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Abstract 
 

Industrial biotransformation processes are becoming increasingly important for the 

production of single enantiomers of both low value commodity and high value fine 

chemicals. Despite this demand and the regulatory authorities encouragement of a 

quality by design approach, the application of process analytical technology to these 

systems has, to date, been relatively limited. A more traditional off-line approach 

involving chromatographic methods is still commonly employed for the 

quantification of key analytes during the process. In-situ measurements tend to be 

limited to physical parameters of the system such as pH and dO2, which give little 

information about the actual process progression. 

 

This study investigates the potential of applying infrared spectroscopic techniques to 

monitor and quantify the key components of de-racemisation and transaminase 

biotransformation processes. Multivariate models based on the near and mid infrared 

spectroscopic regions have been constructed for a variety of these processes. Each 

constructed model was subjected to an external validation procedure to ensure 

rigorous testing. Stoichiometric linkages were known to exist within these systems. 

Whilst steps were taken to ensure these linkages were broken, the contributors to 

each model were also carefully examined to ensure that co-linearity within the 

constructed models had been adequately addressed. Having constructed robust 

process models, mechanisms of ensuring the long-term suitability of the models were 

also investigated. This aimed to ensure the continued predictive ability of the 

constructed models following instrument maintenance, repair or replacement.  

 

Quantitative models resulted that were able to predict the key analyte concentrations 

of the external validation datasets over the course of the biotransformation processes. 

Predicted values from the constructed models were in good agreement with both the 

errors of calibration and cross validation associated with the models, and the actual 

concentrations predicted by the off-line chromatographic reference methods. 
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1. Literature Review 
 

1.1 Introduction  

 

Currently there is a demand for the manufacture of chiral compounds for use in the 

manufacture of pharmaceuticals. The stereochemistry of molecules has proven 

implications on drug efficacy, as well as other features such as drug metabolism and 

excretion of the compound from the body. Chirality has proven such an important 

factor in drug development that many pharmaceuticals currently produced in racemic 

form are being re-examined to determine if single isomeric forms provide more 

effective treatments.1 

 

Amino acids exhibit chirality and are rapidly becoming important intermediates in 

the synthesis of many pharmaceutical compounds as well as other industrially 

relevant compounds. However mechanisms for the medium to large scale (10-15 L) 

production of such un-natural chiral amino acids are limited.2 

 

Fotheringham et al. (2006) reported the development of a general bio-catalytic 

approach to the production of multiple unnatural chiral amino acids in high 

enantiomeric excess. The approach selectively converted the undesired enantiomer of 

a racemic amino acid mixture using D-amino acid oxidase enzymes expressed by a 

microorganism.2 These DAAO enzymes are naturally occurring within mammalian 

cells (pig kidney) and in yeasts.3, 4 The enzymes can however be expressed by 

recombinant Escherichia coli cells and used for the production of unnatural amino 

acids and α-keto acids.5 

 

As an example of the generation of such unnatural chiral amino acids, Fotheringham 

et al. (2006) cited the preparation of L-2-aminobutyric acid in enantiomeric excess of 

over 99% from the inexpensive, racemic 2-aminobutyric acid substrate.2  

 



 2 

Within the pharmaceutical industry regulatory authorities are actively encouraging 

the implementation of technology that promotes greater understanding and control of 

critical process parameters in the manufacture of drugs and drug intermediates. 

Support of this approach culminated in the 2004 publication of the process analytical 

technology (PAT) directive by the United States Food and Drug Administration 

(FDA).6 

 

Such a lucrative process for the generation of these important chiral amino acids 

provided the ideal opportunity to investigate the implementation of PAT, particularly 

the already well established technique of infrared spectroscopy, for monitoring and 

control of these industrially relevant biotransformation processes. Adopting such a 

methodical and structured approach will allow for greater process understanding and 

improved process control. As a consequence this will result in an improved product 

quality, potentially leading to improved yields and better final product quality.7 It 

was however also synonymous with the regulators insistence on the generation of 

high quality products consistently.6 

 

1.1.1 Process Analytical Technology Initiative 

 

The key driving force behind the implementation of PAT to bioprocesses, 

particularly those employed for the production of high value recombinant protein 

based drugs, was the publication in 2004 of the Untied States Food and Drug 

administration PAT initiative.6 

 

This initiative signified a shift in position from the traditional approach of testing the 

final product of a process for quality and rejecting batches that failed to meet these 

requirements.8 Going forward a “quality by design” (QbD) approach to 

manufacturing was suggested for implementation. This approach centred around 

introducing the concept of process understanding, control and consistency to not only 

improve the quality of the end product but ensure consistency of quality.9 A 

philosophy concisely expressed within the published recommendations: 
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“…quality cannot be tested into products; it should be built-in or should be by 

design…” 

U.S Department of Health & Human Services, Food & Drug Administration (2004)6 

 

In order to attain such quality and consistency it was necessary to have a thorough 

understanding of the process, deviations within the process and also any interactions 

that can and do occur during the process. Adopting a QbD approach shifted the focus 

firmly towards implementing sound scientific methodology throughout the process 

from raw materials, through manufacture and onto products.8 

 

The detailed understanding of such processes is attained using PAT analytical 

techniques, which incorporate chemical, physical, biological and mathematical 

approaches to monitoring the system.6 These measurements can then be used for 

feedback control to maintain the process consistently within acceptable parameters 

thus ensuring the quality of the product.9 

 

As well as ensuring the quality of the final product there are a number of advantages 

to the manufacturer of adopting a QbD approach and the recommendations set down 

by the PAT initiative. A reduction in the amount of rejected product would be an 

obvious advantage of the system. Any reduction in wastage or improvement to final 

product quality would result in financial advantages to the manufacturer. Streamlined 

and better-understood processes were also a likely outcome of implementation of the 

PAT initiative ultimately resulting in decreased costs and increased product 

yields.6, 9 

 

1.1.2 Bioprocesses 

  

The term bioprocess is broad and can be used to refer to multiple biological reactions 

or processes. It can be used to describe the cultivation of cellular material (a 

submerged culture process), the production of recombinant products (natural or 

foreign proteins) or the catalytic conversion or generation of a product 

(biotransformation).10 Processes involving the use of biological catalysts have 
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become increasingly common in the industrial setting but also at the laboratory 

development scale.11 

 

1.1.2.1 Chemical Synthesis vs. Biocatalysis 

 

Details of the mechanisms and routes utilised in the generation of compounds 

adopting a synthetic chemical approach are well understood, with a substantial 

knowledge and experience base available.12 Whilst bio-catalytic routes may not be as 

well understood they offer a number of key advantages over chemical approaches. 

High levels of regio-selectivity and stereo-selectivity can often be achieved in fewer 

stages and under milder reaction conditions than the corresponding chemical 

approach. Clearly bio-catalytic processes offer a number of distinct advantages over 

traditional chemical approaches, however there are a number of important factors 

that must be considered to determine if they are indeed the best approach.12, 13 

 

1.1.2.1.1 Process Considerations 

 

A number of key issues, specifically biocatalyst availability, purity and the 

associated costs of production, both in terms of substrate and downstream processing, 

need to be considered before utilising these biocatalysts. The economics of the 

process have meant that bio-catalytic processes have been limited to the production 

of high value specialty chemicals.11, 12 However some common industrial processes 

do employ biocatalysts, specifically the generation of acrylamide from acrylonitrile 

and the generation of fructose from glucose.11 

 

Whilst there are some challenges associated with the utilisation of biological 

catalysts these can be outweighed by the favourable process conditions. Generally 

biologically catalysed processes can be carried out under much milder conditions 

(temperature, pressure and pH) compared with synthetic organic processes. Since the 

main solvent utilised is water, these bioprocesses also have ‘green’ credentials 

compared with the more traditional approaches.13 
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1.1.2.1.2 Bioreactor 

 

The biocatalysts that are to be exploited are naturally occurring enzymes commonly 

found in plant, animal or microbial cells. To obtain these proteins in sufficient 

quantities microbial cells, such as Escherichia coli (E. coli) can be modified. 

Modification involves the insertion of a plasmid into the host cell, that upon 

induction produces large quantities of the desired enzyme.4 

 

Growth of these organisms to produce sufficient levels of biomass, and therefore 

protein, would require the use of a suitable bioreactor. Whilst the stirred tank reactor 

(STR) design is regarded as the standard14 there are some instances where other more 

specialised bioreactor designs may be more suited for the catalytic process. An 

example of such a process is the production of tertiary-L-leucine using leucine 

dehydrogenase enzymes. The process requires the regeneration of a co-factor, a 

molecule that binds to a protein bringing about biological activity, and is better 

achieved using a membrane reactor rather than the standard STR design.12 

 

1.1.2.1.3 Enzyme Form 

 

The form in which the biocatalyst is present in the system is also a key factor 

influencing the process. Whole cells can be utilised or alternatively the desired 

enzyme may be isolated as the free enzyme or immobilised onto an insoluble support 

structure. Various approaches to immobilisation have been reported, however the 

ultimate aim is to fix the catalyst in a particular location to improve turnover.13 

Isolation or immobilisation of the enzymes would result in an increase in the costs 

associated with the bioprocess, as well as increasing the number of steps in the 

process.12 

 

1.1.2.2 Industrial Applications 

 

Despite their increased complexity, both in terms of the genetic modification 

required for expression of the enzyme and the conditions required to generate 



 6 

sufficient quantities of the enzyme of interest, bio-catalytic processes have been 

utilised on the industrial scale.11 

 

Under the more specialty chemicals banner bio-catalytic processes have been utilised 

for the generation of chiral alcohols and D-amino acids. Biological pathways have 

also been reported for the generation of natural products from relatively cheap 

substrates such as the conversion of D-glucose to vanillin.11 

 

The application of bioprocesses on a larger industrial scale (production of ~250,000 

L per day) has been more limited presumably due to the high production costs and 

low value product. Some processes are economically feasible such as the conversion 

of acrylonitrile to acrylamide and the breakdown of lactose to glucose and galactose 

for use in low-lactose milk.11 

 

1.1.3 Biotransformation Process 

 

Many of the bioprocesses discussed fall into the category of biotransformation 

processes. By definition a biotransformation process brings about a minor, but highly 

specific, change to the structure of a molecule. These changes are carried out by a 

microorganism that is not undergoing growth. One of the key advantages is the 

control over stereochemistry offered by these processes in comparison with 

traditional chemical approaches.15  

 

1.2 Spectroscopic Approaches to Process Monitoring 

 

Vibrational spectroscopic (infrared) techniques offer a fast and non-destructive 

method of acquiring sample information.16 Unlike many traditional approaches to 

monitoring key parameters of a system, spectroscopic methods are able to monitor 

and, with the aid of chemometric models, quantify these multiple components in a 

system.17, 18 
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The particular bioprocess of interest in this study was a biotransformation for the de-

racemisation of an amino acid. Application of spectroscopic approaches to monitor 

such processes has been relatively limited; however there has been substantial 

application of the technique to other bioprocesses. Many of the challenges 

encountered in applying this technique in such systems, and the solutions, were 

likely to be consistent with those encountered with the biotransformation processes. 

For this reason the literature survey initially considered all bioprocesses before 

specifically focusing on biotransformation systems.  

 

A variety of different approaches to the acquisition of infrared spectroscopic data 

have been reported. With spectroscopic measurements the objective was aimed less 

towards obtaining information about physical parameters of the system (such as pH 

and growth rate) and more related to deriving information regarding changes to key 

substrates or products.19 

 

Sampling approaches can be classified into three major categories: off-line, at-line 

and on-line (Figure 1-1). 

 

 
Figure 1-1 – Graphical representation of the various sampling approaches 

(Vaidyanathan et al. (1999)) utilised for the acquisition of the infrared spectra of the 

reactor contents at various stages during a bioprocess.19 

 

As the name suggests, off-line sampling is an invasive process that involves the 

removal of a sample from the reactor. These samples are then stored, or in some 
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cases undergo sample pre-treatment, and analysed away from the location of the 

bioreactor.19 The key issue with this approach is the substantial time lag that is 

introduced from the point of sampling until the sample information is reported. From 

a process control perspective, particularly of batch processes, this is not an ideal 

situation as in many cases the window of opportunity for corrective action will have 

passed by the time the relevant information has been obtained. 

 

The at-line sampling approach has a number of similarities with the off-line method. 

Representative samples are removed from the process and analysed using 

instrumentation in the vicinity of the reactor.16, 20 A rapid at-line sampling approach 

offers many advantages over the off-line method, however the process is still 

invasive with a time lag between sampling and the process information being 

available. 

 

On-line sampling approaches actually take the sampling, in this case spectral 

acquisition, into the process, eliminating the invasive sampling procedure required 

by off-line and at-line methods.17 Located within, or as part of, the reactor vessel it 

also means a higher sampling frequency allowing for the possibility of obtaining near 

real time process information.19 The class can be further sub-divided into ex-situ and 

in-situ sampling mechanisms.  

 

Ex-situ (in-line) approaches place the analyser outside the actual reactor vessel with 

an aliquot of the process fluid diverted through a flow cell structure to allow the 

required measurements to be made. Once the various measurements have been made 

the extracted fluid is then returned to the reactor.19-21 

 

Alternatively an in-situ approach to sampling may be taken. This places a probe 

inside the reactor system and in contact with the process fluid. Measurements made 

in this manner are regarded as the optimum sample collection mechanism. This non-

invasive sampling approach is often regarded as the ideal solution to near real time 

process monitoring.19-21 
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Even although a variety of sampling approaches for the acquisition of spectroscopic 

data were available, a clear list of preference had emerged. However the feasibility 

of implementation would depend on the spectroscopic region being investigated and 

the availability of the necessary equipment. 

 

1.2.1 Near Infrared Spectroscopy 

 

Near infrared spectroscopy (NIR) has been employed in a variety of industrial 

settings ranging from the food and agricultural industries through to the more recent 

move to into the pharmaceutical and petrochemical industries.22 The near infrared 

spectroscopic region covers the wavelength range from 700 nm through to 2500 nm 

(4000 cm-1 to 14285 cm-1).23 Signals in this region of the electromagnetic spectrum 

are a result of overtones and combination bands of the fundamental bending and 

stretching of bonds observed in the middle (mid) infrared region.23, 24 These 

transitions are however formally forbidden but can result from the molecules 

behaviour as an anharmonic oscillator (discussed further in section 2.4). As a result 

of this the vibrational transitions do not occur frequently so the resulting signals are 

generally very weak, reportedly between 10 and 100 times weaker, some suggest 

even 1000 times weaker20, than a corresponding allowed transition in the middle 

infrared region.24 Signals in this region also tend to be broad and overlapping and 

require chemometric techniques to elucidate spectral features.25 

 

These weak, broad and overlapping signals may appear problematic from a 

theoretical perspective, however when attempting to monitor biological systems in 

particular these features are actually advantageous. 

 

Weaker signals will allow for the use of longer path lengths compared with the 

traditional small optical path lengths associated with other spectroscopic approaches. 

Longer path lengths subsequently allowed for the analysis of a larger sample volume 

thereby giving greater confidence in the sample homogeneity.18 By extension 

therefore this would imply that analytes present at relatively low concentrations 

could also be monitored. 
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By their nature, biological processes are optically challenging matrices. Highly 

turbid, light scattering bacterial systems or clean but complex cell culture media 

containing many correlated analytes, both benefit from this weak nature of the 

signals in the near infrared region.24-27 

 

1.2.1.1 Spectral Acquisition 

 

Light incident on the presented sample can be measured in three ways; the 

transmitted light, reflected light or via a hybrid method based around transflectance 

(Figure 1-2). As the name suggests transmission spectroscopy directs the incident 

beam of light through the sample and then measures the light that has passed through 

the sample. Diffuse reflectance measurements direct an incident beam of light onto 

the sample and measures the light reflected back by the sample. Transflectance 

measurements are a hybrid of the two approaches and are discussed in more detail 

when considering near infrared probe designs for in-situ applications (1.2.1.5). 

 

 
Figure 1-2 – Illustration of the three possible infrared measurement approaches: (a) 

transmission, (b) reflectance and (c) transflectance. Adapted from Vaidyanathan et al. 

(1998).20 
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The acquired spectra are commonly represented as absorbance spectra, however it is 

actually the unabsorbed light (transmitted or reflected) that is measured by the 

detector system. These measurements are then converted using Equation 1 (where T 

is transmitted light) or Equation 2 (where R is reflected light) depending on the 

collection mechanism, to give the familiar absorbance spectrum commonly 

associated with infrared spectroscopy.21 

 

!"#$%"&'() = log 1
!  Equation 1 

!"#$%"&'() = log 1
!  Equation 2 

 

Although near infrared spectroscopy has become a popular, fast and non-destructive 

process analysis technique23, there are some fundamental issues with the technique 

that must be taken into account. With biological systems in particular the background 

matrix will undoubtedly be mainly water. 

 

The presence of water in the background matrix can be problematic due to the strong 

absorbance exhibited by the OH vibrations. Techniques such as employing a shorter 

sample path length, increasing the number of averaged scans or using mathematical 

algorithms often need to be employed to reduce the dominance of these effects.22, 28 

 

1.2.1.2 Near Infrared Instrumentation 

 

Within the near infrared region two spectrometer designs dominate – the dispersive 

instrument and a Fourier transform instrument. Both types of instrument are 

commonplace, although they are optically very different. Further details on the 

optical differences between the two systems are discussed in section 2.4.3. 

 

Briefly dispersive instruments utilise a series of prisms, mirrors and grating 

monochromators to separate the light source into the various component wavelengths. 

By moving the position of the mirrors and gratings the infrared spectrum at the 

various wavelengths can be obtained. Fourier transform infrared (FT-IR) instruments 
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utilise a Michelson interferometer to separate the light into its component 

frequencies and generate an interferogram. A Fourier transform algorithm is then 

used to convert the interferogram to the traditional infrared spectrum.21 FT 

instruments offer a number of advantages over the more traditional dispersive design, 

with an improved signal to noise ratio being one of the key advantages.21, 29 

 

1.2.1.3 Off-line/At-line Sampling 

 

In the vast majority of cases at-line near infrared samples were presented to the 

spectrometer system for analysis in quartz cuvettes. This approach provides a quick, 

easy and convenient method of altering the sample path length, typically between 0.5 

mm and 2 mm. In most reported cases involving at-line sampling with cuvettes the 

acquired spectra have been the transmission spectra.16, 22, 24-26, 30-32 Presentation of the 

sample in cuvettes is not restricted to transmission measurements. Reflectance 

spectra of samples can also be obtained using a cuvette based sample presentation 

approach. Typically however these cuvette path lengths tend to be substantially 

larger, with path lengths of 1 mm up to 10 mm having been reported.33, 34  
 

An adaptation on the cuvette based sampling approach introduces temperature 

control to the system. The sample is still presented to the spectrometer in a quartz 

cuvette however the sample chamber is temperature controlled. Adopting this 

approach will reduce any temperature dependent spectral variations improving the 

reproducibility of the spectra.28 In addition this approach allows the sample spectra 

to be acquired under conditions that were consistent with those in the bioreactor.27, 35-

38  

 

1.2.1.4 In-line Sampling  

 

The in-line sampling approach represents a method of on-line monitoring but in an 

ex-situ manner as the spectral acquisition device is located outwith the reactor system. 

Compared with at-line and in-situ sampling methods there has been relatively limited 

application of in-line sampling and spectral acquisition approaches with near infrared 
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systems. Particularly with biological systems in-line sampling approaches have been 

prone to spectral artifacts, dead volumes and sterility problems.17 

 

Generally in-line sampling systems utilise a flow through cell design that mimics the 

quartz cuvettes used with the at-line sampling approach. With the aid of a pump the 

sample material is removed from the bioreactor system, passed through the flow cell 

where the near infrared spectrum is obtained before being returned to the bioreactor 

system (Figure 1-3). Sample intervals for this method have been reported at thirty-

minute intervals up to twelve hours.39, 40 

 

 
Figure 1-3 - Schematic representation adapted from Holm-Nielsen et al. (2007) of 

typical in-line flow through system employed for sampling and spectral acquisition 

in the near infrared region.39 

 

An alternative approach to in-line sampling was put forward by Ge et al. (1994). 

This approach utilised a custom-built infrared spectrometer system with the light 

transmitted via a fibre-optic bundle. The tip of this bundle was placed in contact with 

the glass walls of the bioreactor system and spectroscopic measurements made based 

on the diffuse reflectance principal.41 This setup was essentially similar to using a 

reflectance probe located outwith the reactor to make the required measurements. As 

* 

Pump 

Flow Cell 

Light Source Detector 
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the technology now exists to allow this approach to be readily applied in-situ there 

may be limited applications for this particular setup, unless dictated by an external 

factor such as reaction conditions. 

 

Although possible in-line sampling approaches for the near infrared region in 

particular have been relatively limited, mostly likely due to the aforementioned 

difficulties with the technique (sterility and spectral artifacts)17 and that robust in-situ 

sensors are readily available. 

 

1.2.1.5 In-situ Sampling 

 

Sampling approaches applied in-situ are achieved using probe based sampling 

systems that place the ‘sample window’ in physical contact with the sample matrix 

inside the bioreactor system.21, 23, 25 

 

Within the NIR frequency region, with the exception of the combination bands, light 

can be transmitted both to and from the spectrometer system using silica based fibre-

optic cabling.17 This fibre optic transfer cable can consist of either a single fibre to 

transfer the light to the sample and a single fibre to carry the light back to the 

detector or a bundle of fibres in each case. The type of measurement being made may 

however dictate which approach was the more suitable, with reflectance 

measurements favouring a fibre bundle due to the greater probabilities of scattered 

light being collected.42 

 

A variety of different probe designs based on the three key measurement principals 

(Figure 1-2) are available, highlighting the flexibility offered by the technique.20  

 

In-situ transmission measurements of a process sample can be made relatively 

simply. An optical fibre conveys the light from the radiation source to the sample. 

The light then passes through the sample at a fixed path length before being collected 

by a second fibre at the opposite end of the sample material and transported to the 

detector system.43 By placing two fibres opposite each other, at a fixed distance apart 
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within the process environment, and encasing in a metal housing an in-situ 

transmission probe can be constructed. The sample can then be passed through the 

fixed gap allowing acquisition of the spectra.44 

 

In situations where the sample matrix contains a high concentration of particulate 

materials or the matrix is highly light scattering, diffuse reflectance measurements 

can provide the best quality spectrum.44 Light from the source is directed via optical 

fibres to the sample location. Any light reflected by the sample is then collected by 

another fibre bundle and transported to the detector system.45 

 

Probe systems based on the transflectance measurement principal have been 

commonly utilised with biological systems.23, 46-49 In this case the sample is placed 

onto a reflective surface so the incident beam of light passes through the sample 

material (as in transmission spectroscopy) is then reflected off the mirror and back 

through the sample material a second time before passing to the detector (Figure 

1-4).50 Variations to the path length through which the light travels can then be made 

either by altering the amount of sample material present (size of sample gap) or the 

angle at which the incident light is directed to the sample. Depending on the nature 

of the presented sample the acquired spectra may also contain an element of diffuse 

reflectance that must also be taken into account.42, 43 

 

 
Figure 1-4 - Schematic representation and image of transflectance probe for use with 

near infrared spectroscopy adapted from Roychoudhury et al. (2007), Vaidyanathan 

et al. (1998) and Hassell et al. (1998).20, 42, 46 Key components of the probe have also 

been indicated. 
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1.2.2 Middle Infrared Spectroscopy 

 

The middle infrared (MIR) spectroscopic region incorporates the frequency range 

from 400 cm-1 through to 4000 cm-1.19, 51 Un-like the near infrared, signals in the mid 

infrared region arise due to the fundamental vibrations of the bonds within a 

molecule. Under the rules defined by quantum mechanics these are allowed 

vibrational transitions and so can occur easily and frequently. The signals observed 

are therefore generally much more intense than those obtained within the near 

infrared region.52, 53 

 

Signals in the mid infrared region also tend to be sharper and more resolved than are 

observed within the near infrared region. Within the fingerprint region (below 1200 

cm-1) unique, analyte specific patterns are recorded in addition to the useful features 

observed over the remainder of the region. These unique patterns can therefore be 

utilised for structural elucidation and identification of unknown compounds as well 

as the quantification of known analytes of interest.51, 53-56 

 

Despite one of the key positives of mid infrared being that the signals arose due to 

fundamental, allowed transitions this is also one of the greatest challenges associated 

with the technique. Since the transitions are allowed they occur readily and 

essentially cause saturation of the detector. In order to acquire an acceptable mid 

infrared spectrum very small sample path lengths, or small sample amounts, are 

required. Traditional off-line laboratory methods such as the preparation of 

potassium bromide (KBr) discs or Nujoll mulls achieve this, however these 

approaches cannot be easily transferred to in-line or even in-situ approaches.54 

 

In a related issue the strong absorption characteristics of water, a key component in 

many biological fluids, could dominate the spectra in a phenomenon similar to that 

observed with the near infrared region.55, 57 

 

In order to overcome these issues it was necessary to utilise a sampling approach that 

allowed for these essential short path lengths (typically between 10 and 100 µm58) to 
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be obtained but still allow for rapid sampling approaches essential for process 

analysis. 

 

Suitably small path lengths (in the approximate region of 25 µm) could be obtained 

using attenuated total reflectance (ATR) crystals.54, 55, 58 This sampling approach 

places the ATR crystal surface in direct contact with the sample material, with the 

spectrum of the sample acquired as a result of an evanescent wave.58 

 

When light travelling through a medium with a particular refractive index (n1) meets 

a boundary with a second medium of different refractive index (n2) the beam of light 

can either undergo refraction or reflection. If the angle at which the incident beam of 

light hits the boundary is below the critical angle (determined by Equation 3) then 

the beam of light is refracted, where the angle through which it is refracted can be 

determined using Snell’s law (Equation 4) and illustrated in Figure 1-5.59 

 

!! = sin!! !!
!!

 Equation 3 

!!! sin!! = !! !sin!! Equation 4 

 

In cases where the light’s angle of incidence is greater than the critical angle the 

beam of light will undergo total internal reflectance, where the angle of incidence is 

equal to the angle of reflection according to the law of reflection (Figure 1-5). On a 

related note it is this property of total internal reflection that allows light to travel 

through the fibre optic bundles common on many near infrared spectrometer 

systems.59 

 

A phenomenon that results from these total internal reflections allows the acquisition 

of an infrared spectrum using ATR crystals. When the incident beam of light is 

internally reflected at the crystal/sample interface an evanescent wave propagates 

into the sample medium. IR active groups within the sample can absorb energy from 

this evanescent wave resulting in the generation of an infrared absorbance spectrum 

based on the transmitted frequencies as before (Equation 1).58 
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Figure 1-5 – Illustration of refraction and total internal reflectance of light at the 

boundary of materials and propagation of light through an ATR crystal illustrating 

the evanescent wave passing into the sample. In this case n1 refers to the refractive 

index of the crystal material, n2 the refractive index of the sample material, θi the 

angle of incidence and θr the angle of refraction.58, 59 

 

Since the evanescent wave only penetrates the sample material by a small amount 

this equates, over the multiple internal reflections, to an effective path length in the 

region of up to 25 µm. Ideal for the small path lengths required to acquire a suitable 

mid infrared spectrum of the sample material.58  

 

1.2.2.1 Off-line/At-line Sampling 

 

The more traditional approaches of producing potassium bromide discs of the sample 

material or the preparation of a Nujoll mull could be applied either off-line or at-

line.54 These approaches however are time consuming, involve extensive sample 

preparation procedures and may not be well suited for the direct analysis of process 

samples, particularly biological matrices. 

 

ATR crystal technology has been widely utilised for the at-line acquisition of mid 

infrared spectra.52, 53, 60 These systems house the ATR crystal within the spectrometer 
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design or via a sampling accessory. Different ATR crystal materials have been 

reported, the most common being zinc selenide (ZnSe) and diamond.53, 61 

 

Undoubtedly the associated cost implications will limit the available crystal surface 

area over which the sample can be placed. Diamond ATR crystals present a very 

small sampling surface however multiple internal reflections still occur resulting in 

an effective path length in the region of 10 µm.52, 53 Zinc selenide crystals offer a 

greater sampling surface area compared with diamond. This has the advantage that 

the crystal can be sunk into a trough allowing for easier liquid sampling and larger 

sample volumes.62 

 

ATR technology has also made the direct at-line sampling of solid materials possible, 

however good contact between the solid sample material and crystal surface is 

required to attain suitable spectra.58  

 

Although different crystal materials are available the most suitable will depend on 

the sample being analysed. Zinc selenide crystals have been reportedly damaged by 

samples containing acids or oxidising agents. Diamond ATR crystals appear to be 

the most chemically robust however the main disadvantage is their reduced optical 

range compared with ZnSe.54  

 

1.2.2.2 In-line Sampling 

 

The in-line sampling approach has been more extensively adopted to acquire mid 

infrared spectra compared with uptake in the near infrared region. Setup of the 

system adopted the same basic principal as that described for in-line near infrared 

sampling39, however due to the small path lengths required the sample acquisition 

mechanism was different.  

 

Franco et al. (2005) reported an application of the traditional in-line approach where 

the sample fluid was directed through a short path length (25 µm) barium fluoride 
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flow cell.63 This approach appeared to be in the minority, with most common 

examples employing ATR technology in place of the traditional flow cell. 

 

In most situations the in-line flow cell was simply replaced by an ATR crystal over 

which the sample media was directed to acquire the infrared spectrum.55, 57 A slight 

adaptation of the approach was put forward by Acha et al. (2000) which aimed to 

reduce the dominating spectral features arising from the strong absorptions of water 

in the background matrix.57 This was achieved by coating the surface of the ATR 

crystal with a permeable hydrophobic membrane. Analyte molecules were able to 

diffuse through the membrane layer to the crystal surface where they could interact 

with the evanescent wave. Water molecules were unable to permeate this membrane 

and so did not have an influence on the infrared spectrum acquired. 

 

With small volume bioreactor systems an in-line flow through system was reported 

where an in-situ mid infrared probe was mounted in the flow cell.64 Such an 

approach may have arisen due to the size of the bioreactor being unable to 

accommodate the mid infrared probe. However if the technology was available to 

take the measurements in-situ many of the issues associated with the in-line sampling 

approach could be avoided. 

 

1.2.2.3 In-situ Sampling 

 

With ATR crystals able to provide the very short path lengths required to obtain 

suitable mid infrared spectra the limiting factor in application of the technique in-situ 

has been connecting the probe to the spectrometer. Silica based optical fibres, such 

as those used with the near infrared systems, do not transmit light with wavenumbers 

below 3331 cm-1 (above 3000 nm or 3 µm).65  

 

Doak et al. (1999) reported the use of an in-situ ATR probe system to monitor an E. 

coli fermentation process.56 This particular system did not employ optical fibres to 

transmit light from the sampling tip to the spectrometer but a series of ‘knuckles’ 

each of which contained a mirror to direct the radiation beam. Whilst being an 
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effective approach, its application in an industrial setting would be expected to be 

fairly limited due to a lack of flexibility and the close proximity between the reactor 

and spectrometer that would be required. 

 

Developments in optical fibre design meant that light within the mid infrared region 

could be transmitted using fibres constructed from chalcogenides and metal silver 

halides.65, 66 These developments then allowed for the ATR crystal based sampling 

probe to be connected to the spectrometer system in a similar manner to the already 

well established near infrared systems. 

 

As with the at-line and in-line approaches, a variety of different ATR crystal 

materials have been utilised with in-situ probe designs. Sapphire ATR crystal probes 

prevent access to the information rich fingerprint region (below 1200 cm-1) due to 

absorbance of the crystal in this region.67 Likewise diamond ATR crystals absorb 

light in the region around 2000 cm-1 preventing use of this region.54 Probes equipped 

with ZnSe ATR crystals have also been utilised, however these crystals have been 

reported to be incompatible with strong acids and some biological samples.54 

 

As with the other sampling approaches that employed ATR crystals, most 

applications utilised a diamond crystal as this appeared to be the more robust and 

chemically stable of those available, whilst still offering a suitably diverse spectral 

range.56, 67-69  

 

1.3 Process Analytical Technology 

 

The application of PAT to conventional and novel bioprocesses has been reported.17, 

18, 28, 44, 53, 70-73 As previously mentioned, although the main focus of this research was 

to investigate the feasibility of applying the technique to biotransformation processes, 

many of the discussions and challenges reported for other bioprocesses will be 

applicable to these biotransformation systems. 
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1.3.1 Submerged Culture Bioprocesses 

 

1.3.1.1 Conventional Approaches 

 

Typically the progress and understanding of bioprocesses have been determined by 

making measurements of critical process parameters such as biomass, nutrient or 

product concentrations.30 Other features of the process such as pH, dissolved oxygen 

levels, temperature and substrate or product concentrations are all critical process 

parameters that require monitoring and control to achieve successful and 

reproducible processes.74 

 

Traditionally measurements of physical characteristics of the system, such as pH, 

dissolved oxygen and temperature have been made using in-situ probe systems that 

provide near real-time measurements of these critical parameters.30, 36 Whilst useful 

from a process control perspective these measurements give little information on 

how the bioprocess is actually progressing. 

 

Indicators of process progression, typically biomass and nutrient levels, have been 

restricted to off-line measurement approaches.30 Biomass measurements typically 

involve determining the dry cell weight of a medium aliquot or estimation based on 

the optical density measured at a wavelength of 600 nm.23-25 Key substrate and 

product concentrations can be determined using a number of approaches. Enzymatic 

assay kits have been reported for the quantification of a variety of typical analytes of 

interest (glucose, lactose, ammonia, glutamine and glycerol).26, 30, 49 Various 

chromatographic techniques such as gas chromatography (GC) and high performance 

liquid chromatography (HPLC) have also been employed as reference analysis 

methods.39, 47, 48 Each of these approaches requires substantial sample preparation 

and are time consuming often resulting in a time lag between the point of sampling 

and the results being obtained. Therefore should the bioprocess not be proceeding 

optimally, this is often not discovered until after the window of opportunity for 

corrective action to be taken has passed. In addition, these techniques require the 
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removal of a physical sample from the bioprocess creating an opportunity for sterility 

to be compromised.36  

 

1.3.1.2 Infrared Spectroscopy 

 

Near infrared spectroscopy provides a non-destructive, non-invasive method of 

obtaining near real time process measurements.75 These key attributes have made it 

an attractive technique for monitoring of bioprocesses. 

 

1.3.1.2.1 Analyte Selection 

 

Within a bioprocess system there are a number of options as to where near infrared 

spectroscopic techniques could be applied. They could be utilised to monitor the 

concentrations of multiple key substrates and products in the process. Alternatively 

the composition of the medium and changes within can be monitored or physical 

features such as the biomass levels can also be determined using near infrared 

spectroscopy. 

 

1.3.1.2.1.1 Monitoring of Substrates & Products  

 

Electing to monitor the concentrations of major substrates or products during the 

bioprocess has been widely documented.18, 27, 28, 31, 40, 76 In bioprocesses one of the 

key targets for monitoring are the carbon and nitrogen sources. 

 

Models constructed to determine glucose and glycerol concentrations in submerged 

culture processes have been reported by multiple authors and using a variety of 

organisms.32, 35, 71, 77 Electing to monitor substrate concentrations has been relatively 

successful with average errors of prediction for glucose ranging between 3% and 5% 

depending on the spectroscopic region utilised and sampling approach.35, 71 When 

monitoring glucose, in particular the natural conversion between forms 

(mutarotation), had a negative impact on the resulting model (Figure 1-6).55 During 

the process, conversion between the two stereoisomers of glucose was observed until 



 24 

an equilibrium position of approximately 37% α-glucose and 63% β-glucose was 

reached.78 Whilst this equilibrium was being established the varying amounts of each 

form introduced an additional spectral variation that the system was trying to model. 

This resulted in an increased error of prediction for glucose, however removal of 

these spectra from the model improved the error of prediction associated with 

glucose.55  

 

 
Figure 1-6 - Proposed mechanism for the conversion from α-glucose to β-glucose 

occurring in solution.78 

 

Other substrates such as ammonia concentrations in fermentation processes have also 

been monitored using this approach. These components have generally been present 

at much lower concentrations representing more of a challenge from a spectroscopic 

perspective. Despite this, with the aid of chemometric methods it has been possible 

to quantify even these low concentration analytes in complex biological systems.24 

 

Monitoring the products of a bioprocess using infrared spectroscopy has also been 

reported. Infrared spectroscopy has successfully been utilised to monitor the 

production of the biopolymer Gellan in good correlation with the analytical reference 

method.31 Also of particular note are the cases where ethanol has been successfully 

monitored using the technique. Since the OH vibrations are expected to be a key 

feature in any spectrum of ethanol, and this was also a dominating signal of the water 

background matrix, monitoring of this particular product was expected to be 

challenging. Despite this Mazarevica et al. (2004) and Sivakesava et al. (2001) have 

both reported successful models with reasonable associated errors.55, 62  
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1.3.1.2.1.2 Monitoring of Culture Medium 

 

Arguably the measurement of components in the bioprocess fluid could be regarded 

as the monitoring of substrates and products of the bioprocess. However when 

monitoring culture media multiple components in the system are generally measured, 

some of which are not present at the high concentration levels expected of a key 

substrate or product.  

 

Reported applications of the technique in this manner have focused on quantifying 

components in mammalian cell culture fluids.49, 79 These systems require multiple 

essential components ranging from compounds similar to those required for bacterial 

cultures such as glucose, ammonia and lactate to amino acids such as glutamine.36, 49 

The ability to measure the concentration of multiple components in the cell culture 

media is of great advantage in these processes. The multivariate nature of utilising 

near infrared spectroscopy also allows for monitoring of the cell culture process as a 

whole. Over the course of multiple replicates it was possible to identify a fingerprint 

for the process. This fingerprint could then be utilised along with the concentration 

data to implement a control strategy for the cell culture process.28 

 

Despite near infrared spectroscopy being able to successfully quantify multiple 

analytes within a system, the nature by which the signals arose and that they are 

broad and overlapping would be expected to limit the resolving power of the 

technique. Riley et al. (2001) suggested that independent quantification of a total of 

nineteen discreet amino acids based on their near infrared spectra was possible.37 

Quantification of these amino acids was achieved within an animal cell culture 

medium. Although these tend to be optically pure matrices, the restricted number of 

infrared active functional groups contained within amino acids and the broad 

overlapping nature of the signals would, from a theoretical perspective, question 

these results. Even using spectral pre-processing methods and multivariate 

calibration techniques (1.3.1.2.2 & 1.3.1.2.3) the limited variations in spectral 

features would likely result in some co-linearity within such a system. The 

methodology adopted by Riley et al. (2001) goes some way to addressing these 
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concerns with the use of synthetic medium samples rather than actual bioreactor 

samples. In doing so correlations in the concentration profiles could be minimised 

and the analytes monitored over a greater concentration range than would have been 

expected during a replicate of the bioprocess.37  

 

1.3.1.2.1.3 Monitoring of Physical Parameters 

 

Spectroscopic measurements within the near infrared region have also been utilised 

in monitoring physical parameters of a biological process. Parameters such as 

biomass levels can be correlated with baseline shifts and offsets that result from an 

increased scattering of light by the cells, as well as distinct spectral features 

attributable to the cellular material.24, 25 

 

Monitoring of biomass levels has been successful and well documented adopting at-

line and in-situ sampling approaches.24, 25, 30, 80 Arnold et al. (2002) discussed the 

construction of an at-line model for biomass and the associated challenges in then 

duplicating this model in-situ.25 Despite these challenges an in-situ biomass model 

was constructed using spectra obtained from a transflectance probe. Errors of 

prediction returned by this model were comparable with those obtained from the at-

line model.25 The technique has also been successfully applied to a number of 

different bacterial cultures such as Escherichia coli, Vibrio cholerae and 

Lactobacillus.16, 23-25, 30, 40 

 

1.3.1.2.2 Spectral Pre-processing 

 

The broad and overlapping nature of spectral features, particularly in the near 

infrared region, can be problematic from a modelling perspective. Spectral drift and 

the dominating signals resulting from water in the background matrix can obscure 

less pronounced but important spectral features.24 These subtle spectral features can 

be enhanced and the baseline drift reduced by applying pre-processing algorithms to 

the spectroscopic data. 
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The most commonly employed pre-processing approaches are to smooth the spectra 

or calculate a derivative of the spectra and also apply the smoothing. Applying only 

smoothing can be useful and improve the spectra in cases where retaining the 

spectral drift is beneficial – such as in biomass models.81 In other cases however 

removal of the baseline drift is more beneficial, in which case the calculation of a 

derivative of the spectrum can be carried out. Derivatisation of the spectra fits a 

polynomial through the spectral data over a specified window size. Applying a 

Savitzky-Golay filter to the spectra data is the most common approach to smoothing 

and derivatising the spectra, although other approaches such as the Norris method 

can also be utilised.48, 81 

 

Other pre-processing approaches such as multiplicative scatter correction (MSC) and 

standard normal variate (SNV) can also be applied to enhance the obtained spectral 

data by attempting to deal with baseline shift in the spectra.82  

 

1.3.1.2.3 Calibration Strategy 

 

Generally the calibration approach adopted has been to carry out multiple replicates 

of the bioprocess and correlate the spectroscopic measurements with values obtained 

from the reference analysis.17 A total of five process replicates was regarded as a 

sufficient number for the construction of a robust process model.83 

 

Adopting such a calibration procedure however risks introducing co-linearity into the 

model. Co-linearity occurs when the spectral features of one analyte are used to infer 

the concentration of another analyte. In biological systems such relationships are 

common, so it is particularly important to address the issue of co-linearity within any 

constructed model. In the case of a biotransformation system the concentration of 

reactants and products are stoichiometrically linked – as the concentration of reactant 

decreases the concentration of product increases in a 1:1 ratio. In this case a co-linear 

model may use the spectral features of the product to estimate the reactant 

concentration. Such a situation is undesirable as the model isn’t dealing with each 

analyte independently, and if presented with a sample where the analytes are not 
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stoichiometrically linked may result in the incorrect quantification of one, or both of 

the analytes in question.  

 

Some authors have reported the use of real, unaltered bioprocess data in the 

construction of a calibration model. Tamburini et al. (2003) put forward the case that 

these stoichiometric links in analyte concentrations were characteristic of the 

bioprocess and should be included in the model.48 It was also postulated that given 

this was a biological process, concentrations of the various analytes would naturally 

vary. Arnold et al. (2003) acknowledged the importance of breaking co-linearity 

within the system however with an in-situ sampling approach retrospective 

adulteration of the samples was not an option nor was it consistent with the 

philosophy of not requiring sample preparation.17, 49  

 

Riley et al. (199736, 199838, 199884) have extensively investigated co-linearity within 

biological systems. Multiple methods of addressing this co-linearity within the 

system have been proposed with varying degrees of success. 

 

Initially it was proposed that correlations within the system could be effectively dealt 

with by constructing a calibration model based on purely synthetic samples.38, 79, 84 

This approach however was unsuccessful at predicting the analyte concentrations 

when presented with unseen real process samples. Failure to accurately predict these 

concentrations was not unsurprising since the variations and spectral features that 

arose due to components of the media or the biomass were not represented in the 

calibration model.  

 

An adaptation to the purely synthetic approach that lay in the middle ground between 

synthetic samples and the real bioprocess samples was also proposed.38, 79, 84 This 

‘spiking’, ‘semi-synthetic’ or ‘adaptive calibration’ approach involved the 

retrospective addition of varying concentrations of key analytes to actual bioprocess 

samples.17 Adopting this approach saw improvements to the errors of prediction of 

the associated model compared with a calibration based only on synthetic samples. 
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This approach, and variations on this approach, has been employed by other authors 

to achieve similar results.17, 21, 27 

 

The use of mathematically generated spectra has also been considered as a possible 

option for breaking co-linearity within these bioprocesses. In this approach spectra at 

various concentrations and mixtures, not necessarily at which an experimental 

spectrum had been obtained, are simulated based on spectroscopic exemplars.79 With 

this approach there will always be the concern that the mathematically generated 

samples are not truly representative of the spectrum at this concentration, particularly 

when multiple analyte mixtures are under consideration. 

 

When constructing a calibration model for any bioprocess there are a number of key 

recurring themes. The nature of these processes mean that stoichiometric linkages 

within the system do exist and must be adequately addressed to ensure the resulting 

model can independently predict the concentration of these analytes. In addition it is 

essential that the spectra included within the calibration model encompass the natural 

variation expected within the system. Ensuring the calibration model is sufficiently 

populated with spectra representative of the expected variation is essential for the 

construction of a reliable and robust calibration model.85, 86 

 

1.3.1.2.4 Near Infrared 

 

The application of near infrared spectroscopy to a variety of challenging submerged 

culture processes has been extensively reviewed.19, 21 Process monitoring and control 

in this spectroscopic region has encompassed the three major sampling mechanisms 

(off-line/at-line, in-line and in-situ), considered a variety of organisms and analytes, 

as well as dealing with a number of important challenges. Some novel applications of 

the technique, challenges and solutions are discussed.  

 

Macaloney et al. (1996) reported the application of at-line near infrared spectroscopy 

not only to monitor a submerged culture process but also to make process control 

decisions based on the results.16 During the bioprocess pH control was achieved by 
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the addition of ammonium hydroxide. However excess concentrations of ammonia 

within the system caused an inhibitory effect. Based on the at-line spectroscopic 

predictions the authors were able to identify inhibitory ammonia levels and switch to 

sodium hydroxide for pH control. Identification of a faulty pH sensor, one of the 

traditional mechanisms of process control, could also be detected based on the 

spectroscopic measurements. Similarly the inhibitory effects of acetate on growth 

could also be controlled. Determination of high acetate levels indicated a 

requirement to stop the glycerol feed forcing the cells to metabolise the acetate. 

When low acetate levels were predicted from the spectra glycerol feeding continued. 

 

Arnold et al. (2000) reported the successful application of at-line near infrared in 

optically challenging matrices involving filamentous fungi.32 This particular 

fermentation process involved high water content, vigorous agitation and high 

aeration rates all common with submerged culture bioprocesses. In addition this was 

a multi-phase system with the presence of mycelia.32 Arnold et al. (2001) have also 

proposed an alternative and somewhat unique approach to bioprocess monitoring. In 

most cases the bioprocess has been treated as a single process from inoculation 

through growth and into the stationary phase. The authors proposed the construction 

of a separate model for each stage of the bioprocess. In doing so they reported an 

overall improvement in the resulting models for dealing with certain systems. 

 

Adopting an in-line sampling approach Harthun et al. (1998) reported monitoring 

five key media components (glucose, lactate, ammonia & both D/L-glutamine) and 

the bioprocess product (antithrombin III) simultaneously using infrared spectroscopy. 

Predicted concentrations from the model were generally in good agreement with 

those determined by the off-line instrumental technique.28 

 

1.3.1.2.5 In-situ Near Infrared 

 

Key process parameters such as biomass levels and the key media components of 

mammalian cell culture media can also be monitored using in-situ sampling 

approaches.23, 25, 49 
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Tamburini et al. (2003) reported the successful application of an in-situ sampling 

approach to simultaneously monitor the biomass levels and concentrations of three 

additional media constituents (glucose, lactic acid & acetic acid) in near real time.48 

Of notable interest in this particular approach was the use of no spectral pre-

processing techniques to enhance spectral features or reduce the dominance of water. 

In doing so the authors were not only successful in quantifying the key components 

of interest but, due to the simplicity of the approach, were able to do so in near real-

time due to a lack of complex and time consuming mathematical manipulations. 

 

1.3.1.2.5.1 Multiplexing 

 

In-situ near infrared spectroscopy allows for multiplexing, a process where a single 

spectrometer system is utilised with many reactor systems.46 On the industrial scale 

this represents substantial cost savings over the dedication of one spectrometer 

system per reactor. The setup essentially shares the detector between multiple 

reactors, with each system connected to the spectrometer via its own dedicated fibre 

optic bundle and in-situ probe (Figure 1-7).42, 46 

 

 
Figure 1-7 – Schematic representation of multiplexing setup adapted from Chen et al. 

(2011).87 One spectrometer system is used to acquire the infrared spectra from three 
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different reactor systems. Spectra can then be used with previously constructed 

multivariate models for the quantification of multiple analytes in each reactor. 

 

Operating the spectrometer in this multiplexed fashion does not affect the ability of 

the system to quantify multiple analytes within the system simultaneously. The 

infrared spectrum acquired can still be utilised with multivariate calibration 

approaches to simultaneously predict many analytes in the same manner as a 

dedicated system can be utilised. The multiplexing approach merely offers a cost and 

efficiency benefit over dedicating a spectrometer system to each reactor system. 

 

As well as cost efficiencies multiplexing offers a rapid means of populating a 

calibration model, allowing many process replicates to be carried out at the one time 

making efficient use of the available instrumentation. There are however a number of 

drawbacks with this approach. 

 

The largest source of variation in the system is more likely to be due to optical 

differences between sampling probes rather than the intended process variations. 

Roychoudhury et al. (2007) illustrated the optical differences of seven different in-

situ probes in simple chemical solutions of acetone and methanol.46 To compensate 

these variations were built into the resulting model, which returned reasonable errors 

of prediction for the unseen datasets.  

 

Instrument variability and calibration model maintenance have been well-

documented issues in both the near and mid infrared regions. However many of the 

noted difficulties can be overcome by carrying out instrument standardisation. This 

approach suitably dealt with variations not only between probes but also between 

spectrometer systems. In this respect a model can be rapidly updated following 

instrument maintenance or replacement without requiring reconstruction of the 

model.88 
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1.3.1.2.6 Mid Infrared 

 

Within the mid infrared region the tendency has been more towards monitoring of 

key analytes within the system such as substrate, products or medium components. 

 

Monitoring of physical process parameters have also been reported using mid 

infrared spectroscopy. Parameters such as biomass levels have typically not been 

monitored using this approach due to the short path lengths required to obtain 

suitable spectra.64 Schenk et al. (2007) have however reported making pH 

estimations based on the relative absorbance of the protonated and deprotonated 

forms of the acid.89 

 

Unlike the near infrared region where it was unusual for the spectra to be utilised 

without any spectral pre-processing techniques, the mid infrared spectra can be 

utilised directly in the model. However depending on the process conditions 

enhancement of the model can be achieved by derivatisation. Models constructed 

from the unmodified spectra were able to accurately predict the substrate and product 

at-line in a Pichia pastoris submerged culture.53 

 

Similar results have been obtained in systems employing a variety of organisms such 

as Escherichia coli, Saccharomyces cerevisiae and Lactobacillus casei. 56, 60, 61 

 

An example of process control using mid infrared spectroscopy was reported by 

Schenk et al. (2007). A diamond ATR probe was housed within a flow through cell 

and the collected mid infrared spectra used to calculate the methanol content of the 

reactor. These values were then transferred to a control system, which altered the 

methanol feed rate to maintain a constant concentration within the system.64 

 

Application of mid infrared spectroscopy in-situ has been reported, however these 

have mainly focused on proving the techniques ability to quantify multiple key 

components of the system rather than process control.56, 68 The challenges in 

developing fibres able to transmit light in this region may offer some explanation as 
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to why the technique has not yet been widely implemented as a process monitoring 

and control strategy. 

 

1.3.2 Biotransformation Processes 

 

Most of the applications of infrared spectroscopy discussed have been in relation to 

submerged culture processes. All the sampling mechanisms discussed previously and 

many of the challenges and associated difficulties reported will be applicable to these 

biotransformation systems. Additionally the subtle molecular differences and 

stereochemistry were also likely to present a number of challenges both in terms of 

spectroscopy and modelling that were not observed with the other bioprocesses 

discussed. 

 

1.3.2.1 Near Infrared Spectroscopy  

 

Despite near infrared spectroscopy being a very popular technique for monitoring 

submerged culture processes its application to biotransformation systems has been 

limited. Presumably this is a result of the broad, overlapping and unspecific nature 

by which signals in this region arise. 

 

Bird et al. (2002) reported the application of near infrared spectroscopy to monitor a 

Baeyer-Villiger type biotransformation process. This particular process also 

illustrated the ease with which microbial systems were able to achieve such 

conversions compared with synthetic organic chemistry routes. 

 

Synthetically the Baeyer-Villiger reaction results in the formation of an ester linkage 

via insertion of an oxygen atom by reaction of a ketone and peracid (Figure 1-8). The 

reaction proceeds via a proposed alkyl migration step, with the migrating group 

determined based on ability to stabilise the positive charge. Stereochemical control in 

Baeyer-Villiger type reactions tends to favour retention of the substrates 

stereochemistry, even in cases where alteration of stereochemistry would result in an 

more energetically favourable structure.90 Generation of product esters with a 
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specific stereochemistry can be obtained by utilising transition metal catalysts during 

the synthetic process.91 

 

 
Figure 1-8 - Mechanism of typical Baeyer-Villiger reaction carried out chemically. 

