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Abstract

Classical non-polarisable models, normally based on a combination of Lennard-Jones

(LJ) sites and point charges, are extensively used to model thermodynamic properties

of fluids. An important shortcoming of this class of models is that they do not explicitly

account for polarisation effects - i.e. a description of how the electron density responds

to changes in the molecular environment. Instead, polarisation is implicitly included

into the parameters of the model, usually by fitting to pure liquid properties (e.g.

density). A problem arises when trying to describe thermodynamic properties that

involve a change of phase (e.g. enthalpy of vaporisation), solutions/mixtures (e.g.

solvation free energies), or properties that directly depend on the electronic response of

the medium (e.g. dielectric constant). Fully polarisable models present a natural route

for addressing these limitations, but at the price of a much higher computational cost.

The main goal of this thesis is to obtain a non-polarisable force field for alcohols, amines

and ketones able to predict both pure liquid properties and solvation free energies

with a high degree of accuracy through the use of post-facto polarisation corrections.

These corrections are applied to the properties computed using the non-polarisable

force field in order to account for the effects of polarisation, and thus, increase the

model’s accuracy while maintaining its computational efficiency.

This work is part of a larger project which end goal is to predict the solubility of drug

molecules (e.g. paracetamol). These molecules usually contain hydroxyl, amino and

carbonyl groups, and thus, this thesis focuses on molecules with these functional groups.

Aromatic rings are another functional group present in most drug molecules, however,

they are not studied here due to time limitations. Alcohols and amines are interesting
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from a fundamental point of view as they are the simplest molecules that combine

a hydrophobic moiety with a hydrogen-bonding functional group. Also, alcohols and

ketones are widely used as solvents and amines are used in CO2 adsorption/desorption

processes designed to decrease CO2 emissions.

The model developed in this thesis is called PolCA, standing for “Polarisation-

Consistent Approach”, and it is an extension of the modified TraPPE force field for

hydrocarbons proposed by Jorge [1] that eliminates systematic deviations from exper-

imental solvation free energies. The new amino, hydroxyl and carbonyl parameters

were fitted to several pure-component experimental properties including the density

and enthalpy of vaporisation, and in some cases also self-solvation free energies.

The optimization was carried out using meta-models that predict how the simulated

properties change with the input parameters, allowing for a better exploration of the

force field parameters’ space.

The PolCA force field for alcohols can accurately predict methanol to decanol’s densi-

ties, diffusion constants (except for methanol), enthalpies of vaporisation, free energies

of self-solvation, dielectric constants and solvation free energies in hexadecane. PolCA

also does a very good job at predicting the densities, enthalpies of vaporisation and

free energies of self-solvation of linear and branched primary amines, and its predicted

solvation free energies of linear primary amines in hexadecane are in very good agree-

ment with experimental data. However, it greatly overpredicts the dielectric constant

of methylamine and significantly overpredicts other linear and branched amines’ di-

electric constants. Furthermore, PolCA can accurately predict the densities, enthalpies

of vaporisation, diffusion constants and self-solvation free energies of propanone to 2-

decanone (except for butanone and 2-pentanone’s densities which are underpredicted),

however, it greatly overpredicts ketones’ dielectric constants and solvation free energies

in hexadecane (more negative values).

Lastly, PolCA was used to calculate solvation free energies of amines and ketones in

octanol and multifunctional compounds’ densities and dielectric constants to test its

transferability. Our force field was not able to simultaneously predict solvation free

energies in hexadecane and octanol, and thus a re-parameterisation will be carried out
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in future work using polarisation corrections obtained with more accurate methods.

Nonetheless, the results obtained in this work show that the approach proposed here is

very promising since they significantly improve agreement with experiment for the di-

electric constant and solvation free energies of alcohols and amines in hexadecane.
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Chapter 1

Introduction

Solubility is a fundamental property in the manufacture and formulation of drugs [2].

For example, drug absorption from the gastrointestinal tract depends strongly on the

solubility of orally administered drugs. Nowadays, most drug candidates have a low

solubility in water, and as a consequence, their absorption has to be improved through

a suitable formulation approach. About 40 % of drugs in the market and nearly 90 % of

drugs in development are poorly water-soluble [3]. Cosolvents can be used to enhance

the solubility of non-polar solutes by several orders of magnitude. These compounds

commonly contain hydrogen bonding groups, which interact strongly with water, and

non-hydrogen bonding groups. Dimethylacetamide, ethanol and propylene glycol are

widely used in the pharmaceutical industry as cosolvents [4]. Consequently, knowing

the solubility of the drug in water and other solvents during its formulation process is

extremely important [5, 6]. In addition, the octanol/water partition coefficient is a very

important property in the pharmaceutical industry, and for example, it can be used to

describe a drug’s ability to diffuse through lipids [7].

Experimental determination of drug molecules’ solubility is very laborious and time-

consuming, especially when the solubility is very low [8, 9]. Brown et al. [10] have

presented a workflow for the manufacture of active pharmaceutical ingredients (API)

using seeded cooling continuous crystallisation, where the challenges of solvent selection

are discussed. At the early stages of the process design, possible solvents are selected
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from solvent libraries based on different properties like API’s solubility, boiling point,

viscosity, environmental impact, cost and reactivity with the solute. Afterwards, these

solvents’ solubility curves and stabilities are studied using solutions of known concen-

tration at different temperatures to find the most suitable candidates, which will go

through to the validation stage. The properties considered during the solvent selection

include the yield, operating temperature range, likelihood of fouling, formation of ag-

glomerates, particle shape, purity and crystal morphology, among others. Due to all

these requirements, it is not always possible to find suitable single-component solvents,

and hence, solvent mixtures are used instead. These steps are time-consuming, and

thus, there is usually a compromise between the resources spent and the accuracy ob-

tained. For example, relevant impurities’ solubilities are generally not included during

the selection process, even though crystallisation is used as a purification technique. [10]

As a result, much time and effort could be saved by accurately predicting the solubility

using computational methods [11].

Computational chemistry is already being used in the design and optimisation of new

drugs to help save time and money. For example, Ngo et al. [12] studied 33 drugs using

molecular dynamics (MD) simulations to detect potential inhibitors of the coronavirus

SARS-CoV-2’s main protease (Mpro). Thirteen of these compounds, most of which

are already used to treat various diseases in humans, were predicted to have a strong

binding affinity to SARS-CoV-2 Mpro. One of these molecules was delamanid, an

antituberculosis drug, and thus, it has a higher probability of successfully treating

COVID-19 since both tuberculosis and COVID-19 are lung diseases.

1.1 Thermodynamics of Solubility

Solubility is the amount of solute that can be dissolved in a specific solvent. For solid

solutes, the molecule needs to dissociate from its solid form before dissolving in the

solvent. The change in the Gibbs free energy (∆G) associated with the sublimation

process is always positive, and its magnitude depends on the intermolecular bonds’

strength and complex interaction patterns present in the solid. Also, the solvent needs

to create a cavity able to accommodate the solute, and the energy needed to accomplish
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this step increases with the cavity’s size. Finally, the solute can be inserted into the

cavity and interact with the surrounding solvent molecules (negative ∆G). [13]

Figure 1.1: Thermodynamic cycle used to calculate the solubility of solid solute. This figure
was adapted from reference [13].

To better understand the underlying mechanisms of solubility and increase the com-

putational methods’ predictability, researchers can model solubility using the thermo-

dynamic cycle presented in Figure 1.1. The dissolution free energy (∆Gdissolution) of

a solid solute in a solvent is the sum of the free energy changes due to the sublima-

tion (∆Gsublimation) and solvation processes (∆Gsolvation). [13] The intrinsic solubility

(S0), solubility of a fully non-ionic molecule, is related to the dissolution free energy

by:

∆Gdissolution = −RT ln (S0 Vm) (1.1)

where Vm is the molar volume of the crystal [14].

The free energy of solvation in water is called free energy of hydration (∆Ghydration),

and the transfer free energy of the solute from an organic solvent to water (∆Gtransfer)

3



is the difference between ∆Ghydration and ∆Gsolvation. The transfer free energy from

octanol to water can easily be obtained from the widely studied octanol/water partition

coefficient (Pow) through Equation 1.2:

∆Gtransfer = 2.303RT log Pow (1.2)

Consequently, a molecule’s hydration free energy can be calculated from its solvation

free energy in octanol and its octanol/water partition coefficient. [14]

Another approach commonly used to calculate the solubility of a pure solid solute in a

liquid solvent is through Equation 1.3:

ln x1 γ1 = −
∆Hfus (Tm)

RT

(
1− T

Tm

)
(1.3)

where ∆Hfus(Tm) is the solute’s enthalpy of fusion at its normal melting point (Tm),

and x1 and γ1 are the solute’s mole fraction in the liquid phase and activity coefficient,

respectively. This equation is an approximation since it assumes that the solute’s molar

heat capacity is not a function of the temperature and is the same in the liquid and

solid states. [15, 16]

Relative Solubilities

If the solute’s fugacity in the solid state (fSA) is known, the solubility of a solute in a

particular solvent can be obtained using the following equation:

ln cαA = −β µα,resA (T, P, xA)− ln (RT ) + ln fSA(T, P ) (1.4)

where cαA, xαA and µα,resA are the molar concentration, mole fraction and residual chem-

ical potential, respectively, of solute A in solvent α. The residual chemical potential is

multiplied by β to make it dimensionless, where β is the inverse of the product between

the Boltzmann constant (kB) and the temperature (T ). In addition, P is the pressure

and R is the gas constant. [17] The residual chemical potential is the difference between
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the chemical potential of the real fluid and the chemical potential of an ideal gas at the

same temperature and pressure [18].

However, fugacities of solids can be very difficult to calculate, therefore, it is common

to calculate relative solubilities of a solute in two different solvents instead of absolute

values [17]. Since fSA(T, P ) is a solute dependent property that is not affected in any

way by the solvent, the term ln fSA(T, P ) in Equation 1.4 disappears when we take the

difference between ln cαA and ln cζA, where ζ is a different solvent at the same T and P .

The same occurs to the term ln(RT ), and thus, we get:

ln

(
cαA

cζA

)
= β µζ,resA (T, P, xA)− β µα,resA (T, P, x1) (1.5)

At infinite dilution, the residual chemical potential is the same as the Gibbs free energy

of solvation of a single solute molecule, and Equation 1.5 turns into Equation 1.6.

ln

(
cαA

cζA

)
= β ∆Gζ,∞A,solv(T, P )− β ∆Gα,∞A,solv(T, P ) (1.6)

Consequently, relative solubilities of a solute in different solvents can be predicted using

solvation free energies at infinite dilution if the solubilities are low enough that solute-

solute interactions can be neglected. [17]

1.2 Computational methods for solubility prediction

Some of the most common computational methods used in solubility predictions are

briefly described here, and a table that summarises the advantages and disadvantages

of each method has been included at the end of this section. For a more exhaustive

review, the reader can see reference [14].

1.2.1 Quantitative Structure Property Relations (QSPR)

QSPR methods are commonly used in the pharmaceutical industry to predict drug

molecules’ aqueous solubility, and they are based on the idea that molecules with similar

structure will have similar properties. These methods use training data sets, molecular
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descriptors and statistical methods to create a mathematical model able to predict the

property of interest, such as the aqueous solubility. These molecular descriptors are

chosen to implicitly incorporate physical, topological, chemical or energetic properties

of the molecules in the system [14]. For example, the melting point (Tm) of a molecule

is directly related to the solid-state molecule’s structure and stability, and thus, it is

normally used to describe the dissociation of the solute from the solid form. In addition,

the solute’s molecular weight can be used to represent the energy penalty associated

with the cavity formation in the solvent, and the logarithm of the octanol/water par-

tition coefficient (logPow) is commonly used to describe solute-water interactions. For

example, the modified general solubility equation (GSE) [19], Equation 1.7, uses Tm

and logPow to calculate the solubility (S0) of a non-ionised solute in water. [13]

log S0 = 0.5− 0.01 (Tm − 25)− log Pow (1.7)

Multiple linear regression (MLR) is a very important and straightforward statistical

method widely used to model the relationship between multiple input parameters and

their dependent variables. However, it can easily overfit the data when small training

sets are used [14]. This model only uses additive linear terms, but nonlinear terms can

be included to increase its performance (e.g. squaring or taking the logarithm of the

original data) [20].

More elaborated algorithms like artificial neural networks (ANNs) are sometimes needed

to predict complex properties. ANNs have layers formed by simple operators (neurons)

that map the previous layer’s input parameters onto a nonlinear function and feed the

output to the next layer. The layer or layers that are not directly in contact with the

model’s input or output are called hidden, and the complexity of the model increases

with the number of hidden layers. Deep neural networks (DNNs) have multiple hidden

layers and can extract features from unprocessed raw data. [20]

Reference [21] contains a review of studies from 2009 to 2019 that used QSPR methods

to predict water solubilities, octanol/water partition coefficients and vapour pressures

of pesticides. For example, Kherouf et al. [22] used MLR and ANN to predict wa-
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ter solubilities of phenol derivatives using features from their optimised 3D structure.

Additionally, Chinta and Rengaswany [23] have recently proposed a multiple model

learning (MML) method that uses structural parameters to predict drug solubilities.

MML methods use different linear models for different regions of the domain.

These methods are easy to use, computationally fast and can produce good results

for molecules similar to those included in the training set. However, they require a

large amount of input data, their parameters may not have simple physical interpreta-

tions, and results tend to be quite poor when the studied molecule differs too much in

molecular structure from those used in the training set [8]. Thus, it is not always easy

to understand why a particular prediction is made or what has to be done to change

the solubility in a specific direction [17]. Also, the model of an ANN is not explicitly

available and thus, they act almost as a “black box” [23].

1.2.2 Group contribution methods

Group Contribution (GC) methods use empirical parameters to describe interactions

between molecules’ structural units, like -CH3, -COCH2, etc. [24]. The universal quasi-

chemical functional group activity coefficient (UNIFAC) [25] is one of the most im-

portant GC methods used in the design of chemical processes, especially separation

processes [26]. This method assumes that the natural logarithm of the activity coeffi-

cient (ln γi) is the sum of two contributions: a combinatorial part (ln γCi ) due to the

molecules’ size and shape and a residual part (ln γRi ) that depends on the functional

groups’ interactions:

ln γi = ln γCi + ln γRi (1.8)

The binary group interaction parameters used to calculate ln γRi were fitted to exper-

imental vapour-liquid equilibrium (VLE) data, while the parameters used to obtain

ln γCi were taken from the values proposed by Bondi [24, 27]. This method tends to

have a poor performance for mixtures outside the 290 K - 400 K temperature range and

sometimes struggles to predict activity coefficients when the solute’s concentration is
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very low. Therefore, several modifications have been proposed to solve these problems,

like the modified UNIFAC (Dortmund) [28]. This model uses temperature-dependent

parameters to capture the temperature-activity coefficient relationship, and activity

coefficients at infinite dilution (γ∞i ) were included in its parameterisation. [26] Further-

more, UNIFAC has been extended to model ionic liquids in contact with liquid [29, 30]

and gas phases [31].

In a study done by Grensemann and Gmehling [32] in 2005, modified UNIFAC (Dort-

mund) provided the most reliable results when compared to the original UNIFAC and

a modified COSMO-RS (see section 1.2.3) for the VLE curve, γ∞i and excess enthalpy

(hE). The calculation of the 1362 VLE data set in this study took only a few minutes

for UNIFAC and several hours for COSMO-RS. More recent applications of UNIFAC

include VLE predictions of systems with maximum and minimum azeotrope boiling

temperatures [33] and the estimation of edible fats’ solid-liquid equilibria (SLE) [34].

In 2021, UNIFAC and UNIFAC (Dortmund)’s binary interaction parameters for nicoti-

namide, an organic acid that belongs to the vitamin B3 family, were parameterised by

Silveira et al. [15]. These parameters were fitted to nicotinamide’s solubility in two

mixtures: methanol + ethanol and methanol + 2-propanol at four different tempera-

tures.

GC methods are extremely fast and can produce good results in many cases, how-

ever, they require a high amount of experimental data to calculate the contributions

of each group [17]. Besides, they cannot differentiate between a molecule’s different

isomers. [32]

1.2.3 Based on QM continuum solvation models

These methods use quantum mechanics (QM) calculations to obtain the solute’s charge

distribution in a continuous medium that represents the solvent. Continuum solvation

models place the solute in a cavity inside the solvent medium, and the cavity’s size and

shape is calculated using different techniques (see reference [35] for some examples)

designed to match the solute’s shape and the solvent-accessible surface area (SASA).

Once the solvent cavity is defined, the solute-solvent interaction energy can be calcu-
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lated as the sum of two contributions: the cavitation-dispersion-solvent-reorganisation

(GCDS) and the electrostatic interactions between the solute and solvent charges. The

first term can be calculated using an empirical equation and arises from the cavity

formation, the solute-solvent dispersion forces and the solvent’s reorganisation due to

the perturbation of the solvent-solvent interactions. On the other hand, the electro-

static potential is obtained from the solute’s charge distribution which simultaneously

depends on and alters the polarised cavity wall. Polarisable continuum models (PCM)

like IEF-PCM [36], called this way due to the cavity’s polarisation, calculate the elec-

trostatic contribution in an iterative way since the solute polarises the cavity wall which

consequently polarises the solute and so on. This calculation can be simplified if a con-

ducting medium (ε = ∞) is used instead of a dielectric medium (i.e. nonconducting)

and the solvent’s dielectric constant is applied as a correction factor, as implemented

in the conductor-like screening model (COSMO). [37] For an extensive review about

continuum solvation models the reader is referred to reference [38].

Continuum solvation methods assume that solute-solvent electrostatic interactions are

not dependent on the solvent’s structure and that the dielectric response of the medium

is uniform and linear outside the cavity. However, this assumption is not valid when

there are strong specific interactions, like hydrogen bonds, between the solute and the

solvent molecules in the first solvation shell. [39]

The conductor-like screening model for real solvents (COSMO-RS), developed by Klamt

et al. [40], is the most popular method in this category and is described below. The

solvation model based on density (SMD) [39] is another popular method that uses

QM calculations in an implicit solvent model, and it was parameterised using 2821

solvation free energies of neutral and ionic solutes in water and other solvents. This

method belongs to the SMx solvent models but instead of using discrete partial charges

it uses the electron density function.

COSMO-RS is somewhat similar to GC activity-coefficient methods (i.e. it uses Equa-

tion 1.8), but the molecule surface is divided into segments with equal area instead of

subdividing the molecule into functional groups [41]. These segments’ charge densities

are obtained using QM calculations, and then, they are used to calculate the charge
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density distribution PS(σ). The charge density distribution, also called σ-profile, is the

probability of finding a segment with a specific screening charge density σ, and it is

used to calculate the residual part of the activity coefficient. Meanwhile, the activity

coefficient’s combinatorial component is obtained using the molecular volume and area

from the calculated surfaces. [32] Also, COSMO-RS calculates both solvent and solute’s

cavities and surface charges, and it uses eight general parameters and two empirical

parameters for each element to implicitly account for GCDS . [37]

In the early 2000s, COSMO-RS was used to predict aqueous solubilities of 107 pes-

ticides with good results [42]. In the last two years, COSMO-RS has been used to

successfully predict the solubility of CO2 in seven deep eutectic solvents [43] and to

study benorilate’s solubility in twelve different solvents [44], to name two examples.

With respect to the latter case, COSMO-RS significantly underpredicts benorilate’s

solubility in polar protic solvents, except for isopropanol, and greatly overpredicts its

solubility in dipolar aprotic systems [44].

These methods’ main advantages are that they treat electrostatic components to a high

degree of accuracy and that only a few basic parameters need to be parameterised from

experimental data, which are in principle transferable to other systems. However, as

explained above, these simulations are significantly slower than GC and, in some cases,

also less accurate. COSMO-RS’ poor performance in some systems, like alcohol-ether

mixtures, could be due to the way these methods model dispersive interactions (i.e.

these interactions are treated as a function of the molecular segments’ size only and

not their type) [32]. Also, implicit models cannot explicitly consider entropy changes

in the solvent due to solvation.

1.2.4 Group contribution equations of state

Group contribution equations of state (GC-EoSs) apply the GC concept within an

equation of state (EoS). Equations of state are mathematical functions that describe

the relationship between the temperature, pressure and volume of the system, and

thus, they can calculate single-phase and critical properties [18]. Two important group

contribution equations of state are described below as an example.

10



Predictive Soave-Redlich-Kwong

The predictive Soave-Redlich-Kwong (PSRK) [45] group contribution equation of state

is a combination of the Soave-Redlich-Kwong (SRK) [46] equation of state and the

UNIFAC model. The PSRK model uses Equation 1.9 to correlate the pressure of a

system, with its volume (V ) and temperature:

P =
R T

V − b
− a(T )

V (V − b)
(1.9)

where the mixture parameter b is obtained using the mole fractions, critical temper-

atures (Tc) and critical pressures (Pc) of the components, as it is done in the SRK

equation of state. On the other hand, the attractive term a(T ) from the SRK equation

of state has been modified to incorporate the components’ activity coefficients, which

are obtained using the UNIFAC model with temperature-dependent interaction param-

eters. Also, PSRK uses parameters fitted to experimental vapour-pressure data, when

available, instead of the components’ acentric factors, in the calculation of the a(T )

term to improve the description of polar molecules. [45]

This method is widely used to predict vapour-liquid equilibria at a large range of

conditions, including supercritical systems, and is able to predict gas solubilities in

solvents with strong electrolytes [47].

SAFT-γ-Mie

SAFT-γ-Mie [48] incorporates the GC concept within the statistical associating fluid

theory (SAFT) [49], and it models molecules as chains of different types of fused spher-

ical segments. These segments are selected based on the chemical functional groups

within the molecule (see Figure 1.2), and they interact with each other through a Mie

potential of variable range.

The Mie potential between segments k and l is described by Equation 1.10:

ΦMie
kl (rkl) = Ckl εkl

[(
σkl
rkl

)λrkl
−
(
σkl
rkl

)λakl]
(1.10)
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Figure 1.2: Pentanoic acid’s representation using the SAFT-γ-Mie approach. The COOH group
(shaded red) has an association site shown as a black sphere. This figure was recreated from
reference [16].

Ckl =
λrkl

λrkl − λakl

(
λrkl
λakl

)λakl/(λrkl−λakl)
(1.11)

where rkl is the distance between the segments’ centres, σkl and εkl are the unlike seg-

ment diameter and the dispersion energy between groups k and l, respectively, and Ckl

is a prefactor that guarantees that Equation 1.10’s minimum is equal to −εkl. Addi-

tionally, λakl and λrkl, are the attractive and repulsive exponents of the unlike segment-

segment interactions, respectively. When the repulsive and attractive exponents are 12

and 6, respectively, the potential is called Lennard-Jones. As an example, Figure 1.3

shows how λrkl and λakl affect the Mie potential. Increasing λrkl while keeping λakl equal

to 6, decreases the width of the well and shifts the long-range tail upwards. The at-

tractive exponent is commonly fixed to 6 [50–52] since this is the value suggested by

London to describe dispersion forces of molecules without permanent multipoles [53].

However, carbon dioxide has multipolar interactions and thus, its optimum exponents

are λakl = 6.66 and λrkl = 23 [54]. For this reason, a 23-7 Mie potential has been included

in Figure 1.3 to show how increasing λakl by one unit while maintaining λrkl constant,

very slightly shifts the long-range tail upwards.
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Figure 1.3: 12-6, 23-7 and 23-6 Mie potentials of two interacting particles with σkl = 0.302 nm
and εkl = 0.773 kJ/mol.

The unlike parameters are normally estimated using the combining rules given by Equa-

tions 1.12 to 1.14 and then optimised to improve agreement with experimental data if

necessary. Equation 1.14 can be used with λakl or λrkl. [16]

σkl =
σkk + σll

2
(1.12)

εkl =

√
σ3
kk + σ3

ll

σ3
kl

√
εkk εll (1.13)

λkl = 3 +
√

(λkk − 3) (λll − 3) (1.14)

Furthermore, SAFT-γ-Mie uses association sites to model strong polar interactions like

hydrogen bonds. Each segment can have more than one site type, and each associa-

tion site interacts with other segments’ sites through a square-well potential. Equa-

tion 1.15 calculates the interaction between two association sites placed in segments k

and l:
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ΦHB
kl (rkl,ab) =


−εHBkl,ab if rkl,ab ≤ rckl,ab1

0 otherwise

(1.15)

where rkl,ab and rckl,ab are the distance between the sites and the interaction’s cutoff

range, respectively. The site in segment k is type a while the one in segment l is type

b, and a 6= b. In addition, each site is placed at a certain distance from the segment’s

centre, which is usually equal to 0.4 times the segment’s diameter. [16, 52]. The unlike

parameter εHBkl,ab can be estimated using Equation 1.16 if there is no experimental data

for its optimisation. Also, the bonding volume (Kkl,ab) shown in Equation 1.17 is

normally used to describe rckl,ab. [16]

εHBkl,ab =
√
εHBkk,aa ε

HB
ll,bb (1.16)

Kkl,ab =

(
3
√
Kkk,aa

3
√
Kll,bb

2

)3

(1.17)

The parameters that describe interactions between groups of the same type (i.e. σkk,

εkk, etc.) are obtained from experimental properties of molecules with that functional

group. Vapour pressures, saturated liquid densities and compressed liquids densities

are among the most common properties used during this method’s parameterisation.

However, fluid-phase behaviour and excess properties of mixtures are also included

when extra data is required. [16]

SAFT-γ-Mie has been recently used to determine ibuprofen’s optimal solvent and anti-

solvent mixtures at several temperatures [55] and to successfully predict solubilities

of several pharmaceutical compounds in water, butanol and acetone, as well as their

partition coefficients [52].

GC-EoSs are computationally fast and have the same advantages as GC activity-

coefficient approaches without some of their limitations, like the vapour phase ide-
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ality assumption and the inability to predict bulk properties (e.g. density and heat

capacity) [50]. On the other hand, these methods cannot be used to study structural,

interfacial, and transport properties. Hence, SAFT-γ-Mie parameters have been used

in the development of coarse-grained molecular dynamics (CG-MD) models (explained

below). The parameters’ transferability between these two approaches arises from the

way particle’s interactions are calculated. SAFT-γ-Mie and MD simulations can both

describe intermolecular interactions in the system using the Mie potential. However,

MD simulations calculate Coulomb interactions when modelling polar molecules while

SAFT-γ-Mie uses a square-well association sites approach for highly polar interac-

tions. [56]. For example, Rahman et al. proposed a CG-MD model for linear alkanes

obtained using parameters from SAFT-γ-Mie and TraPPE-UA to describe non-bonded

and bonded interactions, respectively [51]. Tasche et al. developed SAFT-γ-Mie pa-

rameters for mixtures of polybutadiene and squalane and used these parameters to

create a coarse-grained molecular dynamics force field [57]. Other examples can be

found in references [58, 59].

1.2.5 Molecular simulations

Molecular simulations can model molecules at an atomic level based on the potential en-

ergy between the particles. Unlike QM calculations, which are based on the Schrödinger

equation to describe the electrons’ behaviour in a molecule, molecular simulations rep-

resent the molecules’ atoms as interacting particles that follow the laws of classical

mechanics. The set of equations and parameters used to calculate the potential energy

of the system is called force field and is normally parameterised against experimental

and/or QM data (see section 2.6). There are different types of force fields depending

on the way they represent the molecules (all-atom or coarse-grained) and how they

model electrostatic interactions (non-polarisable or polarisable). All-atom force fields

treat each atom in the system as an interacting particle while coarse-grained models

group some atoms together to reduce the number of interacting particles and decrease

the simulation time [60]. The differences between polarisable and non-polarisable force

fields are described in section 1.4 since this classification is highly relevant to this work,

and thus, it deserves its own section. Furthermore, molecular dynamics simulations are
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explained in detail in sections 2.4 and 2.5.

There has been some work done on predicting the solubility of drugs in water using

molecular simulations. For example, Westergren and his group studied the solubility

of a drug molecule into water [11] and a drug melt at 673.15 K [8]. The simulations

were performed at this temperature because most drugs at room temperature form

glasses rather than liquids, and the rigidity of those systems would have complicated

the simulations. Later, they studied the insertion of a drug molecule into a pure

amorphous drug phase at 278.15 K by cooling the pure liquid drug from 673.15 to

278.15 K [5]. They studied between 46 and 48 drug molecules, including acetylsalicylic

acid, caffeine, ibuprofen, lidocaine and morphine. Lastly, they compared different force

fields and concluded that good predictions of amorphous drug solubility are obtained

when OPLS-AA is combined with partial charges from the COMPASS force field [61].

Other examples are the work by Schniederes et al. [62], who studied n-alkylamides’

solubilites using a polarisable force field, and the study of crizotinib’s solubility by Fan

et al. [63]

The crystal structure and fugacity of solids are very difficult to simulate [17], and hence,

obtaining sublimation free energies is very challenging. Consequently, some researches

have focused on the prediction of relative solubilities, partition coefficients and excess

solubilities. For example, Garrido et al. predicted free energies of solvation of n-alkanes

(methane to octane) in 1-octanol and water using three different force fields (TraPPE,

GROMOS and OPLS-AA) and the MSPC/E water model [64]. Bannan et al. [65] stud-

ied octanol/water and cyclohexane/water partition coefficients using GAFF and the

dielectric corrected GAFF (GAFF-DC), and they found that both force fields have the

same overall accuracy (RMSD = 1.2 log units) even though GAFF-DC performs better

than GAFF at predicting hydration free energies. They also noticed that alcohols’ parti-

tion coefficients between cyclohexane and water were systematically overpredicted with

GAFF and systematically underpredicted with GAFF-DC, something that the authors

concluded could be due to the limitations of fixed charged force fields. Zhang et al. also

tested several force fields’ performance at predicting octanol/water, chloroform/water

and cyclohexane/water partition coefficients and noticed an overall overestimation of
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these parameters [66]. Mobley and co-workers calculated acetanilide, acetaminophen,

phenacetin, benzocaine and caffeine’s excess solubilities in water/ethanol mixtures us-

ing GAFF, and they found good qualitative agreement between predicted and simulated

data [67]. Liu et al. compared MD simulations’ performance at predicting relative solu-

bilities of poorly soluble solutes against UNIFAC, UNIFAC (Dortmund) and SMD, and

found that molecular simulations were the most accurate method overall [17].

These simulations are very time consuming, and thus, an implicit solvent model can

be used instead of explicitly simulating the solvent. In this case, the solute molecule

is represented at an atomistic level while the solvent is treated as an isotropic continu-

ous medium, using methods like COSMO. [13] However, as explained in section 1.2.3,

implicit methods cannot explicitly consider entropy changes in the solvent due to sol-

vation, and they are less accurate than simulations with explicit solvents [68].

On the other hand, molecular simulations have a great potential for transferability [69]

and provide a higher level of detail about the solvation process. Their parameters

have a physical meaning, which is not always the case for statistical methods, and a

force field that has been extensively validated against solubility measurements can in

principle predict the solubility of other molecules without using experimental data as

input parameters. [13] Furthermore, molecular simulations take into account the func-

tional groups’ arrangement, unlike GC methods and EoSs, and thus, they can be used

to study isomers and structural properties. Also, even though they treat electrostatic

components to a lower degree of accuracy than COSMO-RS, they are better at mod-

elling dispersion forces and can explicitly account for solute-solvent interactions and the

cavity formation. For these reasons, molecular simulations are the method of choice

in this thesis, and the project will focus only on predicting free energies of solvation

to avoid the difficulties associated with solid-phase simulations. One of the biggest

problems of solid-phase simulations is finding a force field able to accurately model the

different crystal structures of a solute.

To summarise the techniques described in this section, each method’s advantages and

disadvantages are presented in Table 1.1.
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Table 1.1: Advantages and disadvantages of different methods used to predict solubility.

QSPR
Methods

• Easy to use and computationally fast.
• Good results for molecules similar to those included in the
training set.
• Require a large amount of training data.
• Parameters may not have simple physical interpretations.
• Results tend to be quite poor when the studied molecule differs
too much in molecular structure from those used in the training set.

Group
Contribution

Methods

• Extremely fast and can produce good results in many cases.
• Require a high amount of experimental data to calculate the
contributions of each group.
• Cannot differentiate between a molecule’s different isomers.
• Inability to predict bulk properties.

Solvation
Models

Based on QM

• Treat electrostatic components to a high degree of accuracy.
• Only a few basic parameters need to be parameterised from
experimental data.
• Significantly slower than GC methods.
• Cannot explicitly consider entropy changes in the solvent due to
solvation.

Group
Contribution
Equations of

State

• Computationally fast.
• Same advantages as GC activity-coefficient approaches without
some of their limitations.
• Cannot be used to study structural, interfacial, and transport
properties.

Molecular
Simulations

• Great potential for transferability.
• Higher level of detail about the solvation process.
• Parameters have a physical meaning.
• Can be used to study isomers and structural properties.
• Very time consuming.

1.3 Solvation free energy predictions using molecular sim-

ulations

Most solvation free energy studies use water as a solvent due to its biological importance

and the large amount of experimental data available in the literature [70]. For example,

Shivakumar et al. simulated hydration free energies of 239 small molecules using OPLS,

GAFF and CHARMM with three different water models [71]. Mobley et al. calculated

this property for 504 neutral small organic molecules using GAFF and the TIP3P water

model, and they found an overall root-mean-square-deviation (RMSD) of 1.24 kcal/mol

between simulated and experimental data [68]. In addition, Wu and Kieffer used a

hybrid cluster/continuum model (e.i. implicit solvent with some explicit molecules) to

obtain four ionic molecular groups’s hydration free energies [72], and Dasari and Mallik
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simulated a cardiovascular drug’s solvation free energies in water and seven ionic liquids

using GAFF with SPC/E [73].

Studies that consider free energies of solvation in hydrophobic solvents are less common;

however, they are starting to gain popularity since many biomolecular processes involve

both hydrophilic and hydrophobic interactions [74] (e.g. membrane permeabilities can

be predicted based on water/oil transfer free energy [75]). Garrido et al. showed that

TraPPE can successfully predict propane, benzene, ethanol and acetone’s solvation free

energies in six solvents of different polarity (including alkanes, 1-octanol and water) with

average deviations that ranged from 0.2 to 1.2 kJ/ mol [76]. Horta et al. parameterised

a GROMOS-compatible parameter set using small organic molecules’ liquid densities,

enthalpies of vaporisation and solvation free energies in water and cyclohexane [77–

80]. However, they were not able to simultaneously predict hydration free energies and

solvation free energies in cyclohexane of alcohols and carboxylic acids [77]. Jorge et

al. simulated solvation free energies of linear, branched and cyclic alkanes in apolar

solvents (mainly hexadecane) using three different force fields, and they found small but

systematic deviations [81]. Based on these results, Jorge proposed a new set of alkyl

parameters that accurately predict solvation free energies in hydrophobic solvents [1].

Also, Stroet et al. studied the performance of the Automated Topology Builder (ATB)

3.0 at predicting 685 molecules’ hydration free energies (RMSD = 5.5 kJ/mol) and

218 compounds’ solvation free energies in hexane (RMSD = 5.7 kJ/mol) and discussed

about the uncertainties and inconsistencies associated with experimental solvation free

energy databases normally used in force fields’ validation and calibration [82].

Mobley et al. have found that classical molecular dynamics simulations have not yet

surpassed the accuracy of much less computationally expensive approaches like quan-

titative structure-property relationships or group contribution methods in blind tests

of solvation free energy predictions [83]. This is likely due to some fundamental short-

coming of current force fields. The main hypothesis of this thesis is that this failure is

mainly due to the inability of classical force fields to accurately account for polarisation

effects.
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1.4 Polarisable and non-polarisable models

Nowadays, most force fields used for biomolecular simulations (AMBER, CHARMM,

GROMOS and OPLS) are non-polarisable models [84]. These force fields use fixed

partial charges to describe electrostatic interactions, and thus, they cannot explicitly

account for polarisation effects (i.e. change in the charge distribution of a molecule

due to its environment). Despite this approximation, non-polarisable force fields can

accurately predict many properties and have been used to study drug-like compounds,

proteins, DNA, and even entire viruses [85]. However, these models struggle to predict

properties that directly involve electronic polarisation, like solvation free energies and

dielectric constants, especially in low-polar and non-polar solvents. [86]. For example,

OPLS-AA and CHARMM36 with twelve different water models overestimate water

transfer free energies from water to hexadecane (i.e. simulated values are more positive

than experimental transfer free energies, making the process less favourable) [75], and

simulated dielectric constants of common solvents seem to be systematically underpre-

dicted [87]. Hence, one would expect significant improvements in classical force fields’

performance if polarisation effects are correctly accounted for.

Polarisation effects can be included explicitly using different types of polarisable mod-

els: fluctuating charges, Drude oscillators, inducible dipoles and methods including

multipole electrostatics. Fluctuating charges (FQ) models are similar to classical non-

polarisable models but with atomic partial charges that are allowed to vary their mag-

nitude throughout the simulation. Meanwhile, Drude oscillators use a pair of point

fixed-charges with one of these charges represented as a massless particle (Drude par-

ticle) attached to the nucleus by a string and the other charge located on the atomic

nucleus. The Drude particle can freely move anywhere around the nucleus in response

to an external field, and as a consequence, generate a new dipole moment. Drude

oscillators force fields are chemically intuitive and better at representing polarisation

effects of planar molecules, like benzene, than the first approach. However, they are

also more computationally expensive due to the addition of many extra charges. These

two approaches use Coulomb potentials to describe electrostatic interactions, unlike the

other two polarisable models described below. Inducible dipoles models, like AMBER
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ff02 [88], use fixed partial charges and inducible point dipoles located on the atomic

nuclei or bonds between atoms. Consequently, they need to add additional terms to

the potential energy function to account for charge-dipole and dipole-dipole interac-

tions. Lastly, some polarisable force fields, like AMOEBA [89, 90], represent atoms

using anisotropic multipole moments able to capture any non-spherical components of

the atomic charge density. [85]

Polarisable models are harder to parameterise than non-polarisable models since they

contain more individual parameters per atom (e.g. two charges per atom for Drude

oscillators, dipoles for inducible dipoles and multipoles for AMOEBA) and more com-

plicated potential functions (e.g. charge-dipole and dipole-dipole interactions) [85]. For

these reasons and the iterative minimisation approach traditionally used to calculate in-

duced multipole moments, polarisable force fields have a high computational cost which

can be from 3 to 10 times the cost of non-polarisable force fields [60]. Furthermore, well

known non-polarisable models have been extensively tested and refined throughout the

years, and thus, they can sometimes provide similar or more accurate results than the

more complex polarisable models. [85] For example, Mohamed et al. simulated free en-

ergies of solvation of 21 small molecules in four different solvents (toluene, chloroform,

acetonitrile and dimethylsulfoxide) using AMOEBA and GAFF and found that GAFF

had a better performance overall with a mean absolute error of 0.66 kcal/mol compared

to 1.22 kcal/mol for AMOEBA. [70]

In the following section, we will assess to what extent the lack of polarisation effects in

classical simulations can be taken into account by inexpensive correction schemes.

1.5 Accounting for polarisation effects

As explained above, the dipole moment (or any other multipole moment) of a molecule

in a non-polarisable force field is not able to respond to its environment, and thus,

the modelled molecule always has the same fixed dipole regardless of the polarity of

the medium. In reality, a molecule’s dipole moment can significantly vary with respect

to its surroundings, and thus, problems tend to arise when molecules are simulated in

environments that significantly differ from those used during the model’s parametrisa-
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tion [91]. For example, the dipole moment of a water molecule in vacuum is 1.85 D,

while in the liquid bulk state, the dipole is close to 3 D [92]. In 1987, Berendsen et al.

proposed a correction that accounts for the re-polarisation, or distortion, of a molecule

when it moves from the liquid to the gas phase, and they used this correction to develop

a new water model called SPC/E [93]. Since then, most “modern” water models [94–

97] and a few methanol models [98, 99] have been parametrised using this correction.

However, the issue has been mostly neglected in the development of generic force fields

like OPLS-AA [100], GROMOS[101], TraPPE-UA [102] and GAFF [103].

In 2014, Leontyev and Stuchebrukhov mathematically proved that, within certain

approximations, polarisable molecular systems can be described by equivalent non-

polarisable fixed-charge models if the molecules have a well-defined average charge

distribution and the electronic polarisability of the system is macroscopically homo-

geneous [104]. Since in the classical approximation the bare point charges Q0 can be

considered to be in a continuum polarisable medium with a relative high-frequency

permittivity equal to εel, meant to describe the purely electronic contribution to the

polarisation, the Coulomb interaction between them can be calculated using Equa-

tion 1.18, where ε0 is the vacuum permittivity.

uqq(rij) =
1

εel

Q0i Q0j

4πε0rij
(1.18)

Most force fields do not include the relative permittivity of the medium when calcu-

lating electrostatic interactions. Thus, screening effects (i.e. reduction of electrostatic

interactions in a dielectric medium to those in vacuum) can be taken into account im-

plicitly by using scaled partial charges qeffi = Q0i/
√
εel. The original charges Q0 are not

the same as the atomic partial charges of the molecule in vacuum since they correspond

to the charges in the real liquid, and therefore, they are challenging to identify a priori,

except for ions or ionised groups in a protein. [84] For example, the charge +1 of an Na+

cation in solution should be scaled by 1/
√
εel. For most organic materials, εel is close to

2; consequently, Leontyev and Stuchebrukhov compared interactions between ions in a

continuum with dielectric εel = 2 to those obtained using CHARMM with charges scaled
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by ≈ 0.7. CHARMM with scaled charges can accurately reproduce ab initio interac-

tion calculations while the original force field significantly overestimates the interaction

energy [86]. On the other hand, empirical partial charges of common non-polarisable

force fields can also be thought of as scaled charges since they can describe reasonably

well interatomic interactions without explicitly introducing the electronic screening [84].

For example, the TIP3P water model [105] has an effective dipole moment of 2.35 D,

and thus, the actual dipole moment should be taken as µ = µeff
√
εel = 3.14 D [86].

This value is much closer to estimates obtained from experimental data [106] and from

liquid-phase QM calculations [107]. However, these models are not completely con-

sistent with the charge scaling concept described here because they simulate ions and

ionised groups with unscaled charges, leading to an overestimation of the interaction’s

strength. Nonetheless, many of these force fields can still do a good job at predicting

hydration free energies due to a fortuitous compensation of errors since they also ignore

the pure electronic contribution to the electrostatic free energy, which represents more

than half of the solvation free energy for ions [86]. For example, high-level QM calcula-

tions of liquid water’s distortion and purely electronic contributions to the polarisation

energy show that these terms, which have opposite sign, nearly cancel each other out

[108]. This pure electronic contribution is not included in non-polarisable models be-

cause it arises in response to the external field induced by the electronic clouds of the

surrounding solvent molecules, and it is present even when no rearrangement of the

molecules occurs. Meanwhile, the other component of the polarisation, called nuclear

or inertial, is due to the interaction between the medium molecules themselves and

is assumed to be implicitly included in the force field through properly parameterised

atomic partial charges and other non-electrostatic parameters. [84]. The limitations

of common non-polarisable force fields become clear when simulating free energies of

solvation in non-polar solvents since, in these cases, polarisation effects are almost

exclusively determined by the pure electronic component. [86]

When calculating properties that directly involve electronic polarisation, like phase

transitions and dielectric properties, the polarisation’s pure electronic component needs

to be added explicitly [84]. Leontyev and Stuchebrukhov argued that Berendsen dis-
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tortion correction is, in most cases, underestimated since it uses the effective dipole

moment of the model to represent the liquid-phase, while the (often much larger) ac-

tual dipole in the liquid-phase should be used instead. Besides, this correction should be

supplemented by another term that represents the interaction of the polarised molecule

with the purely electronic continuum surrounding it [92]. The nature of this new term

can be better understood from Figure 1.4, which explains the vaporisation process of

water in the electronic dielectric continuum εel. First, a polarised water molecule in

bulk is separated from other water molecules, keeping its dipole constant and remaining

in the electronic continuum (step-1). Then, this molecule is moved from the electronic

continuum to vacuum (step-2), and finally, the molecule’s dipole is relaxed to its gas-

phase value (step-3). The energy change associated with step-1 is obtained from MD

simulations, while the other two steps need to be added explicitly. Step-3 can be cal-

culated using the Berendsen correction but with the actual liquid dipole, while a new

correction term is used to obtain the energy change from step-2. [92] These corrections

are explained in more detail in section 2.7.2.

Figure 1.4: Vaporisation process of a water molecule in the electronic dielectric continuum εel.
This figure was adapted from reference [92].
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As mentioned above, simulated static dielectric constants (ε) should be corrected to

account for the polarisation’s pure electronic component. Multiplying the simulated

value by εel gives a good estimate of the static dielectric constant in different sys-

tems [84]. However, the dipole moments of many popular non-polarisable models

of water calculated using this approach are nearly twice as large as the experimental

value. Therefore, in 2018, Farahvash et al. proposed a new approach that considers

dynamic corrections when calculating the dielectric constant. However, theoretically,

the static dielectric constant should not depend on dynamics. [109] A year later, Jorge

and Lue [87] proposed a simple and straightforward way to correct the simulated dielec-

tric constant. This correction uses a simple dipole moment scaling factor, previously

presented in Vega’s work [110], and includes an additional term that accounts for the

polarisation change of each instantaneous configuration of the system due to the exter-

nal field (εel − 1). This extra additive term has a small relative effect on the dielectric

constant of polar liquids; however, its impact is significant on dielectric constants of

non-polar and weakly polar liquids. For example, this term represents less than 1 %

of water’s total dielectric constant and more than 50 % of cyclohexane’s dielectric con-

stant. When this approach was used to correct dielectric constants simulated using

non-polarisable force fields, agreement with experimental data was significantly im-

proved for a wide variety of molecules, and previously observed systematic deviations

were eliminated. [87] This thesis uses this correction to obtain dielectric constants, and

its equation will be described in section 2.7.4.

Some authors have taken other approaches to account for polarisation effects in non-

polarisable force fields. Kramer et. al [75] optimised the LJ parameters σij and εij

between TIP3P water and CHARMM36 [111] to reproduce the experimental transfer

free energy of a water molecule from bulk water to hexadecane. The modified param-

eters improved the target property and the interfacial tension of water/hexadecane,

however, they also highly overestimated the diffusion constant of water in hexadecane

and worsened the models’ performance at predicting transfer free energies of alkanes

from liquid water to hexadecane. The GROMOS force field [101] does something sim-

ilar since it uses specific van der Waals repulsion parameters for pairs of atoms with
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ionic or hydrogen-bond interactions.

1.6 Objectives and outline of this thesis

The work by Leontyev and Stuchebrukhov [84, 86, 92, 104] and the promising results

obtained by Jorge and Lue [87] are the foundation of this project. We hypothesise

that marked improvements in the performance of classical non-polarisable models can

be obtained if accurate polarisation corrections are employed consistently in force field

parameterisation and validation stages.

Here, a new force field for alcohols, amines and ketones is developed, considering po-

larisation corrections during the parametrisation and validation stages. This force field

is called PolCA, standing for “Polarisation-Consistent Approach”, and it is an exten-

sion of the model for alkanes, alkenes and alkynes proposed by Jorge [1]. The latter

was proposed after observing that GROMOS, OPLS-UA and TraPPE-UA presented

small but systematic deviations when predicting hydrocarbon solvation free energies

in hydrophobic systems [81]. Out of the three force fields tested, TraPPE-UA was the

one with the best performance, and thus, its parameters were chosen as the starting

point for our parameterisation. The new models for alcohols and ketones borrow all

bonded parameters from the TraPPE-UA force field without modifications, and only

non-bonded parameters were optimised. Unfortunately, TraPPE does not have UA pa-

rameters for amines, and thus, bonded parameters for our amine force field were taken

from TraPPE-EH, OPLS-AA and AUA4, as described in detail in Chapter 4.

The methods used in this work and the theory behind them are explained in Chap-

ter 2. This chapter serves as an introduction to statistical mechanics, the foundation

of molecular modelling, and contains the information needed to run and analyse molec-

ular dynamics simulations, including free energy calculations. It also describes the set

of parameters and equations commonly present in a force field and the algorithm used

here for their optimisation. Meanwhile, the three following chapters correspond to the

development and validation of the PolCA force field for alcohols (Chapter 3), amines

(Chapter 4) and ketones (Chapter 5). Finally, PolCA’s transferability is analysed in

Chapter 6. In this chapter, free energies of solvation of alkanes, ketones and amines in
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octanol obtained using PolCA and other well-known force fields are compared against

experimental data. Also, densities of several multifunctional compounds predicted us-

ing PolCA are presented there as an additional transferability test.

The thesis ends with general conclusions and suggestions for future work (Chap-

ter 7).

There is one publication associated with this work:

Maria Cecilia Barrera and Miguel Jorge (2020), “A Polarisation-Consistent Model for

Alcohols to Predict Solvation Free Energies”, Journal of Chemical Information and

Modeling 60 (3), 1352-1367.

And three publications in preparation:

Miguel Jorge, José RB Gomes and Maria Cecilia Barrera, “The dipole moment of

alcohols in the pure liquid phase and in solution”.

Maria Cecilia Barrera, Jordan Cree, José RB Gomes and Miguel Jorge, “Polarisation-

consistent force field for ketones”.

