
 

 

 

University of Strathclyde 
Department of Computer and Information Sciences 

 

PhD Computer Science 2019 

 

Closing the Gap Between Guidance and Practice 
An investigation of the relevance of design guidance to practitioners using object-oriented 

technologies 

 

Submitted by 

Jamie Stevenson 

 



i 
 

 

 

 

 

 

Abstract 

This thesis investigates if object oriented guidance is relevant in practice, and how this 

affects software that is produced.  

This is achieved by surveying practitioners and studying how constructs such as interfaces 

and inheritance are used in open-source systems. 

Surveyed practitioners framed ‘good design’ in terms of impact on development and 

maintenance. Recognition of quality requires practitioner judgement (individually and as a 

group), and principles are valued over rules. Time constraints heighten sensitivity to the 

rework cost of poor design decisions. 

Examination of open source systems highlights the use of interface and inheritance. There 

is some evidence of ‘textbook’ use of these structures, and much use is simple. Outliers are 

widespread indicating a pragmatic approach. Design is found to reflect the pressures of 

practice – high-level decisions justify ‘designed’ structures and architecture, while 

uncertainty leads to deferred design decisions – simpler structures, repetition, and 

unconsolidated design. Sub-populations of structures can be identified which may 

represent common trade-offs.  

Useful insights are gained into practitioner attitude to design guidance. Patterns of use and 

structure are identified which may aid in assessment and comprehension of object oriented 

systems. 
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1 Introduction 

Software is pervasive. Practically every interaction with modern infrastructure – from 

disposable devices to safety critical systems passes though software at some stage. 

However, the fast-moving disciplines producing software have not acquired the rigour and 

bureaucracy of the more traditional engineering disciplines. This is evidenced by the high 

rate of failure in software projects (Charette, 2005; Gartner Inc., 2010; Verner et al., 2008).  

1.1 Context 

Software quality is a multi-faceted attribute which can incorporate many aspects such as 

fitness for purpose, efficiency, maintainability, security, and stability (BSI, 2011; Kitchenham 

and Pfleeger, 1996). These properties can be traced to different parts of software 

production, including but not limited to – design methodologies, development or testing 

processes, static code analysis, tooling, and runtime artefacts. 

Quality concerns also arise from different stakeholders such as users, designers, and 

maintainers. Threats to quality can arise from the nature of software projects - successful 

software will change (Lehman and Ramil, 2003) and problems are often underspecified, or 

contain sources of uncertainty (Beck, 2014). This leads inevitably to questions about 

maintainability, including what kinds of system changes are easy to make, and why. 

These concerns about change influence a great deal of the design folklore.  Many design 

guidelines originate from fundamental concerns about ‘keeping things separated’, 

‘containing design decisions’, or ‘reuse of components’ (Gamma et al., 1994; Martin, 2000) 

– satisfying these concerns can incur design–time costs, in the hope that they will lower the 

cost of (possible) future changes. 

1.2 Problem 

“Should I use an interface here?” – Novice programmer 

This simple question could provoke several responses: 

• A simple ‘yes’ or ‘no’ based on the learning objectives of the exercise 

• A dogmatic response e.g. ‘always unless you have a reason not to’ 

• A consideration of the module structure of the program in question 

• Referring ’up’ to the system design – an interface may be ‘mandated’ by 

architecture 
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• Consideration of other team members and how system implementation has been 

split in to deliverable work tasks – the interface may be a ‘contract’ between 

contributors 

• A more general discussion on modularity, and what constitutes a ‘good’ interface 

• An analysis of the likelihood of change 

• Most commonly - ‘it depends…’ 

As design questions become more specific, it can be difficult to determine what general 

guidance applies, and gauge the relative importance of each guideline.  This problem is 

exacerbated by the fact that there can be ‘local’ concerns that are just as pressing as 

adherence to the guidelines enshrined in popular textbooks or introductory programming 

courses. These conflicts may be resolved with experience – however, this can make 

decisions difficult to justify or record. Issues can also arise when the structures available to 

a practitioner do not precisely match requirements. This is inevitable as high-level concepts 

must be translated down to the specific abstractions and low-level primitive structures 

offered by programming languages.  

Where does this leave novice programmers, or those teaching programming? Must each 

generation of programmers make the same mistakes to gain ‘experience’? 

1.3 Response 

This research aims to determine which design guidance is useful in practice, and how high-

level, generic guidance is balanced with low-level, project-specific concerns. Once this 

interaction is identified, production software will be examined for evidence of these 

compromises. 

Additionally, it is important to consider this problem from the other direction. Given a 

software artefact, what can be said about its quality?  Specifically, with regards to use of 

programming constructs such as interfaces and inheritance, and compliance with popular 

design guidance. 

The empirical literature is replete with metrics and modelling which can evaluate code to 

several decimal places. Metrics will always give an answer about the code they are applied 

to, even where an experienced practitioner may decide to wait for more information. Thus, 

it is as important to recognise where the cost of change is not, or cannot be justified, as it is 

to recognise where a change is required. 
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Research Objective: To close the gap between object oriented guidance and practice. 

Research Goals: 

A) Collect information on the usefulness of object-oriented design guidance to 

practitioners. 

B) Analyse object-oriented systems for evidence of compliance with design guidance. 

C) Develop advice for guideline application or refine existing guidelines based on 

actual use and practitioner attitudes (rather than argument from design). 

Thesis Question: Is it possible to close the gap between object-oriented design guidance 

and design practice by surveying practitioners and studying how constructs such as 

interfaces and inheritance are used in open-source systems?  

The contribution made by this thesis is that it helps close the gap between object-oriented 

design guidance and practice. It achieves this by i) discovering how practitioners approach 

design quality ii) discovering how interfaces are used in open-source Java systems, iii) 

discovering how inheritance is used in open-source systems, and iv) relating use back to 

practitioner sentiment and object-oriented design guidelines. 

While guidelines are taught and discussed as aspirational standards for design quality, there 

is no ‘theory of software design’ to help resolve conflicts between guidelines. Indeed, 

misapplication or over-application of guidance is noted as an expensive mistake by 

practitioners. Furthermore, many of the outliers examined are legitimate departures from 

what might be expected if guidance was followed by rote. These appear to be created 

when there is supporting information e.g. some known problem domain property, external 

dependency, or pattern. 

Guidance appears to fulfil two roles: Firstly, to ground high level design principles into 

actionable practices, evidenced by the adaption of guidance from older programming 

paradigms to the new. Secondly, to provide a fall-back in the absence of sufficient 

information for decision making, much like a least-harm principle.  

To bring guidance in line with practice requires a recognition that tolerances and norms 

vary between systems and developers – which makes a universal Entity Population Model 

(Kitchenham et al., 1995) seem unlikely, but suggests the possibility of local models for 

specific design elements. Additionally, when applying guidance it is important to distinguish 
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deliberate structure (essential complexity) from accumulations of ‘bad code’ which it is 

desirable to improve. 

Guiding Research Questions: 

The thesis question is broken down further: 

RQ1.1: What does it mean for software to be of high quality, or well-designed? Can 

definition(s) of ‘good design’ be derived from the attitudes and beliefs of experienced 

practitioners, and the structure of mature software systems? 

Survey responses were positive regarding the importance of design quality and recognition 

of principles, but there was less agreement on the meaning of quality, or the importance of 

the various guidelines. Practitioners indicated that there are limited resources available to 

address design quality concerns during development. Indicating that rather than constantly 

being in a pristine state, we might expect systems to be comprised of ‘designed parts’ 

where there is enough knowledge or confidence spend effort on more design, and 

‘everything else’ which is maintained at some ‘non-committal’ level pending further 

information or time.  

The use of important structures such as interfaces and inheritance varied wildly between 

systems, indicating that while principles may be universal, recognising deliberate design 

trade-off requires contextual information which may be missing from source code. 

RQ1.2: How are programming language constructs used in practice? Specifically, powerful, 

mature, and ubiquitous abstractions - such as interfaces and inheritance. 

The artefacts available to software practitioners are used to satisfy multiple constraints. 

This thesis studies interface and inheritance structures in ways that are informed by 

guidance and the role of these structures to gain context-specific insights into their use. 

This highlighted the complex and varied use of these structures, including identification of 

sub-groups and frequent ‘non-standard’ usage, indicating more guidance is required for 

more controversial or pragmatic use of interfaces or inheritance. 