 

Microbial conversion of an asymmetric ketone (specifically bicyclo[3,2,0]hept-e-en-

6-one) using Baeyer-Villiger monooxygenases was reported by Doig et al. (2003) 

(Figure 1-9).92 In this case however two resulting lactone products were formed, 

regioisomers of each other. It was also noted that each regioisomer was formed as a 

single stereoisomer, a phenomenon that was not possible to replicate using 

conventional synthetic approaches.92 

 

 
Figure 1-9 – Conversion of ketone to lactone using microbial Baeyer-Villiger mono-

oxidase enzyme as described by Doig et al. (2003) and monitored spectroscopically 

by Bird et al. (2002).92, 93 

 

Bird et al. (2002) reported monitoring of this particular biotransformation process 

using near infrared spectroscopy. Acquisition of pure component near infrared 

spectra of the two analytes of interest suggested that the majority of spectral features 

observed were common to both compounds.93 Given the structural similarities 

between the two compounds this was not unexpected, however some minor 

variations were observed. To enhance the spectral features the acquired spectra were 
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converted to the second derivative format. Other approaches, such as referencing the 

spectra to a water background as opposed to air, were considered but rejected based 

on background stability.93 Resulting models constructed from both at-line sampling 

and in-situ sampling with a transflectance probe were reported. Despite the 

similarities in the spectra the resulting models were able to predict the concentration 

of both compounds with errors of prediction in good agreement with the errors of 

calibration.93 

 

1.3.2.2 Mid Infrared Spectroscopy 

 

The use of mid infrared spectroscopy has been more commonly reported for 

monitoring biotransformation processes. Within this region the spectra obtained 

could be used as a chemical fingerprint for the analytes present in the system.94 

 

Key analyte concentrations in a relatively simple biotransformation process have 

been monitored using in-situ mid infrared spectroscopy. Degradation of the cyanide-

containing compound by Rhodococcus rhodochrous can be achieved using two 

different routes by the microorganism (Figure 1-10). Firstly a direct route converts 

the cyanide to the corresponding carboxylic acid and ammonia using the nitrilase 

enzyme. Alternatively a two-step process can be adopted where nitrile hydratase 

converts the cyanide to an amide. This is then followed by conversion to the 

carboxylic acid and ammonia by amidase enzymes.95 

 

 
Figure 1-10 - Routes for the degradation of cyanide containing compounds to the 

corresponding amine and carboxylic acid by Rhodococcus rhodochrous reported by 

Dadd et al. (2000).95 
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Over the course of the biotransformation process changes in spectral features were 

clearly identified. Signals attributable to the benzoic acid were noted to increase over 

the time course of the bioprocess. Features due to benzamide were observed to 

increase followed by a decrease in intensity as the process progressed, which was 

consistent with degradation of the cyanide via the two step process. At this stage 

however the process was only considered qualitatively, there were no quantitative 

models for the biotransformation process constructed.95 

 

In a slightly more complex biotransformation process quantitative models for the 

determination of 1-phenyl-1,2-propanedione substrate and product (1R2S)-1-phenyl-

1,2-propanodiol were constructed (Figure 1-11). Generation of the product with this 

particular stereochemistry was required as an intermediate in the synthesis of the 

stimulant ephedrine.72 

 

 
Figure 1-11 – Biotransformation process for the conversion of 1-phenylpropane-1,2-

dione to (1R,2S)-1-phenylpropane-1,2-diol used in the synthesis of the stimulant 

ephedrine.72 

 

The biotransformation process was carried out using a whole cell suspension of 

Saccharomyces cerevisiae with the spectra collected using an ATR crystal located 

within a flow through cell. Since this was a quantitative model reference 

measurements to determine the concentrations of substrate, product and intermediate 
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compounds were determined by gas chromatography mass spectrometry (GC-MS). 

Since the spectra were being acquired continually the intermediate analyte 

concentrations were determined by interpolation using a non-linear fit.72 

 

Quantification of the substrate and product based on the spectroscopic data was 

achieved with good agreement between the predicted and measured concentrations.72 

These compounds were structurally quite different with the product containing the 

strongly absorbing hydroxyl functional group not observed in the product. The 

constructed model also attempted to quantify the concentrations of the intermediate 

materials. Prediction of these intermediate compounds was not as good however, this 

was not surprising given the low concentrations at which these were expected and 

that spectral variations between the two were likely to be limited. In this particular 

case, the limited number of samples removed and the absence of any steps to deal 

with co-linearity within the system suggested possible inference of these 

concentrations as opposed to actual measurements.  

 

Difficulties in distinguishing between compounds where the molecules differ at a 

single functional group or in their stereochemistry using infrared spectroscopy was 

likely to be challenging. Macauley-Patrick et al. (2003) reported the application of 

at-line mid infrared spectroscopy to monitor D-sorbitol and L-sorbose concentrations 

during a Gluconobacter suboxydans biotransformation process. These compounds 

differed at two positions on the molecule: by functional group (carbonyl and alcohol) 

at the C2 position and stereochemistry at the C5 position. Examination of the pure 

component confirmed unique spectral features could be identified for both analytes 

of interest. In conjunction with multivariate modelling approaches a suitable model 

for the system was constructed.96 

 

Application of this technique to biotransformation processes has highlighted the 

power of mid infrared spectroscopy for monitoring these processes where the 

compounds of interest are only subtly different, and in some cases are present at low 

concentrations. Widespread application of infrared spectroscopy to this particular 

classification of bioprocess is still within its infancy. However the potential for 
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applying the technique to other complex, optically challenging, environmentally 

inhospitable and industrially relevant biotransformation processes is already evident. 

 

1.3.3 Alternative Process Monitoring Approaches 

 

A number of alternative process monitoring techniques have been proposed. Many of 

these however are still based around the interaction properties of light with the 

sample material. 

 

Fluorometry or fluorescence spectroscopy has been reportedly employed to monitor 

bioprocesses.97 In order for this approach to be successful the analytes of interest 

must exhibit fluorescence properties, meaning there must be specific absorbance and 

emission frequencies. Within biological systems components such as amino acids, 

proteins and coenzymes such as ATP all exhibit fluorescence properties. This can be 

advantageous if these compounds are the target analytes or challenging if these 

materials are exhibiting interference effects.97 

 

Multiple components within systems can be monitored by utilisation of two-

dimensional fluorescence spectroscopy. Development of an in-situ sampling 

approach has also been reported.98 Kara et al. (2010) have also reported application 

of this technique to biotransformation processes and the construction of quantitative 

models for the system.99 

 

Raman spectroscopy, a technique complementary to infrared spectroscopy, has also 

been utilised for monitoring and control of bioprocesses. Biological matrices pose 

particular challenges in the application of Raman spectroscopy not only because of 

light scattering caused by the cellular material and dissolved gases but by the 

fluorescent nature of the sample which can obscure the Raman scatter. Despite these 

challenges however quantitative models of bioprocesses utilising this technique have 

been reported.97, 98 
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Microscopy has also been developed and applied in-situ to obtain images during the 

bioprocess. The approach has been useful in the determination of biomass levels, cell 

counts and the identification of morphological changes within the system.97, 98 

 

Refractive index measurements can also be utilised to monitor critical process 

parameters. The measurement approach was substantially different from that 

employed by bulk refractive index detector systems. The system was based on a 

tapered fibre through which the laser light source was directed. Detector systems 

either end of the tapered fibre identified changes in the transmitted light through the 

fibre, as a result of the cellular material attaching to the fibre, which were utilised to 

calculate a refractive index for the system. This particular monitoring approach has 

been reported as an alternative method for determining biomass levels during a 

bioprocess.100 

 

Moving away from light based measurement approaches Maskow et al. (2006) 

reported the application of calorimetry to monitor biotransformation processes. 

Using a miniature heat sensor connected to the bioreactor via a flow through cell 

measurements of heat evolution were made by comparison against a stable reference 

value. Various parameters were then calculated based on the kinetics of the 

system.101 

 

1.4 Chiral Amino Acids 

 

The biotransformation processes under investigation in the current study deal with 

the generation of chiral amino acids. Amino acids are essential molecules often 

regarded as ‘building blocks’ due to their role in the production of proteins.102 Due to 

commercial sensitivity the use and application of the amino acids investigated has 

not been disclosed. Based on information obtained in the literature, the potential 

applications of industrially generated amino acids are discussed suggesting potential 

applications of the generated amino acids.  
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Amino acids with a single stereochemistry have a number of applications across a 

variety of industries. In the food industry chiral amino acids are utilised to generate 

synthetic sweeteners as well as flavourings (amino acids react with sugars to produce 

compounds that mimic spices).102, 103 These amino acids are also important 

compounds for the production of probiotic cultures for use in foodstuffs.102 

 

The cosmeceutical industry has also expressed interest in the generation of chiral 

amino acids, specifically the production of L-cysteine for use in anti-aging 

preparations.102 

 

Another industry where the large-scale production of chiral compounds is of great 

interest, and importance, is the pharmaceutical industry. D-enantiomers of amino 

acids have been produced microbially for the production of synthetic derivatives of 

penicillin. The microbial production of these compounds can be achieved either 

using de-racemisation enzymes to convert the unwanted enantiomer of a racemic 

starting material, or using racemase enzymes that actually flip the stereocentre of the, 

in this case, undesired L-configuration.102, 103  

 

Natural and unnatural L-amino acids for pharmaceutical applications can also be 

prepared in a similar manner. Preparation and isolation of the L-enantiomer tends to 

be performed by de-racemisation enzymes acting on racemic substrate.102 This is 

most likely a result of the cells ability to utilise the L-enantiomer directly, thereby 

having no need to convert the D-form.104 

 

Although the use of the generated chiral amino acids has not been disclosed, the 

above discussion gives some indication as to the potential industrial requirements to 

generate amino acids with a given stereochemistry.  

 

1.5 Aims & Objectives 

 

Firstly the critical review of the literature carried out was utilised to determine the 

current extent to which infrared spectroscopic techniques were utilised for 
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monitoring and control of bioprocesses. Many of these processes were submerged 

culture systems with limited application to biotransformation processes, however 

these models tended to be either qualitative or the substrates and products of the 

biotransformation process fairly distinct.  

 

The aim of the current research was to investigate the potential of applying both near 

and mid infrared spectroscopic techniques to monitor and control various industrially 

relevant amino acid de-racemisation biotransformation processes. Using the de-

racemisation process described by Fotheringham et al. (2006) the production of 

various un-natural amino acids was considered. Various spectral acquisition 

approaches were investigated in an attempt to construct and validate reliable, robust 

models for the system thereby introducing a QbD approach to this industrial 

biotransformation process. 

 

Ultimately for each biotransformation process investigated it was intended to 

construct a robust calibration model for the process. This model would be challenged 

using unseen process replicates in order to assess the predictive ability of the model. 

It was also desirable to further challenge the model by presenting process replicates 

carried out off-site and assessing how well the predicted concentrations correlated 

with those measured using off-line reference analysis. 
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2. Background & Theory 
 

2.1 D-amino Acid Oxidases 

 

D-amino acid oxidase (DAAO) enzymes are stereospecific enzymes that act upon the 

‘D’ enantiomer of amino acids, converting the amine functional grouping to a ketone 

thus generating the corresponding α-keto acid. These enzymes do not exhibit any 

activity towards the ‘L’ enantiomer of amino acids, however separate L-amino acid 

enzymes have been isolated and exploited commercially.105, 106  

 

Expression and overproduction of the enzyme has been carried out in E. coli and 

yeast cells by the modification and insertion of a plasmid containing the appropriate 

sequence for production of the enzyme.4, 106 These cells can then be cultured to a 

suitable biomass level and induced to trigger over-production of the desired DAAO 

enzyme.  

 

During the biotransformation phase the D-amino acid for conversion enters the cells 

where the biotransformation process can be undertaken. Conversion of the D-amino 

acid to the corresponding α-keto acid proceeds via the α-imino acid in the proposed 

mechanism (Figure 2-1). The amino acid is oxidised to the corresponding α-imino 

acid with the assistance of flavin-adenin dinucleotide (FAD), which is itself reduced 

in the process. Reaction with water will convert the formed α-imino acid into the 

corresponding α-keto acid product, which will then be exported from the cell. The 

reduced FAD undergoes oxidation with molecular oxygen to replenish the FAD with 

hydrogen peroxide resulting as a by-product. Catalase, if present, breaks down this 

formed hydrogen peroxide to yield water and oxygen.3, 105 

 

Over expression and utilisation of the DAAO enzyme has been exploited for the 

production of α-keto acids as well as for de-racemisation processes for the generation 

of chiral compounds. However, process economics have a substantial influence on 

the suitability of this approach.105, 107  
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Figure 2-1 – Proposed mechanism for the conversion of D-amino acid substrate into 

the corresponding α-keto acid proceeding via an α-imino acid intermediate and 

catalysed by DAAO enzyme and FAD adapted from Garcia-Garcia et al. (2008)105. 

 

2.2 Transaminase Enzymes 

 

Microorganisms employ transaminase enzymes for the generation of amino acids for 

use in the synthesis of proteins. These enzymes do not have a high degree of 

specificity, and have been reported to work successfully on amino acids with a range 

of side groups.108, 109 

 

The amine functional group from the donor amino acid is transferred to the substrate 

keto acid, with the retention of stereochemistry, forming the desired stereospecific 

amino acid compound. In the process the donor amino acid is itself converted to the 

corresponding keto acid.  
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Figure 2-2 - Transaminase biotransformation process illustrating conversion of 

substrate keto acid to the desired amino acid with retention of stereochemistry. 

 

2.3 High Performance Liquid Chromatography 

 

Chromatography is an instrumental technique that allows for the separation, 

detection and quantification of a sample mixture into its component parts. In the 

liquid phase separation is achieved by establishing a partitioning effect between the 

stationery and mobile phases. 

 

The various components of a HPLC system are represented schematically in Figure 

2-3.  

 

 
Figure 2-3 - Schematic representation of the main components in a HPLC system 

adapted from Hamilton et al. (1982)110. 

 

Mobile phase (eluent) is stored within solvent reservoirs, depending on the set-up of 

the system this can range from a single solvent for isocratic methods through to 

multiple solvents utilised in gradient elution methods. In all cases the solvents 

utilised should be of high purity and solvents de-gassed prior to use. 
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Eluent is transported through the chromatography system using a pump, or series of 

pumps. The pumps utilised are designed to ensure a consistent and pulse free flow of 

mobile phase through the chromatography column.110  

 

Samples are introduced into the system via a six-port syringe-loop (Rheodyne) 

design valve. Under normal conditions (valve in the load position) the eluent flows 

through the port and onto the column, with the injector aligned so that any sample 

injected passes through the loop and out to waste, allowing the sample to be loaded 

without disrupting the eluent flow through the column. The sample loop has a fixed 

volume and ensures that a consistent sample volume is introduced into the system 

with each injection. When rotated to the inject position the eluent flow is rapidly 

diverted to pass through the sample loop, taking the contents onto the 

chromatography column for separation.110  

 

Separation of the various analytes is achieved in the chromatography column. The 

commonly utilised reverse phased column is packed with small particles of silica that 

have had the hydroxyl group end-capped by reaction with a C18
 alkyl chain. As 

analytes pass through the column, they are separated based on their varying 

distribution and affinity between the stationary and mobile phases. 

 

Various detector systems have been employed with liquid chromatography systems, 

and fall into two categories; detector systems that measure a specific property, such 

as diode array detectors (DAD), and systems that measure a bulk change in the 

eluent properties, such as refractive index detector systems.110 

 

2.4 Vibrational Spectroscopy 

 

Spectroscopy in general can be described as the interaction of light with a sample.111 

Within the electromagnetic spectrum frequencies of light in both the visible and 

infrared regions are commonly utilised for spectroscopic purposes. The infrared 

region can be further split into three distinct regions: the near infrared (4,000 cm-1 

through 14,285 cm-1), mid infrared (400 cm-1 through 4000 cm-1) and far infrared 
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region (4 cm-1 through to 400 cm-1). Both the near and mid infrared regions are 

commonly utilised for spectroscopic applications.111 

 

The vibration of bonds within a molecule can be considered at a superficial level or 

at a more detailed level where the energy levels of the molecule and excitations 

between these energy levels are considered. 

 

In a simplistic approach the exposure of a molecule to radiation can bring about a 

movement of the bonds between the atoms of that molecule. The bonds can move in 

a number of different ways, they can rotate, vibrate or move along a plane. Light in 

the infrared region of the spectrum causes the bonds within a molecule to vibrate, 

hence the technique is often referred to as vibrational spectroscopy. The total number 

of degrees of freedom (possible movements) associated with a molecule is three 

times the number of atoms within the structure. Of these possible movements three 

are translational motion and a further three are rotational motion both along the X, Y 

and Z axis. The remainder of the molecules possible degrees of freedom are due to 

vibrational motion. Therefore, the total number of potential vibrations exhibited by a 

molecule can be determined using Equation 5. In cases where the molecule is linear 

there is no rotation about the axis in which the bond lies therefore the total number of 

vibrations is given by Equation 6.112 

 

Number of Vibrations =(3! − 6) Equation 5 

Number of Vibrations = (3! − 5) Equation 6 

 

Vibration of the bonds between two atoms within a molecule can occur via a number 

of possible modes. Two stretching modes can occur: symmetric and asymmetric. 

Four possible deformation modes exist: scissoring; rocking; twisting and wagging 

(Figure 2-4).113, 114 In order for these vibrations to be active and result in a signal in 

the infrared spectrum there must be a change in the molecules dipole moment (µ) as 

a result of the vibration.112, 115 
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Figure 2-4 - Illustration of possible vibrations of bonds within a molecule adapted 

from Kemp (1987)113. 

 

Considering a more detail approach, the energy levels that exist can be considered. 

There are three distinct energy levels that can be identified – the electronic, 

vibrational and rotational levels (Figure 2-5). The absorption of light equivalent to 

the difference between two of these energy levels can cause excitation from the 

ground state to one of these excited states. In the infrared region these excitations 

occur between the vibrational energy levels.50 

 

 
Figure 2-5- Schematic representation of the electronic, vibrational and rotational 

energy levels adapted from Crabb et al. (1995).50 
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If a simple diatomic molecule is considered, the bond between the two atoms can be 

treated like a spring. As the bond length is increased or decreased there will be a 

change in the potential energy of the system. When a force is no longer applied the 

spring (or bond) returns to its equilibrium position with the energy released causing 

the bond to vibrate. This approximation assumes that the diatomic molecule is 

behaving as an ideal system (harmonic oscillator). Plotting the potential energy of 

the system against the bond length will generate a parabolic shape with the minima at 

the equilibrium bond length and the vibrational energy levels equally spaced (Figure 

2-6).116 In this simple case transitions between the vibrational energy levels occur 

only by a single energy gap at a time (Δυi = ±1) and by the absorption of radiation 

equal to the energy difference between levels. 

 

 
Figure 2-6 – Plot of potential energy against bond length for a simple diatomic 

molecule behaving as a harmonic oscillator adapted from Hollas (2002).116  

 

In reality however even a simple diatomic molecule does not behave as an ideal 

system. Stretching a bond will eventually reach a point where the bond will 

dissociate, so the system must be treated as an anharmonic oscillator. In this case the 

plot of potential energy against bond length will eventually plateau at the point 

where dissociation occurs (Figure 2-7). The vibrational energy levels are also no 
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longer equally spaced but move closer together as the potential energy in the system 

increases.116 These deviations from the ideal situation mean that transitions between 

more than one vibrational energy level (Δυi = 2,3) are possible (overtones) as well as 

the simultaneous vibration of multiple bonds by a single photon (combination bands) 

are now able to occur.112  

 

 
Figure 2-7 – Plot of potential energy against bond length for simple diatomic 

molecule behaving as an anharmonic oscillator. Energy levels are no longer equally 

distributed and bond dissociation is taken into consideration. 

 

With the exception of enantiomers, every molecule has different vibrational modes 

which result in a unique spectrum that can be used for identification, structural 

elucidation and quantitative purposes.112 

 

The process of spectroscopy is concerned with measuring the interaction of an 

incident light (radiation) beam with a sample material. Conventionally the resultant 

output spectrum is displayed as a plot of absorbance plotted against wavenumber, 

however the instrumentation actually measures the transmitted (unabsorbed) light 

and converts this to absorbance using Equation 7, where Io represents the intensity of 

the incident light and I the intensity of transmitted light.111 
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Absorbance = log!"
!!
!  Equation 7 

 

The electronic effects associated with the absorption of light in the middle and near 

infrared regions of the electromagnetic spectrum and the resulting spectra are 

considered. 

 

2.4.1 Middle Infrared 

 

Within the middle infrared region (400 cm-1 through 4000 cm-1) signals arise due to 

the fundamental vibrational transitions. Excitation is from the ground state to the first 

excited state (Δυi = ±1) accompanied by the absorption of light equal in energy to the 

difference between these two states (Figure 2-8). These allowed transitions result in 

high intensity absorptions meaning only small sample thicknesses (approximately 10 

µm) are required to obtain a spectrum that is neither saturated nor excessively 

weak.112 

 

 
Figure 2-8 - Diagrammatic representation of vibrational transitions on absorption of 

appropriate light at frequency in the mid infrared region. 
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2.4.2 Near Infrared 

 

Within the near infrared region (4,000 cm-1 through 14,000 cm-1) the signals are due 

to overtones and combinations that arise due to the system behaving as an 

anharmonic oscillator. Absorption of radiation with the appropriate energy can result 

in transitions from the ground state to an excited state higher than the first (Δυi ≠ ±1). 

This phenomenon is what is observed as an overtones signal (Figure 2-9).112 

 

 
Figure 2-9 - Overtone transition from the ground energy level to the second excited 

state. 

 

Spectral features as a result of combination bands are generally observed in the 

region between 4000 cm-1 and approximately 5100 cm-1. Like the overtones, these 

features arise as a result of the molecules behaving as anharmonic oscillators. These 

signals are due to simultaneous vibrations that result from the absorption of light at 

an energy equivalent to a linear combination of the required energy gap (Equation 

8).50, 114 

 

! = !(!!!!!!) + !(!!!!!!) Equation 8 

 

Both the overtones and combination bands signals are formally disallowed processes, 

but occur due to non-ideal behaviour of the molecule. As a result although these 

processes can happen they do not occur as frequently as the allowed transitions, such 

as those observed in the mid infrared region. Resulting signals in the near infrared 
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region are therefore weaker than the corresponding fundamental transitions allowing 

for longer sample path lengths to be utilised.19 

 

2.4.3 Instrumentation 

 

Infrared spectrometers are commonly available in two variations: Fourier-transform 

infrared systems (FT-IR) and dispersive infrared spectrometers.21 Near infrared 

spectrometer systems can be based around either the dispersive or Fourier transform 

instrument designs. However, instruments based on the Fourier transform design 

dominate the mid infrared instruments.  

 

The same output spectra results from both system designs however, the mechanism 

by which this is achieved differs between the instrumentation. Both designs have 

their associated advantages and disadvantages.  

 

2.4.3.1 Dispersive Instruments 

 

Dispersive infrared spectrometers consist of three basic components (the radiation 

source, a monochromator and the detector system) arranged as illustrated in Figure 

2-10. Instruments based on this design tend to be more common for the near infrared 

region.  
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Figure 2-10 - Schematic representation of basic layout of dispersive infrared 

spectrometer and the component parts of monochromator unit illustrating how 

incident beam of light travels through the spectrometer system. 

 

Due to the nature by which the infrared signals arise (2.4.2) the light source selected 

should provide continuous emission of all the desired frequencies within the 

identified region of interest, in this case the near infrared. This requirement can be 

achieved using a laser light source, or using sources such as the Zirconium point 

lamp.117 

 

The monochromator unit is made up from a series of individual components with the 

function to take this continually emitted light and accurately split it into the 

individual frequencies before passing the light through the sample. The slits are used 

to control the intensity of incident light passed to the monochromator. Light is then 

directed towards a mirror that ensures the beams are parallel before directing them 

towards a diffraction grating. The diffraction grating splits the light beam up into the 

various frequencies, which are directed to the exit slit via another mirror. Variation 

of the light frequency at the exit slit can be achieve by moving the position of the 

diffraction grating.117 

 

Dispersive spectrometer systems are only able to measure a small section of the 

infrared spectrum at any given time. Movement of the diffraction grating allows 

different frequencies of light to be selected thereby allowing the full spectral range to 
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be covered. This represents one of the main disadvantages of this system design in 

that movement can cause vibrations and temperature variations causing an effect on 

the acquired spectrum.21 

 

2.4.3.2 Fourier Transform Instruments 

 

Fourier transform instruments have the same basic layout as the dispersive 

instruments except the monochromator set-up is replaced by an interferometer 

(Figure 2-11). This consists of a beam splitter and a series of mirrors, some of which 

are fixed and others that move.  

 

Incident light is directed to the beam splitter, which allows some of this light to be 

transmitted but is also able to reflect some of the incident light. The transmitted light 

is reflected off a fixed mirror and directed back towards the beam splitter. Non-

transmitted light is reflected off a moving mirror before being directed back to the 

beam splitter where the light beams are combined (or exhibit interference). 

 

 
Figure 2-11 - Schematic representation of the key components of an FT-IR 

spectrometer and the Michelson interferometer. 

 

Depending on the position of the moving mirror the combined beams of light may be 

in-phase on return to the beam splitter in which case constructive interference will 
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result creating an intense beam of light. If the distance travelled means the waves are 

out of phase, then destructive interference occurs resulting in a beam of light of 

weaker intensity. Measuring the intensity of light as the optical path length is varied, 

by moving the moving mirror, results in an interferogram.111  

 

Application of a Fourier transform to the interferogram results in the generation of a 

single beam spectrum, which is a plot of intensity against wavenumber. Single beam 

spectra are acquired initially with no sample present. This acts as a background 

spectrum and contains features associated with the instrumentation and the 

spectrometer atmosphere. Absorbance, or transmission, spectra of the sample are 

obtained by ratioing the single beam spectra of the sample and the background.111 

 

Fourier transform instruments offer a key advantage over other instrument designs, 

the high signal-to-noise ratio (SNR) of the observed peaks, with ratios of between 10 

and 100 times greater than conventional spectrometer designs reported. Additional 

improvements in the signal-to-noise ratio can be achieved by increasing the number 

of scans averaged to give the final spectrum. 111 

 

2.5 Chemometrics 

 

Spectroscopic data collected in the near and mid infrared regions contains 

information about a variety of different components contained within the sample 

matrix. This contribution of various components to the resulting spectra often makes 

univariate analysis techniques inappropriate, so multivariate analysis methods must 

be employed.  

 

2.5.1 Principal Component Analysis 

 

The concept of principal component analysis (PCA) can be employed as a data 

reduction technique. In a simplistic two-dimensional arrangement both an X and Y 

co-ordinate can describe the points in a dataset. However using principal component 
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analysis the dimensionality of this dataset can be reduced to a single axis where each 

point is represented as a linear combination of the original variables (Figure 2-12). 

 

The first principal component is drawn through the dataset so it describes the 

maximum variance observed in the samples and the points projected onto this line. 

Subsequent principal components describe increasingly less of the variance in the 

dataset and are positioned orthogonal to the previous principal components. The net 

result of this process is that both the substantial variance in the data and the variance 

that arises due to random noise are described by a number of principal components 

(usually equivalent to the number of original variables). However the principal 

components that contain variance due to random noise can be discarded, leaving a 

reduced dataset that only describes significant variation in the data.118, 119  

 

 
Figure 2-12 - Diagrammatic representation of data reduction by principal component 

analysis on a simple two-dimensional dataset. 

 

Mathematically the original data matrix (in the case of spectra a matrix of 

absorbance measurements [n rows] made at various wavelengths [m columns]) is 

converted into two smaller matrices (Tk and Vk
T) as well as an error matrix (ε) 

according to Equation 9.  
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! = !!!!!+!∈ Equation 9 

 

In this case the matrix Tk represents the scores matrix, which gives information about 

the samples (or the spectra of the samples) and how they relate to each other. The 

other matrix Vk
T is the loadings matrix, which contains information about how the 

measured variables are related (the spectral regions exhibiting the variation). So each 

individual source of variance in the original data matrix (A) can be represented by 

the sum of the constituent principal components each of which has an associated 

scores and loadings matrix (Equation 10).119, 120 

 

2.5.2 Spectral Pre-processing 

 

A variety of pre-processing techniques can be applied to spectral data prior to 

carrying out multivariate analysis or regression. These mathematical manipulations 

of the spectroscopic data were done with the intention of improving the quality of the 

spectroscopic data and ultimately enhance the constructed model to improve the 

accuracy of analyte concentration predictions. 

 

2.5.2.1 Mean Centering 

 

Assuming that the spectral data is represented by a numerical matrix where each 

column represents a measured wavelength, and each row the spectrum of a sample. 

The process of mean centering calculates the average of all the measured values for 

each column of the data matrix, and then subtracts this value from the measured 

value in each row of that column. Points in this data matrix therefore have no mean 

value associated with them and the point of the origin for the dataset has been 

shifted.119, 120 

 

! = !!!!! + !!!!!! + !!!!!+!∈ Equation 10 
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2.5.2.2 Smoothing & Derivatives 

 

Improvements to the signal to noise ratio of the spectra can be obtained by applying 

a smoothing function to the spectral data. The process of spectral smoothing takes a 

point in the spectrum and examines a narrow window of the spectrum around this 

point. An average value, or polynomial expression, for this window is calculated and 

substituted as the value for that point, the window then moves along removing the 

oldest point from the window and adding a new point before repeating the process. 

Savitzky-Golay smoothing, which is a polynomial smoothing technique, is the most 

commonly employed smoothing technique.119  

 

Reduction of baseline offsets and enhancement of spectral features, by narrowing 

and sharpening peaks, can be achieved by calculating a derivative of the spectral data. 

As with the process of smoothing the data a moving window is utilised to fit a 

polynomial expression to the data that falls within the window region. The 

coefficients of this polynomial expression are then utilised to calculate the derivative 

of the data for this point. Once a point has been determined the window is moved 

along in the same manner as with the smoothing operation and the process 

repeated.119 

 

2.5.2.3 Other Pre-processing Methods  

 

There are many other spectral pre-processing methods available to assist in 

enhancing the quality of the acquired spectra. Processes such as normalisation 

(setting the sum of squares for each spectrum to 1) and baseline correction 

(subtraction of an average of a region containing only noise from a spectrum) can be 

utilised. More complex mathematical techniques such as multiplicative scatter 

correction (MSC) and standard normal variate (SNV) transforms have also been 

reported as a mechanism for enhancing reflectance spectra.119 
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2.5.3 Partial Least Squares 

 

Partial least squares (PLS) regression incorporates aspects of principal component 

analysis (PCA), which attempts to identify the maximum variation in the spectral 

data, with multiple linear regression (MLR), which attempts to link the spectral 

features with measured concentrations. As a blend of the two methods, PLS attempts 

to capture the variance in the data and correlate this with the measured 

concentrations.120 

 

Two different methods of the PLS algorithm can be utilised, PLS1 and PLS2. The 

PLS1 approach involves constructing a separate model for each of the quantified 

variables. With the PLS2 approach, a single model is constructed for all the 

quantified variables at the same time.119 

 

When PLS regression is carried out both the data matrices (spectra and reference 

data) are reduced to their corresponding scores and loadings matrices by a process 

similar to PCA (Equation 11 and Equation 12).  

 

! = !!!+!∈ Equation 11 

! = !!! + ! Equation 12 

 

The matrices PT and QT represent the loadings or factors associated with the model, 

with F and E the residuals associated with the model, the PLS algorithm attempts to 

have these values as close to zero as possible.119 Although both the X and Y data 

matrices have been converted to their scores and loadings matrices this process was 

done independently, a relationship between the scores associated with the X block 

(T) and those obtained from the Y block (U) is developed by an iterative calculation. 

 

! = !" Equation 13 
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This results in a matrix of regression vectors (Equation 13) where U and T represent 

the scores matrices from the two PCA like stages and W the matrix containing the 

regression coefficients. This relationship can then be used for the estimation of 

unknown ‘Y’ values given the spectrum of the unknown.119 

 

2.5.4 Artificial Neural Networks 

 

Calibration approaches such as PLS and principal component regression (PCR) 

assumes the presence of a linear relationship between a measured parameter in a 

system and the intensity of a spectral response. This is generally the case for 

spectroscopic data according to the Beer-Lambert law.63  

 

Artificial neural networks (ANN) adopt a non-linear approach to the modelling 

process. Links between the measured parameter and spectral response are determined 

according to a series of equations. The issue with such neural networks is the “black 

box” nature by which the regression parameters are calculated.83 Models based on 

ANN’s are more complex than their linear counterparts and their efficacy can vary 

substantially depending on the number and quality of the spectra utilised in the 

training stages.63, 83 

 

2.5.5 Model Evaluation 

 

The suitability of constructed models is usually assessed by comparison of the root 

mean square error of calibration (RMSEC) and root mean square error of prediction 

(RMSEP) values. Obtaining similar values for both RMSEC and RMSEP indicates a 

model that has a good predictive ability.62 

 

The RMSEC value gives an indication of the error between the spectroscopic data 

and the reference data for the calibration dataset. Values for RMSEC are calculated 

according to Equation 14, where ‘N’ represents the total number of samples/spectra 

in the calibration dataset and ‘f’ the number of factors included in the multivariate 

model.52, 62 
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!"#$% = !!"#$!% − !!"#$%&'#!
!

! − ! − 1  
Equation 14 

 

2.5.5.1 Internal Validation 

 

Internal validation procedures can be utilised as a means of evaluating how well the 

constructed model is performing. The procedure can be useful for optimising the 

number of latent variables used in construction of the model but is no substitute for 

external validation approaches. 

 

Leave one out cross validation (LOOCV) is a commonly employed method of 

internal validation. A model is constructed based on the calibration dataset but with 

the first sample excluded. This sample is then predicted using the constructed model. 

Another model is then constructed from the calibration dataset, this time however the 

second sample is excluded and used to test the model. The process is repeated until 

all samples in the calibration dataset have been excluded and tested against a 

constructed model.62 With this approach the model is essentially being evaluated on 

data that has been included within the calibration dataset and so doesn’t challenge 

the model to the same extent as an external validation procedure. 

 

2.5.5.2 External Validation 

 

Models are generally challenged using an external validation dataset containing data 

that has not been included as part of the calibration dataset. The error between values 

predicted for the unseen dataset using the multivariate model and those obtained 

from the reference analysis method (RMSEP) is calculated using Equation 15. In this 

case ‘N’ refers to the number of unique samples/spectra contained within the 

validation dataset.52, 57, 60, 62 
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!"#$% = !!"#$%&"' − !!"#$%&'#$
!

! − 1  
Equation 15 

 

2.5.6 Calibration Transfer 

 

Predictive models based on spectroscopic data are generally instrument specific as a 

result of manufacturing parameters such as optical differences in the probes, and 

instrument specific spectral features such as artefacts.111, 121  

 

To ensure a model works effectively with different sets of instrumentation there are a 

number of options available. Constructing and maintaining a separate model for each 

instrument was a possible approach. This would result in the most accurate 

predictions however it is both time and labour intensive.121  

 

As an alternative approach, a global calibration model could be constructed. This 

would incorporate samples acquired on all the spectrometers into the calibration 

model effectively modelling the variations in the spectrometers. One of the key 

disadvantages of this approach is the requirement for the model be updated if a new 

spectrometer is added, or if there is any maintenance carried out on the instruments 

that could result in an optical change.121 

 

The third option for dealing with these instrument specific variations is to utilise the 

same calibration model on each instrument but apply a mathematical treatment to 

standardise the spectra to the one instrument on which the calibration model was 

built. Advantages of this approach over the other proposed methods include the time 

efficiency, ability to easily incorporate new spectrometers and the increased accuracy 

of predictions.121, 122 

 

Different approaches to the calibration transfer / standardisation process have been 

proposed; direct standardisation (DS), piecewise direct standardisation (PDS) and 

spectral space transformation (SST).123, 124 
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3. Materials & Methods 
 

Over the course of this investigation various analytical standards and reagent grade 

compounds were utilised. In all cases these materials were supplied by Sigma-

Aldrich Ltd. (Dorset, UK) unless otherwise stated.  

 

3.1 Standard Preparation 

  

Analytical standards were utilised for the analysis and quantification of samples by 

the analytical reference methods employed, but also as a means of acquiring the pure 

component spectra of the various analytes of interest. 

 

In many cases the compounds were commercially available and were purchased as 

99% analytical grade purity. In some cases a commercial standard was not available 

and required a synthetic route to be followed to generate the compound that could be 

used as an analytical standard. 

 

3.1.1 Commercially Available Standards 

 

High purity standard materials were commercially available for the majority of 

analytes of interest. Stock solutions were prepared by weighing out the appropriate 

mass of the compound, dissolving in an aliquot of distilled water before transferring 

to a volumetric flask (Fischer Scientific, Loughborough, UK) and making up to the 

graduation mark. 

 

Subsequent standard solutions for quantification of the analytes were prepared by 

pipetting an appropriate volume of the stock solution in volumetric glassware 

(Fischer Scientific, Loughborough, UK) and adding distilled water to the graduation 

mark to obtain a standard at the required concentration. 
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The concentrated stock solution was also utilised to obtain the pure component 

spectrum of each analyte of interest. Dilutions of these spectroscopic samples, if 

required, were prepared using volumetric glassware as previously described. 

 

3.1.2 Non-commercially Available Standards 

 

A number of compounds investigated were not commercially available, or were 

unavailable at the required purity. A suitable standard of tertiary-butyl glycine (TBG) 

was prepared from a re-crystallisation process. Other compounds of interest however 

required synthesis of the compound and subsequent purification by re-crystallisation.  

 

3.1.2.1 Tri-methyl Pyruvic Acid  

 

Commercially available tri-methyl pyruvic acid (TMP) material was of sufficient 

purity for use as a spectroscopic and analytical standard. The material was supplied 

by Ingenza Ltd. (Roslin, UK) in aliquots as required. 

 

3.1.2.2 Tertiary-butyl Glycine 

 

Standards of TBG were produced by re-crystallisation of the crude product obtained 

from the reductive amination and distillation procedure (3.3.2.1). An aliquot of the 

resulting solution was transferred to a round-bottomed flask and the solvent 

completely removed by rotary evaporation (Buchi, Oldham, UK). The minimum 

volume of distilled water was added under refluxing conditions to completely 

dissolve the crystals again. Once dissolved the solution was rapidly cooled in an ice 

bath causing the TBG to crystallise in solution due to the materials low solubility in 

water. These crystals were collected by filtration and an NMR spectrum obtained to 

check the purity of the material. 

  



 66 

3.1.2.3 Compound B 

 

A high purity commercial sample of this material was not commercially available so 

it was necessary to synthesise and purify the material based on an adaptation of the 

procedures described by Clark et al. (2001) (Figure 3-1).125 

 

Approximately 5 g the parent substituted pyrrole compound was placed in a 1 L 

round-bottomed flask and dissolved in 6 M hydrochloric acid. This solution was then 

refluxed for a period of eight to ten hours. The acid reflux process cleaves the bond 

joining the carbonyl and amine functional groups. After reflux the resulting solution 

was pre-concentrated using a rotary evaporator (Buchi, Oldham, UK). 

 

 
Figure 3-1 - Production of compound B for use as reference standard from the 

substituted pyrrole parent compound in an adaptation of the procedure described by 

Clark et al. (2001).125 
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The desired product was extracted by flash chromatography using a strong cation 

exchange resin. A glass chromatography column was packed with Amberlite IR-120 

plus strongly acidic cation exchange material (Sigma-Aldrich, Dorset, UK). This was 

washed initially with distilled water. An aliquot of the concentrated product from the 

reflux stage was then introduced onto the column and washed with at least one 

column volume of distilled water. The desired product remained trapped by the 

Amberlite column packing whilst the unwanted components passed through. A 

solution of 2 M ammonium hydroxide was passed through the column to elute 

‘compound B’, with approximately 5 or 6 column volumes of eluent collected. The 

solvent was removed using a rotary evaporator to obtain compound B in crystalline 

form. Recrystallisation using the minimum volume of boiling methanol yielded the 

desired product, which was tested for purity by proton NMR. 

 

3.2 High Performance Liquid Chromatography 

 

Separation and quantification of the key analytes of interest in all cases was carried 

out utilising high performance liquid chromatography (HPLC) (Figure 3-2). The 

system employed was a modular system consisting of two Gilson model 306 pumps, 

a model 805 manometric module, model 811C dynamic mixer, model 234 auto-

injector fitted with a 20 µL volume sample loop, and model 832 temperature 

controller unit for the temperature controlled sample rack (Gilson, Middleton, USA). 

Column temperature was controlled using a Jones chromatography model 7971 

column heater (Jones Chromatography, Hengoed, UK). This system was fitted with 

two detector units: a Gilson model 170 diode array detector (DAD) and also a 

Viscotek VE 3580 refractive index (RI) detector (Malvern Instruments, Malvern, 

UK). All the various components were controlled using the Unipoint software 

application [Version 5.11] (Gilson, Middleton, USA). 

 

Individual chromatographic methods were developed for the separation and 

quantification of the various amino acids and keto acids investigated. 
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Figure 3-2 – Gilson modular HPLC system fitted with both refractive index and 

DAD detector systems. 

 

3.2.1 Amino Acid Separation & Quantification 

 

3.2.1.1 Derivatisation Procedure 

 

The absence of a chromophore in the amino acid molecule required a derivatisation 

process to be carried out in order to detect the amino acids using the DAD detector 

system. The previously documented reaction between amino acids, ortho-

phthalaldehyde (OPA) and 2-mercaptoethanol was selected as the derivatisation 

method (Figure 3-3).126-128 Based on the literature, this derivatisation process 

appeared to be compatible with a wide range of amino acids and would provide a 

consistent analytical procedure for most of the amino acids of interest.128 
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To ensure consistency in the derivatisation process, but also due to time restrictions 

resulting from degradation of the derivatised complex128, the process was carried out 

automatically by the auto-injector system prior to injection onto the chromatography 

column. 

 

 
Figure 3-3 - Derivatisation of amino acid with ortho-phthalaldehyde (OPA) and  

2-Mercaptoethanol to form chromophore containing compound allowing detection 

by DAD at λmax=230nm proceeding via mechanism suggested by Wong et al. 

(1985).129 

 

3.2.1.1.1 Preparation of Borate Buffer 

 

A solution of 0.4 M borate buffer at pH 10 was prepared for use in the derivatisation 

process. Borate buffer was selected for the process as this buffer was reported as 

consistently resulting in a strong fluorescence128 (so would be expected to have 

similar results with absorbance measurements), as well as being the buffer utilised by 

Ingenza for the method.  
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A mass of approximately 25 g of boric acid was weighed out and added to 500 mL of 

distilled water. The solution was stirred to dissolve as much of the solid boric acid as 

possible. A solution of 4 mol dm-3 potassium hydroxide was prepared by dissolving 

224 g of potassium hydroxide in 1 L of distilled water. This solution was then added 

to the boric acid solution to adjust the pH to 10. As the pH increased the boric acid 

completely dissolved in the volume of distilled water. With the boric acid completely 

dissolved the liquid was transferred to a 1 L volumetric flask and the solution made 

up to the graduation mark with distilled water resulting in a 0.4 M borate buffer 

solution.  

 

3.2.1.1.2 Preparation of Derivatisation Reagent 

 

A derivatisation solution was prepared by weighing out approximately 20 mg of 

OPA using a 4-place balance (Mettler Toledo, Leicester, UK). This mass was then 

transferred to a 5 mL volumetric flask and 0.5 mL of HPLC grade methanol 

(Chromasolv, Sigma-Aldrich, Dorset, UK) added to completely dissolve the OPA. 

Using a micropipette (Gilson, Wisconsin, USA), a 20 µL volume of 2-

mercaptoethanol was added and the solution made up to the graduation mark with 

the 0.4 M borate buffer solution. After mixing this derivatisation reagent was 

transferred into HPLC vials for use in the pre-column derivatisation procedure. 

 

3.2.1.1.3 Derivatisation of Amino Acid 

 

Derivatisation of the amino acid was achieved by mixing the amino acid sample, 0.4 

M borate buffer at pH10 (this ensures the amine with a pKa in the region of 9.8 is 

ionised130) and derivatisation reagent in a 1:2:2 ratio. To ensure consistency in the 

derivatisation, this procedure was carried out prior to injection of each sample. A 12 

µL volume of the buffer solution was firstly aspirated followed by a 6 µL volume of 

sample and finally a 12 µL volume of derivatisation reagent. These solutions were 

mixed by aspirating and dispensing the 30 µL volume in the sample loop five times 

before being allowing to react in the sample loop for a four-minute period prior to 
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injection. Adopting this approach ensured each sample was consistently treated with 

the same amount of reagent and allowed to react for a consistent time period.  

 

3.2.1.2 Chromatographic Separation 

 

Separation of all the amino acids post derivatisation was carried out utilising a 

reverse phase C18 chromatography column (Grace Davidson Discovery Sciences, 

Illinois, USA). Pre-column derivatisation was carried out according to the previously 

described procedure (3.2.1.1.3). In order to achieve the required separation and peak 

shapes of the various analytes of interest, different chromatographic conditions were 

utilised for the various amino acids under investigation.  

 

3.2.1.2.1 Tertiary-butyl Glycine 

 

The tertiary butyl glycine (TBG) amino acid was separated by a gradient elution 

method utilising methanol and distilled water containing 0.2% formic acid as the 

mobile phase. An initial composition of 65% aqueous, 35% methanol at a flow rate 

of 1 mL/min was held for two minutes. This was changed over a linear gradient 

between two and six minutes to 5% aqueous, 95% methanol, which was 

subsequently held for 6 minutes. The original composition was restored after 12 

minutes and equilibrated until 14 minutes when the run was complete. Detection was 

using the DAD monitoring the complexes wavelength of maximum absorption at 340 

nm, with a bandwidth of 10 nm, and referencing 500 nm, with a bandwidth of 40 nm. 

 

3.2.1.2.2 Other Amino Acids 

 

Separation and quantification of alanine, compound B and amino-butyric acid (ABA) 

was achieved using a gradient elution method with water containing 0.2% formic 

acid and methanol as the mobile phase. An initial composition of 80% water and 

formic acid, 20% methanol was held for a two-minute period. The methanol content 

was increased to 52% from two to four minutes over a linear gradient and held for a 

further minute and a half. From five and half to ten minutes the methanol content 
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was further increased to 90% and held at this level for eight minutes before being 

restored to the original conditions and allowed to equilibrate for subsequent 

injections. 

 

3.2.2 Keto Acid Separation & Quantification 

 

Quantification and separation of the keto-acid components was also carried out by 

HPLC. Some of these compounds did possess a chromophore and could therefore be 

detected using the DAD system, however the majority were detected using the 

refractive index detector system.  

 

3.2.2.1 Tri-methyl Pyruvic Acid 

 

The method employed for tri-methyl pyruvic acid (TMP) detection utilised a C18 

reverse phase chromatography column with detection via the DAD monitoring at 210 

nm, with a bandwidth of 10nm, and referencing 400 nm, with a bandwidth of 40 nm. 

An isocratic method was employed with a mobile phase composition of 35% distilled 

water containing 0.2% trifluoroacetic acid (TFA), 65% methanol at a flow rate of 0.8 

mL/min.  

 

3.2.2.2 Other Keto-acids 

 

All other keto acids of interest were analysed using a REZEX chromatography 

column (Phenomenex, Cheshire, UK). In this case the mobile phase was 0.005N 

sulphuric acid with a flow rate of 0.8 mL/min. Detection of the analytes with this 

method utilised the refractive index detector. 

 

3.2.2.3 Organic Acids 

 

Organic acids of interest, such a pyruvic acid and acetic acid, were also analysed 

using the REZEX chromatography column. For these analytes an isocratic mobile 
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phase composed of 0.01N sulphuric acid was utilised with a flow rate of 1 mL/min. 

Detection of these compounds was once again using the refractive index detector. 

 

3.2.2.4 Method Validation & Error Estimation 

 

Prior to use for quantification the developed HPLC methods were tested to ensure 

the responses obtained were linear, repeatable and also to estimate the error that was 

associated with any measurements made using these methods.  

 

Linearity was assessed by preparing a series of calibration standard solutions of the 

analyte of interest at various concentrations. Each of these solutions was injected into 

the system in triplicate and the area under the peaks calculated. At least five 

calibration standards were prepared for each method to be validated. A linear line of 

best fit was plotted through the data points and the equation of the line was 

determined using the ‘LINEST’ command in Microsoft Excel (Microsoft, 

Washington, USA).  

 

To assess the repeatability of the method an additional sample was prepared with a 

concentration that lay within the calibration range. This sample was injected for ten 

replicates and the area under the peak integrated and recorded. From these peak areas 

an assessment of the methods repeatability was determined.  

 

The error associated with the fit of the calibration line through the data points was 

determined by calculating the root mean square error (RMSE) (Equation 16). Using 

the equation of the line of best fit through the data the concentration of each 

calibration sample was determined. This value was then subtracted from the true 

(known) value and squared for each sample. Summation of these values was divided 

by the number of injections and the square root taken to give the error associated 

with fitting the calibration line through the calibration data points.  
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RMSE=
Σ Actual – Predicted !

!  
Equation 16 

 

Errors arising due to variations between replicate injections also had to be taken into 

account when determining the total error associated with the method. A total of ten 

replicate injections of a sample not used for the calibration process, but within the 

calibration range were analysed using the method. Estimation of the error associated 

with these replicate measurements was calculated based on the confidence intervals. 

Peak areas from the ten replicate injections were used to estimate the concentrations 

using the previously determined regression equation. From these values the mean 

and standard deviation were calculated (Equation 17 and Equation 18), and the 

number of degrees of freedom (n-1) determined to obtain the T-Value at the desired 

confidence interval (Appendix I). The error value was then calculated using Equation 

19 with the T-value obtained from an appropriate distribution at the 95% confidence 

interval.131, 132  

 

! = !
!  Equation 17 

! = 1
! − 1 !! − ! !

!

!!!
 Equation 18 

Mean ± Confidence Interval = ! ± ! !! Equation 19 

 

The total error associated with the analytical method was quoted as the linear 

combination of the error due to lack of fit and the error associated with replicate 

injections calculated as per Equation 20. 

 

Combined Error = !""#"!1 ! + Error 2 !  Equation 20 
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3.3 Biotransformation Processes 

 

The biotransformation processes were carried out in bioreactor systems. These 

systems were chosen because they offered control, and in some cases data logging, 

of critical process parameters such as pH, dissolved oxygen levels, temperature, 

agitation and aeration rates. 

 

3.3.1 Artificial Spiking 

 

Due to the nature of the processes under investigation a stoichiometric linkage 

existed between the analytes of interest. This linkage presented issues of co-linearity 

in the resulting models of the system. To ensure that the resulting model is able to 

independently predict the concentration of all the analytes of interest it was necessary 

to break this co-linearity. Many approaches to breaking these relationships have been 

considered from generating a model using purely synthetic samples to retrospectively 

spiking samples with the analytes of interest.19 An alternative approach suggested 

was to utilise an experimental design to generate a series of mixtures in which there 

was no correlation between the analytes of interest.46 

 

In an adaptation of this approach an experimental design was utilised to determine 

the initial concentration of substrate and the introduction of a variable concentration 

product spike if appropriate. Breaking co-linearity in this manner also allowed for 

spiking of experiments where in-situ measurements were made.  

 

Experimental designs were generated either as full factorial or partial factorial 

designs using the Design Expert software package [Version 8] (Stat-Ease Inc., 

Minneapolis, USA). The number of factors was determined by the number of key 

analytes of interest, with the levels chosen to encompass the concentrations expected 

during a typical replicate of the industrial biotransformation process.  
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3.3.2 Tertiary-butyl Glycine De-racemisation 

 

3.3.2.1 Preparation of Tertiary-butyl Glycine 

 

Racemic TBG for use in the biotransformation was produced from TMP via a 

reductive amination process (Figure 3-4). The high pressures of hydrogen gas 

required by the reaction meant the reductive amination was carried out in a 

Zipperclave model high-pressure laboratory batch reactor (Autoclave Engineers, 

Pennsylvania, USA). At this scale, the reductive amination reaction was carried out 

with a total volume of approximately 750 mL, which at the utilised loadings resulted 

in a solution with TBG concentration in the region of 1.6 mol dm-3 

 

 

Figure 3-4 - Reductive amination process for the conversion of TMP to racemic 

TBG using ammonia solution under a pressurised hydrogen atmosphere catalysed by 

5% palladium on carbon. 