Maria Cecilia Barrera, José RB Gomes and Miguel Jorge, “Polarisation-consistent force

field for alkylamines and alkanolamines”.
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Chapter 2

Methodology

2.1 Introduction

As explained in Chapter 1, the main goal of this thesis is to develop an improved ap-

proach for optimising molecular models to better predict solvation free energies using

molecular dynamics. This chapter contains an overview of molecular simulation meth-

ods and provides the necessary theoretical background to understand the subsequent

chapters. Although the description is intended to be general, particular emphasis is

placed on aspects that are directly relevant to the topic of this thesis.

The majority of the material in sections 2.2 to 2.4 was based on the book “Under-

standing Molecular Simulations, From Algorithms to Applications” by Frenkel and

Smit [112], and section 2.5 was based on the book by Allen and Tildesley called “Com-

puter Simulation of Liquids” [60]. The reader is referred to these publications for

additional details.

The first section of this chapter explains the fundamentals of statistical mechanics,

on which all molecular simulations are based. Afterwards, two different simulation

techniques are explained: Monte Carlo and molecular dynamics, emphasising on the

latter since it is more relevant to this work. The following two sections explain the set

of equations and parameters, known as force field, used by these techniques to calculate

the particles’ interactions. Finally, the last three sections give background information
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as well as specific details about the simulations run here and the method used for the

new force field’s optimisation. Section 2.7 describes simulations run in the gas and

liquid phases from which densities, diffusion constants, enthalpies of vaporisation and

dielectric constants were obtained; while section 2.8 contains information about the

free energy calculations.

2.2 Statistical Mechanics

Statistical mechanics connects the information generated using computer simulation

of a microscopic state or microstate (atomic and molecular positions, velocities, etc.)

into macroscopic terms (pressure, internal energy, etc.) [113]. To better understand

the fundamental laws of statistical mechanics, it is essential to look at some simple

quantum mechanical concepts. A quantum mechanical system can be found in different

states, which are eigenvectors of the Hamiltonian of the system, and the probability

of finding a system with fixed volume, energy and number of particles in any of its

Ω(E) eigenstates is assumed to be the same. This statement is the main postulate

of statistical mechanics. The average over all possible quantum states of a system is

called an ensemble and is denoted by < ... > to differentiate it from a time average

denoted by an overbar. If a system is ergodic, the average of any given function of

the coordinates and momenta of a many-particle system computed by averaging over

all initial phase coordinates is equivalent to the value obtained by averaging over the

time-evolved phase space coordinates. In other words, a time average is the same as

an ensemble average. [112]

The number of eigenstates with energy E of a system of N particles in a volume V is

denoted by Ω(E, V,N) and this variable can be related to the thermal entropy S through

Equation 2.1, where kB is the Boltzmann constant (1.38066 10-23 J/K). [112]

S(N,V,E) = kB ln Ω(N,V,E) (2.1)

The temperature (T ) can easily be related to the entropy and therefore, to the number

of eigenstates using Equations 2.2 and 2.3.
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(
∂S

∂E

)
V,N

=
1

T
(2.2)

(
∂ ln Ω(E, V,N)

∂E

)
N,V

=
1

kBT
= β (2.3)

where we have defined β as the scaled reciprocal temperature. If we now have a system

A that is in thermal equilibrium with a large heat bath (B), at temperature T , and

the total energy of the system is fixed (E = EA + EB), we can use Equation 2.4 to

obtain the probability of finding system A in one specific quantum state i with energy

Ei [112].

Pi =
ΩB(E − Ei)∑
j ΩB(E − Ej)

=
exp(−Ei/(kBT ))∑
j exp(−Ej/(kBT ))

(2.4)

We can see that the second part of the right-hand side of Equation 2.4 is the Boltzmann

distribution for a system at temperature T . Additionally, the average energy < E > of

the system is:

< E >=
∑
i

EiPi = −∂lnQ

∂β
(2.5)

where Q is the partition function and in this case is equal to
∑

i exp(−Ei/(kBT )). The

derivation of Equation 2.5 can be found in Frenkel and Smit’s book [112]. Further-

more, the partition function Q is related to the Helmholtz free energy A as shown in

Equation 2.6.

< A >= −kB T lnQ (2.6)

The partition function Q is the sum over all possible states and energy levels, and its

expression varies from ensemble to ensemble depending on which variables are kept

constant in the system of interest. This function acts as a normalisation factor and

is independent of the actual state of the system. An ensemble from a system where
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the number of particles, the volume and the energy are fixed is called microcanonical,

while an ensemble where the number of particles, the volume and the temperature are

kept constant is called canonical. Other important ensembles are the NPT (constant

pressure, temperature and number of particles) and the Grand Canonical (fixed volume,

temperature and chemical potential). All the simulations in this work, except those in

the gas phase, were carried out in the NPT ensemble. In this ensemble, the density

of a liquid can easily be obtained by dividing the constant number of molecules by

the ensemble average of the volume. The partition functions for the most important

ensembles are shown in Table 2.1 [60].

Table 2.1: Partition function of the most important ensembles in the quantum realm.

Ensemble Fixed variables Partition function Simulation examples

Microcanonical NV E Ω Heat exchange between two subsystems

Canonical NV T Q = Ω exp(−βE) Heat capacity at constant volume

Isothermal-Isobaric NPT ∆ = Q exp(−βPV ) Density

Grand Canonical µV T Ξ = Q exp(βµN) Adsorption

2.2.1 Classical statistical mechanics

The thermal average of some observable X could, in theory, be computed using Equa-

tion 2.7 since we now know the probability that a system at temperature T will be

found in an energy eigenstate with energy Ei.

< X >=

∑
i exp(−Ei/(kBT )) < i|X|i >∑

j exp(−Ej/(kBT ))
(2.7)

where < i|X|i > is the expected value of X in quantum state i. Unfortunately, the

number of quantum states that contribute to the average is astronomically large and

thus, this approach is not practical. Luckily, we can express the equations described

so far in the classical limit for most systems, where interacting atoms are the basic

units instead of describing all particles as wavepackets. In order to do this, the Hamil-

tonian operator (H) should be used to represent the total energy of the system, and

the sum over states should be replaced by an integration over all coordinates (r) and

momenta (p). Consequently, the classical partition function for 3D systems is defined

by Equation 2.8:
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Qclassical =
1

h3NN !

∫
exp

[
−βH(pN , rN )

]
dpNdrN (2.8)

where h is the Planck’s constant and the factor 1/N ! takes into account the indistin-

guishability of particles that correspond to the same quantum state but differ in their

labelling. Also, rN and pN stand for the coordinates and momenta of all N particles,

respectively.

Finally, the thermal average of the observable X can be obtained using Equa-

tion 2.9:

< X >=

∫
X(pN , rN ) exp

[
−βH(pN , rN )

]
dpNdrN∫

exp [−βH(pN , rN )] dpNdrN
(2.9)

where, e−βH is the Boltzmann factor, and the observable X has been expressed as a

function of coordinates and momenta. Additionally, the Hamiltonian is the sum of the

kinetic (k) and potential (U) energy of the system. The kinetic energy is a quadratic

function of the momenta (
∑

i
p2i

2mi
) and thus, the integration over momenta can be done

analytically. On the other hand, the multidimensional integral over particle coordinates,

defining the potential energy of the system, cannot be computed analytically, except in

a few cases, and numerical techniques need to be used. Two important techniques can

be used to solve Equation 2.9. These techniques are Monte Carlo (MC) and molecular

dynamics (MD), which are explained in the following two sections.

2.3 Monte Carlo simulations

The simplest Monte Carlo technique is called random sampling or “brute force” Monte

Carlo. With this technique, one can evaluate the integral of a function f(x) over the

interval [a,b] using Equation 2.10:

∫ b

a
f(x) dx = (b− a) < f(x) > (2.10)

where < f(x) > is the unweighted average of f(x) over the interval [a,b] and is ob-
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tained by evaluating f(x) at a large number of xi values randomly distributed over this

interval. However, using brute force Monte Carlo to solve Equation 2.9 is extremely

inefficient since most of the computing time may be spent on points that contribute

negligibly to the average. Consequently, it is better to sample many points in regions

where the Boltzmann factor is significant and few elsewhere. This is the idea behind

importance sampling– the xi values are no longer randomly distributed but instead they

are chosen according to some probability density function. Unfortunately, we cannot

generate points with an absolute probability density proportional to the Boltzmann

factor without analytically computing the system’s partition function. Thus, the sim-

ple importance sampling scheme cannot be used to solve Equation 2.9. Metropolis et

al. [114] created a method that can solve Equation 2.9 by generating points in configu-

ration space with a relative probability proportional to the Boltzmann factor. In other

words, a random walk is created through the region of phase space where the numera-

tor of Equation 2.9 is non-negligible. The sequence of trials satisfies the two conditions

of a Markov chain: each trial’s outcome belongs to a finite set of outcomes, and the

outcome of each trial depends only on the outcome of the preceding trial. [60].

To carry out a Monte Carlo simulation, we must first prepare a system in a configura-

tion rN with a non-zero Boltzmann factor and then add a small random displacement

to generate a new trial configuration. This trial move is always accepted if it is energeti-

cally favourable, and if it is not, it is accepted with a probability equal to e−β(Unew−Uold).

Some unfavourable moves need to be accepted to allow for fluctuations at equilibrium

and avoid a frozen system. In equilibrium, the average number of accepted moves from

a state o to any other state n is exactly cancelled by the number of reverse moves.

Monte Carlo simulations present a few advantages over molecular dynamics simula-

tions. They do not have to calculate the forces between all the particles in a system

like it is necessary for MD simulations. This step is very time-consuming, as will be

explained in section 2.4. Furthermore, the MC technique allows the user to efficiently

cross over energy barriers, making it easier to equilibrate complicated systems with

high energy barriers. Additionally, MC simulations in the NV T and NPT ensem-

bles can be run without using thermostats and barostats, which are necessary for MD
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simulations.

On the other hand, MD simulations give information about the evolution of the system

over time and thus, transport properties (e.g. diffusion and viscosity) can easily be

obtained using MD. In this work, the diffusion constant is used to optimise and validate

the new PolCA model and therefore, MD is the method of choice. Another reason to

choose MD is convenience since many freely available software packages contain all the

algorithms necessary to run the desired MD simulations. It is important to mention

that both MD and MC simulations normally have the same setup, which consists of

representing the molecules as collections of interaction sites centred in the atoms, and

they both use force fields for the potential energy terms [115]. Classical force fields are

explained in section 2.6.

2.4 Molecular dynamics simulations

Molecular dynamics simulations are used to calculate the equilibrium and transport

properties of a classical many-body system. This technique consists of selecting a

model system of N particles, computing the forces on all particles, and solving Newton’s

equations of motion (Equation 2.11) for this system until its properties no longer change

with time (equilibrium has been reached) [112].

mi
∂2ri
∂t2

= Fi , i = 1....N (2.11)

The forces in Equation 2.11 are the negative derivatives of a potential function

U(r1, r2, .., rN ), which will be described in detail in section 2.5:

Fi = −∂U
∂ri

(2.12)

The equations are solved simultaneously in small discrete time steps, and the coordi-

nates are written to an output file at regular intervals. These coordinates as a function

of time are the trajectory of the system [116]. Different algorithms can be used to inte-

grate Newton’s equations of motion such as Verlet [117] and leap-frog [118]. The choice
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between them depends on a balance between computational speed and accuracy. The

Verlet algorithm uses the positions and velocities of all particles at time t to predict the

positions at the next time step based on the forces acting on the particles, as shown in

Equations 2.13 and 2.14 [60]:

r(t+ ∆t) = r(t) + ∆t v(t) +
∆t2

2m
F(t) (2.13)

v(t+ ∆t) = v(t) +
∆t

2m
[F(t) + F(t+ ∆t)] (2.14)

The leap-frog algorithm uses positions r at time t and velocities v at time t − 0.5 ∆t

(Equations 2.15 and 2.16):

v(t+ 0.5 ∆t) = v(t− 0.5 ∆t) +
∆t

m
F(t) (2.15)

r(t+ ∆t) = r(t) + ∆t v(t+ 0.5 ∆t) (2.16)

This algorithm is algebraically equivalent to Verlet’s. However, it minimises the loss of

precision because, unlike Verlet’s, it does not need to take the difference between the

coordinates at time t + ∆t and t − ∆t to obtain the velocity at time t. Instead, the

velocity at time t is obtained as the average between the velocities at times t+ 0.5 ∆t

and t − 0.5 ∆t [60]. Another alternative is to use the velocity Verlet algorithm. This

algorithm is also equivalent to the original Verlet’s form but it calculates the velocities

at time step t+ 0.5 ∆t as a mid-step.

Constraints can be added to connect the coordinates of bonded atoms during the simu-

lation. Bond lengths can be kept fixed using different methods. The SHAKE algorithm,

proposed by Ryckaert et al. [119], uses Lagrange multipliers to get the forces along the

bonds needed to keep the bond lengths constant. These multipliers are determined

after each timestep based on the constraint conditions, and the atoms’ positions are

corrected accordingly. This method was designed to be used with the Verlet algorithm,
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but there is another version called RATTLE [120], which works with velocity Verlet.

In this work, the LINCS [121] algorithm is used because it is faster and more stable

than SHAKE. LINCS resets bonds to their correct lengths using two steps. First, the

new bonds’ projections to the old bonds are set to zero, and the bond length after this

projection is called li. Then, the projection of the bond on the old direction (pi) is

corrected using Equation 2.17:

pi =
√

2 d2
i − l2i (2.17)

where di is the old bond’s length. This equation accounts for the lengthening of the

bond due to rotation.

The initial positions of each particle have to be specified before starting a simulation.

These particles should not be placed at positions that result in an appreciable overlap

of the atomic or molecular core to avoid large forces that can eventually crash the

simulation [112]. Therefore, it is good practice to obtain the coordinates of a compound

from a molecule editor software like Avogadro [122] and to add additional molecules

to the system using the proper tools. These tools assure there will not be an overlap

between the molecules, and the tool used in this work is the command “gmx insert-

molecules” from the Gromacs software [123].

Once the system has been equilibrated, many macroscopic properties can be extracted

from the output file by averaging over a trajectory that has reached equilibrium. Unfor-

tunately, some thermodynamic properties (e.g. entropy and free energy) depend on the

total partition function and hence, cannot be directly measured in a simulation. In these

situations, special techniques need to be used, as explained in section 2.8 [112].

The number of particles in an MD or MC simulation is small, normally ranging between

10 and 10,000, and a large fraction of them lie at the surface of the simulation box. For

example, 488 molecules out of 1000 molecules are at the surface in a simple cubic crys-

tal [60]. Consequently, the boundary conditions’ choice affects the system’s properties

since the molecules in contact with vacuum or a wall experience very different forces

from those in bulk. Periodic boundary conditions (PBC) [124] in the three dimensions
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are generally implemented to overcome surface effects when simulating bulk liquids.

This method mimics the presence of an infinite bulk by placing the atoms of the sys-

tem into a unit cell that is surrounded by translated copies of itself. Consequently,

when a molecule leaves the central box, one of its images enters the cell through the

opposite direction, conserving the number density of the system (Figure 2.1).

Figure 2.1: Periodic boundary conditions usually used to simulate liquids. Here, while the yellow
molecule leaves the central box (coloured in green), its periodic image enters in it from the top.

The most time-consuming part of all MD simulations is computing the forces since inter-

actions with all surrounding particles need to be considered when calculating the force

on a particle i. In practice, short-range potential functions are commonly employed

due to the large number of interactions. Short-range means that all intermolecular

interactions beyond a specific cut-off distance rc are truncated. When the cut-off ra-

dius is less than half the periodic box’s shortest size, only the interactions of a given

particle i with the nearest periodic image of any other particles j in the simulated box
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are calculated (this is called the minimum image convention).

2.4.1 Thermostats

The default ensemble for MD simulations is NV E, however, most of the quantities

we are interested in need to be measured at a constant temperature. To simulate an

NV T ensemble, we need to add a thermostat that simulates constant temperature (the

system is in thermal contact with a large heat bath). The instantaneous temperature of

a classical many-body system is obtained from the kinetic energy using Equation 2.18,

where Nf is the number of degrees of freedom.

T (t) =

N∑
i

mi v
2
i (t)

kB Nf
(2.18)

The most commonly used thermostats are Berendsen [125], Andersen [126] and Nosé-

Hoover [127, 128]. The Berendsen thermostat mimics weak coupling with first-order

kinetics to an external heat bath with temperature T0. This algorithm scales the

velocities per time step by adding friction terms proportional to (T0/T − 1) in the

equations of motion. Consequently, a deviation of the temperature of the system from

the desired temperature T0 decays exponentially with a time constant τ according to

Equation 2.19 [125].

dT

dt
=
T0 − T
τ

(2.19)

Unfortunately, the Berendsen thermostat does not simulate a proper canonical ensem-

ble because fluctuations of the kinetic energy are suppressed, and thus, a modified

algorithm, called velocity rescaling [129], is customarily used instead for a more ac-

curate simulation. This thermostat uses an additional stochastic term that ensures a

correct kinetic energy distribution [116].

The Andersen thermostat simulates collisions with an imaginary heat bath by period-

ically changing the velocities of randomly selected particles to values taken from the

Maxwell-Boltzmann distribution. This method can slow down the kinetics of the sys-
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tem and should not be used when calculating transport properties. Another approach

that also mimics the coupling of the system to a thermal bath is the Langevin thermo-

stat. This method modifies the equations of motion by adding a random force and a

frictional force proportional to the particle velocities [60].

The last thermostat explained here is Nosé-Hoover, which belongs to the extended-

Lagrangian methods. This approach uses artificial coordinates (s) for the thermal bath

with their associated momentum (ps) and the desired temperature to calculate the

Hamiltonian of an “extended system”. This setup allows the energy to flow between

the system and reservoir, where the reservoir has an associated “thermal inertia” Qs.

Thus, the coordinates of the particles are obtained using Equations 2.20 and 2.21. [60,

116]

d2ri
dt2

=
Fi

mi
− ps
Qs

dri
dt

(2.20)

dps
dt

= (T − T0) (2.21)

2.4.2 Barostats

Similarly, as with the temperature, the system can be coupled to a “pressure bath”

to simulate an NPT ensemble. Again, the simplest way to do this is by using the

Berendsen pressure coupling scheme [125]. This algorithm rescales the coordinates and

box vectors every nPC steps with a matrix µ and has the same effect of a first-order

kinetic relaxation of the pressure towards a reference pressure P0 [112]. Each element

of the matrix µ is calculated using Equation 2.22:

µij = δij −
nPC∆t

3τp
βijP0ij − Pij(t) (2.22)

where, β is the isothermal compressibility of the system. A rough estimate of β is

enough to get a good average of the pressure and therefore, the value for water can be

used to simulate other liquids. For water, this value is 4.6 x 10-5 bar -1 at 300 K and 1
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atm, and most other liquids have similar values.

The Berendsen pressure control algorithm does not generate the exact NPT ensemble,

and thus, other barostats need to be used to simulate the true NPT ensemble. One

example is the Parrinello-Rahman barostat [130] used in this work, which is similar to

the Nosé-Hoover thermostat explained in the previous subsection.

2.5 Interaction Potentials

As explained above, knowing the potential energy of a system is essential to run molec-

ular simulations. MC simulations use this quantity to accept or reject a move, while

MD simulations use the potential to calculate the forces that govern the entire time-

evolution of the system. The potential energy U of an N particles system can be

calculated using Equation 2.23:

U =
∑
i

V1(ri) +
∑
i

∑
j>i

V2(ri, rj) +
∑
i

∑
j>i

∑
k>j

V3(ri, rj , rk) + ... (2.23)

where, r are the coordinates of the particles and
∑

i

∑
j>i represents a summation

over all pairs i and j, counting each ij pair only once. Additionally, the term V1(ri)

represents the effect of an external field, and the other terms correspond to particle

interactions. The second term is called pair potential and is the most important. On

the other hand, the third term in Equation 2.23 is already very time-consuming to

compute, and thus, it is not explicitly accounted for in most molecular simulations

despite being significant at liquid densities. Instead, this last term, as well as any

higher-order terms, is partially included using an “effective” pair potential:

U ≈
∑
i

V1(ri) +
∑
i

∑
j>i

V eff
2 (rij). (2.24)

The electrons of an atom are continually moving, and their specific positions create

an instantaneous dipole moment that only lasts a tiny fraction of a second. These

instantaneous dipoles cancel each other out over time, and thus, the average dipole
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moment is zero for non-polar molecules. However, each instantaneous dipole can create

temporary dipoles in the atoms near it, producing attractive forces between the atoms or

molecules. These forces are called dispersion or London forces, and they are responsible

for the condensation of non-polar gases [131]. As the distance between the atoms

decreases, the potential energy also decreases until a minimum is reached where the

balance between attractive and repulsive forces is the most favourable. If the distance

between atoms is further decreased, the potential energy will rapidly increase due to

electron-electron repulsion forces. The most common way of describing these two forces

is using the Lennard-Jones (LJ) 12-6 potential (Equation 2.25):

uLJ(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.25)

where rij , εij and σij are the separation, LJ well-depth and LJ size, respectively for

the pair of atoms i and j. This potential has an attractive tail of the form (−1/r6)

which corresponds to interactions between instantaneous dipoles, and a steeply rising

repulsive wall when the distance between the particles is lower than σ. This repulsive

part is due to the overlap of electron clouds. An example of this potential is presented

in Figure 2.2 for a particle with σ = 0.302 nm and ε = 0.773 kJ/mol.

This potential can also be written using the coefficients C12 and C6 instead of σ and

ε:

uLJ(rij) =
C12ij
rij12

− C6ij
rij6

(2.26)

where, C12 and C6 relate to σ and ε through Equations 2.27 and 2.28:

C12 = 4 εσ12 (2.27)

C6 = 4 εσ6 (2.28)
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Figure 2.2: LJ potential of a particle with σ = 0.302 nm (vertical grey line) and ε = 0.773
kJ/mol (horizontal grey line).

Additionally, the Lennard-Jones potential is a particular case of the Mie potential with

n = 12 and m = 6, as can be seen from Equation 2.29.

uMie(rij) =

(
n

n−m

)( n
m

) m
n−m

εij

[(
σij
rij

)n
−
(
σij
rij

)m]
(2.29)

The Mie potential only describes the interaction between uncharged particles (van

der Waals forces), and thus, another equation needs to be added to the potential when

simulating charged particles. Equation 2.30 is used to calculate the long-range Coulomb

interactions:

uqq(rij) =
qi qj

4πε0ε1rij
(2.30)

where qi and qj are the partial charges of particles i and j, and ε0 and ε1 are the vacuum

permittivity and the relative permittivity of the medium, respectively.

As explained in section 2.4, intermolecular interactions usually are truncated when the
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distance between particles is larger than a specific cut-off distance. In a 3D system, the

contribution of the truncated tail to the potential converges if the potential function

decays faster than r−3. Dispersion forces follow this condition and thus, tail corrections

can be easily estimated to compensate for the missing part of the potential. On the

other hand, electrostatic interactions are long-range forces (they do not decay faster

than r−3) and therefore, the tail correction diverges. For this reason, electrostatic

interactions cannot be calculated using a straightforward spherical truncation, as can be

done with the dispersion forces, and other techniques need to be used such as Particle-

Mesh Ewald (PME) [132]. This method accounts for the interaction of a particle

with all its periodic images by assigning the charges in the simulation cell to a fine,

regular mesh and using a fast Fourier transform to calculate the long-range part of the

forces. [60] Another way to account for electrostatic interactions beyond the cut-off is

using a reaction-field correction (uRF ) which represents the interaction of atom i with

the dielectric medium outside the cut-off distance rc [101]:

uRF (rij) =
∑

pairs i,j

qi qj
4πε0ε1

[
−0.5 Crf r

2
ij

r3
c

+
−(1− 0.5 Crf )

rc

]
(2.31)

where,

Crf =
(2ε1 − 2ε2) (1 + k rc)− ε2 (k rc)

2

(ε1 + 2ε2) (1 + k rc) + ε2 (k rc)2
(2.32)

and ε2 and k are the relative permittivity and inverse Debye screening length of the

medium outside the cut-off sphere defined by rc, respectively.

When simulating molecular systems, molecules are normally represented using inter-

action sites, which are typically centred on the molecule’s nuclei but not always. For

example, nitrogen can be thought of as two LJ atoms separated by a fixed bond length.

Furthermore, the molecular charge distribution can be described using fictitious par-

tial charges placed around the molecule. These sites are usually placed at the atom

positions, the centre of a bond or within a lone pair. Also, dipoles and quadrupoles

can be added to these sites if a better representation of the electrostatic potential is
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required [133].

A significant problem of simulating charged particles is that induction interactions

(induced dipoles) are not pairwise additive, and consequently, including them in a sim-

ulation is challenging. An induced dipole appears when a polar molecule or an ion

distorts the electron distribution of an atom or a non-polar molecule in its proximity.

The magnitude of this induced dipole depends on the strength of the external dipole

or ion’s charge and the atom or non-polar molecule’s polarisability. These polarisation

effects are very expensive to calculate because they cannot be broken down to a sum

over pair interactions, and for this reason, they used to be often ignored. Nowadays,

different approaches can be used to include polarisation in a model explicitly, like the

induced point multipole model [134], the fluctuating charge model [135] and the Drude

oscillator model [136] (see section 1.4). However, these polarisable models are very

computationally expensive, and thus, non-polarisable models are commonly used in-

stead. Non-polarisable models implicitly include induction effects in the fixed charge

values, and therefore, they are faster but less accurate, especially for properties that

involve a change of phase. Adding post-facto polarisation corrections to non-polarisable

models is an excellent compromise between accuracy and speed. The post-facto polari-

sation corrections proposed by Leontyev and Stuchebrukhov [92] are used in this work

to generate a new model, and they are explained in more detail in section 2.7.2.

When simulating molecular systems, additional terms need to be added to the potential

to account for bonds, angles and dihedrals. These terms will be described in section 2.6.

Bonds can be treated as classical harmonic springs or as fixed lengths. In most cases,

the second approach is prefered because bond vibrations are difficult to handle and do

not affect many liquid properties.

Furthermore, coarse-grained potential models can be used to reduce computational

time. These models have interaction sites that represent more than one atom, reducing

the number of explicit pairs needed for the calculations. One example is the MARTINI

model [137] which was developed to model bilayers and proteins. In this model, the

hydrogen atoms bonded to a heavier atom, like C, N and O, are not simulated explicitly,

and instead, they are combined with the heavier atom forming a pseudo-atom with its
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own interaction site. These pseudo-atoms are then combined to create larger beads

that interact with each other through Lennard-Jones and Coulomb potentials.

United-atom (UA) models are a simple example of coarse-grained potentials, and these

models treat all hydrogen atoms united to a carbon atom as a single interaction site.

This means that CHx groups are treated as pseudo-atoms located at the sites of the

carbon atoms. UA models have fewer interaction sites than all-atom models, and

consequently, they are less computationally expensive and more straightforward to

parameterise. Additionally, UA can use a longer time step than all-atom models during

the integration process of alkanes since hydrogens require a smaller time step for an

accurate integration due to their small mass. However, larger time steps cannot be used

when the molecule contains non-aliphatic carbons. Polar and aromatic hydrogens need

to be represented explicitly to simulate hydrogen bonding and π-stacking accurately

[138]. On the other hand, an all-atom model is more realistic and more appropriate

for simulations of solids and high-density liquids [102]. The force field developed here

is an UA model because simplicity and efficiency were two essential features desired in

the new PolCA force field.

2.6 Force Fields

Both Monte Carlo and molecular dynamics calculations use a force field to determine

the evolution of the system. A force field is the set of equations and parameters that

generate the total energy (MC) and forces (MD) [115]. Different sets of parameters can

be used with the same set of equations; however, it is dangerous to make changes in a

subset of parameters since all these parameters are usually correlated. Every change

should be documented, compared against experimental data and published in a peer-

reviewed journal before its use [116]. Force fields are usually created using an iterative

process which searches for the set of parameters that minimise the difference between

simulated and experimental results. Typically, bonded parameters are obtained using

quantum mechanical (QM) calculations, and only non-bonded parameters are further

optimised. QM simulations are often used to obtain an initial guess for the partial

charges.
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Some widely used general-purpose force fields are OPLS [139], CHARMM22 [140],

AMBERff99 [141], GAFF [103], GROMOS [142] and TraPPE [102], to name a few.

General-purpose force fields can be used to simulate a large range of compounds, while

specific force fields have been parameterised for only one or a small subset of com-

pounds. A model’s transferability and precision depend, among other factors, on the

amount of interaction-site types and the molecules used during its development. For

example, using a common set of charges for the hydroxyl group of alcohols ignores how

the alkyl chain affects its electronic structure, and thus, more precise values can be

obtained if different charges are used for each alcohol. However, this approach reduces

the transferability of the model and increases its complexity. [143] Most force fields,

including those mentioned above, are constantly updated and extended.

Some researchers classify force fields in three classes [60]. Class I force fields calculate

the potential function using Equation 2.33, where the sums
∑

bonds,
∑

angles,
∑

torsion

and
∑

non−bonded are over all bonds, angles, dihedrals and non-bonded pairs separated

by more than three bonds, respectively. Some force fields also include LJ and Coulomb

1-4 interactions, but they use different parameters to describe these interactions.

U I =
∑
bonds

ubonds +
∑
angles

uangles +
∑

torsion

utorsion +
∑

non−bonded
unon−bonded (2.33)

where,

ubonds =
kr
2

(rij − r0)2 (2.34)

uangles =
kθ
2

(θ − θ0)2 (2.35)

utorsion = c0 + c1[1 + cos(φ)] + c2[1− cos(2φ)] + c3[1 + cos(3φ)] (2.36)
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unon−bonded =
qi qj

4πε0rij
+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.37)

here, r0, θ, θ0, kr and kθ are the equilibrium bond-length, measured bending angle,

equilibrium bending angle, and force constants, respectively. Also, φ is the dihedral

angle and c0, c1, c2 and c3 are the Fourier coefficients.

The torsion term can include improper dihedrals to enforce planarity around sp2 centres.

Improper dihedrals are formed by four atoms that are not all connected by covalent

bonds. Additionally, the term utorsion could be expressed using the Ryckaert-Bellemans

convention:

uRBtorsion =
5∑

n=0

Cn(cos(φ− 180◦))n (2.38)

The parameters of Equation 2.36 can be converted to Ryckaert-Bellemans parameters

using the following equations:

C0 = 2 c2 + c1 + c3 + c0 (2.39)

C1 = −c1 + 3 c3 (2.40)

C2 = −2 c2 + 8 c4 (2.41)

C3 = −4 c3 (2.42)

C4 = −8 c4 (2.43)

Furthermore, Equation 2.37 is actually the sum of Equation 2.25 and 2.30 with ε1 =

1, and the LJ cross-interaction parameters are normally obtained using the Lorentz-

Berthelot combining rules (Equations 2.44 and 2.45). There are other combining rules

like for example using also a geometric average to obtain sigma [144].

σij =
1

2
(σii + σjj) (2.44)
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εij = (εiiεjj)
1/2 (2.45)

The other two classes of force fields are not used in this work, and therefore, they are

only briefly mentioned here. Class II force fields, such as COMPASS [145], contain

extra cubic or anharmonic terms in the stretching potentials to represent the depen-

dence between bonds, angles and dihedrals in a molecule. Lastly, a class III force field

includes the particles’ polarisability in the calculations, and thus, it can represent the

electrostatic interactions between particles more accurately.

The force field developed in this work was based on TraPPE-UA, and for this reason,

TraPPE is explained in more detail below. This model was the starting point for most

of the work presented here because it performs better than OPLS-UA and GROMOS at

predicting hydrophobic solvation [81], which is one of the properties we are interested

in.

2.6.1 TraPPE-UA Force Field for Alcohols and Ketones

The TraPPE-UA (Transferable Potentials for Phase Equilibria - United Atom) force

field treats the CHx groups as pseudo-atoms located at the carbon atoms sites while

it models all other atoms explicitly [69]. Non-bonded interactions are described by

pairwise-additive LJ 12-6 potentials (Equation 2.25) and Coulombic interactions of

partial charges (Equation 2.30 with ε1 = 1) [69]. The LJ parameters for the inter-

action between two different atoms are calculated using the Lorentz-Berthelot com-

bining rules (Equations 2.44 and 2.45). Additionally, intramolecular interactions are

described using fixed bond lengths, a harmonic potential for bond angle bending (Equa-

tion 2.35) and torsional potentials that restrict the dihedral rotations around bonds

(Equation 2.36).

The bonded and non-bonded parameters for TraPPE-UA for alcohols [69] and ke-

tones [146] are listed in Table 2.2. The Lennard Jones parameters were determined

by fitting the single component vapour-liquid phase equilibria of methanol, ethanol,

2-propanol, 2-methylpropan-2-ol and acetone. The charges were taken from the OPLS-
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UA force field [100, 147]. In the case of ketones, the carbonyl oxygen’s parameters were

taken from the TraPPE force field for carbon dioxide, and only ε and σ of the carbonyl

carbon were optimised. [146]

Table 2.2: Bonded and non-bonded parameters for the TraPPE-UA force field [69].

stretch r0 [nm]

CHx-CHy 0.154
CHx-OH 0.143
O-H 0.0945
C=O 0.1229

bend (eq 2.35) θ0 [deg] k0/kb [K]

CHx-(CH2)-CHy 114 62,500
CHx-(CH)-CHy 112 62,500
CHx-(C)-CHy 109.47 62,500
CHx-(CHy)-O 109.47 50,400
CHx-(O)-H 108.5 55,400
CHx-C(=O)-CHy 117.2 62,500
CHx-C=O 121.4 62,500

torsion (eq 2.36) c0/kb [K] c1/kb[K] c2/kb [K] c3/kb [K]

CHx-(CH2)-(CH2)-CHy 0 335.03 -68.19 791.32
CHx-(CH2)-(CH2)-OH 0 176.62 -53.34 769.93
CHx-(CH2)-(O)-H 0 209.82 -29.17 187.83
CHx-(CH)-(O)-H 215.96 197.33 31.46 -173.92
CHx-(C)-(O)-H 0 0 0 163.56
CHx-CHy-C=O 2035.58 -736.90 57.84 -293.23

non-bonded (eq 2.37) ε/kb [K] σ [nm] q

CHx-(O)-H 93 0.302 -0.700
O-(H) 0 0 +0.435
(CH3)-OH 98 0.375 +0.265
(CH3)-CHx 98 0.375 0
CHx-(CH2)-OH 46 0.395 +0.265
(CHx)2-(CH2) 46 0.395 0
(CHx)2-(CH)-OH 10 0.433 +0.265
(CHx)3-(CH) 10 0.468 0
(CHx)3-(C)-OH 0.5 0.580 +0.265
(CHx)4-(C) 0.5 0.640 0
C(=O) 40.0 0.382 +0.424
O (sp2) 79.0 0.305 -0.424

The non-bonded parameters correspond to the atoms in bold.

Jorge [1] proposed new LJ parameters for alkanes, alkenes and alkynes that correct

systematic deviations observed when using TraPPE-UA. These new parameters (Ta-

ble 2.3) give better predictions of the solvation free energies of hydrocarbons in hy-

drophobic systems while simultaneously providing a better description of pure liquid

properties.
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Table 2.3: LJ Parameters proposed by Jorge for hydrocarbons [1].

Molecule type Site σ [nm] ε/kb [K]

Alkanes (sp3) CH4 0.371 144.33
CH3 0.379 100.19
CH2 (linear and branched) 0.399 47.15
CH2 (cyclic) 0.392 54.12
CH 0.473 10.22
C 0.646 0.51

Alkenes (sp2) identical to TraPPE-UA
Alkynes (sp) CH 0.3315 75.53

C 0.390 45.70

2.7 Bulk Properties and Polarisation corrections

2.7.1 Simulation details

MD simulations were run with Gromacs 5.1.2 [123]. First, N molecules were inserted in

a cubic box of approximately 3 nm on each side, and the number of molecules for each

simulation can be found in the corresponding results chapters. Each value of N was

selected to maintain an approximately constant box size (circa 3 nm) to minimise the

use of computational resources. It has been previously shown that the results (except

for the self-diffusion coefficient; see below) are independent of system size provided long-

range corrections are employed [81]. After this, a steepest descent minimisation run

was performed, followed by a 100 ps NV T simulation at 298.15 K using the V-rescale

thermostat [129] to accurately simulate the kinetic energy distribution. Subsequently,

a 100 ps NPT simulation was carried out using the Berendsen barostat [125] with a

target pressure of 1 bar to avoid having very large box oscillations when switching to the

more accurate Parrinello-Rahman barostat [130]. Lastly, a 25 ns NPT simulation was

run where the temperature was kept at 298.15 K using the V-rescale thermostat, with

a time constant of 0.1 ps, and the pressure was controlled using the Parrinello-Rahman

barostat, with a time constant of 2 ps and isothermal compressibility of 4.5 x 10-5 bar-1.

A leap-frog algorithm [118] was used to integrate Newton’s equations of motion with

a time step of 2 fs. All bonds were constrained using the LINCS algorithm [121]. The

Verlet scheme was chosen for neighbour searching, with a cut-off radius of 1 nm for both

van der Waals and electrostatic interactions, and long-range dispersion corrections for
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energy and pressure were applied. Long-range electrostatic interactions were calculated

using PME [132] with a Fourier spacing of 0.16 nm. Additionally, periodic boundary

conditions were always applied unless stated otherwise.

In total, ten independent simulations were run for each compound and error bars were

calculated to give a 95 % confidence interval using a Students’ t equal to 2.262 [148].

In some cases, the error bars were too small to be plotted and therefore, they are not

visible in the graphs.

2.7.2 Enthalpy of vaporisation

The enthalpies of vaporisation were obtained using Equation 2.46:

∆Hvap = Egas − Eliq +RT + Cpol (2.46)

where Egas is the molar total energy in the vapour phase, Eliq is the molar total energy in

the liquid phase, R is the ideal gas constant and T is the temperature. To estimate the

total energy in the vapour phase (i.e. the intramolecular energy of an isolated molecule),

a 50 ns simulation of a single molecule in vacuum with no boundary conditions was run

for each molecule, and the first 10 ns were discarded. For these simulations, the cut-off

scheme selected for neighbour searching was “group”, and the cut-off radii were all set

to 0.

The correction term (Cpol) was obtained using Equation 2.47 [92] and was proposed by

Leontyev and Stuchebrukhov (see section 1.5):

Cpol = −(µl − µg)2

2α
+

6(εel − 1)2µ2
l

π(2εel + 1)(εel + 2)α
(2.47)

where, µl and µg are the liquid and gas phase dipole moments, respectively. Addition-

ally, α and εel are the electronic polarisability of the molecule in the gas phase and the

experimental high-frequency dielectric permittivity of the solvent, respectively. The

first term on the right-hand side of Equation 2.47 is the distortion energy, which is

favourable when moving from the liquid to the gas phase (as in a vaporisation pro-

51



cess). The second term is the interaction energy of the molecule with the surrounding

electronic continuum, described here by a simple Kirkwood-Onsager model [149–151]

for a dipole in a spherical cavity. The cavity’s radius is treated self-consistently, and

thus, it is eliminated from the polarisation energy equations [92]. As mentioned in

section 1.5, liquid water’s distortion and electronic contributions to the polarisation

energy estimated from high-level quantum mechanical calculations nearly cancel each

other out [108], however, it is not yet clear to what extent this effect is observed for

other molecules of lower polarity. Finally, it is important to clarify that the correction

Cpol is independent of the parameters of the model, unlike the correction proposed by

Berendsen et al., which depends on the effective dipole of the model (µmodel) as can be

seen from Equation 2.48 [93].

CBerendsen = −(µmodel − µg)2

2α
(2.48)

The theory of Leontyev and Stuchebrukhov [92] is based on decoupling the contribu-

tions to the dielectric response of the solvent coming from the “fast” electronic degrees

of freedom and those arising from the “slow” nuclear degrees of freedom, following the

Born-Oppenheimer approximation. As such, the liquid state can be thought of as nu-

clear charges qi moving in a polarisable electronic continuum with a high-frequency di-

electric permittivity (εel) equal to n2
D (where nD is the refraction index of the medium),

while the relative permittivity of the gas phase is close to 1 (εel ≈ 1 for a perfect vac-

uum). This purely electronic continuum interacts with the polarised molecule and also

screens its charges, resulting in effective charges that are much lower than those of the

real liquid, i.e. qeffi = qi/ε
0.5
el . Hence, in order to consistently account for polarisa-

tion effects, the value of µl to be used in Equation 2.47 should be the dipole of the

real liquid, which is usually much higher than the dipole moment of non-polarisable

fixed-charge models due to the charge screening effect [92, 108]. The original Berendsen

correction uses the model’s dipole moment as a proxy for the real liquid dipole, hence

leading to strongly underestimated distortion corrections [92]. Unfortunately, there is

no experimental estimate of the liquid phase dipole moment for most molecules, and

Equation 2.49, which was also proposed by Leontyev and Stuchebrukhov, was used to
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approximate the liquid dipole. This expression provides a good estimate of the dipole

moment of liquid water [108].

µl = µg

(
1− 12(εel − 1)(εsol − 1)

π(εel + 2)(2εsol + 1)

)−1

(2.49)

In the above equation, εsol is the static dielectric constant of the solvent and εel can be

estimated from the square of the experimental refraction index at the Sodium D-line

frequency.

2.7.3 Diffusion constant

The diffusion constant was calculated using the Einstein relation (Equation 2.50). The

left-hand side of Equation 2.50 was obtained by linear regression of the mean square

displacement (MSD), where the times were weighted according to the number of ref-

erence points. In every case, the fitting was done between t= 100 ps and t = 500 ps,

where t is the time from the reference positions and not simulation time. The estimated

error of each simulation was the difference of the diffusion coefficients obtained from

fits over the two halves of the fit interval [116].

lim
t→∞
〈‖ ri(t)− ri(0) ‖2〉i∈A = 6 DA t (2.50)

DA is the self-diffusion constant of particles of type A and the left-hand side of Equa-

tion 2.50 is the limit of the mean square displacement when time tends to infinity.

It has been shown that the apparent self-diffusion coefficients depend significantly on

the system size, and thus, it is important to correct for the deviations observed when

comparing to an infinite system [152]. The diffusion coefficient depends linearly on the

inverse box length (1/L), and consequently, the diffusion constant for an infinite system

can be calculated by extrapolating a straight-line fit [152] (see Figure 2.3). For this

reason, simulations were run for four different box lengths (3nm, 4nm, 5nm, 6nm), and

a correction term was calculated for each molecule. This correction was obtained by

subtracting the simulated diffusion constant obtained using a cubic box of 3nm each
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side from the intercept of the fitted line (see Figure 2.3 for an example).

Figure 2.3: Diffusion coefficient of methanol as a function of the inverse box length, obtained
using the new PolCA force field.

2.7.4 Dielectric constant

Gromacs calculates the static dielectric constant using Equation 2.51 [153]:

εsim = 1 +
〈M2〉 − 〈M〉2

3ε0kBT 〈V 〉
(2.51)

where V is the volume of the simulation box and M is the total dipole moment of the

system.

Jorge and Lue showed that agreement with experimental data dramatically improves

when a simple dipole moment scaling factor is used to take into account the purely

electronic response of the liquid, which is not accounted for in non-polarisable mod-

els, as well as the charge screening caused by the presence of this electronic contin-

uum [87]. Therefore, Equation 2.52 was used to correct the value obtained from the

simulation.

εscaled = εel + (εsim − 1)k2 (2.52)

where εsim is the dielectric constant obtained from Equation 2.51 and k is the ratio

between the dipole moment of the real liquid (estimated from Equation 2.49) and the
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dipole moment of the non-polarisable model. A k = 1 was used when the model’s dipole

was higher than the estimated liquid dipole.

2.8 Free energy calculations

In classical molecular simulations, three categories of free energy differences can be

distinguished: conformational (between two distinct conformational states of the same

system), alchemical (between two states differing on their Hamiltonian), and ther-

modynamic (between two thermodynamic state points) [154]. Alchemical free energy

differences are the relevant ones for this work. The free energy, entropy, and related

quantities are not simply averages of functions of the phase space coordinates of the

system, and consequently, they cannot be measured directly in a simulation. These

properties are called thermal quantities, and they cannot be measured directly in ex-

periments either. Experiments always determine a derivative of the free energy, like

the pressure, and then integrate the derivative along a path that links the state un-

der consideration to a state of known free energy [112]. The same idea is applied

in simulations; alchemical free energy differences between two molecular species can

be calculated by slowly changing the Hamiltonian (H) of a the system from one that

describes a system A to one that describes a system B. To accomplish this, H is made

a function of a coupling parameter λ in such a way that λ=0 describes system A and

λ=1 describes system B. In the NPT ensemble, the derivative of the Hamiltonian with

respect to λ equals the derivative of the Gibbs free energy with respect to λ. [116]

The free energy of solvation is the free energy difference between the solute in the

solution phase and in the gas phase [155], and since it is a state function, it can be

calculated using the thermodynamic cycle shown in Figure 2.4, which includes non-

physical transformations.

First, the solute in the gas phase is transformed into a dummy molecule. After this, the

dummy molecule is transferred into the solution, and finally, all non-bonded interactions

are turned on again. A dummy molecule is a molecule that does not interact with its

environment, and as a result, the free energy difference associated with its insertion

into the solution is equal to zero (∆G2 =0) [64]. Then, the free energy of solvation can
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Figure 2.4: Thermodynamic cycle to calculate ∆Gsol using non-physical transformations.

be obtained using the following equation:

∆Gsol = ∆G1 + ∆G3 (2.53)

∆G1 and ∆G3 can be calculated using the coupling parameter λ. When calculating

∆G1, λ=0 describes a fully interacting molecule in the gas phase, and λ=1 represents

a dummy molecule. On the contrary, the last transformation (∆G3) goes from a non-

interacting molecule (λ=0) to a fully interacting solute in the solution (λ=1). An

schematic explanation on how the coupling parameter λ is used to calculate ∆G3 can

be seen in Figure 2.5.

It is also possible to calculate the solvation free energy in one step instead of using

the cycle shown in Figure 2.4 if the solute’s intra-molecular interactions are kept on

when solute-solvent interactions are turned off. In this case, the decoupled state of

the molecule corresponds to the proper vacuum state without periodicity effects and

not to a dummy molecule [116]. This approach assumes that the contribution of the

solute’s intra-molecular degrees of freedom to the solvation free energy is the same in

the gas and liquid phases. It has been shown that this assumption is accurate for the

solvation of alkanes up to hexadecane [81]. However; for relatively large molecules,

where intra-molecular non-bonded interactions might lead to kinetically trapped vac-

uum conformations, it might be better to calculate ∆Gsol using Equation 2.53 [116].

Therefore, to confirm the validity of this assumption, the free energy of self-solvation

of decanol obtained using a one-step simulation was compared to that obtained using

a full thermodynamic cycle (i.e., a standard two-step simulation), and no significant
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Figure 2.5: Schematic of the coupling parameter λ used to calculate solvation free energies. (a)
λ = 0, the solute does not interact with the solvent. (b) λ = 0.3, interactions between the solute
and solvent are partially turned on (c) λ = 0.7, interactions between the solute and solvent are
partially turned on but to a higher degree than for λ = 0.3 (d) λ = 1, interactions between the
solute and solvent are fully turned on.

differences were observed (see Table 2.4).

It is better to decouple electrostatic and non-electrostatic transformations separately

to avoid atoms with residual charges from getting too close, and thus, create very large

forces in the system and instabilities when integrating the equations of motion [155,

156]. Besides, electrostatic interactions are usually very well behaved once decoupled

from other transformations [155]. For these reasons, all the calculations were done

decoupling electrostatic and Lennard Jones interactions separately and then adding
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Table 2.4: Comparison between the LJ component of the free energy of self-solvation of decanol
calculated using the full two-step procedure and results obtained from 2 independent 5 ns sim-
ulations using the option couple-intramol = no (intra-molecular interactions are kept on when
the inter-molecular interactions are turned off). ∆G1 is the free energy difference between a
non-interacting decanol molecule in vacuum and a decanol molecule also in vacuum (simula-
tion time = 50 ns), while ∆G3 is the free energy difference between decanol in solution and a
non-interacting decanol molecule in solution (5 ns simulation).

Two-step calculation One-step calculation

ΔG1 (kJ/mol) ΔG3 (kJ/mol) ΔGtotal (kJ/mol) ΔG (kJ/mol)

2.989 +/- 0.5978 -27.5018 +/- 0.1355 -24.5128 +/- 0.6129 -24.4621 +/- 0.0504
-24.1792 +/- 0.1480

them together to get the total free energy of solvation.

Furthermore, huge potential fluctuactions can occur when interaction sites are created

or removed during a free energy calculation (λ close to zero or one). To avoid the

endpoint singularity effect, the distance r in the nonbonded potential equation can be

replaced by an effective distance reff (λ) that generates smooth potential curves [157].

