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Abstract 

This thesis defines new developments in predictive restricted structure control 

for industrial applications. It begins by describing the augmented system for 

both state-space and polynomial model descriptions. These descriptions can 

contain the plant model, the disturbance model, and any additional essential 

model subsystems. It then describes the predictive restricted structure control 

solution for both linear and nonlinear systems in state-space form. The solution 

utilizes the recent development in nonlinear predictive generalized minimum 

variance by adding a general operator subsystem that defines nonlinear system 

along with the linear or the linear parameter varying output subsystem.  

The next contribution is the polynomial predictive restricted structure control 

algorithm for polynomial linear parameter varying model that may result from 

nonlinear equations or experimental data-driven model identification. This 

algorithm utilizes the generalised predictive control method to approximate 

and control nonlinear systems in the linear parameter varying system input-

output transfer operator matrices. The solution is simple in unconstrained and 

constrained optimization solutions and required a small computing capacity.  

Four examples have been chosen to test the algorithms for different nonlinear 

characteristics. In the first three examples, state-space versions of the algorithm 

for the linear, the quasi-linear parameter varying and the state-dependent were 

employed to control the quadruple tank process, electronic throttle body, and 

the continuous stirred tank reactors. In the last example, the polynomial linear 

parameter varying restricted structure controller is used to control automotive 

variable camshaft timing system.  
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Chapter 1 Introduction 

Classical PID control is very useful in the industry. It is applied successfully in 

various manufacturing sectors and is the most applied controller in industry. 

The survey in [1] for the industrial controllers' position has estimated that 97% 

of controllers used in the typical chemical plant are PID. The PID controller is 

generally used in its basic structure for ease of implementation in both the 

hardware and software. The controller structure simplicity and effectiveness 

are essential properties in manufacturing. This structure-property occasionally 

is more important than the adoption of other advanced control approaches.  

The PID controller, even its digital version, is founded on age-old concepts and 

determined by the restrictions brought down by technologies of the time when 

it was implemented [2]. Therefore, the PID controller may be suitable for some 

enhancements. The Ziegler-Nichols PID tuning methods and Smith predictor 

concept were developed in the late 1950s [3]–[6]. Yet, if the dynamics of the 

systems are slightly complex, then PID control may deliver weak performance, 

and a higher-order controller may be necessary to deal with this and also the 

rigid multivariable system dynamics. This case is similar to when the PID 

controller performance drops for plants with non-minimum phase behaviour. A 

predictive feature is sometimes needed for the PID controller to cope with non-

minimum phase and long dead-time behaviours [7]. 
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The PID controller's derivative part can be deemed the predictive part, but this 

prediction property is not suitable once treating non-minimum phase systems. 

Hence, the PI control part is preserved, and prediction is carried out by 

implementing a process internal model simulation within the controller [8], 

where the IMC technique can be regarded as an enhancement of the Smith 

predictor [9], [10]. This controller expansion seems reasonable since it provides 

more design freedom by extending the concept of PID control. 

For example, one idea for a simple scalar problem is to include other frequency-

domain based terms in a PID structure as a double integrator or a time constant 

term. Of course, this is somewhat arbitrary, and a better scientific basis should 

be proposed to accomplish this type of enhancement. Another suggestion is to 

include certain selected functions that, in some way, can cover frequency 

responses ranges that might be required. When the functions selection method 

is considered, the ideas of Richalet related to PFC come to mind [11], [12], and 

the idea of utilizing functions as a ground for projecting the control signal or 

the manipulated variable is used in [13]. 

The controller retains the usual feedback structure form in this thesis and will 

be specified in terms of frequency-sensitive functions multiplied by gains that 

need to be calculated. When determining how to calculate the unknown gain 

vectors, it may be remembered that GPC is also very successful in the industry 

in its various MBPC forms.  

Therefore, it is proposed that the gains be computed to minimize a GPC style 

cost-function so that optimal control is achieved but using the controller of RS 

introduced in [14]. This approach is not the same as the control strategy of 

Richalet that introduced the functions differently [11]. However, PFC does, of 

course, have its advantages, demonstrated in industry, such as simplicity [15]. 
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The proposed controller will, therefore, have a traditional feedback control 

structure with functions that could, for instance, match the PID type terms. The 

background controller is very likely to be of higher-order to gain improved 

performance and to be able to handle multivariable systems in a more natural 

manner. The gains will be computed instantly and are time-varying in receding-

horizon optimal control spirit. However, most of the structure of the controller 

will be fixed as in classical control so that the output of any integral terms 

offsetting disturbances can, for example, be monitored.  

Several efforts have, of course, been made to blend both the PID benefits and 

predictive control. In [16], the design in a rather unusual method modified the 

GPC performance index by incorporating PID terms. One of the advantages of 

using the GPC method to computes the controller gains is to consider future 

variation in reference signal or any feedforward disturbance variations. As in 

predictive control, the system model will be needed to predict forward, and 

this, of course, means that the method does require system model information. 

Either state-space or polynomial based models could be used, therefore in the 

following Chapters, both the state-space and the polynomial descriptions are 

given. 

1.1 Predictive PID Design 

Many researchers adopted advanced control methods as GPC to reproduce PID 

controllers or other techniques to restrict the optimal controllers' structure to 

relate to a PID controller. The work in [10] brought in a PID controller based on 

the IMC concept for a first-order process, and the work in [17] broadened IMC 

based PID controller to address the second-order process.  
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The primary restriction of these designs was only on tuning methods which 

were calculated for systems without delay. [18], [19] shows that IMC conduct 

as PID controllers for most models in industrial applications. [20] employed 

least-squares algorithms to calculate the nearest comparable PID controller to an 

IMC design using the frequency response method. But, the design was weak 

when implemented on unstable or systems with time delay. 

 

Figure 1-1: Predictive PID control methods 

Three MBPC methods have been adopted for predictive PID control, as shown 

in Figure 1-1, and can be summarised as follow: 

Restricted Models Methods: This approach applies the MBPC methodology 

but brings reductions on the plant model, and then the MPC law appears as 

PID control law. The approach is built based on the work introduced in [21]. 

Control Signal Matching Methods: This technique also employs complete 

MBPC for the solution with an altered PID control law with one coefficient set 

to produce future control increments. The PID controller gains are then selected 

to provide a tight match among predictive PID and MPC signals [22]. 

Restricted Controllers Methods: In this approach, the PID controller structure 

is chosen, and gains are determined to minimize a GPC cost. It works for any 

order or MIMO plant, so there is no need to assume a low-order plant or 

approximate the control signal [14].  
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RS control's research area is essential and up-and-coming since it acts as a bridge 

between modern control theory and classical methods. This thesis describes the 

work commenced to consider the possibility of progressing the RS control 

method toward multivariable and nonlinear systems since most systems are 

inherently nonlinear and always of interest to engineers and mathematicians. 

1.2 Optimal Nonlinear Control 

The MV control is an optimal control strategy established in [23], with the 

objective to minimize the k-steps-ahead output variance of the stochastic system 

given the information available in the current time instant, and the optimal cost-

function involves the conditional expectation of the squared output of the 

system to obtain its variance. For the optimal control calculation, the MV is a 

model-based optimal scheme that uses the CARMA model to generate k-steps-

ahead predictions of the process using the Diophantine equation [24]. The MV 

scheme inherently provides dead-time compensation and has properly lowered 

process output variability while considering measurable disturbances within 

the optimal control solution, handling the MIMO systems, and showing slight 

computational complexity. However, it is inappropriate for non-minimum 

phase systems where the design results in excessive control action and is shown 

to deliver a sub-optimal solution in the case of saturation constraints.  

The initial idea of the GMV control was to develop controllers using a blend of 

optimal control theory commenced on MV control and the well-known IMC 

technique of [25] and inspired by the famous Smith predictor structures. The 

GMV design [26] is an extension that includes the weighted control action into 

the initial MV cost-function, and this provides better results in reducing control 
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action variability. This upgrade aided the GMV in managing non-minimum 

phase systems, although it has exhibited poor stability behaviour for some non-

minimum phase systems [27].  

The NGMV controller aims to minimize a very similar cost-function to the GMV. 

The process model utilized to produce these signals within the cost-function can 

contain a general nonlinear operator, as described in [25]. The idea is that the 

plant model can be decomposed to delay terms set, a primarily stable general 

nonlinear subsystem, and a linear subsystem characterized in a linear state-

space or polynomial matrix descriptions, which can contain unstable modes. 

The system output signal in the cost-function is generalized to a penalty on the 

error signal, and stabilizing control law is obtained by selecting a set of 

weightings. Compared to the error weighting, the control weighting can be 

nonlinear, which adds to nonlinear design flexibility. 

Although the implemented one-step-ahead optimal control law in the GMV 

scheme may produce an internally stabilizing control law, that still not certain 

for particular control weighting selections, and again the controller fails for 

unstable and non-minimum phase systems, mainly for systems with badly 

identified delays. Further improvement was produced by [28] and [29] has led 

to the GPC, which has come to be one of the very admired MPC methods in 

industry and been effectively applied in many industrial sectors [30] due to its 

great performance and specific degree of robustness. The GPC was initially 

derived in a polynomial form. The state-space version was then obtained by [31], 

where the GPC optimal quadratic cost-function is solved within a specified 

prediction horizon based on the receding-horizon principle. 

The NGPC builds upon the MPC idea well applied in the industry with proven 

performance and profitability advances. The predictive controller benefits by 

utilizing future reference signal or setpoint information to minimise a multi-step 
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cost-function. This method becomes very useful in dealing with processes that 

comprise time-varying parameters, long dead-times or multivariable interactions. 

This controller utilizes nonlinear models to generate predictions and solve its 

optimal cost-function considering nonlinear input, output and state constraints. 

Therefore, the use of  NGPC usually involves a real-time open-loop optimal 

control problem solution. The model fidelity and the states' estimation obtained 

through the Kalman filter are crucial aspects and necessary for generating the 

predictions. In this regard, the LPV approach can often improve system 

approximation and allow a broader range of systems to be adopted by the 

algorithm. 

The NPGMV development was based on the GPC structure and shared some of 

the GPC algorithms characteristics. It shares similar stability assumptions and 

uses the same subsystem decomposition with the primary NGMV controller. 

Being a predictive control approach, it differs in that it utilizes a multi-step cost-

function that includes future tracking error and control signal weightings in a 

GPC problem form [32]. Both the NGMV and NGPC controllers are special cases 

of NPGMV, and if the system is linear and the control cost term tends to zero, 

then the controller returns to those for a GPC controller.  

The adaptation of NGPC and NPGMV to LPV systems has a very similar plant 

description. For time-varying systems and via proper subsystem representation, 

the goal is to provide a model-based controller with a fixed-structure. This system 

description decomposed in a general operator subsystem that can represent the 

hard nonlinearities and an LPV subsystem to capture other dynamics. 
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1.3 RS Control 

This approach is different from restricted models and control signal matching 

methods which may be either unrealistic or involve approximations. Although 

order reduction of plant model became common lately, reduced-order models 

designed controllers can result in unstable closed-loop if utilized for the larger-

scale system [33]. In RS control, the PID structure is often chosen, and the gains 

are determined to minimize a GPC cost. It works for any order or MIMO plant, 

so it is not like restricted models methods, and hence there is no need to assume 

a low-order plant. The RS solution doesn't intend to get close to GPC unrestricted 

control solution because approximating a control signal is not reliable or robust 

since it neglects some closed-loop properties [34]. The RS controller generates the 

best gains for the PID chosen in terms of the cost-function selected, and this can 

be any predictive type cost-function and not only GPC. Performance comparable 

to the GPC controller was developed by an optimal predictive PID control 

algorithm design [14] with a single-DOF control structure. The target was to 

create PID controllers tuning method via an online optimization that can 

function as a conventional PID controller or multivariable GPC controller. The 

RS controller approach introduced here is linked to the solutions above in the 

specific situation in which the functions are PID motivated functions, and if the 

controller for a scalar system is more general like: 
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Then the results can apply in finding numerator and denominator coefficients 

instead of PID gains. However, the properties of the controller sought here are 

more related to extending the excellent properties of PID or classical control.  
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Since one of the strong motivating factors is that classical controllers of low-

order and particularly PID controllers show natural robustness features when 

there are significant nonlinearities and uncertainties in the system. In this work, 

the problem's predictive aspects provide an easy method of calculating 

controller gains. This method is useful due to the added complexity introduced 

when using a wider set of controller functions that possibly substantially 

extend the PID functions. 

Noting that the cost-function in [14] was also restricted to being of traditional 

GPC form, and in this case, the black-box input subsystem was not present. Thus, 

the control strategy explored in this thesis provides a framework with a very 

general system description that may employ a black-box model of the plant, and 

this can be practical for real applications where access to system information is 

limited for various reasons. The idea here is to formulate a RS controller to 

accommodate a wide class of nonlinear systems without undergoing major 

modifications within its core architecture for different system characteristics. 

To be practical, this controller should use a model of the process where this is 

available or represent the process using a black-box model when the physical 

structure is unknown, or even a polynomial LPV model results from an 

experimental data-driven LPV identification. The methods considered in this 

thesis are briefly described in the next sections. 

1.3.1 State-Space RS Control 

For this method, a predictive RS control solution is given to control discrete-time 

state-space MIMO systems. The plant model is represented by two subsystems 

of different types that offer modelling flexibility. The input subsystem includes 

an operator of a general linear form where no structural information is needed 
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or available except the subsystem's output can be calculated for a given input. 

The output subsystem is a state-space model that links the output to the input 

subsystem and can be linear, SD, LPV, or qLPV. The PWA system can also be 

turned into the equivalent SD system by inserting a custom logic state to 

describe the intersection's switching sections. 

The controller structure is given in RS form, which involves a selected linear 

transfer-functions set, and gains set obtained to minimise a GPC or NPGMV cost-

index. In the simplest case, the terms of the functions can be chosen as in the 

PID control. The linear version and the equivalent cost-index of the RS control 

are given in Chapter 4. The nonlinear RS control for LPV state-space systems and 

the extension for a subclass of HS are given in Chapter 5. 

1.3.2 Polynomial RS Control 

For this method, a predictive RS control solution is given for discrete-time 

MIMO systems. The system is characterised by an LPV subsystem that may be 

unstable and represented in polynomial matrix form. The pre-specified low-order 

RS controller is parameterised in terms of discrete transfer operators set chosen 

by the designer and a set of optimised parameters or gains. The controller 

within the feedback loop can have a general parameter varying form or just a 

PID. The predictive control multi-step cost-index minimised includes terms in 

the magnitude, gains rate of change, and other terms. The resulting simple RS 

controller is covered in Chapter 6 and has the control capabilities that only the 

long-range predictive control algorithm normally provides. 
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1.4 Research Goals and Objectives 

The main objectives as they evolved through this work can be summarised as: 

 Develop the predictive RS solutions group for different nonlinear 

systems classes defined in the state-space representation. 

 Develop the predictive RS solution for nonlinear systems defined in 

the LPV polynomial representation. 

 Demonstrate the benefits of the solutions on application examples 

chosen from process control and automotive type areas. Implement 

and test the applicability and performance of both linear and nonlinear 

predictive RS control algorithms in simulation. 

1.5 Thesis Contributions 

The contributions from this work can be outlined as follows: 

 Different structures were explored regarding the improvement of the 

RS algorithm's implementation and implemented successfully in the 

simulation. 

 The qLPV and PWA systems adaptation for the state-space RS algorithm 

was derived mathematically and implemented in simulation 

 The polynomial LPV adaptation for the polynomial RS algorithm was 

derived mathematically and implemented in simulation. 

 Four RS solutions for the linear, qLPV, PWA and polynomial LPV 

application were designed, and suggestion to enhance the robustness 

is outlined in Section 8.2. 
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1.6 Thesis Organization 

Chapter 1: Provides an introduction survey on predictive RS control methods 

and identifies the place for this work within this framework. 

Chapter 2: Introduces the augmented system description within the state-space 

framework and provides some of the algorithm's leading design aspects. 

Chapter 3: Introduces the augmented system description within a polynomial 

framework and provides some of the algorithm's leading design aspects. 

Chapter 4: Describes the linear RS algorithm's derivation for linear state-space 

and unstructured subsystems. Additionally, it gives suggestions to enhance its 

computational implementation aspects like execution speed. 

Chapter 5: Describes the nonlinear RS algorithm's derivation and its adaptation 

to LPV systems in the state-space framework. Moreover, a solution extension 

toward an HS class is provided, where the PWA system is converted into its 

equivalent SD system representation. 

Chapter 6: Defines the polynomial LPV RS algorithm's derivation for nonlinear 

systems represented in the LPV system input-output transfer operator matrices. 

Chapter 7: Implements and assesses the performance of the predictive version 

of the RS algorithm on four examples: the quadruple tank process, electronic 

throttle body, continuous stirred tank reactors and variable camshaft timing. 

Chapter 8: Provides a conclusion on predictive RS control methods and suggest 

some future work and recommendations. 

Appendix: Provides the augmented system description derivation and the 

Matlab and Simulink code developed for applications in Chapter 7. 
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Figure 1-2: Thesis flow overview 

The diagram in Figure 1-2 gives a brief overview of how the thesis flows. 
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Chapter 2 State-Space System 

Description 

This Chapter defines the system description for which the RS controllers have 

been developed. It begins with the linear state-space system description and 

then its nonlinear version. The state-space approach adaptation to NPGMV 

algorithm for state-space systems, introduced by [35], [36], is used as a basis for 

the method described in the following sections: 

Section 2.1: Introduction to state-space prediction model; vector-matrix notation; 

linear prediction equations; predictor-corrector Kalman filter. 

Section 2.2: Introduction to qLPV/SD subsystem models; state-space prediction 

models; vector-matrix notation; time-varying prediction equations; TVKF. 

The subsystems illustrated in Figure 2-1 contain their equivalent mathematical 

representations, which can vary depending on the problem, i.e., transfer-

functions, state-space models etc. For this work, both model descriptions are 

used. The input plant subsystem 1kW  is a general linear operator form where 

no structure is assumed. The mathematical representations of these various 

subsystems 0 1, , ,r d kW W W W  and cP  represent input weighting, disturbance, 

linear plant, plant input operator and error weighting subsystems, respectively, 

are described in the next section. 
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Figure 2-1: System description subsystems layout 

Input Weighting: 

 0( ) ( )r ry t W u t=  

Output Disturbance: 

 ( ) ( )d dy t W tξ=  

Plant Subsystem: 

 0 0 0( ) ( )y t W u t=  

Error Weighting: 

 ( ) ( )p ce t P e t=  

It is useful in some problems to have an alternative mechanism to introduce a 

control costing or a dynamic weighting on the input 0( )u t k−  signal. If a 

dynamic costing on the input signal is applied, it can be treated as part of the 

system model.  
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The disturbance elements are described by an LTI model excited by white-noise, 

and a deterministic output disturbance part symbolized ( )d t . Furthermore, the 

reference ( )r t  is a deterministic signal. Hence, both signals are expected given 

during the predictive control horizon to be used. The feedback system depicted 

in Figure 2-2 consists of a linear plant model, reference, measurement noise and 

disturbance signals, and the measurement white-noise signal ( )v t , which is 

expected to have a fixed covariance matrix 0T
f fR R= ≥ . And this is fine since 

there is no generality loss if the white-noise ( )tξ  is assumed to have an identity 

covariance matrix. Both noise signals ( )v t  and ( )tξ  are independent Gaussian 

zero-mean white-noise vectors. There is no necessity to identify the noise sources 

distribution as the particular system form conducts a prediction equation, 

which just depends on the disturbance model.  

The plant first “input” subsystem (2.1) may also be introduced if needed to give 

more modelling flexibility and can be a linear operator structure where there is 

no structure assumed: 

 1 1
( )( ) ( )( )k

k
W u t z W u t−=  (2.1) 

where kz−  indicates common delay components diagonal-matrix in all output 

signals lines with 0k > . The first subsystem 1kW  output is 0 1( ) ( )( )ku t W u t= , and 

1W  is anticipated as a stable subsystem. However, the other linear “output” 

subsystem in (2.2) can include any unstable modes and will be described in 

more detail in the next. 

 0 0
k

kW z W−=  (2.2) 

The first “input” subsystem is defined 1kW I=  if the first linear subsystem 

component is not needed and not in use.  
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Figure 2-2: RS control of unstructured and state-space subsystems 

The generalization to various delays in various signal lines can make the 

solution difficult. Still, the work in [37] simplifies the solution. Finally, the 

dynamic cost-function of the weighted error 1( ) ( ) ( )p ce t P z e t−=  is stable. 

2.1 Linear State-Space Subsystem 

The initial specified LTI subsystems are the state-space model of the disturbance 

dW  and the plant 0W  subsystems. Consider first, this state-space subsystem 

illustrated in Figure 2-3 and connected to the system measured outputs. The 

augmented model comprises the error dynamic weighting 1( )cP z−  and a 

disturbance model.  

The structure here is quite general, and the way a common industrial problem 

is expressed in this augmented form is explained in Appendix: A-1 Augmented 

System Matrices. 
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Figure 2-3: General and linear state-space subsystems 

The model of the augmented linear subsystem assumed a stabilizable, detectable 

and given in the state-space form as: 

 0( 1) ( ) ( ) ( ) ( )dx t A x t Bu t k D t d tξ+ = + − + +  (2.3) 

 0( ) ( ) ( ) ( )y t d t C x t Eu t k= + + −  (2.4) 

 0( ) ( ) ( ) ( ) ( )z t d t C x t Eu t k v t= + + − +  (2.5) 

The through term matrix E here can be specified to be full rank if the explicit 

delay totals k-steps. The weighted error that will be minimized is: 

 0( ) ( ) ( ) ( )pp p pe t d t C x t E u t k= + + −  (2.6) 

where matrices , , , , , ,p pA B C D E C E  are fixed, and the linear subsystem delay-free 

plant transfer can be given as: 

 0kW E C B= + Φ  (2.7) 

where 

 1( )zI A −Φ = −  
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Signal Descriptions: The plant model input channels are expected to comprise 

a k-steps transport-delay, and the vectors signals are given as follows: 

( )x t  Plant subsystem along with disturbance model n system states 

0( )u t  Linear subsystem m input signals. 

( )u t  Input subsystem m control signals. 

( )y t  Measured r plant output signals. 

( )z t  Measured r plant output with measurement noise. 

( )r t  Plant r setpoint signals. 

( )pe t  m inferred controlled weighted error signals. 

( )d t  Measured r output disturbance signal. 

2.1.1 State-Space Prediction Models 

It is essential to have the output prediction to build the control algorithm in 

Chapter 4. Hence, the states and output future values, at time t, are found via 

a recursive state-equation as: 

 
( )

0

0
2

0

0
3

0

( 1)
( ) ( ) ( ) ( )

( 2)
( ) ( ) ( ) ( ) ( 1 ) ( 1) ( 1)

( ) ( ) ( 1 ) ( ) ( 1) ( ) ( 1)

( 3)
( 2) ( 2 - ) ( 2) ( 2)
( ) 2

d

d d

d d

d

x t
Ax t Bu t k D t d t

x t
A Ax t Bu t D t d t Bu t k D t d t

A x t ABu t Bu t k AD t D t Ad t d t

x t
Ax t Bu t k D t d t
A x t A Bu

ξ

ξ ξ

ξ ξ

ξ

+ =
+ − + +

+ =

+ + + + + − + + + + =

+ + + − + + + + + +

+ =
+ + + + + + + =

+ 0 0
2 2

( ) ( 1 ) ( 2 )
( ) ( 1) ( 2) ( ) ( 1) ( 2)d d d

t k ABu t k Bu t k
A D t AD t D t A d t Ad t d tξ ξ ξ

− + + − + + − +

+ + + + + + + + +
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The previous result can be generalized to acquire the state in t i+  future times 

as in (2.8), where 0i > . 

 ( )0
1

( ) ( ) ( 1 ) ( 1) ( 1)
i

i ji
d

j
x t i A x t A Bu t j k D t j d t jξ−

=

+ = + + − − + + − + + −∑  (2.8) 

Noting that, future state's calculation needs the state-vector and future inputs at 

time t, and the future states time can be found by applying time shifting in (2.8) 

using the explicit transport-delay k-steps as: 

 ( )0
1

( ) ( )

( 1) ( 1) ( 1)

i

i
i j

d
j

x t i k A x t k

A Bu t j D t j k d t j kξ−

=

+ + = + +

+ − + + + − + + + −∑
 (2.9) 

The future times controlled weighted error ( )pe t  has the formation in (2.10) for 

1i ≥  and can comprise any stable cost-function dynamic weighting. 

 ( )0
1

0

( ) ( ) ( )

( 1) ( 1) ( 1)

( )

i
p p p

i
i j

p d
j

p

e t i k d t i k C A x t k

C A Bu t j D t j k d t j k

E u t i

ξ−

=

+ + = + + + + +

+ − + + + − + + + − +

+

∑  (2.10) 

The deterministic disturbance signal terms can be collected as: 

 
1

( ) ( ) ( 1)
i

i j
pd p p d

j
d t i k d t i k C A d t j k−

=

+ + = + + + + + −∑  (2.11) 

Noting (2.10) the weighted error ( )pe t  is: 

 
( )0 0

1

( ) ( ) ( )

( 1) ( 1) ( )

i
p pd p

i
i j

p p
j

e t i k d t i k C A x t k

C A Bu t j D t j k E u t iξ−

=

+ + = + + + + +

+ − + + + − + +∑
 (2.12) 
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2.1.2 Vector and Matrix Notation 

For controls in the period [ , ]t t Nτ ∈ + , the computed weighted errors for 0N >

can be accumulated in the 1N +  vector notation (2.13) as:  

 

2

1 2

( )
( 1 )
( 2 )

( )

( )
( 1 )

( )( 2 )

( )

0 0 0
0 0

0

p

p

p

p

pd p

pd p

pd p

N
pd p

p

p p

N N
p p p

e t k
e t k
e t k

e t N k

d t k C I
d t k C A

x t kd t k C A

d t N k C A

C B
C AB C B

C A B C A B C B− −

 + 
 

+ + 
  =+ + 
 
 

+ +  
 +   
   

+ +   
   + + ++ +   
   
   

+ +      











 





 

  



00

00

0

0 0

1 2

( )( )
( 1)( 1)
( 2)

( 1) ( )

0 0 0 ( )
0 0 ( 1 )

0
( 1 )

p

p

p

p

p

p p

N N
p p p

E u tu t
E u tu t
E u t

u t N E u t N

t k
C D t k

C AD C D

t N kC A D C A D C D

ξ
ξ

ξ− −

   
    ++    
    + ++   
   
    + − +      

   + 
   + +  
  
  
  
   + − +   











 





  










 (2.13) 

And (2.13) is given as: 

 
, ,

0
, ,( ) ( )

t k N t k NP P PN N PN N PN t N PN N t k NE D C A x t k C B E U C D W
+ + += + + + + +  (2.14) 

The next block-matrices and vectors can be specified for a more typical case for 

0N >  like in (2.15). 
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,

2

1 2

1 2

,

0 0 0 0
0 0

,
0
0

( )0 0 0
( 1)0 0

, ,( 2)
0

( )

( )
( 1)

t N

N N

N N N

pd

pd

N P pd

N N
pd

t N

I
A B

A BA B

A A B A B B

d t
d tD

D DAD D d t

A D A D D d t N

t
t

W

ξ
ξ

− −

− −

   
   
   
   = =
   
   
      

  
   +  
  = = +  
  
   +    

+
=



 

   

    







 

  







0

0 0
,

0

( 1)}

( )
( 1)

,

( )( 1)

{ , ,... , { , ,..., },

t N

PN p p p PN p p p

u t
u t

U

u t N

e

t N

C diag C C C and E di g sqa u NE E aE r

ξ

  
   +   =
  
  

++ −      

= +=



 (2.15) 

The expression (2.15) can be defined as , 0,N N N PN pA I B D C C= = = =  and PN pE E=  

for the particular situation of cost-function with single-step at 0N = .  

The transfer ,t NW  is the future white-noise inputs vector and 0
,t NU  is the future 

input signals block vector. The tracking error 
,t k NPE

+
 that incorporates dynamic 

costing weighting k-steps-ahead can, therefore, given using (2.14) in the vector: 

 
, ,

0
, ,( )

t k N t k NP P PN N PN t N PN N t k NE D C A x t k V U C D W
+ + += + + + +  (2.16) 

The weighted error to be minimized in the solution considered later is expected 

to be in the control signal's equivalent dimension. The matrix PNV  used in (2.16) 

is defined below and is therefore of a lower-triangular and square block as in 

(2.17) for 0N > . 
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2

1 2

0 0 0
0

0

PN PN N PN

p

p p

p
N

p p
N N

p p p p

V C B E

E
C B E

C B
C A B E
C A B C A B C B E

−

− −

= +

 
 
 
 =  
 
 
  



 

   

 



 (2.17) 

For the particular issue of single-stage cost-function, at horizon 0N =  and noting 

(2.13), the matrix (2.17) is given PN pV E= , where pE  implies the through term 

among input signal 0( )u t k−  and weighted output. 

2.1.3 Linear Prediction Equations 

The output signal i-steps-ahead prediction can be determined by remarking the 

previous result (2.10) and believing for the current that the control action future 

values are established and known.  

Thus, the predicted weighted signal to be minimized is given in (2.18) utilizing 

(2.12) and this if ˆ ˆ| ) { ( )| }(p pe t i k t E e t i k t+ + = + + . 

 
0 0

1

ˆ ˆ( | ) ( ) ( | )

( 1) ( )

pd
i

p p

i
i j

p p
j

e t i k t d t i k C A x t k t

C A Bu t j E u t i−

=

+ + = + + + + +

+ − + +∑
 (2.18) 

where ˆ( | )x t k t+  is a Kalman filter least-squares state estimate outcome. By adding 

together the outcomes for when 0N >  then the predicted errors vector 
,

ˆ
t k NPE
+

 is 

acquired in the next block matrix given in (2.19). 
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 ,

2

ˆ ( | ) ( )
ˆ ( 1 | ) ( 1 )

ˆˆ ( | )( 2 | ) ( 2 )

ˆ ( | ) ( )

0 0 0
P PN Nt k N

p pd p

p pd p

p pd p

N
p pd p

D C A

p

p

e t k t d t k C I
e t k t d t k C A

x t k te t k t d t k C A

e t N k t d t N k C A

E
C B

+

 +   +   
     

+ + + +     
     = + + ++ + + +     
     
     

+ + + +          

  

 



0
,

0

0

2

1 2
0

( )
0 ( 1)

0
( )

t N
PN PN N PN

p

p
N

p p
N N

p p p p

UV C B E

u t
E u t

C B
C A B E

u t NC A B C A B C B E

−

− −

= +

        +             +    

 

   





 







 (2.19) 

The vector of 1N +  step-ahead prediction (2.19) is given as in (2.20): 

 
, ,

0
,

ˆ ˆ( | )
t k N t k NP P PN N PN t NE D C A x t k t V U
+ +

= + + +  (2.20) 

And the prediction error of the output 
, , ,

ˆ
t k N t k N t k NP P PE E E
+ + +

= −  is: 

 0 0
, , ,ˆ( ) ( ( | ) )PN N PN t N PN N t k N PN N PN t NC A x t k V U C D W C A x t k t V U+= + + + − + +  (2.21) 

Thereafter, the inferred output estimation error: 

 
, ,( )

t k NP PN N PN N t k NE C A x t k t C D W
+ += + +

  (2.22) 

where ˆ( | ) ( ) ( | )x t k t x t k x t k t+ = + − +  is a k-steps-ahead state-estimation error. Note 

for later use that if plant and model mismatch is ignored, the state-estimation 

error doesn't depend on a selection of control action. The orthogonality of the 

optimal ˆ( | )x t k t+  and ( | )x t k t+ , and the expectation of the control action future 

values result (believed given in obtaining prediction equation) and the white-

noise exciting signals are null. We conclude that the predicted signals 
,

ˆ
t k NPE
+

 

vector in (2.20) and the prediction error 
,t k NPE

+

  are orthogonal. 
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2.1.4 Kalman Filter Predictor-Corrector Form 

The state estimation ˆ( | )x t k t+  can be generated for k-steps-ahead in a practical 

computation approach employing a Kalman filter [38]. In this case, the filter 

states quantity are not grown by the explicit delays k size, and the Kalman filter 

algorithm is summarised briefly as: 

 

( )

0

(
ˆ ˆ( 1| ) ( | ) ( ) ( )

(
ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1| )

)

)

d

f

redic

r

P
x t t A x t t B u

tor

Co r

t k d t

r
x t t x t t K z t z t

e o
t

ct

+ = + − +

+ + = + + + − +

 (2.23) 

where fK  is the Kalman filter gain and: 

 0ˆ ˆ( 1| ) ( 1) ( 1| ) ( 1 )z t t d t Cx t t Eu t k+ = + + + + + −  (2.24) 

The desired prediction equation follows: 

 1
0 0ˆ ˆ( | ) ( | ) ( , ) ( )kx t k t A x t t T k z Bu t−+ = +  (2.25) 

1
0( , )T k z−  is a finite impulse response block, 1

0(0, )T z I− =  and for 1k ≥  

 1 1 1 1 2 2 1 1
0( , ) ( )( ) ( ... )k k k kT k z I A z zI A z I z A z A z A− − − − − − − + −= − − = + + + +  (2.26) 

From equations in (2.23) and (2.24), the optimal estimate can now be given in 

the next expression: 

 ( )
0

0 0

ˆ ˆ( 1| 1) ( | ) ( )
ˆ( 1) ( 1) ( | ) ( ) ( 1 )f

x t t Ax t t Bu t k
K z t d t CAx t t CBu t k Eu t k

+ + = + − +

+ − + − − − − + −
 

 
( ) ( ) ( )( )
( ) ( ) ( )( )

11 1 1
0

11 1
0

ˆ( | ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

f f f f

k
f f f f

x t t I z I K C A Bz K CBz K E u t k K z t d t

I z I K C A K z t d t z K E K C I Bz u t

−
− − −

−
− − −

= − − − − − + −

= − − − − + −
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The previous expression can, thus, be given in a more brief form: 

 ( )
1 2

1 1
0ˆ( | ) ( ) ( ) ( ) ( ) ( )f fx t t T z z t d t T z u t− −= − +  (2.27) 

The linear transfer operators: 

 ( )( )1

1
1 1( )f f fT z I z I K C A K

−
− −= − −  (2.28) 

 ( )( ) ( )( )2

1
1 1 1( ) k

f f f fT z I z I K C A z K E K C I Bz
−

− − − −= − − − + −  (2.29) 

Unbiased estimates-property: To have an unbiased Kalman filter: 

 ( )
1 2

1 1 1 1( ) ( ) ( ) ( )k k
f fT z C z B E z T z z Bz− − − − − −Φ + + = Φ  (2.30) 

Identity: This practical outcome in (2.30) may easily be verified using (2.28) and 

(2.29), as: 

 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )( ) ( )
( )

21

1 1 1

11 1 1

1 11 1 1 1

1 11 1 1 1

11 1

( ) ( ) ( )

( ) ( ) ( )

( )

( )

k
f

k
f f f f

k
f

f

f f

k
f f f

k

T z C z B E z T z

I z I K C A K C z B E K E K C I Bz z

I z I K C A K Cz I z A K C I z Bz

I z I K C A K C K C I I z A I z A Bz

I z A Bz

− − − −

−
− − − −

− −− − − − −

− −− − − − −

−− − −

Φ + +

 = − − Φ + − + − 
 = − − − − −  
 = − − − − − − 

= −

 

Or 

 ( )
1 2

1 1 1 1( ) ( ) ( ) ( )k k
f fT z C z B E z T z z Bz− − − − − −Φ + + = Φ  (2.31) 
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2.2 qLPV/SD State-Space Subsystem 

LPV systems fall into the broader range of gain-scheduling methods, but they 

differ in the way they represent and capture a system's dynamics. Therefore, 

they are not only static approximations around some operating points. The 

general formulation of an LPV system is given in (2.32). 