RQ1.3: How does practice impact the structure of software? Specifically – is there any 

evidence within systems that guidance is being followed? Can (or should) systems be fully 

compliant with all guidance? 
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There is evidence of guideline compliance – but this required some refinement of terms to 

classify structures as compliant or not. It was found that many artefacts are not compliant 

with well-known guidelines, but that there is often a reason for this, which may be evident, 

or at least hinted at by the source code. These may represent different compromises 

between design guidelines – if compliance with one guideline can be sacrificed for 

compliance with another, assessment of compliance with guidelines cannot treat quality 

aspects independently. 

1.4 Contribution 

The contributions from each chapter are summarised here. 

Literature Review: 

The contribution of the literature review is identifying the key motivations underpinning 

object-oriented design advice. It surveys the progress that has been made trying to 

operationalise this advice into paradigm- or language-specific guidance or metrics, and the 

difficulties faced in detecting compliance with guidance from source code alone. 

This chapter begins by reviewing the basic concepts of object-oriented (OO) programming, 

then the popular design guidance, including the origins of the guidance and how guidelines 

interact. Similar principles underpin many of the popular design guidelines, these high-level 

motivations are grounded in process concerns such as maintainability, comprehension, 

familiarisation, software evolution. The popular OO guidelines can be viewed as high-level 

motivations applied to specific scenarios or programming language constructs. 

Next, there is an overview of some of the simpler software quality metrics that relate to 

structures studied in this thesis. Attempts to operationalise guidance into metrics rarely (if 

ever) captures their full richness. Metrics have perceived ‘legitimacy’ despite serious 

questions being raised in the literature about the soundness of some metrics, as well as the 

applicability of pre-OO guidance to OO designs. The chapter also covers existing design 

taxonomies based on ‘experience’ or ‘argument from design’. These have been difficult to 

validate as they incorporate subjective assessment or semantic information, indicating that 

the way practitioners classify structures depends on information that is not easily 

recoverable from source code. 

Finally, there is a review of recent surveys of software practitioners highlighting that many 

of these follow the same best-practices, and have similar formats. 
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Practitioner Survey: 

The motivation for a survey is to ‘ground’ the research in current practice and to begin to 

answer RQ1.1 (What does it mean for software to be of high quality, or well-designed?). 

Since this is a broad question, it was given context by focusing on popular guidance and 

how it relates to the day-to-day experiences of practitioners. Additionally, the survey 

responses indicate that design quality is a valid concern among practitioners – indicating 

that there may be some practical benefit to studying design quality. 

RQ3.1: To what extent do practitioners concern themselves with design quality? 

Design quality is an important concern for the surveyed practitioners. The survey responses 

indicate that many well-known guidelines are viewed as relevant and useful.  Design quality 

is a persistent secondary concern (around a third of ‘effort’) behind functional correctness 

for many respondents. Responses indicated that the roots of design difficulty include: 

uncertainty about future change, lack of specification, and time pressure. It is not clear how 

practitioners decide what design work to do under time constraints and what to leave 

undone. 

This highlights a key tension – design advice is valued, and the best advice from peers is 

seen to be previous experience in the domain. However, design guidance that is more 

specific (patterns and inheritance guidance) is more controversial due to the potential cost 

of misapplication. 

This being the case – it might be beneficial to present estimated effort/complexity with 

design compliance recommendations to assist with the cost-benefit analysis practitioners 

are doing when deciding which guidance to comply with during development. 

RQ3.2: How do practitioners recognise software design quality? 

Practitioner responses frame quality in terms of the tasks they must carry out. Good design 

is characterised as comprehensible design that is easy or obvious to navigate, has a low 

modification cost (is easy to work with). It is notable that these do not map to specific 

thresholds and appear to be somewhat subjective, based on the individual practitioner and 

the task they are carrying out. 

Some concerns are about future change requirements – since it is not possible to know 

what design decisions will make future work difficult. Guidance is useful here, where it 
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provides a means to meet a requirement (capture essential complexity), while avoiding 

unnecessary complexity. 

RQ3.3: What design guidelines do practitioners follow? 

Simple, generally applicable, ‘fundamental’ guidance is valued the most highly – small 

components, loose coupling, good naming and documentation, avoiding unnecessary 

complexity. These properties are closely tied to the practical experience of developers and 

are very similar to the underlying principles identified in the literature. Responses indicate 

that practitioners are mindful of guidance, but that difficulty can be encountered in 

knowing how to satisfy the guidance and solution domain constraints quickly. Additionally, 

reports of ‘misapplication’ of guidance indicates that the more specific guidance 

(inheritance and patterns) may be incomplete in terms of application criteria. 

Notably, these largely depend on a component of practitioners’ judgement in a given 

scenario (e.g. what is ‘too complex’). This is raised again when respondents identify that 

‘essential complexity’ in a solution that should be recognised, rather than ‘designed away’. 

RQ3.4: What information do practitioners use to make design decisions? 

Respondents showed a strong preference for personal experience and people-mediated 

feedback (personal experience, peer-review), with general design guidance, then tooling 

and metrics following noticeably further behind. This indicates that a primary component of 

quality assessment is the knowledge of the assessor, and the interactions between 

practitioners. 

Experience is expressed as – specific previous experience with a problem or technology, or 

disciplined application of guidance. The main body of design guidance provides a ‘fall-back’ 

in unfamiliar situations. Conventions such as ‘Clean Code’ (Martin, 2009) are seen as 

valuable, and respondents identified a link between testability and high-quality. Rather 

than minimum standards – it may be better to say that guidance is rooted in a desire to 

avoid introducing unnecessary constraints which may make future changes difficult. This 

explains why more information about the problem or solutions domains can justify 

departing from the default stance provided by design guidelines. 
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Interface Study: 

This chapter examines interface use in open source systems with respect to the last two 

guiding questions, RQ1.2 (How are programming language constructs used in practice?) is 

answered by an investigation (RQ4.1, RQ4.2) of the presence and uses of interfaces. The 

last question - RQ1.3 (How does practice impact the structure of software?) – is more 

related to analysis of the data gathered and discusses interface use (RQ4.4) as it is found.  

RQ4.1: How are interfaces defined in the systems? 

The cross-system averages presented in previous work (Tempero et al., 2008) can be 

verified across systems – but these averages are not representative of any of the systems 

examined. Interface definition in some of the examined systems is very low, and is not 

obviously related to system size.  Unusual interface use occurs in all systems, indicating that 

these require specific guidance rather than simply being ‘discouraged’. 

RQ4.2: What is the profile of interface size across the systems? 

Most of the interfaces examined have only a few methods (50% <= 2, 80% <=8). Some uses 

of interfaces can be segregated by size such as constant interfaces. Overall, size (number of 

methods) is a very coarse measure of interfaces, and the (long-tailed) distribution makes it 

difficult to comment on the size of the many interfaces in the ‘usual’ range (2 – 8 methods). 

Examination of size categories revealed the use of naming conventions. Common prefixes 

and suffixes, while not strictly binding, are common and give high-level feedback about 

design intent which can convey a lot of information. Very large interfaces usually 

documented some system boundary or domain feature, the presence of specific external 

references which must be captured by these interfaces allows cohesion to be checked 

easily, which may supersede generic size concerns. Again, there is no generally agreed way 

to annotate such interfaces to this effect. 

RQ4.3: To what extent are interfaces implemented in the systems? 

Interface implementation is highly variable among systems with a high tolerance for 

(concrete) types that cannot be accessed via interfaces, even in the most abstract systems. 

Much of the interface implementation is via inherited interfaces indicating a complex 

interaction between interface use and class-inheritance.  
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Around three quarters of types are defined using some form of inheritance, confirming 

previous findings, this is achieved using different proportions of interfaces and inheritance 

across the systems. It is not clear how much of this is due to practitioner preference versus, 

say, problem domain, but it is notable that the degree of definition-by-abstraction is quite 

regular between systems. Implementation is also directed by architectural and design 

patterns with evidence that high level decisions constrain the use or form of many 

interfaces.  

RQ4.4: How are interfaces used in the systems? 

Interface definition, interface implementation, and type references to interfaces vary 

independently and are not obviously related to system size. The number of interface-

mediated dependencies is highly variable compared to the number or proportion of 

interfaces in a system – indicating some systems contain easily recognisable, popular 

abstractions. 

