists non-interacting

protein pairs).

When interpreting the results, the two key factors in the confusion matrix are

the true positives and the false positives. The true negatives are less important

because the vast majority of the protein is classified as “Unknown” (i.e. probably

not allosteric). The false negatives are slightly more important but less so when

considering that site detection is the most important consideration. If only one

residue from a site is flagged as allosteric, then the site has been identified even

if other residues from the site have been missed.
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Table 10 in Section 5.3.1 summarizes how the true positives and false positives

were distributed between the PDB files. Random Forest was shown to give a

good fit to the true positives with at least one in most of the files with very

few false positives. Random Forest identified 113 sites correctly, identified 8

further sites but included false positives for those structures and missed 64 sites

completely. This suggests that it may provide enough predictive power to be

useful as it stands. However, the problem is not completely solved since there

were several proteins that were completely missed by the classifier.

Furthermore, the distinction between allosteric and non-allosteric sites is a false

dichotomy that there is not enough data to properly disentangle. There are

allosteric effector and inhibitor sites, which this model does not address. Al-

losteric sites may also exist on a continuum. It may be that there are no truly

non-allosteric residues, only those that have a very small effect on the protein’s

activity.

Allostery can be achieved by different mechanisms [192]. It could be labelling

them all as allosteric might make sense kinetically but each identified class of

mechanism might require its own detection technique.

There may also be problems with the structural data used for the classifications.

Typically the PDB contains molecular models from X-ray Crystallography. The

assumption is that these structures are close to the minimum energy but they

may not represent the true solution structure precisely. They certainly do not

represent the multitude of conformations that proteins exist in.

Since the theory of allostery is closely tied to conformation populations, it is

important to know whether the conformation captured in the molecular model

has the allosteric site exposed.

The technique could possibly be improved in the near future by the inclusion of

PDB structural validation, or perhaps one day by knowledge of the distribution

of conformations.

Finally, this experiment limits the tuple to values from microenvironments. Al-

though these combinations of scores were largely successful, other selections of
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scores may produce better results. It is also likely that non-microenvironment

measures exist that could improve the predictive power of the classifiers.

6.6 Other Approaches

Other techniques are similar to microenvironment scoring, either in philosophy

or in result. Systems that assign scores to bounded volumes are discussed in

Section 6.6.1. Contact maps are described in Section 6.6.2. Other definitions of

domains are discussed in Section 6.6.3. Ways of detecting sites are discussed in

Section 6.6.4. Summarising the topology as Ramachandran angles is discussed

in Section 6.6.5 and primary sequence techniques are discussed in Section 6.6.6.

6.6.1 Microenvironments and Scoring Systems

Techniques like LFM-Pro [38] and FEATURE [39, 40] use the concept of mi-

croenvironments to characterise localities on proteins. These techniques use mi-

croenvironments to probe specific locations of interest rather than methodically

probing the entire protein. The papers refer to the possibility of quantising mi-

croenvironments using physicochemical properties but in reality they often use

atomic counts as a proxy.

This work refers to four classes of scoring system for microenvironments: topo-

logical, physicochemical, statistical and observational. Of these four, only physic-

ochemical scores are commonly used in the context of microenvironments. How-

ever the literature has been surveyed and the other three appear to be novel

approaches to scoring microenvironments.

6.6.2 Contact Maps

Algorithmically, microenvironments are very similar to contact maps. Both tech-

niques summarise the environment around each residue as a fixed sphere and

126



6.6 Other Approaches 6 DISCUSSION

construct sets of adjacent residues. Contact maps then construct an image de-

picting an adjacency matrix whereas scoring microenvironments performs one or

more calculations to score each residue. Two applications of contact maps are to

reconstruct the tertiary structure [41, 42] and to compare protein chains without

need for 3D alignment.

From a topological point of view, contact maps contain the same data as mi-

croenvironments. They share the advantage of being independent from rotation

and both use this feature to compare protein structures.

They differ in that microenvironments are used to summarise localities into sets

of scores. HL and GG relate directly to the residue numbers and could, in

principle, be read directly from the contact map. However, other scores are not

as easily derived from the contact map. In particular, scores that derive from

external data such as physicochemical properties or statistical analysis are not

available from contact maps.

Contact maps are a form of dimension reduction: from atomic coordinates in

3D to inter-residue relationships in 2D. When a single microenvironment score is

considered in isolation, it can be considered as a dimension reduction to a one-

dimensional sequence. There are many techniques in bioinformatics for dealing

with sequences. Reducing protein coordinates to a single score loses a lot of

information but the trade off is that all the existing sequence techniques can be

used (e.g. alignment, search, arithmetic, distance measurement, etc.)

Some research has gone into reconstructing Cartesian coordinates from contact

maps. Microenvironment scores do not retain the sets of adjacent residues in the

way that contact maps do but scores based on the residue number may facilitate

the reconstruction of partial sets and possibly approximations to the Cartesian

coordinates. This area would, however, require further research.

6.6.3 Definition of Domains

A definition of domains in the literature (used by CATH [26] and SCOP [193])

relies on the detection of structures that are found in many proteins. There have
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also been definitions that use thermodynamics. This work presents a further

alternative definition: that domains are defined by the major topological bound-

aries in tertiary structure. An advantage of this definition is that domains can

be identified based on a single structure. A database of redundant structures

with which to make comparisons is not necessary.

6.6.4 Site Detection

Site detection in the literature commonly uses a variety of machine learning

methods [145, 146]. This research uses machine learning techniques but applies

them to microenvironment data. The philosophy behind using microenvironment

scores is that the sites do not exist in isolation but are made up from a local

arrangement of residues. This local arrangement is modelled more closely using

microenvironments.

6.6.5 Ramachandran Angles

Microenvironments project backbone Cartesian coordinates into a list of one-

dimensional scores. A similar view can be constructed through converting the

Cartesian coordinates into Ramachandran angles.

Both techniques lose the conformation of side chains and orientation of the

molecule. As such, these techniques are only useful for making comparisons

between the backbones. Losing the orientation of the molecule is usually an

advantage to subsequent calculations as any 3D alignment step can be removed.

Given a starting vector, the original backbone coordinates of the protein can be

recalculated from the Ramachandran angles. The assumption here is that the

other bonds in the backbone are not strained. This could be alleviated by storing

each residue’s angles as a triple but then some of the advantages of dimension

reduction would be lost. Microenvironment scores are not so easily mapped back

to three dimensional coordinates, although their relationship to contact maps
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suggests that it may be possible to reconstruct an approximation of the original

coordinates.

While Ramachandran angles precisely describe the path of the backbone, they

do not contain any context. In contrast, microenvironment scores are designed to

elucidate contextual information. For example, Scores can be designed to show

how buried a residue is (count) or whether it is near domain interfaces (HL).

6.6.6 Primary Sequence Techniques

The above discussion focuses on alternative techniques with similarities to the

microenvironment approach and on techniques with similarities in output. Com-

parisons can also be made in the predicting power of the results. Since microen-

vironment data is effectively a sequence, techniques that use a protein’s primary

sequence may be easily converted to work with microenvironment sequences.

Their relative efficacy is a subject for further research. However, potential appli-

cations are: sequence alignments and evolutionary relationships, secondary (and

possibly tertiary) structure prediction, domain detection, function prediction,

etc.

6.7 Limitations of Microenvironment Scoring

Microenvironments are computed on the basis of empirical data. They report on

the structures they are given and do not introduce any sources of error. However,

the source data is usually from X-Ray Crystallography. The solid-state structures

only provide one conformation (or occasionally a handful) which is assumed to

be the energy minimum. There are likely to be some differences between the

molecular model and the energy minimum solution structure. Furthermore, the

protein will exist in a number of conformations in solution and only one of these,

at most, can be captured in the crystal structure.
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Although no new sources of inaccuracy are introduced in the calculation of mi-

croenvironments, the information about the juxtaposition of residues and in par-

ticular side chain atoms is lost. This means that microenvironment scoring as

defined within is not a suitable tool to study low level mechanistic detail.

Another loss of detail is for disulfide bridges. This may be appropriate if studying

topologies through evolution but when the focus is on the intricacies of specific

proteins, the effect of the disulfide bridges becomes more important. One solution

might be a score that measures the shortest possible path from one residue to

the next, meaning that disulfide bridges could short-circuit the path and reduce

the score.

The microenvironment radius is problematic to reason about. The difficulty

arises because calculations require a precise value but there is no good reason

to choose one value over another (e.g. 7 Å or 6.9 Å). Whatever value is chosen

some residues will be close to the cut off and will either be just included in

microenvironments or just excluded.

A pragmatic solution is to choose a number for experiments and accept the

arbitrary nature as a caveat. Prior work has suggested that useful results can be

obtained when the radius is between 6 Å and 8 Å so the midpoint of 7 Å was

used for this work.

6.8 Key Challenges

A key limitation of the research was its theoretical nature. This made checking

some of the outcomes beyond the scope of the research. Predicted allosteric sites

have been generated for the whole PDB but it was not possible to verify any of

them in this research. A related problem stems from partitioning the dataset

between training and test sets. It is possible that a better classifier could be

generated by simply using all the available data in the training set.

A related concern was the availability of data to work with. While the research

was made possible by the availability of publicly accessible databases, it was also
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constrained by it. Most notably, the ASD web pages contained far more data

than was available for download. The download was for an old version (release

063012). The remaining data was available through their web interface but was

coded in a way that made it difficult to scrape. Furthermore, the quality of the

ASD data was brought into question by the mismatch of ASD residue number

and PDB residue number.

Hardware limitations were another challenge as they were a moving target. At

the start of the research, the computers available barely had enough hard drive

space to store the contents of the Protein Data Bank. Using current technology,

it would be possible to buy a solid state drive large enough for several datasets

as large as the protein data bank.

Related to the hardware, performance was a significant challenge. Although

hardware is always being improved, the datasets are always growing. This means

that there is always a need for better algorithms to work with the data.

One of the most challenging areas of programming was parsing PDB files. There

have been several official versions of the PDB format that are all still in use which

is further complicated by software that produces files that only loosely comply

with a PDB standard.

The solution to this has always been to maintain a test suite of representative

files. When problematic files were found, they were added to the test suite. This

methodology ensured that the parser improved over time.

6.9 Future Work

This work has suggested a new definition of protein domain. Although it was

proposed using the HL score, other scores or combinations thereof might produce

better results. Combining the scores with snipped microenvironments might also

increase the accuracy of the technique by taking into account every interface in

the protein. An obvious validation would be to compare the domains detected

by this technique to domain databases such as the CDD [91], CATH [26] and
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SCOP [21], as well as to other techniques for identifying domains such as Porter

and Rose’s thermodynamic definition of domains [84].

The work on allosteric sites could be adapted to look for other kinds of protein

site. Candidates include orthosteric sites and protein-protein sites. If the tech-

nologies for site detection improve sufficiently then potential drug sites could be

screened for similarities with sites across the known structures. Finding unique

sites would facilitate the development of highly specific drugs and help reduce

the side effects of future drugs by ensuring that they only target the desired

molecule.

In a similar vein, microenvironments would offer a quick way of checking the

potential selectivity of drugs that target a particular site. It would be possible

to scan for sites that have the same or similar topologies within a family or

proteome, or even the proteomes of multiple organisms (e.g. a human and a

bacteria or virus). One of the causes of drug side effects is a drug binding to

proteins other than the intended target. It is not enough to just find a site. A

medicinal chemistry programme must endeavour to find a selective site.

Microenvironments are a powerful tool for investigating changes in topology. If

the structure of the protein bound to its allosteric effector and the protein in its

apo-form were available, examination of the score sequences could help to build

up a picture of the mechanisms of allostery. If enough similar structures could be

gathered then the score sequences for these structures would represent the range

of topologies allowed by the fold. The more structures that were available, the

more complete a picture could be built up. Molecular dynamics is one way of

generating multiple conformations of a single structure. Another way would be to

use all the proteins from a particular family in order to observe the evolutionary

variation allowed by the fold.

Following on from this, it would be possible to build an evolutionary dendrogram

in a similar way to building one from primary sequences. Rather than being

limited to single families, a dendrogram could be built for all known structures

to give the evolutionary chart of protein topology.
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Work has been done to generate 3D structures from contact maps [42]. It is likely

that this could be repeated for microenvironment scores, and almost certainly

if databases of domains and their microenvironment scores are used. If it is

possible to relate primary sequences to their scores then it may be possible to go

from primary sequence to microenvironment scores and then to 3D structure.

Machine learning on short subsequences of scores may be able to predict the

likely scores for individual residues. It is unlikely that such a technique would

predict accurate scores for the whole chain. However, so many different scoring

metrics are available that through using several it might be possible to build up

a more accurate picture.