 
( ) ( )

( ) ( )
( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x k A k x k B k u k

y k C k x k E k u k

ρ ρ

ρ ρ

+ = +

= +



 (2.32) 

where , ,x u y  are the state, input and output system vectors individually. These 

systems are linear, choosing their matrices for a LTI system but are nonlinear 

as matrices of the system are SD. Varying parameters may also represent Inter-

state dependencies to capture the system's dynamics. These parameters are 

generally considered bounded within a set of values { }: 0Rρ ρ ρ∆ ≥ → ∆  in the 

literature and used to describe the following: 

 An exogenous measured time-varying parameter (LPV). 

 An endogenous system states (qLPV). 

LPV systems were primarily formed within the framework of gain-scheduling 

control design for representing nonlinear systems [39]. The LPV approach 

brought design a step closer to a nonlinear system design to improve the gain-

scheduling method. Gain-scheduling entails switching via interpolation among 

linear controllers set obtained from a system linearisation at multiple points 

across the operating range [39]. Exogenous vs endogenous distinction becomes 

clear when classifying LPV systems formulations into general LPV or qLPV.  
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The qLPV systems accommodate state-variables as the varying parameters and 

provide an excellent approximation to the original nonlinear response. An 

important observation in the understanding of LPV systems is that their 

structure resembles that of LTV systems. This structure is handy in predictive 

control as it is useful in increasing future states' fidelity and outputs generation. 

The feedback system illustrated in Figure 2-4 includes a SD or qLPV model, 

collectively including measurement noise, disturbance and reference signals. 

The measurement white-noise signal ( )v t  is expected, as in the previous section, 

to have a fixed covariance matrix 0T
f fR R= ≥ . The measurement noise signals 

( )v t  and ( )tξ  are independent Gaussian zero-mean white-noise signals vectors. 

 

Figure 2-4: Nonlinear control for qLPV systems 

The SD or qLPV plant model can now be described, and this comprises the 

plant, disturbance, error weighting, and control weighting subsystems. Further 

details on how the augmented system is generated for the nonlinear plant are 

given in Appendix: A-1 Augmented System Matrices.  
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The augmented system here is said to be pointwise stabilizable and detectable 

and given the next form: 

 0( 1) ( ) ( ) ( ) ( )t t t dx t A x t B u t k D t d tξ+ = + − + +  (2.33) 

 0( ) ( ) ( ) ( )t ty t d t C x t E u t k= + + −  (2.34) 

 0( ) ( ) ( ) ( ) ( )t tz t d t C x t E u t k v t= + + − +  (2.35) 

 0( ) ( ) ( ) ( )
t tpp p pe t d t C x t E u t k= + + −  (2.36) 

The state matrices , , ,t t t tA B C D  and tE  illustrated in Figure 2-5 can be SD, LPV, 

qLPV or just LTV. Different delays in various channels can be included. 

However, this complicates the analysis, so the delay terms are expected 

identical in all input channels (delay length k).  

The matrix 
tpE  is expected full rank, while the cost-function to be specified will 

comprise a full-rank dynamic control weighting term. The input subsystem 1kW  

can be removed by setting 1kW I=  in this case so that 0( ) ( )u t u t=  for the analysis 

in Chapter 5. 

 

Figure 2-5: Unstructured model and qLPV/SD state-space subsystem 



Chapter 2 - State-Space System Description 44 

     

2.2.1 State-Space Prediction Models 

For the system matrices future values to be estimated, the deterministic 

disturbance part is expected given. The next state-equation is used to recursively 

acquire the future state values: 

 0( 1) ( ) ( ) ( ) ( )t t t dx t A x t B u t k D t d tξ+ = + − + +  

The state-vector in i-steps-ahead expression is acquired as: 

 ( )
1 2

1 2 1 0 1
1

( ) .... ( )

.... ( 1 ) ( 1) ( 1)

t i t i t
i

t i t i t j t j t j d
j

x t i A A A x t

A A A B u t j k D t j d t jξ

+ − + −

+ − + − + + − + −
=

+ = +

+ − − + + − + + −∑
 

Moreover, it may be arranged more concisely using the next notation: 

 ( )1 0 1
1

( ) ( )

( 1 ) ( 1) ( 1)

i
t

i
i j
t j t j t j dd

j

x t i A x t

A B u t j k D t j d t iξ−
+ + − + −

=

+ = +

+ − − + + − + + −∑
 (2.37) 

where 

 

-
1 2

1 2
0

0

...
... 0

0

i m
t m t i t i t m
i
t t i t i t

t m

t

A A A A for i m
A A A A for i
A I for i m
A I for i

+ + − + − +

+ − + −

+

= >
= >

= =
= =

 

The predicted measured disturbance in (2.37) is described as in (2.38). 

 1
( 1) ( 1) 0

( 1) 0 0

i
i j

dd t j d
j

dd

d t i A d t j for i

d t for i

−
+

=

 
+ − = + − > 

 
 − = = 

∑  (2.38) 

The controlled weighted error signal ( )pe t  follows similarly at future times as 

in (2.39) for 0i ≥ . 
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 ( )

( )

0

1 0
1

1 0
1

( ) ( ) ( ) ( )

( ) ( ) ( 1 )

( 1) ( )

t i t i

t i t i

t i t i

p p p p

i
i ji

pd p t p t j t j
j

i
i j

p t j t j p
j

e t i d t i C x t i E u t i k

d t i C A x t C A B u t j k

C A D t j E u t i kξ

+ +

+ +

+ +

−
+ + −

=

−
+ + −

=

+ = + + + + + −

= + + + + − − +

+ − + + −

∑

∑

 (2.39) 

where the deterministic signals in (2.39) are merged as in (2.40) 

 ( ) ( ) ( 1)
t ipd p p ddd t i d t i C d t i
+

+ = + + + −  (2.40) 

2.2.2 Vector and Matrix Notation 

The weighted error prediction is necessary for the next control solution in 

Chapter 5. Therefore, the state i-steps prediction is achieved by applying a time 

shifting using the explicit k-steps transport-delay: 

 ( )1 0 1
1

( ) ( )

( 1) ( 1) ( 1)

i
t k

i
i j
t k j t k j t j dd

j

x t i k A x t k

A B u t j D t j k d t k iξ

+

−
+ + + + − + −

=

+ + = + +

+ − + + + − + + + −∑
 (2.41) 

where 

 
1

( 1) ( 1)
i

i j
dd t k j d

j
d t k i A d t k j−

+ +
=

+ + − = + + −∑  (2.42) 

The control action future variations are calculated at every iteration; however, 

future variations of the parameters have to be approximated. Gathering the 

deterministic disturbance signal components together in )(pdd t i k+ +  

 ( ) ( ) ( 1)
t i kpd p p ddd t i k d t i k C d t k i
+ +

+ + = + + + + + −  (2.43) 

Then the weighted error ( )pe t  prediction is acquired as in (2.44) 
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 ( )1 0 1
1

0

( ) ( ) ( )

( 1) ( 1)

( )

t i k

t i k

t i k

pd
i

p p t

i
i j

p t j t j t j
j

p

e t i k d t i k C A x t k

C A B u t j D t j k

E u t i

ξ

+ +

+ +

+ +

−
+ + − + −

=

+ + = + + + + +

+ − + + + − +

+

∑  (2.44) 

Introducing in vector-matrix notation as in (2.45) 

 

,

2

1

1 2

( )
( 1 )

( )( 2 )

( )

0 0 0
0 0

0

Pt k N PN N
E C A

p pt

p pt t

p pt t

N
p pt t

pt

pt t pt

pt t
N

pt t t pt
N N

pt t t pt t t pt t pt

e t k C I
e t k C A

x t ke t k C A

e t N k C A

E
C B E

C B
C A B E
C A B C A B C B E

+

−

− −

 +   
   

+ +   
   = + ++ +   
   
   

+ +      






 

 





  

  



,

1 2

( )
( 1)

( 1)

0 0 0 ( )
0 0 ( 1 )

0
(

PN
t N

PN N

V U

C D

pt t

pt t t pt t

N N
pt t t pt t t pt t

u t
u t

u t N

t k
C D t k

C A D C D

tC A D C A D C D

ξ
ξ

ξ− −

      +     +         + −   

  +
 

+ + 
 
 
 
 
  















 





  



,

1 )

t k NW

N k

+

 
 
 
 
 
 
 + − + 



 (2.45) 

2.2.3 Time-Varying Prediction Equations 

The prediction of error signal i-steps-ahead is determined by using the previous 

results and assuming the current and future control actions are given. Thus, the 

predicted weighted signal, to be minimized by utilizing (2.39), is given in (2.46) 

if ˆ ˆ| {( ( )| })p pe t i k t E e t i k t+ + = + + . 
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 ( )1 0 1 0
1

ˆ( ) ( ) ( )

( 1) ( 1) ( )

t i k

t i k t i k

pd
i

p p t

i
i j

p t j t j t j p
j

e t i k d t i k C A x t k

C A B u t j D t j k E u t iξ

+ +

+ + + +

−
+ + − + −

=

+ + = + + + + +

+ − + + + − + +∑
 (2.46) 

where ˆ( | )x t k t+  is a TVKF least-squares state estimate outcome. This and the 

qLPV model are utilized, and the delays are adjusted for input channels [38]. 

Finally, weighted error signal estimation is accumulated in a vector structure 

of size 1N +  as given in (2.47) or (2.48). 

 
, , , , ,

0
, , ,

ˆ ˆ( | ) ( )
PN N PN

t k N t k N t k N t k N t k N

C A V

P P P t k N P t k N P t NE D C A x t k t C B E U
+ + + + ++ += + + + +

 

 (2.47) 

 
,

, ,

0
,

ˆ ˆ( | )
Pt k N

t k N t k N

D

P P PN N PN t NE D C A x t k t V U
+

+ +
= + + +





 (2.48) 

2.2.4 Time-Varying Kalman Filter 

To estimate the qLPV model states, a Kalman predictor is necessary. The i-steps 

predicted states and weighted errors are developed from time-varying , ,t t tA B C   

and tD  matrices and a time-varying tP  error covariance matrix, so a derivation 

of a TVKF tKf  gain factor [40]. Remarking that the stochastic disturbance is 

expected zero-mean. The TVKF expression is summarised in (2.49): 

 
0

1

( )
ˆ ˆ( 1| ) ( | ) ( ) ( )

( )
ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1| )

t t d

t

Predictor
x t t A x t t B u t k d t

Corrector
x t t x t t Kf z t z t t+

+ = + − +

+ + = + +  + − +  

 (2.49) 

where 

 0ˆ ˆ( 1| ) ( 1) ( 1| ) ( 1 )t tz t t d t C x t t E u t k+ = + + + + + −  (2.50) 
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The Kalman filter gain and Riccati expressions are given in (2.51) and (2.52) for 

a system that has a plant and measurement noise covariance's tQ  and tR : 

 
1

1 1| 1 1 1| 1 1
T T

t t t t t t t t tKf P C C P C R
−

+ + + + + + +
 = +   (2.51) 

 
1| |

1| 1 1| 1| 1 1|

(  )

(  )

T T
t t t t t t t t t

t t t t t t t t t

r

P
Priori covarianc

Q
e

Poste ior

D

i

A P A D

P P Kf
a

C
cov ri

P
ance

+

+ + + + + +

= +

= −

 (2.52) 

The controlled system is believed controllable and observable from system noise 

inputs. Likewise, the tracking error k-steps-ahead in (2.44) can suitably be given 

as in (2.53). 

 
,,

0
, ,( )

Nt k tN kP PN t N t k NP PN N PN NE CD x t k VA WCU D
++ ++ + += +  (2.53) 

The prediction error (2.54) is given based on (2.47) and (2.53): 

 
, , , ,

ˆ ( | )
t k N t k N t k NP P P PN N PN N t k NE E E C A x t k t C D W
+ + + += − = + +

  (2.54) 

where the state estimation error (2.55) doesn't depend on the control signal: 

 ˆ( | ) ( ) ( | )x t k t x t k x t k t+ = + − +  (2.55) 
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2.3 Chapter Summary 

This Chapter summarised the discrete-time state-space system description used 

in both Chapter 4 and Chapter 5 to obtain the linear and nonlinear RS control 

solutions. The state-space representations of discrete-time systems are necessary 

for the RS controller and discussed in Section 2.1 for the linear case and Section 

2.2 for the nonlinear case. An introduction to the state-space prediction models, 

vector-matrix notation; prediction equations; Kalman filter for both cases has 

been given. 
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Chapter 3 Polynomial System 

Description 

This Chapter briefly describes the system description for which the polynomial 

LPV RS controllers has been developed. The prior work [37] on the polynomial 

approach is used here as a basis for the system description across the following 

sections. However, it is significantly different from when plant and controllers 

were understood to be LTI. The system model here is represented by a LPV 

plant and disturbance model in the polynomial matrix form, which is unusual 

and may have advantages over state-space models for some applications. 

3.1 Introduction  

In real life, many systems to be controlled are nonlinear. One technique that 

can be used to cope with nonlinear systems is gain-scheduling control. The 

classical gain-scheduling approach is carried out by designing local linear 

controllers based on linearising the nonlinear system at numerous operating 

points. Then an overall nonlinear controller is found by interpolating or 

scheduling among the designed local operation points. Still, the controlled 

system may have a poor response or turn out to be unstable when operating 

points are not at equilibrium [41].  
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To surmount the limitations of the method of classical gain-scheduling, the gains 

scheduling controller design based on LPV systems was introduced [42], [43]. 

The LPV system has a linear system form. It can be in a state-space description 

or system transfer operator matrices in input-output representation that 

depends on the measured scheduling parameters' static functions.  

Compared to classical gain-scheduling methods, the gain-scheduling controller 

approach based on LPV systems can guarantee stability and optimal 

performance over the system's complete range of operation. Although there are 

attractive features of LPV systems, it has to be mentioned that the control 

system closed-loop performance depends on the LPV model quality being 

utilized for controller synthesis. Assuming that the plant's nonlinear dynamic 

equations are available, there are several methods to construct LPV models 

from them. The nonlinear terms can be made linear in parameters by 

linearisation, replacing them with functions using varying linear parameters. 

However, the models may end up with too many scheduling parameters with 

these techniques and then became too complicated and unsuitable for LPV 

controller design [44]. 

3.1.1 LPV Model Identification 

Instead of forming LPV models from nonlinear equations, experimental system 

identification, as explained in Figure 3-1, can be considered an alternative. In 

system identification, the objective is to estimate model dynamics precisely 

from measured input-output data. The LTI systems identification framework is 

now well established and well known [45], while the identification of LPV 

models is still in development [46]–[50], and several problems and challenges 

have not yet been solved [51].  
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Hence, most LPV input-output models share the same disadvantage as they are 

not in a structure ready to be used by advanced controller synthesis methods. 

Therefore, the identified models have to be converted to state-space forms. How 

the LPV input-output systems can be effectively grasped in state-space 

descriptions is a frequently cited problem. This problem arises from the point 

that in LPV literature, LPV systems modelling and discrete-time identification is 

commonly realized via input-output model forms.  

 

Figure 3-1: LPV model identification 

The LPV input-output models are typically needed to be converted in equivalent 

state-space representation to be employed in control design. Such conversion is 

problematic, anticipated due to the dynamic dependence phenomenon 

addressed in [52]. The equivalence between LPV state-space and LPV input-

output representations can be obtained by allowing a dynamic mapping among 

the system matrices and scheduling parameters. Still, this increases the 

complexity of the resulting state-space models. This complexity suggests direct 

use of the LPV polynomial models considered later.  
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The LPV input-output models system identification becomes an active research 

area [53], [54]. During closed-loop operation, identification of a plant is inspired 

by the necessity of plant changes observation without opening the loop [55]–

[57], especially if the controlled plant was open-loop unstable. 

3.1.2 Generalized Predictive Control 

The GPC approach initiated by [28] is a very common MPC approach that has 

been effectively employed in different industrial applications [30]. Based on 

experience, it provides decent performance and a reasonable robustness level. 

The stochastic GPC controller is linked to the famous MV controller, defined in 

the non-adaptive version [23], which shaped the foundation of the well-known 

self-tuning controller [58], an edition of which was also studied by [59]. The MV 

controller is attained by minimizing (3.1) for a provided linear input-output 

model. 

 { }2
1 1( )t tJ E y r+ += −  (3.1) 

This control scheme succeeds for minimum phase systems such as stable plant 

zeros systems and deteriorates from requiring extreme control action for non-

minimum phase plants so it can minimize output variance. An alternative 

proposed to get equivalent schemes to operate for non-minimum phase systems 

is to alter marginally (3.1) by inserting a penalty on the control action and the 

output as in (3.2). 

 { }22
1 1( )t t tJ E y r uλ+ += +−  (3.2) 

This new criterion was termed GMV control [26] and carried out an optimal 

control law one-step-ahead. This scheme delivers an internally stabilizing control 
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law. Yet, it was not assured for certain selections of λ ; it failed for certain non-

minimum phase and unstable systems, especially for systems that have a weakly 

defined delay. A further upgrade was given by [28] and [29] and preceded to 

the GPC, which minimizes (3.3). 

 

2

1

2 2

1
1

2. . 0, ,

uNN

t j t j t j
j N j

t i u

J E y r u

s t u i N N

λ+ + + −
= =

+

     = − + ∆      

∆ = = …

∑ ∑
 (3.3) 

This minimization brings out 1 1, ,
ut t t Nu u u+ + −∆ ∆ ∆  and just tu∆  is employed. At 

the time 1t + , a different solution for the minimization problem is carried out. 

The control is seen as receding-horizon, and the optimization is executed on a 

number of 2 1 1N N− +  future outputs by a number of uN  future incremental 

control actions with an assumption that the delay is admitted in the window 

between 1N  and 2N . Mostly 1N  is selected so that the delay is the lower value 

of the delay approximate [60]. 

 

Figure 3-2: GPC background calculation 

Many researchers adopted GPC to reproduce PID controllers, as illustrated in 

Figure 3-2. Some techniques restrict the optimal controllers' structure to being 

a PID controller. In [10], a PID controller based on IMC was used for the first-

order process, and also in [17], it broadened for an IMC based PID controller to 

address the second-order process. The primary restriction of these designs was 

only on tuning methods which were calculated towards systems without delay. 
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[18], [19] have demonstrated that IMC conducts as PID controllers for most 

models in industrial applications. In [20], least-squares algorithms were used to 

calculate the nearest comparable PID controller to an IMC design following the 

frequency response approach. Still, the design was weak when implemented 

on unstable systems or with time delays. In the RS Control method [14], the 

PID controller's structure is decided, and gains are found to minimize GPC cost. 

In the next sections, a brief description will be provided for the polynomial 

system description upon which the polynomial LPV RS controllers have been 

developed in Chapter 6. 

3.1.3 The System Model 

 

Figure 3-3: Feedback control system for polynomial LPV model 

The feedback system is illustrated in Figure 3-3 and comprises the nonlinear 

plant, the measurement noise, the disturbance and the reference models. The 

system model is denoted 0kW  and represents the LPV model, which may have 

unstable modes in the system.  
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Noting that, generalization to various delays in various lines is similar to that 

illustrated in [37]. The disturbance model is selected to be LPV, which is not 

limiting, as in several applications, the disturbance model is approximated as 

LTI. The measurement noise ( )v t  and stochastic disturbance ( )tξ  are a vector 

of independent zero-mean white-noise signals with a fixed covariance matrix 

0T
f fR R= ≥  . Because of the problem formation, which includes a prediction 

equation that depends only on the LPV stochastic disturbance model, there is 

no generality loss if the disturbance white-noise driving source ( )tξ  has an 

identity covariance matrix. 
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3.2 LPV Polynomial Matrix Models 

LPV system models that take account of parameter variations or variations with 

states and inputs are more common for models represented in a state-equation 

form. For example, there is quite a body of work in the solution of SD modelling 

and the use of iteratively computed steady-state Riccati equation solutions. 

There is less published on ARMAX modelling where the parameters vary with 

external influences such as wind speed, altitude or engine speed. However, 

since engineers often analyze systems' behaviour in steady-state conditions, 

where a given nonlinear operating point applies, it is common to use frequency-

domain analysis methods. The use of what might be termed a transfer-operator 

model description which is a function of such external variables, is very natural 

for many application areas. 

The system output ( )y t  includes disturbance term 0( )d t  that is known, and 

hence to generate the prediction equations, consider the output without this 
term: 

 0( ) ( ) ( )dy t y t d t= −  (3.4) 

The r m×  MIMO LPV system model in a polynomial matrix form is given in 

the next, and the model explaining the LPV model of the plant may be stated in 

an LPV CARMA model as: 

 ( ) ( ) ( )1 1 1
0 0, ( ) , ( ) , ( )t d k t d tA z y t B z u t k C z tρ ρ ρ ξ− − −= − +  (3.5) 

The parameter-vector tρ , for simplicity ( )t tρ ρ= , in this model represents a set 

of time-varying parameters. The model input channels comprise a k-steps 0k ≥  

transport-delay that may be written as 1 1
0 0( , ) ( , ) k

t k tB z B z zρ ρ− − −= .  
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The LPV system delay-free plant transfer-operator and a model of the disturbance 

are specified in the left coprime unit-delay operator as: 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
0 0, , , , ,k t d t t k t d tW z W z A z B z C zρ ρ ρ ρ ρ− − − − − −   =     (3.6) 

For LTI models, the coprime model prevents one from obtaining a reduced-order 

model with unstable pole/zero cancellations, and a similar sense is adopted for 

this factorization [51], [61].  

Weighted Output: For later use in the definition of the cost-function, a dynamic 

cost-function weighting model, which has to be stable, is created in the left 

coprime polynomial matrix in (3.7). 

 ( ) ( ) ( )1 1 1 1, , ,
d nC t c t c tP z P z P zρ ρ ρ− − − −=  (3.7) 

The weighted output without the known disturbance using the error weighting 

may be given as: 

 
( )

( ) ( ) ( ) ( ){ }
1

1 1 1 1 1
0 0

( ) , ( )

, , , ( ) , ( )

p c t d

c t t k t d t

y t P z y t

P z A z B z u t k C z t

ρ

ρ ρ ρ ρ ξ

−

− − − − −

=

 = − + 
 (3.8) 

Sometimes, the above polynomial matrices arguments are omitted to simplify 

notation. 

Disturbance Model: The stochastic part of the disturbance model is usually 

LTI, and the power spectrum df W vξ= +  of both merged noise signal and the 

stochastic disturbance is processed as: 

 *
ff dd vv d d fФ Ф Ф WW R= + = +  

The dW  adjoint notation indicates * 1( , ) ( , )T
d t d tW z W zρ ρ− = , and only here, z is 

the z-domain complex number (elsewhere 1z−  represents unit-delay operator).  
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The generalized spectral factor fY  satisfies *
f f ffY Y = Φ , where 1

f fY A D−= . The 

system models and factorization are expected to be as that 1
fD−  is strictly stable 

transfer operator matrix [62], [63] and satisfies: 

 * * *
f f d d fD D C C AR A= +  (3.9) 

If the stochastic disturbance model is LPV, this is similar to a LTV system and 

the factorization in (3.9) applies, but the factor fD  is time-varying. 

Innovations Signal: Usually, in real applications, the disturbance models are 

estimated by LTI systems excited by white-noise. The signal: df W vξ= +  can 

now be modelled in an innovations signal style ( ) ( )ff t Y tε= , where 1
f fY A D−=  

is specified via the spectral-factorization (3.9) and ( )tε  implies a zero-mean white-

noise signal with an identity covariance matrix [32].  

Therefore, the measured signals are given in LPV system model terms, using 

(3.5) and an innovations signal as in (3.10). 

 ( ) ( ) ( )1 1 1 1
0 0 0

( ) ( ) ( )
( ) , , ( ) , ( )t k t f t

z t y t v t
d t A z B z u t k Y z tρ ρ ρ ε− − − −

= +

= + − +
 (3.10) 

Let the signals weighted by the error weighting spectral-factor 1( , )c tP z ρ−  which 

is needed in the cost-function, be defined as:: 

 

( )( )
( )
( )

1
0

1

1
0

( ) , ( ) ( )

( ) , ( )

( ) , ( )

p c t

p c t

p c t

y t P z y t d t

v t P z v t

d t P z d t

ρ

ρ

ρ

−

−

−

= −

=

=

 (3.11) 

Identifying the error weighted spectral factor right coprime model as: 

 ( ) ( ) ( ) ( )1 1 1 1 1, , , ,c t f t fp t f tP z Y z D z A zρ ρ ρ ρ− − − − −=  (3.12) 
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Then the weighted, measured signal is: 

 ( )1( ) , ( ) ( ) ( ) ( )p c p p pz t P z z t y t d t v tρ−= = + +  (3.13) 

From (3.10), this is written as: 

 
( ) ( )

( ) ( )
1 1

0 0

1 1 1

( ) ( ) , , ( )

, , ( )
p p c t k t

fp f t

z t d t P z W z u t k

D z A z t

ρ ρ

ρ ρ ε

− −

− − −

= + − +
 (3.14) 

Optimal Predictor: A least-squares predictor for LPV systems may be used to 

compute the inferred output y  at times: 1,  2 ... t k t k+ + + + . Thus, the cost-

function to be minimized and utilized to define the least-squares predictor is: 

 ( ){ }2
|pJ E y t j t= +  (3.15) 

where the estimation error: 

 ( ) ( ) ( )ˆ| |p p py t j t y t j y t j t+ = + − +  (3.16) 

Also, ˆ ( | )py t j t+  describes ( )py t  predicted value at a time j-steps-ahead. And to 

produce the prediction algorithm, a Diophantine equation solution is needed for 

the LPV solution ( , )j jE H , with jE  of smallest degree ( )1deg ( , )j tE z j kρ− < + . 

First Diophantine Equation: 

 ( ) ( ) ( ) ( )1 1 1 1, , , ,j k
j t f t j t fp tE z A z z H z D zρ ρ ρ ρ− −− − − −+ =  (3.17) 

Moreover, (3.17) maybe written as: 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1, , , , ,j k
j t j t f t fp t f tE z z H z A z D z A zρ ρ ρ ρ ρ− −− − − − − − −+ =  (3.18) 

Prediction Equation: The weighted observations signal (3.14) is expanded 

using (3.18) as in (3.19). 
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( ) ( )

( ) ( ) ( )

1 1
0 0

1 1 1 1

( ) ( ) , , ( )

, , , ( )
p p c t k t

j k
j t j t f t

z t d t P z W z u t k

E z z H z A z t

ρ ρ

ρ ρ ρ ε

− −

− −− − − −

= + − +

 + 
 (3.19) 

Substituting 1 1
0 0( ) ( ) ( )f f kt Y z t D B u t kε − −−= −  from (3.10): 

 
( ) ( ) ( )

( ) ( ) ( )( ( ) ( ) )
1 1 1

0 0

1 1 1 1 1 1 1 1
0 0

( ) ( ) , , ( ) , ( )

, , , ( ) , , ( )
p p c t k t j t

j k
j t f t f t f t k t

z t d t P z W z u t k E z t

z H z A z Y z z t D z B z u t k

ρ ρ ρ ε

ρ ρ ρ ρ ρ

− − −

− − − − − − − − − −

= + − + +

− −
 

Recall 1 1 1
f f fp cA Y D P− − −=  from (3.12), the weighted observations signal becomes: 

 

( )
( ) ( )( )

( ) ( ) ( ) ( )( ) ( )(
( ) ( ) )

1

1 1 1

1 1 1 1 1 1

1 1 1
0 0

( ) ( )

( ) ( ) , ( )

, ,

, , , , ,

, , ( )

p

p p j t

j k
j t fp t p

j k
c t f t f t j t f t

f t k t

z t d t

z t d t E z t

z H z D z

P z Y z A z z H z A z

D z B z u t k

ρ ε

ρ ρ

ρ ρ ρ ρ ρ

ρ ρ

−

− − − − −

− −− − − − − −

− − −

−

= + +

+

−

−

 (3.20) 

Weighted Output Signal: The weighted output signal ( ) ( ) ( )p p py t z t v t= − , and 

hence from (3.20), noting (3.12) c f f fpP Y A D=  and (3.17) then (3.21) gives the 

weighted output as: 

 

( )
( ) ( )( )

( ) ( ) ( )

1

1 1 1

1 1 1 1
0 0

( ) ( )

( ) ( ) , ( )

( ) , ,

, , , ( )
p

p p j t

j k
p j t fp t p

j t f t k t

z t d t

y t d t E z t

v t z H z D z

E z D z B z u t k

ρ ε

ρ ρ

ρ ρ ρ

−

− − − − −

− − − −

−

= + −

+ +

−

 (3.21) 

Weighted Output Future Values: The weighted output signal j k+  steps-ahead 

is given in (3.22). 

 
( )

( ) ( )( )
( ) ( ) ( )

1

1 1 1

1 1 1 1
0 0

( ) ( )

( )

, ( ) ( )

( ) , ,

, , , ( )
p

p

j t j k p

p j t fp t p

j t j k f t j k k t j k

z t d t

y t j k

E z t j k v t j k

d t j k H z D z

E z D z B z u t j

ρ ε

ρ ρ

ρ ρ ρ

−
+ +

− − −

− − − −
+ + + + + +

−

+ + =

+ + − + + +

+ + + +

+

 (3.22) 
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To further simplify (3.22), define (recalling 1
fD−  is expected stable) the right 

coprime model: 

 ( ) ( ) ( ) ( )1 1 1 1 1 1
1 1 0, , , ,k t f t f t k tB z D z D z B zρ ρ ρ ρ− − − − − −=  (3.23) 

Letting, 

 1 1
1 0( ) ( , ) ( )f f tu t D z u tρ− −=  

Then (3.22) maybe written as: 

 

( )( )
( ) ( )( )

( ) ( )

1

1 1 1

1 1
1

( ) ( )

( ) , ( ) ( )

( ) , ,

, , ( )

p

p j t j k p

p j t fp t p

j t j k k t j k f

z t d t

y t j k E z t j k v t j k

d t j k H z D z

E z B z u t j

ρ ε

ρ ρ

ρ ρ

−
+ +

− − −

− −
+ + + +

−

+ + = + + − + + +

 + + + +
+ 

 (3.24) 

where 1j k+ −  is the polynomial matrix jE  maximum degree and hence, the 

noise parts in ( )jE t j kε + +  comprising future times ( ),..., ( 1)t j k tε ε+ + + . Thus, 

( )jE t j kε + +  denotes future white-noise signal parts weighted sum. 

3.3 Prediction Equations 

At the time t j k+ + , provided measurements till instant t, the predictor can first 

be developed for situations when the measurement noise ( )v t  is assumed zero. 

Until instant t, the measurements are given and the utilized predictor control 

inputs future values 0 0 ),..,( ) (u t u t j+  are also expected known at instant t. Both 

the future control and future known disturbance are independent of the future 

stochastic disturbance and noise series. It concludes the square [ ]⋅  and round 

( )⋅  bracketed terms value in (3.24) are expected zero.  
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Provided that the cost-function cross-terms are null, then the optimal predictor 

to minimize the cost-function (3.15) can develop from (3.24) as: 

 
( ) ( )( )

( ) ( )
1 1 1

1 1
1

ˆ ( | ) ( ) , , ( ) ( )

, , ( )
p p j t fp t p p

j t j k k t j k f

y t j k t d t j k H z D z z t d t

E z B z u t j

ρ ρ

ρ ρ

− − −

− −
+ + + +

+ + = + + + − +

+
 (3.25) 

If the 1( ) ( , ) ( )p c t j kv t j k P z v t j kρ−
+ ++ + = + +  measurement noise is non-zero. In this 

case, assume the weighting 1( , )c tP z ρ−  is a constant (typical in GPC) or 1j k+ −  

degree polynomial matrix. Consequently, ( )pv t j k+ +  only depends on future 

measurement white-noise signal terms, and its expected value and the square 

bracketed in (3.24) need again to be zero. 

The optimal predictor is thus offered by (3.25) and the prediction error: 

 ( )1( | ) , ( ) ( )p j t j k py t j k t E z t j k v t j kρ ε−
+ ++ + = + + − + +  (3.26) 

Second Diophantine Equation: The next Diophantine equation can be formed to 

split up the term 1 1
1( , ) ( , )j t k tE z B zρ ρ− −  to a component with step delay 1j +  and 

a component that depends on 1
1( , )f tD z ρ−  (mind 1 1

1 0( ) ( , ) ( )f f tu t D z u tρ− −= ). So, 

create a Diophantine equation that has the solution ( , )j jG S  of the smallest degree 

jG  for 0j ≥ : 

 
( ) ( ) ( )

( ) ( )
11 1 1

1

1 1
1

, , ,

, ,

j
j t f t j t

j t k t

G z D z z S z

E z B z

ρ ρ ρ

ρ ρ

− −− − −

− −

+

=
 (3.27) 

where ( )1deg ( , )j tG z jρ− = . 

Weighted Predicted Output: The prediction equation (3.25) is acquired (for 

0j ≥ ) as given in (3.28). 



Chapter 3 - Polynomial System Description 64 

     

 
( ) ( )( )

( ) ( )
1 1 1

1 1
0 1

ˆ ( | ) ( ) , , ( ) ( )

, ( ) , ( 1)
p p j t fp t p p

j t j k j t k f

y t j k t d t j k H z D z z t d t

G z u t j S z u t

ρ ρ

ρ ρ

− − −

− −
+ + + −

+ + = + + + − +

+ + −
 (3.28) 

The degree of 1( , )j tG z ρ−  is j, and the third term (3.28) involves future inputs 

{ }0 0 ),. ,( ) (..u t j u t+ . The signal ( )jf t k+  in (3.29) can be described in terms of 

known inputs  and outputs: 

 
( )

( ) ( )( )
1

1

1 1 1

( ) ( ) , ( 1)

, , ( ) ( )
j p j t k f

j t fp t p p

f t k d t j k S z u t

H z D z z t d t

ρ

ρ ρ

−
+ −

− − −

+ = + + + − +

−
 (3.29) 

The predicted weighted output (3.28) can, therefore, be given, for 0j ≥ : 

 ( )1
0ˆ ( | ) ( ) , ( )p j j t j ky t j k t f t k G z u t jρ−

+ ++ + = + + +  (3.30) 

The signal ( )jf t k+  represents the weighted output ( )py t j k+ +  free-response 

prediction, assuming that the inputs 0( )u t i+  for 0j ≥  are zero. That is, the 

signal ( )jf t k+  represents the predictor's response, assuming that all future 

inputs are null. 

