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Abstract

This thesis is related to encoding graphs by words, where we deal with so called

word-representation of graphs, relevant to them semi-transitive orientations, and

more exotic ways to represent graphs via bijections with certain words and pattern-

avoiding permutations.

In Chapter 2, we introduce a way to define classes of split graphs via iterations

of morphisms and present a number of general results on word-representation of

such graphs. A particular result obtained by us that goes beyond the study of split

graphs, is a characterization of word-representable graphs in terms of permutations

of columns of the adjacency matrices. We also provide a complete classification of

word-representable split graphs defined by iteration of morphisms using two 2× 2

matrices.

In Chapter 3, we study families of directed split graphs obtained by iterations

of morphisms applied to the adjacency matrices and giving as the limit infinite

directed split graphs. For each of such a family we ask the question on whether

all graphs in the family are oriented semi-transitively (i.e. are semi-transitive) or

a finite iteration k of the morphism produces a non-semi-transitive orientation

(which will stay non-semi-transitive for all iterations > k). We fully classify semi-

transitive infinite directed split graphs in question.

In Chapter 4, we present encoding p-Riordan graphs by p-Riordan words, and

encoding Riordan graphs by pattern-avoiding permutations. Also, we encode ori-

ented Riordan graphs by balanced words over the alphabet {0, 1, 2}, and provide,

as a bi-product, a proof of a known enumerative result about closed walks in the

3-cube.

This thesis is based on the papers [Iam21, IK21, IJK21].
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Chapter 1

Introduction

There are many ways to encode graphs that can be found in the literature, e.g.

using the adjacency matrix, incident matrix, words, etc. The adjacency matrix is a

natural option for representing a graph and it is often used to store graphs in com-

puter memory. However, to solve efficiently certain problems we may recruit other

ways to represent graphs. A suitable example of such a situation is the classical

Snake-in-the-Box problem. The problem is in determining the length of a longest

cycle without chords, which is called a snake, in an n-cube. In [Evd69], Evdokimov

has used an encoding of paths in n-cube by words to find the asymptotic for the

length. The basic idea here is that we can transfer a problem on graphs to words

via an appropriate encoding and solve the problem on words, then returning the

solution for the problem on graphs.

Encoding graphs by words is the main focus of this work. In the thesis, we

deal with so called word-representation of graphs, relevant to them semi-transitive

orientations, and more exotic ways to represent graphs via bijections with certain

words and pattern-avoiding permutations. This thesis is based on the papers

[Iam21, IK21, IJK21]. We begin with some background necessary to follow the
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material in the thesis.

1.1 Basic Definitions in Graph Theory

We start with basic definitions in Graph Theory. In this thesis, we work with

graphs having no loops or multiple edges meaning, respectively, no edges connect-

ing the same vertex and at most one edge connecting two vertices. This type of

graphs is known as simple graphs.

Definition 1. A (simple) graph is an ordered pair G = (V (G), E(G)), where V (G)

is a set whose elements are called vertices, and E(G) is a set of paired vertices,

whose elements are called edges. If u, v ∈ E(G), we say that u and v are adjacent,

or u is adjacent to v.

From the definition, a graph is defined by an ordered pair of sets, which is not

always convenient to deal with. Graphs are normally represented by drawing points

(vertices) and lines (edges) connecting points. For example, if V = {1, 2, 3, 4} and

E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}} , then the graph G = (V,E) can be represented

as in Figure 1.1.

1 2

34

Figure 1.1: Representation of a graph G = (V,E) where V = {1, 2, 3, 4} and
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

Another effective graph representation is listing all vertices and edges of a

graph. Moreover, it is very common to represent a graph by a matrix, for example,
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for storing the graph in computer memory.

Definition 2. Let G = (V,E) be a graph with V = {v1, v2, . . . , vn}. The adjacency

matrix of G, written by A(G) = [aij], is the binary n-by-n matrix in which entry

aij is 1 if {vi, vj} is an edge in G, and aij is 0 otherwise.

We can see that the graph in Figure 1.1 can be represented by the adjacency

matrix

A(G) =


0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0


.

Note that any adjacency matrix is symmetric (aij = aji for all i, j) and the entries

on the diagonal are always 0.

Definition 3. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). We then write H ⊆ G and say that “G contains H as a subgraph”.

A graph I is an induced subgraph of a graph G if V (I) ⊆ V (G) and for any

u, v ∈ V (I), {u, v} ∈ E(I) if and only if {u, v} ∈ E(G).

In other words, we can say that an induced subgraph is a subgraph obtained by

deleting some vertices and the edges connected to them. A graph G is complete if

every two distinct vertices are adjacent. The next definition introduces important

types of induced subgraphs.

Definition 4. A clique of graph G is an induced subgraph of G that is complete.

An independent set in a graph is a set of pairwise nonadjacent vertices in the

graph.
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Definition 5. A directed graph or oriented graph is an ordered pair G = (V (G), E(G)),

where V (G) is a set of vertices, and E(G) is a set of ordered pairs of vertices,

whose elements are called (directed) edges. The first vertex of an ordered pair is

tail of the edge, and the second is the head.

Similarly to ordinary graphs, in this thesis, we do not allow directed graphs to

have loops (edges having the same head and tail) and multiple edges (more than

one edge between a pair of vertices).

1.2 Word-representation of graphs

The main focus of Chapter 2 is on the class of graphs called word-representable

graphs. There is a long line of research on word-representable graphs in the literat-

ure, for example, see [AKM15, BZ19, CKKP19, CKK19, CKL17, GKP18, GKZ17,

Kit17]. Word-representable graphs are important as they generalize several well-

known and well-studied classes of graphs such as 3-colorable graphs, comparability

graphs and circle graphs [KL15]. The letters x and y alternate in a word w if re-

moving the copies of letters different from x and y in w yields a word xyxy · · · or

yxyx · · · , of even or odd length. Then we can define a word-representable graph

as follow.

Definition 6. A graph G = (V,E) is word-representable if there exist a word w

over the alphabet V such that distinct letters x and y alternate in w if and only if

xy ∈ E. We say that w represents G and w is a word-representant.

Note that any labelling of a graph is equivalent to any other labelling because

letters in w can always be renamed. So, Definition 6 is valid for both labelled

and unlabelled graphs. For example, the 5 vertices graphs in Figure 1.2 can be
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represented by the word 121342535. Thus, the graphs in Figure 1.2 are word-

representable. For another example, the cycle graph on four vertices labelled

1, 2, 3, 4 in clockwise(or counterclockwise) direction is word-representable because

it can be represented by the word 14213243.

1

2
3 4

5

Figure 1.2: The unlabelled and labelled graphs are representable by the word
121342535.

Each word-representable graph has more than one word-representant. For in-

stance, 352513124, which is a cyclic shift of 131243525, is also a word-representant

for the graphs in Figure 1.2. A word-representable graph can have a word-

representant which is not a cyclic shift of another word-representant. For ex-

ample, the one edge graph represented by 121 is not represented by 211 or 112.

The complete graph Kn of order n can be represented by 1234 or 12341234 or any

permutation over {1, 2, . . . , n}. The empty graph of order k can be represented by

123 · · · kk(k − 1) · · · 1 or 1122 · · · kk.

If a graphG is word-representable by a word w, thenG−v can be represented by

the word obtained by removing all v in w. Then, the class of word-representable

graphs is hereditary, that is, removing a vertex in a word-representable graph

results in a word-representable graph.

Not all graphs are word-representable. The wheel graph W5 is the smallest (by

the number of vertices) counter example as no word can represent W5 [KP08]. A

graph is non-word-representable if it is not word-representable. Since the class of

7



word-representable graphs is hereditary, we also know that all graphs containing

W5 as an induced subgraph are non-word-representable. In general, it is a natural

research direction to look for a characterization of word-representabe graphs. We

do have such a characterization in terms of semi-transitive orientations discussed

in the next section, but finding other characterizations, e.g. in terms of forbidden

subgraphs, is an open problem.

1.3 Semi-transitive orientations

An orientation of a directed graph is transitive if presence of edges u → v and

v → z implies presence of the edge u→ z. The next definition is a generalization

of the notion of a transitive orientation.

Definition 7. An orientation of a graph G = (V,E) is semi-transitive if it is

acyclic and for any directed path v1 → v2 → · · · → vk with vi ∈ V for all

i ∈ {1, 2, . . . , k} either

1. there is no edge v1 → vk, or

2. the edge v1 → vk is present and there are edges vi → vj for all 1 ≤ i ≤ j ≤ k.

In other words, in this case, the (acyclic) subgraph induced by the vertices

v1, v2, . . . , vk is transitive.

A graph G = (V,E) is semi-transitive if it admits a semi-transitive orientation.

A graph obtained by changing the direction of one edge of a directed cycle is

called a semi-cycle. A shortcut is a directed acyclic graph such that it is induced

by the vertices of a semi-cycle and contains a pair of non-adjacent vertices. Thus,

a shortcut is a directed graph satisfying the following properties:
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Figure 1.3: A semi-transitive orientation of the graph in Figure 1.2.

• it is acyclic (there is no directed cycles);

• it contains at least four vertices;

• it has exactly one source (no edges coming in), exactly one sink (no edges

coming out), and a directed path from the source to the sink that goes

through each vertex in the graph;

• it has an edge connecting the source to the sink;

• it is not transitive.

We have an alternative definition of a semi-transitive orientation in terms of

induced subgraphs.

Definition 8. An orientation of a graph is semi-transitive, if it is acyclic and

contains no shortcuts.

The following theorem provides a characterization of word-representable graphs

in terms of orientations.

Theorem 9 ([HKP16]). A graph is word-representable if and only if it admits a

semi-transitive orientation.
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Theorem 9 is very useful as we can recognise a word-representable graph by

assigning to it a semi-transitive orientation. For example, we know that a graph

in Figure 1.2 is word-representable because it admits a semi-transitive orientation

presented in Figure 1.3.

The following simple lemma will also be of use to us in this thesis.

Lemma 10 ([KLMW]). Let Km be a clique in a graph G. Then any acyclic

orientation of G induces a transitive orientation on Km (where the presence of

edges u → v and v → z implies the presence of the edge u → z). In particular,

any semi-transitive orientation of G induces a transitive orientation on Km. In

either case, the orientation induced on Km contains a single source and a single

sink.

1.4 Split graphs

A split graph is a graph in which the vertices can be partitioned into a clique

and an independent set [FH]. The paper [KLMW] initiated a systematic study

of word-representability of split graphs, which was extended in a follow up paper

[CKS20]. In particular, characterizations of word-representable split graphs in

terms of forbidden induced subgraphs were obtained in [KLMW] and [CKS20] for

cliques of sizes 4 and 5, respectively. Also, a characterization of semi-transitive

orientations of split graphs was obtained in [KLMW] (see below), and split graphs

were used to solve a long standing problem in the theory of word-representation in

[CKS20]. We note though that currently a complete characterization of split graphs

(e.g. in terms of forbidden subgraphs) seems to be a non-feasible problem, so a

natural research direction is in understanding (non-)word-representable subclasses
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type A type B

source

sink
type C

Figure 1.4: Three types of vertices in En−m in a semi-transitive orientation of
(En−m, Km). The vertical oriented paths are a schematic way to represent (parts
of) P⃗

of split graphs.

Let Sn = (En−m, Km) be a word-representable split graph, where Km is the

maximal clique by the number of vertices, and En−m is the independent set. Then,

by Theorem 9, Sn admits a semi-transitive orientation. Further, by Lemma 10 we

know that any such orientation induces a transitive orientation on Km with the

longest directed path P⃗ . Theorem 13 below characterizes semi-transitive orienta-

tions of split graphs.

Theorem 11 ([KLMW]). Any semi-transitive orientation of a split graph Sn =

(En−m, Km) subdivides the set of all vertices in En−m into three, possibly empty,

groups corresponding to each of the following types (also shown schematically in

Figure 1.4), where P⃗ = p1 → · · · → pm is the longest directed path in Km:

• A vertex in En−m is of type A if it is a source and is connected to all vertices

in {pi, pi+1, . . . , pj} for some 1 ≤ i ≤ j ≤ m;

• A vertex in En−m is of type B if it is a sink and is connected to all vertices

in {pi, pi+1, . . . , pj} for some 1 ≤ i ≤ j ≤ m;
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• A vertex v ∈ En−m is of type C if there is an edge x → v for each

x ∈ Iv = {p1, p2, . . . , pi} and there is an edge v → y for each y ∈ Ov =

{pj, pj+1, . . . , pm} for some 1 ≤ i < j ≤ m.

There are additional restrictions, given by the next theorem, on relative posi-

tions of the neighbours of vertices of types A, B and C.

Theorem 12 ([KLMW]). Let Sn = (En−m, Km) be oriented semi-transitively with

P⃗ = p1 → · · · → pm. For a vertex x ∈ En−m of type C, there is no vertex

y ∈ En−m of type A or B, which is connected to both p|Ix| and pm−|Ox|+1. Also,

there is no vertex y ∈ En−m of type C such that either Iy, or Oy contains both p|Ix|

and pm−|Ox|+1.

One can now classify semi-transitive orientations on split graphs.

Theorem 13 ([KLMW]). An orientation of a split graph Sn = (En−m, Km) is

semi-transitive if and only if

(i) Km is oriented transitively;

(ii) each vertex in En−m is of one of the three types in Theorem 11;

(iii) the restrictions in Theorem 12 are satisfied.

1.5 Morphisms

Let A and B be alphabets (possibly A = B). A map φ : A∗ → B∗ is called a

morphism, if we have φ(uv) = φ(u)φ(v) for any u, v ∈ A∗. A morphism φ can be

defined by defining φ(a) for each a ∈ A. A particular property of a morphism φ

is that φ(ε) = ε, where ε is the empty word. For example, Thue-Morse squence
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t0, t1, t2, . . . is a well-known sequence of words defined by iteration of morphism.

It starts with t0 = 0 and ti = θ(ti−1) where i ≥ 1 and θ : {0, 1} → {0, 1}2 is a

morphism defined by θ(0) = 01 and θ(1) = 10. The first few initial iterations of

t0, t1, t2, . . . are

0, 01, 0110, 01101001, 0110100110010110, . . .

Morphisms are a central object in the area of combinatorics on words [Lot83],

and there is a natural extension of the notion to two, or more, dimensions. Indeed,

one can begin with a matrix M whose entries are elements of A, and then obtain

φ(M) by substituting each element in M by matrices having the same dimensions

and given by some substitution rules. For instance, we define a sequence of binary

matrices S0, S1, S2, . . . by S0 = [1] and Si = ϕ(Si−1) where i ≥ 1 and ϕ is a

morphism defined by 0 7→

0 0

0 0

 and 1 7→

1 0

1 1

. The first four iterations of

this 2-dimensional morphism are

[
1
]
,

1 0

1 1

 ,

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1


,



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1



, . . .

where the lower triangular matrices define a well-known shape, Sierpinski triangle.

Relevance of (2-dimensional) morphisms to split graphs is coming from the

ideas communicated in [CKKK19], where patterns in adjacency matrices are con-
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sidered to study word-representability of graphs, and the notion of an infinite

word-representable graph is introduced in Sections 2.2 and 3.2.

1.6 Patterns in permutations

We consider permutations in the one-line notation, and a permutation of length n

is called an n-permutation. The reduce form of a permutation π is the permutation

red(π) obtained from π by substituting the i-th smallest element by i. For example,

red(4287)=2143.

Let τ = τ1τ2 · · · τk and π = π1π2 · · · πn be permutations such that k ≤ n. We

say that the pattern τ occurs in the permutation π if there are indices 1 ≤ i1 < i2 <

· · · < ik ≤ n such that red(πi1πi2 · · · πik)= τ . Moreover, a permutation π avoids a

pattern τ if there is no occurrence of τ in π. For example, the permutation 14235

has five occurrence of the pattern 123, namely, the subsequences 145, 123, 125, 135

and 235, while the permutation 34512 avoids the pattern 132 (has no occurrences

of it). Permutation patterns have been the subject of extensive research in the

literature [Kit11].

A well-known result [Kit11, Table 6.1], to be used in this thesis, states that the

number of n-permutations that avoid simultaneously the patterns 123 and 132 is

2n−1. This can be proved using a bijection ψ from the set of binary words of length

n−1 to the set of restricted n-permutations that is denoted by Sn(123, 132). Think

of constructing a permutation in Sn(123, 132) by inserting elements 1, 2, . . . , n one

by one, starting from 1 and continuing with the least available element, into n

empty slots and observing that at each step an element i can only be inserted

in one of the two rightmost empty slots to avoid the patterns 123 and 132; the

element n will be inserted in a unique way. Thus, given a binary word b1b2 · · · bn−1,

14



ψ uses the process of insertion, and places the element i to the left (resp., right)

available slot if bi = 0 (resp., 1). For example, ψ(011001) = 7546312.

1.7 Riordan graphs and p-Riordan graphs

Riordan graphs were introduced in [CJKM19a, CJKM19b] and they are a far-

reaching generalization of the well-known and well studied Pascal graphs and

Toeplitz graphs, and also some other families of graphs. The Riordan graphs

are proved to have a number of interesting (fractal) properties [CJKM19a], and

spectral properties of Riordan graphs were studied in [CJKM19b].

Riordan graphs

Definition 14. Let L = [lij]i,j≥0 be an infinite matrix over integral domain κ. If

there exists a pair of generating functions (g, f) ∈ κ[[t]]×κ[[t]], f(0) = 0 such that

gf j =
∑
i≥0

lijt
i, j ≥ 0 or equivalently lij = [ti]gf j

then the matrix L is called a Riordan Matrix (or, a Riordan array) over κ generated

by g and f .

In other words, we can say that a Riordan matrix L = [ℓij]i,j≥0 generated by

two formal power series g =
∑∞

n=0 gnt
n and f =

∑∞
n=1 fnt

n in Z[[t]] is denoted

as (g, f) and defined as an infinite lower triangular matrix whose j-th column

generating function is gf j, i.e. ℓij = [ti]gf j where [tk]
∑

n≥0 ant
n = ak. Usually, we

write L = (g(t), f(t)) or (g, f) for a Riordan Matrix generated by g and f . Note

that (g, f) is invertible if and only if g0 ̸= 0 and f1 ̸= 0, in which case (g, f) is

called proper.
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A simple graph G of order n is said to be a Riordan graph if the adjacency

matrix A(G) can be expressed as

A(G) ≡ (tg, f)n + (tg, f)Tn (mod 2) (1.1)

for some generating functions g and f over Z where (tg, f)n is the n×n leading prin-

ciple matrix of the Riordan matrix (tg, f). A Riordan graph G on n vertices with

the adjacency matrix A(G) given by equation (1.1) is denoted as G = Gn(g, f). If

we let A(G) = (ai,j)1≤i,j≤n, then, for i ≥ j,

ai,j = aj,i ≡ [ti−2]gf j−1 (mod 2).

In particular, if [t0]g ≡ [t1]f ≡ 1 (mod 2), then the graph Gn(g, f) is called proper.

We denote the set of Riordan graphs with n vertices by RGn. When defining

Riordan graphs we assume, without loss the generality, that g and f have binary

coefficients. Then, the number rn of Riordan graphs of order n ≥ 1 is known from

[CJKM19a] to be

rn =
4n−1 + 2

3
. (1.2)

Example 15. Let g = 1
1−t

and f = t
1−t

, then

gf j =
1

1− t

(
t

1− t

)j

=
tj

(1− t)j+1
=

∞∑
i=0

(
i

j

)
ti, j ≥ 0.

So, the Riordan matrix (g, f) is

1 0 0 0 0 · · ·

1 1 0 0 0 · · ·

1 2 1 0 0 · · ·

1 3 3 1 0 · · ·

1 4 6 4 1 · · ·
... ... ... ... ... . . .
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which is an infinite lower triangular matrix with properties analogous to the Pascal

triangle. Then, the adjacency matrix of G6(g, f) is

0 1 1 1 1 1

1 0 1 0 1 0

1 1 0 1 1 0

1 0 1 0 1 0

1 1 1 1 0 1

1 0 0 0 1 0


.

and the graph G6(g, f) is shown in Figure 1.5.

Figure 1.5: The graph G6(g, f) in Example 15

There are several naturally defined classes/families of Riordan graphs [CJKM19a,

CJKM19b]. A Riordan graph Gn(g, t) is said to be of the Appell type. Riordan

graphs of the Appell type are also known as Toeplitz graphs. Toeplitz graphs have

been studied in [CJKM19a, vDTT+96, NP14]. A Riordan graph Gn(g, tg) is said

to be of the Bell type and it has been studied in [CJKM19a, Juna]. The well-known

Pascal graph Gn

(
1

1−t
, t
1−t

)
is a particular example of a Bell type Riordan graph,

and it is the only such graph of type (1 + f, f), also considered in this thesis.

Finally, a Riordan graph Gn(f
′, f) is said to be of the derivative type and it has

been studied in [CJKM19a].
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Oriented Riordan graphs and p-Riordan graphs.

There is a natural generalization of the notion of a Riordan graph that was intro-

duced in [Junb]. This notion is obtained by replacing “mod 2” by “mod p” in the

definition of a Riordan graph. While the definition makes sense for any integer

p ≥ 2, it is normally assumed that p is a prime number to resolve the invertibility

issues preventing us from being able to analyze such graphs. In particular, the

number r(p)n of p-Riordan graphs for a prime p was derived in [Junb], and it is

given by

r(p)n =
p2(n−1) + p

p+ 1
, (1.3)

while no enumeration is known for a non-prime p. Setting p = 2 in (1.3) we recover

the number of Riordan graphs given by (1.2), while setting p = 3 in (1.3) we obtain

the number r̃n of oriented Riordan graphs of order n:

r̃n =
32(n−1) + 3

4
. (1.4)

For p ≥ 3, p-Riordan graphs can be thought of as weighted Riordan graphs.