 

Using a balance approximately 165 g of solid TMP material was weighed out and 

transferred into the reactor vessel. To this 200 mL of neat ammonia solution at 35% 

(approximately 18 mol dm-3) (Fischer Scientific, Loughborough, UK) was added, 

this would give a final ammonia concentration of 5 mol dm-3. The reaction was 

catalysed using 5% palladium on carbon (Pd/C) (Degussa, Macclesfield, UK) of 

which approximately 8 g was weighed out and added to the reaction mixture. 

Distilled water was then added, approximately 550 mL, to take the total volume in 

the reactor up to the 750 mL volume. At this point the reactor vessel contained a 

solution with a TMP concentration in the region of 1.7 mol dm-3, 5 mol dm-3 

ammonia and 6 g/L palladium on carbon catalyst. 
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Having charged the vessel with reactant mixture, it was then positioned to form a 

seal and locked in place. At this point all the gas inlet lines were checked for 

integrity and to ensure they were closed. The water-cooling lines were also checked 

to ensure there were no leaks and that a cold water supply was available to the 

system. 

 

With the vent line closed, the nitrogen supply line was opened and the reaction 

vessel pressurised with nitrogen gas. This gas was then released via the vent line and 

the process repeated a further twice to ensure the reactor vessel was purged of 

oxygen. Having completed three nitrogen purges, the hydrogen supply line was 

opened and the reactor vessel pressurised with hydrogen gas. Hydrogen gas pressure 

was maintained constant over the course of the reductive amination by the control 

system. Agitation in the system was set at a rate of 1500 revolutions per minute 

(rpm) and the temperature maintained at 70 °C. 

 

The reaction conditions were maintained for a twenty-four hour period to allow a 

suitable yield of TBG to have formed. Supply of the hydrogen gas was stopped and 

the temperature and stirring rates decreased. Once the system had cooled sufficiently, 

the hydrogen gas pressure was released via the vent line. Three nitrogen purges were 

again carried out to remove any traces of hydrogen from the system prior to opening 

the reactor vessel. 

 

Product from the reaction was filtered using a Buchner funnel and 0.2 µm filter paper 

(Fischer Scientific, Loughborough, UK) to remove particulates from the solution 

such as the spent Pd/C catalyst. This resulting solution was at a very high pH due to 

the presence of ammonia in the solution. Prior to use in the biotransformation stage, 

the pH of the resulting solution needed to be reduced to a pH in the range of 6 to 7.  

A distillation process was utilised to reduce the pH of the TBG product. Using a 

quick-fit still head, condenser, 1L round bottomed flask and a heating mantle 

(Fischer Scientific, Loughborough, UK) a distillation setup was created. Product 

from the reductive amination was heated to boil off the ammonia solution. At various 

points during the process, distilled water was added to the solution to replace the 
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liquid that had been removed. Small aliquots of the solution were removed using a 

Pasteur pipette and the pH checked using pH paper. The distillation process was 

continued until the pH of the solution was approximately 7. At this point an aliquot 

of the TBG was removed and the concentration quantified by HPLC (3.2.1.2.1). 

 

Based on the concentration determined by the HPLC analysis and the volume of 

TBG solution recovered from the distillation process, the appropriate volume of 

water was calculated and added to result in a TBG solution with a concentration of 

approximately 1 mol dm-3. Again the actual concentration of the solution was 

determined by HPLC. At this point the TBG solution was suitable for use in the 

biotransformation process. 

 

3.3.2.2 Biotransformation 

 

Utilising a D-amino acid oxidase enzyme the de-racemisation of the amino acid TBG 

was carried out. The enzyme was contained within host Escherichia coli cells that 

had been provided in a freeze-dried state (Ingenza Ltd., Roslin, UK).  

 

The process was carried out on a scale of approximately 550 mL in an Applikon 

bioreactor system compromising of an ADI-1030 bio console and ADI-1035 

controller unit (Figure 3-5) (Applikon Biotechnology, Schiedam, Netherlands). 
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Figure 3-5 – Image of Applikon ADI bioreactor system illustrating the key 

components of the system. 

 

As the cellular material was not growing during the biotransformation process, there 

was no requirement to maintain sterility within the system. However before starting 

the biotransformation process both the pH and dissolved oxygen probes required 

calibration. The pH probe was calibrated using buffer solutions at pH 4 and 7 (VWR, 

Leicestershire, UK). Initially the probe was placed in the low pH buffer solution and 

left for a period of time to equilibrate. Once a stable reading was obtained the 

calibration process on the instrument was started and the low value pH reading set. 

The electrode was then removed, washed with distilled water and placed in the buffer 

solution at pH 7. Again this was left until a stable reading was recorded and the 

reading stored by the instrument. When these readings had been saved the instrument 

then calculated a slope and offset that were used to calculate pH from the electrode 

readings.  

 

Like pH, the dissolved oxygen probe also required calibration prior to use, however 

this was done when the initial substrate loadings had been measured out and placed 

in the reactor vessel.  
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Using the TBG solution of known concentration prepared from the distillation 

process (3.3.2.1) the initial substrate solution for the biotransformation was prepared. 

Approximately 330 mL of the racemic TBG solution and 210 mL of distilled water 

were mixed together in the reactor vessel. Volumes of TBG solution and water 

quoted were based on a final TBG solution concentration of 1 mol dm-3, however the 

actual volumes used were calculated based on the concentration of TBG determined 

from the HPLC analysis. To this mixture 1 mL of polypropylene glycol (PPG) to act 

as an antifoaming agent and 2 mL of catalase from micrococcus lysodeikticus was 

added to the mixture.  

 

This liquid solution was then placed in the reactor vessel and calibration of the 

dissolved oxygen probe carried out. The solution was heated to the temperature at 

which the biotransformation process would be carried out (30 °C). Oxygen free 

nitrogen (BOC, Manchester, UK) was introduced into the system by sparging at a 

flow rate of approximately 1vvm and the solution agitated at 300 rpm. Nitrogen was 

bubbled into the vessel until the dissolved oxygen probe returned a consistent signal 

that was then set as the zero value. The process was then repeated with air to obtain 

the high dissolved oxygen reading and this was set as 100%. 

 

E. coli cells containing the DAAO enzyme made up the remainder of the reaction 

volume. A cell concentration of 50 g/L of the whole cells was required for the 

biotransformation process. Freeze dried cell material was however used for this 

process, so the mass of freeze dried enzyme was calculated as a mass per litre from 

the freeze drying factor and then this value adjusted for the required volume. 

 

Samples were then removed from the reactor vessel at various stages during the 

biotransformation process. Aliquots of approximately 5 mL were taken via the 

sampling port, with the pH, temperature and dissolved oxygen values recorded for 

each sample. Once removed from the reactor these samples were heated for a three 

minute period at 100 °C. The purpose of this step was to denature the enzyme, 

preventing any further conversion of the racemic TBG mixture between the point of 

sampling and analysis.  
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The biotransformation process was continued for at least a twenty-four hour time 

period, or until the dissolved oxygen levels returned to, or close to 100%. 

 

3.3.3 Amino Butyric Acid De-racemisation 

 

In common with the other de-racemisation processes under investigation, the de-

racemisation of ABA was achieved by the selective oxidation of the D enantiomer to 

the corresponding keto acid leaving the L enantiomer untouched (Figure 3-6).  

 

 

Figure 3-6 - De-racemisation of D/L-ABA using the freeze-dried DAAO enzyme. 

 

Replicates of the process were carried out at a smaller scale in comparison with the 

de-racemisation of TBG process (3.3.2). In this case the total volume of the 

biotransformation reaction was 300 mL.  

 

To accommodate this smaller volume a Braun Biostat Q (Sartorius Stedim Biotech, 

Aubagne Cedex, France) bioreactor system was utilised, which allowed up to four 

replicates of the biotransformation process to be carried out simultaneously (Figure 

3-7). 

 

In this case racemic ABA was commercially available, as was the KBA product of 

the biotransformation process. The substrate solution was prepared by weighing out 

the appropriate masses of ABA, and KBA if the system was being artificially spiked, 

into the reactor vessel and dissolving in 300 mL of distilled water. 

 

NH2

OH

O

NH2

OH

O

O

OH

O

NH2

OH

O

++

DAAO EnzymeL-ABA D-ABA KBA L-ABA



 82 

 
Figure 3-7 - Image of Braun Biostat Q bioreactor system illustrating the key 

components of the system. 

 

Both the pH and dissolved oxygen probes for this system also needed to be calibrated 

prior to starting the biotransformation process. This was done following the same 

process with the buffer solutions and oxygen free nitrogen sparging as had been 

adopted previously (3.3.2.2).  

 

Freeze dried cells of Pichia pastoris containing the DAAO enzyme were provided by 

Ingenza. A final wet cell density of approximately 7 g/L whole cells was required for 

the biotransformation, this approximately equated to 2 g/L of the freeze-dried 

cellular material. The appropriate mass of freeze-dried cells for the 300 mL volume 

was calculated and weighed out. 

 

An initial sample of the reactor contents was taken as a reference point and the 

freeze-dried enzyme subsequently added. Sample aliquots of approximately 2 mL 

volume were removed at regular intervals over the course of the biotransformation 
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process. Once removed these samples were heated for a three minute period in an 

oven at 100 °C to prevent further conversion during storage.  

 

The process was allowed to continue for a period of up to five days, with samples 

taken regularly over the first three days followed by a final sample on the fifth day 

prior to stopping the process. Samples were then stored at 4 °C until ready for 

analysis.  

 

3.3.4 Alanine De-racemisation 

 

The de-racemisation of alanine was utilised as the biotransformation process to 

investigate the use of in-situ mid infrared spectroscopy (3.4.2). Similar to the other 

systems investigated the D enantiomer of alanine in a racemic mixture was 

selectively converted to pyruvic acid leaving the L-alanine un-reacted (Figure 3-8).  

 

Figure 3-8 - De-racemisation of D/L-alanine to L-alanine and pyruvic acid using 

DAAO enzyme contained within a Pichia pastoris host cell. 

 

In common with the other de-racemisation biotransformation processes investigated, 

the DAAO enzyme was contained within freeze dried Pichia pastoris cells. These 

were the same cells and enzyme utilised for the ABA biotransformation process 

(3.3.3) and again had a final cell density of 2 g/L (freeze dried cells). 

 

A suitable amount of solid alanine, and pyruvic acid if the system was being 

artificially spiked, was weighed out to give a final concentration in the region of 

1000 mMol dm-3 alanine. The material was placed in the bioreactor vessel and a 

suitable volume of distilled water added. For a 1L biotransformation process 

approximately 89g of racemic alanine was required. At this scale the reaction was 
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carried out in the Applikon bioreactor system comprising the ADI 1030 bio-console 

and ADI 1035 control unit. 

 

Before the substrate, and any product spike, was introduced into the bioreactor the 

pH and dissolved oxygen probes were calibrated as had been previously described 

(3.3.2.2). An air background reference was also collected on the infrared 

spectrometer prior to the probe being fitted to the bioreactor.  

 

Air was sparged through the system at a rate of 1vvm and the temperature set at 

35 °C. When the system had stabilised the appropriate mass of freeze dried enzyme 

was added and the automated spectral acquisition process at ten-minute intervals 

started. Samples, of approximately 5 mL volume, were removed from the process at 

hourly intervals for the first eight to ten hours and then at regular intervals for the 

remainder of the process. As with the previous systems the samples were heated to 

denature the enzyme and then stored in refrigerated conditions until required for 

analysis. 

 

3.3.5 In-situ Biotransformation 

 

3.3.5.1 Preparation of Cell Bank 

 

The in-situ biotransformation process utilised a strain of E. coli that had been 

genetically modified to express the transaminase enzyme. The strain utilised was 

BW25113 delta dad A ING 10183 provided by Ingenza Ltd. (Roslin, UK). 

 

Solutions of LB Bullion (Merck, Darmstadt, Germany) containing 2% w/v 

bacteriological agar (Oxoid Ltd., Hampshire, UK) were prepared and autoclaved. 

Ampicillin, to give a final concentration of 100 µg/ mL, was dissolved in the 

minimum volume of water and filter sterilised before adding to the solution, which 

was mixed, poured into petri-dishes and allowed to set.  
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In a sterile environment, the master culture was plated out onto the LB agar plates 

and incubated overnight at 37 °C until the E. coli had grown sufficiently and a single 

colony could be extracted from the plate.  

 

Inoculum media was prepared with the composition as described below (Table 1) in 

a 250 mL conical flask and the solution autoclaved prior to use.  

 

Table 1 - Composition of salt solution, trace element solution and inoculum media 

used for the growth of E-coli strain. 

Inoculum (200 mL) Salt Solution Trace Elements Solution 

Component Volume 

(mL) 

Component Concn. 

(g/L) 

Component Concn. 

(g/L) 

Salt Solution 40 (NH4)2SO4 10 CaCl2.2H2O 0.5 

50% Glucose 4 K2HPO4 73 FeCl3 10.03 

1M MgSO4 0.4 NaH2PO4.2H2O 18 ZnSO4.7H2O 0.18 

Trace Elements 0.4 (NH4)2H-citrate 2.5 CuSO4.5H2O 0.16 

Carbenicillin 0.2   MnSO4.2H2O 0.15 

Sterile Water 155   CoCl2.6H2O 0.18 

    Na2EDTA.2H2O 22.3 

 

A single colony of E. coli cells was extracted from the LB plate and introduced into 

the sterile inoculum media. This flask was then incubated at 37 °C and agitated at 

200 rpm until the optical density of the solution was approximately 1 AU at a 

wavelength of 600 nm.  

 

Once the desired optical density had been reached 0.8 mL of the culture was added to 

a culture storage vial (Sigma-Aldrich, Dorset, UK) containing 0.2 mL of glycerol 

that had been sterilised. The process was repeated several times to create a cell bank, 

the solution was then frozen at -80 °C for use at a later time.  
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3.3.5.2 E. coli Fermentation 

 

The fermentation process was carried out using a stainless steel BIOSTAT C-DCU 

bioreactor system (Sartorius Stedmin Biotech, Aubange Cedex, France) with a total 

maximum volume of 22 L and working volume of 10 L (Figure 3-9). This reactor 

was equipped with four internal baffles (1.5 cm x 57 cm) and three six-blade 

adjustable height Rushton turbine style impellers. Air was supplied via a circular 

annular sparger located at the bottom of the vessel with temperature control provided 

via a water jacket. Four ports located near the bottom of the reactor vessel housed the 

pH probe (Mettler Toledo Ltd., Leicester, UK), dissolved oxygen probe (Mettler 

Toledo Ltd., Leicester, UK), sampling port and near infrared spectroscopic probe 

(Foss NIRsystems, Maryland, USA). 

 

 
Figure 3-9 - Image of BIOSTAT C-DCU bioreactor system illustrating the locations 

of the key components and features of the bioreactor system. 
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Prior to use, the pH probe required calibration; this was achieved by measuring the 

probes response in a buffer solution at pH 7, followed by a buffer solution at pH 4 as 

described (3.3.2.2). 

 

Growth media for the initial stage of the fermentation process was prepared, based 

on a total volume of 10 L with the components and concentrations detailed in Table 

2. The media components (excluding those identified in Table 2) had the appropriate 

mass weighed out and were added to a volume of 9 L of distilled water. The solution 

was agitated until all the media components had completely dissolved. This was then 

transferred to the bioreactor system and sterilised by heating at 120 °C for twenty 

minutes. The glucose component was prepared by dissolving the mass of glucose in 

approximately 960 mL of distilled water, this was then autoclaved separately and 

added aseptically along with the media components that required filter sterilisation.  

Two conical flasks containing 300 mL of this initial growth media were also 

prepared and sterilised. These flasks were utilised to prepare the inoculum for the 10 

L scale fermentation.  

 

Table 2 - Batch media composition used for the growth of E. coli. 

Component Concentration (g/L) Mass in 10L (g) 

   

Ammonium Sulphate 2 20 

Potassium Phosphate (dibasic) 14.6 146 

Sodium Phosphate (monobasic) 3.6 36 

Ammonium Citrate 0.5 5 

Antifoam 0.1 mL 1 mL 

Glucose* 11.9 119 

Magnesium Sulphate (1M)* 2 mL 20 mL 

Trace Elements** 2 mL 20 mL 

Carbenicillin** 0.05 0.5 

* Not autoclaved in-situ, sterilised separately and then added aseptically. 

** Not autoclaved in-situ, filter sterilised and added aseptically 
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With the total volume of sterilised media in the reactor system the dissolved oxygen 

probe could then be calibrated. With agitation rate set at the highest rate expected 

during the course of the fermentation, and gas supplied at a flow rate typically 

expected during the fermentation oxygen free nitrogen was sparged into the media. 

When a stable reading from the probe was observed this was set as the zero 

calibration point. Compressed air was then re-introduced into the system until a 

stable reading was observed, which was set as the high point. Once calibrated, the 

agitation rate and airflow were set at 300 rpm and 10 Lpm respectively.  

 

As this was a fed batch fermentation process, the glucose feeding solution, with 

glucose concentration of 550 g/L, was prepared at a volume of 2 L and sterilised in 

advance. To account for the increase in volume resulting from the addition of 

glucose a volume of approximately 1.1 L distilled water was measured out and the 

glucose (1.1 Kg) added in small aliquots of approximately 200 g. To completely 

dissolve the glucose it was necessary to heat the solution slightly using a stirrer 

hotplate. 

 

Yeast extract to give a final concentration of 5 g/L when mixed with the glucose 

solution was weighed out and dissolved in 100 mL of distilled water. Both this 

solution and the glucose solution were autoclaved. 

 

The glucose and yeast extract were mixed aseptically, with 50 mL per litre volume of 

1M magnesium sulphate and 10 mL per litre volume of trace element solution also 

added aseptically and mixed well to give the feed solution.  

 

Solutions of 1M sulphuric acid and 1M ammonia solution (Fisher Scientific, 

Loughborough, UK) were prepared by appropriate dilution of the relevant 

commercially available stock solution. These solutions were used as titrants to 

maintain the system pH at 7 during the fermentation. 

 

Using the cell bank that had been prepared previously (3.3.5.1) two vials were 

removed and defrosted at room temperature. The contents of these vials were then 
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transferred into the two conical flasks containing 300 mL of the initial growth 

medium in an aseptic manner. These flasks were then incubated at 37 °C and shaken 

at 150 rpm until the culture returned an optical density in the region of 1 AU when 

measured at a wavelength of 600 nm. When the system had reached this point the 

inoculum was ready to be introduced into the bioreactor.  

 

The bioreactor settings were verified prior to inoculation. In order to maintain the 

dissolved oxygen levels at 30% or above the agitation rate was cascaded between a 

minimum of 300 rpm and maximum of 900 rpm. Temperature was maintained at 

30 °C, pH at 7 and aeration rate set at 10 Lpm (equating to an air supply of 1vvm).  

 

Under an aerosol of ethanol the inoculation line was transferred into the 300 mL 

inoculum flask and the solution introduced into the bioreactor using a peristaltic 

pump (Watson Marlow, Cornwall, UK).  

 

The fermentation was allowed to progress until the optical density of the culture fluid 

was in the region of 10 to 12 AU. At this point the cells became glucose limited and 

the feeding profile was begun.  

 

When the feeding profile had completed the optical density of the culture media was 

in the region of 50 Au. Induction of the culture was then carried out by the addition 

of Rhamnose solution that resulted in a final concentration of 2 g/L in the reactor. 

Once induced the culture was left for a period of 17 hours before commencing the 

biotransformation stage.  

 

3.3.5.2.1 Biomass Estimation 

 

Estimation of biomass concentration in the bioreactor was determined by a measure 

of the dry cell weight. A 1 mL aliquot of the fermentation broth was transferred into 

a pre-weighed Eppendorf tube. This was then centrifuged at 10,000 rpm for a five 

minute period to form a pellet of the cellular material. The supernatant was removed 

and the process repeated using a 1 mL aliquot of distilled water. Following the 
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removal of the water supernatant the Eppendorf tube was dried in an oven at 105 °C 

for 24 hours and then allowed to cool in a desiccator. Once cool the tube was 

weighed again and the dry cell weight determined by subtracting the weight of the 

empty tube from this recorded mass. The process was carried out in triplicate with 

the quoted result being the mean value of the three measurements.133 

 

3.3.5.3 Transaminase Biotransformation 

 

The biotransformation process for the production of compound B was carried out 

immediately after the fermentation process (3.3.5.2) and did not require the cellular 

material to be harvested or pre-treated. 

 

In this process the enzyme swaps the amine functional group from the L-alanine 

substrate with the ketone functionality of compound A. The transaminase enzyme 

results in the formation of the compound B product in the S configuration (Figure 

3-10). 

 

An appropriate mass of solid L-alanine that would result in a final concentration of 

approximately 300 mMol dm-3 was weighed out. Compound A was utilised at a 

concentration in the region of 900 mMol dm-3, so again the appropriate mass of the 

substance was weighed out. Since the microorganism was only able to function 

within specific pH parameters it was necessary to pH correct the loading of 

compound A to 7 using 35% ammonium hydroxide solution.  

 

When the 17 hour time frame after the point of induction had been reached, the 

cascading feature of the bioreactor was stopped, reverting the system back to an 

aeration rate of 10 Lpm (1vvm) and agitation rate of 300 rpm. All other parameters 

remained as they were during the fermentation process. Using a peristaltic pump the 

pH corrected compound A solution was added to the fermentation broth along with 

the L-alanine. From this point onwards a sterile environment was not maintained 

within the bioreactor system.  
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Figure 3-10 - Biotransformation process for the generation of compound B from  

L-alanine (absolute stereochemistry S-alanine) and compound A using a 

transaminase enzyme contained within the whole cell E-Coli resulting from the 

fermentation process (3.3.5.2). 

 

Once the substrate had been added the biotransformation process was allowed to 

progress for a time period of approximately forty-eight hours. The time frame was 

monitored in conjunction with the dissolved oxygen levels, dissolved oxygen levels 

returning to 100% indicated the process had reached completion. Samples of 

approximately 20 mL in volume were taken at regular intervals over the course of the 

biotransformation. These samples were boiled at 100 °C to denature the enzyme and 

prevent any further generation of the product. 

 

Near infrared spectroscopic measurements were made using the Foss XDS process 

analyser system fitted with a transflectance probe (3.5.2). Mid infrared spectroscopic 

measurements were made at-line using a Thermo avatar 360 system fitted with a zinc 

selenide ATR crystal (3.4.1) 

 

When the biotransformation process had completed the material was destroyed using 

the in-situ sterilisation procedure. 
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3.4 Mid Infrared Measurements 

 

3.4.1 At-line Mid Infrared 

 

Acquisition of the at-line mid infrared spectra of the samples was carried out using a 

Thermo Nicolet Avatar 360 mid infrared spectrometer (Thermo Fischer Scientific, 

Massachusetts, USA). The instrument was controlled using the OMNIC software 

package (Version 5.2a). Sample presentation to the instrument was via the 

smartARK accessory (Thermo Fischer Scientific, Massachusetts, USA) fitted with a 

horizontal zinc selenide (ZnSe) attenuated total reflectance (ATR) crystal contained 

within a trough plate.  

 

Using a Pasteur pipette, a thin layer of the sample material was placed on the crystal 

surface, ensuring that the entire surface of the crystal was covered and there were no 

air bubbles in the liquid film. The cover was then placed over the sample and 

clamped into place to prevent the evaporation of any volatile components that may 

have been present. The acquired spectra were reported as the average of thirty-two 

co-added scans of the sample and referenced against an air background. After 

acquisition each spectrum was saved in the Galactic (SPC) format for manipulation 

within another application at a later date. 

 

3.4.2 In-situ Middle Infrared 

 

In-situ spectroscopic measurements were made using an ABB MB3000 mid infrared 

FT-IR spectrometer system (ABB, Québec, Canada). The probe used for these 

measurements was a 12 mm diamond crystal ATR probe connected to the 

spectrometer by silver halide fibre optic cable (Fibre photonics, Livingston, UK). A 

probe launcher attachment was fitted to the spectrometer to allow coupling of the 

instrument and probe.  

 

Spectroscopic measurements and instrument control were via the Horizon software 

application [Version 3.1.24.2] (ABB, Québec, Canada). Spectra resulted from the 
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average of 128 co-added scans of the sample material at a 4 cm-1 resolution and were 

referenced against an air background. 

 

Spectra were acquired at ten-minute intervals over the course of the 

biotransformation process under investigation. Once acquired the spectra were saved 

in the Galactic (SPC) format and exported for manipulation and modelling. 

 

3.5 Near Infrared Measurements 

 

As with the mid infrared instrumentation, acquisition of the near infrared spectra 

could be achieved in either an at-line or in-situ manner. 

 

3.5.1 At-line Near Infrared Measurements 

 

At-line near infrared measurements of the sample materials were made using a Foss 

6500 series near infrared spectrometer (FOSS NIRsystems, Maryland, USA). The 

instrument was equipped with a sample transport module (Foss NIRsystems, 

Maryland, USA) that allowed for sample presentation in fixed path length quartz 

cuvettes. Adopting this sampling approach allowed for rapid and simple optimisation 

of the sample path length for spectroscopic measurements made when the instrument 

was operated in both transmission and reflectance mode.  

 

For most applications, a cuvette with a path length of 0.5 mm was sufficient to 

acquire suitable spectra without the dominating effects of water causing substantial 

interference. Prior to spectral acquisition, the spectrum of an air background was 

collected using an empty cuvette for use as a background reference. 

 

In all cases the samples were placed in the cuvette using a Pasteur pipette and any air 

bubbles, which may cause further scattering of the incident light, removed by gently 

tapping the cuvette on the bench. The samples were placed in the guide and the 

spectra acquired. A total of thirty-two scans of the material were averaged and the 

resulting spectra referenced against the air background previously collected.  
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As before the spectra were saved and exported as a numerical spread sheet in comma 

separated variable (CSV) format that could then be imported into another application 

for manipulation and modelling at a later date.  

 

Although the instrument and sampling accessory were able to acquire both the 

transmission spectra and the reflectance spectra, the same procedure was adopted 

regardless of the acquisition mechanism employed. Other than indicating the 

appropriate acquisition method on the instrument software, the acquisition mode 

could be switched between transmission and reflectance by either removing or 

replacing the blanking plate.  

 

3.5.2 In-situ Process Measurements 

 

Spectroscopic measurements were also made in-situ for a number of the processes 

under investigation. In-situ measurements were made using a Foss XDS process 

analyser (Foss NIRsystems, Maryland, USA); the system was also fitted with a 

multiplexing unit that allowed the one spectrometer to make measurements of a 

variety of systems. Spectra were collected using a transflectance probe (Foss 

NIRsystems, Maryland, USA) and connected to the spectrometer via a fibre-optic 

bundle. As with the at-line measurement system the probe design allowed for easy 

and rapid variation of the sample path length. In most cases, a gap of 0.5 mm 

resulting in an effective path length of 1 mm was sufficient to acquire reasonable 

spectra. 

 

Measurements made in-situ were not referenced against an air background but 

against a NIST traceable reference material (serial number R99P0079). Due to the 

nature of the reference and the design of the probe the referencing procedure was 

carried out with a reflectance probe (Foss NIRsystems, Maryland, USA). A 

correction factor was then applied to compensate for the differences in the acquired 

spectra from the reflectance probe, used in the instrument calibration procedure, and 

the transflectance probe that was utilised for spectroscopic measurements.  
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The probe was mounted in one of the side sampling ports of the bioreactor. As these 

ports also housed the pH and dissolved oxygen probes, any sample measurements 

made should have been representative of the whole reactor contents and would not 

have had a significant impact on the mixing efficiency of the reactor.  

 

Prior to mounting in the bioreactor the most appropriate path length for the sample 

under investigation had to be determined. This was done in an at-line fashion where 

the probe was placed in an aliquot of sample medium and the near infrared spectra 

acquired at various path lengths to determine the optimum. For most applications a 

gap of 0.5 mm, resulting in an effective path length of 1 mm, resulted in sufficient 

quality of spectra with all peaks of interest on scale.  

 

Due to the probe design and size restrictions, in-situ measurements with the near 

infrared system were only carried out for the larger 10 L scale processes.  

 

3.6 Spectral Manipulation & Modelling 

 

Any infrared spectra acquired were exported from the various proprietary software 

applications and imported into the Matlab application [R2007b and R2009b] (The 

Mathworks, Massachusetts, USA) with the PLS toolbox add-in application [Version 

4.0] (Eigenvector Research Inc., Washington, USA) for manipulation and modelling. 

 

In most cases the acquired spectra were derivatised to enhance spectral features and 

reduce the effects of baseline drift.48, 134 Both the first and second derivatives of the 

spectra were calculated with Savitsky-Golay smoothing applied. In all cases the 

derivative was calculated from a second order polynomial and utilised a bandwidth 

of 21. All resulting models were constructed using the PLS toolbox add-in for 

Matlab.
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4. Amino Acid De-racemisation 
 

4.1 Process Overview 

 

The initial biotransformation process under investigation was the selective de-

racemisation of the amino acid tertiary butyl glycine (TBG) (Figure 4-1). Racemic 

amino acid was prepared by the reductive amination of tri-methyl pyruvic acid 

(TMP) using the procedure described (3.3.2.1) 

 

 

 

Figure 4-1 - Biotransformation process for the de-racemisation of TBG by 

selectively converting the D-TBG enantiomer to TMP leaving L-TBG untouched. 

 

Currently there is very little real time or near real time process information obtained 

during the biotransformation process. Batch replicates of the process are typically 

allowed to progress for a given time period, with samples being taken at undefined 

intervals over the time course. Measurements made in-situ have been limited to 

traditional, well-established techniques such as pH, dissolved oxygen and 

temperature. Although dissolved oxygen levels can be utilised as an indicator of 

when the process is reaching completion (increased oxygen levels result from the 

decrease in enzyme activity reducing the oxygen demand to regenerate FAD (2.1)) 

no information about analyte concentrations can be obtained from these 

measurements. Information of this nature is typically obtained using off-line HPLC 

methods, introducing a time lag into the analysis between sampling and obtaining 

process information. 
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4.2 Aims & Objectives 

 

This worked aimed to investigate the feasibility of utilising near and mid infrared 

spectroscopy as a method of monitoring this industrial biotransformation process in 

near real time.  

 

The many reported successes of at-line near infrared spectroscopy with other similar 

optically challenging matrices (high concentrations of cellular material and multiple 

analytes with stoichiometrically linked concentrations) suggested that the near 

infrared region would be a suitable starting point to investigate for potentially 

monitoring biotransformation processes.16, 25, 27, 32, 35 These authors discuss applying 

near infrared spectroscopy to submerged culture bioprocesses, which not only exhibit 

chemical complexity such as stoichiometrically linked analyte concentrations and 

range of analyte concentrations but also constantly changing physical properties such 

as viscosity as a result of increasing cellular material. However despite success in 

overcoming these issues, the similar chemical structures of the species under 

investigation, differing only by a single functional group, meant the near infrared 

region may lack the required specificity and therefore that the mid infrared region 

should also be evaluated. 

 

Initially an at-line approach was to be adopted due to the ease with which the 

samples could be presented to the spectrometer, and rapid nature by which 

instrumental parameters, such as path length, could be varied. Evaluation of both the 

near and mid infrared regions at-line will allow determination of which region, or if 

both, are suitable for use with this biotransformation process. Ideally moving to an 

in-situ sampling method will be the preferred option, as suggested by previous 

qualitative successes of infrared instrumentation with other biotransformation 

systems.72 However the at-line instrumentation available would be sufficient to allow 

the techniques abilities with this particular system to be evaluated. 

 

Having determined the appropriate spectral regions, multiple replicates of the 

biotransformation process were to be carried out. Using the spectroscopic and 
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reference data from samples of these biotransformation replicates a quantitative 

model for the two key analytes of interest (TBG and TMP) was to be constructed. 

The resulting model was expected to undergo an external validation procedure using 

replicates of the biotransformation process that had not been utilised in the models 

construction. In addition the constructed model was also to be challenged using off-

site replicates of the biotransformation process to further challenge the models 

abilities. 

 

Due to the nature of the biotransformation system, with a known stoichiometric 

linkage existing between reactants and products, the contributors to the constructed 

model were to be evaluated to ensure that each analyte was being quantified 

independently and that co-linearity within the model was not an issue. 

 

Despite this work being carried out at-line, the outcomes could be easily transferred 

to an in-situ system. Given the current approaches to process monitoring of these 

biotransformation processes, an at-line model represents a substantial improvement 

over the current off-line analytical methods (HPLC) employed. 

 

4.2.1 Novelty 

 

There has been limited application of infrared spectroscopy as a process-monitoring 

tool with industrial biotransformation systems. The reported applications of the 

technique with these systems has focused more on qualitative models.73, 95, 135 In 

some cases where quantitative models have been reported the samples have 

undergone a clean up stage, such as filtration, to remove much of the cellular 

material, which would present a challenging matrix to the spectrometer.95, 96 The 

presented work aims to construct a quantitative model for the biotransformation 

process using process samples that have not undergone any pre-treatment stages. 

 

Many of the models previously published also do not interrogate the contributors to 

the model to ensure that co-linearity within the system has been adequately 

addressed. Trevisan et al. (2008) evaluate the loadings plots associated with their 
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models, however a separate PLS-1 model was constructed for each analyte of interest 

using the same spectral region it was unclear if co-linearity presented an issue for the 

quantification of each analyte.72 Models presented in this chapter were PLS-2 models, 

predicting both analytes simultaneously with examination of the regression 

coefficients giving a clear indication as to whether the issue of co-linearity had been 

addressed. 

 

Additional novelty exists via the biotransformation process being carried out. 

Biotransformation processes involving de-racemisation have not been previously 

investigated with infrared spectroscopy. In other cases the reactant is consumed and 

product generated, however with the de-racemisation process at least 50% of the 

starting material will remain at the end of the reaction. Given the close structural 

similarities between analytes and the inability of the technique to distinguish 

between enantiomers these systems present a substantial challenge for monitoring.  

 

4.3 Analytical Reference Method 

 

Prior to carrying out any biotransformation replicates or collecting any spectra, it 

was necessary to ensure that a reliable and validated analytical reference method for 

quantification of both the analytes of interest (TBG and TMP) was in place. The 

method development process is detailed below. 

 

4.3.1 Amino Acid 

 

The method initially considered for separation and quantification of the TBG 

component was a direct transfer of the industrial method. Pre-column derivatisation 

of the amino acid was carried out using the OPA / mercaptoethanol derivatisation 

reagent (3.2.1.1). Conditions employed were based on a gradient elution method 

(program detailed in Table 3) at a flow rate of 1.5 mL/min using a C18 reverse phase 

chromatography column. All mobile phase compositions are referred to as % 

volume/volume ratios. 
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Table 3 – Gradient elution method used by industrial partner for the separation and 

quantification of the total amino acid content in the samples. 

Time (mins) Buffer (% v/v)* Acetonitrile (%) 

   

0 95 5 

4 75 4 

10 55 45 

10.5 95 5 

12 95 5 

 * 10 mMol dm-3 potassium phosphate buffer solution. 

 

Due to the high costs associated with the purchase of acetonitrile at the time of the 

experiments and the high volumes required, the method was modified and developed 

to utilise a more cost effective solvent. 

 

4.3.1.1 Method Development  

 

Acetonitrile was replaced by methanol as the organic solvent component of the 

mobile phase, and aqueous borate buffer replaced by distilled water containing 0.2% 

formic acid. The presence of formic acid ensured the amino acid remained 

protonated whilst passing through the column helping to ensure good 

chromatography and a symmetrical peak.  

 

To provide a consistent method of pre-column derivatisation an automated script for 

the auto-sampler was written to carry out the derivatisation procedure. Initially the 

sample, buffer and derivatisation reagent were aspirated and dispensed into an empty 

vial. The solution was mixed repeatedly and left to react for a four-minute period 

before being introduced onto the column. Over the course of the method 

development process, the derivatisation procedure was refined to carry out this 

mixing step within the injection loop. Carrying out the derivatisation in this manner 

resulted in a more consistent derivatisation process and injection volume. When 

using vials the pressure associated with the action of dispensing liquid from the 
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needle caused droplets to form on the vial walls. Air bubbles in the sample solution 

from the mixing process and by attempting to aspirate this slightly reduced volume 

introduced inconsistencies into the injection process. By carrying out the 

derivatisation process and mixing within the sample loop these inconsistencies were 

reduced. 

 

With a consistent derivatisation procedure in place, the mobile phase flow rate was 

reduced from 1.5 mL/min to 1 mL/min due to the high backpressure being observed 

on the system at the higher flow rate. Various mobile phase compositions were 

considered, from isocratic compositions through to gradient systems. The most 

effective separation was achieved with a high initial aqueous and moderate organic 

content that changed to a high organic content and very low aqueous content over the 

duration of the run. The best chromatography was observed with an initial 

composition of 65% aqueous, 35% organic held for two minutes before changing 

over a four minute period and linear gradient to 5% aqueous, 95% organic which was 

subsequently held for 6 minutes before reverting back to the initial conditions and 

equilibrating (3.2.1.2.1). 

 

These conditions resulted in the best separation and best peak shape for the 

derivatised TBG peak. The resulting peaks were narrow, sharp and did not appear to 

exhibit any fronting or tailing, which was confirmed by calculation of the peak 

tailing factor (Equation 21) and peak asymmetry factor (Equation 22).127 

 

!! =
2!

(! + !)!%
 Equation 21 

!! =
!

!!"%
 Equation 22 

 

Based on the measurements made (Figure 4-2), the peak returned a tailing factor of 1 

and a peak asymmetry factor of 1. These values indicated that the resulting peak was 

symmetrical and did not exhibit tailing to any substantial degree.  
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Figure 4-2 - Sample chromatogram of TBG analysed using the developed HPLC 

method and expansion of peak for the calculation of peak asymmetry factor and peak 

tailing factor. 

 
4.3.1.2 Method Validation 

 

To ensure that a linear response was being obtained for the amino acid over the 

concentration range of interest, a series of calibration standards were prepared and 

analysed using the developed method (3.2.2.4). A full set of calibration standards 

(covering at least 5 calibration points) were analysed and a new calibration equation 

calculated each time analysis of samples was carried out. 
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Samples were prepared between 2 mMol dm-3 and 10 mMol dm-3, at 2 mMol dm-3 

increments in concentration, to give a five-point calibration curve. Each calibration 

sample was injected in triplicate and a plot of peak area response against 

concentration constructed (Figure 4-3), a linear line of best fit was drawn through the 

dataset and its equation determined using the ‘LINEST’ function in Microsoft Excel 

as previously described (3.2.2.4). Using this equation of the straight line, the 

concentrations of the calibration standards were predicted and compared with the 

actual values to determine the error associated with fitting the linear line through the 

data points (Table 4). 

 

 
Figure 4-3 - Calibration curve with linear line of best fit through the data obtained 

for the calibration samples analysed using the developed TBG method. (Equation of 

straight line Y=10429358.2x + 7892698). 
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Table 4 - Calibration data used to determine equation of linear line of best fit 

through the data as being Y =10429358.2x + 7892698, and calculation of predicted 

values to determine RMSE. 

 
 

Since a five-point calibration curve was utilised with each sample injected in 

triplicate, the total number of samples was fifteen. Applying (Equation 16), the 

RMSE was determined as being 0.26 mMol dm-3. 

 

!"#$ = ! !"#$%& − !"#$%&'#$ !

!  

⟹ !"#$ = ! 1.00
15 = 0.26 

 

In addition to the error associated with fitting the linear line through the data points 

there was an error associated with variations resulting from the replicate injections. 

Estimation of this component of the method error was particularly important given 

that a pre-column derivatisation stage was employed, and so variations resulting 

from the derivatisation process also needed to be taken into consideration. Ten 

Concentration Peak Area Predicted (Actual-Predicted) (Actual-Predicted)2

1.88 24167388 1.56 0.32 0.10
1.88 24017444 1.55 0.33 0.11
1.88 25199980 1.66 0.22 0.05
3.76 50610368 4.10 -0.34 0.11
3.76 50156760 4.05 -0.29 0.09
3.76 48428580 3.89 -0.13 0.02
5.64 67736640 5.74 -0.10 0.01
5.64 68188344 5.78 -0.14 0.02
5.64 69181448 5.88 -0.24 0.06
7.52 86752512 7.56 -0.04 0.00
7.52 89538696 7.83 -0.31 0.10
7.52 85582104 7.45 0.07 0.01
9.4 106814896 9.48 -0.08 0.01
9.4 104092624 9.22 0.18 0.03
9.4 100246392 8.86 0.54 0.30

Sum (Actual-Predicted)2 1.00
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replicate injections of a standard solution were carried out and the concentration 

estimated using the equation of the linear line of best fit from the calibration curve 

(Table 5). The quoted value from these replicates was given as the mean value with 

the error quoted as the confidence interval (Equation 19). 

 

A t-value of 2.26 was utilised, based on 9 degrees of freedom (n-1) at the 95% 

confidence interval (Appendix I). Using these values the mean concentration of the 

replicate injections and the associated error were calculated. 

 

! = ! ± ! !! 

⟹ ! = 2.06± 2.26 0.0910  

⟹ ! = 2.06± 0.06 

  

Table 5 - Peak areas and calculated concentration of ten replicate injections to assess 

the repeatability of the developed method. 

True 
Concentration 
(mMol dm-3) Peak Area 

Predicted 
Concentration 
(mMol dm-3) 

   1.88 28493786 1.98 
1.88 30447978 2.16 
1.88 30911048 2.21 
1.88 29490266 2.07 
1.88 29333060 2.06 
1.88 29583148 2.08 
1.88 30152694 2.13 
1.88 28859192 2.01 
1.88 29062752 2.03 
1.88 27700142 1.90 

   Mean 29403406.60 2.06 
Std Dev 949331.86 0.09 
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The quoted error (±0.27 mMol dm-3) associated with the method was given as the 

linear combination of the error associated with the lack of fit from the calibration 

curve and the error associated with replicate injections. Relative to the median 

concentration standard used in the calibration range this represented an error of 

±4.8% which was below the acceptable 5% error margin at the 95% confidence level. 

 

!"#$%!!""#" = ! !""#"!1! + !""#"!2! 

!"#$%!!""#" = ! 0.26! + 0.06! 

!"#$%!!""#" = ±0.27!mMol!dm− 3! 
 

4.3.2 Keto Acid  

 

As with the amino acid, the method used for the separation and quantification of the 

keto acid and other impurities that may be present in the matrix utilised acetonitrile 

as the organic component of the mobile phase. The method was an isocratic method, 

with a flow rate of 1 mL/min and mobile phase composition of 60% water 

(containing 0.1% TFA) and 40% acetonitrile (containing 0.1% TFA). Separation was 

carried out using a C18 reverse phase column with the wavelength of detection set at 

210nm.  

 

In common with the amino acid, due to the high costs associated with the purchase of 

acetonitrile at the time, some development work was also carried out on the process 

transferred from the industrial methodology to find a more cost effective solvent. 

 

4.3.2.1 Method Development 

 

Switching to methanol as the organic component of the mobile phase, a variety of 

isocratic mobile phase compositions and flow rates were considered. Gradient 

elution methods were also investigated, however the best separation and peak shape 

were obtained with an isocratic mobile phase composition of 35% water with 0.2% 

TFA and 65% methanol, at a flow rate of 0.8 mL/min.  
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Using these conditions the resulting peak had a peak tailing factor of 1.05 (Equation 

21) and an asymmetry factor of 1.12 (Equation 22). Both values suggested that the 

resultant peak was symmetrical and did not exhibit tailing or fronting. 

 

4.3.2.2 Method Validation 

 

Similar to the amino acid, a series of calibration standards and replicate injections 

were carried out to ensure a linear response was obtained, and to assess the error 

associated with the method. 

 

A linear line of best fit was plotted through the data points and the equation of this 

line determined. As an estimation of the associated error, the RMSE for the 

calibration curve was determined as being ±0.14 mMol dm-3 and the error associated 

with replicate injections was found to be ±0.03 mMol dm-3 giving a combined error 

for the method of ±0.14 mMol dm-3. Relative to the median concentration of TMP 

used in the calibration data this represented an error of ±1.9% well below the 

acceptable upper limit at the 95% confidence interval. (Appendix II) 

 

 
Figure 4-4 - Calibration curve for TMP, showing linear line of best fit through the 

calibration data. 
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4.4 Initial Feasibility Study 

 

To determine how suitable infrared spectroscopic techniques were for monitoring the 

key analytes of interest (TBG & TMP) the pure component spectra of the two 

analytes were acquired. Solutions of both the TBG and TMP were prepared in 

distilled water at concentrations representative of those expected during the 

biotransformation process. 

 

4.4.1 Near Infrared Spectroscopy 

 

Initially the near infrared region was investigated. This region was selected based on 

the reported successes of the technique with other similar, and in some cases more 

complex, biological systems16, 23, 48 as well as being easily implemented for in-situ 

process measurements. 

 

Since the two analytes of interest only differ by a single functional group, it was 

expected that there would be substantial similarities observed in the acquired spectra 

of the two components. Despite these similarities, there were some differences 

observed between the two molecules which, based on the theoretical regions where 

signals were expected (Table 6), should provide sufficient variation in the spectra to 

construct a quantitative model.  

 

At-line measurements were made initially using the Foss 6500 system (3.5.1) using 

cuvettes with path lengths of 0.5mm, 1.0mm and 2.0mm. The best spectra (without 

any saturated signals) were obtained using the 0.5mm path length cuvette. The 

acquired pure component spectra of TBG and TMP were converted to the second 

derivative form (using a window size of 21) before being overlaid on top of the 

spectrum obtained for distilled water for comparison with the background matrix. 

Each of the regions (1st overtones, 2nd overtones and combination bands) were 

examined to identify where the spectral features of each analyte arose (Figure 4-5). 
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Table 6 – Theoretical locations of the signals expected to be observed in the pure 

component spectra of the TBG and TMP analytes. 

Tertiary Butyl Glycine (TBG) 

 

Tri Methyl Pyruvate (TMP) 

 
Functional Group Regions (cm-1) Functional Group Regions (cm-1) 

CH3 4167-4545 

5882-6060 

CH3 4167-4545 

5882-6060 

CH 4081-4385 

5617-5952 

COOH 5235-5319 

NH2 4545-4761 CO 4920-5260 

4360-4690 

COOH 5235-5319   

 

Within the second overtones region (6250 cm-1 to 9090 cm-1) there was no 

significant variation observed between the spectra acquired of water and the pure 

component solutions of TBG and TMP. The lack of identifiable signals in this region 

wasn’t unsurprising due to the expected weakness of any signals that may have 

arisen.  

 

In the first overtones region some signals that arose from the TBG and TMP were 

identified. These signals were noted in the 5800 cm-1 region and in the region just 

above 5900 cm-1 and were common to both the analytes of interest. As these signals 

are present in both analytes, they would appear to correspond with the CH3 

functional groups common to both compounds, with only subtle variations observed 

in the peak apex. Of notable absence were the signals expected from the amine 

functional group of the amino acid (4545-4761 cm-1) and also signals from the 

additional keto group present on the keto acid, most likely obscured by the 

dominating OH signals resulting from the water present in the matrix.  

OH

NH2

O

OH

O

O
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Figure 4-5 - Second derivative spectra of pure component solutions of the amino acid (TBG) and keto acid (TMP) plotted against the 

second derivative spectrum of distilled water. Regions were expanded to illustrate the (i) second overtones region (ii) first overtones region 

[dominant water signals have been removed for clarity] and (iii) the combination bands region. 
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Figure 4-6 – First overtones (i) and combination band regions (ii) of near infrared spectra acquired of solutions containing a mixture of 

amino acid and keto acid at various concentrations (detailed in Table 7) typically expected during the biotransformation process. 
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Within the combination bands region a number of signals were observed, very few of 

which appeared to be unique to each analyte or displayed some degree of variation 

between signals arising from functional groups common to both analytes. The signals 

between 4200 cm-1 and 4500 cm-1 corresponded with vibrations of the CH3 groups. 

Signals at and just below 4200 cm-1 can be attributed to the carbonyl functional 

group. This region provides points of difference between the two spectra, not only 

with a shift observed between the keto and amino acid, but also an additional peak at 

4250 cm-1 present in the pure component spectrum of the keto acid. 

 

These observations indicated that there was a very high degree of similarity noted 

between the pure component spectra of both the keto acid and amino acid. Whilst 

this was not unsurprising, a number of key spectral features specifically those arising 

from the amino acid functional group, appeared to be obscured by the dominant OH 

signals from the water background matrix. This brought into question the suitability 

of the near infrared spectroscopic region for monitoring this particular 

biotransformation process.  

 

To determine if the near infrared region would be suitable, mixtures of the two 

compounds were prepared, with varying concentrations of each component, and the 

near infrared spectra acquired. TBG and TMP concentrations were within the 

concentration range theoretically expected during a typical process replicate and 

were determined according to an experimental design. To illustrate the spectral 

variations with concentration the infrared spectrum of four of these samples were 

plotted and superimposed (Figure 4-6). The approximate concentrations of TBG and 

TMP in each of these samples are detailed in Table 7. 
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Table 7 - Approximate concentrations of TBG and TMP of the samples whose 

infrared spectra were superimposed to illustrate the variations observed at 

concentrations typically expected during the biotransformation process. 

Sample Number TBG Concentration 

(mMol dm-3) 

TMP Concentration 

(mMol dm-3) 

   

1 650 0 

2 500 125 

3 400 250 

4 250 350 

 

Within the first overtones region the close similarities in the spectra made it difficult 

to identify spectral changes that could be attributed to one of the two key analytes 

when dealing with the mixture.  

 

Within the combination bands, changes in the signals observed in the 4200 cm-1 to 

4300 cm-1
 region demonstrated changes in intensity that were in agreement with the 

known concentration profile of the samples (decrease in intensity of amino acid 

signals and appearance of keto acid related signals). Like the first overtones region, 

variations of the other spectral features identified with concentration were not as 

clear.  

 

Based on these observations the suitability of the near infrared region for monitoring 

of this particular biotransformation process was questioned. 

 

In other complex systems, such as fermentation broths, the weakness of the resulting 

signals has proved advantageous from a modelling perspective (2.4.2).17, 26 With the 

system under investigation however the weak signals, particularly in the first 

overtones region, meant changes in the analyte concentration did not translate to 

substantial changes in spectral intensity.  
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The main issue appeared to be in identifying spectral features that could be used to 

distinguish between the two key analytes of interest. Despite calculation of the 

second derivative spectra, to enhance and separate overlapping features as well as 

reduce baseline drift, it was still difficult to identify points of difference between the 

spectra of the two key analytes.18 

 

The key point of difference between the spectra of the two analytes was noted in the 

combination bands region. As this is an industrial biotransformation process, the 

ideal scenario would be to apply the monitoring technique in-situ. Using the silica 

fibres commonly employed with near infrared systems results in the loss of the 

region below 4760 cm-1. This is due to noise resulting from absorption of the light by 

the fibres.25, 47 

 

The close similarities in the spectra of the analytes of interest suggested it would be 

difficult to construct a quantitative model that was able to independently quantify 

both analytes for this particular biotransformation process. Any constructed model 

would rely heavily on the combination bands region, which would subsequently 

prevent the technique being applied in-situ due to limitations in the instrumentation, 

which prevents the transfer of light in this region via the fibre optic bundle. 

 

Based on these results it would appear that the near infrared region is not suitable for 

monitoring this particular biotransformation process. This is, to an extent contrary, to 

expectations given the many successful reported applications of the technique to 

fermentation systems, many of which were inherently more complex in terms of 

content, light scattering properties and stoichiometric changes to the system. 

 

Many of these reported successes with fermentation based systems however have 

linked the spectral features with either a physical property of the system, or to a 

number of key compounds within the fermentation broth that are structurally unique 

or present at high concentration.24, 32, 35 The mechanism by which signals in the near 

infrared region arise, mean the resulting signals are broad and weak. In fermentation 

systems this acts as an advantage due to the complex, highly concentrated and highly 
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light scattering nature of the matrix.25, 26, 31, 81 However, in this biotransformation 

process a close similarity between the analytes of interest requires a higher 

selectivity than the near infrared region was able to provide. In this respect the mid 

infrared region may be better suited to monitoring this particular industrial 

biotransformation process. 

 

Within the mid infrared region, the stronger, more defined signals should result in a 

more unique spectrum for each analyte, however the inclusion of the fingerprint 

region (below 1500 cm-1), which by definition incorporates spectral features that are 

characteristic of a compound, would also mean sufficient variation in the spectra to 

construct a robust quantitative model.115 

 

4.4.2 Mid Infrared Spectroscopy 

 

The main signals expected to be observed in the diagnostic region for both the TBG 

and TMP were identified (Table 8). Due to the structural similarities between the two 

molecules the spectra were again expected to be very similar between both analytes. 