Some interfaces are implementation-level components of high-level or architectural 

decisions such as module boundaries, or specific architectures. These constraints appear to 

supersede guidance, as they are specific to the component and the surrounding design – 

echoing the survey response that guidelines are a ‘safe default’. This indicates a risk when 

applying guidance or using metrics based on guidelines – the most extreme outliers may 

have the most justification for their status compared to an entity that is a ‘little out’ (due to 

lack of time or accumulation of changes). This directly conflicts with the normal distribution 

proposed by the entity population model approach. 

Interfaces appear to be used more in the ‘public areas’ of types – defined as constructor 

and method parameters, and method return types. Furthermore, practitioners appear to be 

more inclined to use interfaces when referring to types they have defined in their own code 

(where they have the most choice). It may be the case that third party code is perceived as 

‘abstract enough’. 

Inheritance Study: 

Following on from Chapter 4 and to further investigate the interaction between inheritance 

and interfaces, this chapter investigates inheritance in a similar way. This chapter relates to 

guiding questions RQ1.2 (How are programming language constructs used in practice?), and 

RQ1.3 (How does practice impact the structure of software?). RQ1.2 maps to RQ5.1 which 
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surveys the inheritance structures that are present, while RQ5.2 and RQ5.3 relate to RQ1.3, 

characterising inheritance use at a higher level and determining what can be said about 

guideline compliance. 

RQ5.1: How much inheritance is present? To what extent is inheritance used to define 

types? 

Inheritance is common across the systems examined. Inheritance is proportionally more 

present in larger systems, indicating more opportunity for code reuse/consolidation in 

larger systems. Most system examined have around three-quarters of types defined using 

some form of inheritance, but different systems use different ratios of interface use and 

class inheritance to achieve this.  

RQ5.2: How is inheritance is used? How can inheritance hierarchies be characterised? 

Much of the inheritance observed is trivial – simple, shallow hierarchies. There appears to 

be more freedom for hierarchies to grow horizontally, as wide hierarchies are present in 

even the smaller systems. Hierarchies can be categorised by shape – with many hierarchies 

falling into simple categories ‘line’ and ‘fan’. 

Just over half of the hierarchies are accessed exclusively via their root type (method 

signatures) indicating that classical ‘strict polymorphism’ is a common use case. However, 

some other hierarchies have directly accessed sub-types and novel behaviour, indicating 

inheritance-for-reuse is also an important use case. 

The population is skewed by the small number of very large hierarchies which contain 

around half of all hierarchy members across the systems examined. These are often 

representations of some well-defined external structure such as a domain model, or design 

pattern. Many casting operations involve hierarchy members – indicating that many 

abstractions are ‘local’ rather than of system-wide use. 

RQ5.3: To what extent can inheritance usage patterns be related to Design Quality where 

quality is defined via Guidance, Metrics, Code Smells, Entity Population Models, and 

Modelling? 

The hierarchies observed were either far under or far over the suggested limits on size 

indicating that these thresholds are of limited use for detection of issues. Use of abstract 

classes as a hierarchy ‘skeleton’ is common – though appears to be an all-or-nothing choice 
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in most cases – possibly due to practitioner style. This inner structure is highly likely to be 

contiguous if present, though larger hierarchies show signs of fragmentation. 

1.5 Roadmap 

The remaining chapters of this thesis are summarised below. Throughout the chapters, key 

findings are summarised in the form [KF section number . finding number] for ease of 

reference. This improves traceability from supporting findings to conclusions. 

Chapter 2 comprises a review of the literature relating to object-oriented design guidelines, 

focusing on inheritance and use of interfaces. This includes reviews of both published 

literature, and practitioner-facing material such as experience reports, advisory textbooks, 

and advocacy. The role and effectiveness of object-oriented metrics are also discussed – 

including issues which arise from the use of metrics. Existing models of quality for 

implementation level structures are summarised and compared. Finally, previous survey 

work relating to practitioner attitude to quality is discussed.  

Chapter 3 describes a survey of software professionals about the relevance of design 

guidance. Specifically, it highlights which of the ‘classical’ object-oriented design guidelines 

are regarded as important in practice.  

Chapter 4 is a case study of interface use in a corpus of open-source software systems. 

With a focus on the guideline ‘program to an interface’, this work aims to build up a picture 

of the use of interfaces in the wild.  

Chapter 5 is a further case study of open-source with a focus on inheritance use. Chapter 4 

highlighted a complex interaction between interface use and class inheritance. This chapter 

focuses on the tangible aspects of inheritance use and examines if these can be related to 

the abstract ‘principles’ motivating inheritance guidelines.  

Chapter 6 concludes this thesis, drawing together high-level answers to research questions. 

Chapter 7 contains all references for this work. 

Chapter 8 comprises appendices. Of note are: 

Appendix A – Terminology: Terms are defined when they are introduced, it may be of use to 

refer to this list of terms rather than locating the initial definition. 
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Appendix H - Structural Patterns for Inheritance Hierarchies: These are based on the 

proposals and discussion in Chapter 5. The proposed new guidance is discussed in more 

detail. An initial check for ‘coverage’ of inheritance use in the corpus by the proposed 

guidance is also discussed.  
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2 Literature Review 

2.1 Introduction 

Software underpins an increasing proportion of technology – from critical infrastructure, to 

everyday services. Poorly designed software manifests in many ways – poor usability, low 

reliability, incompatibility between systems, and unexpected behaviour.  To the software 

practitioner, the main consequence of poor design is that systems are difficult to maintain 

and extend. 

Poor design of software intensive systems has economic impact – with the estimated cost 

of software faults running into many millions of dollars per year (Charette, 2005). 

The goal of good design in software, like other domains of engineering, is to create reliable 

systems that are easy to maintain and that are composed of reusable components.  

The focus of this research is on object-oriented technology because much of today’s 

software is developed using that technology (Cass 2015).  While other programming 

approaches do exist, support for objects continues to exist in many modern and emerging 

languages, therefore, object-oriented design will continue to be relevant for the 

foreseeable future.  

Software guidance historically comes from practice in the tradition of early commenters 

from theory  and teaching (Dijkstra, 1968) during the early expansion of computer use, and 

publishing design and engineering manuals based on practice (Coad and Yourdon, 1991). 

This continues today with prominent commentators (Beck, 2014; Bernhardt, 2011; Bloch, 

2008; Coplien, 2016; Fowler et al., 1999; Gamma et al., 1994; Joel Spolsky, 2005; Martin, 

2000) having a great influence over practitioners through training programs, textbooks, 

social media advocacy, and importantly, public debate about how software should be 

developed. 

With the explosion in the use of computers, emerged a more empirical approach to 

software engineering research has led in turn to a great deal of work (Basili et al., 1996; 

Briand and Wüst, 2002; Kitchenham, 2010; Tempero et al., 2013; Zhang and Budgen, 2012) 

exploring the properties of software, invention and validation of new metrics, modelling 

reliability, preparation of software corpora, and attempts to ‘validate’ the more general 

guidelines and methodologies which have emerged from practice. 
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The purpose of this literature review is to understand the current state of the art, and limits 

of measurement for design quality.  Additionally, other sources of guidance are considered, 

such as guidance from industrial commentators, and popular design aids such as code 

smells and design patterns. 

This review will identify the contribution of each of these elements to ensuring design 

quality, with the aim of identifying weaknesses, gaps, or conflicts among the approaches. 

These discontinuities in the literature illustrate that some gaps remain between software 

guidance from practice and theoretical arguments about software construction. 

The rest of this chapter covers the relevant research and methodological themes 

surrounding the topic of design quality in object oriented systems. This begins with a high-

level summary of key topics such as object-oriented programming, a discussion of design 

quality, and the design guidance available to practitioners.  The next topics relate to the 

specific chapters of the rest of the thesis and cover topics such as survey research, interface 

use, and class inheritance. Each of these major sections narrow to a research topic picked 

up by a chapter later in the thesis. 

Definitions and brief discussion of basic object-oriented concepts is included in Appendix B - 

Object-Oriented Concepts (section 8.2). 

2.2 Object-Oriented Design Guidance 

Each theme in this section relates to object-oriented technology and ideas about design 

quality and recognising high quality designs. These themes relate to all subsequent 

chapters. 

Since the arrival of object-oriented technology in the mainstream of software engineering 

in the 1980s there has been a vast amount of research (Basili et al., 1996; Briand and Wüst, 

2002; Jabangwe et al., 2014) investigating definitions of ‘good’ object-oriented design and 

the associated identification of techniques and tools to help achieve the desired quality. 

