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Abstract 

There is a constant need to discover new anticancer and anti-inflammatory compounds 

that can be developed as medicines. Sphingosine kinase 1 (SK1) and dihydroceramide 

desaturase (Des1) have been demonstrated to have a key role in sphingolipid 

metabolism and are potential targets for anticancer/anti-inflammatory therapeutics. 

This study aims to screen a plant library collected during field work in Egypt and then 

to isolate new anticancer and anti-inflammatory compounds with activity against SK1 

and/ or Des1. This aim was achieved using plant extracts tested on breast cancer cell 

viability, proliferation and SK1 and/or Des1 protein expression. Bio-assay guided 

fractionation and isolation of compounds using flash column, silica gel column 

chromatography and preparative TLC techniques, followed by structure elucidation 

using 1D and 2D spectroscopic analysis enabled identification of compounds that met 

the criteria above. Cell proliferation was determined using [3H]-thymidine 

incorporation assay. Western blotting technique was used to determine the effect of 

isolated compounds on the targeted enzymes SK1/Des1 as well as the apoptotic 

pathway (PARP). There were three major findings. First, three plant species 

Gomphocarpus sinaicus, Urginea maritima and Pancratium tortuosum exhibited 

anticancer activity. Second, narciclasine was isolated for the first time from P. 

tortuosum and was demonstrated to inhibit cell proliferation (p<0.05) and to reduce 

SK1 and Des1 expression in MDA-MB-231 and MCF7-7L breast cancer cells. 

Narciclasine also induced PARP cleavage (a marker for apoptosis) and reduced 

expression of Ki67 and phosphorylated AKT levels (a marker for cell survival). The 

reduced expression of SK1 and Des1 in response to narciclasine was independent of 

the ubiquitin-proteasomal pathway, suggesting that this compound might affect the 

transcriptional/translational regulation of SK1 and Des1. Finally, narciclasine also 

exhibited ant-inflammatory activity as evidenced by its ability to prevent TNFα-

stimulated degradation of IκB and to inhibit NFB- and AP1-dependent transcriptional 

activity in keratinocytes. Third, a mixture of cardenolide glycosides were isolated from 

G. sinaicus and shown to inhibit cell proliferation (p<0.05), reduce expression of SK1 

and Des1 and induce modest PARP cleavage in MDA-MB-231 and MCF-7L cells. 

This mixture contained humistratin and calactin and/or calotropin. These compounds 
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reduced SK1 expression by inducing its proteasomal degradation, while the reduction 

in Des1 expression may be via a transcriptional/translational mechanism and is 

independent of ubiquitin-proteasomal degradation pathway. The mixture also 

exhibited anti-inflammatory activity in inhibiting NFB- and AP-1-dependent 

transcriptional activity in keratinocytes.  Narciclasine and the cardenolide glycoside 

mixture are potential anticancer/anti-inflammatory compounds require further studies  

in order to establish whether these compounds might be usefully exploited to treat 

cancer and inflammatory disease.  
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CHAPTER 1: General introduction 

1.1 Natural products and drug discovery 

For centuries, traditional medicines including plants, animal products and minerals 

have been used in different formulations for the treatment of disease. These practices 

are still common in many countries including in Africa and Asia. Many traditional 

medicines have been used for a long time and are well documented by their local 

communities. These include Iranian, Islamic, Chinese, Indian, Korean, and African 

traditional medicines (Builders, 2018, Wangchuk, 2018). The medicinal properties of 

extracts have provided the basis for the isolation and identification of novel 

therapeutically active compounds that can be formulated as drugs and used to treat 

many diseases (Zhang et al., 2018a).  For example, Taxol is a drug which was isolated 

from the plant Taxus baccata and which had been used historically, without scientific 

evidence, to cure cancer in people from Central Himalaya for many centuries 

(Wangkheirakpam, 2018).  

The World Health Organization (WHO) states that traditional medicines could have 

dangerous effects, if used in inappropriate manner. Therefore, more research is 

required to establish the safety and efficacy of such medicinal extracts, medicinal 

plants and other natural products (Wangkheirakpam, 2018). Nevertheless, traditional 

medicinal plants have been a productive source of new drugs. For example, nearly 

50% of the drugs currently sold on the market and approved since 1994 are originally 

from natural sources. In addition, more than 100 compounds are under clinical trial 

and the same number are in pre-clinical development (Butler, 2008, Harvey, 2008).  

Altogether, this provides a strong rationale for employing a drug discovery approach 

using natural products as the starting material. 

Modern medicine based on crude natural products have been the source for medication 

in early nineteenth century, based on historical use through time. By the twentieth 

century, techniques had advanced sufficiently to purify the active components from 

these natural products (Ji et al., 2009, Süntar, 2020). Examples include atropine, 

morphine, and cocaine and which are still currently used (Orhan, 2014). The 

purification of the active ingredient can significantly reduce the side effects associated 

with other molecules in the extract (Qian et al., 2020). Purification of the active 
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ingredient also allows for standardised dose regimes to be employed. To achieve this, 

it is necessary to test crude extracts for their biological activity followed by 

chromatographic fractionation, purification, and identification of the active ingredient 

in the extract (Joshi, 2012). 

In order to reduce side-effects of current drugs and to eliminate unmet medical need 

in diseases with no current cures, it is required to identify novel therapeutic targets and 

to isolate/develop new compounds that can be used as medicines with improved 

efficacy and reduced side-effects. To meet this, there is a need for extensive 

phytochemical and pharmacological studies to produce novel medicines (Frank et al., 

2014).  

Natural products have been the starting point for drugs synthesis of new drugs.  Of the 

36% of purely synthetic drugs approved by Food and Drug Administration (FDA), 

19% are pharmacophores derived from natural products (Newman, 2020).  The rest 

are mimetics of naturally occurring bioactive compounds that bind to the active site of 

biological and disease relevant protein targets. For example, artemisinin isolated from 

Artemisia annua is the most famous anti-malarial drug (Klayman et al., 1984).  

Another example is salicylic acid which was isolated from the willow tree. This was 

used by Egyptians and Babylonians in the 5th century BC to relieve pain during 

childbirth and to reduce fever.  Arthur Eichengrun in 1897 discovered that the acetyl 

derivative of salicylic acid isolated from willow reduced bad taste and stomach 

irritation and acidity (Sneader, 2000). Subsequently, synthetic aspirin was produced, 

and today ~ 50 billion tablets are consumed each year.  Aspirin was shown to inhibit 

cyclooxygenase (COX), which catalyses the first step in the production of 

prostaglandins and thromboxanes by acetylation (Pedersen and FitzGerald, 1984, 

Lecomte et al., 1994). 

Natural products are a useful starting point for drug discovery programmes using a 

medicinal chemistry approach for example, Taxol (Cragg and Newman, 2013, Lahlou, 

2013). The reason is that these molecules are rich in oxygen atoms, contain a high 

proportion of sp3 hybridised carbon and exhibit diverse stereochemistry (Morrison and 

Hergenrother, 2013). Therefore, natural products have a huge chemical structural 

diversity with distinct scaffolds that exceed synthetic compounds. The improvement 
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in medicinal chemistry, structure elucidation and molecular engineering, such as gene 

silencing, has placed less reliance on drug discovery from natural products.  Indeed, 

some companies have dropped their natural products programmes and replaced them 

with complimentary chemistry approaches. The pharmaceutical industry has taken the 

approach of combining complimentary chemistry with High-Throughput Screening 

[HTS]  (Miyagawa et al., 2009) in an attempt to discover new hits. Unfortunately, 

while HTS  accelerates and increases the number of compounds screened, the number 

of new chemical agents discovered is low. Many chemical and combinatorial libraries 

have been established commercially but none have resulted in an approved drug (Fox 

and Spector, 1999, van Hilten et al., 2019). Others have argued that complimentary 

chemistry should be used to support natural products drug discovery rather than simply 

replacing it (Paululat et al., 1999, Barnes et al., 2016, Simm et al., 2018, Li et al., 

2019). The reliance on synthetic drug discovery approaches using structural guided 

medicinal chemistry has not produced adequately different or biologically active 

compounds. Therefore, some small pharmaceutical businesses have revived their 

natural products programmes (Koehn and Carter, 2005, Dias et al., 2012, Atanasov et 

al., 2021). Phytochemicals are chemically show more diversity than synthetic 

molecules (Henkel et al., 1999) and natural products library has not been the target for 

HTS. Moreover, complimentary chemistry has not considered the naturally isolated 

compounds. Indeed, natural products have more hits, structure diversity and biological 

activities than the complementation libraries. Indeed, Breinbauer et al. (2002) have 

argued that it is the biological applicability and pharmacophore diversity that is 

important in the drug discovery process rather than the total number of compounds in 

a chemical library. 

More natural products research is needed because of the attractive variety in chemical 

structures facilitated by the improvement in isolation, characterisation, and production 

technologies. In addition to plants, other organisms such as marine animals, ants and 

microbes provide a huge diversity of potential novel drugs (Orhan, 2014). Indeed, 

there is increasing interest in isolating natural products from endophytes 

(microorganism that colonise inside plants or soil, establishing a relationship with the 

host plant) and soil  (Bacon and White, 2000). This is an attractive approach as there 

is an enormous diversity of micro-organisms, of which only a small sub-set have been 
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cultured and only some have been investigated for secondary metabolites. For 

example, 1 gram of soil contains 1000-10000 microorganisms. This new approach is 

important, as the anticipated number of fungal species is 5 times the number of plant 

species (Demain and Zhang, 2005), thereby increasing the potential source of new 

medicines. 

A few companies have integrated natural products screening and genetic approaches 

in the search for new antibiotics, immunosuppressants and enzyme inhibitors. The 

change in screening philosophy has been complemented with the application of 

molecular biology to isolate bioactive agents that modulate cellular processes at the 

molecular level (Zhang and Demain, 2007, Wermuth et al., 2015, Gill, 2016).  

1.2 Plants used in this study 

Egyptian Flora has a big diversity due to its geographical location. Selection of plant 

species had been done through, searching the flora of Egypt references, making a 

survey to document the traditional uses by local peoples, end up by choosing a list of 

plants to be collected in a field trip for further phytochemical investigation in search 

of compounds that have anticancer and/ or anti-inflammatory properties. The plants 

were selected based on their traditional uses and previous phytochemical and 

pharmacological characterisation (Table 1.1). Some background information about the 

distribution and taxonomy is included for each plant.   

1.2.1 Pancratium tortuosum 

 Family: Amaryllidaceae 

 Synonym: Pancratium tortifolium 

 Common names: Zambak 

Pancratium is the most widespread of all the genera of Amaryllidaceae. It is paleo-

tropical genus consisting of 16 species distributed throughout Africa, tropical Asia, 

Macaronesia, and the Mediterranean basin. It has been introduced and cultivated in 

many countries (El-Hadidy et al., 2012). P. tortuosum in particular is found in the 

Nubia Nile Land Mount Erkowit, Arabia and Egypt (Baker, 1898).  
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Many species of Pancratium are of high value economically and medicinally. Several 

species are known for their use to treat cancer. The extract contains diverse type of 

alkaloids. Other species are locally important in traditional medicine or folk practice. 

For instance, P. tenuifolium is used in Botswana, specifically in the ‘coming-of-age’ 

ceremony (El-Hadidy et al., 2012).  

Phytochemical studies on P. tortuosum 

There has been no previous study on P. tortuosum, but some studies on other species 

of the same genus e.g. P. maritimum Viz. have led to isolation of four chromones and 

flavanes (Ali et al., 1990). In addition, the flavanes, syzalterin, (-)- farrerol and (-)-

liquiritigenin have been isolated from the Egyptian P. maritimum. Chemical 

characterisation of P. maritimum also led to isolation and  elucidation of many 

alkaloids, such as lycorine, tazettine, pancracine, lycorenine, galanthamine and 

tripheridine (Abou-Donia et al., 1991). Three chromone aglucones, one glucosyl and 

one glucosyloxy chromone and glucosyloxy alkaloids were isolated from P. biflorum 

(Ghosal et al., 1984, Berkov et al., 2004). In addition, Youssef  et al., (1998) reported 

the isolation of chromones, chromone-glucosides and glucosyloxy acetophenones 

from P. biflorum.  

Pharmacological studies P. tortuosum 

Pancratistatin was first isolated from the bulbs of P. littorale collected in Hawaii, as 

new phenanthridone biosynthetic products. Pancratistatin show  effectiveness against 

the murine P-388 lymphocytic leukaemia and significantly  reduce cell growth of the 

P-388 cell line in vitro and murine M-5076 ovary sarcoma in vivo (Pettit et al., 1986). 

1.2.2 Urginea maritima 

Family: Asparagaceae 

Synonyms: Scilla maritima, Urginea scilla, Drimia maritima. 

Common names: Basal Elonsol 

U. maritima is an onion-like Liliaceae distributed throughout the Mediterranean basin 

and is well adapted to this climate. The plant growing season is through autumn to 
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spring; during summer, the leaves get dry leaving the bulbs in dormancy (Pascual-

Villalobos and Robledo, 1999). 

U. maritima is a plant which has been known for its medicinal use to humankind since 

antiquity. The bulbs and their extracts have been used by ancient Egyptians in treating 

hydropsy, the major symptom being cardiac failure. The plant was the only resource 

in Egypt for the preparation of galenical and pharmaceutical products. The purified 

glycosides are used in the treatment of cardiac diseases and cases refractory to Digitalis 

and Strophanthus therapy (Sayed, 1980, Tuncok et al., 1995). 

Phytochemical studies on U. maritima 

The chemistry of U. maritima has been extensively studied. Many bufadienolides have 

been isolated from the bulb of U. maritima.  These include proscillaridin A, scillaren 

A, scilliroside, scillirosidine (Kopp et al., 1996), 9-hydroxyscilliphaeoside (Krenn et 

al., 1996), 11α-hydroxyscilliglaucoside (Krenn et al., 2000), cardiac glycosides (Jha 

and Sen, 1981, Kopp et al., 1996) and lignin glycoside (Iizuka et al., 2001). 

Pharmacological studies on U. maritima 

Sixty-one plants have been tested for their cytotoxicity in human lymphoma U-937 

glioblastoma multiforme (GBM) cells. The ethanol extract of U. maritima exhibits the 

greatest potency with almost complete cell death observed at the lowest concentration 

(1µg/ml) (El-Seedi et al., 2013). The U. maritima extract was more cytotoxic than 

cisplatin, and gemcitabine (the most effective drugs in non-small cell lung cancer, 

NSCLC) (Bozcuk et al., 2011) in A549 NSCLC cells. Also, the U. maritima extract 

has significant cytotoxic activity against PC-3 (prostate cancer) and U373 GBM cells 

(Mohamed et al., 2014). In studies of plant disease, U. maritima extract exhibits slight 

genotoxic and cytotoxic activity compared with Vydate®, a chemical pesticide (Mert 

and Betül, 2008).  In this regard, U. maritima bulbs used to be seen planted  nearby 

the roots of fruit-trees to prevent ant infestations in Spain (Pascual-Villalobos and 

Robledo, 1999). In a study of the bulb extracts on 24 day old larvae, it caused 60-100% 

mortality (Sayed, 1980). Further studies report that U. maritima bufadienolides 

induces insecticide effects on Tribolium castaneum (Pascual-Villalobos, 2002).  
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1.2.3 Gomphocarpus sinaicus 

Family: Apocynaceae 

Synonyms: Asclepias sinaica 

Common names: Hargal Gabaley 

G. sinaicus is a genus of mostly shrubby herbs with non-tuberous root stocks 

distributed throughout Africa, Arabia and adjacent territories, south of the Dead Sea 

(Goyder and Nicholas, 2001).  G. sinaicus is a woody, much branched shrub, l-l.5 m 

in height and is plentiful in the sandy mountainous regions in Sinai (El-Askary et al., 

1993). G. sinaicus is not endemic to the Sinai, being found also in Palestine and is 

widespread in Saudi Arabia (Newbold et al., 2007). 

G. sinaicus has shown high toxicity for man and animals because of its high content 

of cardiac glycosides (El-Askary et al., 1995a). G. sinaicus is one of the important 

plants in the Sinai ecosystem. It is inedible and is poisonous to grazing animals. Some 

other species of Gomphocarpus have been used in medicine for treatment of 

respiratory diseases, including asthma, although now it is little used as a herbal 

medicine (Semida et al., 2006). The official name for this species now is 

Gomphocarpus sinaicus, Asclepias sinaica name is not acceptable name anymore 

(Govaerts, 1995). 

Phytochemical studies on G. sinaicus 

Gomphocarpus species are characterized to contain mainly 5-alpha-cardenolide 

glycosides, with a doubly linked sugar (El-Askary et al., 1995a).  Delta 5-cardenolides, 

nine cardenolide glycosides and one aglycone, as well as five new compounds have 

been separated from the aerial parts of the milkweed, G. sinaicus  (Abdel-Azim et al., 

1996). 

Pharmacological studies on G. sinaicus 

Two cardenolide compounds have been isolated from the methanolic extract of G. 

sinaicus and each exhibits antifungal activity against both soil borne fungi, R. solani, 

F. oxysporium, and post-harvest fungi, R. stolonifer, P. digtatum, The aerial parts of 

G. sinaicus contain four flavonoids and the plant extract, applied after injection of 
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carrageenin- induced oedema in hind paw rat (an assay for anti-inflammatory drugs), 

all caused a significant reduction in the volume of rat paw (p<0.001) at 3 h of treatment 

for two dose levels. indicating considerable anti-inflammatory effects in rats (Batran 

et al., 2005). 

1.2.4 Psoralea plicata 

Family: Fabaceae 

Synonyms: Cullen plicatum, Cullen plicata, Psoralea odorata 

Common names:  Shajarat an-na'am, Marmid, Makka Buti 

P. plicata grows in tropical and sub-tropical region of Pakistan and is found commonly 

in the Sind and Bunjab areas (Rasool et al., 1990). It is also, widely distributed in the 

Alaqi area, south east of Aswan (Springuel et al., 1997). The wild herb P. plicata has 

been used in folk medicine as a skin photosensitizer, anthelminthic, anti-pyretic, 

analgesic, anti-inflammatory, diuretic, and diaphoretic. It is also useful in bilious 

infection, in leprosy and in menstrual disorders (Rasool et al., 1989, El-Abagy Elham 

et al., 2012). Hamed et al. (1997) reported its medicinal use by Bedouins for different 

ailments. The roots are used as a tooth stick for the cleaning of teeth and the seeds are 

used as decoction and powder. It is medicinally used for skin diseases, such as psoriasis 

and is believed to be a blood purifier (Ahmed et al., 2012). 

Phytochemical studies on Psoralea plicata 

Phyto-analysis of the whole plant yielded different types of compounds such as 

alkaloids, flavonoids, triterpenes (Rasool et al., 1989), saponins and coumarins (Al-

Yahya et al., 1987). Recent phytochemical studies on the wild herb P. plicata, revealed 

the presence of other interesting compounds, including benzofuran glycosides (Hamed 

et al., 1999), furocumarins, chromenes, isoflavonoids, phenolic cinnamates, cinnamate 

dimers (Hamed et al., 1997), flavonoids, glycosides, monoterpenoids, triterpenoids 

and tocopherol (El-Abagy Elham et al., 2012).  

Pharmacological studies on Psoralea plicata 

The P. plicata ethanol extract has been tested against Culex pipiens, a member of the 

mosquito family which carries multiple pathogens. The extract induced mortality and 
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reduced fecundity. Plicatin B, flavonoid mixtures and chromene isolated from P. 

plicata mixture exhibited the strongest insecticide activities against mosquitos (El-

Abagy Elham et al., 2012). Using 2 mg of P. plicata ethanol extract causes an 

inconsequential increase in  the contraction force of isolated heart, while a 4 mg dose 

resulted in para sympathomimetic activity using smooth muscle preparation and a 

higher dose (20 mg) resulted in lowering blood pressure of anaesthetized rabbits 

accompanied with rapid respiration (Al-Yahya et al., 1987). 

1.2.5 Heliotropium supinum 

Family: Boraginacea 

Synonyms: Lithospermum heliotropioides, Heliotropium malabarica, Heliotropium 

coromandelianum 

Common names: Qoddeih, Zorreiqa 

Heliotropium genus is widely spread in the temperate and tropical zones of both 

hemispheres. It has had a variety of treatment uses since ancient times, including 

inflammatory diseases such as gout and rheumatism, skin diseases, menstrual disorder 

and as a cure against toxic insect bites (Ghori et al., 2016). 

Ethno-medicinal studies have shown that H. supinum has been used by healers in India 

as pounded aerial portions of the plant are applied onto snake bites, while 5 ml of juice 

is given orally at frequent intervals (Teklehaymanot and Giday, 2007). It has also been 

used in east Africa by women after childbirth (Schoental, 1970). In Namibia, people 

use it as a folklore medicine primarily by mixing pulped plant with water to treat 

tumours (Ghori et al., 2016). 

Phytochemical studies of Heliotropium genus 

A variety of molecules have been separated and identified from different species of 

Heliotropium genus. Those compounds reported as bioactive phytochemicals with 

potential therapeutic effects. Also, have a wide range of compound types abundant in 

this genus, such as alkaloids (pyrrolizidine type), terpenes, phenolic compounds and 

quinones (Ghori et al., 2016). 
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Pharmacological studies of Heliotropium genus 

Pyrrolizidine alkaloids, terpenoids and flavonoids are bioactive compounds that have 

been isolated from the genus Heliotropium. Different species of genus Heliotropium 

extracts and ingredients have significant bio-activities, such as anti-microbial, 

antitumour, antiviral, anti-inflammatory activities, wound healing properties, 

cytotoxicity and phytotoxicity (Ghori et al., 2016).  

1.2.6 Asphodelus fistulosus 

Family: Liliaceae 

Common names: Onion weed 

Asphodelaceae is one of the sub-families of liliaceae, which are distributed in tropical, 

subtropical, and temperate regions around the world. The main location is in southern 

Africa. Among these, Asphodelus tenuifolius is used by local population as a diuretic 

(Boatwright, 2012, Safder et al., 2012). A. fistulosus (onion weed) is distributed 

through the Mediterranean region, extending through western Asia to India (Pitt et al., 

2006). The bulbs and roots of A. microcarpus are applied as a treatment for skin 

diseases (ectodermal parasites and psoriasis) and jaundice. It is also used as an anti-

microbial cure by Bedouins (El-Seedi, 2007). A. tenuifolius seeds are generally taken 

for colds, hemorrhoids, as a febrifuge and diuretic agent.  The seeds are also applied 

to healing wounds and ulcers and for inflamed regions of the body (Panghal et al., 

2011). 

Phytochemical studies of A. fistulosus 

Different species of Asphodelus genus have been studied and reported the presence of 

various type of chemicals such as, lipids, carbohydrates, coumarins and 

anthraquinones, have been reported and isolated from A. microcarpus, A. fistulosus 

and A. ramosus (Hammouda et al., 1974, Ghoneim et al., 2014), flavonoids from A. 

globifera. In addition, different types of terpenes, like sesquiterpens (A. globifera, A. 

anatolica and A. damascene), triterpenes and triterpene glycosides have been isolated 

(A. microcarpus) (Panghal et al., 2011, Safder et al., 2012). 
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Pharmacological studies of A. fistulosus, A. microcarpus, A. aestivus Brot.  

Isolated compounds from A. microcarpus exhibit potent activity against methicillin-

resistant Staphylococcus aureus. It also has anti-leishmanial activity (Ghoneim et al., 

2014). Both ethyl ether and ethyl acetate extracts of A. aestivus Brot. significantly 

scavenge DPPH (2,2- diphenyl-1-picrylhydrazyl) antioxidant activity. The extract also 

has cytotoxic effect against MCF-7 breast cancer cells in concentration and time-

dependent manner and induces significant deoxyribonucleic acid damage (Shall and 

Gilbert, 2000, Aslantürk and Çelik, 2013).     

1.2.7 Glinus lotoides 

Family: Molluginaceae 

Synonyms: Glinus dictamnoides, Mollugo hirta, Mollugo glinus 

Common names: Ghobbeira, Damsees 

Glinus lotoides is known as lotus sweet juices and is broadly found in tropical and 

subtropical zones of the world. In Ethiopia, where it is well-known as ‘metere’, the 

seeds have been used as an anthelminthic, laxative, antimicrobial and anti-diabetic 

agent. In India, it is used traditionally as medicine against diarrhea and bilious attacks.  

It is also applied as a purgative and for curing boils, wounds and pains (Demma et al., 

2013). It is commonly named in Arabic as Hashishet El-aqrab or Moghera (Hamed et 

al., 1996). 

Phytochemical studies of Glinus lotoides 

The major constituents isolated and identified from G. lotoides seeds are triterpenoidal 

saponins (hopane-type) and C-glycoside flavones. Its cesticidal and pharmacological 

activity is accounted for these bioactive components. The hopane type saponins 

isolated from the G. lotoides seeds are; four glinusides F- I,  six lotoidesides A-F and 

succulentoside B. Additionally, vicenin-2 and vitexin-2``-O-glucoside (flavonoids) 

(Biswas et al., 2005). Hamed and El-Emary (1999) isolated one triterpenoidal saponin 

from its seeds. Furthermore, from the aerial parts of Egyptian G. lotoides var. 

dictamnoides  confirmed the presence of  the five hopane triterpenoidal saponins 

(glinusides A- E) (Endale et al., 2005). 
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Pharmacological studies of Glinus lotoides 

Methanolic extracts of G. lotoides have antitumour activity including against Dalton`s 

acsetic lymphoma in mice. In addition, these extracts have potential antimicrobial 

activity (Sathiyanarayanan et al., 2006). Anticholesterolemic, hepatoprotective and 

antioxidant activities of an ethanolic extract are also described in rats (Demma et al., 

2013). An ethanolic extract of G. lotoides seeds is highly active in vitro against 

Hymenolepis nana worms and in vivo against Taenia saginata (Demma et al., 2007). 

G. lotoides crude extract analysed in preliminary pharmacological studies, showed no 

effect on blood pressure, heart rate or the ECG of anesthetized rabbits. After oral 

administration there was no effect on bile production in guinea pigs or contractions of 

frog muscles isolated. The reported activities of G. lotoides seeds are attributed to 

saponins contents (Endale et al., 2005). The hydroalcoholic extract of G. lotoides also 

has potential genotoxic effect in vitro at high concentrations (Demma et al., 2009). 

1.2.8 Halocnemum strobilaceum 

Family: Amaranthaceae 

Synonyms: Salicornia strobiacea, Salicornia cruciata 

Common names: Hatab Ahmr 

Phytochemical studies of Halocnemum strobilaceum 

H. strobilaceum extracts contain fatty acids, triterpenoids and flavonoids (Cybulska et 

al., 2014). The unsaponifiable plant fraction was found to be rich in palmitic acid. 

Additionally, the triterpenoids, campesterol, stigmasterol, betasitosterol and alpha-

amyrin were also identified (Radwan and Shams, 2007). Flavonoids have 

characteristic antioxidant properties, mostly found and isolated from chloroform and 

ethyl acetate fractions. These mainly contain chrysoeriol, luteolin galactoside, 

quercetin rhamnoside and luteolin (Radwan and Shams, 2007). 

Pharmacological studies of Halocnemum strobilaceum  

The ethyl acetate extract from H. strobilaceum displays antioxidant activity (Radwan 

and Shams, 2007). Additionally, luteolin isolated from H. strobilaceum, shows anti-

inflammatory activity and has been examined as a treatment for multiple sclerosis 
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(Theoharides, 2009). Scopoletin, a coumaric derivative has been isolated from these 

fractions (Radwan and Shams, 2007) showing antioxidant activity (Shaw et al., 2003). 

Flavonoid and flavonoid glycosides were isolated from the epigeal part of H. 

strobilaceum (Miftakhova et al., 1999). Further chemical analysis isolated the caffeic 

acid ester from the whole herb (Gibbons et al., 1999). In addition, Miftakhova et al. 

(2001) isolated four coumarins from the aerial parts of H. strobilaceum.  

1.2.9 Crotalaria sp. 

Family: Fabaceae 

Common names: Natash 

Genus Crotalaria is one of the family of Fabaceae and is basically restricted to the 

tropical and subtropical areas of the world. Crotalaria sp. consist of a wide range of 

medicinal plants used in indigenous Indian medicine (Rao and Narukulla, 2007) as a 

purgative agent (Rao and Rao, 1999). 

Phytochemical studies of Crotalaria sp. 

The phytochemistry of this genus has importance in Indian traditional medicine. The 

plant contains several polyphenolic compounds including prenylated chalcone, 

flavone, chalcone, chromeno-dihydrochalcones and tri-methoxy-chalcone (Narender 

et al., 2005, Rao and Narukulla, 2007). In addition, pyrrolizidine alkaloids has been 

isolated from C. trifoliastrum roots (Rao and Rao, 1999) 

Pharmacological studies of Crotalaria sp. 

Chalcone-type compounds exhibit inhibition of parasite maturation in the ring and 

schizont stages (Plasmodium falciparum (Strain NF-54)) (Narender et al., 2005). In 

addition, chromeno-dihydrochalcones exhibit significant bioactivity against HIV, 

insecticidal, anti-inflammatory and antifeedant activity (Narender and Gupta, 2004).  
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Table 1. 1: Plant species used in current study 

Plant Family Voucher No.* Reason of choice 

1.2.1 Pancratium tortuosum Amaryllidaceae 10084 • locally important in traditional medicine. 

• high content of various alkaloid types of Pancratium genus. 

1.2.2 Urginea maritima 

 

Asparagaceae DY-UM-2009 • the traditional use since antiquity for cardiac failure 

• high content of cardenolide glycosides. 

1.2.3 Gomphocarpus sinaicus Apocynaceae - • high content of cardiac glycosides. 

1.2.4 Psoralea plicata Fabaceae 4937 • used in folk medicine as a skin photosensitizer, anthelminthic, anti-

pyretic, analgesic, anti-inflammatory, diuretic, and diaphoretic. 

• contain alkaloids, flavonoids, triterpenes and saponins.  

1.2.5 Heliotropium supinum Boraginacea 11262 • uses since ancient times, including inflammatory diseases 

• alkaloids (Pyrrolizidine type), terpenes. 

1.2.6 Asphodelus fistulosus Liliaceae 10099 • used locally as a diuretic, as an anti-microbial cure by Bedouins. 

1.2.7 Glinus lotoides 

 

Molluginaceae 10569 • used traditionally by Indians as medicine against diarrhea and bilious 

attacks. 

• contain triterpenoidal saponins (hopane-type) and C-glycoside 

flavones. 

1.2.8 Halocnemum strobilaceum Amaranthaceae 4766 • contain triterpenoids and flavonoids. 

1.2.9 Crotalaria sp. Fabaceae - • has importance in Indian traditional medicine. 

 

 * This plant species has been identified by prof. Magdi El-Sayed and Dr. Eman Atito, Botany Department, Aswan University, Egypt, using Herbarium specimens. 
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In the current study, specific plants were chosen based on their previous 

pharmacological properties, e.g., U. maritima as containing anticancer agents. These 

were screened for novel anticancer and/or anti-inflammatory compounds. Lastly, some 

plants have not fully been studied but have traditional uses which should be 

investigated e.g., H. strobilaceum in the future. Sphingolipids have been involved in 

various cancer types, breast, prostate, brain, and ovarian cancer. Therefore, the current 

study aimed to screen the selected plants on specifically two enzymes of sphingolipids 

metabolism, sphingosine kinase 1 (SK1) and dihydroceramide desaturase 1 (Des1). 

SK1 and Des1 play a role in cancer and inflammation diseases, inhibiting those 

enzymes will achieve the goal of the current study of discovery of new anticancer/anti-

inflammatory compound/s.   

1.3 Sphingolipids 

Sphingolipids are a bioactive class of lipids which have received much attention 

recently due to their structural role and as signalling components of cell function in 

health and disease.  Historically, the first sphingolipid, sphingosine was isolated from 

the brain and was named after the Greek mythical creature, the Sphinx. Sphingolipids 

are distributed mainly in the plasma membrane but also in lysosomes, endoplasmic 

reticulum, and Golgi apparatus. Sphingolipids are amphiphilic molecules that consist 

of a hydrophilic head group, such as saccharide, oligosaccharide (e.g. 

glycosphingolipids) or phosphocholine (e.g. sphingomyelin), linked to a hydrophobic 

long chain base (such as sphingosine) together with amide-linked fatty acids at C2 of 

the long chain base (Menaldino et al., 2003, Sonnino et al., 2006, Grassi et al., 2019). 

Sphingolipids are bioactive molecules which respond to specific stimuli that regulate 

downstream effectors and targets. There are many bioactive sphingolipids, such as 

ceramide, ceramide 1-phosphate and sphingosine 1-phosphate (S1P) and these are the 

main actors in complex cellular processes that control, for instance, cell survival.  

Sphingolipids have crucial roles in membrane micro-domains, named lipid rafts 

(Gulbins and Kolesnick, 2003, Futerman and Hannun, 2004). These contain 

sphingolipids with different acyl chain length and distinct hydrophilic head groups that 

are organised to provide signalling platforms containing receptors and effectors 

(Brügger et al., 2004). 
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Generally, ceramide functions to promote apoptosis and inhibit proliferation, whereas 

S1P supresses apoptosis and induces cell growth. This is known as the sphingolipid 

rheostat. Therefore, interconversion of ceramide, sphingosine and S1P can lead to 

apoptotic or survival programmes dependent on the position of the rheostat and which 

can be regulated by extracellular stimuli e.g., growth factors (Pyne and Pyne, 2000, 

Ogretmen and Hannun, 2004, Newton et al., 2015). In addition, a nuanced view is that 

it is the ceramide driven biology versus that driven by S1P rather than the absolute 

level of these lipids that underpins the rheostat (Newton et al., 2015).  

Ceramide is synthesised by two different pathways (Figure 1.1). The first, is the de 

novo pathway and the second is termed the salvage pathway. The de novo biosynthesis 

pathway takes place at the cytoplasmic surface of the endoplasmic reticulum (ER) 

beginning with the condensation of L-serine and palmitoyl-CoA to form 3-keto-

sphinganine, catalysed by serine palmitoyltransferase (SPT) (Merrill, 2002, Hanada, 

2003, Hait et al., 2006). The product of this reaction is reduced by 3-keto-sphinganine 

reductase to produce sphinganine, followed by acylation by a family of 

dihydroceramide synthases to form dihydroceramide. The addition of a trans 4, 5 

double bond to dihydroceramide produces ceramide, catalysed by dihydroceramide 

desaturase (Des1) (Kolesnick and Hannun, 1999). Ceramide can then be transported 

by vesicular and non-vesicular mechanisms to the Golgi apparatus via, for instance, 

the ceramide transfer protein (CERT). Remarkably, CERT contains a pleckstrin 

homology (PH) domain, which allows its targeting to the Golgi apparatus in mammals 

(Venkataraman and Futerman, 2000). Complex sphingolipids derived from ceramide 

are synthesised in the Golgi apparatus and can be transported to other organelles 

(Spiegel and Milstien, 2003, Okada et al., 2009). For example, ceramide can be 

glycosylated to form glucosylceramide at the Golgi cytoplasmic surface followed by 

conversion to complex glycosphingolipids after transferring to the Golgi lumen.  

Phosphorylation of ceramide by ceramide kinase produces ceramide-1-phosphate 

(C1P); and C1P can be converted back to ceramide by lipid phosphate phosphatase 

(Mandon et al., 1992, Pitson, 2011). Alternatively, a phosphocholine headgroup added 

to ceramide by the Golgi lumen-localised sphingomyelin synthase (SMS1) produces 

sphingomyelin. In turn, sphingomyelin can be hydrolysed to ceramide by 

sphingomyelinase present at the plasma membrane (SMS2) and subsequently 
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converted to sphingosine by ceramidase action. The phosphorylation of sphingosine 

by sphingosine kinases (SK1 and SK2) produces S1P (Nagiec et al., 1998, Hannun 

and Obeid, 2008a). S1P is a bioactive lipid and can be dephosphorylated to 

sphingosine by S1P phosphatase (S1PP) and the resulting sphingosine then reacylated 

to ceramide-by-ceramide synthase in the ER via the salvage pathway. Alternatively, 

S1P can be degraded to hexadecenal and phosphoethanolamine by S1P lyase (S1P 

lyase). These metabolites exit the sphingolipid metabolic pathway (Olivera and 

Spiegel, 2001, Deevska and Nikolova-Karakashian, 2017) but can be converted to 

phospholipids. This is the only known pathway of sphingolipids breakdown (Olson et 

al., 2016). 

Sphingomyelin and other sphingolipids are also found elsewhere in the cell. For 

example, a neutral ceramidase has been observed in mitochondria and sphingomyelin 

is present in the nucleus (El Bawab et al., 2000). The relationship between 

sphingolipids metabolism in the endomembrane system organelles and others not 

connected to them by vesicular transport pathway are yet to be fully established. 

Although CERT transports ceramide from ER to Golgi, there might be a similar 

pathway that transports precursors to mitochondria or to the nucleus. Indeed, 

sphingosine easily transfer between organelles due to its  enough aqueous solubility 

(Watanabe et al., 2004).  

The presence of multiple enzymes that are products of distinct genes with specific 

locations adds complexity to sphingolipid metabolism. For example, ceramide 

synthase (Tea et al., 2020) is composed of distinct isoforms that are primarily localised 

in the ER but also detected at the nucleus, mitochondria, plasma membrane, Golgi and 

lysosome. The different isoforms of CerS exhibit differential preferences for fatty 

acids of various carbon chain lengths. It is accepted that sphingolipids will stay at the 

same localisation unless they are transported. S1P, C1P and glucosylceramide are 

specific transporters, have evolved in transporting ceramide (Hannun and Obeid, 

2008b, 2018).  