The most useful region of the spectra was likely to be the fingerprint region (below 

1500 cm-1) where the spectral pattern observed was expected to be unique for each 

analyte.  
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Table 8 - Theoretical regions where signals from the TBG and TMP were expected 

to be observed. 

Tertiary Butyl Glycine (TBG) 

 

Tri Methyl Pyruvate (TMP) 

 
Functional Group Regions (cm-1) Functional Group Regions (cm-1) 

CH3 1370-1390 

2850-2960 

CH3 1370-1390 

2850-2960 

CH 2880-2890 COOH 2500-3000 

1700-1725 

NH2 1560-1650 

 

CO 1705-1725 

COOH 2500-3000 

1700-1725 

  

 

The mid infrared spectra of pure component samples of amino acid and keto acid at 

concentrations typical of the biotransformation process were acquired. Samples were 

measured at-line using the Thermo avatar spectrometer and the smartARK accessory 

fitted with a 45° zinc selenide ATR crystal trough plate (3.4.1). 

 

When considering the full spectral region the aqueous background matrix presented 

challenges for the system. The Hydroxyl group signals, which were present in both 

the sample and background matrices, dominated the spectrum. These were then 

further broadened due to hydrogen bonding.115 Within this diagnostic region very 

few signals that could be attributed to a specific functional group within the analyte 

molecules could be identified due to these dominant signals.  
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Despite the apparent lack of signals in the diagnostic region, the fingerprint region 

appeared to exhibit some spectral features that could potentially be useful for 

constructing a calibration model for the system. 

 

To try and enhance the spectral features obtained and to reduce the noise and 

baseline drift the spectra were derivatised, in this case the second derivative was 

utilised again with a window size of 21. A plot of the second derivative pure 

component spectra was then examined, focusing on the fingerprint region as opposed 

to the diagnostic region (Figure 4-7). 

 

Close similarities in the structure of the analyte molecules again meant that there was 

a significant amount of overlap in the spectral features of both analytes. Despite this 

there were some regions where a shift in the peak position was observed or indeed 

unique features attributable to each analyte that could be identified. 

 

Overlapping features between TBG and TMP were noted in the approximate region 

of 1050 cm-1 and in the area 1350-1450 cm-1 (Figure 4-7). Although these peaks 

overlap, the overlap observed was less than the comparable signals in the near 

infrared region, as a result of the narrower, more intense signals that arose.52, 54 
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Figure 4-7 – Fingerprint region second derivative pure component spectra of the two key analytes of interest and water background matrix 

compared to identify useful regions for use in construction of a multivariate model for the biotransformation process. 
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A number of important regions that resulted in spectral features unique to each of the 

two analytes of interest were also observed. Importantly the amine functional group 

gave rise to a clear signal in the 1500-1550 cm-1 region, which is one of the key 

functional group differences between the two analytes and had been obscured by the 

water peaks in the near infrared region. 

 

In the 1250-1280 cm-1 region unique signals for both the TBG and TMP compounds 

were identified. The keto acid gave rise to a signal at the higher end of this region 

that was separated from the signal of the amino acid observed more towards the 1250 

cm-1 region. 

 

Other points of difference in the spectra were noted between 1000-1050 cm-1. These 

signals exhibit a substantial degree of overlap, however there was clearly a shift in 

the signal position between the two molecules of interest. 

 

Similar to the near infrared region, these identified spectral regions and their 

behaviour were examined when the analytes of interest were presented as a mixture 

at varying concentrations typical of the biotransformation process. The approximate 

concentrations of TBG and TMP in each sample were the same as those prepared 

when investigating the near infrared region and are detailed in Table 7. 

 

When considered as a mixture of the two analytes it was still possible to identify the 

spectral features of note in the identified regions. As the concentration of the samples 

was varied according to Table 7, the regions identified as arising from the TBG 

decreased in intensity (notably the signals in the regions 1500-1550 cm-1 and 1150 

cm-1) with those from the TMP increasing in intensity (Figure 4-8). Of particular 

note was the changes observed in the signals in the 1250-1300 cm-1 region, where 

there is a clear decrease in the TBG signal and increase in the TMP signal as the 

concentration of each analyte was varied in a manner representative of that expected 

to occur during the biotransformation process. 

 



 120 

Based on these observations it would appear that the mid infrared region was more 

suited to monitoring this particular industrial biotransformation process. Distinct and 

overlapping spectral features attributable to each analyte of interest were identified, 

and variations in these features with concentration were observed. 

 

 
Figure 4-8 – Fingerprint mid infrared region of samples containing a mixture of 

TBG and TMP at varying concentrations in a manner representative of the 

biotransformation process as it progressed to identify regions that exhibited spectral 

changes for each analyte with concentration. Arrows denote spectral features that 

demonstrate an increase or decrease in signal intensity with concentration as detailed 

in Table 7. 

 

4.4.3 Experimental Design 

 

Prior to carrying out any scale replicates of the biotransformation process, a series of 

synthetic sample mixtures of the two key analytes of interest were prepared 

according to a simple 2 factor, 4 level (24) full factorial experimental design. 
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This approach aimed to refine and confirm that the identified regions could be 

utilised to construct a model for the system.  

 

Raw spectra were converted to the second derivative spectrum and the appropriate 

region (900-1620 cm-1) selected and extracted. Quantification of TBG and TMP in 

the synthetic samples was carried out using the described HPLC methods (3.2). 

Using the spectral data and reference data a partial least squares (PLS) model was 

constructed. This was a single model constructed for both the analytes of interest 

(PLS 2) based on the second derivative spectra. Both the spectral data and reference 

data were mean centered, with no additional pre-processing techniques applied. 

 

Leave one out cross validation (LOOCV) was applied as an internal validation 

procedure to give a rough indication as to how good or bad the model was predicting 

the analyte concentrations. This approach is not ideal since the model was being 

tested using spectra that had essentially been used in its construction.49 However, 

since at this stage the investigation was more concerned with the initial feasibility of 

the process the internal validation procedure employed was sufficient. 

 

Two latent variables were selected as the optimum number for the model, determined 

from the plots of RMSEC and RMSECV for both TMP and TBG plotted against the 

number of latent variables. This model returned a RMSEC of 28.5 mMol dm-3 for the 

TBG and 4.1 mMol dm-3 for TMP, with RMSECV values of 30.8 mMol dm-3 and 4.4 

mMol dm-3 respectively. 

 

Examination of the plots of measured value (from the reference data) against 

predicted value (from the leave one out cross validation) indicated that the points 

appeared randomly scattered around the central diagonal, which suggested bias 

within the model was not an issue (Figure 4-9). 
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Figure 4-9 - Plots of measured concentration (mMol dm-3) (from reference analysis) 

against predicted concentration (mMol dm-3) (from leave one out cross validation) 

for both the analytes of interest in the synthetic experimental design model 

constructed using the selected fingerprint region of the mid infrared spectra. 

 

Predictions for both the TBG and TMP were in good agreement with the measured 

values from the reference analysis. In this case however the samples were synthetic, 

and so were a relatively clean sample matrix with any stoichiometric link between 

the analytes broken from the outset. The model did however illustrate the feasibility 

of using mid infrared spectroscopy to monitor these key analytes in an industrial 

biotransformation process.  

 

4.5 Calibration Model 

 

Three batches of TBG were prepared from TMP by the reductive amination 

procedure described (3.3.2.1). Since the material was produced in a batch process, 

and that conversion of the TMP substrate would never reach 100% efficiency, the 

concentration of racemic TBG (and residual TMP) varied from batch to batch. Using 

the estimated concentration from the HPLC analysis, the appropriate volume of 
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substrate to result in a final racemic TBG concentration of 600 mMol dm-3 was 

measured out and added to the bioreactor. All other components were added as 

described (3.3.2.2) and made up to the final volume with distilled water. 

 

Replicates of the biotransformation process were subsequently carried out. A total of 

five process replicates, utilising three batch preparations of racemic TBG, were 

carried out. Samples were taken at regular points during the biotransformation 

process and the mid infrared spectra of each sample acquired (3.4.1). Quantification 

of the total TBG and TMP content in the samples was also determined using the 

developed and validated HPLC methods (3.2.1.2.1 & 3.2.2.1). 

 

During the biotransformation process the dissolved oxygen levels in the system were 

monitored as an indicator of how the biotransformation was progressing. Following 

the process in this manner was possible because the DAAO enzyme requires energy 

input from FAD generating FAD-, which reacts with the oxygen to regenerate FAD 

(2.1) High levels of dissolved oxygen in the medium indicated that FAD is no longer 

being utilised and that the biotransformation process had reached a natural 

conclusion. 

 

A total of five replicates of the biotransformation process were carried out. These 

five process replicates were subsequently split into two dataset, one for the 

construction of a calibration model and another for use as an external validation 

dataset to challenge the constructed model. In order to generate a robust calibration 

model, the calibration dataset should be representative of the typical variation 

expected in the biotransformation process.21 

 

To ensure that the spectral variations between replicates of the biotransformation 

were encompassed in the calibration model principal component analysis (PCA) was 

used, in conjunction with knowledge of the substrates’ batch preparations, to classify 

each process replicate as either a calibration or validation dataset. 
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All the acquired mid infrared spectra were converted to the second derivative format, 

and the region of interest (900-1620 cm-1) extracted. The data was mean centered and 

each biotransformation process identified as a class for ease of identification. 

Principal component analysis was carried out on the data, with the constructed model 

based on two latent variables. The scores plot was examined (plot of PC1 scores vs. 

PC2 scores) to indicate the variation observed in the spectra (Figure 4-10).  

 

 
Figure 4-10 - Plot of scores associated with principal component 2 plotted against 

scores associated with principal component 1 used to identify the most suitable 

datasets for calibration and the most suitable for validation of the constructed model. 

 

The scores plot indicates that generally there was very good consistency between the 

five replicates of the biotransformation process. All replicates appear to adopt a 

similar reaction profile along principal component 1 but do illustrate some 

differences in the second principal component.  

 

Of substantial note was biotransformation run 4, which appeared to occupy a very 

different position in the principal component space relative to the other 

biotransformation replicates. This can be explained by the initial process 
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concentrations of racemic amino acid that were employed in this biotransformation 

replicate. Run four had a lower initial concentration due to limitations on the volume 

of remaining D/L-TBG from the second batch preparation. Conversion of this batch 

had not progressed as optimally as expected, and so the concentration of racemic 

TBG was lower and residual TMP higher than in the other batches requiring a higher 

initial loading volume, and therefore limiting the volume that remained after 

replicate three had been carried out. 

 

It was clear from this scores plot which replicates were candidates for the calibration 

dataset so that the model incorporated data that encompassed the variation expected 

in the process. However before selecting the process replicates for calibration, the 

PCA scores plot was combined with the knowledge of the batch preparations of 

racemic amino acid substrate to ensure that the calibration dataset incorporated 

samples from all three batches prepared. 

 

The batch preparations were utilised in the sequence they were prepared, with each 

batch being utilised for a maximum of two replicates of the biotransformation 

process. 

 

A total of three replicates were selected for inclusion in the calibration model, based 

on the PCA scores plot and the batch preparations biotransformation replicates 2, 4 

and 5 were selected. This ensured that the variation observed over the various 

process replicates was built into the calibration model, but also that the model was 

representative of the batch nature by which the substrate was generated. 

 

Replicates 1 and 3 were retained as the validation datasets as these were then two 

independent datasets not included in the calibration model, but were within the 

predictive ability of the model.  

 

A PLS model was constructed using the spectra obtained for this calibration dataset. 

The spectrum of each sample was acquired in triplicate, so initially all three spectral 

replicates were utilised along with the three quantified values obtained for each 
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sample (from the triplicate injections on the HPLC). Adopting this approach rather 

than averaging the values ensured that the resulting model took into account 

variations in the spectra, and also the error associated with the reference method. 

 

In a few cases there were points where the reference analysis had failed to return a 

result (in most cases this was due to a failure in the derivatisation reaction) or the 

returned concentrations were inconsistent with the general trend being observed. To 

prevent these samples from biasing the constructed model the samples were either 

reanalysed or removed. Aside from the assumption that samples taken were 

representative of the process, due to the nature of the biotransformation, there was a 

heavy reliance on the heating step employed being sufficient to denature the enzyme 

and prevent further conversion of the amino acid outwith the reactor. In most cases 

this was successful, however this could potentially explain the cases where 

unexpected values were observed. 

 

A total of fourteen samples were removed as outliers from the collected spectra 

across the five replicates of the biotransformation process. With these samples 

removed, the PLS model for the system was constructed using the selected 

fingerprint region of the spectra and the corresponding HPLC reference data. The 

second derivative spectra were mean centered, with the model being based on two 

latent variables (92% variance in spectral data and 95% in reference data) which was 

determined as optimum from the internal validation procedure.  

 

This constructed model was then challenged using the two process replicates 

identified as the validation datasets. Both datasets were presented to the model 

independently and the predicted concentrations from the model compared with the 

reference values.  
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Table 9 - Summary of key model parameters for the constructed PLS model for the 

biotransformation process and the external validation datasets. 

 TBG (mMol dm-3) [r2] TMP (mMol dm-3) [r2] 

RMSEC 27.3 15.6 

RMSECV 28.1 16.3 

RMSEP (i) 30.9 [0.87] 

(ii) 42.9 [0.90] 

(i) 18.2 [0.97] 

(ii) 14.5 [0.99] 

 

In this case the errors associated with the constructed model were high but not 

unreasonably high (Table 9). Increasing the number of latent variables used in the 

model caused a reduction in the error of calibration but an increase in the error of 

cross validation and prediction. This suggested that two latent variables was the 

optimum, as the number of latent variables increased the model began to over-fit the 

data and a bias was introduced into the system.  

 

These results suggested that it was possible to quantify the two analytes of interest in 

the system under investigation. Further improvements to the model were required to 

try and reduce the error associated with the calibration, cross validation and 

predictions of the two validation datasets. 

 

Re-examination of the pure component mid infrared region (Figure 4-7) suggested 

that there were a number of key spectral features that were common to both the 

analytes of interest. As these features are identical in both analytes, it would be 

difficult to try and regress these absorbance values against concentration, since this 

may alter in a non-linear relationship. The spectral regions utilised in the model were 

refined to remove these common spectral regions and also any other areas that 

contained what was regarded as redundant spectral information. Closer inspection 

suggested that only the spectral features between 900-1031 cm-1, 1100-1340 cm-1 and 

1440-1620 cm-1 were required (Figure 4-11). 
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Figure 4-11 – Amended regions removing features identified as being redundant or common to both analytes of interest to improve the 

model constructed for the system. Regions retained were between 900-1031 cm-1, 1100-1340 cm-1 and 1440-1620 cm-1.
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With these clearer defined spectral regions the PLS model for the biotransformation 

process was reconstructed. As before, the optimum number of latent variables for the 

system was determined as being two, and the constructed model was challenged 

using the datasets identified for external validation (process replicates 1 & 3). 

 

Table 10 – Summary of key model parameters and the external validation procedure 

for the model constructed using the refined spectral regions. 

 TBG (mMol dm-3) [r2] TMP (mMol dm-3) [r2] 

RMSEC 26.7 16.8 

RMSECV 27.6 17.5 

RMSEP (i) 33.6 [0.88] 

(ii) 45.6 [0.87] 

(i) 21.1 [0.97] 

(ii) 13.3 [0.98] 

 

Refinement of the spectral regions resulted in a slight improvement in the error of 

calibration and cross validation for the amino acid (TBG), but also slightly increased 

these errors with respect to the keto acid (TMP) (Table 10). 

 

Examination of the scores plot (scores from LV1 against scores from LV2) for the 

constructed model suggested there was variation or drift being observed within the 

three replicate spectra acquired of the same sample. Since this was a PLS model 

some of the drift may be attributable to variations between the replicate injections of 

the reference analysis. Re-examination of the PCA scores plot (Figure 4-10) 

confirmed that drift between the replicate scans was also noted, suggesting that some 

of this variation may also be attributed to drift in the spectra.  

 

The design of the ATR sampling accessory may provide a possible rationale behind 

these observations. After acquisition of the spectra it was noted that the cell material 

present in the sample layer had begun to sediment onto the surface of the crystal. 

This increase in cell material on the surface of the crystal between acquisitions will 

have an effect on the evanescent wave, and subsequently the acquired spectrum. This 

was similar to the effect reported by Acha et al. (2000) where a hydrophobic coating 
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was used to exclude water and enhance the spectra.57 In this case however the effects 

were negative with the cell material forming the coating preventing analytes in 

solution reaching the crystal surface.  

 

Since this sedimentation of the cellular material appeared to be having an adverse 

effect on the constructed model, the model was re-constructed using only the first of 

each of the triplicate spectra acquired. The first acquisition of each sample should 

still be homogeneous and therefore a true representation of the sample matrix under 

process conditions. As the HPLC analysis was also carried out in triplicate the 

reference value associated with the spectra was quoted as the mean value of the three 

replicate injections. Using only the first acquisition and the mean reference values 

should reduce the error associated with the model and improve the constructed 

models ability to predict values for the unseen datasets. 

 

Using the whole fingerprint region (900-1620 cm-1) and the mean reference values, a 

PLS model was constructed as before. Once again the only additional pre-processing 

applied was to mean centre both the spectral and reference data. LOOCV was 

applied for internal validation and to determine the optimum number of latent 

variables, which was again two.  

 

Table 11 – Error values associated with the PLS model constructed from the single 

spectra of the full fingerprint region and the mean concentration of the reference data. 

 TBG (mMol dm-3) [r2] TMP (mMol dm-3) [r2] 

RMSEC 25.8 11.9 

RMSECV 28.2 13.5 

RMSEP (i) 28.1 [0.89] 

(ii) 25.7 [0.97] 

(i) 18.7 [0.97] 

(ii) 13.7 [0.99] 

 

The key values associated with this model (Table 11) were overall an improvement 

over the models that had been previously generated, particularly with regards to the 

amino acid. Error of calibration values for the amino acid and keto acid were both 

reduced compared with the previously constructed models. The error of cross 
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validation for the TBG was fairly consistent with previously observed values with an 

improvement in the error associated with the TMP component. Where this model 

demonstrated a substantial improvement over the previously constructed models was 

in the error of prediction with the unseen validation replicates. 

 

Considering each analyte separately, quantification of TBG in both the validation 

datasets was in good agreement with the measured values from the reference analysis, 

with the RMSEP values being close to the RMSEC and RMSECV values. This was a 

substantial improvement over the previously constructed models where the predicted 

values varied greatly from the measured values. This was clear graphically from the 

plot of the predicted TBG (from both validation datasets) against the measured value 

(obtained from the reference analysis). 

 

With the model constructed using the triplicate spectra and the raw reference data 

there appeared to be large discrepancies between the measured and predicted values 

as illustrated by the spread of the points from the central diagonal line (Figure 4-12 

(i)). Data points in this plot also do not appear as randomly scattered around the 

central diagonal line which would suggest a tendency of the model towards over 

predicting the concentration of TBG. Closer examination of the validation datasets, 

particularly the triplicate injections carried out to assess repeatability of the method 

(Table 5) there appears to be a tendency of the derivatisation process to result in an 

over-prediction of the analyte concentration. Since this data was used in the 

construction of the model there is the possibility that some of this error has been 

carried through into the model, and was potentially partially responsible for the 

tendency towards over predicting the TBG concentrations. 

 

Comparing this with the model constructed using the single spectra and mean 

reference values (Figure 4-12 (iii)) where the data points appear much closer to the 

line that represents a 1:1 relationship. Points in this model also appear to be more 

randomly scattered suggesting there wasn’t a bias in the model towards the over 

prediction of TBG concentration. As well as reducing variations between spectra, 
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utilising the mean reference values also helped reduce the errors observed between 

replicate injections resulting in a better calibration model.  

 

In general the errors of calibration, cross validation and prediction with regards to the 

TMP were not as large as the values obtained for TBG. However this was expected 

since quantification of this analyte was achieved by direct determination method and 

not a derivatisation procedure. Using a single spectrum and the mean value for the 

reference dataset resulted in a reduction in the RMSEC and RMSECV values. 

However this model did result in a slight increase in the RMSEP values for the two 

unseen validation datasets. Plots of predicted TMP concentration against measured 

concentration (Figure 4-12(ii) for triplicate spectra and Figure 4-12(iv) for single 

spectra) both illustrated data points that were randomly scattered around the central 

diagonal and did not appear to suggest any bias towards either over or under 

prediction of the analyte values. 

 

To complete the model iteration process, and attempt to further improve the 

generated model, a fourth model was constructed utilising the first spectrum of the 

refined spectral regions (900-1031 cm-1, 1100-1340 cm-1 and 1440-1620 cm-1) and 

the mean reference concentrations. On moving to this model the RMSEC and 

RMSECV values were consistent with the values obtained in the previous models. 

Predictions of the concentrations of the two validation datasets however were higher 

than had been obtained utilising the full fingerprint region (Table 12) 

 

Table 12 – Errors associated with the model constructed using the single spectra of 

the selected mid infrared regions and the mean values of the reference analysis.  

 TBG (mMol dm-3) [r2] TMP (mMol dm-3) [r2] 

RMSEC 25.6 12.7 

RMSECV 28.3 14.4 

RMSEP 
(i) 30.5 [0.91] 

(ii) 26.4 [0.98] 

(i) 22.1 [0.97] 

(ii) 11.3 [0.99] 
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Based on these results the best model constructed for the biotransformation process 

under investigation utilised the single spectra of the full fingerprint region and the 

mean value of the triplicate injections for the reference analysis. This resulted in a 

model that returned acceptable errors of calibration, cross validation and prediction 

of the two unseen validation datasets.  

 

Having constructed a suitable model for the process, and tested it using two unseen 

independent datasets, it was necessary to examine the model in greater detail to 

ensure that the co-linearity within the system had been addressed and that the model 

was able to independently quantify both the analytes of interest. 
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Figure 4-12 – Plots of predicted analyte concentration (mMol dm-3) against measured analyte concentration (mMol dm-3) for the validation 

biotransformation replicates. (i) and (ii) Analyte concentration predictions for validation datasets based on models constructed using the 

triplicate spectra and raw HPLC reference data values. (iii) and (iv) Analyte concentration predictions for validation datasets using only the 

single spectra and the mean reference data value. 
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4.6 Model Evaluation 

 

Having constructed a PLS model that returned acceptable errors of prediction for the 

validation datasets, the contributors to the model were examined. Evaluation of the 

contributors to a constructed model for the system was essential to ensure that the 

model was monitoring the particular analytes of interest. In such complex biological 

systems where stoichiometric linkages between analytes were prevalent it was 

essential to ensure the resulting model was independently quantifying each analyte of 

interest and not elucidating information from other spectral features or 

relationships.38 

 

Loadings plots and regression coefficients associated with the model were examined 

and compared with the pure component spectra to identify exactly what the 

constructed model was modelling and if co-linearity within the model was an issue. 

 

The loadings associated with the first latent variable (Figure 4-13) had a number of 

features that were attributable to both the amino acid and keto acid. Signals in the 

loadings plot that corresponded with the amino acid were almost the mirror image of 

the signals observed in the pure component spectrum. Since those points that have a 

high positive loading value correspond with the apex of a trough in the second 

derivative spectrum this would suggest that a correlated relationship existed between 

TBG concentration and the first latent variable.  

 

Points in the pure component spectrum of the keto acid corresponded with negative 

loadings values associated with the first latent variable. This would therefore suggest 

an anti-correlated relationship between keto acid concentration and the loadings 

associated with latent variable one. 

 

Of particular note was the absence of any relationship, correlated or anti-correlated, 

between the amine functional group of the amino acid (1500-1550 cm-1) and the first 

latent variable.
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Figure 4-13 - Loadings associated with latent variable one in the constructed PLS model. Overlaid are plots of the pure component amino 

acid (TBG) and keto acid (TMP) for comparison. 
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Figure 4-14 - Loadings associated with latent variable two in the constructed PLS model for the biotransformation process. Again overlaid 

are the pure component spectra of the amino acid (TBG) and keto acid (TMP) for comparison. 
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Given that the two analytes of interest were chemically very similar, the vast 

majority of variations observed in the spectra would have been due to features 

common to both analytes. Also given the stoichiometric link that exists between the 

two compounds it was not unsurprising that the first latent variable contained 

spectral features attributable to both the key analytes since these features were the 

main source of variation within the spectra. 

 

Comparison of the loadings associated with the second latent variable (Figure 4-14) 

did indicate some association with the amine signals of the amino acid. These were 

in addition to a number of other points where negative loading values corresponded 

with troughs in the pure component spectra of the amino acid, therefore suggesting 

an anti-correlated relationship. The second latent variable did not appear to show any 

correlation or anti-correlation with spectral features associated with the keto acid 

(TMP).  

 

Evaluation of the loadings associated with the two latent variables used in the 

construction of the model suggested each analyte was being independently quantified. 

The absence of the amine signals from the first latent variable, and their presence in 

the second, indicated changes in the amine spectral features were being identified as 

variations that were not linked with the bulk change in the system described by the 

first latent variable. 

 

To confirm that the analytes of interest were being independently modelled by the 

system, thus addressing the issue of co-linearity in the system due to stoichiometric 

linkages, the regression coefficients associated with the constructed model were also 

examined. 

 

The first regression coefficient for the model appeared to be an exact match with the 

pure component spectrum of the amino acid. Points with a non-zero regression 

coefficient value corresponded with the location of signals observed in the second 

derivative pure component spectrum of the amino acid. Of particular note is the non- 
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zero regression coefficient value that corresponds with the amine region (1500-1550 

cm-1). 

 

The second regression coefficient associated with the constructed model was also 

examined along with the pure component amino and keto acid. In this case the non-

zero regression coefficient values appeared to correspond with the signals observed 

in the pure component keto acid spectrum. Focusing on the region where signals 

from the amine functional group were noted (1500-1550 cm-1), this regression 

coefficient has a zero value in this region. Near zero values for this regression 

coefficient were also observed at other points where unique spectral features of the 

amino acid were noted.  

 

Should the constructed model be inferring the concentration of a particular analyte 

from the spectral features of another, this would be reflected in the regression 

coefficients. The fact that both regression coefficients had unique features that could 

be correlated with spectral features associated with either TBG and TMP suggested 

that the model was able to independently quantify both the analytes of interest. Had 

co-linearity been an issue in the system both regression coefficients would be 

expected to have a number of common features that could be attributed to both the 

analytes of interest.  

 

Given that this was a biological system with a known correlation between the two 

analytes of interest, it was important that the constructed model was sufficiently 

robust to allow independent quantification of the analytes. A number of approaches 

to addressing this issue of co-linearity have been extensively discussed. Commonly 

methods involving the use of synthetic samples, the spiking of media samples or the 

retrospective adulteration of actual samples have been employed.17 

 

Evaluation of the constructed model would suggest that co-linearity within the model 

had been suitably addressed, however none of the aforementioned spiking processes 

were employed. With this particular case the process by which the racemic amino 
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acid substrate was prepared (3.3.2.1) and how the datasets were selected (4.5) 

provided sufficient variation to allow construction of a robust model. 
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Figure 4-15 - Regression coefficients associated with the constructed PLS model plotted alongside the pure component spectra of the 

amino acid (TBG) and keto acid (TMP) for comparison. (i) Plots the first regression coefficient against the pure component spectra. (ii) 

Plots the second regression coefficient with the pure component spectra. 
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The batch nature of the reductive amination stage, converting TMP into racemic 

TBG, meant each batch contained a slightly different final TBG concentration and 

residual TMP concentration due to factors such as the initial loading concentration 

and catalyst efficiency. Selection of a process replicate from each batch for inclusion 

in the calibration model also helped ensure that the concentrations of both analytes 

were independent from the outset, even though as the process progressed the 

concentrations varied in a stoichiometric manner. 

 

Ehly et al (2007) reported adopting a similar approach to dealing with co-linearity 

within a multi-batch system.136 Alterations to the initial ratio of substrate were 

carried out to help break the co-linearity within the system. Preparation of the amino 

acid substrate in this case by the batch reductive amination process, and the inclusion 

of a replicate from each batch in the calibration model, ensured that the initial 

concentrations of TBG and TMP were independent of each other at the start of each 

biotransformation process replicate.  

 

Adopting the approach described by Ehly et al. (2007) would remove the 

requirement for retrospective sample adulteration necessary in the more traditional 

spiking approaches to addressing co-linearity within the system. Tamburini et al. 

(2003) and Arnold et al. (2003) both defend the use of actual process samples in the 

model construction process, arguing that the interactions between the various 

components of the sample matrix vary from batch to batch and that by using these 

real samples the resulting model will be much more robust compared with a model 

constructed using synthetic spectra.48, 49 The approach of varying the initial 

concentrations of substrate allowed the co-linearity issues to be addressed whilst still 

utilising actual process samples to construct the model, so any side reactions or 

interactions were still being incorporated in the model when adopting this approach. 

 

In this particular case examination of the contributors to the model indicated that the 

co-linearity issue had been suitably dealt with, greater confidence in the models 

ability to independently predict analyte concentration could be obtained by adopting 
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a more structured and analytical based approach towards varying the initial ratios of 

substrate, and product if required. 

 

4.7 Model Application 

 

The constructed model was externally validated using two datasets that were 

independent from the calibration dataset. To further validate and challenge the 

constructed model an additional two replicates of the biotransformation process were 

carried out. These replicates were carried out in a different location and in a 

completely different reactor system (Ingenza in-house system) compared with the 

replicates used in the calibration and validation stages.  

 

Both off-site replicates of the biotransformation process were carried out utilising a 

single batch preparation of the racemic amino acid (TBG). In this case the design of 

the reactor vessel was substantially different from the bioreactor system that had 

been utilised to carry out the process replicates used for calibration and validation. 

The reactor vessel in which these processes were carried out was a basic heated 

water jacket vessel with agitation and aeration provided via a rudimentary setup. 

Since an at-line sampling approach was applied the design of the reactor vessel was 

not expected to have a major influence on the quality of the spectra or the predictive 

ability of the model however there was some expected differences in the behaviour 

of the process that needed consideration.  

 

The Applikon bioreactor system employed for the calibration and validation 

replicates was a basic stirred tank reactor (STR) design. Agitation in the system was 

provided via two Rushton design impellers with baffles fitted in the vessel to prevent 

vortex mixing thus also enhancing oxygen transfer.14 Air was supplied into the 

system by means of a ring sparger situated directly under the first impeller. The 

whole design of this system was intended with the purpose of maximising oxygen 

transfer in the media.14, 137 Higher oxygen levels in the media would therefore allow 

faster regeneration of the FAD energy source required by the DAAO enzyme and 

therefore allow the biotransformation to progress at a faster rate. In addition the 
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bioreactor based system allowed for measurement and control of important 

parameters such as dissolved oxygen, pH and temperature within a single system. 

 

With the in-house heated water jacket vessel system, agitation was provided via a 

single marine design impeller and in this case the reactor vessel was not equipped 

with baffles to assist in the mixing process. Sparger design in this system was also 

substantially different from the bioreactor system, with air introduced via a dip pipe 

design sparger located under the impeller.14, 137 Combined all these features were 

likely to result in an overall reduction of dissolved oxygen levels in the process 

medium, therefore reducing the rate at which the process occurred by limiting the 

oxygen available for regeneration of the FAD energy source required by the DAAO 

enzyme. In common with the bioreactor system dissolved oxygen and pH 

measurements were made using the relevant probe systems however the 

measurements were not linked or controlled in a manner comparable with the 

Applikon bioreactor system.  

 

The two different reactor system designs were unlikely to have any substantial 

impact on the ability of the constructed model to predict the key analyte 

concentrations. Although the samples were measured at-line it could potentially be 

argued that the better oxygen transfer in the bioreactor system resulted in high levels 

of dissolved gases, which coupled with the impeller design and baffles would result 

in an increase in the number but decrease in size of the air bubbles which may cause 

a change to the acquired spectrum. The differences were however, more likely to 

influence the rate at which the reaction progressed and so initially the changes 

observed in the spectra would be relatively minor which may affect the accuracy of 

the predictions.  

 

A total of two additional replicates of the biotransformation process were carried out 

adopting the same procedure as described (3.3.2) and the mid infrared spectra of the 

samples acquired.  
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As expected the biotransformation processed did not progress as rapidly as had been 

found in the bioreactor based systems, as indicated by a slower rate of reaction and 

smaller overall conversion of amino acid in the same time frame.  

 

The acquired spectra underwent the same pre-treatment stages and region selection 

processes as had been previously utilised.  

 

These spectra were then presented to the constructed model and the concentration of 

the two key analytes predicted and compared with the reference values obtained 

using the off-line HPLC method. 

 

On this occasion the model did not appear to be predicting the concentration of the 

two key analytes particularly well (Table 13). For both replicates of the process the 

RMSEP values obtained were substantially higher than had been observed with the 

external validation datasets.  

 

Table 13 – Error values associated with the prediction of the two off-site 

biotransformation replicates.  

 Amino Acid (TBG) 

(mMol dm-3) [r2] 

Keto Acid (TMP) 

(mMol dm-3) [r2] 

Model RMSEC 25.8 11.9 

Model RMSECV 28.2 13.5 

Replicate 1 RMSEP 44.9 [0.81] 46.5 [0.80] 

Replicate 2 RMSEP 42.4 [0.99] 41.5 [0.99] 

 

Examination of the plots of predicted concentration, as determined by the 

constructed model, against the measured concentration from the reference analysis 

confirmed that the model was failing to correctly quantify the key analyte 

concentrations (Figure 4-16)  
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These plots clearly illustrate a tendency of the model towards an over prediction of 

analyte concentration by the model. This was the case for both the analytes of 

interest but was particularly bad for the keto acid (TMP) component.  

 

 
Figure 4-16 – Predicted concentration (mMol dm-3) plotted against measured 

concentration (mMol dm-3) of both amino acid and keto acid for biotransformation 

processes carried out at different site from those used to construct and validate the 

PLS model. 

 

This failure of the model to deal with the biotransformation process carried out at a 

different location was surprising. As this was a mid infrared model, constructed 

using the fingerprint region, the signals that arose were attributed to fundamental 

vibrations of the molecules. Compounds utilised in the calibration and validation 

datasets were identical to those utilised in these additional replicates of the process 

and would therefore be expected to generate the same infrared spectrum.  

 

Variations in the spectrometer system utilised for the acquisition of the spectra or the 

mechanism by which the sample was presented have been reported to influence the 

quality of the spectra acquired and hence the need for maintenance of the model.122 
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However, in the current situation there was no alteration to the spectrometer or the 

sample presentation mechanism – spectral acquisition was carried out at-line using 

the same instrument and ATR crystal used to acquire the spectra for the calibration 

datasets. 

 

A potential hypothesis as to why the model was failing to accurately predict the 

concentration of these key analytes relates to the dissolved oxygen levels in the 

system. There are many reported cases of high levels of dissolved gases and the 

highly light scattering nature of the matrix causing challenges for modelling in the 

near infrared region.26, 32, 46 Whilst theoretically the ATR technology utilised with the 

mid infrared region should reduce these effects, due to the much shorter path lengths, 

there are some suggestions they could potentially be problematic.51, 55 

 

Dissolved oxygen has been reported to have an effect on the refractive index value of 

water.138 Given that the biotransformation process was carried out in aqueous media 

the differences between the two reactor systems may have resulted in a difference in 

the refractive index of the sample material. Acquisition of the infrared spectra using 

the ATR relies on the refractive index of the sample material being less than the 

refractive index of the crystal material.58 Changes in the refractive index of a sample 

material have been reported to cause shifts in both the absorption intensity and peak 

position within the UV-VIS region.139 It could therefore be possible that a similar 

phenomenon was being observed in this case as a result of the different reactor vessel 

systems utilised.  

 

A selection of spectra obtained from the calibration dataset was compared with the 

spectra obtained from the replicate carried out at the different location. Visually there 

did appear to be some slight shifts in the spectra although these were very minor. 

Given that this was based on a multivariate model, PCA was used with only the 

spectral data to determine if any differences in the spectra could be identified.  

 

From the PCA scores plot (Figure 4-17) it was clear that the spectra of the samples 

from the biotransformation process carried out in the heated water jacket vessel 
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occupied a different position in the principal component space relative to the 

calibration datasets There were however some similarities in the spectra as evident 

by their similarities to the calibration dataset in relation to the second principal 

component. 

 

 
Figure 4-17 - Principal component analysis carried out on samples used in the 

construction of the calibration model (that were carried out in the Applikon 

bioreactor system) and those carried out off-site in the heated water jacket vessel. 

 

Effects on the acquired spectra as a result of the differences in dissolved gas content 

of the samples may offer some explanation as to why the model failed to accurately 

predict the analyte concentrations.  

 

Further investigation would be required to confirm if this were the case. The most 

logical approach would be to look at a mechanism of degassing the samples prior to 

acquiring their infrared spectrum. Removal of the gases should ensure that the 

refractive index of the samples from both systems was consistent and the spectra 

resulting from both were comparable. 
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A second possible explanation for the failure of the model could be attributed to the 

raw materials used in the biotransformation process. In the case of the replicates 

carried out off site, the TMP starting material used in the reductive amination to 

generate the racemic TBG was purchased from a different supplier to that used to 

generate the racemic material for the calibration dataset. As previously discussed this 

model was based on the mid infrared spectra, the signals arose due to fundamental 

vibrations of bonds in the molecule so the observed spectrum should have been 

consistent regardless of supplier. There may however be some spectral features or 

shifts that result from impurities that may be present in one manufacturers material 

not found in the others.  

 

Since infrared spectroscopy can be utilised as a screening method to assess substrate 

batch quality for processes75, it would be a logical progression to suggest that the 

variability in the batches from different manufacturers were impacting on the ability 

of the constructed model to predict the key analyte concentrations. 

 

External validation of the constructed model demonstrated its ability to predict the 

key analyte concentrations from the acquired spectra within acceptable error margins. 

Further challenging the model with the off-site replicates, and its subsequent failure 

to accurately predict the analyte concentrations suggested there was insufficient 

variance in the calibration dataset. Variation arising from the utilising different 

substrates may be incorporated into the model by including some process replicates 

using these batches into the calibration model. This may improve the predictions 

from the model however it would require constant maintenance. Each time there was 

a change in supplier of raw materials the model would require updating, an 

expensive as well as time and labour intensive process. 

 

Should the variance and poor predictions arise as a result of the different reactor 

systems, then addressing these issues and improving the quality of the predictions 

may be a more difficult process. Incorporating these variances into the calibration 

dataset would likely result in higher errors of calibration, meaning the predicted 

concentration of analytes in samples from either system would not be as accurate. 
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These results highlight the need for process consistency when attempting to apply 

infrared spectroscopy as a mechanism of process analysis. Deviations in the 

equipment, instrumentation or substrates can have a substantial effect on the 

accuracy of the predicted concentrations of the compounds of interest.  

 

4.8 Summary & Conclusions  

 

Using the fingerprint region of the mid infrared region, a PLS model was constructed 

for the biotransformation process where DAAO enzymes were utilised to selectively 

convert the D-amino acid in a racemic mixture to the corresponding keto acid. The 

model was constructed based on a modest number of process replicates (three) and 

validated using a further two process replicates that were independent of the 

calibration dataset. 

 

Examination of the contributors to the resulting model suggested that any co-

linearity within the system had been addressed and that the resulting model was able 

to independently quantify both the analytes of interest.  

 

The predicted concentrations of the validation replicates from the model were in 

reasonable agreement with the values determined by the reference analysis methods 

(Figure 4-18). Prediction of the concentration of KBA was generally more accurate 

than predictions of the TBG concentration, however this was not unsurprising given 

quantification of TMP was via a direct determination method whereas the TBG 

required a pre-column derivatisation stage. 

 

Replicates of the biotransformation process carried out off-site were also presented 

to the constructed model and the ability of the model to predict the analyte 

concentration in these samples assessed. The model was unable to predict these 

concentrations at a satisfactory level, with both the amino acid and keto acid 

predictions varying substantially from the concentrations determined by the off-line 

reference analysis methods. Physical phenomena and variations in substrate 

production processes were postulated as possible explanations for these failures. 
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Figure 4-18 - Summary plots of concentrations of TBG and TMP determined from 

the reference method (HPLC) and the PLS model for (i) validation set 1 and (ii) 

validation set 2. HPLC values for TBG are quoted as ±0.27 mMol dm-3 and TMP as 

±0.14 mMol dm-3 as calculated. Concentrations predicted from model were quoted as 

±25.8 mMol dm-3 and ±11.9 mMol dm-3 respectively. 
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These findings suggested that it was feasible to utilise the fingerprint region of the 

mid infrared spectrum to construct a quantitative model for this particular industrial 

biotransformation process. The resulting model was adequate but the process 

highlighted a number of areas where improvements could be made, and issues that 

required to be addressed, when constructing future models for similar 

biotransformation processes.  
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5. Small Scale Biotransformation 
 

5.1 Process Overview 

 

Following on from the amino acid de-racemisation method where the D-enantiomer 

of TBG was selectively converted to TMP using DAAO enzymes contained within 

an E. coli host cell (4), other similar biotransformation processes of industrial 

relevance were considered. 

 

The second biotransformation process to be investigated was once again the selective 

de-racemisation of a racemic amino acid mixture using the D-amino acid oxidase 

enzyme. In this case however, the system differed slightly in that the host organism 

was Pichia pastoris modified to express the DAAO enzyme, not E. coli as had been 

utilised previously. The product of interest was the L-enantiomer of amino butyric 

acid (ABA), with the D-enantiomer undergoing conversion to the corresponding keto 

butyric acid (KBA) (Figure 5-1) as detailed in section 3.3.3. 

 

 

Figure 5-1 – Schematic representation of the biotransformation of D-amino acid 

(ABA) to the keto acid (KBA) using the DAAO enzyme contained within a Pichia 

pastoris host. 

 

As with the previous biotransformation, the rationale behind this work stems from 

the limited process information that is available in near real time for this particular 

class of bioprocess. More near real time information will allow for much greater 

understanding, control and optimisation of the process, as well as being aligned with 

the aims of the FDAs PAT initiative.6  
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5.2 Aim & Objective 

 

The aims and objectives in this work was to investigate the feasibility of applying 

near and mid infrared spectroscopy to monitor an industrial biotransformation 

process. Although the TBG biotransformation process (Chapter 4) had suggested the 

near infrared region was unsuitable for this purpose, the different analytes used in 

this case warranted further investigation of this region.  

 

Once the suitable regions of the infrared spectrum were identified, this data was 

utilised to construct and externally validate a quantitative model for the two key 

analytes of interest (ABA and KBA). This model was also to be challenged using a 

process replicate carried out off-site.  

 

With this particular biotransformation, the reactants were purchased directly from 

commercial suppliers and not produced by a batch process carried out in the 

laboratory. This resulted in an additional challenge of ensuring that co-linearity 

within the system was adequately addressed to allow independent quantification of 

the key analytes by the model despite a known stoichiometric linkage. Contributors 

to the model should also be examined to ensure this was the case. 

 

5.2.1 Novelty  

 

As with the other biotransformation systems investigated, these systems have not 

previously been extensively investigated using either near or mid infrared 

spectroscopy. The particular biotransformation process under investigation, the 

selective de-racemisation of a chiral amino acid mixture, provides an additional level 

of complexity and novelty within the system. 

 

Within this chapter the mechanisms employed to break the co-linearity within the 

system represent a novel approach. Stoichiometric relationships within the system 

have been a key point of discussion. Some argue that the relationships should be 

incorporated into the model48, others take a retrospective approach to altering the 
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samples to break this co-linearity.17, 36 However there doesn’t appear to be a method 

where the concentrations of key analytes are varied by design to not only break co-

linearity but also maintain the sample matrix. The proposed approach varied the 

analyte concentrations from the outset according to an experimental design, breaking 

co-linearity from the outset by adopting a structured approach. In dealing with co-

linearity in this manner there was the potential to construct an in-situ model that also 

adequately dealt with co-linearity.  

 

5.3 Analytical Reference Method 

 

Development and validation of analytical methods for the quantification of the key 

analytes of interest was required prior to carrying out any replicates of the actual 

biotransformation process.  

 

5.3.1 Amino Butyric Acid 

 

5.3.1.1 Method Development 

 

Quantification of the ABA content in the samples was achieved based on adaptations 

of the analytical method employed for the separation and quantification of TBG 

(3.2.1.2.1). Pre-column derivatisation of the amino acid was again achieved using a 

mixture of mercaptoethanol and OPA. The gradient elution method developed for the 

quantification of TBG was used as a starting point. This gradient program was 

altered until an acceptable peak shape was obtained with good baseline separation 

between the peak of interest and any other components in the sample. The conditions 

described (3.2.1.2.2) represent the optimum gradient elution program for the 

separation and quantification of the amino acid component.  

 

Using these conditions, the resulting peak returned an asymmetry factor of 1 and a 

peak tailing factor of 1.03. These values confirmed that the resulting peak was 

symmetrical and that there was no obvious tailing or fronting observed which might 

affect the integration parameters. 
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5.3.1.2 Method Validation  

 

In line with the previously adopted approach (4.3.1.2), a series of ABA solutions 

were prepared at varying concentrations over the range of interest and analysed using 

the developed method to ensure a linear response was obtained and to estimate the 

error associated with this method. 

 

A total of six solutions at varying ABA concentrations between 2 mMol dm-3 and 12 

mMol dm-3 were prepared and analysed to construct a calibration curve, with each 

sample being analysed in triplicate. Peak area response was plotted against 

concentration and a linear line of best fit plotted through the data points (Figure 5-2). 

 

Using this equation, the error attributed to fitting a linear line through the data points, 

i.e. the lack of fit in the calibration equation, was determined. The predicted 

concentration of the various samples was compared with the true value and the root 

mean square error value determined as being ±0.18 mMol dm-3 (Appendix II). 

 

 
Figure 5-2 - Calibration curve for quantification of ABA showing linear line of best 

fit through the data. 
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Ten replicate injections of the same sample were also carried out to estimate the error 

that arose due to variations in replicate injections. Since this method was not a direct 

determination of the amino acid concentration, estimation of this error component in 

the overall error was particularly important since it gave an indication of the 

reproducibility of the pre-column derivatisation process. The error associated with 

these replicate injections was determined as being ±0.06 mMol dm-3 (Appendix II). 

Given the pre-column derivatisation stage this error was very good indicating a 

consistent derivatisation process. 

 

Overall the error associated with the method was calculated as a linear combination 

of both sources of error, therefore the error in quantification of ABA using this 

method was determined as being ±0.19 mMol dm-3, marginally better than had been 

observed with TBG (4.3.1.2). 

 

5.3.2 Keto Butyric Acid  

 

5.3.2.1 Method Development 

 

Attempts to quantify the amount of keto acid present in the samples using a method 

similar to that employed with the TMP (discussed previously in section 3.2.2.1) 

failed. KBA does not possess a sufficient chromophore to allow detection using the 

DAD detector, so it was necessary to utilise a refractive index detector in this case. 

Also, there did not appear to be sufficient retention of the analyte of interest by the 

C18 column utilised. KBA passed through the chromatography column eluting 

completely un-retained by the column. It was clear at this point that an alternative 

column packing material was required to get sufficient column-analyte interactions 

to achieve the desired separation. 

 

A chromatography column designed for the separation of organic acids based on an 

ion exchange principle was thus selected for the analysis. The use of a refractive 

index detector system restricted the employed method to an isocratic mobile phase 

composition and constant flow. Initially the conditions employed were a replicate of 
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those suggested by the column manufacturer (0.005 N H2SO4 at a flow rate of 1 

mL/min). With this new column packing material there was a substantial 

improvement in analyte retention. Development of the method conditions from this 

starting point suggested that the optimum conditions for the separation of KBA 

employed a mobile phase composed of 0.01 N H2SO4 at a flow rate of 0.5 mL/min 

and a column temperature of 70 °C. Under these conditions the analyte had a 

retention time in the region of 4.5 minutes, and the resulting peak an asymmetry 

factor of 1 and tailing factor of 1.04, again suggesting a symmetrical peak with no 

tailing (Appendix II).  

 

5.3.2.2 Method Validation 

 

A series of calibration standards at varying concentrations were analysed using the 

developed method. A linear line of best fit was plotted through these data points and 

the equation determined (Figure 5-3). The root mean square error and the error 

associated with replicate injections were then determined based on this calibration 

equation (Appendix II). 

 

 
Figure 5-3 – Calibration curve for the quantification of KBA using the developed 

HPLC method. 
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The error associated with the lack of fit of the linear line through the calibration data 

was determined as being ±0.07 mMol dm-3 and the error between replicate injections 

as ±0.01 mMol dm-3 giving a total error of ±0.07 associated with the quantification of 

KBA for this method (Appendix II), this represented a slightly lower error margin 

than had been observed for the quantification of TMP (4.3.2.2).  

 

5.4 Initial Feasibility Study 

 

Initially the near infrared region was considered as a potential method for monitoring 

this biotransformation process. Pure component samples of both the amino acid 

(ABA) and keto acid (KBA) were prepared in an aqueous background matrix at 

concentrations representative of those expected during the biotransformation process. 

The infrared spectra were acquired at-line (3.5.1) before undergoing manipulation 

and examination to identify regions that exhibited differences, or shifts in the 

observed signals that could be utilised to construct a multivariate model for the 

biotransformation process.  

 

The theoretical location of signals arising due to the functional groups present in 

ABA and KBA were identified (Table 14). These analytes were similar to TBG/TMP 

with respect to the functional groups present in the molecule. Based on the 

theoretical locations of signals arising from these functional groups, there did not 

appear to be substantial variation between the two molecules and so many of the 

difficulties previous encountered with the near infrared region were likely to recur. 
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Table 14 - Theoretical locations of signals expected to be observed for ABA and 

KBA. 

Amino Butyric Acid (ABA) 

 

Keto Butyric Acid (KBA) 

 
Functional Group Regions Functional Group Regions 

CH3 4167-4545 cm-1 

5882-6060 cm-1 

CH3 4167-4545 cm-1 

5882-6060 cm-1 

CH2 5620-5950 cm-1 

4160-4444 cm-1 

CH2 5620-5950 cm-1 

4160-4444 cm-1 

CH 4081-4385 cm-1 

5617-5952 cm-1 

COOH 5235-5319 cm-1 

NH2 4545-4761 cm-1 CO 4920-5260 cm-1 

4360-4690 cm-1 

COOH 5235-5319 cm-1   

 

The acquired spectra were converted to the second derivative format, to enhance 

spectral features and reduce baseline shift, and split into the three spectral regions of 

interest (second overtones, first overtones and combination bands) to identify 

features of interest (Figure 5-4).  

 

In the second overtones region, very few signals of interest for the analytes were 

identified. Due to the weak nature of these signals, the infrequency with which they 

occur, and close similarities between the analyte molecules, a lack of substantial 

differences between signals in this region was not unsurprising. 

 

Within the first overtones region some signals that could be attributed to the analytes 

of interest were beginning to be observed in the 5800-6000 cm-1 region. These 

signals were most likely due to vibrations of the aliphatic CH bonds. A very subtle 

difference was noted between the peak maxima of the two analytes of interest. This 

NH2

OH

O

O

OH

O
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difference could potentially be useful for constructing a multivariate model for the 

system. The signals expected from the amine functional group were not observed, 

most likely being obscured as a result of the dominant signals from the OH 

vibrations of the water background matrix.24, 97, 140  

 

In the combination bands region there were a number of signals that could be 

identified for each of the analytes of interest. Signals between 4250-4450 cm-1 were 

noted for both analytes again likely due to the aliphatic CH vibrations. Like the 

signals in the first overtones region there also appeared to be a subtle shift in the 

position of the peaks. A signal that appeared unique to the amino acid component 

was observed at 4250 cm-1 expected to be due the CH vibration at the C2 position, 

which is not present in the keto acid. 

 

Although the use of an in-situ near infrared probe prevents access to the combination 

bands region due to absorption of this region by the silica fibres,141 the differences 

observed in the spectra suggested that it might be feasible to construct a multivariate 

model for this process using the combination bands region. An at-line model would 

still represent an improvement over the current off-line analysis methods. The 

presence of signals in the first overtones region however does suggest that in-situ 

monitoring of the biotransformation process using near infrared spectroscopy may 

also be feasible.  