In the case of a p-Riordan graph G, in some contexts it is convenient to let the

elements of the adjacency matrix A(G) be coming from the set {⌊p/2⌋, . . . ,−1, 0,

1, . . . , ⌊p/2⌋}. However, in this thesis, it is more convenient to let these elements be

in the set {0, 1, . . . , p− 1}. In particular, oriented Riordan graphs have adjacency

matrices’ elements in {0, 1, 2}. We denote the set of p-Riordan graphs with n

vertices by RG(p)
n .

1.8 Organisation of this thesis

Up to this point, we have already provided a comprehensive overview of basic

notions to be used in the thesis.
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In Chapter 2, we first give a characterization of word-representable split graphs

in terms of permutations of columns of the adjacency matrices. Then, we focus

on the study of word-representability of split graphs obtained by iterations of a

morphism, a notion coming from combinatorics on words. We prove a number of

general theorems and provide a complete classification in the case of morphisms

defined by 2× 2 matrices.

After that, in Chapter 3, we study semi-transitivity of families of directed split

graphs obtained by iterations of morphisms applied to the adjacency matrices and

giving in the limit infinite directed split graphs. We fully classify semi-transitive

infinite directed split graphs when a morphism in question can involve any n×m

matrices over {−1, 0, 1} with a single natural condition.

Finally, in Chapter 4, we introduce the notion of a p-Riordan word, and show

how to encode p-Riordan graphs by p-Riordan words. For special important cases

of Riordan graphs (the case p = 2) and oriented Riordan graphs (the case p = 3)

we provide alternative encodings in terms of pattern-avoiding permutations and

certain balanced words, respectively. As a bi-product of our studies, we provide

an alternative proof of a known enumerative result on closed walks in the cube.
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Part I

Encoding Split Graphs Generated

by Morphisms
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Chapter 2

Word-representability of Split

Graphs Generated by Morphisms

In this chapter, based on [Iam21], we introduce a way to define adjacency matrices

of split graphs in term of any binary matrices, and provide some results on word-

representability of split graphs. We also present a number of general results on

split graphs generated by morphisms in Section 2.2. After that, in Section 2.3,

we provide a complete classification of word-representable split graphs defined by

iteration of morphisms using two 2 × 2 matrices (the results in this section are

summarized in Tables 2.1 and 2.2).
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2.1 Adjacency matrices of split graphs and

general results

Definition 16. Let M be a binary m× n matrix. Define S(M) to be the matrix Ln MT

M Om


where Om is the m × m zero matrix and Ln is the n × n matrix such that all

diagonal entries are 0’s and all other entries are 1’s.

It is easy to see that for any binary m × n matrix M , S(M) is the adjacency

matrix of a split graph with the maximal clique of order n or n+1. We denote the

split graph by G(M). Clearly, M gives edges between the clique and independent

set in G(M), and the order of the maximal clique depends on the existence of a

11 · · · 1 row in M .

Example 17. If M =


1 0 1 0

0 1 1 0

1 0 0 0

0 0 0 1


then

S(M) =



0 1 1 1 1 0 1 0

1 0 1 1 0 1 0 0

1 1 0 1 1 1 0 0

1 1 1 0 0 0 0 1

1 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0
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Figure 2.1: The split graph G(M) given by S(M) in Example 17.

is the adjacency matrix of the graph shown in Figure 2.1.

Remark 18. If M is a zero matrix, then G(M) is a disjoint union of a clique and

isolated vertices and is word-representable, because the clique is semi-transitively

(in fact, transitively) orientable and there are no other edges in G(M).

The following lemma is Lemma 8 in [KLMW].

Lemma 19 ([KLMW]). Let Sn = (En−m, Km) be a split graph with the maximum

clique Km, and a spit graph Sn+1 is obtained from Sn by either adding a vertex of

degree 0 (to En−m), or adding a vertex of degree 1 (to En−m), or by “copying” a

vertex (either in En−m or in Km), that is, by adding a vertex whose neighbourhood

is identical to the neighbourhood of a vertex in Sn. Then Sn is word-representable

if and only if Sn+1 is word-representable.

To analyze word-representability of a given split graph, by Lemma 19 we can

delete vertices of degree 0 and vertices of degree 1, as well as delete all but one

vertex having the same neighborhood.

Proposition 20. Let M be an m×n matrix. If every row, or every column of M

is of the form 00 · · · 0 or 11 · · · 1, then G(M) is word-representable.

Proof. If every row of M consists of all 0’s or all 1’s then in G(M), each vertex

in the independent set is an isolated vertex, or is connected to every vertex in
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the clique. By Lemma 19, word-representability of G(M) is equivalent to word-

representability of either the clique Kn+1, or the disjoint union of a clique (Kn or

Kn+1) and an isolated vertex, which are clearly semi-transitively orientable, and

thus, by Theorem 9, word-representable.

On the other hand, if every column of M consists of all 0’s or all 1’s then the

neighborhood of each vertex in the independent set is the same and, by Lemma 19,

word-representability of G(M) is equivalent to word-representability of the clique

Kn with a vertex x connected to some, maybe none or all of clique’s vertices.

If w.l.o.g. x is connected to vertices 1, 2, . . . , p, 0 ≤ p ≤ n, in Kn formed by

the vertices 1, 2, . . . , n, then the word x12 · · · px(p + 1)(p + 2) · · ·n represents the

graph.

It is obvious that if M∗ is a matrix obtained by a row or column permutation

of a matrix M , then G(M∗) is a split graph obtained by relabelling the vertices of

the graph G(M). Hence we get the following lemma.

Lemma 21. Let M be an m × n binary matrix and M∗ is a matrix obtained

from a sequence of row and/or column permutations of M . Then, G(M) is word-

representable if and only if G(M∗) is word-representable.

For any m × n binary matrix M , we can consider the n columns of M as

connectivity of the vertices in the maximal clique (first n rows/columns of S(M))

and m rows of M as connectivity of the vertices in the independent set (last m

rows/columns of S(m)). However, we note that M have the maximal clique of size

n+ 1 if 111 · · · 1 is a row in M . Then, we can move the vertex in the independent

set which is connected to every vertex in the clique of size n to be one of the

vertices in the maximal clique. So, we can create a new (m− 1)× (n+ 1) binary
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matrix N such that the graphs G(M) and G(N) are the same, and every row of N

is not equal to 111 · · · 1. With this idea in mind, we obtain the following lemma.

Lemma 22. Let M := [mij]m×n be an m×n binary matrix such that mk1 = mk2 =

· · · = mkn = 1 for some k ∈ {1, 2, . . . ,m}. If

N =



m11 m12 · · · m1n 0

m21 m22 · · · m2n 0

... ... ... ...

m(k−1)1 m(k−1)2 · · · m(k−1)n 0

m(k+1)1 m(k+1)2 · · · m(k+1)n 0

... ... ... ...

mm1 mm2 · · · mmn 0


,

is an (m− 1)× (n+ 1) binary matrix, then G(M) is isomorphic to G(N).

Proof. Let M∗ be the matrix obtained from M by making the kth row be the first

row. That is,

M∗ =



1 1 · · · 1

m11 m12 · · · m1n

m21 m22 · · · m2n

... ... ...

m(k−1)1 m(k−1)2 · · · m(k−1)n

m(k+1)1 m(k+1)2 · · · m(k+1)n

... ... ...

mm1 mm2 · · · mmn



.

Since M∗ is obtained by reordering rows of M , G(M∗) is obtained by relabeling

the vertices of G(M), and thus G(M∗) is isomorphic to G(M). Note that S(M∗) =
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T1 = T2 =

T3 =

T4 =

Figure 2.2: Non-word-representable split graphs T1, T2, T3, T4.

S(N), and so G(M∗) and G(N) are the same graph. Hence G(M) is isomorphic

to G(N).

It is known [Kit17] that there are no non-word-representable graphs of order

less than 6 and the only non-word-representable graph on 6 vertices is the wheel

graph W5, which is not a split graph. Thus, G(M) is word-representable if M is an

m×n matrix and m+n ≤ 6. In [KLMW], it is shown that any split graph S with

maximum clique K4 is word-representable if and only if S does not contain the

graphs T1, T2, T3 and T4 shown in Figure 2.2 as induced subgraphs. As a corollary

to this result, we have the following theorem.

Theorem 23. Let A be an m× 4 binary matrix without all 1’s rows. Then, G(A)

is word-representable if and only if the rows and columns of A cannot be permuted

to be a matrix containing

1 1 0 0

1 0 1 0

0 1 1 0

,

1 1 0 0

1 0 1 0

1 0 0 1

,

1 0 1 1

1 1 0 1

1 1 1 0

 or


1 1 1 0

1 1 0 0

1 0 0 1

1 0 1 1


as a submatrix.

Let xn denotes xx · · ·x where x is repeated n times. The next theorem gives a

sufficient condition for word-representability of a given graph G(M).
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Theorem 24. Let M be an m×n binary matrix. If there is a sequence of column

permutations of M giving the matrix such that each row of M is of the form 0r1s0t

for some non-negative integers r, s, t, then G(M) is word-representable.

Proof. Assume thatM∗ is the matrix obtained from a sequence of column permuta-

tions of M and each row of M∗ is of the form 0r1s0t where r, s, t are non-negative

integers. Let the ith row/column of the adjacency matrix S(M∗) correspond to

vertex i in G(M∗). So the clique C in G(M∗) contains vertices 1, 2, . . . , n and

the independent set I in G(M∗) contains vertices n+ 1, n+ 2, . . . , n+m. Assign

the orientation of edges in G(M∗) as i → j if and only if i < j. We have that

1 → 2 → · · · → n is the longest path in the transitively oriented C, and the edges

between C and I are oriented from C to I. Thus, each edge in the independent

set is of type B, and we are done by Theorems 9 and 13.

We have the following important generalization of Theorem 24.

Theorem 25. Let M be an m × n binary matrix without all 1’s rows. The

split graph G(M) is word-representable if and only if M satisfies the following

conditions:

(i) there is a sequence of column permutations of M giving a matrix M∗ where

every row is of the form 0r1s0t or 1r0s1t for some nonnegative integers r, s,

t, and

(ii) for any row of M∗ of the form 1a0b1c for some positive integers a, b, c, there

is no other row having 1’s in all positions from a to a+ b+ 1.

Proof. “⇐.” Assign the orientation of edges in G(M∗) as i → j if i < j except if

j > n (i.e. j is a vertex in the independent set) and the row in M∗ corresponding
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to j is of the form 1r0s1t, in which case we still orient i→ j for 1 ≤ i ≤ r but j → i

for r + s+ 1 ≤ i ≤ n. The vertices in the independent set will then be of types B

and C, and taking into account condition (ii), Theorems 9 and 13 can be applied

to see that G(M∗) is word-representable, and thus G(M) is word-representable by

Lemma 21.

“⇒.” By Theorem 9, G(M) admits a semi-transitive orientation. By Theorem 13,

under this orientation the clique is oriented transitively, and we can rename the

vertices of the clique, if necessary so that the longest path would be formed by 1 →

2 → · · · → n. Note that renaming vertices in the clique corresponds to permuting

columns in M giving M∗. But then, conditions (ii) and (iii) in Theorem 13 give

conditions (i) and (ii) in this theorem.

Remark 26. If M has an all 1’s row, we can see that Theorems 23 and 25 cannot

be applied. However, we can use Theorem 22 to change M into an (m−1)×(n+1)

matrix N which does not contain all 1’s row. So we can apply the theorems to

matrix N instead of M because G(N) is isomorphic to G(M). This observation

also applies to Corollary 33 below.

We can see that Theorem 25 allows us to answer the question on word-representability

of G(M) by looking at permutations of columns in M . Let M = [mij]m×n be an

m × n matrix and ρ = ρ1ρ2 · · · ρn is a permutation of {1, 2, . . . , n} written in

one-line notation. We say that

M∗ =


m1ρ1 m1ρ2 · · · m1ρn

m2ρ1 m2ρ2 · · · m2ρn

... ... . . . ...

mmρ1 mmρ2 · · · mmρn
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is the matrix obtained from reordering columns of M in the order given by ρ. The

key approach given by Theorem 25 is finding a permutation ρ that turns each row

of M∗ into the form 0r1s0t or 1r0s1t (so, all 1’s in M∗ are cyclically consecutive).

Interestingly, to prove word-representability results in this chapter, only rows of

the form 0r1s0t are used, so that condition (ii) in Theorem 25 is not applicable.

Example 27. In the matrix M =



1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0


we can ignore rows 2, 4, 6 and 8 because all entries in these rows are zero. Then

we need to find a permutation ρ = ρ1ρ2 · · · ρ8 making

• columns 1, 4, 6 and 7 be (cyclically) consecutive in rows 1;

• columns 1, 3, 5 and 7 be (cyclically) consecutive in row 3 and 7;

• columns 2, 3, 6 and 7 be (cyclically) consecutive in row 5.

It can be implied from the first and the second bullet points that 1 and 7 must be

consecutive in ρ and then, w.l.o.g., 4 and 6 are next to the left of these numbers

and 3 and 5 are next to the right of them (cyclically). Hence ρ contains

{4, 6}, {1, 7}, {3, 5}
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where numbers in {} are consecutive in ρ but are in some unknown to us order.

But then, we get a contradiction with the second bullet point. Hence, there is no

such ρ and G(M) is non-word-representable by Theorem 25.

2.2 General results on split graphs generated

by morphisms

In this section, we discuss rather general results on split graphs generated by

morphisms, thus preparing ourselves for a classification of the case of 2×2 matrices

coming in the next section.

Definition 28. Let A,B be m× n binary matrices. The matrix Mk(A,B) is said

to be the kth-iteration of the 2-dimensional morphism applied to the 1× 1 matrix

[0] which maps [0] → A and [1] → B. Moreover, we write Sk(A,B) for the matrix

S(Mk(A,B)) and Gk(A,B) for the graph with the adjacency matrix Sk(A,B).

Example 29. Let A =

1 0

0 1

 and B =

0 1

1 0

. Then we have

M0(A,B) =
[
0
]
, M1(A,B) =

1 0

0 1

, M2(A,B) =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


.
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Figure 2.3: The split graph G2(A,B) corresponding to the adjacency matrix
S2(A,B) in Example 29.

Then, S2(A,B) =



0 1 1 1 0 1 1 0

1 0 1 1 1 0 0 1

1 1 0 1 1 0 0 1

1 1 1 0 0 1 1 0

0 1 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0



and G2(A,B) is shown in Figure 2.3.

Remark 30. If A is a zero matrix, then Mk(A,B) is always a zero matrix for

any m × n matrix B and positive integer k. So, by Remark 18, Gk(A,B) is

word-representable.
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The case of A = B

In this case, both [0] and [1] are mapped to the same matrix A, so if A is an m×n

binary matrix, then

Sk(A,A) =

 Lnk AT
k

Ak Omk

 where Ak =


A A · · · A

A A · · · A

... ... . . . ...

A A · · · A


︸ ︷︷ ︸

nk columns

.

Clearly, Ak is an nk×mk matrix and Sk(A,A) = S(Ak), so Gk(A,A) is isomorphic

to G(Ak).

Theorem 31. Let A be an m × n binary matrix. For k ≥ 1, Gk(A,A) is word-

representable if and only if G(A) is word-representable.

Proof. Firstly, we label a vertex of Gk(A,A) by i if it is represented by the ith

column/row in Sk(A,A). Note that rows i,m+ i, 2m+ i, . . . , (mk−1−1)m+ i in Ak

are identical for any i ∈ {1, 2, . . . ,m}, and columns j, n+j, 2n+j, . . . , (nk−1−1)n+j

in Ak are also identical for any j ∈ {1, 2, . . . , n}. So, for any i ∈ {1, 2, . . . ,m}, the

vertices of Gk(A,A) in Ri := {i+nk,m+i+nk, 2m+i+nk, . . . , (mk−1−1)m+i+nk}

have the same neighborhoods. Similarly, any two vertices of Gk(A,A) in Cj :=

{j, n + j, 2n + j, . . . , (nk−1 − 1)n + j} are connected to the same vertices in the

independent set for any j ∈ {1, 2, . . . , n}. Thus, by Lemma 19, Gk(A,A) is word-

representable if and only if the graph G obtained by deleting all vertices but the

smallest one in Ri and Cj for all i, j ∈ {1, 2, . . . , n} is word-representable. But G

is exactly G(A), which complete the proof.
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Corollary 32. If A is an m×n binary matrix such that m+n ≤ 6, then Gk(A,A)

is word-representable for any k ≥ 0.

Proof. Since the smallest non-word-representable split graph is of order 7, all split

graphs of orders less than 7 are word-representable. Hence Gk(A,A) is word-

representable for any m× n matrix A where m+ n ≤ 6.

Moreover, together with Theorem 23, we have the following result.

Corollary 33. Let A be an m×4 binary matrix with no all 1’s row. For any integer

k, the graph Gk(A,A) is word-representable if and only if the rows and columns

of A cannot be permuted to be a matrix containing

1 1 0 0

1 0 1 0

0 1 1 0

,

1 1 0 0

1 0 1 0

1 0 0 1

,

1 0 1 1

1 1 0 1

1 1 1 0

 or


1 1 1 0

1 1 0 0

1 0 0 1

1 0 1 1

 as a submatrix.

The case of A ̸= B

In what follows, A and B can be distinct.

Proposition 34. If every row, or every column, in m × n matrices A and B is

either 0n or 1n, then Gk(A,B) is word-representable for any k ≥ 0.

Proof. If every row (resp., column) in A and B is either 0n or 1n, then every row

(resp., column) in Mk(A,B) is either 0n
k or 1n

k , so by Proposition 20, Gk(A,B)

is word-representable.

Theorem 35. Let A and B be m×n binary matrices. Suppose that A∗ and B∗ are

the matrices obtained from reordering columns of A and B, respectively, in order
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given by a permutation σ = σ1σ2 · · ·σn. Then Gk(A,B) is word-representable if

and only if Gk(A∗, B∗) is word-representable for any k ≥ 0.

Proof. The case k = 0 is trivial, so assume that k ≥ 1. We claim that Mk(A∗, B∗)

is obtained from a permutation of columns in Mk(A,B). We will prove the

claim by induction on k. Note that M1(A,B) = A and M1(A∗, B∗) = A∗. So

M1(A∗, B∗) is the matrix obtained from reordering columns of M1(A,B). Suppose

that l is a positive integer and M l(A∗, B∗) is the matrix obtained from reorder-

ing columns of M l(A,B) in order given by a permutation τ = τ1τ2 · · · τnl . Let

M l(A,B) =
[
C1 C2 · · · Cnl

]
where Ci is the ith column of M l(A,B). Then

M l(A∗, B∗) =
[
Cτ1 Cτ2 · · · Cτ

nl

]
. For the next iteration of morphism, each

column Ci of M l(A,B) is mapped to n columns Ci,1, Ci,2, . . . , Ci,n, and each column

Cτi of M l(A∗, B∗) is mapped to n columns Cτi,σ1 , Cτi,σ2 , . . . , Cτi,σn . So we have

M l+1(A,B) =
[
C1,1 C1,2 · · ·C1,n · · · Cnl,1 Cnl,2 · · · Cnl,n

]
and

M l+1(A∗, B∗) = [ Cτ1,σ1 Cτ1,σ2 · · · Cτ1,σn · · · Cτ
nl ,σ1

Cτ
nl ,σ2 · · · Cτ

nl ,σn ].

A group of columns Ci,1, Ci,2, . . . , Ci,n is called block Bi. Firstly, we can see

that reordering the blocks B1, B2, . . . , Bnl of M l+1(A,B) in order given by τ ,

and then reordering columns in every block Bi in order given by σ, yields the

matrix M l+1(A∗, B∗). Thus, M l+1(A∗, B∗) is obtained by a column permutation

of M l+1(A,B) and our claim is true. Hence, by Lemma 21, Gk(A,B) is word-

representable if and only if Gk(A∗, B∗) is word-representable for any positive in-

teger k.
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Next theorem is a natural extension of Theorem 35 to the case of row permuta-

tions, and it can be proved in a similar way to the proof of Theorem 35, so we

omit the proof.

Theorem 36. Let A and B be m × n binary matrices. Suppose that A∗ and B∗

are the matrices obtained from reordering rows of A and B, respectively, in order

given by the same permutation. Then Gk(A,B) is word-representable if and only

if Gk(A∗, B∗) is word-representable for any k ≥ 0.

So, we can reorder rows and columns of given matricesA andB while preserving

the word-representability of Gk(A,B). If A contains at least one 0, we can reorder

rows and columns of A to make the leftmost bottom entry be a 0 (the matrix B will

be changed by the same permutation of rows and columns as those applied to A).

Thus, in what follows, if A is not all-one matrix, w.l.o.g. we can assume that the

leftmost bottom entry of A is always 0. Then, the m×n leftmost bottom submatrix

of M2(A,B) is A since M1(A,B) = A. Moreover, the mk−1×nk−1 leftmost bottom

submatrix of Mk(A,B) is Mk−1(A,B). Thus, the limit limk→∞Mk(A,B), called a

fixed point of the morphism, is well-defined. So, we have thatGi(A,B) is an induced

subgraph of Gk(A,B) if i ≤ k and the notion of the infinite split graph G(A,B) is

well-defined in the case when A has a 0 as the leftmost bottom entry. So we are

interested in the smallest integer l (possibly non-existing) that Gl(A,B) is non-

word-representable for given A and B (then Gi(A,B) is non-word-representable

for i ≥ l).