1.4 Ceramide 

Ceramide sits at the centre of sphingolipid biosynthetic pathways. It is extremely 

hydrophobic and resides in the compartment where it is formed, unless transported to 
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other organelles by, for example, CERT. Ceramide is synthesised in ER through the 

de novo pathway and can be produced by the action of neutral and acidic 

sphingomyelinases and glucocerebrosidase at the plasma membrane, lysosome and in 

the mitochondria to produce compartment-specific ceramide (Mao et al., 2000). 

Ceramide formed at the plasma membrane shows distinct and specific functions 

including stimulating the aggregation of the Fas receptor and activation of protein 

kinase C (PKC) (Johnson et al., 2002, Arana et al., 2010). Ceramide is directly 

formed from the action of ceramide synthases (CerS1-CerS6) and dihydroceramide 

desaturase (Des1) and SMases. It is deacylated by ceramidase of which there are at 

least 5 isoforms (Fu et al., 2018). The enzymes are variously localised in the plasma 

membrane, lysosome, mitochondria, Golgi, and ER. The existence of different 

enzymes, in distinct locations, suggest specificity in their mechanisms of regulation to 

enable spatial and temporal function of multiple ceramide species (Stiban et al., 2010).   

Mass spectroscopic analysis has revealed the existence of multiple species of ceramide 

thereby raising the concept that each performs specific pleiotropic functions in the cell.  

Ceramide species differ in the length of their fatty acid chain, saturation, or 

unsaturation, and/or modified functional group. For example, Des 1 introduces a trans 

4.5 double bond to ceramides, whereas Des 2 introduces a hydroxyl at the 4-position. 

Also, fatty acid 2-hydroxylase introduces an α-hydroxy on the amide linked fatty acid.  

Together CerS1, fatty acid 2-hydroxylase and SPT3 catalyse the formation of α-

hydroxy-C18:1-ceramide with a C16-sphingoid backbone (Zitomer et al., 2009).   

CerS are integral membrane proteins of the ER with their active site facing cytoplasm, 

although a subset of CerS have been partially purified from a mitochondria-enriched 

fraction (Hirschberg et al., 1993). CerS1-6 catalyse the formation of dihydroceramides 

with different carbon chain lengths, which are substrates for the generation of multiple 

ceramide species ranging from C14 to C32 with varying degrees of saturation (Figure 

1.2) (Saddoughi and Ogretmen, 2013). CerS1 is mainly expressed in brain with low 

levels in skeletal muscle and testis (Becker et al., 2008, Park et al., 2014b). CerS were 

originally known as the LASS (Longevity Assurance) gene based on yeast protein 

longevity assurance gene-1 (LAG1p). All CerS use acyl CoA to catalyse N-acylation  
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Figure 1. 1: Sphingolipid metabolism:   

Sphingolipid metabolism and their structures are shown, along with the key enzymes involved in their interconversion. 3-KSR, 3-keto-

sphinganine reductase; ABC, ATP binding cassette; C1P, ceramide-1-phosphate; CDase, ceramidase; Cer, ceramide; CERK, ceramide 

kinase; CerS, ceramide synthase; CERT, ceramide transfer protein; CPTP, C1P-specific transfer protein; Degs1, dihydroceramide desaturase; 

dhCer, dihydroceramide; dhCS, dihydroceramide synthase; FAPP2, four-phosphate adaptor protein 2; GCase, glycosidase; GCerS, 

glucosylceramide synthase; GluCer, glucosylceramide; GSL, glycosphingolipids; S1P, sphingosine-1-phosphate; S1PP, S1P phosphatases; 

S1PR, sphingosine 1-phosphate receptor; SK1, sphingosine kinase 1; SK2, sphingosine kinase 2; SM, sphingomyelin; SMase, 

sphingomyelinases; SMS, sphingomyelin synthase; Sph, sphingosine; SPL, S1P lyase; SPNS2, spinster homologue protein 2; SPT, serine 

palmitoyl transferase (Adapted from (Maceyka and Spiegel, 2014).   



21 

 

of dihydrosphingosine to produce dihydydroceramide. Each CerS isoform has high 

specificity different acyl chain lengths (Levy and Futerman, 2010).  

CerS1 (LASS1) generates C-18-dihydroceramide, which is subsequently converted to 

C-18-ceramide. The enzyme has a role in controlling the growth of head and neck 

squamous cell carcinoma (HNSCC), based on data showing reduced C18-ceramide 

levels in most of HNSCC compared with normal tissues. Another important role of 

CerS1 is in managing the sensitivity to chemotherapeutic drugs. The enzyme can 

sensitize human embryonic kidney cells to various drugs such as cisplatin, 

doxorubicin, and vincristine (Min et al., 2007).  

CerS2 (LASS2) is abundant in many tissues including kidney and liver. It is involved 

in regulating body weight and food intake. Two studies have suggested a role for 

CerS2 in breast cancer.  The first study showed that an increase in ceramides, 

particularly C16 and C24, in malignant tumour tissue and this was correlated with 

increased mRNA for CerS2, CerS4 and CerS6 (Schiffmann et al., 2009). The second 

study reported a significant correlation between CerS2 expression and poor prognosis 

(Erez-Roman et al., 2010). This indicates the importance of CerS2 gene in breast 

cancer pathogenesis and diagnosis (Pewzner-Jung et al., 2006, Levy and Futerman, 

2010).  

CerS3 (LASS3) is located mainly in skin (highly expressed in keratinocytes) and testis 

and can synthesise ceramides containing α-hydroxy-fatty acid. These assist in 

maintaining the water permeability barrier function of the skin. CerS3 has a role in 

sperm formation and production of androgen. CerS3 catalyses the formation of the 

longest chain C26 to C32-ceramides (Mizutani et al., 2006).  

CerS4 is mainly expressed in skin, heart, leukocytes, and liver. CerS4 makes both C18-

ceramide and C20-ceramide. CerS5 predominates in lung epithelial cells and catalyses 

synthesis of C16-ceramide as does CerS6, which is abundant in intestine and kidney 

(Laviad et al., 2008). CerS6 [LASS6] and CerS5 show high primary amino acid 

sequence homology and can also synthesise C12- and C14-ceramides to some extent. 

(Figure 1.2) (Mesicek et al., 2010). CerS6 could play a crucial role in breast cancer as 

CerS6 expression is regulated by oestrogen (Weinmann et al., 2005, Ruckhäberle et 

al., 2008).  
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Many studies have suggested that the actions of ceramide are chain length dependent. 

In this regard, there are intracellular proteins to which ceramide binds to affect their 

activity. For example, CAPP (ceramide-activated protein phosphatase), is a cytosolic 

ceramide-binding protein which has been identified as a member of the PP2A protein 

phosphatase family (Dobrowsky and Hannun, 1992, Dobrowsky et al., 1993). 

Ceramide also activates other kinases such as KSR (kinase suppressor of Ras) (Zhang 

et al., 1997) and protein kinase C ζ (PKC ζ) which are involved in mitogenic signalling.  

Interestingly, CerS1 and CerS6 catalyse formation of C18 and C16-ceramide 

respectively and which have opposite roles in regulating cell fate in head and neck 

cancer cells. CerS1/C18-ceramide is implicated in promoting cell death and inhibition 

of cell growth in these cancer cells while C16-ceramide stimulates their proliferation. 

However, other studies showed that C16- ceramide is pro-apoptotic while C24-ceramide 

promotes cell survival. Overall, ceramides appear to be context dependent with 

variable roles (Mesicek et al., 2010, Galadari et al., 2015). 

Ceramides activate various tumour suppressive, metabolic, and anti-proliferative 

cellular programs, such as apoptosis, senescence, insulin resistance, inflammation, 

autophagy, and necrosis by initiating or suppressing key effectors (Merrill, 1991, 

Hannun and Obeid, 1995, 2002, Arana et al., 2010, Galadari et al., 2015). Ceramides 

induce apoptosis by inhibiting pro-survival Akt signalling and activating PP2A protein 

phosphatase (Truman et al., 2014). This involves regulation of pro-apoptotic protein, 

Bax and Bcl2 and which leads to MOMP (mitochondrial outer membrane 

permeabilization), a key initiator of apoptosis. Indeed, CerS5 over-expression 

increases apoptosis, while CerS4 and CerS6 upregulation causes cell death in breast 

and colon cancer cells). Moreover, the effects of ceramide have been distinguished 

from those of dihydroceramide, e.g. in inducing apoptosis and other cell responses 

(Bielawska et al., 1993). The modern concept is that distinct ceramide species in 

various cell compartments serve as mini hubs in the sphingolipid pathway. 

In mammalian cells, there are three distinct classes of SMases which catalyse the 

production of ceramide from sphingomyelin. These can be distinguished by the effect 

of pH on their catalytic activity, i.e., acid, neutral and alkaline SMases. All 3 enzyme 

classes are involved in signal transduction processes, while the alkaline SMase is 

additionally involved in digestion of dietary SM in the intestine. In HT-29 colon 
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carcinoma cells, alkaline SMase has been linked with the inhibition of cell 

proliferation (Pewzner-Jung et al., 2006). The SMPD1 gene encodes acid SMase, 

which is localized in lysosomes, the plasma membrane surface, and secretory vesicles 

(enabling export from the cell) due to glycosylation process of enzyme (Schissel et al., 

1998, Henry et al., 2013). Neutral SMase is localised to the endoplasmic reticulum 

and/or mitochondrial membrane. Genes encoding neutral SMases include SMPD2 

(neutral SMase1), SMPD3 gene (neutral SMase2) and SMPD4 (neutral SMase3) 

(Henry et al., 2013).  

 

Figure 1. 2:  Ceramide synthase specificity:  

Distinct CerS isoforms catalyse the formation of ceramides with different fatty acid 

chain length (Adapted from (Cingolani et al., 2016)).   
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1.5 Dihydroceramide and dihydroceramide desaturase  

The formation of ceramide involves the desaturation of dihydroceramide (dhCer), 

catalysed by Des1 and Des2. However, there is some debate as to whether Des2 is a 

true dihydroceramide desaturase. Des1 adds a hydroxyl group to the C4 position of the 

dhCer backbone, followed by a dehydration reaction, with the use of NADPH or 

NADH as electron donors. Oxygen is the electron acceptor producing a double bond 

in the C4-C5 position of Cer (Geeraert et al., 1997, Michel et al., 1997). This reaction 

occurs at the cytosolic face of ER. Interestingly, 4-hydroxyceramide is the 

intermediate reaction product, which is also named phytoceramide. The latter is the 

main ceramide species in plants and yeast. The high expression of Des2 in the 

intestines, kidneys, and skin, is correlated with high abundance of phytoceramides.  

whereas Des1 is found in all tissues (Omae et al., 2004, Gault et al., 2010, Hernández-

Corbacho et al., 2017). In 1996, Degs1 named drosophila degenerative spermatocyte 

1 after cloning the gene encoding Des1 from Drosophila melanogaster (Geeraert et 

al., 1997). DhCers are found in different cell compartments such as, plasma 

membrane, ER, nucleus, and mitochondria. From a structural context, dhCers do not 

have transbilayer lipid mobility, which impact many biological processes. Ceramide 

and dhCers are different in their biophysical behaviour. Indeed, dhCers prevent 

formation of channels in planar membranes or mitochondria, while ceramides promote 

this process. Thus, dhCers block the permeabilization of the mitochondrial outer 

membrane induced by ceramides (Brockman et al., 2004, Podbielska et al., 2012). 

Therefore, it has been proposed that ceramide and dhCer elicit opposing functions in 

the cell (Stiban et al., 2006). Nevertheless, in common with ceramides, dhCers are 

precursors for complex sphingolipids, such as dihydroglycosylceramides, 

dihydrosphingomyelin and dihydrogangliosides.   

Early studies suggested that dhCers were biologically inactive. Therefore, whereas 

ceramides induce apoptosis and block cell growth, dhCers were ineffective. However, 

dhCer are implicated in regulating cell growth (Mitoma et al., 1998), platelet 

aggregation (Simon and Gear, 1998), DNA damage (Ueda et al., 1998), management 

of ion channels and inhibition of insulin signalling and glucose uptake (Summers et 

al., 1998, Chik et al., 1999, Siddique et al., 2015). For instance, (Stiban et al., 2006) 

was the first to show that dhCer inhibits channel formation induced by ceramide in 
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mitochondria, resulting in blockade of cytochrome c release, which is the first step in 

the intrinsic apoptotic response. In addition, (Merrill et al., 2005) also demonstrated 

that fenretinide (4-HPR) increased dhCer levels in DU145 human prostate cancer cells 

and this was linked with cell death and provided mechanistic information relating to 

the clinical use of 4-HPR in oncology. DhCer has an essential role in inducing 

autophagy in cancer cells and is cytotoxic. 4-HPR is chemically similar to dhCer and 

inhibits Des1 by disrupting the electron transport necessary for the desaturation 

reaction (Zheng et al., 2006). These discoveries provided impetus for the study of Des1 

in a broad context of its biological roles. 

4-HPR, C2- dhCer and Des1 inhibitors (section 1.6.1) were reported to induce the 

formation of autophagosomes. These findings revealed that inhibition of Des1 induces 

sensitivity to autophagic stimuli. In these studies, the stimulatory effect of dhCer on 

autophagy conferred resistance to apoptosis (Siddique et al., 2013). However, this is a 

controversial area as sustained autophagy can lead to apoptosis and this might indeed, 

underlie some of the actions of dhCer. 

Some studies involving pharmacological agents suggest that dhCer regulates cell 

proliferation. Curcumin, which was separated from turmeric spice, has been reported 

to inhibit Des1 to induce cell cycle arrest at G2/M phase and induce autophagy in 

malignant glioma cells (Aoki et al., 2007, Fabrias et al., 2012). In addition, the COX2 

inhibitor celecoxib inhibits Des1 activity and promotes dhCer accumulation and 

growth arrest. These effects were blocked by the SPT inhibitor, myriocin, which 

prevents de novo synthesis of dhCer. Finally, the Des1 inhibitor, XM462 induced the 

increase of dhCer and this was correlated with delayed G1/S transition and inhibition 

of cell proliferation (Gagliostro et al., 2012).  

The role of dhCer in regulating apoptosis is controversial. Some groups have proposed 

that the cytotoxic effects of 4-HPR and resveratrol is via a dhCer-dependent 

mechanism. However, inhibiting Des1 activity using other pharmacological reagents, 

siRNA, or gene depletion confers resistance to apoptosis (Siddique et al., 2012). For 

instance, in HNSCC, knockdown of Des1 decreases apoptosis in response to 

photodynamic therapy and reduced mitochondrial depolarisation, late apoptosis, and 

cell death. The treatment increased dhCer levels without a change in ceramide levels, 
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although this is rather surprising. The authors proposed that dhCer might block the 

effect of ceramide on mitochondrial channels. This occurs with very low 

concentrations of dhCer, implicating that the dhCer:Cer ratio may contribute to 

whether apoptosis occurs (Stiban et al., 2006, Breen et al., 2013, Siddique et al., 2015). 

The activities of dhCer suggest that targeting Des1 inhibition may represent a useful 

strategy for cancer therapy. Other potential therapeutic opportunities of Des1 

inhibition include to treat viral infections, obesity, and insulin resistance (Triola et al., 

2001, Munoz-Olaya et al., 2008, Casasampere et al., 2016, Pou et al., 2017).  

Recent studies report the polyubiquitination of Des1 in response to cells’ treatment 

with the sphingosine kinase (SK) inhibitor, SKi, or Des1 inhibitor, 4-HPR. 

Polyubiquitinated forms of Des1 exhibit a "gain of function", which allows the 

activation of p38 MAPK, JNK and XBP-1s pro-survival pathways. In contrast, 

ABC294640, another SK inhibitor, fails to promote polyubiquitination of Des1 at 

concentrations that induce de novo ceramide synthesis and promote apoptosis via a 

native Des1-dependent mechanism. These findings are the first to indicate that there 

are opposing functions of native and polyubiquitinated Des1 in regulating cell survival 

(Alsanafi et al., 2018). 

1.6 Dihydroceramide desaturase (Des1) inhibitors  

Many drugs have been reported to inhibit Des1 activity. The first group of compounds 

claimed to reduce Des1 activity were isolated from natural resources, such as, 

resveratrol, curcumin, Δ9-tetrahydrocannabinol, and celecoxib. The availability of 

pharmacological agents that target Des1 has enabled characterisation of the biological 

role of dhCer (Table 1.2) (Casasampere et al., 2016).  

1.6.1 Fenretinide (4-HPR) 

4-HPR is a vitamin A analogue (Figure 1.3) and was examined for the prevention of 

cancer. 4-HPR induces apoptosis and suppresses cancer cell proliferation (Zheng et 

al., 2006). It also decreases high-fat diet-stimulated obesity and insulin resistance. 4-

HPR inhibits Des1 with IC50 of 1.68 µM, involving the phenolic group. This finding 

is supported by the lack of activity in all trans-retinoic acid, which has no phenolic 

group. 4-HPR cytotoxicity is linked with the redox state of the cells and the formation 

of reactive oxygen species (ROS). Indeed, its inhibitory effect on Des1 appears to be 
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indirect and involving oxidative stress (Idkowiak-Baldys et al., 2010). 4-HPR induces 

apoptosis at high concentrations (> 5µM) whereas at lower doses induces G0/G1 cell 

cycle arrest. 

1.6.2 Resveratrol 

 Resveratrol or (3,5,4`-trihydroxy-trans-stilbene) (Figure.1.3) has recognised 

antioxidant effects. In addition, it has anti-inflammatory, anti-fibrotic effects and anti-

tumour activities and is protective in renal diseases, neurodegeneration, diabetes, and 

cardiovascular diseases. Resveratrol induces programmed death of myelogenous 

leukaemia and promyelocytic leukaemia cells via a ceramide-dependent mechanism. 

In most cell types tested, resveratrol blocks proliferation and induces G1/S cell cycle 

arrest. Resveratrol inhibits Des1 at 50 and 100 M (Shin et al., 2012) but also inhibits 

SK1 protein expression (Lim et al., 2012a). In comparison with the Des1 inhibitors, 

GT-11 and 4-HPR, resveratrol inhibits Des1 in a different manner. Resveratrol induces 

cell cycle arrest in MDA-MB-231 cells (Dolfini et al., 2007). whereas inhibiting Des1 

with resveratrol induces autophagy in HGC27 cells (Signorelli et al., 2009, Rodriguez-

Cuenca et al., 2015), The dhCer : Cer ratio could be important to determine cell fate. 

Resveratrol is known to induce cell death by increasing ceramide (via de novo 

synthesis) in many cancer cell types (Dolfini et al., 2007). 

1.6.3 Celecoxib  

Celecoxib (4-[5-(4-methylphenyl)-3-(trifluoromethyl)-pyrazol-1-yl] (Figure 1.3) 

inhibits Des1 with IC50 of 80 µM. It also increases dihydroceramide while reducing 

ceramide levels in several cell lines. Inhibition of Des1 by celecoxib has an anti-

proliferative effect in gastric cancer cells. It promotes cell cycle arrest (G1/G0 phase) 

and stimulates apoptosis and autophagy by abrogating the PI3K/AKT signalling 

pathway (Huang and Sinicrope, 2010, Casasampere et al., 2016).  

1.6.4 THC 

Δ9-tetrahydrocannabinol (THC) is a bioactive compound isolated from Cannabis 

sativa. THC, HU-211, ajulemic acid (Figure 1.3) and other cannabinoid-based drugs 

are moderately effective in treating multiple sclerosis, arthritis, and traumatic brain 

injury. Cannabinoid-based drugs have also been reported to have significant anti-

inflammatory effects in inflammatory bowel disease. Cannabinoids also have anti-
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tumorigenic effect and inhibit migration and invasion of cancer cells and tumour 

neovascularization (Velasco et al., 2007, Massi et al., 2013). However, cannabinoids 

have a limited clinical use, due to their unwanted psychoactive side effects. A study of 

THC anti-tumour action revealed its mechanism in activating ER stress-regulated 

protein p38 and tribbles-related protein 3 (TRB3). The latter links ER stress to 

autophagy and then apoptosis in the mechanism of cannabinoid-induced anti-tumour 

activity. THC inhibition of Des1 is with IC50 of 23 µM in rat liver microsomes. More 

investigations to study the involvement of dhCer in THC anti-tumour activity is 

warranted (Klein and Newton, 2007, Velasco et al., 2007). 

1.6.5 γ-Tocopherol and γ-tocotrienol 

Two natural compounds of vitamin E  are γ-tocopherol  ((2R)-2,7,8-trimethyl-2-[(4R, 

8R)-4,8,12-trimethyltridecyl]-6-chromanol) and γ-tocotrienol ((R) γ-tocotrienol or [R-

(E,E)]-3,4-dihydro-2,7,8-trimethyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2-H-1-

benzopyran-6-ol) (Figure 1.3). They have well known antioxidant activity, can lower 

blood cholesterol levels, inhibit cancer progression and are neuroprotective. 

Tocotrienols are cytotoxic (at 40 µM) in MCF7 and MDA-MB-231 human breast 

cancer cells and this is correlated with autophagy and ER stress, stimulating apoptosis. 

Tocotrienols are also effective in combination therapies and as radiosensitisers. There 

are links between γ-tocopherol and γ-tocotrienol and sphingolipids and autophagic-

dependent apoptosis (Jiang et al., 2012, Tiwari et al., 2015). Inhibiting the de novo 

ceramide synthesis pathway with, myriocin (SPT inhibitor) or, fumonisin B1 (CerS 

inhibitor), blocks the effect of γ-tocopherol in inducing cell death, thereby suggesting 

that γ-tocopherol induces cell death via a dhCer-dependent mechanism. γ-Tocopherol 

has a lower inhibitory effect on Des1 with 60% inhibition at 100 µM for 36 hours in 

LNCaP cells (Zheng et al., 2006).  

1.6.6 Curcumin 

Curcumin, isolated from Curcuma longa (turmeric), is also known as ((1 E,6E)-1,7-

bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) (Figure 1.3). Curcumin 

exhibits anti-inflammatory, antioxidant, hypoglycemic and anticancer activities 

(Ghosh et al., 2015). It is also a modulator of various signalling pathways such as 

transcription factors, tumour suppressor genes (with a beneficial effect in cancer), 
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diabetes, Alzheimer's disease and cardiovascular disease (Ghosh et al., 2014). 

Curcumin inhibits Des1 in HGC27 (human gastric adenocarcinoma cells) (Fabrias et 

al., 2012). Curcumin affects Des1 indirectly in two different ways: via the electron 

transport chain level or via modifying the redox status of the cell. No actions of 

curcumin have been linked with changes in dhCer levels. However, curcumin induces 

autophagy of U87-MG and U373-MG cancer cells and promotes cell cycle arrest at 

G2/M phase by inhibiting protein kinase B and activation of the extracellular signal 

regulated kinase (ERK-1/2) pathway (Kizhakkayil et al., 2012) that might be linked 

with Des-dependent signalling. 

1.6.7 SKI II 

Many studies support the role of SKI II, named as (4-[[4-(4-chlorophenyl)-2-

thiazolyl]-amino]-phenol) in inhibiting Des1 activity (Figure 1.3). It is a non-

competitive inhibitor inducing a decreases Des1 activity via inhibition of NADH-

cytochrome b5 reductase, which was supported by molecular modelling studies. 

Treatment of HGC27 cells with SKI II decreases S1P levels (consistent with SK 

inhibition) and increases dhCer levels (Cingolani et al., 2014). There was no increase 

in ceramide levels despite SK inhibition. SKI II reduces cell proliferation, promotes 

autophagy, and arrests cells in the G0/G1 phase of the cell cycle (Cingolani et al., 

2014).  

1.6.8 GT11 

GT11 (C8-cyclopropenylceramide) is the first synthesised inhibitor of Des1 and is a 

sphingolipid analogue (Figure 1.3). Structure/activity studies have reported 2S, 3R 

stereochemistry, the presence of a free hydroxyl function at C1 and the cyclopropane 

replacing the ceramide double bond are required for inhibition of Des1 activity. The 

inhibitory effect of GT11 is diminished when the N-methyl is substituted or replaced 

with the amide with carbamate function. Des1 activity is significantly reduced in 

primary culture cerebellar neurons, when treated with GT11 (IC50 of 23 nM).   

Increasing the concentration to more than 5µM of GT11 enhanced long chain 

phosphates accumulation, suggesting that GT11 also inhibits S1P lyase activity. In 

turn, the accumulated S1P down-regulates SPT activity, hence reducing de novo 

sphingolipid biosynthesis (Triola et al., 2004).  



30 

 

1.6.9 XM462 

XM462 (5-thiahydroceramide) was synthetically designed with a sulphur atom in 

place of the C5 methylene group of the enzyme substrate (Figure 1.3). XM462 has an 

inhibitory effect on Des1 in human leukaemia Jurkat A3 cells (IC50 = 0.43 µM) and in 

rat liver microsomes (IC50 = 8.2 µM) (Munoz-Olaya et al., 2008). Additionally, 

modifications of XM462 resulted in further Des1 inhibitors with slightly different 

potencies depending on the N-acyl moiety (Camacho et al., 2012). XM462 promotes 

an increase of dhCer, reduces cyclin D1 expression and delays G1/S transition of cell 

cycle in human gastric cancer cells, HGC27 cells. This is thought to involve 

stimulation of ER stress and autophagic responses (Signorelli et al., 2009, Gagliostro 

et al., 2012).  
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Table 1. 2: Dihydroceramide desaturase (Des1) inhibitors 

Inhibitor 

Des1 

inhibition 

(IC50) 

Compound origin Other activity 

Fenretinide  (4-HPR) 

 
1.68 µM 

A vitamin A 

analogue 

▪ Induces apoptosis and 

suppresses cancer cell 

proliferation. 

Resveratrol 

 

50 & 

100 M 

First isolated from 

white hellebore 

Veratrum 

grandiflorum  

▪ Blocks proliferation and 

induces G1/S cell cycle 

arrest. 

▪ Inhibits SK1 protein 

expression. 

Celecoxib 80 µM 

Synthetic ▪ Increases dihydroceramide 

while reducing ceramide 

levels in several cell lines. 

▪ It promotes cell cycle arrest 

(G1/G0 phase) and 

stimulates apoptosis. 

Δ9-tetrahydrocannabinol 

(THC) 
23 µM 

Isolated from 

Cannabis sativa. 

▪ Anti-inflammatory. 

▪ Inhibit migration and 

invasion of cancer cells and 

tumour neovascularization. 

γ-Tocopherol &  

γ-tocotrienol 

100 µM  

 

Nature  compounds 

of vitamin E 

▪ inhibit cancer progression. 

▪ Tocotrienols are cytotoxic, 

stimulating apoptosis. 

Curcumin - 

Isolated from 

Curcuma longa 

(turmeric) 

▪ Exhibits anti-inflammatory, 

antioxidant,  and anticancer 

activities 

▪ a modulator of various 

signalling pathways. 

 

SKI II 

 
- 

Synthetic ▪ Decreases S1P levels . 

▪ Increases dhCer levels in 

HGC27 cells. 

▪ Promotes autophagy. 

GT11 23 nM Synthetic ▪ Inhibits S1P lyase activity.  

XM462 

 

0.43 µM  

 

Synthetic ▪ Promotes an increase of 

dhCer, reduces cyclin D1 

expression and delays G1/S 

transition of cell cycle in 

human gastric cancer cells, 

HGC27 cells. 
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Figure 1. 3: Des1 inhibitors.  

Chemical structures for Des1 inhibitors (Adapted from (Casasampere et al., 2016)). 

 

1.7 Sphingosine-1-phosphate (S1P) 

Sphingosine 1-phosphate (S1P) is a pleiotropic lipid that has a significant impact on 

many cellular physiology and pathology processes (Spiegel and Milstien, 2003, Bartke 

and Hannun, 2009). Sphingosine kinase (SK1 and SK2 isoforms), S1P phosphatase 

(S1PP) and S1P lyase (SPL) control S1P signalling events. SK and SPL are expressed 

ubiquitously (Wacker et al., 2009). SK1 and SK2 catalyse the synthesis of S1P from 

sphingosine; S1PP catalyses the reverse dephosphorylation reaction. S1P lyase 
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irreversibly degrades S1P at the ER by cleavage at the C2-C3 bond, resulting in the 

formation of phosphoethanolamine and 2-hexadecenal ((Taha et al., 2006b, Saddoughi 

et al., 2008). SPL helps to determine the ceramide (pro-apoptotic) and S1P (pro-

survival) balance: hence, these enzymes are necessary for appropriate cell fate 

responses and their de-regulation can be linked to pathophysiology of diseases, where 

cell growth and/or death is abnormal, as in cancer and degenerative diseases (Merrill, 

2002).  

The levels of extracellular S1P depend on specific cell and tissue types (Cyster and 

Schwab, 2012). Blood cells (mainly erythrocytes; platelets) and endothelial cells are 

the major sources of plasma and lymph S1P. This is exported from cells by specific 

transporters (Hasegawa et al., 2010) to function as a lipid mediator. The intracellular 

level of S1P is low due to high SPL activity. However, S1PP and SPL are lacking in 

erythrocytes and platelets store and release S1P. Unlike sphingosine, S1P cannot freely 

diffuse from the cell, due to its polar nature (Hannun and Obeid, 2008b, Adada et al., 

2013). However, it may move between different membranes without being released 

from cells (Fyrst and Saba, 2010).  The endothelial cell S1P transporter, named spinster 

homologue protein (SPNS2) (504 amino acids; predicted 12 transmembrane protein) 

is a type of major facilitator superfamily (MFS) transporter, first identified in zebra 

fish (Visentin et al., 2006, Takabe and Spiegel, 2014). S1P transporters in erythrocytes 

belong to the ATP-binding cassette (ABC) transporter family including ABCA1, 

ABCC1 (also known as MRP1) and ABCG2 (Kobayashi et al., 2006, Nishi et al., 

2014). ABC transporters were initially known in upregulated cancer cells after 

treatment with cytotoxic chemotherapeutic agents, as multidrug resistant proteins 

(MRPs). Recently, Mfsd2b (the major facilitator superfamily 2b), an orphan 

transporter, has been identified as S1P exporter in red blood cells and platelets. This 

was confirmed when S1P levels accumulated in mfsd2b knockout mice more than in 

wild type mice. The Mfsd2b pathway contributes approximately half of the plasma 

S1P pool (Vu et al., 2017). 

Intracellularly, S1P has a second messenger role. This is supported by the finding that 

sphingosine-induced calcium release is dependent on SK activity (Rosen et al., 2009). 

Interestingly, S1P generated by SK1 in response to TNF receptor stimulation, binds 

directly to and activates the E3 ubiquitin ligase activity of TNF receptor-associate 
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factor 2 (TRAF2), which is an important component in NF-kB signalling, that regulates 

transcription of pro-survival or anti-apoptosis genes (Alvarez et al., 2010, Xia and 

Wadham, 2011). Nuclear S1P produced by ERK/MAPK-regulated SK2, is an 

endogenous inhibitor of histone deacetylases 1 and 2 (HDAC1 and 2) which controls 

epigenetic gene expression (Hait et al., 2009, Maczis et al., 2016), is another 

intracellular target of S1P, which regulates cytochrome-c-oxidase function and 

assembly in mitochondria (Strub et al., 2011) ). In addition, recent studies suggest the 

binding of S1P to human telomerase. The catalytic subunit of human telomerase 

reverse transcriptase (hTERT) is stabilised by phosphorylation. Binding between the 

hydroxyl group (C′3-OH) of S1P (generated by SK2) and hTERT (Asp684) stabilises 

hTERT. Thus, hTERT stability is reduced by the inhibition of SK2 or mutation of the 

S1P binding site in hTERT (Panneer Selvam et al., 2015). Also, S1P binds directly to 

the transcription factor peroxisome proliferator activated receptor (PPAR)-γ, via its 

ligand binding domain (LBD). Production of endogenous S1P also increases PPAR-γ 

expression. In endothelial cells, following S1P activation, PPAR-γ bound to the co-

activator factor, peroxisome proliferator activated receptor- coactivator 1 (PGC1)b. 

The PPAR-/(PGC1)b complex reduces vascular development in vitro and in vivo 

(Parham et al., 2015). S1P also controls the cellular activity of aPKC, as shown by 

using a genetically encoded reporter, aPKC-specific C Kinase Activity Reporter 

(aCKAR), Biochemical studies show that S1P directly binds to the kinase domain of 

aPKC to relieve auto-inhibitory activity. The S1P-dependent activation of aPKC 

suppresses apoptosis in HeLa cells (Kajimoto et al., 2019). In addition, S1P 

specifically binds the N-terminal domain of GRP94 and HSP90α, which are heat shock 

proteins (Park and Im, 2017, Kobayashi et al., 2018, Lidgerwood et al., 2018). 

When S1P is transferred out of cells, S1P acts in an autocrine or paracrine manner, 

termed ‘inside-out’ signalling by binding to specific G protein coupled receptors, S1P1-

5, previously called the endothelial differentiation gene receptor-1, 3, 5, 6 and 8, which 

couple through heterotrimeric G protein family members (Gi, Gq and G12/13) to regulate 

signalling through adenylyl cyclase, phospholipase C, MAPK, PKC and Rho pathways 

(Figure 1.4) (Pyne and Pyne, 2000). 
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S1P1 is an important receptor on lymphocytes, required for their trafficking (and that 

of hematopoietic progenitors) through blood, lymph, and peripheral tissues (Im et al., 

2000, Kimura et al., 2008, Don et al., 2014) and egress from secondary lymphoid 

organs (Matloubian et al., 2004) S1P1 is also located in brain, lung, spleen, 

heart/vasculature and kidney. It is pro-tumorigenic by promoting migration and 

invasion in many cancer cells (Li et al., 2009b) and is critical for angiogenesis and 

vascular maturation (Yoon et al., 2008). S1P2 is widely expressed and plays a role in 

cancer progression. The receptor has different functions in cancer cells and is also 

essential for development of vestibular and hearing functions (Lee et al., 1998). S1P2/3 

are useful in perinatal survival and play a major role in the cardiovascular system 

(Patmanathan et al., 2017). S1P3 is highly expressed in heart, lung, spleen, kidney, 

intestine, diaphragm, and certain cartilage enriched regions. S1P4 receptors is 

expressed in the lymphoid system and S1P5 is expressed in the white matter tracts of 

the central nervous system (CNS).   

Activation of S1P1 with spatially limited formation of S1P is essential for PDGF-

directed cell movement.  S1P receptors regulate various signalling pathways such as, 

Rho family (Rac and Rho) (Jo et al., 2005), adenylyl cyclase, c-Jun N-terminal kinase 

(JNK), phospholipase C (PLC) and intracellular calcium, PI3K/AKT and ERK1/2 

signalling (Pyne and Pyne, 2000, Pyne et al., 2009, Patmanathan et al., 2017). These 

are linked to cell survival, motility, and angiogenesis. De-regulation of these pathways 

is related to the development and progression of a variety of cancer types (Pyne et al., 

2014).  
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Figure 1. 4: S1P receptors.  

Sphingosine-1‑phosphate (S1P) receptors in terms of regulating the motility, growth 

and survival of cancer cells are shown (Adapted from (Pyne and Pyne, 2010)). 

 

 

S1P receptors couple to one or more G-proteins (Figure 1.4). S1P1 is exclusively 

coupled to Gi. S1P2 and S1P3 couple to multiple G proteins, including Gi, G12/13 and 

Gq and S1P4 and S1P5 signal through Gi or G12/13 and Gi or G12 subunits, respectively 

(Susann and Bodo, 2010). S1P receptor complexity of coupling to different G-proteins 

increases the repertoire of signalling pathways that can be activated. For instance, the 

S1P1 receptor activates Ras and the ERK1/2 pathway to promote proliferation. The 

receptor is also linked with the activation of PI3K/AKT signalling to promote cell 

survival. In addition, the stimulation of PI3K and the small GTPase Rac induce cell 

migration, increase endothelial barrier function, and induce vasodilation. The 

activation of PLC increases intracellular free calcium ([Ca2+]i), which is essential for 

several cellular responses including contraction of smooth muscle cells. S1P2 receptor 

coupling to G12/13 activates Rho (a small GTPase) and the Rho-associated kinase 

(ROCK) to decrease endothelial barrier function, induce vasoconstriction and inhibit 

migration (Brinkmann, 2007, Yester et al., 2011, Takuwa et al., 2012). Additionally, 
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stimulation of S1P receptors can contribute to protection against the apoptosis (Figure 

1.4). Targeting S1P receptors for therapeutic benefit has been achieved, e.g. with 

Gilenya® for relapsing and remitting multiple sclerosis (Sanford, 2014). 

S1P production and release through transporter proteins to the extracellular milieu has 

been established. However, its presence in a lipid microenvironment close to S1P 

receptors might allow effective binding of S1P to S1P receptors (Takabe et al., 2008).  

Additionally, intracellular S1P and its balance with ceramide in the sphingolipid 

rheostat (Figure 1.5) regulates cell growth or death in response to cellular stimuli 

(Cuvillier et al., 1996, Spiegel and Milstien, 2003). Ceramide has intracellular targets 

that activate its apoptotic effect (Section 1.4), whereas intracellular targets of S1P are 

associated with cell survival and proliferation. The sphingolipid rheostat regulates 

survival, apoptosis, chemoresistance and radioresistance of cancer cells in vitro in 

many ways. For example, siRNA knock down of SK1 expression decreases cell 

proliferation and enhances the ceramide/S1P ratio to induce apoptosis of prostate, 

pancreatic and leukaemia cells (Akao et al., 2006, Pyne and Pyne, 2010). Also, siRNA 

knockdown of SK2 implicates this enzyme in proapoptotic effects in mouse embryonic 

fibroblasts (MEF) cells. This could be due to the BH3 domain in SK2 or due to the 

release of cytochrome c following TNF stimulation (Liu et al., 2003). Therefore, the 

sphingolipid rheostat is a target for drugs that inhibit SK1 and/or SK2 to tilt the balance 

toward ceramide and to thereby induce cytotoxicity in cancer cells. 
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Figure 1. 5: The ceramide–sphingosine–S1P rheostat, ‘inside-out’ signalling and 

cancer cell survival. 