If this were possible an obvious extension would be to define a topology and

then work backwards to the primary sequence (or even nucleic acid sequence)

required to bring it about. This would be an important step for de novo protein

engineering.

However, understanding the link between primary sequence and tertiary struc-

ture would also involve understanding the folding process. As a protein structure

folds, it passes through a series of partially folded states. As more information on

these states is discovered, microenvironments may be a useful tool for studying

and deconstructing them.

Since microenvironment scores project topology to a sequence, it is possible to

apply existing sequence techniques. In the case of creating multiple sequence

alignments, it is possible that topological scores would be more sensitive for

correctly placing insertions and deletions than primary sequence data alone. This

could be one way to address the grey areas that arise from multiple sequence

alignments on primary sequences.

Addressing the disulfide bridge issue as explained in Section 6.7 would help to

alleviate one shortcoming of microenvironment scores. This could be done by

introducing new scores related to the proximity of disulfide bridges or by adapt-

ing existing ones. Similarly, ion bridges, hydrogen bonds and other kinds of

interaction could be incorporated into scores.
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One possible avenue of research would be to correlate microenvironment scores

to energy. If correlations between these scores and others are observed, the

instances where they do not coincide (i.e. the outliers) could be points critical to

the protein’s dynamics. A possible first pass for estimating points of local high

energy would be new scores based on the count of favourable and unfavourable

Ramachandran angles in the microenvironment.

An extension to site detection could be pairing proteins by their protein-protein

sites. If a large dataset of interacting protein pairs could be built up, signalling

cascades could possibly be used in biocomputing.

Because microenvironments are so quick to calculate, they could be embedded

in other systems. The scores could be offered as a way to colour proteins in

molecular viewers, for example. They could also be incorporated in molecular

dynamics where they could be used to detect transitions between states. Cur-

rently, molecular dynamics trajectories are sampled at regular intervals. By

detecting changes as the trajectory runs a smaller number of more interesting

samples could be obtained.

The concepts of chain topology combined with microenvironments could find

applications outside of bioinformatics. Indeed, any structure that is a chain or

that can be viewed as a chain is amenable to microenvironment analysis.

Handwriting is a potential candidate. Scores like HL and SN could turn the loops

and intersections into chains of scores which could be aligned and analysed for

similarity, both with databases of known letters and words but also for forensic

identification.

Iris recognition is another potential application. In this case, the “chain” would

be an artificial construct but perhaps an Archimedean spiral would work well.

This way, no matter the orientation of the eye, most of the chain spiral would

align with only the ends being potentially offset. Scoring systems could involve

proportions of colour and shade.

Two areas of future work that have had some proof of concept are microenviron-

ments for nucleic acids and microenvironments that take side chain directionality

into account. These are discussed in Sections 6.9.1 and 6.9.2 respectively.
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6.9.1 Nucleic Acid Microenvironments

There is no reason that microenvironments could not be applied to other poly-

meric materials. As long as a three dimensional structure can be elucidated, a

sphere of influence can be defined around each monomer. In a biological context,

nucleic acids and polysaccharides are two obvious candidates.

Many polysaccharides have the complication of being branched structures so the

simple numbering of monomers along the chain would not be appropriate. Some

alteration to the numbering system and/or the scoring methods would be needed

in order to adapt to polysaccharides.

Nucleic acids, on the other hand, are unbranched like proteins so the existing

techniques are immediately applicable to them. Furthermore, they have the

added attraction of being potential drug targets. Many RNA molecules (e.g.

the ribosome and tRNA) have catalytic properties. However, without the rich

diversity of characterised RNA drugs that exist for proteins, it is more chal-

lenging to assess the predictive power of techniques. Since microenvironments

provide purely topological information, it is not unlikely that uses in protein

drug discovery in proteins will be transferable to RNA.

Until recently, DNA did not seem as attractive as RNA but with the structure of

the human genome being published in 2009 [170], (see Figure 47) the structure

was found to be consistent with gene activation and deactivation being controlled

by conformational adjustments in the ball of DNA. This makes microenviron-

ments attractive in both understanding how different parts of the DNA molecules

interact to bring about these conformational changes and for its potential ability

to help find drug targets.

The software has been written for nucleic acid microenvironments and it is also

capable of calculating stripped microenvironments as described in Section 4.2.6.

Figure 48 shows a graphical display of a tRNA molecule next to a graph of it’s

microenvironment scores.

The software for nucleic acid microenvironments is proof of concept. Refinement

and potential applications require further investigation. Nucleic acids will require
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Figure 47: The three-dimensional structure of the human genome [170].

(a) Nucleic Acid Microenvironments Jmol Dis-
play

(b) Nucleic Acid Microenvironments graph Dis-
play

Figure 48: A tRNA molecule (PDB ID: 3A3A [194]) highlighted with microen-
vironments scores alongside a corresponding chart.
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consideration over the choice of centroid (or centroids) and also the microenviron-

ment radius. While many of the techniques used for protein microenvironments

may apply to nucleic acids, some may not be appropriate and there may be

others that are useful only for nucleic acids.

6.9.2 Side Chain Directionality

The initial microenvironment algorithm as described in section 3.4 focusses en-

tirely on the protein’s backbone, specifically the α-carbon. However, the side

chains are influential in stabilising the tertiary structure and, therefore, the

topology. This is an attempt to incorporate the directionality of the side chains.

Instead of centring the microenvironment on the α-carbon, this alternative cen-

tres the microenvironment on the β-carbon. Obviously, this is inappropriate

for glycine since it has no β-carbon. In this case, the centroid defaults to the

α-carbon.

Now that the microenvironment is centred on part of the side chain, the direction

of the side chain is taken into account. Where side chains are pointing towards

each other, the distance between the β-carbons is shorter than the distance

between the α-carbons. If the α-carbon distance was 8 Å, this would lie outside

a 7 Å sphere. However, the β-carbon distance would be closer to 5–6 Å, bringing

the residues within the sphere. Side chains pointing in opposite directions would

have the opposite effect of taking some residues out of the sphere.

Another factor to consider is where the central residue’s own steric bulk lies.

Normally, the backbone passes directly through the centre of the sphere with the

side chain sticking out in a particular direction. For bulkier amino acids, there

may be residues outside the sphere which are nevertheless lying close to part of

the side chain. These residues are clearly more likely to interact than residues

that lie on the opposite side of the sphere with a large gap between themselves

and the centroid’s backbone atoms.

Using the β-carbon as the centroid places the amino acid more centrally in the

sphere with more space around the side chain and less adjacent to the backbone.
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Although this is still not perfect (arginine is less central in the sphere than

alanine, for example) the problem is alleviated slightly.

In this respect, the results more accurately reflect the topology of the side chains

than the topology of the backbone. Although this will hopefully produce useful

results, it may not be the best approach for all areas. For studies involving

mutation or evolution, for example, it may be more useful to use the original

microenvironments since it will detect changes in the backbone caused by the

substitution, insertion or deletion of residues. It is expected that neither using

the α-carbon nor the β-carbon as the centroid will be universally superior but

that they will compliment each other as being suited to different tasks.

Figure 49 shows an example protein molecule highlighted by scores based on

both options for centroids. The corresponding charts are shown below. The

β-carbon scores look noisier than the α-carbon scores. This is indicative of the

side chains pointing in different directions, bringing the β-carbons into different

spheres. Where standard microenvironments are a view of backbone topology,

those offset to the β-carbon may provide a better indication of which side chains

are actually interacting with each other.

6.10 Summary of Discussion

Using a boxed index increases performance to the level where persistence is not

necessary, meaning a simpler system can be designed. Furthermore, the improved

performance made it practical to develop a graphical viewer, a batch runner and

the protein unraveller.

When snipping microenvironments is applied systematically, it become a tech-

nique for identifying domains. Stripping microenvironments can be used to de-

tect common patterns or motifs in the scores. Other approaches for identifying

domains and motifs do so by searching for similarities in protein structures or

through thermodynamic calculations.
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(a) α-carbon-centred Jmol display (b) β-carbon-centred Jmol display

(c) α-carbon-centred graph display (d) β-carbon-centred graph display

Figure 49: α-carbon-centred and β-carbon-centred displays for a T cell surface
binding protein (PDB ID: 1CDH [191])
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This research showed that microenvironments can be used successfully in clas-

sifiers for allosteric site detection. The make-up of the tuple could be explored

further and similar experiments could attempt to classify other kinds of site.

Several areas for future study have been identified including evolution, side chain

directionality, nucleic acids, iris recognition, handwriting recognition, fold pre-

diction and protein engineering.
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7 Conclusion

This research has explored the simplification of complex folds into microenvi-

ronments as an effective technique for exploring protein structure and function.

Protein molecules are chains of amino acid residues that fold into particular con-

formations. The role of each residue cannot be understood in isolation since

the composition of the surrounding area will affect its behaviour and vice versa.

Therefore, instead of focussing on individual residues, microenvironments focus

on specific localities in the protein structure.

These localities are defined as spheres centred on individual residues. Other

techniques that use spheres to determine localities use them for targeting protein

features in tasks such as characterising protein surfaces or for focussing on the

details of known sites. In contrast to directed methodologies like these, the

approach used in this research is to determine the microenvironment around each

residue and to develop a set of descriptive scores that characterise the localities.

The first research question related to performance issues associated with working

with microenvironments. Using a boxed index was shown to improve the perfor-

mance to allow the processing of large datasets. Several database schemas were

devised to store microenvironment data. However, the performance increase pro-

vided by the boxed index was significant enough to allow microenvironments to

be calculated directly from structural data as required.

The second research question asked what sort of information about individual

protein structures can be derived from microenvironments. This was addressed

by microenvironment snipping in order to analyse topology in partially decon-

structed states and microenvironment stripping to reveal all the layers of hierar-

chy. Snipping allows a quantised measurement of the boundaries in the protein.

This makes it possible to divide the protein into domains based on the major

boundaries. Stripped microenvironments allow hierarchical layers of topology

to be quantified, revealing the underlying topological features and showing how

they overlap with each other. Exposing this level of detail made it possible to

discover relationships between the structures in the topological scores.
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The ensemble of scores for microenvironments was extended from topological

scores to include physicochemical context, statistical data and direct measure-

ments from the technique that produced the molecular model of the structure.

The final research question asked what information can be elucidated by mi-

croenvironments from large sets of data such as the PDB or molecular dynamics.

In order to explore this, allostery classifiers were trained using tuples made from

microenvironment data. These allostery classifiers were trained with a range of

structures and point to the potential of using microenvironments to predict sites

of allosteric activity. The best classifiers identified most sites in the test set with

a low rate of false positives.

The hypothesis asserted that microenvironments are useful for elucidating as-

pects of the topology that are otherwise obscured. This has been demonstrated

in the investigations of the above three research questions. Allosteric site predic-

tion has proven to be an elusive target for the current state of the art. Although

the classifier developed is not perfect, it produces some positive results showing

that microenvironments have helped to elucidate useful information. Microenvi-

ronments have also been shown to help dissect protein structures which can be

used to gain insight into protein domains and motifs. The performance of the

algorithms has also been improved to a level where the techniques perform well

on a standard desktop or laptop computer.

7.1 Contribution

This work includes contributions to theoretical chemistry, computer science and

bioinformatics. These incrementally enhance the collective knowledge. The con-

tributions are categorised under performance, extensions to microenvironments,

applications of microenvironments and initial steps on future work. These are

enumerated below.

There are several contributions relating to performance:
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• The performance of computing microenvironments has been improved to a

level that is suitable for on-the-fly calculations for interactive displays. This

has been demonstrated in visualisation software for microenvironments and

in software for manually manipulating molecular models.

• Processing large datasets is now faster and can be achieved without a per-

sistence mechanism for microenvironments and their scores. It is now a

routine task to produce scores for the PDB (around 100,000 structures)

or entire MD simulations. This performance improvement has made it

practical to implement the following pieces of software:

◦ Library to compute microenvironment scores on-the-fly.

◦ Command line software to compute microenvironment scores for large

datasets of proteins.

◦ Desktop software for graphical views of microenvironments in protein

molecular models.

◦ Desktop software to allow manual editing of molecular models with

real-time update to microenvironment scores.

◦ Command line software to predict the location of allosteric sites in

proteins.

• Eliminating the need for a database enables the development of simpler

systems for using microenvironments.

• Several database designs for representing and storing microenvironments

and their scores have been discussed for the cases when persistence is de-

sirable.

The topological scores were in existence prior to this research but microenviron-

ment scoring has been extended in these ways:

• New scoring measures for microenvironments including: physicochemical

context, statistical scores and measured values. These were used in the

training of allosteric site classifiers.
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• Scores for all levels of detail in the hierarchy using stripped microenviron-

ments.