Definition 37. Suppose that a matrix A has a 0 as the leftmost bottom entry.

The index of word-representability IWR(A,B) of an infinite split graph G(A,B)

is the smallest integer l such that Gl(A,B) is non-word-representable. If such l

does not exist, that is, if Gl(A,B) is word-representable for all l, then l := ∞.
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If the leftmost bottom entry of A is 1 (so that the limk→∞Mk(A,B) may not be

well-defined as the sequence of graphs Gk(A,B), for k ≥ 0, may not be a chain of

induced subgraphs) then IWR(A,B) is still defined in the same way even though

G(A,B) may not be defined.

Note that since G0(A,B) is a graph with one vertex, we have IWR(A,B) ≥ 1.

Even though Definition 37 is very similar to the respective definition of the index

of word-representability of an infinite Toeplitz graph in [CKKK19] (where the index

in our context would be the maximum l such that Gl(A,B) is word-representable),

it is more flexible as it makes sense in the situation when the leftmost bottom entry

of A is 1.

Theorem 38. Let A = [aij] and B = [bij] be m× n binary matrices, and

C =


ap1q1 ap1q2 · · · ap1qt

ap2q1 ap2q2 · · · ap2qt
... ... . . . ...

apsq1 apsq2 · · · apsqt


and D =


bp1q1 bp1q2 · · · bp1qt

bp2q1 bp2q2 · · · bp2qt
... ... . . . ...

bpsq1 bpsq2 · · · bpsqt


be s× t submatrices of A and B, respectively, where 1 ≤ p1 < p2 < · · · < ps ≤ m

and 1 ≤ q1 < q2 < · · · < qt ≤ n. For any positive integer k, if Gk(C,D) is

non-word-representable, then Gk(A,B) is non-word-representable.

Proof. First, we will prove by induction that Mk(C,D) is a submatrix of Mk(A,B)

for any positive integer k. It is obvious that M1(C,D) = C is a submatrix of

M1(A,B) = A. Let l be a positive integer such that M l(C,D) is a submatrix

of M l(A,B) on the columns c1, c2, . . . , ctl and rows r1, r2, . . . , rsl . For the next

iteration of morphism, M l+1(A,B) is formed by replacing each entry of M l(A,B)

with either A or B. So the columns (ci − 1)n + qj for 1 ≤ i ≤ tl, 1 ≤ j ≤ t,
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and rows (ri − 1)m + pj for 1 ≤ i ≤ sl, 1 ≤ j ≤ s, form the matrix M l+1(C,D).

Hence Mk(C,D) is a submatrix of Mk(A,B) for any k ≥ 1. Therefore, Gk(A,B)

contains Gk(C,D) as an induced subgraph for k ≥ 1. As the property of word-

representability is hereditary, we have that non-word-representability of Gk(C,D)

implies non-word-representability of Gk(A,B).

Theorem 38 gives a useful tool to study non-word-representability of Gk(A,B)

for larger A and B. Indeed, a starting point to justify suspected non-word-

representability of Gk(A,B) can be analysis of smaller submatrices of A and B.

This is one of our motivation points to conduct a systematic study of IWR(A,B)

for 2×2 matrices, to be done in the next section, as they are smallest submatrices

that can be used to show non-word-representability of Gk(A,B) for some A, B

and k.

2.3 Classification of word-representable split

graphs defined by iteration of morphisms

using two 2× 2 matrices

A summary of our classification of word-representability of Gk(A,B) for 2 × 2

matrices A and B can be found in Tables 2.1, 2.2, 2.3 and 2.4, where the index of

word-representability IWR(A,B) is given along with a reference, or a comment to

the respective result.

37



The cases when A is not an all-one matrix

For any 2 × 2 matrices A and B, the graph G1(A,B) is a split graph of order

4 which is always word-representable. Then, IWR(A,B) ≥ 2. However, 2 × 2

matrices A and B such that G2(A,B) is non-word-representable can be found.

Proposition 39. For A =

1 0

0 0

 and B =

0 1

1 1

, IWR(A,B) = 2.

Proof. We have M2(A,B) =


0 1 1 0

1 1 0 0

1 0 1 0

0 0 0 0


. Reordering columns of M2(A,B) in

order given by the permutation 2314 yields the matrix


1 1 0 0

1 0 1 0

0 1 1 0

0 0 0 0


. So, by The-

orem 23, G2(A,B) is non-word-representable (G2(A,B) contains T1 as an induced

subgraph).

Remark 40. Permuting rows or/and columns in A and B similarly to Proposi-

tion 39, we see that IWR(A,B) = 2 for A and B in Cases 31, 45, 81 and 101 in

Tables 2.1, 2.2, 2.3 and 2.4 (in Case 81 G2(A,B) contains T3, and in the other

cases G2(A,B) contain T1).

Proposition 41. For A =

1 0

0 0

 and B =

0 1

0 0

, IWR(A,B) = 3.
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Proof. We have

M2(A,B) =


0 1 1 0

0 0 0 0

1 0 1 0

0 0 0 0


and M3(A,B) =



1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0



.

Reordering columns of M2(A,B) in order given by the permutation 4231 yields the

matrix


0 1 1 0

0 0 0 0

0 0 1 1

0 0 0 0


. By Theorem 24, we have G2(A,B) is word-representable.

However, we have shown in Example 27 that G3(A,B) is non-word-representable.

So IWR(A,B) = 3.

Remark 42. Proposition 41 gives Case 4 in Table 2.1. In each of Cases 5, 10, 11,

12, 14, 15, 17, 57, 66, 67, 68, 71, 72, 77, 78, 89, 99, 102, 104, 106, 108, 109, 111

and 112 in Tables 2.1, 2.2, 2.3 and 2.4, M2(A,B) has a permutation satisfying the

conditions of Theorem 35 and M3(A,B) does not (similarly to Proposition 41).

So IWR(A,B) = 3 for A and B in these cases. Moreover, by Theorem 35, column

and row permutations of A and B give the same IWR. Consequently, we also have

IWR(A,B) = 3 for A and B in Cases 19, 22, 24, 25, 28, 29, 32, 33, 36, 37, 39,

40, 42, 46, 47, 49, 58, 69, 70, 75, 76, 79, 80 and 90.
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Proposition 43. For A =

1 0

0 0

 and B =

0 0

0 1

, IWR(A,B) = 4.

Proof. We have

M3(A,B) =



1 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0

1 0 0 0 1 0 1 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0



.

Reordering columns of M3(A,B) in order given by the permutation 51732648

yields the matrix



0 1 1 1 0 0 0 0

0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0



.

By Theorem 24, we have G3(A,B) is word-representable. For
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M4(A,B) =



0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0

1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0

0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0

1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,

suppose that a reordering of columns ρ = ρ1ρ2 · · · ρ16 exists showing word-representability

of G4(A,B) by Theorem 25. Then,

• from row 3, columns 1, 3, 5, 7, 9, 13 and 15 must be (cyclically) consecutive;

• from row 5, columns 3, 5, 7, 11 and 15 must be (cyclically) consecutive;

• from row 7, columns 1, 3, 5, 9, 11, 13 and 15 must be (cyclically) consecutive.

But then, from the first and the third bullet points, columns 1, 3, 5, 9, 13 and

15 must be consecutive and then column 7 or 11 is next to the left of them and

the other one is next to the right of them. This contradicts to the second bullet
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point. So there is no such ρ and G4(A,B) is non-word-representable. Therefore,

IWR(A,B) = 4.

Remark 44. Proposition 43 gives Case 6 in Table 2.1. In each of Cases 53,

63, 83, 87, 93, 98 and 105 in Tables 2.1, 2.2, 2.3 and 2.4, M3(A,B) has a

permutations satisfying condition in Theorem 35 but M4(A,B) does not (similarly

to Proposition 43). So IWR(A,B) = 4 for A and B in these cases. Moreover,

by Theorem 35, column and row permutations of A and B give the same IWR.

Consequently, we also have IWR(A,B) = 3 for A and B in Cases 21, 35, 54, 64,

85, 92 and 95.

By Remarks 40, 42 and 44, we can see that in many cases the index of word-

representability is 2, 3 or 4. Next, we will introduce certain definitions and theor-

ems to present the cases where the index of word-representability is infinity.

Let M be an m × n binary matrix. For convenience, we will represent rows

of M by binary strings of length n. For example, we will represent three rows of1 1 0 1

0 1 0 0

0 0 0 1

 by 1101, 0100 and 0001.

Definition 45. Let A and B be m×n binary matrices. Define Rk(A,B) to be the

set of binary strings representing rows of Mk(A,B). So every element of Rk(A,B)

is a binary string of length nk. Each element of Rk(A,B) is called a row pattern

of Mk(A,B).

Definition 46. Let A =

a11 a12

a21 a22

 and B =

b11 b12

b21 b22

 be 2× 2 binary matrices

and Bn be the set of binary strings of length n. We define functions uA,B : {0, 1} →

B2 and lA,B : {0, 1} → B2 by

uA,B(0) = a11a12, lA,B(0) = a21a22, uA,B(1) = b11b12 and lA,B(1) = b21b22.
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Moreover, if v = v1v2 · · · vk ∈ Bk, k ≥ 2, we extend the definition of the functions

uA,B and lA,B to the case of Bk → B2k by

uA,B(v) = uA,B(v1)uA,B(v2) · · ·uA,B(vk)

and

lA,B(v) = lA,B(v1)lA,B(v2) · · · lA,B(vk).

When A and B are clear from the context, we can omit the subscript and write u

and l instead of uA,B and lA,B, respectively.

Example 47. Let A =

1 1

0 0

 and B =

1 0

1 0

. Then we have

M3(A,B) =



1 0 1 1 1 0 1 1

1 0 0 0 1 0 0 0

1 0 1 1 1 0 1 1

1 0 0 0 1 0 0 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0


and R4(A,B) = {10111011, 10001000, 10101010, 11111111, 00000000}. In fact,

we can find R4(A,B) by using the functions uA,B and lA,B. As we start with

M0(A,B) =
[
0
]
, we have R0(A,B) = {0}. Then we apply the functions uA,B and

lA,B to all elements in R0(A,B) to get all elements in R1(A,B):

uA,B(0) = 11 and lA,B(0) = 00.
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So, R1(A,B) = {11, 00}. Now,

uA,B(11) = 1010 and lA,B(11) = 1010

uA,B(00) = 1111 and lA,B(00) = 0000

so R2(A,B) = {1010, 1111, 0000}. Repeating the procedure one more time yields

uA,B(1010) = 10111011 and lA,B(1010) = 10001000

uA,B(1111) = 10101010 and lA,B(1111) = 10101010

uA,B(0000) = 11111111 and lA,B(0000) = 00000000,

and so R3(A,B) = {10111011, 10001000, 10101010, 11111111, 00000000} which is

the same as R4(A,B).

So, all elements in Rk(A,B) are obtained by applying uA,B and lA,B to every

element in Rk−1(A,B). The next theorem generalizes this observation, and it can

be proved easily by induction.

Theorem 48. Let A and B be 2× 2 binary matrices. Then

Rk(A,B) = {fk(· · · f2(f1(0)) · · · )|fi ∈ {uA,B, lA,B}} for any k ≥ 1.

Definition 49. Let v = v1v2 · · · vk ∈ Bk. Then, Γ(v) := {m ∈ {1, 2, . . . , k}|vm =

1}.

In order to study row patterns, we introduce a relation ≤ on Bn. Let x =

x1x2 · · ·xk and y = y1y2 · · · yk be in Bk. We say that x ≤ y if and only if xi = 1

implies yi = 1 for every i ∈ {1, 2, . . . , k}. In other words, x ≤ y if and only if

Γ(x) ⊆ Γ(y). It is easy to see that ≤ is reflexive, antisymmetric and transitive,

and thus ≤ is a partial order.
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Theorem 50. Let A and B be m × n binary matrices. For any k > 1, if

(Rk(A,B),≤) is a total order, then Gk(A,B) is word-representable.

Proof. Let Rk(A,B) = {x1, x2, . . . , xl} where l ≥ 1 and x1, x2, . . . , xl are binary

strings of length nk. Since (Rk(A,B),≤) is a total order, w.l.o.g., we assume that

x1 ≤ x2 ≤ · · · ≤ xl. That is Γ(x1) ⊆ Γ(x2) ⊆ · · · ⊆ Γ(xl). Let

D1 := Γ(x1),

D2 := Γ(x2) \ Γ(x1),

D3 := Γ(x3) \ Γ(x2),
...

Dl := Γ(xl) \ Γ(xl−1) and

Dl+1 := {1, 2, . . . , nk} \ Γ(xl).

If Dj = {ij,1, ij,2, . . . , ij,|Dj |} for ij,1 < ij,2 < · · · < ij,|Dj |, then

ρ = i1,1i1,2 · · · i1,|D1|i2,1i2,2 · · · i2,|D2| · · · il,1il,2 · · · il,|Dl|

is a nk-permutation. Let M∗ be the matrix obtained by reordering columns of

Mk(A,B) according to the order given by ρ. Then we want to prove that every

row of M∗(A,B) is of the form 1s0t for some s, t ≥ 0. Let y = y1y2 · · · ynk be a

row pattern of Mk(A,B) and y∗ = y∗1y
∗
2 · · · y∗nk be the row pattern after reordering

y. Since y ∈ Rk(A,B), then y = xq for some q ∈ {1, 2, . . . , l}. So yi = 1 for all

i ∈ Γ(xq) and yi = 0 for all i /∈ Γ(xq). That is, Γ(y) is

{i1,1, i1,2, . . . , i1,|D1|, i2,1, i2,2, . . . , i2,|D2|, . . . , iq,1, iq,2, . . . , il,|Dq |}.

Hence y∗ = 1s0t where s = |D1|+|D2|+· · ·+|Dq| and t = nk−|D1|−|D2|−· · ·−|Dq|.

Therefore every row of M∗(A,B) is of the form 1s0t. By Theorem 24, we have

that Gk(A,B) is word-representable.
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Theorem 51. Let A and B be 2× 2 binary matrices. If x ≤ y implies {uA,B(x),

lA,B(x), uA,B(y), lA,B(y)} is pairwise comparable under ≤ for binary strings x and

y of the same length, then Gk(A,B) is word-representable for any k ≥ 0.

Proof. We will firstly prove that Rk(A,B) is comparable under ≤, and then apply

Theorem 50 to complete the proof. Assume x ≤ y implies {uA,B(x), lA,B(x),

uA,B(y), lA,B(y)} is pairwise comparable under ≤ for any binary strings x and y

of the same length. We prove by induction on k that Rk(A,B) is comparable

under ≤. Because 0 ≤ 0, we have {uA,B(0), lA,B(0)} = R1(A,B) is comparable

under ≤. Suppose that Rl(A,B) is comparable under ≤ for some l ≥ 1. Let

v, w ∈ Rl+1(A,B). Then

v = uA,B(x) or v = lA,B(x) for some x ∈ Rl(A,B)

and

w = uA,B(y) or w = lA,B(y) for some y ∈ Rl(A,B).

By induction hypothesis, w.l.o.g., we can assume that x ≤ y. So, {uA,B(x), lA,B(x),

uA,B(y), lA,B(y)} is comparable and v and w belong to this set. Thus we have that

v and w are comparable. Hence Rk(A,B) is comparable under ≤ for any k ≥ 0.

Hence, by Theorem 50, Gk(A,B) is word-representable for any k ≥ 0.

Theorem 52. Let A and B be 2 × 2 binary matrices. If {uA,B(100), lA,B(100),

uA,B(101), lA,B(101)} is comparable under ≤, then Gk(A,B) is word-representable

for any k ≥ 0.

Proof. For convenience, we write u and l instead of uA,B and lA,B, respectively.

Suppose that {u(100), l(100), u(101), l(101)} is comparable under ≤. Let x =
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x1x2 · · ·xm and y = y1y2 · · · ym be binary strings of length m such that x ≤ y.

Also, let

R := {i|xi = 0, yi = 0},

S := {i|xi = 1, yi = 1} and

T := {i|xi = 0, yi = 1}.

Note that R,S, T partition the set {1, 2, . . . ,m}. Since u(100) and l(100) are

comparable, we have two cases to consider.

If u(100) ≤ l(100), then u(1) ≤ l(1) and u(0) ≤ l(0). So we have u(101) ≤

l(101) and it is impossible that l(101) ≤ u(100) and l(100) ≤ u(101). So there are

four possible cases here, which are

u(100) ≤ u(101) ≤ l(100) ≤ l(101),

u(100) ≤ u(101) ≤ l(101) ≤ l(100),

u(101) ≤ u(100) ≤ l(101) ≤ l(100) and

u(101) ≤ u(100) ≤ l(100) ≤ l(101).

Similarly, in the case of l(100) ≤ u(100), we have l(1) ≤ u(1) and l(0) ≤ u(0). So

l(101) ≤ u(101) and u(100) � l(100) and u(101) � l(100). So we have four more

cases, which are

l(100) ≤ l(101) ≤ u(100) ≤ u(101),

l(100) ≤ l(101) ≤ u(101) ≤ u(100),

l(101) ≤ l(100) ≤ u(101) ≤ u(100) and

l(101) ≤ l(100) ≤ u(100) ≤ u(101).

Next, we will consider comparability of the set {u(x), l(x), u(y), l(y)} in each case.
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• u(100) ≤ u(101) ≤ l(100) ≤ l(101). So we have u(0) ≤ u(1) ≤ l(0) ≤ l(1).

Note that u(xi) ≤ u(yi) and l(xi) ≤ l(yi) for any i ∈ T . Then u(x) ≤ u(y)

and l(x) ≤ l(y). Since u(yi) ≤ l(xi) where i belongs to R, S or T, so

u(y) ≤ l(x). Hence, u(x) ≤ u(y) ≤ l(x) ≤ l(y).

• u(100) ≤ u(101) ≤ l(101) ≤ l(100). So we have u(0) ≤ u(1) ≤ l(1) ≤ l(0).

Note that u(xi) ≤ u(yi) and l(yi) ≤ l(xi) for any i ∈ T . Then u(x) ≤ u(y)

and l(y) ≤ l(x). Since u(yi) ≤ l(yi) where i belongs to R, S or T, so

u(y) ≤ l(y). Hence, u(x) ≤ u(y) ≤ l(y) ≤ l(x).

• u(101) ≤ u(100) ≤ l(101) ≤ l(100). So we have u(1) ≤ u(0) ≤ l(1) ≤ l(0).

Note that u(yi) ≤ u(xi) and l(yi) ≤ l(xi) for any i ∈ T . Then u(y) ≤ u(x)

and l(y) ≤ l(x). Since u(xi) ≤ l(yi) where i belongs to R, S or T, so

u(x) ≤ l(y). Hence, u(y) ≤ u(x) ≤ l(y) ≤ l(x).

• u(101) ≤ u(100) ≤ l(100) ≤ l(101). So we have u(1) ≤ u(0) ≤ l(0) ≤ l(1).

Note that u(yi) ≤ u(xi) and l(xi) ≤ l(yi) for any i ∈ T . Then u(y) ≤ u(x)

and l(x) ≤ l(y). Since u(xi) ≤ l(xi) where i belongs to R, S or T, so

u(x) ≤ l(x). Hence, u(y) ≤ u(x) ≤ l(x) ≤ l(y).

• l(100) ≤ l(101) ≤ u(100) ≤ u(101). So we have l(0) ≤ l(1) ≤ u(0) ≤ u(1).

Note that l(xi) ≤ l(yi) and u(xi) ≤ u(yi) for any i ∈ T . Then l(x) ≤ l(y) and

u(x) ≤ u(y). Since l(yi) ≤ u(xi) where i belongs to R, S or T, so l(y) ≤ u(x).

Hence, l(x) ≤ l(y) ≤ u(x) ≤ u(y).

• l(100) ≤ l(101) ≤ u(101) ≤ u(100). So we have l(0) ≤ l(1) ≤ u(1) ≤ u(0).

Note that l(xi) ≤ l(yi) and u(yi) ≤ u(xi) for any i ∈ T . Then l(x) ≤ l(y) and

u(y) ≤ u(x). Since l(yi) ≤ u(yi) where i belongs to R, S or T, so l(y) ≤ u(y).

Hence, l(x) ≤ l(y) ≤ u(y) ≤ u(x).
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• l(101) ≤ l(100) ≤ u(101) ≤ u(100). So we have l(1) ≤ l(0) ≤ u(1) ≤ u(0).

Note that l(yi) ≤ l(xi) and u(yi) ≤ u(xi) for any i ∈ T . Then l(y) ≤ l(x) and

u(y) ≤ u(x). Since l(xi) ≤ u(yi) where i belongs to R, S or T, so l(x) ≤ u(y).

Hence, l(y) ≤ l(x) ≤ u(y) ≤ u(x).

• l(101) ≤ l(100) ≤ u(100) ≤ u(101). So we have l(1) ≤ l(0) ≤ u(0) ≤ u(1).

Note that l(yi) ≤ l(xi) and u(xi) ≤ u(yi) for any i ∈ T . Then l(y) ≤ l(x)

and u(x) ≤ u(y). Since l(xi) ≤ u(xi) where i belongs to R, S or T, so

l(x) ≤ u(x). Hence, l(y) ≤ l(x) ≤ u(x) ≤ u(y).

We can see that {u(x), l(x), u(y), l(y)} is comparable in every case. By The-

orem 51, Gk(A,B) is word-representable for any k ≥ 0.

Remark 53. Theorem 52 can be applied to check word-representability of Gk(A,B).