 

Since there was a fair degree of similarity between the near infrared spectra of the 

two analytes of interest, the pure component spectra of the two analytes were also 

obtained for the mid infrared region.  
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Figure 5-4 - Second derivative spectrum of the pure component spectra of ABA, KBA and water obtained using the at-line near infrared 

spectrometer system. (i) Displays the second overtones region, (ii) the first overtones and (iii) the combination bands region. 
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Although the diagnostic region should result in a number of signals that could be 

attributed to each of the analytes of interest the main focus was on the fingerprint 

region. Signals in this region should be unique for each of the two compounds. Also 

if the technique were to be applied in-situ then the current technology (diamond ATR 

crystal) would restrict the utilisable spectra to the fingerprint region because of the 

wavelengths transmittable by the crystal (diamond absorbs between 1900 cm-1 and 

2300 cm-1).142 For these reasons, only the spectral region between approximately 900 

cm-1 and 1600 cm-1 was of interest, however the exact regions utilised for modelling 

were dependent on the pre-processing methods employed and where the spectra 

converged to provide an appropriate point at which to cut the spectra.  

 

The mid infrared spectra obtained of the pure component ABA and KBA both 

illustrated a number of unique spectral features (Figure 5-5). The spectra obtained for 

these compounds were both very unique, with a number of spectral features that 

could be uniquely attributed to both the analytes of interest. Whilst it was possible to 

identify unique features for both analytes in the pure component spectra when a 

mixture, at concentrations typically expected during the biotransformation process, 

was considered the amino acid signals began to dominate, particularly at low keto 

acid concentrations, and it became difficult to identify features arising from the keto 

acid (Figure 5-5). 

 

The acquired fingerprint region spectra were then converted to the first derivative 

spectra to try and enhance some of the spectral features, particularly in the mixture 

samples, but also to reduce baseline drift and noise (Figure 5-6). 
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Figure 5-5 - Raw mid infrared spectrum of pure component solutions of amino acid 

(ABA), keto acid (KBA), water and a mixture of the analytes. 

 
Figure 5-6 - First derivative spectra of pure component samples of amino acid 

(ABA), keto acid (KBA), the background water matrix and a mixture of the two 

analytes at concentrations representative of those expected during the 

biotransformation process. 
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Looking at the sample mixture of both the amino acid and keto acid it was again 

quite difficult to identify signals from the keto acid due to the relatively low 

concentration that was initially present compared with the amino acid, which appears 

to be dominating the spectrum. Some features observed around the 1100 cm-1 & 

1300cm-1 areas in the spectrum of the mixture suggested that the keto acid was being 

identified. It was clear from these spectra of the mixtures that at the concentrations 

employed a univariate calibration approach would be insufficient to quantify the key 

analyte concentrations. 

 

5.5 Process Replicates 

 

The feasibility study results suggested that both the near and mid infrared regions 

were potentially suitable for monitoring this particular biotransformation process. A 

series of process replicates were thus performed to generate sufficient replicates to 

construct a calibration model.  

 

One of the key outcomes from the work done with the TBG/TMP biotransformation 

process replicates was the issue of co-linearity within the resulting model (4.8). With 

this biotransformation process measures were taken from the outset to ensure that co-

linearity within the system was adequately addressed. 

 

The various approaches to breaking co-linearity within the system were evaluated to 

determine which would be the most appropriate for the given situation. A calibration 

model based entirely on synthetic samples similar to the approach described by 

Chung et al. (1996) and Riley et al. (2001) was considered and dismissed as it was 

felt the synthetic samples would not adequately represent features of the background 

matrix such as the cellular material.35, 37 The semi synthetic approach discussed by 

Riley et al. (1997) and Cervera et al. (2009) was also considered as an option, but 

was again rejected due to the requirement for the samples to undergo an adulteration 

stage post sampling, therefore rendering the sample inconsistent with the background 

media present in the biotransformation process.17, 36 
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Previously breaking co-linearity within the system appeared to have been 

successfully dealt with by varying the analyte concentrations from the start of the 

biotransformation process, an approach described by Ehyl et al. (2007).136 This 

approach had the advantage that the samples were not altered post-sampling and 

were therefore representative of the biotransformation process. 

 

With the TBG/TMP biotransformation process the batch nature of the substrate 

preparation created these variations by chance, however in this case, since the 

substrate was a commercially available pure material, a more structured approach 

was required. 

 

Since the substrate was introduced as the racemic amino acid, it was necessary to 

actively ‘spike’ the system with some of the keto acid product, as this would not 

naturally be present. The starting concentrations of ABA and spiked KBA were 

determined according to a simple two factor, two level [22] experimental design 

(Table 15).  

 

Table 15 - Initial concentrations of amino acid and keto acid determined by 

experimental design in an attempt to break any co-linearity within the system. 

Replicate 
Amino Acid (ABA) 

Concentration (mMol dm-3) 

Keto Acid (KBA) 

Concentration (mMol dm-3) 

1 800 50 

2 1200 50 

3 800 150 

4 1200 150 

 

The four replicates of the biotransformation process were carried out with the initial 

substrate loadings and spiked keto acid concentrations as determined by the 

experimental design. Samples were removed at various points during the time course 

of the process and both the near and mid infrared spectra acquired, in addition the 

concentrations of both analytes were quantified using the developed HPLC methods 

(3.2)  
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As the biotransformation process progressed, changes in the spectral features 

identified were observed in both the near and mid infrared regions of interest. 

 

A further two replicates of the process were carried out with initial amino acid 

concentrations in the region of 1000 mMol dm-3 and a KBA spike of approximately 

50 mMol dm-3. In terms of concentration, these replicates were at an intermediate 

ABA concentration and so were within the calibration models predictive ability, but 

also were of a typical concentration at which the process would normally be run. 

 

5.6 Near Infrared 

 

Partial least squares (PLS) calibration models were constructed for each of the 

identified regions of interest for both the near and mid infrared spectra. Internal 

validation of the models was achieved using the leave one out cross validation 

approach (2.5.5.1). Each of the models was also externally validated using the two 

unseen process replicates (2.5.5.2). 

 

5.6.1 Calibration Model & Validation 

 

From the pure component spectra acquired of the analytes (Figure 5-4) signals, that 

were potentially useful for constructing a model for the biotransformation process, 

were identified in both the first overtones region and the combination bands region. 

Initially, these regions were considered separately with an individual calibration 

model constructed for the combination bands region and the first overtones region. A 

PLS model was then constructed based on the combined spectra from both these 

regions. External validation of the models constructed was achieved using the two 

unseen process replicates (biotransformation replicates 5 and 6) and the error values 

compared (Table 16). 

 

Models based on the combination bands region returned very good errors of 

calibration and errors of cross validation for the KBA and also reasonable values for 

ABA. The errors of prediction from the two unseen validation datasets were in good 
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agreement with the errors of calibration and cross validation for both the amino acid 

and keto acid. Plots of the measured concentration (from reference analysis methods) 

plotted against the predicted concentration (from the PLS model) were constructed 

for both the TBG (Figure 5-7(i)) and the KBA (Figure 5-7(ii)). Points on these plots 

appeared randomly scattered around the central (1:1) diagonal line suggesting there 

was not a bias to either over or under predicting the concentrations of the key 

analytes. 

 

Table 16 – Summary table of the errors associated with the calibration, internal and 

external validation for the constructed PLS models for the various identified spectral 

regions of interest. 

Region Utilised 

RMSEC 

(mMol dm-3) 

RMSECV 

(mMol dm-3) 

RMSEP 

(mMol dm-3) 

Amino 

Acid 

Keto 

Acid 

Amino 

Acid 

Keto 

Acid 

Amino 

Acid [r2] 

Keto 

Acid [r2] 

Combination Bands 

(2032-2400 cm-1) 
38.7 5.7 39.1 5.8 

(v) 40.7 

[0.90] 

(vi) 35.5 

[0.93] 

(v) 7.8 

[0.99] 

(vi) 5.6 

[0.99] 

First Overtones 

(1540-1812 cm-1) 
40.9 20.3 41.7 20.8 

(v) 48.7 

[0.85] 

(vi) 54.6 

[0.88] 

(v) 14.9 

[0.95] 

(vi) 20.7 

[0.90] 

First Overtones & 

Combination Bands 

(1540-1812 cm-1 & 

2032-2400 cm-1) 

38.1 8.4 38.8 8.6 

(v) 41.5 

[0.89] 

(vi) 34.3 

[0.93] 

(v) 7.0 

[0.99] 

(vi) 6.2 

[0.99] 

 

The obtained RMSEP values for the ABA component appeared high in comparison 

with the values obtained for the KBA component. To put these errors into context 

they were compared with the errors of prediction values tabulated by Cervera et al. 

(2009) for key analytes of interest in a variety of bioprocess systems. Many of these 
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errors were quoted in units of g/L therefore it was necessary to convert the obtained 

error value of 40 mMol dm-3 into these units for comparison. An ABA RMSEP value 

in the region of 40 mMol dm-3 equated to 0.0013 g/L.  

 

Key fermentation media constituents such as glucose and glutamine have had 

reported errors of prediction ranging from 0.072 g/L through to 2.27 g/L using both 

at-line and in-situ spectral acquisition mechanisms.17 Compared with these values the 

obtained error for the key constituents of the biotransformation process was very 

good. 

 

Near infrared spectroscopy utilised to monitor biotransformation processes had 

previously returned errors of prediction as low as 0.09 g/L with an at-line sampling 

approach in a Baeyer-Villiger type biotransformation process.93 This error value was 

higher than had been observed with the de-racemisation biotransformation process 

under investigation.  

 

Amino acid quantification using near infrared spectroscopy has also been 

documented in the context of insect cell cultivation. Riley et al. (1998) reported 

errors of prediction as high as 44.2 mMol dm-3 for alanine concentrations in this 

system.38 These errors were comparable with those obtained from the near infrared 

model of the biotransformation process. This was encouraging as the system 

currently under investigation represented a more complex and challenging matrix 

compared with the relatively simple and optically clear insect cell culture systems.21 

 

Although the errors of prediction for the amino acid component in particular seem 

high, relative to the typical errors of prediction quoted for similar systems they were 

comparable, if not better in many cases. 

 

Models based on the first overtones region of the near infrared spectra returned 

errors of calibration and cross validation that were comparable with those previously 

obtained for the amino acid, however the values for the keto acid were substantially 

higher. Examination of the plot of measured concentration against predicted 
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concentration illustrated that the predictions of the amino acid concentration were 

relatively randomly scattered although there was a greater degree of error associated 

with these samples (Figure 5-7(iii)). The plot for the keto acid concentrations did 

however suggest that there appeared to be a tendency of the constructed model to 

over predict KBA concentration relative to the off-line analysis method (Figure 

5-7(iv)). This may be a result of the limited variation of spectral features in this 

particular region. Further investigation into the contributors to the resulting model 

would be required to determine what spectral features were being modelled and if the 

inference of KBA concentration from spectral features of the ABA was occurring 

and hence the sharp increase in the errors of calibration, cross validation and 

prediction. 

 

Combining both the regions of interest, which also had the effect of removing the 

dominant signals from water, also resulted in a calibration model that returned errors 

that were consistent with what had been observed for the individual regions as well 

as errors of prediction that were in good agreement with the calibration and cross 

validation errors (Table 16). Plots of measured concentration against predicted 

concentration once again suggested a random scatter around the central diagonal for 

both ABA and KBA suggesting there was no bias to either over or under predicting 

concentrations in the resultant model (Figure 5-7(v) and Figure 5-7(vi)). 
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Figure 5-7 – Plots of measured concentration (mMol dm-3) (from reference analysis method) against predicted concentration (mMol dm-3) 

(from PLS model) for the two validation datasets using the various spectral regions of interest. Figures (i) and (ii) represent the model 

constructed from the combination bands region, (iii) and (iv) the first overtones region, (v) and (vi) the model constructed from the 

combined regions. Points shown in grey are the measured concentrations plotted against predicted from the internal validation procedure
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5.6.2 Model Contributors  

 

In order to establish what spectral features each of the constructed models was based 

on, and to ensure that the co-linearity within the system had been effectively dealt 

with, the regression coefficients for each model were examined.  

 

5.6.2.1 Combination Bands  

 

The two regression coefficients associated with the model based on the combination 

bands region were plotted alongside the pure component spectra of both ABA and 

KBA to determine which of these features were contributing to the model (Figure 

5-8). As previously noted, the pure component spectra of ABA and KBA were very 

similar with subtle shifts in peak position observed with a single unique feature 

assignable to the ABA. These features were expected to be represented and 

identifiable in the regression coefficients. 

 

The first regression coefficient contained some features that could be assigned to the 

amino acid (Figure 5-8 (i)). A unique signal for the amino acid observed at 4293cm-1 

appeared to correspond with the large, negative correlation observed between 4276-

4291 cm-1. The subtle variation in peak position between ABA and KBA was 

reflected in the regression coefficient in the 4454 cm-1 region, which in this case 

appeared to demonstrate a positive correlation with the positive peak of the amino 

acid. This would therefore suggest that this regression coefficient was representative 

of the amino acid component. 

 

Strong signals on the second regression coefficient appeared to correspond with the 

position of second derivative signals in the pure component KBA spectrum (Figure 

5-8 (ii)). Troughs in the second derivative pure component KBA spectrum at 4363 

cm-1 and 4435 cm-1 were in good correlation with the negative signals of the 

regression coefficients plot noted at 4374 cm-1 and 4444 cm-1 respectively. The 

negative signal in the loadings plot observed at 4310 cm-1 might be representative of 

the signal unique to the amino acid observed at 4293 cm-1. 
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Figure 5-8 - (i) Plot of first regression coefficient and pure component spectra of ABA and KBA. (ii) Plot of second regression coefficient 

and pure component spectra of the key analytes of interest. (iii) Both regression coefficients obtained for the model plotted for comparison. 

(iv) Plot of first regression coefficient and inverse of second regression coefficient to highlight subtle variations in the regression 

coefficients, which result from the subtle shifts in the pure component spectra. 
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The presence of features attributable to the amino acid in this regression coefficient 

was a cause for concern as it suggested the co-linearity issue within the system had 

not been adequately addressed. Despite this potential issue it did appear that the 

second regression coefficient correlated with the key features of the keto acid 

spectrum. 

 

If co-linearity within the system were an issue, the regression coefficients would be 

expected to contain a number of common features. However as both molecules had a 

very similar structural backbone a number spectral features common to both analytes 

were expected. Both the regression coefficients obtained for the PLS model were 

plotted together and examined to identify if any common, overlapping features could 

be identified (Figure 5-8 (iii)). Interestingly, the regression coefficients appeared to 

be a mirror image of each other, with the unique signal for the amine functional 

group appearing to have an influence in both regression coefficients. 

 

As previously noted, the shifts in the peak positions of the two analytes were very 

subtle. This was expected to be reflected in the regression coefficients, and may 

make them appear, visually at least, mirror images of each other. In order to assess 

how similar or otherwise the regression coefficients were the inverse of the second 

regression coefficient was plotted alongside the first regression coefficient (Figure 

5-8 (iv)). This essentially rotated the second regression coefficient through 180° so 

that the plots could be superimposed for comparison purposes. 

 

The plot of the first regression coefficient and the inverse of the second regression 

coefficient illustrated that there were differences between the two regression 

coefficients obtained for the model. Shifts in the peak positions were noted over 

various regions; particularly noteworthy were the signals at 4449 cm-1 and  

4454 cm-1. This was one of regions identified as exhibiting subtle variance between 

the two key analytes. 

 

Spectra used to identify various features in the regression coefficients were pure 

component samples, presented at median concentrations (~500 mMol dm-3 ABA and 
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~250 mMol dm-3 KBA) expected during the biotransformation process. Samples 

used for the construction of the model contained a mixture of the analytes as well as 

cellular material and other, undefined matrix components. Some features of the 

regression coefficients may be representative of these components resulting in 

additional, unassigned signals and shifts due to these more complex matrices.  

 

Although both regression coefficients were similar, due to the structural similarities 

of the molecules and the resulting infrared spectra, the subtle variations noted in the 

pure component spectra were reflected in the regression coefficients. Two different 

regression coefficients were obtained suggesting co-linearity was not an issue, 

however ideally some representation of the unique amine feature in only the first 

regression co-efficient would have confidently confirmed the models ability to 

independently quantify each analyte.  

 

5.6.2.2 First Overtones 

 

The PLS model constructed based on the first overtones region of the near infrared 

spectra did not return errors of calibration, cross validation or prediction that were 

comparable with those previously obtained based on the combination bands region. 

Given the limited spectral region and the close similarities observed between the 

spectra of the two analytes of interest in this region these higher errors were not 

unsurprising. This close similarity between the spectra of the two analytes also made 

interpretation of the regression coefficients associated with the model difficult since 

the differences were based on a small shift in peak position. 

 

The first regression coefficient associated with the model was plotted alongside the 

pure component ABA and KBA spectra (Figure 5-9 (i)). A number of features of this 

regression coefficient were aligned with signals in the pure component spectrum of 

the ABA, signals at 5800 cm-1 and the position of the signal at 5850 cm-1 correspond 

well with strong negative values in the regression coefficient. 
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In this case, the second regression coefficient obtained for the model appeared very 

different from the first (Figure 5-9 (ii)). Although a very weak signal was observed 

in the pure component spectra of KBA at 5800 cm-1, there did not appear to be any 

corresponding signal in the regression coefficient. The main feature of this regression 

coefficient was observed just below 6000 cm-1 and represented the KBA signal that 

exhibits an overlap with an ABA signal in the same region but with its peak apex at a 

slightly lower wavenumber. 

 

Both the regression coefficients were plotted together for comparison (Figure 5-9 

(iii)). In this case, a number of unique features were observed for each regression 

coefficient as well as some features that appeared to overlap, which were expected 

due to the similarities of the analytes. 

 

The inverse of the second regression coefficient was determined and plotted 

alongside the first regression coefficient (Figure 5-9 (iv)). This identified if there 

were any subtle differences observed in the signal positions, or if there was an 

overlap in a correlated/anti-correlated manner. It was clear from this figure that there 

was an obvious difference in the position of any overlapping signals. Of particular 

note was the large positive value in the regression coefficient at 5980 cm-1, that 

appeared to correspond with a positive signal in the second derivative spectrum of 

the amino acid in this region. This signal overlapped with a large negative regression 

coefficient at 5976 cm-1 however this appeared to correspond, slightly shifted, with 

the second derivative trough for the keto acid observed at approximately 5900 cm-1. 

 

Since two distinct regression coefficients were observed, it was concluded that the 

co-linearity within the system had been suitably addressed to allow the constructed 

model to independently predict the concentration of both ABA and KBA.  

 



 177 

 
Figure 5-9 – (i) Plot of first regression coefficient and pure component spectra in first overtones region. (ii) Second regression coefficient 

along with pure component spectra in the first overtones region. (iii) Both regression coefficients associated with the model plotted together 

for comparison. (iv) Plot of first regression coefficient and inverse of second regression coefficient to identify any subtle shifts in the 

regression coefficients. 
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Figure 5-10 - (i) Plot of first regression coefficient along with second derivative spectrum of pure component ABA and KBA. (ii) Plot of 

second regression coefficient and pure component ABA and KBA samples. (iii) Regression coefficients associated with the constructed 

model plotted for comparison. (iv) First regression coefficient and inverse of second regression coefficient overlaid for comparison of peak 

positions. 
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5.6.2.3 Combined Model 

 

Combining both spectral regions of interest generated a third PLS model for this 

biotransformation process. Errors of calibration, cross validation and prediction 

observed for this model were some of the best noted for the amino acid (ABA) but 

also provided a reasonable quantification of the keto acid (KBA) content (Table 16). 

 

As with the models based on only the first overtones and combination bands regions, 

the regression coefficients associated with the model were examined to try and 

confirm whether or not the co-linearity within the system had been addressed. Since 

this model was based on the combined regions many of the spectral features 

previously identified in each regression coefficient were expected to be duplicated in 

this system. 

 

The first regression coefficient contained features that were consistent with those 

previously described for the individual models for this region (5.6.2.1 & 5.6.2.2). 

Points that exhibited a strong negative regression coefficient appeared to correspond 

with the second derivative troughs noted in the pure component ABA spectrum 

(Figure 5-10 (i)). Of particular note was the unique signal of the amine functional 

group observed at 4293 cm-1, which corresponded exactly with a large negative point 

on the regression coefficient. 

 

Features of the second regression coefficient appeared to be more aligned with those 

of the pure component keto acid, particularly around the 4000 cm-1 to 4500 cm-1 

region where features of the pure component spectra essentially overlay with the 

second regression coefficient (Figure 5-10 (ii)). However the regression coefficients 

in the first overtones region were different from those observed in the model based 

on this sole region (5.6.2.2). There also appeared to be some influence of the amine 

functional group of the ABA in this second regression coefficient. 

 

When both regression coefficients were plotted together (Figure 5-10 (iii)) a mirror 

image effect was once again observed. With the combined model however this had 
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extended to include the first overtones region, which had previously returned two 

very distinct regression coefficients. 

 

Comparison of the first regression coefficient with the inverse of the second 

regression coefficient confirmed there was substantial overlap (Figure 5-10 (iv)). 

Whilst there were some subtle variations in the position of the peaks, the vast 

majority of the regression coefficients were identical. This would suggest this model 

was not independently modelling both analytes of interest. 

 

5.6.2.4 Near Infrared Summary 

 

Models based on the near infrared spectra had been generated for the process, and 

were relatively successful at predicting the analyte concentration in unknown 

samples. Examination of the contributors to these models appeared to suggest there 

was some degree of independence surrounding the models ability to predict analyte 

concentrations. In this case, the most successful model incorporated the combination 

bands region of the near infrared spectrum. Hence, the technique would be restricted 

to a rapid at-line analysis method. Whilst this was a substantial improvement over 

the current off-line chromatographic methods, an in-situ approach would still be the 

preferred option. 

 

Additionally, the close similarities between the spectra of the two analytes of interest 

still raised questions over the ability of the constructed model to independently 

quantify these two key analyte concentrations. The regression coefficients for the 

various models suggested that the spectral features used to estimate the concentration 

of each analyte were similar. Of particular note was the combined model where the 

regression coefficients were exact opposites of each other. Results like this would 

suggest that co-linearity had not been adequately addressed or that there were 

insufficient spectral features to allow construction of a robust model. 

 

The mid infrared region was therefore considered as an option to monitor this 

particular biotransformation process. As with the de-racemisation of TBG/TMP 
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biotransformation process the inclusion of the fingerprint region of the mid infrared 

by definition should result in a greater variation in the acquired spectra to allow 

construction of a model with greater confidence in its ability to independently predict 

the analyte concentrations.  

 

5.7 Mid Infrared Spectroscopy 

 

5.7.1 Mid Infrared Raw Spectra 

 

Scans in the mid infrared region of the pure component samples of ABA and KBA 

(Figure 5-5) suggested that it may have been possible to utilise the raw mid infrared 

spectra to construct a quantitative model for the biotransformation process. 

 

The initial feasibility study suggested that the spectral region between 900 cm-1 and 

1600 cm-1 would be a suitable region for use in the modelling process. Further 

evaluation of both the raw spectral data and the first derivative data suggested that 

suitable points to ‘cut’ the acquired spectra were at 940 cm-1 and 1465 cm-1 retaining 

the intermediate spectral range. 

 

The spectra from the four ‘spiked’ replicates of the biotransformation process 

designated as calibration datasets were utilised to construct a PLS model for the 

process. In the first instance the only pre-processing applied to both the spectral and 

reference data blocks was to mean centre the data. Internal validation using the 

LOOCV approach (2.5.5.1) was also applied to the constructed model. 

 

The optimum number of latent variables utilised in the model was determined from 

the plots of RMSEC and RMSECV values for both the analytes of interest. From this 

plot (Figure 5-11) the optimum number of latent variables appeared to be five. This 

constructed model returned error values as detailed in Table 17.  
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Figure 5-11 - Plot of RMSEC / RMSECV values against latent variable number used 

to determine the optimum number of latent variables for the constructed PLS model 

based on the mid infrared spectra without any spectral pre-processing applied. 

 

Table 17 - Summary of error values for the calibration, internal and external 

validation procedures for the PLS model constructed from the raw mid infrared 

fingerprint spectra. 

 ABA (mMol dm-3) [r2] KBA (mMol dm-3) [r2] 

RMSEC 35.4 7.7 

RMSECV 36.3 8.0 

RMSEP (i) 38.7 [0.90] 

(ii) 39.5 [0.92] 

(i) 9.1 [0.99] 

(ii) 15.2 [0.98] 

 

The errors from the internal validation procedure were in good agreement with the 

errors of calibration for the model. Although encouraging, this was not unsurprising 

given that the internal validation procedure uses data to test the model that has 

essentially been used in the calibration procedure.  
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To challenge the model spectra, from both the biotransformation replicates were 

presented to the constructed model and the concentrations of the two key analytes in 

these samples predicted based on the spectral data. These values were compared with 

the measured values determined using the off-line chromatographic techniques (3.2) 

to assess how well the model was performing. 

 

 
Figure 5-12 - Plots of measured concentration (mMol dm-3) (from reference analysis 

method) against predicted concentration (mMol dm-3) (from the PLS model) for both 

the amino acid (i) and keto acid (ii) obtained from the two external validation 

datasets. 

 

The errors of prediction for the amino acid component were in good agreement with 

the errors of calibration and cross validation. Evaluation of the scatter plots of 

measured concentration against predicted concentration (Figure 5-12) suggested that 

the predicted concentrations were in reasonable agreement with the measured 
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concentrations for the amino acid. Points appeared to be randomly scattered around 

the central diagonal line representing a 1:1 relationship suggesting the model wasn’t 

bias towards over or under predicting the analyte concentration. With respect to the 

KBA concentrations, the first validation dataset appeared to predict the 

concentrations very well, with the points randomly scattered around the central 

diagonal. The second validation dataset however returned a much higher error of 

prediction and on examination of the plot of measured concentration against 

predicted concentration there appeared to be a very slight tendency of the model to 

under predict the keto acid concentration relative to that determined by the analytical 

reference method.  

 

In order to identify the contributors to the constructed model, and to confirm whether 

the suspected co-linearity within the system had been addressed, the regression 

coefficients associated with the model were examined. 

 

The unmodified pure component mid infrared spectra of ABA and KBA were plotted 

alongside the first regression coefficient (Figure 5-13 (i)). A number of points in the 

regression coefficient were matched with signals in the pure component spectrum of 

ABA. Signals observed at 1400 cm-1 and 1350 cm-1 corresponded with large values 

of the same sign on the regression coefficient. In addition the pattern of signals noted 

between 1300 cm-1 and 1350 cm-1 corresponded with a similar pattern in the 

regression coefficient with the opposite sign. These observations suggested that the 

first regression coefficient was related to the ABA component. A large negative 

regression coefficient observed just above 1100 cm-1 appeared to inversely 

correspond with one of the signals observed in the pure component KBA sample. 
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Figure 5-13 - (i) Regression coefficient 1 plotted alongside the pure component spectrum of ABA and KBA. (ii) Second regression 

coefficient plotted with pure component ABA and KBA spectra. (iii) Both regression coefficients associated with the constructed model 

superimposed. (iv) First regression coefficient and inverse of second regression coefficient superimposed. 
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The presence of this particular signal in the first regression coefficient was a concern 

as it suggested some influence of the spectral features due to KBA being utilised in 

the estimation of ABA concentration. 

 

A plot of the second regression coefficient and the pure component ABA and KBA 

samples was also constructed and examined (Figure 5-13 (ii)). Positive values for the 

regression coefficient in the 1100 cm-1 to 1200 cm-1 region corresponded with the 

signals observed in the pure component KBA spectrum. However the strong signal at 

1400 cm-1 that represented ABA was also noted in this regression coefficient in an 

anti-correlated manner. The presence of these features in the regression coefficient 

suggested there could still be some co-linearity issues within the model. 

 

Both the regression coefficients were plotted together for comparison (Figure 5-13 

(iii)). As had been the case with many of the near infrared models, the regression 

coefficients appeared to be mirror images of each other. The inverse of the second 

regression coefficient was plotted alongside the first regression coefficient to try and 

identify any subtle variations that may be observed (Figure 5-13 (iv)). Both 

regression coefficients were very similar, some differences were noted in the 1300 

cm-1 to 1400 cm-1, but other than these the regression coefficients were identical. 

 

These observations with the regression coefficients brought into question whether the 

model was able to independently quantify the concentration of both ABA and KBA. 

 

5.7.2 Mid Infrared First Derivative 

 

Although a model for the biotransformation process had been constructed based on 

the spectral data without any mathematical manipulation, the errors of prediction, for 

the keto acid in particular, were higher than expected and it was unclear whether the 

issue of co-linearity had been adequately addressed. 

 

The acquired spectra were converted to the first derivative format and the models re-

constructed in an attempt to improve the errors associated with the model. 
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As had been the case previously, the four replicates of the biotransformation process 

that had the initial ABA and KBA concentrations ‘spiked’ according to an 

experimental design were used as the calibration datasets. The optimum number of 

latent variables for the model was selected as four based on the plots of RMSEC and 

RMSECV value against the number of latent variables in the model. 

 

External validation of the constructed model was achieved using the two unseen 

process replicates in the same manner as before with the error values tabulated.  

 

Table 18 - Error values associated with the PLS model constructed from the first 

derivative fingerprint region mid infrared spectra. 

 ABA (mMol dm-3) [r2] KBA (mMol dm-3) [r2] 

RMSEC 37.4 7.8 

RMSECV 38.3 8.2 

RMSEP (i) 41.5 [0.90] 

(ii) 30.1 [0.92] 

(i) 13.0 [0.99] 

(ii) 9.0 [0.99] 

 

In this case, the errors of calibration and cross validation obtained were comparable 

with those obtained from the raw spectral data. The errors of prediction, however, 

were better than had been observed with the raw spectral data. Evaluation of the 

plots of measured concentration against predicted concentration suggested that the 

amino acid concentrations were in good agreement with the measured concentrations, 

randomly scattered around the central diagonal and the concentrations were within 

the calibration range of the constructed model. The keto acid was acceptable for the 

first validation dataset however the second dataset appeared again to be slightly 

under predicting the concentration of KBA (Figure 5-14). 
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Figure 5-14 – Measured concentration (mMol dm-3) (from reference analysis 

method) plotted against predicted concentration (mMol dm-3) (from PLS model) for 

external validation datasets. (i) Illustrates the amino acid (ABA) component whilst 

(ii) illustrates the keto acid (KBA) component. Also shown is the measured vs. 

predicted concentrations from the LOOCV for the calibration data. 

 

With a large difference in the errors of prediction for the two validation datasets 

between the PLS model constructed from the raw spectra and the first derivative 

spectra suggested there may be some subtle features in the spectra that are 

influencing the calibration and analyte concentration predictions. 
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Contributors to the model were subsequently examined to confirm the intended 

analytes were being modelled independently. The first regression coefficient 

associated with the model was plotted alongside the first derivative pure component 

spectra of ABA and KBA (Figure 5-15 (i)). This first regression coefficient had a 

number of features that corresponded with the pure component ABA, particularly in 

the region from 1250 cm-1 through to 1400 cm-1 where the spectra and regression 

coefficient were an almost identical match. 

 

With the second regression coefficient signals were observed that corresponded with 

the pure component KBA (Figure 5-15 (ii)). Based on the pure component spectra 

the majority of KBA signals were expected in the approximate region between  

1150 cm-1 and 1250 cm-1. Whilst the second regression coefficient did contain 

corresponding features in this region, a number of large regression coefficient values 

were observed in the region from 1300 cm-1 through to 1500 cm-1. This region 

previously appeared to be dominated by signals from the amino acid, however there 

did not appear to be a good correlation, or anti-correlation, between this second 

regression coefficient and the pure component amino acid signals. Upon closer 

inspection, it appeared that calculation of the first derivative had the desired effect 

and enhanced some of the weaker spectral features of the keto acid within this region. 

The second regression coefficient appeared to be influenced by some of these weak, 

overlapping spectral features attributable to the KBA.  

 

Both regression coefficients associated with this model were plotted together for 

comparison purposes (Figure 5-15 (iii)). From this plot it was clear there were a 

number of unique features observed in both the regression coefficients. Particular 

differences were noted in this region above 1300 cm-1, an area that had previously 

been considered to be dominated by signals from the amino acid. As a confirmation, 

the inverse of the second regression coefficient was plotted alongside the first 

regression coefficient (Figure 5-15 (iv)). This clearly illustrated differences, in the 

form of subtle shifts and unique features, across the full spectral range but in 

particular the region above 1300 cm-1. 
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These results not only suggested that co-linearity within the system had been 

addressed but that by calculating the first derivative of the absorbance spectra some 

spectral features had been enhanced. These subtle spectral features were having a 

positive impact on the model, dealing with co-linearity but also improving the errors 

of prediction with the unseen validation datasets compared with models built using 

the absorbance spectra.  

 

Observing two independent regression coefficients for the model increased 

confidence that the model was independently quantifying both ABA and KBA 

during the biotransformation process. Having determined the optimum spectral pre-

processing approach further improvements to the model may result by refinement of 

the spectral regions used in the model. 
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Figure 5-15 - (i) Regression coefficient 1 plotted alongside the pure component spectrum of ABA and KBA. (ii) Second regression 

coefficient plotted with pure component ABA and KBA spectra. (iii) Both regression coefficients associated with the constructed model 

superimposed. (iv) First regression coefficient and inverse of second regression coefficient superimposed. 
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5.7.3 Genetic Algorithm 

 

Spectral regions of interest had been identified visually based on the known location 

of signals from scans of the pure component material. Further refinement of the 

spectral region included in the model building process was achieved by utilising a 

genetic algorithm for variable selection. 

 

All the spectra from the four replicates of the biotransformation process identified as 

the calibration dataset, and the corresponding reference data, were used with the 

genetic algorithm to determine the most appropriate spectral regions for monitoring. 

 

Parameters for the genetic algorithm were set for the maximum population size and a 

window width of 1 so each point in the spectrum (wavenumber) was treated as an 

independent data point. 

 

5.7.3.1 Raw Dataset  

 

The genetic algorithm carried out on the raw spectra for the calibration dataset 

identified a total of 139 variables (wavenumbers) from a possible total of 546 

variables that should be utilised in the construction of a PLS model. A plot of these 

selected variables against wavenumber suggested that the variables identified were in 

the regions where the key signals from both the ABA the KBA were observed 

(Figure 5-16). 
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Figure 5-16 - Plot of absorbance measured against variable number for the variables 

identified by the genetic algorithm for inclusion in the PLS model. 

 

Using only those spectral features identified by the genetic algorithm, the PLS model 

for the biotransformation process was reconstructed. As had been the case previously 

(5.7.1) the model utilised the raw spectral data (in absorbance format) with mean 

centering the only pre-processing technique applied to both the spectral and 

reference data. In this case, a total of five latent variables were determined as being 

the most suitable for the model with the errors of calibration and cross validation as 

quoted in Table 19.  

 

Table 19 - Error values for PLS model constructed using the genetic algorithm. 

 ABA (mMol dm-3) [r2] KBA (mMol dm-3) [r2] 

RMSEC 35.3 8.7 

RMSECV 36.2 9.0 

RMSEP (i) 38.6 [0.90] 

(ii) 37.1 [0.92] 

(i) 8.6 [0.99] 

(ii) 19.4 [0.98] 
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This attempt to refine the spectral regions and improve the errors of calibration and 

prediction of the model has failed to deliver the expected improvements. Considering 

the amino acid (ABA) analyte, the errors of calibration were comparable with those 

obtained for the full mid infrared raw spectral region (Table 17) with a marginal 

improvement noted with the errors associated with the predicted concentrations for 

the two unseen validation replicates. With regards to the keto acid (KBA) 

concentrations however, the errors of calibration were marginally worse using the 

variables identified by the genetic algorithm and the errors of prediction were 

substantially higher than had been observed previously. This was most likely a result 

of the genetic algorithm not identifying a sufficient number of the KBA’s weak 

spectral features for inclusion in the model.  

 

5.7.3.2 First Derivative Dataset 

 

The genetic algorithm for variable selection was also carried out on the first 

derivative spectra. Again the intention of this was to try and reduce the spectral 

features to only those that were essential to try and improve the errors of calibration 

and prediction associated with the constructed model. 

 

The four process replicates identified as the calibration datasets and the 

corresponding reference analysis were loaded to perform the genetic algorithm. 

Algorithm parameters were the same as those that had been previously utilised with 

the un-derivatised spectra. The genetic algorithm process identified 110 variables 

from the 546 in the full spectral region for inclusion in the calibration model. 

 

Using this reduced spectral region, the PLS model for the process was re-constructed 

and the external validation procedure applied to test this constructed model with 

previously unseen datasets (Table 20). The model was based on three latent variables 

as determined from the plot of RMSEC/RMSECV against the number of latent 

variables. 
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Table 20 - Errors of calibration and prediction associated with first derivative spectra 

based on regions determined by the genetic algorithm. 

 ABA (mMol dm-3) [r2] KBA (mMol dm-3) [r2] 

RMSEC 33.9 9.3 

RMSECV 34.5 9.5 

RMSEP (i) 39.6 [0.90] 

(ii) 38.2 [0.92] 

(i) 9.5 [0.99] 

(ii) 9.7 [0.99] 

 

This model returned errors of calibration and cross validation that were consistent 

with those previously determined for both the amino acid and keto acid. Errors of 

prediction for the two unseen replicates of the biotransformation process were better 

than had previously been obtained, with both validation replicates returning errors of 

prediction comparable with the errors of calibration and cross validation. 

 

Examination of the plots of measured concentration against predicted concentration 

(Figure 5-17) once again suggested that for the amino acid there was random scatter 

of the points suggesting no bias towards either over-prediction or under-prediction. 

In this case the keto acid also appeared to be more randomly distributed than had 

previously been noted. Arguably, there may be a slight tendency towards over 

predicting the KBA concentration of the second validation dataset. In this case the 

predicted concentrations lie within the range observed with the calibration data, 

whereas with previous models points on this dataset have largely been outwith the 

span of the calibration dataset.  

 

Variables identified using the genetic algorithm of the first derivative middle infrared 

spectra returned the best errors of calibration, cross validation and prediction for the 

external datasets. This dataset represented the best model constructed for the 

ABA/KBA biotransformation process. 
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Figure 5-17 – Plots of measured concentration against predicted concentration for 

two validation datasets for the model built based on the first derivative regions 

identified by the genetic algorithm. 

 

5.8 Model Summary 

 

A variety of different models have been constructed for the biotransformation 

process involving the de-racemisation of ABA by conversion of the D enantiomer to 

KBA (summarised in Table 21). These models have utilised spectral data from both 

the near and mid infrared regions but also different spectral ranges within these 

regions have been investigated. 

 

Models based on the near infrared data were constructed and tested for the 

biotransformation process. However, these models relied heavily on the inclusion of 
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the combination bands region to construct a model that returned reasonable errors of 

calibration, cross validation and prediction. The need for this particular region 

limited the technique to a rapid at-line method, which although an advance over the 

currently employed method was not the preferred scenario for this particular system. 

 

Models based on the fingerprint region spectra in the mid infrared region were also 

constructed and tested using the external validation procedure. Various models were 

built utilising different regions of the fingerprint spectra as well as applying various 

forms of mathematical manipulation of the spectra. Generally these models all 

returned consistent errors of calibration and cross validation, that were also in good 

agreement with the values obtained from the near infrared model. 

 

The best model, that returned the lowest errors of prediction for both of the unseen 

validation datasets, was that constructed from the first derivative dataset using the 

variables identified by the genetic algorithm. Although this model had the highest 

errors of calibration and cross validation of all the mid infrared models constructed, 

the errors of prediction were better with both datasets returning errors of prediction 

that were in line with the errors of calibration and cross validation. 

 

Other models constructed from the same data but based on different spectral regions 

and pre-processing methods were successful at predicting the ABA concentrations of 

the validation dataset samples, however the predictions of KBA concentrations were 

not as accurate.  
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Table 21 – Summary of the models constructed for the quantification of ABA and KBA during the biotransformation processes. 

 
Spectral Region 

(cm-1) 

Pre-processing 

Technique 

Number of 

Latent 

Variables 

RMSEC (mMol dm-3) RMSECV (mMol dm-3) RMSEP (mMol dm-3) 

Amino 

Acid 
Keto Acid 

Amino 

Acid 
Keto Acid 

Amino 

Acid 
Keto Acid 

1 
First Overtones 

(1540-1812 cm-1) 

Second Derivative 

Mean Centre 
2 40.9 20.3 41.7 20.8 

(i) 48.7 

(ii) 54.6 

(i) 14.9 

(ii) 20.7 

2 
Combination Bands 

(2032-2400 cm-1) 

Second Derivative 

Mean Centre 
3 38.7 5.7 39.1 5.8 

(i) 40.7 

(ii) 35.5 

(i) 7.8 

(ii) 5.6 

3 

Combined Model 

(1540-1812 cm-1 & 

2032-2400 cm-1) 

Second Derivative 

Mean Centre 
3 38.1 8.4 38.8 8.6 

(i) 41.5 

(ii) 34.3 

(i) 7.0 

(ii) 6.2 

4 
Mid IR Fingerprint 

(940-1465 cm-1) 
Mean Centre 5 35.4 7.7 36.3 8.0 

(i) 38.7 

(ii) 39.5 

(i) 9.1 

(ii) 15.2 

5 
Mid IR Fingerprint 

(940-1465 cm-1) 

First Derivative 

Mean Centre 
4 37.4 7.8 38.3 8.2 

(i) 41.5 

(ii) 30.1 

(i) 13.0 

(ii) 9.0 

6 
Mid IR Genetic 

Algorithm 
Mean Centre 5 35.3 8.7 36.2 9.0 

(i) 38.6 

(ii) 37.1 

(i) 8.6 

(ii) 19.4 

7 
Mid IR Genetic 

Algorithm 

First Derivative 

Mean Centre 
3 33.9 9.3 34.5 9.5 

(i) 39.6 

(ii) 38.2 

(i) 9.5 

(ii) 9.7 



 199 

5.9 Process Application 

 

5.9.1 Middle Infrared 

 

A PLS model for the biotransformation process based on the first derivative 

spectrum and the important spectral regions identified by the genetic algorithm was 

determined as being the best model for the biotransformation process. This model 

had also successfully undergone external validation using two unseen replicates of 

the biotransformation process.  

 

To further challenge this model, and its robustness, a further replicate of the 

biotransformation process was carried out off-site at the industrial partner and 

utilising a different bioreactor system from that used in with the calibration and 

external validation process replicates.  

 

An additional replicate of the process was carried out on the same scale (total volume 

of 300 mL) and following the same procedure as before (3.3.3). Since the process 

was carried out off-site, the samples were stored under refrigerated conditions for 

transport and allowed to equilibrate back to room temperature before acquiring the 

infrared spectra (3.4.1 and 3.5.1). 

 

The acquired spectra were converted to the first derivative format and the regions 

identified by the genetic algorithm extracted from the fingerprint region. Using these 

spectral features and the best previously constructed PLS model (based on the first 

derivative spectrum and regions identified by the genetic algorithm), the ABA and 

KBA concentrations for each of the samples were predicted. These values were then 

compared with the values obtained from the traditional off-line HPLC reference 

method.  

 

Errors of prediction for this dataset were 46.3 mMol dm-3 for the ABA and 89.8 

mMol dm-3 for the KBA analyte. These values suggested that the model was able to 
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predict the concentration of ABA in the samples within a reasonable error margin but 

failed to accurately predict the concentration of KBA.  

 

 
Figure 5-18 - Plots of measured concentration (mMol dm-3) (from the reference 

analysis) against predicted concentration (mMol dm-3) (from the PLS model) for the 

off-site replicate of the biotransformation process. (i) Refers to the amino acid 

(ABA) concentration whilst (ii) refers to the keto acid (KBA) concentrations. 
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Examination of the plots of measured concentration against predicted concentration 

revealed some substantial discrepancies for both components (Figure 5-18). In both 

cases, the first seven samples appear randomly scattered around the central diagonal 

indicating no bias in the model. However the latter samples (8-16) appear to be 

wrongly predicting the analyte concentrations. This was particularly pronounced 

with the keto acid where the model predicted concentrations in the region of 250 

mMol dm-3 but the measured concentrations were only 120 mMol dm-3. 

 

The reference data followed the expected trends and fell within the levels previously 

identified, which suggested an abnormality with the spectroscopic data. Therefore 

PCA was carried out on the spectra from the external process replicate and a plot of 

PC2 scores plotted against PC1 scores constructed (Figure 5-19). Within this plot the 

latter samples (samples 8 through to 16) of the off-site replicate appeared to occupy a 

very different spatial region compared with the initial samples and the spectra of the 

calibration samples. Since the PCA was carried out solely on the spectroscopic data 

this confirmed that from a spectroscopic perspective something had occurred with 

the latter samples not evident in the earlier samples or the calibration dataset. 

 

Reference data consistent with the trends observed in previous process replicates and 

the PCA carried out on the spectra suggested an issue with the spectrometer or 

spectroscopic data. Temperature effects could be put forward as a possible 

explanation for the variation in acquired spectra. Differences in temperature due to a 

longer equilibrium time or localised heat source may have influenced the spectra in 

some manner. Variations in the infrared spectra due to temperature are a known issue 

and have previously been reported as affecting the quality of the acquired spectra.60 

Ideally the spectra of these samples should have been re-acquired and the 

concentrations predicted from these new spectra. However due to insufficient sample 

volume remaining following the initial spectral acquisitions and off-line reference 

analysis it was not possible to re-acquire the mid infrared spectra for these samples. 

 

The constructed model was able to predict the concentrations of ABA in the off-site 

replicate of the biotransformation process in-line with the errors of calibration and 
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cross validation over the duration of the process. Examination of the plots of 

measured concentration against predicted concentration suggested there was a slight 

bias towards over predicting the ABA content in the latter samples from the 

biotransformation (Figure 5-18). 

 

 
Figure 5-19 – Scores associated with PC 2 plotted against PC1 scores for the mid 

infrared calibration dataset and the off-site process replicate. 

 

In terms of the keto acid content the model successfully quantified the concentrations 

of KBA in the first 7 samples of the biotransformation process but failed to correctly 

predict the concentrations of the remaining samples. Upon examination of the plot of 

measured concentration against predicted there appeared to be a bias towards over 

prediction of KBA content in the latter samples (Figure 5-18). Investigation of the 

spectroscopic data using PCA suggested some spectral variation between the samples 

obtained during the early stages of the process and the later samples. Differences in 

the obtained spectra may offer some explanation as to why the model failed to 

accurately predict the concentrations of the latter samples from the off-site process 

replicate. 
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5.10 Conclusions 

 

Based on the results presented for this particular biotransformation it appears that 

both the near and mid infrared spectroscopic regions could potentially be used to 

monitor the process. 

 

Within the near infrared region calibration models were constructed based on the 

first overtones region, combination bands region and a combination of both these 

spectral regions. Reasonable errors of calibration, cross validation and prediction 

were obtained for the near infrared models. Evaluation of the regression coefficients 

associated with these models confirmed subtle differences suggesting the co-linearity 

issue within the system had been addressed. 

 

Mid infrared models for the system were also constructed with reasonable errors of 

calibration, cross validation and prediction obtained. Examination of the regression 

coefficients once again suggested that the measures taken adequately addressed the 

co-linearity within the system. The best model, as determined from the errors of 

prediction for the unseen validation datasets, was based on the first derivative mid 

infrared spectra using the regions identified by a genetic algorithm. 

 

The model was challenged further by presenting samples from a biotransformation 

process carried out off-site and attempting to predict the ABA and KBA 

concentrations. Initially the early samples were successful, however the latter 

samples were not successfully quantified possibly due to a difference in the acquired 

spectra due to temperature variations or another instrumental or environmental factor.  
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6. Alanine De-racemisation 
 

6.1 Process Overview 

 

The biotransformation process investigated was the selective de-racemisation of a 

racemic mixture of alanine using the DAAO enzyme expressed within a modified 

Pichia pastoris cell (Figure 6-1). Details of the procedures and conditions employed 

during the biotransformation process are given in section 3.3.4. 

 

 
Figure 6-1 - De-racemisation of D/L-alanine using the DAAO enzyme contained 

within a Pichia pastoris host generating L-alanine and pyruvic acid. 

 

Utilisation of mid infrared spectroscopy in-situ has been relatively restricted due to 

the lack of optical fibres that allow for the transmission of radiation in this region 

between the sample interface and spectrometer. Traditional silica based optical fibres 

exhibit attenuation of light at wavenumbers below approximately 3333 cm-1 

(wavelengths greater than 3 µm / 3000nm).65 Previously optical fibres based on 

chalcogenide have been employed with in-situ probes. These exhibited good 

transmission of light with wavenumbers between approximately 550 cm-1 and 1000 

cm-1 (10-18 µm). Many biological based systems exhibit spectral features, 

particularly from the amine groups of amino acids, between 1000 cm-1 and 1500 cm-1 

(7-10 µm).143 Therefore even with chalcogenide based optical fibres access to the 

information rich fingerprint region was not possible, thereby hindering the in-situ 

application of this technique to biological systems.  
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With the development of silver halide based optical fibres, which allowed for the 

transmission of light between 550 cm-1 to 3333 cm-1 (3-18 µm), the application of in-

situ probe based mid infrared spectroscopy for many biological based systems 

became theoretically possible.143 

 

Since this process was being investigated using an in-situ probe system it was 

necessary to accommodate the probe within the bioreactor setup. Orientation of the 

probe should be in a location where the sample it is in contact with is homogeneous, 

and therefore representative of the sample matrix as a whole. In this particular 

bioreactor system, the probe was mounted in a vacant port in the head plate 

alongside the other, more traditional probes for process monitoring such as pH and 

dO2 (Figure 6-2). At this location the efficient mixing, as a result of the bioreactor 

design, ensured the probe was in contact with a representative sample. 

 

 
Figure 6-2 - Setup of bioreactor system illustrating the location of the mid infrared 

probe during the biotransformation process and the probe design with diamond ATR 

crystal. 

 

The picture of the location of the probe in-situ (Figure 6-2) illustrates one of the 

major challenges that exist when attempting to utilise infrared spectroscopy to 

monitor biological processes in these environments. By design, the bioreactors 

ensure efficient mixing and gas dispersion137 which creates challenges for 
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spectroscopic measurement of the sample. Interference effects due to air bubbles 

were noted as a key challenge in the application of in-situ near infrared spectroscopy 

to such processes.20, 32 Despite the mid infrared probe clearly being exposed to this 

environment the small path-length offered by the ATR crystal in combination with 

other instrumental parameters was expected to allow suitable spectra to be acquired 

in this environment. This was based on the assumption that the effects of air bubbles 

would be reduced in a manner similar to the reduced effects of water signals 

observed with ATR technology.54 

 

6.2 Aim & Objective 

 

This program of work aimed to bring together the findings established using the at-

line measurement approaches and apply these to investigate the potential of applying 

infrared spectroscopy to monitor the process in-situ. Other de-racemisation 

biotransformation processes investigated suggested that whilst in some cases it was 

possible to follow the process with near infrared spectroscopy, the mid infrared 

region proved more successful. Whilst the at-line models constructed to date 

represented a substantial improvement over currently employed methods for process 

monitoring, the ability to make true in-situ near real-time measurements would be 

the ideal scenario.  

 

Using an in-situ diamond ATR probe, the objective was to construct and externally 

validate a model for this particular alanine de-racemisation biotransformation 

process. The contributors to any constructed model should also be examined to 

confirm that each analyte of interest was being independently quantified. Success in 

this context would demonstrate the feasibility of applying this technique to these 

challenging biological systems.  

 

6.2.1 Novelty 

 

This work demonstrated the ability to construct a quantitative model for this 

particular biotransformation process using an in-situ mid infrared system. Due to 
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restrictions on the optical fibres required by these systems their widespread 

application is still in its infancy compared with the vast array of reported application 

of in-situ near infrared. In this respect, this application represents the application of 

this technique to a novel bioprocess. 

 

In common with the other chapters, the approach taken to break the stoichiometric is 

relatively novel in that it is a more structured approach than has previously been 

employed.  

 

6.3 Analytical Reference Methods  

 

As with all the other processes investigated, it was necessary to have a robust, 

validated analytical method in place before carrying out any replicates of the 

biotransformation process. All off-line samples were analysed in triplicate, however 

since the spectra were acquired in-situ only a single spectrum corresponded to each 

sample. In this case the quoted concentrations that corresponded with a particular 

sample/spectrum were the mean values from the HPLC triplicate injections.  

 

6.3.1 Quantification of Alanine 

 

Separation and quantification of the alanine content in the biotransformation samples 

was achieved using the gradient elution method and pre-column derivatisation 

procedure described (3.2.1.1 & 3.2.1.2.2).  