• Automatic detection of some common arrangements of scores using motif

detection in stripped microenvironment scores.

Applications of microenvironments have produced the following outcomes:

• An allosteric site classifier was developed which predicted the locations of

allosteric sites in proteins. The classifier had a high rate of site detection

and a low rate of false positives.

• A new definition of protein domain was developed that allows the detection

of domains without a database of redundant structures.

• Microenvironments have been decomposed to show the hierarchical detail

of protein topology. This shows considerable detail of the 3D fold in 2D

and has been used to identify common patterns or motifs in the data.

Initial work on the following topics has begun:

• Taking protein side-chain directionality into account.

• Applying microenvironments to nucleic acids.
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A SAMPLE PDB DATA

A Sample PDB Data

Below is a sample of PDB data from ricin (PDB ID: 2AAI [195]). The ellipses

represent lines that have been removed for brevity. A description of the PDB

format can be found in Section 4.1.7.

HEADER HYDROLASE 07-SEP-93 2AAI

TITLE CRYSTALLOGRAPHIC REFINEMENT OF RICIN TO 2.5 ANGSTROMS

COMPND MOL_ID: 1;

COMPND 2 MOLECULE: RICIN (A CHAIN);

...

KEYWDS GLYCOSIDASE, HYDROLASE

EXPDTA X-RAY DIFFRACTION

AUTHOR E.RUTENBER,B.J.KATZIN,W.MONTFORT,J.E.VILLAFRANCA,S.R.ERNST,

...

REVDAT 1 31-JAN-94 2AAI 0

JRNL AUTH E.RUTENBER,B.J.KATZIN,S.ERNST,E.J.COLLINS,D.MLSNA,M.P.READY,

...

REMARK 3 DATA USED IN REFINEMENT.

REMARK 3 RESOLUTION RANGE HIGH (ANGSTROMS) : 2.50

DBREF 2AAI A 1 267 UNP P02879 RICI_RICCO 36 302

DBREF 2AAI B 1 262 UNP P02879 RICI_RICCO 315 576

SEQRES 1 A 267 ILE PHE PRO LYS GLN TYR PRO ILE ILE ASN PHE THR THR

...

MODRES 2AAI ASN B 95 ASN GLYCOSYLATION SITE

MODRES 2AAI ASN B 135 ASN GLYCOSYLATION SITE

HET GAL B 264 11

...

HETNAM MAN ALPHA-D-MANNOSE

FORMUL 3 GAL 2(C6 H12 O6)

...

HELIX 16 16 ASP B 253 ILE B 257 5 5

SHEET 1 1 6 PRO A 7 THR A 13 0

...

SSBOND 5 CYS B 190 CYS B 207 1555 1555 2.02

LINK O4 NAG B 271 C1 BMA B 272 1555 1555 1.45

...

SITE 2 AC4 6 HIS B 251 ASN B 255

CRYST1 72.740 78.490 114.340 90.00 90.00 90.00 P 21 21 21 4

ORIGX1 1.000000 0.000000 0.000000 0.00000

...

SCALE3 0.000000 0.000000 0.008746 0.00000

ATOM 1 N ILE A 1 7.322 85.054 61.124 1.00 55.56 N

ATOM 2 CA ILE A 1 6.469 84.426 60.119 1.00 54.17 C

ATOM 3 C ILE A 1 5.689 83.269 60.751 1.00 54.45 C

ATOM 4 O ILE A 1 4.512 83.472 61.137 1.00 52.97 O

ATOM 5 CB ILE A 1 7.453 84.057 58.934 1.00 53.52 C

...

TER 2115 PHE A 267

ATOM 2116 N ALA B 1 17.397 73.889 39.866 1.00 49.65 N

ATOM 2117 CA ALA B 1 17.875 74.893 38.890 1.00 49.44 C

ATOM 2118 C ALA B 1 17.416 74.454 37.497 1.00 49.10 C

...

TER 4151 PHE B 262

...

CONECT 4319 4314

MASTER 494 0 14 16 6 0 8 6 4440 2 180 42

END
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B FULL RESULTS

B Full results

Chain Length
/ Residues

Parse PDB
File / s

Microenvironments
Generation / s

Calculate
Scores / s

50 0.085 0.001 0.002
300 0.110 0.089 0.045
500 0.020 0.164 0.044
983 0.148 0.358 0.086

Table 11: Initial profiling of microenvironment view calculation. A description
of these results can be found in Section 5.1.1.

Chain Length
/ Residues

Time for microenvironment radius / ms
4 Å 5 Å 6 Å 7 Å 8 Å 9 Å 10 Å

18 000 000 000 000 000 000 000
66 001 001 001 001 001 001 001
149 005 004 004 005 006 005 004
197 008 007 008 010 008 007 009
223 009 012 009 009 009 009 012
296 019 015 015 015 019 017 018
327 020 022 021 019 019 020 020
400 027 029 029 029 029 027 029
450 038 038 040 037 039 038 038
480 040 041 042 039 040 041 040
529 075 052 059 050 054 050 054
553 063 055 054 056 058 060 056
615 068 065 065 066 070 066 066
681 093 092 088 086 086 087 089
721 099 095 097 101 097 097 096
760 108 111 111 123 107 105 107
813 126 121 126 123 121 120 125
882 146 140 148 140 145 144 146
948 161 159 162 158 158 161 158
972 173 168 172 175 166 176 204
1021 200 188 190 194 187 192 191
1119 239 215 237 215 223 216 219
1314 317 316 310 313 314 302 306
2060 768 757 767 783 767 762 762

Table 12: Performance of the exhaustive search algorithm. The trends in this
data are discussed in Section 5.1.2.
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Å

D
is

p
os

ab
le

L
in

ke
d

L
is

ts

4
Å
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0.475 7.681 2.572 3.989 1.002 3.253 0.916 7.704 7.622 6.146
0.500 2.955 2.391 2.826 0.658 2.207 0.719 5.138 3.270 2.887
0.525 2.850 2.225 2.703 0.651 2.338 0.677 4.498 3.176 2.959
0.850 0.628 0.483 0.701 0.140 0.570 0.122 4.041 1.257 3.090 0.770 2.556 0.658 7.542 2.538 5.049 2.113 8.238 2.184
0.875 0.671 0.466 0.778 0.131 0.574 0.113 2.250 1.134 2.780 0.520 2.020 0.487 6.518 2.741 7.078 1.988 5.680 2.022
0.900 0.601 0.447 0.808 0.132 0.514 0.111 2.154 1.108 2.438 0.541 2.087 0.529 7.386 2.721 6.161 2.059 5.748 2.074
0.975 0.579 0.367 0.692 0.127 0.594 0.113 2.282 1.104 2.143 0.563 2.049 0.472 5.203 2.162 4.314 1.578 4.388 1.536
1.000 0.366 0.281 0.324 0.074 0.264 0.062 1.756 0.699 2.111 0.335 1.233 0.306 3.915 1.677 3.923 1.112 3.019 1.004
1.025 0.386 0.297 0.372 0.071 0.314 0.065 1.875 0.656 1.455 0.364 1.270 0.313 5.256 1.736 4.126 1.102 3.113 1.075
1.225 0.317 0.128 0.271 0.063 0.250 0.058 1.155 0.452 1.187 0.213 0.878 0.182 2.661 1.222 2.516 0.794 2.245 0.809
1.250 0.307 0.204 0.349 0.064 0.280 0.057 1.084 0.457 1.211 0.205 0.932 0.190 2.165 0.882 2.124 0.563 1.502 0.533
1.275 0.351 0.220 0.374 0.064 0.316 0.059 1.062 0.447 1.136 0.214 0.827 0.190 1.888 1.001 2.151 0.589 1.969 0.548
1.725 0.133 0.085 0.158 0.031 0.151 0.027 0.645 0.248 0.614 0.114 0.482 0.101 0.848 0.491 1.007 0.239 0.708 0.217
1.750 0.183 0.098 0.156 0.030 0.159 0.027 0.347 0.172 0.331 0.058 0.295 0.051 0.825 0.515 1.057 0.233 0.811 0.222
1.775 0.174 0.104 0.160 0.030 0.147 0.027 0.375 0.165 0.329 0.056 0.266 0.051 0.968 0.400 0.975 0.234 0.714 0.232
1.975 0.166 0.087 0.162 0.029 0.150 0.024 0.368 0.152 0.341 0.057 0.327 0.049 0.792 0.499 0.930 0.249 0.689 0.246
2.000 0.092 0.057 0.059 0.013 0.051 0.011 0.376 0.141 0.363 0.056 0.290 0.049 0.556 0.248 0.642 0.118 0.501 0.108
2.025 0.090 0.059 0.058 0.013 0.052 0.012 0.354 0.154 0.314 0.056 0.281 0.051 0.556 0.260 0.638 0.117 0.496 0.108
2.475 0.067 0.037 0.059 0.012 0.049 0.010 0.180 0.074 0.158 0.028 0.148 0.025 0.530 0.246 0.528 0.128 0.420 0.115
2.500 0.066 0.036 0.058 0.011 0.049 0.010 0.185 0.073 0.163 0.028 0.167 0.025 0.322 0.137 0.346 0.057 0.275 0.050
2.525 0.068 0.036 0.058 0.011 0.050 0.010 0.179 0.073 0.152 0.027 0.132 0.024 0.343 0.134 0.346 0.057 0.278 0.050
3.000 0.062 0.030 0.054 0.012 0.050 0.009 0.158 0.065 0.178 0.028 0.148 0.024 0.288 0.132 0.332 0.058 0.275 0.050
3.475 0.060 0.026 0.054 0.011 0.052 0.010 0.181 0.064 0.170 0.030 0.140 0.023 0.152 0.066 0.170 0.030 0.145 0.025
3.500 0.062 0.026 0.052 0.012 0.050 0.010 0.063 0.027 0.054 0.012 0.053 0.010 0.179 0.064 0.166 0.030 0.139 0.024
3.525 0.062 0.026 0.051 0.012 0.052 0.010 0.062 0.026 0.053 0.012 0.051 0.012 0.194 0.065 0.168 0.030 0.141 0.023
3.975 0.062 0.025 0.051 0.012 0.050 0.010 0.063 0.025 0.053 0.013 0.050 0.010 0.172 0.060 0.172 0.031 0.148 0.023
4.000 0.012 0.006 0.007 0.004 0.006 0.003 0.062 0.024 0.051 0.013 0.050 0.010 0.178 0.060 0.166 0.031 0.158 0.026
4.025 0.012 0.006 0.007 0.004 0.006 0.003 0.063 0.025 0.054 0.013 0.051 0.010 0.173 0.061 0.167 0.031 0.161 0.026
4.975 0.010 0.006 0.007 0.005 0.007 0.004 0.064 0.024 0.055 0.015 0.052 0.011 0.130 0.062 0.156 0.035 0.125 0.027
5.000 0.010 0.006 0.007 0.005 0.006 0.003 0.061 0.024 0.052 0.015 0.049 0.010 0.062 0.025 0.053 0.015 0.049 0.011
5.025 0.011 0.005 0.008 0.005 0.006 0.003 0.061 0.024 0.051 0.015 0.049 0.011 0.063 0.025 0.053 0.015 0.049 0.012
6.000 0.010 0.006 0.007 0.005 0.007 0.004 0.058 0.025 0.055 0.018 0.049 0.013 0.058 0.026 0.054 0.018 0.050 0.013
6.975 0.010 0.007 0.008 0.007 0.008 0.005 0.053 0.027 0.054 0.022 0.047 0.014 0.055 0.028 0.054 0.022 0.048 0.014
7.000 0.010 0.008 0.008 0.007 0.007 0.005 0.010 0.008 0.008 0.007 0.007 0.005 0.054 0.028 0.054 0.022 0.049 0.015
7.025 0.010 0.007 0.008 0.007 0.008 0.004 0.010 0.008 0.009 0.007 0.008 0.005 0.053 0.028 0.055 0.022 0.048 0.015
8.000 0.010 0.009 0.009 0.008 0.008 0.005 0.011 0.009 0.009 0.008 0.009 0.006 0.053 0.030 0.058 0.026 0.050 0.016
9.000 0.011 0.010 0.010 0.010 0.010 0.006 0.011 0.011 0.010 0.010 0.011 0.006 0.054 0.034 0.055 0.029 0.052 0.018
9.975 0.012 0.013 0.011 0.012 0.010 0.007 0.012 0.013 0.012 0.012 0.011 0.007 0.056 0.038 0.054 0.034 0.052 0.020
10.000 0.012 0.013 0.011 0.012 0.010 0.007 0.012 0.012 0.011 0.011 0.011 0.007 0.012 0.013 0.012 0.012 0.011 0.007
10.025 0.012 0.012 0.011 0.012 0.011 0.007 0.013 0.013 0.012 0.012 0.011 0.007 0.013 0.013 0.012 0.012 0.011 0.007
11.000 0.013 0.014 0.012 0.013 0.012 0.008 0.014 0.014 0.013 0.014 0.012 0.008 0.014 0.015 0.013 0.014 0.013 0.009
12.000 0.015 0.017 0.015 0.016 0.013 0.009 0.016 0.016 0.015 0.016 0.014 0.009 0.016 0.017 0.015 0.017 0.014 0.010
13.000 0.017 0.019 0.016 0.019 0.015 0.011 0.017 0.019 0.017 0.019 0.015 0.011 0.016 0.019 0.017 0.020 0.016 0.011
14.000 0.019 0.022 0.018 0.022 0.017 0.012 0.019 0.023 0.018 0.022 0.017 0.012 0.019 0.023 0.018 0.022 0.018 0.012
15.000 0.021 0.024 0.020 0.023 0.018 0.013 0.020 0.025 0.020 0.024 0.018 0.013 0.021 0.026 0.021 0.025 0.019 0.014
16.000 0.021 0.027 0.021 0.026 0.019 0.014 0.022 0.026 0.021 0.026 0.019 0.015 0.022 0.028 0.022 0.027 0.020 0.015
17.000 0.022 0.028 0.022 0.028 0.019 0.015 0.022 0.029 0.022 0.029 0.020 0.015 0.023 0.030 0.023 0.029 0.020 0.016
18.000 0.023 0.030 0.023 0.031 0.022 0.017 0.024 0.031 0.024 0.031 0.022 0.017 0.025 0.032 0.024 0.030 0.022 0.017
19.000 0.026 0.033 0.025 0.033 0.023 0.018 0.026 0.033 0.026 0.032 0.023 0.018 0.027 0.035 0.026 0.033 0.024 0.018
20.000 0.026 0.036 0.027 0.032 0.024 0.019 0.028 0.036 0.027 0.035 0.025 0.019 0.027 0.035 0.028 0.033 0.025 0.020
21.000 0.028 0.038 0.028 0.038 0.025 0.020 0.029 0.038 0.027 0.037 0.025 0.020 0.029 0.039 0.029 0.037 0.025 0.021
22.000 0.030 0.039 0.028 0.039 0.026 0.021 0.030 0.040 0.030 0.040 0.027 0.021 0.030 0.040 0.030 0.041 0.027 0.022
23.000 0.030 0.041 0.031 0.043 0.027 0.021 0.031 0.042 0.031 0.041 0.028 0.023 0.032 0.043 0.030 0.043 0.028 0.023
24.000 0.032 0.043 0.032 0.045 0.029 0.023 0.032 0.044 0.032 0.043 0.029 0.024 0.034 0.045 0.033 0.044 0.029 0.024
25.000 0.032 0.045 0.031 0.047 0.029 0.024 0.033 0.045 0.032 0.046 0.029 0.024 0.033 0.047 0.033 0.048 0.029 0.025
26.000 0.034 0.047 0.033 0.046 0.029 0.025 0.034 0.047 0.033 0.046 0.030 0.025 0.035 0.049 0.034 0.047 0.030 0.025
27.000 0.035 0.047 0.034 0.048 0.030 0.026 0.035 0.049 0.033 0.051 0.031 0.026 0.035 0.050 0.035 0.050 0.030 0.026
28.000 0.034 0.050 0.035 0.048 0.031 0.026 0.036 0.050 0.035 0.049 0.031 0.027 0.036 0.051 0.035 0.049 0.031 0.026
29.000 0.036 0.051 0.035 0.049 0.031 0.027 0.036 0.051 0.036 0.050 0.032 0.027 0.036 0.052 0.036 0.051 0.033 0.027
30.000 0.036 0.051 0.035 0.052 0.032 0.027 0.035 0.052 0.036 0.050 0.032 0.027 0.037 0.051 0.035 0.050 0.032 0.028