We can see that {uA,B(100), lA,B(100), uA,B(101), lA,B(101)} is comparable under ≤

in Cases 2, 7, 8, 13, 51, 56, 61, 84, 94, 100, 103, 107 and 113 in Tables 2.1, 2.2,

2.3 and 2.4. Then IWR(A,B) = ∞ for A and B in these cases. By Theorem 35,

column and row permutations of A and B in these cases preserve the index of

word-representability. So we also have IWR(A,B) = ∞ for A and B in Cases 18,

23, 27, 30, 34, 43, 44, 48, 52, 59, 62, 86 and 96.

Proposition 54. Let A =

1 0

0 0

 and B =

1 0

0 1

. Then Gk(A,B) is word-

representable for any k ≥ 0.

Proof. The case of k = 0 is trivial. For k ≥ 1, we let Sk
0 := ∅,

Sk
j := {s ∈ {1, 2, . . . , 2k}|s ≡ 2j−1 (mod 2j)} for j ∈ {1, 2, . . . , k}
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and

T k := {x1x2 · · · x2k |xi =


0 if i /∈ Sk

j ,

1 if i ∈ Sk
j

for some j ∈ {0, 1, . . . , 2k}}.

We claim that Rk(A,B) = T k for any k ≥ 1 and prove it by induction on k.

It is obvious in the case of k = 1 because R1(A,B) = {00, 10} while S1
0 = ∅

and S1
1 = {1}. Suppose l is a positive integer such that Rl(A,B) = T l. Let

y ∈ Rl+1(A,B), then y = uA,B(z) or y = lA,B(z) for some z ∈ Rl(A,B). Since

Rl(A,B) = T l, we have

z = z1z2 · · · z2l where zi =


0 if i /∈ Sl

j,

1 if i ∈ Sl
j.

If y = uA,B(z), then y = 1010 · · · 10. That is, yi =


0 if i /∈ Sl+1

1 ,

1 if i ∈ Sl+1
1

, and so

y ∈ T l+1. If y = lA,B(z), the number of 1’s in y and z is identical because 0 is

mapped to 00 and 1 is mapped to 01. We can see that y2i = 1 if and only if zi = 1.

Hence,

yi =


0 if i /∈ Sl+1

r+1,

1 if i ∈ Sl+1
r+1.

So Rl+1(A,B) ⊆ T l+1. Conversely, let v = v1v2 · · · v2l+1 where

vi =


0 if i /∈ Sl+1

t ,

1 if i ∈ Sl+1
t

for some t ∈ {0, 1, . . . , l+1}. If t = 0, note that v = 000 · · · 0 = lA,B(000 · · · 0) and

000 · · · 0 ∈ Rl(A,B), and so v ∈ Rl+1(A,B). If t = 1, we have v = 1010 · · · 10 =
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uA,B(v̄) for any v̄ ∈ Rl(A,B). That is v ∈ Rl+1(A,B). Suppose t ∈ {2, 3, · · · l+1}

and w = w1w2 · · ·w2l be an element of T l such that

wi =


0 if i /∈ Sl

t−1,

1 if i ∈ Sl
t−1.

By induction hypothesis, w ∈ Rl(A,B). Note that v = lA,B(w) and then v ∈

Rl+1(A,B). So we have T l+1 ⊆ Rl+1(A,B). Hence we have already proved the

claim.

Note that {1, 2, . . . , 2k − 1} is a disjoint union of S1, S2, . . . , Sk. If Sk
j =

{ij,1, ij,2, . . . , ij,|Sk
j |} for ij,1 < il,2 < · · · < ij,|Sk

j |, then we can let ρ be the per-

mutation

i1,1i1,2 · · · i1,|Sk
1 |i2,1i2,2 · · · i2,|Sk

2 | · · · ik,1ik,2 · · · ik,|Sk
k |
2k.

Since Rk(A,B) = T k, then all 1’s in each row pattern in Rk(A,B) is in columns

ij,1, ij,2, . . . , i1,|Sk
j | for some 1 < j < k. Therefore we can see that every row of

the matrix obtained by reordering columns of Mk(A,B) according to the order

given by ρ is of the form 0a1b0c for some non-negative integers a, b and c. By

Theorem 24, Gk(A,B) is word-representable for ant k ≥ 1.

Remark 55. Proposition 54 gives IWR(A,B) = ∞ for A and B in Case 9 in

Tables 2.1. By Theorem 35, column and row permutations of A and B give the

same IWR. Consequently, we also have IWR(A,B) = ∞ for A and B in Cases

26 and 41.

Proposition 56. Let A =

1 0

0 1

 and B =

0 1

1 0

. Then Gk(A,B) is word-

representable for any k ≥ 0.
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Proof. The case of k = 0 is trivial. For any binary string x, we define x̄ to be the

binary string obtained by changing digits of x from 0 to 1 and from 1 to 0. We claim

that, for k ≥ 1, Rk(A,B) = {x, x̄} for some x ∈ B2k and prove it by induction on

k. As R1(A,B) = {10, 01} and 01 = 10, the case of k = 1 is done. Suppose that

k > 1 is a positive integer such that Rk(A,B) = {x, x̄} for some x ∈ B2k . Then

Rk+1(A,B) = {uA,B(x), lA,B(x), uA,B(x̄), lA,B(x̄)}. Note that uA,B(0) = lA,B(1)

and uA,B(1) = lA,B(0). Then uA,B(x) = lA,B(x̄) and lA,B(x) = uA,B(x̄). So we have

Rk+1(A,B) = {uA,B(x), lA,B(x)}. Since uA,B(0) = lA,B(0) and uA,B(1) = lA,B(1),

we have uA,B(x) = lA,B(x). That is, Rk+1(A,B) = {uA,B(x), uA,B(x)}. Hence we

have proved the claim by induction.

So, for any k ≥ 1, Rk(A,B) = {x, x} for some binary string x. Suppose that

there are s 1’s in x. Let ρ be a permutation such that reordering
[
x
]

according to

the order giving by ρ make all 1’s in x be together in the first s columns. Then

reordering
[
x̄
]

according to the order giving by ρ makes all 1’s in x be together

in the last 2k − s columns. Hence each row of the matrix obtained by reordering

Mk(A,B) according to the order giving by ρ is 1s02k−s or 0s12k−s. By Theorem 24,

Gk(A,B) is word-representable for any k ≥ 0.

The case when A is the all-one matrix

There are only 16 cases when A =

1 1

1 1

. If B =

1 1

1 1

, we have M0(A,B) =

[
0
]

and Mk(A,B) is all-one matrix for any k ≥ 1 which is word-representable by

Theorem 24. The rest of this chapter, except Theorem 57, deals with the cases

when B has at least one 0.

Theorem 57. Let A =
[
1
]
m×n

and B be an m×n binary matrix. Then, Mk(A,B)
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is a submatrix of Mk+2(A,B), and Gk(A,B) is an induced subgraph of Gk+2(A,B),

for any k ≥ 0.

Proof. Since the case of B being an all-one matrix is trivial, we assume that B

is not an all-one matrix. Let B =
[
bij

]
m×n

and brs = 0 for some 1 ≤ r ≤ m

and 1 ≤ s ≤ n. We will prove by induction on k that Mk(A,B) is contained in

Mk+2(A,B) as a submatrix by rows (r − 1)mk + 1, (r − 1)mk + 2, . . . , rmk and

columns (s− 1)nk + 1, (s− 1)nk + 2, . . . , snk for any k ≥ 0.

Note that M0(A,B) =
[
0
]
, M1(A,B) =

[
1
]
m×n

and

M2(A,B) =


B B · · · B

B B · · · B

... ... . . . ...

B B · · · B


.

Let M2(A,B) =
[
mij

]
, then mrs = 0. So M0(A,B) is a submatrix of M2(A,B)

by row (r − 1)m0 + 1 and column (s− 1)n0 + 1.

Let l ≥ 1 be an integer such that M l(A,B) is a submatrix of M l+2(A,B)

by rows (r − 1)mk + 1, (r − 1)mk + 2, . . . , rmk and columns (s − 1)nk + 1, (s −

1)nk + 2, . . . , snk. For the next iteration of morphism applied to M l+2(A,B), it

is easy to see that M l(A,B) in the rows (r − 1)mk + 1, (r − 1)mk + 2, . . . , rmk

and the columns (s − 1)nk + 1, (s − 1)nk + 2, . . . , snk M l+2(A,B) is mapped to

M l+1(A,B) in the rows (r − 1)mk+1 + 1, (r − 1)mk+1 + 2, . . . , rmk+1 and columns

(s − 1)nk+1 + 1, (s − 1)nk+1 + 2, . . . , snk+1 of M l+3(A,B). Hence, Mk(A,B) is a

submatrix of Mk+2(A,B) for any k ≥ 0. Consequently, Gk(A,B) is an induced

subgraph of Gk+2(A,B) for any k ≥ 0.

We know from Theorem 57 that G0(A,B) ≼ G2(A,B) ≼ G4(A,B) ≼ · · · and
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G1(A,B) ≼ G3(A,B) ≼ G5(A,B) ≼ · · · where G ≼ H means G is an induced

subgraph of H. So we are interested in investigating the smallest integer l such

that Gl(A,B) is non-word-representable in both cases of l being even and l being

odd. The cases 114, 119, 120, 123, 124 and 129 in Table 2.4 are given by using

Proposition 34. Theorem 52 can be applied to Cases 125, 126, 127 and 128, and the

index of word-representability in these cases is infinity. The following propositions

discuss the remaining cases.

Proposition 58. For A =

1 1

1 1

 and B =

1 0

0 1

, IWR(A,B) = 3. Moreover,

Gk(A,B) is not word-representable for k ≥ 3.

Proof. Note that M2(A,B) =


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


and

M3(A,B) =



1 0 1 1 1 0 1 1

0 1 1 1 0 1 1 1

1 1 1 0 1 1 1 0

1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1

0 1 1 1 0 1 1 1

1 1 1 0 1 1 1 0

1 1 0 1 1 1 0 1



.
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Reordering columns ofM2(A,B) in order given by 1324 yields the matrix


1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1


.

By Theorem 24, G2(A,B) is word-representable. Let M∗ be a matrix obtained

from reordering columns of M3(A,B) and every row of M∗ is of the form 0r1s0t

or 0r1s0t. Then, the set of row patterns of M∗ is

{00111111, 11001111, 11110011, 11111100}

or

{01111110, 10011111, 11100111, 11111001}.

If the set of row patterns of M∗ is {00111111, 11001111, 11110011, 11111100}, then

the occurrences of 11001111 and 11111100 do not satisfy the condition (ii) in

Theorem 25. So, G3(A,B) is non-word-representable. Similarly, if the set of row

patterns of M∗ is {01111110, 10011111, 11100111, 11111001}, then the presence of

10011111 and 11111001 implies G3(A,B) is non-word-representable.

Now we consider the word-representability of G4(A,B). We have

R4(A,B) = {1011101010111010, 0111010101110101, 1110101011101010,

1101010111010101, 1010101110101011, 0101011101010111,

1010111010101110, 0101110101011101}.

In order to apply Theorem 25, we assume the existence of an order ρ = ρ1ρ2 · · · ρ16

with the following properties:

• from 1011101010111010 ∈ R4(A,B), columns 2, 6, 8, 10, 14 and 16 must be

cyclically consecutive;
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• from 1110101011101010 ∈ R4(A,B), columns 4, 6, 8, 12, 14 and 16 must be

cyclically consecutive;

• from 1010101110101011 ∈ R4(A,B), columns 2, 4, 6, 10, 12 and 14 must be

cyclically consecutive.

It follows from the first and the second bullet points that 6, 8, 14, and 16 must be

consecutive and then, w.l.o.g., 2 and 10 are next to the left of them and then 4 and

12 are next to the right them That means that 2 and 4 cannot be cyclically consec-

utive, which contradicts the third bullet point. So there is no such ρ and G4(A,B)

is non-word-representable. As G3(A,B) is non-word-representable, and the class

of word-representable graphs is hereditary, by Theorem 57, G2k+1(A,B) is non-

word-representable for any k ≥ 1. Similarly, G2k(A,B) is non-word-representable

for any k ≥ 2 because G4(A,B) is non-word-representable. Therefore, Gk(A,B)

is not word-representable for k ≥ 3.

Remark 59. Proposition 58 gives Case 121 in Tables 2.4, and we obtain IWR(A,B) =

3 in Case 122 by a column and row permutation of A and B.

Proposition 60. For A =

1 1

1 1

 and B =

0 0

1 0

, IWR(A,B) = 5. Moreover,

Gk(A,B) is not word-representable for k ≥ 5.

Proof. It is easy to see thatG0(A,B), G1(A,B) andG2(A,B) are word-representable.

Since reordering columns of M3(A,B) in order given by the permutation 26153748

yields a matrix satisfying the condition in Theorem 24, G3(A,B) is word-representable.

Further, reordering columns of M4(A,B) in order given by the permutation

2(10)4(12)3(11)195(13)7(15)6(14)(16)
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also yields a matrix satisfying the condition in Theorem 24, so G4(A,B) is word-

representable.

Next, we consider G5(A,B). We use u and l instead of uA,B and lA,B, re-

spectively. In order to apply Theorem 25, we assume the existence of an order

ρ = ρ1ρ2 · · · ρ32 proving word-representability of G5(A,B).

• l(l(l(u(u(0))))) = 10111011101110111011101110111011 ∈ R5(A,B) so columns

2, 6, 10, 14, 18, 22, 26 and 30 must be cyclically consecutive in ρ.

• l(u(u(l(l(0))))) = 10101010111111111010101011111111 ∈ R5(A,B) so columns

2, 4, 6, 8, 18, 20, 22 and 24 must be cyclically consecutive in ρ.

• l(u(l(l(u(0))))) = 11111010111111111111101011111111 ∈ R5(A,B) so columns

6, 8, 22 and 24 must be cyclically consecutive in ρ.

• u(u(l(l(u(0))))) = 11110000111111111111000011111111 ∈ R5(A,B) so columns

5, 6, 7, 8, 21, 22, 23 and 24 must be cyclically consecutive in ρ.

It follows from the first and the second bullet points that 2, 6, 18, and 22 must

be consecutive and then, w.l.o.g., 10, 14, 26 and 30 are next to the left of these

numbers and 4, 8, 20 and 24 are next to the right them. Hence ρ contains

{10, 14, 26, 30}, {2, 6, 18, 22}, {4, 8, 20, 24}

where numbers in {} are consecutive in ρ but are in some unknown to us order.

From the third bullet point, ρ contains

{10, 14, 26, 30}, {2, 18}, {6, 22}, {8, 24}, {4, 20}.

We obtain a contradiction with the fourth bullet point. So there is no such ρ and

G5(A,B) is non-word-representable.
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Next, we consider word-representability of G6(A,B). In order to apply The-

orem 25, we assume that there exist a permutation τ = τ1τ2 · · · τ64 proving word-

representability of G6(A,B).

• l(u(u(u(u(u(0)))))) ∈ R6(A,B) is

1010101010101010101010101010101010101010101010101010101010101010.

So, all odd columns must be cyclically consecutive in τ .

• u(u(u(u(l(l(0)))))) ∈ R6(A,B) is

111111111111111110000000000000000111111111111111110000000000000000.

So, columns in {1, 2, . . . , 16, 33, 34, . . . 48} must be cyclically consecutive in

τ .

• u(l(l(u(u(u(0)))))) ∈ R6(A,B) is

0011000000110000001100000011000000110000001100000011000000110000.

So, columns in {3, 4, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, 60} must be

cyclically consecutive in τ .

Since all odd columns must be cyclically consecutive in τ , there is a unique s ∈

{1, 2, . . . , 64} such that τs is odd and τs+1 is even, where for s = 64, s + 1 := 1.

From the second bullet point, we have

{τs, τs−1, . . . , τs−15} = {1, 3, 5, . . . , 15, 33, 35, 37, . . . , 47}

and {τs+1, τs+2, . . . , τs+16} = {2, 4, 6, . . . , 16, 34, 36, 38, . . . , 48}

where for i ≥ 0, τ−i := τ64−i and for s+ i ≥ 65, s+ i := s+ i− 64. On the other

hand, from the third bullet point, we have

{τs, τs−1, . . . , τs−7} = {3, 11, 19, 27, 35, 43, 51, 59}

and {τs+1, τs+2, . . . , τs+8} = {4, 12, 20, 28, 36, 44, 52, 60}
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where the indices less than 1 and larger than 64 are treated as above. We obtain

a contradiction because 19 /∈ {τs, τs−1, . . . , τs−15} but 19 ∈ {τs, τs−1, . . . , τs−7}.

Hence, there is no such τ and G6(A,B) is non-word-representable. Since the

graphs G5(A,B) and G6(A,B) are not word-representable and the class of word-

representable graphs is hereditary, by Theorem 57, Gk(A,B) is non-word-representable

for any k ≥ 5.

Remark 61. Proposition 60 is Case 117 in Table 2.4. By Theorem 35, column

and row permutations of A and B give the same IWR. Consequently, we also have

IWR(A,B) = 5 for A and B in Cases 115, 116 and 117.

2.4 Concluding remarks

This chapter is a major contribution to the study of word-representability of split

graphs. Two key achievements in the chapter are as follows:

• Theorem 25 can be used to study word-representability of split graphs via

adjacency matrices, which is a novel approach.

• Necessary conditions for word-representability of split graphs obtained by

iteration of morphism can be checked in polynomial time. Indeed, for a

given such graph defined by matrices A and B, we can go through all of

2 × 2 submatrices in A, and the respective submatrices in B, and then use

our classification results in Tables 2.1, 2.2, 2.3 and 2.4 to detect non-word-

representability.

As for open directions of research, it would be useful to provide a classification,

similar to that we provided for 2 × 2 matrices in Tables 2.1, 2.2, 2.3 and 2.4, for
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larger matrices, for example, for 2× 3 matrices, or 3× 3 matrices, etc. This would

enlarge our knowledge of word-representable split graphs obtained by iteration of

morphisms, and hopefully, will eventually lead to a complete classification of such

graphs.

For another research question, we noted in Tables 2.1, 2.2, 2.3 and 2.4 that

if G5(A,B) is word-representable, then IWR(A,B) = ∞. In other words, the

largest finite IWR in the case of 2 × 2 matrices is 5. Is there a reason for that?

Does there exist a positive integer t (a constant, or a function of n and m) making

the following statement true “If A,B are n × m matrices and Gt(A,B) is word-

representable, then IWR(A,B) = ∞”?

Finally, recall that if the leftmost bottom entry of A is 1 then limk→∞Mk(A,B)

may not be well-defined as the sequence of graphs Gk(A,B), for k ≥ 0, may not

be a chain of induced subgraphs. In all such cases, for 2×2 matrices, we still have

that non-word-representability of Gk(A,B) implies non-word-representability of

Gk+1(A,B). Is it always the case for m × n matrices A and B? If not, then how

do we characterize the situations when it is the case?
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Case A B IWR(A,B) Ref. Case A B IWR(A,B) Ref.

1
[
0 0
0 0

] [
∗ ∗
∗ ∗

]
∞ A = 0

2
[
1 0
0 0

] [
0 0
0 0

]
∞ Prop. 34 18

[
0 1
0 0

] [
0 0
0 0

]
∞ Prop. 34

3
[
1 0
0 0

]
∞ Cor. 32 19

[
1 0
0 0

]
3 Rem. 42

4
[
0 1
0 0

]
3 Pro. 41 20

[
0 1
0 0

]
∞ Cor. 32

5
[
0 0
1 0

]
3 Rem. 42 21

[
0 0
1 0

]
4 Rem. 44

6
[
0 0
0 1

]
4 Prop. 43 22

[
0 0
0 1

]
3 Rem. 42

7
[
1 1
0 0

]
∞ Rem 53 23

[
1 1
0 0

]
∞ Rem 53

8
[
1 0
1 0

]
∞ Rem 53 24

[
1 0
1 0

]
3 Rem. 42

9
[
1 0
0 1

]
∞ Prop 54 25

[
1 0
0 1

]
3 Rem. 42

10
[
0 1
1 0

]
3 Rem. 42 26

[
0 1
1 0

]
∞ Rem 55

11
[
0 1
0 1

]
3 Rem. 42 27

[
0 1
0 1

]
∞ Rem 53

12
[
0 0
1 1

]
3 Rem. 42 28

[
0 0
1 1

]
3 Rem. 42

13
[
1 1
1 0

]
∞ Rem 53 29

[
1 1
1 0

]
3 Rem. 42

14
[
1 1
0 1

]
3 Rem. 42 30

[
1 1
0 1

]
∞ Rem 53

15
[
1 0
1 1

]
3 Rem. 42 31

[
1 0
1 1

]
2 Rem. 40

16
[
0 1
1 1

]
2 Prop. 39 32

[
0 1
1 1

]
3 Rem. 42

17
[
1 1
1 1

]
3 Rem. 42 33

[
1 1
1 1

]
3 Rem. 42

Table 2.1: The index of word-representability of infinite split graphs G(A,B) for
2× 2 matrices A and B.
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Case A B IWR(A,B) Ref. Case A B IWR(A,B) Ref.