 (Adapted from (Pyne and Pyne, 2010)). 

 

1.8 Sphingosine kinases 

Two mammalian sphingosine kinases, SK1 and SK2, have been cloned and 

characterised (Sukocheva et al., 2003, Lai et al., 2008). There are three splice variant 

forms of SK1 (SK1a, SK1b and SK1c) and two variants of SK2 (Venkataraman et al., 

2006). SK1 (43 kDa) and SK2 (65 kDa) are encoded by different genes: the SK1 gene 

is on chromosome 17 (17q25.2) and that for SK2 on 19 (19q13.2). The two isoforms 

possess 80% amino acid sequence similarity (Pitson et al., 2002). They share five 

highly conserved regions within their polypeptide sequence, termed C1–C5 domains. 

However, SK2 has an extended N-terminus and a distinct central region (Figure 1.6). 

Both enzymes catalyse phosphorylation of sphingosine to produce S1P (Kohama et 

al., 1998). However, they are distributed differently in organs and  tissues, with  SK1 

mRNA being most abundant in the brain, heart, thymus, spleen, kidney, and lung 

(Melendez, 2008), whereas SK2 mRNA is most abundant in the kidneys and liver 

(Pitson et al., 2003, Liu et al., 2012). SK1 and SK2 differ in their kinetic properties 

and subcellular localizations. Therefore, while the SKs share some similarities, they 

have distinct cellular functions and are differently regulated. For example, SK1 

localises mainly in the cytoplasm and upon agonist-receptor stimulation can be 
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phosphorylated by ERK1/2 at Ser225. This enables the translocation of SK1 from the 

cytoplasm to the plasma membrane, which requires the protein CIB1 (calcium- and 

integrin-binding protein 1) (Jarman et al., 2010). Interestingly, other phosphorylation-

independent mechanisms of SK1 translocation to the plasma membrane have also been 

reported (Gault et al., 2012) together with increased secretion of S1P from the cells 

allowing for the autocrine/paracrine signalling (Johnson et al., 2002). SK1 is also 

found close to the nucleus (the perinuclear region) (Delon et al., 2004) and in the 

nucleus itself (Kleuser et al., 2001). This re-localisation of SK1 to the plasma 

membrane provides evidence for its signalling role in inducing cell proliferation and 

survival because it allows access to the substrate, sphingosine. SK1 activation appears 

essential for mediating oestrogen-dependent regulation of breast tumour cell growth 

and survival, as well as ERK1/2 activation (Sukocheva et al., 2003). PDGF activates 

SK in both the cytosol and the nucleoplasm, with associated progression of cells 

through the cell cycle (Kleuser et al., 1998). Therefore, the location and activation of 

SK both determine the specificity of signalling by these enzymes. 

SK2 is often localised to the nucleus (Pitson et al., 2003, Pitman et al., 2016) but this 

depends on cell type and cell density (Maceyka et al., 2005a, Leclercq and Pitson, 

2006). In Hela cells, the enzyme is mainly nuclear, whereas in HEK293 cells the 

enzyme is cytosolic (Igarashi et al., 2003). COS7 cells express high levels of SK2 in 

the cytoplasm at low confluence and high levels in the nucleus at high confluence. 

Moreover, SK2 translocation to the nucleus supresses DNA synthesis and may induce 

growth arrest. Phosphorylation of SK2 by protein kinase D (PKD) appears to regulate 

its nuclear-cytoplasmic shuttling under physiological conditions (Ding et al., 2007).   

Basal SK activity maintains low sphingosine levels in the cell to reduce cytotoxicity 

(Chan and Pitson, 2013). Its activity is regulated by both post-translational and 

transcriptional processes by growth factors (Maceyka et al., 2012). Activators of SK 

include G-protein coupled receptors (GPCRs), small GTPases, tyrosine kinase 

receptors, pro-inflammatory cytokines and immunoglobulin receptors, calcium, and 

protein kinases (Schnute et al., 2012). The activation of SK2 can be induced by 

epithelial growth factor (EGF) and ERK1/2-dependent phosphorylation (Hait et al., 

2007). Fc-receptor engagement in mast cells also activates SK2 (Hait et al., 2005, 

Olivera et al., 2006).  
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SK1 affects cell transformation and tumour growth and is involved in Ras-mediated 

oncogenesis in NIH3T3 cells (Xia et al., 2000). Over-expression of SK1 occurs in 

carcinomas of the breast, such as MCF-7 breast cancer cells, and increases 

tumorigenesis in nude mice, possibly by promoting cell growth and neovascularisation 

of the tumour (Nava et al., 2002). This also occurs in prostate, colon, oesophagus, and 

lung, as well as other cancers (Aurelio et al., 2016). Indeed, melanoma cells that are 

resistant to therapy show high levels of S1P to ceramide and express more SK1.  

Overexpression of anti-apoptotic protein, B-cell lymphoma 2 (Bcl-2) is associated 

with increased SK1 levels (Bektas et al., 2005, Sordillo et al., 2016). Therefore, SK1 

has anti-apoptotic effects and protects cells from TNFα, ionising radiation or 

anticancer drugs (Song et al., 2011). In contrast, SK1 inhibition with N, N-

dimethylsphingosine (SK inhibitor) (Endo et al., 1991), or G82D (dominant negative 

SK1 mutant) (Pitson et al., 2000), markedly inhibited cell growth and supressed Ras-

induced cell transformation in various tumour cells (Pitson et al., 2000). It has also 

been stated that siRNA-induced down-regulation of SK1, but not SK2, supresses the 

ability of TNFα to induce COX-2 expression and to produce prostaglandin E2 (PGE2) 

in L929 murine fibrosarcoma and A549 human lung carcinoma cells (Pettus et al., 

2003).  Conversely, siRNA targeting of SPL and S1PP increased TNFα-induced COX-

2 expression, followed by an augmented production of PGE2 (Sano et al., 1995). 

COX-2 expression and PGE2 production have been implicated in humans and rodent 

colon carcinogenesis. Undeniably, COX-2 inhibition results in reduction in 

development of colon cancer, whereas administration of PGE2 enhances colon 

carcinogenesis (Kawamori et al., 2003, Kawamori et al., 2006). Interestingly, SK1 

facilitates the GPCR-dependent transactivation of the EGFR signalling, suggesting the 

key role of SK1 in directing mitogenic signalling in cancer cell growth (Wang et al., 

2005). Furthermore, under stress conditions, such as starvation, SK1 promotes cells 

survival and growth (Le Scolan et al., 2005). SK1 is associated with chemo-resistance 

(Baran et al., 2007). Increased expression of SK1 has been reported in a broad range 

of human solid cancers and haematological malignancies (French et al., 2003). 

Therefore, SK1 is a potential therapeutic anticancer target. 

While the role of SK2 in cancer is less well known, its high expression in human non-

small cell lung cancer has lately been associated with poor survival rates of patients 
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(Song et al., 2011). Numerous SK2-selective inhibitors have anticancer effects (French 

et al., 2010). Indeed, the SK2 inhibitor, ABC294640 (Yeliva/Opaganib) has 

progressed to clinical trials, in the treatment of cholangiocarcinoma. Additionally, 

siRNA knockdown studies also show the value of targeting SK2 in some cancers, 

including acute lymphocytic leukaemia (ALL) (Wallington-Beddoe et al., 2014b) 

multiple myeloma, glioblastoma (Kummetha Venkata et al., 2014, Tea et al., 2020).  

Indeed, knock down of SK2 in U-1242 MG cells was more effective than SK1 

knockdown in blocking proliferation of U-87 glioblastoma cells (Van Brocklyn et al., 

2005). Knockdown of SK1and SK2 in A498 cancer cells resulted in induction in the 

percentage of cells in G1 phase and cell cycle arrest in the S and G2-M phases (Gao et 

al., 2012). The effect of SK2 knockdown was greater than that of SK1 knockdown.  

Thus, while both SK isoforms are implicated in cancer, different cancer types appear 

to involve only one or other isoform.   

The SK1 crystal structure has accelerated progress in the SK field (Wang et al., 2014). 

This provided deep knowledge of the binding sites, substrate binding pocket and other 

binding domains, to facilitate the development of SK inhibitors. Additionally, the 

sequence similarity of SK1 with SK2 and molecular modelling of SK2 has presented 

molecular insights to distinguish between these two enzymes in their sphingosine 

binding and ATP binding sites (Wang et al., 2013, Pitman et al., 2015), allowing the 

discovery of isoform-selective inhibitors. Undeniably, the latest identified selective 

inhibitors have revealed the major roles of SK1 and SK2 in regulating cellular 

processes. Notably, one SK1 inhibitor, PF-543, was unable to induce apoptosis in 

cancer cells, even though significantly decreasing cellular S1P levels (Schnute et al., 

2012), With SK2 inhibitors, there are some inconsistency in that they either increase 

(Kharel et al., 2015) or decrease S1P levels (Beljanski et al., 2011). In mice. Therefore, 

there is a need of re-evaluate the inhibitors’ mechanisms to assess on- and off-target 

effects. Certainly, crucial ‘off targets’ have been described for ABC294640, such as 

Des1 (Venant et al., 2015, McNaughton et al., 2016) and the oestrogen receptor 

(Antoon et al., 2011). 
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Figure 1. 6:  Human SKs isoforms.  

Regions of homology and difference between SK1 and SK2. SK2 has an N terminal 

extension, additional central region with a nuclear export sequence (NES) and a 

putative transmembrane domain (Adapted from (Neubauer and Pitson, 2013)). 

 

1.8.1 The role of sphingosine kinase in cancer 

Cancer hallmarks organised into eight major hallmarks: self-sufficiency in growth 

signals, insensitivity to anti-growth signals, evading apoptosis, limitless replicative 

potential, sustained angiogenesis, tissue invasion and metastasis, reprogramming 

energy metabolism and evading immune response and enabling genome instability and 

mutation, and tumour-promoting inflammation (Hanahan and Weinberg, 2000, Fouad 

and Aanei, 2017). SK1 and S1P are engaged in many of the hallmarks of cancer cells. 

Cancer cells develop a “non-oncogene addiction” for SK1, as no activating mutations 

have been identified in the SK1 gene (Vadas et al., 2008). It has been documented that 

SK1 is able to protect tumour cells against apoptotic stimuli (e.g. TNF, Fas ligand, 

serum deprivation, radiation, anticancer drugs) (Kane et al., 1999). For instance, 

stimulating normal human endothelial cells by TNF, activates SK1 to protect against 

apoptosis. Indeed, a natural transformation of C11 (endothelial cell line) could not 
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activate SK1 in response to TNF and enhance TNF-dependent apoptosis (Xia et al., 

1999). SK1 block apoptosis is related to inhibition of caspases 3, 6 and 7 (Cuvillier et 

al., 1998) and changes in Bcl2 family pro- and anti-apoptotic proteins (Limaye et al., 

2005). This leads to release of cytochrome c and Smac/ DIABLO from mitochondria 

(Cuvillier et al., 2001). Thus, SK1protects against apoptosis via both the intrinsic and 

extrinsic pathways (Vadas et al., 2008) (see section 1.9). It has been noted that 

knockdown of SK2 results in compensatory increases in expression of SK1 (Liang et 

al., 2013) adding further complexity to the system. Since SK2, but not SK1, could be 

harmful in some inflammatory diseases and some cancers, it can be advantageous to 

target both SKs to counter effects by both enzymes. 

SK1 knockdown results in a reduction of S1P with induction in cellular ceramides, 

dihydroceramides and sphingosine (Van Brocklyn et al., 2005), as well as an alteration 

in the molecular ceramide species composition, dependent on cell type. For example, 

there is an increase in pro-apoptotic long chain (C24) ceramides in ‘heavy membranes’ 

(isolated by fractionation of SK1 knockdown cells) in comparison to whole cell 

extracts. This indicates that SK1 affects ceramides subcellular distribution (Taha et al., 

2006a). In contrast, ceramide levels were only slightly affected via SK2 knockdown 

(Gao and Smith, 2011), with variations enhanced only by exogenous addition of 

sphingosine (Maceyka et al., 2005b). Additionally, in A498 kidney cancer cells, the 

overall ceramide levels are not affected by SK2 knockdown whereas S1P levels 

increased, accompanied by upregulation of SK1. However, knockdown of both SK 

enzymes in these cells blocked SK1 compensation, resulting in reduction in  S1P levels 

and significant increase in long chain ceramides (≤ C22) levels (Gao et al., 2012).  

Overexpression of SK1 decreases apoptosis and increases proliferation in cells, 

consistent with a role for this enzyme in oncogenesis (Olivera et al., 1999). Other 

studies support a role for SK1 in naturally occurring tumours. Thus, SK1 mRNA levels 

are elevated in many human tumours (French et al., 2003). Indeed, high SK1 

expression is correlated with poor prognostic survival of patients in several cancer 

types. 

Initial studies described pro-apoptotic (Mullen and Obeid, 2012) effects of forced 

overexpression of SK2. Consistent with this, endogenous SK2 knockdown using 
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siRNA in HEK293, or mouse embryonic fibroblasts suppressed TNF-−dependent 

apoptosis (Chipuk et al., 2012). However, several studies demonstrate a pro-cancer 

role for SK2. Notably, inhibiting SK2 either with pharmacological agents or its 

elimination by siRNA in various cancer cell lines, has an anticancer effect (Van 

Brocklyn et al., 2005). In vivo studies using genetic deletion of SK2 in MCF-7 breast 

tumour xenografts have also shown a significant reduction in tumour growth (Weigert 

et al., 2009) Pharmacological inhibition of SK2 in several mouse tumour models, 

including breast, kidney, pancreatic, liver and colon cancer also reduces cancer growth 

(French et al., 2010). Furthermore, SK2 has a key role in inducing migration via 

transforming growth factor (TGF) in oesophageal cancer cells and EGF in breast 

cancer cells, indicating a potential role for SK2 in metastasis (Hait et al., 2005, Miller 

et al., 2008). 

The elevation of SK1 expression in many cancers could be of prognostic value 

(Facchinetti et al., 2010, Heffernan-Stroud and Obeid, 2013). Indeed, expression of 

SK1 is high in ER negative breast tumours, and this correlates with shorter survival 

times (Ruckhäberle et al., 2008). Furthermore, high expression of SK1 in non-Hodgkin 

lymphomas, astrocytoma, gastric cancer, salivary gland carcinoma, oesophageal 

carcinoma, non-small-cell-lung and HNSCC also correlates with shorter disease-

specific survival time (Li et al., 2008, Li et al., 2009c, Facchinetti et al., 2010, Pan et 

al., 2011). 

Indeed, the overexpression of SK1 in prostate cancer cells can promote resistance to 

chemotherapy by reducing the ceramide/S1P ratio (Pchejetski et al., 2005). SK1 over-

expression also reduces the sensitivity of A-375 melanoma cells to Fas- and ceramide-

dependent apoptosis, while siRNA knockdown of SK1 decreases apoptotic resistance 

in Mel-2a cells (Bektas et al., 2005, Heffernan-Stroud and Obeid, 2013). Furthermore, 

it has been shown that dasatinib and resveratrol induce apoptosis by down-regulating 

SK1 and up-regulating CerS genes to increase the ceramide/S1P ratio in K562 chronic 

myeloid leukaemia cells (Gencer et al., 2011, Kartal et al., 2011). This opposing 

regulation of CerS and SK1 has also been observed in primary breast cancer samples 

(Erez-Roman et al., 2010).  
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SK1/S1P signalling is associated with drug resistance, while lately SK2/S1P signalling 

has been reported to confer chemo-resistance to cancers. Thus, using pharmacological 

agents to inhibit SK2 sensitises cancer cells to chemotherapy. For example, 

ABC294640 (SK2 inhibitor) reduces (ER)-positive breast cancer tumour growth by 

~68 % in comparison with vehicle-treated tumours (Selvam and Ogretmen, 2013), and 

blocks proliferation of MDA-MB-231 endocrine therapy-resistant and chemo-resistant 

MCF-7TN-R cells (Antoon et al., 2011). Furthermore, hypoxia enhances SK2 activity 

followed by S1P secretion and action via S1P1/S1P3 to stimulate ERK1/2 signalling 

and to thereby grant resistance to etoposide-induced apoptosis of A549 lung cancer 

cells (Schnitzer et al., 2009). Thus, both SK1 and SK2 are involved in numerous cancer 

types. 

1.8.2 The role of sphingosine kinases in inflammation 

SK1 and SK2 are also involved in inflammation and could serve as potential 

therapeutic targets in inflammatory diseases. For example, they participate in 

neutrophil priming and macrophage responses (Ibrahim et al., 2004, Baumruker et al., 

2005) and in vascular endothelial cell adhesion molecule expression. SK1 and SK2 

have been involved in asthma, being related to determining the allergic response of 

mast cells and also, inducing constriction of airway smooth muscle cells SK1 also has 

a role in hypertension, by controlling of vascular smooth muscle cell contraction (Bolz 

et al., 2003).     

SK1 has a pro-inflammatory role in rheumatoid arthritis, while exerting a protective 

role in neuro-inflammation (Baker et al., 2010, Nayak et al., 2010, Grin’kina et al., 

2012, Pyne et al., 2016b). Therefore, its inflammatory role appears to have a cellular-

specific context. In the immune system cells, SK activation occurs in response to 

crosslinking of immunoglobulin surface receptors during immune cell activation (Jolly 

et al., 2002). SK is also activated in response to pro-inflammatory cytokines and 

inflammatory regulated growth factors, such as PDGF (Suzuki et al., 2007, Hannun 

and Obeid, 2008b), vascular endothelial growth factor (VEGF), nerve growth factor 

(NGF), insulin-like growth factor (IGF), IGF binding protein 3 (IGFBP3), 

lysophosphatidic acid (LPA), lipopolysaccharide (LPS), compliment 5a (C5a), TNFα, 

and IL-1β (Snider et al., 2010). In addition, SK is involved in regulating the stimulation 



46 

 

of many proteins relevant to inflammation, such as COX2 and monocyte 

chemoattractant protein-1 (MCP-1) (Pettus et al., 2003). 

Patient samples and mouse models of ulcerative colitis (UC) and inflammatory bowel 

disease (IBD) are associated with an increase in the SK/S1P pathway (Snider et al., 

2009). Pharmacological inhibition of SK1 (Maines et al., 2008) decreases disease 

parameters in these inflammatory/immune diseases. SK1/S1P and the S1P receptors 

also regulate a variety of immune cell types implicated in inflammatory diseases. In 

platelets, activation and release of S1P from granular stores occurs upon activation of 

the coagulation cascade in acute inflammation In bronchial epithelial cells, S1P plays 

a role in activation, survival and adherence of macrophages to the external matrix 

through integrins (Alemany et al., 2007), while SK1 knockdown reduces TNFα, IL-6, 

and IL-8 in macrophages (Venkataraman et al., 2006). 

SK1 is involved in NFΚB regulation via TNFα, which drives pro-inflammatory 

responses. For example, SK1 binds to TRAF-2 and S1P binds to and stimulates TRAF-

2 E3 ligase to polyubiquitinate RIP1 (lysine(K)-63-linked polyubiquitination). RIP1 

has a functional role in regulating IΚB kinase phosphorylation, thereby inducing IΚB 

degradation and NFΚB activation. Therefore, the regulation of K63 polyubiquitination 

by SK1/S1P represents is a new signalling pathway in inflammation (Alvarez et al., 

2010, Pyne et al., 2016a). Given the key role that SK/S1P in the inflammatory 

pathology, it is important to develop SK inhibitors to target inflammatory disease 

(Baker et al., 2013, Gandy and Obeid, 2013b). 

Pharmacological inhibition of SK can prevent inflammatory diseases, such as arthritis 

and atherosclerosis in two ways: by inhibiting lymphocyte egress and reducing 

cytokine signalling. The emergence of FTY720 (Gilenya®) and other S1P receptor 

modulators indicates that S1P receptors are involved in autoreactive T-cell pathology 

(Allende et al., 2004, Matloubian et al., 2004). Thus, S1P recruits’ lymphocytes to 

local areas of inflammation and spreads the inflammatory signalling response. For 

example, downregulation of SK in a collagen-induced arthritis model in mice 

decreases disease severity and plasma levels of TNFα, IL-6, IFN-γ and S1P (Lai et al., 

2008). FTY720 (a sphingosine mimic and pro-drug, active as FTY720-phosphate) 

reduces the number of mature circulating lymphocytes which are retained in the 
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thymus and secondary lymphoid tissues due to down-regulation of S1P1 in response to 

FTY720-phosphate (Chiba et al., 2006). This immunomodulation has triggered the 

study of FTY720 treatment in various inflammatory diseases where SK1/S1P is 

involved including colitis, arthritis, and asthma (Snider et al., 2010). SK1 also has a 

vital role in the production of pro-inflammatory agents from human macrophages in 

response to anaphylatoxins. SK1 also regulates these cells’ motility, consistent with 

SK1 being a prospective target for therapeutic use in the treatment of inflammatory 

and autoimmune diseases (Baumruker et al., 2005). 

Binding of S1P to its receptor S1P1 improves vascular barrier integrity and endothelial 

barrier resistance (Garcia et al., 2001). Also, S1P reduces vascular dysfunction in 

response to thrombin (Schaphorst et al., 2003) and vascular permeability in response 

to VEGF (Sanchez et al., 2003). In addition, activated protein C (APC) protects the 

endothelial barrier by stimulating SK1 through a protease activated receptor-1 (PAR-

1)-dependent mechanism, thus increasing S1P production and S1P1 activation 

(Feistritzer and Riewald, 2005). 

Neutrophils cause tissue damage in the early acute inflammatory response, when 

highly stimulated or when avoiding apoptosis. Neutrophil priming agents, such as 

platelet-activating factor (PAF) and TNFα, rapidly induce an increase in SK activity. 

Moreover, the SK inhibitor N,N-dimethylsphingosine (DMS) inhibits this activation 

and PAF-induced calcium signalling, suggesting that the intracellular calcium 

elevation by these agents is SK-dependent. SK1 is also necessary for catestatin-

stimulated migration of monocytes (Egger et al., 2008). Finally, macrophages treated 

with LPS have increased SK1 activity, leading to generation of S1P and induction of 

COX2 (Hammad et al., 2008). 

1.9 Sphingolipids and programmed cell death  

Cancer cells are immortal and do not undergo the normal life-death process. However, 

they can be forced to die by chemotherapeutic agents. There are many different types 

of death including apoptosis, necrosis, autophagic cell death and caspase-dependent 

and independent cell death (Leist and Jäättelä, 2001, Wyllie and Golstein, 2001, 

Bröker et al., 2005). Cancer cells resist cell death through resistance mechanisms such 

as, up-regulation of the expression of anti-apoptotic genes (e.g., Bcl-2 (B cell 
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lymphoma 2) family members, which improve membrane stability of mitochondria 

and ER) or through  inactivation of pro-apoptotic genes (e.g., p53, BAX and APAF1 

(Apoptotic Protease Activating Factor 1). Regarding pro-apoptotic genes, different 

mutations resulting in the reduction or loss of protein function or expression have been 

found in many cancer cells. Cancer cells also use immunosuppressive strategies to 

escape cytotoxic CD8+ T cells and NK cells (Igney and Krammer, 2002).  

Anti-apoptotic proteins work as firewalls towards chemotherapy, radiotherapy, as well 

as ceramide and its metabolites (Decaudin et al., 1997). The anti-apoptotic mechanism 

prevents the re-localisation of pro-apoptotic mitochondrial proteins and thereby limits 

release of cytochrome c (Yang et al., 1997) and calcium into the cytoplasm (Lam et 

al., 1994).  

1.9.1 Apoptosis 

Programmed cell death (PCD) regulates normal cell growth/death in various 

organisms such as aging, and tissue homeostasis. Apoptosis is one of several PCD 

mechanisms, in which complex molecular signalling systems are triggered (Fuchs and 

Steller, 2011). Morphological changes shown during apoptosis include cell rounding, 

shrinkage of pseudopods, plasma membrane blebbing, decreased cellular volume, 

chromatin condensation and nuclear fragmentation. In the body, apoptotic cells are 

ingested and degraded by phagocytes. 

PCD involves three steps: initiation, commitment, and execution. First, initiation 

occurs at or in the cellular compartment where a stress occurs (Feng and Hannun, 

1998). For example, disruption of calcium homeostasis at the ER results in the 

activation of calcium-mediated cell death. Initiation is followed by activation of 

specific biochemical pathways involving for instance, PI3K/AKT signalling. The 

commitment step occurs at the mitochondrion level is the no return point (Ferri and 

Kroemer, 2001). Loss of the mitochondrial outer membrane permeabilisation 

(MOMP) releases numerous proteins from the intermembrane space into the 

cytoplasm. This includes cytochrome c, which is most examined. This is followed by 

its oligomerisation with the adapter molecule APAF1 and the triggering of caspase 9 

activity. The latter activates caspases 3 and 7, execution caspases that progress 

programmed cell death (Wolf and Green, 1999). This pathway is the intrinsic apoptotic 
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process. The mitochondria have other proteins which, when released, drive caspase-

independent cell death. After MOMP takes place, mitochondrial apoptosis inducing 

factor (Matrone et al., 2017) and endonuclease G (Endo G) move to the nucleus and 

enhance apoptosis-like PCD, which involves chromatin condensation (Hegde et al., 

2002). The intrinsic apoptotic pathway can occur as a consequence of ER stress or in 

response to ultraviolet radiation, free radicals or cytotoxic drugs, which prompt DNA 

damage (Soengas et al., 1999). DNA damage and ER stress activate Bax/Bak (pro-

apoptotic members of the Bcl-2 family) and induce MOMP, eventually resulting in 

caspase-dependent/independent apoptosis (Lakhani et al., 2006).  

The extrinsic apoptotic pathway is started by stimulation of cell surface death receptor 

(Fas, DR5, TNF-R1) by their ligands (FasL, TRAIL, and TNF). Both pathways involve 

caspase activation that results in apoptotic cell death (Figure 1.7) (Schmitz et al., 

2000). Crosstalk between the intrinsic/extrinsic pathways also occurs.  

Extrinsic pathway death receptors include members of the tumour necrosis factor 

(TNF) receptor superfamily (CD95, TRAIL-R1 (TNF-related apoptosis-inducing 

ligand-R1) and TRAIL-R2 (TNF-related apoptosis-inducing ligand-R2). These 

proteins are characterised by an intracellular ‘death domain’ (Yu et al., 1999). In 

contrast, a non-signalling receptors of TNF superfamily, called decoy receptors, are 

closely similar to death receptors but lack the death domain and have lower death 

receptor function (Ashkenazi, 2002). 

The intracellular protein FADD (FAS-associated death domain) forms a complex with 

the death domain of activated death receptors which then activates caspases 8 and 10 

(Sprick et al., 2000). Sometimes this pathway fails to initiate apoptosis, which 

demands the engagement of mitochondria via the intrinsic pathway. Hence, caspases 

8 and 10 cleaved BID (a BCL-2 family protein) moves to the mitochondria. In the 

cytoplasm, a complex form between cytochrome c and APAF1 (apoptotic inactive 

initiator caspase activating factor 1) and inactive pro-caspase 9 in a complex called the 

"apoptosome". This results in  mitochondrial initiator caspase (caspase-9) activation 

(Zamzami and Kroemer, 2001), which results in cleavage of different substrates like 

cytokeratins, poly-(ADP-ribose) polymerase (PARP) and plasma membrane 

cytoskeletal proteins (alpha fodrin), which consequently provoke morphological and 
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biochemical changes associated with apoptosis (Ghavami et al., 2009). Other target 

proteins that are proteolysed are lamins, the 70-kDa protein of the U1 snRNP, 

topoisomerase I and II and the retinoblastoma protein, fodrin (Rosen and Casciola‐

Rosen, 1997).   

Cleavage of PARP to an 89 kDa fragment (Lazebnik et al., 1994) is an early event in 

apoptosis, occurring after chromatin DNA fragmentation but before inter-nucleosomal 

fragmentation (Lazebnik et al., 1994, Greidinger et al., 1996). However, it is not 

evident in some models of apoptosis, e.g. in Hep3B cells induced to apoptosis by 

camptothecin (Adjei et al., 1996). PARP is a nuclear enzyme which has a DNA 

binding domain ((DBD) containing two Zn2+ fingers and a helix-turn-helix motif) at 

the N-terminus, a catalytic domain at the C-terminus and an intervening auto-

modification domain. PARP is involved in DNA repair and thereby cell homeostasis.  

It recognises DNA breaks and binds, via its Zn2+ fingers, before catalysing repair by 

forming ADP-ribose polymers (both long and branched) using NAD as a substrate 

(Lindahl et al., 1995, Shall and Gilbert, 2000). 

Sphingolipids directly affect and regulate the extrinsic pathway of apoptosis (Figure 

1.7). For example, SMase produces ceramides which bind to and activate the 

lysosomal protease cathepsin D. This cleaves the protein BID to activate the apoptotic 

pathway (Heinrich et al., 2004).  Ceramide activates protein kinase C (PKC), which, 

in turn, activates c-Jun NH2-terminal kinase 1 (JNK1) and inhibits protein kinase B 

(PKB or Akt) to induce apoptosis (Bourbon et al., 2000, Bourbon et al., 2002). In 

contrast, S1P suppresses ceramide-mediated activation of JNK1 but activates the 

Akt/mTOR complex 1 (mTORC1), ERK1/2, and NFB (Cuvillier et al., 1996) 

signalling pathway. Thus, regulators of the extrinsic pathway of apoptosis are 

differentially affected by the various sphingolipids (Figure 1.7). 
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Figure 1. 7: Schematic representation of key events in the apoptotic pathway and 

regulation of apoptosis by sphingolipids.   

(Adapted from  (Lee et al., 2015)) 

 

Sphingolipids also affect intrinsic apoptosis (Figure 1.7). Ceramides induce 

cytochrome c release by the creation of channels in the mitochondria outer membrane 

to induce activation of caspase-9 (Schenck et al., 2007). Ceramide also inhibits 

mitochondrial complex III to produce reactive oxygen species (ROS) that also 

stimulate the intrinsic pathway (García-Ruiz et al., 1997) whereas S1P inhibits 

apoptosis via BAD inactivation (Stoica et al., 2003) and the reduction of Bcl-2 and 

Bcl-xL, which are anti-apoptotic proteins (Lee et al., 2015).  

 

1.10 Sphingosine kinase inhibitors 

Nearly all known SK inhibitors have inhibitory action by binding to the sphingosine 

binding sites of these enzymes.  SK inhibitors are either analogues of sphingosine (e.g. 

N,N dimethylsphingosine (DMS)) (Edsall et al., 1998), non-lipid inhibitors (e.g. PF-

543) (Schnute et al., 2012) or inhibitor of ATP binding (MP-A08) (Pitman et al., 2015) 

(Table 1.3). Despite their usefulness, there is complexity in interpretation of data 
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obtained using SK inhibitors due to their potential action on other sphingolipid 

metabolising enzymes or sphingolipid-regulated proteins. For example, DMS is a 

sphingosine analogue and inhibitor of SK but is also an activator of sphingosine 

activated enzymes (PKD and 14-3-3)  (French et al., 2006) and an inhibitor of PKC. 

Thus, it is hard to be precise that the effect of this inhibitor is attributed solely to SK 

inhibition or is due to ‘off-target’ (French et al., 2006, Vadas et al., 2008). More 

recently, and with the discovery of the SK1 crystal structure and homology modelling 

of SK2, more potent and isoform selective inhibitors have been developed.  Despite 

this, inhibitors targeting the sphingosine binding site might also bind to other 

sphingolipid metabolising enzymes or other proteins that use chemically similar 

substrates or ligands. Similarly, ATP-competitive inhibitors need to be selective for 

SKs and not affect any other kinase enzyme, all of which use ATP. Therefore, siRNA 

or genetic knockdown of SK1 or SK2, as appropriate, can provide evidence of 

targeting specificity and validation of new chemical inhibitors to these enzymes. 

1.10.1 SK1 inhibitors 

1.10.1.1 SK1-I 

SK1-I (BML-258) ((2R,3S,4E)-N-methyl-5-(4-pentylphenyl)-2-aminopent-4-ene-1,3-

diol), was the first SK inhibitor that demonstrated selectivity for SK1 over SK2. This 

water-soluble analogue of sphingosine (Figure 1.8), discovered in 2008, has been 

widely used, including in vivo, to assess the important role of SK1. This is a 

sphingosine competitive inhibitor (Ki of 10 μM) and selective for SK1 over SK2 and 

CERK (as well as 11 protein kinases). In U937 human monocytes, SK1-I reduced S1P 

and increased ceramide with no change in sphingosine or dihydrosphingosine. It also 

induced apoptosis via downregulation of ERK1/2 and Akt signalling pathway. The 

inhibitor was not cytotoxic in normal peripheral blood mononuclear cells (Paugh et 

al., 2008, Zhang et al., 2008). SK1-I exhibits good solubility, facilitating in vivo 

delivery in saline, but is not soluble in polyethylene glycol and DMSO. In a study 

using a syngeneic breast cancer model in mice, SK1-I reduced tumour burden and 

metastasis, lowered tumour S1P levels, enhanced tumour apoptosis and decreased 

haemangiogenesis and lymphangiogenesis (Nagahashi et al., 2012). Also, SK1-I 

reduces tumour burden in a mouse xenograft squamous cell carcinoma model and 

improves the efficacy of doxorubicin. Therefore, SK1-I is a chemo-sensitising agent 
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(Hazar-Rethinam et al., 2015). Moreover, combining SK1-I and bortezomib (a 

proteasome inhibitor), synergistically increased apoptosis, decreased colony 

formation, and induced down-regulation of BCR/ABL and Mcl-1 in human leukaemia 

cells that were either imatinib-resistant or imatinib-sensitive (Li et al., 2011, Hazar-

Rethinam et al., 2015). In addition,  low cytotoxicity against normal cells indicates 

that these molecules might have some therapeutic potential for treating cancer (Paugh 

et al., 2008). 

1.10.1.2. PF-543 

PF-543 ((R)-(1-(4-((3-methyl-5-(phenyl-sulfonylmethyl)-phenoxy)-methyl)-benzyl) 

pyrrolidin-2-yl)-methanol) is a highly potent inhibitor of SK1 (Ki = 3.6 nM) with 130-

fold selectivity over SK2), while also failing to affect other 40 lipid kinases (including 

phosphatidylinositol kinases) and protein kinases (Figure 1.8).  However, it has a slight 

inhibitory effect against mixed lineage kinase-1 (MLK-1) (~ 50% at 10 M) (Schnute 

et al., 2012). PF-543 reduces S1P generation and induces proteasomal degradation of 

SK1 (Byun et al., 2013). However, it was unable to promote apoptosis in different 

cancer cells (Schrecengost et al., 2015). This finding is contrary to most SK1 

knockdown studies, where tumour growth is inhibited. More recently, PF-543 when 

used in higher concentrations 2.5-10-fold than needed to reduce S1P in cells, was 

found to stimulate necrosis in colorectal cancer cell lines (Ju et al., 2016). 

Interestingly, PF-543 significantly decreases S1P and accumulates sphingosine levels.  

However, there was no expected increase in cellular ceramide levels, which may 

account for its lack of potency in inducing apoptosis (Schnute et al., 2012). The 

explanation for this could be that PF-543 might modulate other sphingolipid enzymes 

that negate the effect of the inhibitor on ceramide levels in certain cancer cells. 

Subsequently, PF-543 was shown to increase in dihydroceramides, ceramide 

monohexosides and lactosylceramides in HGC 27 cells (Cingolani et al., 2014). The 

ability of PF-543 to decrease S1P levels with no cell death induction may provide 

prospective therapeutic use in other diseases, such as inflammatory disorders (Schnute 

et al., 2012). In addition, in the study by Schnute et al. (2012), the ATP concentration 

was not saturating (in excess) meaning that the assay conditions involved two-

substrate kinetics. Despite this, PF-543 was extremely selective for SK1, inhibit SK2 
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at higher concentrations of 50 µM three times the inhibition at lower concentration of 

5 µM.  

Mapping the two SK isoforms from the available SK1 crystal structure, suggests that 

the differences between the two enzymes is in the foot of the lipid binding "J-channel". 

Recent analysis by Adams et al. (2019), predicts that SK1 vs SK2 selectivity by PF-

543 is due to accommodation of the inhibitor’s sulphonyl group in the heel of the 

deeper J channel in SK1 whereas the more limited space at the heel of the J channel in 

SK2 indicates that the sulphonyl cannot be accommodated. Other SK1 vs SK2 

structural differences in the J channel sub-pocket where the methyl group of  PF-543 

sits might also contribute to its selectivity for SK1 (Adams et al., 2019). 

This recent study designed and synthesised isoform-selective and dual SK1/SK2 

inhibitors using PF-543 as a starting point, exploring and exploiting the variations in 

the ‘heel and toe’ of the foot of  J channel of SK1 and SK2. Linkers within PF-543 

were replaced and various halogen substitutions of the phenyl ring were made to 

generate a series of nanomolar potent inhibitors which ranged from 100-fold SK1 

selective (PF-543; (Schnute et al., 2012) through an equipotent SK1/SK2 inhibitor 

(compound 49) to a 100-fold SK2 selective inhibitor (compound 55; see section 

1.10.2.7) (Adams et al., 2019). 