Coefficients of the Polynomial Matrix: From (3.12), (3.17), (3.23) and (3.27), the 

polynomial matrix components: 

 

( ) ( ) ( ) ( )
( ) ( ) ( )(

( )) ( )

1 1 1 1 1
0

1 1 1 1
1

1 1 1 1
1

, , , ,

, , ,

, ,

j t c t t k t

j k
j t f t k t

j t f t

G z P z A z B z

z z H z A z B z

z S z D z

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ

− − − − −

− − − − − −

− − − −

= −

+  (3.31) 

From the above, the polynomial matrix 1( , )j tG z ρ−  of the degree j , therefore, 

includes the first 1j +  parameters jg  of the weighted linear plant transfer: 

 1 1
0( , ) ( , )c t k tP z W zρ ρ− −  
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Furthermore, it may be arranged as: 

 ( )1 1
0, 1, ,, j

j t t t j tG z g g z g zρ −− −= + + +  

where 1
0 0,( , )t tG z gρ− = . 

3.4  Vector and Matrix Notation 

The future weighted outputs in (3.30) can be obtained as in the utilized form in 

(3.32). These next weighted future outputs are required later for inputs in the 

period [ , ]t t Nτ ∈ + , where 0N ≥ . 

 
0,0 0

1, 1 0 , 11 0

1, 2 0, 2

, 1, 0 ,

ˆ ( | )
ˆ ( 1 | )

ˆ ( | )

0 0( ) ( )
0 0( ) ( 1

( )

p

p

p

t k

t k t k

t k t k

N N t N k N t N k t N k

y t k t
y t k t

y t N k t

gf t k u t
g gf t k u t

g g

f t k g g g

+

+ + + +

+ + + +

+ + − + + + +

 +
 

+ + 
  = 
 
 + +  

  +    + +      +         + …    







  



   

0

)

( )u t N

 
 
 
 
 
 
 + 





 (3.32) 

Introducing terms explanation for matrices in (3.32), the vector shape of the 

predicted future weighted outputs is: 

 
, , ,

0
,

ˆ
t k N t k N t k NP P P t NY F G U
+ + +

= +  (3.33) 

The vector of free response predictions using (3.29) may now be identified as 

in (3.34). 
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( )

( )
( )

( )

( )

( ) ( )
( )

( )

1

,

1

,

,

1 1 1 1
0 -1 0

1 -1 1 1
1 -1 1

1 1 1 1
-1

( )
( 1 )

( )

, , ,

, ( , ) ,
( 1)

, , ,

NP t

t k N

NZ t

P z

p

p
P

p

S z

t k t fp t

t k t fp t
f

N t k N t fp

d t k
d t k

F

d t N k

S z H z D z

S z H z p D z
u t

S z H z D z

ρ

ρ

ρ ρ ρ

ρ ρ

ρ ρ

−

+

−

− − − −
+

− − −
+

− − − −
+

 +
 

+ + = + 
 
 + + 

 
 
 

− + 
 
 
  







 

( )

( )1 ,

( )

NZ tH z

p

t

z t

ρ

ρ

−

 
 
 
 
 
 
  



 (3.34) 

The prediction error vector form: 

 ( )1( | ) , ( ) ( )p j t j k py t j k t E z t j k v t j kρ ε−
+ ++ + = + + − + +  

maybe given, remembering ( )1deg ( , )j tE z j kρ− < + , as: 

 
,

0 1

0

0 1

( ) ... ( 1) ( )
( 1 ) ... ( 1) ( 1 )

( ) ... ( 1) ( )

t k N

k p

k p
P

N k p

e t k e t v t k
e t k e t v t k

Y

e t N k e t v t N k

ε ε

ε ε

ε ε

+

−

+ −

 + + + + − +
 

+ + + + + − + + =  
 
 + + + + + − + + 





 (3.35) 

Knowledge of Future Set Point: Future deviations of the reference signal ( )r t  

are known across the defined N steps future horizon in many applications. As 

the weighted error, the weighted reference 1( ) ( , ) ( )p c tr t P z r tρ−=  is believed to 

include stable weighting. The future weighted reference, weighted output, and 

control vectors can be given as: 

 
, ,

0

0 0
,

0

( ) ( ) ( )
( 1) ( 1) ( 1)

, ,

( )( ) ( )

t N t N

p p

p p
P P t N

p p

r t y t u t
r t y t u t

R Y U

u t Nr t N y t N

     
     + + +     = = =     
     

+   + +      



 

 (3.36) 
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The future weighted outputs k-steps-ahead are given in the next vector form: 

 
, , ,

ˆ
t k N t k N t k NP P PY Y Y
+ + +

= +   

And the future tracking error is given as: 

 ( ), , , , , ,

ˆ
t k N t k N t k N t k N t k N t k NP P P P P PE R Y R Y Y
+ + + + + +

= − = − +   (3.37) 

Noting that the predicted signals vector 
,

ˆ
t k NPY
+

 in (3.37) and the prediction error 

,t NPY  are orthogonal. 

Future Predicted Errors: From (3.33), 

 
, , , , , ,

0
,

ˆˆ ( )
t k N t k N t k N t k N t k N t k NP P P P P P t NE R Y R F G U
+ + + + + +

= − = − −  (3.38) 

 

Figure 3-4: Polynomial RS control principle 

Finally, the previous system description is summarised, as shown in Figure 3-4, 

and the aim in Chapter 6 is to complete the RS gain calculation. 
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3.5 Chapter Summary 

This Chapter summarises the polynomial system description that will be used 

in Chapter 6. The polynomial LPV representation of a discrete-time LPV system 

is essential for developing RS controller solution. First, in Section 3.1, an 

introduction was provided to the previous related work. Then, other sections 

introduced the LPV polynomial matrix models, the prediction equations and 

concluded with the vector and matrix notation.
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Chapter 4 Linear RS Control 

4.1 Introduction 

In this Chapter, we introduce the linear RS controller solution for the state-space 

system description given in Section 2.1 from Chapter 2. The RS controller and 

future controls vector parameterization is defined in Section 4.2. The linear RS 

optimization is introduced in Section 4.3 with an equivalent cost optimization 

problem that leads to modified RS controller cost-function and a note on the cost-

function tuning variables. The RS solution for the system with an unstructured 

subsystem is given in Section 4.4. This solution involves introducing the RS 

problem, the RS control signal, optimal control signal representation, the 

current state estimate utilization, optimal predictive control, and a discussion 

on RS control implementation. 

4.2 Linear RS Control 

A direct derivation of the RS controller is given next, where for this section, the 

first unstructured subsystem block is replaced by setting 1kW I= . Noting, the 

GPC performance index that stimulates the minimization of RS criterion 

includes a dynamic error weighting is offered by (4.1). 
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 ( )2
0 0

0
( ) ( ) ( ) ( ) |

N
T T

p p j
j

J E e t j k e t j k u t j u t j tλ
=

  = + + + + + + + 
  
∑  (4.1) 

where { | }E t⋅  entails conditional expectation on the measurements till instant t 

and jλ  is the weighting factor on the control action. The future optimal control 

action is to be determined during [ , ]t t Nτ ∈ + . The state-space models produce 

the signals pr  and py  which include any dynamic weighting 1( )cP z−  like a low-

pass filter to prevent low-frequency disturbances. Using the above definition, the 

GPC criterion in vector-matrix form is: 

 { } { }, ,

0 2 0
, , |
T

t k N t k N

T
t P P t N N t NJ E J E E E U U t

+ +
= = + Λ  

The RS cost-function needed here can be specified to have an equal form but 

with a minor improvement. Therefore, controller gains limiting term is inserted 

in the cost-index to penalize the high gain, and the vector form of the RS multi-

step cost-function is described as: 

 { } { }, ,

0 2 0 2
, , |
T

t k N t k N

T T
t P P t N N t N c K cJ E J E E E U U k k t

+ +
= = + Λ + Λ  (4.2) 

The future inputs 0u  cost-weightings on are 2 2 2 2
0 1{ , ,..., }N Ndiag λ λ λΛ =  and on the 

controller gains 1
2 2 2 2

0{ , },..., NK diag ρ ρ ρΛ = . An optimal state estimator is needed 

if the states are not available. The cost-function is given in optimal state estimate 

and state estimation error terms if a Kalman filter is used for state-estimation and 

prediction, hence as of (4.2): 

 { }, , , ,

0 2 0 2
, ,

ˆ ˆ( ) ( ) |
T

t k N t k N t k N t k N

T T
P P P P t N N t N c K cJ E E E E E U U k k t

+ + + +
= + + + Λ + Λ   (4.3) 

The cost-index terms are reduced, observing that the optimal estimate 
,

ˆ
t k NPE
+

 is 

orthogonal to estimation error 
,t k NPE

+

 . The cost-function vector/matrix form is: 
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, ,

0 2 0 2
, , 0

ˆ ˆ T

t k N t k N

T T
P P t N N t N c K cJ E E U U k k J

+ +
= + Λ + Λ +  (4.4) 

where both of the terms 
, ,( | )

t k NP PN N PN N t k NE C A x t k t C D W
+ += + +  along with the cost 

term in 
, ,0 ( ) { | }

t k N t k N

T
P PJ t E E E t

+ +
=    doesn't depend on the control action. Observing 

(2.20) the state-estimates vector is given as: 

 , ,

,

0
,

0
,

ˆ ˆ( | )
t k N t k N

t k N

P P PN N PN t N

P PN t N

E D C A x t k t V U

D V U
+ +

+

= + + +

= +

 (4.5) 

where 

 
, ,

ˆ( | )
t k N t k NP P PN ND D C A x t k t
+ +

= + +  (4.6) 

Now the state estimate may be written as 1
0 0ˆ( | ) ( | ) ( , ) ( )ˆkx t k t A t t T k z Bx u t−+ = +  

and (2.25) reveals that ˆ( | )x t k t+  depends only on the control action past values. 

The multi-step cost-function (4.4) is extended as: 

 

( )

, ,

, , , ,

0 0 0 2 0 2
, , , , 0

0 0
, ,

0 2 0 2
, , 0

 ( ) ( )
T

t k N t k N

T

t k N t k N t k N t k N

T

T T
P PN t N P PN t N t N N t N c K c

T T T
P P t N PN P P PN t N

T T
t N PN PN N t N c K c

J D V U D V U U U k k J

D D U V D D V U

U V V U k k J

+ +

+ + + +

= + + + Λ + Λ +

= + +

+ + Λ + Λ +

 

     (4.7) 

Remarks: Before executing the optimal control optimization computing, the 

controller structure requires to be defined to have a desired, probably low-order 

structure. This approach is unlike an unconstrained MBPC solution in which 

the future controls vector is computed, and the predicted control at only the 

instant t is employed. 
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4.2.1 Parameterizing the RS Controller 

The RS controller structure will be characterized in the next, where only gains 

are to be calculated. The main functions or weightings on which the controller 

is defined are chosen beforehand. This definition can be the proportional, 

integrator, and derivative functions in the PID control in the simplest case. A 

number of eN  frequency-sensitive linear dynamic functions are picked for their 

unique frequency response characteristics, and this is rather like choosing the 

basis for space to form the control signal as: 

 1 1 1
0

1
( ) ( ) ( ) ( ) ( ) ( )

eN

u j j e
j

u t L z f z k t L z e t− − −

=

= ∑  (4.8) 

where the weighted error 1
0( ) ( ) ( )L ee t L z e t−=  denotes error frequency-weighting 

and 1( )uL z−  denotes the system inputs frequency-weighting. The functions 

1( )jf z−  and gains ( )jk t in diagonal-matrix forms are: 

 { }1 1 1 1
11 22( ) ( ), ( ), , ( )j j j

j ppf z diag f z f z f z− − − −=   (4.9) 

 { }11 22, , ,j j j
j ppk diag k k k=   (4.10) 

The weightings 1( )uL z−  and 1( )eL z−  in (4.8) may not be essential and maybe just 

assigned to the identity. As in the McFarlane and Glover loop-shaping design 

procedure [64], they may be chosen for MIMO systems where specific 

sensitivity minimization loop-shaping is mandatory. 

The suggested RS controller control action is produced by adding the outcome 

of unique vector functions. For example, this could be the sum of proportional, 

integral with filtered derivative functions in every channel as in (4.11). 
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 ( )1 1 1 1
1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

e NL L LNu e
u t L z f z k e t f z k e t f z k e t− − − −= + + +  (4.11) 

The functions 1( )jf z−  and the gains jk  denote diagonal weighting functions and 

controller gains, respectively. The functions 1( )jf z−  represent frequency-sensitive 

weighting functions that are designer pre-specified functions, and the eN  gain 

terms jk  are the multivariable controller gain vectors set. 

Example: PI and Filtered Derivative Controller 

The first term in each channel 1
1 1( ) ( )Lf z k e t−  is selected as a proportional term, 

and the second term 1
2 2( ) ( )Lf z k e t−  embodies integral term and so on. Thus, the 

functions are chosen for a scalar system as 1 1 1
1 2( ) 1, ( ) 1/(1 )f z f z z− − −= = −  and 

1 1 1
3( ) (1 )/(1 )f z z zα− − −= − − , and the RS optimal control is: 

 
1

1 2 31 1

1 (1 )( ) ( ) ( ) ( )
(1 ) (1 )

zu t k e t k e t k e t
z zα

−

− −

−
= + +

− −
 

For the multivariable system, each term in the calculation of the control signal 

in (4.8) has the formation 1( ) ( )j j Lf z k e t− . As of (4.9) and (4.10) the thj  function 

term that may be present in each channel can be given in the diagonal-matrix 

form: 

 { }1 1 1 1
11 11 22 22( ) ( ) , ( ) , , ( )j j j j j j

j j pp ppf z k diag f z k f z k f z k− − − −=   (4.12) 

For more significant generality p channels are thought, but in practice, the 

system may be square, so that p r m= = . Also, note that the weighted errors 

vector 1
0( ) ( ) ( )L ee t L z e t−=  can be given for each channel in terms of scalar signals 

1 2( ) [ ( ) ( ) ]( )T L L L
L pe t e t e t e t=  . Therefore, for all channels, the thj  functional 

term multiplied by the error is: 
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{ }

1
11 11 1

1
22 22 21

1

11

221 1 1
11 1 22 2

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( ), ( ) ( ), , ( ) ( )

L

L

L

L

L L L

j j

j j

j j

j j
pp pp p

j

j
j j j

pp p

j
pp

f z k e t
f z k e t

f z k e t

f z k e t

k
k

diag f z e t f z e t f z e t

k

−

−
−

−

− − −

 
 
 =  
 
  

 
 
 =  
 
  







 (4.13) 

Note that the gain-vector in (4.13) includes the scalar gains for the thj  function 

element in each channel. They may represent the integral gain terms in each 

channel, for example. Hence based on the parameterized controller, the control 

signal is: 

 

{ }

{ }

1 1

1

11

221 1 1 1
11 1 22 2

1

( ) ( ) ( ) ( )

( ) ( ) ( ), ( ) ( ), , ( ) ( )

e

e

L

L L L

N

u j j
j

j

jN
j j j

u pp p
j

j
pp

u t L z f z k e t

k
k

L z diag f z e t f z e t f z e t

k

− −

=

− − − −

=

=

  
  
  =   
  
    

∑

∑ 



 

 

1
11 1 11

1

1
1 22 2 22

1

1

1

( ) ( )

( ) ( )
( ) ( )

( ) ( )

e

e

e

L

L

L

N
j j

j
N

j j

ju

N
j j

pp p pp
j

f z e t k

f z e t k
u t L z

f z e t k

−

=

−
−

=

−

=

 
 
 
 
 

=  
 
 
 
 
 

∑

∑

∑



 (4.14) 

The idea of extending the capabilities of PID control by adding additional terms 

is not new. However, the range of possibilities is extensive, and the only way 

to easily assess potential benefits is to either try on a real system or utilize a 

simulation. There is then the problem of choosing gains associated with each 
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function, where the predictive control capability is useful. It doesn't provide a 

rapid means of computing the gains only, but it also provides a cost-function or 

benchmarking index by which different solutions can be compared. 

4.2.2 Parameterized Controller 

The approach in (4.14) delivers a possible controller parameterization, although 

it is desirable to have an alternative structure for the gains optimization. Thus, 

a matrix expression is essential to allow the gains collection and be stored in an 

easy to process vector form. Therefore, for a row [1, ]s p∈ , the function-vector 

signal identified: 

 1 1 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )eNL L L
fs ss s ss s ss se t f z e t f z e t f z e t− − − =    (4.15) 

Furthermore, the gain-vector for the ths  channel can be given as: 

 

1

2

, [ , ]

e

ss

ss
cs

N
ss

k
k

k s p

k

 
 
 = ∈ 
 
  



1  (4.16) 

The ths  row term 1

1
( ) ( )

eN
j jL

ss s ss
j

f z e t k−

=
∑  in (4.14) may, therefore, be written as: 

 

1

1

1

2
1 1 2 1 1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

e

e

e

N
j jL

ss s ss fs cs
j

ss

N ssL L L
ss s ss s ss s

N
ss

f z e t k e t k

k
k

f z e t f z e t f z e t

k

−

=

− − −

=

 
 
  =    
 
  

∑





 (4.17) 
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The above links to the scalar gains vector multiplied by the related function in 

channel s. Hence, larger augmented matrices are utilized to accumulate these 

signals and gains.  

Total Error Vector: The signals given in (4.15) are accumulated in the following 

diagonal-matrix as: 

 { }1 2( ) ( ) ( ) ( )f f f fpe t diag e t e t e t=   (4.18) 

Alternatively, after substituting from (4.15): 

 

1 1 2 1 1

11 1 11 1 11 1

1 1 2 1 1

( ) ( ) ( ) ( ) ( ) ( ) 0 0

0

0

0 0 ( ) ( ) ( ) ( ) ( ) ( )

( )

e

e

NL L L

NL L L

pp p pp p pp p

f

f z e t f z e t f z e t

f z e t f z e t f z e t

e t

− − −

− − −

=

   
 
 
 
 

   

 

 

 

 

 

Example: PI Controller for 2×2 Systems 

For 2×2 square systems, if, for example, PI control is used in each channel, then 

the matrix is given as: 

 
1 1 2 1

11 1 11 1

1 1 2 1
22 2 22 2

( ) ( ) ( ) ( ) 0
( )

0 ( ) ( ) ( ) ( )f

f z e t f z e t
e t

f z e t f z e t

− −

− −

    =
    

 

The various channel gains may be accumulated together in a vector when 

considering the general case. 

Total Gain Vector: Also, let the gain vector that contains the total gains formed 

from the channel gains in (4.16) be defined as: 

 

1

2

c

c
c

cp

k
k

k

k

 
 
 =  
 
  



 (4.19) 
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This vector includes all the scalar gain terms in the function gain vectors in 

(4.16) for each [1, ]s p∈ . It is the full vector of gains needed to implement the 

controller ordered in terms of the channel numbers. It follows from (4.18) and 

(4.19) that the matrix in (4.14) above may be given as: 

 

1
11 1 11

1
1 1

1
2 2 22 2 22

1

1

1

( ) ( )
( )
( ) ( ) ( )

( )

( )
( ) ( )

e

e

e

N
j jL

j
f c N

j jL
f c

jf c

Nfp cp
j jL

pp p pp
j

f z e t k
e t k
e t k f z e t k

e t k

e t k
f z e t k

−

=

−

=

−

=

 
 
  
  
  = =   
  
     
 
 

∑

∑

∑





 

Example: PI Controller for 2×2 Systems 

The 2-square system with PI control is considered for the example above: 

 

( )
( )

1
11

1 1 2 1 2
11 1 11 1 11

11 1 2 1
2222 2 22 2
2
22

1 1 1 2 1 2
11 11 11 11 1

1 1 1 2 1 2
22 22 22 22 2

( ) ( ) ( ) ( ) 0
( )

0 ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

f c

k
f z e t f z e t k

e t k
kf z e t f z e t
k

f z k f z k e t

f z k f z k e t

− −

− −

− −

− −

 
       =        
  

 +
 =
 + 

 

The control signal to be implemented (4.14) above can be given in terms of these 

matrices as: 

 

1
11 1 11

1
1 1

1
2 21 1 22 2 22

1

1

1

( ) ( )
( )
( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )

e

e

e

N
j jL

j
f c N

j jL
f c

ju u

Nfp cp
j jL

pp p pp
j

f z e t k
e t k
e t k f z e t k

u t L z L z

e t k
f z e t k

−

=

−
− −

=

−

=

 
 
  
  
  = =   
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∑

∑
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 ( )1( ) ( ) ( )u f cu t L z e t k−=  (4.20) 

The Functional Controller Gains: To summarise, in terms of the gain vector 

and pre-specified functional controller, the expression for the control action: 

 

{ }

{ }

1 1

1

1

21
1 2

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

eN

u j j L
j

c

c
u f f fp

cp

u f c

u t L z f z k e t

k
k

L z diag e t e t e t

k

L z e t k

− −

=

−

−

=

 
 
 =  
 
  

=

∑





 (4.21) 

Total Gain Vector: The gain-vector ck  that must be computed comprises, for 

each channel, the functional controller gains, and given  in the ep N×  rows as: 

 

1

2

1 2 1 2 1 2
11 11 11 22 22 22

1 2 1 2 1 2
11 11 11 22 22 22

1 2

[ ]

[ ]

e e e

e e e

c

c
c

cp

N N N T
pp pp pp

TN N N
pp pp pp

channel gains channel gains channel p gains

k
k

k

k

k k k k k k k k k

k k k k k k k k k

 
 
 =  
 
  

=

=



   

   

 



 (4.22) 

Structure: The structure of the optimal gain matrix is functional; therefore, for 

a scalar system, the gain vector simply includes the gains related to each 

function chosen to parameterize the controller. For a multivariable system, the 

controller is not diagonal since pre and post-compensation weightings are not 

diagonal. The controller gain vector is partitioned, where the first block 

represents the gains for channel one and the second for channel two and so on. 
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4.2.3 Future Controls Vector Parameterizing 

A predictive control-based computation provides the controller gains in (4.22) 

simply. This approach is not the typical GPC technique to predictive control, as 

it will be expected that the predicted controls are computed using the controller 

structure (4.11) defined above. 

Vector of Future Controls: The future controls vector ,t NU  are offered as: 

 

1

1

,

1

( ) ( )( )
( ) ( 1)( 1)

( )

( ) ( ) ( )

u f

u f
t N c

u f

L z e tu t
L z e tu t

U k t

u t N L z e t N

−

−

−

  
   ++   = =   
  
 +  +   





 (4.23) 

The matrix (4.23) is referred to feU  and defined as: 

 

1

1

1

( ) ( )
( ) ( 1)

( )

( ) ( )

u f

u f
fe

u f

L z e t
L z e t

U t

L z e t N

−

−

−

 
 

+ = 
 
 + 



 (4.24) 

This matrix has ( 1)N m+ ×  rows and ep N×  columns, and that the thi  block row 

in (4.24) is: 

 { }1 1
1 2( ) ( ) ( ) ( ) ( ) ( )u f u f f fpL z e t i L z diag e t i e t i e t i− −+ = + + +  

Furthermore, this is an easily computed signal given the predicted values of 

the error and the i-step-ahead control: 

 { }
1

1
1 2

( ) ( ) ( )

( ) ( ) ( ) ( )
u f

u f f fp c

u t i L z e t i

L z diag e t i e t i e t i k

−

−

+ = +

= + + +
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Parameterised RS Controller: The future controls vector can, therefore, be 

expressed in the parameterised RS controller terms as: 

 , ( ) ( )t N fe cU U t k t=  (4.25) 

where the vector of control gains: 

 11 22
1 2 1 2 1 2
11 11 22 22

e e eN N N

pp

T

c pp ppk k k k k k k k k k =      (4.26) 

Assumption: Recall a GPC optimal control signal at instant t is formed using 

receding-horizon theory [65], where the first component in future controls vector 

0
,t NU  is given as the optimal control. The optimal control is processed for a 

whole horizon, and only the first value at the instant t is applied. The same idea 

employed here for RS control is that ck  , and at the instant t, can be utilised to 

calculate the optimal control for instant t. In the same receding-horizon principle 

and the following sample instant, the steps are restarted, and the ( )ck t  fresh 

value can be produced and used in (4.21). 

4.3 Linear RS Optimisation 

Using the above controller parameterisation, the cost-function (4.7) develops to: 

 
( )

, , ,

,

0
,

0 0 2 0 2
, , , 0

t k N t k N t k N

t k N

T T T
P P t N PN P

T T T T
P PN t N t N PN PN N t N c K c

J D D U V D

D V U U V V U k k J
+ + +

+

= + +

+ + Λ + Λ +

  



 

or 

 
( )

, , ,

,

2 2
0( )

t k N t k N t k N

t k N

T T T T
P P c fe PN P

T T T T
P PN fe c c fe PN PN N fe K c

J D D k U V D

D V U k k U V V U k J
+ + +

+

= + +

+ + Λ + Λ +

  



 (4.27) 
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If the signals are deterministic, then the cost term minimising approach is 

nearly the same as if conditional cost-function is employed. The cost-function 

gradient is set to zero to achieve the future optimal control signals vector using 

perturbation and gradient computation [38], remarking that the term in 0J  

doesn't depend on control action, and the optimal control gain signals vector 

becomes to: 

 
( )

( )
,

,

12 2

1

( ) ( )

ˆ( | )
t k N

t k N

T T T T
c fe PN PN N fe K fe PN P

T T
N fe PN P PN N

k t U V V U U V D

X U V D C A x t k t
+

+

−

−

= − + Λ + Λ

= − + +



 (4.28) 

and the time-varying matrix: 

 2 2( )T T
N fe PN PN N fe KX U V V U= + Λ + Λ  (4.29) 

Minimum Cost: Substituting in (4.27) for the gain in (4.28) and simplifying the 

minimum-cost: 

 ( )
, ,

1
min 0t k N t k N

T T T
P PN fe N fe PN PJ D I V U X U V D J

+ +

−= − +   (4.30) 

where 
,t k NPD

+

  followed from (4.6) 

Sub-optimality: The minimum-cost (4.30) may be linked to the minimum-cost for 

conventional GPC optimal control to minimise in (4.1) when the gain weighting 

2
KΛ  tends to zero so that 2( )T T

N fe PN PN N feX U V V U→ + Λ . Assuming the matrix NX  

has an inverse in this limiting case, the minimal cost in the RS control problem: 

 
1

min , , 02

T
T T T TPN PN
Pt k N PN fe fe fe f e PN Pt k N

N

V V
J D I V U U U U V D J

−

+ +

    → − +     +Λ   

   (4.31) 
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Furthermore, this may be compared with the minimal-cost in the GPC problem: 

 ( )( )12
min , , 0
GPC T T T

Pt k N PN PN PN N PN Pt k NJ D I V V V V D J
−

+ += − + Λ +   (4.32) 

The two costs (4.31) and (4.32) approach the same value when feU  is square 

and full rank as the gain weighting 2
KΛ  tends to zero, but this is an exceptional 

case. 

Example: PI Controller for 2×2 Systems 

Consider again the case of just two functions in the controller and a 2-square 

system. Then from (4.24), 

 

1

1

1

1 1 2 1
11 1 11 1

1 1 2 1
22 2 22 2

( ) ( )
( ) ( 1)

( )

( ) ( )

( ) ( ) ( ) ( ) 0
( )

0 ( ) ( ) ( ) ( )

u f

u f
fe

u f

f

L z e t
L z e t

U t

L z e t N

f z e t f z e t
e t

f z e t f z e t

−

−

−

− −

− −

 
 

+ =  
 
 + 
    =
    



 

If the cost has 1N = , the matrix ( )feU t  is square, and if it is full rank, then the 

cost (4.31) and (4.32) becomes identical.  

General conclusions cannot be drawn from a specific example, and several 

assumptions were made. Still, the minimum RS Controller cost will increase 

relative to the GPC solution if the number of functions employed is too small 

and do not have the desired rank conditions and if the number of steps in the 

cost-index is too small. 
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Theorem I: Linear RS Control 

For the linear system and its assumptions given in Chapter 2, wherein this case 

the subsystem 1kW I= . The optimal RS control is expected to minimise the RS 

controller cost-index (4.2): 

 { }0 2 0 2
, , , , |T T T

Pt k N Pt k N t N N t N c K cJ E E E U U k k t+ += + Λ + Λ  (4.33) 

The linear subsystem model 1 1 1
0( ) ( ) ( )e uL z W z L z− − −  can be pre-post-compensated, 

and the RS controller can be executed as: 

 1 1 1
0

1
( ) ( ) ( ) ( ) ( )

eN

u j j e
j

u t L z f z k L z e t− − −

=

= ∑  (4.34) 

where the thj  function term and gain in each channel may be represented in the 

diagonal-matrix forms: 

 
{ }
{ }

1 1 1 1
11 22

11 22

( ) ( ), ( ), , ( )

, , ,

j j j
j pp

j j j
j pp

f z diag f z f z f z

k diag k k k

− − − −=

=





 

 { }1 1 1 1
11 11 22 22( ) ( ) ( ) ( )j j j j j j

j j pp ppf z k diag f z k f z k f z k− − − −=   (4.35) 

Here the functions are pre-specified, and gains are selected to minimise (4.33). 

To compute the optimal gains, introduce the block-diagonal-matrix of signals: 

 { }1 2( ) ( ) ( ) ( )f f f fpe t diag e t e t e t=   

where for each row [1, ]s p∈  the signal: 

 1 1 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )eNL L L
fs ss s ss s ss se t f z e t f z e t f z e t− − − =    

And the weighted error channel signal 1
0( ) ( ) ( )L ee t L z e t−= . The total gain vector 

to be computed: 
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1 2

1 2 1 2 1 2
11 11 11 22 22 22

( )

e e e

T T T
c c c cp

TN N N
pp pp pp

k t k k k

k k k k k k k k k

 =  

 =  



   

 

Gain Vector: The RS optimal control gains vector becomes as in (4.36), using 

the receding-horizon philosophy. 

 ( )1
, ˆ( ) ( | )c N CN Pt k N PN Nk t X P D C A x t k t−

+=− + +  (4.36) 

where the non-singular matrix 2 2( )T T
N fe PN PN N fe KX U V V U= + Λ + Λ  and the matrix 

T T
CN fe PNP U V= . 

 

Figure 4-1: State-space RS controller diagram 

Optimal Feedback Control: The optimal feedback control, illustrated in Figure 

4-1, may then be found as: 

 ( )1 1 1 1
0

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

eN

u j j e u f c
j

u t L z f z k L z e t L z e t k t− − − −

=

= =∑  (4.37) 

The parameterised future controls vector is found as: 

 , ( ) ( )T
t N fe cU U t k t=  (4.38) 
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where 

 
( ) ( ) ( )1 1 1

( )

( ) ( ) ( ) ( 1) ( ) ( )

T
fe

TT T T

u f u f u f

U t

L z e t L z e t L z e t N− − −

=

 + +  


 (4.39) 

Solution: The proof develops by gathering the results of the previous sections. 

Control Solution Comments: Notice that the GPC control denominator matrix 

is full-rank due to system descriptions and the cost. The representation for the 

gain-vector here appears slightly like the typical GPC solution form. However, 

the denominator matrix in (4.36) includes signal terms and can also be a 

considerably smaller dimension than typically in GPC control. This matrix size 

depends on the parameterised controller unknown gains number, which is 

generally lesser than the GPC control horizon design in some cases. The signals 

will stay at constant values when the system achieves a steady-state, and it 

follows the subsequent controller gains will develop to a stable value. Though, 

suppose the plant is disturbed by significant disturbances or reference 

variations. In that case, the denominator matrix's signals will be changing, 

which will result quite easily in time-varying controller gains.  

An exciting feature of the parameterised controller is that each of the function 

blocks' output provides a useful measure of the system responses in frequency 

ranges depending on function choice. The outputs of these functions will 

probably not change as much as the control action, which is, of course, 

dependent upon the time-varying computed gain vector. It is worth considering 

the unusual case when the external inputs to the system are absent, and the 

integral term is therefore zero. If the weighting 2
KΛ  were not present on the 

controller's size gains, the denominator matrix in the above expression would 

tend to zero, and the gains would become very large. 
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However, in this situation, the numerator terms in the gain expression would 

also tend to zero. Thus, even without the precaution of including a gain costing 

term, the computed controller gains should not become unbounded. It seems 

to be a valuable practical asset to have gains magnitudes penalising capability. 

However, the primary purpose is to ensure this denominator matrix can not be 

singular (assuming non-zero costing on each of the controller gains). 

Further Remarks on the Solution: Note from (4.38) the optimisation process 

involves the vector of future predicted controls. Now the parameterised RS 

controller is formed to have a traditional cascade structure, but the retrieved 

gains minimise the predictive control cost-function in (4.2). The solution (4.36) 

relies on 1
NX−  and therefore depends upon the ( )feU t  which is a possibly non-

square matrix. That is: 

 

{ }
{ }

{ }

1
1 2

1
1 2

1
1 2

( ) ( ) ( ) ( )

( ) ( 1) ( 1) ( 1)
( )

( ) ( ) ( ) ( )

u f f fp

u f f fp
fe

u f f fp

L z diag e t e t e t

L z diag e t e t e t
U t

L z diag e t N e t N e t N

−

−

−

 
 
 + + +
 =
 
 

+ + +  









 (4.40) 

where 

 1 1 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )eNL L L
ssfs ss s ss s se t f z e t f z e t f z e t− − − =    (4.41) 

Notice that the matrix feU  in (4.23) is ( 1)N m+ ×  rows by ep N×  columns. Sure, 

there will be many additional rows in practice than columns for a realistic 

prediction horizon, as the eN  functions number will be considerably fewer 

than the prediction horizon. Also, note that T
PNV  has an upper-triangular block 

matrix structure as in (4.42). 
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2 1

20 0
0

0 0
0 0 0

T T T T T N T T T N T
p p p p

T T T T T N T
p p p

T T T T
PN N PN PN

T T T
p p

T
p

E B C B A C B A C
E B C B A C

V B C E
E B C

E

− −

−

 
 
 
 = + =  
 
 
  



   





 (4.42) 

and PN pV E= , in the particular case of 0N = . 