The soft-core potentials (Vsc) used in this work are presented in Equation 2.54, where

V A and V B are the van der Waals or electrostatics potentials in state A (λ= 0) and

state B (λ= 1) respectively, αsc is the soft-core paramater and psc is the soft-core λ

power [116]:

Vsc(r) = (1− λ) V A(rA) + λ V B(rB) (2.54)

rA = (αsc σ
6
A λ

psc + r6)1/6 (2.55)

rB = (αsc σ
6
B (1− λ)psc + r6)1/6 (2.56)

if σ is zero, an input parameter called sc-sigma is included in these equations.
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2.8.1 Thermodynamic integration and the Bennett’s acceptance ratio

method

Two methods commonly used to estimate free energy differences are thermodynamic

integration (TI) and the Bennett’s acceptance ratio (BAR) method. The TI method in-

tegrates the derivative of the Hamiltonian with respect to λ from λ= 0 to λ=1 [64]:

∆G =

∫ 1

0

〈
∂H

∂λ

〉
λ

dλ (2.57)

where the angular brackets indicate an ensemble average at a particular value of λ. The

function 〈∂H∂λ 〉λ is unknown, but the derivatives of the free energy with respect to each λ

can be evaluated using molecular modelling. Different methods can be used to evaluate

the integral in Equation 2.57 numerically; like for example trapezoidal rule, Simpson’s

rule or fitting the entire data to a function that can be integrated analytically. However,

it has been demonstrated that polynomial and cubic spline interpolation techniques

tend to be more accurate than the trapezoidal rule [158, 159].

On the other hand, BAR calculates the Hamiltonian difference between two states

λi and λj from configurations in the trajectory of λi and from configurations in the

trajectory of λj , and uses these two values to predict the free energy difference between

the two stages [160, 161]. Bennett showed that the free energy difference ∆G(λi → λj)

is given by [161]:

∆G(λi → λj) = kBT

(
ln
〈f(U(λi)− U(λj) + C)〉λj
〈f(U(λj)− U(λi)− C)〉λi

)
+ C (2.58)

where f(x) denotes the Fermi Function:

f(x) =
1

1 + exp
(

x
kbT

) (2.59)

When the term inside the natural logarithm equals 1, the first term of Equation 2.58

becomes zero and ∆G(λi → λj) = C, therefore to find ∆G(λi → λj) the value of C,
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for which Equation 2.60 is true, needs to be found:

〈f(U(λi)− U(λj) + C)〉λj = 〈f(U(λj)− U(λi)− C)〉λi (2.60)

BAR treats the two states λi and λj completely equivalently. The free energy difference

between two physical states 0 and 1 with n intermediate states λl is obtained using

Equation 2.61:

∆G =
n−1∑
l=1

∆G(λl → λl+1) (2.61)

The error is estimated using block averaging. The data is split into several blocks, and

the value of ∆G(λi → λj) is calculated for each block k. The average of ∆G(λi → λj)

and its error are calculated using Equations 2.62 and 2.64, respectively:

∆Gav(λi → λj) =
1

n

n∑
k=1

∆Gk(λi → λj) (2.62)

σm =

√√√√ 1

n

n∑
k=1

(∆Gk(λi → λj) 2 −∆Gav(λi → λj) 2) (2.63)

σav =
σm√
n− 1

(2.64)

The final error of the total free energy difference is the average error of each block’s total

free energy difference and not the error propagation of the sum of each ∆G(λi → λj).

The total error cannot be computed as the error propagation of each interval since

each interval’s variance is correlated to the variance of the neighbouring intervals. For

example, the free energy differences between states 1 and 2 and between 2 and 3 both

contain statistical information from state 2 [162].

It has been shown, by Brucker and Boresh, that TI may require significantly longer

simulation times than BAR at each λ-state when the convergence of 〈∂H∂λ 〉λ is slow [163].
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Besides, the BAR method is incorporated in the Gromacs 5.1.2 software and therefore,

the free energy difference can be predicted using only one command. This command

also calculates the relative entropy of both states in each other’s ensemble, which is a

measure of phase space overlap [116] and therefore, provides an estimate of the precision

of the calculation.

2.8.2 Phase space overlap and simulation time

Phase space is the 6N-dimensional space formed from the 3N configurations and 3N mo-

mentum components of all N atoms (see section 2.2.1). When momentum contributions

are included analytically, each point in the phase space represents a unique configu-

ration. The configurations that must be sampled well by a free energy algorithm to

produce accurate results constitute the important phase space of a system [164].

The BAR method is at its best when there is an overlap between the important phase

spaces for λi (system A) and λj (system B) since one of the requirements of this method

is that the two studied systems need to be defined by potentials acting on the same

configuration space [160]. If there is not sufficient overlap between these two systems,

Equation 2.60 does not converge or it produces inaccurate results [161]. The overlap

between them can be measured using ideas from information theory, specifically relative

entropy. Relative entropy (s) is a measure of how one probability distribution diverges

from a second and it is defined by Equation 2.65 [164]. In this equation, pA(γ) and

pB(γ) are the probability densities for phase-space points (γ ∈ Γ) sampled in the A

and B systems. When two distributions are identical, sA and sB are equal to zero.

Larger values of sA and sB means more difference or more distance between the two

distributions (increasing degree of non-overlap) [164].

sA =

∫
Γ

dγpA(γ)ln

[
pA(γ)

pB(γ)

]
sB =

∫
Γ

dγpB(γ)ln

[
pB(γ)

pA(γ)

] (2.65)

When the two ensembles are widely separated, it is better to add intermediate states

that connect the two of them [160]. Thus, analysing the phase space overlap of a
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particular system helps determine the number of lambdas needed and their values. This

can be better understood using alcohols as an example. Table 2.5 shows methanol’s

self-solvation free energy calculated using 21 and 11 equidistant lambdas for the LJ and

electrostatic components, respectively, and it is clear that the number of intermediate

lambdas can be reduced while still getting a good overlap (consecutive rows of the same

colour can be grouped together).

Table 2.5: Lambdas’ relative entropies (s) for the LJ (left) and Electrostatic (right) components
of the free energy of self-solvation of methanol, obtained using the TraPPE-UA force field and
PME for the van der Waals interactions.

λA λB sA sB
0 0.05 0.0209 0.021

0.05 0.1 0.0322 0.0321
0.1 0.15 0.0601 0.0591
0.15 0.2 0.0831 0.0787
0.2 0.25 0.1323 0.1199
0.25 0.3 0.1387 0.1165
0.3 0.35 0.15 0.122
0.35 0.4 0.1155 0.0904
0.4 0.45 0.1001 0.0786
0.45 0.5 0.0769 0.06
0.5 0.55 0.0685 0.0553
0.55 0.6 0.0568 0.0468
0.6 0.65 0.0484 0.0394
0.65 0.7 0.0436 0.036
0.7 0.75 0.0389 0.0328
0.75 0.8 0.0338 0.0283
0.8 0.85 0.0339 0.0291
0.85 0.9 0.0298 0.0256
0.9 0.95 0.0293 0.0254
0.95 1 0.0253 0.0216

λA λB sA sB
0 0.1 0.0402 0.0406

0.1 0.2 0.0416 0.0428
0.2 0.3 0.0497 0.0519
0.3 0.4 0.0468 0.0507
0.4 0.5 0.0706 0.0775
0.5 0.6 0.1064 0.1192
0.6 0.7 0.1502 0.1756
0.7 0.8 0.2271 0.2556
0.8 0.9 0.2935 0.2929
0.9 1 0.2593 0.2355

Two histograms from two different ensembles are presented in Figures 2.6 and 2.7 to

show the relationship between the shape of the histograms and the relative entropy.

Figure 2.6 shows the histogram of the Hamiltonian difference between λ= 0 and λ= 0.1

calculated from configurations in the trajectory of λ= 0 (red line) and λ= 0.1 (blue line).

From Table 2.5, it can be seen that the relative entropies for these lambda values are

0.0402 and 0.0406, respectively. These values are very close to zero indicating there is

a good overlap between the two-phase spaces, as is also suggested from the histogram.

On the other hand, Figure 2.7 presents the histogram of the Hamiltonian difference

between 0.6 and 0.7 calculated from configurations in the trajectory of λ= 0.6 (red line)
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and λ= 0.7 (blue line). The relative entropies for these stages are 0.1502 and 0.1756,

respectively. These values are higher than those for λ= 0 and λ= 0.1, and therefore, a

higher degree of non-overlap can be observed. Also, it can be noticed that the histogram

in Figure 2.7 presents a much wider range than the one in Figure 2.6.

Figure 2.6: Histogram for the distribution of the Hamiltonian difference between 0 and 0.1. The
red line shows the distribution of the values obtained from configurations in the λ= 0 trajectory
and the blue line for the values calculated from configurations in the λ= 0.1 trajectory.

Figure 2.7: Histogram for the distribution of the Hamiltonian difference between 0.6 and 0.7.
The red line shows the distribution of the values obtained from configurations in the λ= 0.6
trajectory and the blue line for the values calculated from configurations in the λ= 0.7 trajectory.

The number of λ-states and simulation length needed to reach convergence are corre-

lated [161], nevertheless it seems that the minimal simulation length per λ-state varies

a lot from system to system, and hence, it can only be determined on a case by case

basis [163]. The number of λ-states for each particular system was obtained based on

the relative entropies, and the simulation length was chosen by plotting free energy of

self-solvation versus simulation time to ensure convergence. These values can be found
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in the result chapters.

2.8.3 Simulation details

Free energy simulations were run using a leap-frog stochastic dynamics integrator [165]

and, therefore, the temperature was kept constant using the Langevin method. A soft-

core function was used to avoid instabilities close to the non-interacting state [166]. The

soft-core parameters sc-power and sc-sigma were 1 and 0.3, respectively. Sc-alpha was

0.5 for the LJ term since this seems to be the ideal value for transformations of charge-

less molecules [156], while a sc-alpha = 0 was used for the electrostatic component. All

other parameters were the same as the ones used to calculate bulk properties except

for the Fourier spacing, which was 0.12, and the time constant for pressure coupling,

which in this case was 5 ps. These parameters were changed to improve efficiency.

Long-range van der Waals interactions were calculated using a cut-off method with

long-range corrections. The first calculations were run using PME for van der Waals

interactions since this could be necessary for certain systems [167]. However, as can

be seen from Figure 2.8, using a cut-off method with long-range corrections gives val-

ues that are consistent with those obtained using the more computationally expensive

approach.

Figure 2.8: Free energies of self-solvation of primary alcohols calculated using TraPPE-UA.
The circles in magenta were calculated using 15 λ-states for the LJ component and 7 λ-states
for the electrostatics component, and van der Waals interactions were calculated using a cut-off
with long-range corrections. The blue squares were obtained using PME to treat long-range van
der Waals interactions, and the number of λ-states was 21 and 11 for the LJ and electrostatic
components, respectively.
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Polarisation corrections were added to the solvation free energies calculated from MD

simulations. These corrections were calculated from Equations 2.47 and 2.49, but Cpol

has the opposite sign since the solvation process moves a molecule from the vapour to

the condensed phase (i.e. the direction is the opposite of the vaporisation process).

Note that when applying those equations to solvation, the experimental values of µg

and α correspond to the solute molecule, while values of εsol and εel correspond to

the surrounding solvent, hence µl is the estimated dipole moment of the solute in the

solvent of interest.

2.8.4 Experimental values

Experimental values for the free energies of solvation were taken from the Minnesota

Solvation Database [168] and the Katritzky database [169]. Additionally, some free

energies of self-solvation (i.e. when the solute and solvent are the same molecule)

were calculated from the experimental vapour pressure and density at 298 K, using

Equation 2.66 [168]:

∆Gs = −2.303RT log

(
ρ/Mw

Pv/24.45

)
(2.66)

where 24.45 atm is the pressure of an ideal gas at 1 molar concentration and 298 K,

Pv is the vapour pressure in atm, ρ is the density in g/L and Mw is the molecular

weight.

2.9 Force Field Parameters Optimisation

This section explains the procedure used for the development of the new PolCA force

field.

First, a learning grid was created by running simulations for a few selected molecules

using different non-bonded parameters and calculating certain target properties. The

specific details about the calculated properties, the parameters’ range and the chosen

molecules are described in the result chapters since they varied for each functional

group. Meta-models that predict molecular simulation results for a given set of pa-
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rameters were used to decrease computational cost and allow for a more extensive

exploration of the force field parameters. This technique has already been tested by

Cailliez et al. [170] and proven to be successful. They also found that it was much more

convenient and efficient to model each property used for the calibration process instead

of directly modelling the full objective function [170]. Consequently, the learning set for

each property was fitted to a second-degree model with cross-interaction terms using

Equation 2.67 [171]:

f(X) = β0 +
k∑
i=1

βixi +
∑∑
i<j

βijxixj +
k∑
i=1

βiix
2
i (2.67)

where k is the number of parameters and X = (x1, x2, .., xk) . To normalise the force

field parameters used in Equation 2.67 and avoid working with different units, coded

values of these parameters were used when creating the meta-models:

xcoded =
2(x− xc)

xmax − xmin
(2.68)

where xmin and xmax are the lowest and highest values for each control variable, re-

spectively, and xc is the initial guess used in the optimisation routine.

It is crucial to have a good correlation between the simulated values and the meta-

models’ values to obtain a reasonable estimation of the objective function’s mini-

mum. This was checked by plotting each calibration property’s predicted versus sim-

ulated values and calculating the meta-model’s predictivity coefficient Q2 with Equa-

tion 2.69 [170]:

Q2 = 1−
∑N

i=1[ysim(Xi)− fk(Xi)]
2∑N

i=1[ysim(Xi)− y]2
(2.69)

where, N is the number of points in the sample, ysim(Xi) is the simulated value, fk(Xi)

is the value predicted by the meta-model and y is the mean value of ysim(Xi) on the

whole sample. Also, once an optimum was found, new simulations were run using these

parameters to corroborate the meta-model’s predictions. As will be shown in later
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chapters, the simple and easy to understand second-degree meta-models used in this

work have predictivity coefficients close to 1 and thus, more complex machine learning

algorithms were not tested. Nonetheless, in some cases the input parameters’ space

had to be divided into smaller regions as using a single set of fitted coefficients for the

whole parameter domain did not lead to accurate predictions of the target properties.

This problem could be solved using unsupervised machine learning algorithms that are

able to cluster the input parameters regions.

An ideal force field is one where the difference between experimental and simulated

values is zero. Consequently, an objective function was created that takes into account

these differences:

F (X) =

Nmol∑
j=1

Nprop∑
k=1

(fk(X)− yexpk)2 (2.70)

where Nmol corresponds to the number of molecules used in the optimisation and Nprop

the target properties. Additionally, yexpk is the experimental value for each prop-

erty.

Equation 2.70 was minimised using an optimised steepest descent algorithm. Starting

from the initial guess (X0), a new point (X1) was found by searching along the opposite

direction of the objective function’s gradient (∇F (X0)):

X1 = X0 − t∇F (X0) (2.71)

where t is the step length and determines the distance the algorithm needs to move

along the specified direction. This value was found using 100 equidistant trial steps

and selecting the one that returned the lowest function value. For each iteration, the

minimum step length (tmin) was a tunable parameter and the maximum step length

(tmax) was obtained from Equation 2.72 [172].

tmax =
F (Xi)

∇F (Xi)∇F (Xi)
(2.72)
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where Xi is the current iterate and ∇F (Xi) is the gradient of the function evaluated

at Xi.

This procedure was repeated until either convergence was achieved with a tolerance of

10-8, Xi+1 = Xi or the maximum number of iterations was reached. In each iteration,

the new point Xi+1 was obtained using the point found by the previous iteration (Xi)

and the objective function’s gradient evaluated at Xi:

Xi+1 = Xi − t∇F (Xi) (2.73)

The values of Xi and F (Xi) obtained in each iteration were stored, and if convergence

was not achieved, the algorithm returned the point Xi that produced the minimum

F (Xi) value. The optimisation routine was done in two parts. First, an optimum was

found using larger trial steps (tmin = 0.01 tmax), and then this optimum was chosen as

the starting point for a new optimisation run with smaller steps (tmin = 0.0001 tmax).

The maximum number of iterations was 4000 for the first part (unless stated otherwise)

and 100 for the second part since the second optimisation’s initial point tends to be

close to the optimum.

Furthermore, in some cases the optimum found by the algorithm was forced to stay in-

side some boundary conditions. In these situations, the coordinates of Xi were checked

during each iteration and if one of these values was outside the boundaries, it was re-

placed by its closest bound to bring the point back into the desired region. For example,

if Xi was (2, 0, 0) and the boundary conditions for the algorithm were Xbmax = (1,1,1)

and Xbmin = (-1,-1,-1) in coded values, then Xi would become (1,0,0) before moving

to the next iteration.

2.9.1 Sensitivity analysis

A variance-based global sensitivity analysis was performed to determine the most in-

fluential parameters for each target property. Global sensitivity analysis can be used

to identify which factors make no significant contribution to the variance of the output

and, therefore, can be fixed to any given value within their range of variation [173].
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Sobol’s indices [174] can be used to rank the input variables based on their impor-

tance. First-order indices (Si) give the influence of each parameter taken alone while

total sensitivity indices (ST ) consider the total effect of an input parameter [175]. The

importance of interaction effects for a specific parameter depends on the difference be-

tween the first-order and total indices. If these two indices are close to each other,

interaction effects are not important for that parameter. Furthermore, the sum of all

Si is equal to 1 for additive models (no interaction between parameters) and less than

one for non-additive models. For this sensitivity analysis, only first-order indices were

used.

First-order indices can be evaluated using Monte Carlo simulations to estimate the

mean value, the total variance (D) and the partial variance due to variable xi (Di)

(Equations 2.74 to 2.77 [175]).

f0 =
1

Nsim

Nsim∑
m=1

f(xm) (2.74)

D =
1

Nsim

Nsim∑
m=1

f(xm)2 − f2
0 (2.75)

Di =
1

Nsim

Nsim∑
m=1

f(x
(1)
(∼i)m, x

(1)
im)f(x

(2)
(∼i)m, x

(1)
im)− f2

0 (2.76)

Si =
Di

D
(2.77)

where Nsim is the number of samples, xm denotes the mth sample point, and x(∼i)m

is the mth sample point without the variable i. Two matrices of random numbers,

called (1) and (2), and order Nsim x k (k is the number of input variables) need to be

generated first. The superscripts (1) and (2) indicate which matrix the sample point

needs to be taken from.

The optimisation routine described here was implemented in python (code available

at the University of Strathclyde KnowledgeBase 10.15129/eb1e582f-2891-4002-874b-
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c76e12f88afb) and applied to develop the new molecular models for alcohols (Chap-

ter 3), amines (Chapter 4) and ketones (Chapter 5).
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Chapter 3

Polarisation-Consistent United

Atom Force Field for Alcohols

3.1 Introduction

Alcohols are very interesting from a fundamental point of view [176–178], as they are

the simplest molecules that combine a hydrophobic moiety with a hydrogen-bonding

functional group. Additionally, these compounds are widely used in industry. For

example, ethanol is used as a cosolvent to enhance the aqueous solubility of a drug

by several orders of magnitude, and a drug’s ability to diffuse through lipids can be

described based on the octanol/water partition coefficient [7].

Some very well known force fields for alcohols are OPLS-AA [100], GROMOS [101],

TraPPE-UA [69] and GAFF [103]. There are some modifications of these force fields

like, for example, OPLS/2016 [99], which was reparameterised including solid-fluid ex-

perimental data. Several properties were used to validate the model, including the

static dielectric constant, which was calculated using polarisation scaling corrections

[87, 110]. However, the Berendsen correction was only applied to the enthalpy of va-

porisation and was not considered when obtaining vapour-liquid coexistence properties,

such as phase diagrams and vapour pressure. Another modification of OPLS was the

one proposed by Kulschewski and Pleiss [143]. They modified the hydroxyl group’s
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partial charges in the OPLS-AA force field for different alcohols (including methanol

to octanol) to consider the influence of the alkyl tail on the electronic structure of the

hydroxyl group. Their simulated densities, self-diffusion coefficients and dielectric con-

stants are closer to the experimental values than the values obtained using the original

OPLS-AA force field. However, these modifications increase the model’s complexity

and reduce its transferability [143]. Another two relevant models are the improved

GROMOS force field [77], obtained by fitting to the density, enthalpy of vaporisation

and free energy of solvation in water and cyclohexane, and the GAFF-DC force field

[179] which was parameterised to match methanol’s dielectric constant. These last

three models do not include polarisation corrections. In conclusion, although there

are several force fields for alcohols available in the literature, none of them has been

parameterised using consistent polarisation corrections to the best of our knowledge.

For this reason, a new model was created, and a brief description of its development is

presented in the following paragraphs.

First, TraPPE-UA was tested for ten linear alcohols with increasing chain length (from

methanol to decanol), and it was noticed that the simulated density of longer alco-

hols was systematically overpredicted. After this, simulations were run using the alkyl

parameters proposed by Jorge [1] combined with TraPPE original parameters for the

hydroxyl group, and this model will be called “modified TraPPE” from now on. The

densities of octanol, nonanol and decanol obtained using the modified TraPPE were

closer to experimental data than those predicted by TraPPE. However, smaller alcohols’

densities were considerably under-predicted, suggesting that the hydroxyl group’s pa-

rameters needed to be re-optimised. Out of the six parameters in the hydroxyl group,

σ, ε and partial charges of the oxygen and hydrogen atoms, only four are relevant

for the parameterisation. The LJ parameters of the hydroxyl hydrogen can be set to

zero because the electronic distribution of a hydrogen bond is approximately spherical

around the centre of the more electronegative atom [180, 181].

The density, diffusion constant and enthalpy of vaporisation of methanol, 1-propanol,

1-pentanol and 1-heptanol were used for the parameterisation. The parameters for the

alkyl chain groups were taken from the model proposed by Jorge for alkanes, alkenes
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and alkynes [1] (Table 3.5). Additionally, the LJ parameters of the alkane methyl and

methylene groups were used for the alpha carbons without modification. Each property

used in the optimisation routine was fitted to a polynomial with cross-interaction terms,

and then the score function was minimised using the steepest descent algorithm (see

section 2.9).

3.2 Methodology

The optimisation procedure and the methods used to obtain bulk properties and free

energies of solvation are described in detail in Chapter 2. Specific details for this chapter

are presented below.

Bulk properties

Table 3.1 shows the number of molecules in each simulation box, which was selected to

maintain an approximately constant box size. First, an alcohol molecule was inserted

in a box of 27 nm3 and then this box was solvated using 1000 iterations. In each

iteration, a solvent molecule was inserted in a random position inside the box and

depending on its distance to the existing atoms, the insertion of the molecule was

accepted or rejected. [116]

Table 3.1: Number of molecules in the simulation box for each single-component system.

Compound Number of molecules

Methanol 399
Ethanol 473
Propanol 361
Butanol 281
Pentanol 216
Hexanol 180
Heptanol 147
Octanol 128
Nonanol 111
Decanol 103

2-Propanol 367
2-Butanol 290
2-Pentanol 233

Tert-butanol 289
Tert-Amyl alcohol 228

Additionally, as explained in section 2.7.3, diffusion coefficients depend significantly on
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the system size, and thus, corrections were calculated using TraPPE-UA to account for

this. It was assumed that these corrections would be similar for other parameter sets,

and therefore, the same correction values were used during force field optimisation and

validation stages. New correction terms were later calculated using the final optimised

force field to corroborate this hypothesis, and the values obtained were consistent with

those obtained with TraPPE-UA. Table 3.2 presents the finite-size correction values to

the diffusion coefficient for all alcohol molecules and two models: TraPPE-UA and the

new PolCA.

Table 3.2: Correction terms for the diffusion constant in 10-5 cm2/s.

PolCA model TraPPE-UA

Methanol 0.354 0.376

Ethanol 0.153 0.245

Propanol 0.152 0.116

Butanol 0.098 0.133

Pentanol 0.072 0.107

Hexanol 0.058 0.063

Heptanol 0.047 0.06

Octanol 0.054 0.051

Nonanol 0.043 0.038

Decanol 0.038 0.034

Solvation free energy calculations

For the first approach (Model 1), the Lennard Jones and electrostatic components

were calculated using 21 and 11 equidistant λ-states, respectively. Additionally, long-

range van der Waals interactions were calculated using PME [167]. For the other two

cases, free energy simulations were run using 15 λ-states for the LJ component (0, 0.15,

0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9 and 1) and 7 λ-states for

the electrostatic component (0, 0.3, 0.6, 0.7, 0.8, 0.9 and 1). In these cases, van der

Waals interactions were calculated using a cut-off method with long-range corrections.

The number of intermediate λ-states and the way the Lennard Jones component was

treated were changed to save computational time without losing accuracy, as discussed

in section 2.8.

The length of the simulation for each system can be found in Table 3.3 and was chosen

by plotting free energy of solvation versus simulation time to ensure convergence (see
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Figures 3.1 and 3.2). A system was considered to have reached convergence when

simulated values remained within +/- 0.15 kJ/mol of the final value and their error

bars were not larger than 1 kJ/mol.

Table 3.3: Simulation time in ns for the free energy components of the systems studied here.
Where N/A means not applicable.

Solute Solvent LJ Electrostatics

Methanol Methanol 5 5

Ethanol Ethanol 5 15

Propanol Propanol 5 15

Butanol Butanol 7 35

Pentanol Pentanol 7 35

Hexanol Hexanol 7 50

Heptanol Heptanol 7 50

Octanol Octanol 10 50

Nonanol Nonanol 10 50

Decanol Decanol 10 50

2-Butanol 2-Butanol 7 35

Tert-butanol Tert-butanol 7 35

Alcohols Hexadecane 10 N/A

Figure 3.1: LJ component of the free energy of self-solvation of decanol at 298.15 K and 1 bar
obtained using the PolCA model as a function of simulation time. Error bars were estimated as
described in section 2.8, and the horizontal dashed line corresponds to the solvation free energy
value of the last point.

The structure of liquid linear alcohols, which consists of hydrogen-bonded chains of

molecules that sometimes link together to form branched aggregates [182], could ex-

plain why the Coulomb component of the free energy of solvation takes a long time to

converge. To accurately simulate the solvation free energy, all possible scenarios need

to be sampled. Between 15 and 25 % of alcohol molecules only have one hydrogen
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Figure 3.2: Electrostatic component of the free energy of self-solvation of decanol at 298.15 K
and 1 bar obtained using the PolCA model as a function of simulation time. Error bars were
estimated as described in section 2.8, and the horizontal dashed line corresponds to the solvation
free energy value of the last point.

bond, while the percentage of molecules with two hydrogen bonds is around 60 and 75

%. Also, between 0 and 5 % of the molecules are not forming any hydrogen bonds,

while 5 to 10 % have three hydrogen bonds [182]. Methanol and ethanol have the

largest number of hydrogen bonds (approximately 1.87), while propanol has the lowest

(around 1.82). Primary alcohols from butanol to octanol have all practically the same

hydrogen bond distributions [182].

3.2.1 Polarisation corrections

As explained in section 2.7.2, there is no experimental estimate of the liquid phase

dipole moment for most molecules, and Equation 2.49, proposed by Leontyev and

Stuchebrukhov [92], was used to approximate the liquid dipole. The value obtained for

methanol using this equation was 2.7 D, which is in agreement with values obtained

from ab initio MD simulations. Pagliai et al. [183] reported a value of 2.64 D from

simulations on a rather small box of 26 methanol molecules using the BLYP exchange-

correlation functional. The same functional was used by Handgraaf et al. [184] with

a larger box of 64 molecules, yielding a value of 2.59 D. In a study of the methanol

vapour/liquid interface with a box of 120 molecules, Kuo et al. [185] report average bulk

liquid dipole moments around 2.7 D, using both BLYP and PBE functionals. Finally, a

more recent study by Sieffert et al. [186] report a range of values obtained with several
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functionals in a box of 64 molecules, ranging from 2.58 to 2.84 D. Importantly, some of

the calculations were carried out with dispersion corrections, which are known to play

an important role in determining the structure of liquids [187].

Furthermore, all post-facto polarisation corrections used in this chapter are presented

in Table 3.4. These corrections were used to calculate properties that involve a phase

transition, and, as explained in section 2.7, they can be divided into two contributions:

the negative distortion term and the positive electronic polarisation term. The values

presented here correspond to a liquid-gas transition to be consistent with the definition

of Cpol, and the corrections for the solvation free energy have the same magnitude

but opposite sign. As well, this table contains the distortion correction proposed by

Berendsen as a comparison. This correction uses the dipole moment of the model, and

thus, it has different values for TraPPE and the new PolCA model, unlike Cpol, which

is model-independent.

We can see from Table 3.4 that the distortion and electronic contributions nearly cancel

each other out for pure alcohols, and thus, the net corrections are close to zero (ranging

from -0.41 to 0.46 kJ/mol). This effect is not unexpected since it has previously been

observed for water [92, 108]. In contrast, the Berendsen correction is significantly

larger in magnitude, particularly for the TraPPE model, and always negative since it

only considers distortion effects.

3.2.2 Optimisation

The density, diffusion constant and enthalpy of vaporisation of methanol, 1-propanol,

1-pentanol and 1-heptanol were simulated using different LJ parameters for the oxygen

atom and different partial charges for the hydroxyl group. The partial charge of the α-

carbon was obtained as the sum of the other two partial charges to assure the neutrality

of the molecule. The parameters for the alkyl chain groups were taken from the model

proposed by Jorge for alkanes, alkenes and alkynes [1] (Table 3.5). Additionally, the

LJ parameters of the alkane methyl and methylene groups were used for the α-carbons

without modification.

The dielectric constant was not considered as one of the fitting properties since it was
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Table 3.4: Comparison between the polarisation corrections used in this work (Cpol) and the
correction previously proposed by Berendsen et al. (CBerendsen) for the TraPPE and PolCA
models. The corrections are for transfer from liquid to gas and are expressed in kJ/mol.

Solute Solvent CDistortion CElectronic Cpol
CBerendsen

TraPPE PolCA

methanol methanol -9.251 8.842 -0.409 -2.896 -1.264

ethanol ethanol -7.297 7.074 -0.224 -1.907 -0.848

propanol propanol -6.169 6.073 -0.096 -1.455 -0.658

butanol butanol -5.079 5.101 0.022 -1.233 -0.576

pentanol pentanol -4.568 4.702 0.134 -0.890 -0.389

hexanol hexanol -3.611 3.860 0.249 -0.899 -0.426

heptanol heptanol -3.425 3.731 0.306 -0.637 -0.273

octanol octanol -2.783 3.175 0.393 -0.628 -0.284

nonanol nonanol -2.155 2.568 0.413 -0.730 -0.370

decanol decanol -1.848 2.307 0.459 -0.661 -0.335

2-propanol 2-propanol -4.948 4.938 -0.010 -1.942 -1.019

2-butanol 2-butanol -4.560 4.659 0.098 -1.455 -0.746

2-pentanol 2-pentanol -4.042 4.251 0.209 -0.995 -0.470

Tert-butanol Tert-butanol -4.002 4.347 0.344 -1.160 -0.496

methanol hexadecane -1.860 8.730 6.870 -2.896 -1.264

ethanol hexadecane -1.168 5.483 4.314 -1.907 -0.848

propanol hexadecane -0.851 3.993 3.142 -1.455 -0.658

butanol hexadecane -0.658 3.087 2.429 -1.233 -0.576

pentanol hexadecane -0.572 2.682 2.111 -0.890 -0.389

hexanol hexadecane -0.458 2.152 1.693 -0.899 -0.426

heptanol hexadecane -0.429 2.014 1.585 -0.637 -0.273

octanol hexadecane -0.367 1.722 1.355 -0.628 -0.284

nonanol hexadecane -0.299 1.403 1.104 -0.730 -0.370

decanol hexadecane -0.271 1.271 1.000 -0.661 -0.335

Table 3.5: Lennard-Jones parameters and partial charges for the new PolCA united-atom force
field for alcohols.

non-bonded a) (Eq. 2.37) σ [nm] ε [kJ/mol] Partial charge (q)

CHx-(O)-H 0.2853 0.7733 -0.646
O-(H) 0 0 +0.406
(CH3)-OH 0.379 0.833 +0.240
(CH3)-CHx 0.379 0.833 0
CHx-(CH2)-OH 0.399 0.392 +0.240
(CHx)2-(CH2) 0.399 0.392 0
(CHx)2-(CH)-OH 0.438 0.085 +0.240
(CHx)3-(CH) 0.473 0.085 0
(CHx)3-(C)-OH 0.585 0.00426 +0.240
(CHx)4-(C) 0.646 0.00426 0

a) The non-bonded parameters correspond to the sites in bold.
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estimated, using a bootstrapping technique, that at least six runs were needed to get

an accurate value. This can be seen from Figure 3.3, which shows the average obtained

using different combinations of 10 independent runs of methanol as a function of the

number of runs. As such, including this property in the parameterisation stage would

have significantly increased the computational cost by a factor of 6 since only one run

was needed for each point in the learning grid to accurately predict the density, enthalpy

of vaporisation and diffusion constant of alcohols. Furthermore, as will be shown in

section 3.3, corrected dielectric constants predicted using the models obtained in this

chapter are relatively close to experimental values (RMSD lower than 3.1), and thus,

including meta-models for the dielectric constant created using simulated points with

an error of approximately 1.25 units would probably lead to force fields with a similar

or worse overall performance.

Figure 3.3: Average obtained for different combinations of 10 independent runs of methanol as
a function of the number of runs, using the TraPPE-UA force field.

The simulations used to construct the meta-models were different for each approach.

Nevertheless, in all cases, a full factorial design was used unless stated otherwise. In

a full factorial design, different levels are assigned to each factor, and then all possible

combinations of these levels across all factors are tested.

The correlation between simulated and predicted values was checked for each cali-

bration property. In all cases, there was an almost perfect match between simulated

values in the learning set and values predicted by the meta-models, as can be seen in

Figures A7, A8 and A9 in Appendix A2. Additionally, simulations were run using the

optimised parameters, and the values predicted by the meta-models were found to be
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in agreement with the simulated values.

Equation 3.1 defines the objective function that was minimised using an optimised

steepest descent algorithm (section 2.9). Here, j =1 corresponds to methanol, j =2

to propanol, j =3 to pentanol and j =4 to heptanol. Additionally, fk(X) is the value

predicted using the meta-model at X, yexp is the experimental value and ρ, DA and ∆H

represent the density, diffusion constant and enthalpy of vaporisation, respectively. The

function ∆Herror was created to take into consideration the experimental error of the

enthalpy of vaporisation (errorexp). This was only done for the enthalpy of vaporisation

since its experimental error is higher than the one for the other two properties.

F (X) =
4∑
j=1

(
(fk(X)− yexp)2

ρj + (fk(X)− yexp)2
DAj

+ (fk(X)− yexp)2
∆Hj ∆Herrorj (X)

)
(3.1)

∆Herror(X) = min

(
1,
|f(X)− yexp|
errorexp

)
(3.2)

The point that describes the original TraPPE force field was the initial guess. From

this point, a new point was found by searching along the opposite direction of the

objective function’s gradient. This procedure was repeated until the maximum number

of iterations was reached. In each iteration, the initial point was the point found by the

previous iteration, and the objective function’s gradient was evaluated at this point.

As explained in section 2.9, the optimisation routine was done in two parts. During

the first part, the maximum number of iterations was 3000 for the first approach and

4000 for all other cases. The number of iterations in the second approach was reduced

because the initial point for the second optimisation routine tends to be close to the

optimum, and thus, not many extra iterations are needed.
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Model 1

The partial charges of the α-carbon and the hydrogen and oxygen of the hydroxyl

group were changed simultaneously and in a proportional way. This was done by

multiplying the partial charges taken from the TraPPE-UA force field by a scaling

factor α. Consequently, a value of α = 1 means that the partial charges of the α-carbon,

the oxygen and the hydrogen are 0.265, -0.7 and 0.435; respectively.

The parameters range used to build the learning set for pentanol and heptanol was

different from the one used for methanol and propanol. This was because methanol and

propanol’s properties were fitted first, and therefore, the learning set for pentanol and

heptanol was created with a better idea about the optimum location. To construct an

objective function based on the individual properties, coded values had to be consistent

therefore, in all cases, the ranges for σ, ε and α were 0.032 nm, 0.34 kJ/mol and 0.25,

respectively. It is important to mention than these ranges were not always symmetrical

with respect to the central point (i.e. they are not +/- ranges). The set of parameters

used for each molecule is presented in Table 3.6, and in every case, a full factorial design

was applied. The total number of simulation runs was 360 for methanol and propanol,

and 125 for pentanol and heptanol.

Table 3.6: Values used to obtain Model 1’s meta-models. In all cases, a 3k factorial was chosen.

Methanol
Propanol

σ(nm) 0.278, 0.282, 0.286, 0.290, 0.294, 0.296, 0.298, 0.300, 0.302, 0.310
ε(kJ/mol) 0.7, 0.77, 0.84, 0.91, 0.97, 1.04
α 0.85, 0.90, 0.95, 1, 1.05, 1.1

Pentanol
Heptanol

σ(nm) 0.278, 0.285, 0.292, 0.298, 0.305
ε(kJ/mol) 0.7, 0.77, 0.84, 0.91, 0.97, 1.04
α 0.85, 0.90, 0.95, 1, 1.05

Before creating the meta-models, every property was plotted with respect to each con-

trol variable keeping the other two variables constant, and it was noted that some

design points did not follow the same trend as the rest (Figure 3.4). Thus, those points

were not used to build the meta-models. In all cases, simulations with σ ≤ 0.286 nm

and α = 1.1 were discarded. Additionally, when building the meta-models for propanol,

the points obtained with σ = 0.278 nm and α = 1.05 were not included in the learning

set.
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Figure 3.4: Simulated density of methanol at 298.15 K as a function of α and ε (kJ/mol) for
the oxygen atom when σ = 0.278 nm (top) and σ = 0.298 nm (bottom). These points were
created during the development of Model 1’s learning set and the LJ parameters used for the
carbon and hydrogen atoms were the same as the ones in Table 3.5.

Also, each molecule’s learning set was broken into two parts to get a more accurate

prediction. For methanol, two different sets of fitting parameters were generated, one

for points with σ ≥ 0.294 nm and one for points with a lower value of σ. In the case

of propanol, the meta-model that predicts properties when σ ≥ 0.282 nm was created

using all points, except those with σ = 0.278 nm, while only points obtained with σ

≤ 0.290 were used to calculate the fitting parameters needed to predict the properties

obtained when σ < 0.282 nm. Finally, all points were considered when fitting the curve

used to estimate the properties of pentanol and heptanol when σ > 0.2915 nm and

only points with σ ≤ 0.2915 nm were used to predict the value that each property

would have when using a σ lower or equal to this value. The choice of what points

to consider for each set was made by trial and error. This choice was based on the

graph obtained when plotting predicted versus simulated values (the performance of

the meta-model obtained using Model 1’s final learning set can be seen in Figure A7

in Appendix A2).

Model 2

During Model 2’s development, the partial charges of the hydroxyl group were not

longer dependent on each other and instead they were allowed to vary independently.
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Therefore, a total of four parameters were used during this model optimisation: σ, ε,

the partial charge of the oxygen atom (qO) and the partial charge of the hydrogen atom

(qH). The α-carbon’s partial charge was calculated based on the hydroxyl group partial

charges to maintain the neutrality of the molecule.

Initially, a learning set or grid was created with only 3 levels for each variable, with

boundaries: 0.278 < σ < 0.326, 0.700 < ε < 0.846, -0.8 < qO < -0.6 and 0.370 < qH <

0.5. After an optimum was found, a new grid was generated near those coordinates

to increase the accuracy of the meta-models. The final levels for each variable were:

σ = 0.302, 0.290, 0.294 and 0.298; ε = 0.846, 1.06 and 1.274; qO = -0.6, -0.7 and -0.8

and qH = 0.37, 0.435 and 0.5. Thus, the total number of simulations used in the final

learning set was 108 for each molecule.

Furthermore, a meta-model for methanol’s solvation free energy was created, hoping to

get an optimum that can predict free energies of self-solvation of primary alcohols as

well or better than TraPPE-UA. This meta-model was able to accurately predict the

LJ component of methanol’s solvation free energy, however, the predicted electrostatic

component had an error of approximately 1 kJ/mol compared to the simulated value.

Therefore, including this meta-model in the objective function did not lead to better

results. The performance of this meta-model is shown in Figure 3.5, and the levels for

each variable were: σ= 0.278, 0.290 and 0.302; ε= 0.7, 0.846 and 1.274; qO = -0.6, -0.7

and -0.8 and qH = 0.37, 0.435 and 0.5.

Figure 3.5: Plot of the simulated values versus the values predicted using the meta-models for
methanol’s self-solvation free energy at 298.15 K and 1 bar. The meta-models for the LJ and
electrostatic components are shown on the left and right, respectively.
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Model 3

The free energies predicted using the optimum obtained by changing σ, ε, qO, and qH

were further away from the experimental data than the values obtained with TraPPE-

UA (see results section later in this chapter). This discrepancy between experimental

and simulated data was perhaps due to the LJ component’s magnitude (the LJ com-

ponent estimated with TraPPE was approximately 2 or 3 kJ/mol lower in magnitude

than the one obtained with the new model). For this reason, a variance-based global

sensitivity analysis was performed to determine the most influential factors for each

property. From Figure 3.6, we can see that ε is not a relevant factor for the density,

enthalpy of vaporisation and diffusion constant of alcohols, but it is quite important for

the LJ component of the free energy of self-solvation. As a consequence, it was decided

to keep ε constant and only change the other three parameters.

During Model 3’s development, 1-propanol was not used as part of the parameterisation

because including it produced a model that could predict the density of propanol slightly

better at the expense of the diffusion constant of methanol. Furthermore, the function

∆Herror was not included in this model’s objective function since its inclusion did not

affect the optimised parameters. The levels for each variable were: σ= 0.290, 0.294,

0.298 and 0.302; ε= 0.7, 0.773 and 0.846; qO = -0.6, -0.7 and -0.8 and qH = 0.37,

0.435 and 0.5. To clarify, even though ε was kept constant during the optimisation,

the meta-model was still a function of ε. Also, Model 3’s learning set was constructed

using the simulations ran during Model 2’s development and therefore, it was not a full

factorial. In particular, there were no combinations of σ= 0.294 or 0.298 with ε= 0.7

or 0.773.

The meta-models’ performance for the three approaches can be found in Appendix A2

(Figures A7, A8, 3.5).

3.3 Results and Discussion

Several force fields are discussed in this section, and thus, a summary table showing

all these models (Table 3.7) is included here to improve the readability of the chap-
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Figure 3.6: First order sensitivity indices for different properties obtained using Model 2’s meta-
models. Top: density (left) and enthalpy of vaporisation (right). Bottom: diffusion constant
(left) and LJ component of the free energy of self-solvation of methanol (right). The different
colours represent the different molecules: methanol (red), 1-propanol (blue), 1-pentanol (green),
1-heptanol (black).

ter.

3.3.1 TraPPE with polarisation corrections

The original TraPPE force field has been parameterised by fitting to the single-

component vapour-liquid phase equilibria of a few alcohols, without applying

polarisation corrections [69]. In this work, we test TraPPE’s performance for several

bulk properties (density, diffusion, enthalpy of vaporisation and dielectric constant)
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Table 3.7: Force fields simulated in this chapter. Model 1, Model 2 and Model 3 use the LJ
parameters proposed by Jorge [1] for the alkyl chain and the α-carbon, and have been param-
eterised taking into account post-facto polarisation corrections. Unless stated otherwise their
results always include these corrections.

TraPPE TraPPE-UA force field for alcohols [69]. This model has been
fitted to the vapour-liquid coexistence curve of methanol, ethanol,
2-propanol and 2-methylpropan-2-ol.

TraPPE (C) TraPPE-UA force field for alcohols with post-facto polarisation
corrections.

Modified
TraPPE

Combines TraPPE-UA’s parameters for the hydroxyl group with
the set of parameters for alkane groups proposed by Jorge [1]

Model 1 • Fitted to the density, enthalpy of vaporisation and diffusion con-
stant of methanol, 1-propanol, 1-pentanol and 1-heptanol.
• The hydrogen and oxygen’s partial charges were taken from
TraPPE and scaled using an scaling factor α.
• Parameters optimised: σ and ε of the oxygen atom and the
scaling factor α.

Model 2 • Fitted to the density, enthalpy of vaporisation and diffusion con-
stant of methanol, 1-propanol, 1-pentanol and 1-heptanol.
• The hydrogen and oxygen’s partial charges were allowed to vary
independently.
• Parameters optimised: qO, qH and the LJ parameters of the
oxygen atom (σ and ε).

Model 3/ • Fitted to the density, enthalpy of vaporisation and diffusion con-
stant of methanol, 1-pentanol and 1-heptanol.

PolCA • The hydrogen and oxygen’s partial charges were allowed to vary
independently but ε was taken from TraPPE (ε = 0.773 kJ/mol)
and kept constant during the optimisation.
• Parameters optimised: σ of the oxygen atom, qO and qH .

and for solvation free energy calculations. For the dielectric constant and properties

that involve a phase change, the model’s performance without polarisation corrections

was compared to the one obtained once these corrections were applied.

This force field can accurately predict the density of small primary alcohols (from

methanol to pentanol), but from hexanol to decanol, it overpredicts this property (Fig-

ure 3.7). The difference between simulated and experimental values seems to increase

with the alkyl chain’s length, suggesting that the predictions will get worse as we move

towards even heavier alcohols. Additionally, TraPPE overpredicts the self-diffusion

constant of primary alcohols, except for methanol’s diffusion, which is very close to the

experimental value (Figure 3.7).

Figure 3.8 compares TraPPE’s predictions for the enthalpy of vaporisation and self-
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Figure 3.7: Density (left) and diffusion constant (right) of primary alcohols at 298.15 K and 1
bar obtained with the TraPPE model, represented with open black symbols. The green symbols
are experimental values. Densities were taken from reference [188] and diffusion constants
from references [189–193].

solvation free energy of alcohols, with and without polarisation corrections. First of

all, the value for pentanol reported in the Minnesota Solvation Database [168] is most

likely in error, and thus, it was excluded from the analysis. This value deviates signifi-

cantly from the trend of the remaining alcohols and disagrees with the value reported by

Katritzky [169] and with estimates based on the vapour pressure. As expected, the orig-

inal TraPPE model performs very well for both properties since it was parameterised

against vapour-liquid coexistence curves of pure alcohols. However, a small improve-

ment is observed once the corrections from Table 3.4 are applied. Table 3.8 gives a

quantitative comparison of each approach’s root mean square deviation (RMSD) which

was calculated using the mean of the experimental values when more than one source

was available. The RMSD of the enthalpy of vaporisation decreases by 0.24 kJ/mol

(from 3.20 kJ/mol without corrections to 2.96 kJ/mol with corrections), and the RMSD

of the self-solvation free energy is reduced by 0.15 kJ/mol (from 1.74 kJ/mol without

corrections to 1.59 kJ/mol with corrections). Furthermore, from this table we can see

that applying the Berendsen correction worsens agreement with experimental data,

particularly for the smaller alcohols, (RMSDs increase by 0.88 kJ/mol and 0.79 kJ/mol

for the enthalpy of vaporisation and self-solvation free energy, respectively) confirming

the conclusions of Leontyev and Stuchebrukhov [92].

The original TraPPE model significantly underpredicts all the alcohol molecules’ experi-
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Figure 3.8: Enthalpy of vaporisation (top) and free energy of self-solvation (bottom) of primary
alcohols at 298.15 K and 1 bar obtained with the TraPPE model: without any polarisation
corrections (“TraPPE”; full black symbols); with the corrections proposed here (“TraPPE(C)”;
open black symbols); and with the Berendsen corrections (“TraPPE(B)”; red symbols). The
green symbols are experimental values, taken from NIST [194] for the enthalpy of vaporisation
and from references [168, 169, 195–199] for the self-solvation free energy. The estimated
average uncertainty for the experimental free energy was taken as 0.84 kJ/mol [168].

mental dielectric constant (RMSD = 5.24), as shown in Figure 3.9. However, agreement

with experiment is highly improved across the entire range once simulated values are

corrected to account for the difference between the liquid dipole and the model’s dipole

(RMSD = 2.06). This result reinforces the conclusions of a study performed by Jorge

and Lue [87], where the corrections were seen to practically eliminate systematic de-

viations between simulated and experimental dielectric constants over a wide range of

compounds and molecular models.

As explained in Chapter 1, most fixed-charge force fields struggle to predict solvation
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Figure 3.9: Dielectric constant of primary alcohols at 298.15 K and 1 bar obtained using the
TraPPE model with and without polarisation corrections (open black squares and full black
squares, respectively). Experimental values (green triangles) were taken from the supporting
information of reference [87].

free energies of polar molecules in non-polar systems. Therefore, the solvation free

energy in hexadecane of primary alcohols was simulated using TraPPE to assess its

performance. The results are plotted in Figure 3.10, and it is clear that the origi-

nal TraPPE systematically underestimates the solvation free energy (i.e. predicts less

favourable solvation than observed experimentally) with an RMSD of 4.29 kJ/mol.

However, once polarisation corrections (Table 3.4) are applied to take into account the

solvent’s dielectric constant, TraPPE can accurately predict ethanol to butanol’s sol-

vation free energies in hexadecane. These corrections also improve predicted solvation

free energies of longer alcohols in hexadecane, however, deviation between experimen-

tal and simulated values increases with the alkyl chain (the solvation free energy of

decanol in hexadecane is underpredicted by 4.26 kJ/mol). These results are not unex-

pected since TraPPE systematically underpredicts the magnitude of the solvation free

energy of linear alkanes in hexadecane [1]. Furthermore, the post-facto polarisation

corrections used in this work were compared to those obtained using the Berendsen

approach, and it was noticed that Berendsen corrections shifted the free energies to

even less negative values than those obtained with the original TraPPE, worsening the

model’s performance.

The TraPPE force field performs very well for properties with significant post-facto
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Figure 3.10: Free energy of solvation of primary alcohols in hexadecane at 298.15 K and 1
bar obtained with the TraPPE model: without any polarisation corrections (“TraPPE”; full
black symbols and dashed line); with the corrections proposed here (“TraPPE(C)”; open black
symbols); and with the Berendsen corrections (“TraPPE(B)”; red symbols). The green symbols
are experimental values [168, 169].