 

Quantification of alanine using this analytical method, in conjunction with a second 

analyte of interest, had already been carried out (8.3.2.1). The error of quantification 

for alanine using this method was determined as being ±0.20 mMol dm-3. The 

resulting chromatography returned a peak tailing factor of 1.03 and a peak 

asymmetry factor of 1.08 both of which were acceptable for the current application. 

Details on the determination of this value are contained within Appendix II. 
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6.3.2 Quantification of Organic Acids 

 

Two organic acids were produced during the biotransformation process: pyruvic acid 

and acetic acid. The conditions employed for the separation and quantification of 

these two components were those detailed in the organic acid method (3.2.2.3). 

 

An assessment of the error associated with this method was based on the analysis of 

a series of standards at known concentration of these two analytes to construct a 

calibration curve and assess repeatability of the method (Figure 6-3). 

 

 
Figure 6-3 - Calibration curves for the quantification of pyruvic acid and acetic acid 

using the developed organic acids HPLC method. 

 
Adopting the procedure described (3.2.2.4) the error associated with the 

quantification of pyruvic acid was estimated as being ±7.60 mMol dm-3, and acetic 

acid being ±8.31 mMol dm-3 using the instrumental conditions described (3.2.2.3) 

(Appendix II). 

 

The pyruvic acid peak returned an asymmetry factor of 0.71 and tailing factor of 0.86. 

These values suggested the peak was fronting slightly. Acetic acid peaks had an 
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asymmetry factor of 1.5 with a tailing factor of 1.17, values which suggested a slight 

tailing of the peak. In this case the peaks were not as symmetrical as would have 

been preferred however they were sufficient for the purpose intended. 

 

6.4 Initial Feasibility Study  

 

In common with the other biotransformation processes investigated prior to carrying 

out any replicates of the process the infrared spectrum of a pure sample of the key 

components was acquired. These spectra were utilised to identify which functional 

groups gave rise to each signal but also to confirm whether there were sufficient 

features in the spectra to allow the construction of independent models. 

 

Since this particular system involved the application of a mid infrared probe in-situ 

other system parameters, such as the spectral resolution and number of co-added 

scans, also required optimisation prior to any process replicates being carried out. 

 

6.4.1 Pure Components 

 

Pure component solutions of the three key analytes of interest were prepared at 

concentrations representative of those expected during a typical replicate of the 

biotransformation process. Alanine was prepared at a concentration of 1000 mMol 

dm-3 and both pyruvic acid and acetic acid at a concentration of 200 mMol dm-3. The 

mid infrared spectrum of each solution was acquired using the mid infrared probe 

and the spectral features compared. At the outset the presence of acetic acid was not 

expected within the system however following observations discussed in section 

6.5.2.1 the presence of acetic acid in the system became important, the pure 

component spectra are therefore included in this section for completeness. 

 

Previous attempts at using at-line mid infrared spectroscopy with other similar 

biotransformation processes had suggested the fingerprint region was the most 

suitable for modelling. In addition the diamond ATR crystal utilised exhibits a cut-
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off region between 1900 cm-1 and 2200 cm-1, therefore based on these observations 

only the spectral region below 1900 cm-1 was acquired and investigated (Figure 6-4). 

 

Within the spectrum of alanine a number of signals were noted both in the fingerprint 

region (below 1200 cm-1) and in the section of the diagnostic region before the ATR 

crystal cut-off point. Within the fingerprint region a small signal was noted at 1100 

cm-1 with multiple signals observed in the region between 1300 cm-1 and 1450 cm-1. 

A signal observed between 1500 cm-1 and 1600 cm-1 was attributed to the amine 

functional group, most likely bending of the NH bonds lowered and broadened due 

to hydrogen bonding.115 

 

In the absorbance spectrum of the pure component samples it was difficult to identify 

some of the spectral features attributable to pyruvic acid. A small signal was noted in 

the 1150 cm-1 region, which was most likely due to vibrations of the CH bonds. The 

other broad signal noted between 1500 cm-1 and 1600 cm-1 was common to all three 

analytes of interest and was most likely attributable to the carboxylic acid group, 

again lowered in frequency as a result of hydrogen bonding.115 

 

A number of signals were observed in this region of interest for acetic acid as well. A 

strong, unique signal was observed between 1200 cm-1 and 1300 cm-1 as well as a 

unique shoulder on the signal from the carboxylic acid between 1700 cm-1 and  

1750 cm-1. 

 

Since some spectral features appeared weak in the raw absorbance spectra these were 

converted to the first derivative format in an attempt to enhance these spectral 

features (Figure 6-4).144 On moving to the first derivative spectra there was a clear 

enhancement in the spectral features of all three analytes. Features arising from 

pyruvic acid were clearly enhanced with a clear signal now being observed between 

1150 cm-1 to 1200 cm-1.  

 

Based on the pure component spectra it was concluded that to enhance spectral 

features of the analytes the first derivative of the absorbance spectra should be 
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utilised in the modelling process. It was also clear that there were a number of 

features observed, some unique and some overlapping, between the various analytes 

of interest that could allow a multivariate model for the biotransformation process to 

be constructed. 

 

 
Figure 6-4 - Pure component absorbance and first derivative mid infrared spectra of 

the three key analytes of interest in the biotransformation process acquired at-line 

using the mid infrared ATR probe system. Due to absorbance by the diamond ATR 

crystal only the region between 800 cm-1 and 1900 cm-1 was investigated. 
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6.4.2 Parameter Optimisation 

 

Other parameters such as the wavenumber resolution of the spectra, and the number 

of co-added scans also required optimisation for the in-situ system. Initially these 

parameters were set the same as those used for the at-line sample acquisition (2 cm-1 

resolution and thirty two co-added scans) and improved from there. 

 

With the detector system operating at maximum gain to attain the required 

transmittance through the ATR probe (>20 % throughput) the resulting spectra 

contained a lot of noise. To reduce this noise (increase the signal to noise ratio) the 

number of scans averaged to generate the final spectrum was increased from 32 to 

either 64 or 128 scans of the sample material.17 Increasing the number of scans 

increased the overall time taken for the spectra to be acquired however there was an 

improvement in the quality of the spectra when averaging a greater number of scans. 

 

The wavenumber resolution utilised also influenced the quality of the resulting 

spectra. Samples of the biotransformation solution were acquired at 2, 4, 8 and  

16 cm-1 resolutions and compared to determine which was the optimum resolution 

for acquiring the spectra. The absorbance spectra at each resolution were then plotted 

to determine the optimum resolution (Figure 6-5).  

 

At the highest resolution (2 cm-1) the acquired spectrum appeared to be excessively 

noisy particularly in the region above 1400 cm-1. This was the resolution that had 

previously been employed when acquiring the at-line mid infrared spectra. 

Decreasing the resolution slightly to 4 cm-1 decreased the noise observed in the 

spectra substantially whilst still retaining the spectral features of interest. Further 

decreasing the resolution to 8 cm-1 again resulted in a reduction in the background 

noise with most of the key features still being identifiable. When the resolution was 

further reduced to 16 cm-1 the acquired spectra did not show any obvious signs of 

noise however some of the spectral features were beginning to disappear, of 

particular note was the absence of the signal at 1100 cm-1 that corresponded with the 

alanine. 
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Figure 6-5 - Mid infrared spectra of biotransformation samples obtained at various 

resolutions to determine the optimum parameters for the spectral acquisition. 

 

Based on these observations the spectra were acquired at a resolution of 4 cm-1 as 

this appeared to provide the maximum wavenumber resolution without the spectra 

becoming dominated by background noise. During the biotransformation process 

each acquired spectrum was the average of 128 co-added scans. Despite this 

resulting in the spectral acquisition process taking in approximately 6 minutes to 

complete, it resulted in the highest quality of spectra for use in the modelling process. 

The rate of reaction for this particular process was also unlikely to result in 

substantial changes in concentration causing an averaging effect over time period the 

spectra were acquired. 

 

6.4.3 Summary 

 

The observations from the pure component samples determined that for the probe 

and spectrometer system available the best quality spectra were obtained with a 

resolution of 4 cm-1 and was the result of 128 co-added scans. To enhance some of 
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the spectral features, particularly those resulting from pyruvic acid, the acquired 

spectra were converted to the first derivative format for use in the modelling process. 

 

6.5 Biotransformation Replicates 

 

In order to construct a calibration model for the biotransformation process a number 

of replicates were carried out. Ruckebusch et al. (2002) suggested a minimum of five 

process replicates was required for the construction of a robust calibration model.83 

Therefore as a minimum, six replicates of the biotransformation process were 

required to allow for both calibration and external validation. 

 

Due to the nature of the process under investigation a stoichiometric link was 

expected to exist between alanine and pyruvic acid. Although the feasibility study 

had taken into account an additional organic acid, acetic acid, at this point it was not 

expected to be produced and so was not considered to be stoichiometrically linked 

with alanine or pyruvic acid. 

 

To break this co-linearity within the system, each replicate of the biotransformation 

process was carried out with a different initial starting concentration of alanine and 

pyruvic acid as had been previously reported and adopted.136 

 

6.5.1 Experimental Design 

 

Initial concentrations of alanine and pyruvic acid, in the six replicates of the 

biotransformation process, were varied according to a mixed level (alanine had three 

levels, pyruvic acid only two) experimental design (Table 22). The experimental 

design was generated using the Design Expert software application [Version 8] (Stat-

Ease Inc., Minneapolis, USA). At the start of the biotransformation process no 

pyruvic acid was expected to be present. By introducing a spike, not only was the co-

linearity addressed, there was a residual concentration of pyruvic acid which would 

result in a more accurate quantification since there should be no samples below the 

analytical methods limits of detection.  
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Table 22 - Experimental design used to determine the initial concentrations of 

alanine and pyruvic acid added to each replicate of the biotransformation process to 

ensure the stoichiometric linkage was broken. 

Biotransformation 

Replicate 

Alanine Concentration 

(mMol dm-3) 

Pyruvic Acid 

Concentration (mMol dm-3) 

   

1 1000 200 

2 1200 200 

3 800 100 

4 1200 100 

5 1000 100 

6 800 200 

 

6.5.2 Process Replicates 

 

Six replicates of the biotransformation process were carried out as described (3.3.4) 

with the initial concentrations of alanine and pyruvic acid spiked according to the 

experimental design (Table 22). Ideally all six replicates of the process would have 

been utilised as the calibration dataset, with additional validation replicates also 

carried out. However due to time constraints on the availability of the 

instrumentation, the adopted approach allowed for the best calibration model to be 

constructed based on the imposed variations within the system but also ensuring that 

the known issue of co-linearity was adequately addressed in the model. 

 

The mid infrared spectra, with a resolution of 4 cm-1 and 128 co-added scans, was 

collected at ten minute intervals over the course of the biotransformation process 

(3.4.2). Samples were removed at regular intervals over the course of the process, 

heated at 100 °C to prevent further conversion, and the concentrations of the key 

analytes determined. 
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6.5.2.1 Initial Observations 

 

When the samples from the first replicate of the biotransformation process carried 

out were quantified for their alanine and pyruvic acid concentration some unexpected 

values were observed.  

 

The total concentration of alanine in the samples decreased as the biotransformation 

process progressed as expected.  

 

Initially a spike of approximately 200 mMol dm-3 pyruvic acid was introduced into 

the system. As the reaction progressed this was expected to increase however the 

opposite effect was observed. From the initial concentration (already substantially 

less than the intended spiked level) the concentration decreased before stabilising in 

the 15-20 mMol dm-3 region. These results were contrary to expectations since the 

alanine concentration profile still suggested conversion of D-alanine to pyruvic acid. 

 

A possible explanation for this decrease in concentration of pyruvic acid is that it 

was being utilised by the Pichia pastoris cells. Pyruvic acid can be converted directly 

to acetyl-CoA before moving into the citric acid cycle (Figure 6-6). Alternatively, 

pyruvic acid may undergo a carbon dioxide fixation step to produce oxaloacetate, an 

intermediate compound found in the citric acid cycle carried out by the organism for 

the generation of energy (NADH & FADH2).15 
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Figure 6-6 - TCA cycle adapted from Prescott et al. illustrating the routes by which 

pyruvic acid can be utilised either by conversion to acetyl-CoA or carbon fixation 

into the TCA cycle for energy generation. 

 

However, when quantifying the organic acid content of the samples using the HPLC 

method (3.2.2.3) the appearance of an additional peak on the chromatograms was 

observed as the biotransformation process progressed. The proposed mechanism did 

not explain the appearance of this additional peak. In order for carbon fixation to 

occur it requires the presence of the cofactor biotin, which had not been added to the 

system.  

 

This would therefore suggest it was unlikely that the pyruvic acid was being utilised 

by the cells; either by carbon fixation due to the absence of biotin or in the TCA 

cycle due to the appearance of an additional peak. It was more likely that pyruvic 

acid was undergoing conversion to another organic acid that was being detected by 

the HPLC method.  
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The action of the DAAO enzymes on the substrate, oxidising the D-enantiomer to the 

corresponding keto acid, was facilitated by the reduction of FAD (2.1). Regeneration 

of FAD with oxygen, supplied via the air supply, resulted in the generation of 

hydrogen peroxide as a by-product. In the biotransformation involving the 

conversion of TBG to TMP catalase was utilised as a scavenger for the hydrogen 

peroxide, however in the present system no catalase, or alternative, was present to 

remove this by-product. 

 

The pyruvic acid produced by the biotransformation process can be oxidised to acetic 

acid by the hydrogen peroxide by-product produced during the biotransformation 

process (Figure 6-7).145 To confirm the unidentified peak noted in the samples was 

acetic acid, a pure sample was analysed using the HPLC method and the retention 

times compared. Both the retention time of the acetic acid standard and the 

unidentified peak in the actual process samples matched suggesting that the pyruvic 

acid was being converted to acetic acid over the course of the biotransformation 

process. 

 

 
Figure 6-7 - Oxidation of pyruvic acid to acetic acid, water and carbon dioxide by 

hydrogen peroxide.145 

 

The concentration of acetic acid was therefore expected to steadily rise as the 

biotransformation process progressed, however in some replicates of the process 

there did not appear to be any accumulation of acetic acid in the system. It was 

possible for some fungi, bacteria and algae to utilise acetic acid as a carbon source 

for growth.15 If yeasts (specifically Pichia pastoris) were also able to utilise acetic 

acid as a carbon source this would explain the lack of accumulation observed. 
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Based on these observations from the first biotransformation process the analytical 

method employed (3.2.2.3) was used to quantify both pyruvic acid and acetic acid in 

the samples. The process conditions were not altered to incorporate a hydrogen 

peroxide scavenger such as catalase as it was unlikely this would be employed in an 

industrial context. Pyruvic acid, and acetic acid, in this process were undesired by-

products that were of interest from a modelling perspective but not from an industrial 

perspective. The process carried out at the lab scale should remain as consistent with 

the industrial process as possible, these analytes still remained of interest from a 

spectroscopic viewpoint however the main focus was therefore to focus on 

monitoring the alanine content in the system. 

 

6.5.2.2 Data Interpolation 

 

The six replicates of the biotransformation process, with the initial concentrations of 

racemic alanine and pyruvic acid varied according to the experimental design, were 

carried out. Infrared spectra of the system were acquired at ten-minute intervals over 

the duration of the process. Samples were removed from the system at regular 

intervals, generally hourly, during the initial phases of the process with the time 

period increasing as the reaction progressed and conversion slowed. This meant that 

the total number of spectra acquired during the biotransformation substantially 

outnumbered the corresponding reference measurements. To compensate for this it 

was necessary to interpolate the missing data points using the available reference 

measurements. 

 

6.5.2.2.1 Linear Interpolation 

 

Average alanine concentrations for each sample removed during the 

biotransformation process were plotted against the time point at which the sample 

was taken. Each point was joined to the previous with a linear line and the alanine 

concentration for each spectrum acquired estimated. 
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This approach to interpolation of the data was not particularly accurate. The error 

associated with the reference analysis method meant there was some variance in the 

quoted average concentration values. Since the linear line drawn was between two 

data points, and not a best fit through all the data points, any erroneous values would 

then cause the missing values to be incorrectly quantified (Figure 6-8). This would 

result in the predicted concentrations mimicking any erroneous trends in the data and 

not an average of the results. In addition this approach assumes that the overall 

biotransformation process obeys a linear relationship, which was an incorrect 

assumption clearly illustrated in Figure 6-8. 

 

 
Figure 6-8 – Mean alanine concentration plotted against process time. Interpolation 

of the unknown values using a linear approach where a linear line connected the data 

points did not accurately represent the missing points. From the shape of the plot it 

was also clear that a linear trend was not the best fit for this dataset. 

 

6.5.2.2.2 Exponential Decay 

 

To try and better represent the biotransformation process and its progression, an 

exponential decay curve was fitted through the reference data points. It was hoped 
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this would better represent the initial stages of the biotransformation where 

conversion of D-alanine occurred faster before slowing towards the end of the 

process. 

 

Fitting an exponential decay through the data points (Figure 6-9) suggested a better 

fit through the data initially however, once past the initial phase of the decay the 

curve failed to appropriately fit the data, with suggested concentrations in the middle 

phase of the biotransformation being far removed from the measured concentrations.  

 

 
Figure 6-9 – Exponential decay fitted through the reference data points to give a 

more accurate interpolation of the alanine concentration at the time points for each 

spectral acquisition. 

 

6.5.2.2.3 Kinetic Interpolation 

 

With little success fitting both linear and exponential decays through the reference 

data points, an alternative method based on the kinetic approach reported by 

Trevisan et al. (2008) was considered.72 
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In a simplistic view, the rate at which the biotransformation progressed was 

independent of the DAAO enzyme and dependent on the concentration of alanine in 

the system. To determine if the biotransformation process progressed via first order 

kinetics with respect to alanine, the natural log of concentration was plotted against 

time (Figure 6-10). A linear line was fitted through these points and evaluated to 

determine if a linear fit through the data was appropriate. In this case a linear line 

was a good fit through the data points and so it was experimentally determined the 

biotransformation process progressed via first order kinetics with respect to alanine 

concentration. 

 

This process was repeated and the equation of the linear line of best fit for each 

replicate of the biotransformation determined. Using these equations the estimated 

alanine concentrations at the time point when each spectrum was acquired were 

determined and used for the construction of a calibration model. 

 

 
Figure 6-10 - Plot of natural log of alanine concentration against process time. 

Having determined the process proceeded via first order kinetics, the concentration at 

the time each spectrum was acquired was estimated based on the equation of the 

linear line of best fit. 
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This process of determining the alanine concentration by kinetic fitting through the 

data was repeated for the six calibration replicates of the biotransformation process. 

Since an interpolated alanine concentration was now available for each spectrum 

acquired during the process, a calibration model for the system was constructed. 

 

6.5.2.3 Alanine Model 

 

Having estimated an alanine concentration to correspond with each spectrum 

acquired during the biotransformation process the six replicates was split into 

calibration and validation datasets. In order to identify which samples should be 

included in the calibration dataset a PLS model using the data from all six replicates 

was constructed and the scores plots examined (Figure 6-11). Previously 

identification of the datasets in this manner had been achieved using PCA. This 

approach only takes into account the spectral data whereas the PLS approach 

considers both the spectral and reference data. Including the reference data in this 

situation was important since the values were determined using the kinetic fitting 

approach. 

 

The PLS model consisted of the full spectral region (800 cm-1 through 1900 cm-1) in 

the first derivative format. Both the spectral data and alanine concentrations were 

mean centered with LOOCV also applied within the model. Examination of the plot 

of RMSEC/RMSECV values against number of latent variables identified five latent 

variables as optimum. From the scores plots (Figure 6-11) it was identified that 

replicates 1,3,4,5 and 6 would be included in the calibration dataset with replicate 2 

retained for external validation of the constructed model. 

 

Plots of RMSEC/RMSECV values against the number of latent variables in the 

model for the calibration data indicated an optimum number of five latent variables. 

Errors of calibration and cross validation associated with this model were 15.7 mMol 

dm-3 and 15.9 mMol dm-3 respectively. These values were better than the errors 

obtained previously for the amino acid component in similar systems based on the at-

line spectra.  
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Figure 6-11 – (i) Plot of scores associated with latent variable 1 plotted against 

scores for latent variable 2 and (ii) scores associated with latent variable 1 plotted 

against spectrum number to identify the five datasets to be used for calibration and 

the external validation dataset. 
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Figure 6-12 - Plots of measured concentration against predicted concentration. (i) 

Internal validation of PLS model constructed using the full spectral range acquired 

(800 cm-1 through 1900 cm-1). (ii) External validation dataset alongside calibration 

data. 
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The measured concentrations, determined by the kinetic fit of the data, were plotted 

against the predicted concentration, from the internal validation, to assess the 

robustness of the model and ensure bias in the system was not an issue (Figure 6-12 

(i)). Measured values for the calibration dataset were in very good agreement with 

the predicted values obtained from the constructed model. Points appeared randomly 

scattered around the central diagonal (1:1) with no obvious bias in the model towards 

either over or under predicting the concentration of alanine in the system. 

 

Spectral data from the second biotransformation replicate were then input into the 

constructed model and the alanine concentration of these samples predicted. 

Predicted concentrations were then compared with those values obtained from the 

kinetic fit through the HPLC data points. The error of prediction was determined as 

being 43.4 mMol dm-3 with an r2 value of 0.96 for this particular dataset. An error of 

this magnitude was consistent with what had previously been observed with models 

of similar systems constructed using the at-line spectroscopic techniques. For 

comparison this was also consistent with the upper error margin reported by Riley et 

al. (1998) for the prediction of alanine using near infrared spectroscopy.38 

Examination of the plot of measured concentration plotted against predicted 

concentration suggested there was a slight tendency towards under predicting the 

alanine concentration (Figure 6-12 (ii)). Improvements to the model may result if 

refinement of the spectral regions to eliminate the inclusion of redundant spectral 

features in the model was carried out. 

 

Closer examination of the first derivative pure component spectra (Figure 6-4) 

confirmed there were regions where the spectra were common between all analytes 

or contained no spectral features. The spectral region was therefore reduced to 

incorporate only the features between 1070 cm-1 and 1555 cm-1. Selecting this region 

retained the different spectral features noted for the three key analytes but removed 

the additional noise noted in the spectra as the diamond cut-off region was 

approached. 
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The PLS model for the system was re-constructed using this refined spectral region 

and the alanine concentration for the external validation dataset predicted. Using this 

reduced region the resultant PLS model consisted of three latent variables and 

returned errors of calibration and cross validation of 19.3 mMol dm-3 and 19.4 mMol 

dm-3 respectively. These values were higher than had been observed when using the 

full spectral region, however the model was based on a smaller number of latent 

variables. Increasing the number of latent variables in this particular model resulted 

in over-fitting of the data, indicated by an increase in the difference between RMSEC 

and RMSECV values. Evaluation of the plot of measured concentration against 

predicted concentration (from the internal validation procedure) once again 

illustrated that the calibration data was randomly scattered around the central 

diagonal suggesting there was no bias in the model (Figure 6-13 (i)).  

 

Prediction of the alanine concentration for the external validation dataset returned an 

error of prediction of 21 mMol dm-3 and an r2 value of 0.99. This value was in good 

agreement with the errors of calibration and cross validation. Examination of the plot 

of measured concentration against predicted concentration suggested there was a 

slight tendency towards under predicting the alanine concentration. However the 

values for this unseen dataset appeared to lie within the range covered by the 

calibration data.  

 

Given that the model was constructed and validated on a modest dataset, this slight 

under prediction was not a cause for concern and may be a result of the experimental 

approach taken. Six replicates of the biotransformation process were carried out 

according to a simplistic experimental design. By removing one replicate from this 

design the calibration dataset no longer spanned the full experimental region. In 

counterargument however, since any co-linearity within the system should have been 

addressed even by removing one replicate, other process replicates will have covered 

this concentration range. Perhaps, retrospectively, a more appropriate approach 

would have been to utilise all six experimental design replicates as the calibration 

dataset with an additional process replicate used to externally validate the model. 
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Figure 6-13 – Plots of measured alanine concentration against predicted 

concentration for PLS model constructed using refined spectroscopic regions. (i) 

Calibration data with predicted concentrations from internal validation procedure. (ii) 

External validation dataset shown alongside internal validation data. 
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Figure 6-14 – (i) Loadings associated with latent variable one of the constructed 

model plotted along with the pure component spectrum of alanine and (ii) loadings 

associated with latent variable two of the model plotted with the pure component 

spectrum of alanine. 
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Contributors to the resulting model were also examined to confirm the model was 

functioning as expected. The loadings plot for the first latent variable in the model 

suggested a correlation with alanine concentration (Figure 6-14 (i)). Points with a 

high positive or negative loadings value corresponded with the peaks and troughs in 

the first derivative pure component alanine spectrum. This held true over the 

wavelength region (1070 cm-1 to 1550 cm-1) used to construct the refined PLS model.  

 

Loadings for the second latent variable only appeared to overlap with the pure 

component alanine spectrum at a single point in the 1300 cm-1 region (Figure 6-14 

(ii)). Over the remainder of the spectral region there was little correlation or anti-

correlation with the pure component alanine spectra noted.  

 

The regression coefficient obtained for the constructed model was almost an 

identical match with the spectrum of the pure component alanine (Figure 6-15). This 

confirmed that the constructed model was quantifying based on spectral features 

attributed to the alanine. 

 

 
Figure 6-15 - Regression coefficients associated with the constructed PLS model 

and infrared spectrum of pure component alanine for comparison. 
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These results have illustrated that it was possible to utilise mid infrared spectroscopy 

in-situ to monitor the alanine concentration of a DAAO de-racemisation 

biotransformation process. Errors of calibration, cross validation and prediction for 

the unseen dataset were in good agreement with each other, and were also lower than 

had been observed with similar systems with the spectra acquired at-line. It would be 

expected that the more challenging conditions in the reactor would increase the error 

margins for in-situ measurements however, this does not appear to be the case in this 

situation or in other reported cases.25  

 

There are a number of possible explanations for this improvement in errors of 

prediction on going from at-line to in-situ spectroscopic methods. With the in-situ 

approach only a single spectrum was acquired and corresponded with a particular 

sample whereas with the at-line approach the spectrum of each sample was acquired 

in triplicate. This may have introduced subtle spectrometer drift or sample drift, due 

to effects such as sedimentation, into the resulting model that may influence its 

predictive ability. 

 

Another factor that may influence these improved error values is the method by 

which the reference data was calculated. By estimating the reference values for the 

intermediate points based on the kinetic fit of the data any erroneous values will be 

less influential and averaged over the course of the process. With an at-line model 

each sample has a measured corresponding reference value that will impact on the 

overall model. 

 

Finally the model constructed in this particular case was a PLS1 model, whereas 

previously PLS2 models have been employed. Since the model was based around a 

single analyte and not multiple analytes, as had been the case with PLS2 models, it 

was not unsurprising that better error values were observed in this instance. 
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6.5.2.1 Organic Acid Model 

 

Having successfully utilised mid infrared spectroscopy to monitor the alanine 

concentration over the course of a biotransformation process, the above approach 

was repeated for the organic acid components. 

 

Pyruvic acid was added to the system at varying concentrations to ensure that co-

linearity within the system had been addressed. On evaluation of the reference 

analysis however the concentration of pyruvic acid was noted to fall from the initial 

levels as discussed previously with the initial observations (6.5.2.1).  

 

The pyruvic acid was converted to acetic acid, which in turn appeared to be utilised 

by the cellular material. Since there were more spectra recorded than the number of 

samples taken it was necessary again to try and fit an equation through the sample 

data to interpolate the organic acid concentrations for each acquired spectrum. 

 

The concentration of pyruvic acid and acetic acid were plotted against time for the 

biotransformation replicates to identify the most appropriate fit for the data (Figure 

6-16). Following the initial decrease in pyruvic acid from the starting spiked 

concentration, the levels appeared to remain relatively stable over the course of the 

biotransformation process.  
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Figure 6-16 - Plots of pyruvic acid and acetic acid concentration against process 

time for two biotransformation process replicates illustrating (i) the consistency in 

pyruvic acid concentration during the process and (ii) the consistent concentrations 

of acetic acid before accumulation towards the end of the process. 

 

Examination of a key spectral feature unique to pyruvic acid at 1245 cm-1 confirmed 

no substantial change during the process. Plotting the first derivative response at this 

particular wavelength against process time over the duration of the biotransformation 

process suggested there was very little overall variation observed in this particular 
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region (Figure 6-17). Variations that were observed appeared more to resemble noise 

in the system, which was not unexpected since the spectrometer detector was 

operated at the maximum gain setting. 

 

 
Figure 6-17 - Plots of first derivative value at 1245 cm-1 plotted against process time 

to illustrate the little overall variation observed in the spectral features over the 

course of the biotransformation process. This confirmed the reference analysis data 

suggestion that little or no variation in pyruvic acid concentration was observed 

during the process. 

 

The concentration profile and the spectral data did not appropriately fit an 

exponential decay trend, nor did it follow first or second order kinetics. 

Concentrations of pyruvic acid, and acetic acid, appeared to reach and remain at 

equilibrium during the course of the biotransformation process. Therefore it would 

be of little value to attempt to construct a model for these analytes since the 

concentrations are in equilibrium and do not change substantially over the course of 

the biotransformation process. 
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6.6 Conclusions 

 

The results obtained have demonstrated that it was possible to utilise in-situ mid 

infrared spectroscopy to determine and monitor a key analyte concentration at 

various stages during an industrial biotransformation process. 

 

A calibration model was constructed based on five replicates of the 

biotransformation process, the minimum recommended number of replicates for such 

a system.83 Since the spectral data substantially outnumbered the available reference 

measurements the missing values were interpolated based on the experimental 

determination that the process proceeded via first order kinetics with respect to 

alanine. This interpolated data along with the first derivative spectral data was 

utilised to construct a calibration model for the system that returned low errors of 

calibration and cross validation (19.3 mMol dm-3 & 19.4 mMol dm-3). Evaluation of 

the plots of measured concentration against predicted concentration suggested there 

was no bias within the model to either over or under prediction of the alanine 

concentration. 

 

External validation of the model was carried out using a replicate of the process that 

had previously been unseen by the calibration dataset. Predicted concentrations were 

compared with the interpolated data and an error of prediction determined. The 

model successfully predicted the alanine concentration of the unseen replicate 

(RMSEP of 21 mMol dm-3). 

 

Efforts were in place to deal with the issue of co-linearity in the system between 

alanine and pyruvic acid. Break down of the pyruvic acid by hydrogen peroxide to 

acetic acid however resulted in the degradation of these pyruvic acid spikes. The 

establishment of an equilibrium where pyruvate concentration remained relatively 

constant at a low level meant it was difficult to accurately quantify these levels using 

the developed methods and there was little benefit in the generation of a model for an 

analyte that didn’t exhibit substantial, quantifiable variation over the course of the 

bioprocess.
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7. Fermentation for In-situ Biotransformation 
 

All of the biotransformation processes that have been discussed so far have 

introduced the biocatalyst into the system via the freeze-dried cells. This approach 

allowed for the long-term storage of the cells until required for the biotransformation 

process. However the freeze-drying step introduced an energy intensive and time 

consuming step into the process that was unsuitable when carrying out the process on 

an industrial scale. 

 

When it was necessary to carry out the biotransformation process on a large or 

industrial scale it was a more appropriate approach to carry out the fermentation 

process and immediately utilise the cells after induction, removing the freeze-drying 

stage of the process. 

 

7.1 Process Summary  

 

In order to carry out the transaminase biotransformation process for the generation of 

compound B from alanine and compound A it was first necessary to carry out the 

fermentation process. A fed batch fermentation was carried out with the transaminase 

enzyme expressed by a modified E. coli strain grown under the conditions described 

and induced with rhamnose (3.3.5.2). 

 

Over the course of the fermentation process, the near infrared spectrum of the 

fermentation broth was collected at 30-minute intervals. Monitoring key process 

parameters such as biomass levels, carbon source concentrations and fermentation 

product concentrations using near infrared have been well documented adopting both 

an ex-situ and in-situ approach to sampling.18, 23, 24, 27, 32, 35 The ability to offer 

monitoring and control throughout the bioprocess, from fermentation through to 

biotransformation, would offer greater process control, process information and 

quality control in line with the QbD approach of the PAT initiative when compared 

with the current off-line approaches employed during both these key stages.6 
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7.1.1 Aim & Objective 

 

The aims and objectives of this work was to investigate the potential of using 

infrared spectroscopy as a mechanism of monitoring the complete bioprocess – from 

the fermentation stage right through to the biotransformation. 

 

As has been previously discussed the use of infrared spectroscopy to monitor key 

parameters of submerged culture processes has been extensively reported (1.3.1). In 

these situations the resulting models have always focused on linking spectral changes 

with a particular analyte or physical property. However, changes in the spectroscopic 

response as a result of the system as a whole can often result in a process trajectory 

or process ‘fingerprint’ for the system. In this case all the physical and chemical 

changes in the system are modelled, by defining a point where a particular 

fingerprint is obtained a control strategy could be implemented to improve process 

efficiency. Such a control strategy is possible because the system is dealt with as a 

complete unit and the model is not focused on one, or a number, of specific analytes. 

 

To demonstrate that spectroscopy could be utilised to monitor the bioprocess during 

this fermentation stage, initially models for biomass levels were constructed for the 

system in question. The errors of calibration and cross validation obtained were 

compared with values documented in the literature in the first instance.  

 

Using the acquired spectra a control strategy based on the process fingerprint was 

also to be investigated. Pattern recognition algorithms were considered with a focus 

on attempting to identify the point when key stages in the process were reached, 

allowing initiation of subsequent phases resulting in a more streamlined process.  

 

7.1.2 Novelty 

 

Monitoring of submerged culture processes have to date focused on linking spectral 

variation with a particular analyte or physical parameter. In such a system extensive 

replicates of the process, and the associated off-line reference analysis, are required 
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to construct a model. Pattern recognition techniques in conjunction with 

spectroscopic techniques have been reported as powerful techniques for the 

classification of raw materials in a variety of industries.146-148 This work attempts to 

use these algorithms as a novel method of identifying and controlling the main stages 

in a submerged culture bioprocess, resulting in a more streamlined and efficient 

bioprocess that eliminates some of the short lag phases common in such processes. 

 

7.2 Biomass Model 

 

Biomass concentration was one of the key parameters of interest during the 

fermentation process. With the system currently under investigation the aim of the 

fermentation process was to generate a sufficient biomass for the production of the 

required quantities of transaminase enzyme to carry out a large-scale (in this case 

approximately 10 L) biotransformation process. With successful models for 

monitoring biomass widely reported, initially an attempt was made to construct 

similar models for this particular process.24, 25, 30, 31 

 

The acquired near infrared spectra were converted to the second derivative format to 

enhance the spectral features and reduce baseline drift.24 Samples were removed at 

various points during the process, to determine if a particular point in the 

fermentation had been reached, and the dry cell weight determined (Table 23). 

Immediately following inoculation, the dry cell weight of the system was assumed to 

be zero since the method used (3.3.5.2.1) could not accurately determine such a low 

biomass level.
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Table 23 - Dry cell weights determined for samples removed during the fermentation process*. 

Replicate 1 Replicate 2 

Time (hours) DCW (g/L) Std. Dev. (g/L) Phase Time (hours) DCW (g/L) Std. Dev. (g/L) Phase 

0 0  Inoculation 0 0  Inoculation 

14.7 3.4 2.2 Start Feed 13.5 3.5 1.5  

16.7 5.3 1.5  15.65 3.8 1.7 Start Feed 

22.0 20.2 1.0 Induction 18.6 7.7 1.9  

39.0 34.3 2.7 Biotransformation 22.1 18.4 0.9 Induction 

    39.1 32.7 1.1 Biotransformation 

 

Replicate 3 Replicate 4 

Time (hours) DCW (g/L) Std. Dev. (g/L) Phase Time (hours) DCW (g/L) Std. Dev. (g/L) Phase 

0 0  Inoculation 0 0  Inoculation 

15.6 4.3 0.6 Start Feed 15.2 4.2 0.9 Start Feed 

18.1 7.2 0.3  17.6 6.6 1.2  

20.1 12.6 1.2  20.1 13.9 0.7  

22.3 19.0 0.6 Induction 22.8 20.7 1.3 Induction 

39.4 31.3 1.4 Biotransformation 40.0 32.5 0.5 Biotransformation 

*Fermentation processes and biomass measurements generated at University of Strathclyde by Dr. I. Voulgaris.
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Previously when an at-line sampling approach had been employed the number of 

reference measurements was equal to the number of spectra acquired (4,5 & 8). 

Since the measurements were made in-situ in this case the number of spectra 

acquired outnumbered the reference measurements. To compensate for this the dry 

cell weights at the time each spectrum was acquired were interpolated, assuming a 

linear response, based on the limited number of samples available. 

 

A PLS model to monitor the biomass concentrations during the fermentation process 

was then constructed. The calibration dataset consisted of the first three fermentation 

replicates with data from the fourth replicate retained to externally validate the 

resulting model. A total of five latent variables were used in the model, with both the 

spectral data and reference data being mean centered. Errors of calibration and cross 

validation, using the leave one out cross validation approach, were 1.7 g/L and 2.1 

g/L respectively. 

 

Predicted concentrations for the fourth dataset retained for external validation 

returned a RMSEP of 2.5 g/L. These values are higher than those previously reported 

which ranged from 0.2 g/L (Macaloney et al. (1994)) to 1.4 g/L (Hall et al. (1996) & 

Arnold et al. (2002)).24, 25, 30 

 

During the spectral acquisition and modelling process it was noted that there were 

some issues with spectral acquisition particularly during the feeding stage of the 

fermentation. As the biomass increased a number of failed spectral acquisitions were 

reported. In this situation the spectrometer did not store any spectra and waited until 

the next spectral acquisition was due.  

 

The reasoning behind these acquisition failures was thought to be a result of the cells 

clumping together as the biomass levels increased. These clusters of cells 

temporarily blocked the sample window of the transflectance probe, preventing light 

from passing through the sample. By the time the next spectrum was due for 

acquisition the agitation in the system had dislodged the cells. Despite attempts to 

position the probe in a manner to try and eliminate such issues, these missing spectra 
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resulted in the calibration model being sparsely populated with spectra representative 

of the later stages in the fermentation. When the biomass concentration presents a 

problem with the transflectance probe it may be necessary to alter the sample gap 

and path length. An alternative solution may be to switch to a reflectance probe 

design or consider temporarily segmenting the model to improve the predictions 

during the initial batch phase.21, 34 

 

These results did however suggest that the near infrared spectra could be utilised to 

monitor and predict the biomass concentration during this fermentation process. 

Results obtained exhibited slightly higher errors than had been previously noted, 

however this model was based on a relatively limited dataset and utilised the whole 

spectral region and not specific regions related only to biomass as had been reported 

previously.24, 25 

 

7.3 Fingerprinting & Control 

 

7.3.1 Initial Observations 

 

During the attempts to construct a biomass model for the fermentation stage of the 

bioprocess, it was noted that over the multiple fermentation runs a clear process 

fingerprint was observed in the spectra.  

 

Carrying out PCA on the spectral data from each of the fermentation replicates and 

examining a plot of PC1 scores plotted against sample number the key stages of the 

fermentation could be identified (Figure 7-1).  

 

The initial growth phase was clearly identified, followed by the point where glucose 

levels within the system became limited. This was indicated by a point of inflection 

on the PCA scores plot. When feeding commenced the PCA scores increased again 

before beginning to plateau once the induction stage had begun.  
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These features identified in the PCA plot were in good correlation with the dissolved 

oxygen profile obtained during the fermentation (Figure 7-1). Dissolved oxygen 

levels fell to a low level during the initial growth phase of the process. This was 

followed by a sharp increase in dissolved oxygen levels after approximately 15 hours, 

indicating glucose limitation in the system. At this point the increase in dissolved 

oxygen levels was in good correlation with the point of inflection observed in the 

PCA scores plot. When the feeding regime commenced the dissolved oxygen levels 

fell sharply again and remained at a low level through the induction phase. 

 

 
Figure 7-1 - Plot of scores associated with first principal component against process 

time for third replicate of fermentation process. Clearly identifies the initial growth 

phase, point of glucose limitation, feeding and finally the point of induction. Also 

shown is dissolved oxygen profile for fermentation, which confirms the point of 

glucose limitation by the increase in dissolved oxygen levels. 
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7.3.2 Pattern Recognition Techniques 

 

Traditionally the modelling approach adopted linked spectral features with a key 

measured parameter, such as biomass or the concentration of a key media component. 

Using such models for fermentation control meant a control response was linked to a 

change in a particular physical parameter. In an example scenario using the biomass 

model, triggering the start of the feeding regime would be linked to the system 

reaching a particular biomass level. However in cases that deviate slightly, such as a 

lower initial carbon source concentration in the batch medium, the trigger point may 

not be reached as expected and the feeding regime delayed extending the overall 

time frame for the fermentation and increasing the associated costs. 

 

Infrared spectroscopy, in conjunction with multivariate pattern recognition tools, can 

be utilised for the analysis and classification of samples. This particular approach is 

prominent in the food and agriculture industries for the classification of natural 

products, such as soybean pastes, vinegars and herbs.146-148 Application of this 

approach in the pharmaceutical industry for raw material quality control and cleaning 

validation procedures have also been reported.149 Examples of the power of such 

spectral pattern recognition approaches were demonstrated when used in conjunction 

with surface enhanced raman spectroscopy (SERS), which is a technique 

complementary to infrared spectroscopy. Using this approach the classification of 

avian mycoplasmas and influenza viruses have been successfully reported.150, 151 

 

Since a process fingerprint was noted for the fermentation process, a similar pattern 

recognition approach could be applied for monitoring and controlling the 

fermentation process. A control system based on this approach would not link the 

spectra to one particular parameter, and would also offer a time advantage during the 

model construction phase since the time consuming reference analysis would not be 

required. 

 

The near infrared spectra acquired during each replicate of the fermentation process 

were converted to the second derivative format and PCA carried out on the data. The 
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scores associated with the first principal component were plotted against sample 

number and each acquired spectrum identified as being representative of the initial 

growth, glucose limitation, feeding or the induction phases of the fermentation 

(Table 24). 

 

Table 24 – Classification of each IR spectrum by assigning it to a stage in the 

fermentation process based on the scores associated with the first principal 

component. 

 
Fermentation 

1 

Fermentation 

2 

Fermentation 

3 

Fermentation 

4 

Initial Growth 1-28 1-25 1-26 1-25 

Glucose 

Limitation 
29-30 26-30 27-32 26-30 

Feeding 31 31-33 33-36 31-33 

Induction 32-56 34-41 37-55 34-42 

 

Having classified the data in this manner a variety of different algorithms were 

investigated to identify the various stages of the fermentation process from the near 

infrared spectra.  

 

7.3.3 Standard Isolinear Method of Class Assignment 

 

As a starting point the standard isolinear method of class assignment (SIMCA) was 

utilised. Each acquired spectrum was assigned a classification based on the identified 

phase of the fermentation process (Table 24). The constructed SIMCA model was 

based on the first three replicates of the fermentation process, with the fourth 

replicate excluded for use as an external validation dataset. 

 

The second derivative spectra were mean centered before the model was constructed, 

the number of principal components associated with each class determined (Table 

25) and used to construct the SIMCA model for the fermentation. 
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Table 25 - Number of principal components associated with the various stages of the 

fermentation process used to construct the SIMCA model for the fermentation. 

Class Phase Number of Principal 

Components 

1 Initial Growth 4 

2 Glucose Limitation 3 

3 Feeding 3 

4 Induction 6 

 

Spectra from the unseen validation dataset (fourth replicate of the fermentation 

process) were input into the SIMCA model and the process stage for each spectrum 

identified (Figure 7-2). These predicted values were then compared with the values 

determined by PCA to assess how well the model was performing and the feasibility 

of using this approach for process monitoring and control. 

 

 
Figure 7-2 - Predicted classifications of the various stages in the fermentation 

process for the spectra from the fourth replicate of the process designated for 

validation purposes. 
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For the fourth replicate of the fermentation process, the SIMCA model predicted that 

spectra numbers 1 through to 27 represented the initial growth stage, 28 through to 

34 represented the feeding phase and 35 through to 42 the induction stage. The 

SIMCA model did not indicate any of the spectra were indicative of glucose 

limitation during the process despite the PCA suggesting spectra 26-30 fell into this 

category. 

 

With the exception of the glucose limitation stages, the classifications of the 

remaining spectra were in reasonable agreement with those identified from the PCA 

scores plots. A possible explanation as to why the model failed to correctly 

distinguish between the glucose limitation and feeding phases may be due to the 

number of spectra represented in each dataset. Suspected biomass pellet formation 

particularly during the feeding stage causing interference and blockage of the sample 

gap resulted in a number of failed spectral acquisitions. Since the calibration model 

only contained seven examples of spectra in this phase of the fermentation it was 

possible there were insufficient examples to allow the model to correctly distinguish 

these spectra. 

 

An alternative algorithm may yield better results for identification of the various 

stages of the fermentation based on the acquired infrared spectra.  

 

7.3.4 Partial Least Squares – Discriminant Analysis 

 

The partial least squares discriminant analysis (PLS-DA) approach was also 

considered for monitoring the fermentation process. As before each spectrum was 

assigned to an appropriate class corresponding to the stage of the fermentation 

process it represented. All the second derivative spectral data were mean centered. 

The optimum number of latent variables for the model was determined by an internal 

validation procedure using the venetian blinds approach (similar to LOOCV except 

instead of a single sample being temporarily removed it is a block of data), with a 

total of four latent variables selected for this particular model. 
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In order to test the constructed model the fourth fermentation replicate, designated 

for validation and not included in the model, was utilised. The PLS-DA approach 

assigns each spectrum belonging to a particular class a value of one and those that do 

not belong to a class a value of zero. In this respect the output from the PLS-DA for 

the validation dataset was unlikely to be as distinct as a value of either one or zero. 

Therefore the values were rounded to the nearest whole value, with responses of 0.5 

or greater classified as 1, and those below 0.5 a zero (Figure 7-3). 

 

 
Figure 7-3 – Responses for the external validation dataset predicted using the PLS-

DA model constructed for the fermentation stage of the process. 

 

The PLS-DA model suggested that spectra numbers 1 through to 26 corresponded 

with the initial growth phase of the fermentation, which was in very good agreement 

with the classifications based on the PCA scores. However the model failed to 

identify any of the samples as either belonging to the glucose limited or feeding 

stages of the fermentation. Finally the induction phase was identified as 

incorporating spectra 35 through to 42, which again was in good agreement with the 

assigned classifications. 
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PLS-DA failed to correctly identify samples that represented the glucose limited and 

feeding phases of the fermentation. This could be attributed to a lack of spectral 

examples in this region, due to the high number of failed acquisitions, or arising due 

to errors introduced as a result of the numerical classification system and rounding.  

 

The failure of the model to identify the glucose limitation phase of the process in 

particular suggested this approach would not be suitable for controlling the 

fermentation process. Since the premise of control was to avoid glucose limitation 

there would be little point in attempting to use an algorithm that was unable to 

identify spectra that fell within this particular region.  

 

7.3.5 Artificial Neural Network 

 

The final approach to pattern recognition investigated was to utilise an artificial 

neural network (ANN) to identify the various stages of the process. As with the 

previous algorithms the full region second derivative near infrared spectra were 

utilised with the various stages of the process identified according to Table 24. 

 

In common with the PLS-DA approach the classification assignments were 

numerical, with each spectra associated with a particular class assigned a value of 1 

and those not associated with this class assigned a value of 0. This resulted in each 

spectrum being assigned four numerical values depending on the class or stage of the 

fermentation process that particular spectrum belonged to. 

 

The neural network pattern recognition tool (Matlab R2011b) was used to construct 

the neural network model for the fermentation. Replicates 1, 2 and 3 were utilised to 

construct the model, with this calibration dataset further split: 80% of the samples 

were designated calibration, for training of the model, 15% were designated as 

validation, to determine the point where training ceased, and the remaining 5% 

designated as test samples to independently test the constructed model. The test 

dataset was reduced from the recommended 15% since the samples from a complete 
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replicate of the fermentation had been retained for this purpose. In doing so this 

increased the population of the training set by 10% over the default values. 

 

With the ANN model constructed the second derivative spectra from the 

fermentation designated as validation were input. Predicted outputs were plotted 

against sample number to identify the various stages of the fermentation (Figure 7-4). 

An output value of 1 for a particular class suggested this spectrum was indicative of 

that particular stage in the fermentation process. Due to the error in the model, 

attaining an output value of either 1 or 0 from the model was unlikely therefore the 

results were rounded to the nearest whole number. The predicted stages for each 

spectrum were compared against the values designated by the PCA (Table 24).  

 

 
Figure 7-4 - Output from neural network for unseen fermentation replicate used to 

identify which phase in the fermentation each spectrum relates to. 

 

The output from the neural network was similar to that obtained from the PLS-DA 

model for this validation dataset. Spectra numbers 1 through to 25 were identified as 

belonging to the initial growth phase, which was in good agreement with the 

assigned values. The neural network failed to identify any spectra that represented 
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the glucose limitation or feeding phases of the fermentation process. Spectra 34 

through to 42 were identified as belonging to the induction phase, which was also in 

good agreement with the assigned classifications.  

 

Arguments already put forward with the other algorithms relating to the lack of 

spectral data in this region due to the suspected formation of clusters of cells that 

temporarily block the sample window will again apply in this situation. It was also 

possible that during the glucose limitation stage in particular there was very little 

overall change to the matrix as a whole. This lack of change in the system, and 

therefore by extension the spectra, may be influencing the ability of the network to 

correctly identify the glucose limitation stage relative to the surrounding stages. 

 

The spectra used in the construction of the above neural network were only the 

second derivative - no other pre-processing had been applied. With the previous 

algorithms the spectra were also mean centered. For consistency and in order to draw 

a comparison with the other algorithms used these second derivative spectra were 

mean centered and the neural network re-constructed based on this data. 

 

By utilising the mean centered data the neural network model for the fermentation 

improved substantially. As before the output from the neural network was a 

numerical value that was rounded to the nearest whole number and used to classify 

the various spectra (Figure 7-5). Spectra numbers 1 through to 25 were classified as 

the initial growth phase of the process, which was in agreement with the assigned 

classifications (Table 24). The mean centered neural network identified that spectra 

numbers 26 and 28 through 31 were representative of the glucose limitation stage of 

the process. These values were in good agreement with the assigned classifications 

where spectra 26 through to 30 represented the cells becoming glucose limited. 

Spectrum 27 was incorrectly classified as the feeding stage of the fermentation 

process with no additional spectra identified as feeding in the expected region. 

Finally the neural network correctly identified spectra 34 through to 42 as 

representing the induction phase of the fermentation process, which was in 

agreement with the assigned values (Table 24). 
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Figure 7-5 - Output for the validation dataset from the neural network constructed 

using the mean centered second derivative near infrared spectra. 

 

These results have suggested that it would be feasible to utilise an artificial neural 

network to monitor and control the fermentation stage of this bioprocess. Using the 

second derivative near infrared spectra it would be possible to identify the point 

where the cells were beginning to become glucose limited and commence the feeding 

regime. This would eliminate this point of inflection during the fermentation process 

resulting in the cells reaching the desired biomass level in a shorter time frame. The 

approach could also be utilised to identify the point when the fermentation was ready 

for induction, again potentially streamlining the fermentation process. 

 

7.3.6 Summary  

 

Near infrared spectra acquired during the fermentation process were utilised to 

predict the various stages of the fermentation. The approach adopted was based on 

pattern recognition algorithms so that the predictions were not linked with a 

particular feature or property of the process. Various algorithms were investigated to 

assess which was the most suitable. 
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The spectra obtained from three replicates of the fermentation were assigned as 

representing the various stages of the process and used to construct a model for the 

system. A fourth replicate of the fermentation was retained for validation of the 

model. This represents a relatively limited dataset on which to construct a robust 

model that encompassed the natural variance likely to occur within the system. 

 

Initially a model based on the SIMCA algorithm was considered for the system. With 

the validation dataset this approach correctly identified the initial growth phase and 

induction stage of the fermentation. This model failed to identify spectra that were 

representative of the starving phase incorrectly classifying a number of these spectra 

as the feeding stage of the fermentation. Since one of the key aims of using this 

approach was to try and reduce or prevent the cells starving, incorrectly classifying 

these spectra brought the usefulness of this approach into question. 

 

The PLS-DA algorithm was also considered to try and improve the classifications of 

the spectra. A model was constructed using the same three replicates of the 

fermentation and tested using the fourth replicate. In this case the model failed to 

classify any samples as belonging to either the glucose limited phase or the feeding 

phase of the process. Since the output from the model was numerical that may be 

partially attributed to rounding errors, however as with the SIMCA model incorrect 

identification of glucose limitation in particular suggests this model would not be 

suitable for monitoring and control of the fermentation. 