1.10.1.3 SK1-5c (CAY 10621) 

SK1-5c named (2,2-dimethyl-4S-(1-oxo-2-hexadecyn-1-yl)-1,1-dimethylethyl-ester-

3-oxazolidinecarboxylic acid) or CAY10621, inhibits SK1 (IC50 of 3.3 μM) with 

selectivity over SK2 (Figure 1.8) (Wong et al., 2009). Others report Ki values of 15 

μM for SK1and 46 μM for SK2 (Kharel et al., 2012). It slightly reduces cell 

proliferation in U937 cells but has a marked effect on cell viability of colon cancer 

cells, especially when combined with inactivation of AKT signalling (Tan et al., 2014). 

SK1-5c reduced proliferation of  MDA-MB-231 and MCF-7 breast cancer cell lines, 

in vitro colony formation and enhanced their cell death.  SK1-5c also weakened MDA-

MB-231 tumour growth in a mouse xenograft model and chemo-sensitised these breast 

cancer cells (Datta et al., 2014) and a panel of colon cancer cell lines. These effects 

were phenocopied using siRNA knockdown of SK1. Hence, further studies are 
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required to describe SK1-5c inhibitory effects toward other sphingolipid metabolising 

enzymes, protein kinases and lipids. 

1.10.1.4 SKI-178  

Modification of SK1-I resulted in new inhibitor named SKI-178, chemically known as 

(N′-[1-(3,4-dimethoxyphenyl)-ethylidene]-3-(4-methoxyphenyl)-1H-pyrazole-5-

carbohydrazide). SKI-178 is approximately 20-fold selective for SK1 (Ki of 1.3 μM), 

over SK2, (Figure 1.8) (Hengst et al., 2010). It reduced S1P and increased ceramide 

levels in HL-60 cells. SKI-178 induced apoptosis in some cancer cell types (with IC50 

= 0.1–1.8 μM) (Dick et al., 2015). For example, in Acute myeloid leukaemia (AML) 

cell line, HL-60, SKI-178 enhanced apoptosis in a prolonged mitosis through a 

mechanism of activating cyclin-dependent kinase 1 (CDK1), which in turn causes 

phosphorylation and degradation of Bcl-2, BCL-XL and Mcl-1. This agrees with a role 

for SK1 in mitotic exit in AML cells and was confirmed by SK1 genetic knockdown 

in a human pancreatic cell line (Kotelevets et al., 2012, Dick et al., 2015). 

Significantly, SKI-178 was effective against a multi-drug resistant AML line. These 

findings indicate that SKI-178 could be a valuable chemo-sensitising agent in AML. 

Furthermore, modification of SKI-178 by adding methyl and methoxy groups 

enhanced its pharmacological activities and selectivity for SK1. SKI-178 was the first 

SK1-selective non-lipid small molecule inhibitor (Hengst et al., 2010). 

1.10.1.5 Compound 82 (Amgen 82) 

Compound 82 also known as Amgen 82, was developed through modification of SKI-

II (French et al., 2003), using a structure-based design (Figure 1.8) (Gustin et al., 

2013). Amgen 82 is a competitive dual SK1/SK2 inhibitor, with an IC50 value of 20 

nM for human SK1 and an IC50 value of 100 nM for human SK2. Moreover, it reduces 

S1P formation in human melanoma cell line (WM266.4) with IC50 of 63 nM while in 

breast cancer line (MDA.MB.231) with IC50 of  90 nM (Rex et al., 2013). Interestingly, 

compound 82 showed an inhibitory effect on mouse SK1 (IC50 of 70 nM), while no 

significant inhibitory effect of mouse SK2 was seen at 10 μM (Gustin et al., 2013).  

These findings indicate there are differences in the sphingosine binding sites between 

human and mouse SK2 isoforms. Compound 82 reduced S1P levels in human breast 

and melanoma cells, but only exhibited growth inhibitory effects at 100-fold higher 
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concentration than for SK1 (Micromolar concentrations). Since compound 82 is an 

analogue of SKI-II, which inhibits Des1 (Cingolani et al., 2014), it should be tested 

for activity against Des1. 

1.10.1.6 Amidine inhibitors 

Amidine based compounds exhibit selectivity and potency for SK1 and SK2. The 

inhibitory effect toward SK relies on the electrostatic properties of the basic amidine 

group which directly binds with ATP-γ-phosphate (Kharel and Sellmyer, 2011). 

Compound 1a known as (S)-1-(4-dodecylbenzoyl)-pyrrolidine-2-carboximidamide) 

(Figure 1.8), is a SK1-specific inhibitor with high potency, showing a Ki of 0.1 M. 

The initial compound, VPC94075 (Figure 1.8) showed an inhibitory effect on both SK 

isoforms with IC50 values of 55 and 20 μM for SK1 and SK2, respectively (Mathews 

et al., 2010). VPC94075 decreased S1P levels with anti-proliferative effects in cells, 

despite being only moderately potent. Compound 1a has an amidine functional group 

with an extended tail and shows specificity toward SK1(Kennedy et al., 2011). 

Compound 1a is a competitive inhibitor for sphingosine with no effect towards other 

lipid kinases at 30-folds the concentration of the Ki. Subsequently, two inhibitors were 

developed. Compound 1 is a dual SK inhibitor, known as N-(1-

carbamimidoylcyclopropyl)-4-dodecylbenzamide and the other compound 2 is a SK1-

selective inhibitor, known as 1-carbamimidoyl-N-(4-dodecylphenyl) cyclopropane 

carboxamide. These improved compounds display sub-micromolar IC50 values: 

compound 1 - SK1 IC50 of 0.2 μM, SK2 IC50 of 0.5 μM; compound 2  - SK1 IC50 of 

0.3 μM,  SK2 IC50 of 6 μM. There was no inhibitory effect on human diacylglycerol 

kinase (DAGK) or PKCα. The selectivity for SK1 over SK2 was found to be due to 

the amide functional group and longer tail length (C12 vs C8) (Mathews et al., 2010). 

In vitro administration of compound 1a to U937 cells, decreases S1P levels within 10 

minutes and the decrease is sustained for 24 hours (Kharel et al., 2012). Interestingly, 

compound 1a prompts a doubling of sphingosine and dihydrosphingosine but only 

markedly increased ceramide levels when used at 10 μM, which is 100 times higher 

concentration than that required for inhibiting SK1(Kharel and Sellmyer, 2011).  

Compound 1a was efficient at reducing S1P accompanied by moderate increases in 

sphingosine and C16:0 ceramide levels in U937 cells. Compound 1a also inhibits pro-

survival ERK1/2 and AKT signalling and induces PARP cleavage, a marker of 
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apoptosis. This only occurs after 16 hours of treatment at 10μM. In mice, 50% 

reduction in S1P levels was observed.  At one-hour post-administration, the compound 

was cleared from the bloodstream (Kharel and Sellmyer, 2011). Notably, much higher 

concentrations are required to reduce cellular levels of S1P and to show an anti-

proliferative effect on U937 cells. 

1.10.1.7 CB5468139  

As a result of screening a small library, CB5468139 has been identified as an ATP-

competitive SK1 inhibitor (Figure 1.8). It has a Ki of 0.28 μM with no noted inhibition 

of SK2 below concentration 100 μM. In A498 kidney adenocarcinoma cells, 

CB5468139 inhibits cell growth with an EC50 of 10–15 μM and moderately decreases 

S1P and increases ceramide levels. Cell cycle progression was not affected but the 

compound induced autophagy (Gao et al., 2012). Off targets of CB5468139 include 

several protein kinases, such as CLK1, Met, PIM2, SYK and TNK2, which are 

inhibited with IC50 of 2 μM, indicating that the compound lacks specificity at the ATP 

binding site of kinases (Gao et al., 2012). 

1.10.1.8 FTY720 

FTY720 (2-amino-2-[2-(4-octylphenyl) ethyl] propane-1, 3-diol) (Figure 1.8), with a 

structure similar to sphingosine, was developed from the compound ISP-1 (myriocin) 

that was isolated from the fungus Isaria sinclairii (Adachi and Chiba, 2007). Also 

known as Fingolimod, or GilenyaTM in the market, FTY720 is currently in clinical use 

to arrest symptoms and decelerate the development of multiple sclerosis (MS) (Chun 

and Hartung, 2010). In its phosphorylated state, FTY720 binds four types of S1P 

receptor (S1P1, S1P3, S1P4 and S1P5, but not S1P2). It acts as an agonist in the short 

term but a functional antagonist of S1P1 (which underlies, in part, its therapeutic effect) 

in the longer term due to the internalisation and subsequent degradation of S1P1 

receptors (Antoon et al., 2011).  

FTY720 is a sphingosine-competitive inhibitor of SK1 with a Ki around 2μM (Tonelli 

et al., 2010). It also induces proteasomal degradation of SK1, which likely contributes 

to its SK inhibitory effect in the longer term (Lim et al., 2011b). FTY720 also activates 

PP2A (Saddoughi and Ogretmen, 2013) and inhibits cPLA2 and PKCδ (Payne et al., 

2007, Hung et al., 2008). Moreover, it has also been noted that FTY720 inhibits SK1 
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to increase radiation sensitivity of prostate cancer tumour xenografts to reduce tumour 

growth and metastasis in mice (Pchejetski et al., 2010). Modified forms of FTY720, 

such as (S)-FTY720 vinyl phosphonate, inhibit SK1 and similarly induce its 

proteasomal degradation and the apoptosis of breast and prostate cancer cells (Tonelli 

et al., 2010), as well as preventing rearrangement of actin in response to S1P 

stimulation of MCF-7 cells (Lim et al., 2011a). 

1.10.1.9 D, L-threo-dihydrosphingosine 

D, L-threo-dihydrosphingosine (DHS) is the earliest discovered inhibitor of SK.  It was 

synthesised from the naturally occurring D-erythro-dihydrosphingosine (or 

sphinganine) (Figure 1.8). DHS is a sphingosine competitive SK1 inhibitor (Ki of 

approximately 3-6 μM) with a high degree of SK stereoselectivity. It acts as a SK2 

substrate and, after integrating into sphingolipid metabolic pathway, it can be further 

metabolised. Though moderately potent for SK1. L-threo-DHS (known as safingol) 

also has inhibitory effects towards other kinases.  For example, it is used as an inhibitor 

of PKC-α in the clinic and research settings. These findings indicate its limited 

usefulness as a SK inhibitor (Coward et al., 2009). 
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Figure 1. 8:  SK1 inhibitor structures. 
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1.10.2 SK2-selective inhibitors 

1.10.2.1 ABC294640 

ABC294640 (Yeliva/Opaganib) is a non-lipid SK2 inhibitor with a Ki of ~10 μM. 

ABC294640 (Figure 1.9) has been widely used to invoke a role for SK2 in many 

diseases. It accumulates intracellular sphingosine and ceramide species with a 

reduction of S1P levels and abrogates cell proliferation (French et al., 2010). Notably, 

however, ABC294640 has off-target effects: it behaves as a weak oestrogen receptor 

(ERα) antagonist at low micromolar concentration and promotes the proteasomal 

degradation of Des1 (leading to an increase in dihydroceramide levels) and SK1 

(McNaughton et al., 2016). Despite this, ABC294640 is in phase I/II trials (as 

YELIVA™ or Opaganib) for refractory/relapsed patients diffuse large B-cell 

lymphoma and virus-induced lymphoma as well as has lately accomplished phase I 

trials for using in later stage solid tumours (Lin et al., 2015). Indeed, ABC294640 

sensitises cancer cells to chemotherapy (Antoon et al., 2011), Bcl-2 inhibitors, the Bcr-

Abl inhibitor, Imatinib (Wallington-Beddoe et al., 2014a) and the proteasome 

inhibitor, Bortezomib (Venkata et al., 2014). ABC294640 blocks AKT and ERK1/2 

signalling to stimulate autophagy of tumour cells causing non-apoptotic cell death 

(Sheng et al., 2014).  It also promotes proteasomal degradation of c-Myc, Mcl-1 

(Venkata et al., 2014) and inhibits NFΚB-mediated chemo resistance in breast cancer 

cells (Liu et al., 2012).  

1.10.2.2 K145 

K145 named [3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-

2,4-dione] (Figure 1.9), is a selective inhibitor for SK2 (Ki of 6.4 μM) with a 

sphingosine-like structure. K145 exhibits selectivity towards SK2 (no inhibition of 

SK1 below 10 μM), with no activity against CERK and 11 other kinases, even though 

it has a modest inhibition effect against AKT and calmodulin kinase Iiβ at 10 μM. 

K145 reduces total cellular levels of S1P with no effect on ceramide levels (Liu et al., 

2013), compatible with its inhibitory effect against SK2. It also prevented FTY720 

phosphorylation in cells (Liu et al., 2013), which is catalysed by SK2. U937 cells 

treated with K145 have reduced proliferation and enhanced apoptosis via a mechanism 

involving inhibition of ERK1/2 and Akt signalling (Liu et al., 2013). 
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1.10.2.3 SG12 and SG14 

SG12 and SG14 (Figure 1.9) are sphingosine analogues synthesised from a p-octyl-

phenyl backbone. SG-12 is both a selective SK2 inhibitor but also a substrate for SK2, 

exhibiting a Km of 5.5 μM, similar to sphingosine (Gao et al., 2012). Notably, 

phosphorylation of SG12 by SK2 is crucial for apoptosis induction in the A20/2J (the 

murine B lymphoma-derived cell line) (Hara-Yokoyama et al., 2013). Additional 

research is needed to identify the apoptotic pathway and whether this may include an 

effect of SG-12-phosphate on S1P receptors. 

1.10.2.4 ROMe ((R)-FTY720-OMe) 

SK2 generates (S)-FTY720-phosphate by phosphorylation of (S)-FTY720 

(fingolimod/Gilenya) on the pro-chiral hydroxyl group (Figure 1.8). Alternatively, 

hydroxyl group replacement with a methoxy group generated (R)-FTY720-OMe 

(ROMe, Figure 1.9). ROMe inhibits SK2 with a Ki = 17 μM, with a slight SK1 

inhibition at 50 μM. In HEK293 cells, ROMe inhibits SK2 activity while, in MCF7 

breast cancer cells, it decreases DNA synthesis and blocks rearrangement of actin in 

response to S1P stimulation (Lim et al., 2011a). ROMe enhanced autophagy T cell 

leukaemia cell lines (Evangelisti et al., 2014), accumulated sphingosine and  reduced 

S1P in LNCaP prostate cancer cells, but was without effect on ceramide levels (Watson 

et al., 2013). This may suggest that ROMe affects CerS (a known FTY720 target) 

(Berdyshev et al., 2009, Park et al., 2014a). ROMe limits cell growth by preventing 

SK2-derived S1P growth-stimulating effects of on S1P4 and S1P2 receptors, in MDA-

MB-231 breast cancer cells (Ohotski et al., 2014). ROMe improves pulmonary 

endothelial vascular integrity through S1P1 receptor signalling (Camp et al., 2016). 

Interestingly, ROMe reduces expression of SK2 independently of lysosomal or 

proteasomal pathways in HEK293 cells (Lim et al., 2011b). 

1.10.2.5 SLR080811 

SLR080811 was synthesised by modification of the amidine SK1 inhibitor, compound 

1a. Retention of the pyrrolidine ring and substitution of guanidine for the amidine 

yielded SLR080811 (Figure 1.9), which is known as ((S)-2-(3-(4- octylphenyl)-1,2,4-

oxadiazol-5-yl) pyrrolidine-1-carboximidamide) (Kennedy et al., 2011). SLR080811 

inhibits both SK isoforms, with Ki of 1.3 for SK2 and 12 μM for SK1, thus exhibiting 
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~10-fold selectivity for SK2. It has no inhibitory activity at 3 μM against either CERK 

or DAGKα (Kharel et al., 2012). Selectivity for SK2 over SK1 was also demonstrated 

using knockdown of SK1 and SK2: SLR080811 shows a reduction effect in 

intracellular S1P levels in SK1 knocked-down cells, but no reduction with SK2 

knocked-down cells. SLR080811 reduced the levels of S1P and dihydroS1P in Jurkat, 

U937 and SKOV3 cancer cells. Further analysis validated that SLR080811 enhances 

sphingosine, dihydrosphingosine and C16 ceramide levels but without effects on other 

ceramide species of U937 cells. 

Lately, two compounds based on SLR080811 have been developed. These are 

LM6041434 and SLC5111312, which exhibited inhibitory effect in mouse and rat SK2 

(Ki values of 0.4–1.1 μM). Notably, SLC5111312 was observed to downregulate both 

SK1 and SK2 activity in rat, while being selective for SK2 in mouse (Kharel et al., 

2015).  

1.10.2.6 SLP120701 

SLP120701 is known as ((S)-2-(3-(4-octylphenyl)-1,2,4-oxadiazol-5-yl)-azetidine-1-

carboximid-amide hydrochloride). It selectively inhibits SK2 with Ki of 1.2 μM and 

with ~ 10-fold selectivity over SK1 (Patwardhan et al., 2015). SLP120701 (Figure 1.9) 

reduced S1P and enhanced sphingosine levels in U937 cells but without being 

cytotoxic in U937 cells after 24 hours incubation. 

1.10.2.7 Compound 55 (HWG-35D) 

HWG-35D is a potent SK2 selective inhibitor (Figure 1.9), synthesised by substituting 

a methyleneoxy linker for the sulphonyl linker in PF-543 and modifying the terminal 

phenyl ring with a para-chloro group (Adams et al., 2019). HWG-35D was 100-fold 

more selective for SK2 over SK1. It also showed markedly improved potency than the 

prevailing SK2 inhibitor, ABC294640. It only inhibits SK2 without showing any effect 

on SK1. In a comparative study between HWG-35D and ABC294640 in psoriasis-like 

skin disease, both improve symptoms of a psoriasis-like skin condition (Shin et al., 

2020). This supports a pro-inflammatory role for SK2. Additionally, it was 

demonstrated that HWG-35D had no off-target effect on SK1 and Des1, i.e., 

expression of these proteins was unaffected. In a further in vivo model, HWG-35D was 

investigated for its therapeutic potential on tubulointerstitial fibrosis prompted by 
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unilateral ureteral obstruction model (UUO) in mice (Schwalm et al., 2021). This study 

proved the ability of HWG-35D to attenuate the kidney fibrotic response induced by 

UUO, limiting expression of fibrotic markers (e.g. collagen-1 (Col1), fibronectin-1 

(FN-1), connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA)) 

and collagen accumulation. This was accompanied by an induction Smad7 expression 

(a negative regulator of pro-fibrotic TGFβ/Smad signalling) and a significant increase 

in sphingosine.  

1.10.2.8 Compound VT-20dd 

Compound 20dd was developed from another SK1- selective inhibitor (SLP7111228). 

(Figure 1.9). It is 100-fold selective for SK1 over SK2 and lowers S1P levels in human 

leukaemia U937 cells (Childress et al., 2017). Compound 20dd was synthesised as a 

para-substituted biphenyl derivative. The introduction of large substituent at the para 

position produced a potent and selective SK2 inhibitor (Ki 90 nM).  
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Figure 1. 9: Sphingosine kinase 2 inhibitors  
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1.10.3 Dual SK1/SK2 inhibitors 

1.10.3.1 SKI-II 

SKI-II (or SKi) has chemical name 4-[[4-(4-chlorophenyl)-2-thiazolyl]amino]-phenol  

(Figure1.10) (French et al., 2003). It is a SK1/2 dual inhibitor with SK1 with Ki value 

of 16 μM and SK2 with Ki of 8 μM  (Aurelio et al., 2016). Indeed, it showed inhibitory 

effect toward SK1 with Ki value of 16 and for SK2  with Ki of 8 μM  (Gao et al., 2012).  

This suggests that SKI-II is slightly more SK2-potent inhibitor than SK1. It exhibits 

mixed inhibition of SK1, with Ki (competitive) of 17 μM and Ki (uncompetitive) of 48 

μM (Lim et al., 2011a). It also inhibits Des1 (see 1.6.7). SKi decreases cellular levels 

of S1P and increase ceramides and sphingosine in LNCaP prostate cancer cells to 

induce their apoptosis (Loveridge et al., 2010). SKi does not directly inhibit ERK1/2, 

PKC or PI3K (French et al., 2003). In addition, SKi sensitises glioblastoma cell lines 

to temozolomide (Noack et al., 2014), chemo-resistant MCF7-TN-R cells to 

doxorubicin (Antoon et al., 2012) and HNSCC lines to cetuximab (an EGF receptor 

inhibitor) (Schiefler et al., 2014). In addition, SKi provokes ubiquitin-proteasomal and 

lysosomal degradation of SK1 (Loveridge et al., 2010, Ren et al., 2010). The 

proteasomal degradation of SK1 involves its ubiquitination at Lys183, and KLHL5 

(kelch-like protein 5) is an important adaptor linking SK1 to the Cul3 E3 ubiquitin 

ligase complex that promotes SK1 degradation (Powell et al., 2019). In contrast, SKi 

does not induce degradation of SK2 (Watson et al., 2013). Notably, SKi increased 

proteasomal degradation of SK1 may occur in two ways:  a direct effect of inhibitor 

binding to SK1, as well as due to an indirect effect on the proteasome (Loveridge et 

al., 2010, McNaughton et al., 2016). 

SKi also induces degradation of Des1 via the proteasome (McNaughton et al., 2016). 

and inhibits NADH-cytochrome b5 reductase, an upstream Des1 activator, resulting in 

loss of Des1 activity (Cingolani et al., 2014). It may also act by stimulating oxidative 

stress in cells, which may inhibit redox-sensitive Des1 (Idkowiak-Baldys et al., 2010). 

Inhibition of Des1 decreases flux via the sphingolipid pathway and increases 

dihydroceramides (Loveridge et al., 2010).  
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1.10.3.2. SKI-I 

SKI-I termed N-[(2-hydroxy-1-naphthyl)-methylene]-3-(2-naphthyl)-1H-pyrazole- 5-

carbohydrazide (Figure 1.10), competitively inhibits SK1 with an IC50 of 1.2 μM 

(French et al., 2003). It also inhibits SK2 activity with similar potency (Hengst et al., 

2010). Also, SKI-I inhibits ERK1/2 with an IC50 of 11 μM (French et al., 2003). This 

dual SK inhibitor has not been proven to have any effects against other lipid kinases 

such as CERK or DAGK or on cellular dihydrosphingolipids. Treatment of melanoma 

cells with SKI-I reduced S1P, increased ceramides (long chain and very long chain) 

but, unexpectedly, reduced sphingosine (Madhunapantula et al., 2012). The latter may 

indicate another target within the sphingolipid pathways, such as ceramidase. Bladder 

cancer cells undergo apoptosis (caspase-dependent), whereas mouse embryonic 

fibroblasts undergo autophagy (Young et al., 2012) in response to SKI-I treatment. 

Low micromolar concentrations (0.4-5 uM) reduced proliferation in various cancer 

cell types, including chemo-resistant breast cancer cells (Sharma et al., 2010). 

1.10.3.3 MP-A08 

The first highly selective ATP-competitive SK1/SK2 inhibitor is MP-A08 (Figure 

1.10). It shows slight or no inhibition of CERK and DAGK. In silico docking of MP-

A08 to SK1 at the ATP-binding pocket has been performed (Pitman et al., 2015). MP-

A08 does not inhibit Des1. Screening of 140 human protein kinases at high MP-A08 

concentrations (250 μM) revealed a partial inhibition of testis-specific serine kinase 

(TSSK). However, this is well above the concentration required to inhibit either hSK 

or mSK isoforms (IC50 values: hSK1, 27 μM; hSK2, 7 μM). In cancer cells, it increases 

sphingosine and ceramide, reduces S1P and induces apoptosis. However, it fails to 

induce proteasomal degradation of SK1, which is a property of sphingosine-

competitive SK inhibitors. In vivo, MP-A08 inhibits tumour growth and angiogenesis 

and promotes apoptosis of tumour cells (Pitman et al., 2015). 

1.10.3.4 Dimethylsphingosine (DMS) 

DMS, N,N-dimethylsphingosine is both a PKC inhibitor, a sphingosine-competitive 

inhibitor of SK1 with Ki of 5 μM, and non-competitive inhibitor of SK2 with a Ki of 

12 μM (Figure 1.10) (Endo et al., 1991, Pyne and Pyne, 2010). DMS induces ubiquitin-

proteasomal degradation of SK1 (Lim et al., 2011a) and has limited use due to its 



67 

 

known ‘off target’ effects on PKC and CERK (Sugiura et al., 2002) as well as SRC 

kinases, ERK1/2, casein kinase II and EGFR.  It is also an activator of SDK1 

(sphingosine-dependent protein kinase 1). DMS has concentration-dependent effects 

including, at low concentrations, the induction of SK activity (Jin et al., 2006, Gandy 

and Obeid, 2013a).  

1.10.3.5 Compound Pfizer- 27c 

Compound Pfizer-27c was synthesised following a high-throughput screening study 

against SK1 from which two chemotypes were identified, of which compound 12 (an 

aminobenzimidazole) and compound 20a (a benzylpyrrolidine) were identified. An 

optimisation strategy was followed to generate Pfizer-27c, which was synthesised 

from compound 12 by replacement of phenyl methylsulfone in the tail region with a 

heteroaryl group making this compound a dual inhibitor of SK1 and SK2 with IC50 

values of 25 and 2.4 nM, respectively (Schnute et al., 2017).   
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Figure 1. 10: Dual sphingosine kinase inhibitors 

 

1.10.4 Other SK inhibitors 

In the past few years, many novel SK inhibitor compounds have been discovered. For 

example, LCL351 (Figure1.11), sphingosine with guanidine analogue has been 

modified as an SK1 inhibitor. It exhibits nanomolar potency for SK1 (IC50 of 40 nM) 

with 7-fold selectivity over SK2 (Sharma, 2011). Compound 51 (IC50 of 58 nM) and 

54 (IC50 of 10 nM) are two additional SK1-selective inhibitors that are sphingosine 
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analogues (Figure 1.11). These compounds demonstrate moderate oral bioavailability 

in rats with blood half-lives that suggest they could be useful in vivo (Xiang et al., 

2009, Xiang et al., 2010).  

Compound C2 (Figure 1.11) was identified after optimisation of a hit from high 

throughput screening using a novel yeast complementation assay (using genetically 

modified S. cerevisiae).  It has selectivity for SK1 (500-fold over SK2) and IC50 of 63 

nM without any effect on 62 human protein and lipid kinases assays at 3µM (Kashem 

et al., 2016). Studies have also explored analogues of FTY720 (Raje et al., 2012) and 

SLR080811 (Congdon et al., 2015). Due to the interest in finding more potent and 

selective inhibitors for SK2, a few compounds were synthesised. These include VT-

ME6 which contains a quaternary ammonium group. Indeed, a positive charge is 

necessary for the engagement between the key amino acid and the enzyme binding 

site. This compound has 3-fold selectivity for SK2 over SK1 (Congdon et al., 2015). 

A diversity-oriented synthesis employing a novel scaffold and head group identified 

quaternary ammonium salts as SK inhibitors with low micromolar Ki values (Raje et 

al., 2012).  

Moreover, analogues of new inhibitors extracted from natural products, such as 

resveratrol (the anticancer agent) and its dimer derivatives, ampelopsin A and 

belanocarpol (Figure 1.11), have been found to inhibit SK1 and decrease its expression 

but not that of SK2 in HEK293 cells, while reducing proliferation and inducing 

apoptosis (Lim et al., 2012a). In agreement with these findings, high concentrations of 

resveratrol induce apoptosis, while low concentrations halt cancer cell growth 

(Nakagawa et al., 2001).  

The SK2 inhibitor (2S,3S,4R)-pachastrisamine has also been reported (Figure 1.11) 

(Yoshimitsu et al., 2011, Lim et al., 2012b). Additionally, the AKT inhibitor, BI-

69A11 was shown to reduce NFΚB signalling by inhibiting SK1 activity to reduce 

melanoma growth (Feng et al., 2011). B-5354 was separated from Trichopezizella 

barbata culture broth. It inhibits SK1 and SK2 with a Ki of approximately 3µM and is 

a non-competitive inhibitor regarding sphingosine. B-5354 sensitises prostate cancer 

cells to chemotherapeutics (Kono et al., 2002). F-12509a (Figure 1.11) is a 

sesquiterpene quinone isolated from cultured broths of a discomycete, Trichopezizella 
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barbata. SANK 25395. F-12509a competitively inhibits SK1 with Ki of 4 µM. It 

enhances apoptosis of cancer cells by activating the release of the two major pro-

apoptotic proteins, cytochrome c and SMAC/Diablo (Bonhoure et al., 2006). F-12509a 

inhibits SK1 activity, decreases S1P levels and increases ceramide levels in HL-60 

cells.  Finally, S-15183a/b is a natural compound separated from the fungus Zopfiella 

inermis. 

Many of these compounds need to be further validated as SK inhibitors and anticancer 

agents and for further drug optimisation. All of these results indicate that SK inhibitors 

could be a beneficial addition to the chemotherapeutic strategies employed for treating 

various types of tumours (Cuvillier, 2007, Pyne et al., 2011, Heffernan-Stroud and 

Obeid, 2013). 
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Figure 1. 11: Other sphingosine kinase structures. 
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Table 1. 3: SK1 inhibitors 

Inhibitor type Inhibitor name Potency (Ki) 

SK1 SK2 

SK1-selective SK1-I 10 μM - 

PF-543 3.6 nM - 

SK1-5c (CAY 10621) 15 μM - 

SKI-178 1.3 μM - 

Compound 82 (Amgen 82) 90 nM - 

Compound 1a 0.1 M - 

VPC94075 55 μM - 

CB5468139 0.28 μM - 

FTY720 2μM - 

D,L-threo-dihydrosphingosine (DHS)( 

safingol) 
3-6 μM - 

SK2-selective ABC294640 - ~10 μM 

K145 - 6.4 μM 

SG12 and SG14 - 5.5 μM 

ROMe ((R)-FTY720-OMe) - 17 μM 

SLR080811 - 1.3 μM 

SLP120701 - 1.2 μM 

Compound 55 (HWG-35D) - 41 nM 

Compound VT-20dd - 90 nM 

Dual-SK1/SK2 SKI-II 16 μM 8 μM 

SKI-I 1.2 μM 1.2 μM 

MP-A08 27 μM 7 μM 

Dimethylsphingosine (DMS) 5 μM 12 μM 

Pfizer- 27c 25 nM 2.4 nM 
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1.11 Project aim 

A weight of evidence supports the crucial role of the two enzymes, SK1 and Des1 in 

cancer and inflammation. Hence, these enzymes are targets for new anticancer/anti-

inflammatory therapeutics. A number of compounds, of natural origin or synthesised, 

have been identified, but none have reached the clinical trial phase I/II. Therefore, 

there is a need to discover more SK1/or Des1 inhibitors. This study aims to extract, 

isolate, and identify anticancer and anti-inflammatory compounds from various plants 

and to test whether they are SK1/or Des1 inhibitors. The plants selected were based on 

their traditional uses in local community in Egypt against cancer/inflammation. 

Compounds isolated from the plant extracts will be screened for their ability to reduce 

DNA synthesis (a measure of cell proliferation), expression of SK1 and Des1 and 

PARP cleavage (as an apoptosis marker). The isolated compounds will also be 

assessed as anti-inflammatory agents by modulation of NFB signalling. In conclusion 

the isolated compounds which meet these criteria could be considered potential 

anticancer or anti-inflammatory agents.   
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CHAPTER 2: Material & Methods 

2.1 Materials 

2.1.1 Cell culture 

❖ Invitrogen Ltd. (Paisley, UK). 

• Dulbecco's Modified Eagle’s Medium (DMEM). 

• Penicillin/streptomycin (10,000 units/ml penicillin; 10,000 µg/ml 

streptomycin). 

• Trypsin (0.25% with EDTA 4Na). 

❖ Sera Laboratories International Ltd. (through BioIVT, West Sussex, UK). 

• European Foetal Calf Serum (EFCS) 

❖ The European Collection of Animal Cell cultures (through Public Health 

England, Salisbury, UK). 

• Breast cancer cell lines, MCF7/L and MDA-MB-231 cells 

❖ Gifted by Prof G. Tigyi (Memphis, USA). 

• MEF cells (Mouse Embryonic Fibroblast)  

❖ Gifted by Dr A. Paul (University of Strathclyde).  

• Reporter cells, NCTC-AP-1 and NCTC-NFΚB, which are 

keratinocytes that have been genetically modified to express either 

an AP-1-binding promoter-driven or an NFΚB-binding promoter-

driven luciferase gene, were  

 

2.1.2 Antibodies 

Antibody Company 

Horseradish peroxidase (HRP)-linked 

anti-mouse IgG,  

Sigma-Aldrich (Cat. #  A9044) 

Horseradish peroxidase (HRP)-linked 

anti-rabbit IgG.  

Sigma-Aldrich (Cat. # A0545) 

DEGS1  Abcam (Cambridge, UK) (cat# 

Ab185237) 
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ERK2 BD BIOSCIENCES (Wokingham, UK) 

(cat# 610104) 

  

GAPDH Santa Cruz Biotechnology (Insight 

Biotechnology, Wembley, UK) (cat# 

SC-47724) 

IkB α (c-21) Santa Cruz Biotechnology (cat# SC-

371) 

JNK1 (2C6) Cell Signaling (cat# 3708S) 

JNK2 (D-2) Santa Cruz Biotechnology (cat# SC-

7345) 

Ki67  Sigma-Aldrich (cat# 

WH0004288M1_100UG) 

Phospho-AKT (T308) Cell Signaling (cat#2965S) 

PARP  Cell Signaling (cat# 9542S) 

Phospho-ERK1/2 (E-4) Santa Cruz Biotechnology (cat# SC-

7383) 

Phospho-JNK (T183/Y185) Cell Signaling (cat# 4671S) 

 

SK1: synthesised by Abgent according to the method detailed in Huwiler et al. (2006). 

2.1.3 Inhibitors and agonists 

 

 

 

 

2.1.4 Radioisotopes 

[3H] Thymidine (25 Ci/mmol), from GE Healthcare (Hatfield, UK). 

Inhibitor/agonist Company 

Sphingosine kinase inhibitor  

(2-(p-hydroxyanilino)-4-(p-chlorophenyl) 

thiazole) 

Calbiochem (Millipore UK 

Ltd, Watford, UK) (Cat# 

567731) 

 

MG132 (Z- Leu-Leu-Leu-al) Sigma-Aldrich (Cat# C2211) 
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2.1.5 Solvents 

All solvents used in the extraction and purification of active compounds were of HPLC 

grade. 

Solvent Company 

• n-hexane VWR (Lutterworth, UK) 

• ethyl acetate VWR (Lutterworth, UK) 

• methanol VWR (Lutterworth, UK) 

• deuterated DMSO (DMSO-d6) 

(99.9 atom % D) 

Sigma-Aldrich (Poole, UK) 

• deuterated methanol (CD3OD) Sigma-Aldrich (Poole, UK) 

2.1.6 Other chemicals used 

Chemicals Company 

• Thin layer chromatography (TLC) 

grade silica gel coated aluminum 

sheets. 

Merck (Gillingham, UK) 

• TLC grade silica gel 60 H Merck (Gillingham, UK) 

• Flash column grade silica gel 

particle size 230-440 mesh size 

Sigma-Aldrich (Poole, UK) 

• Column grade silica gel particle 

size 40-75 um 

Sigma-Aldrich (Poole, UK) 

• Vanillin powder Sigma-Aldrich (Poole, UK) 

• p-Anisaldehyde reagent Sigma-Aldrich (Poole, UK) 

• Anti- bumping granules Sigma-Aldrich (Poole, UK) 

• Methylthiazolyldiphenyl-

tetrazolium bromide  

(Sigma-Aldrich) 

 

2.1.7 General reagents 

Reagent Company 

• HybondTM ECLTM Nitrocellulose 

membrane 

GE Healthcare (UK) 
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• Kodak LX 24 developer Christiansen-Linhart (Munich, 

Germany) 

• Kodak industrex fixer Christiansen-Linhart (Munich, 

Germany) 

• CEA RP New X-ray film Christiansen-Linhart (Munich, 

Germany) 

All biochemical reagents were purchased from (including pre-stained molecular 

weight markers (SDS-7B)) or from Fisher Scientific (Loughborough, UK), unless 

otherwise stated. 

2.1.8 Stimuli 

Stimuli Company 

Phorbol myristate acetate (PMA) Thermo Fisher Scientific 

(Loughborough, UK) (cat# 10061403) 

Tumor necrosis factor alpha (h-TNFα) R&D Systems (Abingdon, UK) (cat# 

210-TA1CF)   

2.1.9 Plant materials 

In this study, a number of plants were collected for further phytochemical investigation 

in search of anticancer or anti-inflammatory compounds. Choosing plants was based 

on known traditional uses, previous published phytochemical, and pharmacological 

studies on each plant.  All plant materials were collected from different places in Egypt, 

during field work, in year 2015-2016 (Table 2.1). 
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Table 2. 1: Plants list, location, and collection time and weight. 