Table 3.8: RMSD of TraPPE, TraPPE with Berendsen corrections (TraPPE (B)) and TraPPE
with polarisation corrections (TraPPE (C)) for the dielectric constant, enthalpy of vaporisation
and solvation free energies of primary alcohols at 298.15 K and 1 bar.

TraPPE TraPPE (B) TraPPE (C)

ΔHvap (kJ/mol) 3.20 4.08 2.96

Dielectric constant 5.24 N/A 2.06

ΔGsol (kJ/mol) 1.74 2.53 1.59

ΔGsol in hexadecane (kJ/mol) 4.29 5.45 2.83

polarisation corrections once these are added (i.e. dielectric constant and free en-

ergy of solvation in hexadecane), even though polarisation corrections were not con-

sidered during the parameterisation of the model. These corrections work well for this

model because the net correction for pure alcohols is close to zero for the properties

used in its parameterisation. Therefore, the original TraPPE parameters are, perhaps

fortuitously, already close to providing optimal performance. In this chapter, a new

polarisation-consistent model that includes polarisation corrections from its inception

is developed.
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3.3.2 Modified TraPPE

The set of alkane parameters proposed by Jorge [1] were initially combined with the

parameters for the hydroxyl group taken from TraPPE-UA to decide whether these

parameters needed to be modified or not. This force field was called “modified TraPPE”

and it highly underpredicts small alcohols’ densities as shown in Figure 3.11. However,

the predicted densities of octanol to decanol are more accurate than those from TraPPE-

UA. This result can be explained by the fact that the original TraPPE parameters were

obtained from calculations of the vapour-liquid equilibria (including saturated liquid

densities) of methanol and ethanol [69]. In contrast, Jorge’s parameters were designed

to fit the density, enthalpy of vaporisation and free energy of solvation of alkanes [1].

As the number of carbon atoms in an alcohol increases, non-polar interactions become

more important, and the alcohol’s behaviour becomes more similar to that of the alkane

with the same amount of carbon atoms. Consequently, a new set of LJ parameters for

the oxygen and new partial charges for the hydroxyl group and the α-carbon had to be

found.

Figure 3.11: Densities of primary alcohols at 298.15 K and 1 bar obtained using the modified
TraPPE model (orange diamonds) and the original TraPPE force field [69] (black squares). The
green symbols are experimental values and were obtained from reference [188].

3.3.3 Model 1

Model 1 performs better than TraPPE at predicting the density, enthalpy of vapori-

sation and diffusion constant of alcohols with more than two carbon atoms, while still
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giving good predictions for methanol and ethanol (Figures 3.12 to 3.15). Furthermore,

simulations at different temperatures were run for methanol, ethanol, butanol, hexanol,

and decanol to validate this model over a wider temperature range (from 283 K to 333

K). These results are plotted in Figure 3.13, where experimental values were obtained

from references [200–204].

Figure 3.12: Densities of primary alcohols at 298.15 K and 1 bar obtained using Model 1
(magenta circles), Model 2 (blue circles) and the original TraPPE force field [69] (black squares).
The green symbols are experimental values obtained from reference [188].

Figure 3.13: Simulated density of methanol, ethanol, butanol, hexanol, and decanol at different
temperatures obtained using Model 1 versus their experimental values. Simulated values are rep-
resented with circles and experimental values with triangles. Experimental values were obtained
from references [200–204].
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Figure 3.14: Enthalpies of vaporisation of primary alcohols at 298.15 K and 1 bar obtained
using Model 1 (magenta circles), Model 2 (blue circles) and the original TraPPE force field [69]
(black squares). The green symbols are experimental values taken from the NIST website [194].

Figure 3.15: Diffusion constants of primary alcohols at 298.15 K and 1 bar obtained using
Model 1 (magenta circles), Model 2 (blue circles) and the original TraPPE force field [69]
(black squares). The green symbols are experimental values taken from references [189–193].

Additionally, the free energy of self-solvation of each alcohol was calculated and com-

pared to the values obtained using TraPPE-UA (Figure 3.16). Both force fields per-

form very well at predicting the free energy of self-solvation of small alcohols. However,

Model 1 performs better than TraPPE-UA as the alkyl chain increases because TraPPE-

UA was parameterised to match small alcohols’ properties while the new parameters

were fitted taking into consideration larger molecules. Based on the RMSD, Model 1

has an overall better performance with an RMSD of 1.357 kJ/mol compared to 1.586
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kJ/mol for TraPPE. Unfortunately, Model 1 systematically underpredicts the static

dielectric constant for alcohols larger than butanol (Figure 3.17), and thus, different

approaches were tried.

Figure 3.16: Free energy of self-solvation of primary alcohols at 298.15 K and 1 bar as a
function of the number of carbons obtained using Model 1 (magenta circles), Model 2 (blue
circles) and the TraPPE force field (black squares). Experimental values for the free energy
were extracted from the Minnesota Solvation Database [168], the Katritzky database [169] and
from references [195–199]. The estimated average uncertainty for the values extracted from the
Minnesota Database is approximately 0.84 kJ/mol [168], the same uncertainty was used for the
other experimental values.

3.3.4 Model 2

Model 2 performs very well at predicting the density of linear primary alcohols (Fig-

ure 3.12) with an RMSD of 2.752 kg/m3 which is 1.481 kg/m3 smaller than TraPPE’s

RMSD. Additionally, Model 2 performs significantly better than Model 1 at predicting

the diffusion constant of methanol with an error of 9.62 % compared to an error of

-26.72 % for Model 1 (Figure 3.15). Concerning the enthalpy of vaporisation, Model 2

has an RMSD of 0.697 kJ/mol, which is 2.26 kJ/mol smaller than the value for TraPPE,

however, it slightly overpredicts (by less than 0.83 kJ/mol) the enthalpy of vaporisa-

tion of small alcohols. As the alkyl chain increases, Model 2’s performance improves

and thus, pentanol to decanol’s simulated values are in almost perfect agreement with

experimental data (Figure 3.14). Furthermore, this model was tested over a wider tem-
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Figure 3.17: Dielectric constant at 298.15 K and 1 bar as a function of the number of carbons,
obtained using Model 1 (magenta circles), Model 2 (blue circles) and the TraPPE force field
(black squares). Experimental values (green triangles) were taken from the supporting informa-
tion of reference [87].

perature range (from 283 K to 333 K) and simulated densities of methanol, ethanol,

butanol, hexanol, and decanol at different temperature were in good agreement with

experimental data as can be seen in Figure 3.18.

Figure 3.18: Simulated density of methanol, ethanol, butanol, hexanol, and decanol at different
temperatures obtained using Model 2 versus their experimental values. Triangles were used for
the experimental values, while circles were chosen for the simulated values. Experimental values
were obtained from references [200–204].

As shown in Figure 3.17, Model 2 overpredicts the dielectric constant of methanol to
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heptanol but can accurately predict this property from octanol onwards. This model

performs overall worse than Model 1 with an RMSD of 3.034 compared to 2.562 for

Model 1. However, it is important to point out that Model 1 underpredicts the dielec-

tric constant of butanol onwards and agreement with experimental data systematically

deteriorates as the alkyl chain increases (it underpredicts decanol’s dielectric constant

by 3.8), meanwhile the opposite effect is observed with Model 2 where performance

improves for larger alcohols. Concerning the self-solvation free energy, Model 2 signif-

icantly overpredicts its magnitude with an RMSD of 2.305 kJ/mol (Figure 3.16), and

thus, this model is not suitable for our purposes. Consequently, a third approach was

tried, as described in section 3.2.2.

3.3.5 New PolCA model (Model 3)

The PolCA model performs better than TraPPE at predicting the density of alcohols

from hexanol to decanol while still giving good predictions for smaller alcohols, and it

has a similar performance to the first model. The root mean square deviation of the new

model to experimental data is 2.79 kg/m3, while for TraPPE it is 4.23 kg/m3.

Figure 3.19: Densities of primary alcohols at 298.15 K and 1 bar obtained using the PolCA
force field (red circles) and the original TraPPE force field [69] (black squares). The green
symbols are experimental values [188].

Additionally, simulations were run at five other temperatures (283, 303, 313, 323 and

333 K) for methanol, ethanol, butanol, hexanol and decanol to validate the new PolCA

model over this range of temperatures. Figure 3.20 shows that PolCA accurately cap-
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tures the density’s temperature dependence for all the alcohols.

Figure 3.20: Simulated density of methanol, ethanol, butanol, hexanol, and decanol at different
temperatures obtained using the PolCA force field versus their experimental values. Triangles
were used for the experimental values, while circles were chosen for the simulated values. Ex-
perimental values were obtained from references [200–204].

As discussed previously, TraPPE overestimates the self-diffusion constant of primary

alcohols, except for methanol’s diffusion, which is very close to the experimental value.

On the other hand, PolCA underestimates methanol’s self-diffusion constant but accu-

rately predicts this property for the other primary alcohols (see Figure 3.21). The root

mean square deviation (RMSD) of the new PolCA model with respect to experimental

data is 0.201 10-5 cm2/s, while for TraPPE it is 0.181 10-5 cm2/s. Concerning the

diffusion, PolCA is similar to Model 1 and worse than Model 2. However, PolCA still

gives a good description of the diffusion constant and is overall better than Model 2.

The diffusion constant of methanol could be improved using different parameters for

methanol but at the expense of a less general model.

Both TraPPE and PolCA do a great job predicting the enthalpy of vaporisation. PolCA

slightly overpredicts this property for methanol, but it matches the experimental data

almost exactly from ethanol onwards (Figure 3.22). It is important to mention that

experimental values were taken from the NIST website [194] and the error bars for

nonanol and decanol are quite large (6 kJ/mol). Therefore, the values obtained using
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Figure 3.21: Self-diffusion constant of primary alcohols at 298.15 K and 1 bar obtained using
the PolCA model (red circles) and the original TraPPE force field [69] (black squares). The
green symbols are experimental values obtained from references [189–193].

TraPPE fall within the error bars but are a lot lower than the average. The RMSD of

PolCA is 0.71 kJ/mol, and the RMSD of TraPPE (C) is 2.96 kJ/mol.

Figure 3.22: Enthalpy of vaporisation of primary alcohols at 298.15 K and 1 bar obtained using
the new PolCA model (red circles) and the TraPPE force field with and without polarisation
corrections (open black squares and filled black symbols, respectively). The green symbols are
experimental values obtained from NIST website [194].

TraPPE and PolCA are both able to accurately predict the dielectric constant once

polarisation corrections are applied (see Figure 3.23). The root mean square devia-

tions for PolCA and TraPPE (C) are 1.84 and 2.06, respectively. This outcome is

remarkable since neither TraPPE nor PolCA used this property in its parameterisa-
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tion, and it emphasises the need to consistently account for polarisation effects when

comparing predictions of non-polarisable force fields against experimental dielectric

constants.

Figure 3.23: Dielectric constant of primary alcohols at 298.15 K and 1 bar as a function of the
number of carbons, obtained using the PolCA model (red circles) and the TraPPE force field
with corrections (open squares) and without corrections (dashed lines). Experimental values
(green triangles) were taken from the supporting information of reference [87].

Figure 3.24: Free energy of self-solvation of primary alcohols at 298.15 K and 1 bar obtained
using the new PolCA model (red circles), TraPPE and TraPPE with corrections (filled squares
and open black squares, respectively), as a function of the number of carbons. Experimental
values for the free energy were extracted from the Minnesota Solvation Database [168], the
Katritzky database [169] and from references [195–199]. The estimated average uncertainty for
the values extracted from the Minnesota Database is approximately 0.84 kJ/mol [168]; the same
uncertainty was used for the other experimental values.

Figure 3.24 compares experimental data for the free energy of self-solvation of primary

alcohols against predictions from TraPPE and PolCA. The RMSD for TraPPE (C) is
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1.59 kJ/mol, while it is 1.45 kJ/mol for PolCA. This shows that both models do a

good job at predicting this property, although the TraPPE (C) values are on the upper

(i.e. less favourable) end of the range of experimental data, while those of our new

model are on the lower end (i.e. more favourable). The polarisation corrections for

the self-solvation free energy are the same as for the enthalpy of vaporisation, but with

opposite sign; as such, their overall magnitude is also quite small.

Figure 3.25: Free energy of solvation of primary alcohols in hexadecane at 298.15 K and 1
bar as a function of the number of carbons in the solute obtained using the new PolCA model
(red circles), TraPPE and TraPPE with corrections (filled squares and open black squares,
respectively). Experimental values were taken from references [168] and [169]. The estimated
average uncertainty is approximately 0.84 kJ/mol [168].

Lastly, Figure 3.25 shows the free energy of solvation of primary linear alcohols in

hexadecane, obtained using TraPPE and PolCA. Both models’ performance is identical

for small alcohols, but the PolCA model yields improved predictions for larger alcohols

relative to TraPPE due to the reparameterised alkane force field parameters. In both

cases, the simulation predictions for methanol are in agreement with the experimental

data of Katritzky [169] but deviate from that of the Minnesota Solvation Database [168].

Overall, Figure 3.25 shows that PolCA leads to consistent predictions of solvation of

alcohols in alkanes and that polarisation corrections are the key to achieve this good

performance. The RMSD for PolCA is 1.833 kJ/mol, while for TraPPE (C) the RMSD

is 2.828 kJ/mol.
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3.3.6 Secondary and tertiary alcohols

Furthermore, the model was tested for secondary and tertiary alcohols. As a first at-

tempt, the LJ parameters of the alkane CH and C pseudo-atoms were used for the

α-carbons without modification. However, doing this resulted in a model that signif-

icantly underpredicted the density. This result could be explained by the fact that a

C-O bond is shorter than a C-C bond and that the hydroxyl oxygen has an electron-

withdrawing effect over the carbon [69]. The same effect was noticed by the TraPPE-UA

force field developers, who found they had to reduce σ of the α-CH and α-C by 7.48 %

and 9.38%, respectively, to reach satisfactory agreement with experiment [69]. Conse-

quently, our second attempt was based on sigma values for α-CH and α-C pseudo-atoms

that were 7.48 % and 9.38% smaller than their respective alkane pseudo-atoms. The

PolCA model’s performance for a few non-primary alcohols is presented in Table 3.9,

and it can be seen that this model also performs very well for secondary alcohols. For

tertiary alcohols, while the performance is acceptable for the density, enthalpy of vapor-

isation and self-solvation free energy, it fails to predict the dielectric constant of those

molecules. D’ Aprano et al. studied the dielectric constant of several isomeric pentanols

and noticed that this property decreased with chain branching and the proximity of

the hydroxyl group to the branch due to steric effects that reduce the association of the

molecules through hydrogen bonding (co-association causes dipoles to reinforce each

other) [205]. Therefore, the values predicted using PolCA suggest that our force field

could be overestimating the steric effects possibly due to an overestimation of σ for

the alkyl carbons attached to the α-carbon. Another explanation for the discrepancy

between our values and the experimental dielectric constants could be an underestima-

tion of the tertiary alcohols’ hydrogen bond strength due to the use of the same partial

charges as those parameterised for primary amines. Further work is needed to establish

the exact cause.

3.3.7 Comparison between all models

The root mean square deviation (RMSD) for each model based on the different proper-

ties can be found in Table 3.10. These values were calculated based on the experimental
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Table 3.9: Simulated properties for non-primary alcohols using the PolCA model. Experimental
values are in bold. The values for ∆H were taken from the NIST website [194], and in the case
of 2-butanol, the average was taken over 8 of the 9 data points because one was deemed to be
an outlier.

2-propanol 2-butanol 2-pentanol Tert-butanol Tert-amyl

Density (kg/m3)
779.0 +/- 0.1 798.8 +/- 0.2 804.6 +/- 0.3 775.4 +/- 0.1 808.3 +/- 0.1
781.31 [206] 802.43 [206] 805.9 [205] 780.79 [207] 806.9 [205]

ΔHvap (kJ/mol)
45.68 +/- 0.03 50.88 +/- 0.04 55.5 +/- 0.1 44.00 +/- 0.03 49.6 +/- 0.2

45 +/- 3 49 +/- 1 53 +/- 1 46 +/- 1 50 +/- 1

Dielectric constant
19 +/- 1 15 +/- 2 12 +/- 2 3.08 +/- 0.01 2.80 +/- 0.01

19.43 [208] 16.60 [208] 13.71 [205] 12.49 [208] 5.78 [205]

ΔGself-sol (kJ/mol)
-24.2 +/- 0.4 -19.6 +/- 0.3

-23.1 +/- 0.8 [196] -21.0 +/- 0.8 [196]

and simulated values of the primary alcohols studied here. Also, this table contains the

optimised parameter set for each approach.

Table 3.10: Parameters set and RMSD of the different models obtained in this chapter and
TraPPE-UA. The RMSD was obtained considering only primary alcohols, and all properties
were simulated at 298.5 K and 1 bar.

Force σ ε qO qH Density Diffusion ΔHvap Dielectric ΔG
Field [nm] [kJ/mol] [C] [C] [kg/m3] [10-5 cm2/s] [kJ/mol] constant [kJ/mol]

Model 1 0.278 0.734 -0.618 0.384 2.615 0.213 0.926 2.562 1.357
Model 2 0.2938 1.155 -0.633 0.449 2.752 0.127 0.697 3.034 2.305
PolCA 0.2853 0.773 -0.646 0.406 2.79 0.201 0.710 1.839 1.454

TraPPE (C) 0.302 0.773 -0.7 0.435 4.233 0.181 2.958 2.062 1.586

All the models developed in this chapter have a similar performance at predicting the

density of linear primary alcohols (RMSDs range from 2.62 to 2.79 kg/m3), and they

perform better than TraPPE by ≈ 1.4 kg/m3) since pentanol and heptanol’s densities

were included in our parameterisation while TraPPE was fitted to only small alcohols’

densities. Concerning the enthalpy of vaporisation, our models RMSDs are smaller than

TraPPE (C)’s value by more than 2 kJ/mol likely due to the fact that this property was

included in our optimisation routine but not in TraPPE’s. From our models, Model

2 and Model 3 have almost the same performance (RMSDs = 0.7 kJ/mol), and they

perform better than Model 1 by 0.2 kJ/mol. Model 1 also performs worse than the other

three models at predicting the diffusion constant (RMSD = 0.21 10-5 cm2/s), probably

due to the restrictions imposed on the partial charges during its development. On the

other hand, Model 2 is the best at predicting the diffusion constant with an RMSD of

0.13 10-5 cm2/s but has the worst performance for the dielectric constant (RMSD =
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3.03) and the free energy of self-solvation (RMSD = 2.31 kJ/mol). The models that can

better predict the dielectric constant and the free energy of self-solvation are PolCA

(RMSD = 1.84) and Model 1 (RMSD = 1.36 kJ/mol), respectively. PolCA has the

second best performance for the self-solvation free energy (RMSD = 1.45 kJ/mol), and

except for the diffusion constant, it performs better or almost the same as the other

models for all the properties studied here. Consequently, it was selected as the best

overall force field.

3.4 Conclusions

In this work, we have proposed a new non-polarisable force field for alcohols that was

parameterised taking into consideration polarisation effects. The new parameters for

the alcohol functional group are consistent with the UA model for aliphatic hydro-

carbons developed by Jorge [1] that eliminates systematic deviations in solvation free

energy predictions from existing UA force fields. When compared to the benchmark

TraPPE-UA force field for alcohols, our force field performs better at predicting the

density, enthalpy of vaporisation, dielectric constant, free energy of self-solvation, and

free energy of solvation in hexadecane. The RMSD of the diffusion coefficient is slightly

higher for PolCA than for TraPPE, but this is likely due to an inherent limitation of

the UA approach since our model sacrifices methanol’s diffusion to predict the diffu-

sion of ethanol to decanol with more accuracy than TraPPE. Indeed, the improved

performance of PolCA is seen most significantly for larger alcohol molecules, precisely

due to the elimination of systematic errors in the description of the alkane moieties.

Nevertheless, it is important to highlight that TraPPE-UA already performs quite well,

especially for smaller alcohols, once post-facto polarisation corrections are added. Even

though this model was not parameterised considering polarisation corrections, it per-

forms well because the corrections for properties involving a change of phase in pure

alcohols are quite small for alcohols with a short alkyl chain.
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Chapter 4

Polarisation-Consistent United

Atom Force Field for Amines

4.1 Introduction

Amines are chemical compounds that contain an sp3 nitrogen atom bonded to other

elements through single bonds, and ammonia is the simplest compound in this family.

Ammonia consists of a nitrogen atom united by single bonds to three hydrogen atoms.

If an alkyl group replaces one or more of these hydrogen atoms, the resulting amine is

an organic compound called alkyl amine. Primary alkyl amines are obtained when only

one hydrogen atom is replaced by an alkyl group, while secondary and tertiary amines

are obtained when two and all three hydrogen atoms are replaced, respectively.

An important property of amines is their ability to act as Lewis bases thanks to the

lone electron pair on the central nitrogen atom, and thus, they are found in several

industrial applications [209]. For example, amines are used to remove acidic gases from

natural gas in a process called gas sweetening. This process prevents corrosion prob-

lems on the pipelines, increases the calorific value of the final gas stream and reduces

atmospheric pollution [210]. Additionally, aqueous amine solutions are commonly used

in CO2 adsorption/desorption processes designed to decrease CO2 emissions, and thus,

help mitigate climate change [211]. Amine groups are also widely prevalent in pharma-
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ceutical compounds, and they play an important role in solvation and protein-binding

mechanisms.

Molecular dynamic (MD) simulations can be used to predict thermodynamic and trans-

port properties of amine-containing molecules with relevance to the above industrial

applications. The accuracy of these simulations depends on the chosen force field, and

thus, several force fields have been developed over the years using different approaches

and target properties. Some well known amine force fields are described below.

The OPLS all-atom (AA) force field for many common organic groups was developed

in 1996 by Jorgensen et al. [139]. Bond stretching and angle bending parameters were

mostly taken from the AMBER-AA force field [212], while non-bonded and torsional

parameters were determined by fitting to densities and enthalpies of vaporisation of 34

pure organic liquids and rotational energy profiles of over 50 organic molecules and ions,

respectively. This force field only included parameters for primary amines, therefore,

in 1999, Rizzo et al. [213] extended the OPLS-AA force field to ammonia and non-

primary amines, and slightly adjusted the parameters for primary amines. Molecular

structures, conformational energetics, hydrogen-bond strengths, densities, enthalpies of

vaporisation and relative free energies of hydration of ammonia, methylamine, dimethy-

lamine and trimethylamine were considered during the model’s development. The par-

tial charges and nitrogen’s Lennard Jones (LJ) parameters were adjusted to match

experimental pure liquid properties better. The LJ parameters for the nitrogen atom

were the same for all amines. On the other hand, the partial charges of the nitrogen

and its bonded hydrogen atoms differed for each amine type, and these charges were

allowed to vary independently from each other during the optimisation (α-carbons’ par-

tial charges were obtained from the neutrality constraint). Missing bonded parameters

were developed using optimised geometries and rotational energy profiles from ab initio

calculations. Additionally, 13 pure liquid simulations of aliphatic, cyclic and aromatic

amines and several relative free energy calculations of amines in water and chloroform

were run, and good agreement with experimental data was obtained. Free energies of

hydration were specifically important during this model’s development since previous

classical force fields had failed to reproduce the observed experimental trends for the
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amine series, ammonia, methylamine, dimethylamine and trimethylamine [214]. Ex-

perimentally, ammonia and methylamine present an unexpected behaviour since the

replacement of an amino hydrogen by a methyl group leads to a favourable (-1.09

kJ/mol) contribution to the free energy of hydration [215].

OPLS-AA is a good amine model and it captures the counterintuitive experimental

trend for the free energies of hydration of ammonia, methylamine, dimethylamine and

trimethylamine. However, it underpredicts methylamine’s critical temperature by 10%

and fails to predict this molecule’s density at elevated temperatures that are far from

its boiling point [216].

In 2005, the TraPPE explicit-hydrogen (EH) force field was extended to include

amines [216]. This force field was parametrised using the vapour-liquid coexistence

curves of methylamine, dimethylamine and trimethylamine, and it includes new specific

LJ parameters and partial charges for the different types of amine nitrogens and a

common partial charge for all α-carbon types. The parameters for tertiary amines

were parametrised first to determine the α-carbon’s partial charge, which was then

transferred to primary and secondary amines. The neutrality requirement determined

the partial charges of the hydrogens attached to the nitrogen atom, and consequently,

only three new parameters (nitrogen’s σ, ε and partial charge) were required for

each amine type since all bonded parameters were taken from the OPLS-AA force

field [213].

TraPPE-EH does a very good job at reproducing the liquid-vapour equilibrium of small

amines. However, it treats all hydrogens explicitly, and thus, it has a higher compu-

tational cost than the united-atom (UA) approach that we have chosen to adopt here.

Furthermore, this model lacks torsion parameters to extend its transferability to more

complex amines. For these reasons, a new anisotropic UA force field for amines with

extra torsion parameters, called AUA4 [217], was proposed by Orozco et al. in 2011.

This model is an extension of the AUA4 model proposed by Ungerer [218] with three

extra parameters for the nitrogen atom: σ, ε and δ (anisotropic UA displacement).

These parameters were obtained by fitting to the density, enthalpy of vaporisation

and vapour pressure of methylamine, ethylamine and propylamine at different temper-
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atures, while the amine group’s partial charges were taken from TraPPE-EH. Addi-

tionally, critical points, normal boiling points and viscosity coefficients of amines were

calculated during the model’s validation. In 2013, Orozco et al. studied the densities

and excess volumes of amines in water finding an excellent agreement for the mix-

ture densities and a good qualitative description of the excess volumes. The excess

volumes reproduce the overall physical trends, however they are overestimated for all

the studied systems (methylamine, ethylenediamine, diethylenetriamine, ethanolamine,

diethanolamine, methyldiethanolamine). [219]

Lastly, GROMOS-53A6 [101] is another UA model that includes amines relevant to this

work. This model was developed in 2004 to reproduce free energies of solvation in water

and non-polar solvents. In 2016, Horta et al. [80] developed an improved GROMOS-

compatible parameter set using the liquid density, enthalpy of vaporisation, hydration

free energy and solvation free energy in cyclohexane of small organic molecules as the

target properties.

None of the force fields described above include polarisation corrections, and thus, the

PolCA model is extended here to include amines. The methodology specific for this

chapter is presented in section 4.2. This section contains information about simulation

times, polarisation corrections, force field parameters and details about the optimi-

sation procedure. Three different methods were investigated during the optimisation

routine, resulting in three potential models for amines. These models are compared

in section 4.3.2 and the model with the best performance overall is compared to an-

other united-atom force field for amines (GROMOS-2016H66) in section 4.3.3. Lastly,

parameters for branched primary amines and non-primary amines are presented.

4.2 Methodology

The optimisation procedure, as well as the methods used to obtain bulk properties and

free energies of solvation, are described in detail in Chapter 2. Specific details for the

present chapter are described below.
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Bulk properties

Table 4.1 shows the number of molecules in each simulation box, which was selected to

maintain an approximately constant box size of 27 nm3.

Table 4.1: Number of molecules in the simulation box for each single-component system.

Compound Number of molecules

Methylamine 654
Ethylamine 447
Propylamine 327
Butylamine 250
Pentylamine 218
Hexylamine 177
Heptylamine 147
Octylamine 129
Nonylamine 113
Decylamine 103

Isopropylamine 319
Tertbutylamine 257

1,1-Dimethylpropylamine 216
2-amino-3-methylpentane 183

2-butylamine 260
Dimethylamine 506
Diethylamine 284

Trimethylamine 404
Triethylamine 201

Solvation free Energy calculations

As for the other compounds examined in this thesis, the sampling length was determined

by carefully analysing the convergence of the free energy over time. Table 4.2 contains

simulation lengths for each system and decylamine’s convergence plots can be found in

Figures A1 and A2 in Appendix A1. Longer simulation times were used to assess the

performance of the Gromos 2016 force field since these simulations were run first.

4.2.1 Polarisation corrections

Polarisation corrections were used to calculate properties that involve a phase transi-

tion, as explained in Chapter 2. One of the input parameters needed for their calcu-

lation is the solute’s liquid dipole moment. Unfortunately, we are not aware of any

experimental or quantum mechanical estimates of the liquid dipole moment of amine

molecules. Therefore, and following on from successful estimates for water [108] and
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Table 4.2: Simulation time in ns for the free energy components of the systems studied in this
chapter. N/A means not applicable.

Solute Solvent LJ Electrostatics

Methylamine Methylamine 5 5
Ethylamine Ethylamine 5 10
Propylamine Propylamine 5 10
Butylamine Butylamine 5 20
Pentylamine Pentylamine 5 20
Hexylamine Hexylamine 7 20
Heptylamine Heptylamine 7 20
Octylamine Octylamine 10 30
Nonylamine Nonylamine 10 30
Decylamine Decylamine 10 30

Isopropylamine Isopropylamine 5 10
Tertbutylamine Tertbutylamine 5 20

1,1 Dimethylpropylamine 1,1 Dimethylpropylamine 5 20
2-amino-3-methylpentane 2-amino-3-methylpentane 7 20

2-butylamine 2-butylamine 5 20
Dimethylamine Dimethylamine 5 10
Trimethylamine Trimethylamine 5 10

All amines Hexadecane 10 N/A

alcohols (see Chapter 3), the liquid amine dipole moments were calculated from Equa-

tion 2.49, proposed by Leontyev and Stuchebrukhov [92]. Furthermore, we were only

able to find experimental gas-phase dipole moments for the smallest amine molecules

(see below for details). Therefore, unless stated otherwise, the gas-phase dipole for

each molecule was estimated from a quantum mechanical calculation in vacuum using

Gaussian 09W [220]. A geometry optimisation was performed first until a stationary

point on the potential energy surface was found. After this, the electron density was

calculated using the B3LYP functional and the basis set cc-pvtz with the AUG- prefix

to add diffuse functions. Table 4.3 compares experimental and estimated values for the

gas-phase dipole of several molecules, and there is a good agreement overall.

The gas phase dipoles for all the molecules used here are presented in Table 4.4. Addi-

tionally, this table contains all post-facto polarisation corrections used in this chapter.

These corrections are divided into two contributions: the negative distortion term

(Cdist) and the positive electronic polarisation term (Celec), see section 2.7.2 for de-
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Table 4.3: Experimental gas-phase dipoles versus QM estimates obtained using Gaussian 09W
for several amines.

Molecule Experimental dipole (D) QM dipole (D)

Methylamine 1.31 [221] 1.29
Ethylamine 1.22 [221] 1.32
Propylamine 1.17 [221] 1.20
Butylamine 1.33 [222] 1.28

Dimethylamine 1.02 [223] 0.96
Trimethylamine 0.64 [223] 0.51

tails. The values presented here correspond to a liquid-gas transition to be consistent

with the definition of Cpol in section 2.7.2 , and the corrections for the solvation free

energy have the same magnitude but opposite sign. The polarisation corrections for

amine self-solvation, like those for alcohols, are relatively small in magnitude (below 1

kJ/mol), even though the individual distortion and electronic contributions are some-

what larger. However, as observed for alcohols, the corrections are much larger in

magnitude for solvation in hexadecane, since the electronic component dominates over

the distortion for solvation in a non-polar solvent. Interestingly, the amine corrections

take on a positive value in all systems, whereas for alcohols there were both positive

and negative corrections (cf. Table 3.4 in Chapter 3).

4.2.2 PolCA’s parameters

In Chapter 3, a new model for alcohols that includes post-facto polarisation corrections

was developed using TraPPE as a starting point. As explained previously, TraPPE

was chosen for this task because it performed better than OPLS-UA and GROMOS

at predicting solvation free energies of 52 solute-solvent pairs of linear, branched and

cyclic alkanes [81]. Unfortunately, TraPPE uses an explicit-hydrogen model, called

TraPPE-EH, to describe amines. TraPPE-EH treats all hydrogens explicitly and has

extra interaction sites located at the centres of carbon-hydrogen bonds to represent

the molecular shape of alkanes better [216]. This model was created to improve the

performance of TraPPE-UA when predicting liquid and vapour phases of alkanes, how-

ever, this improvement comes at the expense of a significantly higher computational
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Table 4.4: Polarisation corrections for a liquid-gas phase transition (Cpol), expressed in kJ/mol.
Cdist and Celec are the distortion and electronic polarisation terms, respectively, α [224] is the
polarizability of the solute in the gas phase and εel [224] and εsol are the high-frequency dielectric
permittivity and the static dielectric constant, respectively, of the medium. *Due to lack of space,
the acronyms “1-1-DMPA” and “2A3MP” were used to represent 1-1 dimethylpropylamine and
2-amino-3-methyl-pentane, respectively. No experimental data was found for their dielectric
constants, and thus, they were estimated using PolCA.

Solute Solvent µg (D) α (Å3) εsol εel µl (D) Cdist Celec Cpol

methylamine methylamine 1.31 [221] 4.03 9.40 1.82 2.01 -3.65 4.37 0.72

ethylamine ethylamine 1.22 [221] 5.86 6.61 1.86 1.83 -1.94 2.67 0.73

propylamine propylamine 1.17 [221] 7.69 4.99 1.92 1.73 -1.25 2.00 0.76

butylamine butylamine 1.33 [222] 9.36 4.62 1.94 1.97 -1.30 2.20 0.90

pentylamine pentylamine 1.19 11.38 4.20 1.99 1.75 -0.84 1.53 0.68

hexylamine hexylamine 1.27 13.25 4.03 2.01 1.87 -0.82 1.53 0.71

heptylamine heptylamine 1.18 15.06 3.77 2.02 1.72 -0.59 1.17 0.58

octylamine octylamine 1.27 16.91 3.55 2.04 1.84 -0.58 1.21 0.63

nonylamine nonylamine 1.18 18.76 3.38 2.05 1.69 -0.43 0.94 0.51

decylamine decylamine 1.27 20.58 3.28 2.06 1.82 -0.44 1.00 0.56

isopropylamine isopropylamine 1.26 7.77 4.85 1.88 1.83 -1.26 2.08 0.82

tertbutylamine tertbutylamine 1.18 9.67 4.01 1.89 1.67 -0.74 1.42 0.68

*1-1-DMPA 1-1-DMPA 1.13 11.43 4.75 1.95 1.68 -0.80 1.33 0.53

*2A3MP 2A3MP 1.20 13.25 4.16 1.99 1.77 -0.73 1.33 0.60

2 butylamine 2 butylamine 1.20 9.67 4.51 1.94 1.76 -0.99 1.71 0.72

dimethylamine dimethylamine 1.02 [223] 6.02 5.26 1.84 1.48 -1.04 1.64 0.59

diethylamine diethylamine 0.90 9.62 3.90 1.91 1.28 -0.44 0.86 0.42

trimethylamine trimethylamine 0.64 [223] 7.90 2.44 1.81 0.80 -0.10 0.34 0.25

triethylamine triethylamine 0.56 13.48 2.40 1.96 0.72 -0.06 0.21 0.15

methylamine hexadecane 1.31 [221] 4.03 2.09 2.05 1.66 -0.89 4.19 3.30

ethylamine hexadecane 1.22 [221] 5.86 2.09 2.05 1.54 -0.53 2.50 1.97

propylamine hexadecane 1.17 [221] 7.69 2.09 2.05 1.48 -0.37 1.75 1.38

butylamine hexadecane 1.33 [222] 9.36 2.09 2.05 1.68 -0.40 1.86 1.46

pentylamine hexadecane 1.19 11.38 2.09 2.05 1.50 -0.26 1.23 0.96

hexylamine hexadecane 1.27 13.25 2.09 2.05 1.61 -0.26 1.20 0.94

heptylamine hexadecane 1.18 15.06 2.09 2.05 1.49 -0.19 0.91 0.72

octylamine hexadecane 1.27 16.91 2.09 2.05 1.61 -0.20 0.94 0.74

nonylamine hexadecane 1.18 18.76 2.09 2.05 1.49 -0.16 0.73 0.58

decylamine hexadecane 1.27 20.58 2.09 2.05 1.61 -0.16 0.77 0.61

dimethylamine hexadecane 1.02 [223] 6.02 2.09 2.05 1.29 -0.36 1.70 1.34

diethylamine hexadecane 0.90 9.62 2.09 2.05 1.14 -0.18 0.83 0.66

trimethylamine hexadecane 0.64 [223] 7.90 2.09 2.05 0.81 -0.11 0.51 0.40

triethylamine hexadecane 0.56 13.48 2.09 2.05 0.71 -0.05 0.23 0.18

cost and parameterisation complexity [225]. Consequently, bond and angle parameters

were taken from TraPPE-EH (which uses bonded parameters from OPLS-AA [213])

and dihedral’s parameters from AUA4 [217]. The latter force field does not use 1-4 LJ

or electrostatic interactions, except for ethylenediamine which was not considered here,

and therefore its dihedral parameters do not depend on the non-bonded parameters.

The PolCA model developed in this work also does not use 1-4 non-bonded interactions,

and thus, AUA4’s dihedral parameters are consistent with our force field. For these
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reasons, AUA4 was chosen as the source for the missing dihedrals, and a curve fitting

technique was used to convert its parameters into the Ryckaert-Bellemans convention

(Equation 2.38) (see Figure 4.1). Table 4.5 contains the dihedral parameters extracted

from the AUA4 model [217] which need to be used with Equation 4.1:

UAUA4
tor =

8∑
i=0

ai cos(φ+ 180◦)i (4.1)

Figure 4.1: Dihedrals obtained using PolCA’s parameters with the Ryckaert-Bellemans conven-
tion (dashed green line) and AUA4’s parameters with Equation 4.1 (full red line). The plot on
the left corresponds to the dihedral C-C-C-N, and the one on the right to C-C-N-H.

Table 4.5: Torsion parameters for the AUA4 model [217] to be used with Equation 4.1. The
parameters ai are divided by kB, and thus, their units are K.

Torsion a0 a1 a2 a3 a4 a5 a6 a7 a8

CHx-CH2-CH2-N 816.65 2509.94 9.01 -3609.00 -54.51 286.01 -104.22 -133.18 279.10
CHx-CH2-N-H 154.98 869.66 902.48 -586.25 -651.38 -607.86 253.22 149.74 102.90

The PolCA non-bonded and bonded parameters for amines can be found in Tables 4.6

and 4.7, respectively.

Table 4.6: Non-bonded parameters for the PolCA force field.

non-bonded a) (Eq 2.37) σ [nm] ε [kJ/mol] Partial charge (q)

CHx-N-H2 0.3401 0.814 -0.871
(CHx)2-N-H 0.389 0.723 -0.605
(CHx)3-N 0.4918 0.151 -0.339

N-H 0 0 0.379
CH3-CHx 0.379 0.833 0
CH3-N 0.379 0.833 0.113

(CHx)2-CH2 0.399 0.392 0
CH2-N 0.399 0.392 0.113

(CHx)3-CH 0.473 0.085 0
CH-N 0.4645 0.085 0.113

(CHx)4-C 0.646 0.00426 0
C-N 0.630 0.00426 0.113

a) The non-bonded parameters correspond to the sites in bold.
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Table 4.7: Bonded parameters for the PolCA Force Field.

Bonds

Ideal bond length b0 [nm]

CHx-CHy 0.154
N-H 0.101

CHn-N 0.1448

Angles

Force constant kθ [kJ mol-1rad-2] Ideal bond angle θ0 [degree]

CHx-CH2-CHy 519.655 114
H-N-H 364.84 106.4

CHn-N-H 292.88 109.5
CHx-CHx-N 470.281 109.47

Dihedrals

C0 C1 C2 C3 C4 C5

CHx-CH2-CH2-CHy 8.397 16.785 1.134 -26.316
CHx-CHy-CHn-N 6.892 20.732 -1.499 -28.956 2.349 0.358

CHx-CHy-N-H 1.403 7.356 5.549 -5.907 -0.736 -2.932

Force constants for the angles are twice the value found in the OPLS-AA paper [213]

since their equation includes the coefficient 1/2 in kθ.

4.2.3 GROMOS-2016H66 Force Field

As explained in section 4.2.2, TraPPE does not have UA parameters for amines, and

thus, the GROMOS-compatible 2016H66 parameter set developed by Horta et al. [80]

was selected as a reference case to assess the PolCA model’s performance. This set

was obtained by fitting to the pure-liquid density, the enthalpy of vaporisation, the

hydration free energy and the solvation free energy in cyclohexane of small organic

molecules. The molecules used in the optimisation were at atmospheric pressure and

at a temperature close or equal to 298.15 K, and they belonged to different families

including alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, amides,

thiols, sulfides, disulfides, aromatic compounds and nucleic-acid bases. Ethylamine,

diethylamine and triethylamine were used in both the calibration and validation, while

propylamine, butylamine and ethylenediamine were only part of the validation pro-

cess. Additionally, seven other properties were studied during this model’s validation:

the molar isobaric heat capacity, the isothermal compressibility, the isobaric thermal-

expansion coefficient, the surface tension coefficient, the self-diffusion coefficient, the

113



shear viscosity and the static relative dielectric permittivity.

Interaction Parameters

The LJ and bonded parameters of the GROMOS-2016H66 set are the same as the ones

from the GROMOS-53A6 force field [101], except for a few exceptions that do not affect

the molecules studied here [80]. This model represents aliphatic carbon groups as one

pseudo-atom and uses a Lennard-Jones potential and Coulomb interactions with a re-

action field to calculate van der Waals and electrostatic interactions, respectively.

UGromos =
∑

pairs i,j

(
C12ij
r12
ij

− C6ij
r6
ij

+
qi qj

4πε0ε1rij

)
+ uRF (4.2)

uRF (rij) =
∑

pairs i,j

qi qj
4πε0ε1

[
−0.5 Crf r

2
ij

r3
c

+
−(1− 0.5 Crf)

rc

]
(4.3)

where,

Crf =
(2ε1 − 2ε2) (1 + k rc)− ε2 (k rc)

2

(ε1 + 2ε2) (1 + k rc) + ε2 (k rc)2
(4.4)

Here, rij , q, ε0 and ε1 are the distance between atoms i and j, the partial charges, the

vacuum permittivity and the relative permittivity of the medium, respectively. Addi-

tionally, ε2 and k are the relative permittivity and inverse Debye screening length of the

medium outside the cut-off sphere, respectively. The reaction-field contribution term

(uRF ) only appears outside the cut-off and represents the interaction between the atoms

and the dielectric medium. Furthermore, the mixed parameters C12ij and C6ij are ob-

tained from the parameters defined for each atom type using geometric combination

rules (Equation 4.6) and taking into consideration the type of interaction.

C12ij =
√
C12ii C12jj (4.5)

C6ij =
√
C6ii C6jj (4.6)
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Each atom type can have up to three different C12 parameters (C12[I], C12[II] and

C12[III]), being type I the default. Type II is slightly larger than type I and is

normally used when the atoms i and j can form hydrogen bonds. Lastly, type III is

used for ions. Furthermore, 1-4 interactions have a special set of parameters labelled

C6
1/2
nei and C12

1/2
nei . The parameters C12 and C6 can easily be related to σ and ε using

Equations 2.27 and 2.28, as is explained in the methodology (section 2.5).

The GROMOS force field calculates bonded interactions using different equations than

TraPPE. GROMOS uses Equations 4.7, 4.8 and 4.9 to obtain the potential energy due

to bonds, angles and dihedrals, respectively:

uGbonds =
Kb

4
[r2
ij − b20]2 (4.7)

uGangles =
Kθ

2
[cos(θ)− cos(θ0)]2 (4.8)

uGtorsion = Kφ {1 + cos[m(φ− 180◦)] cos(δ)} (4.9)

where, rij , θ, φ are the actual distance, angle and dihedral angle between particles,

respectively. All other parameters are defined according to the type of atoms involved

in the interaction. Tables 4.8 and 4.9 present the GROMOS bonded and non-bonded

parameters for primary amines.

4.2.4 Optimisation

The density, enthalpy of vaporisation and dielectric constant of methylamine, 1-

propylamine, 1-pentylamine and 1-heptylamine were simulated using different LJ

parameters for the nitrogen atom (LJ parameters for amine hydrogen atoms were set

to zero by construction) and different partial charges for the amino group (namely,

on the nitrogen and hydrogen atoms), while the α-carbon’s charge was adjusted

accordingly to keep the neutrality of the molecule. This led to a total of 4 fitting

parameters for primary amines: ε, σ, nitrogen’s partial charge (qN ) and hydrogen’s
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Table 4.8: GROMOS-2016H66’s bonded parameters for primary amines [101]. The second
column shows the code used in the GROMOS force field to identify each bond, angle and dihedral
type.

Bonds

Code Ideal bond length b0 [nm]

NT-H 2 0.1
CHn-NT 21 0.147
CHx-CHy 27 0.153

Angles

Code Force constant Kθ [kJmol−1] Ideal bond angle θ0 [degree]

H-NT-H 10 380 109.5
CHn-NT-H 11 425 109.5

CHx-CHy-CHn 15 530 111
CHx-CHy-NT 15 530 111

Dihedrals

Code Force constant Kφ [kJmol−1] Phase shift cos(δ) Multiplicity (m)

X-CHx-CHy-X 34 5.92 1 3
X-CHn-NT-X 41 3.77 1 6

Table 4.9: GROMOS-2016H66’s non-bonded parameters for primary amines [80, 101]. The
C12(II)1/2 for two nitrogen atoms that interact with each other is 1.6 (10-3 kJmol-1 nm12)1/2.
The units for C61/2 and C12(I)1/2 are (kJmol-1 nm6)1/2 and (10-3 kJmol-1 nm12)1/2, respec-
tively. The same units apply for the 1-4 parameters.

Code Atom type C61/2 C6nei
1/2 C12 (I)1/2 C12nei

1/2 q

7 NT 0.04975 0.04936 1.600 1.301 -0.98
15 CH2 0.08642 0.06873 5.828 2.178 0
15 CH2-NT 0.08642 0.06873 5.828 2.178 0.25
16 CH3 0.09805 0.08278 5.162 2.456 0
16 CH3-NT 0.09805 0.08278 5.162 2.456 0.25
21 H 0 0 0 0 0.365

Non-bonded parameters correspond to the atoms in bold.

partial charge (qH). In Chapter 3, the diffusion constant was used during the alcohol

model calibration; however, no experimental data was found for the self-diffusion of

alkyl amines, and thus, the dielectric constant was chosen instead. Amines’ dielectric

constant converged a lot faster than alcohols’, and consequently, the meta-models for

this property have a good performance (see below).

The alkyl chain’s parameters were the same as the ones used for alcohols (Table 4.6),
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and they were developed by Jorge [1]. Also, the LJ parameters of the alkane methyl

and methylene groups were used for the α-carbons without modification.

As explained in Chapter 2, meta-models were created to predict how the target proper-

ties vary with the amino group’s non-bonded parameters. These meta-models included

polarisation corrections for the enthalpy of vaporisation and the dielectric constant.

Additionally, each meta-model’s performance was checked by plotting simulated versus

predicted values, and once an optimum was found, the values predicted by the meta-

models were always in good agreement with the results from the simulations.

Once the meta-models were obtained and their performance checked, they were used

to create an objective function which was minimised using the procedure explained in

section 2.9. The objective function was:

F (X) =

4∑
j=1

(
(fk(X)− yexp)2

ρj + (fk(X)− yexp)2
∆Hj + (fk(X)− yexp)2

εsolj

)
(4.10)

where j=1, j=2, j=3 and j=4 correspond to methylamine, propylamine, pentylamine

and heptylamine, respectively. Also, fk(X) is the value predicted using the meta-model

at X, yexp is the experimental value and ρ, ∆H and εsol represent the density, enthalpy

of vaporisation and dielectric constant, respectively.

Different learning sets were investigated during the parameterisation, resulting in three

potential models for amines (called Model 1, Model 2 and Model 3 from now on). The

learning sets used to obtain each model are described below.

Construction of the learning set

An initial grid was created for methylamine, pentylamine and heptylamine around

TraPPE-EH’s non-bonded parameters (σ = 0.334 nm, ε = 0.923 kJ/mol, qN = -0.892

and qH = 0.356). The levels used for each variable are shown in Table 4.10, and the

total number of simulations for each molecule was 342.

The meta-models obtained using this initial grid were not accurate, and the predicted
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Table 4.10: Parameter levels used in the initial grid.

Levels

σ [nm] 0.325, 0.331, 0.334, 0.340, 0.346 and 0.352
ε [kJ/mol] 0.523, 0.623, 0.723, 0.823, 0.923, 1.023, 1.123 and 1.223

qN -0.792, -0.892 and -0.992
qH 0.256, 0.356 and 0.456

and simulated properties of the possible optimums did not match. For example, the

experimental density of pentylamine is 751 kg/m3, and looking at Figure 4.2 we can

see that an optimum with a predicted density of 751 kg/m3 can actually give simulated

values that range from 745 to 757 kg/m3 (an error of 6 kg/m3). Consequently, a

sensitivity analysis was carried out to detect each property’s most influential parameter.

In all cases, the hydrogen’s partial charge was the predominant variable, as can be seen

in Figure 4.2.

After uncovering the problems with the initial grid, a more accurate learning set was

created using a smaller range for qH (0.336 ≤ qH ≤ 0.396). The parameters’ levels in

this grid for all other variables were the same as the ones presented in Table 4.10, while

the levels for the hydrogen’s partial charge were 0.336, 0.356, 0.376 and 0.396. The

optimum obtained using this grid (σ = 0.324, ε = 0.253, qN = -0.970, qH = 0.356) fell

outside the grid’s boundaries and thus, a smaller grid was created for higher accuracy

around those values. This new grid was used to obtained Model 1, and it is explained

below.