The volume and variety of material discussing design quality and best practices is evidence 

of a widespread interest in the quality of object-oriented software. 
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2.2.1 Defining Design Quality 

The term design quality covers a range of aspects in software design, in terms of the 

current international standard on Software Quality Characteristics (BSI, 2011) the focus of 

this work is maintainability: 

• Degree to which a system is composed of discrete components such that a change 

to one component has minimal impact on other components (Modularity). 

• Degree of effectiveness and efficiency with which it is possible to assess the impact 

on a system of an intended change to one or more of its parts, or to diagnose a 

product for deficiencies or causes of failures, or to identify parts to be modified 

(Analysability). 

• Degree to which a system can be effectively and efficiently modified without 

introducing defects or degrading existing product quality (Modifiability). 

• Degree of effectiveness and efficiency with which test criteria can be established 

for a system, and tests can be performed to determine whether those criteria have 

been met (Testability). 

These aspects of quality are primarily practitioner facing – they affect the cost and difficulty 

of day-to-day operations on a code-base. It is clear that high quality software is desirable, 

the following themes cover how quality can be ensured, and the potential costs incurred by 

this desire. 

2.2.2 The Emergence of Design Guidelines 

Engineering is often described as the art of compromise – and many design problems can 

be traced back to the decision making of practitioners. Software construction guidelines are 

suggested constraints, intended to limit design choices.  As Martin notes - “Structured 

Programming was in what not to do - don't use unrestrained goto. Functional Programming 

- don't use assignment. Object Oriented Programming - don't use pointers to functions.” 

(Martin, 2016). The preferred choices are those that are likely to be less harmful (or more 

reversible) in the long run. 

Much of the guidance about programming and software design has its roots in advocacy or 

practitioner folklore and is very general or abstract. Additionally, the interpretation of this 

guidance has evolved with the development of programming languages as practices 

change. Figure 1 illustrates that much of the popular guidance is decades older than the 
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languages the guidance is now applied to.  In fact, these guidelines have informed the 

design of many modern languages. 

Note that in Figure 1, the round cornered boxes indicate the first appearance of a language, 

while the square cornered boxes indicate the first appearance of guidelines in their popular 

forms. It is notable that the earlier guidance {1970-1980} originates from pre-object 

oriented practices, while the later flurry of activity {1987-2004} is more specific to OO 

design. 

Further refinement of guidance has been taken up by the design patterns community, with 

many domain-specific patterns being specified since patterns were initially popularised in 

Design Patterns (Gamma et al., 1994). One approach has been the adoption of traditional 

(pre-object-oriented design) guidelines to the object-oriented domain (Coad and Yourdon, 

1991; Riel, 1996). 

2.2.3 Dependency Inversion Principle (a.k.a. Program to an Interface) 

Martin’s Dependency Inversion Principle (DIP) suggests that “No dependency should target 

a concrete class.” (Martin, 2000) i.e. all variables should be defined via interfaces or 

perhaps, abstract classes. Another prominent commentator, Holub states “My rule of 

thumb is that 80 percent of my code at minimum should be written entirely in terms of 

interfaces” (Holub, 2003). 

If polymorphism is all that is required or there is little or no code re-use to be exploited, 

then an interface super-type may be preferable to class inheritance.  Additionally, the 

decision to use an interface may be design motivated (top down), rather than code-reuse 

(bottom up) motivated. 

The primary concern of the DIP is that the high-level operations of a system should depend 

on abstractions, rather than the specific details of implementation.  This echoes a more 

general engineering approach of separating policy from mechanism. DIP creates flexibility 

by hiding low level details behind abstract types. This guidance sometimes appears as 

“depend towards stability” (R. C. Martin, 1996), where the most stable element is one that 

has no external dependencies. 
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Figure 1 : Timeline: Design Guidance and Languages (dates label the right side of their segment)
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When using class-inheritance, the implementation being used (subtype) is hidden from the 

client; the client is still dependent on another concrete type (the super-type) which can 

represent a vulnerability to change. This raises the issue of how much behaviour the root of 

a hierarchy should have and whether hierarchy members should be abstract or concrete. 

Some non-abstract dependencies (such as library types) may be perceived as so stable that 

they will never change, Martin notes that “Non-volatility is not a replacement for the 

substitutability of an abstract interface.” (Martin, 2000). Meaning that safe concrete 

dependencies still reduce the flexibility of dependent code. 

2.2.4 Coupling and Cohesion 

Coupling and cohesion are two of the most basic principles of software design – these 

principles are simple to describe, and intuitive to practitioners, but difficult to measure 

directly.  

Coupling is “the degree of interdependence between modules” (Yourdon and Constantine, 

1975) and is concerned with minimising the complexity of interactions between 

components.  This allows the components to be built, understood, and analysed in isolation 

from the rest of the system. Liskov discusses this as locality (Liskov, 1988). 

The cohesion of a module relates to “…how tightly bound or related its internal elements 

are to one another.” (Yourdon and Constantine, 1975). There are many definitions of 

coupling in modern software engineering literature – an early definition is “the strength of 

interconnection” between the elements of a design – this is not as simple as counting the 

number of connections between those elements, but must also take account of the 

complexity of the interaction (Yourdon and Constantine, 1975). 

Reducing system complexity motivates this property. Grouping highly interacting elements 

in the same module reduces overall intra-module communication, while exploiting locality 

in cohesive neighbourhoods. Early work by Briand et al. suggested that long-standing 

design guidelines by Coad and Yourdon such as coupling and cohesion can have a beneficial 

effect on the maintainability of object-oriented designs (Briand and Wüst, 2001). 

Hall et al. argues that coupling and cohesion are too closely tied to structured 

programming, and are unsuitable for assessing OO systems. They suggest that OO design 

has specific mechanisms for defining components and their relationships (Mayer and Hall, 

1999a).  This may go some way to explain the plethora of cohesion-related metrics – there 



19 
 

is a lack of agreement on how cohesion should be defined at the implementation level in 

OO design. 

Coupling and cohesion are often listed together as they are highly related e.g. a system 

with cohesive modules is likely to have low coupling between modules.  However, this is 

often a compromise and inheritance can complicate matters. As super- and subtypes may 

have different responsibilities – the case could be made that the new (or modified) 

behaviour in the subtype does not belong in the super-type (it reduces cohesion). To 

preserve the cohesion of the parent type, the new functionality is placed in a sub-class, 

some coupling to the subclass is tolerated. For example – in Figure 54 (8.2.3 Appendix B) 

the new and overridden methods in the new subtype (PausableAverage) do not belong in 

the super-type – these would bloat the interface and change the behaviour of that type. 

It has been argued (Bloch, 2008) that implementation inheritance breaks encapsulation as 

implementing parts of a sub-class may require knowledge of that super-class’s 

implementation.  This is a form of coupling between parent and child. The argument in this 

case is that this is an inappropriate relationship that may cause problems and can be 

avoided, so it ought to be avoided.  The other side of this trade-off is the effort saved in 

implementing the subtype using inheritance. 

2.2.5 Information Hiding 

One of the earliest discussions of object-oriented-style program decomposition is by 

Parnas, who proposes criteria to decompose the task of constructing a system into 

“independent programming of small, manageable programs” (Parnas, 1972). 

The key idea introduced by Parnas is information hiding where each component of a system 

hides one design decision.  Since it is not possible to foresee which design decision might be 

revised, each decision should be isolated from the rest of the system. Parnas contrasted 

this with more conventional decompositions where each component of a program 

represents one stage in a process - with implicit dependency on the output of the previous 

stage(s) and the assumptions of the next stage(s). 

Parnas argues that fundamental behavioural units (e.g. parsing, entity representation, 

algorithms) are likely to persist, so should be in some sense separate or atomic, and thus 

interchangeable and reusable. 
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The key role abstract classes and interfaces can play in information hiding is that they allow 

the definition of a type for use by the rest of the system, without specifying how that type 

is implemented.  Thus, protecting the rest of the system from any change in 

implementation. 

It is implied though not explicit, when information hiding, that the abstraction describes a 

complete type of object such as a data structure or sub-module.  Parnas explains that a 

module is “characterized by its knowledge of a design decision which it hides from all 

others” (Parnas, 1972). 

According to Beck, “…the costs of changing software are dominated by rippling changes” 

(Beck, 2014).  This statement captures a persistent issue in the design of software systems – 

how to maximise the beneficial relationships between elements (their usefulness to each 

other), while reducing the dependencies between elements (their need to change 

together). 