No Plant Latin name Location Part used GPS points 
Season 

(month) 
dry weight 

1 Gomphocarpus sinaicus St Katherine, Sinai aerial parts 28.5433 N, 33.9330E February 2016 900 g 

2 Asphodelus fistulosus 

Aswan, Wadi Kherat, aerial parts, roots  
24.0401N, 34.7127E 

December 2015 172 g 

Mount Elba, Wadi Yahmeeb aerial parts, roots 
22.2376N, 36.3596E 

December 2015 40 g 

3 Psoralea plicata Aswan University campus aerial parts 23.9981N, 32.8615E January 2016 593 g 

4 Halocnemum strobilaceum Burg ElArab, west Alexandria aerial parts, roots 30.9245 N, 29.5252E February 2016 494 g 

5 Crotalaria spp. Mount Elba, Wadi Adeeb aerial parts 
22.2256 N, 36.3947E 

December 2015 18 g 

6 Heliotropium supinum West Sehail village Aswan aerial parts 24.0589N, 32.8643 E February 2016 425 g 

7 Urginea maritima Haraz Market bulb ----------------- June 2015 50 g 

8 Pancratium tortuosum 

Mount Elba, Wadi Adeeb Bulb, and leaves 
22.2261N, 36.394E 

December 2015 357 g 

Mount Elba, Wadi Yahmeeb Bulb, leaves 
22.2408N, 36.3573E 

December 2015 62 g 

9 Glinus lotoides Wadi Alaqi & Lake Nasser, Aswan aerial parts 
22.7273 N, 33.2253E, 

23.9622 N, 32.8667E  

October 2015, 

February 2016 
410 g, 172 g 
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2.2 Methods 

2.2.1 Plant extraction 

Fresh plant material was air dried and grounded to a fine powder. The grounded 

material (500 g) was extracted using Soxhlet apparatus with ethanol (in total 2.5 litre). 

About half a litre used daily for extraction. Each daily collected extract was evaporated 

under vacuum, using a rotary evaporator to be checked with TLC, for an  indication of 

extraction process end. The extract residue was stored in sealed ampules at -20 ͦ C until 

used (Fig. 2.1). 

 

Figure 2. 1: Flowchart of plant extraction process.  

2.2.2 Flash column chromatography 

Plant extracts were fractionated using Flash column technique. Firstly, the plant extract 

was dissolved in a suitable solvent, usually methanol (HPLC grade), to which silica 

gel (of particle size 200-440 mesh) was added to make a slurry. The mixture was left 

until dryness to evaporate any excess solvent. Secondly, the extract slurry was loaded 

after dissolving in minimum suitable solvent, into a glass column (1 litre, 2.9 cm 

diameter) on top of a layer of silica gel (200-440 mesh size) of about twice the slurry 

Plant material grounded 
& air dried

Extraction of dried plant 
material

Evaporation of  plant 
extract

Storing in sealed 
ampules at 20 ͦ C 

Fractionation using flash 
column

Or fractionation using 
Vacuum Liquid 

chromatography VLC

Purification using silica 
column 

chromatography 

Or purification using 
Preparative Thin layer 

chromatography (prep-
TLC)
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volume. The solvent systems used in this technique, are summarised in Table 2.2. Each 

solvent system (about 1- 2 litre of each solvent system) was collected separately and 

evaporated using a rotary evaporator until almost dry, then collected and left to 

evaporate to dryness before further use. In most cases, a freeze dryer was used to totally 

remove any excess solvent. 

Table 2. 2: Solvent system used in Flash column chromatography & Vacuum 

liquid chromatography. 

Composition Ratio 

n-Hexane 100 

n-Hexane-EtOac 50:50 

EtOac 100 

EtOac: MeOH 50:50 

MeOH 100 

 

2.2.3 Vacuum liquid chromatography 

Column grade silica gel (200 g) was dry packed under vacuum in a Büchner funnel 

with a sintered glass disc. The plant extract was then applied on top of the packed VLC 

(Erdreich-Epstein et al.) column (the height of the packed layer was ~5 cm) Similar to 

Flash chromatography, gradient elution with solvent systems of increasing polarity 

was performed (as in Table 2.2). Collected fractions were then dried using rotary 

evaporator (freeze-dried if necessary) and stored at -20ºC. 

2.2.4 Silica gel column chromatography 

Plant extract fractions were purified using a silica gel column (of particle size 70-230 

mesh size), which was packed in a dry way or a wet way, to separate and purify the 

compounds after fractionation using flash column technique. In the dry packing 

method, a glass column was used (size depends on the amount of sample to be loaded, 

e.g., 150 g silica gel in 3.6 cm in diameter). Dry silica gel was loaded to two thirds of 

the height of the column, followed by the solvent system to be used for purifying the 

fraction, until the packed silica was wet and with no trapped air. This was followed by 

loading the fraction sample (dissolved in a minimal amount of the solvent). The 
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column was eluted using the solvent systems listed in Table 2.3 and in the same 

sequence (from low polarity to high polarity), thereby separating and purifying 

compounds in a polarity-dependent manner. For the wet packing method, the column 

was prepared by loading the silica gel after re-suspending it in the starting solvent of 

the solvent system. Thereafter, all steps were similar to the dry packing method.  

Table 2. 3: Solvent system for column chromatography, silica gel (70-230 mesh 

size): 

Composition Ratio 

Hexane: EtOac: MeOH 7: 4  0.25 

Hexane: EtOac: MeOH 7: 4: 0.5 

Hexane: EtOac: MeOH 7: 4: 1 

Hexane: EtOac: MeOH 7: 4: 1.5 

Hexane: EtOac: MeOH 7: 4: 2 

Hexane: EtOac: MeOH 7: 4: 3 

 

2.2.5 Thin layer chromatography (TLC) 

TLC reagent vanillin-H2SO4 was prepared by mixing 5 g of vanillin with 100 ml 

methanol, 10 drops of glacial acetic acid and 15 drops of concentrated H2SO4. This 

reagent is multi-purpose and enables the detection of most functional groups with 

different colouration. For example, terpenes will give blue spots whereas coumarin 

give red spots, saccharides will give yellow spot turn to black when TLC plate gets 

cold, alkaloid will give orange spot and phenolic compounds will give purple spots. 

Therefore, TLC of the Flash column chromatography or VLC fractions was performed 

as a preliminary step for compound detection. Fractions were applied to a TLC plate 

which was placed in a TLC tank for development using a solvent system (Hexane: 

Ethyl acetate: Methanol 6:3:0.5). Non-destructive detection of natural compounds was 

achieved by placing the developed TLC plate under a UV lamp using short (254 nm) 

and long (366 nm) wavelengths. If recovery of the compounds was not necessary, the 

TLC plate was sprayed with p-Anisaldehyde reagent, which was prepared by mixing 

0.5 ml of p-Anisaldehyde with 50 ml of methanol, 5 ml of concentrated H2SO4 and 5 

ml of glacial acetic acid. 
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2.2.6 Preparative thin layer chromatography (prep-TLC)    

Prep-TLC was used to separate compounds, by applying 10 mg - 1 g of sample material 

to silica gel coated glass (Whatman LK5D glass TLC plates, pre-coated with Partisil 

K5 (150Å silica) as a long streak. The loaded plate was placed in a TLC tank for 

development using Hexane: Ethyl acetate: Methanol 6:3:0.5 (v/v). Non-destructive 

detection of natural compounds was initially achieved by placing the developed TLC 

plate under a UV lamp using short (254 nm) and long (366 nm) wavelengths. For more 

accuracy in locating compounds, this part of the TLC plate was sprayed with p-

Anisaldehyde reagent with the rest of the plate covered. Then, the compounds were 

recovered by scraping the relevant area of plate and eluting in 200 ml MeOH for 24 

hours. This was followed by solvent evaporation using a rotary evaporator until 

dryness.   

2.2.7 Structure elucidation with nuclear magnetic resonance (NMR) 

All NMR experiments were performed by technician Craig Irving, with a JEOL (JNM 

LA500) spectrometer operating at 600 and 500 (1H) and 125 (13C) MHz using 

deuterated DMSO solvents and residual solvent peaks as internal reference. Typically, 

10-20 mg and 20-50 mg of samples were dissolved in deuterated solvents for 1H and 

13C NMR respectively. NMR sample tubes made of borosilicate glass were used for 

the measurement of all spectra except when the compound was less than 10 mg which 

required the use of a Norell micro-tube.  

1H-NMR was performed on all samples to establish an initial impression of the type 

and number of compounds present in the sample. Further structural analysis was 

assisted with two-dimensional NMR experiments such as COSY (COrrelation 

SpectroscopY), HMQC (Heteronuclear Multiple Quantum Coherence) and HMBC 

(Heteronuclear Multiple Bond Coherence). 13C and DEPT (Distortionless 

Enhancement through Polarization Transfer). NMR experiments were performed 

when samples were in sufficient pure amount to obtain a good signal to noise ratio. 

Spatial structural information was obtained with NOESY (Nuclear Overhauser 

Enhancement SpectroscopY). 
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2.2.8 Liquid chromatography high resolution-mass spectrometry 

(LCHRMS). 

LCHRMS was used to establish the molecular weight of the purified samples of 

interest. Around 1 mg of samples was dissolved in methanol (HPLC grade) to get a 

concentration of 1mg/ml and 20μl of the sample solution was injected into the LC77 

mass spectrometer (MS). The high-resolution mass spectra were obtained by using an 

LTQ Orbitrap MS (Thermo Orbitrap mass spectrometer) in negative ion mode with a 

needle voltage of -4.0 kV. 

The separation was performed on an ACE-C18 column (150.3 mm, 3 μm) from 

HiChrom UK with 0.1% formic acid in water as mobile phase A and 0.1% formic acid 

in acetonitrile as mobile phase B. The binary mobile phase gradient at a flow rate of 

300µL/min for 46 minutes as shown below (Table 2.4) Samples were submitted to the 

mass spectroscopy services at Strathclyde Institute of Pharmacy and Biomedical 

Sciences (SIPBS). LC-MS was run by MS technicians. 

Table 2. 4:  Gradient elution program applied for C18 in LC-MS analysis 

Time (min) Mobile Phase A Mobile Phase B Flow rate (ml/min) 

0 95 5 0.3 

30 0 100 0.3 

35 0 100 0.3 

36 95 5 0.3 

46 95 5 0.3 

 

2.2.9 Cell culture maintenance 

Aseptic technique was maintained in all cell culture work which was carried out in a 

laminar flow hood. All incubations were performed in a humidified incubator 

maintained at 5% CO2 and 37°C. DMEM was used as a basic medium to maintain cell 

cultures, typically in 75 cm2 flasks. MEF cells (Mouse Embryonic Fibroblast), 

MCF7/L and MDA-MB-231 breast cancer cells, reporter cells NCTC-AP1 and NCTC-

NFB were grown in DMEM containing 10% (v/v) EFCS, 100 U/ml penicillin, and 

100 μg/ml streptomycin (complete medium).  
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2.2.10 Trypsinising and passaging cells 

Cells were passaged when they were approaching a confluent monolayer. Briefly, the 

adhering cell monolayer was washed with serum free DMEM (37°C) to remove any 

residual EFCS-containing medium which may inhibit the action of trypsin. Then, 2 ml 

of trypsin solution (37°C) was added to the 75cm2 flask to cover the adhering cells. 

After 2 mins (at 37°C), the flask was tapped gently to dislodge the cells. Next, 8 ml of 

complete medium was added to the flask to inactivate any trypsin activity. To each 

new culture in a 75 cm2 flask, 1 ml of this cell suspension was added with 9 ml 

complete medium. After 3 or 4 days, the medium was removed from the sub confluent 

cultures and replaced with 10 ml fresh complete medium. Confluent secondary culture 

was passaged by repeating all steps described above. Cells were plated into 12, 24 or 

96 well plates for experiments, as required. 

2.2.11 Freezing cells 

Confluent cell lines were frozen for long term storage to preserve cells. Freezing 

medium for MEF, MCF7/L, MDA-MB-231, NCTC-AP1 and NCTC-NFκΒ cells was 

made of DMEM supplemented with 20% (v/v) EFCS and 10% (v/v) DMSO. Confluent 

cells were trypsinised as described in Section 2.2.9. Next, the cell suspension was 

centrifuged for 3 mins at 180 g. The supernatant was removed, and the cell pellet re-

suspended in 4 ml 4°C freezing medium. 0.5 ml aliquots of cell suspension were added 

into 2 ml cryogenic vials. The vials were placed at -80°C freezer overnight before 

being transferred to liquid nitrogen freezer for long term storage. 

2.2.12 Thawing and recovering cells 

Cryogenic vials containing frozen cells were removed from liquid nitrogen freezer and 

placed in 37°C water bath immediately for rapid thawing. Thawed cells were drawn 

into a Pasteur pipette to break up cell clumps before being transferred into a new flask 

with the addition of 10 ml complete medium (37°C). After 24 h, cultures were checked 

to ensure cell attachment to the flask and the medium was replaced with fresh complete 

medium. 
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2.2.13 Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay 

The plant extracts were tested for their cytotoxicity using MTT reagent with MEF cell, 

MCF7/L and MDA-MB-231. Cells were plated at 10 x103 cells/well (in 50 µl) in 96-

well plates and maintained overnight in complete media. Afterwards, plant extracts 

were added for 24 h (in 50 µl) in two concentrations (1 and 5 µg/ml final) or vehicle 

control of DMSO (0.05 µg/ml). Subsequently, MTT reagent (250 mg MTT in 50 ml 

phosphate buffered saline (PBS)) was added (50 µl/well) for 2 h. Then, the MTT 

reagent was aspirated and MTT stop reagent added (4 mM HCl, 0.1% NP-40 in 

isopropanol) (100 µl/well), followed by mechanical shaking of the plate for 30 min. 

The optical density reading at 620 nm was measured using a plate reader. Each 

treatment was performed with four replicates and the whole experiment was repeated 

three times. 

2.2.14 [3H]-thymidine incorporation assay 

The ability of plant extracts to inhibit DNA synthesis was assessed by the 

incorporation of [3H]-thymidine into newly synthesised DNA by MEF, MCF7/L and 

MDA-MB-231 cells. Cells were plated at 10 x 103 cells/well (1 ml) in 24-well plates 

and maintained overnight in complete medium. Subsequently, complete medium was 

removed and serum free medium (1 ml) was added to each well for another 24 h. Then 

cells were treated with two concentration of plant extracts (1 and 5 µg/ml), or with the 

vehicle control (DMSO, 0.05 µg/ml). Cells were then incubated for another 16-18 h 

before pulsing with [3H]- thymidine (0.25 kBq/well; added as 10 µl) for 5 h. Then, 

reaction was terminated by washing 3 times with 1ml ice cold 10% (w/v) 

trichloroacetic acid (10 min/wash; maintained on ice). Radionucleotides incorporated 

into DNA were harvested with 0.25 ml 0.1% (w/v) sodium dodecyl sulphate (SDS) 

with 0.3 M NaOH. Samples were transferred to vials for quantification by liquid 

scintillation counting with 2ml scintillation cocktail (Optiphase  HiSafe  III, Perkin 

Elmer, Seer Green, UK). Each treatment was performed in triplicate and the whole 

experiment was repeated three times. 

2.2.15 Preparation of cell lysates for Western blotting 

Cells were grown in DMEM (10% EFCS) on 12 well plates for 24 h. Upon reaching 

70-80% confluence, the medium was aspirated and replaced with DMEM (serum free 
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medium) for 24 h.  This was followed by adding the treatments (5µg/ml extract or 0.05 

µg/ml DMSO vehicle control) for the next 24 h. After appropriate treatment, cell 

lysates were prepared by  aspirating the medium and adding 200 μl  sample buffer/ per 

well (containing 62.5 mM Tris Base (pH 6.7), 0.5 mM Na4P2O7, 1.25 mM EDTA, 

12.5% (v/v) glycerol, 1.25% (w/v) SDS, 50 mM dithiothreitol (DTT) and 0.05% (w/v) 

bromophenol blue). The sample was passed up and down for three times using a gauge 

23 needle and 1ml syringe to homogenise and shear DNA. Prepared cell lysates were 

collected in 1 ml vial tubes and stored at -20°C if not processed by one dimensional 

SDS polyacrylamide gel electrophoresis (SDS-PAGE) the same day. 

2.2.16 One dimensional SDS polyacrylamide gel electrophoresis 

(SDS-PAGE) 

A 10 x 10 cm polyacrylamide gel (1 mm depth) was cast between two glass plates, 

with a lower resolving gel topped by a stacking gel. The resolving gel was made from 

10% (v/v) acrylamide: bis-acrylamide (29:1) 0.375 M Tris-Base (pH 8.8), 0.1% (w/v) 

SDS, 0.03% (w/v) ammonium persulphate and 0.1% (w/v) TEMED (tetramethyl-

ethylene-diamine); the stacking gel was made from 4% (v/v) acrylamide: bis-

acrylamide (29:1), 0.125 M Tris-Base (pH 6.7), 0.1% (w/v) SDS, 0.1% (w/v) 

ammonium persulphate and 0.2% TEMED.  A comb (15 or 10 well, as required) was 

immediately inserted to create ‘wells’ for sample loading. The set gel was secured in 

an electrophoresis apparatus filled with a running buffer containing 25 mM Tris Base, 

0.19 M glycine and 0.1% (w/v) SDS and the comb removed. Equal volumes of samples 

(typically 15 – 25 l) were loaded using a Hamilton syringe into the gel, in parallel 

with a lane containing 3 l prestained molecular weight markers. Gels were run at 

140V for 90 min until the bromophenol blue tracking dye reached the bottom of the 

resolving gel. 

2.2.17 Immunoblotting 

After running the gel, resolved proteins were transferred to a nitrocellulose membrane, 

with cooling, in a tank transfer system (Bio-Rad Mini Trans-Blot kit) at 140V for 1 h, 

in transfer buffer containing of 25 mM Tris-base, 0.19 M glycine and 20% (v/v) 

methanol. This was followed by incubating the membrane in 20 ml blocking buffer 

containing either 3% (w/v) skimmed milk or bovine serum albumin (BSA) in Tris-
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buffered saline with Tween (TBST), which was made with 10 mM Tris-base (pH 7.4), 

100 mM NaCl and 0.1% (v/v) Tween-20 for 1 h, by agitating on a rocker at room 

temperature. The membrane then incubated with the primary antibody (various, as 

shown below in Table 2.5) overnight at 4 ͦ C with gentle agitation. After overnight 

incubation with the primary antibody, the blot was washed three times for 7 min in 

TBST, then incubated in secondary antibody (horseradish peroxidase-conjugated anti-

Ig (mouse or rabbit-specific, as required) (1:40000 diluted in 1% (w/v) BSA in TBST) 

for 1 h at room temperature with gentle agitation. Finally, the blot had three washes 

for 7 min each with TBST.  

In dark room, the membrane was soaked for 3 min in developing solution for detection 

by enhanced chemiluminescence (ECL). The ECL solution was prepared by mixing 

equal volumes of two reagents: reagent 1 containing 2.5 mM luminol, 0.1 M Tris base 

(pH 8.5) and 1,1 mM p-coumaric acid and reagent 2 containing 0.02% (v/v) H2O2 and 

0.1 M Tris-Base (pH 8.5). The membrane was briefly dried (to remove excess ECL 

solution) and immediately placed between two plastic sheets in a metal X-ray cassette 

and exposed to X-ray film. Exposure time varied from a few seconds to 5 min 

(depending on the antibody used). The X-ray film was developed by passing it through 

an X-Omat machine to get a chemiluminescent signal from the immunoreactive 

proteins. Membranes were routinely stripped and re-probed for other proteins using 

other antibodies; this could be repeated several times.  Stripping was by incubating the 

membrane, with rocking, at 60 ͦ C in stripping buffer contain 62.5 mM Tris base (pH 

6.7), 2% (w/v) SDS and 100 mM -mercaptoethanol for 30 min. Finally, the 

membrane was washed three times for 7 min in TBST before incubation with another 

primary antibody.  
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Table 2. 5: Antibodies used in immunoblotting 

1st Antibody 
Preparation 

1:1000 
Blocking 

2nd Antibody 

1% BSA 

Fresh or 

reprobe blot 

ACTIN 

(rabbit) 

1% BSA 

 

1% BSA 0.5:20000 

 

Reprobe 

DEGS1 

(rabbit) 

1% BSA 

 

1% BSA 0.5:20000 

 

Fresh or reprobe 

Erk2 

(mouse/rabbit) 

3% BSA 

 

3% BSA 0.5:20000 

 

Fresh  

GAPDH 

(Mouse) 

1% BSA 

 

1% BSA 0.5:20000 

 

Re-probe  

IkB α 

(rabbit) 

1%BSA 

 

1% BSA 1:20000 Fresh  

JNK 

(mouse) 

3% BSA 

 

3% BSA 0.5:20000 

 

Fresh  

Ki67 

(mouse) 

1%BSA 

 

1% BSA 1:20000 Fresh  

P-AKT 

(T308) (rabbit) 

5% BSA 

 

3% BSA 0.5:20000 

 

Fresh  

PARP 

(rabbit) 

1% BSA 

 

1% skimmed 

milk 

0.5:20000 

 

Fresh  

P-ERK-1/2 

(mouse) 

3% BSA 

 

3% BSA 0.5:20000  

 

Fresh  

P-SAPK/JNK 

(T183/Y185) 

(rabbit) 

3% BSA 

 

3% BSA 0.5:20000 

 

Fresh  

SK1 

(rabbit) 

3% BSA 

 

3% BSA 0.5:20000 

 

Fresh  

 

2.2.18 Luciferase assay 

Reporter cells, NCTC-AP-1 or NCTC-NFΚB, were seeded in black-walled 96 well 

plates at 10000 cells per well, in 200 µl of complete DMEM medium. These were 

incubated overnight for 24 h. Cells were quiesced with phenol red-free DMEM 
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medium (50 µl/well) for 24 h. The cells were then pre-treated with inhibitors at certain 

concentrations (see figure legends 3.26, 3.27 and 4.11) for 10 min followed by the 

addition of h-TNFα (15 ng/ml) or PMA (1µM) respectively and incubation at 37 ͦ C 

for 4 h. Medium was removed before the addition of 100 l/well of complete lysis 

buffer [25 mM tris Base (pH7.8), 8 mM MgCl2, 1% triton X 100, 15% (v/v) glycerol] 

at room temperature, supplemented with [1 mM ATP, 1% BSA, 1 mM DTT, and 0.2 

mM luciferin] on the day of the experiment (whereas stock lysis buffer could be 

prepared and stored at 4 ͦ C). The plate, with complete lysis buffer, was maintained in 

dark at room temperature for five minutes before luminescence measurements were 

taken using plate reader Victor Iso96l um (560 nm). 

2.2.19 Statistics 

All numerical data are presented as means +/- standard deviations for at least three 

independent measurements unless otherwise stated. The data were usually normalised 

to allow combination of data between different experiments. Data was analysed 

statistically using Prism 5 software GraphPad Software (La Jolla California USA, 

www.graphpad.com) by Student’s t test or by One-Way ANOVA, as indicated. 

Differences were considered statistically significant at p<0.05. Dunnett’s post-hoc test 

was used to make comparison between treated samples and the control. Bonferroni’s 

post-hoc test was used to compare treatments with each other. 
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CHAPTER 3: Preliminary screening and bioassay-

guided isolation of anticancer/anti-inflammatory 

compounds 

3.1 Introduction 

After collecting plants from different areas around Egypt, eleven plant crude extracts 

were selected, based on their traditional uses, and previously isolated compounds, for 

preliminary screening against sphingosine kinase, dihydroceramide desaturase, PARP 

cleavage and cancer cell growth. All the plants have shown interesting previous 

biological activity including anticancer effects. For example, U. maritima, known as 

an onion-like Liliaceae was studied for cytotoxicity with the A549 NSCLC (non-small 

cell lung cancer) cell line. In this regard, the U. maritima extract was more cytotoxic 

than cisplatin and gemcitabine (the most active drugs in NSCLC (Bozcuk et al., 2011). 

The U. maritima extract also shows significant activity against PC-3 (prostate cancer) 

and U373 GBM (glioblastoma) cell lines (Mohamed et al., 2014). U. maritima 

represents a plant which has been known for its medicinal use to mankind since 

antiquity. For instance, the U. maritima bulbs extract has been used by the ancient 

Egyptians for treating cardiac failure. In addition, the purified glycosides from U. 

maritima are used in the treatment of cardiac diseases in unmanageable cases that no 

longer respond to Digitalis and Strophanthus drugs (Sayed, 1980, Tuncok et al., 1995). 

In addition, pancratistatin (Figure 3.1) is a natural product that was isolated for the first 

time from the spider lily Pancratium littorale in 1984. It induces apoptosis in several 

cancer cell lines including lymphoma cells (Jurkat), breast cancer cells (MCF-7), and 

rat hepatoma cells (5123tc) at low concentrations (Pandey et al., 2005).   

Ethyl ether and ethyl acetate extracts from Asphodelus aestivus Brot. have significant 

antioxidant DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity. In addition, 

ethyl ether, ethyl acetate, water, and methanol extracts of A. aestivus Brot. exhibited 

cytotoxic activity on MCF-7 cells inducing significant deoxyribonucleic acid (Shall 

and Gilbert) damage in a time- and concentration-dependent manner (Aslantürk and 

Çelik, 2013). Pyrrolizidine alkaloids, terpenoids and flavonoids are the most bioactive 

components in the genus Heliotropium, which exhibited significant cytotoxicity, 
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phytotoxicity and anti-microbial, anti-tumour, anti-viral, anti-inflammatory activities 

with wound healing properties (Ghori et al., 2016). 

Amaryllidaceae is distinctive in the presence of showy lily-like epigynous flowers as 

in common onion. According to Meerow and Snijman (1998), there are about 800 

species in 59 genera. Its regions of diversity are in South America (28 genera) and 

Africa (19 genera). Eight genera are growing in Mediterranean and temperate regions 

of Asia.   

In Egypt, Amaryllidaceae is represented by two genera Pancratium and Narcissus. 

The latter is more widespread and common than the former. In the search for small 

molecules with potential anticancer activity, the Amaryllidaceae family in particular 

has been fruitful. Indeed, more than 100 structurally diverse alkaloids have been 

isolated from Amaryllidaceae species, possessing a wide range of biological activities. 

For example, lycorine (Figure 3.1) was the first member to be isolated from this family 

in 1877. Amarbellisine, cardamine, galanthine, pseudolycorine and ungeremine 

(Figure 3.1) are other examples of alkaloids based on the pyrrol-[de]phenanthridine 

skeleton, which are derived from natural or synthetic origin. Also, the lycorenine-type 

alkaloid is another large group of compounds isolated from Amaryllidaceae family 

but, in this case, based on the benzopyrano-[3,4-g]-indole skeleton. Nobilisitine B and 

clivonine (in hydrochloride form) belong to the pretazettine group while tazettine is 

the prototype (Figure 3.1). Lastly, alkaloids based on the 5,10β-ethano-phenanthridine 

skeleton belong to the crinine-type of compounds such as, ambelline, buphanamine, 

buphanisine, haemanthamine, and haemanthidine (Figure 3.2) (Cedrón et al., 2010). 

Some of the isolated Amaryllidaceae alkaloids possess anti-proliferative properties. It 

has been proposed that these compounds are active by disrupting eukaryotic protein 

biosynthesis. Alkaloids of non-basic isocarbostyrils from the Amaryllidaceae species 

demonstrate cytostatic activity and reduce cancer cell proliferation and migration by 

disrupting the actin cytoskeleton. Meanwhile, alkaloids of the isocarbostyrils such as, 

narciclasine (Figure 3.2) and pancratistatin (Figure 3.1) induce apoptosis in cancer 

cells of epithelial origin, but not in glioma cells, only at  high concentrations, i.e., one 

log higher than their in vitro growth inhibitory IC50 values (Van Goietsenoven et al., 

2013). 
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3.1.1 Pancratium tortuosum 

Pancratium genus comprises 16 palaeotropical species distributed in Macaronesia, the 

Mediterranean basin, and throughout Africa to tropical Asia. It has also been 

introduced and cultivated in many countries (El-Hadidy et al., 2011). Pancratium can 

adapt extreme climates from extreme dry and sandy areas. Taxonomically, the 

Pancratium species are geophytic monocots, bulbous herbaceous perennials producing 

showy white fragrant flowers with a straight perianth tube and conspicuous corona 

formed by the basal connection of the staminal filaments (El-Hadidy et al., 2012). P. 

tortuosum in particular is found in Nubia Nile Land, Mount Erkowit, Arabia, Egypt 

(Baker, 1898). 

Complex structural type of alkaloids with significant therapeutical properties have 

been isolated from the Pancratium genus. For example, in early investigation on the 

Egyptian P. maritimum resulted in the isolation of lycorine, tazettine, pancracine, 

galanthamine, homolycorine, haemanthidine, haemanthamine, pseudolycorine and 11 -

hydroxyvittatine (Figure 3.2 and Figure 3.3). Moreover, two 2-oxyphenathridinium 

betaine type alkaloids were isolated , ungeremine and zefbetaine (Figure 3.3), which 

are known by their biological activities such as, cytotoxic, antibiotic, and plant growth-

regulatory activities (Kornienko and Evidente, 2008). 

Many Pancratium species are of high economical and medicinal value. Some species 

are cultivated due to their unique alkaloid content, which can be used in cancer 

treatment. Others are used locally in traditional and folk practices. For example, P. 

tenuifolium used in the coming-of-age ceremony in Botswana (El-Hadidy et al., 2012). 

In Hawaii, P. littorale bulbs were found to contain pancratistatin, a phenanthridone 

biosynthetic product, which proved to be effective against the murine P-388 

lymphocytic leukaemia and markedly inhibited growth of the P-388 cell line in vitro 

and in vivo of murine M-5076 ovary sarcoma (Pettit et al., 1986). In addition, 

pancratistatin has significant apoptotic activity and supresses growth of the cancer cell 

line HT-29 in xenograft tumours. Interestingly, it did not induce an apoptotic effect in 

non-cancerous human colon fibroblast (CCD-18Co) cells (Pettit et al., 1986).  

There has been no previous study on the P. tortuosum, but some studies on other 

species of the same genus have led to isolation of four chromones and flavans from 
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the P. maritimum Viz. (Ali et al., 1990). Also, earlier chemical investigation of P. 

maritimum led to the isolation of a variety of alkaloids, such as lycorine, tazettine, 

pancracine, O-methyllycorenine and galanthamine (Figure 3.2 and Figure 3.3) (Jin, 

2003). From P. biflorum, three chromone aglucones, one glucosyl and one glucosyloxy 

chromones were isolated, in addition to glucosyloxy alkaloids (Ghosal et al., 1984, 

Berkov et al., 2004). Youssef et al. (1998) reported the isolation of chromones, 

chromone-glucosides and glucosyloxy, acetophenones from P. biflorum. In addition, 

the flavanes syzalterin, (-)- farrerol and (-)-liquiritigenin (Figure 3.3) have been 

isolated from the Egyptian P. maritimum. 

Results presented in this Chapter outline the preliminary screening of several plant 

extracts before following the sub-fractionation of bioactive components of P. 

tortuosum and isolation of narciclasine. 
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Figure 3. 1: Alkaloid structures previously isolated from Pancratium genus.   
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Figure 3. 2: Alkaloid structures previously isolated from Pancratium genus.   
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Figure 3. 3:  Alkaloid structures previously isolated from Pancratium genus.   
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3.2 Results 

3.2.1 Effect of plant crude extracts on cell viability, DNA synthesis 

and protein markers 

Initially, preliminary screening of the selected plants against cellular viability was 

performed using the tetrazolium salt MTT to evaluate potential detrimental effects of 

the extracts on cellular metabolic activity. In this study, two breast cancer cell lines, 

MDA-MB-231 (a triple negative type) and MCF7-L (oestrogen receptor positive type) 

and normal mouse embryo fibroblast (MEFs) were used. Cells were grown to ~ 70-

80% confluence and treated with and without plant crude extracts for 24 h. The plant 

crude extracts were used at 1 and 5 µg/ml (concentrations used based on previous study 

of King Lim, PhD thesis 2010). All plant crude extracts at 1 µg/ml or 5 µg/ml exhibited 

no significant effect on MDA-MB-231 breast cancer cell viability (Figure 3.4 A and 

B respectively). All the plant crude extracts at 1 µg/ml showed no significant effect on 

MCF-7 cell viability (Figure 3.5 A), while two plant crude extracts, H. strobilasium 

and Crotolaria sp., at 5 µg/ml, reduced MCF-7 cell viability (p<0.05 versus control) 

(Figure 3.5 B). None of the plant crude extracts had a cytotoxic effect at 1 µg/ml in 

MEFs. In contrast, there was significant cytotoxic effects (*p<0.05, **p<0.01, 

***p<0.001 vs control) for all the extracts on MEF cell viability at 5 µg/ml (Figure 3.6 

A and B).  
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Figure 3. 4: Effect of plant crude extracts on cell viability of MDA-MB-231 cell. 

MDA-MB-231 cells were plated for 24 h before being treated with vehicle control (0.05 % DMSO) or (A) plant crude extracts (1 µg/ml), or 

(B) plant crude extracts (5 µg/ml), for 24 h and then assayed for viability by MTT assay.  Data are expressed as percentage of control and 

represent mean +/- SD for n = 3 experiments, each performed in triplicate. Abbreviations: Afl, A. fistulosus; Afr, A. fistulosus roots; Um, U. 

maritima; Gs, G. sinaicus; Pt, P. tortuosum; Hs, H. strobilaceum; Hsr, H. strobilaceum roots; Cr, Crotalaria sp.; Ps, P. plicata; Gl, G. 

lotoides; Hsu, H. supinum. 
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Figure 3. 5: Effect of plant crude extracts on cell viability of MCF7/L cells.  

MCF7/L cells were plated for 24 h before being treated with vehicle control (0.05 % DMSO) or (A) plant crude extracts (1 µg/ml), or (B) 

plant crude extracts (5 µg/ml), for 24 h and then assayed for viability by MTT assay.  Data are expressed as percentage of control and 

represent mean +/- SD for n = 3 experiments, each performed in triplicate. * p<0.05 vs control (one-way ANOVA with Dunnett’s post-hoc 

test). Abbreviations: Afl, A. fistulosus; Afr, A. fistulosus roots; Um, U. maritima; Gs, G. sinaicus; Pt, P. tortuosum; Hs, H. strobilaceum; 

Hsr, H. strobilaceum roots; Cr, Crotalaria sp.; Ps, P. plicata; Gl, G. lotoides; Hsu, H. supinum. 
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Figure 3. 6: Effect of plant crude extracts on cell viability of MEF cells.  

MEF cells were plated for 24 h before being treated with vehicle control (0.05 % DMSO) or (A) plant crude extracts (1 µg/ml), or (B) plant 

crude extracts (5 µg/ml), for 24 h and then assayed for viability by MTT assay.  Data are expressed as percentage of control and represent 

mean +/- SD for n = 3 experiments, each performed in triplicate. *p<0.05, **p<0.01, ***p<0.001 vs control (one-way ANOVA with 

Dunnett’s post-hoc test). Abbreviations: Afl, A. fistulosus; Afr, A. fistulosus roots; Um, U. maritima; Gs, G. sinaicus; Pt, P. tortuosum; Hs, 

H. strobilaceum; Hsr, H. strobilaceum roots; Cr, Crotalaria sp.; Ps, P. plicata; Gl, G. lotoides; Hsu, H. supinum. 
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There are many ways to assess cell growth inhibition by exogenously added agents. 

For example, the inhibition of the cell cycle, and therefore, DNA synthesis can be used.  

To confirm the inhibition of DNA synthesis by selected plant crude extracts, [3H]-

thymidine incorporation into newly synthesised DNA was measured. At the same time, 

certain protein markers were assessed by Western blotting to provide further insight 

into which plant extracts may contain anti-proliferative or pro-apoptotic compounds.  

The proteins assessed were SK1, Des1 and PARP whereas GAPDH was used as a 

protein loading control. The SK inhibitor, SKi (2-(p-hydroxyanilino-4-p-

chlorophenyl) thiazole) was used as a positive control, as it induces proteasomal 

degradation  of SK1 in MCF7/L cells  and Des1 in LNCaP-AI prostate cancer cells, 

thereby reducing their expression and removing these proteins from the cells 

(Loveridge et al., 2010, McNaughton et al., 2016, Pyne et al., 2016a). Sphingosine 

binding site inhibitors of SK1 have a common feature of inducing ubiquitin-

proteasomal degradation of SK1 in cancer cell lines (Loveridge et al., 2010, Lim et 

al., 2011b). Therefore, SKi can be used to compare mechanisms of action with active 

components of the plant extracts. 

A comparison was made between two breast cancer cell lines, MDA-MB-231 and 

MCF7-L cells and normal MEFs Cells were grown to ~70% confluence and then 

incubated in the presence and absence of plant crude extracts at 1 and 5 µg/ml. All the 

crude extracts, except for P. tortuosum (5 µg/ml) had no effect on DNA synthesis in 

MEF cells (Figure 3.7 A and B). There was a slight effect on MEF cells with P. 

tortuosum extract at 5 µg/ml (Figure 3.7 B).  

None of the plant extracts at 1µg/ml had an effect on DNA synthesis in MDA-MB-

231 breast cancer cells (Figure 3.8 A). However, two plant crude extracts P. tortuosum 

and G. sinaicus (p<0.05) reduced DNA synthesis in MDA-MB-231 cells (Figure 3.8 

B). Only SK1a was detected in lysates of MDA-MB-231 cells (Figure 3.8 C).  