Model 1

The meta-models were created using a full factorial grid and three levels for each

variable (see Table 4.11); however, 5 points that had low σ, low ε and high qN were

removed to improve the meta-models performance. These points were chosen based

on the predictivity plots, and their removal increased the meta-models performance

for all the properties (see Figure A10 in Appendix A2). Three of the removed points

were combinations of σ = 0.325 nm with ε = 0.223 kJ/mol and qN = -0.992, while the

other two points were: σ = 0.325, ε = 0.323, qN = -0.992, qH = 0.396 and σ = 0.331,

ε = 0.223, qN = -0.992, qH = 0.396. Therefore, Model 1’s learning set consisted of
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Figure 4.2: The top left figure shows the performance of the density’s meta-model for penty-
lamine at 298.15 K and 1 bar obtained using the initial grid. This plot compares simulated
values to the meta-model’s predictions, and a horizontal black line represents pentylamine’s ex-
perimental density. The three other plots are the first-order sensitivity indices of the initial
grid’s meta-models for each property. The studied property in the top-right plot is the density
while the properties in the figures at the bottom are the enthalpy of vaporisation (left) and the
dielectric constant (right). The different colours represent the different molecules: methylamine
(red), 1-pentylamine (green) and 1-heptylamine (black).

76 simulations for each molecule, including propylamine which was added to improve

the prediction of small amines. The initial point for the optimisation was σ = 0.334,

ε = 0.423, qN = -0.892, qH = 0.356.

The objective function used to obtain Model 1 did not include methylamine’s dielectric

constant since removing this property from the parameterisation slightly improved the
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Table 4.11: Levels for each parameter used in Model 1’s learning set.

Levels

σ [nm] 0.325, 0.331 and 0.334
ε [kJ/mol] 0.223, 0.323 and 0.423

qN -0.792, -0.892 and -0.992
qH 0.356, 0.376 and 0.396

enthalpy of vaporisation and the dielectric constant of pentylamine and heptylamine at

the expense of a very small deterioration in the dielectric constant of methylamine and

propylamine. However, the models obtained including and excluding methylamine’s

dielectric constant from the objective function had very similar parameters, and thus,

either approach could have been used. Furthermore, the optimisation procedure was

forced to stay inside the parameters boundaries to assure the predictivity of the model

since lifting this restriction generated optimums that were outside the region where the

meta-models have a good performance. This outcome suggested that a grid expansion

was needed for a more accurate model. The meta-models’ performance within the grid’s

region can be found in Appendix A2 (Figure A11).

Model 2

As explained above, the method used to obtain Model 1 was restricted by the pa-

rameters boundaries, and thus, Model 1’s grid was extended to incorporate more σ

and ε values. The learning set used for methylamine, pentylamine and heptylamine

was constructed using 165 simulations from previous grids without having to run ex-

tra points. This set consisted of combinations of σ = 0.325, 0.331, 0.334 and 0.340

nm with ε = 0.423, 0.523, 0.623, 0.723, 0.823, 0.923, 1.023, 1.123 and 1.223 kJ/mol,

with the same levels for the partial charges used in Model 1’s grid. Propylamine, un-

like methylamine, pentylamine and heptylamine, was not included in the initial grid

shown in Table 4.10, and thus, different parameter levels were used for σ and ε when

constructing its meta-models to avoid running many extra simulations. Propylamine’s

learning set consisted of 108 simulations, out of which 81 simulations were new, and

the levels used for σ and ε were 0.325, 0.331 and 0.334 nm and 0.423, 0.523, 0.623

and 0.723 kJ/mol, respectively. Additionally, the optimum model’s predicted values
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were compared with the simulated values to check the performance of propylamine’s

meta-model, and, since there was a good agreement, no extra simulations were run for

this molecule. The levels used for each parameter are summarised in Table 4.12.

Table 4.12: Levels for each parameter used in Model 2’s learning set.

Levels

For propylamine

σ [nm] 0.325, 0.331 and 0.334
ε [kJ/mol] 0.423, 0.523, 0.623, 0.723

qN -0.792, -0.892 and -0.992
qH 0.356, 0.376 and 0.396

For methyl, pentyl and heptyl amine

σ [nm] 0.325, 0.331, 0.334 and 0.340
ε [kJ/mol] 0.423, 0.523, 0.623, 0.723, 0.823, 0.923, 1.023, 1.123, 1.223

qN -0.792, -0.892 and -0.992
qH 0.356, 0.376 and 0.396

Furthermore, the initial point for the optimisation was the same as the one used for

Model 1; however, unlike in the previous approach, the search was no longer forced to

stay inside the boundaries. The optimum’s predicted properties were in good agreement

with the simulations even though the optimum’s σ and ε were outside the boundaries

for propylamine’s learning set. The meta-models performance inside their respective

boundaries can be found in Appendix A2 (Figure A12).

Model 3

Model 3 was created since the previous two models were not able to predict all the

properties studied here. Model 1 severely underpredicts the free energy of solvation of

amines in hexadecane, while Model 2 is able to predict this property, but it overpredicts

the dielectric constant of primary amines. Additionally, the dipoles obtained with

Model 2 are higher than the estimated liquid dipoles. These results are explained in

detail in section 4.3.2.

Model 3 was obtained using an extended grid for propylamine, pentylamine and hep-

tylamine, while methylamine was not included in the objective function. A total of

174 simulations were used to create each molecule’s learning set, and, unlike in the

previous approach, the same number of simulations was used for all three molecules.
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Additionally, the optimum was not forced to stay inside the learning grid’s boundaries

but an extra restriction was included in the objective function to assure that the opti-

mum’s dipole moments for the fitted molecules were lower than their estimated liquid

dipoles from Table 4.4. Table 4.13 contains the levels used for each parameter, and, the

meta-models performances can be found in Appendix A2 (Figure A13). Similar to the

previous approach, one of the model’s parameters was slightly outside the boundaries;

however, simulated values were in agreement with the predictions.

Table 4.13: Levels for each parameter used in Model 3’s learning set.

Levels

σ [nm] 0.325, 0.331, 0.334, 0.340, 0.344, 0.348 and 0.352
ε [kJ/mol] 0.723, 0.823, 0.923, 1.023, 1.1, 1.123, 1.223, 1.3 and 1.5

qN -0.792, -0.892 and -0.992
qH 0.322, 0.336, 0.352, 0.356, 0.376 and 0.382

4.3 Results and Discussion

Several force fields are discussed in this section, and thus, a summary table showing

all these models (Table 4.14) is included here to improve the readability of the chap-

ter.

4.3.1 Gromos 2016H66 with polarisation corrections

The simulation protocol used during the development of the GROMOS 2016H66 force

field [80] differs from the procedure used in this work, and thus, values obtained using

three different methods are presented here for easier comparison with the literature.

The first method, called Gromos-2016-RF from now on, is the same as the one used

during Gromos-2016H66’s parameterisation. This approach uses a cut-off of 1.4 nm for

non-bonded interactions and a reaction-field correction [226] to account for electrostatic

interactions beyond the cut-off. However, long-range dispersion interactions beyond the

cut-off are not included. The second method, called Gromos-2016-RF-Dispcorr, is the

same as the first approach except for the inclusion of long-range dispersion corrections

for energy and pressure. These corrections are essential since it has previously been

shown that the bulk density depends strongly on the cut-off radius when long-range
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Table 4.14: Force fields simulated in this chapter. Model 1, Model 2 and Model 3 use the LJ
parameters proposed by Jorge [1] for the alkyl chain and the α-carbon, and have been param-
eterised taking into account post-facto polarisation corrections. Unless stated otherwise their
results always include these corrections.

Gromos-
2016-RF

• GROMOS 2016H66 force field for amines [80]. This model was
fitted to the liquid density, enthalpy of vaporisation, hydration
free energy and solvation free energy in cyclohexane of ethylamine,
diethylamine and triethylamine.
• Same simulation protocol as the one used during its develop-
ment: cut-off equal to 1.4 nm without long-range dispersion cor-
rections and with a reaction-field correction for electrostatic inter-
actions beyond the cut-off.

Gromos-
2016-RF-
Dispcorr

• Same as Gromos-2016-RF except for the inclusion of long-range
dispersion corrections for the energy and pressure.

Gromos-
2016-PME

• GROMOS 2016H66 force field simulated using the same proto-
col as the one used for PolCA
• Includes long-range dispersion corrections and uses PME to
treat electrostatic interactions beyond the cut-off (1 nm).

Model 1 • Fitted to the density, enthalpy of vaporisation and dielectric
constant of propylamine, pentylamine and heptylamine and to
methylamine’s density and enthalpy of vaporisation.
• Optimisation algorithm was forced to stay inside the boundaries
of the learning set.

Model 2 • Fitted to the density, enthalpy of vaporisation and dielectric
constant of propylamine, pentylamine and heptylamine and to
methylamine’s density and enthalpy of vaporisation.
• The meta-models used during its parameterisation were trained
using a larger grid that the one used for Model 1.
• No boundary restrictions were imposed during the optimisation
routine.

Model 3 • Fitted to density, enthalpy of vaporisation and dielectric con-
stant of propylamine, pentylamine and heptylamine.
• No boundary restrictions were imposed during the optimisation
routine but the dipole moments of the fitted molecules were forced
to be lower than their estimated liquid dipoles.

corrections are not applied, and as the radius increases the density gets closer to the

value obtained using long-range corrections [1]. The last protocol, called Gromos-2016-

PME, is the same as the one used for PolCA and TraPPE, and it is described in detail

in section 2.7. This approach uses PME to treat long-range electrostatic interactions

and a cut-off of 1 nm for non-bonded interactions. Also, it applies long-range dispersion

corrections for energy and pressure.

Figure 4.3 shows the predicted density of 10 linear primary amines obtained using
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Gromos-2016H66 with the three approaches explained above. Gromos-2016-RF accu-

rately predicts the density from propylamine to decylamine, and its trend suggests that

longer linear primary amines will also be accurately predicted. However, methylamine’s

density is highly overpredicted, and ethylamine’s density is slightly overpredicted. This

result is not surprising since Gromos performs very well at predicting alkane densities

when this protocol is used [142]. On the other hand, all densities are highly overpre-

dicted once long-range dispersion corrections are added, and these values are similar to

those obtained using Gromos-2016-PME (especially from pentylamine onwards). This

outcome suggests that Gromos-2016-RF underpredicts long-range dispersion forces and

that the difference between the different methods is mostly due to dispersion corrections

and not to the way long-range electrostatic interactions are treated.

Figure 4.3: Density of linear primary amines at 298.15 K and 1 bar obtained using Gromos-
2016H66 with three different methods. Simulations ran using a reaction field correction without
and with dispersion corrections are represented with upside-down magenta triangles and blue
triangles, respectively. Black squares correspond to values obtained using PME with dispersion
corrections, and green symbols are experimental values [224].

Figure 4.4 shows the predicted enthalpy of vaporisation obtained with and without po-

larisation corrections. Gromos-2016-RF does a great job at predicting this property for

all the primary amines studied here with an RMSD of 1.695 kJ/mol, and once polarisa-

tion corrections are applied its performance improves by 0.467 kJ/mol (RMSD = 1.228

kJ/mol). However, once dispersion corrections are added, Gromos-2016 overpredicts

the enthalpy of vaporisation for molecules larger than ethylamine and the RMSD of

Gromos-2016-RF-Dispcorr without polarisation corrections is 1.153 kJ/mol larger than
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Gromos-2016-RF’s RMSD. This outcome is not unexpected since, as explained above,

Gromos-2016-RF underpredicts attractive long-range forces. Furthermore, adding po-

larisation corrections (which are small but positive) to Gromos-2016-RF-Dispcorr actu-

ally worsens agreement with experimental data by 0.561 kJ/mol since the uncorrected

model already overpredicts this property. A similar effect is observed for Gromos-2016-

PME which has an RMSD of 2.347 kJ/mol before applying polarisation corrections and

an RMSD of 2.844 kJ/mol once these corrections are incorporated.

On the other hand, the dielectric constant does not seem to be affected by the long-

range dispersion corrections or the way long-range electrostatic interactions are treated

beyond the cut-off (Figure 4.5). In all cases, Gromos can accurately predict the dielec-

tric constant of primary amines larger than methylamine, once simulated values are

corrected using Equation 2.52, while methylamine’s dielectric constant is overpredicted

by a factor of 1.4. If corrections are not applied, Gromos 2016H66 does a better job

at predicting methylamine’s dielectric constant but it underpredicts the dielectric con-

stant for ethylamine and beyond (the curves for all versions of Gromos nearly overlap,

and so only one is shown).

Figure 4.4: Enthalpy of vaporisation of primary amines at 298.15 K and 1 bar obtained with
Gromos-2016H66. Here, the term (C) in the labels means that polarisation corrections were
included (full lines and empty symbols). Magenta upside-down triangles represent simulations
ran using a reaction field correction without dispersion corrections, while blue triangles corre-
spond to values that include dispersion corrections, and black squares represent values obtained
using PME with long-range dispersion corrections. Experimental values (green symbols) were
taken from references [194] and [227].
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Figure 4.5: Dielectric constant of primary amines at 298.15 K and 1 bar obtained with Gromos-
2016H66 at 298.15 K and 1 bar. Here, the term (C) in the labels means that polarisation
corrections were included (full lines and empty symbols). Magenta upside-down triangles repre-
sent simulations ran using a reaction field correction without dispersion corrections, while blue
triangles correspond to values that include dispersion corrections, and black squares represent
values obtained using PME with long-range dispersion corrections. Experimental values (green
symbols) were taken from references [223] and [221].

Figure 4.6 presents the model’s performance at predicting free energies of self-solvation

of primary amines with and without polarisation corrections. Free energy simulations

are very time consuming, and thus, only simulations using the Gromos-2016-PME and

Gromos-2016-RF were run. Gromos-2016-RF-Dispcorr was not part of the calculations

since we can see from Figures 4.3, 4.4 and 4.5 that Gromos-2016 is not significantly

affected by the way long-range electrostatic forces are treated. The free energy of self-

solvation of primary amines is accurately predicted using Gromos-2016-PME, although

adding polarisation corrections slightly increases the RMSD from 1.032 to 1.525 kJ/mol.

As expected, the opposite behaviour is observed for Gromos-2016-RF since adding

polarisation corrections decreases the RMSD from 1.664 to 1.170. Nonetheless, Gromos-

2016-PME’s comparatively poor performance at predicting the density and enthalpy of

vaporisation suggests that this model could be improved.

The free energy of solvation of linear primary amines in hexadecane, calculated using

Gromos-2016-PME and Gromos-2016-RF with and without polarisation corrections, is

shown in Figure 4.7. The polarisation corrections for these systems are significant, as

can be seen from Table 4.4, especially for smaller amines, and they highly improve
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Figure 4.6: Free energy of self-solvation of primary amines at 298.15 K and 1 bar obtained using
Gromos-2016H66 with RF (magenta upside-down triangles) and PME (black squares). Full
lines with empty symbols contain polarisation corrections, while dashed lines with filled symbols
represent values without corrections. The green symbols are experimental values obtained from
vapour pressure data [228, 229].

the model’s performance once added. The RMSD of Gromos-2016-PME decreases

from 3.738 to 2.147 kJ/mol, while Gromos-2016-RF’s RMSD decreases from 5.049 to

3.563. However, even with these corrections, Gromos-2016-PME still significantly un-

derpredicts solvation free energies magnitudes from methylamine to propylamine, while

Gromos-2016-RF significantly underpredicts this property’s magnitude for all ten lin-

ear primary amines studied here. Gromos-2016-RF does not use dispersion corrections

during the simulations and thus, its predicted values are lower than those obtained

using PME, especially from pentylamine onwards.

The root-mean-square deviation of the three methods for the properties studied here

can be found in Table 4.15. The Gromos-2016-RF’s RMSD for the density is high due

to methylamine’s density which is greatly overpredicted. However, the RMSD decreases

to 5.27 kg/m3 if methylamine is not included. Furthermore, this table also contains the

RMSD of the enthalpy of vaporisation and the dielectric constant without polarisation

corrections. For the three approaches, agreement with experimental data improves for

the dielectric constant when simulated values are corrected using Equation 2.52, while

adding polarisation corrections to the enthalpy of vaporisation improves accuracy only

for Gromos-2016-RF, which corresponds to the protocol used in the original parameteri-
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Figure 4.7: Free energy of solvation of linear primary amines in hexadecane at 298.15 K and 1
bar obtained using Gromos-2016H66 with RF (magenta upside-down triangles) and PME (black
squares). Full lines with empty symbols contain polarisation corrections, while dashed lines with
filled symbols represent values without corrections. The green symbols are experimental values
obtained from the Katrizky and Minnesota databases [168, 169] and reference [230]’s supporting
information.

sation. Therefore, it can be concluded that the Gromos 2016H66 amine force field would

benefit from inclusion of post-facto polarisation corrections, as observed for TraPPE

in the case of alcohols (see section 3.3.5). For the other protocols considered here, the

results deviate more strongly from experimental data when the positive polarisation

corrections are added, since they already overestimate the vaporisation enthalpy.

Table 4.15: RMSD of the density, dielectric constant, enthalpy of vaporisation and free energy
of solvation of primary amines in themselves and hexadecane at 298.15 K and 1 bar, obtained
using the Gromos-2016H66 parameter set and the three protocols explained above. The values
for properties with a (C) next to their names were obtained including post-facto polarisation
corrections. No experimental data was found for the diffusion constant of the simulated amines,
and thus, this property was not included in the study.

Gromos-2016-RF Gromos-2016-RF-Dispcorr Gromos-2016-PME

Density [kg/m3] 17.278 27.572 31.975
ΔHvap [kJ/mol] 1.695 2.848 2.347
ΔHvap (C) [kJ/mol] 1.228 3.409 2.844
Dielectric 1.435 1.438 1.457
Dielectric (C) 1.088 1.194 1.207
ΔGsol [kJ/mol] 1.664 1.032
ΔGsol (C) [kJ/mol] 1.170 1.525
ΔGhex [kJ/mol] 5.049 3.738
ΔGhex (C) [kJ/mol] 3.563 2.147
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4.3.2 Comparison between the new potential models

Table 4.16 contains the optimised parameters for each approach. Model 1 has the

lowest σ and ε, while Model 3 has the highest values for these parameters. Model 2

fits in between the other two models, with σ = 0.34 nm and ε = 0.814 kJ/mol, and,

as it will be shown in this section, this model has the best performance overall. The

next paragraphs contain each model’s predicted densities, enthalpies of vaporisation,

dielectric constants, self-solvation free energies and solvation free energies in hexadecane

of ten primary amines.

Table 4.16: Non-bonded parameters for each model.

Model σ (nm) ε (kJ/mol) qN qH

Gromos-2016H66 0.314 0.640 -0.980 0.365
Model 1 0.333 0.423 -0.935 0.373
Model 2 0.340 0.814 -0.871 0.379
Model 3 0.353 1.580 -0.902 0.350

Density

As can be seen from Figure 4.8, all three models do a good job at predicting the liquid

density of primary linear amines. However, Model 1 systematically overpredicts the

density of linear primary amines larger than butylamine, and Model 3 overpredicts the

density of methylamine, ethylamine and propylamine. On the other hand, Model 2 ac-

curately predicts the density of all the linear amines studied here, except for ethylamine

which is overestimated by 1.03 %.

The RMSD of Model 1, Model 2 and Model 3 with respect to experimental values are

4.975, 3.625 and 5.21 kg/m3,respectively.

Enthalpy of vaporisation and free energy of self-solvation

Figure 4.9 shows the enthalpy of vaporisation of ten linear primary amines obtained

using the three models after inclusion of polarisation corrections. Concerning the en-

thalpy of vaporisation, all three models behave very similarly, which is somewhat ex-

pected since this property was included in the parameterisation of all models. However,

Model 1 has the best performance with an RMSD of 0.883 kJ/mol, followed by Model 3
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Figure 4.8: Density of linear primary amines at at 298.15 K and 1 bar obtained using Model
1 (blue triangles), Model 2 (red circles) and Model 3 (purple rhombus). The green symbols are
experimental values [224].

with an RMSD of 0.899 kJ/mol and lastly by Model 2 with an RMSD of 1.437 kJ/mol.

Model 2 does an excellent job at predicting the enthalpy of vaporisation of small amines

(from methylamine to butylamine), but from pentylamine to decylamine it seems to

systematically underpredict this property by a small amount (3 % for decylamine). It

is also important to mention that no data was found for the experimental error bars

of nonylamine and decylamine, and thus they were plotted without error bars. All

other molecules have error bars, but some of them are too small to be visible in the

plot.

From Figure 4.10 we can see that Model 2 is the best at predicting free energies of self-

solvation of linear primary amines. This property is particularly relevant because it

was not included in the training set (hence it represents a pure prediction) and because

the PolCA model is aimed at accurately predicting solvation properties. This model

has an RMSD of 0.730 kJ/mol, and its predicted free energies of solvation fall within

the error bars of the experimental values for all ten linear primary amines studied

here, except for methylamine and ethylamine. The free energies of self-solvation of

these two molecules are overpredicted (more negative values) by 1.3 kJ/mol and 1.1

kJ/mol, respectively. On the other hand, Model 3 has the worst performance out of

the three models with an RMSD of 2.942 kJ/mol. This model systematically predicts

self-solvation free energies that are approximately 3 kJ/mol more negative than the
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experimental values. Finally, Model 1 is better than Model 2 for methylamine and

ethylamine, but it slightly underpredicts the magnitude of the self-solvation free energy

from butylamine onwards. The RMSD of Model 1 is 1.336 kJ/mol.

Figure 4.9: Enthalpy of vaporisation of linear primary amines at 298.15 K and 1 bar obtained
using Model 1 (blue triangles), Model 2 (red circles) and Model 3 (purple rhombus). In all
cases, polarisation corrections were included. Experimental values (green symbol) were taken
from references [194] and [227].

Figure 4.10: Free energy of self-solvation of linear primary amines at 298.15 K and 1 bar
obtained using Model 1 (blue triangles), Model 2 (red circles) and Model 3 (purple rhombus).
In all cases, polarisation corrections were included. Experimental values (green symbol) were
obtained from vapour pressures data [228, 229].

Dielectric constant

The dielectric constant was one of the properties used to parameterise the three models.

Figure 4.11 shows the dielectric constants of methylamine to decylamine obtained using
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Model 1, Model 2 and Model 3. All models overpredict methylamine’s dielectric con-

stant by more than 60 %, but their performance improves as the alkyl chain increases.

Concerning the dielectric constant, Model 1 and Model 3 are similar. However, Model

1 is better with an RMSD of 1.890 compared to an RMSD of 2.096 for Model 3. On

the other hand, Model 2 is the worst, with an RMSD of 2.672. This model overpre-

dicts the dielectric constant of all linear primary amines studied here, especially from

methylamine to propylamine. From butylamine onwards, the discrepancy between sim-

ulated and experimental values is small, and thus, the model does a reasonable job at

predicting this property for larger molecules.

Figure 4.11: Dielectric constant of linear primary amines at 298.15 K and 1 bar obtained using
Model 1 (blue triangles), Model 2 (red circles) and Model 3 (purple rhombus). In all cases,
polarisation corrections were applied. Experimental dielectric constants (green symbol) were
taken from references [223] and [221].

Another issue with Model 2 is its dipole as can be observed from Figure 4.12. Except for

methylamine, simulated dipoles obtained using this model are higher than the estimated

liquid dipoles from Table 4.4 (the lack of a clear trend in these values is due to the

gas dipoles obtained with Gaussian as shown in Figure A17 in Appendix A5). Model

1 has a dipole moment that is lower than Model 2’s but it is still higher than the

estimated liquid dipole for most amines. Consequently, Model 3 was optimised forcing

the algorithm to only return optimums with a dipole lower than the estimated liquid

dipole. Unfortunately, this model fails to predict the free energy of self-solvation, one

of the main properties of interest in this work. There are other amine models in the
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literature with a dipole larger than the estimated liquid dipoles, like for example AUA4.

The AUA4 force field uses the TraPPE-EH charges, reported by Wick et al. [216], and

its dipole is approximately 1.8 D [217]. Interestingly, Jorge and Lue [87] analysed

31 alkylamines’ dielectric constants obtained using GAFF [103] and OPLS-AA [213],

and concluded that 0.88 was the optimal scaling factor between the liquid and model

dipoles for that data set. This scaling factor represents the ratio between the dipole

moment of the real liquid and that of the molecular model, so a value below 1 suggests

that the model dipoles tend to be larger than the liquid dipoles. Taken together, these

observations suggest that either Equation 2.49 does not give an accurate estimate of

the liquid dipole moments of amines or that a model dipole moment larger than that

of the liquid might be necessary to accurately represent the potential energy surface of

amine molecules. Further investigation is needed to clarify this.

Figure 4.12: Liquid dipole of linear primary amines at 298.15 K and 1 bar obtained using
Model 1 (blue triangles), Model 2 (red circles) and Model 3 (purple rhombus). The green
symbols are the liquid dipoles obtained with the equation proposed by Leontyev and Stuchebrukhov
(Equation 2.49) [92] (see section 4.2.1).

Free energy of solvation in hexadecane

The free energy of solvation in hexadecane was one of the properties considered be-

fore selecting the best model. Like the self-solvation free energy, it represents a pure

prediction of the models, and assesses their transferability to a medium with signifi-

cantly different polarity. Figure 4.13 shows the free energy of solvation of ten linear

primary amines in hexadecane obtained using the three models. Looking at this plot,
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it is clear that Model 2 can accurately predict this property for all the linear primary

amines studied here, while Model 1 systematically underpredicts the magnitude of the

solvation free energy in hexadecane by 4 to 5 kJ/mol and Model 3 consistently over-

predicts this property’s magnitude by 3 to 4 kJ/mol. We note also that the inclusion

of polarisation corrections is essential to capture the correct trend of the experimental

data (refer to Table 4.4 for values of the corrections).

The RMSDs with respect to experimental data for Model 1, Model 2 and Model 3 are

4.541 kJ/mol, 1.514 kJ/mol and 3.274 kJ/mol; respectively.

Figure 4.13: Free energy of solvation of linear primary amines in hexadecane at 298.15 K and 1
bar obtained using Model 1 (blue triangles), Model 2 (red circles) and Model 3 (purple rhombus).
Polarisation corrections were applied in all cases. The green symbols are experimental values
obtained from the Katrizky and Minnesota databases [168, 169] and reference [230]’s supporting
information.

Root-mean-square deviation

To summarise this section, several properties’ RMSDs obtained using the different

models are shown in Table 4.17. These values were calculated based on the experimental

and simulated values of the primary amines studied here.

Overall, Model 2 has the best performance, especially for free energies of solvation. As

explained above, Model 1 has the lowest value of ε (0.423 kJ/mol) and Model 3 has

the highest value (1.580 kJ/mol), while Model 2’s ε falls in between these two values

(0.814 kJ/mol). In section 3.2.2, it was shown that this parameter had a high influence

in the LJ component of methanol’s free energy of self-solvation, and thus, the variation
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Table 4.17: RMSD with respect to experimental data for all the models in this chapter. Models
1, 2 and 3 include polarisation corrections in all cases, while Gromos-2016H66’s RMSD is
presented with and without polarisation corrections. The symbol (C) indicates that corrections
have been added.

Force Density ΔHvap Dielectric ΔGsol ΔGhex

Field [kg/m3] [kJ/mol] constant [kJ/mol] [kJ/mol]

Gromos-RF 17.28 1.70 1.44
Gromos-RF (C) 17.28 1.23 1.09
Gromos-PME 31.98 2.35 1.46 1.03 3.74

Gromos-PME (C) 31.98 2.84 1.21 1.53 2.15
Model 1 4.98 0.88 1.89 1.34 4.54
Model 2 3.62 1.44 2.67 0.73 1.51
Model 3 5.21 0.90 2.10 2.94 3.27

of ε between the force fields could explain why Model 1 underpredicts the magnitude of

the self-solvation free energy and the solvation free energy in hexadecane while Model

3 overpredicts it. Model 2 is better than the other two at predicting liquid densities,

free energies of self-solvation and free energies of solvation in hexadecane. Additionally,

it performs well when predicting the enthalpies of vaporisation, even though the other

two models are slightly better. On the other hand, this model overpredicts dielec-

tric constants of linear primary amines (especially for methylamine to propylamine).

However, this is a reasonable price to pay, and thus, Model 2 represents a very good

overall force field for primary amines. It is possible that a better performing model

could in principle be obtained by lifting some of the constraints enforced above. For

example, the models developed here use the same amino group’s partial charges for

all primary amines for simplicity and transferability, which ignores how the alkyl tail

affects the electronic structure of the amino group. This could potentially explain the

limitation of the models to accurately predict the dielectric constant of all amines at the

same time. It is also possible that a better optimum exists outside the region explored

here, although this appears unlikely since the training grids applied here encompass

the majority of the corresponding parameters for existing models of amines.

4.3.3 PolCA

As explained in the previous section, Model 2 has the best performance overall, com-

pared to the other two options, and from now on, it will be referred to simply as the
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“PolCA model”. In this section, PolCA’s performance is compared against Gromos-

PME for linear primary amines, taking into consideration bulk properties and free en-

ergies of solvation. Furthermore, PolCA is tested for several branched primary amines,

and lastly, a set of parameters for secondary and tertiary amines is proposed.

Primary amines

PolCA’s performance is compared to Gromos-2016H66 simulated using PME for long-

range electrostatic interactions and dispersion corrections for LJ interactions (Gromos-

2016-PME). See section 4.3.1 to analyse Gromos-2016H66’s performance using the same

methodology employed in its development.

PolCA does an excellent job overall at predicting liquid densities of linear primary

amines at 298 K from methylamine to decylamine (RMSD = 3.625 kg/m3), as can

be seen in Figure 4.14. On the other hand, Gromos-2016-PME fails to predict this

property (RMSD = 31.975 kg/m3), and it highly overpredicts methylamine’s density

by 11 %. From ethylamine onwards, the densities are overpredicted by a significant

amount; however, the relative error between experimental and simulated data decreases

as the alkyl chain increases.

Figure 4.14: Density of linear primary amines at 298.15 K and 1 bar obtained using PolCA
(red circles) and Gromos-2016-PME (black squares). The green symbols are experimental val-
ues [224].

The opposite behaviour is observed in Figure 4.15. This plot compares the dielec-

tric constant of linear primary amines obtained using PolCA and Gromos-2016-PME
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with and without polarisation corrections. Here, Gromos-2016-PME accurately pre-

dicts the dielectric constant of ethylamine to decylamine once polarisation corrections

are included (RMSD = 1.21), while PolCA significantly overpredicts this property from

methylamine to butylamine. PolCA’s RMSD is 2.67, and thus, PolCA still is a rea-

sonable model for most amines’ dielectric properties, except for methylamine. Methy-

lamine’s dielectric constant is overpredicted by 7.3.

Figure 4.15: Dielectric constant of linear primary amines at 298.15 K and 1 bar obtained
with PolCA and GROMOS-2016-PME. Here, the term (C) in the labels for Gromos means
that polarisation corrections were included (full lines and empty symbols). Experimental values
(green symbol) were obtained from references [223] and [221].

The enthalpy of vaporisation and free energy of self-solvation of linear primary amines

obtained using PolCA and Gromos-2016-PME are shown in Figures 4.16 and 4.17,

respectively. PolCA accurately predicts the enthalpy of vaporisation of linear primary

amines smaller than pentylamine, while from pentylamine onwards this model slightly

underpredicts this property. However, PolCA does an overall great job at predicting

enthalpies of vaporisation with an RMSD equal to 1.437 kJ/mol. In contrast, Gromos-

2016-PME overpredicts the enthalpy of vaporisation of all the amines presented in

Figure 4.16, except for ethylamine, and, the discrepancy between experimental and

calculated values systematically increases as we move towards larger amines. Adding

polarisation corrections to Gromos-2106-PME worsens the model’s performance (the

RMSD increases from 2.347 kJ/mol to 2.844 kJ/mol). Concerning the free energy of

self-solvation, both PolCA (RMSD = 0.730 kJ/mol) and Gromos-2016-PME (RMSD
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= 1.032 kJ/mol) can accurately predict the experimental values; however PolCA is

the only model that matches decylamine’s free energy of self-solvation. The RMSD of

Gromos-2016-PME with polarisation corrections is 1.525 kJ/mol.

Figure 4.16: Enthalpy of vaporisation at 298.15 K and 1 bar of linear primary amines obtained
with PolCA and GROMOS-2016-PME. Here, the term (C) in the labels for Gromos means
that polarisation corrections were included (full lines and empty symbols). Experimental values
(green symbol) for the enthalpy were taken from references [194] and [227].

Figure 4.17: Free energy of self-solvation of linear primary amines at 298.15 K and 1 bar
obtained using PolCA and GROMOS-2016-PME. Full lines with empty symbols contain polar-
isation corrections, while dashed lines with filled symbols represent values without corrections.
The green symbols are experimental values obtained from vapour pressure data [228, 229].

Figure 4.18 shows the free energy of solvation of linear primary amines in hexadecane

obtained using both force fields. PolCA accurately predicts free energies of solvation of

primary amines in hexadecane with an RMSD equal to 1.514 kJ/mol, while Gromos-
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2016-PME without polarisation corrections highly underpredicts the free energy of sol-

vation in hexadecane of small linear primary amines (RMSD = 3.738 kJ/mol). Once

polarisation corrections are added, the model’s performance improves significantly, es-

pecially for smaller amines, however, its performance is still worse than PolCA’s for the

amines studied here (RMSD = 2.147).

Figure 4.18: Free energy of solvation of linear primary amines in hexadecane at 298.15 K and
1 bar obtained using PolCA and GROMOS-2016-PME. Full lines with empty symbols contain
polarisation corrections, while dashed lines with filled black squares represent values without cor-
rections. The green symbols are experimental values obtained from the Katrizky and Minnesota
databases [168, 169] and reference [230]’s supporting information.

Branched primary amines

The PolCA force field was also extended to branched primary amines to increase its

transferability. Initially, the α-carbon pseudo-atoms’ LJ parameters were identical to

the corresponding parameters in pure alkanes, resulting in a model that underpredicted

the liquid density at 298 K of isopropylamine and tertbutylamine by 6.3 and 14 kg/m3,

respectively. Consequently, in a second attempt, σ was slightly adjusted to account for

the replacement of a C-C bond with a shorter C-N by fitting to isopropylamine and tert-

butylamine’s liquid density at 298 K. We note that there is a precedent for applying such

adjustments in the TraPPE force field for alcohols, as we discussed in section 3.3.6. This

is because the substitution of a carbon atom by a more electronegative atom (like O or

N) leads to a change in the electron cloud of the α-carbon. A straight linear fit between

two σ values was sufficient to obtain good predictions since all other parameters were
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kept constant and the initial model was not far from the experimental densities.

The density, enthalpy of vaporisation, dielectric constant and free energy of

self-solvation of isopropylamine, tertbutylamine, 1-1 dimethylpropylamine, 2-amino-3-

methyl pentane and 2-butylamine were simulated using PolCA to validate the model

for branched amines. The results are presented in Table 4.18, and agreement was quite

satisfactory for all properties.

Table 4.18: Density, enthalpy of vaporisation, dielectric constant and free energy of self-
solvation of several branched amines at 298.15 K and 1 bar, obtained using PolCA. Experimental
values are in bold, and they were extracted from references [194, 224, 228, 231].

Density ΔHvap Dielectric ΔGsol

[kg/m3] [kJ/mol] constant [kJ/mol]

Isopropylamine 685.1 684 27.94 28.71 6.63 4.85 -15.2 +/- 0.1 -14.74
Tertbutylamine 688.9 688 27.16 29.80 5.33 4.01 -15.1 +/- 0.4 -15.30

1-1-dimethylpropylamine 725.2 727.6 31.20 32.50 4.75 -17.7 +/- 0.2 -18.68
2-amino-3-methyl-pentane 762.2 750 38.66 39.29 4.16 -21.7 +/- 0.1

2-butylamine 715.4 720 30.99 32.7 5.27 4.51 -17.6 +/- 0.2 -17.55

Secondary and tertiary amines

A new grid was created for dimethylamine and trimethylamine by changing the nitrogen

atom’s LJ parameters and keeping the partial charges constant. The partial charges

of the hydrogen and α-carbon were the same as the ones used for primary amines

(qC = 0.113 and qH = 0.379), while the nitrogen’s charge was modified to assure the

neutrality of the molecule. The nitrogen’s partial charge was -0.871 for primary amines,

-0.605 for secondary amines and -0.339 for tertiary amines. For comparison, Table 4.19

shows the CHELPG [232] charges for methylamine, dimethylamine and trimethylamine

in vacuum, obtained using Gaussian. Here, we can see that nitrogen’s partial charge

varies the most when moving from primary to tertiary amines, while the hydrogen

charge stays practically constant and the α-carbon is only slightly affected by the degree

of substitution. This outcome suggests that changing nitrogen’s charge while keeping

the other charges constant is a physical realistic approximation.

Table 4.20 shows the σ and ε values used to create the meta-models for dimethylamine

and trimethylamine, and the properties used in the optimisation were the liquid density,

enthalpy of vaporisation and dielectric constant with equal weight. The centre points
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Table 4.19: CHELPG charges obtained using Gaussian 9 for methylamine, dimethylamine and
trimethylamine in vacuum.

Methylamine Dimethylamine Trimethylamine

Carbon 0.26 0.18 0.119
Nitrogen -0.9 -0.69 -0.357
Hydrogen 0.32 0.33

of the grids were used as the initial guess for both molecules, and the optimisation was

forced to stay inside the boundaries.

Table 4.20: Parameter levels used to create the meta-models for non-primary amines.

For dimethylamine

σ [nm] 0.352, 0.356, 0.360, 0.364, 0.368, 0.372, 0.376, 0.386 and 0.396
ε [kJ/mol] 0.323, 0.423, 0.523, 0.623 and 0.723

For trimethylamine

σ [nm] 0.356, 0.360, 0.364, 0.368, 0.372, 0.376, 0.475, 0.5 and 0.525
ε [kJ/mol] 0.023, 0.123 and 0.223

The optimised parameters for the nitrogen atom were σ = 0.389 nm and ε = 0.723

kJ/mol for dimethylamine and σ = 0.4918 and ε = 0.151 kJ/mol for trimethylamine

(Table 4.6). These parameters were used to predict bulk properties and free energies

of solvation of two other amines (diethylamine and triethylamine) to validate their

transferability, and the calculated properties are presented in Table 4.21. PolCA does

a great job at predicting the properties used in the fitting. However, it overpredicts the

magnitude of free energies of self-solvation by 2.5 kJ/mol and free energies of solvation

in hexadecane by 3.1 kJ/mol for both secondary and tertiary amines. Furthermore,

this force field overpredicts the densities of diethylamine and trimethylamine by 3 %

and 5.6 %, respectively, and it overestimates triethylamine’s enthalpy of vaporisation

by approximately 3 kJ/mol. To summarise, PolCA does a reasonable job at predicting

bulk properties and free energies of solvation of secondary and tertiary amines, but it

can potentially be improved if different partial charges for the amino group are used for

each amine type. For example, TraPPE-EH uses a common partial charge for all types

of α-carbons, but the partial charges for the amino group differ for each amine type. The

TraPPE-EH’s LJ parameters and partial charges for the amine nitrogens were fitted

to reproduce the vapour-liquid coexistence curves of methylamine, dimethylamine and

trimethylamine. Their fitting procedure started with trimethylamine to determine the
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α-carbon’s partial charge, which is equal to -1/3 of the nitrogen’s charge due to the

molecule’s neutrality. [216]. Other options to improve PolCA’s accuracy would be to

extend the learning set or to use more molecules during the fitting; however, this was

tried for secondary amines without success.

Table 4.21: Density, enthalpy of vaporisation, dielectric constant and free energy of solvation in
themselves and hexadecane of dimethylamine, diethylamine, trimethylamine and triethylamine
at 298.15 K and 1 bar, obtained using PolCA. Experimental values are in bold, and they were
extracted from references [194, 224, 228], except for the liquid dipoles which are estimations
obtained using Equation 2.49.

Dimethylamine Diethylamine Trimethylamine Triethylamine

Density 649.322 723.633 628.102 763.358
[kg/m3] 650 702 629 724

ΔHvap 24.079 32.379 22.256 37.795
[kJ/mol] 25.400 31.470 22.180 34.810

Dielectric 6.179 4.359 2.387 2.354
constant 5.26 3.9 2.44 2.4
ΔGsol -15.3 +/- 0.2 -14.4 +/- 0.2

[kJ/mol] -12.9 +/- 0.8 -11.7 +/- 0.8

ΔGhex -12.2 +/- 0.3 -12.6 +/- 0.3
[kJ/mol] -9.1 +/- 0.8 -9.3 +/- 0.8

Liq. dipole (D)
1.532 1.517 0.874
1.48 1.28 0.798

4.4 Conclusions

In this chapter, the PolCA model has been extended to include primary amines. PolCA

can accurately predict the density of linear and branched primary amines, which is

expected since this was one of the properties used in the parameterisation. The largest

relative error for the molecules studied in this work was 1.62 % which corresponds to 2-

amino-3-methyl pentane. Furthermore, it does a very good job at predicting enthalpies

of vaporisation and free energies of self-solvation of linear primary amines with RMSDs

of 1.44 kJ/mol and 0.73 kJ/mol compared to experimental data, respectively, and

a similar performance is observed for branched primary amines. It is important to

mention that the enthalpy of vaporisation was included in the parameterisation of

linear primary amines. Meanwhile, the free energy of self-solvation was not included

in the optimisation algorithm, however, it was taken into consideration when choosing

PolCA from the other two potential models (Model 1 and Model 3).
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Furthermore, free energies of solvation in hexadecane were calculated for linear pri-

mary amines, and in all cases, there was a very good agreement between calculated

and experimental values (RMSD = 1.51 kJ/mol). It is important to remember that

PolCA uses post-facto polarisation corrections for the free energy of solvation in hex-

adecane and these corrections range from 3.3 kJ/mol (methylamine) to 0.58 kJ/mol

(nonylamine). The positive results obtained here once again reinforce the importance

of adding post-facto polarisation corrections to non-polarisable force fields.

On the other hand, PolCA greatly overpredicts the dielectric constant of methylamine

and significantly overpredicts this property for molecules smaller than pentylamine.

The dielectric constant was part of the parameterisation; however, it was decided that

this property had to be compromised in order to achieve a better overall model perfor-

mance. Concerning branched amines, the dielectric constant is also overpredicted for

the three molecules with available experimental data.

Lastly, parameters for secondary and tertiary amines have been proposed as a starting

point for a future parameterisation. These parameters do a reasonable job at predicting

bulk properties and free energies of solvation of secondary and tertiary amines, but they

can be improved if each amine type has its own independent partial charges for the

amino group.
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Chapter 5

Polarisation-Consistent United

Atom Force Field for Ketones

5.1 Introduction

Ketones consist of a carbonyl group (C=O) bonded to two carbon atoms, and they

can be obtained by oxidation of secondary alcohols [233]. One of the most well-known

ketones is propanone, also known as acetone, which is widely used as a solvent for

fats, oils, waxes, resins, rubber, plastics, lacquers, varnishes, and rubber cements. This

compound dissolves in water in all proportions since the carbonyl oxygen’s lone pair

electrons can act as a hydrogen bond acceptor, and thus, it forms hydrogen bonds

with water. Another excellent solvent for many organic compounds is 2-butanone,

also known as methyl ethyl ketone (MEK). [233]. Some ketones, like 2-nonanone and

2-undecanone, are found in essential oils [234], and many compounds containing a

carbonyl group are relevant to the pharmaceutical industry like the oral contraceptive

norethindrone [233]. Thus, it is important to be able to accurately predict solvation

properties of molecules containing ketone groups.

As explained in previous chapters, molecular dynamics simulations are extremely useful

since they can predict many compounds’ properties saving time and money when de-

signing an industrial process. However, their accuracy depends on the set of parameters
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and equations used during their calculation, and thus, several important force fields for

ketones are mentioned below as an example.

The united-atom OPLS force field for acetone [235] was developed by Jorgensen et al.

in 1989 to reproduce thermodynamic and structural properties of pure liquid acetone,

and the authors showed that it does a good job at predicting the free energy change

obtained when mutating acetic acid to acetone in water and chloroform. Later on,

Jorgensen et al. developed the OPLS all-atom (AA) force field for many common

organic groups, and they included propanone and butanone in its development [139].

Bonded parameters were taken from the AMBER-AA force field [212] or determined by

fitting to rotational energy profiles. Meanwhile, non-bonded parameters were obtained

by fitting to densities and enthalpies of vaporisation of 34 organic liquids at 298.15 K,

except for a few molecules that were simulated at their boiling points or 398.15 K

In general, OPLS becomes less accurate for conditions further away from 298.15 K

and 1 atm, as has been shown by Martin and Siepmann [102]. Consequently, those

authors developed the TraPPE-UA force field for n-alkanes [102] to better reproduce

critical temperatures and saturated liquid densities. Later on, Stubbs et al. extended

the TraPPE-UA force field to ketones by fitting the carbonyl carbon’s LJ parameters

to the vapour-liquid coexistence curve of acetone [146]. To keep the number of fitting

parameters at a manageable level, the carbonyl group’s partial charges were taken from

the OPLS-UA force field [235], while the LJ parameters for the carbonyl oxygen were

taken from the TraPPE force field for carbon dioxide [236].

Another UA force field for ketones focused on vapour-liquid equilibria is the anisotropic

united-atom force field developed by Kranias et al. [237] in 2003. This model is an

extension of the AUA4 model by Ungerer et al. [218], with partial charges from ab initio

calculations and new LJ parameters for the carbon and oxygen atom of the ketone

group. The LJ parameters of these two atoms were fitted to reproduce the vapour

pressures, enthalpies of vaporisation and liquid densities of propanone and butanone

at ambient conditions and at a reduced temperature of 0.8. This force field yields

good agreement between experimental and simulated data for the coexistence curves

of acetone, butanone and 2-pentanone, and it does a very good job at predicting the
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enthalpies of vaporisation of these molecules from 250 to 500 K.

Other important force fields for ketones are AMBER [212] and GROMOS-53A6 [101].

The latter was developed in 2004 to reproduce free energies of solvation in water and

non-polar solvents, and in 2011, Horta et al. [77] proposed new interaction parameters

for ketones by fitting to the liquid density, enthalpy of vaporisation, hydration free

energy and solvation free energy in cyclohexane of propanone and butanone. Mean-

while, 2-pentanone, 3-pentanone, 2-hexanone and 3-hexanone were part of the valida-

tion stage.

In this chapter, the PolCA force field is extended to include ketones, and to the best of

our knowledge, this is the first ketone force field developed using polarisation correc-

tions. The first section contains details about the parameterisation and the polarisation

corrections used in this chapter. Section 5.3.1 shows how using a force field with PolCA

parameters for the alkyl chain and TraPPE’s parameters for the ketone group results in

liquid densities that are underpredicted. Consequently, the ketone group’s non-bonded

parameters were optimised using three different approaches and their performances are

shown in section 5.3.2. Lastly, the PolCA model for ketones is compared to TraPPE-UA

in section 5.3.3. Preliminary results for the ketone PolCA force field’s parameterisation

were carried out by a Masters student, Jordan Cree, under direct supervision from

the author of this thesis. The precise contributions from the student are explicitly

mentioned in the sections below.

5.2 Methodology

The optimisation procedure, as well as the methods used to obtain bulk properties and

free energies of solvation, are described in detail in Chapter 2. Specific details for this

chapter are described below.

Bulk properties

Table 5.1 shows the number of molecules in each simulation box, which was selected to

maintain an approximately constant box size of 27 nm3.

Furthermore, the finite-size correction terms for the diffusion coefficients of the ketones
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Table 5.1: Number of molecules in the simulation box for each single-component system.

Compound Number of molecules

Propanone 433
Butanone 328
Pentanone 261
Hexanone 213
Heptanone 168
Octanone 151
Nonanone 127
Decanone 121

studied here are shown in Table 5.2. These corrections take into account the relationship

between system size and simulated diffusion (see section 2.7.3 for more details), and

they were assumed to be the same as those for TraPPE-UA during the parameterisation

and validation stages. This assumption was proven to be valid for linear alcohols, as

shown in section 3.2

Table 5.2: Correction terms for the diffusion constant in 10-5 cm2/s obtained using the TraPPE
force field. These values were calculated by Jordan Cree during his Master’s project.

TraPPE-UA

Propanone 0.486

Butanone 0.466

Pentanone 0.360

Hexanone 0.328

Heptanone 0.303

Octanone 0.238

Nonanone 0.239

Decanone 0.170

Free energy calculations

The free energies of solvation calculated in this chapter were obtained using 14 λ-states

for the LJ component (0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.7, 0.85 and

1) and 5 λ-states for the electrostatics (0, 0.2, 0.4, 0.7 and 1). The LJ contribution to the

solvation free energy was simulated for 5 ns while 10 ns were used for the electrostatic

component. The λ-states were selected based on their relative entropies to assure a

good degree of overlap between them, as described in section 2.8.2, and the simulation

times were chosen by plotting free energies of solvation against simulation times, as has

been done for alcohols (section 3.2) and amines (section 4.2). The plots for the LJ and
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electrostatic components of decanone can be found in Figures A3 and A4 in Appendix

A1.

