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Abstract

This thesis considers the inverse problem of detecting and characterising flaws

within heterogeneous materials using ultrasonic phased array transducers. Many

imaging techniques include subjective measurements and the aim of this thesis

is to develop objective mathematical model based methods which alleviate such

subjectivity. Within the first method, the Kirchhoff model is used to derive an

explicit expression which relates the maximum eigenvalue from a scattering matrix

to the length of a crack in a homogeneous medium. It is shown that there exists

a one to one relationship between this maximum eigenvalue and the crack length.

The advantage of deriving this analytical approximation is that it can then be

analysed to assess the crack sizing capabilities of the method given some scattering

matrices from experimental data (the inverse problem). The procedure for using

this method is then demonstrated by applying it to finite element simulated data

from a homogeneous medium with a 5 mm long crack inclusion, the crack length

recovered using this method is 4.4 mm. A second method is then presented which

exploits another feature of the scattering matrix. An analytical expression which is

an approximation to the first minimum in the pulse echo response of a scattering

matrix is derived from the Kirchhoff model. This approach is also illustrated

by sizing a 5 mm long crack within a homogeneous medium from finite element

simulated data, the crack length recovered using this method is 5.8 mm. The
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method is then extended to form a multi-frequency technique which enables it to

be applied to finite element simulated data from a 5mm long crack inclusion in a

heterogeneous medium. The method is enhanced by using a convolution method

to reduce the noise prior to the multi-frequency method being used. The recovered

crack length using this method once the noise has been reduced is 4 mm. Finally, a

detection technique based on the first stage of a time reversal is presented, within

which a detection threshold specific to steel welds is proposed. This method is

applied to both finite element simulated data and experimental data. Having

detected a flaw the time reversal algorithm (DORT) is then used to create images

which are then compared to those obtained using the Total Focusing Method.
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Chapter 1

Introduction

1.1 Background and Motivation

Non destructive evaluation (NDE) is the name given to the group of techniques

which can be employed to inspect safety critical structures without causing any

damage to them. Such structures include oil rigs, nuclear power stations and

aircrafts [1]. The development of NDE is invaluable as the detection and charac-

terisation of flaws in such structures can prevent failure and can be cost effective as

components need only be replaced when a defect occurs within them. Some com-

mon NDE technologies include industrial radiography [2], electromagnetic test-

ing [3], laser inspection [4], liquid penetrant testing and ultrasonic testing [5].

Ultrasonic testing is the most widely applicable of these techniques as it is com-

paratively inexpensive, portable and it can be used for sizing defects of various

shapes and sizes within a structure [6]. Ultrasound is an elastic wave (or acoustic

if in a fluid) which has a frequency higher than that within the hearing range of

a human, which is 20 kilohertz (kHz). There exists a collection of animals which

communicate using ultrasound including bats, dolphins, porpoises, insects [7], mice
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and it is now believed that frogs communicate using high frequency sounds (com-

municating at up to 34 kHz) [8]. An ultrasound device emits and receives high

frequency ultrasonic waves and has applications across various sectors, for exam-

ple medical ultrasonography, NDE and seismology. Within medical and veterinary

applications ultrasonic devices are deployed as a diagnostic imaging tool and are

used to generate real time images of internal body structures. A commonly known

application is the use of ultrasound for examining pregnant women, this is referred

to as obstetric sonography [9]. Ultrasound devices are used within seismology to

collect data which is used to image the interior of the earth’s structure. These

images are used to locate gas and oil reserves and to investigate the potential

occurence of earthquakes [10]. Within the field of NDE they are used to inspect

components which are subject to stress and may develop cracks or other defects

within them. Examples of such structures include high pressure steam boilers used

within nuclear electricity generation plants [11], the wings of aeroplanes [12] and

railway tracks [13]. Within these structures the weld between two pieces of parent

material is one of the most important to inspect, as this is a particularly weak

point of a structure. A steel weld is comprised of a single material but during the

casting process the material structure changes due to remelting and solidifying of

the steel. This process causes grains of different sizes and orientations to form

within the material. Ultrasonic inspection of steel welds is very challenging as

these grains scatter the wave emitted from the transducer and a very noisy signal

is received by the device which makes it difficult to extract any information within

the signal which could be associated with a defect in the weld. Steel welds are just

one example of heterogeneous materials which are difficult to inspect, other exam-

ples include concrete [14] and the layers within the interior of the earth. Ultrasonic

arrays can be used to inspect heterogeneous materials and in recent years there
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has been an increase in the use of arrays for NDE inspections [15, 16]. Piezoelec-

tric transducers [17] are the most widely used and contain an active piezoelectric

element which converts the electrical pulse generated into mechanical energy (and

vice versa). The elastic wave is emitted from the transducer and travels through

the composite under inspection. The wave is then reflected and scattered from

any obstacles within the composite and received by the transducer. An ultrasonic

array is a single transducer that is comprised of a number of piezoelectric elements

(typically between 64 and 256), and each acts as both a transmitter and a receiver.

There are several advantages of arrays to conventional ultrasonic probes (a device

which contains only a single element); they cover a larger inspection area thus

reducing the time taken to conduct an inspection and they can be used to produce

a range of ultrasonic fields such as plane, focused and steered beams. The full set

of time domain transmitted and received signals recorded by an ultrasonic array

is referred to as the Full Matrix Capture (FMC) data. This is a three dimensional

(transmitting element, receiving element and time) data block and is generated

by firing an ultrasonic wave through one element and then receiving the reflected

signal on all of the elements in the array. This process is repeated for each element

until the entire set of signals is recorded to form the FMC data set. Once the

FMC data has been collected from the inspection it is necessary to apply post

processing algorithms in order to extract any information from the data which is

associated with a flaw; this is the inverse problem.

The forward problem (or the modelling problem) predicts the outcome of a

physical system given the complete set of physical parameters which describe it.

An inverse problem is the reverse of this process. That is, using the outcome of

the system (from experimental measurements) unknown parameters which char-

acterise the system are derived [18, 19]. In the case of inspecting a steel weld
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the forward problem would involve modelling the material to be inspected, the

ultrasonic transducer and the elastic wave travelling from the transducer through

the medium and back [16, 20, 21]. The outcome of the forward problem would

be the time domain FMC data set. The inverse problem would then comprise of

recovering the parameters associated with any defect within the material using

the experimental FMC data set. The a priori knowledge of this system would

be the properties of the ultrasonic transducer and any known properties of the

material. Another example of an inverse problem from the medical field is com-

puterised tomography (CT) [22]. While inside the CT scanner, the human body

is subjected to X-rays which are received by a detector on the opposite side of

the body. The inverse problem consists of applying imaging techniques to this

data to reconstruct the internal structure of the human body. A final example

is from geophysics in seismology where the aim is to generate an image of the

earth’s interior [10]. The ultrasonic data is recovered from receivers placed on the

earth’s surface and the inverse problem is to use this data to recover the image of

the geometry below the surface of the earth. Techniques which tackle the inverse

problem of recovering the geometry of an object within an elastic medium using

data from ultrasonic devices have been developed and investigated extensively over

the last few decades [23]. For ultrasonic inspection many of the existing techniques

involve the production of an image from the ultrasonic data which can be used to

both detect and characterise objects within the material. Within the field of NDE,

considerable effort has been made to fully exploit the FMC data in order to charac-

terise flaws within a structure [15,20,24–37]. The method which is often referred to

as the ‘gold standard’ technique is the Total Focusing method (TFM) [27]. This

method uses the time domain signals from the FMC data set to focus at every

point in a domain to create an image of the inspection area. The same method is
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used within seismology to produce a map of the earth’s interior although here the

approach is referred to as Kirchhoff migration [38]. Within the medical field the

same approach is referred to as delay and sum beamforming [39]. This method

has been applied to various experimental set-ups [40] with some success, however

the method does have its limitations. It relies heavily on accurate time of flight

(the travel time between the transmitting array element to the pixel location and

back to the receiving array element) calculations which will not be correct when

the material is highly heterogeneous. The TFM has been developed to produce

more sophisticated versions such as the vector TFM [24]. This method produces

a vector field output which can be used to determine the orientation and size of

a scatterer embedded in a medium and produces a second scalar function which

gives the specularity of any reflectors. The multi-mode TFM was also derived [25]

which is an extension of the TFM that considers multiple wave modes and uses

reflected pressure and shear waves to generate an image. It is possible to compare

various imaging algorithms using the signal to noise ratio from the image. The

methods compared in [28] are the wavenumber algorithm [26], the TFM and a back

propagation method [31]. It was concluded in this work that the back propagation

and wavenumber algorithms produced images with a higher signal to noise ratio.

However, the TFM is more suited to parallel processing and as a result can be

implemented in real time. The TFM is a subjective detection and characterisation

technique. In order to determine the size of a defect highlighted using the method

it is necessary to set a subjective threshold at which to measure the extent of the

point spread function. A more objective method was developed by this group to

characterize crack-like defects [30,32] which uses the scattering information in the

frequency domain that is extracted from the time domain FMC data. This method

was applied to experimental samples and defect sizes were extracted which were
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commensurate with the known defect sizes. However, the methods were applied

to test blocks made of a homogeneous medium and these methods rely on a low

signal to noise ratio within the time domain FMC data which will not be the case

for a heterogeneous medium. Efforts have been made to develop imaging methods

which overcome the shortcomings of Kirchhoff migration (TFM) and are capable

of imaging defects within moderately heterogeneous media [41–45]. The coher-

ent interferometry (CINT) method back propagates array data after the signals

have been cross correlated in the time-frequency domain to create an image. The

cross correlation of the singals reduces the noise although it does contain a free

parameter which needs to be chosen appropriately (subjectively) in order to en-

sure that too much smoothing does not occur. It was shown that CINT produced

images from which the parameters of scatterers within a random medium could

be extracted more accurately than those when Kirchhoff migration was used.

Another branch of imaging techniques are those which use time reversal prin-

ciples [46–54]. This work demonstrated that time reversed signals could be used

to focus through an inhomogeneous medium on an object whose position was not

known. It also showed that this process could be used for selective focusing and can

be used iteratively to focus one by one on several scatterers within a medium. The

decomposition of the time reversal operator (DORT) method [51, 52, 55, 56] uses

the singular value decomposition (SVD) of time-frequency domain data, which is

determined from the FMC data. An image of a scatterer in an inhomogeneous

medium is generated using the eigenvectors of the resulting scattering amplitude

matrices which are identified as containing the phase laws that need to be applied

in order to focus on the scatterer. The DORT method consists of a detection stage

and an imaging stage and has recently been applied successfully to image a target

in a strongly scattering medium [57]. The SVD of the scattering matrices can also
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be used for analysing the contributions to the ultrasonic data from single scat-

tering and multiple scattering. This has been investigated in [58] and a method

for separating single and multiple scattered waves in a heterogeneous medium was

derived. This approach is used to separate the signals from a defect from the noise

within a scattering medium [58]. A more general approach based on the SVD of

array data was proposed by Borcea et al. [42] which can be used to detect defects

in a highly cluttered medium. They propose a more adaptive version of the DORT

method where the distribution of the first singular values is not known.

1.2 Outline of thesis

The aim of this thesis is to develop methods which are model based and can be

used to objectively detect and characterise defects within an elastic medium. The

model used throughout the thesis is the Kirchhoff model [23] and this is presented

in Chapter 2. That chapter goes on to introduce a new method which derives an

objective one to one correspondence between the size of a crack within an elastic

medium and the maximum eigenvalue from a scattering matrix. This method uses

the SVD of the time-frequency domain response matrix calculated from the FMC

data and was inspired by the work of Aubry and Derode [57–59]. The expression

derived in Chapter 2 is analysed in Chapter 3 where the effects of varying the

system parameters are discussed. In addition, the model is interrogated to review

the sensitivity of the technique to the size of the crack inclusion and the other

parameters. The method in these chapters was applied then to finite element

simulated data of a crack in a homogeneous medium.

In Chapter 4 a crack sizing method which uses the pulse echo response from the

scattering matrices is presented and the analysis explains the empirical approach
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in [30]. An analytical expression is derived which relates the first minimum of the

pulse echo response to the crack size. This expression provides analytical insight

into the limitations of the method. In addition, a multi-frequency extension of this

technique is presented for sizing cracks in steel welds. This method was applied

to finite element simulated data from a steel weld (heterogeneous medium) with a

crack inclusion.

Finally, in Chapter 5 an objective method for the detection of defects within

a steel weld which requires no a priori knowledge of the material properties is

presented. This method is based on the first stage of the DORT method. In

addition, the DORT imaging algorithm is applied to finite element simulated data

(heterogeneous medium) and experimental data from a steel weld with firstly a

side drilled hole flaws and then a crack inclusion. The results are compared to

those produced using the TFM. The original work in the thesis is stated below.

1. In Chapter 2, Section 2.4 the Kirchhoff approximation is adapted for a linear

array and the error associated with this is examined. An analytical approx-

imation which relates the largest eigenvalue from a scattering matrix to the

size of a crack inclusion in an elastic medium is then derived and presented

in Section 2.3. This has been derived by making a Toeplitz approximation

to the scattering matrices approximating the scattering matrices and using

a known upper bound to the maximum eigenvalue from such matrices.

2. In Chapter 3, the approximation derived in Chapter 2 is interrogated to

investigate the effects of the system parameters on the approximation. In

addition, the approximation is differentiated in order to assess the sensitivity

of the maximum eigenvalue to the crack radius (the inverse problem).

3. In Chapter 4, Section 4.2.1 an analytical approximation to the first minimum
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in the pulse echo response of the scattering matrix at a single frequency is

derived, analysed, and then applied to finite element simulated data.

4. The DORT and TFM methods are utilised to detect and then image flaws

in Sections 5.3 and 5.4. The detection method is applied to simulated and

experimental ultrasonic data from a steel weld in Sections 5.3.3 and 5.3.2,

and the DORT imaging method is applied to this data in Section 5.4.
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Chapter 2

Kirchhoff model and analysis of

scattering matrices

2.1 Introduction

In this chapter a model based method is presented for tackling the inverse problem

of sizing cracks within an elastic solid. This method is derived from the Kirchhoff

model which is a high frequency approximation to the scattering of a linear elas-

tic wave from an ellipsoid within a homogeneous medium. This multi-frequency

method provides a formula which relates the crack size to the maximum eigenvalue

of the associated scattering matrix as extracted from the model.

2.2 Kirchoff model and scattering matrices

The Kirchhoff model is used to provide a high frequency approximation to the

scattering of a linear elastic wave from a crack in a homogeneous medium. The

signals scattered from a crack in the host material are then represented in the

frequency domain by scattering matrices, which are a function of the transmitted
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and received waves. Figure 2.1 shows a schematic of the model geometry, where the

ellipsoidal crack is lying in the plane x1 = 0 and the ultrasonic waves emanating

from the array lie in the plane x3 = 0. An analytical form for the scattering

amplitude can be derived by assuming that the flaw is ellipsoid (with axes lengths

a1, a2 and a3 as in Figure 2.1). To simulate a zero volume flaw (a crack) in the

x3 = 0 plane then the ellipsoidal axis a1 is set equal to zero. The flaw is positioned

so that its centre lies at the origin. The Kirchhoff approximation provides an

expression for the scattering amplitude of an ellipsoidal crack by a transmitted

pressure wave in a homogeneous elastic medium and is given by (equation (10.168),

[23])

AP ;β
n (eβ

i , eP
s ) = −

ia2a3e
P
sle

P
sne

P
sjCkpljD

β
p nk

2ρc2
1|(c1/cβ)eβ

i − eP
s |rP ;β

e

J1

(2π

λ
|(c1/cβ)eβ

i − eP
s |rP ;β

e

)

, (2.1)

where eβ
i (β = S, P where S is a shear wave and P is a pressure wave), eP

s are the

unit vectors in the transmitting and receiving direction of the ultrasonic wave and

c1 is the wavespeed of the pressure wave. The unit vector eP
r is in the direction of

the specular reflection from the crack; the specular reflection is in the direction of

the maximum amplitude reflected wave. The angle between the specular reflection

direction and the normal to the crack is equal to that between the direction of

the transmitted wave and the normal, as demonstrated in Figure 2.2. In addition,

a2, a3 are the other radii of the ellipsoid, cβ, (β = P, S) are the wave speeds for

pressure (P ) and shear waves (S), ρ is the material density, λ is the wavelength of

the transmitted pressure wave, Ckplj is the elastic modulus tensor. Also, J1 is the

Bessel function of the first kind of order 1, rP ;β
e is the effective radius of the crack

and

Dβ
p = dβ

ip +
∑

m=P,SV,SH

Rm;βdm
rp (2.2)
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where Rm;β are plane wave reflection co-efficients at the interface between the host

material and the crack and dm
ip (dm

rp respectively) is the pth component unit vector

in the direction of a transmitted wave of type m travelling in the ei direction

(specular reflected wave from the interface in the er direction respectively). In

equation (2.2) SV and SH are acronyms for shear vertical and shear horizontal

waves, these waves are not considered in this work.

Figure 2.1: A schematic of the geometry used to derive the scattering matrices
that arise in the Kirchhoff model (equation (2.7)) for a crack inclusion in an elastic
solid. Here 2a2 is the crack length, n is the normal to the crack, ei (er, es) is the
transmitted (receiving, specular) wave direction, θi(θs) is the angle measured in
an anticlockwise direction from the positive x1 axis of the transmitted (received)
wave and u1,u2 and u3 are unit vectors in the x1, x2 and x3 directions.

In an isotropic, homogeneous medium the elastic modulus tensor in equation

(2.1) reduces to

Ckplj = Lδkpδlj + µ(δklδpj + δkjδpl) (2.3)
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where L and µ are the Lamé co-efficients. Let

eq =
ei − es

|ei − es|
(2.4)

and u2,u3 be unit vectors along the x2, x3 axes respectively. Then the effective

radius of the crack is defined as

rP ;β
e =

√

a2
2(eq · u2)2 + a2

3(eq · u3)2 = a2|eq · u2| (2.5)

since ei and es are perpendicular to u3.

Here only pressure waves are considered, that is β = P in equation (2.1) and

therefore the direction of the displacement of the wave is in the same direction as

the transmitting/receiving direction, that is eip = dip and erp = drp. Substituting

this into equation (2.2) gives

Dp
p = eP

ip − eP
rp, (2.6)

where RP ;P = −1. When equations (2.3) and (2.6) are substituted into equation

(2.1) then it can be written as

An(ei; es) = −ia2a3esn(L((ei − er) · n) + 2µ((ei − er) · es)(es · n))

2ρc2|ei − es|re

J1

(2π

λ
|ei−es|re

)

.

(2.7)

Finally, substituting equation (2.5) into equation (2.7) gives

An(ei; es) = −ia3esn(L((ei − er) · n) + 2µ((ei − er) · es)(es · n))

2ρc2|(ei − es) · u2|
(2.8)

× J1

(2πa2

λ
|(ei − es) · u2|

)

.
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Incident wave direction

Specular reflection direction

Crack

Circular ultrasound 

array

Figure 2.2: A schematic showing the location of the unit vector in the specular
reflection direction, e

(n)
r , with respect to the unit vector in the incident direction,

e
(n)
i , on a limited aperture, circular array.

The transmitted and received wave directions can be defined at a discrete set of

values and if these completely surround the flaw it is called a full aperture. By

calculating the absolute value of the scattering amplitude given in equation (2.8)

for every possible pair of transmitting and receiving angles (at a fixed frequency)

a scattering matrix can be constructed. An example of a scattering matrix for a

full aperture, circular array is shown in Figure 2.3. The highest amplitudes in the

scattering matrix occur close to the specular reflection and are shown in Figure

2.3 in black.
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Figure 2.3: An example of a scattering matrix for a full aperture, circular array
where θs is the receiving angle and θi is the transmitting angle. Here the number
of elements N is 256, the depth of the flaw d is 50 mm and the crack length to
wavelength ratio, â = 1.

2.3 Full Matrix Capture data

Obtaining data using experimental test pieces with embedded flaws is extremely

costly, as the manufacture of such test pieces is very expensive and time consuming.

In the absence of such data, finite element simulations have been used in order to

develop and test methods for the non-destructive detection and characterisation
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of weld defects using ultrasound transducer arrays [60]. In particular, the explicit

time-domain code PZFlex (Weidlinger Associates, CA) has been used and the

experimentally measured heterogeneity of the weld, and defects of varying size,

position and orientation can be included, as can the effects of the transducer

array [61].

2.3.1 Finite element simulated data

A simulation which includes the microstructure of a steel weld was generated in

the work by G.Harvey et al. [60], the details of which are summarised here. In

order to run such simulations it is imperative to have knowledge of the internal

microstructure of these welds as the heterogeneous nature of the material has a

marked effect on the passage of elastic energy through it. To begin with, it is

important to have one experimental test piece that can be fully characterised in

this way. This test piece can then be used to validate the computer simulation by

comparing experimental and simulated data. This should always be done prior to

these simulations being expanded to incorporate a range of different flaws. Fortu-

nately, considerable effort has already been expended in this direction and a fully

characterised austenitic steel weld has been achieved using Electron Backscatter

Diffraction (EBSD) [62]. The resulting spatial resolution within the sample was

of the order of 40 µm for a 67 mm thick weld (see Figure 2.4). It is important to

note that, although the weld is comprised of a single anisotropic material, there are

boundaries around crystals within the weld which are a consequence of the weld-

ing process. In fact, the internal microstructure consists of a partitioning of the

weld area into a large set of sub-regions, each one of which has a different crystal

orientation. Within the finite element simulation each element is associated with

a crystal stiffness and orientation, and groups of contiguous elements associated
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Figure 2.4: The microstructure of the heterogeneous weld, where each colour is
associated with a different grain orientation and L1=67 mm and L2=128 mm.

with the same stiffness and orientation form a grain within the weld. In order

to attribute elastic stiffnesses to these regions a second experiment is necessary.

Here a thin slice of the material is taken to create a 2-D model and a series of

through-transmission ultrasonic velocity calculations are performed on each of the

different sub-regions. The simulation of the weld from [60] was used in this work,

in addition a zero volume crack was inserted into the PZFlex simulation geome-

try [61] in order to test the crack sizing algorithms. A schematic demonstrating

the set up is shown in Figure 2.4. A square grid was used within the simulation

and so the crack is represented by a thin rectangular void (no stiffness) and will

behave as a perfect reflector. In the forthcoming chapter, more finite element sim-

ulations are generated which include the weld microstructure and side drilled hole

inclusions rather than cracks. The simulation also included a 64 element ultrasonic
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array placed directly above the weld microstructure. The width of each element

was 1.5 mm, the pitch of the array was 2 mm and with N = 64 elements the

total array length (aperture) was 128 mm. A 1.5 MHz single cycle sinusoid was

transmitted by one element and the time domain echo received by all 64 elements

was recorded. Figure 2.5 shows typical signals recorded by the ultrasonic array

transducer within the simulation for one transmit/receive pair of array elements

when (a) the medium is homogeneous and (b) the medium is heterogeneous ( a

steel weld). These figures clearly show the effect of including the heterogeneous

weld microstructure within the simulation. In Figure 2.5 (a), there is an echo from

the crack at about 15 µs and an echo from the backwall at about 25 µs. However,

neither the reflection from the flaw or the backwall can be visually identified in the

analogous signal from the simulation containing the weld microstructure. These

parameters are summarised in Appendix C Table C.1. The particular transmitting

element was then systematically changed by moving along the array until the full

matrix of time domain data was captured, for a total of 64 unique simulations per

virtual inspection scenario. Full matrix capture (FMC) data is the name given to

this complete set of time domain signals recorded by the phased array controller,

Figure 2.6 shows a schematic of a typical FMC matrix. This simulated data will

be used in all forthcoming chapters to test the proposed methods. It is impor-

tant to note that this form of data collection using an ultrasonic array controller

is not yet the standard method for gathering data within industry. There exist

other types of data acquisition, for example focal law sequencing can be used to

generate a desired beam shape [63]. In addition to the simulated data containing

the microstructure of the weld, simulated data where the heterogeneity in the host

material was removed leaving an isotropic material was generated. This ability

to isolate the effects of the weld structure by switching it on or off is another
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Figure 2.5: Typical signals, as recorded by the ultrasonic array transducer in the
finite element simulations for (a) the homogeneous medium and (b) the hetero-
geneous medium (steel weld), where in each case a 2.5mm radius crack has been
included 50mm from the back wall. The other system parameters are given in
Appendix C, Table C.1.
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Figure 2.6: A schematic demonstrating Full Matrix Capture (FMC) data, where
the dimensions of the matrix are the transmitting ultrasonic array aperture angle,
θi, the receiving array aperture angle, θs and time t.

advantage of using simulations.