34
[
0 0
0 1

] [
0 0
0 0

]
∞ Prop. 34 50

[
1 1
0 0

] [
0 0
0 0

]
∞ Prop. 34

35
[
1 0
0 0

]
4 Rem. 44 51

[
1 0
0 0

]
∞ Rem 53

36
[
0 1
0 0

]
3 Rem. 42 52

[
0 1
0 0

]
∞ Rem 53

37
[
0 0
1 0

]
3 Rem. 42 53

[
0 0
1 0

]
4 Rem. 44

38
[
0 0
0 1

]
∞ Cor. 32 54

[
0 0
0 1

]
4 Rem. 44

39
[
1 1
0 0

]
3 Rem. 42 55

[
1 1
0 0

]
∞ Cor. 32

40
[
1 0
1 0

]
3 Rem. 42 56

[
1 0
1 0

]
∞ Rem 53

41
[
1 0
0 1

]
∞ Rem 55 57

[
1 0
0 1

]
3 Rem. 42

42
[
0 1
1 0

]
3 Rem. 42 58

[
0 1
1 0

]
3 Rem. 42

43
[
0 1
0 1

]
∞ Rem 53 59

[
0 1
0 1

]
∞ Rem 53

44
[
0 0
1 1

]
∞ Rem 53 60

[
0 0
1 1

]
∞ Prop. 34

45
[
1 1
1 0

]
2 Rem. 40 61

[
1 1
1 0

]
∞ Rem 53

46
[
1 1
0 1

]
3 Rem. 42 62

[
1 1
0 1

]
∞ Rem 53

47
[
1 0
1 1

]
3 Rem. 42 63

[
1 0
1 1

]
4 Rem. 44

48
[
0 1
1 1

]
∞ Rem 53 64

[
0 1
1 1

]
4 Rem. 44

49
[
1 1
1 1

]
3 Rem. 42 65

[
1 1
1 1

]
∞ Prop. 34

Table 2.2: The index of word-representability of infinite split graphs G(A,B) for
2× 2 matrices A and B.
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Case A B IWR(A,B) Ref. Case A B IWR(A,B) Ref.

66
[
1 0
0 1

] [
0 0
0 0

]
3 Rem. 42 82

[
0 1
0 1

] [
0 0
0 0

]
∞ Prop. 34

67
[
1 0
0 0

]
3 Rem. 42 83

[
1 0
0 0

]
4 Rem. 44

68
[
0 1
0 0

]
3 Rem. 42 84

[
0 1
0 0

]
∞ Rem 53

69
[
0 0
1 0

]
3 Rem. 42 85

[
0 0
1 0

]
4 Rem. 44

70
[
0 0
0 1

]
3 Rem. 42 86

[
0 0
0 1

]
∞ Rem 53

71
[
1 1
0 0

]
3 Rem. 42 87

[
1 1
0 0

]
4 Rem. 44

72
[
1 0
1 0

]
3 Rem. 42 88

[
1 0
1 0

]
∞ Prop. 34

73
[
1 0
0 1

]
∞ Cor. 32 89

[
1 0
0 1

]
3 Rem. 42

74
[
0 1
1 0

]
∞ Prop 56 90

[
0 1
1 0

]
3 Rem. 42

75
[
0 1
0 1

]
3 Rem. 42 91

[
0 1
0 1

]
∞ Cor. 32

76
[
0 0
1 1

]
3 Rem. 42 92

[
0 0
1 1

]
4 Rem. 44

77
[
1 1
1 0

]
3 Rem. 42 93

[
1 1
1 0

]
4 Rem. 44

78
[
1 1
0 1

]
3 Rem. 42 94

[
1 1
0 1

]
∞ Rem 53

79
[
1 0
1 1

]
3 Rem. 42 95

[
1 0
1 1

]
4 Rem. 44

80
[
0 1
1 1

]
3 Rem. 42 96

[
0 1
1 1

]
∞ case 94

81
[
1 1
1 1

]
2 Rem. 40 97

[
1 1
1 1

]
∞ Prop. 34

Table 2.3: The remaining cases of the index of word-representability of infinite
split graphs G(A,B) for 2× 2 matrices A and B.

63



98
[
1 1
0 1

] [
0 0
0 0

]
4 Rem. 44 114

[
1 1
1 1

] [
0 0
0 0

]
∞ Prop. 34

99
[
1 0
0 0

]
3 Rem. 42 115

[
1 0
0 0

]
5 Rem. 61

100
[
0 1
0 0

]
∞ Rem 53 116

[
0 1
0 0

]
5 Rem. 61

101
[
0 0
1 0

]
2 Rem. 40 117

[
0 0
1 0

]
5 Prop. 60

102
[
0 0
0 1

]
3 Rem. 42 118

[
0 0
0 1

]
5 Rem. 61

103
[
1 1
0 0

]
∞ Rem 53 119

[
1 1
0 0

]
∞ Prop. 34

104
[
1 0
1 0

]
3 Rem. 42 120

[
1 0
1 0

]
∞ Prop. 34

105
[
1 0
0 1

]
4 Rem. 44 121

[
1 0
0 1

]
3 Prop. 58

106
[
0 1
1 0

]
3 Rem. 42 122

[
0 1
1 0

]
3 Rem. 59

107
[
0 1
0 1

]
∞ Rem 53 123

[
0 1
0 1

]
∞ Prop. 34

108
[
0 0
1 1

]
3 Rem. 42 124

[
0 0
1 1

]
∞ Prop. 34

109
[
1 1
1 0

]
3 Rem. 42 125

[
1 1
1 0

]
∞ Thm. 52

110
[
1 1
0 1

]
∞ Cor. 32 126

[
1 1
0 1

]
∞ Thm. 52

111
[
1 0
1 1

]
3 Rem. 42 127

[
1 0
1 1

]
∞ Thm. 52

112
[
0 1
1 1

]
3 Rem. 42 128

[
0 1
1 1

]
∞ Thm. 52

113
[
1 1
1 1

]
∞ Rem 53 129

[
1 1
1 1

]
∞ Prop. 34

Table 2.4: The remaining cases of the index of word-representability of infinite
split graphs G(A,B) for 2× 2 matrices A and B.
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Chapter 3

Semi-transitivity of Directed Split

Graphs Generated by Morphisms

In this chapter, based on [IK21], we study families of directed split graphs obtained

by iterations of morphisms (involving three matrices A,B,C) applied to the ad-

jacency matrices and giving as the limit infinite directed split graphs. For each of

such a family we ask the question on whether all graphs in the family are oriented

semi-transitively (i.e. are semi-transitive) or a finite iteration k of the morphism

produces a non-semi-transitive orientation (which will stay non-semi-transitive for

all iterations > k). In the former case, we say that the infinite split graph’s index

of semi-transitivity is ∞ (denoted IST(A,B,C) = ∞), and in the latter case it is

k (assuming k is minimal possible).

The novelty of this research is in the study of directed graphs in connection

to semi-transitive orientations, and in that we offer a way to generate interest-

ing (from semi-transitivity point of view) families of directed split graphs using

adjacency matrices and iterations of morphisms. This research will contribute

to improving further known algorithms to recognise semi-transitive orientations
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Figure 3.1: A guide to the classification results where A is assumed to have a 0
(a natural condition to ensure that our definitions work). For example, if none of
A,B,C is a layered matrix then Theorem 82 is to be applied.

(on directed split graphs and beyond). It comes somewhat as a surprise that we

were able to completely classify infinite directed split graphs with the index of

semi-transitivity ∞, where morphisms in question involve almost arbitrary n×m

matrices over {−1, 0, 1} as opposed to, say, 2× 2 matrices in Chapter 2 (in a dif-

ferent context though); the only natural condition, to ensure that our definitions

work, is that A has a 0. Our classification is done via several results depending

on the structures of matrices A,B,C in question, and it is summarised in the

diagram in Figure 3.1. Following the diagram, one can easily determine whether

IST(A,B,C) = ∞ for any given A,B,C.
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3.1 Adjacency matrix of directed split graphs

A directed graph is semi-transitive if its orientation is semi-transitive. The adja-

cency matrix A = [aij] of a directed graph on n vertices is a binary matrix such

that aij = 1 if j → i is an edge, and aij = 0 otherwise. Let L(A) = [ℓij] be the

n× n lower triangular matrix such that, for any i > j,

ℓij =


1 if aij = 1,

−1 if aji = 1,

0 otherwise

and ℓij = 0 for any i ≤ j.

Clearly, there is a one-to-one correspondence between directed graphs of order

n and n × n lower triangular matrices over {−1, 0, 1} with the diagonal elements

equal 0. Thus, L(A) can play the role of the adjacency matrix of a directed graph.

For i > j, the connectivity between vertices i and j is j → i if ℓij = 1, and is i→ j

if ℓij = −1, and there is no edge if ℓij = 0.

Example 62. If A =



0 0 1 0 1 0

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 1

0 0 0 0 0 0

1 0 0 0 1 0


is an adjacency matrix of a directed
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graph G, then L(A) =



0 0 0 0 0 0

1 0 0 0 0 0

−1 0 0 0 0 0

0 1 −1 0 0 0

−1 0 0 0 0 0

1 0 0 −1 1 0


and the set of edges of G (on 6

vertices) is {1 → 2, 2 → 4, 1 → 6, 5 → 6, 3 → 1, 5 → 1, 4 → 3, 6 → 4}.

Our interest is in acyclically (without directed cycles) oriented split graphs

since only such graphs have a chance to be semi-transitive. For any acyclically

oriented split graph G, by Lemma 10, we know that the induced orientation of the

maximal clique in G is transitive, so the following notion can be introduced.

Definition 63. An acyclically oriented split graph G with a maximal clique of

order n is well-labelled if the vertex set of G is V (G) = {1, 2, . . . , |V (G)|} and the

longest directed path in the maximal clique is 1 → 2 → · · · → n.

Since we can relabel graphs, throughout the chapter, W.L.O.G. we can assume

that any given acyclically oriented split graph is well-labelled. If A is the adjacency

matrix for S = (Em, Kn) (where Kn is maximal) of order m+ n, then

L(A) =

Ln On,m

M Om


for some m×n matrix M , where On,m and Om are n×m and m×m zero matrices,

respectively, and Ln is the n×n matrix such that all entries strictly below the main

diagonal are 1’s, and all other entries are 0’s. Hence, every directed split graph

with maximal clique of order n and independent set of order m can be represented

by an m × n matrix M appearing in L(A) and recording directed edges between
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Kn and Em. Thus, generating a matrix M with entries in {−1, 0, 1}, we generate

an acyclically oriented split graph.

Definition 64. Let M = [mij] be an m× n matrix such that mij ∈ {−1, 0, 1} for

1 ≤ i ≤ m and 1 ≤ j ≤ n. Define

So(M) =

Ln On,m

M Om


where the subscript o stands for “oriented” and S stands for “split”. We denote

the directed split graph corresponding to So(M) by Go(M).

Example 65. If M =


0 1 0 1

−1 0 −1 −1

0 0 0 1

 then

So(M) =



0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

0 1 0 1 0 0 0

−1 0 −1 −1 0 0 0

0 0 0 1 0 0 0


is the adjacency matrix of the directed graph G0(M) shown in Figure 3.2.

For convenience, we will represent rows of an m × n matrix M by strings of

length n. For example, we will represent the three rows of

1 −1 0 1

0 1 −1 0

0 0 0 1

 by

1(−1)01, 01(−1)0 and 0001.

Note that in Definition 64, the maximal clique of Go(M) is of order n + 1 if

there is a row of the form 11 · · · 1 or (−1)(−1) · · · (−1) in M , and the maximal
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4

3 2

1

5 6 7

Figure 3.2: The directed split graph Go(M) given by So(M) in Example 65

clique is of order n otherwise. In the former case, Go(M) may not be well-labelled.

In the case of n = 1, the graph Go(M) is a tree which is always semi-transitive.

Thus, throughout this chapter, we can assume that n ≥ 2.

Remark 66. If M is a zero matrix, then Go(M) is semi-transitive as it is a

disjoint union of a transitively oriented clique and isolated vertices.

In what follows, xr denotes xx · · ·x, where x ∈ {−1, 0, 1} is repeated r times.

For anym×n binary matrixM , we can consider the n columns ofM as connectivity

of the vertices in the maximal clique andm rows ofM as connectivity of the vertices

in the independent set. However, we note that M has the maximal clique of size

n + 1 if there is a row of M having no 0. Then, we can move the vertex in the

independent set which is connected to every vertices in the clique of size n to be

one of the vertices in the maximal clique. However, we also have to concern about

relabelling the vertices in the maximal clique to make sure that the split graph

after moving the vertex is still well-labelled. In the case of 1r(−1)n−r is a row of

M , we can create a new (m− 1)× (n+1) binary matrix N such that the directed

graphs G(M) and G(N) are the same and every row of N contains 0. This idea is

used in the following lemma.

Lemma 67. Let M := [mij]m×n be an m × n matrix over {−1, 0, 1} such that

mp1 = mp2 = · · · = mpr = 1 and mp(r+1) = mp(r+2) = · · · = mpn = −1 for some
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p ∈ {1, 2, . . . ,m} and r ∈ {0, 1, . . . , n}. If

N =



m11 m12 · · · m1r 0 m1(r+1) · · · m1n

m21 m22 · · · m2r 0 m2(r+1) · · · m2n

... ... ... ... ... ...

m(p−1)1 m(p−1)2 · · · m(p−1)r 0 m(p−1)(r+1) · · · m(p−1)n

m(p+1)1 m(p+1)2 · · · m(p+1)r 0 m(p+1)(r+1) · · · m(p+1)n

... ... ... ... ... ...

mm1 mm2 · · · mmr 0 mm(r+1) · · · mmn


is an (m− 1)× (n+ 1) matrix, then Go(M) is isomorphic to Go(N).

Proof. The p-th row in M , which is 1r(−1)n−r, represents the vertex n + p in

the independent set connected to all vertices in Kn = {1, 2, . . . , n}. So Kn is not

the maximal clique in Go(M), but Kn ∪ {n + p} is the maximal clique. Note

that ℓ → n + p for every vertex ℓ ∈ {1, 2, . . . , r} and n + p → ℓ for all vertex

ℓ ∈ {r + 1, r + 2, . . . , n}. We relabel the vertex n + p to be r + 1 and relabel a

vertex ℓ to be ℓ + 1 for each ℓ ∈ {r + 1, r + 2, . . . , n + p − 1}. The relabelling

gives the graph that can be represented by the matrix So(N). Hence, Go(M) is

isomorphic to Go(N).

Remark 68. Let M be an m × n matrix over {−1, 0, 1}. If a1a2 · · · an is the

p-th row in M such that aq = −1 and ar = 1 for some 1 ≤ q < r ≤ n, then

q → r → n+ p→ q forms a cycle in Go(M). Hence, Go(M) is not semi-transitive

if there is a 1 occurring to the right of a −1 in a row in M . Consequently, if there is

a row in M such that it has no 0 and it is not of the form 11 · · · 1(−1)(−1) · · · (−1),

then Go(M) is not semi-transitive.

Let M be an m×n matrix over {−1, 0, 1}. We can see that the maximal clique

of Go(M) is of order n or n + 1. Moreover, the maximal clique of Go(M) is the
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clique of order n + 1 if there is a row in M containing no 0. In this case, the

matrix M does not represent only edges between vertices in the maximal clique

and vertices in the independent set, but also a vertex in the maximal clique. By

Remark 68, we can assume that M does not contain a row which has no 0 and is

not of the form 1r(−1)n−r for some 0 ≤ r ≤ n. Hence, if a row of M has no 0,

it must be 1r(−1)n−r for some 1 ≤ r ≤ n for graph Go(M) to have a chance to

be semi-transitive. Further, if 1r(−1)n−r is a row of M for some 0 ≤ r ≤ n, by

Lemma 67, we can consider the (m − 1) × (n + 1) matrix N in the statement of

the lemma instead of M , and every row of N has a 0.

Theorem 69. Let M be an m×n matrix over {−1, 0, 1}. The directed split graph

Go(M) is semi-transitive if and only if M satisfies the following conditions:

(i) every row of M is of the form 0r1s0t or 0r(−1)s0t or 1r0s(−1)t for r, s, t ≥ 0;

(ii) for each row of M of the form 1a0b(−1)c where a, b, c > 0, there is no other

row having 1’s in all positions from a to a+ b+ 1;

(ii) for each row of M of the form 1a0b(−1)c where a, b, c > 0, there is no other

row having (−1)’s in all positions from a to a+ b+ 1.

Proof. “⇐” Firstly, suppose that every row of M has a 0. Note that the vertices

in the independent set will then be of types A, B and C, and taking into account

conditions (ii) and (iii), Theorem 8 can be applied to see that Go(M) is semi-

transitive.

For the remaining case, suppose that there is a row p ofM of the form 1r(−1)n−r

where 1 ≤ p ≤ m and 0 ≤ r ≤ n. Then, {1, 2, . . . , n, n+ p} is the maximal clique

in the directed graph Go(M). By Lemma 61, we have that Go(M) is isomorphic

to Go(N), where N is the matrix obtained from M by deleting row p and adding
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a zero-column between columns r and r + 1 (in the cases of r = 0 and r = n, the

zero-column will be the first column and the last column, respectively). Note that

N still satisfies conditions (i) and (ii) and every row of N has a 0. Applying the

first case, we have that Go(N) and Go(M) are semi-transitive.

“⇒” Firstly, suppose that every row of M has a 0. One can see that Go(M) is

well-labelled, so the clique is oriented transitively and its longest path is 1 → 2 →

· · · → n. Moreover, conditions (ii) and (iii) in Theorem 8 give conditions (i), (ii)

and (iii) in this theorem.

For the remaining case, suppose that there is a row p ofM of the form 1r(−1)n−r

where 1 ≤ p ≤ m and 0 ≤ r ≤ n. Then, {1, 2, . . . , n, n+ p} is the maximal clique

in the directed graph Go(M). By Lemma 61, we have that Go(M) is isomorphic

to Go(N), where N is the matrix obtained from M by deleting row p and adding

a zero-column between columns r and r + 1 (in the cases of r = 0 and r = n,

the zero-column will be the first column and the last column, respectively). Since

Go(M) is word-representable, then Go(n) is also word-representable. So N satisfies

conditions (i), (ii) and (iii) in this theorem as every row of N has a 0. Therefore,

every row of M , except for row p, satisfies (i), (ii) and (iii). For row p of M , if there

is row q having 1’s in r and r+1 position, then the row in N obtained from adding

a 0 to row q of M does not satisfy the condition (i), which is a contradiction.

Similarly, the occurrence of row q having (-1)’s in columns r and r + 1 implies a

contradiction. Hence M satisfies conditions (i), (ii) and (iii).

In this chapter, Theorem 69 plays an important role in determining if Go(M)

is word-representable for a given matrix M . The following corollary is straightfor-

ward from Theorem 69.
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Corollary 70. Let M be an m×n matrix over {−1, 0, 1}. If every row of M is of

the form 0r1s0t or 0r(−1)s0t for r, s, t ≥ 0, then the graph Go(M) is semi-transitive.

Definition 71. A matrix M is said to be a layered matrix if all entries in the

same row of M are identical.

The next result is a straightforward corollary of Corollary 70.

Corollary 72. Let M be an m × n matrix over {−1, 0, 1}. If M is a layered

matrix, then Go(M) is semi-transitive.

3.2 Directed split graphs generated by

iterations of morphisms

Definition 73. Let A,B,C be m × n matrices over {−1, 0, 1}. The matrix

Mk(A,B,C) is the kth-iteration of the 2-dimensional morphism applied to the

1× 1 matrix [0] which maps [0] → A, [1] → B and [−1] → C. Moreover, we write

Sk
o (A,B,C) for the matrix So(M

k(A,B,C)) and Gk
o(A,B,C) for the graph with

the adjacency matrix Sk
o (A,B,C).

Example 74. Let A =

0 1

0 −1

, B =

−1 −1

1 0

 and C =

 1 1

−1 −1

. Then we

have M0(A,B,C) =
[
0
]
, M1(A,B,C) =

0 1

0 −1

 and
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Figure 3.3: The directed split graph G2
o(A,B,C) corresponding to the adjacency

matrix S2
o(A,B,C) in Example 74.

M2(A,B,C) =


0 1 −1 −1

0 −1 1 0

0 1 1 1

0 −1 −1 −1


. Hence, S2

o(A,B,C) is the matrix



0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

0 1 −1 −1 0 0 0 0

0 −1 1 0 0 0 0 0

0 1 1 1 0 0 0 0

0 −1 −1 −1 0 0 0 0


and G2

o(A,B,C) is shown in Figure 3.3.

Remark 75. If A is a zero matrix, then Mk(A,B,C) is always a zero matrix for

any m × n matrices B and C and k ≥ 0. Thus, by Remark 66, Gk
o(A,B,C) is

semi-transitive in this case.
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Proposition 76. If A,B and C are layered matrices over {−1, 0, 1}, then Gk
o(A,B,C)

is semi-transitive for any k ≥ 0.

Proof. Let A, B and C be m×n matrices. Since every row in A,B and C is either

0n or 1n or (−1)n, we have that every row in Mk(A,B,C) is either 0n
k or 1n

k or

(−1)n
k , so by Corollary 72, Gk

o(A,B,C) is semi-transitive.

If A = [aij]m×n contains at least one 0, say aij = 0, then the entry in row i

and column j of M1(A,B,C) is 0. By mapping this 0 to A in the next iteration

of morphism, we obtain A =M1(A,B,C) as the m×n submatrix of M2(A,B,C)

given by intersection of rows (i−1)n+1, (i−1)n+2, . . . , in and columns (j−1)m+

1, (j−1)m+2, . . . , jm. More generally, the mk−1×nk−1 submatrix of Mk(A,B,C)

given by intersection of rows (i−1)nk−1+1, (i−1)nk−1+2, . . . , ink−1 and columns

(j− 1)mk−1+1, (j− 1)mk−1+2, . . . , jmk−1 is Mk−1(A,B,C). So, we can consider

the bottommost, then leftmost zero in A as the start of a chain of induced sub-

graphs generated by the morphism. Thus, the limit limk→∞Mk(A,B,C), called

a fixed point of the morphism, is well-defined. So, we have that Gi
o(A,B,C) is

an induced subgraph of Gk
o(A,B,C) for i ≤ k, and the notion of the infinite split

graph Go(A,B,C) is well-defined in the case when A has a 0. Note that this is

not a necessary condition for Go(A,B,C) to be well-defined (for example, A,B,C

could be all one matrices). We are interested in the smallest integer ℓ (possibly

non-existing) such that Gℓ
o(A,B,C) is not semi-transitive for given A,B and C

(then Gi
o(A,B) is not semi-transitive for i ≥ ℓ).