5.2.1 Polarisation corrections

As explained in section 2.7.2 of the methodology, and following the same procedure

used in Chapters 3 and 4, liquid phase dipole moments for the ketones studied in this

chapter were estimated using Equation 2.49. Table 5.3 shows the estimated liquid

dipoles and the post-facto polarization corrections (Cpol) used to obtain enthalpies of

vaporisation. These corrections are meant to be used with enthalpies of vaporisation

(liquid to gas transition), and they need to be multiplied by -1 before using them to

correct free energies of solvation (gas to liquid transition).

Table 5.3: Polarisation corrections for a liquid-gas phase transition (Cpol), expressed in kJ/mol.
Cdist and Celec are the distortion and electronic polarisation terms, respectively, α [224] is the
polarizability of the solute in the gas phase and εel [224] and εsol are the high-frequency dielectric
permittivity and the static dielectric constant, respectively, of the medium.

Solute Solvent µg (D) α (Å3) εsol εel µl (D) Cdist Celec Cpol

propanone propanone 2.88 6.40 20.49 1.85 4.72 -15.98 15.91 -0.07

butanone butanone 2.78 8.22 18.50 1.91 4.70 -13.45 13.48 0.03

2-pentanone 2-pentanone 2.70 10.05 15.45 1.93 4.58 -10.56 10.90 0.33

2-hexanone 2-hexanone 2.66 11.89 14.60 1.96 4.57 -9.22 9.57 0.36

2-heptanone 2-heptanone 2.59 13.73 11.66 1.98 4.42 -7.33 8.01 0.68

2-octanone 2-octanone 2.70 15.56 10.30 2.00 4.59 -6.92 7.81 0.90

2-nonanone 2-nonanone 2.73 17.42 9.14 2.02 4.61 -6.12 7.18 1.05

2-decanone 2-decanone 2.55 19.25 8.30 2.03 4.29 -4.72 5.72 1.00

propanone hexadecane 2.88 6.40 2.09 2.05 3.64 -2.72 12.76 10.04

butanone hexadecane 2.78 8.22 2.09 2.05 3.51 -1.97 9.25 7.28

2-pentanone hexadecane 2.70 10.05 2.09 2.05 3.41 -1.52 7.15 5.62

2-hexanone hexadecane 2.66 11.89 2.09 2.05 3.36 -1.25 5.86 4.61

2-heptanone hexadecane 2.59 13.73 2.09 2.05 3.27 -1.03 4.81 3.79

2-octanone hexadecane 2.70 15.56 2.09 2.05 3.41 -0.98 4.61 3.63

2-nonanone hexadecane 2.73 17.42 2.09 2.05 3.45 -0.90 4.21 3.32

2-decanone hexadecane 2.55 19.25 2.09 2.05 3.22 -0.71 3.33 2.62

The polarisation corrections for pure ketones presented in Table 5.3 are small (lower

or equal to 1.05 kJ/mol), and the distortion and electronic contributions nearly cancel

each other out from propanone to hexanone. The same effect has been observed for

water [92, 108], alcohols (Table 3.4) and amines (Table 4.4). In contrast, the net

corrections for ketones in hexadecane are quite significant, ranging from 10.04 kJ/mol

for propanone to 2.62 kJ/mol for 2-decanone. Nonetheless, it is important to remind
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the reader that these corrections have been obtained using several assumptions and

simplifications, and due to lack of experimental data, we cannot guarantee that the

equation used to obtain the liquid dipoles (Equation 2.49) is accurate for ketones.

5.2.2 Optimisation

The procedure used to develop the PolCA force field is explained in this section. Several

approaches were attempted before fine-tuning the optimisation protocol, and thus, three

models, which from now on are called Model 1, Model 2 and Model 3, are presented

here for comparison.

Following the same methodology used in Chapter 3 and Chapter 4, meta-models were

created for propanone, 2-hexanone and 2-decanone using simulations with different

non-bonded parameters for the oxygen atom (the partial charge of the α-carbon was

modified accordingly to maintain the molecule’s neutrality). The alkyl chain and α-

carbon parameters [1] were kept constant in all the simulations, and they were the

same as those used in our PolCA model (see Table 5.4). These meta-models include

post-facto polarisation corrections, and they can predict how different target properties

change when the oxygen’s ε, σ and partial charge are modified. In addition, Model 2

and Model 3 use partial charges on the pseudo-atoms that are bonded to α-carbons,

which were obtained by scaling partial charges from ab initio calculations (see below

for details).

Table 5.4: Lennard-Jones parameters and partial charges for the new PolCA united-atom force
field for ketones.

non-bonded a) (eq 2.37) σ [nm] ε [kJ/mol] Partial charge (q)

C(=O) 0.382 0.333 0.709
O (sp2) 0.300 0.200 -0.609
(CH3)-CHx 0.379 0.833 0
(CH3)-C=O 0.379 0.833 -0.05
(CHx)2-(CH2) 0.399 0.392 0
(CHx)-(CH2)-C=O 0.399 0.392 -0.05
(CHx)3-(CH) 0.473 0.085 0
(CHx)2-(CH)-C=O 0.473 0.085 -0.05
(CHx)4-(C) 0.646 0.00426 0
(CHx)3-(C)-C=O 0.646 0.00426 -0.05

a) The non-bonded parameters correspond to the sites in bold.

The learning sets used to create the meta-models differed for each model, and they are
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explained in detail below. Also, the fitting properties and, consequently, the objective

functions were different for each approach. Equations 5.1, 5.2 and 5.3 are the objective

functions for Model 1, Model 2 and Model 3, respectively:

F (X) =
3∑
j=1

(
(fk(X)− yexp)2

ρj + (fk(X)− yexp)2
DAj

+ (fk(X)− yexp)2
∆Hj

)
(5.1)

F (X) =

3∑
j=1

(
(fk(X)− yexp)2

ρj + (fk(X)− yexp)2
DAj

+ (fk(X)− yexp)2
∆Hj

)
+

(fk(X)− yexp)2
∆GP

(5.2)

F (X) =

3∑
j=1

(
(fk(X)− yexp)2

ρj + (fk(X)− yexp)2
DAj

+ (fk(X)− yexp)2
∆Hj

)
+

(fk(X)− yexp)2
∆GP

+ (fk(X)− yexp)2
∆GD

(5.3)

where j=1 corresponds to propanone, j=2 to hexanone and j=3 to decanone. Addition-

ally, fk(X) is the value predicted using the meta-model at X, yexp is the experimental

value and ρ, DA and ∆H represent the density, self-diffusion coefficient and enthalpy

of vaporisation, respectively. ∆GP and ∆GD are the free energies of self-solvation of

propanone and decanone, respectively. Therefore, in Model 1 only the three base prop-

erties were included in the optimisation; Model 2 also includes the solvation free energy

of propanone, while Model 3 incorporates propanone and decanone’s self-solvation free

energies.

Furthermore, the meta-models accuracy was checked by plotting simulated versus pre-

dicted values, and the predicted properties for the models explained in this work were

in perfect agreement with the simulations. The meta-models performances for each

model are described in more detail below.
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Sensitivity analysis

The sensitivity analysis was carried out by Jordan Cree as part of his Master’s project.

Propanone’s σ, ε and partial charges of the oxygen and α-carbon were modified by +/-

10 %, while keeping all other parameters constant, to see their effect on the density,

enthalpy of vaporisation and dielectric constant (Table 5.5). The partial charges for

the oxygen and α-carbon have the same magnitude, but opposite sign, and thus, only

oxygen’s partial charge appears in Table 5.5. A modified TraPPE force field was used

for this analysis (TraPPE-UA [146] with improved parameters for the alkyl chain,

proposed by Jorge [1]).

Table 5.5: Sensitivity analysis of σ, ε and partial charges of the oxygen and α-carbon of
propanone. TraPPE-UA [146] with improved parameters for the alkyl chain, proposed by
Jorge [1], was used for this study. The symbols -ve and +ve indicate that the original non-
bonded parameter has been decreased or increased by 10 %, respectively.

σC εC σO εO qO Density ΔH Dielectric
[kg/m3] [kJ/mol] Constant

Original 0.382 0.333 0.305 0.657 -0.424 767 26.68 8.9
σC -ve 0.343 0.333 0.305 0.657 -0.424 -1.30 % -7.81 % -3.60 %
σC +ve 0.420 0.333 0.305 0.657 -0.424 -1.04 % +5.85 % +6.97 %
εC -ve 0.382 0.299 0.305 0.657 -0.424 -0.91 % -2.89 % +2.02 %
εC +ve 0.382 0.367 0.305 0.657 -0.424 +0.78 % -2.51 % -0.56 %
σO -ve 0.382 0.333 0.275 0.657 -0.424 +3.00 % +0.75 % +5.62 %
σO +ve 0.382 0.333 0.336 0.657 -0.424 -3.78 % -0.75 % -0.45 %
εO -ve 0.382 0.333 0.305 0.591 -0.424 -0.65 % -2.36 % +3.93 %
εO +ve 0.382 0.333 0.305 0.723 -0.424 +0.52 % +2.10 % -0.34 %
qO -ve 0.382 0.333 0.305 0.657 -0.466 +1.3 % +6.6 % +28.65 %
qO +ve 0.382 0.333 0.305 0.657 -0.424 -1.17 % -5.77 % -19.45 %

An unexpected behaviour is observed in Table 5.5 for the α-carbon’s σ and ε. Both

increasing and decreasing σ reduces the density by approximately 1 %, while the en-

thalpy of vaporisation is decreased by approximately 2.7 % when ε is modified in either

direction. This behaviour is likely due to the α-carbon being almost buried by the

surrounding atoms. On the other hand, altering the oxygen’s parameters produced

the expected behaviour making it a good choice as a fitting parameter. The density

decreases when either σ increases or ε decreases. Increasing σ increases the excluded

volume of each molecule while decreasing ε reduces the cohesive energy of the liquid.

The enthalpy of vaporisation highly depends on the interaction between molecules, and

thus, it significantly decreases when either ε or the absolute value of the partial charge
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are reduced (these actions reduce the dispersion and electrostatic forces, respectively).

Lastly, the dielectric constant is an electric property, therefore, it mainly depends on

the partial charges. Consequently, only oxygen’s non-bonded parameters were changed

during the parameterisation.

Model 1

This model was developed by Jordan Cree and was obtained by fitting σ, ε and the par-

tial charge of the oxygen atom to the densities, enthalpies of vaporisation and diffusion

constants of propanone, 2-hexanone and 2-decanone (Equation 5.1). The parameter

levels shown in Table 5.6 were used to create a full factorial grid, and thus, this model’s

learning set consisted of 27 simulations per molecule. The initial guess and the central

point used to create the coded values was σ = 0.305 nm, ε = 0.721 kJ/mol and qO

= -0.462.

Table 5.6: Parameter levels used in the parameterisation of Model 1.

Levels

σ [nm] 0.2745, 0.305 and 0.3355
ε [kJ/mol] 0.591, 0.657 and 0.850

qO -0.5, -0.466 and -0.424

The meta-models’ performance can be found in Appendix A2 (Figure A14), and in

all cases predicted and simulated values are in good agreement. Model 1’s optimum

is inside the learning set’s boundaries, and the predicted values match those obtained

with the simulations.

As shown below (section 5.3.2), Model 1 could not predict all thermodynamic properties

of ketones to a good enough degree of accuracy. One possible reason is that the charge

distribution on the molecule was overly simplified. To test this hypothesis, it was

decided to add partial charges to pseudo-atoms that were bonded to α -carbons, as has

been done for a molecule of propanone by Kamath et al. [238]. Consequently, Model

2 and Model 3 were developed using QM partial charges for propanone which were

allowed to vary in a proportional way through a scaling factor α during the optimisation

routine. A value of α = 1 corresponds to the partial charges depicted in Figure 5.1

calculated with Gaussian G09W [220] using the B3LYP functional [239] and the aug-
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cc-pvtz basis set [240] which includes diffuse functions. During the QM calculation,

propanone was solvated in itself using a polarisable continuum model (PCM) [36] and

the atomic charges were produced by fitting to the electrostatic potential at points

selected according to the CHelpG scheme [232].

Figure 5.1: Partial charges for solvated propanone in itself obtained using a polarisable contin-
uum model with Gaussian G09W. The charges were obtained using the CHelpG scheme.

Model 2 and Model 3

Model 2’s parameters were fitted to the densities, enthalpies of vaporisation and diffu-

sion constants of propanone, 2-hexanone and 2-decanone and propanone’s self-solvation

free energy (Equation 5.2). Meanwhile, Model 3 includes all these properties plus the

free energy of self-solvation of decanone in its objective function (Equation 5.3). Both

models used the same meta-models during their parameterisation, and their parameter

levels are shown in Table 5.7. The meta-model for 2-decanone’s free energy of self-

solvation was first introduced in Model 3, and thus, it does not apply to Model 2. The

initial guess and the central point used to create the coded values was σ = 0.305 nm

ε = 0.657 kJ/mol and α = 1, for both models.
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Table 5.7: Parameter levels used in the parameterisation of Model 2 and Model 3.

Bulk properties

Levels

σ [nm] 0.290,0.295,0.3,0.305,0.31 and 0.315
ε [kJ/mol] 0.200, 0.400, 0.520, 0.656, 0.750 and 0.850

α 0.75, 0.95, 1 and 1.05

Free energies of self-solvation

Levels

σ [nm] 0.290, 0.3 and 0.305
ε [kJ/mol] 0.400, 0.657 and 0.85

α 0.95, 1 and 1.05

During Model 3’s development, the optimisation algorithm was forced to stay inside

the boundaries of the most extensive grid, while no boundary restrictions were applied

to Model 2. Nevertheless, Model 2’s optimum fell inside the grid’s boundaries. The

meta-models performances inside their respective boundaries can be found in Appendix

A2 (Figures A15 and A16), and, in all cases, the meta-models can accurately predict

the target properties. It is worth mentioning that Model 3’s ε was outside the meta-

models’ boundaries for the free energies of self-solvation. Nonetheless, the predicted

values were consistent with the simulated results obtained subsequently.

Other models

Other methods of optimisation were attempted without success. One of these ap-

proaches was to include the dielectric constant in the parameterisation using the same

learning set as Model 2 and Model 3. However, the predicted optimum had an α value

equal to 0.58, and thus, a model’s dipole lower than the gas-phase dipoles. Jordan

Cree also attempted to include the dielectric constant, as well as the other three bulk

properties, in the parameterisation with similar outcomes. His dipole moment was sig-

nificantly lower than the gas dipoles (1.79 compared to 2.66 for 2-hexanone), which

does not make physical sense. Hence, these models were not considered further.

Another technique explored was fitting to the dielectric constant using variable polari-

sation corrections instead of those shown in Table 3.2. Liquid dipoles were calculated

based on the best scaling factor for the dielectric constant, in an iterative manner,

and then, these dipoles were substituted into Equation 2.47 to calculate the correc-
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tions. The resulting model systematically overpredicted the enthalpies of vaporisation

and self-solvation free energies, and thus, it was also discarded from further considera-

tion.

5.3 Results and discussion

Bulk properties and free energies of self-solvation of TraPPE and modified-TraPPE

were simulated by Jordan Cree under our supervision as part of his Master’s project.

Additionally, Model 1 was developed by him.

Several force fields are discussed in this section, and thus, a summary table showing

all these models (Table 5.8) is included here to improve the readability of the chap-

ter.

Table 5.8: Force fields simulated in this chapter. Model 1, Model 2 and Model 3 use the LJ
parameters proposed by Jorge [1] for the alkyl chain and the α-carbon, and have been param-
eterised taking into account post-facto polarisation corrections. Unless stated otherwise their
results always include these corrections.

TraPPE TraPPE-UA force field for ketones [146]. This model has been
fitted to the vapour-liquid coexistence curve of acetone.

TraPPE (C) TraPPE-UA force field for ketones with post-facto polarisation
corrections.

Modified
TraPPE

Combines TraPPE-UA’s parameters for the carbonyl group with
the set of parameters for alkane groups proposed by Jorge [1]

Model 1 • Fitted to the density, enthalpy of vaporisation and diffusion con-
stant of propanone, 2-hexanone and 2-decanone.
• Parameters optimised: LJ parameters (σ and ε) and partial
charge (qO) of the oxygen atom.

Model 2 • Fitted to propanone’s self-solvation free energy and to the den-
sity, enthalpy of vaporisation and diffusion constant of propanone,
2-hexanone and 2-decanone.
• Partial charges were obtained using Gaussian 09 and then scaled
using an scaling factor α.
• Parameters optimised: σ and ε of the oxygen atom and the
scaling factor α.

Model 3 • Fitted to propanone and decanone’s self-solvation free energies
and to the density, enthalpy of vaporisation and diffusion constant
of propanone, 2-hexanone and 2-decanone.
• Partial charges were obtained using Gaussian 09 and then scaled
using an scaling factor α.
• Parameters optimised: σ and ε of the oxygen atom and the
scaling factor α.
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5.3.1 Modified TraPPE

As a preliminary step, as done previously for alcohols, the densities of propanone to

2-decanone were calculated using a modified TraPPE force field that combines TraPPE-

UA’s parameters for the carbonyl group with the set of parameters for alkane groups

proposed by Jorge [1]. The latter parameters were designed to fit the density, enthalpy

of vaporisation and free energy of solvation of alkanes [1].

It can be seen from Figure 5.2 that this model considerably underpredicts the density of

these molecules. However, non-polar interactions become more important as the alkyl

chain increases, and thus, the deviation between simulated and experimental values

decreases when the number of carbon atoms increases since the molecules become more

similar to alkanes. Consequently, an optimisation procedure was carried out to find

a new set of LJ parameters and partial charges for the oxygen atom, as described in

section 5.2.2. The LJ parameters of the α-carbon were kept unchanged based on the

sensitivity analysis results carried out using this force field (see section 5.2.2).

Figure 5.2: Densities of linear ketones at 298.15 K and 1 bar obtained using the modified
TraPPE model (orange diamonds) and the original TraPPE force field [146] (black squares).
The green symbols are experimental values and were obtained from references [224, 241].

5.3.2 Comparison between all the new models

This section analyses the performance of the three potential models described in sec-

tion 5.2.2. The properties studied here are the density, enthalpy of vaporisation, di-
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electric constant, and free energy of self-solvation.

The models’ parameters are shown in Table 5.9. All models have similar values of σ,

including TraPPE. On the other hand, ε and the partial charges significantly differ

for all the force fields. Model 3 has the lowest ε (0.2 kJ/mol), and thus, the largest

magnitude of the charges to compensate for the lower dispersion forces. Meanwhile,

Model 1 and Model 2 have the largest values of ε (0.805 and 0.861 kJ/mol, respectively),

and their charges are closer to TraPPE’s. TraPPE’s LJ parameters are in between

Model 2 and Model 3’s parameters, however, its partial charges are the lowest and

hence, also its dipole moment.

Table 5.9: Force field parameters for TraPPE-UA and the different models obtained in this
chapter.

Model σ [nm] ε [kJ/mol] qO qC

Model 1 0.303 0.805 -0.461 0.461
Model 2 0.311 0.861 -0.498 0.580
Model 3 0.300 0.200 -0.609 0.709
TraPPE 0.305 0.657 -0.424 0.424

Density and diffusion

Figure 5.3 shows the simulated densities of propanone to 2-decanone obtained using

Model 1, Model 2 and Model 3. All three models behave very similarly, and they can

accurately predict the densities of the ketones studied here, except for butanone and

2-pentanone, which are slightly underpredicted (less than 1 %). From butanone to

2-octanone, Model 1 is the best compared to the other two models, while Model 2 and

Model 3 are better for 2-nonanone and 2-decanone. The RMSD of Model 1, Model 2

and Model 3 with respect to experimental values are 2.425, 3.052 and 3.932 kg/m3,

respectively.

Concerning the diffusion constants (Figure 5.4), all models do a very good job pre-

dicting this property for the eight ketones tested here. Model 3 has the lowest RMSD

with a value of 0.096 10-5 cm2/s compared to 0.200 for Model 2 and 0.229 for Model

1. Nonetheless, it is important to remember that these models are using the finite-
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Figure 5.3: Density of linear ketones at 298.15 K and 1 bar obtained using Model 1 (blue trian-
gles), Model 2 (purple rhombus) and Model 3 (red circles). The green symbols are experimental
values [224, 241].

size corrections obtained for TraPPE, and their specific finite-size corrections could be

slightly different.

Figure 5.4: Diffusion of linear ketones at 298.15 K and 1 bar obtained using Model 1 (blue trian-
gles), Model 2 (purple rhombus) and Model 3 (red circles). The green symbols are experimental
values [242].

Enthalpy of vaporisation and free energy of self-solvation

The enthalpies of vaporisation of propanone to 2-decanone, obtained using the three

potential models, are depicted in Figure 5.5. All models behave almost identically, and

their plots overlap, especially for Model 2 and Model 3. This is not surprising since the

enthalpy of vaporisation was one of the properties used during the parameterisation,

and Model 2 and Model 3 were created using the same meta-models but different

158



objective functions. The models are in very good agreement with experimental data,

with RMSDs equal to 1.108, 0.816 and 0.776 kJ/mol for Model 1, Model 2 and Model

3, respectively.

Figure 5.5: Enthalpy of vaporisation of linear ketones at 298.15 K and 1 bar obtained using
Model 1 (blue triangles), Model 2 (purple rhombus) and Model 3 (red circles). In all cases,
polarisation corrections were included. Experimental values (green triangles) were taken from
reference [243].

Figure 5.6 shows the free energies of self-solvation obtained using these three mod-

els. As expected, Model 3 has the best performance (RMSD = 1.397 kJ/mol) due to

propanone and 2-decanone’s free energies of self-solvation being included in its param-

eterisation. On the other hand, Model 2 is slightly worse than Model 1 (RMSD equal

to 2.485 kJ/mol compared to 2.209 kJ/mol for Model 1) even though propanone’s free

energy of self-solvation was one of the fitted properties used during Model 2’s param-

eterisation, while Model 1 was obtained by fitting to only bulk properties. Model 3

can accurately predict free energies of self-solvation from propanone to 2-hexanone, ex-

cept for pentanone. Pentanone’s experimental value does not seem to follow the same

trend as the rest of the ketones plotted here, however, experimental free energies of

self-solvation from 2-hexanone onwards were calculated using extrapolated values for

the vapour pressures since their temperature ranges for the Antoine coefficients did

not include 298.15 K [228] (section 2.8.4 explains the relationship between the vapour

pressure and the self-solvation free energy). Therefore, we expect a greater degree of

uncertainty in those experimental values.
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Figure 5.6: Free energy of self-solvation of linear ketones at 298.15 K and 1 bar obtained using
Model 1 (blue triangles), Model 2 (purple rhombus) and Model 3 (red circles). In all cases,
polarisation corrections were included (full lines and open symbols). Experimental values (green
triangles) were calculated using the vapour pressures found in references [228]. The vapour
pressures of hexanone to decanone at 298.15 K are extrapolations since this temperature was
not included in their Antoine coefficients’ temperature range.

Dielectric constant and dipole moment

Figure 5.7 shows the dielectric constants of propanone to 2-decanone, obtained using

Model 1, Model 2 and Model 3. All models considerably overpredict this property,

especially for smaller ketones. Model 2 has the best performance out of the three,

however, it is still quite poor with an RMSD of 5.343. Meanwhile, Model 3 has the

highest RMSD (RMSD = 6.920), followed by Model 1 with an RMSD of 6.629.

As explained in section 2.7.4, the equation proposed by Jorge and Lue [87] (Equa-

tion 2.52) was used to correct the simulated dielectric constants. This equation uses a

simple dipole moment scaling factor and accounts for polarisation effects that cannot

be captured using non-polarisable models. The scaling factor is the ratio between the

liquid dipole, estimated using Equation 2.49 [92], and the dipole moment of the model.

From Figure 5.8, we can see that the estimated liquid dipoles for linear ketones range

from approximately 4.3 D to 4.7 D, while the dipoles for Model 1, Model 2 and Model 3

are 2.7, 2.6 and 3.2 D, respectively, and thus, this scaling factor is relatively high for all

the models. However, as mentioned above, Equation 2.49 may be overestimating the

liquid phase dipole of ketones, which would lead to an overestimation of the corrected
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Figure 5.7: Dielectric constant of linear ketones at 298.15 K and 1 bar obtained using Model 1
(blue triangles), Model 2 (purple rhombus) and Model 3 (red circles). In all cases, polarisation
corrections were applied. Experimental dielectric constants (green triangles) were taken from
references [242, 244].

dielectric constant. This equation is an approximation, and due to a lack of experi-

mental data, we do not know how well it performs for ketones. The Kirkwood-Onsager

model [149–151] was used during its development, and the radius of the spherical cavity,

where the polarisable dipole is placed, was estimated using a simple model. Further-

more, the polarisability of the molecule was assumed to be always the same as the value

in the gas phase. [92]. Consequently, more accurate methods, like the one proposed

by Jorge et al. [245], should be used in future work to estimate ketones’ liquid dipole

moments and assess Equation 2.52’s performance.

Concerning the dipole moment (Figure 5.8), Model 1 and Model 2 have dipoles that are

very close to or lower than the experimental dipoles in the gas phase. It has been argued

that the dipole moment of a fixed-charge force field should fall somewhere between the

experimental dipoles in the liquid and gas phases [92], as is the case for Model 3.

Root-mean-square deviation

Table 5.10 shows each model’s root-mean-square deviation (RMSD) for the density,

diffusion constant, enthalpy of vaporisation, dielectric constant and free energy of self-

solvation. These values were calculated based on the experimental and simulated values

of the ketones studied here. TraPPE is analysed in section 5.3.3, however, its RMSDs
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Figure 5.8: Simulated dipoles at 298.15 K and 1 bar obtained using Model 1 (blue triangles),
Model 2 (purple rhombus) and Model 3 (red circles). The green asteriks are the liquid dipoles
obtained with the equation proposed by Leontyev and Stuchebrukhov (Equation 2.49) [92] (see
section 5.2.1), while the green triangles are the experimental dipoles in the gas-phase [246].

are presented here for completeness.

Table 5.10: RMSD for TraPPE-UA and the different models obtained in this chapter.

Force Density Diffusion ΔHvap Dielectric ΔG
Field [kg/m3] [10-5 cm2/s] [kJ/mol] constant [kJ/mol]

Model 1 2.43 0.23 1.11 6.63 2.21
Model 2 3.05 0.20 0.82 5.34 2.49
Model 3 3.93 0.10 0.78 6.92 1.40
TraPPE 5.29 0.65 5.06 7.82 1.18

TraPPE (C) 5.29 0.65 4.53 6.13 0.82

All models perform better than TraPPE for the density, enthalpy of vaporisation, and

self-diffusion constant, however, TraPPE is the best at predicting the free energy of

self-solvation. TraPPE’s RMSD for the free energy of self-solvation is 1.18 kJ/mol and

once polarisation corrections are included this value decreases to 0.82 kJ/mol. Out of

the models developed in this work, Model 3 is the best at predicting the free energy of

self-solvation, a key aim of this work, however its RMSD is 0.58 kJ/mol larger that the

value for TraPPE (C). Model 3 also has the best performance for the diffusion constant

and enthalpy of vaporisation, and it leads to a model dipole moment that is more in line

with the current knowledge about implicitly accounting for polarisation effects in fixed-
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charge force fields [92, 108]. On the other hand, Model 1 and Model 2 are better than

Model 3 at predicting the density, especially for butanone and 2-pentanone. Lastly,

none of the models can accurately predict the dielectric constant; however, Model 3’

dipole moment makes more physical sense than the dipole moments of Model 1 and

Model 2. In conclusion, Model 3 is the best model overall, and thus, it was chosen for

the PolCA force field.

5.3.3 PolCA

In this section, PolCA’s performance is compared against TraPPE-UA (with and with-

out polarisation corrections) for linear ketones, considering bulk properties and free

energies of solvation. TraPPE-UA for ketones has been parameterised to reproduce the

vapour-liquid coexistence curve of acetone [146].

As shown in Figure 5.9, both PolCA and TraPPE do a good job predicting the densities

of the ketones studied here. However, neither can fully recreate the shape of the plotted

experimental values. TraPPE accurately predicts the densities of 2-hexanone to 2-

octanone, but from 2-nonanone onwards, it overpredicts this property. This is likely

due to the shortcomings of the alkane parameters identified by Jorge [81]. On the other

hand, PolCA accurately predicts 2-nonanone and 2-decanone’s densities while slightly

underpredicting this property for 2-hexanone to 2-octanone. Both models significantly

underpredict the densities of butanone and 2-pentanone; nonetheless, PolCA accurately

predicts propanone’s density, unlike TraPPE. The RMSDs of PolCA and TraPPE are

3.932 and 5.291 kg/m3, respectively.

Concerning the diffusion constant (Figure 5.10), PolCA does an excellent job predict-

ing this property with an RMSD of 0.096 10-5 cm2/s, while TraPPE systematically

overpredicts this property for all the ketones studied here (RMSD = 0.647 10-5 cm2/s).

The self-diffusion constants obtained using TraPPE follow a similar trend to the ex-

perimental results but are shifted towards higher values by approximately 0.6 x 10-5

cm2/s. A similar effect was observed when testing alcohols. TraPPE-UA overpredicts

the self-diffusion constant of linear primary alcohols, except for methanol’s (Figure 3.7)

and the density of linear primary alcohols larger than pentanol (see section 3.3.1).
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Figure 5.9: Densities of linear ketones at 298.15 K and 1 bar obtained using PolCA (red cir-
cles) and the original TraPPE force field (black squares). The green triangles are experimental
values [224, 241].

Figure 5.10: Self-diffusion constant of linear ketones at 298.15 K and 1 bar obtained using
PolCA (red circles) and the original TraPPE force field (black squares). The green triangles
are experimental values obtained from reference [242].

Figures 5.11 and 5.12 show the enthalpy of vaporisation and the free energy of self-

solvation of ketones obtained using TraPPE and PolCA. TraPPE systematically un-

derpredicts the enthalpy of vaporisation of all the ketones studied here by approximately

4 to 5 kJ/mol. Once polarisation corrections are added, TraPPE’s performance slightly

improves, and its RMSD decreases from 5.056 to 4.529 kJ/mol. On the other hand,

PolCA included this property in its parameterisation, and thus, it can accurately pre-

dict the enthalpy of vaporisation with an RMSD of 0.776 kJ/mol. The opposite effect
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is observed when looking at the free energy of self-solvation, PolCA slightly overpre-

dicts the free energy of self-solvation (more negative values) with an RMSD of 1.397

kJ/mol while TraPPE accurately predicts this property, especially when polarisation

corrections are added. The magnitude of these corrections increases from near zero to

approximately 1 kJ/mol when we move from propanone to decanone, and thus, they

have a bigger impact on larger ketones. TraPPE’s RMSD for the free energy of sol-

vation decreases from 1.178 to 0.817 kJ/mol once post-facto polarisation corrections

are included. These results suggest a possible imbalance between TraPPE’s ability

to describe the energetic and entropic contributions to the solvation free energy since

G = H − TS. For the solvation process, the enthalpy change (∆Hv→l) is equal to

minus the enthalpy of vaporisation, and thus, ∆Gsol = −∆Hvap − T∆Sv→l. TraPPE

can accurately predict the self-solvation free energy but underpredicts the enthalpy of

vaporisation, therefore, it also underpredicts the magnitude of ∆Sv→l (i.e. the entropy

of the liquid is likely being overpredicted reducing the magnitude of the difference be-

tween the entropy of the liquid and the gas). Nonetheless, as explained above, no

experimental values were found for 2-hexanone to 2-decanone’s vapour pressures at

298.15 K, and thus, extrapolated values had to be used when calculating experimental

free energies. Consequently, more accurate experimental data is needed for a better

comparative assessment of these two models.

Figure 5.11: Enthalpy of vaporisation of linear ketones at 298.15 K and 1 bar obtained using
PolCA (red circles) and the TraPPE force field with and without polarisation corrections (open
black squares and filled black symbols, respectively). The green symbols are experimental values
obtained from reference [243].
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Figure 5.12: Free energy of self-solvation of linear ketones at 298.15 K and 1 bar obtained
using PolCA (red circles), TraPPE and TraPPE with corrections (filled squares and open black
squares, respectively), as a function of the number of carbons. Experimental values for the
free energy were calculated using the vapour pressures found in references [228]. The vapour
pressures of hexanone to decanone at 298.15 K are extrapolations since this temperature was not
included in their Antoine coefficients’ temperature range. An estimated average uncertainty of
0.84 kJ/mol was used for all the values. This value was taken from the Minnesota database [168].

Both PolCA and TraPPE (C) greatly overpredict the dielectric constant of the ketones

studied here with RMSDs of 6.920 and 6.125, respectively (Figure 5.13). On the other

hand, TraPPE without polarisation corrections substantially underpredicts this prop-

erty and its RMSD, equal to 7.821, is higher than that for TraPPE (C). Propanone’s

dielectric constant obtained using TraPPE with and without corrections differs by 21.7

due to the high scaling factor used in Equation 2.52. This scaling factor is the ratio

between the high estimated liquid dipole (4.7 Debye) and the model’s low dipole mo-

ment (2.5 Debye), however, as explained in section 5.3.2, the estimated liquid dipoles

obtained using Equation 2.49 are probably being overestimated causing the discrep-

ancy between calculated and experimental values for both models. Nonetheless, it is

important to emphasize that TraPPE’s dipole moment is lower than the gas phase while

PolCA’s dipole (3.2 Debye) lies in between the gas and liquid dipole moments.

Lastly, Figure 5.14 shows the free energy of solvation of linear ketones in hexadecane

obtained using both force fields, with and without polarisation corrections. These cor-

rections are quite significant and range from 10.04 kJ/mol for propanone to 2.62 kJ/mol

for 2-decanone (Table 5.3). Perhaps surprisingly, TraPPE without polarisation correc-
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Figure 5.13: Dielectric constant of linear ketones at 298.15 K and 1 bar obtained using PolCA
(red circles) and the TraPPE force field with corrections (open squares) and without corrections
(dashed lines), as a function of the number of carbons. The green symbols are experimental
values [242, 244].

tions does an excellent job at predicting this property with an RMSD of 0.475 kJ/mol,

and thus, the model’s performance significantly deteriorates once these corrections are

added (RMSD = 6.654 kJ/mol). PolCA also overpredicts this property with an RMSD

of 4.380 kJ/mol, and if polarisation corrections are not included, PolCA underpredicts

the solvation free energy in hexadecane by 2.003 kJ/mol. Nonetheless, as explained

above, it is possible that the equations used to obtain these corrections do not perform

well for ketones, and more accurate methods should be used instead.

5.4 Conclusions

The PolCA model has been extended to ketones, and its performance was compared

to TraPPE’s. Concerning the density, both PolCA and TraPPE do a good job; how-

ever, both underpredict the densities of butanone and 2-pentanone. PolCA has a lower

RMSD for the density than TraPPE, and it accurately predicts the enthalpies of va-

porisation and diffusion constants of propanone to 2-decanone. Meanwhile, TraPPE

underpredicts and overpredicts these two properties, respectively. Furthermore, both

models do a good job predicting free energies of self-solvation.

PolCA works well for the properties included in the optimisation. However, both PolCA
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Figure 5.14: Free energy of solvation of primary ketones in hexadecane at 298.15 K and 1 bar
as a function of the number of carbons in the solute, obtained using PolCA (red circles) and
TraPPE (black squares), with and without corrections. Experimental values were taken from ref-
erences [168] and [169]. The estimated average uncertainty is approximately 0.84 kJ/mol [168].

and TraPPE (C) fail to reproduce ketones’ dielectric constants and free energies of solva-

tion in hexadecane, although PolCA performs significantly better for the latter. Likely,

the polarisation corrections and the liquid dipoles used in this chapter are not accu-

rately predicted by the equations proposed by Leontyev and Stuchebrukhov [92], and

more accurate methods should be pursued before extending the meta-models’ learning

set. Based on the previous chapters, these equations seem to work well for water [92],

alcohols and amines but not for ketones. Nonetheless, out of the two models, PolCA

performs overall better than TraPPE.
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Chapter 6

PolCA’s Transferability

6.1 Introduction

In this chapter, we study PolCA’s performance at predicting solvation free energies in

octanol as well as multifunctional compounds’ properties to assess its transferability.

Alcohols, amines and ketones’ solvation free energies in hexadecane were presented in

their corresponding chapters since only the alkyl parameters proposed by Jorge [1] and

each chapter’s new parameters were needed for this property’s calculation. The inter-

actions between the alkyl parameters and, separately, the hydroxyl, amino or carbonyl

groups were indirectly accounted for during PolCA’s development since molecules of

different alkyl chain lengths were included in the parameterisation. In contrast, this

chapter focuses on systems that contain several independently parameterised functional

groups (e.g. hydroxyl group’s parameters were not considered during the amino and

carbonyl’s groups optimisation). One exception is the solvation free energy of alkanes

in octanol which is included here for a more complete comparison.

The octanol/water partition coefficient (Pow) measures the ratio between a neu-

tral solute’s concentration in octanol and its concentration in water (Pow =

[solute]octanol / [solute]aqueous) [65], and it is widely used in the pharmaceutical, metal-

lurgic and agrochemical industries to predict a solute’s behaviour in both hydrophilic

and hydrophobic media (e.g. drug partitioning, hydrophobicity in environmental

problems, etc.). This important parameter can be calculated from the solute’s
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hydration free energy and solvation free energy in octanol [64], which is why solvation

free energies in octanol were chosen for PolCA’s validation. As explained in Chapter 1,

several researchers have calculated octanol/water partition coefficients using molecular

simulations. Garrido et al. simulated logPow of linear alkanes from methane to octane

using TraPPE, OPLS-AA and Gromos with the MSPC/E water model, and they

found that simulating the solute with the OPLS-AA force field and octanol with

TraPPE-UA produced the most accurate results for solvation free energies in octanol

(TraPPE-UA was used instead of OPLS-AA to decrease computational time) while

Gromos was the best at predicting hydration free energies. The partition coefficients

obtained using this combination had an absolute deviation of 0.1 logP units. [64]

Bannan et al. calculated logPow using GAFF and GAFF-DC, which was parameterised

to improve methanol’s dielectric constant, and noticed that both force fields had very

similar accuracy with RMSDs of 1.1 +/- 0.2 and 0.9 +/- 0.1 log units compared to the

experimental logPow, respectively [65]. Zhang et al. studied neutral amino acid side

chain analogues’ logPow using Amber ff9x, Gromos 536A, OPLS-AA/L, Amber ff03

and CHARMM 27, and concluded that Amber ff9x had the best performance with an

RMSD equal to 0.4 +/- 0.1 log units. However, all these force fields overpredicted

logPow due to an underestimation of the hydration free energies’ magnitudes, except

for Gromos which predicts more negative values for the solvation free energies in

water and octanol, with RMSDs equal to ≈ 1 kcal/mol and 1.9 kcal/mol, respectively

[66].

The second part of this chapter is dedicated to the study of multifunctional com-

pounds to further test the interactions between PolCA’s parameters. Due to limited

experimental data availability, eight out of the ten compounds studied here are alka-

nolamines. These molecules are widely used in the pharmaceutical, petroleum, textile

and detergent industries since they are inexpensive and can absorb acid gases like H2S

and CO2. [247, 248] However, short alkanolamines’ simulations obtained using a sim-

ple combination of the amino and hydroxyl groups parameters do not usually produce

accurate results [248]. This outcome is expected due to the proximity between the

functional groups, and thus, several force fields specific for alkanolamines have been
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proposed. Alejandre et al. developed a monoethanolamine (MEA) UA model using

charges and bonded parameters from ab initio calculations with OPLS LJ parameters.

This model accurately predicts monoethanolamine’s liquid density at ambient condi-

tions and underpredicts its critical temperature and surface tension at 323 K by 6% and

4%, respectively [247], and it was later extended to other alkanolamines [249]. Another

force field specific for this molecule is the all-atom model proposed by da Silva et al.

[250] which uses GAFF parameters and torsional terms obtained from ab initio cal-

culations with scaled QM charges to better reproduce MEA’s density and enthalpy of

vaporisation at 333 K. Orozco et al. [248] simulated MEA at four different temperatures

using AUA4’s hydroxyl and amino group parameters and noticed that the predicted

liquid densities, enthalpies of vaporisation and vapour pressures deviated from experi-

mental data by 5%, 7% and 45%, respectively. Consequently, they proposed using an

independent set of partial charges for each molecule and fitted the oxygen atom’s σ

value to monoethanolamine, diethanolamine and methyldiethanolamine’s liquid den-

sities, vapour pressures and enthalpies of vaporisation. Furthermore, they calculated

MEA’s OCH2CH2N torsional potential from QM simulations and added an explicit

1-4 LJ intramolecular interaction between the amino and hydroxyl groups due to their

strong attraction.

In the previous paragraph, we discussed the transferability issues that arise when mod-

elling short alkanolamines, however, this problem also applies to other molecules with

polar functional groups in close proximity. For example, TraPPE-UA uses a special

short-range repulsive potential between the positively charged hydrogen atoms and the

negatively charged heteroatoms in conjunction with Coulomb 1-4 interactions scaled

by 0.5 to simulate glycols and ethers [146].

All these considerations mean that it is essential to test the transferability of PolCA

parameters in a wide range of environments, and this is what we aim to achieve in this

chapter.
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6.2 Methodology

The methods used to obtain bulk properties and free energies of solvation are described

in detail in Chapter 2. Specific details for this chapter are described below.

Compounds studied in this chapter

The structure of the multifunctional molecules studied in this chapter can be found in

Figure 6.1, while the number of molecules used for each simulation is shown in Table 6.1.

The simulation box size for each system was approximately 27 nm3.

Table 6.1: Number of molecules in the simulation box for each system.

System Number of molecules

4-amino-2-butanol 214
2-aminoethanol 340

1-amino-2-propanol 255
3-amino-1-propanol 257

2-amino-2-methyl-1-propanol 223
4-amino-4-methyl-2-pentanone 164
6-amino-2-methyl-2-heptanol 123

N-methyldiethanolamine 161
Diethanolamine 176

Diacetone alcohol 173
Alkanes, amines and ketones in octanol ≈ 134

Alcohols in butanone ≈ 328

Solvation free energy calculations

Free energies of solvation in octanol were run using fifteen λ-states (0, 0.15, 0.2, 0.25,

0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9 and 1) and seven λ-states (0, 0.3,

0.6, 0.7, 0.8, 0.9 and 1) for the LJ and electrostatic components, respectively. The

LJ and electrostatic components were run for 10 ns and 50 ns, respectively. The

same methodology was followed when calculating 2-aminoethanol’s free energy of self-

solvation.

On the other hand, free energy simulations in 2-butanone converged much faster and

thus, the LJ and Coulomb components were run for 5 ns and 10 ns, respectively.

Additionally, the intermediate λ-states used to run these simulations were the same as
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Figure 6.1: Structure of the multifunctional molecules studied in this chapter, drawn using the
software ChemDraw 20.0. Out of the ten molecules, eight are alkanolamines. The other two
molecules, represented with a red label, contain a carbonyl group and either a hydroxyl or amino
group. Molecules with blue labels contain the dihedral N-CHx-CHy-OH, and thus, explicit 1-4
interactions had to be added during their simulation (see text for details).

those used when running ketones free energies of self-solvation (Chapter 5). Fourteen

λ-states were used for the LJ component (0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
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0.5, 0.55, 0.7, 0.85 and 1) and five λ-states for the electrostatics (0, 0.2, 0.4, 0.7 and

1).

Simulation times were chosen by plotting free energy of solvation against simulation

time to ensure convergence. The LJ and electrostatic components of the free energy

of solvation of octylamine in octanol as a function of simulation time can be found in

Figures A5 and A6 in Appendix A1.

6.2.1 Polarisation corrections

Table 6.2 shows post-facto polarisation corrections (Cpol) for the systems studied in this

chapter. These corrections correspond to a liquid-gas transition, and thus, they need

to be multiplied by -1 before applying them to free energies of solvation. The equations

used to obtain these corrections and the assumptions made during their development

are explained in section 2.7.2 of the methodology. Furthermore, Table 6.2 presents

the estimated liquid dipole moments for the molecules studied here obtained using

Equation 2.49.

The polarisation corrections for amines in octanol are relatively small in magnitude

(below 1 kJ/mol), even though the individual distortion and electronic contributions

are somewhat larger. On the other hand, the corrections for ketones in octanol are

more significant, and they range from 2.91 kJ/mol for propanone to 1.05 kJ/mol for

2-octanone. Additionally, the distortion and electronic polarisation terms for ketones

in octanol are quite large, getting as high as 23.53 kJ/mol. Furthermore, polarisation

corrections for alkanes in octanol are equal to zero and corrections for alcohols in bu-

tanone are almost zero. Alkanes are non-polar molecules, and hence the electrostatic

contribution to the solvation free energy is effectively zero [76], therefore, their correc-

tions were expected to be negligible. On the other hand, the polarisation corrections

for alcohols in butanone are a surprising result.

The last three molecules in Table 6.2 are alkanolamines with very high distortion and

electronic polarisation terms. The distortion and electronic terms for diethanolamine

are as high as -23.22 kJ/mol and 21.39 kJ/mol, respectively. However, these molecules’

net polarisation corrections range from -2.06 kJ/mol to -1.16 kJ/mol. Nonetheless, their
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Table 6.2: Polarisation corrections for a liquid-gas phase transition (Cpol), expressed in kJ/mol.
Cdist and Celec are the distortion and electronic polarisation terms, respectively, α [224] is the
polarisability of the solute in the gas phase and εel [224] and εsol are the high-frequency dielectric
permittivity and the static dielectric constant, respectively, of the medium. N-MDEA stands for
N-methyldiethanolamine.

Solute Solvent µg (D) α (Å3) εsol εel µl (D) Cdist Celec Cpol

methane octanol 0.00 2.60 9.78 2.04 0.00 0.00 0.00 0.00

ethane octanol 0.00 4.47 9.78 2.04 0.00 0.00 0.00 0.00

propane octanol 0.08 6.29 9.78 2.04 0.14 -0.02 0.02 0.00

butane octanol 0.05 8.20 9.78 2.04 0.09 0.00 0.01 0.00

pentane octanol 0.10 10.11 9.78 2.04 0.17 -0.02 0.02 0.00

hexane octanol 0.10 11.94 9.78 2.04 0.17 -0.01 0.02 0.00

heptane octanol 0.10 13.81 9.78 2.04 0.17 -0.01 0.01 0.00

octane octanol 0.10 15.60 9.78 2.04 0.17 -0.01 0.01 0.00

nonane octanol 0.10 17.45 9.78 2.04 0.17 -0.01 0.01 0.00

decane octanol 0.10 19.33 9.78 2.04 0.17 -0.01 0.01 0.00

methylamine octanol 1.31 [221] 4.03 9.78 2.04 2.26 -6.78 7.73 0.96

ethylamine octanol 1.22 [221] 5.86 9.78 2.04 2.11 -4.04 4.61 0.57

propylamine octanol 1.17 [221] 7.69 9.78 2.04 2.02 -2.83 3.23 0.40

butylamine octanol 1.33 [222] 9.36 9.78 2.04 2.30 -3.01 3.43 0.42

pentylamine octanol 1.19 11.38 9.78 2.04 2.06 -1.98 2.26 0.28

hexylamine octanol 1.27 13.25 9.78 2.04 2.19 -1.94 2.21 0.27

heptylamine octanol 1.18 15.06 9.78 2.04 2.04 -1.47 1.68 0.21

octylamine octanol 1.27 16.91 9.78 2.04 2.19 -1.52 1.73 0.21

propanone octanol 2.88 6.4 9.78 2.04 4.97 -20.62 23.53 2.91

butanone octanol 2.78 8.22 9.78 2.04 4.80 -14.95 17.06 2.11

2-pentanone octanol 2.7 10.05 9.78 2.04 4.66 -11.55 13.18 1.63

2-hexanone octanol 2.66 11.89 9.78 2.04 4.59 -9.47 10.81 1.34

2-heptanone octanol 2.59 13.73 9.78 2.04 4.47 -7.77 8.87 1.10

2-octanone octanol 2.7 15.56 9.78 2.04 4.66 -7.46 8.51 1.05

methanol butanone 1.70 3.26 18.50 1.91 2.87 -12.69 12.72 0.02

ethanol butanone 1.69 5.13 18.50 1.91 2.86 -7.97 7.99 0.02

propanol butanone 1.68 6.96 18.50 1.91 2.84 -5.81 5.82 0.01

butanol butanone 1.66 8.79 18.50 1.91 2.80 -4.49 4.50 0.01

pentanol butanone 1.70 10.61 18.50 1.91 2.87 -3.90 3.91 0.01

hexanol butanone 1.65 12.46 18.50 1.91 2.79 -3.13 3.13 0.01

heptanol butanone 1.71 14.30 18.50 1.91 2.89 -2.93 2.93 0.01

octanol butanone 1.68 16.14 18.50 1.91 2.84 -2.50 2.51 0.00

2-aminoethanol 2-aminoethanol 2.27 6.44 31.40 2.11 4.46 -22.43 20.36 -2.06

N-MDEA N-MDEA 2.86 12.77 22.40 2.16 5.68 -18.76 17.60 -1.16

Diethanolamine Diethanolamine 2.81 10.76 25.26 2.17 5.69 -23.22 21.39 -1.82

estimated liquid dipoles could be significantly overestimated since these values range

from 4.46 D to 5.69 D. The same effect was observed when studying ketones, where

estimated liquid dipoles were as high as 4.72 D (see section 5.2.1). The alkanolamines

from Table 6.2 and the ketones studied in this work have gas dipoles that range from

2.27 D to 2.88 D, and these values are significantly larger than those for alcohols (1.6

D to 1.7 D ) and amines (1.18 D to 1.31 D).
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6.2.2 Force Field parameters

Section 6.3.1 analyses PolCA’s performance at predicting solvation free energies in oc-

tanol and butanone against TraPPE-UA [69, 146] and Gromos2016H66 [80]. TraPPE-

UA was used for alkanes and ketones in octanol, while Gromos-2016 was used to cal-

culate amines in octanol due to the lack of TraPPE-UA parameters for amines.