4.3.1 Optimisation Problem Equivalent Cost 

A particular cost-minimisation control problem can be connected to the previous 

problem, and this is required to stimulate the linear control problem created 

next. Hence, a constant real symmetric matrix which is positive-definite (4.29) 

can be factorised into the form: 

 2 2( )T T T
N fe PN PN N fe KY Y X U V V U= = + Λ + Λ  (4.43) 

Then observe noting (4.25), the cost-function is given in (4.44) by working the 

squares in (4.27). 

 

( )( )

( )

, , , ,

, , , ,

,

0 0
, ,

2 2
0

0

1

( )

( )

t k N t k N t k N t k N

t k N t k N t k N t k N

t k N

T T T T
P P t N PN P P PN t N

T T T
c fe PN PN N fe K c

T T T T T T T
P P c fe PN P P PN fe c c c

T T T T T T
P PN fe c fe PN P

J D D U V D D V U

k U V V U k J t

D D k U V D D V U k k Y Yk J t

D V U Y k Y Y U V D

+ + + +

+ + + +

+

− −

= + +

+ + Λ + Λ +

= + + + +

= +

   

   

 ( )
( )

,

, ,

1
0( ) ( )

t k N

t k N t k N

c

T T T T
P PN fe fe PN P

Y k

D I V U Y Y U V D J t
+

+ +

− −

+

+ − + 

 (4.44) 

Consequently, the cost-function is given in a comparable structure as: 

 
, , 10

ˆ ˆ ( )
t k N t k N

T
P PJ J t

+ +
= Φ Φ +  (4.45) 
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where 

 ( )1
10 , , 0( ) ( ) ( )T T T T

t k N PN fe fe PN t k NJ t D I V U Y Y U V D J t− −
+ += − +   (4.46) 

The control action independent terms are given as 10 1 0( ) ( ) ( )J t J t J t= + . where, 

 1
1 , ,( ) ( )T T T T

t k N PN fe fe PN t k NJ t D I V U Y Y U V D− −
+ += −   (4.47) 

From (4.44), it is likewise helpful to identify the signal: 

 ( )
, ,

,

ˆ

ˆ( | ) ( )
t k N t k N

t k N

T T T
P fe PN P c

T T T
fe PN P PN N c

Y U V D Y k

Y U V D C A x t k t Y k t
+ +

+

−

−

Φ = +

= + + +



 (4.48) 

Remarks: 

 Noting the term 10( )J t  in (4.45) is a control action independent, and 

setting to zero, the first squared term, returns the optimal control. 

 Additionally, the minimum-cost 10( )J t  depends on the term 1( )J t  that 

depends on ( )feU t  which depends on controller parameterisation. 

 The optimal control that minimises the squared term (4.48) is obtained 

by setting 
,

ˆ
t k NP +

Φ  to zero. 

Restricted Structure Control: 

 
( ) ( )

( )
,

,

1

1

ˆ( ) ( | )

ˆ( | )
t k N

t k N

T T T
c fe PN P PN N

T T
N fe PN P PN N

k t Y Y U V D C A x t k t

X U V D C A x t k t
+

+

−

−

= − + +

= − + +
 (4.49) 

The solution (4.49) is the same optimal control (4.28). Hence, the optimal RS 

controller for the previous linear system is identical to the controller that 

minimises the Euclidean norm signal 
,

ˆ
t k NP +

Φ  given in (4.48). 
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4.3.2 Modified RS Controller Cost-Function 

The previous argument stimulates the description of a slightly different multi-

step MV cost problem with a similar result for the required optimal controller 

for the linear problem. Consider a different signal to be minimised, including 

the addition of weighted error and input as: 

 
0 0( ) ( ) ( )c ct k P e t k F u tφ + = + +  

Thence, this signal future value vector for a multi-step cost-index is written as: 

 
, ,

0 0 1
,t k N t k NP CN P CN t N CN cP E F U F k

+ +
Φ = + +  (4.50) 

Inspired by the RS controller weightings above, set the cost-function weightings 

to have the unique time-varying matrix forms: 

 
0 2 1 2,

T T
CN fe PN

T
CN fe N CN K

P U V

F U F

=

= Λ = Λ
 (4.51) 

This option is supported by the conclusions obtained below that are collected 

in Theorem II that follows. 

Multi-Step Cost-Function Definition: Define new MV multi-step cost-function, 

utilising the signals vector: 

 
, ,

{ } { | }
t k N t k N

T
t P PJ E J E t

+ +
= = Φ Φ   (4.52) 

Predicting forward k-steps: 

 0 0 1
, , ,Pt k N CN Pt k N CN t N CN cP E F U F k+ +Φ = + +  (4.53) 

Count the signal 
,t k NP +

Φ  and replace 
, , ,

ˆ
t k N t k N t k NP P PE E E
+ + +

= +   for the vector of errors 

from (4.53) as: 
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, ,

, ,

, ,

0 0 1
,

0 0 1
,

0 0 1
,

ˆ( )
ˆ

t k N t k N

t k N t k N

t k N t k N

P CN P CN t N CN c

CN P P CN t N CN c

CN P CN t N CN c CN P

P E F U F k

P E E F U F k

P E F U F k P E

+ +

+ +

+ +

Φ = + +

= + + +

= + + +





 (4.54) 

The above representation is written in an estimate and estimation error vectors 

terms as: 

 
, , ,

ˆ
t k N t k N t k NP P P+ + +

Φ =Φ +Φ  (4.55) 

The predicted signal: 

 
, ,

0 0 1
,

ˆˆ
t k N t k NP CN P CN t N CN cP E F U F k
+ +

Φ = + +  (4.56) 

And the prediction error: 

 
, ,t k N t k NP CN PP E

+ +
Φ = 
  (4.57) 

Multi-Step Performance Index Simplification: Replace for (4.55) in the given 

performance index in (4.52) as: 

 
, , , , , ,

ˆ ˆ{ } { | } {( ) ( )| }
t k N t k N t k N t k N t k N t k N

T T
t P P P P P PJ E J E t E t

+ + + + + +
= = Φ Φ = Φ +Φ Φ +Φ 

   

And evoke that both the optimal estimate 
,

ˆ
t k NPE
+

 and estimation error 
,t k NPE

+

  are 

orthogonal to simplify the performance index terms in (4.52). 

Hence, find: 

 
, , , , , , , ,

ˆ ˆ ˆ ˆ{ | } { | } { | } { | }
t k N t k N t k N t k N t k N t k N t k N t k N

T T T T
P P P P P P P PJ E t E t E t E t

+ + + + + + + +
= Φ Φ + Φ Φ + Φ Φ + Φ Φ

     

 
, , , ,

ˆ ˆ { | }
t k N t k N t k N t k N

T T
P P P PJ E t

+ + + +
= Φ Φ + Φ Φ

   (4.58) 

Therefore, the cost-function is given as: 

 
, , 1

ˆ ˆ( ) ( )
t k N t k N

T
P PJ t J t

+ +
= Φ Φ +   (4.59) 
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The cost-term that doesn't depend on control action is given by (4.59) as: 

 
, , , ,1( ) { | } { | }

t k N t k N t k N t k N

T T T
P P P CN CN PJ t E t E E P P E t

+ + + +
= Φ Φ =  

   (4.60) 

The vector of predicted signals 
,

ˆ
t k NP +

Φ  concise form by replacing for 
,

ˆ
t k NPE
+

 from 

(2.20) and (4.43), noting 0 2T
CN fe NF U= Λ  and 1 2

CN KF = Λ . Thus follow as: 

 
, ,

,

,

0 0 1
,

0 0 0 1
, ,

0 0 0 1
, ,

ˆˆ

ˆ( ( | ) )

ˆ( | )

t k N t k N

t k N

t k N

P CN P CN t N CN c

CN P PN N PN t N CN t N CN c

T T
CN P CN PN N fe PN PN t N CN t N CN c

P E F U F k

P D C A x t k t V U F U F k

P D P C A x t k t U V V U F U F k

+ +

+

+

Φ = + +

= + + + + +

= + + + + +

 

But , ( ) ( )t N fe cU U t k t=  and hence: 

 

( )

, ,

,

,

0 0 2
,

2 2

2 2

ˆ ˆ( | )

ˆ( | )

ˆ( | ) ( )

t k N t k N

t k N

t k N

T T
P CN P CN PN N fe PN PN t N CN fe c K c

T T T
CN P CN PN N fe PN PN fe c fe N fe c K c

T T
CN P CN PN N fe PN PN N fe K c

P D P C A x t k t U V V U F U k k

P D P C A x t k t U V V U k U U k k

P D P C A x t k t U V V U k

+ +

+

+

Φ = + + + + + Λ

= + + + + Λ + Λ

= + + + + Λ + Λ

 

Thence, from (4.43), the predicted signal: 

 
, ,

ˆ ˆ( | ) ( )
t k N t k NP CN P CN PN N N cP D P C A x t k t X k t
+ +

Φ = + + +  (4.61) 

From the related case in earlier sections, the multi-step MV optimal predictive 

control adjusts to zero  
,

0ˆ
t k NP +

Φ =  the first squared term in (4.59), and the optimal 

control, as a result, follows from setting (4.61) to zero, providing: 

 ( ),

1 ˆ( ) ( | )
t k Nc N CN P PN Nk t X P D C A x t k t
+

−= − + +  

This expression is equivalent to the RS control gains vector, as briefed in the 

theorem below. 
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Theorem II: Equivalent Cost-Minimisation Problem 

The system and its expectations presented in Chapter 2. The input subsystem 

is set 1kW I= , and the optimal RS controls vector is given by (4.28). Thus, to 

minimise the RS cost-index (4.2), define the second cost-index to have a multi-step 

MV type: 

 
, ,

( ) { | }
t k N t k N

T
P PJ t E t

+ +
= Φ Φ  (4.62) 

where 

 
, ,

0 0 1
,t k N t k NP CN P CN t N CN cP E F U F k

+ +
Φ = + +  (4.63) 

And the cost-function weightings T T
CN fe PNP U V= , 0 2T

CN fe NF U= Λ  and 1 2
CN KF = Λ . 

Define PN PN N PNV C B E= +  and 2 2( )T T
N fe PN PN N fe KX U V V U= + Λ + Λ  then, the optimal 

control gains vector: 

 
( )

( )
,

,

1

1

ˆ( ) ( | )

ˆ( | )
t k N

t k N

c N CN P PN N

T T
N PN P PN N

k t X P D C A x t k t

X U V D C A x t k t
+

+

−

−

=− + +

= − + +f e

 (4.64) 

The main result is that this gain vector form is comparable to Theorem I or the 

RS controller in (4.28), and the future controls vector, needed in the prediction 

equations, is provided as: 

 ,

1
, ,

( ) ( )

ˆ( ( | ))
t N fe c

T T
t N fe N fe PN Pt k N PN N

U U t k t

U U X U V D C A x t k t−
+

=

= − + +
 (4.65) 

Solution: The proof develops by gathering the results of the previous sections. 
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4.4 RS Unstructured Subsystem 

A related problem is analyzed here that illustrates the connection with 

traditional transport-delay compensation schemes. The unstructured input 

subsystem is included here, which means the model for 1kW  need not be 

known, but the output of 1kW  can be determined for a given input. Recall that 

the real input to the system is the control signal ( )u t , illustrated in Figure 2-2, 

instead of the input to the unstructured subsystem 0( )u t . The cost-function for 

the problem may comprise an added control signal costing term.  

If the k-steps is the size of the smallest delay in every plant output channel, this 

means that the output is affected by the control signal at instant t at least k-steps 

later. The costing of the control signal then becomes: 

 ( ) ( )( ) ( )k
c ckF u t z F u t−=  (4.66) 

The control weighting operator ckF  has an inverse and assumed full-rank. So, a 

new signal is considered to minimise its variance. In parallel to the earlier RS 

problem, a multi-step cost-index are specified related to cost-function in (4.52). 

Extended Multi-Step Cost-Index: 

 
, ,

0 0{ | }
T

t k N t k Np P PJ E t
+ +

= Φ Φ  (4.67) 

The signal 
,

0
t k NP +

Φ  is an extension of (4.63), defined to comprise the costing term 

of the future control signal: 

 
( )

, ,

,

0 0 1
, , ,

2 2
,

t k N t k N

t k N

T
P CN P CN t N CN c fe ck N t N

T T T T
fe PN P fe N fe K fe ck N fe c

P E F U F k U F U

U V E U U U F U k
+ +

+

Φ = + + +

= + Λ + Λ +
 (4.68) 
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where the function , ,ck N t NF U  will usually be specified to have a straightforward 

diagonal structure: 

 ( ) ( ) ( ){ }, ,( ) ( ), ( 1),..., ( )ck N t N ck ck ckF U diag F u t F u t F u t N= + +  (4.69) 

Also, note that the vector of inputs: 

 0
, 1 , ,( )t N k N t NU W U=  

where 1 ,k NW  likewise has a block-diagonal-matrix form: 

 1 , , 1 1 1 ,

1 1

( ) { , ,... , }

[( )( ) ,...,( )( ) ]
k N t N k k k t N

T T T
k k

W U diag W W W U

W u t W u t N

=

= +
 (4.70) 

4.4.1 The RS Problem Solution 

This problem's solution develops from comparable steps to those given in 

Section 4.2.3 and is presented briefly here.  

Notice from (4.53) that 
, ,

0
, ,( )

t N t N

k
P P ck N t Nz F U−Φ = Φ +  and 

, , ,

0 0 0ˆ
t k N t k N t k NP P P+ + +

Φ = Φ + Φ  

where 

 , ,

,

0
, ,

0 0 1
, , ,

ˆ ˆ ( )
ˆ

t k N t k N

t k N

P P ck N t N

T
CN P CN t N CN c fe ck N t N

F U

P E F U F k U F U
+ +

+

Φ =Φ +

= + + +
 (4.71) 

The error of the estimation: 

 
, , ,

0
t k N t k N t k N

T T
P P fe PN PU V E

+ + +
Φ = Φ = 
   (4.72) 

The future predicted error values in the signal 
,

0ˆ
t k NP +

Φ  contains the estimated 

weighted errors vector 
,

ˆ
t k NPE
+

 and are orthogonal to 
,t k NPE

+

 .  
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Also, note that the estimation error is zero-mean and its product value with any 

known signal is anticipated null, and so the cost-function is given as: 

 
, ,

0 0
1

ˆ ˆ( ) ( )
T

t k N t k NP PJ t J t
+ +

= Φ Φ +   (4.73) 

where the optimal control delivers 
,

0 0ˆ
t k NP +

Φ =  

Optimality Condition: The optimality condition that governs optimal solution, 

consequently, is: 

 

( )

,

,

1 0
, 1 , ,

2 2
, 1 ,

ˆ ( ) 0

ˆ ( ) ( ) ( ) 0

t k N

t k N

T
CN P CN c fe ck N CN k N t N

T
CN P K fe ck N N k N fe c

P E F k U F F W U

P E U F W U t k t

+

+

+ + + =

+ Λ + + Λ =

 (4.74) 

4.4.2 The RS Control Signal 

To minimise the cost-index (4.73), the future optimal control signals vector from 

the optimality condition in (4.74) satisfies: 

 ( )
,

12 2
, 1 ,

ˆ( ) ( ) ( )
t k N

T
c K fe ck N N k N fe CN Pk t U F W U t P E

+

−
= − Λ + + Λ  (4.75) 

A different solution of (4.74), in a further easier form for application, gives: 

 ( ),

2 2
, 1 ,

ˆ( ) ( ) ( ) ( )
t k N

T
c K CN P fe ck N N k N fe ck t P E U F W U t k t

+

−= −Λ + + Λ  (4.76) 

Simplifying the Expression for the Gain: Equation (4.76), for future predicted 

error signals vector, is substituted to obtain a useful expression for the gain-

vector. Noting the expression (2.20) for 
,

ˆ
t k NPE
+

 then (4.71) is given as: 
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 ( )
, ,

,

0 0 0 1
, , ,

0
,

0 0 1
, , ,

ˆˆ

ˆ( | )
t k N t k N

t k N

T
P CN P CN t N CN c fe ck N t N

CN P PN N PN t N

T
CN t N CN c fe ck N t N

P E F U F k U F U

P D C A x t k t V U

F U F k U F U

+ +

+

Φ = + + +

= + + +

+ + +

 (4.77) 

The optimality condition becomes: 

 ( ),

0 0 0 1
, , , ,ˆ( | ) 0

t k N

T
CN P PN N PN t N CN t N CN c fe ck N t NP D C A x t k t V U F U F k U F U

+
+ + + + + + =  

or 

 ( ) ( )
,

0 1
, 1 , ,ˆ( | ) ( ) 0

t k N

T
CN P PN N fe ck N CN PN CN k N t N CN cP D C A x t k t U F P V F W U F k

+
+ + + + + + =  

Recall 0 2 1 2, ,T T T
CN fe PN CN fe N CN KP U V F U F= = Λ = Λ  and hence: 

 
( )
( )

,

2 2
, 1 ,

ˆ( | )

( ) 0
t k NCN P PN N

T T
fe ck N PN PN N k N fe c K c

P D C A x t k t

U F V V W U k k
+

+ +

+ + + Λ + Λ =
 (4.78) 

To simplify this equation, write T T
CN fe PNP U V=  and introduce the matrix: 

 T T
CN PN N PN PN NC P C A U V C Aφ = = fe  (4.79) 

Optimality Condition: The condition for optimality is similar to (4.61) but with 

added control weighting ,ck NF . 

 
( )

( )
,

2 2
1 , ,

ˆ( | )

( ) 0
t k N

T T
fe PN P PN N

T T T
fe PN PN N k N fe c fe ck N fe K c

U V D C A x t k t

U V V W U k U F U k
+

+ + +

+ Λ + + Λ =
 

or 

 
( )

( )
,

2 2
1 , ,

ˆ( | )

( ) 0
t k NCN P

T T T
fe PN PN N k N fe c fe ck N fe K c

P D C x t k t

U V V W U k U F U k

φ+
+ + +

+ Λ + + Λ =
 (4.80) 
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Optimal Control: The two solutions option for future optimal controls vector, 

in predicted future state estimate terms, therefore, becomes: 

 
( ) (

)
,

12
,

2
1 ,

ˆ( ) ( | )

( ) ( )
t k N

T
c fe ck N fe K CN P

T T
fe PN PN N k N fe c

k t U F U P D C x t k t

U V V W U k t

φ+

−
= − + Λ + +

+ + Λ
 (4.81) 

or 

 
( ) (

)
,

12 2
1 , ,( ) (( ) )

ˆ( | )
t k N

T T
c fe PN PN N k N ck N fe K CN Pk t U V V W F U P D

C x t k tφ

+

−
= − + Λ + + Λ

+ +
 (4.82) 

Solution Remarks: 

 The control law (4.81) and (4.82) comprises an internal process model, 

and the applied control law utilizes a receding-horizon idea as in the 

previous RS solution. 

 Noting 2 2( )T T
N fe PN PN N fe KX U V V U= + Λ + Λ  in the gain (4.82) turns out to be 

equal to the RS controller (4.28), when 1 ,k NW I=  and for a few cases as 

the control signal's costing term  , 0ck NF → . 

4.4.3 Optimal Predictive Control Signal 

The optimal control expression utilizing the present state estimate may now be 

derived. The expressions (4.81) and (4.82) can be reformed more by replacing 

for the optimal predicted state expression in (2.25). That is, from the optimality 

condition (4.80): 

 
( )( )

( )
,

1
0 0

2 2
1 , ,

ˆ( | ) ( , ) ( )

( ) 0
t k N

k
CN P

T T T
fe PN PN N k N fe c fe ck N fe K c

P D C A x t t T k z Bu t

U V V W U k U F U k

φ+

−+ +

+ + Λ + + Λ =
 (4.83) 
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It is helpful to distinguish the controls vector to be employed at instant t and 

future controls vector. The control at instant t is calculated for 0N >  using 

current and future controls vector by defining a matrix 0 [ 0] [ ,0,....,0]IC I I= = . 

This procedure allows the control at instant t to be retrieved from current and 

future controls vector as 0 , ,( ) [ ,0,....,0]I t N t Nu t C U I U= = .  

Also, note 0 1 0 1 ,( ) ( ) ( )k I k N fe cu t W u t C W U k t= =  and the term 
,

0
t k NPD
+

  is defined as: 

 
, ,

0 ˆ( | )
t k N t k NP P

k
CND P D C A x t tφ+ +

= +  (4.84) 

Thence, the optimality condition as: 

 
( )

( )
,

0 1
0 0 1 ,

2 2
1 , ,

( , )

( ) 0
t k NP I k N fe c

T T T
fe PN PN N k N fe c fe ck N fe K c

D C T k z BC W U k

U V V W U k U F U k

φ+

−+ +

+ Λ + + Λ =



 (4.85) 

 

Optimal Gain Vector: The optimal gain vector follows from (4.85) as: 

 
( )( )( ) (

)
,

1
2 2 0

1 , ,

1
0 0 1 ,

( )

( , ) ( )
t k N

T T
c fe PN PN N k N ck N fe K P

f I k N fe c

k t U V V W F U D

C T k z BC W U k t
+

−

−

= − + Λ + + Λ

+



 (4.86) 

An alternative expression for (4.85) is developed from optimality condition as:  

 ( ) ( )( )(
( ) )

,

12 0 1
, 0 0 1 ,

2
1 ,

( )

( , ) ( ) ( )

( )

t k N

c

T
fe ck N fe K P f I k N fe c

T T
fe PN PN N k N fe c

k t

U F U D C T k z B C W U t k t

U V V W U k t

+

−
−

=

− + Λ +

+ + Λ

  (4.87) 

where 0 1 , 1[ ,0,....,0]I k N kC W W= . To simplify this expression let, 

 2
,

T
F fe ck N fe KX U F U= + Λ  (4.88) 
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Optimal Control: Two possible expressions for future optimal controls vector, 

in current state estimate terms, from (4.86): 

 
( )( )( ) (

)
,

1
2 2 0

1 , ,

1
0 0 1 ,

( )

( , ) ( )
t k N

T T
c fe PN PN N k N ck N fe K P

f I k N fe c

k t U V V W F U D

C T k z BC W U k t
+

−

−

= − + Λ + + Λ

+



 (4.89) 

and from (4.87) (in a friendly implementation form): 

 

(
)

(
( )( ) )

,

,

1 0 1
0 0

2
1 ,

1

1 2
0 0 1 ,

( ) ( ( , )

( )) ( )

ˆ( | )

( , ) ( )

t k N

t k N

c F CN P f I

T T
fe PN PN N k N fe c

k
F CN P CN PN N

T T
f I f e PN PN N k N fe c

k t X P D C T k z BC

U V V W U k t

X P D P C A A x t t

C T k z BC U V V W U k t

+

+

− −

−

−

= − +

+ + Λ

= − +

+ + + Λ



 (4.90) 
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Theorem III: Optimal RS Control Law 

Consider plant linear part, disturbance and error weighting subsystem. Add in 

augmented state-space form (2.3), (2.4) to input from the stable first subsystem 

1kW  of the plant. Specify for 0N > , the predictive control multi-step cost-function 

to be minimised and comprises future cost terms sum in vector form as: 

 
, ,

0 0{ | }
T

t k N t k Np P PJ E t
+ +

= Φ Φ  (4.91) 

where from (4.92), signal 
,

0
t k NP +

Φ  depends on future error, control signal costing, 

and input terms: 

 
, ,

0 0 1
, , ,t k N t k N

T
P CN P CN t N CN c fe ck N t NP E F U F k U F U

+ +
Φ = + + +  (4.92) 

The cost-function weightings of the error and control-input are established in the 

RS problem (4.1), and they decide the cost-index block matrix forms:  

 
0 2

2 2

, ,

( ) ,

T T T
CN fe PN CN fe N PN PN N PN

T T
N fe PN PN N fe K CN PN N

P U V F U V C B E

X U V V U C P C Aφ

= = Λ = +

= + Λ + Λ =
 

The parameterised controller gain weighting 1 2
CN KF = Λ  is also included, and the 

control signal cost-function weighting ,ck NF  is diagonal control weighting (4.69) 

dependent upon ( )( ) ( )c ckF u t F u t k= − , where k is explicit transport-delay. 

The vector of optimal gain to minimise the variance (4.91), in the predicted state 

terms, is: 

 
( ) ( )(

( ) )
,

12
,

2
1 ,

ˆ( | )
t k N

T
c fe ck N fe K CN P f

T T
fe PN PN N k N fe c

k U F U P D C x t k t

U V V W U k

+

−
= − + Λ + +

+ + Λ
 (4.93) 
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The equivalent expressions, in the current state estimate terms: 

 
(

( )( ) )
,

1

1 2
0 0 1 ,

ˆ( | )

( , )

t k N

k
c F CN P

T T
I fe PN PN N k N fe c

k X P D C A x t t

C T k z BC U V V W U k

φ

φ

+

−

−

= − +

+ + + Λ
 (4.94) 

where the finite impulse response term: 

 1 1
0( , ) ( )( )k kT k z I A z zI A− − −= − −  

And the future controls vector are determined as , ( ) ( )t N fe cU U t k t= . 

Solution: The optimal control proof for the case when the input subsystem is 

used was provided prior to the theorem, which outlines the main findings. 

Remarks: 

 The two NPGMV control signal's styles have an advantage for the two 

similar structures for applying the controller. The first is illustrated in 

Figure 4-2 and is in the predicted state terms. 

 The controller comprises a Kalman predictor part, and it is essential to 

say, the Kalman filter order just depends on the plant delay-free linear 

subsystems. Therefore, the estimator order doesn't grow with channel 

delays. 
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Figure 4-2: Kalman predictor and the RS control signal generation 

4.4.4 RS Implementation 

To calculate the future controls vector for 0t > , define the matrix: 

 0 0I NC I=     (4.95) 

where 

 , 0 ,

( ) ( 1)
0

( ) ( )

f
t N I t N N

u t u t
U C U I

u t N u t N

   + 
   = =   =     
   + +   

   (4.96) 

Since the diagonal block formation of the control signal costing ,ck NF , observe 

that 1 1 1
0 , 0[ ,0,...,0]I ck N ck ck IC F F F C− −−= = . The optimal control at instant t is processed, 

utilizing (4.90) as: 

 
(

( ) )
1

,

1 2
0 0 1 ,

ˆ( | )

( , ) ( )

k
c F CN Pt k N

T T
f I f e PN PN N k N fe c

k X P D C A x t t

C T k z BC U V V W U k

φ
−

+

−

= − + +

+ + Λ
 (4.97) 
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4.4.5 Control Signal Alternative Expression 

Now obtain an alternative representation for the NPGMV optimal control, 

which motivates the controller's implementation illustrated in Figure 4-3.  

Using (4.94) and (2.25), (2.27) as: 

 
(

( )( ) )
,

1

1 2
0 0 1 ,

ˆ( | )

( , )

t k N

k
c F CN P

T T
I fe PN PN N k N fe c

k X P D C A x t t

C T k z BC U V V W U k

φ

φ

+

−

−

= − +

+ + + Λ
 

or 

 
( )(

( )( ) )
,

1 1 1
1 2 0

1 2
0 0 1 ,

( ) ( ) ( ) ( ) ( )

( , )

t k N

k k
c F CN P f f

T T
I fe PN PN N k N fe c

k X P D C A T z z t d t C A T z u t

C T k z BC U V V W U k

φ φ

φ

+

− − −

−

= − + − +

+ + + Λ
 (4.98) 

This equation needs the Kalman filter two paths to be split up as in Figure 4-3, 

involving computation of the separate transfers. 

 

Figure 4-3: Signal generation and the RS controller modules 
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4.5 Chapter Summary 

This Chapter summarises the linear RS control solution for the discrete-time 

state-space system description given in Chapter 2. The Chapter started by 

introducing and defining the linear RS controller parameterization in Section 

4.2. The RS optimisation problem and equivalent cost-function were described 

in Section 4.3, and this section concluded with a brief on the cost-function tuning 

variable. The second unstructured subsystem is presented in Section 4.4 by 

introducing the RS problem solution and showing how the RS control signal is 

generated. This section also provides a discussion on the RS implementation 

issues. In the next Chapter, the nonlinear RS control solution will be introduced 

for qLPV systems and a class of HS. 
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Chapter 5 Nonlinear RS Control 

In this Chapter, we describe the nonlinear RS controller solution for the system 

described in the state-space description given in Section 2.2 from Chapter 2. The 

RS controller solution is also provided for a class of HS. An introduction to 

nonlinear MPC is given in Section 5.1. The nonlinear RS solution is given in 

Section 5.2, and details are provided for the gains vector, the nonlinear RS 

controller and the RS control problem. Section 5.5 introduces a hybrid RS 

solution and gives detailed information on PWA, SD, and LHA. Sections 5.5.1 

and 5.5.3. assigns the conditions on which the SD system can be utilized for the 

nonlinear RS solution presented in Section 5.2. 

5.1 Introduction 

This section offers a short introduction to nonlinear MPC theory. It sets the 

basis on which the LPV predictive paradigm will be analysed in the next for the 

nonlinear RS controller state-space formulation. 

Early developments on the concept of predictive control are traced back to the 

innovative approach on optimal state-feedback control by Kalman and following 

methods of LQR and LQG controllers. In all these methods, a cost-function was 

involved in which output errors and control actions were penalised. The plant 

optimal control inputs were computed for the minimisation of that function. 

This framework allowed dealing with both tracking and regulating processes 

whilst control effort was maintained within a specified acceptable range at the 

same time.  
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Various practical extensions to these schemes were addressed over the years, 

like the addition of an integral action and direct control of plant outputs by 

modifying the cost-function. However, practical limitations in real applications 

motivated a predictive control methodology to address the following issues 

[66]: 

 Input, state and output constraints. 

 Process nonlinearities. 

 Model uncertainty. 

 

Figure 5-1: Process hierarchical structure of MPC and classical control 

In early process applications, MPC strategy started as the supervisory control 

module. The MPC was located at the higher-level of the hierarchical structure as 

in Figure 5-1. Within this framework, the MPC controller functioned more like 

an optimiser that determined the optimal setpoints for the low-level control 

loops (such as PID, lead-lag controllers). This setpoint computation was often 

based on plant economics and other slowly varying systems, whereas control 
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at low-level dealt with faster dynamic control loops. Initial MPC practical 

developments methodology were done by groups led by [67], [68]. And the first 

methodology involved impulse response models identified from open-loop tests 

to generate predictions. It considers the input and output constraints into the 

calculated optimal solution using the iterative algorithm, the mathematical 

dual of identification.  

 

Figure 5-2: The strategy of the MPC 

The second approach involved linear step response models for the same 

purpose and utilized a least-squares cost-function to be solved within a finite 

horizon. Both schemes could be employed for either scaler or MIMO systems. 

They could provide both trackings of a future trajectory whilst regulating the 

control cost by applying sufficient weighting on control signal moves. The 

second, however, in its initial development, did not consider constraints in its 

least-squares solution, and further development by Shell led to reformulating the 

DMC problem as a QP problem to deal with constraints explicitly [69]. 

To summarise, subject to input, state and output constraints, MPC philosophy 

involves solving an online open-loop finite horizon quadratic optimal control 

problem.  
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At each iteration k of the algorithm, current inputs sequence and measured 

variables are used within the internal discrete mathematical process model for 

system response future times prediction. This prediction horizon is computed 

over a specified time window PN  discrete steps and used within the quadratic 

MPC cost-function [70].  

The latter is then minimised for the optimal controls vector that achieves this 

objective subject to constraints. The length of the optimal controls vector is 

defined as the control horizon uN . The receding-horizon principle is then 

employed, according to which just the first element of the calculated optimal 

controls vector is utilized to control the plant. These steps are restarted in the 

next iteration for the updated state, as depicted in Figure 5-2.  

The solution of this dynamic optimisation problem at each iteration can be 

considered an indirect implementation of feedback. It is a useful feature 

because it can compensate for uncertainties due to model mismatch, 

disturbances, or noise present in the process. 

The linear MPC algorithm has been found to perform adequately, mostly in 

relatively simple and slowly varying processes and handle both soft and hard 

constraints where these apply. However, with the increasing complexity of 

processes and constraints set by more demanding designs and regulations, the 

control solution must operate the system in a broad conditions range. This task, 

coupled with the inherent nonlinear characteristics of most natural processes, 

motivates the development of more generic control schemes that can 

accommodate these requirements. 
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5.1.1 Nonlinear Predictive Control 

Linear MPC uses linear models to generate predictions and handle constraints. 

In contrast, nonlinear MPC algorithms are about using nonlinear models and 

constraints in the optimal solution. The process of developing an adequate 

nonlinear model for control design is an obstacle, given that the fundamental 

strength of nonlinear approaches lies in the model fidelity. These models can 

be obtained either via first principle modelling or other methods like black-box 

identification [71].  

Frequently, a combination of both yields efficient models for this purpose, 

known as grey-box modelling. Some methods use neural networks, fuzzy logic 

[72] etc. Nonlinear MPC may include offline optimisation like neighbouring 

extremals in which the optimal control problem full solution is derived offline. 

In the explicit schemes, the sequence of calculations are precomputed across 

the operating range, and the appropriate controller is chosen based upon the 

current value of the system state. However, this method involves 

computational complexity when the system has an extended operating range 

or many states. 

5.1.2 Implicit MPC 

In this category of implicit MPC schemes, an open-loop future control signal 

trajectory is used rather than a feedback control law. Thus, online optimization 

is executed, and the optimization problem is resolved at every instant, given 

measured or estimated state or output. Then for constrained systems, the 

optimal control is calculated utilizing a QP solver. The process output becomes 

an implicit nonlinear function of a controller's current state and the additional 
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variables, for instance, the current reference values [73]. The constrained MPC 

techniques solve a QP instantly to find out the optimal control. Referable to the 

calculations complication, implicit MPC imposes extra challenges when 

applied to rapid systems or small sampling times. 

5.1.3 Explicit MPC 

The fast advancement in multi-parametric programming techniques led to an 

optimization solution for some problems in an explicit manner. A control law 

was generated as a parametric function [74]. The explicit MPC algorithms 

complete most of the calculations offline. The optimization problem is worked 

out parametrically for all sets of variables, which fulfil the design constraints 

as presented in [75]. 

The main reward of the implicit schemes is abstract simplicity and how the 

constraints are contained. Still, the implicit approach demands a considerable 

measure of calculations that need to be executed online. Consequently, most 

utilized applications are somewhat slow dynamics because the optimization 

problem solution is needed at each sampling time.  

The explicit MPC problems result in online MPC control laws, and there is no 

need for optimization problem solutions at every time step. Instead, there is a 

performance index optimisation, constraints vector and parameters vector.  

The variables optimization solution is then retrieved as a parametric function 

and the parameters space domains in which these functions are valid. In 

general, the solution found by multi-parametric QP, a linear MPC controller 

gains set, is pre-calculated for various operating points set.  



Chapter 5 - Nonlinear RS Control 111 

     

The optimal control problem is consequently solved only once, and the results 

are stored for later online use. Gain-scheduling or switching is applied to choose 

the nearest gains in proportion to the current operating point. The explicit MPC 

algorithm has various crucial features: 

 The online processing time is low and of microseconds, if needed, and 

always desirable for rapid systems. 