By following information hiding principles, the implementing module should not hide 

multiple design decisions.  This means that the hiding interface is complete in the sense 

that the implementer of the interface exists only to implement the behaviour described by 

the interface.  The primary motivation for information hiding is to protect the system from 

the evolution of any one component over time.  Information hiding in its original form is 

more concerned with system evolution (incremental modification) and curbing change 

propagation than polymorphism. 

2.2.6 Favour Object Composition Over Class Inheritance (Gamma et al., 1994) 

Object composition is strongly advocated in Design Patterns - “Object composition is an 

alternative to class inheritance. Here, new functionality is obtained by assembling or 

composing objects to get more complex functionality.” (Gamma et al., 1994) This is 

sometimes described as has-a behaviour in contrast with the is-a model of inheritance. 

Figure 2 shows an example of composition – in contrast to the inheritance example shown 

in Figure 54 (8.2.3 Appendix B). DelegatingPausableAverage is a class definition which has a 

clear() method, this method is similar to that offered by the delegate Average object.  The 

format of the method which passes through to the delegate is similar to an override-then-

upcall method we may see in a subtype of Average.  The main differences from class 

inheritance are that DelegatingPausableAverage: 
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• Is not required to be substitutable for Average 

• Only uses the delegate behaviour it requires 

• May have multiple delegates 

In Design Patterns (Gamma et al., 1994), it is proposed that the use of inheritance is 

problematic because “…parent classes often define at least part of their subclasses' 

physical representation”.  This means that, regardless of the amount of useful re-use 

gained from inheritance, hierarchies can become problematic as they grow.  As more 

members are added to a hierarchy, there may be more super-types involved in the 

definition of the subtypes – increasing the risk of dispersed code, complex execution paths, 

and ignored inherited behaviour. The root and other depended-upon types become more 

expensive to change as they define the behaviour of many other types. 

The designer of the Java language has expressed concern about the presence of inheritance 

– “It's not so much that class inheritance is particularly bad. It just has problems … 

delegation can be a much healthier way to do things. But specific mechanisms for how 

you would implement that tend to be problematic” (Venners, 2001).  It is not clear if this is 

a reference to the ease of using the extends keyword for class inheritance compared to the 

lengthier process of implementing a composition relationship. The difficulty of design is 

perhaps best highlighted by the later comment, regarding when to use inheritance vs. 

composition – “I just wish I had some good rules because it always gets kind of vague for 

me. I personally tend to use inheritance more often than anything else”.  

The Design Patterns manual also acknowledges that inheritance has some valid uses and 

that inheritance and composition are complimentary - “Almost all patterns use 

inheritance to some extent … Structural class patterns use inheritance to compose 

classes [e.g. adapter, composite] … Behavioral [sic.] class patterns use inheritance to 

describe algorithms and flow of control [e.g. interpreter, template method]…” (Gamma et 

al., 1994). 

class DelegatingPausableAverage { 

    private Average avg; 

    public clear () { 

        ... 

        avg.clear(); // delegated behaviour via internal reference 

} 

Figure 2 - Delegation 
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‘Proper use’ is not described in detail, but it is noted that - “When inheritance is used 

carefully (some will say properly), all classes derived from an abstract class will share its 

interface. This implies that a subclass merely adds or overrides operations and does not 

hide operations of the parent class.” (Gamma et al., 1994). This prioritisation of 

substitutability for the parent type and addition (rather than removal) of behaviour are 

indicative that super-types should be abstract in some sense.  

Table 1 illustrates the trade-off between inheritance and composition. Inheritance requires 

a fixed concrete dependency on another type (the super-type), but what is shared 

(inherited) can change as the super-type changes.  On the other hand, composition allows 

the target of the dependency (the delegate) to change, but what is shared is fixed by the 

manual calls to that delegate.  

These differences indicate that inheritance and composition are two separate design 

constructs – but are compared – because both inheritance and composition allow reuse of 

existing code.  While use of inheritance to model is-a relationships is encouraged, this is a 

semantic relationship and there is no way to determine mechanically if an inheritance 

relationship is appropriate in this way. 

Feature Inheritance Composition Overall 

Implementation Extend a super-type (a little 
code) 

Composition must be wired 
up (possibly lots of (simple) 
code) 

Modern IDEs support 
both sets of operations 
automatically 

Benefit Automatically gain access to 
all inherited behaviour 

Gain access to a specified 
subset of behaviour 

Super-types share new 
behaviours by default; 
delegates do not 

Flexibility Stuck in inheritance 
hierarchy at compile time 

Delegate can change at 
runtime 

Intrinsic is-a versus 
transient has-a 

Dependencies A leaf may (indirectly) 
depend on several super-
types 

Dependency is usually direct 
from client to delegate 

Many dependents may 
make a delegate/super-
type hard to change 

Perceived 
Value 

Useful for reuse, 
incremental modification, 
polymorphism 

Seen as less harmful, may 
involve more effort, no free 
polymorphism 

Inheritance misuse gets 
more ‘bad press’ than 
composition misuse 

Table 1 - Inheritance Vs Composition Trade-offs 

2.2.7 SOLID and GRASP 

High level OO guidance is proposed in the SOLID principles. Martin argued that “… 

dependency management, and therefore these principles, are at the foundation of the ‘-

ilities’ that software developers desire” (Martin, 2005a). The key principles associated with 

SOLID are: 
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• Single Responsibility (SRP) - A class should have only one, reason to change. 

• Open-Closed (OCP) – Allow for extending a class’s behaviour, without modifying it. 

• Liskov Substitution (LSP) – A derived class must be substitutable for its base class. 

• Interface Segregation (ISP) – Make fine-grained interfaces for client-groups. 

• Dependency Inversion (DIP) - Depend on abstractions, not on concrete classes.  

As well as the SOLID principles, Martin advocated a wide range of Clean Code principles 

(Martin, 2009) which include a wider range of advice focussing on both design and code 

intended to make programs (and their designs) easier to understand and change. This 

advice covers: package and class design, dependency management, method design with 

recurring themes of small size (e.g. classes less than 100 lines, methods less than 20 lines 

and much shorter), simplicity (e.g. methods do one thing), and clarity (e.g. descriptive 

naming, minimal value-added commenting). 

This guidance is unusually prescriptive and makes no claim to be based on anything other 

than time served in industry. It is interesting to note that these constraints synergise, for 

example, if a class is small, it is less likely to violate SRP. 

In a similar vein, Larman identified the GRASP principles (Larman, 2004) which were 

intended to capture the knowledge of expert designers to help in the construction of better 

quality object-oriented designs. GRASP consists of nine principles, some of which are 

closely related to the concepts covered above. 

Conley and Sproull used aspects of Martin’s SOLID principles to define modularity (Conley 

and Sproull, 2009). Using static bugs and complexity as proxies for quality, they found a 

decrease in complexity but also an increase in the number of static bugs detected as their 

measure of modularity increased. 

2.2.8 Interface Segregation Principle 

In a similar vein to information hiding, Martin proposes the Interface Segregation Principle 

(ISP) – namely that “Many client specific interfaces are better than one general purpose 

interface.”(Martin, 2000) The principle notes that interface changes required by one client 

or group of clients may lead to unnecessary re-compilation of all clients using that 

interface.  

A close reading of the original ISP material indicates that the ISP is concerned with 

separating sources of demand for change (Martin, 2000). If there are separate groups of 
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clients of an interface, a reasonable concern is that these requirements of these different 

groups may diverge as a system evolves. Martin argues that introducing segregated 

interfaces avoids having to handle diverging demands in a single interface.  This is clarified 

by the comment that “If the interface for ClientA needs to change, ClientB and ClientC 

will remain unaffected.”(Martin, 2000). 

Consequently – a balance must be struck between having an individual interface for each 

client (which the ISP also discourages) and having a single interface for all clients. The 

Interface Segregation Principle (ISP) advocates identifying groups of similar clients of large 

interfaces or classes and providing interfaces for each group.  This ensures that the 

interface provided for each group of clients can vary independently, hiding the fact (from 

the clients) that there is a common implementer. The ISP is concerned with identifying and 

segregating different subsets of interactions or protocols. 

This is reminiscent of role interfaces proposed in the DCI design model (Reenskaug and 

Coplien, 2009) where roles are derived from object interactions, not as a permanent 

property of a particular object. 