Table 13: Times for all configurations of the presorted boxed calculator. The
trends in this data are discussed in Section 5.1.3.
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0.475 6.886 15.166 3.278 16.121 2.567 5.115 11.916 4620.532 11.554 4612.313 9.574 57.250 30.713 30.755 26.316
0.500 3.491 3.856 2.583 2.843 1.892 2.785 10.179 10.408 9.681 10.239 7.879 9.954 24.204 687.076 23.544 686.663 20.394 126.881
0.525 2.867 3.330 2.592 2.824 1.776 2.003 10.130 10.017 9.760 10.034 7.904 9.806 23.986 125.399 23.201 125.163 19.779 21.943
0.850 0.726 0.841 0.501 0.456 0.426 0.418 2.724 2.770 2.524 2.522 2.077 2.118 5.681 5.393 5.481 5.506 4.615 5.123
0.875 0.745 0.966 0.510 0.474 0.432 0.432 1.975 2.045 1.747 1.710 1.492 1.519 5.409 5.182 5.912 5.694 4.522 4.532
0.900 0.729 0.867 0.533 0.486 0.434 0.417 1.952 2.044 1.810 1.753 1.527 1.425 5.281 5.419 5.353 5.371 4.533 4.577
0.975 0.686 0.743 0.497 0.443 0.413 0.409 1.887 1.976 1.738 1.613 1.433 1.467 4.274 4.184 4.120 4.015 3.615 3.661
1.000 0.460 0.553 0.298 0.266 0.248 0.230 1.464 1.382 1.215 1.186 1.035 1.038 3.446 3.240 3.252 3.111 2.695 2.813
1.025 0.447 0.570 0.288 0.258 0.245 0.234 1.392 1.378 1.179 1.103 0.990 1.006 3.295 3.175 3.226 3.182 2.712 2.749
1.225 0.359 0.450 0.280 0.243 0.239 0.227 0.902 0.886 0.781 0.726 0.665 0.643 2.458 2.338 2.273 2.216 1.997 1.934
1.250 0.382 0.437 0.283 0.250 0.241 0.226 0.873 0.905 0.755 0.707 0.658 0.643 1.749 1.747 1.697 1.605 1.446 1.424
1.275 0.368 0.427 0.283 0.251 0.241 0.226 0.876 0.885 0.786 0.730 0.666 0.646 1.761 1.680 1.701 1.584 1.448 1.431
1.725 0.167 0.209 0.134 0.119 0.114 0.105 0.507 0.516 0.465 0.433 0.397 0.387 0.782 0.774 0.725 0.691 0.631 0.626
1.750 0.178 0.206 0.128 0.119 0.113 0.105 0.309 0.340 0.260 0.244 0.230 0.219 0.785 0.767 0.727 0.684 0.627 0.620
1.775 0.175 0.213 0.133 0.116 0.113 0.105 0.306 0.329 0.263 0.240 0.226 0.219 0.785 0.784 0.732 0.685 0.613 0.619
1.975 0.161 0.190 0.130 0.115 0.108 0.103 0.295 0.321 0.263 0.242 0.219 0.214 0.762 0.751 0.704 0.685 0.601 0.605
2.000 0.087 0.118 0.050 0.046 0.043 0.039 0.302 0.307 0.254 0.241 0.225 0.214 0.505 0.493 0.446 0.425 0.385 0.383
2.025 0.081 0.117 0.049 0.045 0.043 0.040 0.289 0.300 0.262 0.240 0.226 0.216 0.491 0.479 0.441 0.414 0.385 0.381
2.475 0.069 0.077 0.047 0.044 0.041 0.040 0.142 0.148 0.124 0.112 0.103 0.103 0.462 0.473 0.438 0.403 0.376 0.369
2.500 0.065 0.077 0.048 0.044 0.039 0.038 0.141 0.148 0.124 0.114 0.106 0.100 0.266 0.269 0.248 0.235 0.216 0.206
2.525 0.064 0.076 0.047 0.044 0.041 0.039 0.138 0.146 0.123 0.115 0.106 0.102 0.263 0.262 0.247 0.235 0.216 0.212
3.000 0.057 0.059 0.046 0.043 0.040 0.039 0.129 0.133 0.116 0.114 0.104 0.100 0.252 0.255 0.243 0.225 0.212 0.208
3.475 0.053 0.055 0.044 0.043 0.039 0.039 0.124 0.126 0.119 0.114 0.103 0.098 0.126 0.127 0.118 0.112 0.104 0.099
3.500 0.052 0.055 0.046 0.044 0.039 0.039 0.052 0.055 0.046 0.045 0.040 0.039 0.124 0.125 0.116 0.114 0.103 0.101
3.525 0.053 0.055 0.044 0.043 0.039 0.039 0.052 0.055 0.046 0.044 0.039 0.039 0.124 0.127 0.118 0.115 0.101 0.099
3.975 0.050 0.051 0.046 0.044 0.040 0.039 0.050 0.052 0.045 0.045 0.040 0.040 0.121 0.121 0.117 0.112 0.103 0.119
4.000 0.019 0.017 0.012 0.012 0.011 0.011 0.050 0.053 0.046 0.045 0.040 0.039 0.122 0.120 0.115 0.114 0.103 0.102
4.025 0.016 0.017 0.012 0.012 0.011 0.011 0.050 0.058 0.046 0.045 0.040 0.039 0.122 0.120 0.114 0.115 0.103 0.101
4.975 0.015 0.015 0.013 0.012 0.011 0.011 0.048 0.051 0.047 0.047 0.041 0.040 0.120 0.117 0.116 0.116 0.103 0.101
5.000 0.015 0.015 0.012 0.012 0.011 0.011 0.048 0.051 0.047 0.047 0.041 0.041 0.050 0.050 0.048 0.048 0.042 0.042
5.025 0.014 0.015 0.013 0.012 0.011 0.011 0.049 0.050 0.047 0.047 0.041 0.041 0.050 0.050 0.047 0.048 0.042 0.041
6.000 0.014 0.015 0.013 0.013 0.011 0.011 0.050 0.051 0.048 0.049 0.042 0.042 0.051 0.052 0.048 0.050 0.044 0.043
6.975 0.015 0.015 0.014 0.015 0.012 0.012 0.051 0.052 0.050 0.052 0.044 0.043 0.051 0.055 0.050 0.053 0.045 0.044
7.000 0.014 0.015 0.014 0.014 0.012 0.012 0.015 0.016 0.014 0.015 0.012 0.012 0.051 0.055 0.051 0.053 0.044 0.044
7.025 0.014 0.015 0.013 0.014 0.012 0.012 0.015 0.016 0.014 0.015 0.013 0.012 0.052 0.055 0.051 0.053 0.044 0.044
8.000 0.015 0.016 0.015 0.016 0.013 0.013 0.015 0.016 0.015 0.016 0.013 0.013 0.053 0.056 0.052 0.056 0.046 0.045
9.000 0.016 0.018 0.016 0.017 0.014 0.013 0.015 0.017 0.016 0.018 0.014 0.014 0.054 0.059 0.053 0.059 0.047 0.045
9.975 0.017 0.019 0.016 0.019 0.014 0.014 0.017 0.020 0.017 0.020 0.015 0.015 0.055 0.062 0.055 0.063 0.048 0.048
10.000 0.016 0.019 0.016 0.019 0.015 0.014 0.017 0.019 0.017 0.019 0.015 0.015 0.018 0.021 0.018 0.021 0.016 0.016
10.025 0.017 0.019 0.016 0.019 0.014 0.014 0.017 0.019 0.016 0.019 0.015 0.015 0.018 0.021 0.017 0.021 0.016 0.016
11.000 0.018 0.021 0.018 0.021 0.016 0.015 0.018 0.022 0.017 0.021 0.016 0.016 0.019 0.023 0.019 0.023 0.017 0.017
12.000 0.019 0.023 0.019 0.023 0.017 0.016 0.019 0.023 0.019 0.024 0.017 0.016 0.021 0.025 0.020 0.025 0.018 0.018
13.000 0.020 0.026 0.020 0.025 0.017 0.017 0.021 0.027 0.021 0.026 0.019 0.018 0.022 0.028 0.022 0.027 0.020 0.019
14.000 0.022 0.028 0.021 0.028 0.018 0.019 0.023 0.029 0.022 0.029 0.020 0.019 0.024 0.030 0.023 0.029 0.020 0.021
15.000 0.023 0.031 0.023 0.030 0.021 0.020 0.023 0.031 0.023 0.031 0.021 0.020 0.024 0.033 0.025 0.032 0.022 0.021
16.000 0.024 0.032 0.024 0.032 0.021 0.020 0.024 0.033 0.025 0.033 0.022 0.021 0.026 0.035 0.025 0.034 0.023 0.022
17.000 0.024 0.034 0.025 0.034 0.022 0.022 0.026 0.035 0.026 0.035 0.023 0.022 0.026 0.036 0.027 0.036 0.024 0.023
18.000 0.026 0.037 0.026 0.036 0.023 0.022 0.026 0.037 0.027 0.037 0.024 0.023 0.028 0.039 0.028 0.039 0.025 0.024
19.000 0.028 0.039 0.027 0.039 0.024 0.024 0.028 0.039 0.028 0.039 0.024 0.025 0.029 0.041 0.029 0.041 0.027 0.026
20.000 0.029 0.040 0.027 0.041 0.025 0.025 0.030 0.042 0.029 0.040 0.026 0.025 0.030 0.042 0.031 0.043 0.027 0.027
21.000 0.030 0.043 0.030 0.043 0.026 0.026 0.031 0.045 0.031 0.044 0.027 0.027 0.032 0.045 0.031 0.045 0.029 0.028
22.000 0.031 0.045 0.031 0.045 0.028 0.026 0.031 0.046 0.032 0.046 0.027 0.027 0.033 0.047 0.033 0.047 0.029 0.029
23.000 0.032 0.047 0.032 0.047 0.028 0.028 0.031 0.048 0.033 0.047 0.029 0.028 0.034 0.049 0.033 0.048 0.030 0.030
24.000 0.033 0.049 0.033 0.049 0.030 0.028 0.033 0.050 0.034 0.048 0.031 0.029 0.035 0.051 0.034 0.050 0.032 0.031
25.000 0.034 0.051 0.034 0.051 0.030 0.029 0.034 0.050 0.035 0.052 0.031 0.030 0.036 0.052 0.035 0.053 0.032 0.031
26.000 0.035 0.052 0.035 0.052 0.030 0.030 0.034 0.053 0.035 0.053 0.032 0.031 0.036 0.053 0.037 0.054 0.033 0.032
27.000 0.036 0.054 0.035 0.051 0.031 0.031 0.036 0.054 0.036 0.054 0.033 0.031 0.037 0.056 0.037 0.056 0.034 0.033
28.000 0.036 0.054 0.034 0.054 0.032 0.031 0.037 0.055 0.037 0.055 0.031 0.032 0.038 0.057 0.038 0.056 0.034 0.033
29.000 0.035 0.054 0.036 0.055 0.032 0.031 0.037 0.056 0.036 0.055 0.033 0.032 0.038 0.057 0.038 0.055 0.033 0.033
30.000 0.036 0.056 0.036 0.056 0.032 0.031 0.037 0.055 0.037 0.056 0.033 0.032 0.038 0.056 0.038 0.057 0.034 0.033