Definition 77. Let A,B,C be m × n matrices such that A has a 0 as an entry.

The index of semi-transitivity IST(A,B,C) of an infinite directed split graph

Go(A,B,C) is the smallest integer ℓ such that Gℓ
o(A,B,C) is not semi-transitive.
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If such an ℓ does not exist, that is, if Gℓ
o(A,B,C) is semi-transitive for all ℓ, then

ℓ := ∞.

Note that since G0
o(A,B,C) is a graph with one vertex for any A,B,C, we

have IST(A,B,C) ≥ 1.

Remark 78. It follows from Proposition 76 that IST(A,B,C) = ∞ if A,B and

C are layered matrices.

The following three lemmas give sufficient conditions for A,B and C to have

IST(A,B,C) = ∞.

Lemma 79. Let A,B and C be m× n matrices over {−1, 0, 1} such that A has a

0 and IST(A,B,C) = ∞. Then,

• If A is not a layered matrix, then there is no row in Mk(A,B,C) containing

two 0’s for any k ≥ 0.

• If B is not a layered matrix, then there is no row in Mk(A,B,C) containing

two 1’s for any k ≥ 0.

• If C is not a layered matrix, then there is no row in Mk(A,B,C) containing

two (−1)’s for any k ≥ 0.

Proof. We will prove the first bullet point; the other bullet points can be proved

analogously.

Let A = [aij] be an m × n matrix and air, ais be two entries in row i of A

such that air ̸= ais where 1 ≤ r < s ≤ n. Denote µk(i, j) ∈ {−1, 0, 1} the

entry of Mk(A,B,C) in row i and column j. Suppose that row a of Mk(A,B,C)

contains at least two 0’s for some k, say µk(a, b) = µk(a, c) = 0 where b < c.
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Consider the intersection of rows (a− 1)m+ 1, (a− 1)m+ 2, . . . , am and columns

(b− 1)n+1, (b− 1)n+2, . . . , bn in Mk+1(A,B,C), which is the matrix A because

µk(a, b) = 0. Similarly, the submatrix of Mk+1(A,B,C) formed by rows (a−1)m+

1, (a− 1)m+2, . . . , am and columns (c− 1)n+1, (c− 1)n+2, . . . , cn is A. Hence,

we have

µk+1((a− 1)m+ i, (b− 1)n+ r) = µk+1((a− 1)m+ i, (c− 1)n+ r) = air

and

µk+1((a− 1)mi, (b− 1)n+ s) = µk+1((a− 1)m+ i, (c− 1)n+ s) = ais.

Thus, the submatrix of Mk+1(A,B,C) formed by row (a − 1)m + i and columns

(b − 1)n + r, (b − 1)n + s, (c − 1)n + r, (c − 1)n + s is
[
air, ais, air, ais

]
. That is,

row (a − 1)m + i of Mk+1(A,B,C) cannot be of the form 0r1s0t or 0r(−1)s0t

or 1r0s(−1)t. By Theorem 69, Gk+1
o (A,B,C) is not semi-transitive, which is a

contradiction with IST(A,B,C) = ∞.

Lemma 80. Let A,B and C be m× n matrices over {−1, 0, 1} such that A has a

0 and IST(A,B,C) = ∞. Then,

• If A and B are not layered matrices, then every entry of C is (−1).

• If A and C are not layered matrices, then every entry of B is 1.

Proof. Both statements are proved by similar arguments, so we will prove here

only the first one. Suppose both A and B are not layered matrices. By Lemma 79,

every row of Mk(A,B,C) contains at most one 0 and at most one 1 for any k ≥ 2.

Then, there are at least nk − 2 copies of (−1) in every row of Mk(A,B,C). By

Lemma 79, C is a layered matrix.
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Suppose that there is no (−1) in A and B. Since every row of M1(A,B,C) = A

has at most one 0 and at most one 1 and no (−1), then n = 2 (recall our assumption

of n ≥ 2). Therefore, M2(A,B,C) has 4 columns with every row having more than

one 0 or more than one 1, which is a contradiction.

If (−1) is an entry of A, then M1(A,B,C) = A has (−1) as an entry. So C

is a submatrix of M2(A,B,C) as (−1) is mapped to C. Since every row of C

has the same entries, and there is no more than one 0 and one 1 in each row of

M2(A,B,C), we have that each entry of C must be (−1).

Finally, if there is no (−1) in A, but B contains (−1) as an entry, then

M1(A,B,C) = A contains 1 as an entry. Since 1 maps to B, M2(A,B,C) con-

tains B as a submatrix. So there is an entry (−1) in M2(A,B,C), and then C is

a submatrix of M3(A,B,C). Since every row of C has entries equal to each other,

and there is no more than one 0 and one 1 in each row of M2(A,B,C), then each

entry of C is (−1).

Lemma 81. Let A,B and C be m× n matrices over {−1, 0, 1} such that A has a

0 and IST(A,B,C) = ∞. If B and C are not layered matrices, then all entries of

A are 0.

Proof. Suppose B and C are not layered matrices. By Lemma 79, every row of

Mk(A,B,C) contains at most one 1 and at most one (−1) for any k ≥ 2. Then

there are at least nk − 2 zeroes in every row of Mk(A,B,C). By Lemma 79, A is

a layered matrix.

Assume that there is a row r in A := [aij] = M1(A,B,C) of the form 11 · · · 1.

Also, suppose that a row s in B := [bij] has two distinct entries, say bsp ̸= bsq for

some 1 ≤ p < q ≤ n. Note that the intersection of rows (r − 1)m+ 1, (r − 1)m+

2, . . . , rm and columns (ℓ − 1)n + 1, (ℓ − 1)n + 2, . . . , ℓn in M2(A,B,C) is B for
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ℓ = 1, 2, . . . ,m. Then the submatrix of M2(A,B,C) formed by row (r − 1)m + s

and columns p, q, n+ p, n+ q, 2n+ p, 2n+ q, . . . , (m− 1)n+ p, (m− 1)n+ q is[
bsp bsq bsp bsq · · · bsp bsq

]
.

Since every row of Mk(A,B,C) has at most one 1 and at most one (−1) for any

k, we have bsp = bsq = 0, which is a contradiction. Thus, there is no row in A of

the form 11 · · · 1. Similarly, we can show that there is no row in A of the form

(−1)(−1) · · · (−1). Hence, A is an all 0 matrix.

From Lemmas 80 and 81 we have the following theorem.

Theorem 82. Let A,B and C be m× n matrices over {−1, 0, 1} such that A has

a 0. If A, B and C are not layered, then IST(A,B,C) is finite.

Definition 83. Let A,B,C be m×n matrices over {−1, 0, 1}. The triple (A,B,C)

is said to be independent from B if there are no 1’s in A and C. Similarly, the

triple (A,B,C) is said to be independent from C if there are no (−1)’s in A and

B.

For convenience, we write R(M) for the set of strings representing rows of M .

Moreover, if A,B and C are m×n matrices over {−1, 0, 1}, then define Rk(A,B,C)

to be the set of strings representing rows of Mk(A,B,C). So, every element of

Rk(A,B,C) is a string over {−1, 0, 1} of length nk. Each element of Rk(A,B,C)

is called a row pattern of Mk(A,B,C).

Theorem 84. Let A,B and C be m× n matrices over {−1, 0, 1} such that A has

a 0 and (A,B,C) is independent from C. Then, IST(A,B,C) = ∞ if and only if

A and B satisfy one of the following conditions, where ai ∈ {0, 1}:

(1) A and B are layered matrices, or
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(2) A =


a1 1 1 · · · 1

a2 1 1 · · · 1

... ... ... ...

am 1 1 · · · 1


and B =


1 1 · · · 1

1 1 · · · 1

... ... ...

1 1 · · · 1


, or

(3) A =


1 1 · · · 1 a1

1 1 · · · 1 a2
... ... ... ...

1 1 · · · 1 am


and B =


1 1 · · · 1

1 1 · · · 1

... ... ...

1 1 · · · 1


.

Proof. “⇐” There is no (−1) in A and B, and row patterns of Mk(A,B,C) gen-

erated by A,B and C in (1), (2) and (3) are in the set

{1nk

, 0n
k

, 01n
k−1, 1n

k−10}.

By Corollary 70, Mk(A,B,C) is semi-transitive for all k ≥ 0.

“⇒” Since (A,B,C) is independent from C, every entry of Mk(A,B,C) is either

0 or 1. Assume IST(A,B,C) = ∞ and let R(B) = {b1, b2, . . . , bp} where bi is a

binary string of length n. By Theorem 69, we have that every row of Mk(A,B,C)

is of the form 0r1s0t. If A is a layered matrix, then R1(A,B,C) ⊆ {0n, 1n} and

R2(A,B,C) ⊆ {0n2

, 1n
2

, (b1)
n, (b2)

n, . . . , (bp)
n}.

So, R(B) ⊆ {0n, 1n} as otherwise, some strings in R2(A,B,C) are not of the form

0r1s0t. Thus, B is a layered matrix. Suppose A is not a layered matrix. By

Lemma 79, R1(A,B,C) ⊆ {01n−1, 1n−10, 1n} . If both 01n−1 and 1n−10 are rows in

A, then 1n−10(bi)
n−1 is a row pattern in R2(A,B,C) for some i. Since every row of

Mk(A,B,C) contains at most one 0, bi must be 1n, which contradicts 1n−10(bi)
n−1
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not being of the form 0r1s0t. So, we have

A =


a1 1 1 · · · 1

a2 1 1 · · · 1

... ... ... ...

am 1 1 · · · 1


or A =


1 1 · · · 1 a1

1 1 · · · 1 a2
... ... ... ...

1 1 · · · 1 am


where ai ∈ {0, 1}. Note that each row of A is 1n, 01n−1 or 1n−10. If row i in A

is 1n, then row ((i− 1)m + i) in M2(A,B,C) is xn, where x is row i in B. Since

xn cannot contain more than one 0, we have x = 1n. If row i in A is 01n−1, then

row ((i− 1)m+ i) in M2(A,B,C) is 01n−1xn−1, where x is row i in B. So, x = 1n

because 01n−1xn−1 contains at most one 0. Similarly, if row i in A is 1n−10, then

row i in B is 1n. Hence, B is an all 1 matrix.

Next theorem can be proved similarly to Theorem 84.

Theorem 85. Let A,B and C be m× n matrices over {−1, 0, 1} such that A has

a 0 and (A,B,C) is independent from B. Then, IST(A,B,C) = ∞ if and only if

A and C satisfy one of the following conditions, where ai ∈ {0, 1}:

(1) A and C are layered matrices, or

(2) A =


a1 −1 −1 · · · −1

a2 −1 −1 · · · −1

... ... ... ...

am −1 −1 · · · −1


and C =


−1 −1 · · · −1

−1 −1 · · · −1

... ... ...

−1 −1 · · · −1


, or

(3) A =


−1 −1 · · · −1 a1

−1 −1 · · · −1 a2
... ... ... ...

−1 −1 · · · −1 am


and C =


−1 −1 · · · −1

−1 −1 · · · −1

... ... ...

−1 −1 · · · −1


.
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Theorem 86. Let A, B and C be m × n matrices over {−1, 0, 1} such that A

has a 0 and (A,B,C) is not independent from B and C. Suppose A is a layered

matrix. Then, IST(A,B,C) = ∞ if and only if B and C are layered matrices.

Proof. Suppose IST(A,B,C) = ∞. The case when A is a zero matrix is trivial.

Thus, assume that 1n or (−1)n is a row in A. W.L.O.G., we suppose that 1n is

a row in A = M1(A,B,C). By Lemma 79, we have B is a layered matrix. If A

also contains a row (−1)n, then C is a layered matrix with the same reason. If A

does not contain a row (−1)n, then (−1)n must be a row of B because (A,B,C)

is not independent from B and C. Since 1n is a row of A, we have BB · · ·B are

m consecutive rows in M2(A,B,C). As (−1)n is a row in B, we have that (−1)n
2

is a row in M2(A,B,C). By Lemma 79, C is a layered matrix.

For the converse direction, it is clear from Proposition 76 that if A, B and C

are layered matrices, then IST(A,B,C) = ∞.

Definition 87. Let A, B, C be m×n matrices over {−1, 0, 1}. The triple (A,B,C)

is said to be

• an all-but-leftmost-negative triple if R(A), R(B) ⊆ {0(−1)n−1, 1(−1)n−1}

and C is an all (−1) matrix,

• an all-but-rightmost-negative triple if R(A), R(B) ⊆ {(−1)n−10, (−1)n−11}

and C is an all (−1) matrix,

• an all-but-leftmost-positive triple if R(A), R(B) ⊆ {01n−1, (−1)1n−1} and C

is an all 1 matrix,

• an all-but-rightmost-positive triple if R(A), R(B) ⊆ {1n−10, 1n−1(−1)} and

C is an all 1 matrix.
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We can alternatively write Definition 87 as follow.

Definition 88. Let A,B,C are m × n matrices over {−1, 0, 1}. We define the

triple (A,B,C) as following:

• (A,B,C) is said to be all-but-leftmost-negative triple if

A =


a1 −1 −1 · · · −1

a2 −1 −1 · · · −1

... ... ... ...

am −1 −1 · · · −1


where ai ∈ {0, 1},

B =


b1 −1 −1 · · · −1

b2 −1 −1 · · · −1

... ... ... ...

bm −1 −1 · · · −1


where ai ∈ {0, 1} and

C is an all (−1) matrix,

• (A,B,C) is said to be all-but-leftmost-positive triple if

A =


a1 1 1 · · · 1

a2 1 1 · · · 1

... ... ... ...

am 1 1 · · · 1


where ai ∈ {0,−1},

B =


b1 1 1 · · · 1

b2 1 1 · · · 1

... ... ... ...

bm 1 1 · · · 1


where ai ∈ {0,−1} and

C is an all 1 matrix,

• (A,B,C) is said to be all-but-rightmost-negative triple if
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A =


−1 −1 · · · −1 a1

−1 −1 · · · −1 a2
... ... ... ...

−1 −1 · · · −1 am


where ai ∈ {0, 1},

B =


−1 −1 · · · −1 b1

−1 −1 · · · −1 b2
... ... ... ...

−1 −1 · · · −1 bm


where ai ∈ {0, 1} and

C is an all (−1) matrix,

• (A,B,C) is said to be all-but-rightmost-positive triple if

A =


1 1 · · · 1 a1

1 1 · · · 1 a2
... ... ... ...

1 1 · · · 1 am


where ai ∈ {0,−1},

B =


1 1 · · · 1 b1

1 1 · · · 1 b2
... ... ... ...

1 1 · · · 1 bm


where ai ∈ {0,−1} and

C is an all 1 matrix.

From Definition 87 and 88, we can easily see that

• If (A,B,C) is all-but-leftmost-negative, then

Rk(A,B,C) ⊆ {0(−1)n
k−1, 1(−1)n

k−1},

• If (A,B,C) is all-but-rightmost-negative, then

Rk(A,B,C) ⊆ {(−1)n
k−10, (−1)n

k−11},
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• If (A,B,C) is all-but-leftmost-positive, then

Rk(A,B,C) ⊆ {01nk−1, (−1)1n
k−1},

• If (A,B,C) is all-but-rightmost-positive, then

Rk(A,B,C) ⊆ {1nk−10, 1n
k−1(−1)}.

With this observation, we can prove the following theorem.

Theorem 89. Let A, B, C be m × n matrices over {−1, 0, 1} such that A has

a 0 and (A,B,C) is not independent from B and C. Suppose A and B are not

layered matrices and C is a layered matrix. Then, IST(A,B,C) = ∞ if and only

if (A,B,C) is an all-but-leftmost-negative triple.

Proof. “⇐” Let (A,B,C) be all-but-leftmost-negative. Then, for any k ≥ 1,

Mk(A,B,C) =


x1 −1 −1 · · · −1

x2 −1 −1 · · · −1

... ... ... ...

xmk −1 −1 · · · −1


where xi ∈ {0, 1}. So Mk(A,B,C) satisfies all conditions in Theorem 69, and

hence IST(A,B,C) = ∞.

“⇒” Suppose IST(A,B,C) = ∞. From Lemma 80, we have that C is an all (−1)

matrix. By Lemma 79, every row of Mk(A,B,C) does not contain more than one

0 and more than one 1. Note that every row of A must be of the form 0r1s0t,

0r(−1)s0t or 1r0s(−1)t, where r, s, t ≥ 0. So, all possible row patterns of A are in

{01, 10, 0(−1)n−1, (−1)n−10, (−1)n, 1(−1)n−1, 10(−1)n−2}.

Suppose that n = 2 and row i in A is 01. Then, the submatrix of M2(A,B,C)

formed by rows (i− 1)m+1, (i− 1)m+2, . . . , im and columns 1, 2, 3, 4 is AB. So,
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row (i− 1)m+ i in M2(A,B,C) is 01x, where x is row i in B. Note that 01x must

be of the form 0r1s0t, where r, s, t ≥ 0. Therefore, x is 11 because M2(A,B,C)

contains at most one 0. So, 01x contains more than one 1, which contradicts

Lemma 79. Hence, 01 cannot be a row in A. Similarly, we obtain that 10 is also

not a row in A. Hence, we have that 01 and 10 cannot be a row in A.

Suppose row i inA is 10(−1)n−2. Then there ism consecutive rows inM2(A,B,C)

built by BACC · · ·C. Note that row i in BACC · · ·C is y10(−1)n−2zz · · · z ,

where y and z are rows i in B and C, respectively. Since IST(A,B,C) = ∞,

y10(−1)n−2zz · · · z must be of the form 1r0s(−1)t, where r, s, t ≥ 0. Thus, y = 1n

and z = (−1)n. This contradicts to the fact that any row in M2(A,B,C) has at

most one 1. Hence, 10(−1)n−2 cannot be a row in A.

Now, all possible row patterns of A are in

{0(−1)n−1, (−1)n−10, (−1)n, 1(−1)n−1}.

If 1(−1)n−1 is not a row inA, then (A,B,C) is independent from C. Then 1(−1)n−1

must be a row in A. If (−1)n−10 or (−1)n is a row in A, then the condition (ii) of

Theorem 69 is not satisied. So, G1
o(A,B,C) is not semi-transitive.

Therefore (−1)n−10 and (−1)n are not rows in A and we have

A =


a1 −1 −1 · · · −1

a2 −1 −1 · · · −1

... ... ... ...

am −1 −1 · · · −1


where ai ∈ {0, 1}.

Since both 0(−1)n−1 and 1(−1)n−1 are rows in A, there are m consecutive

rows of M2(A,B,C) built by ACC · · ·C and BCC · · ·C. Then 1(−1)n
2−1 is a

row in M2(A,B,C). Note that row i in BCC · · ·C is bi1bi2 · · · bin(−1)n
2−n where

bi1bi2 · · · bin is row i inB. SinceM2(A,B,C) is semi-transitive and bi1bi2 · · · bin(−1)n
2−n
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is a row in M2(A,B,C), we have bi1bi2 · · · bin is 0r(−1)n−r or 10s(−1)n−s−1 for some

0 ≤ r ≤ n and 0 ≤ s ≤ n− 1. As M2(A,B,C) contains at most one 0, we obtain

that bi1bi2 · · · bin must be 1(−1)n−1 or 0(−1)n−1 or 10(−1)n−2 for any 1 ≤ i ≤ m.

If 10(−1)n−2 is a row of B, then there are m consecutive rows in M3(A,B,C) such

that ABCC · · ·C is its prefix. So, x10(−1)n−2yy · · · y · · · is a row in M3(A,B,C)

where x is a row in A and y is a row in C. That is, x = 1n, which is a contradiction.

So, 10(−1)n−2 cannot be a row in B. Hence,

B =


b1 −1 −1 · · · −1

b2 −1 −1 · · · −1

... ... ... ...

bm −1 −1 · · · −1


where bi ∈ {0, 1}.

Using similar arguments, we can prove the following theorem.

Theorem 90. Let A, B, C be m × n matrices over {−1, 0, 1} such that A has

a 0 and (A,B,C) is not independent from B and C. Suppose A and C are not

layered matrices and B is a layered matrix. Then, IST(A,B,C) = ∞ if and only

if (A,B,C) is all-but-rightmost-positive.

By now, we already have classification for triples (A,B,C) with the index of

semi-transitivity infinity except for the case when A is not a layered matrix and B

and C are layered matrices and (A,B,C) is not independent from B, C. To solve

the remaining cases, we need the following four lemmas.

Lemma 91. Let A, B, C be m× n matrices over {−1, 0, 1} such that A has a 0

and (A,B,C) is not independent from B and C. Then,

88



(1) if 01n−1 and 1n−10 are rows in A, then IST(A,B,C) is finite;

(2) if 0(−1)n−1 and (−1)n−10 are rows in A, then IST(A,B,C) is finite;

(3) if 01n−1 and (−1)n−10 are rows in A, then IST(A,B,C) is finite;

(4) if 0(−1)n−1 and 1n−10 are rows in A, then IST(A,B,C) is finite;

(5) if 1p0(−1)n−p−1 and 1q0(−1)n−q−1 are rows in A, where 0 ≤ p < q ≤ n− 1,

then IST(A,B,C) is finite.

Proof.