2.4 Approximation to a limited aperture ultra-

sonic array

The Kirchhoff model provides the response from a full aperture, circular array

which is shown by the dashed line in Figure 2.1. However, in this work the cir-

cular array is approximated by a discretised linear limited aperture array, as this

is what is used in practice. The approximation to a limited aperture array allows

the expression for the scattering matrices given by equation (2.8) to be parame-

terised. The scattering amplitude is converted into a scalar value, as recorded by

the ultrasonic transducer receiver, by taking the scalar product of the vector of
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components equation (2.8) with the direction of reception, es to give

A(ei; es) = −(L(ei − er) · n + 2µ((ei − er) · es)(es · n))

2ρc2|(ei − es) · u2|
J1

(2πa2

λ
|(ei − es) · u2|

)

(2.9)

where the scale factor ia3 has been dropped for simplicity. The unit vector in the

receiving direction for the nth element in the ultrasound array is given by

f(n)
s = di + qnj = e(n)

s |f(n)
s |, (2.10)

where d is the minimum distance between the flaw and the ultrasound array (it is

assumed here that the centre of the array is the closest point in the array to the

flaw),

qn =
△q

2
(N + 1 − 2n), (2.11)

N is the total number of elements in the ultrasound array and the periodicity of

the array elements (the pitch) is given by

△q =
l

N − 1
, (2.12)

where l is the array length (aperture), as shown in Figure 2.7.

Hence,

e(n)
s =

d
√

d2 + q2
n

i +
qn

√

d2 + q2
n

j =
√

1 − q̂2
ni + q̂nj. (2.13)

In the analysis below it is assumed that N is even and that the array elements

are evenly spaced (that is, the array pitch △q is a constant). The forthcoming

analysis is simplified if q̂n is linear as a function of n. So, to approximate qn as a

linear function, equation (2.11) is manipulated as follows:
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Figure 2.7: A schematic demonstrating the geometry of the linear ultrasound array.
The unit vector e

(n)
s is in the receiving direction for array element n on the array.

The array is of length l and the flaw is at a depth d from the array, △q gives the
pitch between the array elements.

q̂n =
qn

√

d2 + q2
n

=
(N + 1 − 2n)△q/2

√

d2 + (△q/2)2 (N + 1 − 2n)2

(2.14)

=
l

√

4d2 + l2(1 − h(n))2

N + 1 − 2n

N − 1
,
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where

h(n) =
2(n − 1)

N − 1
. (2.15)

The denominator in the expression for q̂n in equation (2.14) is manipulated

further to give

q̂n =
l

√

4d2 + l2 + l2(h2 − 2h)

N + 1 − 2n

N − 1
(2.16)

=
l√

4d2 + l2
N + 1 − 2n

N − 1

1
√

1 − l2(2h − h2)/(4d2 + l2)

=
l√

4d2 + l2
N + 1 − 2n

N − 1

1√
1 − α

where

α =
l2

4d2 + l2
(2h − h2). (2.17)

Since 0 ≤ h ≤ 2 for n = 1, ..., N then 0 ≤ 2h − h2 ≤ 1, and

0 <
l2

4d2 + l2
< 1, (2.18)

then α is small. The Taylor series approximation (1−α)−1/2 = 1− α/2 is applied

to equation (2.16) to approximate q̂n as

q̂n =
l√

4d2 + l2
N + 1 − 2n

N − 1

(

1 − α

2

)

+ O(α2) (2.19)

=
△y

2
(N + 1 − 2n)

(

1 − α

2

)

+ O(α2)

= yn

(

1 − α

2

)

+ O(α2) = yn + O(α),

where

△y =
l

(N − 1)
√

4d2 + l2
(2.20)
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Sign Element Index n yn

+ 1 △y(N − 1)/2
... 2 △y(N − 3)/2
...

...
...

... N − 1 −△y(N − 3)/2
- N −△y(N − 1)/2

Table 2.1: This table shows the relationship between the array index n and the
approximation to the coordinate yn (equation (2.21)).

and

yn =
△y

2
(N + 1 − 2n). (2.21)

The relationship between q̂n and yn is illustrated in Figure 2.4. The exact value,

10 20 30 40 50 60

-0.5

0.5

n

yn, q̂n

Figure 2.8: A plot comparing the exact j-component of the scattering direction
unit vector, q̂n (blue line) to the approximation, yn (red line) for typical parameter
values given in Table 2.1

n∗, where the error in the approximation is largest can be found by considering
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Figure 2.9: A schematic demonstrating the geometry of the exact array element
positions, qn (red dashes) from equation (2.11), the approximate array element po-
sitions, Yn (black dashes) from equation (2.22) and the approximate array elements
on the unit circle, yn (black dots) from equation (2.21).

the difference between qn and

Yn =
yn

√

1 − y2
n

d, (2.22)

which is the projection of the approximate array element position, yn, on the unit

circle onto the linear array at depth d. The schematic in Figure 2.9 demonstrates

the geometry of the exact array element positions, qn (red dashes), the approximate

array element positions, Yn (black dashes), and the approximate array element

positions, yn (black dots), on the unit circle. The difference between qn and Yn
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Figure 2.10: The difference between the exact array element positions, qn, and the
approximate array element positions, Yn as given by equation (2.22), for typical
parameters: N=64, l = 128mm and d = 50mm.

is plotted for typical values of N, l and d and is shown in Figure 2.10; this figure

shows numerically that the difference between the true array element positions qn

and the approximate positions Yn is of the order 10−2.

From equation (2.13) the approximate transmitting and receiving unit vectors

are therefore given by

e
(m)
i = −

√

1 − y2
mi − ymj (2.23)

and

e(n)
s =

√

1 − y2
ni + ynj. (2.24)

The schematics shown in Figures 2.11(a) and 2.11(b) demonstrate the positions

of e
(m)
i and e

(n)
s , respectively. By restricting attention to the case where the flaw

is orientated to lie along the x2-axis then the specular reflection is given by

e(m)
r =

√

1 − y2
mi − ymj, (2.25)
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(a) (b)

(c)

Figure 2.11: The position and direction of the transmitting (e
(n)
i ), receiving (e

(n)
s )

and reflecting vectors (e
(n)
r ), given by equations (2.23)-(2.25), for n = 1, ..., N .
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where the absolute value of the angle, |θ(n)
i |, between e

(n)
i and the i-direction

is equal to |θ(n)
r |, as demonstrated in Figure 2.2. The position of the specular

reflection vector directions are shown in Figure 2.11(c). Since the flaw lies on the

x2-axis (that is u2 = j and n=i) then

(e
(m)
i − e(m)

r ) · n = −2
√

1 − y2
m,

(e
(m)
i − e(m)

r ) · e(n)
s = −2

√

(1 − y2
m)(1 − y2

n),

and

(e
(m)
i − e(n)

s ) · u2 = −(ym + yn). (2.26)

Substituting these into equation (2.9) yields

A(ym, yn) =

√

1 − y2
m

ρc2|yn + ym|
(L + 2µ(1 − y2

n))J1

(

2πâ|yn + ym|
)

.
=

1

ρc2
Am,n (2.27)

where â = a2/λ and 2a2 is the crack length. Figure 2.12 shows the scattering

matrix given by equation (2.27) for a limited aperture array. In the next sec-

tion, a crack sizing method is developed which relates the maximum eigenvalue

to the length of the crack. The scattering matrix is used again in Chapter 4 to

develop another crack sizing method which uses the first minimum of the pulse

echo response to determine the length of the crack inclusion.

2.5 Crack sizing using the maximum eigenvalue

In this section the scattering matrix from the Kirchhoff model, discussed in Section

2.2, is used to develop a crack sizing algorithm. This algorithm uses the maxi-

mum eigenvalue from scattering matrices generated over a range of frequencies.
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Figure 2.12: An example of a scattering matrix for a limited aperture array which is
generated using equation (2.27). This shows a subsection of the scattering matrix
for a full aperture array as shown in Figure 2.3, here the array angle is limited.
Typical parameter values of N = 64, l = 128 mm and d = 50 mm were used to
generate this image.

Note that the corresponding maximum singular value will be used in Chapter 5

to develop a time-frequency domain detection method. In the present chapter

the maximum eigenvalue from the scattering matrices is approximated to allow

analytical insight into the effects of the system parameters on the crack sizing

capabilities of the method.

2.5.1 Toeplitz approximation to the scattering matrices

It is clear from empirical observations that there is a relationship between the size

of the crack and the form of the scattering matrix. It would therefore be advan-

tageous if an analytical approach could be developed to capture this correlation.

From the images of the scattering matrix in Figure 2.12 it can be seen that the

dominant values aggregate around the skew diagonal. There is a considerable body
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of research concerning Toeplitz matrices and in an effort to benefit from this body

of work the scattering matrix, A (given by equation (2.27)), will be approximated

by a Toeplitz matrix. First, the matrix A is transformed to AT via

AT (ym′ , yn) = A(ym, yn) where m′ = N − m + 1 (2.28)

so that the dominant values accumulate around the main diagonal. The trans-

formed scattering matrix, AT , is now in a suitable form and will be approximated

by a Toeplitz matrix. A Toeplitz matrix is of the form

Tn,n =



















t1 t2 t3 · · · · · · tn

t2 t1 t2
. . .

...

t3 t2
. . . . . . . . .

...

...
. . . . . . . . . t2 t3

...
. . . t2 t1 t2

tn · · · · · · t3 t2 t1



















(2.29)

and is fully determined using the entries from the first row, T1 = (t1, ..., tn). Here

the row where the maximum of AT (ym, yn) occurs will be used to create a Toeplitz

approximation, ĀT . This row is highlighted by the green squares in the original

scattering matrix, A, in Figure 2.13(a) and in the transformed matrix, AT , in

Figure 2.13(b). The Toeplitz matrix resulting from this matrix is shown in Figure

2.13(c), where all remaining entries in the row are filled with zeroes. The original

matrix, A, is used in the forthcoming analysis which proves firstly, which row the

maximum occurs in and secondly, that the Toeplitz approximation is justified.

This will be demonstrated by showing that all rows are approximately equal to

that where the maximum occurs. This maximum amplitude occurs on the specular
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Figure 2.13: The original scattering matrix, A (equation (2.27)), is shown in (a)
where the green squares highlight the section of the row which is used to construct
the Toeplitz approximation. This is the row where the maximum occurs at n =
m = N/2 + 1. The red dashed lines demonstrate the rows which are proved to be
approximately equal to the portion of the row where the maximum occurs (shown
by the green squares). The equivalent is highlighted in the transformed matrix, AT

(equation (2.28)), in (b), and (c) shows the Toeplitz matrix, ĀT (equation (2.32)),
constructed using the row where the maximum occurs.

31



reflection diagonal of the scattering matrix, as will be shown below. The specular

response is obtained when n = m (that is when m′ = N−m+1) within the matrix

A and in equation (2.27) the term

J1 (2πâ(yn + ym))

yn + ym

(2.30)

coincidentally obtains its maximum when yn +ym = 0. The prefactor to the Bessel

function in equation (2.27) is given by

√

1 − y2
m(L + 2µ(1 − y2

n′)). (2.31)

Since 0 < y2
m, y2

n < 1 this is maximised when ym = yn = 0 and, since the array is

centred on the x1-axis, this means that ym = yn = 0 corresponds to the centre of

the array. If N is odd then the central element is given by n = m = (N + 1)/2

and if N is even then the smallest value is ym = yn = −△y/2 which occurs at

n = m = N/2 + 1. In what follows the focus will be on the case where N is

even and the steps in the analysis that follows are virtually identical for the case

where N is odd. Substituting ym = −△y/2 into equation (2.27) gives the first

N/2 entries in the first row of the Toeplitz matrix ĀT as

ĀT (yp) =
2
√

1 −△y2/4(L + 2µ(1 − y2
p))

ρc2(2yp −△y)
J1

(

2πâ

(

yp −
△y

2

))

, (2.32)

where p = N/2+1, ..., N and the absolute value can be removed as yp −△y/2 < 0

and J1(2πâ(yp − △y/2)) < 0. This row is highlighted in the scattering matrix

shown in Figure 2.13. The remaining terms in the first row of ĀT are set equal to

zero, that is (ĀT )j = 0, j = N/2 + 1, ..., N . The approximation of the scattering
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matrix by a Toeplitz matrix is justified here by showing that

∣
∣
∣
∣

A(yN/2+1, yn) − A(ym, yn−m+N/2+1)

A(yN/2+1, yn)

∣
∣
∣
∣
= O(ǫ), ∀m,n = N/2 + 1, ..., N, (2.33)

where 0 < ǫ ≪ 1 is of the order of the array aperture size squared (typically

ǫ ∼ O(10−2)). The aim here is to show that each row of N/2 elements start-

ing at the specular reflection diagonal is approximately equal to the row of N/2

elements where the maximum occurs, A(yN/2+1, yn), and so justify the Toeplitz

approximation. From equation (2.21)

yn−m+N/2+1 + ym =
△y

2
(N − 2n) (2.34)

and

yN/2+1 + yn = yn − △y

2
=

△y

2
(N − 2n). (2.35)

Hence, from equation (2.27)

AN/2+1,n =
2
√

1 − (△y)2/4

ρc2△y(2n − N)

(

L + 2µ

(

1 − (△y)2

4
(N − 2n + 1)2

))

J1(πâ△y(2n−N)),

(2.36)

and

Am,n−m+N/2+1 =
2
√

1 − ((△y)2/4)(N − 2m + 1)2

ρc2△y(2n − N)

×
[

L + 2µ

(

1 − △y2

4

(
N

2
− 2n + 2m − 1

)2
)]

J1(πâ△y(2n − N))

(2.37)
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which gives

AN/2+1,n − Am,n−m+N/2+1 =
J1 (πâ△y(2n − N))

ρc2△y(2n − N)

[

2

√

1 − (△y)2

4

×
(

L + 2µ

(

1 − (△y)2

4
(N − 2n + 1)2

))

− 2

√

1 − (△y)2

4
(N − 2m + 1)2

×
(

L + 2µ

(

1 − (△y)2

4

(
N

2
− 2n + 2m − 1

)2
))]

. (2.38)

If we denote

χ = L + 2µ

(

1 − (△y)2

4
(N − 2n + 1)2

)

(2.39)

then equation (2.38) becomes

AN/2+1,n − Am,n−m+N/2+1 =
J1(πâ△y(2n − N))

ρc2△y(2n − N)

(

2

√

1 − (△y)2

4
χ

− 2

√

1 − (△y)2

4
(N − 2m + 1)2

(

χ − µ(△y)2

2

((

N

2
− 2m + 2

)2

− 2

(
N

2
− 2m + 2

)

(N − 2n + 1)

)))

. (2.40)

Now since m ∈ [N/2 + 1, N ] then the maximum that |(△y)/2(N − 2m + 1)| can

achieve is when m = N and so this is bounded by

(

−△y(N − 1)

2

)2

=
l2

4(4d2 + l2)
= ǫ, (2.41)

where 0 < ǫ ≪ 1 for small apertures, as demonstrated in Figure 2.14. This then

allows the Taylor series expansion

√

1 −
(△y

2
(N − 2m + 1)

)2

= 1 − ǫ

2
+ O(ǫ2). (2.42)
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Figure 2.14: The small parameter ǫ given by equation (2.41) is used in the justifi-
cation of the Toeplitz approximation, equation (2.32), to the scattering matrices.
This plot shows that ǫ is small for a flaw at (a) a fixed depth, d = 50 mm, as the
length of the array l(m) is varied and (b) a fixed array length, l =128 mm, as the
depth of the flaw, d(m), is varied.

In addition, for m = N and n = N/2 + 1 the following approximation is made

within equation (2.40) to give

(△y)2

2

((
N

2
− 2m + 1

)2

− 2

(
N

2
− 2m + 2

)

(N − 2n + 1)

)

=
(△y)2

2

((
3N

2
− 1

)2

− 2

(
3N

2
− 2

))

=
9

2

(△y)2

4

(

N2 − 8

3
N +

20

9

)

=≈ 9

2
O(ǫ), (2.43)

for large N (as the N2 term dominates) and from equation (2.41)

(△y)2

4
N2 = O(ǫ). (2.44)
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Substituting the approximations given by equations (2.42) and (2.43) into equation

(2.40) gives

AN/2+1,n − Am,n−m+N/2+1 =
J1(πâ△y(2n − N))

ρc2△y(2n − N)

(

2χ − 2
(

1 − ǫ

2

)

(χ + µǫ)
)

=
2J1(2πâ△y(N/2 + 1 − n))

ρc2△y(2n − N − 2)
(ǫ(χ + µǫ − 2µ)) (2.45)

where
√

1 − (△y)2/4 ≈ 1 since 0 < △y << ǫ. In order to obtain the relative

error, equation (2.45) is divided by

AN/2+1,n =
2J1(πâ△y(2n − N))

ρc2△y(2n − N)
χ (2.46)

to give

∣
∣
∣
∣

AN/2+1,n − Am,n+m−N/2+1

AN/2+1,n

∣
∣
∣
∣
= ǫ − 2µ

χ
ǫ +

µ

χ
ǫ2 = O(ǫ)

(2.47)

since χ = O(µ) from equation (2.39) and therefore, µ/χ ≈ 1. Hence, the approxi-

mation of the limited aperture scattering matrix by a Toeplitz matrix is vindicated

here.

2.5.2 An approximation for the maximum eigenvalue of

the Toeplitz form of the scattering matrix

In the forthcoming section an approximation which relates the length of a crack

in terms of the wavelength, â, to the maximum eigenvalue σmax of the Toeplitz

approximation to the scattering matrix will be derived. This maximum eigenvalue
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is approximated using an upper bound, σB, which is given by [64]

σB = (ĀT )1 · w (2.48)

where (ĀT )1 = ((ĀT )1,1, |(ĀT )1,2|, ..., |(ĀT )1,N |), w = (1, w2, ...wN) and

wk(N) = 2 cos

(

π
⌊

N−1
k−1

⌋
+ 2

)

. (2.49)

where ⌊.⌋ denotes the floor function. The first row of the Toeplitz matrix, ĀT (yp),

is given by equation (2.32) and when substituted into equation (2.48) gives

σB = ĀT (yN/2+1) +
N∑

t=N/2+2

|AT (yt)|wt

= ĀT (yN/2+1) +
N∑

t=N/2+2

Ft(â)
J1 (2πâ (yt −△y/2))

2πâ (yt −△y/2)
wt, (2.50)

where

wt(N) = 2 cos

(

π
⌊

2(N−1)
2t−2−N

⌋
+ 2

)

, (2.51)

with k = t − N/2 and the prefactor is given by

Ft(â) =
2πâ

√

1 − (△y)2/4

ρc2
(L + 2µ(1 − y2

t )). (2.52)

The approximation, σB (green line), given by equation (2.50) is compared to the

numerically calculated eigenvalue, σmax (blue line), in Figure 2.15 as â is varied

and where the array length and the flaw depth are fixed at l = 128 mm and d = 50

mm. It can be seen that not only is the Toeplitz approximation valid but so also is

the use of the upper bound as an approximation to the largest eigenvalue. In order

37



0.2 0.4 0.6 0.8 1.0 1.2 1.4

20

40

60

80

â
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Figure 2.15: The maximum eigenvalue, σmax, as a function of â from the scattering
matrices, given by equation (2.27) (blue line) and the upper bound approximation
to the maximum eigenvalue, σB given by equation (2.50) (green line) from the
Toeplitz approximation to the scattering matrices. The array length and the flaw
depth are fixed at l = 128 mm and d = 50 mm.

to view the explicit dependency of σB on â it is necessary to make approximations

to the expression within the summation in equation (2.50). The Bessel function

within equation (2.50) is approximated by

J1 (2πâ (yt −△y/2))

2πâ (yt −△y/2)
=







f
(1)
t (â) if N/2 + 2 ≤ t ≤ t∗

f
(2)
t (â) if t∗ + 1 ≤ t ≤ N
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where the approximation for small arguments [65] is used to obtain

f
(1)
t (t, â) =

f̄
(1)
t

︷ ︸︸ ︷

1

2

(

1 − 1

4

(

πâ

(

yt −
△y

2

))2
)

+O
(

1

384

(

πâ

(

yt −
△y

2

))4
)

(2.53)

and for large arguments [65]

f
(2)
t (t, â) =

f̄
(2)
t

︷ ︸︸ ︷

1

2π2

(

â

(

yt −
△y

2

))− 3
2

cos
(

2πâ

(

yt −
△y

2

)

− 3π

4

)

(2.54)

+ O
(

3

24π3
sin

(

â

(

yt −
△y

2

)

− 3π

4

)(

â

(

yt −
△y

2

))− 5
2

)

.

The index t∗ determines when the argument of the Bessel function converts from

small values to large values. An expression for t∗ is determined in section 2.5.2.1

and is given in terms of the system parameters and â. This approximation to the

Bessel function is shown in Figure 2.16, where it can be seen that the approxima-

tion is valid. Equation (2.53) is used to approximate

ĀT (yN/2+1) = ĀT

(

−△y

2

)

= FN/2+1(â) =
2âπ

√

1 − (△y)2/4 (L + 2µ (1 − (△y)2/4))

ρc2

(2.55)

in equation (2.50). The approximation to equation (2.50) is split into two summa-

tions and is therefore given by

σB = FN/2+1(â) +
t∗∑

t=N/2+1

Ft(â)
¯

f
(1)
t (â)wt(N) +

N∑

t=t∗+1

Ft(â)
¯

f
(2)
t (â)wt(N)

+ O (max{e1, e2}) (2.56)
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where

e1 =
π4â4

384

t∗∑

t=N/2+1

(

yt −
△y

2

)4

wt(N)Ft(â) (2.57)

and

e2 =
3

24π3

N∑

t=t∗+1

(

â

(

yt −
△y

2

))− 5
2

sin
(

2πâ

(

yt −
△y

2

)

− 3π

4

)

Ft(â)wt(N).

(2.58)

As these error functions are monotonically increasing in t then, by taking t = t∗

for all t, the following upper bound to the error can be derived

e1 =
â4

24

(

yt∗ −
△y

2

)4

wt∗(N)Ft∗(â)(t∗ − N/2) (2.59)

and similarly setting t = N for all t gives the upper bound

e2 =
3

24π3

(

â

(

yN − △y

2

))− 5
2

sin
(

2πâ

(

yN − △y

2

)

− 3π

4

)

FN(â)wN(N)(N − t∗).

(2.60)

Further approximations are applied to equation (2.54) to allow σB to be ex-

pressed in terms of a polynomial in t. This will be useful later where the aim is to

extract the parameter â in order to obtain an explicit expression which relates σB

to â. Let

f̄
(2)
t (â) = s

(1)
t (â)s

(2)
t (â), (2.61)

where

s
(1)
t (t, â) =

1

2π2

( 1

â (yt −△y/2)

) 3
2

=
1

π2

(

2
1

â△y(N − 2t)

) 3
2
, (2.62)
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Figure 2.16: The approximation to the Bessel function
J1

(
2πâ

(
yt − △y

2

))
/(2πâ

(
yt − △y

2

)
) (blue line) for small arguments, f̄

(1)
t ,

(red line) given in equation (2.53) and for large arguments, f̄
(2)
t , (green line) given

in equation (2.54), for typical system parameter values: d=50 mm, N=64, l=128
mm and â = 1.

and

s
(2)
t (â) = cos

(

2πâ

(

yt −
△y

2

)

− 3π

4

)

= cos
(

πâ△y(N − 2t) − 3π

4

)

. (2.63)

The Taylor series approximation of s1 around the point t = m = (t∗ + N)/2 (the

midpoint between t∗ and N) is given by

s
(1)
t (â,m) =

s̄
(1)
t

︷ ︸︸ ︷

1

2π2

(
1

â△y(N − 2m)

)3/2 (

1 +
3

N − 2m
(t − m)

)

+ O
(

15â2(△y)2

(
1

â△y(N − 2m)

)7/2

(t − m)2

)

(2.64)
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and similarly

s
(2)
t (â,m) = cos

(

πâ△y(N − 2t) − 3π

4

)
(

1 − 2
(

âπ△y(t − m)
)2

)

+ sin
(

πâ△y(N − 2t) − 3π

4

)
(

−2âπ△y(t − m) +
4

3

(

âπ△y(t − m)
)3

)

+ O
(

2

3
(πâ△y)4 (t − m)4 cos

(

πâ△y(N − 2t) − 3π

4

))

= s̄
(2)
t + O

(
2

3
(πâ△y)4 (t − m)4 cos

(

πâ△y(N − 2t) − 3π

4

))

. (2.65)

This gives the approximation

f̄
(2)
t (â,m) = s̄

(1)
t s̄

(2)
t + O(max{e3, e4}), (2.66)

where

e3 = O
(

s̄
(2)
t (â,m)Ft(â)wt(N)15â2(△y)2

(
1

â△y(N − 2m)

)7/2

(t − m)2

)

(2.67)

and

e4 = O
(

s̄
(1)
t (â,m)Ft(â)wt(N)

2

3
(πâ△y)4 (t − m)4 cos

(

πâ△y(N − 2t) − 3π

4

))

.

(2.68)

Figure 2.17 compares the Taylor series approximation given by equation (2.66)

(orange line) to f
(2)
t in equation (2.54) (green line) for typical parameter values.