PolCA’s non-bonded parameters for each functional group were first introduced in their

corresponding results chapter, but the full set of PolCA’s non-bonded parameters are

presented here in Table 6.3 for clarity. Additionally, TraPPE-UA and Gromos2016H66’s

parameters can be found in sections 2.6 and 4.2.2, respectively.

Table 6.3: Lennard-Jones parameters and partial charges for the PolCA united-atom force field
for alcohols, ketones and amines.

non-bonded a) (Eq. 2.37) σ [nm] ε [kJ/mol] Partial charge (q)

Alkanes [1]
(CH3)-CHx 0.379 0.833 0
(CHx)2-(CH2) 0.399 0.392 0
(CHx)3-(CH) 0.473 0.085 0
(CHx)4-(C) 0.646 0.00426 0

Alcohols
CHx-(O)-H 0.2853 0.7733 -0.646
O-(H) 0 0 +0.406
(CH3)-OH 0.379 0.833 +0.240
CHx-(CH2)-OH 0.399 0.392 +0.240
(CHx)2-(CH)-OH 0.438 0.085 +0.240
(CHx)3-(C)-OH 0.585 0.00426 +0.240

Amines
CHx-N-H2 0.3401 0.814 -0.871
(CHx)2-N-H 0.389 0.723 -0.605
(CHx)3-N 0.4918 0.151 -0.339
N-H 0 0 0.379
CH3-N 0.379 0.833 0.113
CH2-N 0.399 0.392 0.113
CH-N 0.4645 0.085 0.113
C-N 0.630 0.00426 0.113

Ketones
C(=O) 0.382 0.333 0.709
O (sp2) 0.300 0.200 -0.609
(CH3)-C=O 0.379 0.833 -0.05
(CHx)-(CH2)-C=O 0.399 0.392 -0.05
(CHx)2-(CH)-C=O 0.473 0.085 -0.05
(CHx)3-(C)-C=O 0.646 0.00426 -0.05

a) The non-bonded parameters correspond to the sites in bold.

Furthermore, Table 6.4 contains extra dihedral parameters needed to simulate the

molecules studied here. These parameters were taken from either other force fields
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or from similar dihedrals, and their source is specified in the table. Molecules with

two adjacent α-carbon atoms bonded to either an amino or hydroxyl group had to be

treated differently due to the strong attraction between the negatively charged oxy-

gen or nitrogen atoms and the positively charged hydrogen atoms unprotected by a

LJ potential. These molecules were simulated using an explicit 1-4 LJ intramolecular

interaction between the oxygen and nitrogen atoms and the dihedral O-CH2-CH2-N’s

parameters were taken from the anisotropic AUA4 force field for alkanolamines [248].

This dihedral was used as an approximation since its parameters were obtained using

different 1-4 LJ intramolecular interactions between the oxygen and nitrogen atoms,

which cannot be easily included in PolCA due to the LJ parameters’ displacement from

the atom centres in the AUA4 force field. The possible implications of this assumption

will be discussed later in this chapter.

Table 6.4: Extra dihedrals parameters for the PolCA force field. These dihedrals appear in some
of the molecules studied in this chapter and have not been defined previously. The parameters
were converted to the Ryckaert-Bellemans convention and should be used with Equation 2.38.

New dihedral parameters taken from the AUA4 force field [217, 248]

C0 C1 C2 C3 C4 C5

N-CH2-CH2-OH 3.412 38.189 -39.902 6.627 65.536 -46.443
CHx-CH-N-H 0.548 2.069 0.970 -1.663 -0.335 -0.793

CHx-CH-CH2-N 4.698 10.788 -3.226 -14.850 2.807 -17.393
CH2-CH2-CH-N 3.616 9.497 1.217 -13.796 2.086 -1.697

Dihedrals used to approximate missing parameters

Used to estimate

CHx-CH2-CH2-OH CHx-CH-CH-OH, C(=O)-CH2-C-OH
CH2-CH2-CH-N C(=O)-CH2-C-N

C(=O)-CH2-CH2-CHx C(=O)-CH2-C-CHx

CHx-C(=O)-CH2-CHy CHx-C(=O)-C-CHy

N-CH2-CH2-OH N-CHx-CHy-OH
CHx-CH-N-H CHx-C-N-H

CHx-CH-CH2-N CHx-CH-CH-N
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6.3 Results and discussion

6.3.1 Free energy of solvation in octanol

This section analyses PolCA’s performance at predicting solvation free energies of alka-

nes, amines and ketones in octanol. TraPPE-UA’s performance was also tested for

comparison. However, TraPPE does not have a united-atom model for amines, and

thus, Gromos-2016 was used for these molecules instead.

Figure 6.2 shows the free energy of solvation of linear alkanes in octanol obtained using

PolCA and TraPPE. The PolCA model yields excellent agreement with experimental

data (RMSD of 0.68 kJ/mol), although TraPPE also performs quite well (RMSD of

1.10 kJ/mol). As explained above, no polarisation corrections need to be applied be-

cause alkanes are non-polar molecules, and hence the electrostatic contribution to the

solvation free energy is effectively zero [76].

Figure 6.2: Free energy of solvation of alkanes in octanol at 298.15 K and 1 bar as a function
of the number of carbons in the solute. Experimental values were taken from references [168]
and [169]. The estimated average uncertainty is approximately 0.84 kJ/mol [168].

Free energies of solvation of linear primary amines in octanol, obtained using PolCA

and Gromos-2016-PME, are shown in Figure 6.3. PolCA greatly underpredicts (less

negative values) free energies of solvation in octanol with an RMSD of 7.184 kJ/mol,

compared to the experimental values from the Minnesota database [168] and refer-

ences [230, 251]. Similarly, Gromos-2016-PME greatly underpredicts the free energy of

solvation in octanol with an RMSD of 7.208 kJ/mol, however from pentylamine to octy-

lamine, this model is better than PolCA, and its trend suggests that the same effect will
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be observed for larger amines. Once polarisation corrections are added, Gromos-2016-

PME’s performance slightly improves with an RMSD equal to 6.737 kJ/mol. From

pentylamine onwards, polarisation corrections are smaller than -0.3 kJ/mol, and thus,

the plots for Gromos-2016-PME with and without polarisation corrections overlap for

these molecules. Methylamine and ethylamine are the most affected by the addition

of polarisation corrections since their corrections are -0.96 kJ/mol and -0.57 kJ/mol,

respectively (see Table 6.2). The values from the Katrizky database [169] were not

taken into account when calculating the RMSDs since they are not consistent with the

other two sources. Nonetheless, it is important to highlight the uncertainty associated

to the experimental solvation free energies in octanol. Experimental values for this

property are normally obtained from the solute’s experimental octanol/water partition

coefficient and hydration free energy, and thus, errors in these values will propagate

to the solvation free energy in octanol. Simulated solvation free energies in water and

octanol are run at infinite dilution, and hence, experimental logPow obtained using con-

centrations that significantly deviate from infinite solutions might not be appropriate

for the calculation of ∆Gsol. Also, the equation used to correlate solvation free energies

with logPow assumes a complete immiscibility between the solvents, however, water

and octanol are partially miscible. [65] Furthermore, hydration free energy databases

contain some inconsistencies and their values are often over 50 years old [82].

Lastly, solvation free energies of ketones in octanol obtained using PolCA and TraPPE

can be found in Figure 6.4. TraPPE systematically underpredicts free energies of

solvation with an RMSD of 1.445 kJ/mol; however, its RMSD decreases to 0.846 kJ/mol

once polarisation corrections are added. TraPPE (C) overpredicts propanone’s free

energy of solvation in octanol, but it accurately predicts this property from butanone

onwards. On the contrary, PolCA significantly and systematically overpredicts (more

negative values) free energies of solvation of ketones in octanol with an RMSD of 7.183

kJ/mol. Furthermore, free energies of solvation were run for alcohols in butanone using

both force fields, and the results are plotted in Figure 6.5. Even though TraPPE (C)

can accurately predict free energies of solvation of ketones in octanol, it underpredicts

free energies of solvation of alcohols in butanone by 3.445 kJ/mol. As can be seen
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Figure 6.3: Free energy of solvation of linear primary amines in octanol at 298.15 K and
1 bar obtained using PolCA and GROMOS-2016-PME. Full lines with empty symbols contain
polarisation corrections, while dashed lines with filled black squares represent values without cor-
rections. The green symbols are experimental values obtained from the Katrizky and Minnesota
databases [168, 169] and references [230, 251].

from Table 6.2, polarisation corrections are practically zero for these systems and thus,

TraPPE and TraPPE (C) overlap in Figure 6.5. Meanwhile, PolCA systematically

overpredicts free energies of solvation of alcohols in butanone by 5.684 kJ/mol. This

result and ketones solvation free energies in alcohols suggest that PolCA overpredicts

the interaction between the hydroxyl and carbonyl groups. We will return to this point

later in this chapter.

6.3.2 Multifunctional compounds

Several molecules containing more than one functional group were simulated using

PolCA (see Figure 6.1) to test the model’s transferability. The density was the main

property of interest due to the lack of experimental data for other properties. Nonethe-

less, enough experimental data was found for the calculation and analysis of three of

these molecules’ dielectric constants, and the results are presented at the end of this

section.

Table 6.5 shows the simulated density of ten multifunctional compounds compared to

their experimental values. Most of these molecules were simulated at 298.15 K since
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Figure 6.4: Free energy of solvation of linear ketones in octanol at 298.15 K and 1 bar as a
function of the number of carbons in the solute. Experimental values were taken from refer-
ences [168] and [169]. The estimated average uncertainty is approximately 0.84 kJ/mol [168].

Figure 6.5: Free energy of solvation of linear alcohols in butanone at 298.15 K and 1 bar
as a function of the number of carbons in the solute. Experimental values were taken from
reference [169]. The estimated average uncertainty is approximately 0.84 kJ/mol [168].

this was the temperature used during PolCA’s development. Unfortunately, two of

these compounds are solids at room temperature: 2-amino-2-methyl-1-propanol and

diethanolamine, with freezing points of 298.65 K and 301.15 [224], respectively. There-

fore, 2-amino-2-methyl-1-propanol and diethanolamine were simulated at 313.15 K and

303.15 K, respectively.
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Table 6.5: Densities, in kg/m3, of several multifunctional compounds obtained using PolCA.
Simulated and experimental temperatures were 298.15 K except for 2-amino-2-methyl-1-propanol
(313.15 K) and diethanolamine (303.15 K). Experimental values were obtained from refer-
ence [224], unless stated otherwise. 4-amino-4-methyl-2-pentanone’s experimental value taken
from reference [224] was labelled as a “rough estimation” (code 3 in the Handbook, and no extra
information was given).

PolCA Experimental Error (%)

4-amino-2-butanol 950.7 +/- 0.4 930 2.228

2-aminoethanol 982.2 +/- 0.2 1014 -3.132

1-amino-2-propanol 1013.5 +/- 0.6 957 5.900

3-amino-1-propanol 975.3 +/- 0.2 972 0.339

2-amino-2-methyl-1-propanol 866.3 +/- 0.1 917.2 [252] -5.547

4-amino-4-methyl-2-pentanone 894.1 +/- 0.1 983.7 -9.112

6-amino-2-methyl-2-heptanol 935.8 +/- 1.1 895 4.556

N-methyldiethanolamine 1034.722 +/- 1.4 1029 0.556

Diethanolamine 1053.2 +/- 0.8 1090.4 [253] -3.414

Diacetone alcohol 961.9 +/- 0.7 934 2.982

The density of 3-amino-1-propanol is accurately predicted using PolCA with an error of

only 0.3 %. However, 4-amino-2-butanol and 6-amino-2-methyl-2-heptanol’s densities

are overpredicted by 2 % and 5 %, respectively. These results are surprising since these

molecules have a similar structure, and PolCA can accurately predict 2-butanol’s bulk

properties and only slightly underpredicts the density of tert-butanol by 0.7 % (see

section 3.3.6). These three molecules contain two non-adjacent α-CH2 pseudo-atoms

that are bonded to either a hydroxyl or an amino group. However, 3-amino-1-propanol

has a linear structure, while the other two molecules are branched alkanolamines.

Concerning molecules with two adjacent α-carbon atoms, PolCA overpredicts 1-amino-

2-propanol’s density by 6 % and underpredicts 2-aminoethanol, 2-amino-2-methyl-1-

propanol and diethanolamine’s densities by 3 %, 5 % and 3 %, respectively. As ex-

plained in section 6.2.2, these molecules were simulated using an explicit 1-4 LJ in-

tramolecular interaction due to the strong attraction between the amino and hydroxyl

groups, and the parameters used for the dihedral O-CH2-CH2-N are an approximation.

Orozco et al. [248] and Alejandre et al. [247] found that 2-aminoethanol’s intermolec-

ular hydrogen bonds are mainly formed between the hydroxyl hydrogen atoms and

the oxygen or nitrogen atoms. Hence, an underestimation of the hydroxyl and amino

groups’ interactions would explain the alkanolamines’ underpredicted densities and the

less negative solvation free energies of amines in octanol (figure 6.3). Meanwhile, N-
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methyldiethanolamine’s density is only slightly overpredicted by 0.6 %, possibly due to

the lack of hydrogen bonds between hydroxyl hydrogen atoms and the central nitrogen.

Furthermore, a re-parametrisation of the amino or hydroxyl groups and the O-CH2-

CH2-N dihedral could be needed to improve PolCA’s performance. It is important to

mention that 2-aminoethanol’s enthalpy of vaporisation and self-solvation free energy

were also calculated using PolCA and the predicted values differed from experimental

data by -11.6 % and -18.6 % (e.i. the value predicted by PolCA is less negative than

the experimental one), respectively.

The density of 4-amino-4-methyl-2-pentanone is significantly underpredicted, however,

the density value used as a reference was described as a rough estimation in the Yaws

Handbook [224], and no data was found elsewhere. Also, several dihedral parameters

were missing for this molecule, and thus, approximations were used instead. Further-

more, we could not find experimental solvation free energies of ketones in amines or

vice versa to assess PolCA’s performance at modelling carbonyl and amino groups’ in-

teractions (aromatics amines and ketones were not an option due to the lack of PolCA

parameters for aromatics).

Diacetone alcohol’s density is overpredicted by 3 %. From Figure 6.4, we can see

that PolCA overpredicts free energies of solvation of ketones in octanol (more negative

values), and thus, interactions between ketone and alcohol groups are possibly being

overestimated. Consequently, an overestimation of these functional groups’ interaction

would explain the higher density.

Lastly, the dielectric constants of 2-aminoethanol, N-methyldiethanolamine and di-

ethanolamine obtained using PolCA are shown in Table 6.6. Once simulated values are

corrected with Equation 2.52 to account for polarisation effects, PolCA overpredicts

2-aminoethanol and diethanolamine’s dielectric constants by 47 % and 84 %, respec-

tively. As seen in Table 6.2, these molecules have high estimated liquid dipoles, and

thus, the calculated dipole moment scaling factors (µliq/µmodel) are high. Further-

more, 2-aminoethanol’s low simulated dipole (lower than the experimental gas dipole)

contributes to this problem. Due to the approximations made during Equation 2.49’s

development, it is possible that these molecules’ liquid dipoles are being overestimated.
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Since the dipole moment scaling factor is elevated to the power of two in Equation 2.52,

an error in this value would lead to higher errors on the corrected dielectric constant.

The same effect was observed when simulating ketones as explained in section 5.3.2. On

the other hand, N-methyldiethanolamine’s experimental dielectric constant falls inside

the 95 % confidence interval of the predicted value, even though its estimated liquid

dipole is 5.68 D. As explained above, this is probably due to the molecule interacting

more like an alcohol molecule due to the buried nitrogen atom. It is also important

to mention that the statistical error associated with N-methyldiethanolamine and di-

ethanolamine’s simulated dielectric constants obtained with ten simulations of 25 ns

each is high, and longer simulations should be run for more precise results.

Table 6.6: Dielectric constants of 2-aminoethanol, N-methyldiethanolamine and diethanolamine
at 298.15 K and 1 bar obtained using PolCA. The second column is the simulated dipole, and
the last column is the percentual error between the corrected dielectric constant and experimental
values.

µ (D) εsim εcorrected Exp. Error (%)

2-aminoethanol 2.50 14.8 +/- 0.4 46.0 +/- 1.3 31.40 [254] 46.60
N-methyldiethanolamine 3.19 7.8 +/- 0.9 23.8 +/- 3.0 22.4 [87] 6.41

Diethanolamine 3.10 14.1 +/- 1.9 46.4 +/- 6.5 25.26 83.7

6.3.3 Other force fields’ performance

In this section, PolCA’s performance at predicting 2-aminoethanol’s properties is com-

pared to other well-known force fields using simulated data found in the literature. This

molecule was chosen based on data availability for both experimental and simulated

values. Cardona et al. [255] simulated 2-aminoethanol at 293 K using three different

all-atom force fields: OPLS [139], GAFF [103] and MEAa [250], and the density, en-

thalpy of vaporisation and dielectric constant are among their calculated properties.

Therefore, new simulations were run for 2-aminoethanol at 293 K using PolCA for a

fair and clear comparison. Table 6.7 compares predicted densities and enthalpies of va-

porisation obtained using the different models, and Table 6.8 shows the simulated and

corrected dielectric constants. The latter property was obtained using Equation 2.52

and the reported simulated dipoles and dielectric constants.
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Table 6.7: Density and enthalpy of vaporisation of 2-aminoethanol at 293 K without and with
polarisation corrections obtained using different force fields. Simulated values for OPLS, GAFF
and MEAa were taken from reference [255], and their corrected enthalpies of vaporisation
(ΔHvap (C)) were obtained by adding 2-aminoethanol’s polarisation correction from Table 6.2 to
the reported simulated values. The enthalpy of vaporisation experimental value was interpolated
from data at 281.1 K and 294.0 K taken from reference [256].

Density Error ΔHvap Error ΔHvap (C) Error
kg/m3 % kJ/mol % kJ/mol %

PolCA 986.7 +/- 0.2 -3.08 52.87 +/- 0.03 -11.59 50.81 -15.03
OPLS-AA 1024.12 +/- 0.06 0.601 59.222 +/- 0.002 -0.97 57.16 -4.41

GAFF 1130.6 +/- 0.1 11.06 85.765 +/- 0.008 43.42 83.71 39.97
MEAa 1053.56 +/- 0.02 3.49 54.14 +/- 0.004 -9.46 52.08 -12.91

Experimental 1018 [257] 59.8 59.8

Table 6.8: Simulated dipole moment and dielectric constant of 2-aminoethanol at 293 K obtained
using different force fields. Simulated values for OPLS, GAFF and MEAa were taken from
reference [255] and they were used to calculate the corrected dielectric constant (εcorrected). The
experimental dielectric constant was estimated as the average of the dielectric constants at 288
K and 298 K taken from reference [258].

µ (D) εsim εcorrected Error (%)

PolCA 2.491 +/- 0.002 14.7 +/- 0.5 46.0 +/- 1.5 34.54
OPLS-AA 3.462 +/- 0.008 50.7 +/- 0.9 84.6 +/- 1.5 145.25

GAFF 3.002 +/- 0.004 40.9 +/- 0.9 90.2 +/- 2.0 161.44
MEAa 1.994 +/- 0.004 10.5 +/- 0.2 49.65 +/- 1.0 43.9

Experimental 34.5

OPLS-AA can accurately predict the density and enthalpy of vaporisation of 2-

aminoethanol, but it significantly overpredicts the dielectric constant (47 %). The

addition of polarisation corrections worsens OPLS-AA’s performance, with percentual

errors of - 4 % and 145 % for the enthalpy of vaporisation and dielectric constant,

respectively. A similar effect is observed when polarisation corrections are added to

the GAFF model’s dielectric constant (percentual error increases from 19 % to 161 %),

however, the enthalpy of vaporisation predicted by GAFF with corrections is slightly

better than that without corrections but still far of the experimental value with a

percentual error of 40 %. GAFF also significantly overpredicts the density by 11 %,

and thus, this model has the worst performance out of the other four force fields.
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PolCA does the best job at estimating the dielectric constant; however, all the mod-

els fail to reproduce this property with reasonable accuracy. Also, PolCA’s density is

slightly better than the one obtained with MEAa. On the other hand, MEAa is better

than PolCA for the enthalpy of vaporisation, however, the difference between the two

models’ enthalpies of vaporisation is only 1.27 kJ/mol. Also, the addition of polari-

sation corrections worsens both models’ performances. MEAa is a model specific for

2-aminoethanol that uses GAFF’s bonds, angles and LJ parameters with new values

for the charges and dihedrals. The charges were first obtained from gas-phase QM

simulations and then scaled by 0.96 to reproduce the density and enthalpy of vapor-

isation at 333 K. However, the model’s developers could not accurately predict both

properties. [250] The use of reduced gas-phase charges explains MEAa’s low dipole mo-

ment (1.994 D), which is lower than 2-aminoethanol’s experimental gas dipole (2.27

D).

6.4 Conclusions

Free energies of solvation of alkanes in octanol are accurately predicted using PolCA;

however, this model greatly underpredicts the absolute value of free energies of solva-

tion of amines in octanol. Also, PolCA predicts free energies of solvation of ketones in

octanol and alcohols in butanone that are significantly more negative that the corre-

sponding experimental values.

Concerning multifunctional molecules, PolCA can accurately predict 3-amino-1-

propanol and N-methyldiethanolamine’s densities. However, it fails to predict other

alkanolamines’ densities studied here with percentual errors that range from 2.2

to 5.9 % in magnitude. Also, 4-amino-4-methyl-2-pentanone’s density is greatly

underpredicted by this model.

Nonetheless, it is still important to emphasise that for 2-aminoethanol, PolCA performs

significantly better than GAFF, which is an all-atom force field, and has a similar

performance to that of MEAa, a model developed specifically for this molecule.

Based on the results described above, it seems like PolCA cannot correctly capture the
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interactions between amino and hydroxyl groups, and a re-parameterisation is needed to

improve its performance. However, the liquid dipoles estimated here for alkanolamines

are suspiciously high, and thus, they should be validated using more accurate methods

before re-parametrising PolCA. If the new polarisation corrections differ from the ones

used in this thesis, the properties presented in this chapter should be re-calculated.

Additionally, if the new polarisation corrections are not in agreement with those used

during PolCA’s development, a re-parameterisation of our model will be needed. Lastly,

a new alkanolamine dihedral might be needed to improve PolCA’s performance.
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Chapter 7

Conclusions and Future Work

The main goal of this thesis was to develop a non-polarisable force field able to accu-

rately predict solvation free energies in solvents of different polarity through the use

of post-facto polarisation corrections during the model’s parameterisation and valida-

tion. We hypothesised that the inclusion of these corrections would allow us to create

a transferable model capable of predicting bulk liquid properties (density and diffu-

sion), dielectric properties and properties that involve a phase change (enthalpies of

vaporisation and solvation free energies) with a high degree of accuracy. Being able

to accurately predict all these properties is not a trivial task since, as explained in

Chapter 1, classical force fields struggle to simultaneously predict bulk liquid and di-

electric properties and do not usually perform well in environments that significantly

differ from those used during their development.

In this thesis, we have studied the effect of adding post-facto polarisation corrections

to existing non-polarisable force fields, proposed a simple and semi-automated process

for force field development and created a new force field for alcohols, amines and ke-

tones called PolCA. These outcomes and their potential impact on different fields are

discussed below.

Adding polarisation corrections to existing non-polarisable force fields

The impact of including post-facto polarisation corrections to the alcohol and ketone

TraPPE-UA force field was analysed in Chapter 3 and Chapter 5. This force field was
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fitted to pure vapour-liquid equilibrium curves, and polarisation corrections were not

included in its development. However, phase change properties’ polarisation correc-

tions for the alcohol and ketone molecules used during TraPPE’s parameterisation are

quite small, and thus, it is likely that their omission did not significantly affect the op-

timum parameters. On the contrary, polarisation corrections for the dielectric constant

and solvation free energy in hexadecane are significant, and thus, their inclusion has

a high impact on the model’s performance. Once polarisation corrections are added,

TraPPE’s performance at predicting alcohols’ dielectric properties and solvation free

energies in hexadecane significantly improves, and its predicted values are in very good

agreement with experimental data. On the other hand, TraPPE with polarisation cor-

rections fails to reproduce ketones’ solvation free energies in hexadecane and dielectric

constants. The solvation free energy of ketones in hexadecane is the only property

studied in this thesis for which TraPPE performs worse with polarisation corrections

than without them. TraPPE with polarisation corrections significantly overpredicts

ketones’ dielectric constants with an RMSD equal to 6.13, however, simulated values

greatly underpredict this property (RMSD = 7.82) if no polarisation corrections are

added. Furthermore, TraPPE’s inability to predict ketones’ dielectric constant could be

due to an overestimation of the dipole moment scaling factor used to correct simulated

dielectric constants since their estimated liquid dipoles are suspiciously high (4.72 D

for propanone). Consequently, the polarisation corrections used in this thesis should

first be validated using more accurate methods as they were obtained using several

approximations and have been mostly proposed and tested for water.

The performance of the Gromos-2016H66 force field for amines was tested in chapter 4.

This model does a very good job at predicting primary amines’ dielectric constants, and

its performance improves once the simulated values are corrected to account for polar-

isation effects. Gromos-2016H66 with polarisation corrections accurately predicts the

dielectric constant of ethylamine to decylamine and overpredicts methylamine’s dielec-

tric constant by a factor of 1.4. Also, the model’s performance at predicting solvation

free energies in hexadecane improves when polarisation corrections are applied. How-

ever, from methylamine to propylamine, Gromos-2016H66 still predicts values that are
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significantly less negative than the experimental ones. On the other hand, polarisation

corrections for the enthalpy of vaporisation and self-solvation free energy are relatively

small, and thus, they do not have a big impact on the model’s performance.

As explained in Chapter 1, Jorge and Lue [87] calculated dielectric constants for many

compounds using several non-polarisable force fields’ simulated data with post-facto

polarisation corrections and noticed that agreement with experiment significantly im-

proves once polarisation corrections are applied. However, they used a fitted scaling

factor equal to 1.26 instead of the ratio between the liquid and gas dipoles. This scal-

ing factor, obtained by fitting to methanol’s dielectric constant, is not optimal for all

the compounds’ classes (e.g., a scaling factor of 1 is better for predicting hydrocar-

bons, halogenated hydrocarbons, ethers, and alkylamines’ dielectric constants), and it

can vary for different force fields. In addition, Cardona et al. [259] studied the static

dielectric constant of benzene, water, ethanol and three binary mixtures at different

temperatures, and they found that simulated values matched experimental data once

polarisation corrections were applied. They used a temperature independent charge

scaling factor which varied for each force field and system. On the other hand, the scal-

ing factor used in this thesis is independent of the force field, however, our liquid dipoles

are estimated using an approximated equation that needs experimental dielectric con-

stants as input parameters. Hence, dielectric constants of compounds for which there

is no available experimental data need to be corrected using liquid dipoles of similar

molecules. Also, each molecule’s scaling factor should be obtained from first-principles

calculations to increase the accuracy of the correction scheme used in this thesis.

Force field optimisation routine

The optimisation routine used in this thesis is straightforward and easily transferable

to other molecules. The use of meta-models that are able to predict how the target

properties change with the input variables allow the user to explore a larger parameter

space and to partially automatise the process. Additionally, multiple force fields can

be obtained from the same learning set if different objective functions or post-facto po-

larisation corrections are used during their development. However, the meta-models in

this project were obtained using a second-order equation with cross interaction terms,

190



which worked well only for a small region of input parameters, and thus, the learning

sets used for each meta-model had to be chosen manually to assure the desired level of

accuracy. In future work, machine learning can be used to fully automate the optimisa-

tion routine. One option could be to use several independent second-order models for

the different input space’s regions, and automatically identify these models and their

corresponding regions using machine learning. As mentioned in Chapter 1, a similar

method has been applied by Chinta and Rengaswamy [23] to create a QSPR method

for the prediction of drug solubility in binary solvent systems.

Further work needs to be done to find the optimal objective function for force field

development. During PolCA’s parameterisation, three potential amine models were

fitted to the density, enthalpy of vaporisation and dielectric constant using different

training sets. Even though all the models performed similarly for the fitted properties,

the chosen model was the only one able to accurately predict free energies of self-

solvation and solvation free energies in hexadecane. This outcome highlights that there

is more than one set of parameters able to fit the target properties, however, many of

these parameter sets likely have an inappropriate balance between the LJ and Coulomb

interactions. A model’s performance at predicting bulk liquid properties and solvation

free energies in non-polar solvents once polarisation corrections are added is likely a

good indicator of the balance between these two types of interactions. If all the particles

in the non-polar solvent are zero (like is the case for hexadecane modelled with PolCA),

only the LJ component of the solvation free energy needs to be simulated and thus,

the solute’s partial charges do not affect the calculated values. However, to successfully

assess the model’s description of the LJ interactions, the repolarisation of the solute and

its interaction with the electronic continuum around it need to be accurately accounted

for by the polarisation corrections. Consequently, it might be possible to fit σ and ε to

solvation free energies in non-polar solvents, and then use these parameters to obtain

the partial charges by fitting to liquid bulk properties.

There is a need for additional experimental data for the development and validation of

new force fields, especially solvation free energies in solvents of different polarity. A lot

of time and effort was spent searching for experimental properties and thus, force fields’
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development could be sped up if there was a standardised database with bulk liquid

properties, dielectric properties and solvation free energies for each functional group.

Also, it is important to encourage researchers to measure experimental properties for

compounds that might not be relevant for industrial purposes but that are interesting

from a structural point of view, like diffusion constants of amines at 298 K and 1

bar. In the meantime, it might be possible to use properties predicted using other

computational methods, like statistical methods or group-contribution equations of

state, as “experimental properties”.

PolCA

The force field developed in this thesis is called PolCA, standing for “Polarisation-

Consistent Approach”, and it is an extension of the UA model for aliphatic hydro-

carbons proposed by Jorge [1]. The PolCA force field for alcohols was developed and

validated in Chapter 3, and it can accurately predict methanol to decanol’s densi-

ties, diffusion constants (except for methanol), enthalpies of vaporisation, free energies

of self-solvation, dielectric constants and solvation free energies in hexadecane. Both

TraPPE with polarisation corrections and PolCA do a very good job at predicting the

studied properties, however, PolCA had a better performance overall for the alcohol

molecules simulated in this thesis.

PolCA was extended to amines in Chapter 4. Our model does a very good job at

predicting the densities, enthalpies of vaporisation and free energies of self-solvation of

linear and branched primary amines, and its predicted solvation free energies of linear

primary amines in hexadecane are in very good agreement with experimental data.

PolCA performs better than Gromos-2016H66 for all the primary amine properties

studied in that chapter, except for the dielectric constant. Our model greatly overpre-

dicts the dielectric constant of methylamine and significantly overpredicts other linear

and branched amines’ dielectric constants even though this property was included in

the parameterisation routine. Solvation free energies were not included as target prop-

erties in the optimisation routine, however, they were taken into account when choosing

the PolCA’s parameters.
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In Chapter 5, PolCA was extended to ketones. PolCA can accurately predict the den-

sities, enthalpies of vaporisation and diffusion constants of propanone to 2-decanone

(except for butanone and 2-pentanone’s densities which are underpredicted), however,

these properties were included in the optimisation. On the other hand, TraPPE un-

derpredicts the enthalpy of vaporisation and overpredicts the diffusion constant of

these ketones. Both PolCA and TraPPE perform well at predicting free energies of

self-solvation. This outcome was expected since TraPPE-UA was parameterised us-

ing acetone’ vapour-liquid coexistence curve and PolCA was fitted to propanone and

2-decanone’s self-solvation free energies. Also, PolCA greatly overpredicts ketones’ di-

electric constants and solvation free energies in hexadecane (more negative values), and

thus, PolCA’s parameters for ketones should be re-optimised. The same results were ob-

served for TraPPE once polarisation corrections were added, as explained above.

Lastly, PolCA’s transferability was tested in Chapter 6, and the results obtained there

also suggest that some of the polarisation corrections used in this work are perhaps not

entirely accurate, given the approximations involved. PolCA can accurately predict

solvation free energies of alkanes in octanol, however, it fails to reproduce solvation free

energies of amines and ketones in octanol. Consequently, the polarisation corrections

used in this thesis need to be tested using more accurate methods, like the QM/MM

method proposed by Jorge et al. [245], and if they differ from those used here, PolCA

should be re-parameterised using these corrections. Depending on the value of the

new corrections, it might be possible to construct the new meta-models using the same

simulations performed in this thesis. If this is the case or if only a few extra simulations

are needed, PolCA re-parameterisation should not take a significant amount of time or

effort. However, if the meta-models’ learning sets need to be extended significantly, the

computational time required for the meta-models’ construction could be considerably

decreased by using fewer fitted parameters. Partial charges could be obtained from QM

calculations and then scaled using a fitted parameter. In Chapter 3, a similar idea was

implemented during the development of one of the potential alcohol models, however,

this model used TraPPE-UA’s partial charges instead of high-level QM charges and its

polarisation corrections were obtained using several approximations.
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In conclusion, the approach used in this thesis is very promising, however, we could

not obtain a force field able to simultaneously predict solvation free energies in hex-

adecane and octanol, and thus a re-parameterisation of PolCA should be carried out

in future work using polarisation corrections obtained with more accurate methods.

Nonetheless, this work provides a semi-automated and efficient approach for force field

development and highlights the benefits of including post-facto polarisation corrections

to non-polarisable force fields. Agreement with experiment significantly improves when

these corrections are applied to simulated dielectric constants of a wide range of com-

pounds [87, 259], and solvation free energies of alcohols and amines in hexadecane are

significantly benefited by the use of these corrections, as demonstrated in this thesis.

Transfer free energies from water to hexadecane can be used to estimate water per-

meabilities through lipid bilayers [75], hence, it is vital for biological force fields to

accurately predict solvation free energies in solvents of different polarity. Many non-

polarisable force fields struggle to predict water/hexadecane transfer free energies [75],

and thus, the inclusion of post-facto polarisation corrections could have a key impact

on the study of biological systems and drug development. In future work, hydration

free energies should be analysed using polarisation corrections. Polarisation corrections

for water’s enthalpy of vaporisation and self-solvation free energy, obtained using QM

calculations, are close to zero [108]. Therefore, non-polarisable water models fitted to

a few structural and thermodynamic properties without including the Berendsen cor-

rection (e.g. SPC, TIP3P, TIP4P) could be compatible with PolCA, however, these

models do not properly account for long-range electrostatic interactions. Newer water

models use Ewald summation to treat long-range electrostatic interactions, but they

were parameterised using the Berendsen correction for the enthalpy of vaporisation,

which was close to 5 kJ/mol [108]. Consequently, a re-parameterisation of these water

models might be necessary. Furthermore, in this thesis we only focus on polarisation

corrections for the dielectric constant, the solvation free energy in different solvents and

the enthalpy of vaporisation. However, other properties like vapour-liquid and liquid-

liquid equilibria, surface tension and electrical conductivity would also benefit from the

addition of post-facto polarisation corrections, and thus, future work needs to focus on

how to obtain and implement their respective corrections.
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[65] Caitlin C Bannan, Gaetano Calabró, Daisy Y Kyu, and David L Mobley. Cal-

202



culating partition coefficients of small molecules in octanol/water and cyclohex-

ane/water. Journal of Chemical Theory and Computation, 12(8):4015–4024, 2016.

[66] Haiyang Zhang, Yang Jiang, Ziheng Cui, and Chunhua Yin. Force field bench-

mark of amino acids. 2. Partition coefficients between water and organic solvents.

Journal of Chemical Information and Modeling, 58(8):1669–1681, 2018.

[67] Andrew S Paluch, Sreeja Parameswaran, Shuai Liu, Anasuya Kolavennu, and

David L Mobley. Predicting the excess solubility of acetanilide, acetaminophen,

phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molec-

ular simulation. Journal of Chemical Physics, 142(4):044508, 2015.

[68] David L Mobley, Christopher I Bayly, Matthew D Cooper, Michael R Shirts,

and Ken A Dill. Small molecule hydration free energies in explicit solvent: An

extensive test of fixed-charge atomistic simulations. Journal of Chemical Theory

and Computation, 5(2):350–358, 2009.

[69] Bin Chen, Jeffrey J Potoff, and J Ilja Siepmann. Monte Carlo calculations for

alcohols and their mixtures with alkanes. Transferable potentials for phase equi-

libria. 5. United-atom description of primary, secondary, and tertiary alcohols.

Journal of Physical Chemistry B, 105(15):3093–3104, 2001.

[70] Noor Asidah Mohamed, Richard T Bradshaw, and Jonathan W Essex. Evaluation

of solvation free energies for small molecules with the AMOEBA polarizable force

field. Journal of Computational Chemistry, 37(32):2749–2758, 2016.

[71] Devleena Shivakumar, Joshua Williams, Yujie Wu, Wolfgang Damm, John Shel-

ley, and Woody Sherman. Prediction of absolute solvation free energies using

molecular dynamics free energy perturbation and the OPLS force field. Journal

of Chemical Theory and Computation, 6(5):1509–1519, 2010.

[72] Wenkun Wu and John Kieffer. New hybrid method for the calculation of the

solvation free energy of small molecules in aqueous solutions. Journal of Chemical

Theory and Computation, 15(1):371–381, 2018.

[73] Sathish Dasari and Bhabani S Mallik. Solubility and solvation free energy of

203



a cardiovascular drug, LASSBio-294, in ionic liquids: a computational study.

Journal of Molecular Liquids, 301:112449, 2020.

[74] Sadra Kashefolgheta, Marina P Oliveira, Salomé R Rieder, Bruno AC Horta,
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[188] Begoña Garćıa, Santiago Aparicio, Ana M Navarro, Rafael Alcalde, and José M
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[219] Gustavo A Orozco, Véronique Lachet, and Allan D Mackie. A molecular simula-

tion study of aqueous solutions of amines and alkanolamines: mixture properties

and structural analysis. Molecular Simulation, 40(1-3):123–133, 2014.

[220] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,

M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.

Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,

T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,

J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin,

V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.

Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,

J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.

Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,

R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.

Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz,
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potential for phase equilibria calculation for ketone and aldehyde molecular fluids.

Physical Chemistry Chemical Physics, 5(19):4175–4179, 2003.

[238] Ganesh Kamath, Grigor Georgiev, and Jeffrey J Potoff. Molecular modeling

of phase behavior and microstructure of acetone- chloroform- methanol binary

mixtures. Journal of Physical Chemistry B, 109(41):19463–19473, 2005.

[239] Axel D Becke. Density-functional exchange-energy approximation with correct

asymptotic behavior. Physical review A, 38(6):3098, 1988.

[240] Rick A Kendall, Thom H Dunning Jr, and Robert J Harrison. Electron affinities

of the first-row atoms revisited. Systematic basis sets and wave functions. Journal

of Chemical Physics, 96(9):6796–6806, 1992.

[241] Fabio Comelli and Romolo Francesconi. Densities and excess molar volumes of

propylene carbonate+ linear and cyclic ketones at 298.15 K. Journal of Chemical

and Engineering Data, 40(4):808–810, 1995.

[242] Dharshani N Bopege, Matt Petrowsky, Matthew B Johnson, and Roger Frech.

Mass and ion transport in ketones and ketone electrolytes: comparison with

acetate systems. Journal of Solution Chemistry, 42(3):584–591, 2013.

[243] James S Chickos and William E Acree Jr. Enthalpies of vaporization of organic

222



and organometallic compounds, 1880–2002. Journal of Physical and Chemical

Reference Data, 32(2):519–878, 2003.

[244] David R Lide. CRC handbook of chemistry and physics, volume 84. CRC press,

2003.
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Molecular dynamics simulations of aqueous solutions of ethanolamines. Journal

of Physical Chemistry B, 110(30):14652–14658, 2006.

[250] Eirik F da Silva, Tatyana Kuznetsova, Bjørn Kvamme, and Kenneth M Merz.

Molecular dynamics study of ethanolamine as a pure liquid and in aqueous solu-

tion. Journal of Physical Chemistry B, 111(14):3695–3703, 2007.

[251] Chieh-Ming Hsieh and Shiang-Tai Lin. Prediction of 1-octanol-water partition

coefficient and infinite dilution activity coefficient in water from the PR+ COS-

MOSAC model. Fluid Phase Equilibria, 285(1-2):8–14, 2009.

[252] Ma Esther Rebolledo-Libreros and Arturo Trejo. Density and viscosity of aqueous

blends of three alkanolamines: N-methyldiethanolamine, diethanolamine, and 2-

223



amino-2-methyl-1-propanol in the range of 303 to 343 K. Journal of Chemical

and Engineering Data, 51(2):702–707, 2006.

[253] Jingyi Han, Jing Jin, Dag A Eimer, and Morten C Melaaen. Density of water

(1)+ diethanolamine (2)+ co2 (3) and water (1)+ N-methyldiethanolamine (2)+

co2 (3) from (298.15 to 423.15) K. Journal of Chemical and Engineering Data,

57(6):1843–1850, 2012.

[254] NK Balabaev, DK Belashchenko, MN Rodnikova, SV Kraevskii, and IA Solonina.

Modeling the structure of liquid monoethanolamine by molecular dynamics. Rus-

sian Journal of Physical Chemistry A, 89(3):398–405, 2015.

[255] Javier Cardona, Rui Fartaria, Martin B Sweatman, and Leo Lue. Molecular dy-

namics simulations for the prediction of the dielectric spectra of alcohols, glycols

and monoethanolamine. Molecular Simulation, 42(5):370–390, 2016.

[256] Simon Kapteina, Krzysztof Slowik, Sergey P Verevkin, and Andreas Heintz. Va-

por pressures and vaporization enthalpies of a series of ethanolamines. Journal

of Chemical and Engineering Data, 50(2):398–402, 2005.

[257] David R Lide. CRC handbook of chemistry and physics, volume 90. CRC press,

2009.

[258] Prabhakar Undre, SN Helambe, SB Jagdale, PW Khirade, and SC Mehro-

tra. Study of solute–solvent interaction through dielectrics properties of N,N-

dimethylacetamide in ethanolamine. Journal of Molecular Liquids, 137(1-3):147–

151, 2008.

[259] Javier Cardona, Miguel Jorge, and Leo Lue. Simple corrections for the static

dielectric constant of liquid mixtures from model force fields. Physical Chemistry

Chemical Physics, 22(38):21741–21749, 2020.

[260] David L Mobley and J Peter Guthrie. Freesolv: A database of experimental and

calculated hydration free energies, with input files. Journal of Computer-aided

Molecular Design, 28(7):711–720, 2014.

[261] Ramón Bosque and Joaquim Sales. Polarizabilities of solvents from the chem-

224



ical composition. Journal of Chemical Information and Computer sciences,

42(5):1154–1163, 2002.

225



Appendix

A1. Converge plots for solvation free energies calcula-

tions

Amines

Figure A1: LJ component of the free energy of self-solvation of decylamine at 298.15 K and
1 bar, obtained using PolCA, as a function of simulation time. Error bars were estimated as
described in section 2.8, and the horizontal dashed line corresponds to the solvation free energy
value of the last point.
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Figure A2: Electrostatic component of the free energy of self-solvation of decylamine at 298.15 K
and 1 bar, obtained using PolCA, as a function of simulation time. Error bars were estimated as
described in section 2.8, and the horizontal dashed line corresponds to the solvation free energy
value of the last point.

Ketones

Figure A3: LJ component of the free energy of self-solvation of decanone at 298.15 K and 1 bar,
obtained using PolCA, as a function of simulation time. Error bars were estimated as described
in section 2.8, and the horizontal dashed line corresponds to the solvation free energy value of
the last point.
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Figure A4: Electrostatic component of the free energy of self-solvation of decanone at 298.15 K
and 1 bar, obtained using PolCA, as a function of simulation time. Error bars were estimated as
described in section 2.8, and the horizontal dashed line corresponds to the solvation free energy
value of the last point.

Mixtures

Figure A5: LJ component of the free energy of solvation of octylamine in octanol, obtained using
PolCA, as a function of simulation time. Error bars were estimated as described in section 2.8,
and the horizontal dashed line corresponds to the solvation free energy value of the last point.
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Figure A6: Electrostatic component of the free energy of solvation of octylamine in octanol,
obtained using PolCA, as a function of simulation time. Error bars were estimated as described
in section 2.8, and the horizontal dashed line corresponds to the solvation free energy value of
the last point.
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A2. Meta-models’ performance

Alcohols

Model 1

Figure A7: Plot of simulated values at 298.15 K and 1 bar versus the values predicted using
Model 1’s meta-models. The first column is the density, the second column the enthalpy of
vaporisation, and the last column the diffusion constant. The rows are methanol, propanol,
pentanol and heptanol; from top to bottom.
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Model 2

Figure A8: Plot of simulated values at 298.15 K and 1 bar versus the values predicted using
Model 2’s meta-models. The first column is the density, the second column the enthalpy of
vaporisation and the last column the diffusion constant. The rows are methanol, propanol,
pentanol and heptanol, from top to bottom.
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Model 3

Figure A9: Plot of simulated values at 298.15 K and 1 bar versus the values predicted using
Model 3’s meta-models. The first column is the density, the second column the enthalpy of
vaporisation, and the last column the diffusion constant. The rows are methanol, propanol,
pentanol and heptanol; from top to bottom.
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Amines

Model 1

Figure A10: Performance of methylamine’s meta-models from Model 1’s learning set obtained
using 76 simulations (bottom) and 81 simulations (top) per molecule at 298.15 K and 1 bar.
The meta-models in the bottom do not include points with very low σ and ε and qN = -0.992
(see text for details).
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Figure A11: Plot of simulated values at 298.15 K and 1 bar versus predicted values obtained
using the meta-models for Model 1. The first column is the density, the second column the
enthalpy of vaporisation, and the last column the corrected dielectric constant. The rows are
methylamine, propylamine, pentylamine and heptylamine; from top to bottom.
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Model 2

Figure A12: Plot of simulated values at 298.15 K and 1 bar versus predicted values obtained
using the meta-models for Model 2. The first column is the density, the second column the
enthalpy of vaporisation, and the last column the corrected dielectric constant. The rows are
methylamine, propylamine, pentylamine and heptylamine; from top to bottom.
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Model 3

Figure A13: Plot of simulated values at 298.15 K and 1 bar versus predicted values obtained
using the meta-models for Model 3. The first column is the density, the second column the
enthalpy of vaporisation, and the last column the corrected dielectric constant. The rows are
propylamine, pentylamine and heptylamine; from top to bottom.

236



Ketones

Model 1

Figure A14: Plot of simulated values at 298.15 K and 1 bar versus the values predicted using
the meta-models for Model 1. The first column is the density, the second column the enthalpy
of vaporisation, and the last column the diffusion constant. The rows are propanone, hexanone
and decanone; from top to bottom.
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Model 2 and Model 3

Figure A15: Plot of simulated values at 298.15 K and 1 bar versus the values predicted using the
meta-models for Model 2 and Model 3. The first column is the density, the second column the
enthalpy of vaporisation, and the last column the diffusion constant. The rows are propanone,
hexanone and decanone; from top to bottom.
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Figure A16: Meta-models performance for the free energy of self-solvation of propanone (top)
and decanone (bottom) at 298.15 K and 1 bar. The graphs on the left show the LJ component’s
meta-models while the plots on the right are the meta-models for the electrostatic component.
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A3. Experimental solvation free energies

Experimental free energies of self-solvation obtained from vapour pressure data are

shown in Table A1. The majority of these values were taken from the Yaws Hand-

book [228].

Table A1: Free energy of self-solvation at 298 K and 1 atm for the values obtained using
Equation 2.66. Vapour pressures were taken from reference [228], unless stated otherwise.