Table 14: Times for all configurations of the non-presorted boxed calculator.
The trends in this data are discussed in Section 5.1.3.
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Figure 50: Benchmark results of the presorted boxed calculator configurations
at a 4 Å radius. This chart is further discussed in Section 5.1.4.
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Figure 51: Benchmark results of the non-presorted boxed calculator configura-
tions at a 4 Å radius. This chart is further discussed in Section 5.1.4.
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Figure 52: Benchmark results of the presorted boxed calculator configurations
at a 7 Å radius. This chart is further discussed in Section 5.1.4.
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Figure 53: Benchmark results of the non-presorted boxed calculator configura-
tions at a 7 Å radius. This chart is further discussed in Section 5.1.4.
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Figure 54: Benchmark results of the presorted boxed calculator configurations
at a 10 Å radius. This chart is further discussed in Section 5.1.4.
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Figure 55: Benchmark results of the non-presorted boxed calculator configura-
tions at a 10 Å radius. This chart is further discussed in Section 5.1.4.
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(a) 4 Å radius
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(b) 10 Å radius

Figure 56: Comparison between the best presorted and non-presorted configu-
rations at 4 Å and 10 Å microenvironment radius. These charts relate to the
discussion in Section 5.1.6.
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B.1 Allostery Prediction Training Set B FULL RESULTS

B.1 Allostery Prediction Training Set

The PDB IDs used for the training set in Section 5.3.1 were:
1ZRC, 1W5M, 1W5P, 3F8Z, 1C50, 3PXF, 3AVJ, 1CH8, 1ANX, 1LWO, 1XJK,
1G6N, 3AVA, 3KFY, 1E1Y, 3GYF, 1PD8, 3FUF, 3F9N, 3GPB, 1PJ3, 1T4G,
3QYO, 2PIT, 1XJJ, 3FIG, 1X88, 3AVH, 2C7E, 1I7B, 2F1I, 1W96, 1FA9, 3AVL,
3H30, 1RUN, 3NXX, 3PTZ, 3AVI, 3RZ3, 2W3B, 3IRH, 1Z8D, 2C19, 1TLF,
2BTY, 1EFA, 3L3R, 1XJE, 3G6W, 2EWN, 3JVR, 2H06, 1FS5, 2C18, 2ISI,
2CLH, 2C13, 1Q5Y, 1UWH, 3FUH, 1I8J, 3S7S, 2CGP, 7R1R, 2Y39, 3KGT,
3FUI, 2P9H, 3NZD, 2ONB, 1XTU, 3FUN, 2GDJ, 1OHK, 2PUV, 2CLK, 3BXZ,
2PE5, 3FU0, 2HH7, 1T36, 3AVF, 3AVN, 3GHV, 2YC3, 1CGP, 2CLI, 1W54,
3PXZ, 3F3V, 1HVF, 1KV2, 1LB2, 4B4M, 3E3I, 2C2S, 2V9J, 2YC5, 2XFQ,
1I7C, 1COZ, 4B4G, 1FIY, 3PY1, 1I6X, 2JJX, 3FTY, 1W5Q, 1HOT, 2Q5O,
3F8Y, 2OIQ, 1OHJ, 3IJG, 3AMV, 3GVU, 1AON, 2F1H, 1S9J, 2VGI, 1PEU,
2BRK, 2C15, 1W56, 1B4K, 2SKD, 3UAS, 2PIU, 2C2T, 3CEJ, 1GG8, 1OS1,
3EPA, 2FPM, 3I0R, 4B5B, 2SKC, 2PUC, 2CSM, 2SKE, 2PUW, 3NTU, 3FU6,
1I5Z, 4ARW, 1JL0, 1Q0B, 3FTX, 2HZV, 3NXR, 1VST, 2WU1, 1DLR, 3FS6,
1W5N, 1R1V, 3UO9, 2XO3, 2VD4, 3FUK, 4B2X, 3DD1, 2PKL, 1YXD, 3FYH,
1HVG, 4B3U, 3BEO, 3PRJ, 1XJN, 2B21, 2XO8, 1I79, 3AO3, 1H5U, 3AVB,
1S9I, 1I7M, 1CIB, 1GZG, 2W3A, 1AVR, 1IE9.
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B.2 Allostery Prediction Test Set B FULL RESULTS

B.2 Allostery Prediction Test Set

The PDB IDs used for the test set in Section 5.3.1 were:

3HRF, 1PJ2, 2V8Q, 1W5O, 1O3S, 3F3T, 3DDW, 2PAF, 3I0S, 2FQQ, 3AVG,

1SHJ, 2OI2, 2C14, 2V4Y, 3NXT, 2I80, 1J59, 1O3Q, 1GPY, 4B42, 1PJ4, 1R22,

1L7X, 2HCR, 1W25, 1O3T, 1KP8, 3OVN, 2C16, 1XU4, 1R23, 3OD2, 3FUD,

3EPB, 3LQ3, 3FTW, 3FTU, 2I1Q, 3LC6, 3AO2, 1BOZ, 1HAK, 1EGY, 6GPB,

1XJF, 3CEH, 3KGU, 3KCC, 1PFK, 1T5A, 3NXY, 3AVC, 2XFP, 3NXV, 1FTQ,

1ESM, 3MKS, 3FUE, 1XJG, 1FRZ, 1SX3, 1C8K, 1DLS, 3IJJ, 3CEM, 3G5D,

3AO4, 1KMV, 2XO2, 3HV8, 1G6H, 1C8L, 2Y3B, 2GZW, 3LPT, 2NZ4, 1LBH,

1W7A, 3O2M, 1L6S, 1O3R, 3GZ8, 1KV1, 1XJM, 1NXG, 1PEQ, 1JWL, 8GPB,

1NSG, 2PUT, 2XCG, 2ZMF, 1L6Y, 2FPL, 2FAP, 3NJQ, 1I72, 4GL5, 3FUM,

1T4J, 2I7P, 3F3U, 3FEG, 2YCM, 3JVS, 1ZRE, 1UWJ, 1VEA, 2POC, 1PF9,

1L5Q, 1AVH, 3PJG, 1SVT, 1ZRF, 1G9X, 3FU5, 3NTZ, 3U8U, 1V4S, 3LCB,

3PXQ, 3GHW, 1A3W, 1CE8, 4GL7, 2R1R, 3AVK, 4B4B, 1U72, 4ASJ, 2J0X,

2HZA, 2QN9, 3G2H, 2PUD, 5CSM, 3GCP, 4DMN, 3AO5, 1KMS, 3F91, 2WOQ,

1SX4, 1FCJ, 2V92, 3AO1, 3GHC, 3LPU, 3AVM, 2F1J, 1GFZ, 1DB1, 1A49,

3MK6, 1T49, 3DDS, 3FUJ, 2FPK, 3FTS, 1MSV, 2VK1, 1ZRD, 4ASY, 2PIX,

3NXO, 3R33, 3FU3, 1SHL, 2XFN, 2JC9, 3R1R, 1B4D, 3NU0, 1RUO, 3QYL,

1PCQ, 3GI2, 3AV9, 1DD7, 1FTA, 1T48, 2W3M, 3EPS.
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Trees TP TN FP FN F1
10 1302 167687 1153 1473 50%
10 1336 167374 1466 1439 48%
10 1346 167149 1691 1429 46%
10 1352 167491 1349 1423 49%
10 1433 166826 2014 1342 46%
10 1387 167619 1221 1388 52%
10 1390 167281 1559 1385 49%
10 1387 166498 2342 1388 43%
10 1318 167434 1406 1457 48%
10 1340 166721 2119 1435 43%
20 1354 167606 1234 1421 50%
20 1356 167485 1355 1419 49%
20 1356 168183 657 1419 57%
20 1333 167728 1112 1442 51%
20 1403 167480 1360 1372 51%
20 1330 168410 430 1445 59%
20 1346 168683 157 1429 63%
20 1355 167823 1017 1420 53%
20 1340 167987 853 1435 54%
20 1341 167941 899 1434 53%
30 1351 166958 1882 1424 45%
30 1306 168205 635 1469 55%
30 1376 168354 486 1399 59%
30 1298 168596 244 1477 60%
30 1312 168637 203 1463 61%
30 1317 167101 1739 1458 45%
30 1318 168332 508 1457 57%
30 1350 167754 1086 1425 52%
30 1322 167425 1415 1453 48%
30 1338 167452 1388 1437 49%
40 1307 168592 248 1468 60%
40 1298 166823 2017 1477 43%
40 1294 168729 111 1481 62%
40 1333 166959 1881 1442 45%
40 1321 168025 815 1454 54%
40 1333 167573 1267 1442 50%
40 1345 168249 591 1430 57%
40 1352 166866 1974 1423 44%

Continued

Table 15: Confusion matrices for Random Forest classifiers as discussed in Sec-
tion 5.3.1.
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Trees TP TN FP FN F1
40 1332 167712 1128 1443 51%
40 1335 168457 383 1440 59%
50 1289 167468 1372 1486 47%
50 1306 167700 1140 1469 50%
50 1307 167608 1232 1468 49%
50 1337 167761 1079 1438 52%
50 1298 167617 1223 1477 49%
50 1314 167974 866 1461 53%
50 1289 168578 262 1486 60%
50 1322 166816 2024 1453 43%
50 1328 166804 2036 1447 43%
50 1329 167697 1143 1446 51%
60 1326 168581 259 1449 61%
60 1288 167719 1121 1487 50%
60 1313 168357 483 1462 57%
60 1336 166953 1887 1439 45%
60 1297 167709 1131 1478 50%
60 1282 168586 254 1493 59%
60 1344 167275 1565 1431 47%
60 1288 168032 808 1487 53%
60 1311 167417 1423 1464 48%
60 1306 167906 934 1469 52%
70 1313 167842 998 1462 52%
70 1337 167703 1137 1438 51%
70 1297 168781 59 1478 63%
70 1305 167703 1137 1470 50%
70 1298 168228 612 1477 55%
70 1326 168506 334 1449 60%
70 1340 166687 2153 1435 43%
70 1336 167693 1147 1439 51%
70 1345 167567 1273 1430 50%
70 1329 167336 1504 1446 47%
80 1309 168317 523 1466 57%
80 1304 168740 100 1471 62%
80 1284 168512 328 1491 59%
80 1306 168318 522 1469 57%
80 1318 166961 1879 1457 44%
80 1323 168593 247 1452 61%
80 1303 167576 1264 1472 49%