Substituting equations (2.64) and (2.65) into equation (2.56) gives

σB = FN/2+1(â) +
t∗∑

t=p+1

[

Ft(â)f̄
(1)
t wt(N)

]

+
N∑

t=t∗

[

Ft(â)s̄
(1)
t (t, â,m)s̄

(2)
t (t, â,m)wt(N)

]

+ O (max{e1, e2, e3, e4}) . (2.69)
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Finally, wt given by equation (2.51) is approximated by a linear function. First,
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Figure 2.17: The approximation to the Bessel function
J1

(
2πâ

(
yt − △y

2

))
/(2πâ

(
yt − △y

2

)
) (blue line) for small arguments, f

(1)
t ,

(red line) given in equation (2.53), for large arguments, f
(2)
t , (green line) given in

equation (2.54), and the Taylor series approximation to f
(2)
t , (orange line) given in

equation (2.66) for typical system parameter values: d=50mm, N=64, l=128mm
and â = 1.

the floor function within the cosine in equation (2.49) is dropped to give

wt = 2 cos

(

π
2(N−1)
2t−N−2

+ 2

)

= 2 cos

(
π(2t − 2 − N)

2(2t − 3)

)

. (2.70)

To justify the removal of the floor function it necessary to show that

cos (α1) − cos (α2) = ǫ, (2.71)
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for 0 < ǫ ≪ 1, where

α1 =
π

2(N − 1)/(2t − 2 − N) + 2
and α2 =

π

2(N − 1)/(2t − 2 − N) + 3
,

(2.72)

since the maximum error that occurs with the floor function is 1. The range of t

is t = N/2 + 2, ..., N which gives

2(N − 1)

2t − 2 − N
= N − 1,

N − 1

2
, ...,

2(N − 1)

N − 2
≈ N − 1,

N − 1

2
, ..., 2 (2.73)

for large N and so, the ranges of α1 and α2 are

α1 =
π

N + 1
, ...,

π

4
(2.74)

and

α2 =
π

N + 2
, ...,

π

5
, (2.75)

and therefore, 0 < α1, α2 < π/2. The derivative of cos(αi) is maximised at π/2

and minimised at 0 and therefore the maximum difference between cos(α1) and

cos(α2) occurs when t = N and is such that

ǫ = cos
(π

4

)

− cos
(π

5

)

= O(10−1). (2.76)

The function wt in equation (2.70) is approximated by a Taylor series about 3N/4
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(the midpoint in the range t = N/2 + 1 to t = N) to give

wt(N) =

w̄t(N)
︷ ︸︸ ︷

2 cos

(
π(N − 4)

6(N − 2)

)

− 8π(N − 1) (t − 3N/4)

9(N − 2)2
sin

(
π(N − 4)

6(N − 2)

)

+ O
(

2

(

t − 3N

4

)2 (
8π(N − 1)

27(N − 2)3

) (

2 sin

(
π(N − 4)

6(N − 2)

)

− π2(N − 1)

3(N − 2)
cos

(
π(N − 4)

6(N − 2)

)))

. (2.77)

This is substituted into equation (2.78) to give

σB = FN/2+1(â) +
t∗∑

t=N/2+2

Ft(â)f̄
(1)
t w̄t(N) +

N∑

t=t∗

Ft(â)s̄
(1)
t (â,m)s̄

(2)
t (â,m)w̄t(N)

+ O (max{e1, e2, e3, e4, e5, e6}) (2.78)

where

e5 = O
(

2

(

t − 3N

4

)2 (
8π(N − 1)

27(N − 2)3

) (

2 sin

(
π(N − 4)

6(N − 2)

)

− π2(N − 1)

3(N − 2)
cos

(
π(N − 4)

6(N − 2)

))

s̄
(1)
t (â,m)Ft(â)s̄

(2)
t (â,m)(N − t)

)

(2.79)

and

e6 = O
(

2

(

t − 3N

4

)2 (
8π(N − 1)

27(N − 2)3

) (

2 sin

(
π(N − 4)

6(N − 2)

)

− π2(N − 1)

3(N − 2)
cos

(
π(N − 4)

6(N − 2)

))

f̄
(1)
t (â)Ft(â)(t − N/2)

)

. (2.80)

The expressions within each summation in equation (2.78) are polynomials in t
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which allows σB to be expressed in the following form

σB(â) = Ââ +
6∑

l=1

S
(1)
l (â)bl(â) +

8∑

l=1

S
(2)
l (â)dl(â), (2.81)

where

Â =
π
√

1 − (△y)2/4)(L + 2µ (1 − (△y)2/4))

ρc2
, (2.82)

S
(1)
l (â) =

t∗∑

t=N/2+2

tl−1, S
(2)
l (â) =

N∑

t=t∗+1

tl−1. (2.83)

The coefficients of the terms in the polynomial, tl−1, given by bl and dl are functions

of the crack radius over the wavelength, â, and are defined later to show the

dependency on â explicitly. The limits on the summation given in equation (2.83)

involve t∗ and it will be shown later that t∗ is a function of â. Therefore, to derive

an equation where the dependency on â is explicit it is necessary to rewrite these

summations so that t∗ does not appear as a limit. A closed form expression for

the sum to n terms of tp is given by

n∑

t=0

tp =
(n + 1)p+1

p + 1
+

p
∑

k=1

Bk

p − k + 1

(
p

k

)

(n + 1)p−k+1 (2.84)

where Bk is the kth Bernoulli number. In equation (2.84) it can be seen that

the limit, n, on the summation on the left hand side is no longer a limit on the

summation on the right hand side. This means that n can be a real number,

providing a smooth differentiable function. This is important here because t∗

is a function of â and the system parameters (l, d,N). In order to analyse this

expression in the forthcoming sections it is necessary to have an explicit function

in terms of â, l, d and N , as the final form of σB, will be differentiated to assess the

sensitivity of the method presented. Therefore, the function S
(1)
l (â) is expressed
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in the form

S
(1)
l (â) =

(t∗ + 1)l

l
+

l∑

k=1

Bk

l − k

(
l − 1

k

)

(t∗ + 1)l−k − (N/2 + 2)l

l

−
l∑

k=1

Bk

l − k

(
l − 1

k

) (
N

2
+ 2

)l−k

(2.85)

and

S
(2)
l (â) =

(N + 1)l

l
+

l∑

k=1

Bk

l − k

(
l − 1

k

)

(N + 1)l−k − (t∗ + 1)l

l

−
l∑

k=1

Bk

l − k

(
l − 1

k

)

(t∗ + 1)l−k (2.86)

using equation (2.84). The coefficients bl are expressed in terms of a polynomial

function in â, as follows:

bl(â) = b
(1)
l â + b

(2)
l â3, (2.87)

where b
(1)
l and b

(2)
l are functions of the number of elements in the array, N , △y,

Lamé coefficients L and µ, wave speed c and material density ρ and are given

in Appendix A. The dependency on â is extracted from the first summation in

equation (2.81) to give

6∑

l=1

S
(1)
l (â)bl(â) =

6∑

l=1

S
(1)
l (â)(b

(1)
l â + b

(2)
l â3)âŜ1(â) + â3Ŝ2(â), (2.88)

where

Ŝ1(â) =
6∑

l=1

S
(1)
l (â)b

(1)
l and Ŝ2(â) =

6∑

l=1

S
(1)
l (â)b

(2)
l . (2.89)
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The coefficients dl are extracted from equation (2.78) and are of the form

dl(â) = B(â)

(

((d
(0)
l + d

(1)
l â + d

(2)
l â2 + d

(3)
l â3 + d

(4)
l â4) cos(p(â))

+(d
(5)
l + d

(6)
l â + d

(7)
l â2 + d

(8)
l â3 + d

(9)
l â4) sin(p(â))

)

, (2.90)

where

B(â) =

(
1

πâ△y(2N − 2t∗ − 3)

)5/2

, (2.91)

and

p(â) =
π

4
+ âπ△yt∗. (2.92)

The second summation in the expression for σB, equation (2.81), can now be

expressed in the form

8∑

l=1

S
(2)
l (â)dl(â) = B

8∑

l=1

S
(2)
l (â)

(

(d
(0)
l + âd

(1)
l + â2d

(2)
l + â3d

(3)
l + â4d

(4)
l ) cos(p(â))

+ (d
(5)
l + âd

(6)
l + â2d

(7)
l + â3d

(8)
l + â4d

(9)
l ) sin(p(â))

)

= Ŝ3(â) cos(p(â)) + Ŝ4(â) sin(p(â)) (2.93)

with

Ŝ3(â) = B(â)(D0 + D1â + D2â
2 + D3â

3 + D4â
4) = B(â)

4∑

k=0

Dk(â)âk (2.94)

and

Ŝ4(â) = B(â)(D5 + D6â + D7â
2 + D8â

3 + D9â
4) = B(â)

9∑

k=5

Dk(â)âk−5, (2.95)
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where

Dj(â) =
8∑

l=1

S
(2)
l (â)d

(j)
l . (2.96)

The terms d
(i)
l where i = 1, ..., 10 and l = 1, ..., 6 are independent of â and again are

functions of the system parameters and are given in Appendix A. The expression

in equation (2.93) is finally written in the form

8∑

l=1

S
(2)
l (â)dl(â) = Q(â) cos(p(â) − φ(â)) (2.97)

where

φ(â) = tan−1

(

Ŝ4(â)

Ŝ3(â)

)

= tan−1

(
D6 + D7â + D8â

2 + D9â
3 + D10â

4

D1 + D2â + D3â2 + D4â3 + D5â4

)

(2.98)

and

Q(â) =

√

Ŝ3(â)2 + Ŝ4(â)2

= B(â)





(
4∑

k=0

Dk(â)âk

)2

+

(
9∑

k=5

Dk(â)âk−5

)2




1/2

= B(â)(D2
1 + D2

6 + (2D1D2 + 2D6D7)â + (D2
2 + 2D1D3 + D2

7 + 2D6D8)â
2

+ (2D3D2 + 2D1D4 + 2D7D8 + 2D6D9)â
3 + (D2

3 + 2D2D4 + 2D1D5

+ 2D10D6 + D2
8 + 2D7D9)â

4 + (2D3D4 + 2D2D5 + 2D10D7 + 2D8D9)â
5

+ (D2
4 + 2D3D5 + 2D10D8 + D2

9)â
6 + (2D4D5 + 2D10D9)â

7 + (D2
10 + D2

5)â
8)1/2.

(2.99)

Finally, the approximation to the maximum eigenvalue, σB, from the scattering

49



0.2 0.4 0.6 0.8 1.0 1.2 1.4

20

40

60

80

â
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Figure 2.18: The maximum eigenvalue as a function of â from the scattering ma-
trices given by equation (2.27) (Blue line), the upper bound to the maximum
eigenvalue from the Toeplitz approximation to a scattering matrix given by equa-
tion (2.50) (Green line) and the final approximation, equation (2.100) (Red line).

matrix, A, defined by equation (2.27) is

σB(â) = (Â + Ŝ1(â))â + Ŝ2(â)â3 + Q(â) cos(p(â) − φ(â))

+O (max{e1, e2, e3, e4, e5, e6}) (2.100)

after equations (2.88) and (2.97) are substituted into equation (2.81). If t∗ > N

then σB(â) is reduced to to give

σB(â) = (Â1 + Ŝ1(â))â + Ŝ2(â)â3 + O (max{e1, e6}) (2.101)

using only equation (2.88). The final approximation for σB given by equation

50



(2.100) is shown in Figure 2.18 (red line). This shows a good comparison between

the approximation given by σB to the true eigenvalue from the Kirchhoff model.

2.5.2.1 Determining the transition parameter t∗

In section 2.5.2, the Bessel function in equation (2.50) is approximated by two

expansions, one for small arguments and one for large arguments, as given by

equations (2.53) and (2.54). The parameter t∗ is the index which determines when

the argument transitions from small to large. If we denote the argument in the

Bessel function by T then at t = t∗

T = 2πâ

(△y

2
(N − 2t∗)

)

(2.102)

from equation (2.21). Rearranging gives

t∗(â) =
N

2
− T

2πâ△y
. (2.103)

The value of T needs to be determined in order to have an explicit expression

for t∗ in terms of â and the system parameters. The higher order terms from the

approximations in equations (2.53) and (2.54) are used to find a suitable numerical

value for T . These are given by

E1(t, â) =
∣
∣
∣

1

384

(

πâ

(

yt −
△y

2

))4∣
∣
∣ (2.104)

and

E2(t, â) =

∣
∣
∣
∣
∣

3

24π2
sin

(

2πâ

(

yt −
△y

2

)

− 3π

4

)(

2πâ

(

yt −
△y

2

))− 5
2

∣
∣
∣
∣
∣
. (2.105)

A function t̂∗ is introduced and is taken to be the array element index, n, closest
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Ultrasonic Transducer Array Parameters Value Units
Number of elements 64 -
Pitch 2 mm
Depth of flaw 50 mm
Array Length 128 mm

Table 2.2: Typical system parameters.

to the point of intersection of the functions E1(t, â) and E2(t, â), that is

t̂∗(â) = max
E1(t,â)>E2(t,â)

t if t ∈ [N/2 + 2, N ]. (2.106)

The error functions given in equations (2.104) and (2.105) are plotted in Figure

2.19 for typical parameter values and t̂∗ is shown to be the point of intersection

at t̂∗ = 46. The value T in equation (2.102) is chosen to minimise the difference

between t̂∗ in equation (2.106) and t∗ in equation (2.103) and is given by T = 2.1.

Figure 2.20 shows an excellent agreement between the plot of t∗(â) (red line) where

T = 2.1 and t̂∗(â) (black line). This plot also shows that t̂∗(â) = N for â < 0.45

for these particular parameter values, and this means that for â < 0.45 only the

small argument approximation to the Bessel function is used.

2.6 Conclusions

In this chapter, equation (2.100) which relates the maximum eigenvalue from a

scattering matrix to the length of a crack within an elastic solid was presented.

This formula shows that there is a one to one relationship between the two and can

be used to tackle the inverse problem of sizing a crack in an elastic solid given the

ultrasonic array output data. The Kirchhoff model was used to approximate the

scattering matrices which arise when a linear elastic wave encounters a crack within
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Figure 2.19: The error functions for small arguments E1(t, â) (dashed line), equa-
tion (2.104), and large arguments E2(t, â) (solid line), equation (2.105) where
typical system parameters d=50 mm, l=128 mm, N=64 and â=1. The red arrow
shows the point of intersection and t̂∗ = 46.

a homogeneous medium. The scattering matrix from the model was approximated

by a Toeplitz matrix in order to make analytical progress. The metric used to

relate the size of the crack inclusion to a scattering matrix was the maximum

eigenvalue. An upper bound to the maximum eigenvalue from a Toeplitz matrix

was used to derive an explicit relationship between the maximum eigenvalue and

the crack length over the wavelength. Having established this relationship, the

next chapter considers the use of it to drive the inverse problem of objectively

sizing a crack from FMC ultrasonic data.

53



0.2 0.4 0.6 0.8 1.0 1.2 1.4

45

50

55

60

â
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Figure 2.20: The functions t∗(â) (red line) and t̂∗(â) (black line) given by equations
(2.103) and (2.106) are plotted as a function of â for the typical parameter values
given by Table 2.2.
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Chapter 3

Sensitivity Analysis

3.1 Introduction

In this chapter, the multi-frequency method for sizing cracks in a homogeneous

medium presented in Chapter 2 is analysed numerically and its sensitivity to the

system parameters is assessed. The system parameters are varied within the ex-

pression that was derived to approximate the maximum eigenvalue of the scattering

matrix. This can be used to determine the sensitivity of the associated crack sizing

method to these parameters and to confirm that the approximation to the true

maximum eigenvalue is still reasonable as the parameters are varied. Furthermore,

the advantage of deriving an analytical approximation, σB, to the maximum eigen-

value is that the derivative can be explicitly determined and hence used to examine

the sensitivity of the maximum eigenvalue to errors in the system parameters. Fi-

nally, the method for recovering the crack size is applied to simulated data from

finite element calculations.
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3.2 The effects of varying the system parameters

on the maximum eigenvalue

In this section, each of the system parameters (N , the number of array elements,

d, depth of the flaw, and l, length of the array) are varied in turn. The effects

observed are explained by investigating the changes in the scattering matrices and

how these affect the Toeplitz approximation.

3.2.1 Varying the depth of the flaw, d

The depth of the flaw, d, is varied in the expression for the approximation to

the maximum eigenvalue, σB, given by equations (2.100) and (2.103), and in the

original expression from the Kirchoff model in equation (2.27). The effects of

varying, d, are shown in Figure 3.1(a), where the dashed lines show σB, the ap-

proximation to the maximum eigenvalue from a scattering matrix given in equation

(2.100), and the solid lines show σK , the numerically calculated maximum eigen-

value from a scattering matrix which is via equation (2.27), as â is varied for

d = {30, 50, 70, 90, 110} (mm). This figure demonstrates an excellent correlation

between the model and the approximation for each value of d. It also shows that,

as the depth increases, the maximum eigenvalue (from both approximation, σB,

and the original model, σK) associated with each â increases. Figure 3.2(a) shows

the plot of the maximum eigenvalue, σB, as the depth, d is varied between 10mm

and 110mm and where l = 128 mm and N = 64. This plot confirms that as d

increases the maximum eigenvalue increases. This is counter-intuitive as it im-

plies that the sensitivity of the method derived in Chapter 1 increases as the flaw

moves further away from the ultrasonic array. As the depth of the flaw is increased

the angle which the array makes with the flaw decreases, this is demonstrated in
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Figure 3.1: These plots show the approximation to the largest eigenvalue from a
scattering matrix, σB (dashed lines), equation (2.100), and the numerically calcu-
lated eigenvalue from the scattering matrix, σK (solid lines), equation (2.27), as
the crack radius over wavelength, â, is varied where (a) no prefactor is included and
(b) a prefactor to account for loss of amplitude with depth 1√

2d
multiplies equation

(2.100). Each different coloured pair of lines shows this plot for increasing depths
of crack from the array; the flaw depth d is 30 mm (purple), 50 mm (red), 7 0mm
(yellow), 90mm (green) and 110 mm (blue). The other system parameters are
fixed with the number of array elements, N = 64 and the array aperture, l = 128
mm.

the schematic in Figure 3.3 where θ1 > θ2 > θ3. This decrease in the array angle

causes a reduction in the size of the window around the main lobe in a scattering

matrix, as shown in Figure 3.4. This results in a higher proportion of large values

in the scattering matrix and consequently the associated maximum eigenvalue is

higher. Note that there is no prefactor incorporated into the Kirchhoff model,

equation (2.27), to account for the decrease in amplitude caused by an increase

in the depth of the crack. Figure 3.5(a) shows the pulse echo response from the

scattering matrices as the depth of the flaw is increased and where N = 64, l = 128

mm and â = 1. It is clear that the amplitudes are not varying as a function of
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Figure 3.2: The maximum eigenvalue, σB, is plotted here as the depth d (mm) is
varied where (a) no prefactor is included and equation (2.100) is used and (b) a
prefactor is included to account for change in amplitude due to increase in depth
and equation (3.6) is used. The other parameters are fixed here with l = 128mm,
N = 64 and â = 1.

depth.

The prefactor to account for the change in the depth of the flaw is given by

A(rm) =
eikrm

rm

, (3.1)

where

rm =
√

x2
m + d2 (3.2)

and Figure 3.6 shows the geometry of xm, d and rm. The absolute values of the

entries in the scattering matrix are used and so the decrease in amplitude, as depth

varies, is given by

|A(rm)| =
1

rm

=
1

x2
m + d2

. (3.3)

Since d = O(10−2) and xm = O(10−2) then d ≈ xm and so, |A(r)| is approximated

58



Figure 3.3: This schematic demonstrates that as the depth of the flaw is increased,
where θ1 < θ2 < θ3, the angle made with the array decreases.

by

|A(d)| =
1√
2d

. (3.4)

The expression for the scattering coefficients given in equation (2.27) is multiplied

by |A(d)| in equation (3.4) to give

A(ym, yn) =

√

1 − y2
m√

2dρc2|ym + yn|
(L+2µ(1−y2

n))J1

(

2πâ|ym +yn|
)

.
=

1

ρc2
Am,n. (3.5)

Figure 3.5(b) shows the pulse echo response from the scattering matrices given
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Figure 3.4: A schematic which demonstrates that as the depth of the crack is
increased in the Kirchhoff model, and consequently the array aperture angle, (θ)
decreases, the window around the main lobe in the scattering matrix decreases.

by equation (3.5) and it is clear that as the depth of the flaw, d, increases the

scattering amplitudes along the pulse echo diagonal (and the remainder of the

scattering matrix) decrease. The coefficient |A(d)| is simply a scaling factor and

so the expression for σB from equation (2.100) becomes

σB(â) =
1√
2d

(

(Â1 + Ŝ1(â))â + Ŝ2(â)â3 + Q̂(â) cos(p(â) + φ(â))

)

. (3.6)

The maximum eigenvalues from the scattering matrices from the approxima-
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Figure 3.5: These figures show the plot of the pulse echo diagonal amplitudes from
the scattering matrices as a function of receiving array element index, n, where (a)
no prefactor is included, equation (2.27), and (b) a prefactor is included, equation
(3.5) for varying depths; 30 mm (purple), 50 mm (red), 70 mm (yellow), 90 mm
(green) and 110 mm (blue). The other system parameters are fixed here with
N=64, l=128 mm and â = 1.

tion, σB, (dashed lines) in equation (3.6) and those calculated numerically (solid

lines), σK , from the model given by equation (3.5) are plotted in Figure 3.1(b) as

â is varied for d = {30, 50, 70, 90, 110} (mm). The values of σB and σK now de-

crease, as d increases, for each value of â which is more intuitive. This is validated

in Figure 3.2(b) which shows the plot of σB plotted as d is varied between 20 mm

and 100 mm, and all other system parameters are fixed at â = 1, l = 128 mm and

N=64.

3.2.2 Varying the number of elements, N

Now the effect of varying the number of elements in the ultrasonic, linear array

on the maximum eigenvalue is examined. In this subsection the other system

parameters are fixed at d = 50 mm and l = 128 mm. Figure 3.7(a) shows the plot
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Figure 3.6: A schematic demonstrating the geometry of xm (the distance along
the x-axis to the array element with index m), d (depth of the crack) and rm (the
distance between the array element xm and the crack) which are included in the
prefactor given by equation (3.1).

of the maximum eigenvalue from the approximation σB, equation (2.100), (dashed

line) and the exact maximum eigenvalue from the scattering matrices σK (solid

line) as â is varied for N= 32 (blue), 64 (red), 128 (yellow) and 256 (green). This

figure shows that the maximum eigenvalue from the scattering matrix increases,

as the number of elements increases in an array of fixed length. In other words, σB

is more sensitive to the size of the crack as the number of array elements increases.

This trend is also evident in Figure 3.7(b), where σB is plotted as function of N ,

with â = 1, l = 128 mm and d = 50 mm. This is to be expected as the increase

in the number of array elements enables more information to be recorded by the

ultrasonic transducer and therefore a higher volume of detail is contained within

the scattering matrix; this is demonstrated in Figure 3.8, where the scattering

matrix is pictured for (a) N = 32 and (b) N = 256 for â=1.
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Figure 3.7: The effect of varying the number of elements, N , on the maximum
eigenvalue, σB. The approximation to the largest eigenvalue (dashed lines), equa-
tion (2.100), and the numerically calculated eigenvalue from the scattering matrix
(solid lines), equation (2.27), are plotted in (a) as a function of the crack radius
over the wavelength â for various numbers of array elements (N= 32 (blue), 64
(red), 128 (yellow), 256 (green)), with l = 128 mm and d = 50 mm. The plot in
(b) shows σB, as N is varied, where â = 1, l = 128 mm and d = 50 mm.

3.2.3 Varying the array length, l

Increasing the array length has the same effect as decreasing the depth of the flaw.

That is, the total angle the array makes with the crack (the array aperture angle)

increases as the length of the array increases, as is demonstrated in Figure 3.9.

As the length of the array is increased the maximum eigenvalue, σB (dashed

lines), from equation (2.100) and the actual maximum eigenvalue, σK (solid lines),

decrease, as is shown in Figures 3.10(a), where σB and σK are plotted ,as a function

of â, for various lengths of array (l=32 mm (blue), 64 mm (red), 128 mm (yellow)

and 256 mm (green)). This is also evident in Figure 3.10(b) which shows the plot

of σB, as a function of l where N=64, d=5 mm and â = 1. This seems counter-

intuitive, however, Figure 3.4 demonstrates that, as the array length is increased
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Figure 3.8: This figure portrays the effect of increasing the number of elements in
the scattering matrix, A (equation (2.27), from (a) 64 to (b) 256 elements. Here
the other system parameters are fixed at l = 128 mm, d = 50 mm and â = 1.