 Implementation online is almost as simple as for classical controllers. 

 The real-time code is straightforward, short and efficient. 

However, explicit MPC becomes less desirable when the number of regions 

rises, as excessively memory usage is needed. It seems more desirable for 

systems of low-order when states are restricted to about ten or less [75]. 

5.2 Nonlinear RS Control 

The RS controller optimization is suitably established, but the method defined 

in the Chapter is new. While no approximation is needed, as in the optimization 

technique that appears in [76], [77], the controller is formed and specified in a 

structure in which pre-specified functions multiplied by gains found through an 

optimization. 

These functions could be the proportional, integrator, and derivative functions 

as in PID control; however, they could be far more general. Thus, a sum of eN  

dynamic functions can be chosen for its required unique frequency response 

property.  
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The control signal is recognized as follow: 

 
( )

( ) ( ) ( )

1
0

1

1 1 1
1 1 0 2 2 0 0

( ) , ( ) ( )

, ( ) ( ) , ( ) ( ) , ( ) ( )

e

e e

N

j j
j

N N

u t f z k t e t

f z k t e t f z k t e t f z k t e t

−

=

− − −

=

= + + +

∑



 (5.1) 

where 1 ), ( )(j jf z k t−  and ( )jk t  are the controller structure functions and gains, 

individually. The functions are frequency-sensitive dynamic terms selected by 

the control designer. The gains are time-varying gain vectors set, and in the 

simple case of a scalar PID, there are 3eN =  function block terms. Note that a 

more controller general structure requires past control terms on the right side 

of the equation (5.1), which is an essential extension. 

MIMO RS Control: Specific matrix terms are essential for the MIMO case. The 

functions ( )1 , ( )j jf z k t−  and gains ( )jk t  are specified in the next matrix: 

 ( )

1 1
11 11 1 1

1
1 22 22

1 1
1 1

( ) ( ) ( ) ( )
( ) ( )

, ( )

( ) ( ) ( ) ( )

j j j j
r r

j j

j j

j j j j
m m mr mr

f z t f z t
f z t

f z k t

f z t f z t

− −

−
−

− −

 
 
 =  
 
  



 





k k
k

k k

 (5.2) 

where r is the control input signal channels as: 

 01 020 0( ) ( ) ( ) ( )
TT T T

re e t e et t t=     (5.3) 

The terms in the RS control (5.1) have the form 1
0, ( )) ( )(j jf z k t e t− . As of (5.2) and 

(5.3), the impact of the thj  function term in every channel is described as: 

 

1 1 1
11 11 01 12 12 02 1 1 0

1 1 1
1 21 21 01 22 22 02 2 2 0

0

1 1 1
1 1 01 2 2 02

( ) ( ) ( ) ( ) ... ( ) ( )
( ) ( ) ( ) ( ) ... ( ) ( )

( , ( )) ( )

( ) ( ) ( ) ( ) ... (

j j j j j j
r r r

j j j j j j
r r r

j j

j j j j j
m m m m mr

f z k e t f z k e t f z k e t
f z k e t f z k e t f z k e t

f z k t e t

f z k e t f z k e t f z

− − −

− − −
−

− − −

+ + +

+ + +
=

+ + +

  

0) ( )j
mr rk e t

 
 
 
 
 
  

 (5.4) 
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Control Signal: The parameterized controller control signal follows from (5.1) 

and (5.5). 

 

( ) ( ) ( )

1
0

1

1 1 1
1 1 0 2 2 0 0

( ) ( , ( )) ( )
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∑

 (5.5) 

5.2.1 Vector of Gains 

The above results for the multivariable case appear rather complicated, and to 

reorganize the representation for the RS controller (5.5), the following functions 

vectors row and gains vectors column are specified. 

Allow the leading row in (5.5) be reworked utilizing: 

 

11 1 1 2 1 1
11 01 11 01 11 01

12 1 1 2 1 1
12 02 12 02 12 02

1 1 1 2 1 1
1 0 1 0 1 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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e

e
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and the second row: 
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Chapter 5 - Nonlinear RS Control 114 

     

and the final term: 

 1 1 2 1 1
0 0 0( ) ( ) ( ) ( ) ( ) ( )eNmr

e mr r mr r mr rf f z e t f z e t f z e t− − − =    

Define the block-diagonal-matrix: 

 { }1 2( ) ( ) ( ) ( )e f f fmF t diag e t e t e t=   (5.6) 

 { }11 12 1 21 22 2 1 2[ ], [ ], ,[ ]mrr r m m
e e e e e e e e ediag f f f f f f f f f=      

where 1 2( )
s

s s sr
f e e ee t f f f =    for 1,s m∈    . 

The following gains in every channel related to the separate inputs are labelled 

to match corresponding first row functions, second row, etc.: 
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 (5.7) 

Total Gain Vector: The structure of the total gain vector is: 

 

1 2
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# # #

T T T
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 (5.8) 
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Control Signal: The RS controller control signal can be processed as in (5.9) 

 

1 1

2 2

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
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f c
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u t F t t
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k
 (5.9) 

5.2.2 Nonlinear RS Controller Form 

The RS controller gains, which might embody the three gains vector as in a PID 

controller, can be divided into two elements. If the gains are split into a fixed 

part ck  and a time-varying part ( )ck t  giving: 

 ( ) ( )c c ck t k k t= +   (5.10) 

This design creates two interesting cases: 

 Letting 0ck =  is the absolute gain condition, and the controller full 

gain vector ( ) ( )c ck t k t=   is calculated for criterion minimization. 

 The so-called gain deviation case arises when assigning a constant gain 

vector 0ck ≠ , where ( )ck t  is calculated for criterion minimization. 

The nonlinear RS controller is given, utilizing (5.10), as: 

 { } { }1 1
0 0

1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
e e

e c e c e c
N N

j j j j
j j

u t F t k t F t k F t k t

f z k e t f z k e t− −

= =

= = +

= +∑ ∑





 (5.11) 

Implementing, say, a PID controller in this parallel arrangement involves the 

first element, which could be a fixed PID and another element that has the gains 
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of time-varying kind. If there is variation in the reference or disturbance signals, 

then the optimal time-varying gains will vary correspondingly. It is not adaptive 

in the typical sense, of course, but it does vary gains according to measured 

signal changes. 

The first condition is, of course, when the PID controller gains are minimized 

wholly. The second condition might be applied if a present PID controller is 

available, and this identifies the base gain term ck . The calculated gain hence 

is a variation around the fixed PID values. This last matter is understood as 

when utilizing two PID controllers in parallel, where one has fixed gains, and 

the other has time-varying gain. These two possible cases will be considered in 

the following, but note they do not provide the even optimal solution since the 

cost-function is different in the two cases. 

5.2.3 Nonlinear RS Control Problem 

For the next analysis, just the qLPV subsystem is used from subsystems shown 

in Figure 2-5, and the input subsystem is ignored by defining 1kW I= . With 

dynamic error weighting included, the performance index of the GPC [28], [78] 

that motivates the proposed RS criterion to be minimised is given as: 

 ( )2
0 0

0
e ( ) e ( ) ( ) ( ) |

N
T T

p p j
j

J E t j k t j k u t j u t j tλ
=

  = + + + + + + + 
  
∑  (5.12) 

where { | }E t⋅  is the conditional expectation on the measurements till time t and 

λ  is scalar weighting-factor on control action. The state-space models producing 

the signal pe  comprises dynamic weighting cost-function.  
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The RS criterion to be minimized has a similar method, but with added terms, 

for gains optimization. A controller gain variation restriction term is added into 

the criterion so that large gain variations are costed—besides, the possibility to 

restrict the gain rate of change in the same manner.  

The cost-function of the RS controller may, consequently, be expressed as: 

 { } { }, ,

0 2 0 2 2
, , |

t k N t k N

T T T T
t P P t N N t N c k c c d cJ E J E E E U U k k k k t

+ +
= = + Λ + Λ +∆ Λ ∆     (5.13) 

where the weightings 2 0kΛ >  and 2 0dΛ ≥ ,  and the incremental gain change: 

 ( ) ( ) ( 1) ( ) ( 1)c c c c ck t k t k t k t k t∆ = − − = − −    (5.14) 

As noted above, the fixed and the variation method of executing the controller 

advantage to distinct solutions as the cost-index (5.13) hinges on ( )ck t , which is 

part or either all gains vector optimized. 

Criterion Terms: A review of the weighting terms in the criterion is given here. 

Two weightings involved in the costing of the controller gains are significant 

in this RS solution. 

 { }2 2 2 2
0 1, ,...,N Ndiag λ λ λΛ =  are the control inputs 0u  static weightings. 

 { }2 2 2 2
0 1, ,...,k Ndiag ρ ρ ρΛ =  are the controller gains changes weightings. 

 { }2 2 2 2
0 1, ,...,d Ndiag γ γ γΛ =  are the controller gains deviations increments 

weightings. 
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5.3 The RS Controller Solution 

The cost-function is introduced in the state estimate and state estimation error 

terms, and so an optimal state estimator is usually essential. For the qLPV state-

estimation and prediction, the future weighted errors vector can be swapped by 

terms of orthogonal predicted errors and estimation error; using a TVKF, the 

expression in (5.13) becomes: 

 { }
, , , ,

0 2 0 2 2
, ,

ˆ ˆ( ) ( ) |
t k N t k N t k N t k N

T T T T
P P P P t N N t N c k c c d cJ E E E E E U U k k k k t

+ + + +
= + + + Λ + Λ +∆ Λ ∆   

   (5.15) 

The cost-index terms can here be made simpler by reaffirming optimal estimate 

,
ˆ

Pt k NE +  and the estimation error ,Pt k NE +
  orthogonality again as: 

 
, ,

0 2 0 2 2
, , 0

ˆ ˆ
t k N t k N

T T T T
P P t N N t N c K c c d cJ E E U U k k k k J

+ +
= + Λ + Λ + ∆ Λ ∆ +   (5.16) 

where both the term: 

 
, ,( | )

t k NP PN N PN N t k NE C A x t k t C D W
+ += + +  

The cost term 
, ,0 ( ) { | }

t k N t k N

T
P PJ t E E E t

+ +
=    doesn't depend on the control action.  

Noting (2.48) the state-estimates vector is given as: 
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0
,

ˆ
t k N t k NP P PN t NE D V U
+ +

= +  (5.17) 

Noting that ˆ( | )x t k t+  just depends on the control signal past values. The multi-

step cost-function (5.16) is developed as: 
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 (5.18) 
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The controller structure is assigned the preferred structure before conduction 

the optimal control optimization calculation, where , ( ) ( )t N fe cU U t k t= . From 

(5.10), (5.14), noting 1kW I=  , so that 0
, ,t N t NU U=  and substituting in (5.18) gives: 

 ( )

( )

, , ,

,

2 2

2 2 2
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Λ − + Λ + Λ + Λ + − Λ −

  



0) J+

 (5.19) 

5.4 Nonlinear RS Optimisation 

The cost-function (5.19) can be simplified by defining and substituting for 

expressions (5.20), (5.21) and (5.22). 

 2 2 2( )T T
N fe PN PN N fe K DX U V V U= + Λ + Λ + Λ  (5.20) 

 T T
CN fe PNP U V=  (5.21) 

 CN PN NC P C Aφ =  (5.22) 

Moreover, the following cost-function can be obtained: 

 ( )
( )

, , ,

,

2 2

2 2
0

( )

( ) ( 1) ( )

( ) ( 1) ( ) ( )

t k N t k N t k N

t k N

T T
P P c CN P

T T T T
P CN c c k c d c

T T
c k c d c c N c

J D D k t P D

D P k t k k t k t

k t k k t k t X k t J

+ + +

+

= +

+ − Λ − − Λ

− Λ + Λ − + +

  

  (5.23) 

The cost-function (5.23) can be given in concise form as in (5.25) by defining the 

signal ( )tϕ : 
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 2 2( ) ( 1)k c d ct k k tϕ = −Λ − Λ −  (5.24) 

 , , , ,

0

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
t k N t k N t k N t k N

T T T T
P P c CN P P CN c

T T T
c c c N c

J D D k t P D D P k t

t k t k t t k t X k t Jϕ ϕ
+ + + +

= + +

+ + + +

   

 (5.25) 

where 2 2
0 0( 1) ( 1)T T

c k c c d cJ k k k t k t J= Λ + − Λ − + . 

This cost term minimising approach is nearly the same as if conditional cost-

function is employed if the signals are deterministic. The cost-function gradient 

is set to zero to achieve the future optimal control signals vector. From a rather 

evident perturbation and gradient computation [38], and remarking that the 0J  

term doesn't depend on the control signal, and the optimal control gain signals 

vector is: 

 ( ) ( ),

12 2 2( ) ( ) ( )
t k N

T T
c fe PN PN N fe K D CN Pk t U V V U P D tϕ

+

−
= − + Λ + Λ + Λ +  (5.26) 

Define 
, ,

0
t k N t k NP CN PD P D
+ +

=   then (5.26) can be presented as: 

 ( ),

1 0( ) ( )
t k Nc N Pk t X D tϕ
+

−= − +  (5.27) 

where 
, ,

0 ˆ( | )
t k N t k NP CN PD P D C x t k tφ+ +

= + +  

Asymptotic Behaviour: Noting (5.20) and (5.24) if 2
d IΛ → ∞×  the restricting 

gain ( ) ( 1)c ck t k t= −  along with the values of the gain turns out to be constant. 

If 2
k IΛ → ∞×  the restricting gain ( )c ck t k=  and gains turn out to be the same as 

the PID constant primary gain values. 
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5.5 Hybrid RS Control 

The work in  [79], [80] utilized NGMV to control PWA converted into nonlinear 

SD systems through creating related binary functions to demonstrate the 

switching surfaces crossing conditions. The lead of SD systems upon PWA 

systems is that SD systems design is a lot simpler, as the switching conditions 

together with state, input constraints are all contained in the same system 

model. This section will follow the same approach and use the nonlinear RS 

solution given in Section 5.2 to control SD systems by firstly obtaining the PWA 

in the SD form, and then the RS algorithm can be employed. 

 

Figure 5-3: Links between the classes of HS 

HS comprise together continuous and discrete elements. Most recently, HS has 

obtained consideration from the computer science community and control 

society. Since there are no exclusive workable analyzing methods for general 

HS, some researchers devoted their work to particular subclasses of HS that 

have established analysis and control design techniques. LC systems [81], [82], 

MLD systems [83], first-order linear HS with saturation [84], PWA systems [85], 

MMPS systems [86], and others are subclasses examples. Besides, computer 
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scientists have also suggested several models, including HA [87], which are 

possibly the most dominant model. Equivalence conversion among the 

subclasses MMPS, ELC, LC, MLD and PWA systems was given in moderate 

conditions [88]. Recently, equivalence relations between PWA systems and SD 

systems were introduced in [79] and was extended by [89] to show the relation 

between SD models and LHA, as illustrated in Figure 5-3.  

Each subclass has its advantages over the others. These equivalence relations 

are important because they allow the relocating of theoretical assets and tools 

from one class to another. To analyse an HS that fits any of these classes, one 

can select the most useful hybrid modelling structure. Control algorithms 

formed for PWA systems are frequently created utilizing optimal control or 

MPC methods. The former MPC algorithm for HS, established for the MLD 

system equivalent to the PWA system, is given in [83]. However, the algorithm 

implementation needs high computing capacity, mainly caused by the NP-hard 

MIQP online problem solution needed to be completed at every time instant, 

which is considered a downside. 

5.5.1 Systems Equivalence: PWA and SD 

The discrete-time PWA systems described in [90] is very common compared to 

other major PWA descriptions since disturbances and time-delays are contained 

easily. The SD structure expansion for PWA systems in the system model 

characteristics was inspired because some HS control problem solutions are not 

practical. Also, SD systems are simpler to design and identify than other HS 

methods and comprises states, input constraints, and switching conditions.  

The SD system is important also as parametric model uncertainty arises [91], 

or in nonlinear system approximation through the SD system cases, especially 
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when approximation by LTI model is not proper or enough. The benefits of this 

method are: 

 SD system requires less logical supervision than other HS controllers. 

 System time delay and disturbances can be easily modelled and added 

in the plant model. 

 Other nonlinearities or uncertainties modes can be augmented simply 

in SD systems. 

5.5.2 PWA Systems 

The state-space description of the delayed discrete-time PWA system is: 

 
( 1) ( ) ( ) ( )
( ) ( ) ( )

i i i i

i i i

x t A x t B u t k D t f
y t C x t E u t k g

ξ+ = + − + +
= + − +

 (5.28) 

where the state is nx∈ , the input is mu∈  , the output is py ∈ , nd∈  is the 

disturbance, and common delay elements magnitude is k .  

Each affine subsystem ( ), , , , ,  1, ,i i i i iA B C D E i s=   is specified on a polyhedron 

cell n m
iΩ ⊂ ×  . 

Additionally, to make the explanation more accessible, the polyhedral cells sets 

are specified by matrices ,  ,  ix ix iuG h G  and iuh  as: 

 |i ix ix iu iu

x
G x h G u h

u
   Ω = ≤ ∧ ≤  
   

 (5.29) 

The cells in (5.29), satisfy i jΩ ∩ Ω = ∅ , i j∀ ≠  and the union describes the states 

and inputs admissible set 1
s
i i=Ω = ∪ Ω . 
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5.5.3 SD Systems 

A SD system entails a time-varying state equation and depends on states, inputs, 

other varying parameters, or even a command request. The SD system can have 

this structure: 

 
( ) ( ) ( )

( ) ( )
( 1) ( ), ( ) ( ) ( ), ( ) ( ) ( ), ( ) ( )

( ) ( ), ( ) ( ) ( ), ( ) ( )
sd

sd

x t A x t u t x t B x t u t u t k D x t u t t

y t C x t u t x t E x t u t u t k

ξ+ = + − +

= + −
 (5.30) 

Definition: The well-posed PWA model (5.28) is given in the SD model (5.30) for 

the feasible states and inputs polyhedral partition set 1
s
i i=Ω = ∪ Ω . Its related 

system parameters , , , ,i i i i iA B C D E , 1,. . . ,i s=  in (5.28). There is a system 

combination ( , ), ( , ), ( , ), ( , ), ( , )A x u B x u C x u D x u E x u  of (5.30) for all PWA system 

trajectories ( ),  ( ),  ( )x t u t y t  in (5.28) to fulfil the SD model (5.30). 

To prove this and to consider the PWA system (5.28), the condition (5.29) is 

reshaped in auxiliary logic operator { }( ) 0,1i tδ ∈  as: 

 
1 ( ) ( )

( )
0

ix ix iu iu
i

if G x t h G u t h
t

otherwise
δ

  ≤ ∧ ≤
= 


 (5.31) 

Hence, the well-posed system (5.28) with its partitions in (5.29) can be provided 

in the form given in (5.32). 

 1

1

( 1) ( ) ( ) ( )

( ) ( ) (

( )

( ) )

s

sd i i i i
i

i

i

s

sd i i i
i

x t A x t B u t k D t f

y t C x t k g

t

t E u t

δ

δ

ξ
=

=

+ =  + − + +  

=  + − +  

∑

∑
 (5.32) 

Noting, the logic variable value in (5.31) depends on the state and input signals. 

Identify the function of less or equal ( , )LE x m : 
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 )
1

(
0

,
if x m
els

L
e

E x m
  ≤

= 


 (5.33) 

The constant nm∈ , consequently: 

 ( ( ), ) ( ( )( ,) )j j l l
ix ix iu u

j
ii

l
LE G x t h LE Gt u t hδ = ∏ ∏  (5.34) 

where j  and l  indicate thj  and thl  rows, correspondingly.  

The notation in (5.30) is simplified noting ( )( ), ( )sdA A x t u t=  and likewise for 

,  ,  sd sd sdB C D  and sdE  then substituting (5.34) in (5.32), the equivalence system 

shown in Figure 5-4 is obtained as: 

 

1

1

( 1) ( ( ), ) ( ( ), ) ( )

              ( ( ), ) ( ( ), ) ( )

           (

sd

sd

A

s
j j l l

sd ix ix iu iu i sd
i

B

s
j j l l
ix ix iu iu i

i

ix

j l

j l

x t LE G x t h LE G u t h A x t

LE G x t h LE G u t h B u t k

LE G

=

=

 
+ =  

 

 
+ − 

 

+

∏ ∏

∏ ∏

∑

∑





1
( ), ) ( ( ), ) ( )

sdD

s
j j l l

ix iu i
i j l

u i sdx t h LE G u t h D tξ
=

 
 
 

∏ ∏∑


 (5.35) 

 
1

1

( ) ( ( ), ) ( ( ), ) ( )

           ( ( ), ) ( ( ), ) ( )

sd

sd

C

s
j j l l

sd ix ix iu iu i sd
i

E

s
j j l l
ix i

j l

j l
ix u iu i

i

y t LE G x t h LE G u t h C x t

LE G x t h LE G u t h E u t k

=

=

 
=  

 

 
+ − 

 

∑

∑

∏ ∏

∏ ∏





 (5.36) 

Consequently, the PWA system (5.28) is moved into an SD system (5.37) that 

has the type of (5.30). 

 
( 1) ( ) ( ) ( ),      ( )
( ) ( ) ( )

sdn
sd sd sd sd sd sd sd

sd sd sd sd

x t A x t B u t k D t x t R
y t C x t E u t k

ξ+ = + − + ∈
= + −

 (5.37) 
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Figure 5-4: Equivalence system structure 

Example: An example found in [83] is used to demonstrate the equivalences 

given above as: 

 
0.8 ( ) ( ) ( ) 0

( 1)
0.8 ( ) ( ) ( ) 0

x k u k when x k
x k

x k u k when x k
 + ≥

+ = − + <
 (5.38) 

The system in (5.38) can be converted to the SD model: 

 
( )
( )

( 1) ( ),0 0.8 ( ) ( )

( ),0 0.8 ( ) ( )

x k GE x k x k u k

LT x k x k u k

+ = ×  +  
+ × − +  

 (5.39) 

Moreover, during the optimization, the following constraints must be satisfied: 

 
10 ( ) 10

1 ( ) 1
x k
u k

− ≤ ≤
− ≤ ≤

 (5.40) 



Chapter 5 - Nonlinear RS Control 127 

     

5.6 Chapter Summary 

This Chapter summarises the nonlinear RS control solution for the discrete-time 

state-space system description provided in Chapter 2. The Chapter started by 

giving an introduction to nonlinear MPC in Section 5.1. The nonlinear RS 

controller structure was defined in Section 5.2, and details were provided on 

the vector of gains, the RS controller form and the controller problem. The 

nonlinear controller solution is provided in Section 5.3.  

Besides, Section 5.4 is concerned with the evaluation of the nonlinear RS 

optimisation procedures. Finally, the Chapter concluded with an extension for 

the solution towards a subclass of HS. The PWA and SD equivalence definition 

is given. This definition can be used to utilize the nonlinear solution for PWA 

systems. In the next Chapter, the LPV polynomial solution will be introduced 

for systems in polynomial form. 
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Chapter 6 Polynomial LPV RS Control 

The polynomial RS controller structure that acts within the feedback loop is 

described in this Chapter for the polynomial system representation provided 

in Chapter 3. The RS controller parameterisation is given, and the RS controller 

for an extended PID is discussed in Section 6.2. The explanation of the RS LPV 

predictive control problem is provided in Section 6.3. Finally, this Chapter 

concludes with a brief description of the design strategy. 

6.1 Introduction 

A new RS MBPC law is described for systems described in a polynomial matrix 

structure with parameters that may be time-varying and known. The use of LPV 

polynomial system descriptions is somewhat unusual, even though the use of 

transfer function based models for LTI systems are common. In the current 

problem, the plant model is represented by what might be termed an ARMAX 

model. This ARMAX model's parameters are expected to be LPV, a particularly 

suitable representation for use with the polynomial based RS controllers. 

The RS controller's idea is that designers choose a controller structure of the 

usual low-order form for commissioning engineers. It seems reasonable to use a 

discreet transfer function style of the controller to compensate for a plant in 

LPV ARMAX form. This style might involve a classical controller structure with 

a multivariable PID or lead-lag form with time-varying parameters. There are 

several reasons for using an RS control solution. One of the reasons is the ease 

of tuning or re-tuning by technician engineers on a plant.  
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With most model-based optimal control solutions, it is not straightforward to 

provide technician engineers with the ability to re-tune the control-loop without 

the aid of advanced control knowledge and special computing tools.  However, 

an RS controller has familiar tuning knobs or parameters. 

Another reason for the use of RS control solutions is the fact that low-order 

controllers have natural robustness. When plant model mismatch arises, a low-

order control solution is much less likely to be destabilised than a high-order 

controller attempting rather complicated gain and phase shifts in critical 

frequency regions. If a low-order controller can provide the performance 

required, it is more desirable than a high-order control solution. In addition to 

the form of RS controller proposed, it is possible to minimise gains, which is 

also very desirable for many reasons, including power usage. 

GPC is used to optimise the RS controller gains and is one of the most popular 

forms of MPC law for many industrial applications. The optimal solution is in 

the best gains terms, which minimise a predictive cost-function for selected and 

decided controller structure, and this is different from the conventional MPC 

approach. For example, MPC laws employ a natural 2-DOF control structure, 

and even if the 2-DOF structure is decided, the RS results are likely to be sub-

optimal depending on the choice of structure.  

However, the benefit remains in adopting the low-order controller since it is a 

robust controller, simple for implementation, and easy to be re-tuned by a 

somewhat inexperienced engineer. 
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6.2 RS Controller Parameterising 

A 3-DOF controller in an RS form is to be used; therefore, the controller has 

individual feedback, feedforward and tracking terms. The use of RS controller 

structures is well established, but the approach used here is different from that 

in earlier work, where the controllers were understood to be LTI [92], [93]. The 

functions that are used to decide the controller formation are picked before the 

optimisation is performed. In a simple case, as observed in PID, these can be 

proportional, integrator and derivative functions, or the delay operator terms 

in a more general controller structure for a MIMO system. These results will be 

valid to a more general LPV multivariable controller form, where the feedback 

controller may be characterized in the form: 

 ( ) ( )
( )0

0

1
1

1

0 ,
,

,
n

d

t
t

t

C
C

z

zC
z

ρ
ρ

ρ

−

−

−
=  

6.2.1 Extended PID RS Controller 

In the simplest single-DOF case, a sum of eN  frequency-sensitive linear dynamic 

functions are picked separately with a distinctive frequency response property, 

and the control action becomes: 

 ( )1
0 0

1
( ) , ( ) ( )

eN

j j
j

u t f z k t e t−

=

= ∑  (6.1) 

The RS controller control action is generated by adding the sum of the functions 

vector. These functions and gains in (6.1) decide the RS controller dynamics, 

thus from (6.1): 
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 ( ) ( ) ( )1 1 1
0 1 1 0 2 2 0 0( ) , ( ) ( ) , ( ) ( ) , ( ) ( )

e eN Nu t f z k t e t f z k t e t f z k t e t− − −= + + +  (6.2) 

The designer specifies the dynamic functions 1( , ( ))j jf z k t− . The gains ( )jk t  are 

non-dynamic time-varying gain vectors of the MIMO system controller set. 

6.2.2 General RS Controller Parametrising 

A traditional controller for the LPV system can be expressed in a similar way 

using a multivariable ARMAX model. That is if a traditional controller is stated 

in unit-delay operator scalar form in (6.3). 

 
( )1

0 0 0

1
0 1 2

0-1 2
1 2 2

( ) , ( )

...
( )

...

m

n n n

d

d d d

n

t

n

u t C z e t

C C z C z
e t

I C z C z C z

ρ−

−−

− −

=

+ + +
=

+ + + +

 (6.3) 

where the parameter matrices or functions are LPV. Then, the gains in the 

controller denominator (6.3) can likewise be optimised in this problem. After 

manipulation, the control signal may be rewritten in a form that is more 

convenient for computations: 

 
( )
( )

1
0 0 1 2 0

-1 2
1 2 2 0

( ) ... ( )

... ( )

m

n n n

d

d d d

n

n

u t C C z C z e t

C z C z C z u t

−−

− −

= + + + −

+ + +
 (6.4) 

This form is also suitable for multivariable systems where the coefficients are 

matrices. 

Controller Multivariable Parameterisation: The modified controller structure 

(6.4) can be introduced in (6.5) by modifying (6.1) to have a more generalisation 

covering the above controller parameterisation cases. 



Chapter 6 - Polynomial LPV RS Control 132 

     

 ( )1
0 0

1
( ) , ( ) ( )

eN

j j
j

u t f z k t c t−

=

= ∑  (6.5) 

where the vector 0 0 0( ) [ ( ) ( )]T T Tc t e t u t= − . 

Moreover, this is suitable for a 3-DOF more general controller structure, and 

the different cases require different definitions for 0( )c t  as described below. 

Single-DOF Extended PID Structure: In this simple case, the feedback 

controller input 0( ) ( ) ( )c t r t y t= − , where the optimal control is given by (6.1) or 

(6.2). For a Single-DOF case, the controller inputs number of q totals the number 

of measurement channels q r= . 

General Traditional Controller Structure: In the further typical case: 

 0 0 0( ) ( ) ( )
TT Tc t e t u t = −   

The various DOF for the controller varies on the description of the signal 0e . 

For example, for the more typical controller structure and a 3-DOF control law 

issue, as illustrated in Figure 6-1, the signals 0( )e t  and 0( )c t : 

 0 0

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

TT T T

TT T T T

e t z t r t d t

c t z t r t d t u t

 = − 

 = − − 

 (6.6) 

The reference is not needed in output regulating problems or if there is no 

measurement of the disturbance, and the feedforward term can be omitted for 

2-DOF control problems. For the optimisation steps that follow in the next 

section, it does not matter about the particular case considered since the vector 

0( )c t  can be created for every error channel in scalar signals terms: 

 
1 20 0 0 0( ) ( ) ( ) ( )

q

T
qc t c t c t c t R = ∈   (6.7) 
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where q denotes the number of rows in the vector 0( )c t  

Each term in the summation (6.5) has the functions 1( , ( ))j jf z k t− , and for the 

multivariable case, it is expected that the function may be expanded as follows: 

 ( )

1 1
11 11 1 1

1
1 22 22

1 1
1 1

( ) ( ) ( ) ( )

( ) ( )
, ( )

( ) ( ) ( ) ( )

j j j j
r q

j j

j j

j j j j
m m mr mq

f z t f z t

f z t
f z k t

f z t f z t

− −

−
−

− −

 
 
 

=  
 
 
 



 





k k

k

k k

 (6.8) 

 

11 12 1

21 22

1

j j j
q

j j

j

j j
m mq

k k k

k k
k

k k

 
 
 

=  
 
 
 





 



 (6.9) 

RS Controller Structure: The term for the control signal, as a result of the 

parameterised controller (6.5), turn into: 

 

{ }
{ }

1 2

1 2

1 2

1 1 1
11 11 0 12 12 0 1 1 0

1

1 1 1
21 21 0 22 22 0 2 2 0

10

1 1 1
1 1 0 2 2 0

( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( ) ( ) ( ) ... ( ) ( )
( )

( ) ( ) ( ) ( ) ... ( )

e

q

e

q

N
j j j j j j

q q
j
N

j j j j j j
q q

j

j j j j j
m m m m mq m

f z k c t f z k c t f z k c t

f z k c t f z k c t f z k c t
u t

f z k c t f z k c t f z k

− − −

=

− − −

=

− − −

+ + +

+ + +
=

+ + +

∑

∑


{ }0
1

( )
e

q

N
j

q
j

c t
=

 
 
 
 
 
 
 
 
 
 
 
∑

(6.10) 

6.2.3 Parameterized Controller 

The results in (6.10) offering a reasonable controller parameterisation; however, 

it can be expressed in a more gains optimisation accessible form. Thus, define 

the function is
ef  and gain vector is

ck  to satisfy (6.11). 
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1

2
1 1 2 1 1

0 0 0[ ( ) ( ) ( ) ( ) .... ( ) ( )]e

s s s

e

i s

i sNis is
e c is is is

N
i s

k
k

f k f z c t f z c t f z c t

k

− − −

 
 
 

=  
 
 
 



 (6.11) 

The impact on the channel i  control signal relating to the channel s  controller 

input is given in (6.12). 

 { }

1 1 1 2 1 2 1
0 0 0

1
0

1

( ) ( ) ( ) ( ) .... ( ) ( )

( ) ( )

e

s s s

e

s

Nis is r
e c is is is is is is

N
j j

i s is
j

f k f z k c t f z k c t f z k c t

f z c t k

− − −

−

=

= + + +

= ∑
 (6.12) 

The gain vectors ij
ck  are labelled corresponding to controller row number i  and 

controller input number j . The vector size differs on functions number eN : 

 

11 1
111 12
22 2
1111 11 12 12

11 12 1

11 1
21 22

22 2
21 21 22 22

21 22

, ,... , ,...

, ,... ,

e e e

e e

q

qq
c c c

N N N
q

mq

mqmq
c c c

N N N
mq

kk k
kk k

k k k

k k k

kk k
kk k

k k k

k k k

    
    
    = = =     
    
         

   
   
   = = =   
   
      

 



 



e

 
 
 
 
 
 
 

 

From (6.10) and (6.12) the parameterised control signal can be expressed as: 

 

1 111 11 12 12

2 221 21 22 22

0

1 1 2 2

...

...
( )

...

q q
e c e c e c

q q
e c e c e c

mq mqm m m m
e c e c e c

f k f k f k
f k f k f k

u t

f k f k f k

 + + +
 

+ + + =  
 
 + + + 



 (6.13) 
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Total Gain Vector: For the gain calculation algorithm, all gains need to be 

stacked in one vector. The various channel gains (6.10) may be arranged to 

agree to the row vectors dimensions in (6.11) to achieve the total gain vector as: 

 
1 2

( )
m

TT T T
c c c ck t k k k =    (6.14) 

where the eq N×  vector, 

 
1 2

1 2

( )
T TT

i

e

T
i i qi

c c c c

TNis
c is is is

k t k k k

k k k k

 =  

 =  





 

Moreover, the gains vector is arranged in the controller channel inputs terms. 