Although treatment of MDA-MB-231 cells with SKi reduced SK1a expression, there 

was little or no effect of the various plant extracts. Similarly, there was little effect of 

the extracts on Des1 expression. The treatment of these breast cancer cells with crude 

extracts Gs, or Um or Pt did induce a small increase in PARP cleavage over and above 

the control, suggesting that these extracts might induce apoptosis of MDA-MB-231 

cells (Figure 3.8 C).   
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All the plant crude extracts reduced DNA synthesis at 5 µg/ml in MCF-7 cells (Figure 

3.9 B). At 1 µg/ml, P. tortuosum, G. sinaicus, U. maritima, P. plicata, Crotalaria sp., 

H. supinum and H. strobilaceum induced a significant reduction in DNA synthesis 

(Figure 3.9 A). The 3 splice variants of SK1 were detected in MCF-7L cells 

corresponding to SK1a-c (Figure 3.9 C). Treatment of MCF-7L cells with SKi induced 

a reduction in the expression of SK1a, SK1b and SK1c and this was recapitulated by 

Gs, Um and Pt. It is notable that while SKi had no effect on Des1 expression, all the 

plant extracts were able to abolish Des1 expression. Treatment of the cells with SKi or 

crude extracts Gs or Um or Pt also induced PARP cleavage, suggesting that the 

removal of SK1a-c, and not Des1 was associated with increased apoptosis (Figure 3.9 

C). This was also correlated with the ability of Gs, Um and Pt to reduce DNA synthesis 

in MCF-7L cells (Figure 3.9 A and B).   

These findings demonstrate that the extracts of P. tortuosum, G. sinaicus and U. 

maritima selectively affect cancer cells with little or no effect on normal MEFs. 

Therefore, the plant crude extracts of P. tortuosum (Pt) and G. sinaicus (As) were 

selected to be fractionated to identify the compounds that are responsible for the 

pharmacological effects on DNA synthesis inhibition and on the expression of SK1, 

Des1 and PARP cleavage. 
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Figure 3. 7: Effect of plant crude extracts on DNA synthesis of MEF cells. 

Quiescent MEF cells were treated (A) with 1 µg/ml of plant crude extracts, (B) with 5 µg/ml or vehicle control (0.05% (v/v) DMSO) for 16 

h and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H]-thymidine into newly synthesised DNA was measured 

as described under Methods (section 2.2.13). Data are expressed as percentage of control and represent means +/- SD of combined data from 

3 experiments. **p<0.01 vs control (one way ANOVA with Dunnett’s post-hoc test). Abbreviations: Afl, A. fistulosus; Afr, A. fistulosus 

roots; Um, U. maritima; Gs, G. sinaicus; Pt, P. tortuosum; Hs, H. strobilaceum; Hsr, H. strobilaceum roots; Cr, Crotalaria sp.; Ps, P. 

plicata; Gl, G. lotoides; Hsu, H. supinum. 
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Figure 3. 8: Effect of plant crude extracts on DNA synthesis and key proteins in MDA-MB-231cells. 

Quiescent MDA-MB-231 cells were treated with  (A) with plant crude extracts (1 µg/ml), (B) with plant crude extracts (5 µg/ml)  or vehicle 

control (0.05% (v/v) DMSO), for 16 h and then [3H] thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine into 

newly synthesised DNA was measured as described under Methods (section 2.2.14). Data are expressed as percentage of control and represent 

mean +/- SD of combined data from 3 experiments. *p<0.05 vs control (one-way ANOVA with Dunnett’s post-hoc test). (C) Effect of plant 

crude extracts on SK1, Des1 and PARP: quiescent MDA-MB-231 cell were treated with vehicle control (0.1% (v/v/) DMSO), inhibitor SKi 

(10 µM) or 5 µg/ml of each plant crude extract for 24 h. Cell lysates were separated by SDS-PAGE and immunoblotted for SK1, Des1 and 

PARP according to methods (section 2.2.16). Blots were then stripped and re-probed for GAPDH to check for similar protein loading. 

Abbreviations: Afl, A. fistulosus; Afr, A. fistulosus roots; Um, U. maritima; Gs, G. sinaicus; Pt, P. tortuosum; Hs, H. strobilaceum; Hsr, H. 

strobilaceum roots; Cr, Crotalaria sp.; Ps, P. plicata; Gl, G. lotoides; Hsu, H. supinum. 
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Figure 3. 9: Effect of plant crude extracts on DNA synthesis and key proteins in MCF7L cells.  

Quiescent MCF7 cells were treated with (A) plant crude extracts (1 µg/ml), (B) plant crude extracts (5 µg/ml) or vehicle control (0.05% (v/v) 

DMSO) for 16 h, and then [3H] thymidine (0.5 µCi/ml) for a further 5 h. Incorporation of [3H] thymidine into newly synthesised DNA was 

measured as described in Methods sections (2.2.14). Data are expressed as percentage of control and represent mean +/- SD of combined 

data from 3 experiments. *p<0.05, **p<0.01, ***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc test). (C) Effect of plant 

crude extracts on SK1, Des1 and PARP: quiescent MCF7/L cell were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 

µM) or 5 µg/ml of each plant crude extract for 24 h. Cell lysates were separated by SDS-PAGE and immunoblotted for SK1, Des1 and PARP 

according to methods (section 2.2.16). Blots were then striped and re-probed for GAPDH to check for similar protein loading. Abbreviations: 

Afl, A. fistulosus; Afr, A. fistulosus roots; Um, U. maritima; Gs, G. sinaicus; Pt, P. tortuosum; Hs, H. strobilaceum; Hsr, H. strobilaceum 

roots; Cr, Crotalaria sp.; Ps, P. plicata; Gl, G. lotoides; Hsu, H. supinum. 
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3.2.2 Fractionation of plant crude extract from P. tortuosum  

P. tortuosum crude extract were fractionated by flash chromatography as described in 

Methods (section 2.2.2), yielding four different fractions (50% ethyl acetate, 100% 

ethyl acetate, 50% methanol and 100 % methanol), after washing with hexane 100% 

for defatting. The dry weight of starting material for P. tortuosum was 7.8 grams. The 

yields after flash chromatography are given in Table 3.1. 

Table 3. 1:  P. tortuosum  fractions dry weight: 

Pt fractions Solvent Dry weight g 

Pt 2 50% (v/v) ethyl acetate 0.192  

Pt 3 100% (v/v) ethyl acetate 0.109  

Pt 4 50% (v/v) methanol 3.0507  

Pt 5 100% (v/v) methanol 3.002  

 

3.2.3 Effect of P. tortuosum fractions on DNA synthesis and protein 

markers 

Fractionation of P. tortuosum crude extracts, yielded four fractions (Pt 2 (50% (v/v) 

ethyl acetate), Pt 3 (100% (v/v) ethyl acetate), Pt 4 (50% (v/v) methanol), Pt 5 (100% 

(v/v) methanol) (Table 3.1). 1 µg/ml and 5 µg/ml of each fraction was tested for their 

effect on DNA synthesis. Treatment of MDA-MB-231 cells with Pt 3 (100% ethyl 

acetate) was more effective at reducing DNA synthesis compared with Pt 4 (50% (v/v) 

methanol) at 1µg/ml (Figure 3.10 A), while both fractions almost abolished DNA 

synthesis at 5 µg/ml (Figure 3.10 B), indicating that the effects are concentration-

dependent. The fractions had very little effect, if any, on the expression of SK1a or 

Des1 in MDA-MB-231 cells. However, Pt 3 and SKi did induce significant PARP 

cleavage, indicating the Pt 3 induces apoptosis independently of SK1 and Des1 

expression.  There was some effect of Pt 4 and Pt 5 on PARP cleavage, albeit less than 

Pt 3 (Figure 3.10 C).  

At 1µg/ml, Pt 3 induced a marked reduction in DNA synthesis in MCF7/L cells (Figure 

3.11 A), while the other fractions, with the exception of Pt 5 had no effect.  At 5µg/ml, 
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all the fractions were active in reducing DNA synthesis in MCF7/L cells (Figure 3.11 

B). Only SKi and Pt 3 induced a reduction in SK1a expression and Des1 and this was 

associated with increased PARP cleavage (Figure 3.11 C). 

In summary, the Pt 3 fraction showed a clear decrease in DNA synthesis, induced 

PARP cleavage in both breast cancer cell lines and downregulated SK1a and Des1 

protein expression in MCF-7L cells. Pt 3 was therefore subjected to further 

purification.  Although Pt 3 activates apoptosis in MDA-MB-231 cells, the effects are 

apparently independent of SK1 and Des1 expression. 
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Figure 3. 10:  Effect of P. tortuosum fractions on DNA synthesis, SK1, Des1 and PARP cleavage in MDA-MB-231 cells.  

Quiescent MDA-MB-231 cells were treated with (A) P. tortuosum fractions (1 µg/ml) or (B) P. tortuosum fractions (5 µg/ml) (vehicle control 

0.05% (v/v) DMSO) for 16 h and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine into newly 

synthesized DNA was measured as described in Methods (section 2.2.14). Data are expressed as percentage of control and represent mean 

+/- SD of combined date from 3 experiments. **p<0.01, ***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc test). (C) SK1, 

Des1 and PARP cleavage detection: quiescent MDA-MB-231 cell were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 

µM) or 5 µg/ml of each fraction for 24 h. Cell lysates were separated by SDS-PAGE and immunoblotted for SK1, Des1 and PARP according 

to methods (section 2.2.16). Blots were then striped and re-probed for GAPDH to check for similar protein loading. 
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Figure 3. 11: Effect of P. tortuosum fractions on DNA synthesis, SK1, Des1 and PARP cleavage in MCF7/L cells.  

Quiescent MCF7/L cells were treated with (A) P. tortuosum fractions (1 µg/ml) or (B) P. tortuosum fractions (5 µg/ml) (vehicle control 

0.05% (v/v) DMSO) for 16 h and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine into newly 

synthesised DNA was measured as described in Methods (section 2.2.14). Data are expressed as percentage of control and represent mean 

+/- SD of combined data from 3 experiments. **p<0.01, ***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc test). (C) SK1, 

Des1 and PARP cleavage detection: quiescent MCF7L cells were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 µM) 

or 5 µg/ml of each fraction for 24 h. Cell lysates were separated by SDS-PAGE and immunoblotted for SK1, Des1 and PARP according to 

methods (section 2.2.16). Blots were then striped and re-probed for GAPDH to check for similar protein loading.  
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Based on these results Figures 3.10 and 3.11), sub-fractionation and separation of Pt 3 

(100% ethyl acetate) fraction was performed to further purify active compounds. Using 

silica column chromatography as described in Methods (section 2.2.4), using solvent 

mixture hexane: ethyl acetate: methanol (6:3:0.5). Pt 3 yielded seven sub-fractions 

named: Pt 3.1, Pt 3.2, Pt 3.3, Pt 3.4, Pt 3.5, Pt 3.6, and Pt 3. 8 (Table 3.2). These were 

then tested for their effect on DNA synthesis (at 1 and 5 µg/ml) and on SK1, Des1 

expression and PARP cleavage at   5 µg/ml in both MDA-MB-231 and MCF7/L cells.  

Table 3. 2: P. tortuosum sub-fractions (Pt 3) samples dry weight: 

Pt sample Dry weight / µg 

Pt 3.1 1.2  

Pt 3.2 0.9  

P. t 3.3 3.2  

Pt 3.4 1.0  

Pt 3.5 3.4  

Pt 3.6 0.1  

Pt 3.8 0.1  

 

Treatment of MDA-MB-231 cells with each Pt sub-fraction (1 µg/ml) reduced DNA 

synthesis (Figure 3.12 A) and this inhibitory effect was more pronounced at 5 µg/ml 

(Figure 3.12 B).  None of the sub-fractions produced a convincing reduction in SK1a 

or Des1 although Pt 3.3 did induce PARP cleavage as well as, other sub-fractions; Pt 

3.2, Pt 3.5, Pt 3.6 (Figure3.12 C). These data are consistent with previous findings 

showing less than robust effects on SK1a and Des1. 

Treatment of MCF-7L cells with the Pt sub-fractions at 1µg/ml was largely ineffective 

at inhibiting DNA synthesis with the exception of  Pt 3.3 (Figure 3.13 A).  However, 
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other sub-fractions were effective at 5 µg/ml (Figure 3.13 B). At this concentration, Pt 

3.3 and Pt 3.8 induced a reduction in the expression of SK1a-c and this was associated 

with increased PARP cleavage (Figure 3.13 C). Pt 3.2-Pt.3.6 also induced the loss of 

Des1 and this was also associated with PARP cleavage (Figure 3.13 C). Therefore, 

with the exception of  Pt 3.8, it is unclear whether PARP cleavage is associated with 

SK1 and/or Des1 or either. 

Therefore, Pt 3.3 is a potential modulator of SK1 and/or Des1 expression. Pt 3.3 was 

therefore subjected to 1D-2D spectroscopic analysis to identify the active molecule. 
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Figure 3. 12: Effect of P. tortuosum sub-fractions on DNA synthesis, SK1, Des1 and PARP cleavage in MDA-MB-231 cells. 

Quiescent MDA-MB-231 cells were treated with (A) P. tortuosum sub-fractions (1 µg/ml) or (B) P. tortuosum sub-fractions (5 µg/ml) 

(vehicle control 0.05% (v/v) DMSO) for 16 h and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine 

into newly synthesised DNA was measured as described in Methods (section 2.2.14). Data are expressed as percentage of control and 

represent mean +/- SD of combined data from 3 experiments **p<0.01, ***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc 

test). (C) SK1, Des1 and PARP cleavage detection: quiescent MDA-MB-231 cells were treated with vehicle control (0.05% (v/v) DMSO), 

inhibitor SKi (10 µM) or 5 µg/ml of each fraction for 24 h. Cell lysates were separated by SDS-PAGE and immunoblotted for SK1, Des1 

and PARP according to methods (section 2.2.16). Blots were then stripped and re-probed for GAPDH to check for similar protein loading. 
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Figure 3. 13: Effect of P. tortuosum sub-fractions on DNA synthesis, SK1, Des1 and PARP cleavage in MCF7/L cells. 

Quiescent MCF7/L cells were treated with (A) P. tortuosum sub-fractions (1 µg/ml) or (B) P. tortuosum sub-fractions (5 µg/ml) (vehicle 

control 0.05% (v/v) DMSO) for 16 h and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine into 

newly synthesised DNA was measured as described in Methods (section 2.2.14). Data are expressed as percentage of control and represent 

mean +/- SD of combined data from 3 experiments. *p<0.05, ***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc test) (C) 

SK1, Des1 and PARP cleavage detection: quiescent MCF7/L cell were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 

µM) or 5 µg/ml of each fraction for 24 h. Cell lysates were separated by SDS-PAGE and immunoblotted for SK1, Des1 and PARP according 

to methods (section 2.2.16). Blots were then stripped and re-probed for GAPDH to check for similar protein loading. 
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3.2.4 Structure elucidation of Pt 3 samples: 

Structure elucidation of compound in fraction Pt 3.3 was achieved using 1D and 2D 

NMR spectroscopic analysis. Due to the low amount of the sample after freeze-drying 

(~5.0 mg). The NMR spectra were obtained using Norell micro-tubes to improve 

signal to noise ratio during acquisition. The compound in fraction Pt 3.3 under 

LCHRMS yielded a molecular ion peak [M+H]+ at m/z 308.0760, corresponding to the 

molecular formula C14H13NO7 (Figure 3.14). The proton spectrum showed a highly 

de-shielded proton at δH 13.26 (s), indicating the presence of a H-bonded hydroxyl 

proton, (identified as 7-OH). Additionally, an amine proton appeared at δH  7.87 (NH), 

(Figure 3.15- 3.16). In addition, there were three hydroxyl groups; two at δH  5.22 (brs) 

(2-OH and 4-OH), which showed correlations in 1H-1H COSY with proton H-2 at δH  

4.03 and another at δH  5.03 (3-OH) (brs), which correlated with H-3 at δH  3.71 (Table 

3.3). 

In the 1H-1H COSY spectrum (Figure 3.17), the presence of cross peaks indicates spin-

spin coupled protons that are neighbouring. Protons bonded to the same carbon are 

usually identical with no coupling. However, two-bond coupling or geminal coupling 

(2JHH) can be observed when two protons bonded to the same carbon are not identical 

(also known as diastereotopic). These protons are not in the same chemical 

environment because of other substituents in close proximity to chiral centres. A 

different phenomenon was observed in this molecule due to the dissociation nature of 

H-11 (show as a doublet) (Figure 3.17). Definable cross-peaks in the COSY spectrum 

were observed for 3JH1,H2, 
3JH2,H3 (weak), 3JH2,2-OH, 3JH3,H4, 

3JH3,3-OH,  4JH1,H4a (weak), 

with a larger coupling and strong correlation observed between H4 and H4a (Figure 

3.17).   

The DEPT-q spectrum (Figure 3.18) showed that the compound in fraction Pt 3.3 was 

relatively pure, and all carbon signals were distinct and clearly observable due to 

acquisition with a good signal-to-noise ratio (Figure 3.18). The DEPT-q data revealed 

the presence of fourteen carbon atoms. These were resolved from HSQC spectroscopic 

analysis (Figure 3.19) into, one methylene carbon (CH2), six methines (CH) and seven 

quaternary carbons. The connections between each proton and carbon present in the 

molecule were obtained with two-dimensional HSQC and HMBC spectra. All protons 
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were appropriately assigned to their corresponding carbons based on correlations in 

the HSQC spectrum (Figure 3.19).  Of note, H-11 did not correlate with any carbon in 

the spectrum confirming its identity as an O-CH2-O and not CH. In addition, extensive 

long-range correlations from protons to carbons with long distance were observed in 

the HMBC spectrum allowing the connection between different spin systems to be 

confirmed (Figure 3.20). For example, H-10 (δ 6.86) shows typical two (2J CH) bond 

couplings to neighbouring carbons: H10/C9, H10/C6a, and H10/C10a. Other 

significant correlations included the N-H proton, which showed 3J CH bond couplings 

to neighbouring carbons NH/C6a and NH/C10b.  There were also 2J CH bond coupling 

with neighbouring carbon C-4a. H-1 exhibited three-bond coupling with two 

neighbouring carbons, H11/C9 and H11/C10a. Information concerning the relative 

stereochemistry of the compound was obtained. Magnetic nuclei can interact through 

a nuclear Overhauser effect (Jacobs et al., 2004) they are close to each other in space 

and the NOESY spectrum can provide such information. As shown in (Figure 3.21), 

H-3 interacted with H-4.  This indicates that they interact “see” each other through 

space and are in a cis configuration. In addition, NOEs were weakly observed between 

H-2 and H-3 and H-4, indicating that H-2 is a trans configuration. Moreover, very 

weak NOE was observed between H-4 and NH which in turn interact weakly with H-

4 suggesting that they are also in a trans configuration.  

Therefore, HMBC allows the linkage of the different spin systems in the molecule, 

supporting the proposed structure to be narciclasine. Narciclasine has previously been 

isolated from Narcissus species (Van Goietsenoven et al., 2013). All chemical shifts 

of protons and carbons in narciclasine were comparable to those reported by others  

(Dumont et al., 2007, McNulty et al., 2011), where the spectra were obtained in 

DMSO-d6 (Table 3.3). 
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Table 3. 3: 1H-NMR (500 MHz) & DEPT-q spectrum (100 MHz) of Pt 3.3, in 

DMSO-d6  

No. δC ppm  δH ppm HMBC 

1 124.8 6.15 br t  

2 69.2 4.03  

3 72.4 3.71 C-1 

4 68.9 3.81 C-4a 

4a 52.9 4.19 C-2, C-4, C-1, C-10b 

N-H - 7.87 s C-6, C-10b, C-6a, C-4, C-

4a 

6 169 -  

6a 105.6 -  

7 144.9 -  

8 132.5 -  

9 152.4 -  

10 95.9 6.86 C-9, C-8, C-10b, C-6a 

10a 132.1 -  

10b 129.3 -  

11 102.1 6.09 C-9, C-8 

7-OH - 13.26 s C-7, C-8, C6a 

2-OH - 5.22 br s  

3-OH - 5.03 br s  

4-OH - 5.22 br s  

s = singlet, br t = broad triplet 
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Figure 3. 14: LCHRMS of Pt 3.3. 
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Figure 3. 15: 1H-NMR spectroscopic analysis of Pt 3.3 in DMSO-d6  
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Figure 3. 16 : 1H-NMR spectroscopic analysis of Pt 3.3 in DMSO-d6- expansion 
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Figure 3. 17:  1H-1H-COSY spectroscopic analysis of Pt 3.3 in DMSO-d6 
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Figure 3. 18: DEPT-q spectroscopic analysis of Pt 3.3 in DMSO-d6 
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Figure 3. 19: HSQC spectroscopic analysis of Pt 3.3 in DMSO-d6. 
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Figure 3. 20:  HMBC spectroscopic analysis of Pt 3.3 in DMSO-d6. 
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Figure 3. 21: NOESY spectroscopic analysis of Pt 3.3 in DMSO-d6. 
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3.2.5 Comparison of effects between narciclasine/Pt 3.3 and SKi  

SKi was used in this study for comparison with Pt 3.3 and commercially sourced 

narciclasine in combination with the proteasomal inhibitor MG132, using the two-

breast cancer cell lines; MDA-MB-231 and MCF7-L. This enables analysis of whether 

the compound isolated in the Pt 3.3 fraction behaves similarly to commercially sourced 

narciclasine and whether it has similar effects to a sphingosine binding site inhibitor 

of SK1. SK1 inhibitors, including SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl) 

thiazole)), have a common feature of inducing ubiquitin-proteasomal degradation of 

SK1 in cancer cell lines (Loveridge et al., 2010, Lim et al., 2011b), that is the SKi-

induced degradation of SK1 can be prevented by pre-treatment of the cells with 

MG132. 

In this regard, MDA-MB-231 cells were treated with SKi (10 µM) and Pt 3.3 (5 g/ml) 

or narciclasine (4 µM) for 24 h, either with or without pre-treatment with MG132 (10 

µM, 30 min). The concentration of narciclasine used in current study experiments 

based on the calculation of Pt 3.3 used (w/v), after identification of Pt 3.3 as 

narciclasine. The treatment of MDA-MB-231 cells with SKi reduced the expression 

of SK1a. but this was not clearly prevented by pre-treatment with MG132. Pt 3.3 and 

narciclasine also induced a reduction in SK1a expression that was not prevented by 

MG132 (Figure 3.22 A).  SKi had no significant effect on Des1 expression, while both 

Pt 3.3 and narciclasine reduced the expression of Des1 in a MG132-insensitive 

manner, i.e., independent of the proteasome (Figure 3.22 A).  

Similar treatment of MCF-7L cells with SKi (10 µM) or Pt 3.3 ( g/ml) or 

narciclasine (4 µM) for 24 h reduced SK1a, levels which was reversed by pre-

treatment with MG132 (10 µM, 30 min) only in the case of SKi. Narciclasine and Pt 

3.3 also reduced Des1 expression in MCF7/L cells, while SKi induced a less robust 

reduction. In each case, the decrease in Des1 expression was not reversed by pre-

treatment with MG132 (Figure 3.24 A).  

Downregulation of SK1 expression  in many cancer cell lines causes cell growth arrest 

(Taha et al., 2006a). Ki67 is extensively used as a prognostic and predictive marker 

for cell growth in cancer. Ki67 is present during the cell cycle (G1, S, G2 and M), 
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while its expression decreases sharply in the later phases of mitosis. Ki67 expression 

is associated with the high proliferative activity of intrinsic cell populations in 

tumours. correlated with the worse survival in patients (Hooghe et al., 2008, Shirendeb 

et al., 2009). In addition, the PI3K/AKT pathway is involved in promoting cell survival 

(Zheng and Quirion, 2004). Therefore, it was of interest to examine the effect of 

narciclasine on phospho-AKT, indicating activation of the PI3K pathway, and Ki67, 

indicating an active cell cycle. 

Thus, MDA-MB-231 breast cells were treated with SKi and narciclasine and Ki67 

expression and AKT phosphorylation measured by western blot analysis. SKi  induced 

a small reduction in Ki67 expression in MDAMB-231 cells (Figure 3.22 C), whereas 

there was a marked reduction of Ki67 upon treatment with narciclasine. In addition, 

the treatment of MDA-MB-231 cells with narciclasine reduced phosphorylated AKT 

levels, while SKi was without effect (Figure 3.22 C).   

In MCF-7L cells, in contrast to MDA-MB-231 cells, Ki67 expression was slightly 

reduced with narciclasine, while SKi had no effect (Figure 3.24 C) in contrast. 

treatment of 231 and MCF-7L cells with narciclasine reduced phosphorylated AKT 

levels (Figure 3.24 C). 

Of the three MAPK pathways, the ERK1/2 pathway is most involved in breast cancer 

signalling (Jo et al., 2007). Several studies have analysed the importance of ERK1/2 

pathway in cell survival and growth. For example, a study used the MEK inhibitor 

PD98059 (25 µM) against MCF7 cells to show a suppression and inhibition of the 

pathway at 3 h and throughout the entire time course. When PD98059 was used at 50 

µM, there was an inhibition of ERK1/2 pathway through the entire time course with 

cell death (Ripple et al., 2005). The involvement of JNK activity differs between 

cancer types. In study by Wang et al. (2013) 14 normal human and breast cancer tissues 

were investigated for the expression and activity of MAPK. While there was 

overexpression of ERK1/2 in all breast cancer tissues, the expression of JNK1 but not 

JNK2 increased in breast cancer tissue compared to the normal tissues of the same 

patient (Bode and Dong, 2007). Treatment of MDA-MB-231 cells with SKi reduced 

phosphorylated ERK levels, indicating inhibition of its activation, while narciclasine 

had no effect. It was notable that MG132 also reduced phosphorylated ERK levels 
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(Figure 3.23). In contrast, both SKi and narciclasine increased phosphorylated JNK 

levels in the presence of MG132 (Figure 3.23). Thus, under conditions of proteasome 

inhibition with MG132, which induces ER stress (Meusser et al., 2005, Park et al., 

2011), SKi and narciclasine enhance activation of the JNK pathway.  

Similar results were obtained with narciclasine in MCF-7L cells (Figure 3.25). These 

findings indicate that narciclasine exhibits both overlapping and non-overlapping 

mechanism of action with SKi. Nevertheless, Pt 3.3 and narciclasine induce apoptosis 

as demonstrated by increase in  PARP cleavage in both breast cancer cell lines (Figure 

3.22 B, Figure 3.24 B).  
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Figure 3. 22: Comparison of effects of SKi, narciclasine and Pt 3.3 on SK1, Des1, PARP, phospho-Akt and Ki67 in MDA-MB-231 

cells.  

Quiescent MDA-MB-231 cells were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 µM), Narciclasine (4 µM) or Pt 3.3 

(5 ug/ml) for 24 h after pre-treatment with or without MG132 (10 µM, 30 min). Cell lysates were separated by SDS-PAGE and immunoblotted 

for (A) SK1 and Des1, (B) PARP or (C) P-AKT and Ki67 according to methods (section 2.2.15- 2.2.17). Blots were then stripped and re-

probed for GAPDH to ensure similar protein loading. 
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Figure 3. 23: Comparison of effects of SKi and narciclasine on phospho-ERK-1/2 and phospho-JNK in MDA-MB-231 cells. 

Quiescent MDA-MB-231 cells were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 µM) or Narciclasine (4 µM) for 24 

h after pre-treatment with or without MG132 (10 µM, 30 min). Cell lysates were separated by SDS-PAGE and immunoblotted for P-ERK1/2, 

and P-JNK. Blots were then stripped and re-probed for ERK2 and JNK to check for similar protein loading. 



 

132 

 

 

Figure 3. 24: Comparison of effects of SKi, narciclasine and Pt 3.3 on SK1, Des1, PARP, phospho-Akt and Ki67 in MCF-7/L cells. 

Quiescent MCF-7/L cells were treated with vehicle control (0.05% DMSO), inhibitor SKi (10 µM), Narciclasine (4 µM) or Pt 3.3 (5 ug/ml) 

for 24 h after pre-treatment with or without MG132 (10 µM, 30 min). Cell lysates were separated by SDS-PAGE and immunoblotted for (A) 

SK1 and DEGS1, (B) PARP or (C) P-AKT and Ki67according to methods (section 2.2.15-2.2.17). Blots were then stripped and re-probed 

with GAPDH to ensure similar protein loading.  
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Figure 3. 25: Comparison of effects of SKi and narciclasine on phospho-ERK-1/2 and phospho-JNK in MCF-7/L cells. 

Quiescent MCF-7/L cells were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 µM) or Narciclasine (4 µM) for 24 h 

after pre-treatment with or without MG132 (10 µM, 30 min). Cell lysates were separated by SDS-PAGE and immunoblotted for P-ERK1/2, 

and P-JNK. Blots were then stripped and re-probed for ERK2 and JNK to check for similar protein loading. 
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3.2.6 Effect of narciclasine on NFΚB signalling and transcriptional 

activity in NCTC-NFΚB reporter keratinocytes 

SK1 has an important pro-inflammatory role in many diseases (Neubauer and Pitson, 

2013). For instance, pro-inflammatory TNFα activates SK1 (Adada et al., 2013). 

Therefore, it was of interest to test the effects of  narciclasine on inflammatory 

signalling. This was achieved using NCTC/NFB keratinocytes. These cells have been 

genetically modified by the introduction of a NFB-binding promoter-regulated 

luciferase gene. Initially, the effect of  TNFα on NFB-driven transcriptional activity 

was measured using a luciferase reporter assay. The reporter cells were treated with 

TNFα (15 ng/ml), which induced NFB-dependent  transcriptional activity in a time-

dependent manner, which was significant at 4 hours (Figure 3.26, left graph). A 

comparison was made of the effects of narciclasine, Pt 3.3 and a SK2 inhibitor (K145) 

and an inhibitor of NFB signalling, BMS345541. Pre-treatment of the cells with 

narciclasine (4 µM, 30 min) or Pt 3.3 (5 ug/ml, 30 min) or NFB inhibitor, 

BMS345541 (20 µM, 30 min) significantly reduced TNF-stimulated NFB 

transcriptional activity. In contrast, the SK2 inhibitor, K145 (10 µM, 10 min) was 

without effect (Figure 3.26, right graph). Narciclasine and TNFα were also evaluated 

for their effect on IB degradation, which is an early and transient event in the 

activation of the NFB signalling (Ramakrishnan et al., 2004). As expected, TNFα 

induced a time-dependent reduction in IB as the NFB signalling pathway was 

activated (Figure 3.27, left panel). In contrast, narciclasine alone was without effect 

(Figure 3.27, middle panel). However, pre-treatment of the cells with narciclasine 

blocked subsequent TNFα-stimulated degradation of IB, suggesting that the 

molecular basis for the anti-inflammatory activity of narciclasine is the blockade of 

NFB activation by TNF (Figure 3.27, right panel). 
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Figure 3. 26: Effect of Narciclasine and Pt 3.3 on TNFα-stimulated NFB signalling. Luciferase reporter assay:   

Quiescent NCTC-NF-Β reporter cells were treated with TNFα (15 ng/ml) for 0-120 min. (left panel) or pre-treated with BMS345541 (10 

µM for 30 min) or SK2 inhibitor, K145 (10 µM for 10 min) or narciclasine (4 µM for 30 min) or Pt 3.3 (5 g/ml for 30 min) or vehicle alone 

(DMSO 0.05% (v/v)) prior to stimulation with TNFα (15 ng/ml) for 4 h. Luciferase expression was measured by luminescence activity 

according to methods (section 2.2.18). Data are expressed as a % of control ± SEM  for n=3 or more experiments. left panel, *p<0.05, 

**p<0.01 and ***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc test); lower panel, ***p<0.001 vs control; *** p<0.001 and 

ns (not significant) vs DMSO/TNF sample (one-way ANOVA with Bonferroni’s post-hoc test).  
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Figure 3.2727: Effect of narciclasine and Pt 3.3 on TNFα-stimulated NFB signalling. NFB signalling, indicated by IB degradation: 

 Quiescent NCTC-NFκΒ reporter cells were treated with (left panel) TNFα (15 ng/ml) for 0-120 min. Middle panel – cells were treated with 

narciclasine (4 µM) for 0-120 min with for TNFα (15 ng/ml, 30 min, positive control). right panel – cells were treated with narciclasine (4 

µM) for 0-120 min prior to addition of TNFα (15 ng/ml, 30 min) or with TNF alone. Vehicle is DMSO (0.05% (v/v)). Cell lysates were 

separated by SDS-PAGE and immunoblotted with anti-IκB-α antibody. Blots were then stripped and re-probed for GAPDH to check for 

similar protein loading. 
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3.2.7 Effect of narciclasine on AP-1 transcriptional activity and 

ERK/JNK signalling in NCTC-AP-1 reporter keratinocytes 

A second luciferase reporter cell line was used to investigate the effect of narciclasine 

against the transcriptional regulation of AP-1 in NCTC-AP-1 reporter keratinocytes. 

These cells have been genetically modified by the introduction of an AP-1-binding 

promoter-regulated luciferase gene. NCTC-AP-1 cells were treated with phorbol 21-

myristate 13-acetate (PMA) at 100 nM. PMA, which is a direct activator of protein 

kinase C (PKC), an indirect activator of the transcription factor, AP-1, induced a time-

dependent increase in AP-1-dependent transcriptional activity, with significant 

luciferase expression and activity detected after 4 hours (Figure 3.28 A). PMA also 

provoked a transient increase in JNK activation (evident at 30 and 60 min) and a 

sustained stimulation of ERK-1/2 (from 10 -120 min) (Figure 3.28 B). Pre-treatment 

of the NCTC-AP1 cells with narciclasine (4 µM, 10 min) or Pt 3.3 (5 g/ml, 10 min) 

reduced subsequent PMA-stimulated AP1 transcriptional activity. In contrast, the SK2 

inhibitor, K145 (10 µM, 10 min) was without effect (Figure 3.28 C).   
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Figure 3. 28: Effect of Narciclasine and Pt 3.3 on PMA-stimulated AP-1- signalling.  

(A) Luciferase reporter assay: Quiescent NCTC-AP-1 reporter cells were treated with PMA (100 nM) for 0-10 h before luminescence 

activity was measured according to methods (section 2.2.18). Data are expressed as a % of control ± SEM for n=3 or more experiments. 

**p<0.01 and ***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc test). (B) Effect of PMA on ERK and JNK signalling. 

Quiescent NCTC-AP-1 reporter cells were treated with PMA (100 nM) for 0-120 min. Cell lysates were separated by SDS-PAGE and 

immunoblotted for P-JNK, P-ERK. Blots were then stripped and re-probed for GAPDH to check for similar protein loading. (C) Effect of 

Narciclasine, Pt 3.3 and K145 on AP-1-driven luciferase expression. Quiescent NCTC-AP-1 reporter cells were pre-treated with K145 

(10 µM, 10 min), narciclasine (4 µM for 30 min. or Pt 3.3 (5 g/ml for 30 min. or with vehicle alone (DMSO 0.05% (v/v)) prior to stimulation 

with PMA (100 nM) for 4 h before luminescence activity was measured. Data are expressed as a % of control ± SEM for n=3 or more 

experiments. ***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc test); +++ p<0.001 and ns (not significant) vs DMSO/PMA 

sample (one-way ANOVA with Bonferroni’s post-hoc test). 
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3.3 Discussion 

3.3.1 Screening of plant crude extract 

Many strategies have been published for selecting plants as a candidate for drug 

discovery programs; this includes random selection followed by phytochemical 

screening. The focus is on known bioactive compounds such as alkaloids, flavonoids, 

and triterpenes; used in both in vitro and in vivo preclinical animal models of disease.  

Other screening approaches are based on the ethnomedical use of various plants  

(Fabricant and Farnsworth, 2001). All these strategies contribute to health care 

worldwide by enabling identification of novel compounds for medicinal use. All the 

selected plants for this study were collected based on these strategies. The objective of 

the study was to identify novel anticancer and anti-inflammatory agents from plant 

species, by establishing activity against SK1, Des1 and PARP cleavage as a marker 

for apoptosis (cytotoxicity) and NFB and AP-1 as markers of inflammation-based 

signalling. 

Eleven plant crude extracts were screened from a total of nine plants because some 

extracts prepared from different parts of the same plant. This allows better 

characterisation of the constituents produced by different parts of the plants. 

Preliminary data indicated that screening all plant crude extracts had no effect on 

metabolic viability of both breast cancer cell lines, MDA-MB-231 and MCF7-L cells, 

except for H. strobilaceum and Crotalaria sp., which reduced metabolic viability of 

MCF7-L cells at high concentration. There was also an effect on the metabolic viability 

of MEF cells at high concentration by all plant crude extracts (Figure 3.4-Figure. 3.6).  

The use of the DNA synthesis assay to monitor growth demonstrated that three out of 

the eleven plant crude extracts, namely, G. sinaicus, U. maritima and P. tortuosum 

significantly reduced cell proliferation (*p<0.05, **p<0.01, ***p<0.001 vs control) in 

both breast cancer cell lines at 5 µg/ml (Figure 3.7 – Figure 3.9). These findings 

suggest that these plants contain anti-proliferative agents, this is in agreement with 

previous literature (Pettit et al., 1986, Batran et al., 2005, El-Seedi et al., 2013). All 

the plant crude extracts were screened for their effect (at high concentration 5 µg/ml) 

on SK1, Des1 and PARP in both breast cancer cell lines. This narrowed the search to 
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three plant crude extracts, G. sinaicus, U. maritima and P. tortuosum. These had little 

or no effect on SK1 or Des1 protein expression in MDA-MB-231 cells, but did induce 

PARP cleavage, indicative of apoptosis. In contrast, both G. sinaicus and U. maritima 

reduced the expression of SK1a-c while the effect of P. tortuosum was weaker in 

MCF-7L cells. The three plant crude extracts reduced Des1 expression and increased 

induction of PARP cleavage. Since only crude plant extracts were examined, it is 

difficult at this stage, to establish whether the effects are due solely to a single 

cytotoxic constituent and whether the effects of the extracts on SK1/ Des1 expression 

are linked to the induction of PARP cleavage and apoptosis. Indeed, plants containing 

many compounds might have mutually exclusive effects on SK1, Des1 and apoptosis. 