Continued

Table 15: Confusion matrices for Random Forest classifiers as discussed in Sec-
tion 5.3.1. 178



B.2 Allostery Prediction Test Set B FULL RESULTS

Trees TP TN FP FN F1
80 1320 167895 945 1455 52%
80 1303 168728 112 1472 62%
80 1309 168773 67 1466 63%
90 1323 168585 255 1452 61%
90 1299 167426 1414 1476 47%
90 1342 166536 2304 1433 42%
90 1328 167846 994 1447 52%
90 1304 167841 999 1471 51%
90 1339 167429 1411 1436 48%
90 1317 168729 111 1458 63%
90 1299 168597 243 1476 60%
90 1332 167839 1001 1443 52%
90 1324 166950 1890 1451 44%
100 1319 167852 988 1456 52%
100 1290 167764 1076 1485 50%
100 1315 167756 1084 1460 51%
100 1304 168319 521 1471 57%
100 1291 168504 336 1484 59%
100 1295 168780 60 1480 63%
100 1286 167842 998 1489 51%
100 1317 166685 2155 1458 42%
100 1302 167848 992 1473 51%
100 1324 166739 2101 1451 43%

Table 15: Confusion matrices for Random Forest classifiers as discussed in Sec-
tion 5.3.1.
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C LARGE IMAGES

C Large Images

Figure 57: Large screenshot of the microenvironment viewer referred to from
Section 4.1.3.
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C LARGE IMAGES

Figure 58: Large screenshot of the protein unraveller referred to from Section
4.1.3.
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D Software Specification

The specification for the software developed as part of this work is described

below. The microenvironment API is described in Appendix D.1 and the math-

ematical computations used by the API are described in Appendix D.2. The

viewer is described in Appendix D.3. The batch processor is described in Ap-

pendix D.4. The unraveller is described in Appendix D.5. Finally, the data

mining library is described in Appendix D.6.

D.1 Microenvironment API

The microenvironment API is a library that parses PDB files, computes microen-

vironments and derives scores from them.

The microenvironment API has the following requirements:

• Exports a function to return PDB structures. At a minimum, it should

be able to open PDB files that conform to the PDB File Format ver-

sion 3.30 [196].

• Future versions of the API may optionally use a later version than 3.30

with or without backwards compatibility. The optionality of backwards

compatability allows the most practical option to be chosen: If there are

many users with collections of older files then the maintainers can choose

to support them. However, if this is not a consideration then it may be

easier to download the entire PDB in the new format.

• Optionally, the software may parse other variations of the PDB file format

(e.g. earlier versions or files generated by other programs that do not

conform to the standard format) as long as compatability with version

3.30 (or later) is maintained.
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• Exports one or more functions to return microenvironments. Options for

intermolecular and intramolecular micronevironments, stripped microen-

vironments and snipped microenvironments must be included. This can

be achieved though several functions, parameters to a single function or

combinations thereof.

• Exports one or more functions to return microenvironment scores, including

stripped microenvironments (which require multiple scores per residue.)

• The scores described in Appendix D.2 must be supported.

• It must be possible for new scores to be included without recompilation of

the library and without altering the library’s code.

• The code that performs the above must be replaceable in whole or in part.

This implies but is not limited to:

◦ Interfaces (or another suitable language construct) must be used for

the implementations. This includes the functions described above and

any classes exported by the library.

◦ The library must include a mechanism for specifying components.

This may take the form of a builder that is used on initialisation

or may allow swapping of components at runtime.

D.2 Microenvironments and Scoring

This section describes the mathematical computations required of the microen-

vironment API. It includes a definition of microenvironments and a description

of the microenvironment scores, including those based on pysicochemical param-

eters.

The distance between two residues R1 and R2 is defined in Equation 6.

dist(R1, R2) =
√

(xR1 − xR2)
2 + (yR1 − yR2)

2 + (zR1 − zR2)
2 (6)
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The microenvironment MRmC at radius r around a residue Rm from a chain C

is given in Equation 7. For the avoidance of doubt, when Rm is a member of C,

the resultant microenvironment is an intramolecular microenvoironment. When

Rm is not a member of C, the resultant microenvironment is an intermolecular

microenvironment.

MRmC = {R ∈ C | dist(Rm, R) < r} (7)

Each residue R has an associated residue number RN . The residue numbers in

a microenvironment are ordered sequentially (RN 1,RN 2,RN 3...RN n). The HL

score is given by Equation 8.

HLM = max(RN M)−min(RN M) (8)

The differences between consecutive residue numbers RNDIFF is a tuple of

length n− 1 where each element is described by Equation 9.

RNDIFF i = RN i+1 − RN i (9)

The GG score is given by Equation 10.

GGM = max(RNDIFF) (10)

The Diff score is given by Equation 11.

Diff M = HLM −GGM (11)

The SN score is given by Equation 12.
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SN M = 1 +
∣∣{d ∈ RNDIFF |d > 1}

∣∣ (12)

The Count score is given by equation 13.

CountM = |M | (13)

The Ex score is given by equation 14 where C is the chain containing the central

residue of the microenvironment.

ExM = max
i∈[|C|]

(Count(MCi))− Count(M) (14)

Each resudue has an associated class A, corresponding to the amino acid it

derives from. Parameter scores can be either per-residue or per-class. Each

per-class parameter P has its own lookup table where each amino acid class A

is mapped to the parameter value. Equation 15 describes whether a paremeter

value exists for a residue.

HasResidueP (AR) =


1 when the parameter is per-residue

1 when the table includes AR

0 otherwise

(15)

For the avoidance of doubt, it is necessary to consider that residues may be

missing from tables. Not all sources of data can be expected to include values

for every residue found in a protein. For example, many data sources omit

post-translational modifications. Even though calculating parameter scores using

incomplete data will give inaccurate results, the software must behave in a well-

defined way.

The function TP (A) describes obtaining a parameter P for resitue A. The func-

tion is defined in Equation 16.
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TP (AR) =


the residue’s value when the parameter is per-residue

the table lookup value when HasResidueP (AR) = 1

0 otherwise

(16)

The summed parameter score for microenvironment M is givein in equation 17.

SumPM =
∑
A∈M

TP (A) (17)

The mean parameter score is given in equation 18.

MeanPM =


SumPM∑

A∈M
HasResidueP (A)

if
∑

A∈M
HasResidueP (A) > 0

0 otherwise

(18)

D.3 Viewer

The viewer displays visualisations of microenvironment scores. It has the follow-

ing requirements:

• The primary user interactions with the viewer must be via a graphical user

interface.

• The viewer must be able to display graphical representations of microen-

vironment scores. Each graphical representation is called a visualisation.

The following visualisations must be supported:

◦ A table of microenvironment socres. Rows represent residues and

columns display different scores.
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◦ A chart of microenvironment scores with residue number as the x-axis

and score as the y-axis.

◦ Optionally, a molecular model showing the scores. A suitable alterna-

tive would be to export a script for displaying in an external molecular

viewer.

◦ Further visualisations may be incorporated, and the design of the

viewer must make it easy to add new visualisations.

• Microenvironment scores should be represented on the views with colour,

sizes or styles. For example, the highest scores could be represented with

red and the lowest in blue, with intermediate scores coloured appropri-

ately in a gradient. The nature of the visualisation will dictate the kind of

representation. For example, colour would be appropriate for most visu-

alisations; text style would be appropriate for textual visualisations; atom

size would be appropriate for molecular models.

• The user must be able to configure the score representations. It should be

possible to define score intervals and gradients for each interval.

• Separately from the score representations, the user must be able to high-

light numerical ranges of microenvironment score.

• Multiple visualisations of the same structure must be allowed.

• The user should be able to view all chains of a multi-chain protein.

• The user should be able to choose which score is displayed in each view.

• The user should be able to specify a microenvironment stripper for each

view.

• The microenvironment radius should be configurable for each view.

• When the mouse hovers over a visualisation, the residue under the mouse

should be highlighted.

• Details of the highlighted residue should be displayed in a status bar, in-

cluding the residue number, amino acid and microenvironment score.
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• Other visualisations showing the same strucure should also highlght the

residue a mouse is hovering over. This will help the user to compare dif-

ferent views (e.g. a molecular model and a chart).

D.4 Batch Microenvironments

Batch microenvironments facilitates the computation of microenvironment scores

for multiple conformations of the same protein. It has the following requirements:

• Batch microenvironments will expect a directory of PDB files as input. The

PDB files should all represent the same protein. In any case, the number

of chains, chain lengths and residue numbers must be the same in all files.

• Batch microenvironments will also accept a common filename prefix as an

optional argument.

• When generating identifiers from the filename, the “.pdb” extension will

be removed. If a prefix is specified then the prefix will also be removed.

For example, if if the prefix “Snapshot” is used then the filename “Snap-

shot000001.pdb” will give the identifier “000001”.

• Batch microenvironments must produce a set of CSV files containing the

micreonvironment scores for the protein structures.

• Each output file will be for a particular score (e.g. one file for HL, another

for GG, etc.) If there are multiple chains then each chain will have a

separate file. For example, if there are five PDB files containing two chains

each and three scores then there will be 2× 3 = 6 output files.

• Each file will contain the scores for every protein structure in the direcrory.

If there are 50,000 PDB files in the directory then there will be 50,001 rows

in the files (including the header row).

• The field delimiter may be either tab or comma.

• The new line delimiter will match the platform’s line separator.
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• The first line in the file will contain the residue numbers.

• The first field in the header row is to be left blank. This means that the

row should start with a delimeter.

◦ Gaps in the numbering of residues should be ignored in the output.

For example, if residues 2 and 3 are not prsent, then the output should

be 1, 4, 5, etc...

◦ The ordering of residues in the PDB files is to be preserved in the

output.

• Subsequent lines contain the scores for the protein structures.

◦ Each line in the CSV file will correspond to one PDB file

◦ The lines will be sorted by the lexicographical order of their identifier.

◦ The first field is for the file identifier. This is the filename without the

“.pdb” extension. If the optional prefix parameter is supplied then

the prefix should be removed too.

◦ Subseqent fields are for the microenvironment scores.

D.5 Protein Unraveller

The protein unreveller allows the user to manually manipulate a protein molec-

ular model and observe the changes in microenvironment scores. It has the

following specifications:

• The unraveller will display a molecular model from a PDB file.

• The user will be able to select a residue as a pivot point with the mouse.

• When the user drags a residue on one side of the pivot then all the residues

on the same side will be rotated around the pivot. This process allows the

user to selectively unravel parts of the protein chain.
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• The process of selecting pivots and unravelling can be repeated.

• The microenvironment scores should be displayed on the molecular model

(e.g. using colours).

• As the molecule is unravelled, the microenvironment scores are recalculated

and the display is updated.

• Two charts of microenvironment scores are displayed:

◦ One chart for the protein’s original scores. This chart is static.

◦ One chart for the protein’s scores in its current state of unravelling.

This chart is updated as the proteins is unravelled.

D.6 Data Mining

The data mining library’s purpose is to connect the microenvironment API to

third-party data mining libraries. The specification focuses on classifiers but the

same principles could be applied to other data mining tasks.

The requirements are as follows:

• The library should expose its own class and function interfaces for classi-

fying, including the representation of datasets, classifiers and training.

• The adaptor pattern should be applied so that the Microenvironment API

can be used as a data source.

• The classifier interfaces act as a facade to third party libraries. The details

will depend on the specific libraries but the following suggestions should

be applicable in the majority of cases.

◦ The algorithms themselves can be adapted with a simple wrapper.

Where configuration options are present, these can be made available

in the wrapper’s constructor.
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◦ Third party libraries will require data available according to their own

specifications. Where abstract types are provided, an adaptor can be

used. Otherwise, the data will have to be copied into the third party

libraries own data structures.

• The microenvironment data mining library should be able to build a con-

fusion matrix from a trained classifer and test dataset.
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E Software Design

The software developed throughout this research includes several tools for the

generation, manipulation, analysis and presentation of microenvironments. An

overview of the tools created is given in Section 4.1.3 and summarised again here

in Appendix E.1. A detailed discussion of the design of each component is given

in Appendices E.2 to E.6.

E.1 Overview of Software Tools

The following software tools were developed as part of this research. They are

described in Section 4.1.3 but are a brief summary is given here.

API The API is a library for generating microenvironments. It exports a high-

level interface that abstracts the details of parsing PDB files, determining

microenvironments and calculating scores.

Viewer The viewer allows for the graphical presentation of microenvironment

scores. It can present them in views such as charts, tables and molecular

models.

Batch Microenvironments The batch utility outputs microenvironment scores

from sets of PDB files. It was originally written to work with large datasets

such as those output from molecular dynamics. However, since it is a com-

mand line tool, it is equally useful for processing large and small datasets

in console scripts.