(1) Suppose that IST(A,B,C) = ∞ and row i and row j in A are 01n−1

and 1n−10, respectively. Note that Bn−1A gives m consecutive rows in

M2(A,B,C) obtained by applying the morphism to 1n−10. Row i in Bn−1A

is xn−101n−1, where x is row i in B. Since A is not a layered matrix, by

Lemma 79, there is no 0 in x. So xn−101n−1 cannot be of the form 0r1s0t,

0r(−1)s0t or 1r0s(−1)t. This contradicts to Theorem 69.

(2) Suppose that IST(A,B,C) = ∞ and row i and row j in A are 0(−1)n−1

and (−1)n−10, respectively. Note that ACn−1 gives m consecutive rows in

M2(A,B,C) obtained by applying the morphism to 0(−1)n−1. Row j in

ACn−1 is (−1)n−10xn−1, where x is row j in B. Since A is not a layered

matrix, by Lemma 79, there is no 0 in x. So (−1)n−10xn−1 cannot be of the

form 0r1s0t, 0r(−1)s0t or 1r0s(−1)t. This contradicts to Theorem 69.

(3) Suppose that IST(A,B,C) = ∞ and row i and row j in A are 01n−1

and (−1)n−10, respectively. Note that ABn−1 gives m consecutive rows in

M2(A,B,C) obtained by applying the morphism to 01n−1. Row j in ABn−1
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is (−1)n−10xn−1, where x is row j in B. Note that (−1)n−10xn−1 must be of

the form 0r(−1)s0t, and so x = 0n. Thus, (−1)n−10xn−1 = (−1)n−10(n
2−n−1)

is a row in M2(A,B,C) having more than one 0, which contradicts to

Lemma 79.

(4) Suppose that IST(A,B,C) = ∞ and row i and row j in A are 0(−1)n−1

and 1n−10, respectively. Note that ACn−1 gives m consecutive rows in

M2(A,B,C) obtained by applying the morphism to 0(−1)n−1. Row j in

ACn−1 is 1n−10xn−1, where x is row j in C. SinceA is not a layered matrix, by

Lemma 79, there is no 0 in x. Therefore, 1n−10xn−1 is of the form 1r0s(−1)t.

So x = (−1)n and 1n−10xn−1 = 1n−10(−1)n
2−n is a row in M2(A,B,C). Note

that Bn−1A gives m consecutive rows in M2(A,B,C) obtained by applica-

tion of the morphism to 1n−10. Row j in Bn−1A is yn−11n−10, where y is row

j in B. Since A is not a layered matrix, by Lemma 79, there is no 0 in y.

Therefore, yn−11n−10 is of the form 0r1s0t. So y = 1n and yn−11n−10 = 1n
2−10

is a row in M2(A,B,C). Note that 1n−10(−1)n
2−n−1 and 1n

2−10 break the

second condition of Theorem 69. Hence, G2
o(A,B,C) is not semi-transitive

and this leads to a contradiction.

(5) Suppose that IST(A,B,C) = ∞ and row i and row j in A are 1p0(−1)n−p−1

and 1q0(−1)n−q−1, respectively, where 0 ≤ p < q ≤ n − 1. Note that

BpACn−p−1 gives m consecutive rows in M2(A,B,C) obtained by applying

the morphism to 1p0(−1)n−p−1. Row i inBpACn−p−1 is xp1p0(−1)n−p−1yn−p−1

where x is row i in B and y is row i in C. Since A is not a layered matrix, by

Lemma 79, there is no more than one 0 in any row of M2(A,B,C). By The-

orem 69, we obtain xp1p0(−1)n−p−1yn−p−1 equals 1np+p0(−1)n
2−np−p−1. Note

that BqACn−q−1 gives m consecutive rows in M2(A,B,C) obtained by ap-

90



plication of the morphism to 1q0(−1)n−q−1, and xq1q0(−1)n−q−1yn−q−1 is its

row i. Similarly to the above, we have xq1q0(−1)n−q−1yn−q−1 = 1nq+q0(−1)n
2−nq−q−1.

That is, both 1np+p0(−1)n
2−np−p−1 and 1nq+q0(−1)n

2−nq−q−1 are rows ofM2(A,B,C).

If p = 0 and q = n−1, then 0(−1)n−1 and 1n−10 are rows in A which is a con-

tradiction by (4). So, one of 1np+p0(−1)n
2−np−p−1 and 1nq+q0(−1)n

2−nq−q−1 is

of the form 1r0s(−1)t for some r, s, t > 0. Note that G2
o(A,B,C) is not semi-

transitive because of the second condition of Theorem 69 is not satisfied, and

this is a contradiction.

Lemma 92. Let A, B, C be m× n matrices over {−1, 0, 1} such that A has a 0

and (A,B,C) is not independent from B and C. Then,

(1) if 1p0(−1)n−p−1 and 01n−1 are rows in A, where 1 ≤ p ≤ n − 2, then

IST(A,B,C) is finite;

(2) if 1p0(−1)n−p−1 and 0(−1)n−1 are rows in A, where 1 ≤ p ≤ n − 2, then

IST(A,B,C) is finite;

(3) if 1p0(−1)n−p−1 and 1n−10 are rows in A, where 1 ≤ p ≤ n − 2, then

IST(A,B,C) is finite;

(4) if 1p0(−1)n−p−1 and (−1)n−10 are rows in A, where 1 ≤ p ≤ n − 2, then

IST(A,B,C) is finite.

Proof.

(1) Suppose that 1p0(−1)n−p−1 and 01n−1 are rows i and j in A, respectively,

and IST(A,B,C) = ∞. Note that BpACn−p−1 gives m consecutive rows

in M2(A,B,C) obtained by applying the morphism to 1p0(−1)n−p−1 in
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M1(A,B,C). Row j in BpACn−p−1 is bp01n−1cn−p−1, where b and c are

row j in B and C, respectively. So bp01n−1cn−p−1 must be 0r1s0t for some

r, s, t ≥ 0. Hence, b = 0n and c = 1n. As A is not a layered matrix, every row

in M2(A,B,C) contains at most one 0, which is a contradiction. Therefore,

IST(A,B,C) <∞.

(2) This is given by (5) in Lemma 91.

(3) This is given by (5) in Lemma 91.

(4) Suppose that 1p0(−1)n−p−1 and (−1)n−10 are rows i and j in A, respect-

ively, and IST(A,B,C) = ∞. Note that BpACn−p−1 gives m consecutive

rows in M2(A,B,C) obtained by applying the morphism to 1p0(−1)n−p−1 in

M1(A,B,C). Row j in BpACn−p−1 is bp(−1)n−10cn−p−1, where b and c are

row j in B and C, respectively. So, bp(−1)n−10cn−p−1 must be 0r(−1)s0t for

some r, s, t ≥ 0. Hence, b = (−1)n and c = 0n. As A is not a layered matrix,

every row in M2(A,B,C) contains at most one 0, which is a contradiction.

Therefore, IST(A,B,C) <∞.

Definition 93. Let A,B,C be m× n matrices over {−1, 0, 1}. A triple (A,B,C)

is left-0-invariant if A, B, C satisfy the following properties:

• every row in A is in {01n−1, 1n, 0(−1)n−1, (−1)n};

• every row in B and C is in {1n, (−1)n};

• if 01n−1 appears as a row in A, then

– row i in A is 01n−1 implies row i in B is 1n;
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– row i in A is 1n implies row i in B is 1n;

– row i in A is 0(−1)n−1 implies row i in B is (−1)n;

– row i in A is (−1)n implies row i in B is (−1)n;

• if 0(−1)n−1 appears as a row in A, then

– row i in A is 01n−1 implies row i in C is 1n;

– row i in A is 1n implies row i in C is 1n;

– row i in A is 0(−1)n−1 implies row i in C is (−1)n;

– row i in A is (−1)n implies row i in C is (−1)n.

Definition 94. Let A, B, C be m×n matrices over {−1, 0, 1}. A triple (A,B,C)

is right-0-invariant if A, B, C satisfy the following properties:

• every row in A is in {1n−10, 1n, (−1)n−10, (−1)n};

• every row of B and C is in {1n, (−1)n};

• if 1n−10 appears as a row in A, then

– row i in A is 1n−10 implies row i in B is 1n;

– row i in A is 1n implies row i in B is 1n;

– row i in A is (−1)n−10 implies row iin B is (−1)n;

– row i in A is (−1)n implies row i in B is (−1)n;

• if (−1)n−10 appears as a row in A, then

– row i in A is 1n−10 implies row i in C is 1n;

– row i in A is 1n implies row i in C is 1n;
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– row i in A is (−1)n−10 implies row i in C is (−1)n;

– row i in A is (−1)n implies row i in C is (−1)n.

Lemma 95. Let A, B, C be m× n matrices over {−1, 0, 1} such that A has a 0.

Then,

(1) If (A,B,C) is left-0-invariant and 01n−1 /∈ R(A),

then 01n
k−1 /∈ Rk(A,B,C) for any k ≥ 0.

(2) If (A,B,C) is left-0-invariant and 0(−1)n−1 /∈ R(A),

then 0(−1)n
k−1 /∈ Rk(A,B,C) for any k > 0.

(3) If (A,B,C) is right-0-invariant and 1n−10 /∈ R(A),

then 1n
k−10 /∈ Rk(A,B,C) for any k > 0.

(4) If (A,B,C) is right-0-invariant and (−1)n−10 /∈ R(A),

then (−1)n
k−10 /∈ Rk(A,B,C) for any k > 0.

Proof. As all of the statements are proved in similar ways, we will only prove

(1). Assume (A,B,C) is left-0-invariant and 01n−1 /∈ R(A). For k = 1, it is

obvious that M1(A,B,C) = A and then 01n−1 /∈ R1(A,B,C). Suppose k ≥ 2 and

01n
k−1 ∈ Rk(A,B,C). Let 0x1x2 · · ·xnk−1−1 be a row in Mk−1(A,B,C) such that

applying to it the morphism creates row 01n
k−1. That is, 01nk−1 is a row in the

matrix AX1X2 · · ·Xnk−1−1, where Xi ∈ {A,B,C}, obtained from 0x1x2 · · ·xnk−1−1

by application of the morphism. This is a contradiction because 01n−1 /∈ R(A).

Hence, 01nk−1 /∈ Rk(A,B,C).

Lemma 96. Let A, B, C be m× n matrices over {−1, 0, 1} such that A has a 0.

If (A,B,C) is left-0-invariant (resp., right-0-invariant), then IST(A,B,C) = ∞.
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Proof. Suppose that (A,B,C) is left-0-invariant. We will prove that for any

k > 0, Rk(A,B,C) ⊆ {01nk−1, 1n
k
, 0(−1)n

k−1, (−1)n
k} by induction on k. From

the definition of a left-0-invariant tripple, we have that R1(A,B,C) = R(A) ⊆

{01n−1, 1n, 0(−1)n−1, (−1)n}. SupposeRk(A,B,C) ⊆ {01nk−1, 1n
k
, 0(−1)n

k−1, (−1)n
k}

for some k. If 01n−1 /∈ R(A), then 0(−1)n−1 ∈ R(A) and, by Lemma 95, 01nk−1 /∈

Rk(A,B,C). So, every row in Mk(A,B,C) is 1n
k , 0(−1)n

k−1 or (−1)n
k . As every

row in Mk+1(A,B,C) is a row in an m × nk+1 matrix obtained by applying the

morphism to a row in Mk(A,B,C), we have that

Rk+1(A,B,C) = R(Bnk

) ∪R(ACnk−1) ∪R(Cnk

).

We can see that R(Bnk
) and R(Cnk

) are subset of {1nk+1
, (−1)n

k+1}. Row i in

ACnk−1 is 1n
k+1 , (−1)n

k+1 and 0(−1)n
k+1−1 if row i in A is 1n, (−1)n and 0(−1)n,

respectively. Hence, Rk+1(A,B,C) ⊆ {1nk+1
, 0(−1)n

k+1−1, (−1)n
k+1} in the case of

01n−1 /∈ R(A). For the case of 0(−1)n−1 /∈ R(A), we can follow similar arguments

to see that Rk+1(A,B,C) ⊆ {01nk+1−1, 1n
k+1
, (−1)n

k+1}. Assume both 01n−1 and

0(−1)n−1 are in R(A). So, every row in Mk(A,B,C) is 01n
k−1, 1nk , 0(−1)n

k−1 or

(−1)n
k and

Rk+1(A,B,C) = R(ABnk−1) ∪R(Bnk

) ∪R(ACnk−1) ∪R(Cnk

).

Note thatR(Bnk
), R(Cnk

) ⊆ {1nk+1
, (−1)n

k+1}. Row i inACnk−1 is 1nk+1 , (−1)n
k+1 ,

01n
k+1−1 and 0(−1)n

k+1−1 if row i in A is 1n, (−1)n, 01n and 0(−1)n, respectively.

Row i in ABnk−1 is 1n
k+1 , (−1)n

k+1 , 01nk+1−1 and 0(−1)n
k+1−1 if row i in A is 1n,

(−1)n, 01n and 0(−1)n, respectively. Hence, Rk+1(A,B,C) ⊆ {1nk+1
, 0(−1)n

k+1−1, (−1)n
k+1}.

Thus, we have shown that, for any k > 0,

Rk(A,B,C) ⊆ {01nk−1, 1n
k

, 0(−1)n
k−1, (−1)n

k}.
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By Corollary 70, Gk
o(A,B,C) is semi-transitive for any k > 0, which means that

IST(A,B,C) = ∞.

Theorem 97. Let A, B, C be m × n matrices over {−1, 0, 1} such that A has

a 0 and (A,B,C) is not independent from B and C. Suppose A is not a layered

matrix but B and C are layered matrices. Then, IST(A,B,C) = ∞ if and only if

one of the following conditions holds:

• (A,B,C) is left-0-invariant.

• (A,B,C) is right-0-invariant.

• R(A) = {1p0(−1)n−p−1} for some p ∈ {1, 2, . . . , n− 2}, and B and C are all

1 and (−1) matrices, respectively.

Proof. Assume IST(A,B,C) = ∞. Since A is not a layered matrix, by Lemma 79,

every row of M1(A,B,C) = A contains at most one 0. Then, every row in A is

01n−1, 1n−10, 1n, 0(−1)n−1, (−1)n−10, (−1)n, 1p0(−1)n−p−1 or 1q(−1)n−q for some

p ∈ {1, 2, . . . , n− 2} and q ∈ {1, 2, . . . , n− 1}. Since (A,B,C) is not independent

from B and C, and B and C are layered matrices, we have every row of B and C

must be 1n or (−1)n, otherwise there is a row in Mk(A,B,C) having more than

one 0 for some k.

If 1q(−1)n−q is row i in A for q ∈ {1, 2, . . . , n− 1}, then every row in A, except

for row i, is 1q(−1)n−q, 1q−10(−1)n−q or 1q0(−1)n−q−1. By (5) in Lemma 91, we

have that A cannot contain both 1q−10(−1)n−q and 1q0(−1)n−q−1 as its rows.
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If 1q−10(−1)n−q /∈ R(A), then

A =


1q a1 (−1)n−q−1

1q a2 (−1)n−q−1

... ... ...

1q am (−1)n−q−1


for ai ∈ {0, 1}. Since A has a 0, there is row j in A of the form 1q0(−1)n−q−1.

Let b and c be row j in B and C, respectively. Note that BqACn−q−1 is m con-

secutive rows of M2 obtained by applying the morphism to 1q0(−1)n−q−1. Then,

bq1q0(−1)n−q−1cn−q−1 is row j in M2(A,B,C) and it must be of the form 1r0s(−1)t

for some r, s, t ≥ 0. So, we obtain b = 1n and cn = (−1)n and 1nq+q0(−1)n
2−nq−q−1

is a row of M2(A,B,C). Note that BqCn−q is m consecutive rows of M2 obtained

by applying the morphism to 1q(−1)n−q, and 1nq(−1)n(n−q) is row j in BqCn−q.

Since 1nq+q0(−1)n
2−nq−q−1 and 1nq(−1)n(n−q) are rows in M2(A,B,C), the condi-

tions of Theorem 69 are not satisfied for M2(A,B,C). So, M2(A,B,C) is not

semi-transitive, which is a contradiction. By the same argument, we also obtain a

contradiction in the case of 1q−10(−1)n−q /∈ R(A). Hence 1q(−1)n−q cannot be a

row in A.

Suppose that 1p0(−1)n−p−1 is row i in A. By Theorem 69, we have that 1n and

(−1)n are not rows in M1(A,B,C). By Lemma 92, we have that 01n−1, 1n−10,

0(−1)n−1 and (−1)n−10 are not rows in M1(A,B,C). If there is a row in A of the

form 1u0(−1)n−u−1, where 1 ≤ u ≤ n − 2, by (5) in Lemma 91, we have p = u.
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Hence, we obtain

A =


1p 0 (−1)n−p−1

1p 0 (−1)n−p−1

... ... ...

1p 0 (−1)n−p−1


where 1 ≤ p < n− 2.

Let b and c be row j in B and C, respectively, for any 1 ≤ j ≤ m. Note that

BpACn−p−1 is m consecutive rows of M2 obtained by applying the morphism to

1p0(−1)n−p−1. Then, bp1p0(−1)n−p−1cn−p−1 is row j in M2(A,B,C) and it must

be of the form 1r0s(−1)t for some r, s, t ≥ 0. So, we obtain b = 1n and c = (−1)n.

Hence, we see that B and C are all 1 matrix and all (−1) matrix, respectively.

Assume that 1p0(−1)n−p−1 is not a row in A for any 1 ≤ p ≤ n − 2. That is,

every row in A is 01n−1, 1n−10, 1n, 0(−1)n−1, (−1)n−10 or (−1)n. By Lemma 91,

we need to consider the following two cases.

Case 1: 01n−1, 0(−1)n−1 ∈ R(A) and 1n−10, (−1)n−10 /∈ R(A). That is, every row

in A is 01n−1, 1n, 0(−1)n−1 or (−1)n. Suppose that 01n−1 is a row in A. Then,

ABn−1 is m consecutive rows in M2(A,B,C). Let row i in B be b. Consider the

following subcases:

• If row i in A is 01n−1, then 01n−1bn−1 is a row in M2(A,B,C). Since b ̸= 0n,

we have b = 1n.

• If row i in A is 1n, then 1nbn−1 is a row in M2(A,B,C). Since b ̸= 0n, we

have b = 1n.

• If row i in A is 0(−1)n−1, then 0(−1)n−1bn−1 is a row in M2(A,B,C). Since

b ̸= 0n, we have b = (−1)n.
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• If row i in A is (−1)n, then (−1)nbn−1 is a row in M2(A,B,C). Since b ̸= 0n,

we have b = (−1)n.

Suppose that 0(−1)n−1 is a row in A. Then, ACn−1 is m consecutive rows in

M2(A,B,C). Let row i in C be c. Consider the following subcases:

• If row i in A is 01n−1, then 0(−1)n−1cn−1 is a row in M2(A,B,C). Since

c ̸= 0n, we have c = 1n.

• If row i in A is 1n, then 1ncn−1 is a row in M2(A,B,C). Since c ̸= 0n, we

have c = 1n.

• If row i in A is 0(−1)n−1, then 0(−1)n−1cn−1 is a row in M2(A,B,C). Since

c ̸= 0n, we have c = (−1)n.

• If row i in A is (−1)n, then (−1)ncn−1 is a row in M2(A,B,C). Since c ̸= 0n,

we have c = (−1)n.

Thus, we see that (A,B,C) is left-0-invariant.

Case 2: 1n−10, (−1)n−10 ∈ R(A) and 01n−1, 0(−1)n−1 /∈ R(A). With the same

way of the case 1, we can prove that (A,B,C) is right-0-invariant.

Thus, “⇒” has been proved. Lemma 96 gives us the converse.

3.3 Concluding remarks

In this chapter, we fully classified semi-transitivity of infinite families of directed

split graphs generated by iterations of morphisms in the cases when the matrix A
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has a 0. This research is a first step towards a classification of semi-transitive dir-

ected graphs in terms of positions of 0s and 1s (and (−1)s in the lower-triangular

case) in the adjacency matrices. An application of such a classification could be in

finding more efficient algorithms to recognize semi-transitivity of a directed graph,

which is a problem solvable in polynomial time [KL15]. More importantly, a clas-

sification of semi-transitive directed graphs via adjacency matrices may lead to a

better understanding of which (undirected) graphs admit semi-transitive orienta-

tions; this is an NP-complete problem [Kit17, KL15]. Should the general problem

resist attempts to solve it, one could shift their attention to classification of semi-

transitivity of naturally defined (infinite) families of directed graphs. Such a shift

should allow discovering new methods to deal with semi-transitivity of oriented

graphs, and hence bring us closer to solving the general problem.

For yet another direction of research, note that Definition 77 of the index of

semi-transitivity IST(A,B,C) makes sense in many situations when A has no 0’s.