For example, several cytotoxic compounds have been isolated from Pancratium 

littorale and these compounds were active against the growth of murine P-388 

lymphocytic leukaemia and murine M-5076 ovary sarcoma (Pettit et al., 1986). 

Similarly, U. maritima also produces cardiac-glycoside compounds which are 

cytotoxic against several tumour cell lines (El-Seedi et al., 2013). Therefore, it was 

necessary to isolate the active compounds, and this was undertaken in the current 

study. I was particularly interested in plant crude extracts which inhibited DNA 

synthesis, and reduced SK1 or Des1 protein expression and promoted PARP cleavage. 

However, some extracts were active in reducing DNA synthesis but did not affect SK1 

nor Des1 expression.  

3.3.2 P. tortuosum 

The main finding of this study that P. tortuosum, contains compounds which exhibit 

anticancer activity in vitro. This is in agreement with previous studies on other species 

of the same Pancratium genus and with the Amaryllidaceae family (Pettit et al., 1986).  

1D and 2D spectroscopy enabled the determination of the absolute structure of the 

active compound in P. tortuosum in the 100% (v/v/) ethyl acetate fraction. This was 

identified as narciclasine (1,3,4,5-tetrahydro-2,3,4,7-tetrahydroxy[1 ,- 3]-dioxolo-[4,5-

j]-phenanthridin-6(2H)-one. The structure is in agreement with studies published by 

Ceriotti (1967) and Ingrassia et al. (2009). Narciclasine is secondary metabolite since 

the nitrogen is amidic in character. However, it has a structure related to the 

Amaryllidaceae lycorine type alkaloids. The narciclasine structure was under 
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extensive chemical characterisation in particular studying its stereochemistry by an X-

ray analysis of the corresponding tetraacetate (Immirzi and Fuganti, 1972).  

Narciclasine and pancratistatin were reported as the most important isocarbostyril 

constituents of Amaryllidaceae, which are responsible for the therapeutic activities of 

these plants in traditional medicine treatment of cancer (Kornienko and Evidente, 

2008). Indeed, previous studies using narciclasine isolated from different varieties of 

Narcissus bulbs have demonstrated potent anti-mitotic activity (Ceriotti, 1967). The 

anticancer activity of narciclasine has attracted attention toward the isolation of its 

naturally occurring analogues from different Amaryllidaceae species (Kornienko and 

Evidente, 2008).   

Narciclasine and pancratistatin have emerged as interesting anti-tumour drugs in the 

NCI database (National Cancer Institution). The first evaluation of narciclasine 

bioactivity is strong mitosis-blocking activity, as it significantly inhibited the wheat 

grain radicals as well as inhibiting the growth of murine sarcoma cells in vivo. In fact, 

Carrasco et al. (1975) proposed the mechanism of narciclasine action is due to the 

blockade of peptide bond formation at the ribosome by inhibiting protein synthesis in 

rabbit reticulocytes and in a yeast-derived cell-free system. Recently, McLachlan et 

al. (2005) demonstrated that pancratistatin, which is also a lycorine type alkaloid like 

narciclasine (Figure 3.2), increased apoptosis induction in SHSY-5Y neuroblastoma 

cells. Similarly, narciclasine, at concentrations 1 μM, induced apoptosis-mediated 

cytotoxic effects in human carcinoma cells but not in normal fibroblasts via the 

extrinsic apoptotic pathway (Dumont et al., 2007). In agreement with this, the present 

study showed that narciclasine reduced DNA synthesis in MCF7/L and MDA-MB-

231 breast cancer cell lines (Figure 3.12 and 3.13) and induced apoptosis as indicated 

by enhanced PARP cleavage (Figures 3.12, 3.13, 3.22 and 3.24).  

SK1 inhibitors have been shown to induce proteasomal degradation of SK1 in MCF7 

cells and LNCAP-AI cells (Lim et al., 2011b, McNaughton et al., 2016). In this study 

it has been observed that narciclasine also reduced the expression of SK1. However, 

this was insensitive to the proteasome inhibitor, MG132, suggesting that unlike SK1 

inhibitors, the reduction in expression is not related to ubiquitin-proteasomal 

degradation, and suggests an alternative mechanism of action. This might include the 
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inhibition of transcriptional/translational regulation of SK1 expression by narciclasine.  

The findings suggest that narciclasine is not a direct inhibitor of SK1.   

Further evidence that the narciclasine effect on apoptosis might not be related to effects 

on SK1 or Des1 is the finding that some of the actions of SKi are not recapitulated by 

narciclasine. For instance, in MCF7/L cells, SKi stimulated PARP cleavage (Figure 

3.24), and this is associated with a reduction in phosphorylation state of ERK1/2 

(Figure 3.25), while narciclasine and Pt 3.3 had no effect on the phosphorylation state 

of ERK1/2 in MCF-7L cells (Figure 3.25). Both SKi and narciclasine activated JNK 

(Figure 3.25), but narciclasine had a stronger negative effect on Ki67 expression and 

phospho-AKT levels compared with SKi in MCF7/L cells (Figure 3.24).  Ki67 is a 

nuclear non-histone protein that is useful as a proliferative marker. It is also considered 

as a prognostic marker in early breast cancer (De Azambuja et al., 2007, Yerushalmi 

et al., 2010). Indeed, high Ki67 expression correlates with higher tumour grade in 

breast cancer  (Soliman and Yussif, 2016, Hashmi et al., 2019). The inhibitory effect 

of narciclasine on phospho-AKT is significant because this protein suppresses 

apoptosis via the BAD/Bcl2 pathway (Liu et al., 2015). 

Narciclasine also reduced Des1 expression via a mechanism that was independent of 

the ubiquitin-proteasomal degradation pathway (Figure 3.22 and 3.24). Indeed, in 

MCF-7 cells, SKi also reduced Des1 expression via a mechanism insensitive to 

MG132. These finding indicate subtle differences in the regulation of Des1 in different 

cancer cell types. The effect on Des1 by narciclasine is significant as others have 

shown that inhibition of Des1 induces anticancer activity (Aurelio et al., 2016).  

The pro-inflammatory cytokine TNFα  has been involved in many cellular processes 

and triggers signalling pathways which activate NFB and AP-1 pathways. When the 

IKK pathway is stimulated with TNFα, IKK is activated, which in turn results in 

phosphorylation and degradation of IB. IB is in a complex with NFB and inhibits 

its activity. Subsequently, IB degradation enables the release of NF-B, which then 

translocate from the cytoplasm to nucleus to induce transcriptional gene programmes. 

TNFα binding to its receptors also activates the PKC/JNK pathway which leads to the 

activation of AP-1 (Jiang et al., 2003). Phorbol 12-myristate 13-acetate (PMA) 

activates members of the PKC family by binding a cysteine-rich region which is 
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physiologically recognised by DAG, leading to the activation of the MAPK pathway 

and AP-1-dependent transcriptional programmes. Thus, agents able to suppress AP-1 

activation have the potential to suppress inflammation and show therapeutic potential. 

In this study, narciclasine appears to be associated with NF-B-dependent 

transcriptional regulation in keratinocytes. This is supported by the finding that pre-

treatment of keratinocyte reporter cells with narciclasine reduced subsequent TNFα-

stimulated degradation of IB (Fig. 3.27). These important findings suggest that 

narciclasine has potential as an anti-inflammatory agent. This finding is supported by 

the study of Furst (2016) which reported that narciclasine has anti-inflammatory action 

in vivo. Narciclasine also inhibited transcriptional regulation by AP-1 (Fig. 3.28). 

In conclusion, narciclasine was isolated for the first time from P. tortuosum. Also,  was 

identified as the active component. It is shown to have both anticancer and anti-

inflammatory activity, which can be attributed to the importance of the Pancratium 

species and their contribution to chemistry and pharmacological activity.  
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CHAPTER 4: Bio-assay guided isolation of 

anticancer/anti-inflammatory compounds from 

Gomphocarpus sinaicus 

4.1 Introduction 

4.1.1 Apocynaceae family 

Apocynaceae is one of the largest flowering plant families comprising tropical trees, 

shrubs, and vines. One of the distinctive features of this family is the production of 

milky saponins (glycosides in which sugars are conjugated to a steroid or a triterpenoid 

moiety) from almost all its species. This family has five sub-families called 

Rauvolfioideae, Apocynoideae, Periplocoideae, Secamonoideae and Asclepiadoideae 

(known as Asclepiadaceae) and contains approximately 424 genera and more than 

2000 species (Lawrence, 1951). The family is primarily distributed in the tropics and 

sub-tropical zones (Ping-tao et al., 1996).   

This family is one of the most important families in the plant kingdom due to its multi-

medicinal uses and is a rich source of food, poisons, and drugs. The family has been 

used traditionally and in conventional medicine. In Indian, Chinese, and Thai folklore 

medicine, species of this family are used to treat various of diseases such as, 

gastrointestinal ailments, fever, malaria, pain, diabetes, skin, and ecto-parasitic 

diseases. Species of this family have been reported to possess anticancer properties. 

These include Catharanthus, Nerium, Plumeria, Tabernaemontana, Ichnocarpus and 

Catharanthus roseus (El-Sayed and Cordell, 1981, Noble, 1990, Gajalakshmi et al., 

2013). Other uses of species of this family are for timber and as ornamentals. 

Extensive phytochemical work has been undertaken on many species of the 

Apocynaceae family. These studies have reported an abundance of a variety of 

compounds type, mostly are alkaloids, terpenoids, steroids, flavonoids, glycosides, 

simple phenols, lactones, and hydrocarbons (Fu et al., 2005, Wong et al., 2013, Zhang 

et al., 2019). The types of alkaloids that have been reported and isolated from different 

plant species are indole, iboga and vinca alkaloids. For example, eleven indole 

alkaloids extracted from leaves, flowers and stems of Tabernaemontana divaricata 
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have been evaluated and shown to possess anti-bacterial activity  (Arambewela and 

Ranatunge, 1991, Kam et al., 1993). In addition, well over a hundred alkaloids from 

different parts of Catharanthus roseus have been reported to possess anticancer and 

anti‐hypertensive activities (van Doorn et al., 2004). The alkaloids, reserpine and 

rescinnamine (Figure 4.1) have been isolated from this family and have been used for 

hypertension. Cardiac glycosides have also been isolated (Lemieux et al., 1956, Fife 

et al., 1960, Lucky and Islam, 2019). Terpenes and their derivatives are present in 

many members of the family. For example, the Carissa genus contains high amounts 

of different terpenoids, including mono-, sesqui- and triterpenoids. Among all the 

genus species, Carissa carandas has the highest terpenoids contents, with the flowers 

containing an abundance of monoterpenes (Zaki et al., 1981), while the roots and 

flowers are rich in the sesquiterpenes (Singh and Rastogi, 1972). In contrast, the 

leaves, fruits, and flowers are rich in triterpenes (Pakrashi et al., 1968, Naim et al., 

1985, Naim et al., 1988). Carrisone is a sesquiterpene whereas lupeol and oleanolic 

acid are triterpenes which exhibit anti‐inflammatory activity against nitric oxide, 

tumour necrosis factor‐α and interlukin‐1 (Itankar et al., 2011). On the other hand, 

carandinol, an isohopane‐type triterpenoid isolated for the first time from Carissa 

carandas leaves, showed a significant cytotoxic effect against HeLa, 3T3, and PC‐3 

cancer cell lines (Begum et al., 2013). 

Cardiac glycosides are a major class of glycosides that are broadly used in the 

treatment of heart failure. The two genera Thevetia and Nerium are reported to contain 

the highest levels of glycosides. Kaneroside and neriumoside are two cardiac 

glycosides (Figure. 4.1) that were isolated from the leaves of Nerium oleander. 

Cardenolides, a sub-class of cardiac glycosides, were also found in Nerium oleander 

and Thevetia peruviana. The cardiac glycosides isolated from N. oleander include 

odoroside H, neridiginoside, nerizoside and neritaloside and have been reported to 

exhibit central nervous system‐depressant activity in mice (Begum et al., 1999). In 

addition, the isolated cardiac glycoside from T. peruviana including neriifolin , 

peruvoside and thevefolin (Figure 4.1) have been screened for their ability to overcome 

TRAIL (tumour necrosis factor‐related apoptosis‐inducing ligand) resistance, which is 

a feature of cancer cells. These studies demonstrated that thevefolin  (Figure 4.2) was 
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effective against TRAIL resistance in human gastric adenocarcinoma cells, thereby 

enabling effective cytotoxic activity against cancer cells (Miyagawa et al., 2009). 

4.1.2 Gomphocarpus sinaicus (Asclepias sinaica) 

The South Sinai Mountain range contains the largest biodiversity in Egypt and a large 

area of this region was declared the Saint Katherine Protectorate in 1996. Due to its 

geomorphologic formations and the wide variation in climate, it has a unique type of 

vegetation. Indeed, 44% of Egypt’s endemic plants are present in the Saint Katherine 

Protectorate making it the most unique floristically diverse spot in the Middle East. 

Approximately 1261 species have been recorded in Sinai (Boulos, 1995) of which 472 

plant species grow in south Sinai (Shaltout et al., 2004) and  of these 19 species are 

endemic (Boulos, 1995).  

Sinai Bedouins use desert plants widely in their habitats. Several hundred medicinal 

plant species found in the Sinai Peninsula have been identified and reported their 

usages in the ethnobotanical literature (Bailey and Danin, 1981, Boulos, 1983). Their 

documented medicinal uses by Sinai Bedouins are as anti-bacterial and anti-fungal 

agents, and for curing aliments such as wounds, cuts, sores, colds, coughs and 

diarrhoea (Khafagi and Dewedar, 2000). 

G. sinaicus is a perennial shrub and the only Middle Eastern member of the mainly 

African genus Gomphocarpus (Goyder and Nicholas, 2001) and also placed as the 

well-known New World genus Asclepias (Boulos, 2000). It occurs in the south Sinai 

governorate in Egypt and is a relatively common plant in the bottom of Wadi Arbaein 

in the Saint Katherine Protectorate where it is patchily distributed along the wadi floor 

at low densities. It occurs in some wadis but not others and is largely absent from the 

highest wadis.  

G. sinaicus is known for its toxicity to man and animals, owing to the high 

concentration of cardiac glycosides (El-Askary et al., 1995a). It was stated that insects 

of several orders segregate cardenolides from their milkweed food plants, where the 

stored compounds act as a source of protection for these insects against predators 

(Seiber et al., 1978, Elbanna et al., 2009). In Saudi Arabia, the whole plant G. sinaicus 

is used traditionally as a decoction in haemorrhagic (bleeding) conditions including 
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rhinorrhagia (nosebleed) and metrorrhagia (irregular menstruation) (Youssef, 2013). 

The juices of G. sinaicus in Egypt are also used externally to heal skin diseases (El-

Seedi et al., 2013). 

The main cardenolide glycoside in all plant parts is reported to be 5, 6 - 

dehydrocalotropin. Similar concentrations of this glycoside are found in the various 

plant tissues, although seeds and roots have a lower concentration (El-Askary et al., 

1995b). The cardenolide glycoside and cardenolide genin with predicted structures, 

15-hydroxyl-3,4,5,6-dehydrocalotropin and 3,4,5,6-dehydrocalotropin, respectively 

(Figure 4.3 and Figure 4), were isolated from G. sinaicus (Abbassy et al., 2012). Both 

compounds have been assessed for their anti-fungal activity and exhibit potential as 

fungicides. Activity-guided fractionation of G. sinaicus methanol extract yielded six 

cardenolides, included: 7,8-dehydrocalotropin , calotropin, coroglaucigenin, 3-(6-

deoxy-β-allopyranoside)-19-acetate and frugoside-19-acetate. Other cardenolides 

such as, 15β-hydroxy-5,6-dehydrocalotropin, coroglaucigenin and 3-(6-deoxy-β-

allopyranoside)-19-acetate, were isolated by chloroform extraction of the stems of G. 

sinaicus. 5,6-dehydrocalotropagenin and 16α-hydroxy-5,6-dehydrocalotropin were 

also isolated and identified (El-Askary et al., 1995a). In addition, a methanol extract 

of G. sinaicus, revealed the presence of flavonoids (Heneidak et al., 2006) including 

quercetin glycoside (quercetin-O-di-rhamnosyl-hexoside, quercetin-3-O-pentosyl-

hexoside, quercetin-3-O-rutinoside, rutin, kaempferol, 3-O-rutinoside and 

isorhamnetin-3-O-rutinoside. The de-fatted ethanolic extract of G. sinaicus caused a 

significant reduction in the rat paw volume (***p<0.001) indicating that this extract 

exhibits anti-inflammatory activity. In addition, the administration of the G. sinaicus 

de-fatted ethanolic extract at high concentration enhanced glucose, liver enzyme and 

lipid components in diabetic rats  (El-Batran et al., 2006).  
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Figure 4. 1: Structures of some isolated compounds from Apocynaceae and G. 

sinaicus.  
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Figure 4. 2: Structures of some isolated compounds from Apocynaceae and G. 

sinaicus.  
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Figure 4. 3: Structures of some isolated compounds from Apocynaceae and G. 

sinaicus.  

 



 

152 

 

 

Figure 4. 4: Structures of some isolated compounds from Apocynaceae and G. 

sinaicus. 

4.2 Results 

Previous screening of the various plant crude extracts revealed that G. sinaicus 

contains potential anticancer compound(s) against MDA-MB-231 and MCF7-L breast 

cancer cell lines. This was evidenced by the ability of the crude extract to reduce DNA 

synthesis, modulate SK1 and Des1 protein expression and induce apoptosis; indicated 

by PARP cleavage (Figures 3.8 and 3.9). Therefore, the extract was subjected to 

fractionation in order to isolate the active component(s) with respect to these activities 

in cancer cells.   

4.2.1 Fractionation of G. sinaicus (Gs) crude extract 

The G. sinaicus crude extract was fractionated using flash column chromatography as 

described in the methods (section 2.2.2). This yielded four fractions that contained 

compounds with different polarity in 50% (v/v) ethyl acetate (Gs2), 100% (v/v) ethyl 

acetate (Gs3), 50% (v/v) methanol (Gs4) and 100% (v/v) methanol (Gs5). The dry 

weight of starting material for G. sinaicus was 30 g. The yields and fraction weight 

and dryness are presented in Table 4.1. 

Table 4. 1: G. sinaicus  fractions dry weights: 

G. sinaicus fraction Solvent Dry weight/g 

Gs 2 50% (v/v) ethyl acetate  7.9701  

Gs 3 100% (v/v) ethyl acetate  6.3049  

Gs 4  50% (v/v) MeOH  5.1456  

Gs 5 100% (v/v) MeOH  9.9156  
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4.2.2 Effect of G. sinaicus fractions on DNA synthesis and protein 

markers 

The Gs fractions (Gs 2– Gs5) were assessed for their ability to inhibit [3H]-thymidine 

incorporation into DNA. As in previous experiments, two concentrations, 1µg/ml and 

5µg/ml were used and compared with the vehicle control (0.05% (v/v) DMSO). 

Treatment of MDA-MB-231 cells with Gs3 fraction (100% (v/v) ethyl acetate) at 1 

µg/ml was the most effective at reducing DNA synthesis compared with the other 

fractions (Figure 4.5 A) and this was concentration-dependent. In contrast, the Gs5 

(100% (v/v) MeOH) fraction had no effect with increasing the concentration (Figure 

4.5 B). Treatment of MDA-MB-231 cells with either Gs2, Gs3 or Gs4 reduced SK1a 

and Des1 expression and Gs3 was the most effective at inducing PARP cleavage 

(Figure 4.5C). Gs5 removed Des1 but was without effect on SK1. 

All four Gs fractions induced inhibition of DNA synthesis in MCF-7L cells with Gs3 

(100% (v/v) ethyl acetate) fraction being the most effective and which almost 

abolished DNA synthesis at 5 µg/ml concentration (***p<0.001) (Figure 4.6 A and 

Figure 4.6 B). Inhibition of DNA synthesis was concentration-dependent (Figure. 4.6 

A and 4.6 B). The fractions had little effect on SK1b expression but, with the exception 

of Gs5, reduced the expression of SK1a and SK1c, while the Gs3 fraction also reduced 

Des1 expression and induced PARP cleavage. There was a minor effect of Gs2, Gs4 

and Gs5 on PARP cleavage (Figure 4.6 C), indicating that the effects on PARP 

cleavage by Gs3 might be linked to removal of both Des1 and SK1a, b. 
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Figure 4. 5:  Effect of G. sinaicus fractions on DNA synthesis, SK1, Des1 and PARP cleavage in MDA-MB-231 cells.  

Quiescent MDA-MB-231 cells were treated with (A) G. sinaicus fractions (1 µg/ml) or (B) G. sinaicus fractions (5 µg/ml) (vehicle control 

0.05% (v/v) DMSO) for 16 h and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine into newly 

synthesised DNA was measured as described in Methods (section 2.2.14). Data are expressed as percentage of control and represent mean 

+/- SD of combined date from 3 experiments. ***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc test). (C) SK1, Des1 and 

PARP cleavage detection: quiescent MDA-MB-231 cell were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 µM) or 5 

µg/ml of each fraction for 24 h. Cell lysates were separated by SDS-PAGE and immunoblotted for SK1, Des1 and PARP according to 

methods (section 2.2.15- 2.2.17). Blots were then stripped and re-probed for GAPDH to check for similar protein loading. 
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Figure 4. 6:  Effect of G. sinaicus  fractions on DNA synthesis, SK1, Des1 and PARP cleavage in MCF7/L cells. 

Quiescent MCF7/L cells were treated with (A) G. sinaicus  fractions (1 µg/ml) or (B) G. sinaicus  fractions (5 µg/ml) (vehicle control 0.05% 

(v/v) DMSO) for 16 h  and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine into newly synthesised 

DNA was measured as described in Methods (section 2.2.14). Data are expressed as percentage of control and represent mean +/- SD of 

combined data from 3 experiments. ***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc test). (C) SK1, Des1 and PARP 

cleavage detection: quiescent MCF7L cells were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 µM) or 5 µg/ml of each 

fraction for 24 h. Cell lysates were separated by SDS-PAGE and immunoblotted for SK1, Des1 and PARP according to methods (section 

2.2.15 - 2.2.17). Blots were then stripped and re-probed for GAPDH to check for similar protein loading. 
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4.2.3 G. sinaicus fraction 3 sub-fractionations: effect of Gs 3 sub-

fractions on DNA synthesis and protein markers. 

Based on previous results of G. sinaicus fractions, sub-fractionation, and separation of 

Gs3 (100% (v/v) ethyl acetate) fraction was performed to further purify active 

compounds. Using silica column chromatography as described in Methods (section 

2.2.4), Gs3 yielded six sub-fractions named; Gs3.1, Gs3.2, Gs3.3, Gs3.4, Gs3.5 and 

Gs3.6. These were then tested for their effect on DNA synthesis (at 1 and 5 µg/ml) and 

on SK1 and Des1 expression and PARP cleavage at 5 µg/ml in both MDA-MB-231 

and MCF7/L cell lines.  

Treatment of MDA-MB-231 cells with Gs3.1, Gs3.2, Gs3.3 and Gs3.4 sub-fractions 

(1 and 5 µg/ml) reduced DNA synthesis (Figure 4.7 A) in a concentration-dependent 

manner (Figure 4.7 B). There was a small reduction with Gs3.5 fraction at 5 µg/ml and 

no effect of Gs3.6. Treatment of MDA-MB-231 cells with; Gs3.1, Gs3.2, Gs3.3 and 

Gs3.4 reduced SK1a expression, while Gs3.5 and Gs3.6 had no effect. All the fractions 

reduced Des1 expression, while only Gs3.1, Gs3.2, Gs3.3 and Gs3.4 induced PARP 

cleavage (Figure 4.7 C). 

Treatment of MCF-7L cells with Gs3.1, Gs3.2, Gs3.3 and Gs3.4 sub-fractions (1 and 

5 µg/ml) reduced DNA synthesis in a concentration-dependent manner (Figure 4.8 A 

and B). Gs3.1- Gs3.3 had little effect on SK1 expression but did reduce Des1 

expression (Figure 4.8 C) and had a modest effect on PARP cleavage thereby 

suggesting that the active compounds in the sub-fractions can act as anticancer or anti-

inflammatory agents.  
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Figure 4. 7: Effect of G. sinaicus sub-fractions on DNA synthesis, SK1, Des1 and PARP cleavage in MDA-MB-231 cells.  

Quiescent MDA-MB-231 cells were treated with (A) G. sinaicus sub-fractions (1 µg/ml) or (B) G. sinaicus sub-fractions (5 µg/ml) (vehicle 

control 0.05% (v/v) DMSO) for 16 h and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine into 

newly synthesised DNA was measured as described in Methods (section 2.2.14). Data are expressed as percentage of control and represent 

mean +/- SD of combined data from 3 experiments *P<0.01, **p<0.001, ***p<0.0001 vs control (one-way ANOVA with Dunnett’s post-

hoc test). (C) SK1, Des1 and PARP cleavage detection: quiescent MDA-MB-231 cells were treated with vehicle control (0.05% (v/v) 

DMSO), inhibitor SKi (10 µM) or 5 µg/ml of each fraction for 24 h. Cell lysates were separated by SDS-PAGE and immunoblotted for SK1, 

Des1 and PARP according to methods (section 2.2.15 - 2.2.17). Blots were then stripped and re-probed for GAPDH to check for similar 

protein loading. 
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Figure 4. 8:  Effect of G. sinaicus sub-fractions on DNA synthesis, SK1, Des1 and PARP cleavage in MCF7/L cells.  

Quiescent MCF7/L cells were treated with (A) G. sinaicus sub-fractions (1 µg/ml) or (B) G. sinaicus sub-fractions (5 µg/ml) (vehicle control 

0.05% (v/v) DMSO) for 16 h and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine into newly 

synthesised DNA was measured as described in Methods (section 2.2.14). Data are expressed as percentage of control and represent mean 

+/- SD of combined data from 3 experiments. *p<0.05, ***p<0.0001 vs control (one-way ANOVA with Dunnett’s post-hoc test) (C) SK1, 

Des1 and PARP cleavage detection: quiescent MCF7/L cell were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 µM) 

or 5 µg/ml of each fraction for 24 h. Cell lysates were separated by SDS-PAGE and immunoblotted for SK1, Des1 and PARP according to 

methods (section 2.2.15 - 2.2.17). Blots were then stripped and re-probed for GAPDH to check for similar protein loading. 
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4.2.4 Purification of Gs3.2 sub-fraction: effect of Gs3.2 sub-fractions 

on DNA synthesis and protein markers 

From previous experiments, Gs3.2 has shown the greatest inhibition of DNA synthesis 

with inducing PARP cleavage against both breast cancer cell lines. Hence, purification 

and separation of the Gs3.2 sub-fraction was performed to isolate the active 

compound(s) using preparative TLC as described in Methods (section 2.2.6) with 

solvent system (ethyl acetate: MeOH 3: 0.5). This process yielded four sub-fractions 

named, Gs3.2.1, Gs3.2.2, Gs3.2.3 and Gs3.2.4 as shown below (Table 4.2).  

Table 4. 2: G. sinaicus, Gs 3.2 sub-fractions dry weights: 

Gs 3.2 sub-fractions Dry weight/ µg 

Gs 3.2.1 46.2  

Gs 3.2.2 23.1  

Gs 3.2.3 7  

Gs 3.2.4 2  

 

Treatment of MDA-MB-231 cells with the four Gs3.2 sub-fractions reduced DNA 

synthesis at both 1 g/ml and 5 g/ml (Figure 4.9 A and 4.9 B). Their effects on SK1 

and Des1 protein levels were also examined. In this study, SKi was used for 

comparison with Gs3.2 sub-fractions, in combination with the proteasomal inhibitor, 

MG 132, which limits protein degradation.  

MDA-MB-231 cells were treated with SKi (10 µM) and  each of the Gs3.2 sub-fraction 

(5 µg/ml) for 24 h, either with or without pre-treatment with MG132 (10 µM, 30 min). 

Treatment of MDA-MB-231 cells with SKi reduced SK1a expression, which was 

prevented by pre-treatment with MG132 (Figure 4.9 C). Gs3.2.1, Gs3.2.3 or Gs3.2.4 

also induced a reduction in SK1a expression, which was prevented by pre-treatment 

with MG132. Gs3.2.2 had no effect on SK1 expression. All the fractions induced a 

reduction in Des1 expression, but this was not prevented by MG132 (Figure 4.9C).  

Treatment of MCF7-L cells with all Gs3.2 sub-fractions reduced DNA synthesis at 

both concentrations (1 µg/ml and 5 µg/ml) (Figure 4.10 A and Figure 4.10 B). 
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Treatment of MCF-7L cells with Gs3.2.1, Gs3.2.2 or Gs3.2.3 induced a clear decrease 

in SK1a-c expression and this reduction was prevented by pre-treatment with MG132. 

These three fractions also induced a reduction on Des1 expression, but pre-treatment 

with MG132 did not prevent this (Figure 4.10 C). Gs3.2.4 had little effect on SK1 or 

Des1 expression in MCF7-L cells. 
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Figure 4. 9: Effect of Gs 3.2 sub-fractions on DNA synthesis, SK1 and Des1 in MDA-MB-231 cells.  

Quiescent MDA-MB-231 cells were treated with (A) Gs3.2 sub-fractions (1 µg/ml) or (B) Gs3.2 sub-fractions (5 µg/ml) (vehicle control 

0.05% (v/v) DMSO) for 16 h and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine into newly 

synthesised DNA was measured as described in Methods (section 2.2.14). Data are expressed as percentage of control and represent mean 

+/- SD of combined data from 3 experiments ***P<0.0001 vs control (one-way ANOVA with Dunnett’s post-hoc test). (C) SK1 and Des1 

detection: quiescent MDA-MB-231 cells were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 µM) or 5 µg/ml of each 

sub-sub-fraction for 24 h after pre-treatment with or without MG132 (10 µM, 30 min). Cell lysates were separated by SDS-PAGE and 

immunoblotted for SK1and Des1 according to methods (section 2.2.15 - 2.2.17). Blots were then stripped and re-probed for GAPDH to check 

for similar protein loading. 
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Figure 4. 10:  Effect of Gs3.2 sub-fractions on DNA synthesis, SK1 and Des1 in MCF7-L cells.  

Quiescent MCF7-L cells were treated with (A) Gs3.2 sub-fractions (1 µg/ml) or (B) Gs3.2 sub-fractions (5 µg/ml) (vehicle control 0.05% 

(v/v) DMSO) for 16 h and then [3H]-thymidine (0.5 µCi/ml) added for a further 5 h. Incorporation of [3H] thymidine into newly synthesised 

DNA was measured as described in Methods (section 2.2.14). Data are expressed as percentage of control and represent mean +/- SD of 

combined data from 3 experiments ***P<0.0001 vs control (one-way ANOVA with Dunnett’s post-hoc test). (C) SK1 and Des1 detection: 

quiescent MCF7-L cells were treated with vehicle control (0.05% (v/v) DMSO), inhibitor SKi (10 µM) or 5 µg/ml of each sub-sub-fraction 

for 24 h after pre-treatment with or without MG132 (10 µM, 30 min). Cell lysates were separated by SDS-PAGE and immunoblotted for 

SK1and Des1 according to methods (section 2.2.15 - 2.2.17). Blots were then stripped and re-probed for GAPDH to check for similar protein 

loading. 
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4.2.5 Effect of Gs 3.2.1 and Gs 3.2.2 on NFΚB and AP-1 transcriptional 

activity  

Gs 3.2.1 and Gs 3.2.2 were also assessed for their effect on inflammatory signalling. 

This was achieved using NCTC/NFΚB reporter keratinocytes. Initially, the effect of  

TNFα on NFΚB-driven transcriptional activity was measured using a luciferase 

reporter assay. A comparison was made of the effects of Gs 3.2.1 and Gs 3.2.2. Pre-

treatment of the cells with Gs 3.2.1 (5 ug/ml, 30 min) significantly reduced TNF-

stimulated NFΚB transcriptional activity (***p<00.1). In contrast, pre-treatment of the 

cells with Gs 3.2.2 (5 ug/ml, 30 min) had no effect (Figure 4.11 A).   

A second luciferase reporter cell line was used to investigate the effect of Gs 3.2.1 and 

Gs 3.2.2 on the transcriptional regulation of AP-1 in NCTC-AP-1 reporter 

keratinocytes. NCTC-AP-1 cells were treated with PMA at 100 nM.  PMA, which is a 

direct activator of PKC that promotes AP-1 transcriptional activity. Pre-treatment of 

the NCTC-AP1 cells with Gs 3.2.1 (5 µg/ml, 30 min) or Gs 3.2.2 (5 g/ml, 30 min) 

reduced PMA-stimulated AP-1 transcriptional activity (Figure 4.11 B). 
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Figure 4. 11: Effect of Gs 3.2.1 and Gs 3.2.2 on TNFα-stimulated NFΚB signalling and on PMA-stimulated AP-1- signalling.  

Luciferase reporter assay (A) Quiescent NCTC-NFΚΒ reporter cells were pre-treated with Gs 3.2.1 (5 µg/ml for 30 min) or Gs 3.2.2 (5 µg/ml 

for 30 min) or vehicle alone (DMSO 0.05% (v/v)) prior to stimulation with TNFα (15 ng/ml) for 4 h.  Data are expressed as a % of control ± 

SEM for n=3 or more experiments. **p<0.01 vs control (one-way ANOVA with Dunnett’s post-hoc test); +++p<0.001 and ns (not significant) 

vs DMSO/TNFα sample (one-way ANOVA with Bonferroni’s post-hoc test). (B) Quiescent NCTC-AP-1 reporter cells were pre-treated with 

Gs 3.2.1 (5 µg/ml for 30 min), Gs 3.2.2 (5 µg/ml for 30 min) or with vehicle alone (DMSO 0.05% (v/v)) prior to stimulation with PMA (100 

nM) for 4 h before luminescence activity was measured. Data are expressed as a % of control ± SEM for n=3 or more experiments. 

***p<0.001 vs control (one-way ANOVA with Dunnett’s post-hoc test); +++p<0.001 vs DMSO/PMA sample (one-way ANOVA with 

Bonferroni’s post-hoc test). 
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4.2.6 Structure elucidation of Gs 3.2.1 sub-fraction: 

NMR analysis of Gs 3.2.1 sub-fraction revealed that this sample was a mixture of two 

principal components that were similar in structure and identified (as detailed below) 

as humistratin (compound 1) and calotropin (compound 2) or its stereoisomer, calactin 

(compound 3) (Figure 4.34). Based on 1H-NMR integrals, the ratio of the two 

compounds in the sample is approximately 1.5: 1.00. The DEPT q spectrum indicated 

four carbonyl carbons at δC 177.57, 176.92, 208.23 and 209.42. There are also 16 

oxygenated carbons ranging from 69.35 to 97.65 ppm and four methyl carbons at δC 

16.19, 16.40 and 21.32 (2X) ppm. In addition, there are six olefinic carbons at δC 

177.57, 117.89, 176.92, 118.21, 121.67 and 141.00 ppm. The rest of the signals are of 

methylene carbons which overlapped between δC 27.40 to 53.95 ppm (Figure 4.12-

4.15). The connections between the carbons and directly attached protons were 

elucidated using the HSQC spectrum (Figure 4.16-4.20). The structures were further 

probed with heteronuclear multi-bond correlations and homonuclear 1H-13C 

correlations in 2D spectra (HMBC, Figures 4.24–4.29; and 1H-1H-COSY, Figure 4.30-

4.32). From the 1H-NMR spectrum, 6 proton signals were identified for the E ring of 

the two compounds [δ 5.05, 4.94 (H-21a/b) and 5.90 (H-22) in compound 1; δ 5.10, 

4.98 (H-21a/b) and 5.96 (H-22) in compound 2/3] (Figure 4.18-4.20). Furthermore, 

each of the 3 protons of each ring showed cross peaks to neighbouring carbons (H-

21a,b/C-22 and H-22/C-21, H-22,H-21/C-23) in the long rang coupling of the HMBC 

spectrum (Figure 4.21- 4.26). In addition, each showed correlations between H-21a/H-

22 and H-21b/H-22 in the long rang coupling 1H-1H-COSY (Figure 4.21-4.223) which 

confirmed the presence of two α, β-unsaturated γ-lactone moieties. Each moiety 

labelled as Ring E (Figure 4.34) belongs to two different compounds (1 and 2/3), and 

these account for four of the six alkene resonances, therefore. The remaining two 

olefinic carbons, giving signals at δC 141.00 and 121.67, are due to the presence of an 

additional trisubstituted double bond at the connection of rings B and C, and this is 

unique to compound 1. In addition, the 1H-NMR spectrum showed two highly 

deshielded protons at δH 10.02 and 9.78 (identified as 19-OCH, in compound 1 and 

2/3 respectively), which indicated the presence of an aldehyde functional group in both 

compounds. These resonances correspond to the two most downfield CH signals in the 
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DEPT q spectrum (δC 208.23 and 209.42), the chemical shift of which is also highly 

characteristic for aldehydes.  

Significantly, the 1H-NMR spectrum suggested the presence of two anomeric centres 

giving rise to singlet resonances, at δH 4.46 and 4.45 for compound 1 and compound 

2/3 respectively, and these were shown from the HSQC spectrum to be directly 

attached to C-1` carbons with resonances at δC 97.39 and 97.31 for the two compounds. 