Protein Unraveller The protein unraveller allows the user to manipulate a

protein molecular model with the mouse and observe the change in mi-

croenvironment scores.

Data Mining The data mining tools exports an interface that allows data min-

ing experiments to be run on microenvironment data.
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E.2 Design of the Microenvironment API

The public interface of the API was mostly a set of Java interfaces and abstract

classes. This decision supported the requirement that the constituent compo-

nents could be exchanged or reimplemented in whole or in part. The following

list describes the broad categories into which these components fall:

• High level interfaces which form the main points of interaction with the

library (SidApi and PdbSupplier)

• Concrete classes of parameter objects which represent requests to the API

(PdbParameters and ClusterParametrs)

• Interfaces representing parts of a PDB file (Pdb, Chain, Atom, ChainType,

ResidueNames, BrickList and BoundingBox)

• Interfaces describing microenvironments and their scores (Strand, Cluster,

ClusterColumn, SidColumn and SidSequence)

• An interface for specifying scoring systems for microenvironments (SidCal-

culator)

• An interface for specifying how to strip microenvironments (ClusterStrip-

per)

• An exception (PdbFormatException)

In the above list and throughout this section, the word “cluster” is used syn-

onymously with “microenvironment”. The former was the terminology used in

the original paper describing microenvironment scoring [176] and was used in

the development of this software. However, while preparing this thesis, the clash

between the subtly different concepts of protein clusters (microenvironments)

and the clusters produced by some data mining methodologies became apparent.

Since the latter is more established, microenvironment was chosen to describe a

region of a protein.
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The term SID appears in in many of the class and method names. It is an

abbreviation for Simple Intrasequence Difference which describes some of the

microenvironment scores (such as HL and GG).

The SidApi interface is the main point of interaction between the library and its

host program. There are three methods available:

• Pdb getPdb(PdbParameters params) for retrieving a representation of the

PDB data.

• ClusterColumn getClusters (ClusterParameters params) for retrieving all

the microenvironments in the protein.

• SidColumn getSidColumn(SidCalculator sidCalculator, ClusterParameters

params) for retrieving microenvironment scores for a protein.

The parameter classes encapsulate the information needed for the requests. The

design decision to use parameter objects was made to allow new fields to be

included without having to change the interface of SidApi. PdbParameters con-

tains the fields shown in Table 16 and ClusterParameters contains the fields

shown in Table 17.

Field Description
file The original filename of the PDB file.
name The four-character identifier of the PDB file.
protein centroid Regex for atom names of protein microenvironment cen-

troids.
nucleic centroid Regex for atom names of nucleic acid microenvironment

centroids.

Table 16: Fields in PdbParameters.

There is only one implementation of the SidApi interface. However, it is cus-

tomisable through dependency injection. Although no decorators were needed

throughout this research, the decorator pattern was intended as a possible route

to future customisation.
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Field Description
pdb The protein for which to determine microenvironments
main The chain whose residues form the centroids of microenvironments
comp The chain whose residues make up the membership of the cen-

troids. (Main and comp chains are concepts used in intermolecular
microenvironments described in Section 3.4.6. For the discussion
in the rest of the thesis, only single chains are considered, meaning
main = comp.

radius The microenvironment radius in mÅ.
stripper The cluster stripper.

Table 17: Fields in ClusterParameters.

The constructor accepted two parameters: a PdbOpener instance and a Clus-

terCalculator instance. Supplying the cluster calculator through dependency

inversion facilitated the optimisation of this step in Section 4.1. The PdbOpener

had three implementations:

• PdbFileOpener supplies PDB data by opening and reading a file.

• PdbDatabaseSupplier retrieves PDB data that has previously been stored

in a database.

• PdbCache is a decorator which caches PDB data that is loaded by its

delegate. This is a simple cache with no expiry. One of its intended uses

was to hold entire datasets in memory. To support this, it includes methods

to serialise and deserialise the cache.

ClusterParameters accepts a ClusterStripper which allows stripped microenvi-

ronments as described in Section 4.2.6 to be determined. Five implementations

were used in this research:

• ClusterStripperNoStripping VS for generating microenvironments without

stripping.

• ClusterStripperFromCTerminus VS for removing strands starting at the

C-Terminus.
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• ClusterStripperFromNTerminus VS for removing strands starting at the

N-Terminus.

• ClusterStripperCombosWithMainStrand VS for generating all possible com-

binations of strands.

• ClusterStripperNoGaps VS for generating all stripped clusters that do not

leave gaps between the strands.

Finally, this implementation of SidApi allowed the cluster calculator to be in-

jected. Several of these were created for the optimisation experiments described

in Section 4.1.

E.3 Design of the Viewer

The viewer facilitated the visualisation of microenvironment scores. It used the

microenvironment API to obtain the microenvironment scores, converted the

scores into a set of properties appropriate to the visualisation (e.g. colour or

size) and then rendered the visualisation.

The visualisation interface was designed to ease the incorporation of new visual-

isations. These are the ones that have been developed so far:

• JmolVisualisationPanel for showing scores superimposed on a 3D model.

The properties that can be used are colour, atom/bond size and display

(either cartoon or ball & stick).

• TableVisualisationPanel for displaying multiple scores in a table. As well

as showing the numerical values of the scores, the colour property is used.

• PrimarySequenceVisualisationPanel for displaying the scores on the pri-

mary sequence. This visualisation uses the colour property.
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• FlickBookAnimation compares two existing Jmol visualisations. It has no

properties of its own but repeatedly switches between displaying the two

molecular models. This helps the user to see the differences between the

views.

• BrickGraph shows a bar chart of the scores. It uses the colour property.

• SortedIsidGraph also shows a bar chart of the scores but the scores are

sorted in descending order. It also uses the colour property.

• TabbedVisualisationPanel does not have its own properties but it is used

to combine views that only show a single chain. The tabs allow the user

to switch between chains.

Properties transform the scores into other concepts that can be displayed in the

visualisations. Most of the views use colours but some use other concepts such

as integers and categories. The user interface allows the user to specify precisely

how scores are mapped to properties.

For example, in mapping to the colour property, the user may wish for the

highest scores to be red, gradating to green at a certain cut-off, and grey below

the cut-off.

The design achieves this by allowing dividers to be placed between the minimum

score and maximum score. The ranges of score between the dividers have prop-

erty values (e.g. red or green) associated with their upper and lower bounds.

Interpolation is used to associate each score with its property value.

In the case of integers, the interpolation is simple. For colours, each of the red,

green and blue components are interpolated separately. For category values (e.g.

cartoon or ball & stick) the interpolation will simply choose the closest value.

In addition to properties, the viewer allows the visualisations to highlight sites

specified by ranges of microenvironment scores. This is achieved by combining

SidRange instances and using them as the basis for selection.
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The design of the GUI is a multiple document interface that takes up most of

the window. There is a ribbon toolbar above the desktop pane and a status

bar below it. Mouse motion events are used to update the status bar with the

details of the microenvironment scores as the mouse moves over the residues.

Furthermore, when several views of the same protein are open at the same time,

mouse events are used to highlight the same residue in each view simultaneously.

The Jmol view requires interfacing with the Jmol library [185]. Jmol version

11.6.8 was used. The Jmol Viewer class can be used to embed a 3D molecular

model in a Swing application. Interaction with this class is done by sending Jmol

scripts to an evalString() method. Therefore, as properties are updated, a script

that represents the change in state has to be built and passed to the evalString()

method. The class JmolScriptGenerator is responsible for generating the scripts.

Finally, the Jmol Viewer captures mouse events to allow rotation, zooming and

translation. Since the viewer can show multiple views of the same PDB, a fea-

ture was implemented that allows the mouse events to be synchronised. This

is achieved by sharing the event handlers between the windows that are to be

synchronised. For example, if two Viewers (A and B) are to be linked, A’s mouse

event handlers observe both windows. Similarly, B’s mouse event handlers ob-

serve both windows. This way that when either one of the window receives mouse

events, both event handlers are notified, and the molecular models in both panels

are updated accordingly.

E.4 Design of Batch Microenvironments

This tool is a command line utility that takes a directory of PDB files as input

and outputs a set of CSV files of the microenvironment scores. One file for each

score is produced. It uses the microenvironment API to read the PDB files and

generate the scores. Four classes implement the rest of the functionality:

• SidScoreCsvWriter writes the scores to file.
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• FrameFile represents a single PDB file in the folder.

• ProcessBatchFiles loops over all the FrameFile instances, retrieves the

scores from the API and passes them to the SidScoreCsvWriter instances.

• CommandLineInterface interprets the command line arguments.

E.5 Design of the Protein Unraveller

The protein unraveller’s window consists of a large molecular model to the left

and two bar charts to the right. The top bar chart displays the original microen-

vironment scores for the protein and the lower chart shows the microenvironment

scores for the protein in its current state.

The unraveller uses the microenvironment API to obtain the scores and the views

from the viewer for display.

Editing the protein with the mouse is achieved by sending a script to Jmol which

selects the appropriate residues and rotates them around a pivot point. The set

of atoms is then obtained from the Jmol instance and the Pdb data is updated.

A new set of scores is calculated based on the updated PDB and the chart is

refreshed.

E.6 Design of the Data Mining Library

The architecture of the data mining utility was designed to decouple the mi-

croenvironment code from the machine learning algorithms. This was to make

it easy to include data mining algorithms from different sources.

The framework defined the following interfaces:

• ClassifierTrainer whose responsibility is to accept a Dataset object and

return a Classifier object.
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• Classifier whose responsibility is to accept tuples and return a classification.

Classifier implementations were used from the JavaML library [197] (version

0.1.7). In order to use them, adaptors were written to bridge between the JavaML

Classifier interface and the microenvironment classifier interface. Static factory

methods were written to build adapted versions of all JavaML’s classifiers.

This approach could be repeated with other machine learning libraries.

The following classes were for analysing classifiers:

• ClassifierAnalysis was responsible for building ConfusionMatrix instances

from Classifiers and Datasets.

• ConfusionMatrix calculates statistical measures of a Classifier’s perfor-

mance (e.g. precision, recall, F1 measure, etc.)

The dataset is represented by the following classes:

• SidScoresForResidue represents a tuple of microenvironment scores.

• PdbAndTuples associates a protein with its constituent tuples. This is

important when dividing the dataset into a test set and a training set. It

is important to assign entire PDB entries to either one set or the other.

Otherwise, the risk is splitting single sites between the test and training

sets.

• Dataset represents a set of tuples.
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F User Manual

The Microenvironment Viewer provides several visualisations of microenviron-

ment data.

F.1 Installing and Launching

The viewer requires Java 7 to be installed on the computer. On some platforms,

the viewer can be started by double clicking the file named “viewer.jar”. On all

platforms, it can be started from the command line by executing:

java -jar viewer.jar

In order to use the Jmol visualisation, Jmol version 11.6.8 must be present. This

is achieved by placing the Jmol.jar file in the same directory as viewer.jar. If this

step is skipped then the other features will continue to work.

F.2 Using the Microenvironment Viewer

Click one of the buttons to create a visualisation.
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Click “Browse” to choose a PDB file or choose from the list of open PDB files.

The Jmol view can be rotated by dragging with the left mouse button, moved

by dragging with the right mouse and zoomed by dragging with the middle

button (or holding the shift key while dragging with the left button).

If multiple Jmol visualisations are open, their rotations can be linked.
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Rotation links are shown with a thick red line. Dragging from one visualisation

to another will link their rotations. Rotation links to a visualisation can be

cleared by double clicking on it.

The flickbook animation can be used to cycle through Jmol displays. It works

best when the Jmol visualisations show the same or similar structures, their

rotations are aligned and they are rotationally linked.
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Any of the open Jmol visualisaitons can be included in the flickbook.

The speed of the animation can be changed with the slider.
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Other visualisations display one chain at a time. The chain can be selected

using the tabs at the top.

Double clicking on the Table view allows the choice over which columns are

displayed
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When moving the mouse over visualisations, the details of the residue under

the mouse are displayed in the status bar.

If the same structure is open in multiple visualisations, then the residue under

the mouse is highlighted in both.

The views can be exported in three different ways.
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All views can be saved as PNG files. The save dialog has options for choosing

the dimensions of the output file.

Jmol visualisations can be exported as Jmol scripts. These can be subsequently

be loaded into a Jmol session. Care must be taken to open the PDB file in

Jmol before running the script.
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The table view can be exported as CSV files. The dialog allows the user to

select chains to output. One file is output per chain. The destination directory,

filename prefix and filename suffix can be specified.

The visualisation that currently has focus can be configured by clicking

Properties.
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This displays a dialog that allows detailed control of the properties.