Figure 3.9: A schematic showing that, as the array length increases, L3 < L2 < L1,
then the array aperture angle θ increases.
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Figure 3.10: The effect of varying the length of the array, l, on the maximum
eigenvalue, σB. The approximation to the largest eigenvalue (dashed lines), equa-
tion (2.100), and the numerically calculated eigenvalue from the scattering matrix
(solid lines), equation (2.27), are plotted in (a) as a function of the crack radius
over the wavelength â for various array lengths (l= 32 mm (blue), 64 mm (red),
128 mm (yellow), 256 mm (green)), with N = 64 and d = 50 mm. The plot in (b)
shows σB, as l is varied, where â = 1, N = 64 and d = 50 mm.

(and the array aperture angle is increased) then, there is a higher proportion of

small to large amplitude values in the matrix. Another note is that here the

number of array elements, N , is fixed and so the information recorded by the

ultrasonic transducer is more sparse. In the next subsection, the array length is

varied but with the pitch, △y, fixed and so the number of array elements, N , and

the array length, l, increase proportionally.

3.2.4 Varying the array length, l, and the number of ele-

ments, N

In this subsection, the length of the array is varied, however the pitch, △y is fixed;

this means that the number of elements in the array is a function of the array
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length and is given by

N =
2l

△y
√

4d2 + l2
+ 1 (3.7)

which is obtained by rearranging the expression for △y in equation (2.20). In

this section △y = 0.025 and d = 50 mm. Figure 3.11 shows the approximation

to the maximum eigenvalue σB (dashed line) and the actual maximum eigenvalue

σK (solid line), as â is varied, and for l = {32, 64, 128, 256} (mm) which gives

corresponding values for N = {25, 44, 64, 76} (to the nearest whole number). This

figure shows that the maximum eigenvalue increases as the length of the array and

the number of elements are increased simultaneously, which seems more intuitive

than the results given in Section 3.2.3.

This investigation into the effects of the system parameters is practically useful

for experimental design. For instance, Figure 3.11 shows that there is very little

increase in sensitivity of σB to â when the array length is increased from 128 mm

to 256 mm (and the number of elements is increased from 64 to 76 since the pitch

is fixed at 2mm here). This suggests that if this method is going to be used to

resolve the size of a subwavelength crack within this medium then it is unnecessary

to use an array larger than 128 mm, for a fixed pitch of 2.5 mm.

3.3 The derivative of the approximation to the

largest eigenvalue σB

In order to analytically assess the sensitivity of the maximum eigenvalue to changes

in the system parameters, such as the number of elements in the array N , the

length of the array l, the depth of the flaw d and â, it is necessary to determine
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Figure 3.11: The effect of varying the number of elements, N , and the length of the
array l simultaneously on the maximum eigenvalue, σB. The approximation to the
largest eigenvalue (dashed lines), equation (2.100), and the numerically calculated
eigenvalue from the scattering matrix (solid lines), equation (2.27), are plotted in
(a) as a function of the crack radius over the wavelength â for various numbers of
array lengths (l= 32 mm (blue), 64 mm (red), 128 mm (yellow), 256 mm (green)),
with corresponding N ={25, 44, 64, 76} (to the nearest whole number) and the
depth of the flaw fixed at d = 50 mm. The plot in (b) shows σB, as N is varied,
where â = 1 and d = 50mm.

the derivatives in the following expression for the relative change in σB,

△σB

σB

=
∂σB

∂â

â

σB

△â

â
+

∂σB

∂N

N

σB

△N

N
+

∂σB

∂l

l

σB

△l

l
+

∂σB

∂d

d

σB

△d

d
. (3.8)

The expression given by

∂σB

∂â

â

σB

(3.9)

in equation (3.8) provides a relative measure of how sensitive σB is to changes in the

crack size. This provides a guide as to how useful this method will be in practice in

recovering the crack size from a given maximum eigenvalue (the so called inverse
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problem). This sensitivity is dependent on the other system parameters and the

effects of these will be examined in this section. The other three components in

equation (3.8),

∂σB

∂N

N

σB

,
∂σB

∂l

l

σB

and
∂σB

∂d

d

σB

(3.10)

determine the errors that occur in σB as a result of errors in the system parameters;

N , l and d. In this section the derivatives contained in each of these components

will be calculated and numerically interpreted to analyse the sensitivity of the

method.

From equation (2.100), the derivative of σB with respect to â is given by

∂σB

∂â
= (Â + Ŝ1(â)) +

∂Ŝ1

∂â
â + 3Ŝ2(â)â2 +

∂Ŝ2

∂â
â3 +

∂Q(â)

∂â
cos(p(â) − φ(â))

− Q(â) sin(p̂(â) − φ(â))

(
∂p

∂â
− ∂φ

∂â

)

. (3.11)

The derivatives of the functions Ŝj(â) (j = 1, 2), Q(â), p(â) and φ(â) with respect

to â are given in Appendix B, Section B.1. The expression given by equation

(3.9) gives the relative error in the maximum eigenvalue σB for a relative change

in the crack radius over the wavelength, â. Figure 3.12 shows this relative error

as each of the parameters is varied. Figure 3.12(a) shows that for â < 0.8 the

relative derivative is close to one which illustrates that changes in σB are sensitive

to changes in â. This is encouraging as it indicates that this crack sizing method

is sensitive to changes in σB for subwavelength cracks. For â > 0.8 the relative

derivative is small and so the method is not very sensitive for larger values of â.

This result implies that the method presented in Chapter 2 should be used for

sizing subwavelength cracks and for â > 1 another method should be adopted;

perhaps an image-based method. Figures 3.12(b), (c) and (d) show that ∂σB

∂â
â

σB

is reasonably constant, as the number of elements N (Figure 3.12(b)), the length
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Figure 3.12: The relative derivative of the maximum eigenvalue, σB, with respect
to â, equation (3.9), as a function of (a) â, (b) N , (c) l and (d) d, where all other
parameters are fixed at â = 0.5, N=64, l=128 mm and d=50 mm.

of the array l (Figure 3.12(c)) and the depth of the flaw d (Figure 3.12(d)) are

varied. This implies that the crack sizing capability of the maximum eigenvalue

method is relatively insensitive to changes in these parameters. Examining now

the second of the terms in equation (3.8) the derivative of σB with respect to the
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number of elements N is given by

∂σB

∂N
=

(

∂Ŝ1

∂Â
+

∂Ŝ1

∂N

)

â +
∂Ŝ2

∂N
â3 +

∂Q

∂N
cos(p(â) − φ(â))

− Q(â)

(
∂p

∂N
− ∂φ

∂N

)

sin(p(â) − φ(â)).

(3.12)

Again, the derivatives of the functions Â, Ŝj(â) (j = 1, 2), Q(â), p(â) and φ(â)

with respect to N are given in Appendix B, Section B.2. Figure 3.13 plots the

relative derivative

∂σB

∂N

N

σB

(3.13)

as (a) â, (b) N , (c) l and (d) d are varied. These plots show that for each of the

parameters (â, N, l and d) the value of the expression given in equation (3.13) is

pretty much constant and roughly equally to 1. In reality, the error in the number

of elements in the array will be zero as this should be known with certainty within

an experiment.

Turning now to the third term in equation (3.8), the derivative of σB with

respect to the length of the array, l, is given by

∂σB

∂l
=

(

∂Â

∂l
+

∂Ŝ1

∂l

)

â +
∂Ŝ2

∂l
â3 +

∂Q

∂l
cos(p(â) − φ(â))

− Q(â)

(
∂p

∂l
− ∂φ

∂l

)

sin(p(â) − φ(â)),

(3.14)

where the derivatives of the functions Â, Ŝj(â) (j = 1, 2), Q(â), p(â) and φ(â) with

respect to l are given in Appendix B Section B.3. Figure 3.14 shows the relative
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Figure 3.13: The relative derivative of the maximum eigenvalue, σB, with respect
to N , equation (3.13)is plotted as (a) â, (b) N , (c) l and (d) d are varied, with all
other parameters fixed at â = 0.5, N=64, l=128 mm and d=50 mm.

derivative,

∂σB

∂l

l

σB

(3.15)

which gives the relative change, σB, caused by a relative error in the length of the

array, l, as (a) â, (b) N , (c) l and (d) d are varied. These plots show that the

change in σB, due to an error in the measured length of the array l, is negligible;

plots (a)-(d) show that the expression in equation (3.15) is of the order 10−1 as
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Figure 3.14: The relative derivative of the maximum eigenvalue, σB, with respect
to l, equation (3.15), is plotted as (a) â, (b) N , (c) l and (d) d are varied, with all
other parameters fixed at â = 0.5, N=64, l=128 mm and d=50 mm.

each of the parameters (â, N , l and d) are varied. This is encouraging as it means

that the inverse problem of recovering the size of the crack using this method is

not sensitive to errors in the length of the array.

Finally, σB is differentiated with respect to the depth of the crack, d, and is
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given by

∂σB

∂d
=

(

∂Â

∂d
+

∂Ŝ1

∂d

)

â +
∂Ŝ2

∂d
â3 +

∂Q

∂d
cos(p(â) − φ(â))

− Q(â)

(
∂p

∂d
− ∂φ

∂d

)

sin(p(â) − φ(â))

(3.16)

where the Â, Ŝj(â) (j = 1, 2), Q(â), p(â) and φ(â) with respect to d are given in

Appendix B, Section B.4. The relative error in σB caused by a relative error in

the depth of the flaw, d, is shown in Figure 3.15 where

∂σB

∂d

△d

σB

(3.17)

is plotted as a function of (a) â, (b) N , (c) l and (d) d. Again, it is clear from

these figures that there will be little error in σB resulting from an error in d as the

expression in equation (3.17) is approximately constant and of the order 10−1 for

each of the parameters varied in Figures 3.15 (a)-(d).

To conclude, the analysis of the derivative of σB with respect to the system

parameters shows that small errors in the length of the array, l, the number of

elements, N and the depth of the flaw, d do not create large errors in σB. Con-

versely, it has been shown that σB is sensitive to changes in the crack radius over

the wavelength, â, when â < 0.8, which implies that this method should be used

for sizing sub-wavelength cracks (that is, the inverse problem) and for â > 0.8

another method, such as an image-based method should be used.
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â

(a)

100 150 200 250

-0.788

-0.787

-0.786

-0.785

-0.784

∂σB

∂d
d

σB

N

(b)

0.10 0.15 0.20 0.25

-0.85

-0.80

-0.75

∂σB

∂d
d

σB

l

(c)

0.04 0.06 0.08 0.10

-0.95

-0.90

-0.85

-0.80

-0.75

∂σB

∂d
d

σB

d

(d)

Figure 3.15: The relative derivative of the maximum eigenvalue, σB, with respect
to d, equation (3.17) is plotted as a function of (a) â, (b) N , (c) l and (d) d, with
all other parameters fixed at â = 0.5, N=64, l=128mm and d=50mm in each case.

3.4 Results from simulated data

In this section, the method outlined in Chapter 2, which uses the maximum eigen-

value to size a crack within a homogeneous medium, is applied to simulated data.

The simulated data was generated using the finite element package PZFlex [61] and

simulates a crack of length 5 mm (a = 2.5 mm) within a homogeneous medium

(more details surrounding this simulated data is outlined in Chapter 2, Section
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2.3.1). The maximum eigenvalues associated with each scattering matrix from the

simulated data across a range of frequencies are compared with those calculated

directly from the Kirchhoff model using equation (2.27). The scattering matrices

were extracted from the FMC data and the maximum eigenvalue was numerically

calculated from each across a range of frequencies. A 1.5 MHz single cycle sinusoid

wave was used in the simulation and so a 50% window is taken around this central

frequency to give a usable bandwidth of 0.75− 2.25MHz; this is the range of scat-

tering matrices used from the simulated data and compared with those from the

model via the maximum eigenvalue. The simulation includes a number of effects

which are not taken into account in the Kirchhoff model used in this work; this

results in amplitude differences between the scattering matrices from the simulated

data and the model and therefore, the scattering matrices need to be normalised.

For example, there is no attenuation from the material included in the Kirchhoff

model and there is also no mode conversion of the wave considered when it encoun-

ters the crack, only a pressure wave is used in the model. The scattering matrices

from the simulated data, AS(m,n, f), and from the model, AK(m,n, a, f), (where

m,n = 1, ..., N correspond to transmitting and receiving element indices) are nor-

malised with respect to the l2-norm to allow the signatures of each to be compared

as crack radius, a, and frequency, f are varied. That is, for the simulated data let

ĀS(m,n) =
AS(m,n, f)

√
∑N

m=1

∑N
n=1 AS(m,n, f)2

(3.18)

and similarly, from the Kirchhoff model (equation (2.27)) the normalised scattering

matrix is

ĀK(m,n) =
AK(m,n, a, f)

√
∑N

m=1

∑N
n=1 AK(m,n, a, f)2

. (3.19)
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Let σS(f) denote the numerically calculated maximum eigenvalue from the nor-

malised scattering matrix, given by equation (3.18), at a fixed frequency, f , and let

σK(a, f) denote the numerically calculated maximum eigenvalue from the Kirch-

hoff model (equation (3.19)) at a frequency f and for a crack of radius a. Figure

3.16 shows the plot of σS (blue line) across the frequency range 0.75 − 2.25 MHz

and compares this with σK from the model for the same range of frequencies for

different values of crack radii. This figure shows that σK(a, f) from the normalised

scattering matrix is still sensitive to changes in crack radius and that σS(f) com-

pares well with σK(a, f) for crack radii between 2 mm and 2.5 mm. Next the sum

of the differences over frequency between σS(f) and σK(a, f) is calculated as the

crack radius, a is varied, and is given by

D(a) = ||σS(f) − σK(a, f)||2. (3.20)

Figure 3.17 plots D(a), equation (3.20), as the crack radius, a, is varied within

the model and shows a clear minimum for a = 2.2 mm (again, the frequency range

used was 0.75-2.25 MHz). The actual crack radius in the simulation is 2.5 mm

and so the percentage error in the value recovered using the maximum eigenvalue

method is 12%, which is a reasonable error considering the assumptions within

the model and the effects within the simulation which are not included within the

model.

3.5 Conclusions

In this chapter, the sensitivity of the maximum eigenvalue approximation, σB, to

changes in the system parameters was examined numerically. Next the derivative

of σB with respect to each of the system parameters was determined. These
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Figure 3.16: The maximum eigenvalue, σS(f), from the scattering matrices ex-
tracted from the simulated data (thick blue line), as a function of frequency, in
comparison with the maximum eigenvalue, σK(a, f) from the scattering matrices
determined using the Kirchhoff model as a function of frequency for different crack
radii. The values in the legend refer to the crack radius in millimetres.

derivatives were used to determine whether σB is sensitive to errors in â, l, d and

N . From this analysis it is concluded that σB is most sensitive to changes in â

when â < 0.8 and there is little change in σB for â > 0.8. This implies that

the method of using the maximum eigenvalue to determine the size of a crack in

a homogeneous material (the inverse problem) is most effective when â is sub-

wavelength. Obviously, there is a lower bound too on the values of â that the

method can cope with. As â gets smaller the amplitude of the scattered wave will

diminish and eventually be lost in the noise, this effect is not considered here. For
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Figure 3.17: This plot shows the sum of the absolute differences, D(a) (equa-
tion (3.20)), over a range of frequencies (0.75 -2.25 MHz) between the maximum
eigenvalue from the scattering matrices from the simulated data, σS(f), and the
Kirchhoff model, σK(a, f), as the crack radius, a, is varied within the model.

larger cracks another method should be adopted, perhaps an image-based method.

In addition, the analysis of the derivative highlighted that errors in the measured

length of the array, depth of the flaw, and number of elements has little effect on

the inverse problem. Finally, the method outlined in Chapter 2 was applied to

simulated data giving encouraging results. Future work may include considering

the effects of including multiple cracks of varying size.
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Chapter 4

A crack sizing method using the

pulse echo response from the

scattering matrices from the

Kirchhoff model

4.1 Introduction

In this chapter another model based crack sizing method is presented which utilises

the pulse echo response (that is, transmitting and receiving on the same transducer

array element) within a scattering matrix from the Kirchhoff model. To begin with

a single frequency method is derived which relates the first minimum of the pulse

echo response to the crack length. Furthermore an analytical approximation to this

first minimum is determined and the errors due to the discretisation of the array

elements are explored. This work complements the work by Zhang et al. [30], where

the Half-Width at Half-Maximum measurement is used numerically to size cracks
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within a homogeneous medium. This single frequency method is then extended

to a mutli-frequency technique. Finally, the methods are applied to finite element

simulated data from a homogeneous medium and then from a heterogeneous, steel

weld containing a crack. A noise reduction technique is applied to the simulated

data arising from the steel weld before the crack sizing methods are applied. This

involves convolution of the signals within the frequency domain and was inspired

by the work of Borcea et al. within their Coherent Interferometry Methods [41].

4.2 Crack sizing using the pulse echo response

from a scattering matrix

In this section, the pulse echo response from the scattering matrices will be used

to determine the length of a crack inclusion. Scattering matrices (based on the

Kirchhoff approximation, as derived in Chapter 2, Section 2.2) for crack inclusions

of varying radii are shown in Figure 4.1(a-d), where the full aperture is used. If

the aperture is limited, only a subsection of the scattering matrices in Figures 4.1

are generated, as shown in Figures 4.1(e-h) and the corresponding pulse echo plot

(putting ei = −es in equation (2.8)) is demonstrated in Figures 4.1(i-l). It is clear

from these images that as the length of the crack is varied, the main lobe in the

pulse echo response varies. In particular, the first minimum, θ∗ (as shown in Figure

4.2), varies with the crack length. In the forthcoming sections it is demonstrated

that there is a one to one correspondence between the first minimum in this pulse

echo response, θ∗, and the crack length. Furthermore, an analytical approximation

to this first minimum is determined by considering the first zero of the Kirchhoff

approximation; it is important to note that in practice this minimum will never

equal zero as there will always be some reflected energy recorded by each array
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element. The discretisation due to the array pitch means that this pulse-echo

response is sampled at discrete points and so in all likelihood none of these points

will correspond precisely to the location of this zero.
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Figure 4.1: Scattering matrices generated using the Kirchhoff model, where the
frequency f =2 MHz (and the corresponding wavelength is λ = 0.0032) and the
crack length is (a) 2 mm (a2 =1 mm), (b) 4 mm (a2=2 mm), (c) 6 mm (a2 =3
mm) and (d) 8 mm (a2=4 mm). Figures (e-h) show the corresponding scattering
matrices when the array aperture is limited and the pulse echo response extracted
from these are shown in Figures(i-l). The axis on these images are the angles of
incidence of the transmitting (θs) and receiving (θi) elements in the transducer.
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Figure 4.2: A schematic showing the location of the first zero, θ∗, from equation
(4.5), in the pulse echo response from the scattering matrices, equation (4.1).

4.2.1 A single frequency crack sizing method

In this section an analytical expression is derived from the Kirchhoff model which

can be used to recover the crack length from the pulse echo component of a scatter-

ing matrix. This analytical expression is an approximation to the first minimum in

the pulse echo response. The Kirchhoff model is simplified for the pulse echo case

where only the signals which are transmitted and received on the same transducer

element are considered, that is when ei = −es is substituted into equation (2.9)

to give

A(−es; es) =
a3(L((es + er) · n) + 2µ((es + er) · es)(es · n))

4ρc2|es · u2|
J1

(4πa2

λ
|es · u2|

)

.

(4.1)
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Figure 4.3: A schematic demonstrating the relationship between the array aperture
angle θs and the receiving direction vector, es which is associated with the array
element position xs.

The angle that the vector es makes with the horizontal axis is given by θs as shown

in Figure 4.3.

For the pulse echo case, the angles, θb, which the vectors, eb (b = s, r) make

with the horizontal axis are such that θr = −θs (this is true for a limited aperture

only, since |θb| < π/2 for b = r, s) ). The various components in equation (4.1) are

expressed in the following form

(es+er)·n = 2 cos(θs), (es+er)·es = 1+cos(2θs), es·n = cos(θs), es·u2 = sin(θs).

(4.2)

Substituting these into equation (4.1) gives the amplitude of the scattered wave

in terms of the receiving angle, θs, as

A(θs) =
a3| cot θs|(L + 2µ(1 + 2 cos(2θs)))

2ρc2
1

J1

(4πa2

λ
| sin θs|

)

, (4.3)
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where s = 1, ..., N . The first minimum of equation (4.3) varies with the crack

size a2, this minimum will be approximated here by the first zero. The pre-

factor multiplying the Bessel function cannot equal zero for this problem since

−π/2 < θ < π/2, therefore A(θ) = 0 when

J1

(4πa2

λ
| sin θ|

)

= 0. (4.4)

The zeros of the Bessel function, Jn, are known and so, equation (4.4) holds when

a2(θ
∗) =

λβ

4π sin θ∗
, (4.5)

where β = 3.8317 and θ∗ is the angle where the first zero of the Bessel function

occurs, as demonstrated in Figure 4.2.

This provides an explicit analytical expression for the crack length a2 in terms

of the wavelength λ and the location of the first positive zero, θ∗ in the pulse echo

component of the scattering matrix. If we rearrange this formula to give

sin θ∗ =
β/4π

a2/λ
(4.6)

then we can see that the location of this zero is inversely proportional to a2/λ, as

shown in Figure 4.4. This plot has precisely the same form as that in Figure 6(c)

of Zhang et al. [30] (dashed line in Figure 4.4). They used a numerical calculation

of the Half Width at Half Maximum (HWHM) to avoid any issues regarding the

identification of the zeros due to noise in the experimental data. However, taking

an estimate of HWHM= θ∗/2 maps Figure 4.4 (solid line) onto Figure 6(c) of [30].

The use of the analytical expression in equation (4.5) results in a computationally

efficient method of sizing cracks as well as providing analytical insight into the
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Figure 4.4: The value of the first zero (sin θ∗) as a function of crack length, 2a2

over the wavelength λ from equation (4.6) (solid line). To compare this with the
data shown in Figure 6(c) in [30] we have approximated θ∗ by 2×HWHM and
plotted sin(2×HWHM) (dashed line).

approach. In addition, Figure 4.4 shows that using the formula to predict the

crack size will be most sensitive when a2/λ < 1.5 (as the gradient is largest here).

This helps to predict which frequency should be used to best determine the crack

size.

4.2.2 The effect of the array pitch on crack sizing

As discussed in Section 2.4, in practice a discrete, limited aperture, linear array

is used and so the array in the model (equation (4.3)) is discretised where the

element location is given by

xs =
△x

2
(2s − 1 − N) , (4.7)

85



where N is the number of elements in the array and the pitch, △x, is constant

and given by

△x =
l

N − 1
, (4.8)

where l is the length of the array. The corresponding angle made by the array

Figure 4.5: A schematic demonstrating the relationship between the array element
location, xs, equation (4.7) and the change in angle, △θs equation (4.10), between
two adjacent elements.

element s with the horizontal axis is given by

θs = tan−1
(xs

d

)

, (4.9)

where d is the depth of the flaw, as shown in Figure 4.5. The pulse echo response

can be plotted as a function of either θs or xs. As a result of this discretisation,

the maximum error that can occur in the approximation to the first zero, θ∗, in
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Figure 4.6: A schematic which shows the observed first minimum (θs+1) of the
pulse echo plot from the discrete Kirchhoff model to be approximately the true
minimum (θ∗) plus the change in angle △θs between the adjacent array elements
with the array angles θs and θs+1.

the pulse echo response is approximately the length of the increase in angle (△θs)

between two discrete points s and s+1 surrounding the first zero, as demonstrated

in Figure 4.6.

The angle between two adjacent array elements is a function of their position

within the array since the spatial pitch, △x, is constant; this is portrayed in Figure

4.5. However, the forthcoming analysis is simplified if the change in the angle △θ

is approximated by a constant. In order to approximate △θs by a constant it is

necessary to show that the difference between △θs and △θs+b for some b such that

s + b < N − 1 (N is the total number of array elements) is small. The angle
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between two adjacent elements, indexed by s and s + 1, is given by

△θs = θs+1 − θs

= tan−1

(△x(2s − N + 1)

2d

)

− tan−1

(△x(2s − 1 − N)

2d

)

(4.10)

using equation (4.7) and so

△θs −△θs+b = (θs+1 + θs+b) − (θs + θs+b+1)

=

(

tan−1

(△x(2s − N + 1)

2d

)

+ tan−1

(△x(2(s + b) − N + 1))

2d

))

−
(

tan−1

(△x(2s − 1 − N)

2d

)

+ tan−1

(△x(2(s + b) − 1 − N)

2d

))

.