Thus, introduce the block-diagonal-matrix: 

 

111

221

1

0 0
0 0 0 0

( ) 0 0 0
0 0 0 0
0 0 0 0 0

q
e e

q
e e

e

mqm
e e

f f
f f

F t

f f

 
 
 
 =
 
 
 
 

   

    

  

  

  

 (6.15) 

The parameterised control signal (6.13) may be given as: 

 ( ) ( ) ( )e cu t F t t= k  (6.16) 

The block-diagonal-matrix of the signals (6.15) can be represented in the form: 

 { }
1 2

( ) ( ) ( ) ( )
me f f fF t diag e t e t e t=   (6.17) 

where 1 2( ) , [1, ]
i

iqi i
f e e ee t f f f i m = ∈   

Parameterized Control: The control signal to be employed in (6.10), in terms of 

the total gain vector, and (6.17), becomes: 
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{ }

1

2

1 2

1

2
0

1

2

( )

( )
( ) ( ) ( )

( )

( ) ( ) ( )

m

m

f c

f c
e c

f cm

c

c
f f f

cm

e t k

e t k
u t F t k t

e t k

k
k

diag e t e t e t

k

 
 
 = =  
 
  

 
 
 =
 
 
  







 (6.18) 

Total Gain Vector: The total gain-vector ck  to be optimised comprises the 

controller gains for every channel. The gain-vector has em q N× ×  rows, which 

may be written as: 

 
1 2

1 211 12 21 22 1 2

( )
m

TT TT T T T T T

TT T T
c c c c

T

mqq q m m
c c c c c c c c c

channel gains channel gains channelm gains

k t k k k

k k k k k k k k k

 =  

 
 =
 
 



   

  

1 2

 (6.19) 

6.2.4 RS Controller Gains 

It is possible to create the RS controller gain based on a fixed or “baseline” gain 

plus “deviation” terms. For the optimisation process, the gains are divided into 

a baseline part ck  and deviation part ( )ck t , which is a time-varying. 

where 

 ( ) ( )c c ck t k k t= +   (6.20) 

The cost-minimisation problem to be defined includes the gain deviation ( )ck t  

and yields two interesting and exceptional cases: 
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 The case of absolute control gain in which the total controller gains are 

computed for predictive control criterion minimization by adjusting 

0ck = , noting c ck k=  . 

 The case of deviation in which the gain deviation ck  is calculated for 

predictive control criterion minimization, noting 0ck ≠ . 

The absolute controller gains are minimised in the above first case, and this is 

more suitable for new RS controller designs. If there is an existing PID 

controller, the active controller gains will identify the baseline gains. The 

second case applies, and gain deviation around the baseline PID is minimised. 

This case is similar to when two PID controllers are connected in parallel, one 

with fixed gains and the other has time-varying gains.  

The RS controller is given utilizing (6.5) and (6.20): 

 { } { }1 1
0 0 0

1 1
( ) ( ) ( ) ( ) ( )

e eN N

j j j j
j j

u t f z k c t f z k c t− −

= =

= +∑ ∑   

In the parametrisation and matrix ( )eF t  terms, the RS control law may be given 

as in (6.21). 

 0( ) ( ) ( ) ( ) ( )e c e c e cu t F t k F t k F t k t= = +   (6.21) 

6.2.5 Future Controls Vector Parameterisation 

The GPC control signal at instant t is formed using receding-horizon theory [65]. 

The future controls vector 0
,t NU  is processed to minimise multi-step cost-function 

over prediction horizon N. Then, the first element 0( )u t  in the vector 0
,t NU  is 

used at instant t, and other future values 0 0( 1), ( 2),u t u t+ +  are neglected.  
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At the following time instant, the optimal control is again restarted for the 

entire horizon, and just the first value is applied. The RS control problem 

solution involves a related process; however, the optimal control is computed 

using a pre-specified controller structure. A receding-horizon type of philosophy 

can again be invoked. Still, variances of the future tracking and control action 

are minimised, assuming the controller's structure and gains are fixed over the 

prediction time interval. It is assumed that the RS controller gain vector ( )ck t  

is fixed through prediction interval [0,  ]N , and the optimal gain vector is 

computed to minimise the criterion.  

The current control 0( )u t  is then computed from (6.18) using the optimal gains 

( )ck t . In the same receding-horizon control approach and at the following time 

instant, the procedure is restarted to produce an updated gain vector value and  

(6.18) is employed again to generate the control. 

Future Controls Vector: Using (6.18) and the predicted future values of ( )teF , 

as in (6.22) then the future controls vector 0
,t NU  using receding-horizon approach 

are given as: 

 0
,

( )( )
ˆ ( 1)( 1)

( )

ˆ( ) ( )

t N c

tu t
tu t

U k t

u t N t N

  
   ++   = =   
  

+  +    



e

e

e

F
F

F

 (6.22) 

Prediction Control Matrix: The matrix (6.22) may be defined U fe  and 

expressed as in (6.23). 

 ˆ ˆ( ) ( ) ( 1) ( )
TT T T

fe e e eU t F t F t F t N = + +   (6.23) 

The  thi  block row in (6.23) has this matrix in (6.24). 
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 { }
1 2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
mf f ft i diag e t i e t i e t i+ = + + +eF  (6.24) 

Given the error predicted values, then the control action i-step-ahead is: 

 { }
1 2

0
ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( )
m

c

f f f c

u t i t i k t

diag e t i e t i e t i k t

+ = +

= + + +

eF
 

Parameterised Predictive Control: The future controls vector is then given in 

the parameterised predictive controller terms as: 

 0
, ( ) ( )t N fe cU U t k t=  (6.25) 

where 

 

{ }
{ }

{ }

1 2

1 2

1 2

( ) ( ) ( )

ˆ ˆ ˆ( 1) ( 1) ( 1)
( )

ˆ ˆ ˆ( ) ( ) ( )

m

m

m

f f f

f f f
f e

f f f

diag e t e t e t

diag e t e t e t
U t

diag e t N e t N e t N

 
 
 + + +
 =
 
 
 + + + 









 

and 

 1 2ˆ ˆ ˆˆ ( )
i

iqi i
f e e ee t f f f =    

The matrix f eU  in (6.22) is of ( 1)N m+ ×  rows by  eq m N× ×  columns. Usually, 

in practice, the number of prediction horizon steps is larger than the number of 

functions eN . Therefore, there will typically be more rows than columns in the 

matrix f eU . 
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6.3 Polynomial RS Control 

The extended criterion to be minimised for the RS-GPC controller polynomial 

form will be derived in the next. It is founded and stimulated by the traditional 

GPC performance index in (6.26). 

 ( )2
0 0

0
( ) ( ) ( ) ( ) |

N
T T

j
j

J E e t j k e t j k u t j u t j tλ
=

   = + + + + + + +    
∑  (6.26) 

where { | }E t⋅  represents the conditional expectation on measurements until the 

instant t and jλ  implied a scalar control signal weighting. The first extension is 

to penalise the dynamically weighted tracking error rather than merely 

tracking error. The models generating the weighted reference and output 

signals and may comprise dynamic cost-function weighting 1( , )c tP z ρ− . Then the 

future weighted error signal vector: 

 ( ) ( ) ( ) ( ) ( ) ( )1 ,p p p ce t j k r t j k y t j k P z r t j k y t j kρ−  + + = + + − + + = + + − + +   

The GPC performance index involves a multi-step cost-function to determine the 

future optimal predictive control signal for the interval [ , ]t t Nτ ∈ +  . It can be 

created, in a compact vector shape, using vectors in (3.36) as: 

 { }, ,

0 2 0
, ,{ } |
T

t k N t k N

T
t P P t N N t NJ E J E E E U U t

+ +
= = + Λ  (6.27) 

The RS-GPC cost-function, to be introduced below, can be specified to have an 

analogous form but with a few improvements. Also, it is sensible to restrict the 

deviation in controller gains ck  by adding terms into the cost-index to penalise 

large gain deviations, and the gains rate of change where: 

 ( ) ( ) ( 1) ( ) ( 1)c c c c ck t k t k t k t k t∆ = − − = − −    (6.28) 
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Figure 6-1: 3-DOF controller structure for polynomial LPV model 

RS-GPC Cost-Function: The RS-GPC multi-step { }tJ E J=  cost-function vector-form 

is given as: 

 { }, ,

0 2 0 2 2
, , ( ) ( ) ( ) ( )
T

t k N t k N

T T T
P P t N N t N c K c c D cJ E E E U U k t k t k t k t t

+ +
= + Λ + Λ + ∆ Λ ∆     (6.29) 

Significance Cost-Weightings: The weightings of error, control, gain, and gain-

increment are: 

 
,t k NPE

+
 are the dynamically weighted future tracking error terms. 

 2 2 2 2
0 1{ , ,..., }

eN Ndiag λ λ λΛ =  are the future inputs 0u  cost-weightings. 

 2 2 2 2
0 1{ , ,..., }

eK Ndiag ρ ρ ρΛ =  are the gains deviation cost-weightings. 

 2 2 2 2
0 1{ , ,..., }

eD Ndiag γ γ γΛ =  are the gains increment cost-weightings. 

where the length of the prediction horizon is N and eN  is utilized RS controller 

functions number. 
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6.3.1 RS Solution Using Output-Estimation 

The cost-function is formed in the optimal signal estimates and estimation errors 

terms. The future outputs vector is decomposed in terms of predicted outputs 

vector and output estimation error vectors since the future predicted outputs 

vector 
,

ˆ
t k NPY
+

 and prediction errors 
,t k NPY

+

  are orthogonal. Thus, future tracking 

error vector terms becomes: 

 
, , , , , ,

ˆ
t k N t k N t k N t k N t k N t k NP P P P P PE R Y R Y Y
+ + + + + +

= − = − −   (6.30) 

The future reference vector values are expected to be a known signal and hence 

define: 

 
, , ,t k N t k N t k NP P PR R F

+ + +
= −  (6.31) 

Noting (3.33), then: 

 
, , , , , , ,

0 0
, ,

ˆ
t k N t k N t k N t k N t k N t k N t k NP P P P P t N P P t NR Y R F G U R G U
+ + + + + + +

− = − − = −  

Moreover, the future tracking error follows as: 

 ( ), , , , , ,

0
,

ˆ
t k N t k N t k N t k N t k N t k NP P P P P t N PE E E R G U Y
+ + + + + +

= + = − −    

where the predicted future tracking error follows as: 

 
, , , , ,

0
,

ˆˆ
t k N t k N t k N t k N t k NP P P P P t NE R Y R G U
+ + + + +

= − = −   (6.32) 

and the tracking estimation error: 

 
, ,t k N t k NP PE Y

+ +
= −   (6.33) 

These signals (6.32) and (6.33) are orthogonal because of the use of an optimal 

estimator. 
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Cost Simplification: Substituting for 
,t k NPE

+
 in (6.29): 

 
{

}
, , , ,

0 2 0
, ,

2 2

ˆ ˆ( ) ( )

( ) ( ) ( ) ( )

T

t k N t k N t k N t k N

T
P P P P t N N t N

T T
c K c c D c

J E E E E E U U

k t k t k t k t t
+ + + +

= + + + Λ

+ Λ + ∆ Λ ∆

 

   

 (6.34) 

The cost-index terms can be made simpler utilizing optimal estimate 
,

ˆ
t k NPE
+

 and 

estimation error 
,t k NPE

+

  orthogonality and noting (6.28): 

 
, ,

0 2 0 2 2
, , 0

ˆ ˆ ( ) ( ) ( ) ( ) ( )
T

t k N t k N

T T T
P P t N N t N c K c c D cJ E E U U k t k t k t k t J t

+ +
= + Λ + Λ + ∆ Λ ∆ +   (6.35) 

where the last cost-term: 

 { } { }, , , ,0 ( ) | |
t k N t k N t k N t k N

T T
P P P PJ t E E E t E Y Y t

+ + + +
= =     

0J  doesn't depend on the choice of the control signal. Swap for (3.33) in (6.35): 

 ( ) ( ), , , ,

0 0
, ,

0 2 0 2 2
, , 0( ) ( ) ( ) ( ) ( )

t k N t k N t k N t k N

T

T

P P t N P P t N

T T
t N N t N c K c c D c

J R G U R G U

U U k t k t k t k t J t
+ + + +

= − −

+ Λ + Λ + ∆ Λ ∆ +

 

 

 

 
, , , , , ,

, ,

0 0
, ,

0 0 0 2 0 2
, , , ,

2
0

( ) ( )

( ) ( ) ( )

T

t k N t k N t k N t k N t k N t k N

T

t k N t k N

T T T
P P t N P P P P t N

T T T
t N P P t N t N N t N c K c

T
c D c

J R R U G R R G U

U G G U U U k t k t

k t k t J t

+ + + + + +

+ +

= − −

+ + Λ + Λ

+ ∆ Λ ∆ +

   

   (6.36) 

Also noting (6.28), 

 
2 2 2

2 2

( ) ( ) ( ) ( ) ( 1) ( )
( ) ( 1) ( 1) ( 1)

T T T
c D c c D c c D c

T T
c D c c D c

k t k t k t k t k t k t
k t k t k t k t

∆ Λ ∆ = Λ − − Λ

− Λ − + − Λ −
 

RS Parameterisation: The controller is parameterised in (6.25) and note (6.20) 

and the next term: 

 ( ) ( )2 2

2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T
c K c c c K c c

T T T T
c K c c K c c K c c K c

k t k t k t k k t k

k t k t k k t k t k k k

Λ = − Λ −

= Λ − Λ − Λ + Λ
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To simplify the expressions, also define 
,

0
t k NPR
+

  as: 

 ( ), , , , , ,

0 ( ) ( )
t k N t k N t k N t k N t k N t k N

T T T T
P fe P P fe P P PR U t G R U t G R F

+ + + + + +
= = −   (6.37) 

so that 

 
, , , , ,

0 0
, ( ) ( ) ( )
T

t k N t k N t k N t k N t k N

T T T T T
t N P P c fe P P c PU G R k t U t G R k t R

+ + + + +
= =    

Also, define the full rank LPV matrix: 

 
, ,

2 2 2
, ( ) ( ) ( ) ( )

t k N t k N

T T T
t k N fe P P fe fe N fe K DX U t G G U t U t U t

+ ++ = + Λ + Λ + Λ  (6.38) 

The cost statement vector/matrix shape is acquired by substituting in (6.36) as: 

 

( ) ( )
( )

, , , ,

, ,

0 2 0 2

2 2 2

2 2 2 2
0

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( 1) ( 1) ( 1) ( )

T

t k N t k N t k N t k N

t k N t k N

T T T
P P c P K c P c K c

T T T T
c fe P P fe fe N fe K D c

T T T T
c D c c D c c K c c D c

J R R k t R k R k k t

k t U t G G U t U t U t k t

k t k t k t k t k k k t k t J t

+ + + +

+ +

= − + Λ − + Λ

+ + Λ + Λ + Λ

− − Λ − Λ − + Λ + − Λ − +

   

 

Also, define: 

 

2 2

2 2
0 0

( 1)

( 1

( )

1) ( )

K c D c

T T
c K c c D c

k k t

J k k k t k t J

tψ = Λ + Λ −

= Λ + − Λ − +

 (6.39) 

Substitute for (6.39), and the cost expression vector/matrix form is achieved as: 

 
( )

( )
, , ,

,

0

0
, 0

( )

( ) ( ) ( ) ( )

( )

( )
t k N t k N t k N

T

t k N

T T
P P c P

T
P c t k N c

T
c

J R R k t R

R k t k t X k t J t

t

t

ψ

ψ

+ + +

+ +

= − +

− + + +

  



 (6.40) 

where the 0J  term doesn't depend on the control action 

Optimisation: The cost-function minimising process for this term is analogous 

to the case as if the signals are deterministic. Namely, the cost-function gradient 

is set to zero to find future optimal controls vector. From a perturbation and 
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gradient calculation [38], or by adjusting the gradient to zero provides the RS-

GPC optimal control gains vector: 

 
,

1 0
,( )

t k Nc t k N Pk t X R
+

−
+=   (6.41) 

where 

 ( ), , , ,

0 ( )
t k N t k N t k N t k N

T T
P fe P P PR U t G R F

+ + + +
−=  (6.42) 

 
, ,

2 2
, ( ) ( ) ( ) ( )

t k N t k N

T T T
t k N fe P P fe fe N fe KX U t G G U t U t U t

+ ++ = + Λ + Λ  (6.43) 

Asymptotic Behaviour: Notice in (6.41) that if 2
D IΛ → ∞× , the restricting gain 

( ) ( 1)c ck t k t= −  and the gains turn out fixed as required. Also, if 2
K IΛ → ∞× , 

then the restricting gain c ck k=  and the gains turn out equal to baseline gain 

values. 

Minimum-Cost: Recalling (6.37) and substituting for the gains (6.41) in (6.40): 

 ( ) ( ), , , ,

0 1 0
min , 0 ( )( ) ( )

T

t k N t k N t k N t k N

T
P P P

T
t k N PJ R R R JtX R ttψ ψ

+ + + +

−
+= − + + +     (6.44) 
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6.3.2 RS Solution Summary 

The RS-GPC solutions above are summarised below: 

Theorem IV: RS-GPC of LPV Polynomial System 

Consider the polynomial LPV system as introduced in Chapter 3.  

The RS-GPC illustrated in Figure 6-1 is essential to minimise the cost-index: 

 { }, ,

0 2 0 2 2
, , ( ) ( ) ( ) ( )
T

t k N t k N

T T T
P P t N N t N c K c c D cJ E E E U U k t k t k t k t t

+ +
= + Λ + Λ + ∆ Λ ∆     (6.45) 

The RS-GPC controller is executed as: 

 ( )1
0 0

1
( ) , ( ) ( ) ( ) ( )

eN

j j e c
j

u t f z k t c t F t k t−

=

= =∑  (6.46) 

where 1( , ( ))j jf z k t− , [1, ]ej N∈  are designer pre-specified functions to define the 

structure of the RS controller, and ( )eF t  has a block-diagonal-matrix shape: 

 { }
1 2

( ) ( ) ( ) ( )
me f f fF t diag e t e t e t=   

and for every { }1,2, ,i m= … , the row vector is: 

 1 2( )
i

iqi i
f e e ee t f f f =    

The gains of the optimal feedback controller are selected to minimise (6.45).  

The optimal time-varying gains of RS-GPC satisfy (6.47) by performing a type of 

receding-horizon approach. 

 ( ),

1 0
, ( )( )

t k Nc t k N Pk t X tR ψ
+

−
+= +  (6.47) 
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The future optimal controls vector may be acquired as: 

 0
, ( ) ( )t N cU U t k t= fe  

where 

 ˆ ˆ( ) ( ) ( 1) ( )
TT T T

e e eU t t t t N = + + fe F F F  

Solution: The proof develops by gathering the results of the previous sections. 

6.3.3  Design Strategy 

The most valuable benefit of the RS control solution is that the within the loop 

controller is low-order and is consequently easy to compute. The background 

processing to undertake the optimisation does not need to be at the same 

sample rate, and hence there are numerical efficiencies to be obtained. There is 

also the possibility of implementing the RS solution using scheduling to 

retrieve the gains from a semi-automatic process in specific applications.  

A further advantage of the problem's mathematical construction is that the 

chosen controller in a low-order structure can be related to an existing classical 

solution implemented in a system. Say a PID controller already stabilises a 

system, the fixed set of PID gains can be treated as a baseline and modified 

using a deviation term to optimise the system. The deviation in these gains can 

be penalised in the predictive control cost-function rather than the absolute 

values. If the penalty on the gain deviation is large, the optimal control will 

revert to an existing classical solution. One of this approach's gains is that the 

default level of gains will ensure integral action is included in the usual way, 

and any state errors cannot persist whether there is a modelling error or not in 

the predictions. This problem arises in conventional MPC that has many 
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possible solutions that are not straightforward for some problems. Therefore, 

the use of discrete operator ARMAX based plant models is particularly 

appropriate when the RS controller is chosen to have a classical form, such as 

a multivariable PID or a discrete transfer-function form. The opportunity to 

include parameter-variations in a structured way can be more suitable than 

merely using scheduled linear models. 

RS Controller Properties: RS optimal and predictive control techniques enable 

the structure of the controller within the loop to be fixed and contain easily 

adjustable tuning variables while at the same time optimising a cost-function 

based upon a model. In practice, the optimal gains remain approximately 

constant if disturbances and references changes are small, but they change with 

time when these signals are significant. For instance, if a PID formation is 

chosen, the PID gains vary whenever such changes arise since the background 

processing involves the predictive control law cost-optimisation. This approach 

offers the advantages of MBPC, and at the same time, classically trained 

engineers can retune the system using the parameters selected for the controller 

structure. Such changes will still result in optimal control because of predictive 

cost-function optimisation. 

Robustness: Low-order controller is less sensitive to modelling uncertainties. 

For example, H∞  controllers have an order equal to the total plant order plus 

any weightings or disturbance models. Therefore, they are generally of a high-

order and attempt to shape the frequency responses, particularly around the 

unity-gain or bandwidth point, which gives excellent sensitivity functions 

unless the plant model is mismatched.  

An equivalent low-order controller that might provide similar performance does 

not attempt the modest gain and phase changes of the H∞  design and is, 

therefore, less sensitive to any plant model mismatch. 
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Implementation Benefits: RS controllers can be employed in a numerically 

efficient manner. For example, it is unnecessary to have the background 

processing run at the same feedback loop sample rate. The computations for 

the controller within the loop are like those for any classical structure. If the 

background processing is at a lower sample rate, considerable computational 

power savings may be available. It also provides a natural way to develop a 

scheduled control law where the gains are computed automatically by merely 

recording the RS controller gains at significant operating points and then using 

them within a scheduled solution. 

Simple Retuning: Most advanced controllers that provide high performance 

are based on system models, and technicians or calibration engineers cannot 

quickly retune such controllers. Industries like automotive would like model-

based control benefits, but they also need the simplicity of tuning that simple 

controller structures provide. For example, automating the engine calibration 

process allows the optimisation algorithm to compute the gains over a driving 

cycle, which may be applied as the basis for tuning by calibration engineers. 
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6.4 Chapter Summary 

This Chapter summarises the nonlinear RS control solution for the discrete-time 

polynomial system description provided in Chapter 3. The Chapter started by 

giving an introduction in Section 6.1. The controller parameterising and the 

controller problem forming are given in Section 6.2, along with an extended 

PID RS controller is discussion. The solution of the polynomial RS controller is 

given in Section 6.3. Finally, the Chapter concluded with a strategy for the 

design in Section 6.3.3. In the next Chapter, four examples are used for 

simulation to show the RS controllers performance.
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Chapter 7 Applications 

In this Chapter, an introduction is given for dynamic weighting selection and 

stability analysis in Section 7.1. In Section 7.2, the RS controller formed in both 

PI and PID structure for the QTP regulation and tracking problems. In Section 

7.3, a qLPV model was used to catch the ETB nonlinearities, and a nonlinear RS 

controller was used to form a PI structure. Similarly, in Section 7.4, the PWA 

model of CSTR was converted to an SD model, and a nonlinear RS controller 

was used to form a PI structure controller. Section 7.5 was used to provide 

proof for the LPV polynomial RS controller introduced in Chapter 6 and 

performance analysed on an automotive example of VCT. 

7.1 Introduction 

The output of the feedback system depicted in Figure 7-1 is represented as: 

 1 1 1 1
0 0( ) ( ) ( ) ( )dY z y z W z U z− − − − = +    (7.1) 

The design aims to obtain a control system such that 1( )Y z−  follow 1( )R z−  with 

limited use of 1
0( )U z− , and in this case, the design is termed as reference 

tracking. If the reference or a setpoint signal is zero, the control plan becomes a 

regulating problem. During operating conditions, the plant is disturbed by the 
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system output disturbance, in this case 1( )dy z− , and other unwanted elements 

such as measurement noise, modelling errors or variations in the supply input 

of the system. 

 

Figure 7-1: Feedback system with disturbances and measurement noise 

Therefore, a decent control design is also responsible for ensuring disturbance 

rejection, measurement noise attenuation, besides good stability robustness. 

The study of control loop transfers functions is beneficial to understand the 

performance goals of the control design, and three sensitivity functions are 

essential [94]: 
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= − =
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 (7.2) 

These sensitivity functions can be utilized in the dynamic weighting selection 

procedure, which transfers the desired performance obligations to the 

optimization algorithm. 
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7.1.1 Dynamic Weighting Selection 

The dynamic weighting incorporation in the optimization algorithm aims to 

achieve good stability robustness and measurement noise rejection by ensuring 

the system has sufficient gain at low-frequency and small gain at high-frequency. 

The process of RS controller tuning is expected to be simpler than classical 

controller tuning. In a simple case, the control signal weighting 
0cF  offers an 

effortless approach to alter the system response speed. The error signal 

weighting cP  can be static or an integrator weighting if an integral action is 

needed in the controller design. For example, if a PID controller or even any 

other recognized classical controller does exist for a system to be controlled. In 

that case, the cost-function selection procedures can be decided by making the 

error weighting divided by the control weighting proportion equivalent to the 

existing controller [95] as starting choice. Before this result becomes acceptable, 

some propositions must be introduced, although it is a design launching 

position. Equally, having these weightings enclosed, this approach results in 

natural frequency response properties. Say a PID controller with low-frequency 

high gain and a possibility of having a small high-frequency gain if a filter was 

included. A detailed guide is given in [95] on how choosing both the control 

and error weightings and can be  summarised as follow:   

7.1.1.1 Error Weighting 

A common requirement is that the controller should comprise integral action, 

which can be accomplished by merging the integrator action into the error 

weighting as: 

 1
1( )

1
nc

c

P
P z

z
−

−
=

−
 (7.3) 
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The numerator in (7.3) can be set to a constant or selected as 1(1 )zα −−  to have 

a tuning parameter 0 1α< <  that determines the integral action cut-off point. A 

high gain for low-frequency within the feedback loop is introduced by utilizing 

an integral error weighting. In linear systems case, the controller poles had the 

error weighting poles. As the system's sensitivity function reduces when loop 

gains increase, the low-frequency disturbances will be rejected asymptotically. 

7.1.1.2 Control Weighting 

In a simple case, the control weighting role can be decided as a linear lead term 

to guarantee the controller roll-off at high-frequency and avoid the measurement 

noise effect augmentation. This is different from dealing with measurement 

noise block explicitly by including it in the system model to attenuate 

measurement noise. Still, if a dynamic cost-weighting of a control signal is 

utilized, there is extra control over the roll-off. 

7.1.1.3 SD Dynamic Weighting 

The state-space error dynamic weighting is given in Appendix: A-1 Augmented 

System Matrices (A.22) and (A.23): 

 
( )

( )
( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p

p p p p

x t A x t B r t y t

e t C x t E r t y t

+ = + −

= + −
 (7.4) 

This weighting can be selected to be SD or LPV dynamic weighting as: 

 
( )

( )
( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
p p p p

p p p p

x t A x t B r t y t

e t C x t E r t y t

ρ ρ

ρ ρ

+ = + −

= + −
 (7.5) 

This way of enclosing an SD dynamic weighting is more fitting for systems that 

need different treatment for different system dynamics, such as the CSTR 

process when the system switch from stable to unstable mode. 
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7.1.2 Design Issues 

For this analysis, the next discussion assumes that the external stochastic inputs 

are null, and known reference and feedforward measured disturbance signals 

are the only inputs.  

Then from (2.5), the observations: 

 0

0

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

z t d t Cx t Eu t k v t
d t E C B u t k

= + + − +
= + + Φ −

 

Thence, the expression for the optimal control gains (4.98): 

 
(

( ) )
, 1 2

1
0 0 0

1 2
0 0 1 ,

( ) ( )

( , ) ( )
t k N

k k
c F CN P f k f

T T
I fe PN PN N k N fe c

k X P D C A T W u t k C A T u t

C T k z BC U V V W U k

φ φ

φ

+

−

−

= − + − +

+ + + Λ
 

This expression corresponds to the following optimality condition: 

 
(

( ) )
, 1 20 0 0

1 2
0 0 1 ,

( ) ( )

( , ) ( ) 0
t k N

k k k
F c CN P f k f

T T
I fe PN PN N k N fe c

X k P D C A T W z u t C A T u t

C T k z BC U V V W U k

φ φ

φ

+

−

−

+ + +

+ + + Λ =
 

Recall (2.26), (2.30) and noting (2.7), then: 

 
2 1

1
0 0
( , ) k k k

f f k
C T k z B C A T C A T z W C Bφ φ φ φ

− −+ + = Φ  

Thence, the condition for optimality: 

 ( )( )1 1 2
, 0 1 ,( ) 0T T

F CN P t k N F I fe PN PN N k N fe cX P D I X C BC U V V W U kφ
− −

+ + + Φ + + Λ =  

Moreover, the optimal control may be given as: 

 ( )( ) ,

1
2

0 1 ,( )
t k N

T T
c F I fe PN PN N k N fe CN Pk X C BC U V V W U P Dφ +

−

= − + Φ + + Λ  
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 ( )( ) ,

1
1 2 1

, 0 1 ,( )
t k N

T T
t N fe F I fe PN PN N k N fe F CN PU U I X C BC U V V W U X P Dφ +

−
− −= − + Φ + + Λ  

where 1 , , 1 1( ) [( )( ) ,...,( )( ) ]T T T
k N t N k kW U W u t W u t N= + .  

For the RS predictive control, with the given and assumed plant structure, the 

below expression needs to have a stable inverse: 

 1 2
1 ,( ( ( )) )T T

F I0 fe PN PN N k N feI X C BC U V V W Uφ
−+ Φ + + Λ  

where stability measure, for instance, finite gain stability, attach to subsystem 

1kW  stability assumption 
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7.2 Quadruple Tank Process 

The industry widespread PID controller is employed very successfully. But, if 

the system dynamics are somewhat complex, then the PID may not provide the 

required performance. Thus, the adoption of a higher-order optimal controller is 

necessary to handle the dynamics of the MIMO system [96].  

It appears reasonable to broaden the PID control concept by developing the 

controller and delivering additional design freedom. This design can be done 

by including certain functions selected to have frequency responses property 

that may be required. 

7.2.1 Problem Description 

In this problem, the RS controller structure is in the traditional feedback form 

and is specified as frequency-sensitive functions set in the PI and the PID 

controller. These are multiplied by gains obtained in the similar MBPC aspect 

over minimizing a GPC cost-function related to PI or PID type elements.  

Predictive PID controller was presented in [22], with qualities of MBPC, where 

the controller conduct to the equal structure as a PI or PID controller for first or 

second-order systems, respectively. The predictive PID control algorithm in [22] 

with analogous GPC controller performance provided a PID controller tuning 

technique via online optimization. It can operate as PID or GPC controller for 

MIMO systems. These are some of the attempts formed to get in the benefits of 

PID with predictive control. The RS approach introduced here for the QTP 

example that has a strong interaction between different loops. 
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In this approach, several traditional controller structures can be utilized in the 

feedback loop, for instance, lead-lag, extended PID or general transfer function 

structure. One of the solutions vital ideas was that the system is exciting if the 

rank condition was assured for a matrix whose inverse was needed [14]. 

Excluding the particular case, when the controller gains weighting tends to 

zero, this assumption is not needed in this solution. 

7.2.2 System Model Description 

The QTP illustration is given in Figure 7-2 has been discussed in [97]. There are 

two motivating features of this process. Initially, this process has extensive 

interactions in a loop between 1Tank  and 3Tank , and among 2Tank  and 4Tank . 

This interaction is due to input from 1Pump  fills 1Tank  and 4Tank , besides, 

3Tank  output fills 1Tank . The same interface arises between 2Tank  and 4Tank .  

This interaction results in an elevated effect on appropriate control. One more 

attractive feature is that the QTP linearized model has a transmission zero 

adjusted to be in the left or right half-plane by adjusting a manual flow valve. 

Therefore, the QTP process can be selected to be a minimum phase or a non-

minimum phase. The QTP mathematical model utilizing mass balances and 

Bernoulli’s law are given in equations (7.6)-(7.9) as: 

 31 1 1 1
1 3 1

1 1 1

2 2
adh a k

gh gh v
dt A A A

γ
= − + +  (7.6) 

 2 2 4 2 2
2 4 2

2 2 2

2 2
dh a a k

gh gh v
dt A A A

γ
= − + +  (7.7) 
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Figure 7-2: Quadruple tank process system 

  

 3 3 2 2
3 2

3 3

(1 )
2

dh a k
gh v

dt A A
γ−

= − +  (7.8) 

 4 4 1 1
4 1

4 4

(1 )
2

dh a k
gh v

dt A A
γ−

= − +  (7.9) 

Given lγ  is the fluid flow ratio to the lower and diagonal upper tank, and lA  is 

the cross-section area, la  is the cross-section of the drain hole and lh  is the liquid 

level, in lTank  equally. The QTP is a 2×2 MIMO system, and the goal of the 

control is to maintain the lower tanks liquid level setpoint tracking by adjusting 

liquid flow through the connected two pumps. These pumps are controlled by 

the voltage 1v , 2v  with the related flow l lk v . And 1 1cy k h= , 2 2cy k h=  are the 

outputs where ck  is the gain of the level sensor. The QTP process parameter 

values are listed in Table 7-1. 
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Parameter Unit Value 

1 3,A A  2cm  28 

2 4,A A  2cm  32 

1 3,a a  2cm  0.071 

2 4,a a  2cm  0.057 

ck  V cm  0.5 
g  2cm s  981 

Table 7-1: QTP tank parameter value for the simulation 

Both 1 2, (0,1)γ γ ∈  are the valve parameters that adjust the flow spreading to 

lower and upper diagonal tanks in the same way. The flow to 1Tank  is 1 1 1k vγ  

and 1 1 1(1 )k vγ−  to 4Tank  and as well for 2Tank  and 3Tank  as in Figure 7-2. g  is 

the acceleration of gravity. For 1 2, (0,1)γ γ ∈ , there are two zeros in this system, 

one constantly sits in the left half-plane, and the other could be decided to be in 

the left or right half-plane by manipulating the valve values of 1 2,γ γ  as follow: 

 1 21   2  QTP is minimum phaseγ γ< + ≤  

 1 2  1 1   QTP is non minimum phaseγ γ< −+ ≤  

 1 2     1  QTP has transmission zero at originγ γ+ =  

7.2.3 Simulation Results 

The QTP control is performed for all operating modes, P−  when the system is 

a minimum phase system and P+  when the system becomes a non-minimum 

phase. The selected operating modes associated parameters values are given in 

Table 7-2. Introduce these variables: 

 0
i i ix h h= −  (7.10) 
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Parameter P−  Phase P+  Phase 
0 0
1 2 ( ), h cmh  (12.4, 12.7) (12.6, 13.0) 
0 0
3 4 ( ), h cmh  (1.8, 1.4) (4.8, 4.9) 
0 0
1 2 ( ), v Vv  (3.00, 3.00) (3.15, 3.15) 

3
1 2 ), ( scm Vk k  (3.33, 3.35) (3.14, 3.29) 

1 2,γ γ  (0.70, 0.60) (0.43, 0.34) 

Table 7-2: Operating mode parameter 

 0
i i iu v v= −  (7.11) 

The multi-loop PI gains and the state-space linearized QTP model in (7.12) and 

(7.13) are given in [97] for the P−  phase as, 1 1, 3.0, 30p ik t = , 2 2, 2.7, 40p ik t = , and 

for P+  phase system as, 1 1, 1.5, 110p ik t =  and 2 2, 0.12, 220p ik t = −  similarly. 