There appears to be a common misconception in the literature that the aim of the ISP is 

reduce client access to interface methods that they do not invoke (Abdeen et al., 2013a; 

Romano et al., 2014), or that interfaces should serve a single client (Abdeen et al., 2013b). 

The belief is that the client will be broken if the unused method definition changes.  This is 

incorrect in Java - the dynamic binding in Java means that if an unused method in an 

interface changes, the client (which does not invoke the interface method) will not be 

affected (Eisenbach and Drossopoulou, 2002). 

2.2.9 Is-a Relationships and the Liskov Substitution Principle 

The importance of conceptual similarity (Liskov, 1988) and the difficulty of arranging classes 

into hierarchies (Dvorak, 1994), mean that the benefits (of re-use) may be out-weighed by 

the potential costs (e.g. rigidity, complexity). 

Brachman discusses is-a relationships in the knowledge representation field – he notes that 

the concept is vaguely defined and often conflated with the mechanism of inheritance.  He 

asserts that inheritance is merely an implementation detail to reduce duplication in 

implementation which allows designers to - ”…distribute ‘properties’ so that those being 

shared were stored in the hierarchy at the place covering the maximal subset of nodes 
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sharing them.” (Brachman, 1983). The author also notes that the use of inheritance may 

make these systems more efficient, but it does not make them more expressive. 

Inheritance alone is not sufficient to capture the many different types of semantic 

relationship (and proposed metadata) discussed by Brachman. There is great deal of 

modelling information from a problem domain that may inform the decision to use 

inheritance, but not be captured in the final design. There is considerable debate in the 

design literature (Bloch, 2008; Brachman, 1983; Liskov, 1988; Meyer, 1996; Venners, 2002; 

Weck and Szyperski, 1996) as to whether inheritance use should be used freely for code 

reuse, or if further constraints should be observed - such as some semantic or conceptual 

relationship between the elements of a hierarchy. This non-structural aspect may not be 

easy to reassess each time any change is made to a hierarchy. In practice, the different 

motivations for use of inheritance may be difficult to distinguish solely from the source 

code. 

The Liskov substitution principle (LSP) is a guideline that is directly relevant to the structure 

of inheritance hierarchies. “If for each object O1 of type S there is an object O2 of type T 

such that for all programs P defined in terms of T, the behaviour of P is unchanged when 

O1 is substituted for O2, then S is a subtype of T” (Liskov, 1988). Informally, it states that 

all subtypes of a type should be substitutable for that type and for each other. 

Furthermore, this substitutability should be both logical and semantic. As shown in the 

above quote, it is one of the few guidelines based on a semi-formal definition. 

Logical substitutability can be checked by a compiler and simply requires that a subtype 

comply with the syntax of the programming language. This does not enforce sematic 

substitutability, which is discussed further in section 8.2.4.1 (Appendix B). In terms of 

inheritance this means ensuring that overridden methods have the same method signature.  

Semantic substitutability, on the other hand, requires that inherited methods must “do the 

same things” as those defined in the super-type (Liskov, 1988).  Taivalsaari recognises that 

“is-a is a conceptual specialization relationship: it describes one kind of object as a 

special kind of another” (Taivalsaari, 1996). For example – if a module relies on a data 

structure (say, Collection) and that structure may be freely substituted between a Set and a 

List (logical compatibility), the program behaviour may be different due to the different 

treatment of duplicate items by a Set. This is a semantic mismatch, the super-type does not 

(and cannot) constrain the overridden operations of the subtype, even if a “using program 
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is likely to notice the difference between these two types” (Liskov, 1988). At best, the 

designer of the super-type could forbid sub-classing. 

Note that there may be applications where Set and List might be used interchangeably 

without negative effect – semantic substitutability is highly dependent on context and 

problem domain. Liskov identifies three modes of inheritance use: 

• Convenience inheritance - a sub-type is created simply for reuse with no intention 

of substitutability. 

• Relationships identified in advance - characterised by a virtual or abstract super-

type in anticipation of a “family of related types”.  In this case an interface might 

be defined before any of the implementing types are considered. 

• Grouping approach - Represents some common ability or feature in a design, that is 

may be implemented by many other types e.g. Comparable, Enumerable. Rather 

than pollute existing type hierarchies, a polymorphic module can “…use any type 

that supplies the needed operations. In this case no attempt is made to relate 

the types.”  

These represent different design needs, for example, it is unlikely that convenience 

inheritance would be a desirable option at design time, where creating or extracting an 

appropriate abstraction is ‘cheap’. Contrast this with the grouping approach, which 

identifies a role or common interaction in a design which is important enough to be 

recognised as a type. 

2.2.10 Single Responsibility Principle 

The Single Responsibility Principle (SRP) maintains that classes ought to have one 

responsibility – “A class should have only one reason to change” (Martin, 2005b) - usually 

some well-defined domain or implementation detail. There are no definitive criteria for 

identifying a single responsibility other than a single reason to change.  This is similar to 

Parnas’ oft-cited suggestion that each important design decision should be in its own 

module (Parnas, 1972). 

When using inheritance, there is often a difference in the responsibility of the parent from 

that of the child type.  This guideline captures the notion that “each responsibility is an 

axis of change” (Martin, 2005b) – assuming too many responsibilities may lead to 

conflicting demands on the direction of a class’s evolution. 
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One way to prevent the bloat of a class’s responsibility is to have a delegate or sub-class 

assume the related responsibility. SRP may be used to justify a trade of simplicity 

(decluttering a super-type) for some coupling (between the super- and subtypes). The main 

difficulty presented by this guideline is “living with uncertainty” (Beck, 2014).  In relation 

to inheritance – it may be unclear when a common super-type should be extracted from 

similar classes. 

2.2.11 Open-Closed Principle 

This principle proposes that systems are constructed so that new behaviour can be added, 

while leaving the original behaviour intact. “Software entities (classes, modules, 

functions, etc) should be open for extension, but closed for modification.” (R. Martin, 

1996) paraphrasing Bertrand Meyer. This approach to system evolution attempts to 

minimise changes to existing components, thus minimising the introduction of new defects. 

Inheritance is good candidate mechanism for compliance with this guideline as it allows, 

not only re-use, but also run-time substitutability of new subtypes for their super-types.  

While this guideline does not introduce any new mechanism, it does propose that there is a 

value in class-inheritance-style extension. 

2.2.12 Code Smells and Design Patterns 

Design patterns and code smells represent recorded experience of practitioners. Design 

patterns “capture solutions to specific recurring problems in object-oriented design” 

(Gamma et al., 1994). Similarly, anti-patterns are recognised solutions to common 

problems which are known to be likely to cause further problems i.e. a poor trade-off. 

These heuristics provide a common vocabulary to discuss design in more detail. Code smells 

are heuristics which may indicate an underlying problem in a design. 

Over the last two decades the idea of design patterns has become widely established as a 

source of object-oriented design guidance. Design patterns present generalised solutions to 

common design problems, making use of design techniques such as interfaces, abstract 

types, inheritance, dependency inversion, polymorphism, and double dispatch to create 

“simple and elegant” (Gamma et al., 1994) design solutions. The original catalogue 

consisted of 23 patterns whose names and intent are now widely-recognised in the design 

community. Design patterns are derived from two fundamental design principles: 
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• Program to an interface, not an implementation – Do not declare variables to be 

instances of concrete classes, commit only to interface types. 

• Favour object composition over class inheritance – Rather than using inheritance to 

define a subclass, use the parent class to define a field and delegate to it. 

The authors of Design Patterns emphasise that all objects have an interface (“all signatures 

defined by an object’s operations”) and claim that ignorance of implementation specifics 

“greatly reduces implementation dependencies” to the point where they advocate 

abstracting all object creation via creational patterns.  This is the source of one of the most 

quoted design principles - “Program to an interface, not an implementation” (Gamma et 

al., 1994). 

This use of polymorphism recognises and manages the possibility that a change in 

implementation may take place at runtime to improve flexibility and reuse. This is 

reminiscent of early ideas on OO languages where message passing was emphasised (Kay 

and Ram, 2003). 