(4.11)

Since d ∼ O(10−2), △x ∼ O(10−3) and 2s − N ± 1 ∼ O(102) (and likewise

2(s + b) − N ± 1 ∼ O(102)) then the arguments within the arctangent functions

in equation (4.10) are of the order 10−1 for all s. Therefore, θs is small and of the

order 10−2 and so the difference given by equation (4.11) is of the order 10−2. It

is assumed that the angle between each pair of adjacent array elements is equal

and is taken to be the maximum in the set Θ = (△θs|s ∈ [1, N ]). This maximum

is found by taking the derivative of equation (4.10), which is given by

∂(△θs)

∂s
=

4d2

4d2 + (△x)2(2s + 1 − N)2
− 4d2

4d2 + (△x)2(2s − 1 − N)2
, (4.12)

setting this equal to zero, and solving for s. This gives s = N/2 and so △θ is

approximated by

△θ∗ = 2 tan−1

(
2d

△x

)

. (4.13)

The approximate perturbed value of a2 given the error, △θ∗, in the measurement
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of θ∗ is therefore given by

a2(θ
∗ + △θ∗) =

λβ

4π sin (θ∗ + △θ∗)
(4.14)

where θ∗ + △θ∗ has been substituted into equation (4.5). In order to explicitly

view the error between a2 and a2(θ
∗ + △θ∗) equation (4.14) is manipulated to

extract a2 (equation (4.5)) from a2(θ
∗ + △θ∗), leaving an error term. The angle

sum formula is applied to equation (4.14) to give

a2(θ
∗ + △θ∗) =

λβ

4π(sin(θ∗) cos(△θ∗) + cos(θ∗) sin(△θ∗))
. (4.15)

Since △θ∗ is small the functions cos(△θ∗) and sin(△θ∗) within equation (4.15) are

approximated using a Taylor series expansion to give

a2(θ
∗ + △θ∗) =

λβ

4π(sin(θ∗)(1 − (△θ)2/2 + ...) + cos(θ∗)(△θ − (△θ)3/6 + ...))

=
λβ

4π sin(θ∗)(1 + cot(θ∗)(△θ − (△θ)3/6 + ...) − (△θ)2/2 + ...)
.

(4.16)

and with

(cot(θ∗)(△θ − (△θ)3/6 + ...) − (△θ)2/2 + ...) << 1, (4.17)
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a further Taylor series expansion can be applied to equation (4.16) to give

a2(θ
∗ + △θ∗) =

λβ

4π sin(θ∗)
(1 − (cot(θ∗)(△θ − (△θ)3/6 + ...) − (△θ)2/2 + ...))

= a2(θ
∗) − λβ

4π sin(θ∗)
(cot(θ∗)(△θ − (△θ)3/6 + ...) − (△θ)2/2 + ...)

≈ a2(θ
∗) − λβ△θ

4π sin(θ∗)
cot(θ∗)

= a2(θ
∗) − ǫ1(θ

∗). (4.18)

where ǫ1(θ
∗) is the approximate maximum error based on the analytic solution.

The exact maximum error based on the analytical solution is simply given by

ǫ2(θ
∗) = |a2 − a2(θ

∗ + △θ∗)|, (4.19)

and can be used to assess the effect of the above approximations. A third error,

ǫ3, is obtained numerically by generating a pulse echo response from a scattering

matrix using the Kirchhoff model (equation (4.1)), recording the location of the

first minimum, θ∗s , and then using equation (4.5) to recover the crack radius, a2(θ
∗
s),

giving

ǫ3 = |a2 − a2(θ
∗
s)|. (4.20)

These errors are functions of the crack radius over the wavelength a2/λ and the

pitch, △x (since △θ∗ is a function of the pitch, △x). Figure 4.10 shows the actual

maximum error, ǫ2 (equation (4.19), red line), and the approximate maximum

error, ǫ1 (equation (4.18), green line) that can occur within the discrete model and

the numerical error, ǫ3 (equation (4.20), blue line), as a function of crack radius

over wavelength, where the pitch length △x = 2 mm is fixed. This shows that,

for a2/λ < 2.5 mm, the errors in the recovered wavelength within the model are

90



less than 0.5 mm, however as a2/λ increases the error increases. As a2/λ increases

the first minimum becomes less sensitive to changes in a2/λ because the width of

the main lobe in the pulse echo response becomes very narrow, as demonstrated

in Figure 4.7; this causes the increase in the error for these higher values of a2/λ.

These pulse echo response plots are not smooth due to the discretisation of the

array within the Kirchhoff model, in these plots the number of elements used is

64 and the pitch is fixed at 2mm. It is clear in Figure 4.10 that for some of the

higher frequencies (when a2/λ is large) the numerical errors (blue line) are larger

than the estimated maximum errors (red and green lines). This is a consequence

of the discretisation of the array and is portrayed in Figure 4.8 where the red

dot shows the location of the numerical minimum from the discretised model, the

green dot shows the actual minimum and the distance between the red and blue

dots indicates one pitch length (△θ∗) in the discrete model. Figure 4.8(a) shows

the pulse echo plot when the frequency is equal to 6.83 MHz, here the discrete

model has captured the approximate first minimum as the function is slightly

non-monotonic where 0 < θs < 0.2. However, in Figure 4.8(b) the frequency is

slightly increased to 6.92 MHz and now the function is monotonically decreasing

until the second minimum of the Bessel function. This is due to the discretisation

and as a result the error in the observed and actual location of the first minimum

is greater than one pitch length. In what follows an upper bound is derived for

when this phenomenon first occurs for any given pitch length. The upper bound

relates the maximum pitch length which is allowed for a given value of a2/λ (and

vice versa) before these larger errors occur. In Figure 4.10 the vertical, red, dashed

line shows the limit in a2/λ for the fixed pitch, △x = 2 mm, at a2/λ = 2.5 which

is taken from Figure 4.12 and is derived below. Figure 4.11 shows the actual

maximum error, ǫ2 (equation (4.19), red line), and the approximate maximum
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Figure 4.7: The pulse echo response for a2/λ equal to (a) 3.3 and (b) 3.8. This
shows that for large a2/λ there is very little change in the width of the main
lobe in the pulse echo response and therefore little change in the location of the
first minimum. The array in the Kirchhoff model is discretised to include only
64 elements and as a result the pulse echo response shown in these figures is not
smooth.
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Figure 4.8: These figures explain why the numerical errors in Figure 4.10 are larger
than the approximate errors in some instances. In each figure the red dot gives the
location of the first numerical minimum in the discrete model (blue, solid line),
the green dot shows the actual minimum in the continuous model (green, dashed
line) and the distance between the blue dot and the red dot shows one pitch length
(in terms of the change in the array angle, △θ∗). In (a) the frequency is 6.83 MHz
and the pulse echo response is slightly non-monotonic between the first and second
minima and so the error, ǫ, is less than a single pitch length △θ∗. However, in
(b), the pulse echo response is monotonic until the second minima and therefore
ǫ > △θ∗ (that is, the error is greater than a single pitch).

93



error, ǫ1 (equation (4.18), green line) that can occur within the discrete model and

the numerical error, ǫ3 (equation (4.20), blue line) as a function element pitch.

Here the number of elements is fixed at N = 64, and so as the pitch increases

the length of the array increases. This figure shows that the analytical maximum

errors, ǫ1 and ǫ2, remain relatively small as the pitch increases. Again in Figure
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Figure 4.9: This figure demonstrates that for large pitch (green line) length the
first minimum in the pulse echo response is taken to be the second minimum in
the analytical model, thus resulting in an error larger than one pitch length. The
red line shows the continuous pulse echo response and the actual first minimum.
The blue line shows the discrete pulse echo response when △θ

(1)
∗ = 3.8 mm and

here the error between the minimum in the continuous model (red dot) and the

discrete model (second blue dot) is less than △θ
(1)
∗ . The green line shows the pulse

echo response where △θ
(2)
∗ = 4 mm. Here the error between the red dot and the

approximate minimum (second green dot) is greater than △θ
(2)
∗ .
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Figure 4.10: The errors due to the discretisation of the array within the Kirchhoff
model as a function of crack radius over wavelength, a2/λ. The red line shows
the actual error given by equation (4.19), the green line shows the approximation
to this error given by equation (4.18) and the blue line shows the numerical error
given by equation (4.20). Here the pitch length is fixed at △x = 2 mm. The
vertical red dashed line indicates the limit on a2/λ, for this fixed pitch length, for
recovering the first zero of the pulse echo response. This limit is found numerically
and is shown in Figure 4.15.

4.11 it is clear that as the pitch increases there are occasions where the numerical

error is larger than the approximated maximum error. A similar phenomenon is

occurring here as that in Figure 4.10 where a2/λ (frequency) was varied. Figure

4.9 shows the continuous pulse echo (red dashed line) response plotted with the

discrete pulse echo response when the pitch is 3.8 mm (blue line) and 4 mm (green

line). When the pitch is equal to 4 mm the pulse echo response is monotonically
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Figure 4.11: The errors due to the discretisation of the array within the Kirchhoff
model as a function of the pitch, △x mm. The red line shows the actual error
given by equation (4.19), the green line shows the approximation to this error
given by equation (4.18) and the blue line shows the numerical error given by
equation (4.20). In this example the crack radius over wavelength is fixed with
a2/λ = 1.036, the number of elements, N , is 64, and the depth of the crack is d.
The vertical red dashed line indicates the limit on △x, for a2/λ = 1.036 fixed, for
recovering the first zero of the pulse echo response. This limit is found numerically
and is shown in Figure 4.15.

decreasing until the second minimum in the Bessel function, as a result the error

in the observed first minimum is larger than one pitch length.

For each fixed crack radius over wavelength, a2/λ, an approximate upper bound

on the pitch, △x, can be derived to ensure that the error in θ∗, due to the dis-

cretisation, cannot exceed one pitch length (△x). This approximation is found by
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considering a horizontal line through the first two lobes in the pulse echo response

as demonstrated in Figure 4.12 by the dashed line at height p, where θ1, θ2 and θ3

indicate the roots of A(θ) = p. The limit on the pitch (△x) for a given value of

a2/λ is taken to be △x∗ = L1 when the value of p is such that L1 = L2. This is a

Figure 4.12: A schematic which shows a horizontal line (blue, dashed line), which
cuts the vertical axis at A(θ) = p, and then goes through the first two lobes in the
pulse echo response A(θ) (red, solid line), given by equation (4.3). The first three
roots of A(θ) = p are labelled as θ1, θ2 and θ3 and the distances between each of
these roots are given by L1 and L2.

reasonable approximation to a limit as it is not possible for the discretised pulse

echo response to be monotonically decreasing until the second minimum when

△x < △x∗. However, for △x > △x∗, then it is possible as demonstrated in Figure

4.13 (the blue dashed line). The limit △x∗ is calculated by numerically finding
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Figure 4.13: A schematic which demonstrates that for a pitch length, △x, larger
than the approximation to the upper bound on the pitch, △x∗, it is possible for
the discrete pulse echo response from the model to be monotonically decreasing
beyond the first minimum. Therefore large errors in the approximation to the
first minimum, θ∗, result and consequently the recovered crack radius, a2, will be
incorrect.
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the three roots, θ1, θ2 and θ3, of

A(θs) =
a3| cot θs|(L + 2µ(1 + 2 cos(2θs))

2ρc2
1

J1

(4πa2

λ
| sin θs|

)

= p (4.21)

which are then used to calculate L1 and L2 via

L1(a2/λ,△x, p) = θ2 − θ1 and L2(a2/λ,△x, p) = θ3 − θ2. (4.22)

The difference between these is given by

d(a2/λ,△x, p) = L1(a2/λ,△x, p) − L2(a2/λ,△x, p) (4.23)

which are all functions of crack radius over wavelength, a2/λ, the pitch, △x, and

the value of p. The dependencies of L1 and L2 on p are shown in Figure 4.14 (where

a2/λ = 1). The point of intersection of L1 and L2 occurs when d = 0 and hence

the length of L1 (and L2) at this point is the upper bound on the pitch, △x∗, for

a given a2/λ. There is a one-one relationship between a2/λ and this upperbound

on pitch, △x∗, as shown in Figure 4.15.

In this section, a single frequency crack sizing method was presented. In addi-

tion, the errors, due to the discretisation of the model were approximated and an

upper bound was approximated for the value of a2/λ that can be recovered for a

given pitch length. In the next section, a multi-frequency extension of this method

is presented.

4.2.3 Multi-frequency crack sizing method

The previous section relied on the use of the pulse-echo response of the scattering

matrix at a particular frequency. This of course discards the information contained
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Figure 4.14: This figure plots L1 (red line) and L2 (blue line), equation (4.22),
which are the distances between the roots θ1, θ2 and θ3 where A(θ) = p as demon-
strated in Figure 4.12. The crack length over radius is fixed, a2/λ = 1, as p is
varied. The y-coordinate associated with the point of intersection gives the upper
bound on the pitch, △x∗, that can be used in order to use the approximation on
the error in the crack sizing method due to the array discretisation.
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Figure 4.15: This plot shows the upper limit on the pitch △x∗ in terms of a2/λ,
such that the approximation given by equation (4.18) is valid.

at other frequencies and so it is natural to explore the potential improvements

in the methodology when the responses at a range of frequencies are brought

to bear on the problem. The pulse echo response was extracted from a set of

scattering matrices across a range of frequencies to create a 3D response (where the

dimensions are frequency (f), array aperture angle (θs) and scattering amplitude

(A(θs)). An example of this 3D response is shown in Figure 4.16(a) where the

amplitude of the pulse echo response is represented by a logarithmic colour scale.

If a slice of this plot were taken at a single frequency the plot would be akin

to those shown in Figures 4.1(i-l). The multi-frequency method is derived by

approximating the first minimum (the first yellow curve in Figure 4.16(a) going

from left to right) across a range of frequencies to produces a contour which relates

frequency, fm, to the first minimum within the pulse echo response, θ
(m)
s . From
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equation (4.6) these contours are given by

θ(m)
s (a2) = ± sin−1

(
βc

4πa2fm

)

(4.24)

where m = 1, ..., N . Figure 4.16(b) (blue line) displays an example of these con-

tours where the crack radius (a2) is 2.5 mm, the pitch (△x) is 2 mm, the depth

of the flaw is 50 mm and the number of elements is 64. A minimisation technique

is then adopted to tackle the inverse problem of recovering the crack size from

experimental, or simulated data. This is based on a comparison between this data

and the contours produced using the Kirchhoff model. Let the contours which are

extracted from the scattering matrices from simulated (or experimental) data be

called P
(m)
s . Then the l2 norm of the difference between P

(m)
s and θ

(m)
s (a2) is

S(a2) = ||θ(m)
s (a2) − P (m)

s ||2. (4.25)

This is minimised over the crack radius, a2, to give

ā2 = min
a2

S(a2) (4.26)

where ā2 is the estimated crack radius from the experimental or simulated data.

As in the single frequency case, let the approximate maximum error in θ
(m)
s when

the discrete version of the model is used (as outlined in Section 4.2.1) be △θ.

Including this error in equation (4.24) gives

θs(a2) = ± sin−1

(
βc

4πa2fs

)

−△θ. (4.27)

Figure 4.16(b) compares the plot including this error (green line) to the true

contour (blue line) and shows that for these parameters the error is very small
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Figure 4.16: A multifrequency plot of the pulse echo response from the scattering
matrices. The receiving array angle, θs lies along the vertical axis. The blue
line in (b) is given by equation (4.24), which relates the first minimum in the

pulse echo plot θ
(m)
s to frequency fm. The green line shows the contour given by

equation (4.27) when the maximum error (one pitch length) is included in equation
(4.24). In these examples the crack radius (a2) is 2.5 mm, the pitch (△x) is 2 mm,
the wavespeed is 6600m/s−1, the depth of the flaw is 50 mm and the number of
elements is 64.

103



between these two curves. At a single frequency the error between these two curves
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Figure 4.17: This figure shows the plot of the approximate error (given by equation
(4.28)) in the recovered crack radius, a2, due to the discretisation of the ultrasound
array. Here the number of elements (N = 64), the pitch (△x = 2 mm), and the
depth of the flaw (d = 50 mm) are all fixed. For this plot the lower limit in the
summation in equation (4.28), f1, is 1 MHz and the upper limit, fn, is 8.6 MHz.

was given in the previous section by equation (4.18). Over a range of frequencies

the error can then be approximated by taking an average of these errors, that is

ζ(a2) =
1

n

fn∑

f=f1

cβ△θ cot θ∗

4πf sin θ∗
, (4.28)

where f1 and fn are the lower and upper bound in the frequencies sampled and θ∗

is given by equation (4.6). Figure 4.17 plots this error as the radius of the crack,

a2, is varied and shows that for a2 less than 2.5 mm the error due to discretisation

is less than 1 mm.
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4.2.4 Applying the single frequency crack-sizing method

to data from a homogeneous medium

In this subsection, the single frequency method outlined in Section 4.2.1 is applied

to the finite element simulated FMC data, described in the Chapter 2, Section

2.3.1, from a homogeneous medium which contains a 5 mm long crack inclusion;

the parameters of which are given by Appendix C, Table C.1. A scattering matrix

at a frequency of 2.6 MHz (which gives a2/λ = 1.02) was extracted from the

finite element simulated data and is shown in Figure 4.18(a). This is comparable

with the analogous scattering matrix from the Kirchhoff model which is shown in

Figure 4.18(b) and was generated using the same system parameters as the finite

element simulation. Figure 4.19 shows the normalised pulse echo response from a

scattering matrix associated with a frequency of 2.6 MHz (a2/λ = 1.02); the blue

curve is the response from the simulated data and the green curve is the analogous

response from the Kirchhoff model. As can be seen there is a reasonable match

up between the two responses. The first minimum in the pulse echo response

from the simulated data are not symmetric about zero and so an average of the

position of these two minima is taken for θ∗ and used in equation (4.5) to give

a predicted crack radius of 2.9mm. This gives an error of 0.4mm in crack radius

which is not surprising considering the differing assumptions within the Kirchhoff

model and the finite element simulation. For example, the crack is modelled as

a slim, rectangular void within the finite element simulation. However, within

the Kirchhoff the model the crack is modelled as an infinitely thin ellipsoid. In

addition, there is mode conversion within the simulation whereas only a pressure

wave is included within the Kirchhoff model. Also, the data from the finite element

simulation is in the time domain and a discrete Fourier transform is used to take

this data into the frequency domain and so there are computational errors due
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Figure 4.18: A scattering matrix extracted from the finite element simulated data
(see Appendix C Table C.1) from the homogeneous medium containing a 2.5 mm
radius crack is shown in (a) where the frequency is 2.6 MHz (a2/λ = 1.02). The
analogous scattering matrix from the Kirchhoff model, generated using equation
(2.7), is shown in (b).
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Figure 4.19: A comparison between the pulse echo response from a scattering ma-
trix extracted from the finite element simulated data from a homogeneous medium
(blue line) containing a 5 mm long crack (as described in Section 2.3.1, the sys-
tem parameters are given in Appendix C Table C.1) and the analogous response
generated using the Kirchhoff model (green line), equation (4.3). The signals have
been normalised here with respect to the maximum scattering amplitude. The
frequency used here is 2.6 MHz (and hence a2/λ = 1.02).

to this discrete process. It is also important to note that there is a bandwidth

constraint within the frequency domain on the data from the simulation as the

driving function has not been deconvolved from the data. Finally, the Kirchhoff

model is a high frequency approximation (a2/λ ≫ 1) and here the interest is in

cracks that are commensurate with the wavelength or smaller.
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4.2.4.1 Using all data points from the pulse echo repsonse to size cracks

The crack sizing method described in section 4.2.1 uses a single point of comparison

between the model and the simulated data. In this section a minimisation approach

is derived which is based on the difference between the pulse echo response from

the model and the simulated data, where

S(a2, f) =
∑

m

|F (θ(m)
s , f) − A(θ(m)

s , a2, f)|, (4.29)

where F (θ
(m)
s , f) is the pulse echo response from the simulated data and A(θ

(m)
s , a2, f)

is that from the model given by equation (4.3). The method searches for the value

of a2 (the crack radius) which minimises S(a2, f) at a fixed frequency f . This

method is applied to the pulse echo response extracted from the simulated data

for a frequency of 2.6 MHz, as shown by the blue curve in Figure 4.19. When this

method is adopted, the recovered crack radius is 4 mm, which gives an error of 1.5

mm. This is actually 1.1 mm larger than that obtained when the method using

the first minimum in the pulse-echo response was applied to the data.

4.2.5 Applying the multi frequency crack-sizing method to

data from a heterogeneous medium

The crack sizing method derived in Section 4.2.3 is applied here to the data from

the simulated steel weld as described in Chapter 2 Section 2.3.1 and shown in

Figure 2.4 (see Appendix C Table C.1 for the simulation parameters). An exam-

ple of a typical scattering matrix at a frequency of 1.4 MHz (a2/λ = 0.56) was

extracted from this data and is shown in Figure 4.20 (a). It is clear that this

scattering matrix is very noisy in comparison with that from the homogeneous

medium (as shown in Figure 4.18(a)). The resulting pulse-echo response from the
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scattering matrix is shown in Figure 4.20(b) and there is clearly no main lobe

in this pulse echo response nor any clear first minimum. A lower ratio of crack

radius over wavelength (a2/λ) is chosen for demonstration here because the grain

structure resonates at the higher frequencies. The scattered signal from the crack

is distorted as a result of the heterogeneous nature of the host material and the

complex path the wave energy traverses through the grain structure to and from

the transducer array. In this subsection, the signals within the frequency domain

scattering matrices are convolved in order to reduce the noise. This approach is

inspired by the Coherent Interferometry work by Borcea et al. [41]. Once the level

of noise is reduced in the scattering matrices the method outlined in Section 4.2.3

is applied.
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Figure 4.20: This figure demonstrates (a) a scattering matrix and (b) the asso-
ciated pulse echo response extracted from the finite element simulated data of a
5mm long crack in a heterogeneous host material, where the frequency is 1.4 MHz
and the other system parameters are given in Appendix C Table C.1.

4.2.5.1 Noise reduction in the scattering matrices

In a heterogeneous material, the scattered signals received by the array transducer

are comprised of two types of scattering; coherent and incoherent. The coherent
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Figure 4.21: This figure demonstrates the tortuous path that the transmitted wave
from two neighbouring (blue and red dashed lines) array elements could take from
the ultrasonic array elements, through the weld microstructure to the flaw.
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Figure 4.22: A schematic demonstrating the signals in the scattering matrices
that are convolved. The signal within the green element on the left is multiplied
with each of the signals within the red elements surrounding it. Once multiplied
together these new amplitudes are then summed (equation (4.31)) to produce one
new signal as shown by the green element in the matrix on the right.
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contribution is due to the crack and the incoherent contribution is due to the het-

erogeneities within the host material. The coherent scattered signal will have a

similar signature for each transmit-receive pair and its neighbours, this is not true

for the incoherent contribution of each signal. Figure 4.21 shows a schematic which

demonstrates the tortuous path that two neighbouring signals take. Convolving

neighbouring signals will emphasise the coherent response and the incoherent con-

tributions should be reduced [41]. A superscript is introduced to distinguish the

transmitting array aperture angle, θ
(m)
i , from the receiving array aperture angle,

θ
(n)
s . For a given pair of transmit (θ

(m)
i ) and receive (θ

(n)
s ) transducer array ele-

ments, the set of their neighbouring elements is denoted by

N(θ
(m)
i , θ(n)

s ) = {{θ(k)
i , θ(l)

s } : k ∈ (m − 1,m + 1), l ∈ (n − 1, n + 1)}. (4.30)

The convolution of the elements of Fmn(fj) (where Fmn(fj) is the scattering am-

plitude received by array elememt n when transmitting on array element m from

the simulated data) is then given by

G(θ
(m)
i , θ(n)

s , fj) =
∑

{θ(l)
s ,θ

(k)
i }∈N(θ

(m)
i ,θ

(n)
s )

F (θ
(k)
i , θ(l)

s , fj)F (θ
(m)
i , θ(n)

s , fj) (4.31)

with j ∈ (1, ..., Nf ) where Nf is the total number of frequency indices. Figure

4.22 demonstrates the convolution process within the scattering matrices. Once

the signals have been convolved the pulse echo response is extracted from the

scattering matrix

P (θ(m)
s , fj) = G(θ

(m)
i , θ(m)

s , fj). (4.32)

The matrix given by P (θ
(m)
s , fj) can then be compared to the corresponding matrix

produced using the Kirchhoff model given by equation (4.3) (A(θ
(m)
s , fj, a2)) via
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the contours which mark the first minimum in the pulse echo response as frequency

is varied, as demonstrated in Figure 4.16(b). The contours from the model given

by equation (4.24) plot the first zero as frequency is varied. However, this is an

approximation to the first minimum, as within both the model and the simulated

data there is some energy received by other array elements. Therefore, the con-

tours from the discrete Kirchhoff model (and the simulated data) are extracted

numerically by identifying the frequency (fm) at which the amplitudes of A (and

P ) first fall below a prescribed decibel level (τ) for each array element scattering

angle θ
(m)
s , as demonstrated in Figure 4.23. That is,

Frequency
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e
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g

a
n
g

le

Figure 4.23: This schematic demonstrates the relationship between the receiving
angle on the array, θi and frequency, f as given by equation (4.33). For each

receiving angle, θ
(m)
i , (shown via the red dashed line) the function P̄ (green circle)

is taken to be the frequency, fm, (green dotted line) which first drops below the
prescribed threshold τ (which is close to zero).
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P̄ (θ(m)
s ) = fm (4.33)

where

fm = inf
fj

P (θ(m)
s , fj) < τ (4.34)

and τ is taken to be the minimum amplitude within the scattering matrix (that

is −24dB). This establishes a numerical relationship between θ
(m)
s and fm akin to

that given by equation (4.24). A similar relationship can also be derived from the

Kirchhoff model to produce Ā(θ
(m)
s , fm, a2). So, by defining

S(a2) = ||Ā(θ(m)
s , fm, a2) − P̄ (θ(m)

s , fm)||2 (4.35)

then the recovered crack radius from simulated or experimental data is given by

ã2 = min
a2

S(a2). (4.36)

4.2.5.2 Results from sizing cracks in heterogeneous media

The noise reduction technique outlined in the previous subsection is applied to the

finite element simulation of a steel weld with a 5 mm long crack inclusion. Once

the noise has been reduced within the scattering matrices, using the convolution

technique presented in Section 4.2.5.1, the multi-frequency crack sizing technique

presented in Section 4.2.3 is applied to the response matrix to extract the crack

length. Examples of a pulse echo response from this simulated data, at a frequency

of 1.4 MHz (a2/λ = 0.56), before and after the noise is reduced, are shown in

Figures 4.24(a) and (b). These figures show a clear reduction in the noise across

the pulse echo response and the main lobe within the response is more defined.