 

0.9686 0 0.0790 0 0.1639 0.0038
0 0.9781 0 0.0637 0.0020 0.1242

,
0 0 0.9197 0 0 0.0918
0 0 0 0.9355 0.0604 0

0.5 0 0 0 0 0
,

0 0.5 0 0 0 0

P System

A B

C D

−

   
   
   = =
   
   
      

   
= =   

   

 (7.12) 

 

0.9689 0 0.0491 0 0.0949 0.0038
0 0.9784 0 0.0346 0.0019 0.0691

,
0 0 0.95 0 0 0.1512
0 0 0 0.965 0.1099 0

0.5 0 0 0 0 0
,

0 0.5 0 0 0 0

P System

A B

C D

+

   
   
   = =
   
   
      

   
= =   

   

 (7.13) 
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Figure 7-3: QTP minimum phase case controllers performance  

7.2.3.1 Setpoint Regulation 

A typical multi-loop PI controller has been employed for the QTP given modes. 

Overshoot has been remarked at 7.3 V with a settling-time of almost 60 seconds, 

as demonstrated in Figure 7-3 for minimum phase setup. 

For the non-minimum phase setup, a slight inverse response mixed with a risen 

overshoot at 8.2 V with a settling-time around 1942 seconds has been noticed, as 

illustrated in Figure 7-4. The outcomes are marginally not the same as in [97] 

because simulation has been executed in the time-domain using the discretized 

state-space description of the model in contrast to the frequency-domain method 

used by Johansson [98]. 
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Figure 7-4: QTP non-minimum phase case controllers performance 

To carry out the evaluation, initially, an RS controller in a PI structure has been 

employed to control the nonlinear QTP process model formed in regulating 

problem to assess the controller regulating capability. 

For the minimum phase setup, the prediction horizon was selected 40N = , and 

the control horizon 40uN = . Both outputs 1Y , 2Y  responses were noted without 

overshoot with a settling-time of 25 seconds, as revealed in Figure 7-3. Similarly, 

for the non-minimum phase setup, a prediction horizon of 80N =  and control 

horizon of 20uN =  were chosen. Simulation reveals an inverse response down 

with lesser overshoot at 7.6 V for 6.5 V setpoint with settling-time just about 600 

seconds, as illustrated in Figure 7-4.  
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Figure 7-5: Tank1 tracking and disturbance rejection performance 

7.2.3.2 Reference Tracking 

Next, for the MIMO system's elevated interaction between various loops, the 

RS controller has been formed in a PID structure for the nonlinear QTP to only 

assess the RS tracking feature. It should be noted here that comparing the RS 

controller performance against the fixed gain classical PID controller in this 

assessment will be unfair.  The aim was to track setpoint deviation and improve 

the system's disturbance rejection, as displayed in Figure 7-5 and Figure 7-6. 

Thus, a step disturbance has been fed to the process outputs at various times. 

The simulation demonstrates a decent controller performance in eliminating 

the disturbance effects while maintaining sufficient tracking to deviation in 

multivariable system setpoints. 
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Figure 7-6: Tank2 tracking and disturbance rejection performance 
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7.2.4 Summary 

In this section, the RS controller has been formed to control the QTP MIMO 

process model and evaluated in both structures of PI and PID to demonstrate 

the benefits in performance and the flexibility of adopting the RS controller 

compared to the classical PID. The algorithm was utilized for both the 

regulating and the tracking problems, where optimized time-varying controller 

gains are revised and adjusted automatically. In this future knowledge, the RS 

controller adjusts to the reference trajectories' deviation and disturbance 

rejection. Performance evaluation comparison of the controller to that of a 

classical PI and PID controller has been carried out, and the findings show 

distinct and enhanced performance. The RS controller could be extended to 

control various nonlinear systems classes. In this example, the controller can be 

effortlessly developed to cover more of the wider QTP operation regions. 
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7.3 Electronic Throttle Body  

Achieving full electronic control of the engine is crucial in satisfying 

automotive performance requirements and emissions legislation. Therefore, 

providing accurate control of the ETB becomes very important since it is a vital 

module employed in the air intake and engine torque controls, especially in SI 

engines which demands air and fuel precise control.  

The ETC delivers the link among the ETB and the acceleration pedal, utilizing 

electrical signals to replace a mechanical link, as shown in Figure 7-7. As in 

Figure 7-8, a typical ETB involves a butterfly valve connected to an electric 

motor over the gears set and the TPS.  

 

Figure 7-7: Electronic throttle control system 

7.3.1 Problem Description 

The automotive engineering field has shown that the ETC system must deliver 

a small steady-state error, quick settling-time, handling constraint and robustness 

versus alterations in the ETB parameters and pressure caused by production 

alterations and the disturbance torque [99]. This instant and precise control 

prerequisite must also manage the inherent nonlinearity and the ETB 

mechanical structure time inconsistency [100]. 
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Because of its simplicity, PID is frequently applied for ETB control. Though in 

several situations and certain operating conditions, PID cannot accomplish the 

required performance, particularly if a low variation is needed in air flow rate 

due to the spring force, friction nonlinearities and the disturbance torque 

impacts. Therefore, it would be logical to expand PID control's abilities, 

upgrading the controller to further design freedom. A number of investigations 

on the ETB control have been made, for instance the PID controller with 

nonlinear compensator  [99], [101], model approximation control [102], [103], 

adaptive control [104], constrained time optimal control [105], self-learning PID 

control [106], and fractional-order fuzzy-PID [107]. 

7.3.2 System Model Description 

 

Figure 7-8: Typical electronic throttle body system 

In this section, the nonlinear ETB model is modelled as a qLPV system to catch 

the ETB model nonlinearities. The valve angle and velocity are utilized as the 

scheduling parameter, and the disturbance torque, which depends on the 

airflow and other sources, was considered an exogenous input.  
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The ETB DC motor dynamics in Figure 7-9 was illustrated in [108],[109] and are 

characterized by (7.14). 

 m m
diV iR L E
dt

= + +  (7.14) 

where ,  ,  mV R i  and L  are motor voltage, resistance, current and inductance 

individually. Here m m mE K θ=   is the motor back EMF voltage and mK  is the EMF 

coefficient. The armature lag is ignored, anticipated to the armature inductance 

nominal value, and similarly, the motor time constant lesser value in contrast 

to the sampling time sT  [110].  

 

Figure 7-9: Lumped-element model of the ETB 

The DC motor mechanical dynamics are presented in (7.15). 

 m m m fm m gJ T K Tθ θ= − −   (7.15) 

where mJ  motor inertia, fmK  motor friction coefficient, mθ  motor angular 

velocity, mT  motor armature torque and gT  is the reduction gears, transferred 

torque. The torque produced by the armature  m aT K i=  is proportional linearly 

to the armature current and aK  is the motor torque coefficient. The armature 

torque mT  is characterized as in (7.16). 

 
.

( )a
mm m m

K
T KV

R
θ= −  (7.16) 
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The induced load torque lT  on the throttle valve shaft through the reduction 

gears: 

 l gT NT=  (7.17) 

where N  is the complex gear-ratio, and the throttle plate dynamics are defined 

in (7.18): 

 l l l sp f dJ T Ť Ť Tθ = − − −  (7.18) 

where spŤ , fŤ  and dT  are dynamics caused and charged by the LH spring, 

friction and disturbances, correspondingly.  

 

Figure 7-10: LH spring nonlinearity 

There are two inbuilt springs employed in the ETB for the fail-safe mechanism. 

The valve plate is reverted by these springs' force to LH position slightly over 

the closed location if there is no power employed to the ETB actuator. This 

design is to permit sufficient air to be supplied to the engine when there is no 

applied control. This torque is subject to whether the throttle valve is in the LH 

position, moving forward or reverse. A maximum and minimum angle limits 

additionally constrain the valve plate movement.  
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These constrained limits are viewed as too stiff spring, represented with infinite 

force, as illustrated in Figure 7-10, as stated in (7.19). 

 
( )

( )

0 0

0 max
0

min 0

( sgn

sgn

)sp sp l sp l

sp l
sp l

sp l

Ť K T

T
T

T

θ θ θ θ

θ θ θ
θ θ

θ θ θ

= − + −

+ <− = − <

<

 <

 (7.19) 

where spT  preload torque of the spring, spK  spring stiffness coefficient, 0θ  is the 

LH angle and sgn  denote signum function. In friction anticipated nonlinearity, 

the generated force looks like it resists the throttle plates motion, for instance, 

linear viscous damping, which relies on nonlinear Coulomb friction, displayed 

in Figure 7-11, and velocity. The total produced friction torque can be described 

mathematically by (7.20). 
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 (7.20) 

where fT  is the Coulomb friction torque, flK  viscous friction coefficient, and lθ  

is the valve angular velocity. Replacing for (7.19) and (7.20) in (7.18) returns the 

next throttle plate nonlinear dynamics. 

 0 0([ ) ( )] [ ( )]l l g sp l sp l fl l f l dJ NT K T sgn K T sgn Tθ θ θ θ θ θ θ = − − + − − + − 
    (7.21) 

Combining (7.15), (7.16) and (7.21) then, the differential equation showing the 

ETB nonlinear model develops as in (7.22). 

 2

sgn( ) sgn( )

t

ft f p
a m a

s sp
m

d

J

K
K T

NK V N K
R

K T T
R

θ

θ θ θ θ

=

  
− − − −


+ −      



 

 (7.22) 
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Figure 7-11: Coulomb friction nonlinearity 

where 

 

2 2

0

,

( ),

t l m ft fl fm

l l m

J J N J K K N K

Nθ θ θ θ θ

= + = +

= − =
 (7.23) 

During engine operation, some various dynamics and disturbances disturb the 

ETB system tracking performance. These dynamics can be classed in a known 

dynamic, e.g. car battery voltage deviation and unmeasured dynamic, e.g. the 

throttle plate disturbance torque stimulated by pressure variations due to the 

engine air-flow dynamics. Hence, the ETB model in qLPV state-space is offered 

in (7.24). 

 0 0 0

0

( ) dx A x B u D T
y C x

ρ= + +
=



 (7.24) 

where 

 1

2

x
x

x
θ
θ

   
= =   

   

 (7.25) 
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Parameter Value Parameter Value 

N  20.68 spK  0.087 /Nm rad  

R  1.15Ω  ftK  0.0088 . /Nm s rad  

tJ  20.0021 .kg m  spT  0.396 Nm  

aK  0.0185 /Nm A  fT  0.284 Nm  

mK  0.0185 . /V s rad    

Table 7-3: Bosch ETB parameters 

The throttle angle and the velocity are the state-vector x components. Usually, 

the qLPV system models are when any of the scheduling parameters ρ  are 

system states [111]. Consequently, matrices A  and B  are typically nonlinear 

functions of the scheduling parameter ρ . Therefore, the components of (7.24) 

turn out to be as in (7.26) 
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 (7.26) 

 1 2
1 2

1 1,
x x

ρ ρ
ε ε

= =
+ +

 (7.27) 

where 1 2,ρ ρ  are varying parameters obtained from measurement or estimation 

at every sampling instant; in a process to estimate nonlinear system behaviours. 

The signum function ( )sgn x  in (7.22) can also be estimated by / (| | )x x ε+ , 

where ε is a very small positive scalar [112], utilized to assure an accurate 

computation in case state x tends to zero. Though the estimated effects will be 

rounded to the closest integer number in the online computation, this estimate's 

impact will be eliminated. 
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The discrete equivalent is approximated by replacing the continuous model in 

(7.26) as follows: 
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where a high sample rate sT  is assumed to ensure the discrete-time model is 

more appropriate. 

7.3.3 Simulation Results 

The ETB parameters in Table 7-3 were provided in [113] and utilized for the 

simulation to evaluate the controller's performance. The nonlinear RS-PID was 

primarily used assuming known dynamics. The controller demonstrates 

excellent tracking and regulation behaviours, as shown in Figure 7-12. The RS 

controller was used to generate PID gains, as shown in Figure 7-13. 

 

Figure 7-12: ETB nonlinear RS-PID controller 
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Figure 7-13: ETB nonlinear RS-PID controller gain 

The 1% settling-time of 63 milliseconds was noticed for equally the small and 

big signals with a maximum of 1.7% overshoot. Likewise, a small steady-state 

error of less than 0.05 degree was noticed, as displayed in Figure 7-12. The RS 

controller has delivered a performance ahead of some automotive performance 

standards, such as the recommended control responses of S80 Volvo [114].  

7.3.4 Performance Tuning 

The dynamic weightings are employed to add a typical integral action to this 

controller and smooth the ETB performance. In this simulation section, various 

dynamic weighting values were employed to illustrate the tuning flexibility in 

ETB performance suitable for commissioning engineers. 
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Figure 7-14: Integral dynamic weightings performance analysis 

In Figure 7-14, the dynamic weighting proportional term was kept constant 

while testing an integral term changing performance effects.  

The simulation shows a reduction in steady-state error as a result of the increase 

in an integral part. Also, a steady-state error of 0.001 degrees was accomplished, 

but with a minor overshoot of 6%. In Figure 7-15, the same practice was 

followed, the integral term was kept constant while testing proportional term 

changing effects on performance, and the impact was assessed versus the rise 

time. Little progress of 15 milliseconds was remarked with an increased 

overshoot of 15%, which a cut in an integral part could undoubtedly restrain.  

 

Figure 7-15: Proportional dynamic weightings performance analysis 
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Sports car performance requirements are separate from a car designed to be 

fuel-efficient. These outcomes demonstrate how the fast servo-mechanism system 

can be calibrated, and a new direct tuning feature utilized for commissioning 

engineers are offered to deliver the necessary performance. Lastly, the RS 

controller robustness was assessed against the ETB parameters uncertainty that 

may affect the parameters given in Table 7-3, and the results show robustness 

versus variations in ETB parameters. 
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7.3.5 Summary 

In this example, a nonlinear RS controller is implemented based on the ETB 

qLPV model to control the ETB nonlinear model. The RS controller has been 

provided in a PID controller form and was utilized in a reference-tracking 

assessment. In this tracking assessment, optimized time-varying gains controller 

were continuously updated using future predictions. The RS controller can 

adjust to the deviations in reference trajectories or even variations in system 

operating regions switching caused by friction and spring nonlinearities. The 

performance was evaluated using some automotive performance standards, 

and the nonlinear RS controller findings demonstrated enhanced performance 

beyond these measures. Finally, the dynamic weighting tuning features were 

manipulated to enhance the ETB transient responses. 
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7.4 Continuous Stirred Tank Reactors 

The CSTRs are prevalent in chemical and pharmaceutical systems. These 

systems have an extremely nonlinear behaviour and have a wide operating 

range. Furthermore, they may sometimes be appointed to operate in different 

operating regions to produce a variety of separate manufactured goods. This 

process's ultimate goal is to achieve flexible manufacturing and coping with 

market competition [115]. Hence, a crucial control goal is to reduce the product 

transition time by decreasing the volume of off-specification products 

manufactured throughout any transition [116]. 

7.4.1 Problem Description 

The CSTR processes reveal deep nonlinear dynamics, including various steady-

state solutions and together with stable and unstable equilibrium points. An 

exciting feature of the CSTR model is the two stable regions, at both edges of 

the output span, separated by an unstable region in which the CSTR system 

tuning becomes a difficult task and the system output looks repulsed. PWA 

system is an essential class of HS and a proper structure to describe or 

approximate numerous physical processes, such as the nonlinear CSTR, by 

approximating the system using multiple linearizations around different 

operating points. This work will follow the previous methodology provided in 

Section 5.5 to control SD systems by first obtaining the PWA system in an SD 

form and constructing the nonlinear RS controller in PI form, which is easy to 

calculate and implement. Noting that, hard constraints can be included using 

the QP solution. 
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7.4.2 System Model Description 

A standard two-state CSTR system with an exothermic irreversible first-order 

reaction A B→  is illustrated in Figure 7-16 and used as the case-study for this 

simulation. The , ,A cC T q  and cfT  are resultant concentration, reactor 

temperature, coolant flow rate, and coolant temperature correspondingly. The 

CSTR system output is AC , the input is cfT , and the states of the system are: 

 1

2

Ax C
x

x T
   

= =   
  

 

 

Figure 7-16: Continuous stirred tank reactors 

The dynamics of the CSTR can be defined by the subsequent nonlinear 

representations [117]: 

 

1
1 2 1 1

2
1 2 2 2

1

( ) ( )

( ) ( )

f

f

dx
x x q x x
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x x q x u qx
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y x

θ κ

βθ κ δ δ

= − + −

= − + + +

=

 (7.28) 
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where 
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The CSTR has three steady-states at 0u = : 

 
1 2 3

0.856 0.5528 0.2353
, ,

0.886 2.7517 4.7050s s sx x x
     

= = =     
     

 (7.29) 

The nonlinear system has been linearized at each steady-state region and then 

discretized by sampling time of 0.1 seconds to obtain the CSTR system in PWA 

model form [115] as: 
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2 2 2 2
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where 
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Using (5.35) and (5.36), the PWA model (7.30) can be written in SD form as 

follow: 

 

1 1

2 2

3
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δ
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 (7.31) 

During the simulation, the following constraints must be satisfied: 

 

0 1
0 6

2 2

sdx

u

   
≤ ≤   

   

− ≤ ≤
 (7.32) 
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7.4.3 Simulation Results 

The need to build the CSTR flexible operating strategies and optimal switching 

between operating points motivates the design objective. The nonlinear plant 

was moved between the different steady-states in (7.29) by way of tracking the 

concentration setpoint throughout the operating regions.  

 

Figure 7-17: Operating points output tracking 

 

Figure 7-18: Evolution of the PWA regions 

Simulation results showed adequate tracking performance in switching among 

operating points. The RS controller updates the within the loop PI controller's 

gains accordingly, as illustrated in Figure 7-17, with a slight overshoot around 
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the unstable steady state 
2sx . Moreover, the controller tracking performance 

showed no oscillation during the PWA model switching from one region to 

another. The auxiliary logic variable in (7.31) acted as supervisor and was 

responsible for selecting the associated PWA model-based on the concentration 

measurement as shown in Figure 7-18 and allowed the nonlinear RS controller 

to update the within the loop PI controller gains accordingly, as displayed in 

Figure 7-19. 

 

Figure 7-19: CSTR PI controller signal 
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7.4.4 Summary 

A nonlinear RS controller has been designed based on a PWA model, whose 

transition dynamics depends on state or control input. This controller has been 

set to have a PI structure and was used to control a nonlinear model of CSTR 

in reference tracking, where the optimized time-varying controller gains were 

revised continuously. Utilizing future prediction, the nonlinear RS controller 

can adjust to the variations in the reference trajectory, and variations in system 

operating regions and satisfactory tracking performance was obtained. 
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7.5 Variable Camshaft Timing 

The IC engine intake and exhaust valve timing significantly impact fuel 

consumption, emissions, and engine performance. In contrast, with traditional 

valve-train systems, the VVT design can enhance fuel consumption and decrease 

emissions at low engine speeds. Also, it can increase engine power and torque 

for high engine speeds. This approach is different from adjusting the intake and 

exhaust valve's timing for only one specified operational condition in the 

traditional design [118]. 

7.5.1 Problem Description 

There are some parameters and modelling uncertainty in the VVT physical 

model due to variations in engine oil temperature and pressure. Sometimes, 

there are added problems in the system caused by the spool valve neglected 

unmodelled dynamics. The use of a linear PI controller to control the nonlinear 

VVT is not sufficient because of the low plant gain around the steady-state input 

value. Hence, the linear PI tracking performance declines due to the failure to 

provide sufficient loop gains. 

The LPV data-driven method is attractive in cases where analytical modelling is 

sophisticated [53]. Since engineers often analyse systems' behaviour in steady-

state conditions, where a given nonlinear operating point applies, it is common 

to use frequency-domain analysis methods. The use of what might be termed a 

transfer-operator model description which is a function of such external 

variables, is then very natural for many application areas. Hence, a time-varying 

PI is needed to achieve the desired performance. 
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7.5.2 System Model Description 

 

Figure 7-20: Variable camshaft timing system 

The VCT involves a VVT solenoid, a solenoid interface circuit, and a hydraulic 

actuator attached to the camshaft with a range of 30±  degrees, as illustrated in 

Figure 7-20.  

 

Figure 7-21: Hydraulic VVT actuator model 

The VVT system exhibits a significant nonlinearity, and the system dynamics 

have been discussed in [119].  
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Oil Pressure Engine Speed  ρ  

310 
 

900 0.70 
1500 0.72 
1800 0.68 

414 
900 0.95 
1500 0.98 
1800 0.93 

Table 7-4: Time-varying parameters 

The physical model of VVT, depicted in Figure 7-21, has a spool valve driven 

through a PWM signal to regulate the pressure 1P  and 2P  in (7.33) via the 

displacement vx . 

 ( )1 1 2 2
1y by ky P A P A
M

= − − + −   (7.33) 

where M is the hydraulic actuator mass, b is the damping coefficient, k is the 

spring constant and 1A , 2A  are hydraulic actuator left-side and right-side areas 

correspondingly. These parameters are uncertain in the VVT physical model 

due to engine oil temperature and pressure variations. Other system 

uncertainties are due to spool valve neglected or unmodelled dynamics among 

control input and the spool position. The complete physical equations can be 

found in [120]. The result of closed-loop system identification in (7.34) employed 

in [121] and [122] is used in this simulation. The VVT system identification 

provided a group of linear models that approximate the VVT dynamics at 

selected engine speed and oil pressure. This identification was summarized in 

[123] against fixed engine speeds eN  and oil pressures oP  vectors as depicted 

in Table 7-4. The transfer-functions of an identified group of linear VVT systems 

sampled at 5 milliseconds: 

 ( )
1

1 1
1 2

0.0859 0.0609,
1 1.9547 0.9553

zG z z
z z

ρ ρρ
−

− −
− −

 −
=  

− + 
 (7.34) 
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7.5.3 Simulation Results 

The RS controller in PI structure performance was assessed on the LPV model 

in (7.34). A step input was used as the reference signal and varied between the 

Cam advance 20 0o o− →  and the Cam retard o o0 20→  for different engine 

speed eN  and oil pressure oP  as illustrated in Figure 7-22, Figure 7-23 and 

Figure 7-24. A classical PI controller was also tuned for the VVT for comparison 

purposes. 

 

Figure 7-22: Cam advance and retard response at 310, 900o eP N= =  

The PI tuning aimed to achieve a reasonable balance between fast response 

time and overshoot for selected engine speeds and oil pressures [123]. To 

compare over a wide range of operations, a large step size, as demonstrated in 

Figure 7-22 and Figure 7-23, was used, and then a small step size as displayed 

in Figure 7-24. These show the reference signals for both cases and both the RS-

GPC and the classic PI control designs. Figure 7-22 and Figure 7-23 show how 

the RS-GPC overcome system parameters variation and adapt to the 

increase/decrease in open-loop gain. It adjusts the PI controller gains accordingly 

to both the Cam advance and retard compared to the fixed gain PI controller. 

The weak performance of classical PI in Figure 7-22 is expected because of the 
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low plant gain around steady-state and system parameters variations at low 

limits. 

 

Figure 7-23: Cam advance and retard response at 414, 1800o eP N= =  

 

Figure 7-24: Cam advance and retard response at 414, 1800o eP N= =  

It is also noticed that for the whole test trials, the RS-GPC controller settles 

faster than the classical PI controller. Figure 7-24 shows that a small step size 

6o  for both Cam advance and retard was applied. The simulation results reveal 

that the RS-GPC controller is much responsive to the error signal variation than 

the classical PI. Note that the PI controller could be gain-scheduled, which would 

make for a fairer comparison; on the other hand, the RS approach can also be 

used for automatically scheduling the PI. 
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Cases P-Index PI RS-GPC 

0 6o o→ −  

ITAE 1.072 0.2588 
IAE 1.47 0.3091 
ISE 3.916 0.3333 

0 20o o→ −  

ITAE 3.278 1.282 
IAE 4.707 1.221 
ISE 42.89 4.369 

Table 7-5: PI and RS-GPC controllers evaluation criteria 

The data in Table 7-5 reveals the RS-GPC controller performance against the 

classical PI controller for both the small and big signal cases. The improved 

control performance is expected as the RS-GPC adapt to changes in oil pressure 

and temperature. 
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7.5.4 Summary 

A polynomial systems approach to the modelling and optimal predictive 

control of LPV systems, represented in polynomial model form, was 

considered. The controller structure involved RS polynomial matrix form. An 

advantage of the approach is that the low-order RS controller within the 

feedback loop is simple to retune by conventionally trained engineers. 

Simultaneously, the approach enjoys model-based optimal control benefits. The 

gains are computed online to minimize a predictive control cost-function that is 

quite general. It can include LPV dynamic cost-function error weightings and 

cost-weightings on the magnitude of the controller gains.  

The RS controller was fixed at a PI structure in the example. It was used to 

control a VVT example in a reference-tracking, where the optimized time-varying 

controller gains were revised continuously. Using future prediction, the RS-

GPC can adjust to variations in reference trajectory and system parameters. 

Although this is an unfair comparison between a very simple and a much more 

complicated controller, it demonstrates that when performance is paramount 

in some applications, the added complexity may be justified. 

The RS approach may be applied to a system described by a state-space model 

in LPV form, which is very suitable for large systems and often follows the 

system's physical equations more clearly. However, the polynomial LPV model 

form is more natural for systems that are identified online. It is also very 

suitable since the RS controller structure is usually chosen to have a classical 

controller form. 
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7.6 Chapter Summary 

In this Chapter, four examples have been provided to assess the performance 

of the proposed RS algorithm. In Section 7.2, a multivariable QTP was used to 

test the linear RS controller solution that has been given in Chapter 4. The RS 

controller was formed in the PI and PID structure. Both structures benefit from 

the proposed optimal solution to overcome the high interactions in the QTP 

loops. In Section 7.3, an ETB was chosen to test the nonlinear RS solution 

provided in Chapter 5. The nonlinear ETB model was modelled as a qLPV 

system to catch the ETB model nonlinearities. A section also shows the tuning 

flexibility in ETB performance that commissioning engineers may have in 

shaping the ETB performance by selecting different dynamic weighting values. 

The nonlinear RS solution in Chapter 5 was also utilized for the CSTR example 

given in Section 7.4. The CSTR was identified in PWA systems representation, 

and the procedures discussed in Section 5.5 was used to convert the resultant 

PWA system to a proper SD structure. Then, the nonlinear RS controller in PI 

form was constructed as given in Section 7.4. Finally, the LPV polynomial RS 

solution provided in Chapter 6 was evaluated and tested on the polynomial 

LPV representation of an automotive VCT model. The nonlinear RS controller 

was formed in the PI structure, and the performance was compared and tested 

against the classical PI controller as given in Section 7.5. 
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Chapter 8 Conclusion 

This work's main objective was to expand the RS solution to apply to a broad 

nonlinear systems class by utilizing the LPV modelling approach to use in 

nonlinear control and extend some of its features and illustrate its usefulness 

via industrial examples. The work described focused on design questions and 

mainly concerned with the various algorithmic formulations' implementation 

and performance aspects. 

8.1 Review 

Some of the essential qualities that differentiate this work from the previous 

approaches mentioned in Chapter 1 are its flexibility in adapting unknown 

system nonlinearities via the decomposition into a general linear operator 

considered a black-box in Chapter 4. The RS controller simply generates 

numerator and denominator coefficients of a general form controller and is not 

limited to chosen PID gains in terms of the cost-function selected, which could 

be a GPC, NPGMV cost-function, or any predictive type. The RS controller has a 

simplicity of concept and delivers the controller structure that may be more 

friendly to industry engineers. The designer can select a simple PID or a low-

order transfer function structure with traditional tuning parameters. The RS 

controller will be responsible for computing the gains in background 
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processing. These calculated gains will vary if disturbances or setpoint changes 

or varying, which is essential to sustain the solution optimality. It also adapts 

to uncertainty in the model, as if the model is different from that assumed, then 

the online gains will be different because the online gains depend on the 

measurements. The model and the real plant mismatch can be handled with 

the appropriate selection of error dynamic weighting terms cP  and dynamic 

control weighting ckF .  

Three application examples were investigated to prove the applicability and 

efficiency of the RS control's state-space design. In these applications, the RS 

controller demonstrated an improvement in performance without involving 

exhausting tuning procedures. In the first example in Section 7.2, the algorithm 

was tested on a QTP with high interaction between different loops. This QTP 

benchmarked the RS controller performance against the classical PI controller 

and assessed its disturbance rejection property.  

In the second example in Section 7.3, the algorithm was assessed on ETB with 

a high nonlinearity due to LH spring and friction. This ETB was modelled in 

qLPV to capture the physical model nonlinearity. Compared to some 

automotive performance standards, such as the S80 Volvo recommended 

control responses, the RS controller performance was assessed for automotive 

performance standards.  

In the third example in Section 7.4, the algorithm was assessed on identified 

CSTR in PWA state-space. This PWA model was converted to its equivalent SD 

representation. The CSTR model has two stable regions at both edges of the 

output span, divided by an unstable region. The CSTR was moved between the 

different steady-states by tracking the concentration setpoint throughout the 

operating regions to assess the optimal switching between operating points.  
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Finally, the fourth example in Section 7.5 was investigated to prove the RS 

control's polynomial formulation's practicality. The algorithm was tested on a 

nonlinear VCT that has been identified in LPV transfer function form. This VCT 

was used to evaluate the RS controller performance against the classical PI 

controller and assess the benefit of using the polynomial LPV RS controller to 

control automotive nonlinear systems.  

The RS control has considerable potential based upon the following possible 

advantages: 

 The PID controller is handy, and greater flexibility can be achieved by 

adding terms to its dynamic order. 

 The controller parameterising in terms of linear dynamic functions set 

multiplied by unknown gains is intuitively justifiable, but a method is 

needed to compute the gains. 

 Using predictive control as the basis of the optimisation method 

enables incorporating future reference and disturbance variations 

information into the design. 

 The RS controller should have natural feedforward terms, provide 

some measure of transport-delay compensation, be easier to retune by 

classically trained engineers, and it has natural robustness properties. 

 The additional black-box operator model that can be included results in 

the general linear plant description that is particularly appropriate for 

representing nonlinearities in actuators. 

 An LPV ARMAX form of plant model will be suitable for many process 

applications where the parameters are often approximately constant 

for long periods and operating points slowly change. 
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 Engineers trained in classical methods can consider the discrete 

ARMAX model for conditions when the parameters are fixed. They 

can use their frequency-domain experience to assess likely plant 

behaviour in such conditions. 

By blending the two most effective control techniques employed in industry, 

an industrial controller design method has been delivered with considerable 

potential. Of course, it does have a disadvantage over the usual PID control 

approach that a model is essential to the solution. There are also questions 

regarding the limitations imposed by pre-specifying a fixed controller structure. 

Overall the RS controllers in their predictive version proved to introduce a 

promising solution for dealing with these particular nonlinear systems with 

many further improvement opportunities. The cost-function minimized is 

common and can involve LPV dynamic cost-function error weightings and cost-

weightings on the magnitude of the controller gains and the rate of change of 

gains.  

The RS controller was not established as an adaptive solution, but it has some 

adaptive controller features. Nevertheless, it is founded on a known linear or 

nonlinear model, and it does not have the unpredictability of, say, a self-tuning 

controller. From a research perspective, there are many features of this type of 

solution that still require assessment. However, it provides a model-based 

optimal controller from an industrial perspective, yet with traditional tuning 

knobs.  
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8.2 Future Work 

In this section, two extensions to the original design are suggested. The first 

one is related to the RS control design. An online disturbance identification 

feature can be added by utilising tools found in recent control theory and 

merged into the RS control design. The latter suggestion is related to the 

process of accommodating more nonlinear system classes with different 

nonlinearities in the RS control algorithmic group. 

8.2.1 Disturbance Identification 

The proper disturbance rejection feature in any real system depends on the 

correct disturbance model. This disturbance model should have adequate 

flexibility to count for low-frequency disturbance or any pulsation peaks located 

possibly anywhere in the spectrum. Hence, a method that can instantly and 

successively construct an accurate dynamical model to track time-varying 

disturbances is desirable for the RS control strategy to mitigate disturbances. 

Throughout this thesis, the disturbance model was decided based on an 

intuitive way, resulting in a degraded disturbance rejection feature. Thus, an 

extension to the original design is suggested, which could potentially tackle 

this issue that may arise out of the uncertainty caused by a passive disturbance 

model. The disturbance model can be obtained and selected in the suggested 

approach, while the RS controller operates from an online identification 

process. This process can be carried out for both the state-space or the 

polynomial case by initially building a disturbance model and then acquiring 

meaningful physical model parameters. 
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8.2.2 Application Design 

Two application examples are given for both the state-space and the polynomial 

description in the next to demonstrate how the RS algorithms can be advanced 

to accommodates various systems nonlinearity. 

8.2.2.1 input-output qLPV identification 

Usually, input-output LPV identification tends to be easier than the state-space 

LPV subspace identification when no first principles model is available. Still, 

most advanced controller design techniques are founded on state-space models. 

Thus, the LPV input-output representation is converted to its equivalent state-

space LPV description, and this process is challenging and not uncomplicated. 

Some work has advanced the qLPV input-output system identification process, 

and the MIMO LPV input-output system identification toolbox starts to be 

available. The solution given in Chapter 6 can be utilized along with one of 

these toolboxes in solving some advanced control problems. 

8.2.2.2 SD Constraints 

The MR semi-active suspension has an extreme nonlinearity with hysteresis, 

viscous, and saturation constraint. Recent research proves that the MR clipped 

schema can have a reduced performance when the constraints are not deemed 

in the preferred damping force's design process. Some efforts, such as the 

complicated hybrid MPC, were used to handle the nonlinear damping force 

constraint. The solution given in Chapter 5 can be exploited to accelerate the 

hybrid MPC computation algorithms. 



 200 

References 
[1] L. Desborough and R. Miller, ‘Increasing customer value of industrial 

control performance monitoring - Honeywell’s experience’, in AIChE 
Symposium Series, 2002, vol. 98, no. 326, pp. 169–189. 

[2] B. A. Ogunnaike and K. Mukati, ‘An alternative structure for next 
generation regulatory controllers: Part I: Basic theory for design, 
development and implementation’, J. Process Control, vol. 16, no. 5, pp. 
499–509, 2006, doi: 10.1016/j.jprocont.2005.08.001. 

[3] A. T. Bahill, ‘Simple Adaptive Smith-Predictor for Controlling Time-
Delay Systems.’, IEEE Control Syst. Mag., vol. 3, no. 2, pp. 16–22, May 
1983, doi: 10.1109/MCS.1983.1104748. 

[4] C. Meyer, D. E. Seborg, and R. K. Wood, ‘A comparison of the Smith 
predictor and conventional feedback control’, Chem. Eng. Sci., vol. 31, no. 
9, pp. 775–778, 1976, doi: 10.1016/0009-2509(76)80050-4. 

[5] S. O. J. M, ‘Closer control of loops with dead-time’, Chem. Eng. Prog., vol. 
53, no. 5, pp. 217–219, 1957. 