Multi-bond correlations from the H-1` resonances to closely paired deshielded 13C 

resonances for C-2` (δC 92.65/92.68), C-3` (δC 73.91/73.96) and C-5` (coincident for 

the two compounds at δC 69.35) were observed in the HMBC spectrum. These 

resonances were consistent with the presence of a 2-oxopyranose carbohydrate-

derived ring G structure. Additional multi-bond correlations observed in the HMBC 

spectrum were consistent the proposed ring G structure, notably for the following cross 

peaks: C-1`/H-5`, C-2`/H-6`, C-2`/H-3`, C-3`/H-5`, C-5`/H-3` (Figure 4.27-4.29). 

Cross-ring connectivity was established through a multi-bond C-3/H-1` correlation 

and additional cross peaks were observed consistent with the Ring A structure: C-2/H-

3, C-3/H-1b, C-2/H-1a,b,  C-2/H-5, C-3/H-6b (Figure 4.17). For the oxygenated 

methine resonances — CH-2, CH-3, CH-1`, CH-3` and CH-5` — it is interesting to 

note that the hydrogens exhibit very close correspondence for the two compounds 

except for the two H-2 signals (δH 4.21 and 3.92). This may potentially reflect a 

difference in the ring G stereochemistry at C-3` or/and the stereochemistry at the 

junction of rings F and G.  

Cross-ring connectivity was also established from the HMBC spectrum for rings E and 

D. Thus, in ring E correlations were seen from C-20 to the hydrogens of the CH2-16 

and CH-17 centres in ring D (Figure 4.26). Additional connections were deduced for 

the ring junction quaternary carbons between rings C and D. In this case, correlations 

were observed from C-13 (δH 51.59/50.66) to H-17 (δH 2.82/2.92) and from C-14 (δH 

85.65/85.74) to H-17 (δH 2.821/2.92) in both compounds, thereby fixing the position 

of the carbinol centre at the ring C/D fusion (Figure 4.24 and 4.29). Correlation was 

also observed from the C-13 centres to the hydrogens of the attached bridgehead 

methyl at position-18 (Figure 4.27). In the case of compound 1, the C-14 carbinol 

carbon was also clearly correlated with the olefinic H-7 resonance (δH 6.11), while C-
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7 (δC 121.67) and C-8 (δC 141.00) correlated with H-9 (δH  2.40) (Figure 4.27). For 

both compounds, correlations were observed from the aldehydic carbon centres (C-19; 

δC 208.23/209.42) to both hydrogens of the CH2-1 methylenes (ca. δH 2.4 and 1.1 for 

the H-1a and H-1b resonances in both compounds) (Figure 4.24-4.29). The latter 

protons, as well as the aldehydic protons correlated to the respective quaternary C-10 

centres at δC 53.39 and 54.01 for the two compounds.  

Taken together, the structural elucidation establishes the identity of compound 1 as the 

cardenolide glycoside, 7,8-dehydro-calotropin (humistratin, Figure 4.34). The analysis 

was reinforced by acquisition of a 1H-1H COSY spectrum (Figure 4.30-4.32) from 

which selected correlations are shown in Table 4.3. The stereochemical assignment in 

the structure is made on the basis of literature precedent (Kupchan et al., 1964, Singh 

and Rastogi, 1969, Nishio et al., 1982, Cheung et al., 1989, Abdel-Azim et al., 1996), 

however, and further evaluation is needed from NOESY spectroscopic analysis of the 

pure compound to conclusively prove this. 

The second compound is clearly closely related to humistratin (1) but lacks the 7,8-

double bond, and this gives rise to some differences in the chemical shifts of the 

carbons and protons of rings A, B and C (Table 4.4). This compound is likely to be 

calotropin (Figure 4.34, 2) itself or its stereoisomer, calactin (Figure 4.34, 3). Again, 

NOESY spectroscopic analysis of a pure sample is needed to confirm the exact identity 

(2 vs 3) for this compound.  

The structure elucidation of the two principal compounds in the Gs 3.2.1 sample, as 

humistratin (1) and calotropin /calactin (3) (Helbig et al., 2003), was further supported 

by LCHRMS, which revealed the presence of the appropriate molecular ions 

(531.2593 (1), 533.2749 (2/3) (Figure 4.32). The NMR spectra for the sample do reveal 

the presence of a number of additional minors, unidentified substances, but the bulk of 

the sample comprises the compounds 1 and 2/3, which are present in 1.5: 1.0 ratio 

(based on integration of the aldehydic resonances in the 1H-NMR spectrum). 
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Table 4. 3: Spectral data summary for Compound 1 in Gs 3.2.1: humistratin. 

s=singlet, brs= broad singlet, d = doublet, dd= doublet of doublet, t= triplet, 

q=quartet, m= multiplet signals. It is hard to measure the J value cause of the 

overlapping of the compound’s protons. 

No. δH ppm δC ppm HMBC 1H-1H COSY 

1 1.14, 2.47 35.95 H-19, H-10, H-9  

2 3.85 70.28 H-3, H-1b, H-5 H-1a, H-1b, H-3 

3 3.92 73.24 H-1b, H-6b, H-1` H-5, H-4b, H-1a 

4 1.19, 1.81 34.30 H-5 H-5b 

5 1.91 39.93 H-9, H-11  

6 1.34, 2.32 30.42 H-4a, H-6a H-5 

7 6.11 121.67 H-6b H-6b 

8 - 141.00 H-6b  

9 2.40 45.55 H-1b, H-15a  

10 - 54.01 H-1a, b   

11 1.64 38.06 H-18 H-12a 

12 1.62, 1.59 39.76 H-18  

13 - 51.59 H-17, H-16a, b, H-12b, H-9, H-

11, H-18 

 

14 - 85.65 H-17, H-16b, H-9, H-18  

15 1.65,1.40 34.40   

16 2.23, 2.00 28.54   

17 2.84 51.78 H-22, H-16a, b- H-18  H-16a, H-12b, H-16b 

18 0.80 16.14   

19 10.02 209.42 H-1a, H-6b H-1 

20 - 177.89 H-16a, H-21, H-22  

21 4.94, 5.05 75.25 H-22, H-17  

22 5.90 117.89 H-21a, b, H-17  

23 - 177.57 H-21a, b, H-22, H-17, H-15b  

1` 4.46 97.39 H-5`  

2` - 92.65 H-1`, H-3`, H-4`b  

3` 3.60 73.91 H-1`, H-5`, H-4`a, H-6`  

4` 1.59, 1.75 39.51 H-3`, H-6` H-4`a 

5` 3.67 69.35 H-1`, H-6`, H-4`b H-4`a 

6` 1.24 21.39 H-5`, H-4`a  
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Table 4.4: Spectral data summary for Compound 2 in Gs3.2.1:  

calotropin/calactin 

S=singlet, brs= broad singlet, d = doublet, dd= doublet of doublet, t= triplet, 

q=quartet, m= multiplet signals . It is hard to measure the J value cause of the 

overlapping of compounds protons.  

No. δH ppm δC ppm HMBC 1H-1H COSY 

1 2.48, 1.11 36.76 H-19, H-10 H-5 

2 4.21 69.94 H-3, H-1b, H-5, H-4a H-1a, b 

3 3.92 72.65 H-1b, H-4a, H-5, H-1` H-1a, H-4b, H-5 

4 1.75, 1.58 39.59 H-6  

5 1.63 42.57 H-4a H-4a 

6 1.75, 2.18 26.35 H-6a, H-7a  

7 1.96, 2.16 27.95   

8 2.71 49.79 H-6a, H-1a H-6a 

9 2.41 45.63 H-5, H-11a, b, H-1a H-1a 

10 - 53.59 H-1a, b, H-9, H-4a, H-11a  

11 1.40, 1.48 33.48   

12 1.90, 1.10 43.28 H-11b, H-16a  

13 - 50.66 H-22  

14 - 85.74 H-18, H-17, H-16b  

15 1.70, 2.11 32.80   

16 2.27, 2.00 28.71 H-17  

17 2.92 51.60 H-22, H-12b, H-16b, H-18 H-12b, H-16a, H-15b 

18 0.82 16.56   

19 9.78 208.23 H-1a, H-6b H-1 

20 - 178.22 H-21, H-22  

21 5.10, 4.98 75.25 H-22, H-17  

22 5.96 118.21 H-21a, b- H-17  

23 - 176.92 H-21a, b – H-22, H-17  

1` 4.46 97.31 H-5`  

2` - 92.65 H-1`, H-3`, H-4`a  

3` 3.60 73.91 H-1`, H-5`, H-4`a, b, H-6` H-4`a 

4` 1.92, 1.67 39.82 H-3`, H-6`  

5` 3.68 69.43 H-1`, H-6`, H-4`b  

6` 1.24 21.39 H-5`, H-4`a  
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Figure 4. 12: DEPT q spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD 
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Figure 4. 13: DEPT q spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD- expansion-1 
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Figure 4. 14: DEPT q spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD- expansion-2 
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Figure 4. 15: DEPT q spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD- expansion-3 
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Figure 4. 16: HSQC spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD 
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Figure 4. 17: HSQC spectroscopic analysis of  Gs 3.2.1 sub-fraction in CD3OD- expansion-1 
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Figure 4. 18: HSQC spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD- expansion-2 
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Figure 4. 19: HSQC spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD- expansion-3 
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Figure 4. 20: HSQC spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD- expansion-4 
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Figure 4. 21: 1H-NMR of Gs 3.2.1 sub-fraction in CD3OD 
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Figure 4. 22: 1H-NMR of  Gs 3.2.1 sub-fraction in CD3OD-expansion-1 
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Figure 4. 23: 1H-NMR of  Gs 3.2.1 sub-fraction in CD3OD-expansion-2 
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Figure 4. 24: HMBC spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD 
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Figure 4. 25: HMBC spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD – expansion- 1 
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Figure 4. 26: HMBC spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD – expansion- 2 
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Figure 4. 27: HMBC spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD – expansion- 3 
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Figure 4. 28: HMBC spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD – expansion- 4 
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Figure 4. 29: HMBC spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD – expansion- 5 
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Figure 4. 30: 1H-1H COSY spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD 
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Figure 4. 31: 1H-1H COSY spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD-expansion-1 
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Figure 4. 32: 1H-1H COSY spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD-expansion-2 
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Figure 4. 33: NOESY spectroscopic analysis of Gs 3.2.1 sub-fraction in CD3OD 
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Figure 4. 34: Compounds isolated from Gs 3.2.1 sub-fraction 
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Figure 4. 35: LCHRMS of Gs 3.2.1 sub-fraction 
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4.3 Discussion 

The main finding of this study is that G. sinaicus and its fractions exhibit anti-

proliferative activity against MDA-MB-231 and MCF7-L breast cancer cells, 

suggesting that they contain compounds with anticancer activity. This agrees with 

previous studies of the same genus. The main compounds in Gs 3.2.1 are humistratin 

and calotropin, members of the cardenolide glycoside family. Indeed, previous studies 

have shown that cardenolide glycosides isolated from Asclepias curassavica exhibit 

strong cytotoxic activity against HepG2 and Raji cell lines (Li et al., 2009a). In 

addition, previous studies have utilised bio-guided fractionation of Asclepias subulata 

Decne (Rascon-Valenzuela et al., 2015) to measure the anti-proliferative activity on 

three human cancer cell lines (A549, LS180 and PC-3), one murine cancer cell line 

(RAW264.7) and one human normal cell line (ARPE-19). These studies demonstrated 

highly effective anti-proliferative activity of the four isolated cardenolide glycosides, 

namely 12,16-dihydroxicalotropin, calotropin, corotoxigenin-3-O-glucopyrano-side 

and desglucouzarin (Rascon-Valenzuela et al., 2015).   

1D and 2D spectroscopic analysis enabled the determination of the potential structures 

of the active components of Gs 3.2.1 sub-fraction. This analysis identified a mixture 

of four cardenolide glycosides. Two major compounds have been elucidated and are 

humistratin (compound 1) and calotropin (compound 2) or calactin (compound 3). 

Calotropin and calactin have the same structure with only stereochemistry differences. 

Confirmation of their structures could be resolved using NOESY of the pure 

compound. The structures are of agreement with studies published by Abdel-Azim  

(Abdel-Azim et al., 1996). 

The present study showed that the active mixture of Gs 3.2.1 sub-fraction, which has 

been identified as containing cardenolide glycosides, reduced DNA synthesis in 

MCF7-L and MDA-MB-231 breast cancer cell lines (Figure 4.9 A &B and Figure 4.10 

A & B). The Gs 3.2 sub-fraction (from which Gs 3.2.1 was derived) induced apoptosis 

as indicated by its ability to promote PARP cleavage (Figure 4.7 C and Figure 4.8 C). 

Many previous studies have isolated cardenolide glycosides either from 

Asclepiadaceae or other different plant families and have reported that cardenolide 

glycosides possess strong cytotoxic activity against different cancer cell types. For 
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example, toxicarioside E, F, G, and H are cytotoxic cardenolide glycosides with 

activity against SGC-7901 and SMMC-7721 cancer cell lines and which were isolated 

from the latex of Antiaris toxicaria (Dong et al., 2011). In addition, the 

dichloromethane extract of Calotropis gigantea Linn. leaves showed significant 

cytotoxic activity against many cancer cell types including non-small cell lung 

carcinoma (A549), colon carcinoma (HCT 116) and hepatocellular carcinoma (Hep 

G2). Further purification of this extract enabled identification of six cardenolide 

glycosides. Uscharin was the most active compound against all cancer cell types 

(Jacinto et al., 2011). Furthermore, three cardenolide glycosides isolated from 

Calotropis gigantea Linn bark also exhibited high inhibitory effect against A549 and 

HeLa cell lines (Van Khang et al., 2014). In addition, five cardenolide glycosides were 

isolated from the roots of Pergularia tomentosa, which belong to family 

Asclepiadaceae.  These compounds induced a dose-dependent reduction in cell growth 

of Kaposi’s sarcoma (KS) cells (Hamed et al., 2006). Therefore, many isolated 

cardenolide glycosides demonstrate anticancer properties, and this includes digoxin, 

which has anticancer activity in human breast cancer cell lines, MCF7 and MDA-MB-

231 cells (Winnicka et al., 2008) and increased apoptosis of a prostate cancer cell line 

in vitro. It is therefore significant that digoxin has been reported in clinical studies to 

be therapeutically effective against breast and prostate cancers (Platz et al., 2011).    

SK1 inhibitors have been reported to induce proteasomal degradation of SK1 in MCF7 

cells and LNCAP-AI cells (Lim et al., 2011b, McNaughton et al., 2016). In this study, 

it has been observed that the cardenolide glycoside mixture of Gs 3.2.1 reduced the 

expression of SK1, which was sensitive the proteasome inhibitor MG132. This 

indicates that cardenolide glycosides can induce the ubiquitin-proteasomal 

degradation of SK1. There are two mechanisms by which compounds induce the 

ubiquitin-proteasomal degradation of SK1. First, direct inhibitors bind to SK1 and 

induce a conformational change that enables ubiquitination by Kelch-Cul3 E3 ligase 

(Pyne et al., 2016a, Powell et al., 2019). Second, compounds can induce a direct 

activation of the proteasome and increased turnover of SK1. This is probably related 

to ER stress and ER associated proteasomal degradation. Further work is required to 

determine whether the effects of cardenolide glycosides on the ubiquitin-proteasomal 

degradation of SK1 is via a direct or indirect effect. 



 

196 

 

The cardenolide glycoside mixture of Gs 3.2.1 also reduced Des1 expression in both 

MDA-MB-231 and MCF-7 cells via a mechanism that was independent of the 

ubiquitin-proteasomal degradation pathway (Figure 4.9 C and Figure 4.10 C). Indeed, 

in MDA-MB-231 and MCF7-L cells, SKi also reduced Des1 expression via a 

mechanism insensitive to MG132. The effect on Des1 by the Gs 3.2.1 mixture is 

significant as others have shown that inhibition of Des1 induces anticancer activity 

(Aurelio et al., 2016). It remains to be determined whether the loss of Des1 is due to 

enhanced lysosomal protease action or altered gene transcriptional activity or post-

translational mRNA stability changes. 

Calotropin together with other isolated cardenolide glycosides from A. subulata, 

12,16-dihydroxycalotropin, corotoxigenin, 3-O-glucopyranoside and desglucouzarin, 

have been shown to highly induce anti-proliferative activity against lung 

adenocarcinoma cell line (A549), prostate cancer cell line (PC-3) and colon cancer cell 

line (LS180). The mechanism of cell death induced by cardenolides has been 

elucidated by Rascón-Valenzuela (Rascon-Valenzuela et al., 2016). These workers 

reported that the compounds induce apoptosis via the extrinsic pathway (activation of 

caspase- 8). However, others have shown that calotropin activates other signalling 

pathways involving casein kinase 1 α in colon cancer cells and this involves inhibition 

of Wnt signalling (Park et al., 2014a). Calotropin also induces cell cycle arrest by 

upregulating the expression of p27 and downregulating the G2/M proteins and cyclins 

A and B which leads to the inhibition of human chronic myeloid leukaemia K562 cell 

growth. In addition, calotropin induces downregulation of anti-apoptotic signalling 

and survival pathways, leading to caspase-3 activation and the induction of apoptosis 

(Wang et al., 2009). Calotropin also induces cell cycle arrest by decreasing the 

expression levels of CDK1 and CDK2 and promoting apoptosis by regulating the 

cytotoxic T lymphocyte-associated antigen – mediated TGFβ/ERK signalling pathway 

in lung cancer cells (Tian et al., 2018). These findings are consistent with the findings 

of the current study showing that calotropin inhibits DNA synthesis and promotes 

apoptosis of breast cancer cells. 

YAP (Yes-associated protein) has become a promising therapeutic target, as it has an 

important role in cell proliferation and survival. Indeed, de-regulation of YAP is 

correlated with many cancer types, such as breast and colon cancer. Recently, 
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calotropin has been shown to inhibit proliferation of colorectal cancer cells in vivo and 

in vitro, and activation of YAP by inducing down-regulation of LATS1, which 

subsequently blocks the Hippo pathway, and which is considered a key player in 

tumour biology (Zhou et al., 2019). It might also be significant that S1P can activate 

YAP (Cheng et al., 2018, Pyne and Pyne, 2020) and thus proteasomal degradation of 

SK1 by calotropin might impact YAP signalling via this mechanism. 

Additional evidence supporting anticancer activity by cardenolide glycosides was 

demonstrated with convallatoxin and peruvoside, which induced cytotoxic effect on 

MCF7 cells with a loss of colony formation and cell cycle arrest at G0/G1. Also, both 

compounds demonstrated concentration- and time-dependent differential effects in 

MDA-MB-468 on MDA-MB-231 cell lines. Both convallotoxin and peruvoside 

induce downregulation of p-Akt in both cell lines. However, they exert a differential 

effect on p-ERK, with activation in MCF7 cells and inhibition in MDA-MB-468 cells.  

Finally, both compounds enhance PARP cleavage and increase the expression of pro-

apoptotic protein phospho-p53, with a decrease in Bcl2 and XIAP (cell survival 

proteins) (Kaushik et al., 2017). 

An important finding of this study is that Gs 3.2.1 and Gs 3.2.2 have potential of anti-

inflammatory activity. This is supported by the finding that pre-treatment of 

keratinocyte reporter cells with Gs 3.2.1 reduced TNFα-stimulated NFB 

transcriptional activity (Figure 4.11). This finding is supported by the study of 

Sreenivasan et al. (2003), and which is supported by a previous study where oleandrin 

was shown to inhibit NFB and AP-1, which stimulated with different anti-

inflammatory stimuli, as well as its inhibitory effect on JNK and MEK activation 

(Manna et al., 2000). Ouabain and digitoxin, another two cardenolide glycosides, were 

reported to block activation of TNF α/ NFB pathways (Manna et al., 2000). 

Treatment of A549 NSCLC tumour cells with UNBS1450, a hemi-synthesised 

cardenolide for several hours deactivated NFB activity, via degradation of IBα 

(Mijatovic et al., 2006). activity similar effect was reported for human leukaemia cells 

(Juncker et al., 2011). The mechanism of oleandrin and digitoxin-induced blocking of 

the TNFα/ NFB pathway was investigated in HEK239 cells. Pre-treatment of cells 

transfected with Flag-tagged TNFR1 and HA-tagged TRADD with oleandrin and 
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digitoxin blocked the formation of Flag-TNFR1/HA-TRADD complexes whereas 

there was no effect of these two cardiac glycosides on the TNFα /TNFR1 interaction 

(Yang et al., 2005). Thus, both oleandrin and digitoxin have an anti-inflammatory 

effect on NFB and JNK pathways by blocking the initial upstream between TNFα-

stimulated TNFR1 and TRADD.  

In conclusion, G. sinaicus extracted cardenolides are highly active with anticancer and 

anti-inflammatory activities. The current study adds new findings about the potential 

activity of humistratin as an anti-inflammatory and anticancer agent as well as its effect 

against SK1 and Des1 expression proteins for the all the identified cardenolide 

glycosides. However, further purification of other active compounds is required.  
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Chapter 5: General discussion 

This current study involved screening and compound identification using plants 

sourced from Egypt during field work.  First, screening plant species was undertaken 

to identify extracts with anticancer activity against breast cancer cell lines. Second, a 

fractionation, compound isolation and identification strategy were undertaken to 

identify potential anticancer/anti-inflammatory compounds. This was guided by 

various bioassays of marker proteins, such as SK1/Des1. In recent years, sphingolipid 

metabolism has been extensively studied and shown to be de-regulated in many 

diseases, including cancer (Hannun and Obeid, 2008b, Pyne and Pyne, 2010). Des1, 

SK1 and SK2 are three vital enzymes involved in regulating the levels of bioactive 

signalling sphingolipids, including ceramide and S1P that have been implicated in 

disease pathogenesis.  For instance, SK1 is overexpressed in cancers including breast, 

ovary, kidney and lung cancer as well as haematological cancers such as leukaemia 

(Pyne and Pyne, 2010). The role of Des1 is somewhat more controversial because it 

has been implicated in regulating autophagy and it is unclear what determinants govern 

autophagic-induced apoptosis or cell survival (Siddique et al., 2015). Nevertheless, 

both SK1 and Des1 are therapeutic targets for intervention in disease. Toward this end, 

potential anticancer/anti-inflammatory agents that modulate Des1/SK1 expression 

were isolated from the plant extracts. 

5.1 Anticancer activity 

In chapter 3, the main finding is the identification of plant species with anticancer 

activity and these included P. tortuosum, U. maritima and G. sinaicus. Narciclasine 

was isolated from P. tortuosum (Chapter 3) and shown to reduce the expression of 

SK1 and Des1 in two breast cancer cell lines. The anticancer activity of narciclasine is 

consistent with other published literature. For instance, narciclasine inhibits 

proliferation and induces apoptosis in breast cancer cells that involves the cleavage of 

PARP.  In this case, narciclasine inhibited the proliferation of seven breast cancer cell 

lines, including MCF7, MDA-MB-231, MDA-MB-468, BT-483, BT-549, HCC-1937 

and MCF-10A (Cao et al., 2018) and activated caspase-9 and PARP cleavage in HCC-

1937 and MDA-MB-231 cells. Narciclasine also induced LC3B-I/II processing, 

increased beclin-1 expression and promoted p62 degradation suggesting that 
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narciclasine promotes autophagy-dependent-apoptosis in these cancer cell types. 

Indeed, the treatment of these cell lines with the autophagy inhibitor 3-methyladenine 

(3-MA, which inhibits phosphoinositide 3-kinase) blocked caspase 9-dependent 

apoptosis. In the current study, narciclasine induced a reduction in SK1 and Des1 

expression via a mechanism that is independent of the ubiquitin-proteasomal pathway.  

This was evident as the reduction in SK1 and Des1 expression was not blocked by the 

proteasome inhibitor, MG-132. Thus, narciclasine might modulate the expression of 

these proteins by a mechanism that involve another degradative pathway, such as 

cathepsin-dependent regulation (e.g. lysosomal) (Ren et al., 2010). In this regard,  Ren 

et al. (2010) reported that SKi induced a reduction of SK1 protein expression via 

lysosomal degradation in pericytes, using chloroquine (lysosomal inhibitor) and 

lactacystin (proteasomal inhibitor). SKi did not affect TGFβ stimulated SK1 mRNA 

which indicates that SKi mediates its effect via a post-translational mechanism. 

The current study has not addressed whether narciclasine might also affect 

transcriptional and/or translational regulation to reduce SK1 and/or Des 1 expression. 

This can be confirmed by assessing the effect of narciclasine on SK1 and Des1 mRNA 

expression and/or stability (using QPCR) or by measuring de novo protein synthesis 

using [35S] methionine incorporation into SK1 and Des1 under conditions where 

degradation has been inhibited (e.g., with cycloheximide). Lysosomal degradation can 

also be assessed using inhibitors of cathepsin D (e.g. Pepstatin) (Gacko et al., 2007). 

It is noteworthy that narciclasine does not directly inhibit SK1 activity (Susan Pyne, 

unpublished data) assessed using a radiometric assay with purified SK1. 

Narciclasine also reduced Ki67 expression, a marker for proliferation. However, 

currently it is unclear whether the modulation of SK1 and Des1 expression accounts 

for the effects of narciclasine on Ki67 expression. It has been reported that Ki67 is 

expressed during the active phases of cell cycle division (G1, G2, S and M) and is not 

expressed during the resting phase (G0 phase) in both normal and tumour cells (Gerdes 

et al., 1984, Scholzen and Gerdes, 2000). However, Ki67 is degraded by the 

proteasome in G0 and G1 (Sobecki et al., 2017).  

It is well established that Ki67 is higher in cancerous tissue compared to normal tissue 

and that is associated with cancer metastasis and worse clinical outcomes. Targeting 
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Ki67 arrests proliferation and it has been suggested that Ki67 may be an appropriate 

target for cancer therapy (Li et al., 2015). Therefore, it would be of interest to test 

whether narciclasine induce cell cycle arrest by, for example, FACS analysis of 

propidium iodide-stained cells (control vs narciclasine treated). Additionally, 

detection of Ki67 in fixed cells using antibodies and immunohistochemistry staining 

could be used to address further test depletion of ki67 expression in response to 

narciclasine.  

The main finding of chapter 4 is that a mixture of cardenolide glycosides including 

humistratin and calotropin/calactin were isolated from G. sinaicus and shown to 

possess anticancer activity and to promote the ubiquitin-proteasomal degradation of 

SK1 and to reduce the expression of Des1. A mixture of these compounds isolated in 

fraction Gs 3.2.1, were found to inhibit cell proliferation and induce apoptosis via 

cleavage of PARP in both breast cancer cell lines. Additional studies are required to 

establish whether these compounds that commercially available in pure form, bind to 

SK1 or whether they act indirectly, via a sensor, to promote ubiquitin-proteasomal 

degradation of SK1. The modulation of Des1 expression, which was insensitive to 

MG132, might involve alterations in its transcriptional/translation regulation of Des1 

expression, which could be further investigated using QPCR.  

There are several studies which have reported that cardenolide glycosides exhibit 

anticancer activity including in breast, colon, prostate, and skin cancer. For example, 

digitoxin induced apoptosis in pancreatic cancer cells through distinct kinase and 

interferon signalling networks, while inhibiting proliferation in oesophageal 

adenocarcinoma EAC cell lines via downregulation of p38 MAP Kinase 6, Also, 

proscillaridin A is another cardenolide glycoside which induces apoptosis in NSCLC 

cells and decreases cell growth via calcium-induced death receptor 4 (DR4) 

upregulation (Sreenivasan et al., 2003, Wang et al., 2009, Krishna et al., 2015, 

Schneider et al., 2016, Schneider et al., 2017, Li et al., 2018). 

A key issue is to understand the molecular mechanism by which SK1 expression is 

increased in cancer and determine the mechanism by narciclasine and cardenolide 

glycosides can reverse the increase in SK1 expression to inhibit cancer progression. 

Many factors that are increased in cancer and inflammatory disease modulate the 
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expression of SK1. These include, TGF-β (transforming growth factor-β) (Yamanaka 

et al., 2004) and TNFα (Xia et al., 1998). In addition, leptin was found to induce SK1 

activity and expression in MDA-MB-231 and BT-549 cells (Alshaker et al., 2014). 

Other pharmacological stimuli such as the synthetic phorbol ester, PMA, in MEG-O1 

(human megakaryoblastic leukaemia cell line) increase SK1 expression and a PKC 

inhibitor prevents PMA-stimulated SK1 activity (Nakade et al., 2003). In addition, 

different transcriptional factors are involved in regulating SK1 expression. For 

example, Sp1 (specificity protein 1) is a transcription factor that is involved in the 

regulation of SK1 in response to nerve growth factor (NGF) in PC-12 cells (Sobue et 

al., 2005). This is important since Sp1 is over expressed in many cancers, such as lung, 

pancreatic, breast and glioma. Indeed, there is a correlation between Sp1 and SK1 in 

terms of disease severity, neovascularisation and metastasis (Beishline and Azizkhan‐

Clifford, 2015). AP2 is another transcription factor that is involved in the regulation 

of SK1, for instance, in human neuroblastoma cells in response to GDNF (glial line-

derives neurotrophic factor) (Sobue et al., 2005). E2F transcriptional family members, 

E2F1 and E2F7 also regulate SK1 expression in head, neck and liver cancer (Lu et al., 

2016). Moreover, SK1 is regulated in response to hypoxia in many cancer cells, brain, 

renal and endothelial cells. This involves von Hippel-Lindau (VHL), which is also 

called hypoxia inducible factors (HIFs) and which is a sensor for low oxygen that 

promotes cancer cell survival (Kim and Kende, 2004). In clear cell renal cell 

carcinoma (ccRCC), 786-O, HIF2α increases SK1 expression through the loss of VHL 

protein, while knockdown of HIF2α by siRNA reduced SK1 expression, thereby 

suggesting an amplification loop between SK1/S1P and HIFs in response to low 

oxygen (Anelli et al., 2008). Anelli also showed that hypoxia induces SK1, HIF1α and 

HIF2α expression and knockdown of HIF2α decreases SK1 expression in glioma cells. 

Also, HIF2α but not HIF1α is bound to SK1 gene, while in another study by Bouquerel 

et al. (2016), it was reported that SK1 regulates the expression of HIF2α expression in 

lung and ccRCC cells in response to hypoxia. Moreover, Bouquerel et al. (2016) 

proposed that this regulation is due to SK1-dependent downregulation of the 

AKT/mTOR signalling pathway. In addition, LMO2 (LIM-domain-only protein 2) is 

another transcription factor that regulates SK1 expression. Knockdown of LMO2 

decreased SK1 levels, while overexpression of LMO2 increased SK1 expression in 
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human umbilical vein endothelial cells (HUVECs) (Matrone et al., 2017). It has been 

recently shown that SFMBT1 (Scm-like with four malignant brain tumour domains 1) 

limits transcription of SK1 (Liu et al., 2020). Further studies of these transcription 

factors and regulation of SK1 expression could be performed to establish whether 

narciclasine and cardenolide glycosides can exert anticancer activity by modulation of 

these transcriptional mechanisms. 

Another way that SK1 regulated is through its proteasomal degradation. Most of 

inhibitors targeting SK1, have been reported to degrade SK1 at protein level.  

Cardenolide glycosides from G. sinaicus utilise this mechanism and further work is 

required to more fully characterise whether cardenolide glycosides activate an E3 

ligase that can catalyse polyubiquitination of SK1 to drive proteasomal degradation of 

the enzyme (Powell et al., 2019). The ultimate result is to reduce the production of 

S1P, preventing cancer cells from having pro-growth signalling from S1P.  

It has been reported that Des1 levels are controlled in post-translational process via 

ubiquitination and proteasome-dependent degradation in response to UV light, 

chemotherapeutic drugs and DTT  (Sridevi et al., 2009, Alsanafi et al., 2018). Both of 

Hand2 and NFATC1 proteins demonstrate strong binding with the DES1 promotor. 

Maximum activation was observed with the co-expression of these two proteins, which 

indicates that both are required for Des1 expression (Azzam et al., 2013). Therefore, 

narciclasine and other isolated cardenolide glycosides mixture might affect these 

transcriptional factors. 

Many different micro-RNA molecules can limit SK1 expression in different cancer 

types. These include mi-RNA-124 (ovarian cancer), mi-RNA-125b, mi-RNA-613 

(bladder cancer), mi-RNA-659-3p (colon cancer), mi-RNA-506 (hepatocellular 

carcinoma), miRNA-101 (colorectal cancer) and miRNA-330-3p (gastric cancer), 

which are downregulated in these cancer cell types. When re-expressed, they reduce 

SK1 expression. For example, overexpression of miR-124 in ovarian cancer led to SK1 

downregulation and consequently, reduce invasion and migration of cancer cells 

(Zhang et al., 2013).  Micro-RNAs participate in fine-tuning protein expression. This 

is achieved by them forming a complex with ribonuclear proteins, collectively termed 

the RNA-induced silencing complex (RISC). The RNA component of RISC 
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specifically hybridises with mRNA molecules which are then either degraded (and 

therefore not translated to protein) or become translationally repressed (reduced 

protein expression). Currently, it is not known which miRNAs regulate the expression 

of Des1. Investigation of the effect of narciclasine on transcriptional and translational 

regulation of SK1 and Des1 expression would be of value (as proteasomal degradation 

of SK1 and Des1 protein does not contribute to a reduction in their expression in cells 

treated with narciclasine),  

5.2 Anti-inflammatory activity 

The current study also demonstrated that narciclasine (chapter 3) is an anti-

inflammatory agent as it blocked TNF-stimulated IBα degradation and inhibited 

NFB-dependent and AP-1-dependent transcriptional activity. TNFα is a cytokine that 

induces apoptosis via several signalling pathways. The most familiar is by activation 

of TNFR1, which associates with TRADD and then activates caspase 8, initiating the 

caspase cascade resulting in apoptosis (Baud and Karin, 2001), TNFα induced 

apoptosis is observed in breast cancer cells such as MCF7 and in HER2-positive cell 

types. Indeed, blockade of TNF signalling has been suggested as a strategy for 

treating HER2 positive breast cancer types in combination with existing anti-HER2 

treatments (Mercogliano et al., 2020). In this regard, many cancers rise from sites of 

infections, inflammations, or chronic irritation. Moreover, other studies found 

proinflammatory signalling to be correlated with the aggressiveness of breast cancers 

(Qiao et al., 2016).  Therefore, it would be interesting to also investigate the effects of 

narciclasine on a HER2-positive breast cancer cell line, e.g., MDA-MB-453 cells and 

in a wider inflammatory context. 

Another finding of chapter 4 is the anti-inflammatory effect of the cardenolide mixture, 

which reduces TNFα-stimulated NFB transcriptional activity and inhibits AP-1-

dependent transcriptional regulation. More research is required to determine the 

mechanism(s) of inhibition of NFB/AP1 signalling by these cardenolide glycosides. 

Ectopic over-expression of Des1 using several cancer cells, including liver cancer 

(HepG2), lung cancer (A549), oesophageal cells (Eca 109) and breast cancer (MCF7 

cells), promotes the transition of cells from G0/G1 to S phase. This was associated 
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with increased cyclin D1 protein levels with no change in other cyclin protein levels. 

Interestingly, NFB activation has been linked with increased Des1 expression which 

in turn induce cyclin D1 (Zhou et al., 2009). This is of particular interest given that 

narciclasine and the cardenolide glycosides mixture modulate NFB transcriptional 

activity in keratinocytes in the current study. 

For decades, many natural products have been known to be effective against many 

diseases because of their antioxidant, anti-inflammatory, anti-viral and anticancer 

effects. Quercetin was studied along other plant derived natural products (ursolic acid, 

capsaicin, DL-α tocopherol acetate, citral, limonin, vanillin and simvastatin) to 

evaluate its inhibitory effect against SK1 (Gupta et al., 2019). Using isothermal 

titration calorimetry, molecular docking, MD simulation and ATPase inhibition assay, 

suggested a strong interaction between quercetin and SK1. Analysis of this complex 

revealed that quercetin occupies the same position of D-sphingosine (Gupta et al., 

2019). This interaction appears important as quercetin is reported to inhibit the 

S1P/SK1 pathway signalling and to reduce pulmonary fibrosis in vivo (Zhang et al., 

2018b). Moreover, other high-throughput screening studies of natural products have 

been undertaken to find and isolate compounds with SK1 inhibitor activity (Jairajpuri 

et al., 2020). Two compounds, ZINC05434006 and ZINC04260971, were found to be 

potent inhibitors of SK1 and which bind directly to SK1 to inhibit activity. In addition, 

both compounds exhibit anticancer activity, and this provides impetus for further 

optimisation to produce new medicines.  

5.3 Future  directions 

The isolated compounds in present study, are lead compounds to develop new 

therapeutic drugs. More work needed to assess the effect of narciclasine and 

cardenolide mixture compounds (humistratin, calotropin and calactin) on 

transcriptional and translational regulation of SK1 and Des1 expression, and to assess 

whether narciclasine  and cardenolide glycoside mixture induce cell cycle arrest. Using 

computational methods with the availability of the 3D structure of the target protein 

(SK1) (Adams et al., 2016, Adams et al., 2019) will enable the investigation to 

understand the molecular basis of the interaction between the lead compounds and the 

protein target. It can be focused on the development of SK-selective inhibitors. The 
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three cardenolide glycosides could be studied applying a molecular docking approach 

and MD simulation. This will provide more data of the binding mode of each 

compound to SK1. Such studies might guide optimisation of the compounds to 

produce highly effective SK1 inhibitors with drug-like properties.  
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