In contrast to empirical investigation into guidelines such as coupling and cohesion, and 

their associated metrics, there have been relatively few empirical investigations of Clean 

Code, GRASP, and design patterns. These principles and patterns capture the experience of 

recognised experts in the field, such as Fowler (Fowler et al. 1999), the ‘Gang of Four’ 

(Gamma et al., 1994), ‘Uncle Bob’ Martin (Martin, 2009), Brooks (Brooks, 2010), Booch 

(Booch, 2011), Beck (Beck, 2014). These are derived from decades of experience, both 

actively working in the field and from challenging and debating other experts within the 

software engineering community. Much of this literature is largely in the form of advocacy 

(Zhang and Budgen, 2012) with little in the way of formal evaluation in the published 

literature. 

2.2.13 Interface Related Guidance 

While general design guidance has been discussed above, this section discusses how the 

guidance applies specifically to interface use. Interfaces might be characterised as 

‘descriptions without form’ which can be used to simplify and generalise implementation.  

Since this is the aim of many design guidelines, interfaces can be used to meet these goals 

effectively. 
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Programming to an interface allows a client to specify the minimum functionality that the 

implementer must expose for the client to fulfil its specified role.  In this mode of use, it 

would be reasonable for a larger class to implement more than one interface, to facilitate 

different subsets of interactions without exposing all of its functionality to each client 

(Riehle, 1996).  By compartmentalising functionality in this way, the clients only directly 

depend on the existence of an interface.  This also relates to the ISP and roles where 

contracts, messages or protocols represent the ‘complexity of interaction’ between objects. 

While Parnas’ original proposal to ‘hide information’ (Parnas, 1972) was language-agnostic, 

interfaces provide a mechanism to specify module boundaries to hide implementation 

decisions.  This works in two directions - from the client’s point of view, a small reasonable 

interface for a client or group of clients complies with ISP, while an implementer of that 

interface may define its responsibility separately from the interface(s) it implements, 

complying with SRP – use of interfaces allows these two factors to vary independently. 

If DIP is also considered, and implementers of interfaces are being injected, then the 

implementer of a given interface can be changed at design, implementation, or run time 

without affecting the client. This shows how interface use enables 

polymorphism/substitutability of the interface implementer. 

While initially devised in relation to class-inheritance, the LSP can be discussed in terms of 

interfaces. Implementers of an interface must comply with the logical substitutability 

criteria to compile.  However, semantic substitutability cannot be guaranteed by the 

implemented interface. Of the other uses for inheritance identified by Liskov, “grouping” is 

an excellent fit for interfaces as it relates to supplying needed operations by possibly 

unrelated types.  Relationships “defined in advance” may be suitable for interfaces as they 

do not require an implementation to have been defined (Liskov, 1988).  This is the same 

approach to use which would support DIP compliant designs – by defining high level 

operations in terms of abstractions. 

Design guidance relating to interface use highlights some key concerns. First there are 

arguments against rigidity and coupling. Concrete dependencies allow implementation 

changes to ripple through a system, and allow multiple sources of change to impose 

conflicting demands on a single element. On the other hand, there are arguments for 

flexibility. Programming with abstract types enables flexibility via composition of objects at 

runtime. 
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It is interesting to note that few guidelines mention the properties interfaces should have, 

rather they capture concerns at the design level - how objects interact, and how much 

objects know about each other, what dependencies should be interface-mediated. 

Guidance on the specific characteristics of interfaces require information about the 

purpose of an interface and its use by the surrounding design. While these properties could 

be documented – it more common that they are reconstructed by practitioners on each 

inspection. 

2.2.13.1 Interface Design Criteria 

Hoffman proposed criteria for designing interfaces shown in Table 2 (Hoffman, 1990). It is 

interesting to note that these properties require different frames of reference to properly 

assess, some of which are more amenable to automation than others. 

Consistency is a view at the level of the entire design, and might be enforced by coding 

standards to an extent, such as the Clean Code (Martin, 2009) practices related to matters 

such as number of parameters, use of exceptions, and self-documenting code. 

Table 2: Interface Design Criteria (Hoffman, 1990) 

Property Detail Related Design Principles 

Consistent Follows local design conventions Comprehensibility, Principle of Least 
Astonishment1 

Essential Omit needless features SRP, High Cohesion, Maintainability 

General A complete abstraction High Cohesion, Reusability 

Minimal Separate different services/features ISP, Reusability 

Opaque Hides implementation detail Information Hiding, Low Coupling 

Essential and Minimal are more related to identifying the main purpose of the interface, 

than translating this to how the design represents the domain. For example – an interface 

representing a file system may have relatively few high-level operations such as open, read, 

write and close while another may have very low-level operations concerning bit-level 

encoding and disc sectors.  These interfaces represent a similar concept, but the specifics of 

the problem domain mean that the essential behaviour of the low-level interface may be 

larger while still being considered minimal. 

The General property, must be considered in terms of needs that may be met elsewhere in 

the design, or even in a product family if designing a framework, library, or API. The wider 

                                                           
1 “Novelty raises the cost of a user's first few interactions with an interface, but poor design will 
make the interface needlessly painful forever” (Raymond, 2003) 
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this net is cast; the more difficult generality may be to achieve or decide upon. This is 

reminiscent of the issue of architectural mismatch raised by Garlan et al. who found that 

implicit local assumptions can make reuse difficult (Garlan et al., 1995). 

In addition to information hiding, Opaque may also relate to what types the interface itself 

should depend on – ideally abstract types should themselves only depend on primitive 

types and other abstractions to completely hide implementation choices – this is covered in 

part by the Dependency Inversion Principle discussed previously. 

In summary – there is a large amount of argument from design or experience about how 

interfaces ought to be used, while there is some discussion of what interfaces should be 

like, much of the commentary relates to where and when interfaces should be used.  This 

indicates that interfaces may be more relevant to relationships within a design, rather than 

the actors in those relationships. This fits with the notion that interfaces allow practitioners 

to program and design by contract (Martin, 2000). 

2.2.14 Inheritance Related Guidance 

While some general guidance relates to inheritance use indirectly, this section looks at 

guidelines, specifically as they relate to inheritance. The most relevant general guidance for 

inheritance is Don’t Repeat Yourself (DRY), Favour Composition over Inheritance (Program 

to an interface, PTAI), Liskov Substitution Principle (LSP), and Single Responsibility Principle 

(SRP). 

These principles are relevant to inheritance as inheritance permits reuse of implementation 

via class inheritance which reduces duplication (DRY) and inheritance hierarchies can be 

arranged such that each step in the hierarchy represents a specific change (SRP) such as 

addition or modification of behaviour. LSP is written specifically for inheritance and 

captures the problem that there must be logical and semantic substitutability among 

members of an inheritance hierarchy. Finally, PTAI reminds practitioners to consider when 

inheritance may not be a suitable option, although if composition/delegation is chosen 

instead, the delegate may itself be an inheritance hierarchy. 

2.2.14.1 Hierarchy Shape 

Inheritance hierarchies are directed acyclic graphs, while there are some construction rules, 

there is no limit on size.  The overall shape of a hierarchy is changed whenever a new sub-

class is added. 
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As inheritance hierarchies grow and the opportunity for reuse increases, the number of 

classes that may have to be examined to understand the behaviour a leaf class increases 

i.e. all the super-classes of that leaf class.   This is sometimes referred to the yoyo effect 

(Taenze et al., 1989) where the practitioner must travel up and down a hierarchy to trace 

program execution. This may be especially true if the leaf or any of its parents override 

behaviour or self-calls (this in Java).  It is perhaps for this reason that guidelines suggest 

that hierarchies remain shallow as practitioners may find larger hierarchies increase design 

complexity and make it difficult to predict behaviour (Chidamber and Kemerer, 1994). 

Collberg et al. found “six of our classes are at depth 30–39” in a study of Java bytecode, 

which is extraordinary compared to the ranges for DIT reported in other studies (Collberg et 

al., 2007).  Unfortunately, there is no note of what system contained this very deep 

inheritance structure or what it was used to represent.  While extreme, even this very high 

depth does not automatically mean that this structure is a poor choice – it may be highly 

dependent on context or problem domain 

Liskov notes that the use of inheritance does not excuse poor modularity, noting that 

“Locality allows a program to be implemented, understood, or modified one module at a 

time” (Liskov, 1988). Other commentators have few reservations about deep hierarchies, 

Johnson and Foot note that  “Class hierarchies should be deep and narrow” to maximise 

reuse, and further that “A shallow class hierarchy is evidence that change is needed, but 

does not give any idea how to make that change” (Johnson and Foote, 1988). 