The 3-D pulse echo response across a range of frequencies from the simulated data,
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after the noise has been reduced, is shown in Figure 4.25(a) and the corresponding

response generated using the Kirchhoff model (equation (4.3)) with a crack length

of 5 mm is shown in Figure 4.25(b). There is a shift in the main lobe of the

pulse echo response at each frequency within the finite element simulated response

as shown in Figure 4.25(a). That is, the highest amplitude in each response has

shifted to the left from the centre (the dark red region shown in Figure 4.25(a)

represents these higher amplitudes). This is due to beam divergence as a result

of the weld microstructure. This shift is accounted for in the Kirchhoff model as

shown in Figure 4.25(b). The contour P̄ is extracted from the simulated data, via

equation (4.33), and is shown in Figure 4.26(b) (blue line). This can be compared

with Figure 4.26(a) which shows the contours that are extracted using the raw

data before neighbouring signals are convolved. Again, this shows the effect of the

convolution on emphasising the effect of the crack within the frequency domain

data. In addition, Figure 4.26(b) shows the contour extracted using the model,

Ā, for the correct crack length (5 mm). The optimisation process outlined in

subsection 4.2.5.1 takes the corresponding contours from the Kirchhoff model and

varies the crack size until the difference between the contours from the simulated

data and the model are minimised. The resulting crack radius obtained using

this method is 2 mm which gives a reasonable error of 0.5mm considering the

assumptions within the model and the simulation. Figure 4.27 shows the error

between the extracted and true crack radius as the number of nearest neighbours

used within the convolution is increased. That is, the range of l and k in equation

(4.30) is extended so that a greater number of neighbouring signals are multiplied

together with the signal of index m and n and then summed. This means in Figure

4.22 the signal highlighted by the green element is multiplied with more nearest

neighbouring signals which are depicted by the red elements. For this example,
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there is a clear minimum of 0.5 mm error when just one nearest neighbour is used.

θs

0−0.5 0.5

(a)
θs

0−0.5 0.5

(b)

Figure 4.24: This figure shows the effect of the convolution (equation (4.31)) of
the nearest neighbour signals within the scattering matrices on the pulse echo
response within a scattering matrix at a single frequency. Here the frequency is
1.4 MHz. Figure (a) shows the response using the raw data and (b) shows the
pulse echo response when the nearest neighbouring signals have been convolved
using equation (4.31).
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Figure 4.25: The pulse echo response from the scattering matrices as a function
of frequency from (a) the PZFlex simulated data with a 2.5 mm radius crack in
a heterogeneous host material after the nearest neighbour signals within the scat-
tering matrices have been convolved (equation (4.31)) and (b) the corresponding
data from the model given by equation (4.3).
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Figure 4.26: The contours extracted from the pulse echo response across a range of
frequencies via equation (4.33) from the finite element simulated data of the steel
weld with a 2.5 mm radius crack inclusion where (a) no convolution was applied
and (b) convolution was applied to the data via equation (4.31) (blue line). In
addition (b) shows the contours extracted from the Kirchhoff model (red line)
where the same parameters have been used as in the simulated data. Note that
due to beam divergence, as a result of the heterogeneous nature of the steel weld,
there is a shift to the left in the contour extracted from the simulated data and
this shift was incorporated into the model.

117



0
0 10 15 20

1

2

3

4

5

5

6

Number of nearest neighbours

E
rr

or
(m

m
)

Figure 4.27: This plot shows the error in the crack radius (mm) (y-axis) extracted
from the simulated data using the method described in Section 4.2.3 as the number
of nearest neighbouring signals that are convolved is increased (x-axis) from 0 to
20, that is the range for N in equation (4.30) is extended so that more signals are
multiplied together and summed in equation (4.31).
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4.3 Conclusions

A model based, single frequency method for objectively sizing cracks, which uses

the first minimum in the pulse echo response from a scattering matrix, was pre-

sented. An analytical expression, equations (4.5), was derived from the Kirchhoff

model which demonstrates the one to one relationship between the crack length

and this first minimum. This analytical expression provides insight into the sensi-

tivity of the method and to the errors which are a consequence of the discretisation

of the model. It was shown that the discretisation of the ultrasonic array within

the model results in errors in the recovered crack length. An approximation was

derived to this error and is a function of the crack radius over the wavelength and

the pitch of the array. In addition, an upperbound was derived relating the max-

imum crack length that can be recovered for a given pitch (and vice versa). The

single frequency method was applied to finite element simulated data from a homo-

geneous medium with a 5 mm crack inclusion. The method successfully recovered

a crack length with a 0.4 mm error. An alternative method which uses all points

in the pulse echo response to size the crack was also applied to the finite element

simulated data. However, a larger error of 1.5 mm arose when this approach was

adopted. The single-frequency method was then extended to a multi-frequency

technique which uses the first minimum in the pulse echo response across a range

of frequencies. The scattering matrices from the finite element simulation of a steel

weld with a crack inclusion were very noisy. Before the multi-frequency method

could be applied to this data it was necessary to apply a convolution technique

to reduce the noise. Once the noise was reduced, the multi-frequency method was

applied to the finite element simulated data of a steel weld with a 5 mm long crack

inclusion. The crack length was recovered with an error of 1 mm, which is reason-

able when the assumptions within the model and the simulation are considered.
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Chapter 5

Detection and imaging algorithms

(DORT and TFM)

5.1 Introduction

In this chapter, two imaging methods which utilise FMC ultrasonic data are pre-

sented; the first is the DORT (French acronym for the decomposition of the time

reversal operator) [57] method and the second is the Total Focusing Method

(TFM) [27]. To begin with, an objective detection method which does not re-

quire any a priori knowledge of the material heterogeneity is presented. This is

then used to propose a detection criterion specific to steel welds. To illustrate

this method it is applied to finite element simulated data and experimental data.

Having detected a defect, the full DORT imaging method is then implemented and

used to image the defect within a stainless steel weld and the results are compared

to those produced using TFM. Importantly, this is the first time that the DORT

method has been applied to FMC data from a steel weld.
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5.2 Post Processing Algorithms

In this section, two post processing algorithms are presented which can be used

to detect flaws in steel welds using the FMC data captured by the ultrasonic

array. The DORT method operates in time-frequency space and is comprised of

two stages. First, there is a detection stage which uses the largest singular value

from the associated scattering matrices. Then there is an imaging stage which

uses time reversal principles to create an image. The TFM operates in the time

domain and uses the FMC data to focus the beam at each point in the inspection

area to create an image.

5.2.1 The DORT Method

The DORT method [51] is an image processing method that uses time reversal

techniques [66] in the time-frequency domain, along with the singular value de-

composition (SVD) of the FMC data, to produce an image. Time reversal is based

on the principal of last in-first out, as shown in Figure 5.1. The delay laws from

the received signal are simply reversed and another ultrasonic wave is sent into the

material with these laws to create improved focusing on the defect. This technique

has been successfully implemented for focusing ultrasonic waves on flaws within

heterogeneous materials [57]. However, it has not been applied to ultrasonic data

from the inspection of a steel weld before. The DORT method can be divided into

two stages; the first stage is to determine whether there is a defect in the structure

or not and the second stage is the imaging of the defect and localisation within the

structure. The DORT method is a time-frequency domain method which allows

all the information within the data to be analysed. The first step in the DORT

method takes the time domain FMC data, H, into the time-frequency domain by
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(a) (b)

Figure 5.1: A schematic of the received signal by the ultrasonic array transducer
is shown in (a) and the time-reversed signal to be re-transmitted is shown in (b)
which will enhance the focusing on the defect.

taking the time-windowed discrete Fourier transform (DFT) of the data to obtain

the inter element response matrix, K(Tp, fq), where Tp is time with p = 1, ..., NT

and NT is the total number of time samples and fq is frequency with q = 1, ..., Nf

and Nf is the total number of frequency samples. For each time, Tp, and time

window, △T , a submatrix of H is given by

Ĥ(Tp, t) = H(Tp − t)W (t), (5.1)

where

W (t) =







1 t ∈
[
−△T

2
, △T

2

]

,

0 otherwise.







Tp = t1 + △t(p − 1), (5.2)
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t1 is the start time of the signal being sampled (in practice this will be large enough

to not include reflections from the front face of the structure being inspected) and

△t is the time between each windowed sample of the signal. The discrete Fourier

transform of Ĥ is calculated to produce the full set of response matrices K(Tp, fq).

The frequency range is given by

fq =
q

△T
. (5.3)

The response matrix, K(Tp, fq), is an N × N × Nf × NT matrix, where NT is the

total number of time indices sampled, Nf is the number of discrete frequencies and

N is the total number of elements in the ultrasonic array. The process of creating

K(Tp, fq) is demonstrated in Figure 5.2. Next, the SVD of each response matrix

K(Tp, fq) for each time, Tp, and frequency, fq, pair is calculated. Within the DORT

method, the SVD is used as a tool for flaw detection and image reconstruction.

The SVD of each response matrix K(Tp, fq) is given by

K = UΛVT , (5.4)

where Λ is a diagonal matrix containing real, positive singular values λk, k =

1, ..., N , the columns of U are the left singular vectors and the rows of V† are

the right singular vectors. For linear scatterers, each singular value is associated

with one scatterer in the material. However, Chambers and Gautesen [67] have

shown that there can be up to four singular values associated with one scattering

event, and this number depends upon the shape and orientation of the scatterer.

Once the SVD of the data for each time-frequency pair, (Tp, fq) is determined, the

largest singular value (λ1(Tp, fq)) is normalized using the quadratic mean of all the
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Figure 5.2: A schematic which demonstrates how the time windowed Discrete
Fourier Transform (DFT) is used to create the time-frequency matrix, K(Tp, fq),
from the FMC data, H(t). For each fixed time index sampled, Tp, a time window,

△t, is taken around this fixed time to create a 3D submatrix, Ĥ, of the FMC
matrix, a DFT is then taken of this submatrix resulting in the matrix K(Tp, f).
The collection of the frequency domain matrices, K(Tp, fq) where p = 1, ..., NT ,
form the 4D time-frequency matrix K.
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singular values at that time-frequency pair [59]

λ̃1(Tp, fq) =
λ1(Tp, fq)

√
1
N

∑N
p=1 λ2

p(Tp, fq)
. (5.5)

If there is a flaw, these normalised first singular values for some time-frequency

(Tp, fq) pairs will be above a threshold value, τ . This stage can be used as an

objective flaw detection technique where no a priori knowledge of the material

being inspected is required. In section 5.3.2 a detection threshold, τ , specific to

steel welds is derived. So, if there exist

λ̃1(Tp, fq) > τ (5.6)

then it can be objectively concluded that there is a flaw within the structure.

The second stage in the DORT method is the image reconstruction which does

require the input of a homogenised material wavespeed, c. The image is generated

using back propagation, where the propagation operator is a Green’s function, and

the focusing is provided by the right eigenvectors V1(Tp, fq) associated with the

singular values where λ̃1(Tp, fq) > τ . The image domain is discretised by a grid,

where the number of pixels in the vertical direction of this grid is dictated by the

number of time samples (NT ) used to create the time-frequency matrix K, and

the number of pixels along the horizontal axis is a free parameter which will be

denoted by x̂l (l = 1, ...,m). An example of the image domain grid is shown in

Figure 5.3. The propagation operator is a Green’s function given in the discretised

form of a 1 × N vector Glp; the elements of which are given by

gjlp(fq) =
ei2πfqrj/c

√
rj

, j = 1, ..., N, (5.7)
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Figure 5.3: A schematic which demonstrates the geometry of the length ri (equa-
tion (5.8)) for each spatial position in the imaging domain, I(Tp, x̂l). This is used
within the back propagation operator gjl(fq) given by equation (5.7).
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where

rjlp =
√

z2
p + (xj − x̂l)2, (5.8)

zp = cTp/2 is the depth in the material that is being imaged and xj is the spatial

position of array element j, as shown in Figure 5.3. Each value in the image,

I(Tp, x̂l), is calculated using the absolute value of the back propagated wave which

is focused using the right eigenvector associated with the largest singular values

that lie above the threshold τ . Hence,

I(Tp, x̂l) =
∑

fq |λ̃>τ

λ1(Tp, fq)
∣
∣V1

pG
∗
lp

∣
∣ (5.9)

where G∗ is the complex conjugate of the Green’s function vector (this is the time

reversed stage). In Sections 5.3 and 5.4, this method will be applied to simulated

and experimental data.

5.2.2 The Total Focusing Method (TFM)

The Total Focusing Method (TFM) [27] is a time domain imaging technique which

exploits FMC data and can be used for the detection of defects in NDT. The

same method is used by the geophysics community within seismology to produce a

map of the earth’s interior which is useful for oil recovery or earthquake analysis.

Within this field the approach is referred to as Kirchhoff migration [38]. Within the

medical field the same approach is referred to as delay and sum beamforming [39].

The TFM algorithm first requires the image domain to be discretised into a grid of

pixels, (Nx×Nz). For each pixel (xl,zp) (where l = 1, ..., Nx and p = 1, ..., Nz), the

signal from each transmit-receive pair is focused at that point, as demonstrated in

Figure 5.4. The focusing is achieved by calculating the time of travel (T ) between

a given transmit-receive pair (i,s) and this pixel. This is then used to isolate
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Figure 5.4: The geometry of the transmitting array element, xi, the receiving array
element, xs, and a pixel location I(xl, zp) used in the TFM, equation (5.10).

the corresponding amplitude of the signal H(i, s, T ). These amplitudes are then

summed over all transmit-receive pairs to create the intensity for the pixel (xl, zp)

in the image given by

I(xl, zp) =

∣
∣
∣
∣
∣

∑

i,s

H(i, s, T )

∣
∣
∣
∣
∣
, (5.10)

where

T =

(√

(xi − xl)2 + z2
p +

√

(xs − xl)2 + z2
p

)

c
, (5.11)

xs is the x-coordinate of the receiving element and xi is the x-coordinate of the

transmitting element, zp is the depth of the pixel and c is the wavespeed of the

material. In this scheme, the array is located at z = 0 and here xi = xs = 0.

This method is computationally very efficient for the imaging of flaws in isotropic

materials. However, when the material is heterogeneous, bending and scattering of
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the ultrasonic waves occurs. This means there is no longer a direct path between a

transmit-receive pair and the flaw, and so the time delay calculations in equation

(5.11) are no longer accurate. The imaging and detection capabilities of this

method will be compared with those of the DORT method in the forthcoming

sections.

5.3 Detection of flaws in steel welds

The first stage of the DORT method is adopted here which uses the set of largest

singular values, {λ̃1}j, distribution from the time-frequency response matrices,

K(Tp, fq). If the weld contains a defect this distribution will give rise to significant

values which will be larger than a specified detection threshold, τ . Within [57]

Aubry and Derode presented a detection criterion based on an experimental set

up which simulates the multiple scattering of waves emitted from an ultrasonic

array. Their set up involved a water tank within which a set of parallel steel rods

were placed to replicate a random medium. Table I in [57] presents two detection

thresholds. The first is τ = 2.39 which is determined using the unfiltered data

(K) from the multiple scattering regime and the second is τF = 2.69 which is

used when filtering is applied to K to create a response matrix which includes

only single scattering responses, KF (see Section IV of [57] for the details of this

filtering process). Before the singular values were analysed in [57] each response

matrix was truncated to remove short range correlations [59]. The singular values

(λ̃i, i = 1, ..., N), across all time-frequency (Tp, fq) pairs, from the unfiltered matrix

(K) were compared to the quarter circle law (QCL). The QCL the distribution of

singular values associated with a random matrix as derived from Random Matrix

Theory (RMT) [68]. It can be seen from Figure 10(a) in [57] that the experimental
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distribution of first singular values (λ̃i, i = 1, ..., N) deviates from the QCL and so

τ = 2.39 was obtained empirically. However, when the singular value distribution,

λ̃F
i , from the filtered response matrix (KF ) was compared to the distribution from a

random Hankel matrix (see Figure 10(b) in [57]) then there was excellent agreement

between the two distributions. The detection threshold in this case is τF = 2.69

(as obtained using the numerical estimate to the distribution of singular values

from a random Hankel matrix). In this thesis, it will be demonstrated that the

singular value distribution from the FMC data from a steel weld does not fit with

the QCL. Hence, a detection threshold specific to a steel weld is proposed and is

empirically calculated using a finite element simulation. The configuration in this

work differs from the multiple scattering regime in [68] as multiple scattering does

not dominate the signal received. The problems which arise are mainly due to the

grain structure which causes the waves to bend as they pass through the weld.

5.3.1 A comparison of the singular value distribution from

a steel weld to the quarter circle law

In this subsection the distribution of singular values from the response matrix

K(Tp, fq) arising from a finite element steel weld is calculated. The finite element

simulated data from a steel weld containing no flaw is used in the section, the

details of which were outlined in Chapter 2, Section 2.3.1. The parameters used to

generate the inter-element response matrix (K(Tp, fq)) are given in Appendix C,

Table C.3. The singular values, λi(Tp, fq) (where i = 1, ..., N), are normalised using

equation (5.5). These singular values are then segregated into bins to produce a

probability density distribution. The bin intervals are given by

bl = [(l − 1)B, lB], (5.12)
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where B is the bin width and l = 1, ..., L where L is the total number of bins. The

total number of singular values contained within each bin is denoted as D(bl). The

probability density distribution of the first singular values is estimated [59] by

ρ(bl) =
D(bl)

nB
(5.13)

where n = N ×NT ×Nf is the total number of normalised singular values arising

from the response matrix K(Tp, fq). This distribution will be compared to the

quarter circle law [69] which is given by

ρQC(λ̄) =

√

4 − λ̄2

π
where 0 < λ̄ < 2. (5.14)

and gives the distribution of singular values from a square random matrix derived

from RMT. The entries of the random matrix have to be independently and identi-

cally distributed for this law to be applied. Figure 5.5 shows a comparison between

the QCL (green line) given by equation (5.14) and the distribution, ρ(bl), of first

singular values from the response matrix K(Tp, fq) (blue line) given by equation

(5.13) from the finite element simulated data of a steel weld. It can be seen from

this plot that the distribution from the steel weld does not fit with the QCL. No

flaw is contained in these simulations and so these large singular values must stem

from scattered wave emanating from some of the larger grains in the weld. These

are not to be classified as flaws and so the detection criterion based on RMT and

the QCL should not be used when inspecting steel welds. The next subsection

investigates this in more depth and arrives at a detection criterion for steel welds

which could use the distribution of first singular values from the response matrix

K(Tp, fq).
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Figure 5.5: This plot shows the distribution of singular values (as given by equation
(5.13), blue line), λ̃i, as calculated from the response matrix, K(Tp, fq), arising
from a finite element simulatioC. This distribution is compared to that given by
the Quarter Circle Law (as given by equation (5.14), green line) which is derived
from Random Matrix Theory.
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5.3.2 A threshold for detection of flaws in stainless steel

welds using the largest singular value

The distribution of the largest singular values from the response matrix, K(Tp, fq),

from the finite element simulated data of a steel weld (as outlined in Chapter 2,

Section 2.3.1), with and without a flaw inclusion, are analysed in this subsection.

The aim is to determine a threshold specific to steel welds which can be used

within the objective detection method presented in this chapter. Histograms of

the normalised largest singular values for all time-frequency pairs calculated from

the response matrix, K(Tp, fq), from the finite element simulated data of a steel

weld containing no flaw (blue bars) and with a 1.25 mm radius side drilled hole

flaw (red bars) are shown in Figure 5.6. This figure shows that when there is

no flaw included within the steel weld (blue bars) the highest concentration of

largest singular values lie between 2 and 2.5, with the largest being 3.68. When

the flaw (a 1.25 mm radius side-drilled hole) is included (red bars) there is still a

large proportion of the first singular values lying between 2 and 2.5. This is to be

expected as these correspond to the scattering arising from the grains within the

weld structure. However, it is also clear that a significant proportion of the first

singular values are greater than 3.68. These must stem from the backscatter from

the flaw. It is concluded from this figure that there is a notable difference between

the distribution of first singular values from the response matrix, K(Tp, fq), when

there is a flaw in the steel weld and from that when no flaw is present. The

distribution of largest singular values can also be viewed as a heat map in the time

and frequency domain as shown in Figure 5.7. The distribution where a 1.25 mm

radius side drilled hole flaw was included in the finite element simulation is shown

in Figure 5.7(b) and it is clear that there is a cluster of large first singular values

between 0.5-1.5 MHz and 20 − 25µs. By visually comparing this distribution to
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Figure 5.6: This plot shows the histogram of the largest singular values across all
time-frequency pairs calculated from the response matrix, K(Tp, fq), associated
with the finite element simulated data (see Chapter 2 Section 2.3.1) of a steel weld
(a) without a defect (blue bars) and (b) with 1.25 mm radius side drilled hole
inclusion (red bars).
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that shown in Figure 5.7(a), where there is no defect, it is clear that the inclusion of

a defect gives rise to significantly larger singular values. In this work the detection

threshold is taken to be τ = 3.68, this is the maximum singular value from the

distribution where no defect is included within the finite element simulation of a

steel weld (as shown by the blue bars in the histogram in Figure 5.6 and by yellow

on the colour bar in the heat map of the distribution in Figure 5.7).

5.3.2.1 A summary of the steps in the detection algorithm

The objective method for the detection of flaws within a stainless steel weld is

summarised by the following steps:

• The time and frequency domain response matrix, K(Tp, fq), is determined by

taking a time windowed FFT (as outlined in Section 5.2.1) of the ultrasonic

FMC data.

• The SVD of K(Tp, fq) is calculated and the largest singular value, λ1(Tp, fq),

associated with each time frequency pair is stored.

• Each λ1(Tp, fq) is then normalised (equation (5.5)) and their distribution is

viewed either as a heat map (Figure 5.7) or as a histogram (Figure 5.6).

• If there exists λ̃1(Tp, fq) > τ then it is objectively concluded that there is a

flaw within the steel weld.

It is worth noting that the location of the flaw is related to the times in Figure

5.7, where the super threshold singular values reside and this will be critical when

the DORT method is used to create a flaw image in Section 5.4.
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Figure 5.7: The largest singular value λ̄1(Tp, fq) from the response matrix
(K(Tp, fq)), calculated from the finite element simulated data of a steel weld (see
Chapter 2, Section 2.3.1 for details of the simulation), where (a) no defect is in-
cluded and (b) a 1.25 mm radius side drilled hole is included within the weld
geometry. For the parameters used to generate the response matrix (K(Tp, fq)) as
in Section 5.2.1, see Appendix C Table C.3.
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5.3.3 Results when the detection method is applied to fi-

nite element simulated data

The detection algorithm summarised in Section 5.3.2.1 is applied here to finite

element simulated data of a steel weld (outlined in Chapter 2, Section 2.3.1). In

order to analyse the effects of the microstructure within the weld, the method is

applied to both a finite element simulation of a steel weld and a homogeneous

medium, with each containing a horizontal crack of length 5 mm. The parameters

used to generate the response matrix, K(Tp, fq), from the FMC data associated

with each simulation are summarised in Appendix C, Table C.3. The time step

(△t) is set at 0.5 mm (this is 151 ns in the data from the steel weld and 159

ns using the data where the host material is homogeneous) and the time window

is taken to be 20% of the total time that the wave takes to reach the back wall

of the test piece. Figure 5.8 shows the distribution of the largest singular values

across the time and frequency domain. In each case the crack has clearly and

objectively been detected as there exists a cluster of singular values larger than

the threshold (τ = 3.68) which was determined in Section 5.3.2. It is also clear

from Figure 5.8(b) that the largest singular values resulting from the flaw are

lower when the weld microstructure is included in the finite element simulation.