 

Use of an artificial neural network with the mean centered second derivative spectra 

resulted in the best model for the system observed. The neural network correctly 

identified samples in the initial growth, glucose limitation and induction phases of 

the fermentation. Samples representative of the feeding phase were not correctly 

identified however the limited number of samples acquired in this stage due to 

spectral acquisition difficulties in this region may explain these limitations. 

 

Non-linear algorithms such as ANN’s have been applied in industrial settings for 

process monitoring and control. Lennox et al. (2001) summarised a number of 
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industrial applications of the technique, as well as a number of common issues 

associated with implementation of the technique.152 Neural networks are also 

commonly employed within the food industry. Jiang et al. (2011) reported their 

successful application for the identification of Chinese soybean pastes. Of the three 

varieties investigated PCA was unable to distinguish between two similar varieties. 

The ANN however was able to successfully distinguish between all three, with 

success rates in region of 97% for the validation dataset.147 

 

Despite the ANN’s apparent success with the current system, the ‘black box’ nature 

of the mathematical algorithms still casts doubts over the reliability of the 

algorithm.83 

 

7.4 Conclusions 

 

Using the full region near infrared spectra obtained from the in-situ transflectance 

probe during the fermentation it was possible to construct a biomass model for this 

system. Errors of calibration cross validation and prediction for this model were 

higher than previously reported.24, 25, 30 However this can be explained the relatively 

small number of replicates populating the calibration model and the unrefined 

spectral regions used to construct the model. Based on these observations it was 

concluded that replicate models for those analytes described in the literature could be 

constructed for this particular fermentation process if required. 

 

An alternative approach that would see the time taken to construct a model for the 

system reduced and allow for a more generalised approach to in-situ fermentation 

monitoring based on spectral pattern recognition was investigated.  

 

Over the course of the fermentation a particular fingerprint was observed that could 

be utilised to classify each spectrum as belonging to a particular stage in the process. 

Utilisation of this pattern represented a method of monitoring and controlling the 

fermentation that was not linked with a specific process parameter, but treated the 

process as a whole. 
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Various algorithms for pattern recognition were investigated: SIMCA, PLS-DA and 

artificial neural networks. The best results were obtained using a neural network for 

pattern recognition. In this case the system was able to correctly identify the point at 

which the cells became glucose limited, a stage the SIMCA and PLS-DA approaches 

were unable to correctly identify. Applied in real time, an indication that this point 

had been reached would then allow for corrective action, in this case feeding, to be 

taken eliminating the starving phase and streamlining the process. Identification of 

when the system was ready for induction was also possible and had been correctly 

predicted using all the pattern recognition algorithms employed. 

 

Whilst the constructed model does require some additional development, it does 

indicate the feasibility of monitoring and controlling the fermentation process using a 

neural network for pattern recognition. 
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8. In-situ Biotransformation Process 
 

8.1 Process Overview 

 

The particular biotransformation process studied was a transaminase process for the 

generation of the chiral amino acid product compound B. A transaminase enzyme 

acts by transferring the amino functional group from a donor molecule, in this case 

L-alanine (absolute stereochemistry is S-(+)-alanine) to replace the keto functional 

group of the acceptor molecule compound A (Figure 8-1). The process occurs with 

the retention of stereochemistry, so the S-configuration of the alanine was transferred 

to compound A forming the S configuration of the compound B product. 

 

 
Figure 8-1 - Summary of the biotransformation process for the generation of 

compound B from S-alanine/L-alanine and compound A substrates proceeding via 

transaminase enzymes. 

 

The biotransformation process was carried out immediately following the induction 

phase of the fermentation process. All process parameters, such as agitation and 

aeration, and controlled parameters, such as pH, were maintained at the conditions 

utilised during the fermentation stage of the process (3.3.5.2). Full details of the 
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experimental procedure employed for this biotransformation process are detailed in 

Section (3.3.5.3). 

 

Generation of compound B is in equilibrium, so to obtain the maximum yield from 

the biotransformation process the equilibrium position needs to be driven in favour 

of the products to make the process viable.  

 

During the fermentation stage the organism (a modified E. coli) was supplied with a 

monosaccharide carbon source via the batch media and also in a more concentrated 

form via the glucose feed. This monosaccharide was utilised by the cells for the 

generation of energy via the glycolysis metabolic pathway (Figure 8-2).15 

 

 
Figure 8-2 - Pathway illustrating the breakdown of polysaccharides to a 

monosaccharide and then to pyruvic acid and onto the TCA cycle adapted from 

Prescott et al.15 
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When the biotransformation process was underway the supply of the monosaccharide 

glucose via the feed had ceased. In order to keep the cells alive a carbon source was 

required to continue to allow the generation of energy by this metabolic pathway. As 

had been previously noted (Figure 8-1) pyruvic acid was generated as a by-product 

of the biotransformation process, which could then be utilised by the organism for 

the generation of energy.15 This utilisation of the generated pyruvic acid also resulted 

in a shift to the equilibrium position. In order to compensate the system adjusts to 

replace this pyruvic acid, driving the equilibrium in favour of the desired product, in 

this case compound B.  

 

8.2 Aim & Objective  

 

As with the various other biotransformation processes that have been investigated 

(Sections 4, 5 & 6) process measurements have been relatively limited, particularly 

near real-time measurements. Many of the key process parameters specifically the 

analyte concentrations were determined using off-line methods. 

 

Like the other processes that have been investigated the objective of this work was to 

evaluate the potential of near and mid infrared spectroscopic techniques as a means 

of rapidly determining key analyte concentrations as the biotransformation process 

progressed. 

 

Near infrared spectroscopic data was obtained in-situ making use of a transflectance 

probe inserted directly into the bioreactor system (1.2.1.5 & 3.5.2). Mid infrared 

spectroscopy was investigated adopting an at-line sampling approach (3.4.1). 

Depending on the feasibility of these results, the approach could also be applied in-

situ should the equipment be available. 

 

8.2.1 Novelty  

 

Novel aspects of this work relate to the biotransformation stages position within a 

larger bioprocess. Successful construction of quantitative models for the 
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biotransformation process would result in infrared spectroscopy being utilised to 

monitor and control the entire bioprocess, from the fermentation stages through to 

the biotransformation. 

 

This work also represents the novel use of the LSS calibration transfer algorithm not 

only to a complex sample matrix but also to a biological sample matrix. Previously 

published applications of the algorithm relate to fairly simple sample matrices such 

as pharmaceutical tablets or solvent mixtures.123 The complex nature of the 

biotransformation matrix represents a substantial challenge over the currently 

reported applications.  

 

8.3 Analytical Reference Method 

 

Prior to any replicates of the biotransformation process being carried out, it was 

essential that robust and reliable analytical reference methods were in place to 

accurately quantify the key analytes of interest in the biotransformation process.  

 

8.3.1 Preparation of Standards 

 

The compound B product of the transaminase biotransformation process was not 

commercially available as a reference standard for the quantification of this 

component in the biotransformation samples. As such the material was prepared and 

purified based on an adaptation of the approach outlined by Clark et al. (2001) 

(3.1.2.3).125 

 

The desired product was purified using a flash chromatography column and eluted 

using ammonia hydroxide solution. This fraction was collected and the ammonia 

hydroxide removed by rotatory evaporation to obtain the crystalline material. 

Approximately 10mg mass of this material was dissolved in deuterium oxide (Sigma 

Aldrich) and a proton NMR spectrum of the material collected (Figure 8-3). 
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Each of the signals in the acquired NMR spectrum and the associated coupling were 

identified (Table 26). The observed chemical shift values and multiplicity of the 

signals due to the main functional groups were consistent with the theoretical values 

for compound B. 

 

Based on this proton NMR, it was concluded that the desired product had been 

generated by the procedure adopted. The absence of any additional signals in the 

NMR spectrum also suggested that the flash chromatography procedure employed 

had resulted in a sufficiently pure sample for use as an analytical standard for the 

identification and quantification of compound B using the reference analysis method. 

 

The NMR suggests that both the R and S configurations of the product had been 

generated by this procedure, evident by the splitting of the signals from the protons 

adjacent to the chiral centre. Although the biotransformation process only generated 

a single enantiomer, the reference method was unable to distinguish between 

configurations so the racemic standard will still allow for quantification of the 

analyte. 
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Figure 8-3 – Selected features from NMR spectrum of compound B produced using 

the adapted procedure outlined by Clark et al. (2001) and purified by flash 

chromatography with a strong cation exchange resin. 
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Table 26 - Assignment of the selected signals in the acquired proton NMR of 

synthesised compound B for use as analytical reference material. 

Chemical Shift Multiplicity Corresponding Proton 

   

1.34-1.36ppm Doublet R5CHNH2R4COOH 

1.81-1.90ppm Multiplet R5CHNH2R4COOH 

1.94-1.99ppm Multiplet R5CHNH2R4COOH 

3.39-3.44ppm Sextet R5CHNH2R4COOH 

 

The synthetic procedure returned a relatively poor yield of racemic compound B 

product with a crude yield of approximately 9% based on the mass of substrate 

utilised assuming 100% conversion of reactant. Despite this poor yield the process 

generated sufficient crude and purified compound B product to allow the analysis to 

be carried out.  

 

8.3.2 Amino Acid Quantification 

 

In this particular case it was desirable to quantify both the amino acids of interest (L-

alanine and compound B) using a single HPLC method. As had been the case 

previously both these compounds required a pre-column derivatisation stage to be 

employed to allow detection. 

 

The gradient elution method employed in this case was that detailed for the 

separation and quantification of all discussed amino acids with the exception of TBG 

(3.2.1.2.2). Under these conditions sufficient baseline separation between the L-

alanine and compound B was achieved with both analytes also exhibiting good, 

symmetrical peak shapes. Alanine returned a peak asymmetry factor of 0.94 and a 

tailing factor of 0.97 whilst the compound B product returned an asymmetry factor of 

0.92 and tailing factor of 1 (Appendix II). 

 

As there were two amino acids of interest in these samples it was necessary that the 

derivatisation reagents were present in sufficient excess to ensure reaction with all 
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the amino acid content present in the sample. Presence of the reagent in excess 

ensured that the derivatisation process was consistent and that a competing reaction 

between the amino acids was not occurring. Based on the highest total concentration 

of amino acids in the calibration standards (~19 mMol dm-3), even at the highest 

concentration the derivatisation reagent was present in excess relative to the amino 

acids (~30 mMol dm-3). 

 

8.3.2.1 Method Validation 

 

Validation of the method was subsequently carried out to assess the error associated 

with quantification using the developed method. A series of calibration standards 

covering a concentration range from 2 mMol dm-3 through to 9 mMol dm-3 for both 

the amino acids were prepared and analysed by the method. Ten replicate injections 

of a sample containing a mixture of L-alanine and compound B were also injected to 

assess the reproducibility of the developed method and estimate an error associated 

with quantification (Equation 16, Equation 19 & Equation 20) 

 

 
Figure 8-4 - Calibration curves for the quantification of L-alanine and compound B 

using the developed HPLC method. 
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Based on these results the error associated with the developed method was 

determined as being ±0.20 mMol dm-3 for L-alanine and ±0.18 mMol dm-3 for 

compound B. (Appendix II).  

 

8.3.3 Organic Acid Quantification  

 

Quantification of compound A was achieved using the HPLC method described with 

the Rezex column and refractive index detector as described (3.2.2.2). Conditions for 

this method were relatively simple, an isocratic mobile phase composition of 0.005N 

H2SO4 at a flow rate of 0.5 mL/min, as indicated by the column manufacturer. It was 

decided at this point that only compound A would be quantified by the method as it 

was unlikely that significant quantities of pyruvic acid would be observed due to its 

metabolism by the cells. 

 

8.3.3.1 Method Validation 

 

To confirm that a linear response was obtained, a series of calibration standards at 

varying concentrations between 5 mMol dm-3 and 65 mMol dm-3 were prepared and 

analysed. A linear line of best fit was plotted through the data points and the equation 

of the line and correlation coefficient determined (r=0.999) (Figure 8-5).  

 

As with the other methods, ten replicate injections of a sample were carried out to 

assess the reproducibility of the method. Based on these results, and the calibration 

data, an estimation of the total error associated with the method for quantifying 

compound A was determined as being ±0.70 mMol dm-3 (Appendix II). 
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Figure 8-5 - Calibration curve for the quantification of compound A using the 

described HPLC method. 

 

8.4 Initial Feasibility 

 

To determine if monitoring the biotransformation process was feasible using in-situ 

near infrared or at-line mid infrared spectroscopy the pure component spectra of the 

three key compounds were acquired and examined. 

 

8.4.1 In-situ Near Infrared 

 

Separate standards of L-alanine, compound A and compound B were acquired using 

the Foss XDS spectrometer system (3.5.2) and attached transflectance probe with a 

0.5 mm window gap giving an effective path-length of 1 mm. The acquired spectra 

were exported and converted to the second derivative spectrum before being 

examined to identify potential regions of interest. Due to the absence of the 

combination bands region, since there is absorption of this frequency region by the 

silica fibre optic bundle141, the main area of focus was the first overtones region 

between 5000 cm-1 and 6660 cm-1 (Figure 8-6). 
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Figure 8-6 - Second derivative pure component spectrum of key analytes of interest 

in the first overtones region. 

 

Pure component spectra of pyruvic acid were not acquired since this component was 

not expected to be present at substantial concentrations due to metabolism by the 

cells.  

 

Within this considered region it was evident that there were a number of close 

similarities between the acquired infrared spectra of these compounds, particularly 

between compounds A and B. This is particularly obvious in the approximate regions 

below 6000 cm-1 and above 6250 cm-1. Differences in the acquired spectra were also 

noted, with unique features due to L-alanine observed just above 6000 cm-1 and a 

unique feature of compound B noted at approximately 6200 cm-1. However, given 

the previous issues noted with applying the near infrared region to these 

biotransformation processes it was questionable whether the near infrared region 

could be successfully utilised to construct an independent quantitative model for the 

process.  
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These feasibility samples were presented in an optically clear matrix, however the 

actual process samples immediately followed the fermentation process and so would 

contain a high content of cellular material. Cellular material may have an interfering 

effect on the spectra due to an increased light scattering as the cell density 

increases.30 To counter that argument, the cellular density would already have 

reached its maximum at the point when the biotransformation process began. In 

addition the selected probe design, which was essentially a hybrid of transmission 

and reflectance probe designs, should still allow for spectral measurements to be 

made even at high biomass levels.17 

 

Since this represented the in-situ application of the spectroscopic technique, an 

additional factor that required consideration was the increased noise in the acquired 

spectra resulting from the required agitation and aeration of the system. Given the 

weak, and non-specific nature of the technique any increase in spectral noise may 

obscure the already weak spectral features in the identified regions of interest. 

 

In an attempt to determine if these parameters had an influence on the quality of the 

acquired spectra, the near infrared spectrum of water in the first overtones region of 

interest was collected at various agitation rates. Spectra were converted to the second 

derivative format and the effect on the baseline noise evaluated (Figure 8-7). Water 

was selected because it was the major component of the fermentation media and was 

present in large quantities during the biotransformation. In addition the OH 

vibrations of water molecules tend to dominate in the near infrared region, so the 

effects of agitation and aeration on these strong spectral features would give a good 

indication as to how the weaker spectral features would be affected. 

 

These results suggest that, even at relatively low agitation speeds, background noise 

introduced as a result of mechanical vibration within the system has begun to have an 

effect on the quality of the acquired spectra.  

 

Based on these observations, with the agitation rate and the limited distinctive 

spectral features for each of the key analytes, it was concluded once again that it was 
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unlikely the near infrared region could offer sufficient resolution to allow the 

construction of a robust multivariate model that could independently predict the 

concentrations of the three key analytes of interest during the biotransformation 

process. Based on previous experience it was felt that constructing a model based on 

the mid infrared spectroscopic region would be more successful for this particular 

biotransformation system under investigation. 

 

 
Figure 8-7 - Near infrared spectrum of water acquired using in-situ transflectance 

probe at a variety of agitation rates likely to be experience during the 

biotransformation process to assess the effect on background noise in the spectra. 

 

8.4.2 At-line Middle Infrared 

 

Moving into the mid infrared region not only were the specificity issues addressed by 

the inclusion of the fingerprint region, but many of the problems noted due to 

increased noise due to agitation and aeration, as well as the increased biomass levels, 

should be reduced. This was due to the substantially smaller path-lengths attained 

with the utilisation of the ATR crystals. With reported effective path lengths in the 
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region of 10 µm attained from multi-bounce ATR crystals, and typical bacteria cells 

being in the region of 1.3 µm – 4 µm in size, interference effects were unlikely to 

present the same issues with this sampling mechanism.15, 53 Although the mid 

infrared system utilised was an at-line system where reactor environment would not 

be a concern, the arguments put forward will still apply should an in-situ mid 

infrared probe be employed.  

 

Each of the pure component samples of the three key analytes of interest had their 

spectra acquired in the mid infrared region as described (3.4.1). The acquired spectra 

were converted to the first derivative to enhance spectral features and reduce baseline 

drift. 

 

As had been the case previously many of the redundant spectral features were 

removed focusing mainly on the fingerprint region and locations where the amine 

signals were expected (950 cm-1 through to 1760 cm-1) (Figure 8-8). 

 

 
Figure 8-8 - First derivative spectrum of pure component samples of key analytes in 

the biotransformation process. Main region of interest shown between 950 cm-1 and 

1760 cm-1. 
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Overlapping spectral features were noted for both the amino acids of interest, with 

subtle shifts between the two observed in the region between 1300 cm-1 and 1500 

cm-1. Points of difference arising from the amine functional groups were also noted 

between 1500 cm-1 and 1600 cm-1 with each amino acid giving rise to a unique signal 

in this region. Many of the signals observed from compound A were noted between 

1200 cm-1 and 1300 cm-1 and did not appear to overlap with any signals from the 

amino acid. 

 

Based on these observations, it appeared there were sufficient variations in the 

acquired spectra of the three key analytes to allow the fingerprint region of the mid 

infrared to be used to construct a quantitative multivariate model for the system. 

 

8.5 The Biotransformation Process 

 

A total of four replicates of the fermentation and in-situ biotransformation process 

were carried out according to the procedure described (3.3.5.3). Samples removed at 

regular intervals during the process were heated at 100 °C for a three minute period 

to denature the enzyme and prevent further conversion. These samples were then 

stored under refrigerated conditions until the mid infrared spectra were acquired.  

 

For each sample the mid infrared spectrum was acquired in triplicate and each 

sample was also quantified using the corresponding HPLC method, again in triplicate. 

Making triplicate scans of each sample increased the overall number of spectra in the 

calibration model but also served as a means of equipping the model to deal with the 

subtle variations that may occur between spectra on making replicate measurements. 

 

8.5.1 Middle Infrared Model  

 

Ruckebusch et al. (2002) considered five replicates of a similar biological process as 

an appropriate number of replicates to ensure the natural variations observed 

between process replicates were adequately represented in the model.83 Given that 

only four replicates were available for both calibration and validation purposes it was 
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decided that the data would be split to give three process replicates for calibration 

with the fourth retained for external validation of the constructed model.  

 

In order to determine which of the limited replicates of the process were to be 

utilised for calibration and validation, PCA was carried out on the spectra and used 

to determine the most appropriate datasets ensuring that the calibration dataset 

encompassed as much of the variability in the system as possible. This was based on 

the assumption that natural variations in the process were represented in the acquired 

spectra.  

 

PCA was carried out on the first derivative fingerprint region (950 cm-1 to 1760 cm-1) 

spectra from the four process replicates. The first derivative data was mean centered, 

however no additional pre-processing or manipulations were carried out. 

 

A plot of scores associated with the first latent variable against the scores associated 

with the second latent variable was constructed (Figure 8-9).  

 

The spectra obtained from the third replicate of the biotransformation process were 

substantially different with respect to the variance captured by the second latent 

variable compared with the other replicates. Since this was a deviation from what 

had been observed with the other process replicates, a visual inspection of the spectra 

was carried out to confirm that this represented a true variance in the process and 

was not due to a spectral anomaly. There did not appear to be any irregularities in the 

acquired spectra for this process replicate compared with the other replicates 

therefore suggesting this did represent a true variation in the system and should be 

incorporated in the model. 
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Figure 8-9 - Latent variable 1 scores plotted against latent variable 2 scores to 

identify the process replicates used in the calibration model thus ensuring the 

maximum variance observed was included in the calibration model. 

 

Based on the PCA, biotransformation replicates 1, 2 and 3 were selected for the 

calibration dataset, leaving the fourth replicate for use as an external validation 

dataset. Selecting the calibration and validation datasets in this manner also ensured 

that the validation dataset was within the predictive ability of the constructed model 

given the limited calibration data available to span the potential variance in the 

process. 

 

Using this first derivative fingerprint region spectra (950 cm-1 through 1760 cm-1) of 

the identified process replicates a PLS model for the system was constructed. The 

only other pre-processing carried out was to mean centre both the spectral data and 

the reference data. Leave one out cross validation was also employed as a means of 

internal validation of the model and to assist in selecting the optimum number of 

latent variables for the model.  
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Figure 8-10 - Plot of RMSEC and RMSECV values against latent variable number 

to determine the optimum number of latent variables for use in the constructed PLS 

model. 

 

Examination of the plot of root mean square error of calibration/cross validation 

versus the number of latent variables was used to determine the optimum number of 

latent variables for the model (Figure 8-10). From this figure, four latent variables 

appeared to be the most appropriate selection. Arguably there was some suggestion 

that up to six latent variables may be appropriate, however when increased above 

four latent variables a clear over-fitting of the data, where more terms than necessary 

are included in the model153, particularly with regards to the compound A 

concentrations became apparent. Based on these observations the calibration model 

was constructed with a total of four latent variables. 

 

Errors of calibration and cross validation for the constructed PLS model based on 4 

latent variables are detailed in Table 27. There was good agreement between the 

calibration error and cross validation error for the three key analytes of interest. 

Examination of a plot of predicted concentration (from cross validation process) 

against measured concentration (from offline reference method) did illustrate a few 
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questionable points that were potential outliers, however the vast majority of the 

points appeared randomly scattered around the central diagonal (Figure 8-11 (i, ii & 

iii)).  

 

The spectral data from the process replicate designated as a validation dataset was 

then presented to the constructed model and the concentrations of the three key 

analytes predicted. Predicted concentrations were then compared with the values 

obtained using the traditional off-line reference analysis method to calculate a 

RMSEP value. 

 

Table 27 - Errors of calibration and cross validation associated with the calibration 

model along with the errors of prediction for the unseen validation dataset. 

 RMSEC 

(mMol dm-3) 

RMSECV 

(mMol dm-3) 

RMSEP 

(mMol dm-3) [r2] 

    

L-alanine 19.0 20.0 57.0 [0.57] 

Compound A 33.0 36.2 19.6 [0.71] 

Compound B 11.2 11.7 37.7 [0.83] 
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Figure 8-11 - Plots of predicted concentration (mMol dm-3) (from PLS model) against measured concentration (mMol dm-3) (from 

reference analysis) for the various key analytes of interest for both the internal (i, ii & iii) and external (iv, v, vi) validation procedures. 
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The errors of prediction associated with the unseen validation replicate were 

substantially different from the RMSEC and RMSECV values. Examination of the 

plot of predicted concentration against measured concentration confirmed that the 

model was largely over-predicting the concentration of L-alanine and compound B in 

the dataset (Figure 8-11 (iv, v, vi)). 

 

It was expected that the fermentation process immediately preceding the 

biotransformation process, as well as the slight variations in analyte concentrations 

added in each case, would provide sufficient variation to prevent co-linearity. The 

high errors of prediction attained would however suggest that co-linearity had some 

impact on the predictive ability of the model.  

 

To confirm whether co-linearity was having an influence on the constructed model 

the associated regression coefficients were examined (Figure 8-12). From this plot it 

was evident there was co-linearity within the system, both the first and second 

regression coefficients for the model were identical with the third regression 

coefficient being the exact opposite of the first two. This would suggest that spectral 

features arising due to the alanine are being utilised to estimate the concentration of 

compounds A and B, with the same holding true for the other analytes. Co-linearity 

within the system would explain the failure of the model to accurately predict the key 

analyte concentrations for the validation dataset. 

 

8.5.2 Model Refinement 

 

In order to break this co-linearity that existed within the calibration model the 

samples were spiked by the addition of known concentrations of the pure component 

materials. Previously the retrospective adulteration of samples was not favoured 

since this would serve to change the composition of the sample media. In the current 

situation however an adaptive calibration approach was determined the most 

appropriate, as the processes had already been run and the samples taken. 
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Figure 8-12 - Regression coefficients associated with the constructed PLS model for 

the biotransformation process. 

 

Spiking of the samples was based on the adaptive calibration approach utilised by 

Riley et al. (1998) with some amendments.38 Rather than the addition of “random 

and known amounts” of the key analytes, the approach taken was to construct a 

partial factorial experimental design (three factor, two level D-optimal design) using 

the Design Expert software.38 The spiked analyte concentrations of L-alanine and 

compound A varied between 0 and 250 mMol dm-3, whereas the concentrations of 

compound B varied between 0 and 100 mMol dm-3 (Appendix III). Lower 

concentrations of compound B were utilised due to the small quantities of purified 

product obtained from the synthetic procedure employed to generate the reference 

standard. 

 

Adopting the approach where samples were spiked according to the generated 

experimental design ensured that the stoichiometric linkages were broken by design 

and not random chance or co-incidence. 
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Spiking of the samples was achieved by introducing small volumes of concentrated 

solutions of the three analytes of interest and then diluting these samples to a known 

volume with the actual process sample. In the case of the fifth spike in the DoE, 

where 100 mMol dm-3 of each analyte was introduced, 400 µL of each stock solution 

(concentration ~1250 mMol dm-3) was added and made up to a total volume of 5 mL 

using the actual process sample. A total of 42 spikes were prepared and encompassed 

samples from all four replicates of the biotransformation process carried out.  

 

All spiked samples had the analyte concentrations re-quantified using the appropriate 

reference methods and the spectra of these new samples were acquired. The actual 

biotransformation samples underwent a dilution, in the region of 1:5. However the 

spiking process meant that the analyte concentrations covered by the model still 

encapsulated those expected during the process. In addition the specificity offered by 

the mid infrared region meant factors not being monitored, such as biomass and other 

analytes, would not be significantly affected. 

 

Using only the spiked samples and the corresponding reference data the PLS model 

for the biotransformation process was reconstructed, and the regression coefficients 

examined to determine whether the co-linearity within the model had been addressed. 

The PLS model constructed from the spiked dataset returned three unique regression 

coefficients suggesting that the co-linearity issues previously observed within the 

original model had been addressed. 

 

Using this PLS model based on the spiked samples, the concentrations of the key 

analytes in the original replicate designated for external validation were estimated. 

Given that some of the samples in the calibration model were actually spiked 

samples from this validation dataset, it was expected that this model would predict 

the analyte concentrations extremely well, as to some degree these were already 

samples included in the calibration dataset. The RMSEC, RMSECV and RMSEP 

values for the model are detailed in Table 28.  
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Table 28 - Errors associated with the calibration model constructed using the spiked 

datasets and prediction of the key analyte concentrations in the external validation 

dataset. 

 RMSEC 

(mMol dm-3) 

RMSECV 

(mMol dm-3) 

RMSEP 

(mMol dm-3) [r2] 

    

L-alanine 21.5 23.5 174.1 [0.63] 

Compound A 58.9 64.0 599.1 [0.87] 

Compound B 24.9 27.5 141.3 [0.80] 

 

Errors of calibration and cross validation were slightly higher than had been 

observed previously (Table 27) however this was unsurprising given that the co-

linearity within the model had been addressed. However the errors of prediction 

associated with the validation dataset were significantly higher than had been 

observed with the co-linear model. 

 

This calibration model was however based purely on the retrospectively spiked 

samples. Whilst suitable models for various systems have been constructed based on 

spiked samples there are reported cases where the introduction of synthetic samples 

have actually hindered the model.17, 38 The lack of actual process samples in the 

model may offer some explanation for the large errors of prediction observed. 

 

In an attempt to improve the errors of prediction a combined model based on the 

spiked samples and the original spectra was constructed. The calibration dataset 

incorporated all the spiked samples along with the samples from the three 

biotransformation process replicates identified by PCA.  
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Table 29 - Errors of calibration, cross validation and prediction associated with 

model constructed from both the spiked samples and the original samples obtained 

from the biotransformation process. 

 RMSEC 

(mMol dm-3) 

RMSECV 

(mMol dm-3) 

RMSEP 

(mMol dm-3) [r2] 

    

L-alanine 43.1 45.2 70.4 [0.58] 

Compound A 68.2 71.2 64.1 [0.16] 

Compound B 36.9 37.9 44.8 [0.78] 

 

Including the original spectra in the model has improved the errors of prediction 

substantially (Table 29), however they are still higher than ideal with regards to the 

amino acid components. Examination of the plots of measured concentration against 

predicted concentration for the model illustrates there is a tendency of the model 

towards over or under prediction of all the analytes of interest (Figure 8-13). 

 

 
Figure 8-13 - Plots of measured concentration (mMol dm-3) (from HPLC methods) 

against predicted concentration (mMol dm-3) (from PLS model) for the external 

validation dataset. 
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Between the point when the spectra of the original biotransformation samples were 

acquired and the acquisition of spectra for the spiked biotransformation samples the 

ZnSe ATR crystal on the instrument was replaced. It was possible that the optics of 

the new ATR crystal were different from the original crystal, resulting in changes to 

the spectra obtained.87 

 

PCA was once again utilised to determine if there were any substantial differences in 

the spectra obtained for the original biotransformation samples and those 

retrospectively spiked. All mid infrared spectra had been converted to the first 

derivative and were mean centered. The plot of scores associated with the first 

principal component were plotted against the scores for the second principal 

component and examined.  

 

 
Figure 8-14 - PCA scores plot of all spectroscopic data obtained for the original 

samples and the retrospectively spiked samples. 

 

The PCA scores plot clearly illustrated there were substantial spectral differences 

between the spectra obtained from the original samples and those samples that were 
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retrospectively spiked to break the co-linearity. The original samples are clustered in 

an area of the PCA space whilst the spiked samples occupy a completely different 

region. 

 

Since the ATR crystal had been changed between acquisition of the two datasets it 

was concluded that the optical differences between the crystals (such as a higher 

light transmittance through the crystal) was responsible for this models failure to 

accurately predict the analyte concentrations in the validation dataset.  

 

8.5.3 Calibration Transfer 

 

Variations in both the near and mid infrared spectra obtained can arise as a result of 

either instrument fluctuations, such as instrument ageing or repair, or physical 

differences between instrumentation. The spectral response obtained from each 

infrared spectrometer is unique, even between two identical instruments from the 

same manufacturer.122 In the first case a maintenance regime can be sufficient for 

maintaining the predictive ability of the calibration model, however in the second 

situation, where multiple spectrometer systems may be employed in an industrial 

setting, the PLS algorithms used do no adequately model this variation.87 There are a 

variety of options that could be considered to deal with this situation; individual 

calibration models for each instrument, the construction of a global calibration model 

or instrument standardisation.121 

 

In situations where multiplexing of the spectrometer system has been employed, a 

similar challenge arises with variations in spectral features and response arising due 

to the optical differences between the various process probes.87 These reported 

variations between probes are very similar to the observed differences in spectral 

features on changing the ATR crystal, therefore these same options for dealing with 

these variations should apply. 

 

Proposing the construction of a separate calibration model for each instrument is 

inefficient121, and in the case of the biotransformation samples would require the 
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spectra of all the process samples to be re-acquired. The second suggestion of 

constructing a calibration model based on the spectra from both instruments, or in 

this case ATR crystals, was also considered however with the limited number of 

different crystals essentially averaging the spectral features would introduce an 

additional, unnecessary, error into the model. 

 

Standardisation of the samples was therefore determined as being the most 

appropriate mechanism for dealing with the differences that arose between ATR 

crystals. The approach defines one crystal as a master with the spectra using other 

crystals mathematically converted to appear like the master crystal. A variety of 

mathematical algorithms (such as univariate correction, direct standardisation and 

piecewise direct standardisation) are available to achieve this transformation.122 

Adopting this approach would require only a limited number of samples to be 

acquired on both crystals, but would also allow the same model to be applied should 

the ATR crystal require replacement again.  

 

Ten samples from the biotransformation replicates were identified and their spectra 

acquired on the new instrument. Using these spectra and the original spectra of the 

biotransformation replicates a calibration transfer procedure was attempted. This 

would allow the spectra of the spiked samples acquired using one ATR crystal to be 

used in conjunction with the spectra of the original biotransformation samples 

obtained using a different ATR crystal. 

 

8.5.3.1 Sample Selection & Identification 

 

A total of ten of the original biotransformation samples were selected for scanning 

on the new ATR crystal and used to determine the parameters for the calibration 

transfer. Ten samples were chosen for the transfer process because this represented 

approximately 20% of the total (53) biotransformation samples available. Since 

appropriate selection of the standardisation samples was considered crucial to 

success, it was felt that the acquisition of approximately a fifth of the available 
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samples on the new crystal would provide sufficient samples that encompassed the 

experimental range. 

 

Rather than selecting these samples at random using a random number table, the 

samples were identified using leverage and inverse calibration methods. 

 

Leverage calibration identifies the most appropriate samples based on their distance 

from the multivariate mean. All the spectra from the process replicate samples were 

combined and using the leverage selection method the ten samples for scanning on 

the new crystal identified (Table 30). 

 

Table 30 - Samples identified using leverage method to be scanned on new ATR 

crystal to determine the calibration transfer parameters. 

Spectrum 

Number 

Process 

Replicate 

Sample 

Number 

Spectrum 

Number 

Process 

Replicate 

Sample 

Number 

      

27 2 15 34 3 7 

42 3 15 10 1 10 

11 1 11 16 2 4 

37 3 10 8 1 8 

51 4 9 38 4 11 

 

Alternatively the selection of the samples could have been carried out using the 

inverse calibration method. The approach in this case was to construct a PLS model 

for the first analyte of the process, then calculate the inverse of this model and 

identify the samples based on this matrix (Table 31).  
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Table 31 - Samples identified using inverse method to be scanned on new ATR 

crystal to determine the calibration transfer parameters. 

Spectrum 

Number 

Process 

Replicate 

Sample 

Number 

Spectrum 

Number 

Process 

Replicate 

Sample 

Number 

      

10 1 11* 28 3 3 

25 2 15* 49 4 10 

31 3 7* 4 1 4 

27 3 2 41 4 2 

39 3 15* 32 3 8 

* Denotes sample that was also identified using leverage selection method. 

 

A total of four of the samples were identified using both the sample selection 

methods. Each of these identified samples had the infrared spectrum acquired on the 

new ATR crystal. Samples identified from each identification method were kept 

separate, used to generate the transfer parameters and the results in each case 

compared.  

 

The infrared spectra of the samples identified using the leverage method acquired on 

the original ATR crystal and the new ATR crystal were plotted to determine if there 

were any observable differences in the acquired spectra (Figure 8-15).  
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Figure 8-15 - Comparison of first derivative mid infrared spectra of the samples 

identified using the leverage method acquired on the original and new ATR crystals. 

 

The overlaid plot of both spectra illustrated that there were some obvious differences 

between the spectra acquired using the original crystal and the new crystal. However 

the differences appeared mostly to be different signal intensities between the two 

crystals, which the proposed calibration transfer procedure should be able to correct 

for. 

 

Various algorithms are available for calibration transfer procedures, in order to 

determine the best for this particular application three different techniques: direct 

standardisation (DS), piecewise direct standardisation (PDS) and spectral space 

transformation (SST) were evaluated. Due to the large error associated with 

predictions based solely on a calibration model constructed from the spiked samples 

(Table 28) all models were constructed from the first three replicates of the 

biotransformation process and the spiked samples (or the relevant transfers) and 

validated using the fourth replicate designated for external validation. Adopting this 
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approach also allowed for evaluation of the transfer in both directions (original 

crystal to new crystal and vice versa) for comparison purposes.  

 

Each discussion of the various calibration transfer approaches has utilised the 

samples identified using the leverage sample selection method to determine the 

transfer parameter. The direction of the transfer discussed was from the original ATR 

crystal to the new ATR crystal. Ideally this would be the direction in which the 

transfer would want to be carried out for the dataset under consideration because it 

meant any new samples acquired could be used directly with the model and would 

not require any manipulation. Determination of the parameters based on the inverse 

sample selection method as well as transfers from the new crystal to the original 

were carried out, with the results detailed in Appendix III. 

 

8.5.3.2 Direct Standardisation 

 

Using the samples identified by the leverage method (Table 30) the transfer 

parameters were calculated. In the first instance the new crystal was set as the 

standard with the spectra acquired on the original ATR crystal converted to appear 

like those acquired with the new crystal. 

 

PCA was once again utilised to identify if the procedure had been successful. If the 

spectra were suitably converted it would be expected that the scores for the 

transferred spectra would occupy the same spatial region as those of the spiked 

samples, which were acquired on the new crystal. The PCA plot (Figure 8-16) 

suggested that the calibration transfer process had been successful. Spectra acquired 

using the original crystal had been transformed and were now occupying the same 

PCA space as the spiked samples that had been acquired using the new ATR crystal. 
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Figure 8-16 - Scores plot from PCA carried out on the original data (original ATR 

crystal), the spiked datasets (new ATR crystal) and the transferred spectra. Transfer 

parameters were determined using the samples identified using the leverage method 

acquired on both the original and new ATR crystal. 

 

Based on these results the transfer parameters determined using the samples 

identified by the leverage method were used to convert the spectra of the process 

samples acquired using the original crystal to appear like those obtained from the 

new crystal. A PLS model for the system was constructed from the transferred 

spectra and spiked samples as described and tested using the spectra of the external 

validation dataset after having undergone the transfer process. 
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Table 32 - Errors associated with the prediction of concentration of the validation 

dataset using the direct standardisation transferred spectra. 

 RMSEC 

(mMol dm-3) 

RMSECV 

(mMol dm-3) 

RMSEP 

(mMol dm-3) [r2] 

L-alanine 39.9 41.2 85.9 [0.64] 

Compound A 57.8 60.4 69.8 [0.17] 

Compound B 32.4 33.7 24.4 [0.54] 

 

By converting the spectra of the validation dataset samples using the direct 

standardisation approach some errors of prediction improved, specifically compound 

A, however higher errors of prediction were returned for some analytes compared 

with the model where no transfer was carried out.  

 

Despite these indifferent results, the calibration transfer process does appear to be 

having a positive effect. The overlaid plot of a selection of spectra obtained on the 

original crystal and the same samples on the new crystal clearly indicated spectral 

differences between the two (Figure 8-15) which was confirmed by the PCA scores 

plot where spectra from both crystals occupied different spatial positions (Figure 

8-14). Following the spectra undergoing transformation the PCA scores of the 

transformed spectra then occupied a similar spatial region (Figure 8-16) with some 

analytes showing an improvement in their errors of prediction.  

 

The direct standardisation method of calibration transfer treats the spectrum as a 

whole, applying the transform parameters across the entire spectrum. Different 

methods for carrying out the transfer that consider smaller, localised regions of the 

spectra may be more appropriate, resulting in a more accurate transformation and 

therefore improved errors of calibration and prediction. 

 

8.5.3.3 Piecewise Direct Standardisation  

 

The piecewise direct standardisation (PDS) approach determines the transfer 

parameters by considering only a selected region (window) of the spectrum.88 With 
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the PDS approach however it was necessary to optimise this window size to 

determine the optimum parameters for the calibration transfer. 

 

Optimisation of the parameters was achieved using a script function to iteratively 

determine the transfer parameters based on the transfer datasets determined by either 

the leverage or inverse sample selection methods. In order to test the transfer 

parameters to determine what was the optimum window size, the leverage or inverse 

sample set not used to determine the transfer parameters, was used in conjunction 

with PCA to test the determined parameters. 

 

Initially samples identified using the leverage selection method were utilised to 

generate the transfer parameters and tested using the samples identified by the 

inverse selection method. Transfer parameters were determined and tested with 

window sizes between 1 and 21 wavenumbers in increments of 2 wavenumbers. 

Transfers were investigated in both directions as before with the original spectra 

converted to the new crystal and vice versa, however to reduce future requirements 

in the current situation it would be preferential if the original spectra could be 

successfully converted to the new crystal preventing the further manipulation of any 

newly acquired samples. 

 

When the calibration transfers had been completed on these small test datasets, the 

inverse samples acquired on both the original and new ATR crystal were added to 

the transferred spectra and PCA carried out to determine the optimum window size. 

Conversion of the spectra acquired on the original ATR crystal and converted to the 

new ATR crystal was investigated initially. 

 

Although all the window sizes in the region of interest were iteratively investigated, 

window sizes between 1 and 5 appeared to have the most impact on the PCA scores 

position. In all cases, it was clear that the transformation process had been successful 

in converting the spectra so that the PCA scores occupied a similar region in the 

scores plot. Since, in this case, the spectrum of the test samples had been acquired on 

both crystals, the optimum window size was determined as being when the PCA 
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scores of the true spectra began to converge with the scores of the transferred spectra 

(Figure 8-17). In this particular case the window size did not appear to be having a 

substantial effect on the quality of the transfer procedure. The scores for a window 

size of 3 and 5 were identical to each other, and since these scores appeared closest 

to the scores of the actual samples an optimum window size of three was selected for 

the spectral transfer. 

  

Having determined the optimum window size for the PDS calibration transfer, the 

original spectra of the biotransformation samples were subsequently converted based 

on the parameters determined by the samples identified using the leverage method. 

 

Following conversion, PCA was carried out on a matrix consisting of the 

transformed spectra, the samples acquired using the original crystal and the spiked 

samples acquired using the new crystal. Evaluation of the scores associated with 

principal component one against those for principal component two suggested that 

the transfer had been successful (Figure 8-18). Although the samples were different, 

a successful transfer would see the PCA scores of the transferred spectra occupy the 

same region of the PCA plot as those of the spiked samples acquired using the new 

ATR crystal. 

 

As in the case of the direct standardisation approach, the PCA scores suggested that 

the transfer of the spectra had been successful. Scores for the transferred spectra 

exhibited a substantial overlap with those of the spiked samples, which considering 

the bulk of the spiked samples were composed of the original samples, suggested the 

transfer process had been very successful. 

 

Spectra from the fourth replicate of the biotransformation process, identified as the 

validation dataset, that had undergone the calibration transfer (from original crystal 

to new crystal) was used to predict the key analyte concentrations using the PLS 

model generated using the identified calibration dataset. 
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Figure 8-17 - PCA scores plot test spectra transferred using multiple window sizes 

to determine the optimum parameters for the calibration transfer. 

 

 
Figure 8-18 - PCA scores of original samples after calibration transfer process 

compared against PCA scores for the spectra acquired using the original crystal and 

the spiked samples acquired using the new ATR crystal. 
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Table 33 - Errors of calibration for the spiked PLS model and errors of prediction for 

the transferred spectra from the original crystal to the new crystal. 

 RMSEC 

(mMol dm-3) 

RMSECV 

(mMol dm-3) 

RMSEP 

(mMol dm-3) [r2] 

L-alanine 36.2 39.2 38.9 [0.56] 

Compound A 81.4 89.0 99.7 [0.74] 

Compound B 37.1 39.2 37.1 [0.63] 

 

Compared with the errors of prediction for the validation dataset observed when the 

transfer was carried out using the direct standardisation method the PDS approach 

has demonstrated a very slight improvement for the amino acids but an increase in 

error for the compound A component. Overall though the errors of prediction 

associated with the model were still high, particularly for compound A, and further 

improvement could be attained.  

 

Both the DS and PDS calibration transfer approaches are based on a very similar 

procedure. It was possible that the algorithm used for calculating the transfer 

parameters was not the most suitable. These calibration transfer algorithms, although 

commonly utilised, have many drawbacks, one key point where these approaches 

have previously failed occurred when a limited number of samples were available for 

acquisition on each instrument.123 A scenario that was particularly relevant in the 

system currently under investigation.  

 

Greater success may be achieved by utilising an alternative algorithm to determine 

the transfer parameters.  

 

8.5.3.4 Spectral Space Transformation 

 

The procedure adopted to evaluate the spectral space transformation (SST) algorithm 

with the in-situ biotransformation data was similar to that adopted with the PDS 

algorithm. 
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Spectra of the leverage samples acquired on both the original and new ATR crystals 

were used with the SST algorithm to determine the transfer parameters. These 

parameters were then utilised with the samples from the inverse selection method to 

test the calibration transfer. Spectra of the inverse samples acquired using the 

original ATR crystal were transferred to appear as though acquired using the new 

ATR crystal. PCA was utilised to compare the transferred spectra with those of the 

samples acquired on the new crystal and also the original data (Figure 8-19).  

 

 
Figure 8-19 - PCA of spectra acquired using original ATR crystal, new ATR crystal 

and SST transfer of the original crystal to the new crystal. 

 

The SST transfer algorithm appeared to have successfully converted the original 

spectra to mimic those acquired using the new crystal, evident by both the transferred 

spectra and these same samples acquired on the new crystal occupying the same 

spatial region of the PCA scores plot. Using the SST algorithm the scores of the 

transferred spectra appear to be better aligned with the actual samples. Previously the 

PCA scores plots (Figure 8-17) have indicated a transfer into the correct general 

region of the plot but haven’t really matched up well with the scores of the actual 

samples. Since these were the same samples, a good calibration transfer procedure 

would expect to see these scores overlapping. Although some error margin was still 



 294 

present, and expected, the PCA scores were clustered in the same regions as the same 

samples directly acquired on the new crystal.  

 

 
Figure 8-20 - PCA carried out on original samples acquired on original crystal, 

spiked samples acquired on new crystal and the transferred samples converted from 

the original crystal to the new crystal. 

 

As with the previous transfer algorithms PCA suggested that the calibration transfer 

procedure had been successful since both the transferred spectra and spiked samples 

were occupying the same region in the PCA space (Figure 8-20). Using the 

transferred spectra for the validation dataset and the PLS model based only on the 

spiked samples the key analyte concentrations were predicted and compared with the 

reference methods. 

 

Following on from this successful conversion of the test dataset using the SST 

algorithm, the original spectra of the biotransformation replicates were converted 

using the SST algorithm. Transfer parameters were determined using the samples 

identified by the leverage sample selection method with the original 

biotransformation samples converted to the new crystal. 
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The PLS model for the system was then constructed and validated using the 

transferred spectra of the external validation dataset. 

 

Table 34 – Errors of calibration, cross validation and prediction for the PLS model 

constructed using the SST transferred spectra and spiked samples. Validation utilised 

the SST transferred spectra for the fourth biotransformation replicate designated for 

validation.  

 RMSEC 

(mMol dm-3) 

RMSECV 

(mMol dm-3) 

RMSEP 

(mMol dm-3) [r2] 

L-alanine 56.4 60.8 65.6 [0.47] 

Compound A 92.6 99.5 86.5 [0.46] 

Compound B 29.6 30.6 41.6 [0.58] 

 

Use of the SST algorithm has in this case resulted in higher errors of prediction for 

most of the analytes of interest compared with those observed with the DS and PDS 

transfer methods, but also when no calibration transfer procedure was employed 

(Table 29). However despite the larger errors associated with model examination of 

the measured concentrations plotted against predicted concentration suggested that in 

some cases there had been an improvement to the model (Figure 8-21). 

 

Points on these plots for both the alanine and compound B analytes appeared to be 

closer to the central diagonal line representing a true 1:1 relationship compared with 

the model where no calibration transfer procedures were employed (Figure 8-13). 
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Figure 8-21 - Plot of measured concentration (mMol dm-3) against predicted 

concentration (mMol dm-3) for the validation dataset with the PLS model constructed 

using spectra that had been transformed from the original crystal using the SST 

algorithm. 

 

Utilising the current dataset for the in-situ biotransformation process it was not 

possible to construct a robust multivariate model to quantify the key analytes in the 

system using infrared spectroscopy. The results obtained however, suggest there was 

potential to construct a suitable model. Determination of the transfer parameters was 

one of the key challenges associated with the transfer procedure. Suitable reference 

standards acquired on all ATR crystals from the outset would most likely have made 

the overall process much simpler. 

 

8.5.4 Model Summary 

 

Retrospectively, one of the key issues in the construction of a multivariate model for 

this system was co-linearity. Stoichiometric links within the system resulted in the 

spectra features of a particular analyte influencing the predicted concentration of 

another. Given this was a complex biological system and the nature of the process 

being carried out it was inevitable that these stoichiometric linkages would exist. 
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However in order to deal with these variations, a calibration dataset sufficiently large 

to ensure that all natural deviations in these linkages had occurred would be 

required.49 Given that an extremely limited dataset, consisting of only four process 

replicates, was available for both calibration and validation there was insufficient 

replicates to encompass the natural variation hence the co-linearity observed in the 

initial model (Table 27). Upon reflection, the issue of co-linearity could have been 

more effectively dealt with. Perhaps making adjustments to the initial concentrations 

of biotransformation analytes added to the system during each replicate would have 

introduced sufficient variation to break these stoichiometric linkages.17  

 

This limited number of process replicates was anticipated as being restrictive for the 

modelling process from the outset. Recommendations on the number of process 

replicates required for the construction of a robust calibration model were greater 

than the total number available in this case for both calibration and validation.83 In 

combination with steps taken to deal with the co-linearity increasing the number of 

process replicates available for the calibration dataset would likely see a marked 

improvement in the quality of the resulting model. 

 

Attempts to break the co-linearity in the dataset by a well documented technique of 

introducing retrospectively spiked process samples was hindered by changes in 

physical parameters relating to the instrumentation.38 A change in ATR crystal 

resulted in subtle differences in the spectra between samples acquired using the 

original ATR crystal and a new ATR crystal. Although visually these differences 

appeared fairly small, PCA of spectra acquired using the original ATR crystal and 

the new ATR crystal occupied very different regions of a PCA plot (Figure 8-14). 

 

Various calibration transfer algorithms, directions and parameters were investigated 

(Appendix III) to try and convert the spectra acquired using the original crystal to the 

new crystal so a calibration model could be constructed consisting of both the 

artificially spiked spectra and real process samples. The transfer process appeared to 

have been successful in that once converted the spectra acquired using the original 

crystal occupied the same region of a PCA plot as those acquired using a new crystal. 
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Whilst the transfer procedure was having a positive effect on the spectra it appeared 

to lack the specificity required.  

 

One of the key requirements to achieve a successful transfer was the selection of an 

appropriate set of standardisation samples. These were the samples acquired on both 

the master instrument/crystal and slave instrument/crystals and used to calculate the 

transfer parameters. These standardisation samples were required to meet a number 

of criteria in order to result in a successful transfer procedure. 

 

The first of these criteria was the long-term stability of the sample, in this case 

ideally a stability time frame in the region of months to years. Standardisation 

samples must be physically and chemically stable over a long time period. This was 

essential so that the transfer process was only correcting for instrumental variations 

and not true spectral variations.88 It was assumed that the samples utilised in this 

situation were both chemically and physically stable. Heating the sample 

immediately after removal from the bioreactor to denature the enzyme should have 

prevented any further conversion or changes in the sample. However it was 

potentially possible that had the enzyme not been completely denatured some 

conversion may still have been occurring. In addition due to the relatively high 

concentrations of analytes and small volume of sample, precipitation was noted to 

have occurred with some of the biotransformation samples. Should this have 

occurred with the standardisation samples then a concentration change may have 

resulted introducing an additional source of error into the transfer procedure. 

 

The second key criteria for the standardisation samples was the requirement that the 

selected samples were representative of the spectra to which the standardisation was 

to be applied. Different approaches to sample selection using the leverage and 

inverse sample selection methods had been proposed.88 Both these sample selection 

approaches were utilised and returned similar results, which would suggest that both 

approaches were identifying a representative sample set. 
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A more successful approach may have been to use an independent standardisation 

sample set. Had these synthetic standards, which were known to be stable over time 

and covered a number of spectral features in the region of interest, been acquired on 

both crystals these values could have been used to generate the transfer parameters.88 

 

Despite various attempts to correct the spectra it was not possible to construct an 

independent quantitative model for this particular system. The results have 

demonstrated that the required steps can be taken to allow an independent model to 

be generated. It has also highlighted the need for a series of stable standards to be 

acquired on the instrumentation that will allow for the determination of a series of 

transfer parameters should any maintenance or changes to the system be required 

either during the calibration procedure or the working lifetime of the constructed 

model.  
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9. Conclusions 
 

The aims defined at the outset of this investigation were to assess the potential of 

applying near and mid infrared spectroscopic techniques for the monitoring and 

control of industrially relevant biotransformation processes. A variety of de-

racemisation and transaminase biotransformation processes were investigated and 

multivariate models constructed for the quantification of key analyte concentrations 

in each of these systems. Contributors to the constructed models were also evaluated 

to ensure confidence in the predictions obtained from the model.  