The list on the left allows the choice of property. Most visualisations allow only

the colour to be configured but Jmol allows size and display style to be

configured too.
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The controls along the top allow the comp chain, score, radius, stripper and

centroids to be changed.

The chart section has options for inserting dividers. The dividers divide the

score range into segments and can be dragged up and down with the mouse.

The options to the right allow the colour, size or display style of the segments

to be changed.
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When configuring a Jmol visualisation, if a chain has the display “Cartoon”

and the size is “-1” then the cartoon is displayed with Jmol’s default cartoon

sizes (i.e. fat secondary structures and skinny loops). Otherwise, all regions are

displayed according to the value of the display property.

The View Tab allows the microenvironment and score to be changed.

The chain being edited can be selected, and the comp chain can be selected if

iSID is chosen.
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The centroid of the microenvironment can be chosen. Different centroids are

used for proteins and nucleic acids.

The score can be selected.

Clicking “Params >” brings up a list of physicochemical parameters to choose

from.

The microenvironment radius can be changed.
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The Sites tab allows sites to be defined that match ranges of microenvironment

scores.

The chain containing the site can be selected.

The Colour of the site can be chosen and the site can be toggled on and off.

Ranges of microenvironment score can be defined. To be included, a residue’s

scores must lie within every range specified.
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G Software Source Code

The source code for the software developed as part of this work is in the care of

my supervisors. They can be contacted at the email addresses below:

Dr Mark Dufton

mark.dufton@strath.ac.uk

Dr John Wilson

john.n.wilson@strath.ac.uk
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π-character A π-bond is a chemical bond that is associated with a restriction

of rotation. The peptide bond is not a full π-bond but has sufficient π-

character to restrict rotation.

α-carbon The backbone carbon of a residue from which the side chain branches.

ab initio From first principles; relying only on basic properties of elements and

the laws of nature. Ab initio is often used to exclude techniques that are

backed by statistical models.

active site A group of residues in an enzyme where catalysis takes place.

allosteric effector A molecule which binds to a protein’s allosteric site to reg-

ulate its behaviour.

Ångstrom (Å) A unit of length common in chemistry. 1 Å = 1× 10−10 m

apo-form The protein without a bound ligand. The term is usually used in

comparing two molecular models, one with a ligand bound and the other

without.

atomic number The number of protons in the nucleus of an atom. This is

what differentiates one element from another. For example, hydrogen is

atomic number 1 and carbon is atomic number 6.

backbone In a protein (which is a chain molecule) the backbone atoms are the

atoms that can be followed from one end of the chain to the other. The

side chain atoms branch off so are not part of the backbone.

biopolymer A biological polymer (e.g. protein or nucleic acid); a molecule

made via a series of chemical reactions that join monomers together

C-terminus The end of a protein chain terminated by a carboxylic acid group;

the last part of the chain to be formed in protein synthesis.

catalysis The process of speeding up a chemical reaction.
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catalytic residue A residue forming part of the active site of an enzyme.

chimeric protein A new protein composed of domains from more than one

protein.

codon A short sequence of DNA that codes for a particular amino acid. Proteins

are encoded in DNA by sequences of codons which translate to the protein’s

primary sequence.

cofactor A chemical entity essential for the activity of an enzyme.

conformation A particular arrangement of bond rotations that gives a molecule

a specific shape. Conformations have an associated energy. The lower the

energy, the more thermodynamically stable and higher the population of

that conformation.

crystallisation artefact An anomaly in the molecular model caused by the

process of crystallisation. This thesis refers to a type of artefact where a

small chemical gets trapped in the protein and may be a clue to the location

of a binding site.

de novo structure prediction Predicting a protein’s tertiary structure from

first principles using only its primary sequence.

dextrorotatory configuration Some chemicals exhibit chirality which means

they have a form of symmetry where the mirror image cannot be superim-

posed on the original (like the right hand is a non-superimposable mirror

image of the left hand). The dextrorotatory configuration is one of these

forms. The name comes from the ability of the configuration to to rotate

plane-polarised light to the right (from the perspective of a viewer who the

light is travelling towards).

dihedral bond angle An angle used to describe the rotation of a bond. If the

bond between atoms A–B is to be measured then the dihedral is the angle

between plane A B A1 and plane A B B1 where A1 is an atom bonded to

A and B1 is an atom bonded to B.
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disulfide bond A bond between sulfur atoms. In proteins they link two cysteine

residues cross-linking the chain and providing extra stability.

disulfide bridge See disulfide bond.

DNA Short for Deoxyribonucleic acid: The genetic material which is passed on

through reproduction and is the vector for evolution. Parts of DNA encode

the primary sequences for proteins.

docking A computer simulation for binding a molecule to a protein.

drug discovery The design, refinement and testing of a drug new molecule.

dye-terminator sequencing A method for sequencing DNA where the DNA

is multiplied in vitro. Inhibitors are used to cause each DNA molecule to

be ended at a random length. These fragments are then separated by size.

The sequence is determined by a dye on the inhibitor which corresponds

to one of the four bases that make up DNA.

energetically favourable At a lower energy to the alternative, synonymous

with a low energy.

energy Each conformation of a molecule has an energy associated with it. The

lower the energy, the more thermodynamically stable and the higher the

population of that conformation.

enzyme A protein that is involved in catalysing chemical reactions.

equilibrium In a reversible chemical reaction, equilibrium is when the rates of

the forward and reverse reactions are equal. At equilibrium the amounts

of the reactants and products are constant despite these reactions taking

place. This thesis uses the term in the context of protein conformations. In

this case the reactions are the transitions between different conformations.

Although the proportions of the conformations is constant, the protein

molecules are in dynamic equilibrium between the conformations.

evolutionary conservation The degree to which protein sequence is preserved

across evolution. When used in reference to a single residue, it is the degree

to which the residue at that point in the chain in preserved across evolution.
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folding pathway The series of steps the protein takes to adopt its fold.

functional group A distinct part of a molecule which is commonly found in

chemistry. Examples include the amino group (NH2) and the carboxylic

acid group (COOH).

gene Part of the DNA that encodes a protein.

global energy minimum This refers to the conformation with the lowest en-

ergy. It is the most thermodynamically stable conformation and has the

greatest population.

ground state Synonymous with the global energy minimum for a molecule.

group Short for functional group.

high-energy conformation A high energy conformation is thermodynamically

unstable. Molecules in high energy conformations have a high probability

of transitioning to lower energy conformations while the opposite transi-

tion has a low probability. Because of this, the population of high energy

conformations is low.

high throughput disulfide tethering A technique that probes for allosteric

sites by engineering cysteine residues into the protein which can form disul-

fide bonds with small molecules.

highly conserved A highly conserved residue is one that appears in that place

in the chain in all (or almost all) members of the family.

homodimer Quaternary structure with two chains of the same protein.

homolog Two protein sequences are homologous if their primary sequences are

similar. This is usually qualified by a percentage of similarity.

homology modelling A technique to estimate the tertiary structure of a pro-

tein, aligning the protein’s structure to that of a homolog as a starting

point for molecular dynamics. The assumption is that the structure will

be similar enough to that of the homolog to allow molecular dynamics to

find the energy minimum.
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hydrogen bond Attractive force based on sharing a hydrogen atom.

hydrogen bond acceptor The atom in a hydrogen bond that “accepts” the

hydrogen. It must have a lone pair of electrons. Common acceptors are

oxygen and nitrogen atoms.

hydrogen bond donor The hydrogen atom that is “donated” in a hydrogen

bond. It must be bonded to an electronegative atom (slightly negatively

charged due to attraction of the bonding electrons), commonly oxygen or

nitrogen.

hydrophobic A phenomenon where non-polar groups (e.g. some amino acid

side chains) group together in order to exclude water molecules.

hydrophobic collapse The process whereby a protein folds leaving a hydropho-

bic core and hydrophilic periphery.

hydrophobic interaction The tendency of hydrophobic side chains to group

together to exclude water molecules.

in silico A computer simulation of an experiment designed to replace in vivo

and in vitro testing for ethical and economic reasons respectively.

in vitro An experiment conducted in a test tube (or other chemical apparatus).

It is often used as a replacement for in vivo testing.

in vivo An experiment conducted in a living organism, often used to refer to

animal testing in the pharmaceutical industry.

intermolecular interaction An interaction between two molecules.

intramolecular interaction An interaction internal to a molecule.

ion bridge Interaction between positively and negatively charged side chains.

ionic charge A charge arising from the loss of an electron (positive charge) or

the gain of en electron (negative charge).

ionic interaction The interaction between two ions (charged particles). Oppo-

site charges attract and charges of the same polarity repel.
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kinetic Refers to reaction rates.

kinetic folding pathway The folding pathway that prioritises kinetics (reac-

tion/folding rates) over thermodynamics (energy/stability).

laevorotatory configuration The configuration of a chemical which is the mir-

ror image of a dextrorotatory configuration.

ligand Another molecule (usually smaller) which binds to a biopolymer.

metabolism Collective term for all the chemical reactions in the cell.

molecular dynamics A computational technique using quantum physics to

simulate a small number of atoms. It is often used in the context of pro-

teins to estimate the structures of energy minima and to explore the scope

for dynamic motion of sections of the protein.

molecular model An approximation of a molecule. The molecular models re-

ferred to in this thesis are computer data that represents the atomic co-

ordinates of all (or most) of the atoms in the molecule. The models can

generally be viewed in 3D software packages.

molecular weight The mass of a molecule, usually calculated by adding up the

atomic weights of its constituent atoms.

molecule A group of atoms bonded together. Molecules are usually considered

to be small, containing between about 2–50 atoms. However, proteins are

examples of molecules which are much larger.

N-terminus End of a protein chain terminated by an amine group; the first

part of the chain to be formed in protein synthesis.

non-coding region Parts of the DNA that do not encode for proteins.

non-polar The opposite of polar, where none of the molecule is charged.

oligomerisation A small number of chemical species joining together. An

oligomerisation of protein molecules refers to a complex formed by sev-

eral protein chains.
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omega loop A motif where the start and end are in close proximity.

orthosteric site The site where a ligand binds to produce an effect. This is dis-

tinct from an allosteric site which is by definition away from the orthosteric

site.

partition coefficient When a chemical is dissolved and partitioned between

two immiscible liquids (i.e. liquids that won’t mix), the partition coefficient

is the ratio of the amount of chemical dissolved in each liquid. One common

system is octanol and water.

peptide bond The bonds between amino acid residues in a protein chain.

pH A measure of acidity or alkalinity. A pH of 7 is neutral. Below that is acidic

and above is alkaline.

pharmacophore The characteristics required of a ligand to bind to a protein.

Pharmacophores are often described in terms of the juxtapositions between

functional groups and steric interactions.

physicochemical Relating to physics and/or chemistry.

polar The phenomenon where one part of a molecule has a slight positive charge

and another part has a slight negative charge.

poorly-populated state A conformation of a molecule which only a small per-

centage of the population adopts. This is generally because the conforma-

tion has a high energy level.

post-translational modification A chemical modification to a protein made

after the protein chain has been formed.

primary structure The sequence of amino acids in the protein chain.

protein recognition site The binding site on a protein that selectively binds

to (or recognises) another protein.

quaternary structure Arrangements of multiple protein chains.
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refractive index Ratio of speed of light in a vacuum to the speed of light in a

material. Differences in refractive index as light passes from one material

to another account for the observed bending of light.

regulatory domain A domain which can regulate the protein’s activity based

on binding events.

secondary structure Sections of protein chain forming α-helix or β-strand.

shotgun screening A technique for sequencing DNA. The long DNA molecule

is smashed into shorter chains which can be individually sequenced. The

sequence fragments are then assembled to recreate the overall DNA se-

quence.

side chain The variable part of the residues that make up protein chains. DNA

encodes twenty different amino acids with different side chains.

side chain directionality The direction that the side chain of each residue

points in. In a straight section of protein chain, the side chains will point

in alternate directions. In a helix, the side chains will point out from the

centre of the helix.

signalling cascade A chain reaction where one protein activates another which

in turn activates another and so on.

solid-state structure X-Ray crystallography produces molecular models from

proteins (or other chemicals) in crystal form. The molecular models there-

fore represent the structure of the solid state which may be subtly different

from the natural solution state of the protein.

steric The spatial effects of chemical species. Steric bulk refers to the size of

chemical entities, usually in the context of excluding other molecules from

entering the same space.

substrate The reactant in a chemical reaction catalysed by an enzyme.

tertiary structure The three-dimensional structure of the protein chain.
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thermodynamics The relationships between work, energy, temperature and

entropy.

transmembrane protein A protein that spans a biological membrane, often

used to control the flow of chemicals across the membrane.

van der Waals radius A measure of atom size.

zinc finger A protein motif that binds zinc ions.
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