[6] S. O. J. M, Feedback Control Systems. McGraw-Hill Inc, 1958. 

[7] H. Tore, ‘A Predictive PI Controller for Processes with Long Dead Times’, 
IEEE Control Syst., vol. 12, no. 1, pp. 57–60, Feb. 1992. 

[8] K. Uren and G. van, ‘Predictive PID Control of Non-Minimum Phase 
Systems’, in Advances in PID Control, InTech, 2011. 
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A-1 Augmented System Matrices 

 Linear Subsystem 

The given state-space system model in Chapter 2 is very common, where many 

different system models may be manipulated into the form given. To show how 

the most common problem may be written in the employed form the steps in 

going from the different subsystems to the augmented system are described. 

Plant Model: The output state-space subsystem of the plant model is given in 

the next linear model form: 

 0 0 0 0 0 0 0 0( 1) ( ) ( ) ( )dx t A x t B u D t G d tζ+ = + + +  (A.1) 

 0 0 0 0 0( ) ( ) ( ) ( )y t d t C x t E u t k= + + −  (A.2) 

where 0
0( ) nx t R∈  and 0 ( )dd t  is the input deterministic disturbance. The output 

disturbance 0( ) ( ) ( )dd t d t y t= +  is represented by two components, the known 

deterministic disturbance component ( )d t  and a second stochastic component 

( )dy t  . 

Output Disturbance Model: The plant can contain process noise ( )tζ  which 

can be deemed input disturbance, and likewise, an output disturbance model 

is used more for frequency response design shaping. This model is excited by 

zero-mean white-noise ( )tω  and given in state-equation form as: 

 ( 1) ( ) ( ), ( ) dn
d d d d dx t A x t B t x t Rω+ = + ∈  (A.3) 

 ( ) ( )d d dy t C x t=  (A.4) 
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Error Weighting: As noted, the controlled signal involves the system weighted 

tracking error, and this weighting is given in state-equation form as: 

 ( )( 1) ( ) ( ) ( ) , ( ) pn
p p p p px t A x t B r t y t x t R+ = + − ∈  (A.5) 

 ( )( ) ( ) ( ) ( )p p p pe t C x t E r t y t= + −  (A.6) 

Input Weighting: In some problems, it is beneficial to have another mechanism 

to introduce a control costing or a dynamic weighting on 0( )u t k−  input signal. 

If a dynamic input signal costing is to be introduced on the input, it can be 

treated as part of the system model, and this may require a lead-lag term type 

of frequency response, and hence the through term is needed in the subsystem 

model. Then the weighting: 

 0( 1) ( ) ( ), ( ) rn
r r r r rx t A x t B u t k x t R+ = + − ∈  (A.7) 

 0( ) ( ) ( )r r r ry t C x t E u t k= + −  (A.8) 

Augmented System: The state-space model of a total r m×  multivariable system 

illustrated in Figure 8-1 can be introduced. The augmented system state-vector 

is denoted 0( ) [ ( ) ( ) ( ) ( )]T T T T T
d p rx t x t x t x t x t=  and combines augmented plant, 

disturbance, and dynamic cost-function weightings. The augmented system 

matrices are represented as , , , ,A B C D E  for the linear planet in (A.1) to (A.2). 

 0( 1) ( ) ( ) ( ) ( )dx t Ax t Bu t k D t d tξ+ = + − + +  (A.9) 

 0( ) ( ) ( ) ( )y t d t Cx t Eu t k= + + −  (A.10) 

 0( ) ( ) ( ) ( ) ( )z t d t Cx t Eu t k v t= + + − +  (A.11) 

Weighted Error: The weighted error in terms of an augmented linear model is: 

 0( ) ( ) ( ) ( )p p p pe t d t C x t E u t k= + + −  (A.12) 
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Remarks: Note that in some of the designs which follow, there is no need to 

assume the weighted errors number is the same as a number of control inputs, 

and this enables more general problems to be considered with additional SD 

weightings. If selected states are to be minimized, the mapping between states 

and signal to be minimized can be denoted 0 ][ 0 0q qdC C . The augmented 

system equations that define matrices in (A.9)-(A.11) and the deterministic 

signal ( )dd t  are all derived in the next section, but the results may be 

summarized as: 

 

0 0 0

0 0

0
0 0

0

0

0 0 0 0
0 0 0 0 0

, ,
0 0 0

0 00 0 0
0 0

0 0
, 0 0 0 ,

0
0 0 0

0 0
0 0 ,

d d

p p d p p

r r

p p d p p

p r p r
p

q qd

d

A B D
A D

A B D
B C B C A B E

A B
G E C E C C E E

G C C E E
B

C C

C C C E

     
     
     = = =     − − −
     

         
 

− −  −  
    = = =    
          

=    0E=

 (A.13) 

Both reference ( )r t  and disturbance ( )d t  are deterministic signals. To simplify 

the analysis, define: 

 ( )

( )0 0

0

( ) ( ) ( )
0( )

( ) ( ) 0
( ) ( )( ( ) ( ))

0
0

d
p

d
d p

p

G d t E r t d t
d t

d t G and d t
B r t d tr t d t

   −      = = =     −−        

 (A.14) 

The white-noise driving terms are merged in the vector [ ]( ) ( ) TT Tt tζ ω . 

Augmented System Matrices Definition: The relation between the augmented 

system in (A.9)-(A.13), to the plant, disturbance and weighting subsystems is 

formed below. To describe the matrices in the augmented system model, noting 

from (A.1)-(A.11): 
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 ( )
0 0 0 0 0

( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p px t A x t B r t B y t

y t d t C x t E u t k

+ = + −

= + + −
 

Thence obtain, 

 ( )0 0 0 0( 1) ( ) ( ) ( ) ( ) ( ) ( )p p p p p p d d p px t A x t B r t B d t B C x t B C x t B E u t k+ = + − − − − −  

Also, from equations (A.2) and (A.4), 

 
( )

( )0 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
p p p p

p p p p d d

e t C x t E r t y t

C x t E r t E d t C x t C x t E u t k

= + −

= + − + + + −
 (A.15) 

The system matrices are found from the combined state-equation models: 

 

00 0 0

0
0 0

00

0 0 0( 1) ( )
0 0 0( 1) ( ) 0

( )0( 1) ( )
0 0 0( 1) ( )

00
0 00 ( )
00 0 ( )

0 0 0

dd d

p p d pp p p

rr r r

d

p

Ax t x t B
Ax t x t

u t kB C B C Ax t x t B E
Ax t x t B

GD
D t

Bt
ζ
ω

      +
      +       = + − +      − −+ −
      

+             
 
     +     
  

0 ( )
( ( ) ( ))

0

dd t
r t d t

 
 

  
   −  

  

 (A.16) 

Giving the augmented system matrices and vectors, 

 0( 1) ( ) ( ) ( ) ( )dx t Ax t Bu t k D t d tξ+ = + − + +  

Following similar steps for the error equation, noting (A.15) 

 

( ) 0
0

0

0

0

( )( ) ( ) 0
( )

( ) 0 0 0 0
( )

0 0 0
( )

( )
0

p p p d p
d

p r
p

q qd
r

p

r

x tE r t d t E C E C C
x t

e t C
x t

C C
x t

E E
E u t k

  − − −        = + +               
− 
 

− 
 
 

 (A.17) 
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Giving, 

 0( ) ( ) ( ) ( )p p p pe t d t C x t E u t k= + + −  

These outcomes validate the augmented matrices definition in (A.9), (A.12). 

 

Figure 8-1: Augmented linear state-space subsystems 
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 qLPV/SD Subsystem 

The given state-space system model in Chapter 2 is very common, where many 

different system models may be manipulated into the form given. To show how 

the most common problem may be written in the employed form the steps in 

going from the different subsystems to the augmented system are described. 

Plant Model: The output state-space subsystem of the plant model is given in 

the next with a minor extension to make these matrices to be functions of the 

system input at a time t k−  or even a time-varying set of parameters ( )tρ : 

 0 0 0 0 0 0 0

0 0 0 0 0

( 1) ( , , ) ( ) ( , , ) ( )
( , , ) ( ) ( , , ) ( )d

x t A x u x t B x u u t k
D x u t G x u d t

ρ ρ
ρ ζ ρ

+ = + − +
+

 (A.18) 

 0 0 0 0 0 0 0( ) ( ) ( , , ) ( ) ( , , ) ( )y t d t C x u x t E x u u t kρ ρ= + + −  (A.19) 

where 0
0( ) nx t R∈  and 0 ( )dd t  is the input deterministic disturbance. The output 

disturbance 0( ) ( ) ( )dd t d t y t= +  is represented by two components, the known 

deterministic disturbance component ( )d t  and a second stochastic component 

( )dy t  . 

Output Disturbance Model: The plant can contain process noise ( )tζ  which 

can be deemed input disturbance, and likewise, an output disturbance model 

is used more for frequency response design shaping. This model is excited by 

zero-mean white-noise ( )tω  and given in state-equation form as: 

 ( 1) ( ) ( ), ( ) dn
d d d d dx t A x t B t x t Rω+ = + ∈  (A.20) 

 ( ) ( )d d dy t C x t=  (A.21) 

Error Weighting: As noted, the controlled signal involves the system weighted 

tracking error, and this weighting is introduced in state-equation as: 
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 ( )( 1) ( ) ( ) ( ) , ( ) pn
p p p p px t A x t B r t y t x t R+ = + − ∈  (A.22) 

 ( )( ) ( ) ( ) ( )p p p pe t C x t E r t y t= + −  (A.23) 

Augmented System: The state-space model of a total r m×  MIMO system 

illustrated in Figure 8-2 can be introduced. The augmented system state-vector 

denoted 0( ) ( ) ([ ( )])T T T
d

T
px t x t x t x t=  combines augmented plant, disturbance, 

dynamic cost-function weightings and can be a function of the states, control or 

other parameters ( )0( ), ( ), ( )x u t k tt ρ− . The augmented system matrices will be 

denoted as , , , ,t t t t tA B C D E : 

 0( 1) ( ) ( ) ( ) ( )t t t dx t A x t B u t k D t d tξ+ = + − + +  (A.24) 

 0( ) ( ) ( ) ( )t ty t d t C x t E u t k= + + −  (A.25) 

 0( ) ( ) ( ) ( ) ( )t tz t d t C x t E u t k v t= + + − +  (A.26) 

Weighted Error: The weighted error in terms of an augmented SD model: 

 0( ) ( ) ( ) ( )p p p pe t d t C x t E u t k= + + −  (A.27) 

Augmented System Matrices Structure: The augmented system equations that 

explain the matrices in (A.24)-(A.26) and the deterministic signal ( )dd t  are all 

derived in the next section, but the results may be summarized as: 

 

0 0 0

0 0

0
0 0 0

0

( ) 0 0 ( ) ( ) 0
0 0 , 0 , 0

( ) 0 0

( ) 0 0 , ,
0 0 ,

( )0

d t d

p p d p p

d t pt p

p p p d p
p

A B D
A A B D D

B C B C A B E

G C C C E E E E E
G

C E C E C CB

ρ ρ ρ

ρ

ρ

ρ

     
     = = =     
     − − −     
   =   = = −     =    = − −    

 (A.28) 
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Remarks: Subscript t on state matrices here is only utilized for the augmented 

system, and in a slight misuse of notation, it also suggests that these matrices 

are evaluated at time t so that the augmented system matrix at 1t +  is given as 

1tA +  and so on. Both reference ( )r t  and disturbance ( )d t  are deterministic 

signals. To simplify the analysis, define: 

 ( )0 ( )
( ) ( ) ( ) ( )

( ( ) ( ))
d

d t p p

d t
d t G and d t E r t d t

r t d t
 

= = − − 
 (A.29) 

The white-noise driving terms are merged in the vector [ ]( ) ( ) TT Tt tζ ω . 

 Augmented System Matrices Definition: A relation between the augmented 

system in (A.24)-(A.28), to the plant, disturbance and weighting subsystems is 

formed below. To describe the matrices in the augmented system model, noting 

from (A.18)-(A.26): 

 ( )
0 0 0 0 0

( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p px t A x t B r t B y t

y t d t C x t E u t k

+ = + −

= + + −
 

Thence obtain, 

 ( )0 0 0 0( 1) ( ) ( ) ( ) ( ) ( ) ( )p p p p p p d d p px t A x t B r t B d t B C x t B C x t B E u t k+ = + − − − − −  

Also, from equations (A.19) and (A.21), 

 ( )0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )p p p p p d de t C x t E r t E d t C x t C x t E u t k= + − + + + −  (A.30) 

Giving the augmented system matrices and vectors, 

 0( 1) ( ) ( ) ( ) ( )t t t dx t A x t B u t k D t d tξ+ = + − + +  

The system matrices are found from the combined state-equation models given 

in (A.31). 
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 (A.31) 

Following similar steps for the error equation, noting (A.30), 

 

( )
0

0

0 0

( )
( ) ( ( ) ( )) ( ) ( )

( )

( )

pp t

pt

Cd t

p p p p d p d

p

E

p

x t
e t E r t d t E C E C C x t

x t

E E u t k

ρ

 
    = − + − − +    
 
 

 − − 

 



 (A.32) 

Giving, 

 0( ) ( ) ( ) ( )p p pt pte t d t C x t E u t k= + + −  

These outcomes validate the augmented matrices definition in  (A.24),  (A.27). 

 

Figure 8-2: Augmented qLPV/SD state-space subsystems 
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A-2 Matlab Simulations Code 

 QTP 

Main 

clear all;clc; 

global CpnAnU 

global error1_t 

global error2_t 

error1_t=0; 

error2_t=0; 

CpnAnU=zeros(252,1); 

addpath(genpath(pwd)); 

s = tf('s'); 

nbuffer = 41;                % State buffer for future reference generation 

Ts=0.5;                      % Sampling time 

Model parameters 

g = 981; 

A1=28;A2=32;A3=28;A4=32; 

a1=0.071;a2=0.057;a3=0.071;a4=0.057; 

kc=0.5; 

h1=12.4;h2=12.7;h3=1.8;h4=1.4; 

k1=3.33;k2=3.35;miu1=0.7;miu2=0.6; 

T1=(A1/a1)*sqrt((2*h1)/g);T2=(A2/a2)*sqrt((2*h2)/g); 

T3=(A3/a3)*sqrt((2*h3)/g);T4=(A4/a4)*sqrt((2*h4)/g); 

alpha1 = a1/A1; 

alpha2 = a2/A2; 

beta1 = miu1*k1/A1; 

beta2 = miu2*k2/A2; 

beta3 = (1-miu2)*k2/A3; 

beta4 = (1-miu1)*k1/A4; 

A=[-1/T1 0 A3/(A1*T3) 0;0 -1/T2 0 A4/(A2*T4);0 0 -1/T3 0;0 0 0 -1/T4]; 

B=[miu1*k1/A1 0;0 miu2*k2/A2;0 (1-miu2)*k2/A3;(1-miu1)*k1/A4 0]; 

C=[kc 0 0 0;0 kc 0 0]; 

E=zeros(2,2); 

sys = ss(A,B,C,E); 

sysd = c2d(sys,Ts); 

[A0,B0,C0,E0] = ssdata(sysd); 

Model dimensions 

[nx0] = size(A0,1);                % No of states, 

[tmp,nu] = size(E0);               % No of inputs 

nyc = tmp;                         % No of controlled signals 
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nym=nyc;                           % No of measured outputs 

D0 = eye(nx0);                     % Planet stochastic disturbance 

G0 = B0;                           % Planet deterministic disturbance 

ng = size(D0,2);                   % No of stochastic input disturbances 

nd = size(G0,2);                   % No of deterministic input disturbances 

k = 0;                             % Explicit time delay [samples] 

N = 40;                            % Prediction horizon 

Initial conditions & Equilibrium points 

ue_0 = [3;3];                           % Equilibrium input 

xe_0 = [12.4;12.7;1.8;1.4];             % Equilibrium state 

ye_0 = C*xe_0;                          % Equilibrium output 

u_0 = [0;0];                            % Initial conditions 

x_0 = [0;0;0;0];                        % Initial conditions 

Disturbance Model 

nxd = nym; 

Ad = eye(nxd); Bd = eye(nxd); 

Cd = eye(nxd); 

Dynamic weighting 

Kp1 = 1500; Ki1 = 2; 

Kp2 = 1500; Ki2 = 1; 

Pcc = [Kp1+Ki1/s, 0;0, Kp2+Ki2/s]; 

Pc = c2d(Pcc,Ts,'tustin'); 

[Ap,Bp,Cp,Ep] = ssdata(Pc); 

nxp = size(Ap,1); 

xp_0 = zeros(nxp,1); 

Covariances for the Kalman Filter 

QN = 0.01*diag([1 1 1 1 0 0]);   % Model noise covariance for Kalman filter 

RN = 0*eye(nym);                 % Measurement noise covariance 

GPC Controller Flags 

        futuresp_flag = 1;             % 1 = future reference knowledge ON 

        futurectr_flag = 1;             % 0 = hold u(t-1), 1 = use U(t-1) 

        bta = 0;              % 0='u', 1='delta_u' 

        Pu = [1 N]; 

        [Tu,Nu] = mpcprof(Pu,N,0); 

        Nu=40 

        TTu = kron(Tu,eye(nu)); 

        wR = 0.01*diag([1 1]); 

        R = kron(eye((Nu)),wR); 
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        wQ = 10*diag([1 1]); 

        Q = kron(eye((N)),wQ); 

Integrator switch 

nxi = bta*nu; 

RS-GPC Parameters 

Ac = [1 0 0 0;0 0 0 0;0 0 1 0;0 0 0 0]; 

Bc = [1 0;1 0;0 1;0 1]; 

Cc = [0 0 0 0;1 0 0 0;0 -1 0 0;0 0 0 0;0 0 1 0;0 0 0 -1]; 

Dc = [1 0;0 0;1 0;0 1;0 0;0 1]; 

L_K = 1*diag([1 1 1 1 1 1]);      % gain weighting ([P I D]) 

L_D = 0.0001*diag([1 1 1 1 1 1]); % gain rate of change weighting ([P I D]) 

% L_D = 1*ones(6,6);              % gain rate of change weighting ([P I D]) 

kc_bar = [0  0  0 0  0  0]';      % Single controller k=k_tilda 

Ne=3; 

Definition of Model and Control structures 

nx = nx0+nxd+nxi+nxp; 

par = struct(  'A0',A0,'B0',B0,'C0',C0,'E0',E0,'D0',D0,'G0',G0,... 

               'Ad',Ad,'Bd',Bd,'Cd',Cd,'Ap',Ap,'Bp',Bp,'Cp',Cp,... 

               'Ep',Ep,'nym',nym,'nyc',nyc,'nd',nd,'nu',nu,... 

               'Ac',Ac,'Bc',Bc,'Cc',Cc,'Dc',Dc,'L_K',L_K,'L_D',L_D,... 

               'kc_bar',kc_bar,'Ne',Ne,'nx0',nx0,'nxd',nxd,'nxp',nxp,... 

               'nxi',nxi,'ng',ng,'nx',nx,'N',N,'QN',QN,'RN',RN,'Ts',Ts,... 

               'k',k,'R',R,'Q',Q,'Nu',Nu,'Tu',Tu,'bta',bta,'TTu',TTu); 

QT initialization (th0 defined above by selection) 

t_stop =  300; t = [0:Ts:t_stop]'; th0=[0;0]; 

ref_Steps_1 = [0 th0(1)+5.2; 100 th0(1)+5.2; 200 th0(1)+7.2]; 

ref_Steps_2 = [0 th0(2)+6.35; 100 th0(2)+6.35; 200 th0(2)+6.35]; 

DD_In_1 =  [0 th0(1)+0; 50 th0(1)+0; 100 th0(1)+0]; 

DD_In_2 =  [0 th0(1)+0; 100 th0(1)+0; 200 th0(1)+0]; 

DD_Out_1 = [0 th0(1)+0; 50 th0(1)+1; 100 th0(1)+0]; 

DD_Out_2 = [0 th0(1)+0; 150 th0(1)+1; 200 th0(1)+1]; 

% References 

reference_1 = ref_Steps_1; 

reference_2 = ref_Steps_2; 

open_system('RSGPC_PI') 
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Figure 8-3: Main QTP Simulink diagram 
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 ETB 

Main 

clear all; 

clc; 

addpath(genpath(pwd)); 

global CpnAnU 

global error_t 

global error_o1_t 

error_o1_t=0; 

error_t=0; 

Constants 

Ts = 10e-3;               % [s] sample time 

nbuffer = 100;               % state buffer for future reference generation 

s = tf('s'); 

Initial conditions 

th0  = 15;                      % Limp-home (LH) position (Deg) 

th0r = th0*(pi/180);            % Limp-home (LH) position (Rad) 

thd0 = 0;                       % Plate speed at (LH) 

x_0 = [th0*(pi/180); thd0];     % initial state: [position; velocity] 

u_0 = 0;                        % initial control: torque 

y_0 = 180/pi*x_0(1); 

ETB plant parameters 

R=1.15;             % Motor Resistance 

R1=5.15 

L=1.5e-3;           % Motor Inductance 

Ng=20.68;           % Gear Ratio 

Jt=0.0021;          % Motor throttle assembly inertia 

Ka=0.0185;          % Motor torque coefficient 

Km=0.0185;          % Back-EMF coefficient 

Kft=0.0088;         % Viscous friction coefficient 

Ksp=0.087;          % Spring stiffness coefficient 

Tf=0.284;           % Friction torque 

Tsp=0.396;          % spring torque 

output_bias = 0; % bias on plant output 

parSYS = struct('R',R,'Ng',Ng,'Jt',Jt,'Ka',Ka,'Km',Km,'Kft',Kft,... 

                'Ksp',Ksp,'Tf',Tf,'Tsp',Tsp,'th0r',th0r,'th0',th0); 
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State-dependent model dimensions 

nx0 = 2; 

nu = 1; 

nym = 1; % No of measured outputs 

nyc = 1;               % No of controlled signals 

nd = 1;               % No of input disturbances 

k = 1;               % Explicit time delay [samples] 

Torque limits [Nm] 

u_max = 12; 

u_min = -u_max; 

% Torque rate limits [Nm/s] 

du_max = 12; 

du_min = -du_max; 

NGPC controller design 

        c2dflag = 0;            % c2d flag: 0=Euler, 1=direct 

        constr_flag = 0;        % Constraint handling 

        freeze_flag = 0;        % 0 = full LPV, 1 = frozen model 

        futuresp_flag = 1;      % 1 = future reference knowledge ON 

        futurectr_flag = 1;     % 0 = hold u(t-1), 1 = use U(t-1) 

        bta = 0;                % 0='u', 1='delta_u' 

        N = 15;                 % prediction horizon 

  Pu = [1 N]; 

  [Tu,Nu] = mpcprof(Pu,N,bta); 

  Kp = 10;   Ki = 50;  Td = 0;

  tau_d = 0.3; 

        % NGPC Dynamic error weighting 

            Co_CT = pid2tf(Kp,Ki,Td); 

            Coo = c2d(Co_CT,Ts,'tustin'); Co1.v = 'z^-1'; 

            Pc_NGPC = Coo; 

  L_U = 0.1; 

        % Block-diagonal static control weight 

        LN_U = kron(eye(Nu),L_U); 

        % Output disturbances incl. stochastic and "robustness" states 

        nxd = nym; 

        Ad = eye(nxd); Bd = eye(nxd); 

        Cds = zeros(nxd,nxd); % stochastic disturbances 

        Cdm = 0*eye(nxd); % mismatch on measurements 

        Cdc = 0;  % mismatch on controlled variables 

% Integrator switch 

        nxi = bta*nu; 

        Pc = ss(Pc_NGPC);    [Ap,Bp,Cp,Ep] = ssdata(Pc); 

        nxp = size(Ap,1); 

        Pcx_NGPC = ss(Ap,Bp,eye(nxp),zeros(nxp,nyc),Ts); 

        xp_0 = zeros(nxp,1); 

% Total number of states 

        nx = nx0 + nxd + nxi + nxp; 

% Covariances for the Kalman Filter 

        qn_theta = 10^2;        % theta state uncertainty [rad^2] 
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        qn_thetadot = 10^2;     % theta_dot state uncertainty [(rad/s)^2] 

        qn_omega = 10^2; 

        rn_theta = 0.001^2;     % theta sensor variance [deg^2] 

        QN = diag([qn_theta qn_thetadot qn_omega]); 

        RN = diag([rn_theta]); 

% Definition of Model and Control structures 

        parNG = struct('R',R,'Jt',Jt,'Ka',Ka,'Km',Km,'Kft',Kft,... 

                       'Ksp',Ksp,'Tf',Tf,'Tsp',Tsp,'th0r',th0r,... 

                       'th0',th0,'Ng',Ng,'nym',nym,'nyc',nyc,'nd',nd,... 

                       'nu',nu,'nx0',nx0,'nxd',nxd,'nxp',nxp,'nx',nx,... 

                       'nxi',nxi,'freeze_flag',freeze_flag,... 

                       'constr_flag',constr_flag,'c2dflag',c2dflag,... 

                       'futuresp_flag',futuresp_flag,... 

                       'futurectr_flag',futurectr_flag,'N',N,'Nu',Nu,... 

                       'Tu',Tu,'QN',QN,'RN',RN,'LN_U',LN_U,'Ap',Ap,... 

                       'Bp',Bp,'Cp',Cp,'Ep',Ep,'Ad',Ad,'Bd',Bd,... 

                       'Cds',Cds,'Cdm',Cdm,'Cdc',Cdc,'Cd',Cds+Cdm,... 

                       'u_max',u_max,'u_min',u_min,'du_max',du_max,... 

                       'du_min',du_min,'Ts',Ts,'k',k,'bta',bta); 

ETB initialization 

t_stop =  15; t = [0:Ts:t_stop]'; 

ref_Steps = [0 (th0+10)*pi/180; 1 (th0+30)*pi/180; 4 (th0+50)*pi/180;... 

             7 (th0+70)*pi/180; 10 (th0+40)*pi/180; 13 (th0+20)*pi/180]; 

OL_Steps = [0 0;4 -10;7 -20]; 

open_system('ETB') 

% Reference 

reference = ref_Steps; 

% Simulation w/o Disturbance 

kdist = 0;   x_00 = 0; 

% Default simulation scenario 

default_scenario = 'Steps'; 

% Default controller 

default_controller = 'NGPC'; 

% Default model 

default_model = 'qLPV'; 
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Figure 8-4: Main ETB Simulink diagram 
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 CSTR 

Main 

clear all; 

clc; 

addpath(genpath(pwd)); 

global CpnAnU 

global error_t 

global error_o1_t 

error_o1_t=0; 

error_t=0; 

Constants 

Ts = 0.1;    % [s] sample time 

nbuffer = 6;  % state buffer for future reference generation 

s = tf('s'); 

Initial conditions 

ca0  = 0.856; 

ca_r = 0; 

Temp0 = 0.886; 

x_0 = [ca0; Temp0];  % initial state 

u_0 = 0;             % initial control 

y_0 = 0; 

CSTR plant parameters 

delta=0.3;          % Heat Transfer Coefficient 

lambda=20;          % Dimensionless Activation Energy 

theta=0.072;        % Damköhler number 

beta=8;             % Heat of Reaction Coefficient 

q=1;                % 

output_bias = 0;   % bias on plant output 

parSYS = struct('lambda',lambda,'delta',delta,'theta',theta,... 

                'beta',beta,'q',q); 

State-dependent model dimensions 

nx0 = 2;            % No of states 

nu = 1;             % No of control input 

nym = 1;            % No of measured outputs 

nyc = 1;            % No of controlled signals 

nd = 1;             % No of input disturbances 

k = 1;              % Explicit time delay [samples] 
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Control limits 

u_max = 2; 

u_min = -u_max; 

% input rate limits 

du_max = 2; 

du_min = -du_max; 

NGPC controller design 

        c2dflag = 0; % c2d flag: 0=Euler, 1=direct 

        constr_flag = 1; % Constraint handling 

        freeze_flag = 0; % 0 = full Sd, 1 = frozen model 

        futuresp_flag = 1; % 1 = future reference knowledge ON 

        futurectr_flag = 1; % 0 = hold u(t-1), 1 = use U(t-1) 

        bta = 0;  % 0='u', 1='delta_u' 

        N = 5;  % prediction horizon 

  Pu = [1 N]; 

  [Tu,Nu] = mpcprof(Pu,N,bta); 

  Kp = 100;   Ki =1;  Td = 0;

  tau_d = 0; 

        % NGPC Dynamic error weighting 

            Co_CT = pid2tf(Kp,Ki,Td); 

            Coo = c2d(Co_CT,Ts,'tustin'); Co1.v = 'z^-1'; 

            Pc_NGPC = Coo; 

  L_U = 0.1; 

% Block-diagonal static control weight 

LN_U = kron(eye(Nu),L_U); 

% Output disturbances incl. stochastic and "robustness" states 

nxd = nym; 

Ad = eye(nxd); Bd = eye(nxd); 

Cds = zeros(nxd,nxd); % stochastic disturbances 

Cdm = 0*eye(nxd);  % mismatch on measurements 

Cdc = 0;  % mismatch on controlled variables 

% Integrator switch 

nxi = bta*nu; 

Pc = ss(Pc_NGPC);    [Ap,Bp,Cp,Ep] = ssdata(Pc); 

nxp = size(Ap,1);    Pcx_NGPC = ss(Ap,Bp,eye(nxp),zeros(nxp,nyc),Ts); 

xp_0 = zeros(nxp,1); 

% Total number of states 

nx = nx0 + nxd + nxi + nxp; 

% Covariances for the Kalman Filter 

qn_ca = 0.1^2;  % ca state uncertainty [rad^2] 

qn_Temp = 10^2;                    % Temp state uncertainty [(rad/s)^2] 

qn_omega = 10^2; 

rn_ca = 0.001^2;                   % sensor variance [deg^2] 

QN = diag([qn_ca qn_Temp qn_omega]); 

RN = diag([rn_ca]); 

% Definition of Model and Control structures 

parNG = struct('lambda',lambda,'delta',delta,'beta',beta,'q',q,... 

    'ca_r',ca_r,'u_0',u_0,'x_0',x_0,'theta',theta,... 

    'nym',nym,'nyc',nyc,'nd',nd,'nu',nu,'nx0',nx0,'nxd',nxd,'nxp',nxp,... 

    'nx',nx,'nxi',nxi,'freeze_flag',freeze_flag,... 

    'constr_flag',constr_flag,'c2dflag',c2dflag,... 
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 'futuresp_flag',futuresp_flag,'futurectr_flag',futurectr_flag,... 

 'N',N,'Nu',Nu,'Tu',Tu,'QN',QN,'RN',RN,'LN_U',LN_U,... 

 'Ap',Ap,'Bp',Bp,'Cp',Cp,'Ep',Ep,... 

 'Ad',Ad,'Bd',Bd,'Cds',Cds,'Cdm',Cdm,'Cdc',Cdc,'Cd',Cds+Cdm,... 

 'u_max',u_max,'u_min',u_min,'du_max',du_max,'du_min',du_min,... 

 'Ts',Ts,'k',k,'bta',bta); 

CSTR initialization 

t_stop =  250; t = [0:Ts:t_stop]'; 

ref_Steps = [0 0.856; 50 0.5528; 100 0.2353; 150 0.5528; 200 0.856]; 

OL_Steps = [0 0;4 -10;7 -20]; 

% Reference 

reference = ref_Steps; 

% Simulation w/o Disturbance 

kdist = 0;   x_00 = 0; 

open_system('CSTR') 
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Figure 8-5: Main CSTR Simulink diagram 
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 VCT 

Main 

%%Master script for VVT control with Polynomial GPFC Controller 

clear all; close all; clc 

addpath(genpath('polynomial')) 

addpath(genpath('ngmv_toolbox_june_2019')) 

pinit; gensym 'z^-1';   clc 

Initials 

p0 = 310;                   % oil pressure [kPa] 

eN0 = 900;                  % engine speed [rpm] 

noVp = 2;                   % number of vaying parameters 

pv = 0.7;                   % varying parameter [OL gain] 

y0 = 0;                     % VVT actuator position [Deg.] 

u_0 = 0;                    % VVT actuator control [V] 

% pi = 0.2 + 0.1/s;         % PI for comparison 

Main parameters 

Ts = 0.005;           % sample time [sec] 

tol = 1e-8;           % zeroing tolerance 

zi = filt([0 1],1,Ts); 

Polynomial System Models 

k = 1; 

num = [0.06013  -0.04263]; 

den = [1  -1.9547  +0.9553]; 

H = tf(num,den,Ts);         %VVT Open-loop transfer 

set(H,'Variable','z^-1') 

W0k = H/zi; W0 = H; 

Nu=1;   Ny=1; 

% Disturbance model Wd 

numd=[0.01]; 

dend=[0.1 -0.1]; 

wd=tf(numd,dend,Ts); 

set(wd,'Variable','z^-1'); 

Wds =wd; 

Wd = Wds/zi; 

% Reference model Wr 

Wr = 0; 

Nd = size(Wd,2); 

QN = 0.1*eye(Nd);  RN = 1e-3*eye(Ny);   Rf = RN; 
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Dynamic weighting definition 

Kp =1;   Ki =0;  Td = 0;  tau_d = 0; 

Co_CT = pid2tf(Kp,Ki,Td); 

Coo = c2d(Co_CT,Ts,'zoh'); Co1.v = 'z^-1'; 

%set(Coo,'Variable','z^-1') 

Pc = Coo; 

Setting 

stop_time = 3.5; 

Tf = stop_time; 

tmp = [Ts,0,0.5,-6,2,0];    % CAM reference [deg] 

tmp_N = [Ts,1800];          % engine speed reference [rpm] 

tmp_P = [Ts,414];           % oil pressure reference[kPa] 

reference = siggen(Tf,{'steps',tmp},Ts); 

reference_N = siggen(Tf,{'steps',tmp_N},Ts); 

reference_P = siggen(Tf,{'steps',tmp_P},Ts); 

GPFC 

N = 15; 

lambda = 0.8; LAMBDA=lambda*eye(N+1); 

C_I0 = [eye(Nu) zeros(Nu,Nu*(N))]; 

ref_N = ref_pred(reference,N,k,Pc); 

par = struct('C_I0',C_I0,'W0k',W0k,'Wd',Wd,... 

    'p0',p0,'eN0',eN0,'noVp',noVp,'pv',pv,'y0',y0,'u_0',u_0,'Ts',Ts,... 

    'k',k,'Nd',Nd,'QN',QN,'Rf',Rf,'N',N,'LAMBDA',LAMBDA,'Nu',Nu,... 

    'Ny',Ny,'Pc',Pc); 

 

[H_NZ,S_NZ,GN] = ngpcpoly(W0k,Wd,k,Pc,Rf,N,Nu,Ny,Ts); 

Simulink 

open_system('VCT') 
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Figure 8-6: Main VCT Simulink diagram 