 

The selective de-racemisation of racemic TBG to produce TMP and the pure 

enantiomer of L-TBG was investigated for potential monitoring using infrared 

spectroscopy. Examination of the near infrared spectrum obtained of a sample of 

pure TBG and TMP suggested there was insufficient variation within the acquired 

spectra for the construction of a reliable and robust model. Within the mid infrared 

region, a number of points of difference were observed in the obtained pure 

component spectra. A number of replicates of the process were carried out and a 

multivariate model constructed and externally validated based on the spectra between 

900 cm-1 and 1620 cm-1. The resulting model returned errors of prediction that were 

comparable with the errors of calibration and cross validation obtained for the model 

(4.5). Examination of the contributors to the model suggested that even although 

there was a stoichiometric linkage between the two analytes of interest, the resulting 

model was able to independently predict TBG and TMP concentrations (4.6). 

 

The de-racemisation of racemic ABA, by conversion of D-ABA to KBA, using the 

D-amino acid oxidase enzyme contained within a host Pichia pastoris cell was also 

investigated as a potential process of interest for spectroscopic monitoring. With this 

particular process there appeared to be some subtle variations observed between the 

spectra obtained of ABA and KBA. Steps were taken to ensure the stoichiometric 

links within the system were broken from the outset by varying the initial 

concentrations of ABA and KBA present at the start of each biotransformation 
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replicate. Near infrared models were constructed based on the first overtones region, 

combination bands region and both of these regions. The models were then 

externally validated using an additional two process replicates (5.6.1). Models 

incorporating the combination bands region returned the best errors of prediction for 

the unseen process replicates. Inclusion of this region therefore restricted the 

technique to an at-line application as this region was unavailable when using in-situ 

near infrared. Models based on the mid infrared region were also constructed for this 

biotransformation process. The best model, returning the lowest errors of prediction 

for the validation datasets, utilised the spectroscopic regions identified by a genetic 

algorithm (5.7.3.2). Compared with the near infrared models the errors associated 

with the ABA component were lower than the comparable near infrared model. 

Values for KBA were marginally higher however there was a greater degree of 

confidence in this model due to the number of more unique spectral features 

observed. Examination of the regression coefficients associated with the model also 

suggested any issues of co-linearity within the system had been addressed. 

 

At-line models for quantification of the two key analytes in the TBG/TMP and 

ABA/KBA biotransformation processes based on the mid infrared spectra had been 

constructed and validated. Whilst these models demonstrated the feasibility of 

utilising this region, ideally the in-situ application of the technique would be 

preferred from a process monitoring and control perspective. Using a diamond in-situ 

mid infrared ATR probe the de-racemisation of alanine using the D-amino acid 

oxidase enzymes was investigated. Models for the quantification of alanine during 

the biotransformation process were constructed and externally validated. This 

particular system returned the lowest errors of calibration, cross validation and 

prediction observed for any of the biotransformation processes investigated (6.5.2.3). 

In the case of this particular process the other analytes of interest within the system 

were not monitored. This was not due to limitations with the spectroscopy but due to 

side reactions occurring during the process involving one of the analytes of interest 

followed by utilisation of the product by the cells, making quantification using the 

developed reference methods difficult. 
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Investigation of the de-racemisation biotransformation processes has demonstrated 

that infrared spectroscopy, particularly mid infrared spectroscopy, can be utilised to 

monitor biotransformation processes. This represented application of the technique 

both at-line and in-situ to a challenging process both in terms of chemical complexity, 

due to the stoichiometric relationships between the samples and the structural 

similarities between the two compounds, as well as spectroscopic complexity that 

results from the light scattering nature of the cellular material. One of the key 

outcomes from these processes was the requirement to take sufficient steps to break 

co-linearity within the system ensuring the constructed model was able to 

independently quantify concentrations of the analytes of interest. This requirement 

was further emphasised when the transaminase class of biotransformation processes 

were investigated. 

 

The transaminase biotransformation process highlighted a number of important 

points when attempting to use spectroscopy to monitor biotransformation processes. 

In common with many of the other biotransformation processes the close structural 

similarities between the analytes of interest meant the narrower, more specific 

signals found in the mid infrared region were required. Models were constructed 

from several replicates of the biotransformation process. However within these 

replicates the stoichiometric linkages were not broken by design (8.5.1). This 

resulted in the constructed models failing to accurately predict the analyte 

concentrations of the unseen validation datasets, due to co-linearity within the system. 

Retrospective spiking of the samples to break these stoichiometric links highlighted 

another important issue for the application of spectroscopic techniques to monitor 

bioprocesses. The nature of the bioprocess samples resulted in the degradation of the 

quality of ATR crystal over a period of time ultimately requiring replacement. 

Different crystals will have slightly different optical properties and so result in 

variations in the acquired spectra. These small variations in spectral features 

introduced a further source of error into the model thereby resulting in a failure of 

the model to accurately predict concentrations of the analytes of interest. Various 

instrument standardisation approaches were considered in an attempt to standardise 

the spectra from both crystals and construct a quantitative model for the system 
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(8.5.3). None of the algorithms utilised resulted in a calibration transfer procedure 

that returned the expected results. The reason behind this was most likely the 

samples utilised to generate the transfer parameters. Actual samples were utilised 

however these were of unknown stability over any time period. This highlighted the 

importance of acquiring the spectrum of samples that are known to be stable over a 

long time period. These samples can be acquired each time there was a change in 

crystal or maintenance operation that resulted in a change to the instruments 

performance and used in determining the transfer parameters. 

 

The results presented have demonstrated the feasibility in applying infrared 

spectroscopic techniques as a potential method for the monitoring and control of 

biotransformation processes. Many of the processes investigated were still under 

development and not mature processes. This may have hindered the modelling 

process due to changes and process improvements that have occurred during the data 

collection exercise. Regardless of this successful models able to predict the key 

analyte concentrations in external validation datasets have been constructed. This has 

demonstrated the suitability of the approach that can then be applied to the 

construction of reliable and robust models for an optimised biotransformation 

process.
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10. Future Work 
 

Generally, many of the models constructed for the various biotransformation 

processes investigated were constructed based on a limited dataset. All the models 

presented would see an improvement in the associated errors by increasing the 

population of the calibration dataset.  

 

Improvements to the method by which the amino acid content in the samples was 

determined would also result in an improvement to the errors of calibration and 

prediction of the constructed models. As the currently employed method requires a 

derivatisation stage, this introduces an additional error into the model that would be 

reduced if a direct determination method were available. Other approaches to 

quantifying the amino acid content of the samples such as capillary electrophoresis 

or liquid chromatography mass spectrometry (LC/MS) should be considered to 

improve the constructed models. 

 

The model constructed for the de-racemisation of TBG biotransformation process 

relied heavily on the fact that variations in the initial concentrations of TBG and 

TMP were present in the substrate as a result of the batch preparation of substrate. 

Whilst this did appear to be sufficient to break co-linearity within the system a more 

structured approach, such as utilising a DoE to ensure independent initial 

concentrations of these analyte concentrations, would improve the robustness of a 

constructed model. The failure of the model to accurately predict the concentrations 

in two off-site replicates of the biotransformation process should be further 

investigated, to determine why this particular model failed and, if appropriate and 

industrially relevant, reconstruct the model so this could be achieved. 

 

Models constructed based on the mid infrared region for the de-racemisation of ABA 

returned good errors of prediction for two unseen validation datasets. Attempts to 

predict an off-site replicate with this model appeared to start well initially but the 

model failed to accurately predict the latter concentrations. Further replicates of the 
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process should be carried out off-site to determine if this model could be used to 

predict the ABA and KBA concentrations of a process carried out in a different 

system and location. The at-line model served as a proof of concept; ideally an in-

situ model for this process should be pursued. 

 

Using the in-situ mid infrared system, a model was constructed for the quantification 

of alanine over the course of the biotransformation process. Side reactions within the 

system and the apparent utilisation of products by the cells prevented quantification 

of further analytes using this model. Improved reference analysis methods with lower 

limits of detection should be investigated in an attempt to add the ability to monitor 

these components to the model. Further replicates of the process should be carried 

out to improve the model and application of the technique for control applications 

also investigated. 

 

Attempts to use pattern recognition approaches to determine the stage of a 

submerged culture fermentation process appeared feasible. Further replicates of the 

fermentation process should be carried out using the spectroscopic measurements 

and the artificial neural network as a means of identifying the stage of the process to 

try and eliminate the carbon limitation stages experienced. Overall the use of the 

spectroscopic approach would be expected to result in the desired biomass 

concentrations being reached in a shorter time frame but with the production of 

similar levels of enzyme following the induction phase of the process. 

 

With the spectral data currently available there is limited scope for further 

progression with models for the transaminase biotransformation process. Ideally a 

series of stable standards would be acquired on both the original and new ATR 

crystal and the various transfer algorithms investigated to try and calculate a more 

successful set of transfer parameters. Given the damaged state of the original crystal 

the acquisition of such standards would not be possible. Alteration of the samples by 

varying the initial concentrations of the analytes of interest in the system 

independently of each other has proven to be an effective method of addressing co-

linearity within the system. Given these difficulties it may be more appropriate to 
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consider acquiring the spectrum of the stable sample materials on the current ATR 

crystal and then retaining these samples for acquisition on a new ATR crystal when 

replacement of the crystal was required. Due to the optical differences between 

spectra in order to construct a quantitative model for the system the 

biotransformation process would need to be re-run this time ensuring that co-

linearity had been adequately addressed. 

 

The results presented confirmed that mid infrared spectroscopy was suitable as a 

method of quantifying the key analytes in these biotransformation processes both at-

line and in-situ. The next logical progression would be to apply the technique in-situ 

to a mature process on an industrial scale. 



 307 

11. References  
 

1. D. J. Cordato, L. E. Mather and G. K. Herkes, Journal of Clinical 

Neuroscience, 2003, 10, 649-654. 

2. I. Fotheringham, I. Archer, R. Carr, R. Speight and N. J. Turner, Biochem Soc 

T, 2006, 34, 287-290. 

3. L. Pollegioni, K. Diederichs, G. Molla, S. Umhau, W. Welte, S. Ghisla and M. 

S. Pilone, J. Mol. Biol., 2002, 324, 535-546. 

4. T. S. Hwang, H. M. Fu, L. L. Lin and W. H. Hsu, Biotechnol. Lett., 2000, 22, 

655-658. 

5. V. I. Tishkov and S. V. Khoronenkova, Biochem.-Moscow, 2005, 70, 40-54. 

6. F. D. A. U.S. Department of Health and Human Services, Rockville, MD, 

2004. 

7. D. Landgrebe, C. Haake, T. Hopfner, S. Beutel, B. Hitzmann, T. Scheper, M. 

Rhiel and K. F. Reardon, Appl. Microbiol. Biotechnol., 2010, 88, 11-22. 

8. W. Chew and P. Sharratt, Analytical Methods, 2010, 2, 1412-1438. 

9. S. Gnoth, M. Jenzsch, R. Simutis and A. Lubbert, J. Biotechnol., 2007, 132, 

180-186. 

10. F. Mavituna and C. G. Sinclair, in Practical fermentation technology, eds. B. 

McNeil and M. Harvey Linda, Chichester, England ; Hoboken, NJ : Wiley, 

2008, pp. 167-230. 

11. A. Liese and M. Villela, Curr. Opin. Biotechnol., 1999, 10, 595-603. 

12. J. Tramper, Biotechnol. Bioeng., 1996, 52, 290-295. 

13. S. E. Milner and A. R. Maguire, ARKIVOC (Gainesville, FL, U. S.), 2012, 

321-382. 

14. G. Matthews, in Practical fermentation technology, eds. B. McNeil and L. M. 

Harvey, Chichester, England ; Hoboken, NJ : Wiley, 2008. 

15. L. M. Prescott, J. P. Harley and D. A. Klein, Microbiology, McGraw-Hill, 

Boston, 2002. 



 308 

16. G. Macaloney, I. Draper, J. Preston, K. B. Anderson, M. J. Rollins, B. G. 

Thompson, J. W. Hall and B. McNeil, Food Bioprod. Process., 1996, 74, 

212-220. 

17. A. E. Cervera, N. Petersen, A. E. Lantz, A. Larsen and K. V. Gernaey, 

Biotechnol. Prog., 2009, 25, 1561-1581. 

18. A. G. Cavinato, D. M. Mayes, Z. H. Ge and J. B. Callis, Anal. Chem., 1990, 

62, 1977-1982. 

19. S. Vaidyanathan, G. Macaloney, J. Vaughn, B. McNeil and L. M. Harvey, 

Crit. Rev. Biotechnol., 1999, 19, 277-316. 

20. S. Vaidyanathan and B. McNeil, Eur. Pharm. Rev., 1998, 43-48. 

21. M. Scarff, S. A. Arnold, L. M. Harvey and B. McNeil, Crit. Rev. Biotechnol., 

2006, 26, 17-39. 

22. J. W. Hall and A. Pollard, 24th Annual Oak Ridge Conf on Advanced 

Analytical Concepts for the Clinical Laboratory - Less Invasive 

Technologies : From Fingersticks to Implantables, San Diego, Ca, 1992. 

23. M. Navratil, A. Norberg, L. Lembren and C. F. Mandenius, J. Biotechnol., 

2005, 115, 67-79. 

24. J. W. Hall, B. McNeil, M. J. Rollins, I. Draper, B. G. Thompson and G. 

Macaloney, Appl. Spectrosc., 1996, 50, 102-108. 

25. S. A. Arnold, R. Gaensakoo, L. M. Harvey and B. McNeil, Biotechnol. 

Bioeng., 2002, 80, 405-413. 

26. G. Macaloney, J. W. Hall, M. J. Rollins, I. Draper, K. B. Anderson, J. Preston, 

B. G. Thompson and B. McNeil, Bioprocess Eng., 1997, 17, 157-167. 

27. M. J. McShane and G. L. Cote, Appl. Spectrosc., 1998, 52, 1073-1078. 

28. S. Harthun, K. Matischak and P. Friedl, Biotechnol. Tech., 1998, 12, 393-397. 

29. M. J. Meurens, in Making light work : Advances in near infrared 

spectroscopy, eds. I. Murray and I. A. Cowe, V C H Publishers, New York, 

1992. 

30. G. Macaloney, J. W. Hall, M. J. Rollins, I. Draper, B. G. Thompson and B. 

McNeil, Biotechnol. Tech., 1994, 8, 281-286. 

31. I. Giavasis, I. Robertson, B. McNeil and L. M. Harvey, Biotechnol. Lett., 

2003, 25, 975-979. 



 309 

32. S. A. Arnold, J. Crowley, S. Vaidyanathan, L. Matheson, P. Mohan, J. W. 

Hall, L. M. Harvey and B. McNeil, Enzyme Microb. Technol., 2000, 27, 691-

697. 

33. S. Vaidyanathan, A. Arnold, L. Matheson, P. Mohan, G. Macaloney, B. 

McNeil and L. M. Harvey, Biotechnol. Prog., 2000, 16, 1098-1105. 

34. S. A. Arnold, L. Matheson, L. M. Harvey and B. McNeil, Biotechnol. Lett., 

2001, 23, 143-147. 

35. H. Chung, M. A. Arnold, M. Rhiel and D. W. Murhammer, Appl. Spectrosc., 

1996, 50, 270-276. 

36. M. R. Riley, M. Rhiel, X. J. Zhou, M. A. Arnold and D. W. Murhammer, 

Biotechnol. Bioeng., 1997, 55, 11-15. 

37. M. R. Riley, H. M. Crider, M. E. Nite, R. A. Garcia, J. Woo and R. M. 

Wegge, Biotechnol. Prog., 2001, 17, 376-378. 

38. M. R. Riley, M. A. Arnold, D. W. Murhammer, E. L. Walls and N. DelaCruz, 

Biotechnol. Prog., 1998, 14, 527-533. 

39. J. B. Holm-Nielsen, C. J. Lomborg, P. Oleskowicz-Popiel and K. H. 

Esbensen, Biotechnol. Bioeng., 2008, 99, 302-313. 

40. G. Vaccari, E. Dosi, A. L. Campi, A. Gonzalezvara, D. Matteuzzi and G. 

Mantovani, Biotechnol. Bioeng., 1994, 43, 913-917. 

41. Z. H. Ge, A. G. Cavinato and J. B. Callis, Anal. Chem., 1994, 66, 1354-1362. 

42. D. C. Hassell and E. M. Bowman, Appl. Spectrosc., 1998, 52, 18A-29A. 

43. G. Steiner, in Handbook of spectroscopy, eds. W. R. James and C. Chemical 

Rubber, Cleveland : CRC Press, 1974. 

44. S. A. Arnold, L. M. Harvey, B. McNeil and J. W. Hall, Biopharm. Int., 2002, 

15, 26-+. 

45. J. Andrews and P. Dallin, Spectroscopy Europe, 2003, 15, 27-30. 

46. P. Roychoudhury, R. O'Kennedy, B. McNeil and L. M. Harvey, Anal. Chim. 

Acta, 2007, 590, 110-117. 

47. N. Petersen, P. Odman, A. E. C. Padrell, S. Stocks, A. E. Lantz and K. V. 

Gernaey, Biotechnol. Prog., 2010, 26, 263-271. 

48. E. Tamburini, G. Vaccari, S. Tosi and A. Trilli, Appl. Spectrosc., 2003, 57, 

132-138. 



 310 

49. S. A. Arnold, J. Crowley, N. Woods, L. M. Harvey and B. McNeil, in 

Biotechnol. Bioeng., 2003, vol. 84, pp. 13-19. 

50. N. C. Crabb and P. W. B. King, in Process analytical chemistry, eds. R. K. 

Bruce and F. McLennan, London : Blackie Academic & Professional, 1995. 

51. P. Roychoudhury, B. McNeil and L. M. Harvey, Anal. Chim. Acta, 2007, 585, 

246-252. 

52. P. Roychoudhury, L. M. Harvey and B. McNeil, Anal. Chim. Acta, 2006, 561, 

218-224. 

53. J. Crowley, B. McCarthy, N. S. Nunn, L. M. Harvey and B. McNeil, 

Biotechnol. Lett., 2000, 22, 1907-1912. 

54. P. Roychoudhury, L. M. Harvey and B. McNeil, Anal. Chim. Acta, 2006, 571, 

159-166. 

55. G. Mazarevica, J. Diewok, J. R. Baena, E. Rosenberg and B. Lendl, Appl. 

Spectrosc., 2004, 58, 804-810. 

56. D. L. Doak and J. A. Phillips, Biotechnol. Prog., 1999, 15, 529-539. 

57. V. Acha, M. Meurens, H. Naveau and S. N. Agathos, Biotechnol. Bioeng., 

2000, 68, 473-487. 

58. Y. Raichlin and A. Katzir, Appl. Spectrosc., 2008, 62, 55A-72A. 

59. H. Benson, University physics, New York : John Wiley, 1996. 

60. P. Fayolle, D. Picque, B. Perret, E. Latrille and G. Corrieu, Appl. Spectrosc., 

1996, 50, 1325-1330. 

61. S. Sivakesava, J. Irudayaraj and D. Ali, Process Biochem., 2001, 37, 371-378. 

62. S. Sivakesava, J. Irudayaraj and A. Demirci, J. Ind. Microbiol. Biotechnol., 

2001, 26, 185-190. 

63. V. G. Franco, J. C. Perin, V. E. Mantovani and H. C. Goicoeche, Talanta, 

2006, 68, 1005-1012. 

64. J. Schenk, I. W. Marison and U. von Stockar, J. Biotechnol., 2007, 128, 344-

353. 

65. F. Yu, W. J. Wadsworth and J. C. Knight, Opt. Express, 2012, 20, 11153-

11158. 

66. L. G. Grigorjeva, D. K. Millers, E. A. Kotomin, R. I. Eglitis and A. A. 

Lerman, Journal of Physics D-Applied Physics, 1996, 29, 578-583. 



 311 

67. P. Fayolle, D. Picque and G. Corrieu, Food Control, 2000, 11, 291-296. 

68. J. Schenk, I. W. Marison and U. von Stockar, Anal. Chim. Acta, 2007, 591, 

132-140. 

69. D. Y. Tseng, R. Vir, S. J. Traina and J. J. Chalmers, Biotechnol. Bioeng., 

1996, 52, 661-671. 

70. S. A. Arnold, L. M. Harvey, B. McNeil and J. W. Hall, Biopharm. Int., 2003, 

16, 47-+. 

71. S. Armenta, S. Garrigues, M. de la Guardia and P. Rondeau, Anal. Chim. 

Acta, 2005, 545, 99-106. 

72. M. G. Trevisan and R. J. Poppi, Talanta, 2008, 75, 1021-1027. 

73. C. L. Winder, R. Cornmell, S. Schuler, R. M. Jarvis, G. M. Stephens and R. 

Goodacre, Anal. Bioanal. Chem., 2011, 399, 387-401. 

74. A. Hayward, in Practical fermentation technology, eds. L. M. Harvey and 

MyiLibrary, Chichester, England ; Hoboken, NJ : Wiley, 2008. 

75. J. G. Rosas, M. Blanco, J. M. Gonzalez and M. Alcala, Talanta, 2012, 97, 

163-170. 

76. J. G. Henriques, S. Buziol, E. Stocker, A. Voogd and J. C. Menezes, in 

Optical sensor systems in biotechnology, Springer-Verlag Berlin, Berlin, 

2009, vol. 116, pp. 73-97. 

77. J. Dahlbacka, J. Weegar, N. von Weymarn and K. Fagervik, Biotechnol. Lett., 

2012, 34, 1009-1017. 

78. J. McMurry, Organic chemistry, Sixth edn., Brooks/Cole - Thomson 

Learning, Belmont, CA. 

79. M. R. Riley, C. D. Okeson and B. L. Frazier, Biotechnol. Prog., 1999, 15, 

1133-1141. 

80. B. Finn, L. M. Harvey and B. McNeil, Yeast, 2006, 23, 507-517. 

81. G. McLeod, K. Clelland, H. Tapp, E. K. Kemsley, R. H. Wilson, G. Poulter, 

D. Coombs and C. J. Hewitt, J. Food Eng., 2009, 90, 300-307. 

82. D. Awotwe-Otoo, A. S. Zidan, Z. Rahman and M. J. Habib, Aaps 

Pharmscitech, 2012, 13, 611-622. 

83. C. Ruckebusch, L. Duponchel and J. P. Huvenne, Chemometrics Intell. Lab. 

Syst., 2002, 62, 189-198. 



 312 

84. M. R. Riley, M. A. Arnold and D. W. Murhammer, Appl. Spectrosc., 1998, 

52, 1339-1347. 

85. S. Triadaphillou, E. Martin, G. Montague, A. Norden, P. Jeffkins and S. 

Stimpson, Biotechnol. Bioeng., 2007, 97, 554-567. 

86. S. Gnoth, R. Simutis and A. Lubbert, Eng. Life Sci., 2011, 11, 94-106. 

87. Z. P. Chen, L. J. Zhong, A. Nordon, D. Littlejohn, M. Holden, M. Fazenda, L. 

Harvey, B. McNeil, J. Faulkner and J. Morris, Anal. Chem., 2011, 83, 2655-

2659. 

88. E. Bouveresse and D. L. Massart, Vib. Spectrosc., 1996, 11, 3-15. 

89. J. Schenk, I. W. Marison and U. von Stockar, 13th Ruropean Congress on 

Biotechnology (ECB 13), Barcelona, SPAIN, 2007. 

90. J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic chemistry, 

Oxford : Oxford University Press, 2001. 

91. G. Strukul, Angewandte Chemie-International Edition, 1998, 37, 1199-1209. 

92. S. D. Doig, H. Simpson, V. Alphand, R. Furstoss and J. M. Woodley, Enzyme 

Microb. Technol., 2003, 32, 347-355. 

93. P. A. Bird, D. C. A. Sharp and J. M. Woodley, Org. Process Res. Dev., 2002, 

6, 569-576. 

94. W. E. Huang, D. Hopper, R. Goodacre, M. Beckmann, A. Singer and J. 

Draper, J. Microbiol. Methods, 2006, 67, 273-280. 

95. M. R. Dadd, D. C. A. Sharp, A. J. Pettman and C. J. Knowles, J. Microbiol. 

Methods, 2000, 41, 69-75. 

96. S. Macauley-Patrick, S. A. Arnold, B. McCarthy, M. Harvey Linda and B. 

McNeil, Biotechnol Lett, 2003, 25, 257-260. 

97. S. Beutel and S. Henkel, Appl. Microbiol. Biotechnol., 2011, 91, 1493-1505. 

98. R. Ulber, J. G. Frerichs and S. Beutel, Anal. Bioanal. Chem., 2003, 376, 342-

348. 

99. S. Kara, F. Anton, D. Solle, M. Neumann, B. Hitzmann, T. Scheper and A. 

Liese, J. Mol. Catal. B-Enzym., 2010, 66, 124-129. 

100. M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini and M. H. 

Ghezelaiagh, J. Photochem. Photobiol. B-Biol., 2010, 101, 313-320. 



 313 

101. T. Maskow, J. Lerchner, M. Peitzsch, H. Harms and G. Wolf, J. Biotechnol., 

2006, 122, 431-442. 

102. S. Wenda, S. Illner, A. Mell and U. Kragl, Green Chemistry, 2011, 13, 3007-

3047. 

103. M. Yagasaki and A. Ozaki, J. Mol. Catal. B-Enzym., 1998, 4, 1-11. 

104. T. D. Brock and M. T. Madigan, Biology of microorganisms, Pearson 

Prentice Hall, 2006. 

105. M. Garcia-Garcia, I. Martinez-Martinez, A. Sanchez-Ferrer and F. Garcia-

Carmona, Biotechnol. Prog., 2008, 24, 187-191. 

106. C. J. Wei, J. C. Huang and Y. P. Tsai, Biotechnol. Bioeng., 1989, 34, 570-574. 

107. W. Markle and S. Lutz, Electrochim. Acta, 2008, 53, 3175-3180. 

108. D. J. Ager, T. Li, D. P. Pantaleone, R. F. Senkpeil, P. P. Taylor and I. G. 

Fotheringham, J. Mol. Catal. B-Enzym., 2001, 11, 199-205. 

109. I. G. Fotheringham, N. Grinter, D. P. Pantaleone, R. F. Senkpeil and P. P. 

Taylor, Bioorg. Med. Chem., 1999, 7, 2209-2213. 

110. R. J. Hamilton and P. A. Sewell, Introduction to high performance liquid 

chromatography, Second edn., London Chapman and Hall, 1982. 

111. B. C. Smith, Fundamentals of fourier transform infrared spectroscopy, Boca 

Raton, FL : CRC Press, 2011. 

112. N. Sheppard, in Handbook of vibrational spectroscopy, eds. J. M. Chalmers 

and P. R. Griffiths, New York : J. Wiley, 2002. 

113. W. Kemp, Organic spectroscopy, Basingstoke : Macmillan, 1987. 

114. J. H. Van Der Maas, Basic infrared spectroscopy, Heyden & Son Ltd., 

London, 1969. 

115. D. H. Williams and I. Fleming, Spectroscopic methods in organic chemistry, 

Fifth edn., McGraw-Hill, 1966. 

116. J. M. Hollas, Basic atomic and molecular spectroscopy, Cambridge : Royal 

Society of Chemistry, 2002. 

117. W. Brugel, An introduction to infrared spectroscopy, Methuen & Co Ltd, 

London, 1962. 

118. J. N. Miller and J. C. Miller, Statistics and chemometrics for analytical 

chemistry, Prentice Hall, Harlow, England ; New York, 2000. 



 314 

119. P. Gemperline, Practical guide to chemometrics, Boca Raton : 

Taylor&Francis, 2006. 

120. B. M. Wise and B. R. Kowalski, Process analytical chemistry, London : 

Blackie Academic & Professional, 1995. 

121. C. M. Gryniewicz-Ruzicka, S. Arzhantsev, L. N. Pelster, B. J. Westenberger, 

L. F. Buhse and J. F. Kauffman, Appl. Spectrosc., 2011, 65, 334-341. 

122. E. Bouveresse, C. Casolino and C. de la Pezuela, J. Pharm. Biomed. Anal., 

1998, 18, 35-42. 

123. W. Du, Z. P. Chen, L. J. Zhong, S. X. Wang, R. Q. Yu, A. Nordon, D. 

Littlejohn and M. Holden, Anal. Chim. Acta, 2011, 690, 64-70. 

124. Y. F. Ge, C. L. S. Morgan, S. Grunwald, D. J. Brown and D. V. Sarkhot, 

Geoderma, 2011, 161, 202-211. 

125. J. S. Clark, P. B. Hodgson, M. D. Goldsmith and L. J. Street, J. Chem. Soc.-

Perkin Trans. 1, 2001, 3312-3324. 

126. V. J. K. Svedas, I. J. Galaev, I. L. Borisov and I. V. Berezin, Anal. Biochem., 

1980, 101, 188-195. 

127. J. Cazes, Encyclopedia of chromatography, CRC, 2004. 

128. M. Roth, Anal. Chem., 1971, 43, 880-&. 

129. O. S. Wong, L. A. Sternson and R. L. Schowen, J. Am. Chem. Soc., 1985, 

107, 6421-6422. 

130. R. M. C. Dawson, D. C. Elliott, W. H. Elliott and K. M. Jones, Data for 

biochemical research, Oxford : Clarendon Press, 1986. 

131. J. Robinson, W. , E. Skelly Frame, M. and G. Frame II, M., Undergraduate 

instrumental analysis, Sixth edn., Marcel Dekker, New York, 2005. 

132. D. L. Massart, B. G. M. Vandeginste, S. N. Deming, Y. Michotte and L. 

Kaufman, Chemometrics : A textbook, Elsevier, Amsterdam, 1988. 

133. I. Voulgaris, PhD Thesis, University of Strathclyde, 2011. 

134. N. R. Abu-Absi, B. M. Kenty, M. E. Cuellar, M. C. Borys, S. Sakhamuri, D. J. 

Strachan, M. C. Hausladen and Z. J. Li, Biotechnol. Bioeng., 2011, 108, 

1215-1221. 

135. J. J. Muller, M. Neumann, P. Scholl, L. Hilterhaus, M. Eckstein, O. Thum 

and A. Liese, Anal. Chem., 2010, 82, 6008-6014. 



 315 

136. M. Ehly, P. J. Gemperline, A. Nordon, D. Littlejohn, J. K. Basford and M. De 

Cecco, Anal. Chim. Acta, 2007, 595, 80-88. 

137. T. S. Irvine, in Fermentation : A practical approach, eds. B. McNeil and L. 

M. Harvey, Oxford, England : IRL Press, 1990. 

138. A. H. Harvey, S. G. Kaplan and J. H. Burnett, Int. J. Thermophys., 2005, 26, 

1495-1514. 

139. L. H. Garciarubio, Macromolecules, 1992, 25, 2608-2613. 

140. B. H. Junker and H. Y. Wang, Biotechnol. Bioeng., 2006, 95, 226-261. 

141. V. Artyushenko, A. Bocharnikov, G. Colquhoun, C. Leach, V. Lobache, T. 

Sakharova and D. Savitsky, Vib. Spectrosc., 2008, 48, 168-171. 

142. C. B. Minnich, P. Buskens, H. C. Steffens, P. S. Bauerlein, L. N. Butvina, L. 

Kupper, W. Leitner, M. A. Liauw and L. Greiner, Org. Process Res. Dev., 

2007, 11, 94-97. 

143. L. Kupper, H. M. Heise and L. N. Butvina, J. Mol. Struct., 2001, 563, 173-

181. 

144. Z. P. Chen, D. Lovett and J. Morris, J. Process Control, 2011, 21, 1467-1482. 

145. A. Eisenberg, J. E. Seip, J. E. Gavagan, M. S. Payne, D. L. Anton and R. 

DiCosimo, J. Mol. Catal. B-Enzym., 1997, 2, 223-232. 

146. E. D. Guerrero, R. C. Mejias, R. N. Marin, M. P. Lovillo and C. G. Barroso, J. 

Sci. Food Agric., 2010, 90, 712-718. 

147. H. Jiang, G. H. Liu, X. H. Xiao, S. Yu, C. L. Mei and Y. H. Ding, Food Anal. 

Meth., 2012, 5, 928-934. 

148. J. R. Lucio-Gutierrez, J. Coello and S. Maspoch, Food Res. Int., 2011, 44, 

557-565. 

149. B. Lyons, in IFPAC, Baltimore, MD, 2010, p. 105. 

150. S. L. Hennigan, J. D. Driskell, N. Ferguson-Noel, R. A. Dluhy, Y. P. Zhao, R. 

A. Tripp and D. C. Krause, Appl. Environ. Microbiol., 2012, 78, 1930-1935. 

151. P. Negri, A. Kage, A. Nitsche, D. Naumann and R. A. Dluhy, Chem Commun, 

2011, 47, 8635-8637. 

152. B. Lennox, G. A. Montague, A. M. Frith, C. Gent and V. Bevan, J. Process 

Control, 2001, 11, 497-507. 



 316 

153. D. M. Hawkins, Journal of Chemical Information and Computer Sciences, 

2004, 44, 1-12. 

 

 

 



 317 

Appendix I 
 

T distribution used in the calculation of the error associated with the reference 

analysis methods as obtained from Miller & Miller (2000).118 

 

Degrees of 

Freedom Confidence Interval 

(n-1) 90% 95% 98% 99% 

     1 6.31 12.71 31.82 63.66 

2 2.92 4.30 6.96 9.92 

3 2.35 3.18 4.54 5.84 

4 2.13 2.78 3.75 4.60 

5 2.02 2.57 3.36 4.03 

6 1.94 2.45 3.14 3.71 

7 1.89 2.36 3.00 3.50 

8 1.86 2.31 2.90 3.36 

9 1.83 2.26 2.82 3.25 

10 1.81 2.23 2.76 3.17 

12 1.78 2.18 2.68 3.05 

14 1.76 2.14 2.62 2.98 

16 1.75 2.12 2.58 2.92 

18 1.73 2.10 2.55 2.88 

20 1.72 2.09 2.53 2.85 

30 1.70 2.04 2.46 2.75 

50 1.68 2.01 2.40 2.68 

∞ 1.64 1.96 2.33 2.58 
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Appendix II 
 

11.1 TMP Validation Data 
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Concentration Peak Area Predicted (Actual-Predicted) (Actual-Predicted)2

1.06 15800492 1.04 -0.02 0.00
1.06 15787175 1.03 -0.03 0.00
1.06 15811747 1.04 -0.02 0.00
2.12 30663740 2.05 -0.07 0.00
2.12 30598392 2.05 -0.07 0.01
2.12 30618016 2.05 -0.07 0.00
4.24 62102028 4.20 -0.04 0.00
4.24 61823092 4.18 -0.06 0.00
4.24 61988812 4.20 -0.04 0.00
6.36 93160696 6.33 -0.03 0.00
6.36 94200664 6.40 0.04 0.00
6.36 94370192 6.41 0.05 0.00
8.48 128007288 8.71 0.23 0.05
8.48 128198096 8.73 0.25 0.06
8.48 127996000 8.71 0.23 0.05
10.6 157427744 10.73 0.13 0.02
10.6 157246736 10.71 0.11 0.01
10.6 157713872 10.74 0.14 0.02
11.66 171025840 11.66 0.00 0.00
11.66 171345472 11.68 0.02 0.00
11.66 171507904 11.69 0.03 0.00
12.72 182566736 12.45 -0.27 0.08
12.72 182940640 12.47 -0.25 0.06
12.72 182954288 12.47 -0.25 0.06

Sum (Actual-Predicted)2 0.45  
Equation: Y = 14616520x + 662782. 

 

!"#$ = ! !"#$%& − !"#$%&'#$ !

!  

!"#$ = ! 0.45
24 = 0.14 
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True 

Concentration 

(mMol dm-3) Peak Area 

Predicted 

Concentration 

(mMol dm-3) 

   8.48 128926344 8.78 

8.48 128785432 8.77 

8.48 128518472 8.75 

8.48 128807808 8.77 

8.48 129614800 8.82 

8.48 129914672 8.84 

8.48 129834528 8.84 

8.48 129668104 8.83 

8.48 129984224 8.85 

8.48 129348472 8.80 

   Mean 129340285.6 8.80 

Std Dev 538502.2624 0.04 

 

 

! = ! ± ! !! 

! = 8.80± 2.26 0.0410  

! = 8.80± 0.03 

 

!"#$%!!""#" = ! !""#"!1! + !""#"!2! 

!"#$%!!""#" = ! 0.14! + 0.03! 

!"#$%!!""#" = ±0.14 mMol dm-3 
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11.2 ABA Validation Data 
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Equation: Y=12732193x + 878652 

 

!"#$ = ! 0.59
18 = 0.18 
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True 

Concentration 

(mMol dm-3) Peak Area 

Predicted 

Concentration 

(mMol dm-3) 

   5.25 70905120 5.50 

5.25 73146960 5.68 

5.25 70994912 5.51 

5.25 71366744 5.54 

5.25 72031424 5.59 

5.25 73032376 5.67 

5.25 72790480 5.65 

5.25 72105920 5.59 

5.25 73433824 5.70 

5.25 70190456 5.44 

   Mean 71999821.6 5.59 

Std Dev 1103462.243 0.09 

 

! = 5.59± 2.26 0.0910  

! = 5.59± 0.06 

 

!"#$%!!""#" = ! 0.18! + 0.06! 

!"#$%!!""#" = ±0.19!mMol!dm− 3 
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11.3 Keto Butyric Acid 
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Equation: Y = 32824x – 2376.9 

 

!"#$ = ! 0.11
24 = 0.07 

 

Concentration Peak Area Predicted (Actual - Predicted) (Actual - Predicted)2

0.6 15620 0.55 0.05 0.00
0.6 16855 0.59 0.01 0.00
0.6 16069 0.56 0.04 0.00
1.2 35575 1.16 0.04 0.00
1.2 36195 1.18 0.02 0.00
1.2 36299 1.18 0.02 0.00
2.4 78544 2.47 -0.07 0.00
2.4 79692 2.50 -0.10 0.01
2.4 78841 2.47 -0.07 0.01
4.8 155900 4.82 -0.02 0.00
4.8 154922 4.79 0.01 0.00
4.8 156339 4.84 -0.04 0.00
7.2 229696 7.07 0.13 0.02
7.2 231285 7.12 0.08 0.01
7.2 231795 7.13 0.07 0.00
9.6 317037 9.73 -0.13 0.02
9.6 313383 9.62 -0.02 0.00
9.6 315103 9.67 -0.07 0.01
12.0 393633 12.06 -0.06 0.00
12.0 394117 12.08 -0.08 0.01
12.0 393485 12.06 -0.06 0.00
13.2 427732 13.10 0.10 0.01
13.2 428494 13.13 0.07 0.01
13.2 428420 13.12 0.08 0.01

Sum (Actual-Predicted)2 0.11
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! = 6.19± 2.26 0.0310  

! = 6.19± 0.02 

 

!"#$%!!""#" = ! 0.07! + 0.02! 

!"#$%!!""#" = ±0.07!mMol!dm− 3 

 

True Concentration Peak Area Predicted Concentration

6 200998 6.195915023
6 201571 6.213371743
6 198389 6.116430585
6 201825 6.221109975
6 199669 6.1554264
6 200134 6.169592848
6 200774 6.189090755
6 202245 6.233905476
6 200272 6.173797084
6 201542 6.212488244

Mean 6.188112813
Std. Dev 0.035330911
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11.4 L-alanine & Compound B Validation Data. 
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L-Alanine

Concentration Peak Area Predicted (Actual - Predicted) (Actual - Predicted)2

2.47 23333426 2.58 -0.11 0.01
2.47 24915686 2.73 -0.26 0.07
2.47 24036506 2.65 -0.18 0.03
3.71 35964464 3.77 -0.06 0.00
3.71 35862616 3.76 -0.05 0.00
3.71 34802784 3.66 0.05 0.00
4.94 46343064 4.74 0.20 0.04
4.94 46360780 4.74 0.20 0.04
4.94 47470852 4.84 0.10 0.01
6.18 60066884 6.02 0.16 0.03
6.18 60330764 6.04 0.14 0.02
6.18 61294136 6.13 0.05 0.00
8.65 84360272 8.29 0.36 0.13
8.65 86162672 8.46 0.19 0.04
8.65 88259024 8.66 -0.01 0.00
9.88 103652072 10.10 -0.22 0.05
9.88 105487040 10.27 -0.39 0.15
9.88 103304544 10.06 -0.18 0.03

Sum (Actual - Predicted)2 0.66

Compound B

Concentration Peak Area Predicted (Actual - Predicted) (Actual - Predicted)2

2.18 30053402 2.05 0.13 0.02
2.18 32510218 2.23 -0.05 0.00
2.18 31356096 2.15 0.03 0.00
3.27 47770312 3.36 -0.09 0.01
3.27 47591276 3.35 -0.08 0.01
3.27 45508780 3.19 0.08 0.01
4.36 59092804 4.19 0.17 0.03
4.36 59178840 4.20 0.16 0.03
4.36 62030292 4.41 -0.05 0.00
5.45 78075936 5.60 -0.15 0.02
5.45 76407976 5.47 -0.02 0.00
5.45 78122688 5.60 -0.15 0.02
7.63 107650400 7.78 -0.15 0.02
7.63 108132040 7.82 -0.19 0.04
7.63 106080152 7.67 -0.04 0.00
8.72 119837872 8.68 0.04 0.00
8.72 119347544 8.65 0.07 0.01
8.72 116424944 8.43 0.29 0.08

Sum (Actual - Predicted)2 0.29
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Equation (L-alanine): Y = 10693842 x – 4304087 

Equation (Compound B): Y = 13534860 x + 2314483 

 

 

!"#$ = ! 0.66
18 = 0.19 !"#$ = ! 0.29

18 = 0.13 

 

 
 

! = 5.11± 2.26 0.0910  

! = 5.11± 0.06 

 

!"#$%!!""#" = ! !""#"!1! + !""#"!2! 

!"#$%!!""#" = ! 0.19! + 0.06! 

!"#$%!!""#" = ±0.20!mMol!dm− 3 

 

 

 

! = 4.24± 2.26 0.1810  

! = 4.24± 0.13 

 

!"#$%!!""#" = ! !""#"!1! + !""#"!2! 

!"#$%!!""#" = ! 0.13! + 0.13! 

!"#$%!!""#" = ±0.18!mMol!dm− 3 

L-Alanine L-Alanine Compound B Compound B
Injection Concentration Predicted Concentration Predicted

1 4.94 5.26 4.36 4.48
2 4.94 5.18 4.36 4.38
3 4.94 5.21 4.36 4.46
4 4.94 5.04 4.36 4.14
5 4.94 5.04 4.36 4.22
6 4.94 5.13 4.36 4.31
7 4.94 5.13 4.36 4.25
8 4.94 4.98 4.36 3.96
9 4.94 5.03 4.36 4.01
10 4.94 5.14 4.36 4.19

Mean 5.11 Mean 4.24
Std Dev 0.09 Std Dev 0.18
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11.5 Compound A 
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Equation: Y = 31645 x – 34721. 

 

!"#$ = ! 7.78
18 = 0.66 

 

 

Concentration Peak Area Predicted (Actual - Predicted) (Actual - Predicted)2

5.2 142528 5.60 -0.40 0.16
5.2 145753 5.70 -0.50 0.25
5.2 143905 5.64 -0.44 0.20
13 374602 12.93 0.07 0.00
13 374075 12.92 0.08 0.01
13 375696 12.97 0.03 0.00
19.5 571608 19.16 0.34 0.12
19.5 568345 19.06 0.44 0.20
19.5 564945 18.95 0.55 0.30
26 759317 25.09 0.91 0.83
26 759626 25.10 0.90 0.81
26 765345 25.28 0.72 0.52
39 1234751 40.12 -1.12 1.24
39 1235194 40.13 -1.13 1.28
39 1235219 40.13 -1.13 1.28
65 1998051 64.24 0.76 0.58
65 2021668 64.98 0.02 0.00
65 2025243 65.09 -0.09 0.01

Sum (Actual - Predicted)2 7.78

True Concentration Peak Area Predicted Concentration

32.5 1033972 33.77
32.5 1037947 33.90
32.5 1033828 33.77
32.5 1033390 33.75
32.5 1021910 33.39
32.5 1021624 33.38
32.5 1014400 33.15
32.5 1014791 33.16
32.5 1016296 33.21
32.5 1011872 33.07

Mean 33.46
Std Dev 0.31
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! = 33.46± 2.26 0.3110  

! = 33.46± 0.22 

 

!"#$%!!""#" = ! 0.66! + 0.22! 

!"#$%!!""#" = ±0.70!mMol!dm− 3 
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11.6 Pyruvic Acid & Acetic Acid 

 

 
 



 334 

 
 

Equation (Pyruvic Acid): Y = 19312x – 38210 

Equation (Acetic Acid): Y = 7212x – 5644 

 

Pyruvic Acid

Concentration Peak Area Predicted (Actual - Predicted) (Actual - Predicted)2

16.52 335050 19.33 -2.81 7.88
16.52 335956 19.37 -2.85 8.15
16.52 344579 19.82 -3.30 10.89
41.3 515533 28.67 12.63 159.45
41.3 517648 28.78 12.52 156.70
41.3 517454 28.77 12.53 156.95
82.6 1693307 89.66 -7.06 49.81
82.6 1692240 89.60 -7.00 49.03
82.6 1684831 89.22 -6.62 43.81
123.9 2440417 128.34 -4.44 19.74
123.9 2447000 128.68 -4.78 22.88
123.9 2463243 129.52 -5.62 31.64
165.2 3266828 171.13 -5.93 35.21
165.2 3263171 170.94 -5.74 33.00
165.2 3269051 171.25 -6.05 36.59
206.5 3811041 199.31 7.19 51.65
206.5 3796538 198.56 7.94 63.01
206.5 3767867 197.08 9.42 88.78

Sum (Actual - Predicted)2 1025.16

Acetic Acid

Concentration Peak Area Predicted (Actual - Predicted) (Actual - Predicted)2
16.92 134262.00 19.40 -2.48 6.14
16.92 132449.00 19.15 -2.23 4.96
16.92 136432.00 19.70 -2.78 7.72
42.30 211591.00 30.12 12.18 148.36
42.30 210668.00 29.99 12.31 151.49
42.30 211670.00 30.13 12.17 148.09
84.60 648127.00 90.65 -6.05 36.55
84.60 645879.00 90.33 -5.73 32.88
84.60 647443.00 90.55 -5.95 35.41

126.90 948714.00 132.32 -5.42 29.40
126.90 947765.00 132.19 -5.29 27.99
126.90 947810.00 132.20 -5.30 28.06
169.20 1281727.00 178.49 -9.29 86.39
169.20 1280264.00 178.29 -9.09 82.66
169.20 1276733.00 177.80 -8.60 74.00
211.50 1452193.00 202.13 9.37 87.80
211.50 1447039.00 201.42 10.08 101.70
211.50 1432482.00 199.40 12.10 146.48

Sum (Actual - Predicted)2 1236.09
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!"# = ! 1025.16
18 = 7.55 !"#$ = ! 1236.09

18 = 8.30 

 

 
 

 

! = 206.57± 2.26 1.0910  

! = 206.57± 0.78 

 

!"#$%!!""#" = ! 7.55! + 0.78! 

!"#$%!!""#" = ±7.60!mMol!dm− 3 

 

! = 215.88± 2.26 0.7910  

! = 215.88± 0.56 

 

!"#$%!!""#" = ! 8.30! + 0.56! 

!"#$%!!""#" = ±8.31!mMol/

Replicate Peak Area Concentration Peak Area Concentration

1 3942646 206.13 1550965 215.82
2 3946789 206.34 1553671 216.20
3 3940474 206.02 1550228 215.72
4 3952378 206.63 1557491 216.73
5 3948105 206.41 1555188 216.41
6 4006909 209.46 1536681 213.84
7 3948366 206.42 1554851 216.36
8 3953829 206.71 1552082 215.98
9 3925736 205.25 1552491 216.04
10 3945901 206.30 1549923 215.68

Mean 206.57 Mean 215.88
Std. Dev. 1.09 Std. Dev. 0.79
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Appendix III 
 

 

Sample L-Alanine Spike Compound A Spike Compound B Spike Biotransformation
(mMol/L) (mMol/L) (mMol/L) Sample

1 113 0 16.8 ISB2-03
2 90 260 0 ISB2-04
3 113 0 0 ISB2-05
4 0 260 0 ISB2-06
5 45 260 77 ISB2-07
6 113 209 77 ISB2-08
7 90 104 0 ISB2-10
8 0 260 16.8 ISB2-11
9 45 0 27.6 ISB2-12
10 0 104 27.6 ISB3-01
11 113 260 27.6 ISB3-02
12 45 209 27.6 ISB3-03
13 90 260 77 ISB3-04
14 90 209 16.8 ISB3-05
15 90 0 0 ISB2-02
16 45 104 77 ISB3-06
17 0 0 27.6 ISB3-07
18 113 209 27.6 ISB3-08
19 90 104 16.8 ISB3-09
20 0 209 0 ISB3-10
21 45 0 0 ISB2-01
22 0 209 16.8 ISB3-11
23 45 104 16.8 ISB3-12
24 113 104 27.6 ISB3-14
25 0 0 77 ISB4-01
26 90 0 27.6 ISB4-02
27 0 104 77 ISB4-03
28 113 260 16.8 ISB4-04
29 90 104 77 ISB4-05
30 90 209 27.6 ISB4-06
31 113 209 0 ISB4-07
32 45 260 0 ISB4-08
33 113 104 0 ISB4-09
34 45 0 16.8 ISB5-01
35 113 0 77 ISB5-02
36 45 260 27.6 ISB5-03
37 113 260 77 ISB5-04
38 0 104 0 ISB5-05
39 0 0 16.8 ISB5-06
40 45 209 16.8 ISB5-07
41 113 104 16.8 ISB5-08
42 90 209 77 ISB5-11
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Direct standardisation, leverage sample selection new crystal to original crystal.  

 

 
 

Direct standardisation, inverse sample selection new crystal to original crystal.  
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Direct standardisation, inverse sample selection original crystal to new crystal. 

 

 
 

PDS, leverage sample selection new crystal to original crystal  
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PDS, inverse sample selection new crystal to original crystal  

 

 
 

PDS, inverse sample selection original crystal to new crystal  
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SST, leverage sample selection new crystal to original crystal. 

 

 
 

STT, inverse sample selection new crystal to original crystal. 
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SST, inverse sample selection original crystal to new crystal. 
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Algor-

ithm 

Transfer 

Parameters 

Transfer Latent 

Variables 

RMSEC (mMol dm-3) RMSECV (mMol dm-3) RMSEP (mMol dm-3) 

L-

alanine 

Cpd. A Cpd. B L-

alanine 

Cpd. A Cpd. B L-

alanine 

Cpd. A Cpd. B 

DS Leverage Old to New 5 39.9 57.8 32.4 41.2 60.4 33.7 85.9 69.8 24.4 

DS Leverage New to Old 3 53.0 63.2 29.9 54.9 65.9 30.9 51.6 47.7 38.0 

DS Inverse Old to New 5 55.6 109.4 40.2 59.6 115.7 41.7 69.1 45.1 33.7 

DS Inverse New to Old 5 59.1 114.3 38.4 61.6 119.6 39.4 131.2 148.5 89.8 

             

PDS Leverage Old to New 4 36.2 81.4 37.1 39.2 89.0 39.2 38.9 99.7 37.1 

PDS Leverage New to Old 5 58.6 81.3 47.7 60.4 88.0 49.9 68.4 80.5 36.6 

PDS Inverse Old to New 5 40.3 72.9 36.1 43.1 79.5 37.8 41.4 77.3 34.9 

PDS Inverse New to Old 5 65.7 84.7 48.0 69.9 92.6 49.6 71.3 56.2 34.1 

             

SST Leverage Old to New 6 56.4 92.6 29.6 60.8 99.5 30.6 65.6 86.5 41.6 

SST Leverage New to Old 6 57.0 103.0 28.6 61.7 110.3 29.2 62.2 103.6 43.1 

SST Inverse Old to New 6 53.8 86.5 27.5 57.4 94.1 28.3 65.4 124.9 40.5 

SST Inverse New to Old 6 54.0 86.5 27.5 57.7 94.1 28.2 65.0 124.3 36.5 



 