Molecule Mw [g/mol] Density [kg/m3] Pvap [atm] ΔG [kJ/mol]

Methanol 32.042 786.63 1.671e-01 [198] -20.30
Ethanol 46.069 785.25 7.803e-02 [196] -21.28
Propanol 60.096 799.54 2.763e-02 [199] -23.24
Butanol 74.123 805.75 9.211e-03 [196] -25.46
Pentanol 88.15 810.98 2.895e-03 [199] -27.92
Hexanol 102.162 815.01 1.115e-03[195] -29.93
Heptanol 116.204 818.65 2.846e-04[197] -33.01
Octanol 130.23 821.69 7.895e-05 [195] -35.91
Nonanol 144.26 824.15 2.987e-05[196] -38.08
Decanol 158.285 826.15 1.120e-05[196] -40.29

2-Butanol 74.123 803 2.408e-02[196] -23.07
2-methylpropan-2-ol 74.123 781.14 5.355e-02 [196] -21.02

Methylamine 31.05 655 3.472e+00 -12.399
Ethylamine 45.08 677 1.348e+00 -13.902
Propylamine 59.11 714 3.892e-01 -16.443
Butylamine 73.14 741 1.245e-01 -18.833
Pentylamine 87.16 751 4.112e-02 -21.178
Hexylamine 101.19 761 1.149e-02 -24.003
Heptylamine 115.22 772 2.832e-03 [229] -27.188
Octylamine 129.24 779 1.036e-03 [229] -29.418
Nonylamine 143.27 785 N/A N/A
Decylamine 157.30 791 1.184e-04 [229] -34.347

Isopropylamine 59.11 684 7.407e-01 -14.741
Dimethylamine 45.08 650 1.934e+00 -12.907
Diethylamine 73.14 702 2.661e-01 -16.815

Trimethylamine 59.11 629 2.302e+00 -11.721
Triethylamine 101.19 723 5.955e-02 -19.795

Tertbutylamine 73.14 688 4.800e-01 -15.303
1-1-dimethylpropylamine 87.17 727.6 1.090e-01 -18.681
2-amino-3-methyl-pentane 101.19 750 6.203e-03 -25.494

2-Butanamine 73.14 722 2.035e-01 -17.550
Propanone 58.08 785 3.025e-01 -17.35
Butanone 72.107 799 1.154e-01 -19.24
Pentanone 86.134 802 5.188e-02 -20.79
Hexanone 100.161 807 9.848e-03 -24.56
Heptanone 114.188 811 4.153e-03 -26.38
Octanone 128.214 815 1.318e-03 -28.95
Nonanone 142.241 816.7 4.220e-04 -31.53
Decanone 156.268 819.8 1.693e-04 -33.57

2-aminoethanol 61.084 1014 4.437e-04 [256] -34.03

Solvation free energies for solutes in non-aqueous solvents were obtained using Equa-

tion A1. Here, Pnaq/air is the partition coefficient measured between the gas phase
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and the dilute non-aqueous liquids. The subscript naq/air denotes that the solute is

moving from the gas to the liquid phase.

∆Gnaq/air = −2.303R T log Pnaq/air = (−5.709 kJ/mol) log Pnaq/air (A1)

Table A2 contains the partition coefficients of amines in hexadecane and the resulting

free energies of solvation.

Table A2: Free energy of solvation of amines in hexadecane at 298 K and 1 atm. The hex-
adecane/air partition coefficients (Phex) were taken from the supporting information of refer-
ence [230].

log Phex ΔG (kJ/mol)

Methylamine 1.3 -7.42
Ethylamine 1.68 -9.59
Propylamine 2.14 -12.22
Butylamine 2.62 -14.96
Pentylamine 3.14 -17.93
Hexylamine 3.66 -20.89
Heptylamine 4.17 -23.81
Octylamine 4.52 -25.80

The free energies of solvation of amines in octanol were obtained as the sum between

their free energies of hydration and transfer free energies from water to octanol. The oc-

tanol/water (Poct) and water/air partition coefficients (Pw) are shown in Table A3. This

table also presents the calculated free energies of solvation of amines in octanol.

Table A3: Octanol/water and water/air partition coefficients used to obtain solvation free en-
ergies of amines in octanol. ΔG values are in kJ/mol.

log Pw [230] ΔGhyd log Poct [251] ΔGwat-oct ΔGoct

Methylamine 3.34 -19.07 -0.57 3.25 -15.81
Ethylamine 3.3 -18.84 -0.13 0.74 -18.10
Propylamine 3.22 -18.38 0.48 -2.74 -21.12
Butylamine 3.11 -17.75 0.88 -5.02 -22.78
Pentylamine 3 -17.13 1.45 -8.28 -25.41
Hexylamine 2.9 -16.56 2.06 -11.76 -28.32
Heptylamine 2.78 -15.87 2.57 -14.67 -30.54
Octylamine 2.68 -15.30 N/A N/A N/A

To corroborate the hydration free energies from Table A3, solvation free energies of

amines in octanol were also calculated using hydration free energies from the FreeSolv
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database [260] and are shown in Table A4. Two other values for butylamine’s Poct were

found in reference [65], and thus, they are also included in this table.

Table A4: Solvation free energies of amines in octanol obtained using hydration free energies
from the FreeSolv database [260]. ΔG values are in kJ/mol.

ΔGhyd log Poct [251] ΔGwat-oct ΔGoct

Methylamine -19.04 -0.57 -3.25 -15.79
Ethylamine -18.83 -0.13 -0.74 -18.09
Propylamine -18.37 0.48 2.74 -21.11
Butylamine -17.74 0.88 5.02 -22.76
Butylamine -17.74 0.81 [65] 4.62 -22.36
Butylamine -17.74 0.68 [65] 3.88 -21.62
Pentylamine -17.11 1.45 8.27 -25.38
Hexylamine -16.53 2.06 11.75 -28.28
Heptylamine -15.86 2.57 14.66 -30.52
Octylamine -15.27 N/A
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A4. Polarisation corrections

Table A5: Experimental data used to obtain the polarisation corrections of the alcohols studied
in this thesis. CDist., CElect. and Cpol are in kJ/mol, and Cpol corresponds to a liquid to vapour
transition. Polarisation corrections for solvation free energies are equal to - Cpol. Experimental
dipoles in the gas phase were taken from reference [246]

Solute µg (D) α(Å3) [261] Solvent εsol n εel µl (D) CDist. CElect. Cpol
methanol 1.700 3.260 methanol 32.258 1.329 1.766 2.701 -9.251 8.842 -0.409

ethanol 1.690 5.130 ethanol 24.713 1.361 1.853 2.805 -7.297 7.074 -0.224

propanol 1.680 6.960 propanol 20.423 1.385 1.918 2.874 -6.169 6.073 -0.096

butanol 1.660 8.790 butanol 17.430 1.399 1.957 2.878 -5.079 5.101 0.022

pentanol 1.700 10.610 pentanol 14.960 1.410 1.988 2.969 -4.568 4.702 0.134

hexanol 1.650 12.460 hexanol 12.500 1.418 2.010 2.872 -3.611 3.860 0.249

heptanol 1.710 14.300 heptanol 11.500 1.425 2.030 2.985 -3.425 3.731 0.306

octanol 1.680 16.140 octanol 9.780 1.430 2.043 2.901 -2.783 3.175 0.393

nonanol 1.600 17.972 nonanol 8.600 1.433 2.054 2.734 -2.155 2.568 0.413

decanol 1.600 19.830 decanol 7.620 1.437 2.066 2.703 -1.848 2.307 0.459

2-propanol 1.580 6.980 2-propanol 19.430 1.375 1.891 2.652 -4.960 4.943 -0.017

2-butanol 1.600 8.770 2-butanol 16.600 1.398 1.954 2.760 -4.621 4.685 0.063

2-pentanol 1.660 10.570 2-pentanol 13.710 1.404 1.971 2.851 -4.042 4.251 0.209

tert-butanol 1.670 8.820 tert-butanol 12.490 1.382 1.911 2.753 -4.005 4.348 0.343

tert-amyl 1.700 10.640 tert-amyl 5.780 1.403 1.967 2.633 -2.465 3.583 1.117

methanol 1.700 3.260 hexadecane 2.090 1.433 2.053 2.149 -1.860 8.730 6.870

ethanol 1.690 5.130 hexadecane 2.090 1.433 2.053 2.136 -1.168 5.483 4.314

propanol 1.680 6.960 hexadecane 2.090 1.433 2.053 2.124 -0.851 3.993 3.142

butanol 1.660 8.790 hexadecane 2.090 1.433 2.053 2.098 -0.658 3.087 2.429

pentanol 1.700 10.610 hexadecane 2.090 1.433 2.053 2.149 -0.572 2.682 2.111

hexanol 1.650 12.460 hexadecane 2.090 1.433 2.053 2.086 -0.458 2.152 1.693

heptanol 1.710 14.300 hexadecane 2.090 1.433 2.053 2.161 -0.429 2.014 1.585

octanol 1.680 16.140 hexadecane 2.090 1.433 2.053 2.124 -0.367 1.722 1.355

nonanol 1.600 17.972 hexadecane 2.090 1.433 2.053 2.022 -0.299 1.403 1.104

decanol 1.600 19.830 hexadecane 2.090 1.433 2.053 2.022 -0.271 1.271 1.000

methane 0.001 2.600 octanol 9.780 1.430 2.043 0.002 0.000 0.000 0.000

ethane 0.001 4.470 octanol 9.780 1.430 2.043 0.002 0.000 0.000 0.000

propane 0.083 6.290 octanol 9.780 1.430 2.043 0.143 -0.017 0.020 0.002

butane 0.050 8.200 octanol 9.780 1.430 2.043 0.086 -0.005 0.006 0.001

pentane 0.100 10.111 octanol 9.780 1.430 2.043 0.173 -0.016 0.018 0.002

hexane 0.100 11.941 octanol 9.780 1.430 2.043 0.173 -0.013 0.015 0.002

heptane 0.100 13.810 octanol 9.780 1.430 2.043 0.173 -0.012 0.013 0.002

octane 0.100 15.600 octanol 9.780 1.430 2.043 0.173 -0.010 0.012 0.001

nonane 0.100 17.451 octanol 9.780 1.430 2.043 0.173 -0.009 0.010 0.001

decane 0.100 19.331 octanol 9.780 1.430 2.043 0.173 -0.008 0.009 0.001
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A5. Simulated values

The tables in this section contain the simulated values with polarisation corrections

when applicable. Experimental values are also presented here for completion and,

unless stated otherwise, they are the average obtained from different sources (sources

are given in the main body of this thesis). These values were used when calculating

RMSDs.

Alcohols

Table A6: Density (kg/m3).

Model 1 Model 2 PolCA TraPPE Experimental

Methanol 788.25 +/- 0.08 784.13 +/- 0.07 785.52 +/- 0.06 785.24 +/- 0.06 786.63
Ethanol 782.63 +/- 0.08 782.64 +/- 0.05 781.75 +/- 0.09 783.51 +/- 0.06 785.25
Propanol 794.9 +/- 0.1 796.4 +/- 0.04 794.3 +/- 0.1 795.24 +/- 0.06 799.54
Butanol 804.2 +/- 0.2 804.84 +/- 0.08 803.1 +/- 0.1 804.18 +/- 0.04 805.75
Pentanol 810.3 +/- 0.1 811.14 +/- 0.07 809.6 +/- 0.1 811.23 +/- 0.07 810.98
Hexanol 816.0 +/- 0.2 816.75 +/- 0.09 815.5 +/- 0.2 817.72 +/- 0.09 815.01
Heptanol 820.8 +/- 0.2 821.08 +/- 0.06 820.22 +/- 0.1 822.8 +/- 0.1 818.65
Octanol 824.3 +/- 0.3 824.7 +/- 0.1 823.9 +/- 0.2 827.0 +/- 0.1 821.69
Nonanol 827.2 +/- 0.1 828.0 +/- 0.1 826.9 +/- 0.2 830.6 +/- 0.2 824.15
Decanol 829.7 +/- 0.2 830.5 +/- 0.2 829.7 +/- 0.2 833.8 +/- 0.1 826.15

Table A7: Densities (kg/m3) at different temperatures obtained using Model 1.

Temperature (K) Methanol Ethanol Butanol Hexanol Decanol

283 804.4 +/- 0.1 796.6 +/- 0.2 815.5 +/- 0.2 827.0 +/- 0.4 840.3 +/- 0.4
298 788.2 +/- 0.1 782.7 +/- 0.1 804.27 +/- 0.07 815.6 +/- 0.2 829.7 +/- 0.2
303 782.8 +/- 0.1 777.97 +/- 0.06 800.3 +/- 0.2 812.4 +/- 0.3 826.6 +/- 0.2
313 771.9 +/- 0.2 768.37 +/- 0.07 791.9 +/- 0.1 805.0 +/- 0.3 819.9 +/- 0.2
323 760.14 +/- 0.08 758.4 +/- 0.1 783.2 +/- 0.1 797.3 +/- 0.1 813.1 +/- 0.2
333 748.27 +/- 0.09 747.92 +/- 0.06 774.85 +/- 0.07 789.9 +/- 0.1 806.1 +/- 0.2

Table A8: Densities (kg/m3) at different temperatures obtained using Model 2.

Temperature (K) Methanol Ethanol Butanol Hexanol Decanol

283 798.1 +/- 0.2 794.8 +/- 0.08 815.65 +/- 0.06 827.0 +/- 0.1 840.5 +/- 0.3
298 784.0 +/- 0.1 782.51 +/- 0.08 804.99 +/- 0.09 816.7 +/- 0.1 830.6 +/- 0.2
303 779.39 +/- 0.08 778.6 +/- 0.1 801.2 +/- 0.2 813.4 +/- 0.2 827.5 +/- 0.1
313 770.09 +/- 0.08 770.26 +/- 0.08 793.93 +/- 0.06 806.58 +/- 0.06 821.1 +/- 0.1
323 760.49 +/- 0.08 762.03 +/- 0.07 786.6 +/- 0.1 799.8 +/- 0.2 814.2 +/- 0.1
333 751.19 +/- 0.09 753.25 +/- 0.07 779.1 +/- 0.1 792.86 +/- 0.08 807.9 +/- 0.1
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Table A9: Densities (kg/m3) at different temperatures obtained using the PolCA model.

Temperature (K) Methanol Ethanol Butanol Hexanol Decanol

283 800.9 +/- 0.2 794.8 +/- 0.1 814.7 +/- 0.2 826.1 +/- 0.2 839.7 +/- 0.5
298 785.6 +/- 0.2 781.74 +/- 0.09 803.3 +/- 0.2 815.6 +/- 0.2 829.7 +/- 0.4
303 780.3 +/- 0.1 777.4+/- 0.1 799.51 +/- 0.08 812.1 +/- 0.1 826.4 +/- 0.3
313 769.8 +/- 0.1 768.3 +/- 0.1 791.81 +/- 0.09 805.1 +/- 0.2 819.6 +/- 0.2
323 759.2 +/- 0.2 759.02 +/- 0.09 783.4 +/- 0.2 797.6 +/- 0.1 813.0 +/- 0.2
333 748.2 +/- 0.2 749.21 +/- 0.08 775.66 +/- 0.07 790.2 +/- 0.2 806.2 +/- 0.2

Table A10: Enthalpy of vaporisation (kJ/mol) with polarisation corrections.

Model 1 Model 2 PolCA TraPPE(C) Experimental

Methanol 38.05 +/- 0.01 38.43 +/- 0.01 38.83 +/- 0.01 37.3 +/- 0.02 37.6 +/- 0.5
Ethanol 42.24 +/- 0.02 43.08 +/- 0.02 43.08 +/- 0.02 41.18 +/- 0.03 42.3 +/- 0.4
Propanol 46.82 +/- 0.03 47.92 +/- 0.04 47.76 +/- 0.04 45.4 +/- 0.03 47.0 +/- 1.0
Butanol 51.58 +/- 0.08 52.71 +/- 0.04 52.51 +/- 0.07 49.95 +/- 0.05 52.0 +/- 3.0
Pentanol 56.31 +/- 0.08 57.48 +/- 0.05 57.2 +/- 0.05 54.34 +/- 0.04 57.0 +/- 2.0
Hexanol 61.11 +/- 0.1 62.38 +/- 0.05 62.08 +/- 0.07 58.91 +/- 0.06 61.0 +/- 2.0
Heptanol 65.9 +/- 0.1 67.18 +/- 0.08 66.9 +/- 0.1 63.48 +/- 0.08 67.0 +/- 2.0
Octanol 70.66 +/- 0.06 72.03 +/- 0.05 71.74 +/- 0.08 68.09 +/- 0.07 72.0 +/- 2.0
Nonanol 75.56 +/- 0.09 76.91 +/- 0.07 76.43 +/- 0.09 72.69 +/- 0.08 77.0 +/- 6.0
Decanol 80.4 +/- 0.1 81.9 +/- 0.1 81.32 +/- 0.08 77.35 +/- 0.09 82.0 +/- 6.0

Table A11: Diffusion constant (10-5 cm2/s).

Model 1 Model 2 PolCA TraPPE Experimental

Methanol 1.722 +/- 0.009 2.58 +/- 0.01 1.736 +/- 0.009 2.391 +/- 0.005 2.35
Ethanol 0.987 +/- 0.006 1.227 +/- 0.005 0.937 +/- 0.009 1.325 +/- 0.006 1.01
Propanol 0.678 +/- 0.008 0.726 +/- 0.005 0.616 +/- 0.006 0.851 +/- 0.007 0.55
Butanol 0.49 +/- 0.006 0.503 +/- 0.002 0.45 +/- 0.004 0.619 +/- 0.004 0.42
Pentanol 0.394 +/- 0.005 0.379 +/- 0.002 0.351 +/- 0.004 0.473 +/- 0.004 0.30
Hexanol 0.327 +/- 0.006 0.299 +/- 0.003 0.292 +/- 0.006 0.378 +/- 0.003 0.22
Heptanol 0.266 +/- 0.005 0.244 +/- 0.003 0.241 +/- 0.004 0.338 +/- 0.004 0.17
Octanol 0.245 +/- 0.005 0.223 +/- 0.003 0.22 +/- 0.004 0.262 +/- 0.003 0.14
Nonanol 0.208 +/- 0.002 0.185 +/- 0.003 0.191 +/- 0.004 0.236 +/- 0.003 N/A
Decanol 0.185 +/- 0.003 0.163 +/- 0.003 0.168 +/- 0.003 0.203 +/- 0.001 N/A

Table A12: Dielectric constant with polarisation corrections.

Model 1 Model 2 PolCA TraPPE(C) Experimental

Methanol 34.0 +/- 1.0 35.9 +/- 0.7 34.4 +/- 0.5 34.6 +/- 0.5 31.9
Ethanol 26.8 +/- 0.7 29.7 +/- 0.8 26.7 +/- 0.7 27.7 +/- 0.6 24.85
Propanol 21.0 +/- 1.0 25.0 +/- 1.0 22.0 +/- 1.0 23.0 +/- 1.0 20.3
Butanol 17.0 +/- 1.0 20.0 +/- 1.0 19.0 +/- 1.0 20.0 +/- 1.0 17.56
Pentanol 13.3 +/- 1.0 18.0 +/- 1.0 15.0 +/- 2.0 16.8 +/- 0.8 14.6
Hexanol 9.4 +/- 0.9 16.0 +/- 2.0 11.0 +/- 1.0 14.0 +/- 1.0 12.5
Heptanol 9.3 +/- 0.8 13.0 +/- 1.0 10.0 +/- 1.0 12.3 +/- 0.9 11.5
Octanol 6.5 +/- 0.7 10.3 +/- 0.7 8.0 +/- 1.0 12.0 +/- 1.0 9.7
Nonanol 4.8 +/- 0.5 9.0 +/- 1.0 6.2 +/- 0.8 8.2 +/- 0.4 8.6
Decanol 3.8 +/- 0.5 8.0 +/- 1.0 5.1 +/- 0.2 7.3 +/- 0.6 7.62
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Table A13: Dipole (D). Simulated errors were all lower than 0.001 D

Model 1 Model 2 PolCA TraPPE Estimated liquid dipole

Methanol 1.9834 2.0503 2.0732 2.2589 2.70
Ethanol 1.9809 2.0482 2.0704 2.2554 2.81
Propanol 1.9809 2.0482 2.0705 2.2554 2.87
Butanol 1.9808 2.048 2.0704 2.2552 2.88
Pentanol 1.9804 2.0479 2.0702 2.255 2.97
Hexanol 1.9802 2.0479 2.0701 2.2548 2.87
Heptanol 1.9803 2.0479 2.07 2.2547 2.99
Octanol 1.98 2.0477 2.0699 2.2546 2.90
Nonanol 1.9799 2.0477 2.0697 2.2545 2.73
Decanol 1.9798 2.0477 2.0697 2.2545 2.70

Table A14: Free energy of self-solvation (kJ/mol) with polarisation corrections.

Model 1 Model 2 PolCA TraPPE(C) Experimental

Methanol -19.8 +/- 0.4 -21.3 +/- 0.3 -20.7 +/- 0.4 -20.4 +/- 0.2 -20.52
Ethanol -20.6 +/- 0.6 -22.7 +/- 0.3 -22.1 +/- 0.3 -21.0 +/- 0.3 -21.10
Propanol -22.9 +/- 0.7 -24.9 +/- 0.4 -23.2 +/- 0.4 -22.6 +/- 0.6 -22.41
Butanol -24.8 +/- 0.4 -27.4 +/- 0.3 -26.2 +/- 0.4 -24.9 +/- 0.2 -25.36
Pentanol -27.5 +/- 0.6 -30.0 +/- 0.4 -28.5 +/- 0.5 -27.1 +/- 0.3 -28.22
Hexanol -30.3 +/- 0.7 -32.3 +/- 0.5 -31.4 +/- 0.6 -29.4 +/- 0.5 -29.72
Heptanol -33.0 +/- 0.7 -34.9 +/- 0.6 -33.7 +/- 0.4 -32.0 +/- 0.6 -32.82
Octanol -35.8 +/- 0.3 -38.0 +/- 0.7 -36.4 +/- 0.5 -33.9 +/- 0.7 -34.97
Nonanol -38.3 +/- 0.9 -40.2 +/- 0.8 -39.2 +/- 0.6 -36.4 +/- 0.7 -38.08
Decanol -40.3 +/- 0.7 -43.3 +/- 0.8 -41.8 +/- 0.4 -38.4 +/- 0.9 -40.10

Table A15: Free energy of solvation in hexadecane without and with polarisation corrections
(kJ/mol).

PolCA TraPPE TraPPE(C) Minnesota Katryzky

Methanol -8.9 +/- 0.1 -2.24 +/- 0.09 -9.11 +/- 0.09 -5.53 -8.49
Ethanol -9.2 +/- 0.1 -5.0 +/- 0.2 -9.4 +/- 0.2 -8.50 -8.49
Propanol -11.1 +/- 0.2 -7.9 +/- 0.1 -11.0 +/- 0.1 -11.60 -11.57
Butanol -13.6 +/- 0.2 -10.7 +/- 0.2 -13.2 +/- 0.2 -14.86 -14.82
Pentanol -16.5 +/- 0.2 -13.3 +/- 0.1 -15.4 +/- 0.1 -17.75 -17.73
Hexanol -18.9 +/- 0.3 -16.5 +/- 0.1 -18.2 +/- 0.1 -20.60 -20.58
Heptanol -21.6 +/- 0.2 -18.9 +/- 0.3 -20.4 +/- 0.3 -23.53 -23.49
Octanol -24.4 +/- 0.3 -21.6 +/- 0.3 -22.9 +/- 0.3 -26.37 -26.34
Nonanol -27.2 +/- 0.5 -24.6 +/- 0.4 -25.7 +/- 0.4 N/A -29.19
Decanol -30.1 +/- 0.3 -26.9 +/- 0.3 -27.9 +/- 0.3 -32.15 -32.10
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Amines

Gromos 2016H66

Table A16: Density (kg/m3).

Gromos-2016-RF Gromos-2016-RF-Dispcorr Gromos-2016-PME Experimental

Methylamine 707.30 +/- 0.07 721.5 +/- 0.1 728.23 +/- 0.09 655
Ethylamine 688.67 +/- 0.08 704.72 +/- 0.08 716.70 +/- 0.09 677
Propylamine 717.59 +/- 0.07 733.13 +/- 0.09 739.46 +/- 0.09 714
Butylamine 740.01 +/- 0.07 754.8 +/- 0.1 758.85 +/- 0.06 741
Pentylamine 755.53 +/- 0.09 769.89 +/- 0.05 772.46 +/- 0.08 751
Hexylamine 767.06 +/- 0.07 781.0 +/- 0.1 783.4 +/- 0.1 761
Heptylamine 775.75 +/- 0.08 789.46 +/- 0.09 791.66 +/- 0.08 772
Octylamine 782.77 +/- 0.08 796.15 +/- 0.08 798.04 +/- 0.07 779
Nonylamine 788.4 +/- 0.1 801.6 +/- 0.1 803.3 +/- 0.1 785
Decylamine 792.81 +/- 0.09 806.0 +/- 0.1 807.5 +/- 0.1 791

Table A17: Enthalpy of vaporisation with polarisation corrections (kJ/mol).

Gromos-2016-RF Gromos-2016-RF-Dispcorr Gromos-2016-PME Experimental

Methylamine 25.5 +/- 0.2 27.25 +/- 0.03 26.41 +/- 0.04 23.85
Ethylamine 26.3 +/- 0.2 28.36 +/- 0.03 27.96 +/- 0.05 29.0 +/- 2.0
Propylamine 30.5 +/- 0.2 33.02 +/- 0.03 32.21 +/- 0.07 31.3 +/- 0.1
Butylamine 35.4 +/- 0.2 38.45 +/- 0.04 37.5 +/- 0.1 35.8 +/- 0.2
Pentylamine 39.9 +/- 0.2 43.44 +/- 0.04 42.5 +/- 0.2 40.3 +/- 0.7
Hexylamine 44.6 +/- 0.3 48.60 +/- 0.06 47.8 +/- 0.2 45.1 +/- 0.1
Heptylamine 49.2 +/- 0.2 53.50 +/- 0.06 52.8 +/- 0.2 50.0 +/- 0.1
Octylamine 53.9 +/- 0.3 58.71 +/- 0.04 58.2 +/- 0.2 54.6 +/- 0.2
Nonylamine 58.3 +/- 0.3 63.68 +/- 0.06 63.2 +/- 0.2 59.3
Decylamine 62.8 +/- 0.4 68.86 +/- 0.06 68.6 +/- 0.3 64

Table A18: Dielectric constant with polarisation corrections.

Gromos-2016-RF Gromos-2016-RF-Dispcorr Gromos-2016-PME Experimental

Methylamine 12.6 +/- 0.1 12.96 +/- 0.09 13.0 +/- 0.2 9.40
Ethylamine 6.07 +/- 0.04 6.27 +/- 0.04 6.17 +/- 0.04 6.61
Propylamine 4.82 +/- 0.03 4.9 +/- 0.02 4.89 +/- 0.03 4.99
Butylamine 4.44 +/- 0.03 4.47 +/- 0.04 4.46 +/- 0.02 4.62
Pentylamine 3.71 +/- 0.03 3.73 +/- 0.03 3.7 +/- 0.01 4.20
Hexylamine 3.47 +/- 0.02 3.48 +/- 0.02 3.47 +/- 0.03 4.03
Heptylamine 3.209 +/- 0.008 3.21 +/- 0.02 3.2 +/- 0.02 3.77
Octylamine 3.07 +/- 0.02 3.07 +/- 0.009 3.07 +/- 0.02 3.55
Nonylamine 2.95 +/- 0.009 2.96 +/- 0.01 2.95 +/- 0.01 3.38
Decylamine 2.868 +/- 0.009 2.87 +/- 0.01 2.87 +/- 0.01 3.28
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Table A19: Dipole (D). Simulated errors were all lower than 0.001 D

Gromos-2016-RF Gromos-2016-RF-Dispcorr Gromos-2016-PME Est. Liq. Dipole

Methylamine 1.8945 1.8962 1.8979 2.01
Ethylamine 1.8446 1.8462 1.8491 1.83
Propylamine 1.8371 1.8387 1.8403 1.73
Butylamine 1.8358 1.8375 1.838 1.97
Pentylamine 1.8343 1.836 1.8363 1.75
Hexylamine 1.8327 1.8345 1.8348 1.87
Heptylamine 1.8313 1.8333 1.8336 1.72
Octylamine 1.8298 1.8319 1.8322 1.84
Nonylamine 1.828 1.8301 1.8309 1.69
Decylamine 1.8265 1.8289 1.8289 1.82

Table A20: Free energy of self-solvation with polarisation corrections (kJ/mol).

Gromos-2016-RF Gromos-2016-PME Experimental

Methylamine -13.23 +/- 0.1 -13.7 +/- 0.1 -12.40
Ethylamine -13.5 +/- 0.2 -14.4 +/- 0.2 -13.90
Propylamine -15.6 +/- 0.2 -16.9 +/- 0.3 -16.44
Butylamine -18.4 +/- 0.4 -19.6 +/- 0.2 -18.83
Pentylamine -20.7 +/- 0.2 -22.5 +/- 0.2 -21.18
Hexylamine -22.8 +/- 0.4 -25.0 +/- 0.4 -24.00
Heptylamine -24.9 +/- 0.2 -28.3 +/- 0.5 -27.19
Octylamine -28.1 +/- 0.4 -31.1 +/- 0.3 -29.42
Nonylamine -30.2 +/- 0.4 -33.9 +/- 0.6 N/A
Decylamine -32.9 +/- 0.5 -37.1 +/- 0.4 -34.35

Table A21: Free energy of solvation in hexadecane with polarisation corrections (kJ/mol).

Gromos-2016-RF Gromos-2016-PME Minnesota Katryzky Bordner

Methylamine -4.09 +/- 0.08 -4.4 +/- 0.1 N/A N/A -7.42
Ethylamine -5.8 +/- 0.3 -6.4 +/- 0.2 -9.58 -9.58 -9.59
Propylamine -8.4 +/- 0.2 -9.5 +/- 0.2 -12.22 -12.20 -12.22
Butylamine -11.9 +/- 0.3 -13.0 +/- 0.2 N/A -14.94 -14.96
Pentylamine -14.2 +/- 0.2 -16.2 +/- 0.2 -17.91 -17.90 -17.93
Hexylamine -17.0 +/- 0.3 -19.3 +/- 0.3 N/A N/A -20.89
Heptylamine -20.0 +/- 0.4 -22.8 +/- 0.6 N/A N/A -23.81
Octylamine -22.7 +/- 0.5 -26.0 +/- 0.3 N/A N/A -25.80
Nonylamine -25.8 +/- 0.3 -29.0 +/- 0.4 N/A N/A N/A
Decylamine -28.7 +/- 0.4 -32.7 +/- 0.3 N/A N/A N/A

248



New models

Table A22: Density (kg/m3).

Model 1 Model 2 Model 3 Experimental

Methylamine 655.5 +/- 0.2 654.1 +/- 0.1 662.7 +/- 0.1 655.00
Ethylamine 680.7 +/- 0.1 684.99 +/- 0.07 690.00 +/- 0.07 677.00
Propylamine 711.45 +/- 0.08 713.8 +/- 0.1 717.30 +/- 0.05 714.00
Butylamine 735.70 +/- 0.06 734.43 +/- 0.08 735.62 +/- 0.06 741.00
Pentylamine 753.19 +/- 0.07 750.57 +/- 0.07 750.80 +/- 0.05 751.00
Hexylamine 766.82 +/- 0.06 763.14 +/- 0.04 762.29 +/- 0.07 761.00
Heptylamine 777.13 +/- 0.09 773.10 +/- 0.05 771.73 +/- 0.09 772.00
Octylamine 785.3 +/- 0.1 781.10 +/- 0.09 779.54 +/- 0.04 779.00
Nonylamine 792.0 +/- 0.1 787.72 +/- 0.07 786.10 +/- 0.09 785.00
Decylamine 797.7 +/- 0.1 793.4 +/- 0.1 791.65 +/- 0.07 791.00

Table A23: Enthalpy of vaporisation with polarisation corrections (kJ/mol).

Model 1 Model 2 Model 3 Experimental

Methylamine 25.63 +/- 0.02 24.49 +/- 0.02 25.62 +/- 0.01 23.85
Ethylamine 27.57 +/- 0.06 27.24 +/- 0.04 28.15 +/- 0.04 29.0 +/- 2.0
Propylamine 30.75 +/- 0.08 30.60 +/- 0.04 31.68 +/- 0.06 31.3 +/- 0.1
Butylamine 35.51 +/- 0.09 35.03 +/- 0.08 35.95 +/- 0.05 35.8 +/- 0.2
Pentylamine 39.97 +/- 0.07 39.26 +/- 0.03 40.12 +/- 0.05 40.3 +/- 0.7
Hexylamine 44.68 +/- 0.06 43.75 +/- 0.05 44.68 +/- 0.07 45.1 +/- 0.1
Heptylamine 49.2 +/- 0.09 48.24 +/- 0.05 49.1 +/- 0.1 50.0 +/- 0.1
Octylamine 53.98 +/- 0.06 52.92 +/- 0.08 53.72 +/- 0.07 54.6 +/- 0.2
Nonylamine 58.6 +/- 0.1 57.39 +/- 0.07 58.2 +/- 0.1 59.3
Decylamine 63.41 +/- 0.07 62.09 +/- 0.08 62.99 +/- 0.08 64

Table A24: Dielectric constant with polarisation corrections.

Model 1 Model 2 Model 3 Experimental

Methylamine 15.3 +/- 0.1 16.7 +/- 0.1 15.8 +/- 0.1 9.40
Ethylamine 7.34 +/- 0.04 9.54 +/- 0.07 7.77 +/- 0.05 6.61
Propylamine 5.51 +/- 0.02 7.19 +/- 0.04 5.54 +/- 0.04 4.99
Butylamine 4.89 +/- 0.04 6.20 +/- 0.06 5.63 +/- 0.03 4.62
Pentylamine 4.04 +/- 0.02 5.22 +/- 0.03 4.33 +/- 0.02 4.20
Hexylamine 3.68 +/- 0.03 4.68 +/- 0.03 4.25 +/- 0.03 4.03
Heptylamine 3.41 +/- 0.01 4.28 +/- 0.03 3.68 +/- 0.02 3.77
Octylamine 3.23 +/- 0.01 3.99 +/- 0.02 3.71 +/- 0.02 3.55
Nonylamine 3.080 +/- 0.008 3.77 +/- 0.02 3.32 +/- 0.01 3.38
Decylamine 2.978 +/- 0.009 3.56 +/- 0.02 3.38 +/- 0.01 3.28
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Table A25: Dipole (D). Simulated errors were all lower than 0.001 D

Model 1 Model 2 Model 3

Methylamine 1.9487 1.9684 1.7841
Ethylamine 1.8942 1.9334 1.7409
Propylamine 1.88034 1.9233 1.7285
Butylamine 1.8798 1.9211 1.7239
Pentylamine 1.8784 1.9187 1.7198
Hexylamine 1.8776 1.9172 1.7168
Heptylamine 1.8768 1.9156 1.7138
Octylamine 1.8762 1.9142 1.7116
Nonylamine 1.875 1.9129 1.7099
Decylamine 1.8741 1.9118 1.7075

Table A26: Free energy of self-solvation with polarisation corrections (kJ/mol).

Model 1 Model 2 Model 3 Experimental

Methylamine -12.9 +/- 0.1 -13.7 +/- 0.2 -15.7 +/- 0.1 -12.40
Ethylamine -13.6 +/- 0.1 -15.0 +/- 0.3 -17.19 +/- 0.07 -13.90
Propylamine -15.1 +/- 0.3 -17.0 +/- 0.2 -19.5 +/- 0.3 -16.44
Butylamine -18.0 +/- 0.2 -19.7 +/- 0.4 -21.9 +/- 0.1 -18.83
Pentylamine -20.2 +/- 0.3 -21.8 +/- 0.3 -24.2 +/- 0.4 -21.18
Hexylamine -22.9 +/- 0.5 -23.9 +/- 0.2 -26.9 +/- 0.2 -24.00
Heptylamine -25.1 +/- 0.5 -26.6 +/- 0.4 -29.1 +/- 0.3 -27.19
Octylamine -27.8 +/- 0.5 -28.9 +/- 0.3 -32.0 +/- 0.4 -29.42
Nonylamine -30.6 +/- 0.5 -31.2 +/- 0.5 -34.6 +/- 0.2 N/A
Decylamine -32.4 +/- 0.4 -34.3 +/- 0.5 -37.5 +/- 0.3 -34.35

Table A27: Free energy of solvation in hexadecane with polarisation corrections (kJ/mol).

Model 1 Model 2 Model 3 Minnesota Katryzky Bordner

Methylamine -3.1 +/- 0.1 -6.5 +/- 0.1 -11.51 +/- 0.09 N/A N/A -7.42
Ethylamine -4.9 +/- 0.1 -8.0 +/- 0.1 -13.0 +/- 0.3 -9.58 -9.58 -9.59
Propylamine -7.5 +/- 0.2 -10.8 +/- 0.2 -15.4 +/- 0.3 -12.22 -12.20 -12.22
Butylamine -10.9 +/- 0.3 -13.5 +/- 0.2 -18.4 +/- 0.2 N/A -14.94 -14.96
Pentylamine -13.2 +/- 0.3 -16.2 +/- 0.2 -20.9 +/- 0.2 -17.91 -17.90 -17.93
Hexylamine -16.2 +/- 0.3 -19.0 +/- 0.3 -24.0 +/- 0.2 N/A N/A -20.89
Heptylamine -18.8 +/- 0.5 -22.0 +/- 0.3 -26.4 +/- 0.4 N/A N/A -23.81
Octylamine -21.7 +/- 0.4 -24.7 +/- 0.3 -29.0 +/- 0.3 N/A N/A -25.80
Nonylamine -24.6 +/- 0.5 -27.6 +/- 0.3 -32.3 +/- 0.6 N/A N/A N/A
Decylamine -27.9 +/- 0.4 -30.4 +/- 0.3 -35.2 +/- 0.4 N/A N/A N/A

250



Figure A17: Liquid dipole of linear primary amines at 298.15 K and 1 bar obtained using
Model 1 (blue triangles), Model 2 (red circles) and Model 3 (purple rhombus). The green trian-
gles are the liquid dipoles obtained with the equation proposed by Leontyev and Stuchebrukhov
(Equation 2.49) [92] and the green diamonds are the gas dipoles obtained using Gaussian 09.
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Ketones

Table A28: Density (kg/m3).

Model 1 Model 2 Model 3 TraPPE Experimental

Propanone 786.75 +/- 0.07 784.29 +/- 0.08 787.10 +/- 0.05 777.55 +/- 0.04 785.00
Butanone 794.04 +/- 0.04 792.79 +/- 0.04 791.34 +/- 0.06 788.98 +/- 0.04 799.00
Pentanone 798.37 +/- 0.07 797.11 +/- 0.04 795.76 +/- 0.03 795.83 +/- 0.06 802.00
Hexanone 805.61 +/- 0.05 804.50 +/- 0.05 803.41 +/- 0.04 804.72 +/- 0.04 807.00
Heptanone 810.41 +/- 0.08 809.28 +/- 0.06 808.64 +/- 0.08 810.69 +/- 0.06 811.00
Octanone 814.60 +/- 0.07 813.58 +/- 0.06 813.33 +/- 0.09 815.76 +/- 0.08 815.00
Nonanone 818.07 +/- 0.07 817.12 +/- 0.09 816.98 +/- 0.07 819.92 +/- 0.07 816.70
Decanone 821.17 +/- 0.06 820.24 +/- 0.05 820.26 +/- 0.09 823.5 +/- 0.1 819.80

Table A29: Diffusion constant (10-5 cm2/s)

Model 1 Model 2 Model 3 TraPPE Experimental

Propanone 4.14 +/- 0.02 3.95 +/- 0.02 4.30 +/- 0.02 4.94 +/- 0.02 4.2
Butanone 3.69 +/- 0.02 3.54 +/- 0.02 3.69 +/- 0.01 4.36 +/- 0.02 3.58
Pentanone 3.00 +/- 0.01 2.89 +/- 0.01 2.77 +/- 0.01 3.57 +/- 0.02 2.97
Hexanone 2.37 +/- 0.01 2.275 +/- 0.008 2.09 +/- 0.01 2.82 +/- 0.02 2.06
Heptanone 1.88 +/- 0.01 1.81 +/- 0.01 1.61 +/- 0.01 2.239 +/- 0.009 1.61
Octanone 1.49 +/- 0.01 1.429 +/- 0.005 1.22 +/- 0.01 1.79 +/- 0.01 1.18
Nonanone 1.232 +/- 0.007 1.197 +/- 0.009 1.015 +/- 0.005 1.49 +/- 0.01 0.957
Decanone 0.994 +/- 0.008 0.963 +/- 0.007 0.804 +/- 0.007 1.2 +/- 0.01 0.747

Table A30: Enthalpy of vaporisation with polarisation corrections (kJ/mol).

Model 1 Model 2 Model 3 TraPPE (C) Experimental

Propanone 29.36 +/- 0.02 30.04 +/- 0.02 30.17 +/- 0.02 26.17 +/- 0.02 31.30
Butanone 33.09 +/- 0.02 33.77 +/- 0.02 33.65 +/- 0.04 29.88 +/- 0.03 34.70
Pentanone 37.77 +/- 0.05 38.39 +/- 0.04 38.28 +/- 0.03 34.35 +/- 0.04 38.40
Hexanone 42.29 +/- 0.03 42.98 +/- 0.08 42.76 +/- 0.07 38.69 +/- 0.06 43.10
Heptanone 47.22 +/- 0.07 47.76 +/- 0.04 47.60 +/- 0.05 43.36 +/- 0.06 48.50
Octanone 51.97 +/- 0.05 52.71 +/- 0.09 52.45 +/- 0.07 47.98 +/- 0.04 52.60
Nonanone 56.72 +/- 0.09 57.43 +/- 0.04 57.21 +/- 0.07 52.52 +/- 0.05 56.40
Decanone 61.43 +/- 0.08 62.02 +/- 0.09 61.82 +/- 0.06 56.90 +/- 0.07 60.90

Table A31: Dielectric constant with polarisation corrections.

Model 1 Model 2 Model 3 TraPPE (C) Experimental

Propanone 31.9 +/- 0.4 30.0 +/- 0.4 32.2 +/- 0.4 30.9 +/- 0.3 20.49
Butanone 27.8 +/- 0.2 25.6 +/- 0.3 27.5 +/- 0.3 27.1 +/- 0.4 18.25
Pentanone 22.1 +/- 0.3 20.7 +/- 0.2 22.4 +/- 0.3 21.6 +/- 0.2 15.20
Hexanone 19.0 +/- 0.2 17.8 +/- 0.2 19.4 +/- 0.2 18.6 +/- 0.3 14.14
Heptanone 15.6 +/- 0.2 15.0 +/- 0.2 16.3 +/- 0.3 15.4 +/- 0.1 11.66
Octanone 14.92 +/- 0.09 14.4 +/- 0.2 15.7 +/- 0.2 14.7 +/- 0.1 10.50
Nonanone 13.7 +/- 0.2 12.9 +/- 0.2 14.4 +/- 0.1 13.5 +/- 0.2 9.57
Decanone 11.1 +/- 0.2 10.55 +/- 0.07 11.6 +/- 0.2 10.9 +/- 0.1 8.88
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Table A32: Dipole (D). Simulated errors were all lower than 0.001 D

Model 1 Model 2 Model 3 TraPPE Estimated liquid dipole

Propanone 2.7233 2.642 3.23416 2.5029 4.72
Butanone 2.7233 2.63829 3.22901 2.5029 4.70
Pentanone 2.7233 2.63822 3.22892 2.5029 4.58
Hexanone 2.7233 2.63818 3.22889 2.5029 4.57
Heptanone 2.7233 2.63812 3.22883 2.5029 4.42
Octanone 2.7233 2.63808 3.2288 2.5029 4.59
Nonanone 2.7233 2.63806 3.2288 2.5029 4.61
Decanone 2.7233 2.63803 3.22876 2.5029 4.29

Table A33: Free energy of self-solvation with polarisation corrections (kJ/mol).

Model 1 Model 2 Model 3 TraPPE (C) Experimental

Propanone -18.1 +/- 0.1 -18.55 +/- 0.09 -18.2 +/- 0.1 -16.0 +/- 0.2 -17.35
Butanone -20.30 +/- 0.05 -20.8 +/- 0.2 -20.0 +/- 0.1 -20.1 +/- 0.2 -19.24
Pentanone -23.0 +/- 0.1 -23.3 +/- 0.3 -22.6 +/- 0.3 -20.7 +/- 0.3 -20.79
Hexanone -25.3 +/- 0.1 -25.8 +/- 0.3 -25.1 +/- 0.3 -23.0 +/- 0.4 -24.55
Heptanone -28.5 +/- 0.1 -29.0 +/- 0.2 -27.7 +/- 0.2 -26.3 +/- 0.3 -26.38
Octanone -31.3 +/- 0.2 -31.6 +/- 0.3 -30.3 +/- 0.6 -28.7 +/- 0.3 -28.95
Nonanone -34.3 +/- 0.3 -34.7 +/- 0.3 -33.2 +/- 0.4 -31.2 +/- 0.6 -31.53
Decanone -37.3 +/- 0.3 -37.3 +/- 0.9 -35.7 +/- 0.6 -33.5 +/- 0.5 -33.57

Table A34: Free energy of solvation in hexadecane with and without polarisation corrections
(kJ/mol).

PolCA TraPPE TraPPE(C) Minnesota Katryzky

Propanone -17.6 +/- 0.2 -10.5 +/- 0.2 -20.6 +/- 0.2 -9.66 -9.64
Butanone -17.9 +/- 0.3 -13.2 +/- 0.2 -20.5 +/- 0.2 -13.05 -13.06
Pentanone -19.3 +/- 0.2 -16.3 +/- 0.3 -21.9 +/- 0.3 -15.73 -15.74
Hexanone -21.2 +/- 0.3 -18.7 +/- 0.2 -23.3 +/- 0.2 -18.62 -18.59
Heptanone -23.3 +/- 0.4 -21.9 +/- 0.6 -25.7 +/- 0.6 -21.46 -21.44
Octanone -26.6 +/- 0.2 -24.2 +/- 0.5 -27.8 +/- 0.5 -24.31 -24.29
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Mixtures

Table A35: Free energy of solvation of alkanes in octanol (kJ/mol).

Model PolCA TraPPE (C)

Methane 1.9 +/- 0.2 2.1 +/- 0.2
Ethane -2.6 +/- 0.3 -2.0 +/- 0.1
Propane -5.6 +/- 0.2 -4.75 +/- 0.08
Butane -8.4 +/- 0.3 -7.4 +/- 0.2
Pentane -11.4 +/- 0.4 -9.7 +/- 0.3
Hexane -14.3 +/- 0.4 -12.8 +/- 0.3
Heptane -16.8 +/- 0.7 -15.0 +/- 0.2
Octane -20.0 +/- 0.3 -17.7 +/- 0.4
Nonane -22.4 +/- 0.3 -20.0 +/- 0.3

Table A36: Solvation free energy of amines in octanol without and with polarisation corrections
(kJ/mol).

PolCA Gromos-PME Gromos-PME(C) Minnesota Katryzky Bordner

Methylamine -8.6 +/- 0.3 -7.1 +/- 0.5 -8.1 +/- 0.5 -15.82 -10.83 -15.81
Ethylamine -10.5 +/- 0.3 -8.6 +/- 0.3 -9.2 +/- 0.3 -17.11 N/A -18.10
Propylamine -12.8 +/- 0.3 -12.6 +/- 0.3 -13.0 +/- 0.3 -19.96 N/A -21.12
Butylamine -15.6 +/- 0.3 -15.6 +/- 0.5 -16.0 +/- 0.5 -22.30 N/A -22.78
Pentylamine -18.5 +/- 0.4 -19.2 +/- 0.6 -19.5 +/- 0.6 N/A -20.58 -25.41
Hexylamine -21.1 +/- 0.4 -22.2 +/- 0.7 -22.5 +/- 0.7 N/A N/A -28.32
Heptylamine -23.4 +/- 0.6 -26.0 +/- 0.7 -26.2 +/- 0.7 N/A N/A -30.54
Octylamine -27.1 +/- 0.7 -29.4 +/- 0.9 -29.6 +/- 0.9 N/A N/A N/A

Table A37: Solvation free energy of ketones in octanol without and with polarisation corrections
(kJ/mol).

PolCA TraPPE TraPPE(C) Minnesota Katryzky

Propanone -21.2 +/- 0.6 -12.1 +/- 0.1 -15.1 +/- 0.1 -13.18 -13.23
Butanone -23.2 +/- 0.9 -14.3 +/- 0.2 -16.4 +/- 0.2 -15.82 -16.03
Pentanone -25.1 +/- 0.8 -16.7 +/- 0.3 -18.3 +/- 0.3 -18.20 -18.19
Hexanone -27.8 +/- 0.8 -19.7 +/- 0.3 -21.1 +/- 0.3 -21.00 -20.98
Heptanone -30.1 +/- 1.0 -22.4 +/- 0.4 -23.5 +/- 0.4 -23.64 -23.66
Octanone -34.2 +/- 0.8 -24.9 +/- 0.5 -25.9 +/- 0.5 -26.69 N/A

Other simulated values

Table A39: Enthalpy of vaporisation and self-solvation free energy of 2-aminoethanol at 298.15
K simulated with PolCA.

PolCA Experimental

ΔHvap 52.70 +/- 0.06 59.63
ΔGsolv -27.7 +/- 0.4 -34.03
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Table A38: Solvation free energy of alcohols in butanone with polarisation corrections (kJ/mol).
Polarisation corrections are almost zero, and thus TraPPE(C) is the only one shown here.

PolCA TraPPE(C) Katryzky

Methanol -21.7 +/- 0.2 -12.2 +/- 0.1 -16.02
Ethanol -23.8 +/- 0.3 -14.6 +/- 0.1 -18.07
Propanol -26.4 +/- 0.3 -17.1 +/- 0.1 -20.70
Butanol -28.9 +/- 0.2 -20.1 +/- 0.3 -23.49
Pentanol -31.6 +/- 0.4 -22.8 +/- 0.2 N/A
Hexanol -34.5 +/- 0.3 -25.6 +/- 0.2 -28.22
Heptanol -36.8 +/- 0.4 -28.2 +/- 0.3 N/A
Octanol -39.5 +/- 0.4 -30.5 +/- 0.4 -34.15
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