This is due to less energy reaching the flaw (and in turn being received back by the

transducer) as some of the energy in the ultrasonic waves has been scattered by the

grain boundaries within the weld. Figure 5.8(a) shows two horizontal peaks that

correspond to a time of 12 µs and 16 µs. These extend into the higher frequencies

and are a result of the scattering from the crack tips which behave as point-like

scatterers. When the weld microstructure has been included the first singular

values arising from the crack tips at the higher frequencies are not as prominent

as some ultrasonic energy is scattered by the grains within the weld.
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In Figures 5.8(a) and (b) the time-frequency pair where the maximum singular

value occurs is recorded (T ∗ and f ∗). Figure 5.9 then shows the correspond-

ing singular value distribution (λ̃1, ..., λ̃N) associated with the scattering matrices,

K(T ∗, f ∗). Those from the finite element simulation with a crack embedded in

the homogeneous medium are shown by the green line and those from the hetero-

geneous steel weld are shown by the blue line. A steel weld containing no flaw

is also shown by the red line. From this figure it is clear that the first singular

value is significantly larger when there is a crack inclusion within the material. In

addition it is clear that the first singular value is largest when the host material

is homogeneous, this is because the scattering amplitudes from the crack will be

higher. This plot also shows that when the weld microstructure is included within

the simulation the singular values between 2 and N are higher than those when

the medium is homogeneous. As discussed above, the scattering from the grain

boundaries that will give rise to these significant values.

Figure 5.10 shows the largest singular values in time-frequency space when side-

drilled holes of radius (a) 0.5 mm, (b) 1.25 mm and (c) 2.5 mm are inserted into

the finite element simulations which include the heterogeneous weld material. The

parameters used to create the time-frequency response matrix (see section 5.2.1)

are summarised in Appendix C, Table C.3. Again, it is clear from these time

frequency distributions that in each case there exist singular values larger than

the detection threshold, τ , and it can be concluded objectively that there exists

a flaw within the structure. As expected, as the radius of the side drilled hole is

increased the value of the singular values associated with the flaw also increase.

This is further confirmed in Figure 5.11 where the singular value distribution

λ̃n, n = 1, ..., N , is calculated from the scattering matrix corresponding to the

maximum first singular value, at time T ∗ and frequency f ∗, in Figure 5.10. This
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Figure 5.8: The largest singular value λ̃(Tp, fq) where the host material within the
finite element simulation (outlined in Section 2.3.1) is (a) homogeneous and (b) a
steel weld. A crack of length 5 mm is inserted into each simulation, 50 mm from
the array and in the centre of the weld. The parameters used in each simulation are
given in Appendix C by Table C.1. The parameters used to generate the response
matrix (K(Tp, fq)) in each case are also summarised in Appendix C, Table C.3.
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Figure 5.9: This figure shows the singular value distribution (λ̃p where p = 1, ..., N
and N is the total number of array elements) from the scattering matrix K(T ∗, f ∗),
where T ∗ and f ∗ gives the time-frequency pair where the maximum first singular
value occurs in the distributions shown in Figure 5.8. The finite element simulation
where the material is homogeneous is shown by the green line and those from a
heterogeneous steel weld is shown by the blue line. In addition the singular value
distribution from a scattering matrix, K(Tp, fq), from the finite element simulation
of the steel weld containing no flaw is shown by the red line.
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distribution is plotted as the side drilled hole radius is varied and is (a) 0.5 mm

(green line), (b) 1.25 mm (blue line) and (c) 2.5 mm (red line). It can be seen that

the distributions look very similar aside from the first singular value which then

decreases as the radius of the side drilled hole decreases. In the next subsection

this detection method is applied to experimental data.

5.3.4 Results when the detection method is applied to ex-

perimental data

In this subsection, the detection algorithm presented in Section 5.3.2.1 is applied

to experimental data from a test piece which contains an inconel 82/182 weld [70].

The parent material to the right of the weld is stainless steel 316L and to the left is

carbon steel 300 with an inconel 182 buttering layer between this and the weld. A

schematic of the test piece is shown in Figure 5.12 which also gives the dimensions

of the weld. The material properties are summarised in Appendix C, Table C.2. A

45 element ultrasonic array with a central frequency of 5 MHz was used to collect

the FMC data. The probe was placed just off centre directly on the weld as shown

in Figure 5.12. Again, in order to demonstrate the effect of a flaw inclusion on the

largest singular value distribution, FMC data was collected from an area within

the weld where it is known that there is no flaw and then from an area where there

is a 12 mm long vertical crack inclusion in the centre of the weld 37 mm from the

array as demonstrated in Figure 5.12. The time-frequency response matrix was

calculated from the FMC data where there is no flaw (KNF (Tp, fq)) and when there

is a crack inclusion (KF (Tp, fq)); the parameters used to calculate these response

matrices are summarised in Appendix C, Table C.4. The normalised first singular

value distributions, λ̃1 (equation (5.5)), are shown in Figure 5.13, when (a) there

is no defect in the inspection area and (b) there is a 12 mm long, vertical crack
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Figure 5.10: The largest singular value (̃λ)(Tp, fq) where the host material within
the finite element simulation (outlined in Section 2.3.1) is a steel weld. A side
drilled hole is inserted into the weld 50 mm from the array, in the centre of the
weld and has a radius of (a) 0.5 mm, (b) 1.25 mm and (c) 2.5 mm. The largest
singular value for each time-frequency pair is depicted via a colour, where the
colour bar gives the associated value. The time between each windowed sample of
the signal, △t, is taken to be 20% of the total length of time of each signal. The
number of time samples used is Nt = 140 and the number of frequencies used is
32. All other material parameters are given by Table C.1 in Appendix C.
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Figure 5.11: This figure shows the singular value distribution (λ̃p where p = 1, ..., N
and N is the total number of array elements) from the scattering matrix K(T ∗, f ∗),
where T ∗ and f ∗ are the time-frequency pair where the maximum singular value
occurs in the distributions, shown in Figure 5.10. These finite element simulations
contain a heterogeneous host material (a steel weld) and the radius of the side
drilled hole inclusion is (a) 0.5 mm (green line), (b) 1.25 mm (blue line) and (c)
2.5 mm (red line).

143



Figure 5.12: This schematic shows the test piece used to collect ultrasonic data.
The block consists of a weld (the material of the weld is inconel 82/182) which
joins a piece of stainless steel 316L and carbon steel 500. There is also some
cladding and buttering material between the carbon steel and the weld. The test
piece includes a 12 mm vertical crack 37 mm from the front face of the test piece
which is 85 mm total in depth. The ultrasonic array which has 45 elements and a
central frequency of 5 MHz was placed just to the right of the centre of the weld.
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within the inspection area. It is clear from Figure 5.13(b) that there are singular

values larger than the detection threshold, τ = 3.68, at the lower frequencies.

These are associated with the crack and occur at the lower frequencies as the

crack is long in comparison to the wavelength of the transducer (the crack length

over the wavelength of the transducer is 10.4). In the no flaw case (Figure 5.13(a))

there are some significant singular values occurring at around 22 µs which are

associated with the back wall. A large time window was used in order to obtain

a reasonable frequency range within the response matrix, K(Tp, fq), and so, some

backwall effects are included in the time samples. The histograms corresponding

to these largest singular values are shown in Figure 5.14 and by comparing Figures

5.14(a) and (b) it is clear that there is a higher proportion of singular values that

exceed the threshold τ = 3.68 when there is a flaw present in the inspection area.

Indeed, in Figure 5.14 there is an extremely large singular value around 6.5. In

this section a method for the detection of flaws in steel welds was proposed and

successfully applied to finite element simulated data and experimental data. In

the next section the imaging stage of the DORT method is applied to this data.

5.4 Imaging flaws in steel welds using the DORT

and TFM methods

In this section, the imaging stage of the DORT algorithm is applied to finite

element simulated and experimental FMC data from a steel weld which contains

defects. In addition, the TFM is applied to these FMC data sets to produce images

for comparison. An image is created using the DORT method once the flaw has

been detected using the largest singular value distribution. This highlights the

time-frequency pairs where the corresponding eigenvectors can be used to back-
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Figure 5.13: The largest singular value plots from the experimental FMC data
from the steel weld (see Figure 5.12 for a schematic) where (a) there is no flaw and
(b) where there is a 12 mm long vertical crack. The parameters used to generate
the time-frequency response matrix in each case are given in Appendix C, Table
C.4 and the material and ultrasonic array parameters used in each experiment are
given in Appendix C, Table C.2.
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Figure 5.14: The histograms of the largest singular values across all time and
frequency pairs from the experimental FMC data from a steel weld (see Figure
5.12 for a schematic) where (a) there is no flaw and (b) where there is a 12 mm
long vertical crack. The parameters used to generate the time-frequency response
matrix in each case are given in Appendix C, Table C.4 and the material and
ultrasonic array parameters used in each experiment are given in Appendix C,
Table C.2.
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propagate and create an image of the defect (see equation (5.9)). It is important

to note that within this work the most basic form of TFM has been used to

generate the forthcoming images [27] and that there are more advanced versions

of the method available [24,25]. In the following sections all the images have been

plotted on a decibel scale

IdB = 20 log10

(
I

Imax

)

, (5.15)

where I is the image matrix produced and Imax is the maximum from the image

matrix.

5.4.1 Image reconstruction of flaws within a steel weld us-

ing finite element simulated data

In this subsection, the DORT method (see Section 5.2.1) and the TFM method

(see Section 5.2.2) are applied to the finite element simulated data from a steel

weld with (a) side drilled hole inclusions of varying radii and (b) a horizontal crack

(see Chapter 2, Section 2.3.1 for details of the finite element simulations). Figure

5.15 shows the image of a side drilled hole inclusion of radius 1.25 mm which

was reconstructed using the DORT method. The set of singular values which lie

above the detection threshold, as shown in Figure 5.10(b), were used to create

this image. Figure 5.15(a) shows the full imaging domain, while Figure 5.15(b)

shows an enlarged image of the flaw where the super-imposed white circular disc

illustrates the approximate true size and location of the side drilled-hole. This

figure shows that the DORT imaging algorithm has misplaced the flaw to the

left by about 2.5 mm (this is the distance from the highest amplitude in the point

spread function to the centre of the white disc). This is a result of beam divergence
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of the ultrasonic wave due to the heterogeneous nature of the weld microstructure.

The images from the DORT method can be compared with those generated using

the TFM which are shown in Figure 5.16, where (a) shows the full imaging domain

with the reflections from the back wall and front face cropped and (b) shows the

area containing the flaw only. It can be seen from this figure that the TFM has

detected the flaw and in (a) the reflections from the grain boundaries within the

weld microstructure are also visible. In Figure 5.16(b) it can be seen that the

distance between the maximum amplitude in the image and the actual location of

the flaw (centre of the white disc) is out by about 2 mm in both the horizontal

and vertical direction. The signal to noise ratio (SNR) for the images generated

using DORT and TFM methods is calculated by taking the maximum amplitude

(Amax) in the image and dividing by the maximum amplitude from a region in the

image which does not contain any scattering from the flaw but does contain noise

(A0) , which gives

SNR = 20 log10

(
Amax

A0

)

. (5.16)

The region used to represent noise has been highlighted in each of the images

produced via a black or white rectangle. The maximum within the noisy region

is used as this represents what could potentially be mistaken as a flaw (a false-

positive outcome). The SNR in Figure 5.15 was calculated by taking A0 to be

the maximum amplitude in the region within the black rectangle in Figure 5.15(a)

and this divides Amax to give 19.81 dB. Similarly, A0 from Figure 5.16(a) is the

maximum in the region outlined by the white rectangle, which represents the

noise and divides Amax to give 13.14 dB. The SNR is a reasonable measure of the

capabilities of the imaging techniques. However, the subjectivity in this calculation

should be noted; the subjectivity arises from the choice in the noisy region from

which A0 is determined.
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Figure 5.15: The DORT method was used to generate the image of a 1.25 mm
radius side drilled hole in a steel weld from finite element simulated FMC data
(see Chapter 2 Section 2.3.1 for details of the simulation). The image in (a) shows
the full imaging domain and (b) the imaging domain including only the flaw where
the white disc shows the approximate true location and size of the flaw. The black
rectangle in (a) shows the region which represents noise and is used within the
SNR calculation (given by equation (5.16)).
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Figure 5.16: The TFM method was used to generate the image of a 1.25 mm
radius side drilled hole in a steel weld from finite element simulated FMC data
(see Chapter 2 Section 2.3.1 for details of the simulation). The image in (a) shows
the full imaging domain and (b) the imaging domain including only the flaw where
the white disc shows the approximate true location and size of the flaw. The white
rectangle in (a) shows the region which represents noise and is used within the SNR
calculation (given by equation (5.16))
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The next data set that the imaging methods were applied to was the finite

element simulated data from a steel weld with a 0.5 mm radius side drilled hole

inclusion. The resulting image using the DORT algorithm is shown in Figure 5.17

where again (a) shows the full imaging domain and (b) shows the flaw domain in

more detail (the white disc shows the approximate actual location of the flaw).

From these images it can be seen that the DORT method has successfully imaged

the side drilled hole. However, the location of the imaged side drilled hole is

out by approximately 4 mm in the horizontal direction and 3 mm in the vertical

direction (using the maximum amplitude of the point spread function from the

image as a reference point). The image in Figure 5.17(b) appears to be comprised

of horizontal bands of images. This is due to the fact that for each time (Tp) where

the first singular values are larger than the detection threshold (λ̃1(Tp, fq) > τ)

there is a different frequency range used to reconstruct the image. The SNR of

this image is 22.94 dB, where A0 in equation (5.16) is the maximum amplitude

in the region which represents the noise and is enclosed by the black box which

is shown in Figure 5.17(a). It is surprising that the SNR arising from the image

generated using the DORT method is higher here that when the side drilled hole of

radius 1.25 mm was included. This highlights the subjectivity surrounding these

imaging methods. As another area in the image shown in Figure 5.17(a) could

be chosen to represent the noise in the image which would ensure that the SNR

was lower than that in Figure 5.15(a). The TFM was also applied to this data

set to produce the images in Figure 5.18. Figure 5.18(a) shows the full imaging

domain (cropped to reduce the effects of the front face and backwall reflections)

and (b) shows the imaging domain containing the flaw. Figure 5.18(a) shows that

the scattering from the flaw is closer to the order of the noise as a result of the

reduction in the radius of the side drilled hole. The white disc shows the location
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and size of the flaw. Again, the distance between the maximum amplitude and the

centre of the white disc is approximately 2mm along the vertical axis and 3 mm

along the horizontal axis. The SNR in this image is calculated by dividing Amax

by A0, which is taken to be the maximum amplitude in the region enclosed by the

black box shown in Figure 5.18(a), to give 8.03 dB. As expected the reduction in

the radius of the side drilled hole has reduced the SNR of the image.

The next configuration considered is when a horizontal crack of length 5mm is

included within the simulation (see Appendix C, Table C.1 for the parameters from

the finite element simulation). The image reconstructed using the DORT method

is shown in Figure 5.19 where the white line demonstrates the actual location and

length of the flaw. The SNR in this figure is determined using equation (5.16) and

is 19.05 dB where A0 is the maximum amplitude in the region which represents

the noise in the image and is depicted by the black rectangle. The image shown

in this figure does not look particularly crack like and this is due to the fact that

the DORT method is developed for imaging point like scatterers [51]. It has been

shown that up to four eigenvalues can be associated with one scatterer depending

on its size and characteristics [67]. A potential avenue for future work would entail

further investigation of the singular value distribution when there is a crack like

defect within the structure and developing the DORT method to include more

than just the largest singular value in the image reconstruction. TThe TFM was

also applied to this data to generate the images shown in Figure 5.20(a) where

the white line indicates the true location and length of the crack. The SNR from

the TFM image is 19.69 dB, where A0 is the estimate to the maximum amplitude

from the noise represented by the region enclosed by the white rectangle in Figure

5.20. In the next subsection the DORT and TFM algorithms will be applied to

experimental data.
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Figure 5.17: The DORT method was used to generate the image of a 0.5 mm
radius side drilled hole in a steel weld from finite element simulated FMC data
(see Chapter 2 Section 2.3.1 for details of the simulation). The image in (a) shows
the full imaging domain and (b) the imaging domain including only the flaw where
the white disc shows the approximate true location and size of the flaw. The black
rectangle in (a) shows the region which represents noise and is used within the
SNR calculation (given by equation (5.16)
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Figure 5.18: The TFM method was used to generate the image of a 0.5 mm radius
side drilled hole in a steel weld from finite element simulated FMC data (see
Chapter 2 Section 2.3.1 for details of the simulation). The image in (a) shows the
full imaging domain and (b) an enlarged imaging domain around the flaw where
the white disc shows the approximate true location and size of the flaw. The black
rectangle in (a) shows the region which represents noise and is used within the
SNR calculation (given by equation (5.16)
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Figure 5.19: The DORT method was used to generate the image of a 2.5 mm
radius horizontal crack in a steel weld from finite element simulated FMC data (see
Chapter 2, Section 2.3.1 for details of the simulation). The white line indicates the
approximate true location and length of the crack inclusion. The black rectangle
shows the region which represents noise and is used within the SNR calculation
(given by equation (5.16))
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Figure 5.20: The TFM method was used to generate the image of a 2.5 mm
radius horizontal crack in a steel weld from finite element simulated FMC data
(see Chapter 2, Section 2.3.1 for details of the simulation). The white line shows
the approximate location and size of the crack and the white rectangle shows the
region which represents noise and is used within the SNR calculation (given by
equation (5.16)).
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5.4.2 Image reconstruction of a flaw within a steel weld

using experimental data

In this subsection the DORT and TFM imaging algorithms are applied to the

experimental FMC data outlined in Section 5.3.4 which is from an Inconel weld

with a 12 mm vertical crack inclusion approximately 37 mm from the array (the

parameters from this experiment are given in Appendix C, Table C.2). The DORT

method was applied to this FMC data set to produce the image in Figure 5.21(a)

where it can be seen that there is some interference at a depth of about 5 mm.

This is a result of the reflection from the front face of the test piece. It can be

seen from Figure 5.13(b) that there is a cluster of larger singular values between

2-4µs and 6 -7 MHz which are associated with this front face reflection. The

white vertical line indicates the position of the flaw. The interference from the

front face is removed by increasing the starting time, t1, for the sampling when

creating the time-frequency matrix, K(Tp, fq), to ensure that reflections from this

front face are not included. The image with the front face reflections removed is

shown in Figure 5.13(b) where the vertical, white line shows the actual location

and length of the crack inclusion. This figure shows a very large reflection at about

37 mm which is the depth where the flaw is located within the weld. However,

the image does not appear very crack-like. This reflection is from the tip of the

crack inclusion and the DORT reconstruction is undoubtedly picking up on the

spherical wave that is scattered from that point. The SNR is calculated by taking

the maximum amplitude in the image (this occurs at the reflection from the crack

tip) and dividing by the maximum within the black rectangle shown in Figure

5.21(b), which encloses a region that represents the noise in the image, to give

13.49 dB. As expected, this is much lower than that calculated from the images

produced from the finite simulated data. The TFM algorithm was applied to
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this data and the resulting image is shown in Figure 5.22, the vertical white line

shows the length and location of the crack. At about 85 mm the backwall is

only just visible and it almost impossible to detect the crack within this image.

The SNR is calculated by taking the maximum amplitude at the location of the

crack and dividing by the maximum within the noise (the region enclosed by the

black rectangle in Figure 5.22) to give 1.21 dB. Again, the SNR here is far lower

than that when the methods are applied to the finite element simulated data.

There is a lot more noise in the experimental data and this is due to a variety of

factors. For instance in the experimental set up contact between the test piece

and the transducer is imperfect, there is loss due to the transmission/reception

sensitivities of the array, there is electrical noise and there will be some thermal

losses too. In this case the image generated using the DORT method provides a

higher SNR than that generated using TFM.
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Figure 5.21: The DORT method was applied to experimental FMC data (see
Figure 5.12 for a schematic of the experimental configuration) from a steel weld
with a 12 mm long vertical crack inclusion 37 mm from the front face of the test
piece. Figure(a) includes the response from the reflections from the front face of
the test piece and (b) shows the image reconstuction of the domain containing the
flaw where the white line indicates the approximate true location and length of
the crack.
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Figure 5.22: The TFM method was applied to experimental FMC data (see Figure
5.12 for a schematic of the experimental configuration) from a steel weld with a 12
mm long vertical crack inclusion 37 mm from the front face of the test piece.The
black line indicates the approximate true location and length of the crack. The
back wall of the test piece can be identified at 85 mm.

5.5 Conclusions

In this chapter the DORT and TFM detection and imaging algorithms were pre-

sented. A detection algorithm, based on the first stage of the DORT method, was

outlined within which a detection criterion specific to steel welds was proposed.

This detection algorithm was then applied successfully to finite element simulated

data of a steel weld containing a side drilled hole (of radius 0.5 mm and 1.25 mm)

and a horizontal crack (of length 5 mm). In addition, the method was applied to

experimental FMC data from a steel weld with a 12 mm, vertical crack inclusion

and compared to the results from FMC data where no flaw was present in the

weld. The detection method objectively detected the flaw within the weld using

the experimental FMC data. The DORT imaging method and the TFM method

were then applied to these data sets. Both methods produced images which dis-

play the side drilled holes within the finite element simulated data. The final finite

element simulated FMC data set from the steel weld contained a 5 mm long crack
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and again both methods successfully detected the flaw. The image of the crack

produced using the DORT method is not very crack like and this is due to the fact

that the DORT method is designed for imaging point like reflectors. An avenue

for future work would be to explore the potential improvements for imaging cracks

and volumetric flaws using the DORT method by using all the singular values

that exceed the threshold; even though they might not be the largest at a given

time frequency pair. The methods were also applied to experimental data from a

steel weld containing a 12 mm long vertical crack. The image produced using the

DORT method shows a large reflection from the crack tip but it is almost impossi-

ble to identify the flaw within the image generated using TFM. The images can be

compared via the SNR calculation. Whilst there is subjectivity surrounding this

metric as the choice of noisy region affects the SNR, it transpired that the DORT

method outperformed the TFM method.
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Chapter 6

Conclusions

A mathematical model based approach has enabled some objective methods to be

developed for sizing flaws within heterogeneous media. This eliminates the need

for subjective thresholds that are often used within image processing techniques.

Model based techniques for characterising defects within an elastic solid are de-

rived using the Kirchhoff model which is a high frequency approximation to the

scattering from a crack within a homogeneous medium from an elastic wave.

In Chapter 2, the scattering matrices from the model were used to derive an

objective method for sizing cracks within an elastic solid. These scattering matrices

were approximated by Toeplitz matrices in order to make analytical progress.

Further approximations were then made to derive a formula which relates the

maximum eigenvalue from a scattering matrix to the length of a crack within a

homogeneous medium. It was shown that there is a one to one relation between

the maximum eigenvalue and the crack length and so this method can be used to

extract the crack length from ultrasonic data (the inverse problem). The advantage

of deriving an analytical expression is that it can be interrogated to assess the

effects of the system parameters on the method.
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In Chapter 3, the sensitivity of the maximum eigenvalue approximation to

changes in the system parameters was examined. First, the effects of varying the

system parameters, such as the depth of the flaw in the model, the length of the

array and the number of elements in the array, were numerically analysed. As

expected, as the length of the array and the number of elements were increased

simultaneously (this means a fixed pitch length) the sensitivity of the maximum

eigenvalue to the crack radius increased. Similarly, as the depth of the flaw was

decreased the crack sizing capabilities of the method increased. This analysis

is practically useful when considering experimental design. Next the derivative

of the maximum eigenvalue with respect to each of the system parameters was

determined. These derivatives were used to analytically examine the sensitivity of

the maximum eigenvalue to changes in the crack length, the depth of the flaw, the

number of elements in the array and the length of the array. From this analysis

it was concluded that the method is most sensitive to changes in the crack radius

over the wavelength when the ratio is less than 1 and becomes less sensitive as this

ratio is increased. This implies that the method of using the maximum eigenvalue

to determine the size of a crack in a homogeneous material (the inverse problem) is

most effective when the crack is sub-wavelength. For larger cracks another method

should be adopted, perhaps an image-based method. In addition, the analysis of

the derivative highlighted that errors in the measured length of the array, depth of

the flaw, and number of elements has little effect on the inverse problem. Finally,

the method outlined in Chapter 2 was applied to finite element simulated data

from a homogeneous medium with a crack inclusion of 5 mm. The recovered crack

length using this method was 4.4 mm. Future work may include applying this

method to scattering matrices from a heterogeneous medium; although techniques

for significantly reducing the noise within the scattering matrices may need to be
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developed before the method can be successfully used.