For example, if A, B and C contain only 1’s, we still can apply Definition 77 to

see that IST(A,B,C) = ∞. On the other hand, Definition 77 does not work, for

example, in the case when A is any matrix without 0’s while B and C contain

only 0’s, as the infinite graph Go(A,B,C) is then not well-defined. Indeed, in the

later case we see that Gi
o(A,B,C) is not an induced subgraph of Gi+1

o (A,B,C)

while Gi
o(A,B,C) is an induced subgraph of Gi+2

o (A,B,C) for any i ≥ 0, so that

we have two infinite chains of induced subgraphs leading to two different infinite

graphs as the limits (one of which is with no edges between the clique and the

independent set). For another example, letting A be an all one matrix, B be an

all (−1) matrix, and C be an all zero matrix, we witness the situation of three

infinite chains of induced subgraphs with three infinite graphs as the limits.
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In any case, the problem we solved in this chapter can be extended to the

case of matrices A with no 0’s in the situations when the limiting infinite graph

is uniquely defined, and the goal then is to classify such triples (A,B,C) with

IST(A,B,C) = ∞. Of course, extra care should be taken about Definition 37 as

it still may not work. For example, A without 0’s can easily be chosen so that

G1
0(A,B,C) has directed cycles and thus is not semi-transitive, while then choosing

B and C be all one matrices, we see that Gk
0(A,B,C) is semi-transitive for k > 1,

so that the limiting graph is also semi-transitive and it is natural to assume that

IST(A,B,C) = ∞, while by Definition 37, IST(A,B,C) = 1. However, natural

adjustments to Definition 37 could be introduced. For example, we can define

IST(A,B,C) := ∞ if there exists a natural number k such that Gi
o(A,B,C) is

semi-transitive for every i ≥ k.
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Part II

Encoding Labelled p-Riordan

Graphs by Words and

Pattern-avoiding Permutations
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Chapter 4

Encoding Labelled p-Riordan

Graphs by Words and

Pattern-avoiding Permutations

This chapter, based on [IJK21], presents encoding p-Riordan graphs by p-Riordan

words. Then we consider encoding Riordan graphs by pattern-avoiding permuta-

tions. After that, we encode oriented Riordan graphs by balanced words over the

alphabet {0, 1, 2}, and provide, as a bi-product, a proof of a known enumerative

result related to the formula (1.4).

4.1 Encoding p-Riordan graphs by p-Riordan

words

Firstly, we define the following set of words that we call p-Riordan words because

they will be proved by us in this section to be in 1-to-1 correspondence with p-
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Riordan graphs.

Definition 98. A p-Riordan word w1w2 · · ·wn, n ≥ 1, is a word over the alphabet

A(p) = {ai,j : 0 ≤ i, j ≤ p− 1} such that either it is a0,0a0,0 · · · a0,0 or there exist i

and b, 1 ≤ i ≤ n, 1 ≤ b ≤ p− 1, such that the prefix w1 · · ·wi = a0,0a0,0 · · · a0,0ab,0.

By definition, the empty word ε is a p-Riordan word of length 0. The set of

p-Riordan words of length n is denoted by W(p)
n . For example, letting a = a0,0,

b = a1,0, c = a0,1 and d = a1,1, then

W(2)
3 = {aaa, aab, aba, abb, abc, abd, baa, bab, bac, bad, bba, bbb, bbc, bbd, bca,

bcb, bcc, bcd, bda, bdb, bdc, bdd}.

Recall that RG(p)
n is set of p-Riordan graphs with n vertices, and W(p)

n is the

set of p-Riordan words of length n (which is defined in Definition 98). In this

section, we will present a bijective map ξ : RG(p)
n+1 → W (p)

n for n ≥ 0 and discuss

its applications in the case of Riordan graphs (the case p = 2).

Theorem 99. There is bijection between RG(p)
n+1 and W(p)

n .

Proof. By definition, a p-Riordan graph G = G
(p)
n (g, f) of order n can be de-

termined by the coefficients gb∗ , gb∗+1, . . . , gn−2, f1, f2, . . . , fn−b∗−2 where b∗ is the

smallest i ∈ {0, 1, . . . , n − 2} such that gi ̸= 0; if no such i exists then G is an

empty graph (a graph with no edges). Thus, G(p)
n (g, f) = G

(p)
n (g̃, f̃) where g̃ and

f̃ are the following polynomials:

• g̃ :=
n−2∑
i=b∗

git
i and f̃ :=

n−2−b∗∑
i=1

fit
i if b∗ is defined;

• g̃ = f̃ = 0 if b∗ does not exist.
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If s(p)n = |W(p)
n | then s

(p)
1 = p and

s
(p)
n+1 = p2(s(p)n − 1) + p. (4.1)

Indeed, W(p)
1 = {a0,i : 0 ≤ i ≤ p− 1} and to generate all elements in W(p)

n+1 we can

extend every word in W(p)
n different from a0,0 · · · a0,0 by any letter in A(p) (which

explains the term p2(s
(p)
n − 1)), and the remaining p elements in W(p)

n+1 are given

by {a0,0 · · · a0,0ab,0 : 0 ≤ b ≤ p− 1}.

We note that r(p)n satisfies the same recursion as (4.1), namely,

r
(p)
n+1 = p2(r(p)n − 1) + p (4.2)

with the initial condition r
(p)
2 = p, which provides an alternative proof of (1.3).

Indeed, the initial condition counts the p graphs on 2 vertices given by g̃0 = i,

0 ≤ i ≤ p− 1. Also, to generate all graphs in RG(p)
n+1, we can take any non-empty

graph in RG(p)
n given by g̃ ̸= 0 and f̃ , and choose independently gn−1 and fn−b∗−1 in

{0, 1, . . . , p− 1} (b∗ is defined). This explains the term “p2(r(p)n − 1)” in (4.2). The

only uncounted graphs in RG(p)
n+1 are those given by g̃ = itn−1 where 0 ≤ i ≤ p−1,

which explains the term “+p”.

For the only graph on one vertex, ξ(G(p)
1 (0, 0)) = ε, and for n ≥ 2, ξ(G(p)

n (g, f))

is defined by

ag0,fn−2ag1,fn−3 · · · agb∗−1,fn−3−b∗agb∗ ,f0agb∗+1,f1agb∗+2,f2 · · · agn−2,fn−2−b∗ =

a0,0a0,0 · · · a0,0a1,0agb∗+1,f1agb∗+2,f2 · · · agn−2,fn−2−b∗

where gi = [ti]g̃ and fj = [tj]f̃ . The fact that ξ is well-defined and bijective

essentially follows from our proofs of (4.1) and (4.2).

The bijection ξ given in Theorem 99 allows us to encode by words three classes

of Riordan graphs (the case p = 2). As above, we let W(2)
n be words over {a, b, c, d},
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where a = a0,0, b = a1,0, c = a0,1 and d = a1,1, Justifications of our encodings are

straightforward from the properties of ξ.

The class (1 + f, f). In this case, g = 1 + f . Since [t0]g = 1 and [ti]g = [ti]f for

each i ∈ [n−2], we have that b∗ = 0 and the words in W(2)
n corresponding to these

graphs are those of the form bx1x2 · · ·xn−1 where xi ∈ {a, d}.

Proper Riordan graphs. For a proper Riordan graph g0 = f1 = 1, so b∗ = 0

and the words in W(2)
n corresponding to these graphs are those beginning either

with bc or with bd for n ≥ 2, and W(2)
1 = {b}.

Riordan graphs of the Appel type. For these graphs f = t, and thus the

words in W(2)
n corresponding to these graphs are of the form aa · · · a, aa · · · ab and

aa · · · abxw for x ∈ {c, d} and w a word over the alphabet {a, b}.

4.2 Encoding Riordan graphs by

pattern-avoiding permutations

The sequence (rn)n≥0 counting Riordan graphs and given by (1.2) has various

combinatorial interpretations recorded in A047849 in the On-Line Encyclopedia

of Integer Sequences (OEIS) [Slo]. Two of these interpretations are related to

pattern-avoiding permutations:

(I1) rn counts permutations in S2n(123, 132) with two fixed points; the set of such

permutations is denoted by P2n; see [MR02].
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Figure 4.1: The structure of a permutation in P2n

(I2) rn counts permutations in Sn(4321, 4123), or in Sn(4321, 3412), or in Sn(4123, 3214),

or in Sn(4123, 2143); see [KS03].

In this section, we explain combinatorially a connection between Riordan graphs

and (I1). Moreover, we will show which permutations, under the bijection we will

construct, correspond to Riordan graphs of the Appell type, of the Bell type (in-

cluding the Pascal graph), of the derivative type, as well as of the types given by

(1+f, f) and (g, 0) (a star graph with a number of isolated vertices), and to proper

Riordan graphs. We leave explaining the second bullet point combinatorially as

an open problem.

Theorem 100. There is a bijection between RGn and P2n.

Proof. Let π = p1p2 · · · p2n and a and b be the two fixed points in π where 1 ≤

a < b ≤ 2n. Since π avoids the patterns 123 and 132, the remaining 2n − 2

elements can only be placed in the areas A, B, C and D in Figure 4.1, where we

show π schematically as a permutation diagram. In addition, the elements in B

and C must be in decreasing order, while A (resp., D) avoids 123 and 132, and is
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independent from the rest of π in the sense that no occurrence of 123 or 132 can

start in A (resp., D) and end elsewhere. Since the number of elements in B and

C is b− a− 1, we obtain that the number of elements in D, which is the same as

the number of elements in A, is

2n− b = a− 1− (b− a− 1) ⇒ a = n.

Thus, B and C have the same number of elements b− n− 1, and π satisfies

• p1p2 · · · p2n−b and pb+1pb+2 · · · p2n avoid the patterns 123 and 132;

• p2n−b+i = b− i for each i = 1, 2, . . . , 2b− 2n− 1.

The desired map ϕ : RGn → P2n, is defined as follows where ϕ(Gn(g, f)) =

p1p2 · · · p2n and the function ψ is defined in Section 1.6:

• pn = n and pb = b where b = b∗ + n+ 1 and b∗ = min{i | [ti]g = 1} if g ̸= 0

and b = 2n if g = 0;

• p2n−b+i = b− i for each i ∈ [2b− 2n− 1];

• ψ(gb∗+1gb∗+2 · · · gn−2) = (p1−b) · · · (p2n−b−b) so that to obtain p1 · · · p2n−b we

apply ψ to gb∗+1gb∗+2 · · · gn−2 and then increase each element in the obtained

permutation by b (lengths are proper here since b = b∗ + n+ 1);

• ψ(f1f2 · · · f2n−b−1) = pb+1 · · · p2n.

It is not difficult to see that ϕ is well-defined and injective. Thus, since |RGn| =

|P2n|, ϕ is bijective. For example, ϕ(G5(t+t
3, t2)) = (10)896547312 and ϕ(G5(t, t+

t2)) = 98(10)6547321. In particular, in both cases n = 5, 2n = 10 and b∗ = 1 so

that b = 7.
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The bijection ϕ given in Theorem 100 allows us to describe subclasses of Ri-

ordan graphs in terms of pattern-avoiding permutations. In our description we

refer to A and D to be the parts of a permutation π = p1 · · · p2n schematically

given in Figure 4.1. That is, A = p1 · · · p2n−b and D = pb+1 · · · p2n. Justifica-

tions of our descriptions are usually straightforward from the properties of ϕ, but

in some places we still provide various clarifications. In what follows recall that

b = b∗ + n+ 1.

The class (1 + f, f). In this case, g = 1 + f . Since [t0]g = 1 and [ti]g = [ti]f for

each i ∈ [n − 2], we have that b∗ = 0 and the permutations in P2n corresponding

to these graphs have the fixed points n and n+ 1, and red(A) = D.

Proper Riordan graphs. For a proper Riordan graph g0 = f1 = 1, so b∗ = 0

and the permutations in P2n corresponding to these graphs have two fixed points

n and n+ 1, and the minimal element in D is in the last place.

Riordan graphs of the Appel type. For these graphs f = t and thus the

permutations in P2n describing them are those for which D = (2n − b − 1)(2n −

b− 2) · · · 32(2n− b)1.

Riordan graphs of the Bell type. Such graphs are given by (g, tg) where either

g = 0 or g0 = g1 = · · · = gb∗−1 = 0 and gb∗ = 1 for b∗ ≥ 0. In the former case, we

deal with the empty graph corresponding to (2n−1)(2n−2) · · · 1(2n). For the latter

case, since f̃ = g0t+g1t
2+ · · ·+gn−2−b∗t

n−1−b∗ , we can conclude that permutations

in P2n corresponding to the Riordan graphs of the Bell type are those having the
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b∗ + 1 rightmost elements of D forming the permutation b∗(b∗ − 1) · · · 21(b∗ + 1).

We note that the Pascal graph
(

1
1−z

, z
1−z

)
is the only graph of the Bell type that

belongs to the class (1 + f, f). For this graph b∗ = 0, b = n+1, and the permuta-

tion in P2n corresponding to it is (2n)(2n−1) · · · (n+2)n(n+1)(n−1)(n−2) · · · 1.

Riordan graphs of the derivative type. This class of graphs is of the form

(f ′, f) so g = f ′ = f1+f3t
2+f5t

4+ · · · . Thus, permutations corresponding to such

graphs can be described algorithmically by imposing the following restrictions on

A: in implementing the bijection ψ every even step must place the current element

into the left out of two valid slots. Thus, if this rule is not violated, the obtained

permutation corresponds to a Riordan graph of the derivative type.

4.3 Encoding oriented Riordan graphs by

balanced words over {0, 1, 2}

The sequence r̃n counting oriented Riordan graphs RG(3)
n and given by (1.4) is

A054879 in [Slo], one of whose interpretations is the number of words of length

2n on alphabet {0, 1, 2} with an even number (possibly zero) of each letter. We

call these words balanced words and denote the respective set by Bn. Also, let

bn := |Bn|. The words in Bn are clearly in 1-to-1 correspondence with closed walks

of length 2n along the edges of the 3-cube (cube) starting at the origin. Such walks

also mentioned in A054879. The correspondence is given by letting a walk take

the i-th step in direction x, 1 ≤ x ≤ 3 (that is, swap the i-th coordinate from 0 to

1, or vice versa) in the case if the i-th letter in the word is x− 1. The formula for
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bn (the same as (1.4)) is given in A054879 in [Slo], but its derivation would involve

simplifying a more general result in [Rey]

1

2n

n∑
j=0

(
n

j

)
(n− 2j)r

after placing n = 3 there. As a bi-product, in this section we obtain an alternative

justification of (1.4) be valid for bn after explaining combinatorially the recursion

(4.4).

To build a recursive encoding in question, we will use an alternative, inductive

way to prove formula (1.4) via first explaining combinatorially the recursion

r̃n+1 = 3r̃n + 6(r̃n − 1), (4.3)

which is a particular case of p = 3 in (4.2) proved above. Next, we explain

bn+1 = 3bn + 6(bn − 1), (4.4)

which, again, will provide an alternative proof for the formula (1.4) for bn given in

A054879.

Explanation of (4.3). Each graph Gn+1(g, f) in RG(3)
n+1 either has

• fn−b∗−1 = 0 (in the case b∗ is not defined we can assume f̃ = 0), and there

are 3r̃n ways to select such G , where “3” is the number of choices for gn−1,

or

• fn−b∗−1 ∈ {1, 2} and g0g1 . . . gn−2 ̸= 00 · · · 0, so that there are 3 choices for

gn−1 and in total 6(bn − 1) ways to select such a G.

This completes the proof of (4.3).
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Explanation of (4.4). We note that any balanced word either ends with xx or

with xy, x ̸= y, x, y ∈ {0, 1, 2}. Clearly, there are 3bn words in Bn+1 ending with

00 or 11 or 22. Next, we prove that there are 6(bn − 1) words in Bn+1 ending with

xy, x ̸= y. To generate any such word we use the function hx,y that

• takes any word w in Bn different from zz · · · z for z ̸= x, y, then

• replaces the leftmost occurrence of an element in {x, y} in w by the opposite

from the same set, and

• attaches xy to the obtained word.

For example, for x = 0 and y = 1, h0,1(22012120) = 2211212001. Note that hx,y is

well-defined because its outcome is a balanced word.

Next note that hx,y is injective. Indeed, different words, say w1 and w2, would

either get different endings, and thus will result in different outcomes, or they will

have the same ending. In the later case, if such an ending is xx then we clearly

have different outcomes. Otherwise, the ending is xy for x ̸= y. Consider the

smallest i ≥ 1 such that the i-th element in w1 is different from the i-th element

in w2 (such an i exists). Thus, w1 = x1x2 · · ·xi−1a · · · and w2 = x1x2 · · · xi−1b · · ·

and a ̸= b. If none of the a and b would be changed by hx,y, the outcome words

are different. On the other hand if, without loss of generality a will be changed,

then x1x2 · · ·xi−1 = zz · · · z for z ̸= x, y, and thus either

• b = z in which case we obtain hx,y(w1) ̸= hx,y(w2) as a ̸= z, or

• b in w2 will be changed as well, so that hx,y(w1) and hx,y(w2) differ in position

i.

So, in either case, hx,y(w1) ̸= hx,y(w2).
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We finally prove surjectivity of hx,y that completes our proof of (4.4). Given

a word w1w2 · · ·w2n+2 ∈ Bn+1 we replace the leftmost occurrence of a letter in

{w2n+1w2n+2} in w1w2 · · ·w2n by the opposite from the same set so that the res-

ulting word belongs to Bn. For example, h−1
x,y(0021210202) = 20212102.

Theorem 101. There is a bijection between RG(3)
n+1 and Bn.

Proof. We describe recursively a bijective map η : RG(3)
n+1 → Bn based on our

proofs of relations (4.3) and (4.4) with the base cases η(G2(0, 0)) = 00, η(G2(1, 0)) =

11 and η(G2(2, 0)) = 22.

Suppose that η is already defined for RG(3)
n , n ≥ 2, and η(Gn(g, f)) = w1w2 · · ·w2n−2.

Moreover, we make the following assumptions, which work for the base case and

will work for n+ 1 as well:

• η(Gn(0, 0)) = 00 · · · 0;

• η(Gn(1 + t+ · · ·+ tn−2, 0)) = 11 · · · 1;

• η(Gn(2 + 2t+ · · ·+ 2tn−2, 0)) = 22 · · · 2.

Then, adding gn−1 and fn−b∗−1 into consideration results in a graph G ∈ RG(3)
n+1

obtained from Gn(g, f) by adding one vertex, and we define η(G) by the following

rules:

• If fn−b∗−1 = 0 or f̃ = 0 (in the case b∗ is not defined) then η(G) =

w1w2 · · ·w2n−2gn−1gn−1.

• If fn−b∗−1 = 1, then we can take any Gn(g, f) except for the one with g̃ = 0

corresponding to w1w2 · · ·w2n−2 = 00 · · · 0, and consider the following sub-

cases:
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– if gn−1 = 0 then η(G) = h(w1w2 · · ·w2n−2)01 if w1w2 · · ·w2n−2 ̸= 22 · · · 2

and η(G) = h(00 · · · 0)01 = 100 · · · 01 otherwise; note that this rule is

injective, well-defined for any Gn(g, f) different from an empty graph,

and covers all words in Bn ending with 01.

– if gn−1 = 1 then η(G) = h(w1w2 · · ·w2n−2)12, which is well-defined since

w1w2 · · ·w2n−2 ̸= 00 · · · 0, injective, and covers all words in Bn ending

with 12.

– if gn−1 = 2 then η(G) = h(w1w2 · · ·w2n−2)02 if w1w2 · · ·w2n−2 ̸= 11 · · · 1

and η(G) = h(00 · · · 0)02 = 200 · · · 02 otherwise; note that this rule is

injective, well-defined for any Gn(g, f) different from an empty graph,

and covers all words in Bn ending with 02.

• If fn−b∗−1 = 2, then we can take any Gn(g, f) except for the one with g̃ = 0

corresponding to w1w2 · · ·w2n−2 = 00 · · · 0, and consider the following sub-

cases:

– if gn−1 = 0 then η(G) = h(w1w2 · · ·w2n−2)10 if w1w2 · · ·w2n−2 ̸= 22 · · · 2

and η(G) = h(00 · · · 0)10 = 100 · · · 010 otherwise; note that this rule is

injective, well-defined for any Gn(g, f) different from an empty graph,

and covers all words in Bn ending with 10.

– if gn−1 = 1 then η(G) = h(w1w2 · · ·w2n−2)21, which is well-defined since

w1w2 · · ·w2n−2 ̸= 00 · · · 0, injective, and covers all words in Bn ending

with 21.

– if gn−1 = 2 then η(G) = h(w1w2 · · ·w2n−2)20 if w1w2 · · ·w2n−2 ̸= 11 · · · 1

and η(G) = h(00 · · · 0)20 = 200 · · · 020 otherwise; note that this rule is
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injective, well-defined for any Gn(g, f) different from an empty graph,

and covers all words in Bn ending with 020.

The fact that η is well-defined and bijective follows from our remarks above. For

example, w = η(G5(1 + 2t2 + t3, t2)) can be recursively calculated from η(G4(1 +

2t2 + t3, t2)) and gn−1 = g4 = 0 and fn−b∗−1 = f5−1−1 = f3 = 0 so that w will end

with 00. In turn, w′ = η(G4(1 + 2t2 + t3, t2)) can be recursively calculated from

η(G3(1 + 2t2 + t3, t2)) and g3 = 1 and f2 = 1, so that w′ will end with 12. And so

on. One can check that w = 2100221200.

4.4 Concluding remarks

This chapter provides a convenient encoding of p-Riordan graphs in terms of p-

Riordan words, and explains combinatorially some links between (oriented) Ri-

ordan graphs and balanced words (equivalently, certain closed walks in a cube)

and pattern-avoiding permutations.

We leave it as an open question to explain combinatorially that the sequence

(rn)n≥0 counting Riordan graphs and given by (1.2) also counts permutations in

Sn(4321, 4123), or in Sn(4321, 3412), or in Sn(4123, 3214), or in Sn(4123, 2143)

that were enumerated in [KS03]; also see A047849 in [Slo]. A natural approach

would be to use 2-Riordan words that are in bijection with Riordan graphs to

establish a correspondence in question. However, enumeration of pattern-avoiding

permutations in [KS03] is rather involved (it uses the notion of an active site) and

e.g. cannot be translated that easily into recursion (4.1) for p = 2.
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