The Kirchhoff model was used again in Chapter 4 to develop a frequency do-

main method for objectively sizing cracks, which uses the first minimum in the

pulse echo response from a scattering matrix. An analytical expression was derived

from the Kirchhoff model which demonstrates the one to one relationship between

the crack radius and this first minimum. This analytical expression provides in-

sight into the sensitivity of the method and to the errors which are a consequence

of the discretisation of the model. It was shown that the discretisation of the

ultrasonic array within the model results in errors in the recovered crack length.

An approximation was derived to this error which was a function of the crack

radius over the wavelength and the pitch of the array. In addition an upperbound

was derived which relates the maximum crack length which can be recovered for a

given pitch (and vice versa). The single frequency method was applied to finite el-

ement simulated data from a homogeneous medium with a crack inclusionof length

5 mm. The method successfully recovered a reasonable crack length with a 0.4

mm error. An alternative method which uses all points in the pulse echo response

to size the crack was also applied to the finite element simulated data. However,

a larger error of 1.5 mm was incurred when this approach was adopted. This

single-frequency method was then extended to a multi-frequency technique which

uses the first minimum in the pulse echo response across a range of frequencies.

Before this method was applied to finite simulated data from a steel weld with a

crack inclusion, it was necessary to apply a convolution technique to the data to

reduce the noise within the scattering matrices. Once the noise was reduced, the

multi-frequency method was applied to the finite element simulated data of a steel

weld with a 5 mm long crack inclusion. The crack length was recovered with an

error of 1 mm, which is reasonable when the assumptions within the model and
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the simulation are considered.

In Chapter 5, the DORT and TFM methods for the detection and imaging of

defects were explored (these are not based on the Kirchhoff model). The DORT

method is an empirical time-frequency method based on time reversal principles

and the TFM is an empirical time domain technique which uses delay and sum

calculations to generate an image. The DORT method had not been applied before

to ultrasonic data from a steel weld containing defects. The first stage of the DORT

method was used to create an objective flaw detection method within which a

detection criterion specific to steel welds was proposed. The detection algorithm

uses the largest singular value from the SVD of the time-frequency domain data

and if there exist largest singular values above the specified detection threshold

then it can be objectively concluded that there is a flaw in the weld. This detection

algorithm was applied successfully to finite element simulated data of a steel weld

with side drilled hole (of radius 0.5 mm and 1.25 mm) and horizontal crack (of

length 5 mm) inclusions. In addition the method was applied to experimental

FMC data from a steel weld with a 12 mm, vertical crack inclusion and compared

to the results from FMC data where no flaw was present in the weld. The detection

method objectively detected the flaw within the weld using the experimental FMC

data. The full DORT imaging method and the TFM method were then applied

to these data sets. Both methods produced images which detect the side drilled

holes within the finite element simulated data. The final finite element simulated

FMC data set from the steel weld contained a 5 mm long crack and again both

methods successfully detected the flaw. The image of the crack produced using

the DORT method does not appear very crack like and this is due to the fact that

the DORT method is designed for imaging point like reflectors. An avenue for

future work would be to explore the potential improvements for imaging cracks
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and volumetric flaws using the DORT method by using all the singular values

that exceed the threshold; even though they might not be the largest at a given

time frequency pair. The methods were also applied to experimental data from

a steel weld containing a 12 mm long vertical crack. The image produced using

the DORT method shows a large reflection from the crack tip but it is almost

impossible to identify the flaw within the image generated using TFM. The images

can be compared via the SNR calculation. There is subjectivity surrounding this

metric as the choice of noisy region affects the SNR, however in each instance the

DORT method produced images with a lower SNR than those produced using the

TFM method.

Further future work may include the investigation of the effects of including

curved cracks, and multiple cracks, within a structure. The Kirchhoff model would

need to be adapted in order to include a non-linear crack. In addition, it would

be interesting and beneficial to explore the potential inclusion of heterogeneities

within the Kirchhoff model. In particular, to include heterogeneities akin to those

within steel welds. If this was achieved, the methods outlined in this thesis could

be used with this model and would perhaps produce more accurate results.

This thesis has made the first few steps in using a mathematical modelling

based approach to make the detection, imaging and sizing of flaws in steel welds

more objective. It is hoped that this will provide the impetus for such an approach

to be taken up by engineers in the field where this objectivity in appraising a safety

critical structure may have certain advantages.
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Appendix A

Kirchhoff model and analysis of

scattering matrices

In Chapter 2, Section 2.5.2 the coefficients b
(i)
l , (l = 1, ..., 6, i = 1, 2) and d

(i)
l

(l = 1, ..., 8, i = 1, ..., 10) from equations (2.87) and (2.90) are included in the ap-

proximation to the maximum eigenvalue from a scattering matrix and are defined

in this appendix.

A.1 List of the coefficients b
(i)
l and d

(i)
l .

The terms b
(i)
l in equation (2.90), where i = 1, 2 and l = 1, ..., 6 are independent

of â and again are functions of the number of the system parameters. Defining

b
(1)
1 = −

√

4 − (△y)2π

6c2(N − 2)2ρ

(
µ

(
(△y)2(N + 2)2 − 4

)
− 2L

)

(

(N − 1)Nπ sin

(
(N − 4)π

6(N − 2)

)

+ 3(N − 2)2 cos

(
(N − 4)π

6(N − 2)

))

, (A.1)
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b
(1)
2 =

2
√

4−(△y)2π

9c2(N−2)2ρ

(

2(N − 1)π sin
(

(N−4)π
6(N−2)

)

(µ ((△y)2 (2N2 + 5N + 2) − 2) − L)

+9(△y)2µ(N − 2)2(N + 2) cos
(

(N−4)π
6(N−2)

)
)

, (A.2)

b
(1)
3 = −2(△y)2

√
4−(△y)2µπ

9c2(N−2)2ρ

(

(7N2 + N − 8) π sin
(

(N−4)π
6(N−2)

)

+9(N − 2)2 cos
(

(N−4)π
6(N−2)

)
)

, (A.3)

b
(1)
4 =

8(△y)2
√

4 − (△y)2µ(N − 1)π2 sin
(

(N−4)π
6(N−2)

)

9c2(N − 2)2ρ
, (A.4)

b
(1)
5 = 0, (A.5)

b
(1)
6 = 0, (A.6)

b
(2)
1 =

(△y)2
√

4 − (△y)2(N + 2)2π3

48c2(N − 2)2ρ

(
µ

(
(△y)2(N + 2)2 − 4

)
− 2L

)

×
(

(N − 1)Nπ sin

(
(N − 4)π

6(N − 2)

)

+ 3(N − 2)2 cos

(
(N − 4)π

6(N − 2)

))

, (A.7)
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b
(2)
2 = −π3(△y)2

√

4 − (△y)2(N + 2)

36c2(N − 2)2ρ

(

π(N − 1) sin

(
π(N − 4)

6(N − 2)

) (

µ

(

8
(
(△y)2 − 1

)

+ 7(△y)2N3 + 30(△y)2N2 + 4
(
9(△y)2 − 4

)
N

)

− 4L(2N + 1)

)

+ 18(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)
(
µ

(
(△y)2(N + 2)2 − 2

)
− L

)

)

, (A.8)

b
(2)
3 =

(△y)2
√

4 − (△y)2π3

18c2(N − 2)2ρ

(

(N − 1)π sin

(
(N − 4)π

6(N − 2)

) (

µ

(

32(△y)2 + 13(△y)2N3

+ 60(△y)2N2 + 14
(
6(△y)2 − 1

)
N − 16

)

− L(7N + 8)

)

+ 9(N − 2)2 cos

(
(N − 4)π

6(N − 2)

)
(
µ

(
3(△y)2(N + 2)2 − 2

)
− L

)

)

, (A.9)

b
(2)
4 = −2(△y)2

√

4 − (△y)2π3

9c2(N − 2)2ρ

(

(N − 1)π sin

(
(N − 4)π

6(N − 2)

)

×
(
2µ

(
3(△y)2

(
N2 + 3N + 2

)
− 1

)
− L

)

+ 9(△y)2µ(N − 2)2(N + 2) cos

(
(N − 4)π

6(N − 2)

))

, (A.10)

b
(2)
5 =

(△y)4
√

4 − (△y)2µπ3

9c2(N − 2)2ρ

(

(
11N2 + 5N − 16

)
π sin

(
(N − 4)π

6(N − 2)

)

+ 9(N − 2)2 cos

(
(N − 4)π

6(N − 2)

)

(A.11)

and

b
(2)
6 = −

4(△y)4
√

4 − (△y)2µ(N − 1)π4 sin
(

(N−4)π
6(N−2)

)

9c2(N − 2)2ρ
. (A.12)
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The terms d
(i)
l in equation (2.90) where i = 1, .., 10 and l = 1, .., 6 are independent

of â and again are functions of the number of the system parameters. Defining

H
(1)
1 =

1

36(N − 2)2
√

π
, H

(2)
2 =

1

6(N − 2)2
, (A.13)

and

B̂ = (−1 + N)Nπ sin

(
(N − 4)π

6(N − 2)

)

+ 3(N − 2)2 sin

(
(N − 1)π

3(−2 + N)

)

(A.14)

then substituting these into d
(1)
l gives

d
(1)
1 = 5H

(1)
1 B̂T 2(T 2 − 24), (A.15)

d
(2)
1 = 4H

(1)
1 B̂π(△y)T

(
2N

(
7T 2 − 78

)
+ 3

(
T 2 − 4

))
, (A.16)

d
(3)
1 = H

(1)
1 B̂6π2(△y)2(3N + 1)

(
N

(
13T 2 − 44

)
+ T 2 + 12

)
, (A.17)

d
(4)
1 = H

(1)
1 B̂4π3(△y)3(3N + 1)

(
36N2 + 9N − 1

)
T, (A.18)

d
(5)
1 = H

(1)
1 B̂(△y)4(11N − 3)(3πN + π)3, (A.19)

d
(6)
1 = H

(2)
1 B̂

5T (T 2 − 8)√
π

, (A.20)
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d
(7)
1 = H

(2)
1 B̂

√
π(△y)

(
N

(
41T 2 − 88

)
+ 7T 2 + 24

)
, (A.21)

d
(8)
1 = H

(2)
1 B̂π3/2(△y)2

(
111N2 + 34N − 1

)
T, (A.22)

d
(9)
1 = H

(2)
1 B̂π5/2(△y)(3N + 1)2(11N − 3), (A.23)

and

d
(10)
1 = 0, (A.24)

where T is given by equation (2.105) Next, defining

H
(1)
2 = −

√
π

27(N − 2)2
and H

(2)
2 =

2
√

π

9(−2 + N)2)
(A.25)

and substituting into d
(i)
2 gives

d
(1)
2 = H

(1)
2 5(N − 1)T 2

(
T 2 − 24

)
sin

(
π(N − 4)

6(N − 2)

)

, (A.26)

d
(2)
2 = H

(1)
2 2(△y)T (81(N − 2)2T 2 + π(N − 1)(55N + 6)T 2 − 864(N − 2)2

− 24π(N − 1) − 600π(N − 1)N) sin

(
π(N − 1)

3(N − 2)

)

, (A.27)
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d
(3)
2 = H

(1)
2 6π(△y)2(3N3(75T 2 + 2π(19T 2 − 62) − 240)

+ N2(−855T 2 + π(364 − 83T 2) + 2880) − 10N(π(3T 2 − 2)

− 72(T 2 − 4)) + 180T 2 − π(T 2 + 12)) sin

(
π(N − 1)

3(N − 2)

)

, (A.28)

d
(4)
2 = H

(1)
2 2π2(△y)3T

(

27(69N2 + 26N + 1)(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)

+ π(837N4 − 477N3 − 339N2 − 23N + 2) sin

(
π(N − 4)

6(N − 2)

))

, (A.29)

d
(5)
2 = H

(1)
2 π3(△y)4

(

54(7N − 1)(−3N2 + 5N + 2)2 sin

(
π(N − 1)

3(N − 2)

)

+ π(159N3 − 175N2 + 13N + 3)(3N + 1)2 sin

(
π(N − 4)

6(N − 2)

))

, (A.30)

d
(6)
2 = H

(2)
2 π3(△y)4

(

54(7N − 1)
(
−3N2 + 5N + 2

)2
sin

(
π(N − 1)

3(N − 2)

)

+ π
(
159N3 − 175N2 + 13N + 3

)
(3N + 1)2 sin

(
π(N − 4)

6(N − 2)

))

, (A.31)

d
(7)
2 = H

(2)
2 5(N − 1)T

(
T 2 − 8

)
sin

(
π(N − 4)

6(N − 2)

)

, (A.32)
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d
(8)
2 = H

(2)
2 π(△y)2T

(

π(N − 1)
(
321N2 + 64N − 1

)
sin

(
π(N − 4)

6(N − 2)

)

+ 90(7N + 1)(N − 2)2 sin

(
π(N − 1)

3(N − 2)

))

, (A.33)

d
(9)
2 = H

(2)
2 π2(△y)3

(

9
(
93N2 + 22N − 3

)
(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)

+ π(378N4 − 273N3 − 121N2 + 13N + 3) sin

(
π(N − 4)

6(N − 2)

))

, (A.34)

and

d
(10)
2 = 0. (A.35)

Also, define

H3 =
8π3/2∆y

9(N − 2)2
(A.36)

which is substituted into d
(i)
3 to give

d
(1)
3 = d

(6)
3 = d

(10)
3 = 0, (A.37)

d
(2)
3 = H3(N − 1)T

(
3T 2 − 32

)
sin

(
π(N − 4)

6(N − 2)

)

, (A.38)

d
(3)
3 = H336(△y)(N − 2)2

(
T 2 − 3

)
sin

(
π(7 − 4N)

3(N − 2)

)

−

π△y(N − 1)
(
(37N + 5)T 2 − 116N

)
cos

(
π(5 − 2N)

3(N − 2)

)

, (A.39)
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d
(4)
3 = H3π(△y)2T

(

18(11N + 2)(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)

+ π(N − 1)(N(135N + 38) + 1) sin

(
π(N − 4)

6(N − 2)

))

, (A.40)

d
(5)
3 = H3π

2(△y)3(3N + 1)

(

90N(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)

+ π(N − 1)(N(51N + 4) − 1) sin

(
π(N − 4)

6(N − 2)

))

, (A.41)

d
(7)
3 = (N − 1)

(
13T 2 − 24

)
sin

(
π(N − 4)

6(N − 2)

)

, (A.42)

d
(8)
3 = (△y)T

(

99(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)

+ π(N − 1)(103N + 10) sin

(
π(N − 4)

6(N − 2)

))

,

(A.43)

and

d
(9)
3 = π(△y)2

(

9(29N + 3)(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)

+ π(N − 1)(N(180N + 31) − 3) sin

(
π(N − 4)

6(N − 2)

))

. (A.44)

Let

H4 =
32π5/2(△y)2

9(N − 2)2
, (A.45)
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which gives d
(i)
4 in the following form:

d
(1)
4 = H4d

(2)
4 = d

(6)
4 = d

(7)
4 = d

(10)
4 = 0, (A.46)

d
(3)
4 = H44(N − 1)

(
T 2 − 3

)
sin

(
π(N − 4)

6(N − 2)

)

, (A.47)

d
(4)
4 = H4(△y)T

(

21(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)

+ π(N − 1)(29N + 4)

× sin

(
π(N − 4)

6(N − 2)

))

,

(A.48)

d
(5)
4 = H4π(△y)2

(

3(19N + 3)(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)

+ π(N − 1)N(49N + 13) sin

(
π(N − 4)

6(N − 2)

))

, (A.49)

d
(8)
4 = H411(N − 1) sin

(
π(N − 4)

6(N − 2)

)

, (A.50)

and

d
(9)
4 = H427△y(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)

+ π△y(N − 1)(38N + 3) sin

(
π(N − 4)

6(N − 2)

)

.

(A.51)
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Finally, let

H5 =
64π7/2(△y)3

3(N − 2)2
(A.52)

which gives

d
(1)
5 = d

(2)
5 = d

(3)
5 = d

(6)
5 = d

(7)
5 = d

(8)
5 = d

(10)
5 = 0, (A.53)

d
(4)
5 = H5

14

9
(N − 1)T sin

(
π(N − 4)

6(N − 2)

)

, (A.54)

d
(5)
5 = 3△y(N − 2)2 sin

(
π(N − 1)

3(N − 2)

)

+
1

9
π△y(N − 1)(47N + 6) sin

(
π(N − 4)

6(N − 2)

)

,

(A.55)

d
(9)
5 = 2(N − 1) sin

(
π(N − 1)

3(N − 2)

)

, (A.56)

d
(1)
6 = d

(2)
6 = d

(3)
6 = d

(4)
6 = d

(6)
6 = d

(7)
6 = d

(8)
6 = d

(9)
6 = d

(10)
6 = 0 (A.57)

and

d
(5)
6 = −

256π9/2(△y)4(N − 1) sin
(

π(N−4)
6(N−2)

)

9(N − 2)2
. (A.58)
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Appendix B

Derivatives from Chapter 3

In Chapter 3, the derivative of the approximation to the maximum eigenvalue from

a scattering matrix (equation (2.100)) is determined. Within the expression given

by equation (2.100) the functions Â, Ŝj(â) (j = 1, 2), Q(â), p(â) and φ(â) need

to be differentiated with respect to the crack length over wavelength â, the array

length l, the number of elements in the array N and the depth of the flaw d. These

derivatives are determined within this appendix.

B.1 Derivative with respect to the crack size over

the wavelength

The derivatives with respect to the crack size over the wavelength of the functions

stated above are given in this section. First, from equation (3.11) the derivative

of Ŝj(â) for (j = 1, 2) is given by

∂Ŝj

∂â
=

6∑

r=1

b(j)
r

∂S
(1)
r

∂â
, (B.1)
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using equation (2.85), and

∂S
(1)
r

∂â
=

∂t∗

∂â

(

(t∗ + 1)r−1 +
h∑

k=1

Bk

(
r − 1

k

)

(t∗ + 1)r−k−1

)

(B.2)

is determined using equation (2.85) with

∂t∗

∂â
=

T

2πâ2(△y)
(B.3)

which is calculated using equation (2.103). In equation (3.11), the partial deriva-

tive of Q(â), given by equation (2.99), is of the form

∂Q

dâ
=

(

Ŝ3 + Ŝ4

)−1/2
(

Ŝ3
∂Ŝ3

∂â
+ Ŝ4

∂Ŝ4

∂â

)

, (B.4)

where

∂Ŝ3

∂â
=
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∂â
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Dkâ
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∂Dj
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and
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∂â
=
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Dj â
j−5 + B
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(j − 5)Dj â
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∂Dj

∂â
âj−5 (B.6)

are determined using equations (2.94) and (2.95). The derivative of the prefactor

B (equation (2.91)) is

∂B

∂â
= −5

2

1

(πâ(△y)(2N − 2t∗ − 3))7/2

(

π(△y)(2N − 2t∗ − 3) − T

â
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and

∂Dj

∂â
=

8∑

r=1

∂S
(2)
r

∂â
d(j)

r (B.8)

from equation (2.96), with
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(2)
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∂â
= −∂t∗

∂â

(

(t∗ + 1)r−1 +
h∑

k=1

Bk

(
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k
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(B.9)

which is obtained using equation (2.86). In equation (3.11), the derivative of p(â)

(equation (2.92)) is

∂p

∂â
= π(△y)t∗ + âπ(△y)

∂t∗

∂â
= π(△y)t∗ +

T

2â
. (B.10)

Finally, from equation (3.11) we have that
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∂â
=
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∂â
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∂Ŝ3

∂â
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) /

(Ŝ2
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4). (B.11)

B.2 Derivative with respect to the number of el-

ements in the array

The derivatives of the functions Â, Ŝj(â) (j = 1, 2), Q(â), p(â) and φ(â) with

respect to the number of elements in the array are given here. Where, from

equation (2.82),

∂Â

∂N
=

2π(△y)

ρc2

∂(△y)
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(

1

4
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and where

∂(△y)

∂N
= − (△y)

N − 1
(B.13)

from equation (2.20). The derivative of Ŝj (j = 1, 2) with respect to N is given by
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from equation (2.89), where the derivative of S
(1)
j , from equation (2.85), is
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and from equation (2.103)
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2
+
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2πâ(△y)2

∂(△y)
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1

2
− T
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The derivatives of the coefficients b
(j)
r were calculated using Mathematica. The

derivative of Q (equation (2.99)) is defined as

∂Q

∂N
=

(

Ŝ3
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)
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where
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from equations (2.94) and (2.95), with
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from equation (2.96), and
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using equation (2.86). Again, the derivatives of the coefficients d
(k)
r were calculated

using Mathematica. Also,

∂B
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= −5

2
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The derivative of p (equation(2.92)) with respect to N is given by

∂p

∂N
= âπ
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+ (△y)
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and finally,
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Ŝ2
3 + Ŝ2
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B.3 Derivative with respect to the length of the

array

The derivatives of the functions Â, Ŝj(â) (j = 1, 2), Q(â), p(â) and φ(â) with

respect to the length of the array, l are given here. Where, from equation (2.82),

∂Â

∂l
=
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4
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with
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from equation (2.20). The derivative of Ŝj, for j = 1, 2, is defined as
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from equation (2.89) with
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from equation (2.103). The derivatives of the coefficients b
(j)
r were calculated using

Mathematica. The partial derivative of Q (equation (2.99)) with respect to l is

defined as
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where
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âk−5, (B.32)

from equations (2.94) and (2.95) with
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Again, the derivatives of the coefficients d
(k)
r were calculated using Mathematica.

The next derivative is
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from equation (2.91). The partial derivative of p with respect to l is
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B.4 Derivative with respect to the depth of the

flaw

The derivatives of the functions Â, Ŝj(â) (j = 1, 2), Q(â), p(â) and φ(â) with

respect to the depth of the flaw, d are given here. Where, from equation (2.82),

∂Â
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from equation (2.20). For j = 1, 2,
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from equation (2.89), with
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The partial derivative of Q (equation (2.99)) with respect to d is defined as
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∂Ŝ3

∂d
+ Ŝ4
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where
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k + B

4∑

k=0

∂Dk

∂d
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from equations (2.94) and (2.95), with
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The derivative with respect to d of the function B given by equation (2.91) is
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The partial derivative of p with repsect to d is
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and finally
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Appendix C

Data

Ultrasonic Transducer Array Parameters Flaw type Value Units
Number of elements 64 -
Pitch 2 mm
Element width 1.5 mm
Transducer centre frequency 1.5 MHz
Array Length 128 mm
Average velocity (heterogeneous) 6300 ms−1

Average velocity (homogeneous) 6600 ms−1

Density of host material 8280 kg/m3

Flaw (a) Side drilled holes, radius 0.5-2.5 mm
Flaw (b) Horizontal crack, length 5 mm
Depth of flaw 50 mm
Depth of sample 78.6 mm
Time sampling 173 ns

Table C.1: Parameters used in the finite element simulations of a homogeneous
medium and a steel weld (heterogeneous medium). The parameters in each re-
mained the same, however the inclusion of the weld grain structure in the simu-
lation resulted in a slower average velocity. In the simulations the type of defect
within the medium can be chosen as (a) side drilled hole defects, and (b) crack-like
defects.
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Ultrasonic Transducer Array Parameters Value Units
Number of elements 45 -
Pitch 2 mm
Element width 1.5 mm
Centre frequency (data with flaw) 5 MHz
Centre frequency (data with no flaw) 2 MHz
Array Length 90 mm
Average velocity 5760 ms−1

Density of host material 8280 kg/m3

Flaw vertical crack, 12 long mm
Depth of flaw 37 mm
Depth of sample 85 mm
Time sampling 1 ns

Table C.2: The parameters associated with experimental data from a test piece
which contains an inconel 82/182 weld [70]. The parent material to the right of
the weld is stainless steel 316L and to the left is carbon steel 300 with an inconel
182 buttering layer between this and the weld. Two data sets were collected, one
where a flaw was (12mm long) known to be in the inspection area and another
where there was no defect within the inspection area.

Parameters to create inter-element response Value
Distance to back wall 76.8 mm
Time window (△T ) 15.7 mm
Number of time samples (NT ) 140
Number of frequencies (Nf ) 32
Time step (△t) 0.5 mm

Table C.3: Parameters used to generate the inter-element response matrix,
K(Tp, fq), from the ultrasonic data arising from the finite element simulation of a
steel weld containing no flaw, side drilled hole inclusions of varying radii and a 2.5
mm, horizontal crack (see Table C.1 for simulation parameters). These parame-
ters also apply to the response matrix, K(Tp, fq), arising from the finite element
simulation of a homogeneous medium with a crack inclusion.
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Parameters to create inter-element response Value
Distance to back wall 85mm
Time window (△T ) 17mm
Number of time samples (NT ) 200
Number of frequencies (Nf ) 32
Time step (△t) 0.34mm

Table C.4: Parameters used to generate the inter-element response matrix,
K(Tp, fq), from the experimental,ultrasonic data arising from the inconel steel
weld. The parameters associated with this test piece and the experimental config-
uration are summarised in Table C.2.
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