A more balanced proposal by Riel is that “In theory, inheritance should be deep — the 

deeper, the better” “In practice, inheritance hierarchies should be no deeper than an 

average person can keep in his or her short-term memory. A popular value for this depth 

is six.” (Riel, 1996).  This indicates a recognition that some uses of inheritance cannot meet 

the ideal case of maximising reuse, because depth has side effects such as maintainability 

implications. 

Binkley and Schach carried out a comparison of high level system metrics with expert 

assessment of ‘cognitive complexity’. Of the inheritance-related metrics assessed, Width of 

Inheritance Hierarchy (WIH) was more reliably in agreement with the expert assessment. 

While the structural metrics performed poorly compared to dependency and encapsulation 

metrics, the authors note that “the five metrics that performed the worst are also 

coupling-based metrics” (Binkley and Schach, 1996). 
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In summary, hierarchies grow due to the desire to reuse code and program with 

generalisations, but as hierarchies grow, they may become more complex, which affects 

maintainability. Complex calls and patterns of overriding within a hierarchy are separate 

from simple size concerns.  It is unclear where the balance between the pressures of utility 

and comprehension should be – however, most sources of guidance err on the side of 

comprehensibility (Kelly and Buckley, 2009) over maximising reuse. 

2.2.14.2 Fragile Base Class  

The fragile base class (FBC) problem occurs when a change to a super-class may change the 

behaviour of a sub-class in an unexpected way.  This is a problem because designers desire 

structures that can be modified in isolation without affecting the behaviour of other classes 

or modules – this sentiment underpins much of the design guidance (ISP, DIP, Information 

Hiding, PTAI).  The cause of FBC is the automatic propagation of changes from super-type to 

subtype(s) – the very mechanism which makes class inheritance useful. 

Holub describes FBC as “the concept of coupling applied to inheritance” (Holub, 2003) – 

warning that changes to a base class (super-type) must be verified by checking “all code 

that uses both base-class and derived-class objects too, since this code might also be 

broken by the new behaviour”.  This is a concern that the presence of sub-classes violates 

the encapsulation of a super-class and removes the benefit of modularity/locality. Bloch 

notes that inheritance poses several design risks, including this close relationship between 

super- and subtype, advising that practitioners should “Design and document for 

inheritance or else prohibit it.” (Bloch, 2008) 

Also known as the ripple effect (co-change, change impact) – “the extent to which a 

change to a software component can affect other component of the software” (Bajeh et 

al., 2014).  This concern touches on many other guidelines which endeavour to limit the 

likelihood of changes to one part of the system cascading to adjacent modules (the ripple 

effect). 

However, when the FBC problem was examined, it was found to be common – but benign 

where present, in terms of change- and fault-proneness.  Additionally, a survey of 

practitioners (41 responses) indicated that FBC was not responsible for any inheritance-

related bugs reported in the systems examined, although some were “wrongly identified 

as such” by practitioners (Sabané et al., 2016). This indicates that awareness of this 
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problem perhaps exceeds the risk presented, once again raising the issue of what guidelines 

are relevant under which conditions. 

2.2.14.3 Use of Abstract Classes 

Abstract classes can be used to consolidate common behaviour in hierarchies. This is an 

example of compliance with the dependency inversion principle (DIP) (R. C. Martin, 1996) 

where deeper hierarchy members depend on abstract types, rather than concrete classes. 

Steimann and Mayer comment that abstract classes should only be used (in place of an 

interface) if the relationship to the subtype is “genetic, i.e., if it is (or at least could be) 

based on the inheritance of internal structure, that is, implementation.” (Steimann and 

Mayer, 2005).  This advice discourages coincidental or convenience reuse of code, noting 

that shared implementation should reflect essential common behaviour.  If followed, the 

presence of abstract class root types would indicate a strong semantic relationship 

between the root type and its sub-types.  

Johnson and Foote recommend that extra effort should be taken to find and extract 

common behaviour: “An obvious way to make a new superclass is to find some sibling 

classes that implement the same message and try to migrate the method to a common 

superclass. Of course, the classes are likely to provide different methods for the 

message, but it is often possible to break a method into pieces and place some of the 

pieces in the superclass and some in the subclasses” (Johnson and Foote, 1988). Note that 

this approach might be considered aggressive or unnecessary refactoring where the 

proposed intermediate abstract classes may have no use other than to act as prototypes or 

repositories of (coincidentally) common behaviour.  The GRASP principle ‘Pure Fabrication’ 

is a more general form of this advice – “something made up, in order to support high 

cohesion, low coupling, and reuse” (Larman, 2001). This does suggest that the justification 

for this kind of abstract class may originate entirely from implementation details. 

Conversely conventional modes of use may also be ‘obvious’ during assessment. For 

example – the Observable class in the Java standard libraries is a common superclass in 

event-driven systems, however this is a (often maligned) technical decision in the language 

design.  Extending Observable tells us very little about the nature, behaviour, or 

responsibilities of the subtype – and the scope for further meaningful extension is low. 

However, there is a clear reason for the extension to exist, which can be a valuable 

navigational aid when reading a design. 
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2.2.14.4 Interaction Between Guidelines and Inheritance 

Table 3 shows some design guidelines and notes how class inheritance interacts with them.  

Guidelines may be given different priorities and relative importance by different 

practitioners in different circumstances – so it is not possible to give a general order of 

priority or weighting to the guidelines. As such, it may be difficult to determine the relative 

importance of these aspects as a design changes. 

Table 3 - Interaction of inheritance and classical design guidelines 

Guideline Summary Effect of Inheritance 

Modularise 
(Parnas, 1972) 

Hide design decisions with 
modularised components 

Implementation of super-classes may 
be exposed to their children, FBC 

problem 

Localise 
Functionality 

Allows understanding and 
construction of a program using 

local reasoning (Liskov, 1988) 

Behaviour may only be discernible by 
examining super-classes, abstract class 

intermediates capture common 
behaviour 

 Don’t Repeat 
Yourself 

(Hunt and 
Thomas, 1999) 

Every piece of knowledge must 
have a single, unambiguous, 
authoritative representation 

within a system. 

Common code can be collected in 
(abstract) super-types 

Single 
Responsibility 

Objects should do one thing well 
(Martin, 2005b) 

Inheriting type or behaviour, and 
super-type’s ‘responsibility’, a subtype 

contains only what varies from its 
super-type 

Depend on 
Abstractions 
(R. C. Martin, 

1996) 

Depend towards more stable, 
abstract parts of a design 

Leaf-types depend on abstract roots 
and intermediates. Clients depend on 

root-abstractions. 

 

2.2.14.5 Inheritance Code Smells 

Code smells are “…structures in the design that indicate violation of fundamental design 

principles and negatively impact design quality.” (Suryanarayana et al., 2015) These were 

popularised by design guidance in Refactoring (Fowler et al., 1999), and have become part 

of the body of advice for practitioners. 

The motivation behind code smells is that, if a practitioner is unhappy with some aspect of 

a design, this may reflect some underlying design problem – “…no set of metrics rivals 

informed human intuition.” (Fowler et al., 1999) The authors go on to provide a set of 

smells to guide a concerned practitioner towards candidate re-factorings to address the 

underlying design issues. 
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Tufano et al. found that some code smells appear with the addition of new design elements 

or behaviour modifications and are associated with high workload and release pressure 

(Tufano et al., 2015), indicating that code smells highlight a trade of quality for speed. 

Code smells are discussed in relation to inheritance by Suryanarayana et al., the authors 

identify enabling techniques for inheritance from their experience (Suryanarayana et al., 

2015): 

• Apply meaningful classification – capture common and variable behaviour 

• Apply meaningful generalisation – reduce duplication 

• Ensure substitutability – comply with Liskov Substitutability 

• Avoid redundant paths – reduces complexity, clarifies relationships, avoids runtime 

issues 

• Ensure proper ordering – comply with Dependency Inversion Principle 

The inheritance-specific code smells are also identified: 

• Missing Hierarchy – use of conditional logic to manage variation in place of 

polymorphism 

• Unnecessary Hierarchy – a flag or variable could replace the need for subtypes 

• Un-factored Hierarchy – redundant code in a hierarchy, duplicated horizontally or 

vertically 

• Wide Hierarchy – a type in the hierarchy has more than 9 subtypes 

• Speculative Hierarchy – a type is provided based on an imagined, not actual, need 

• Deep Hierarchy – hierarchy is excessively deep (rule of thumb > 6 is too deep) 

• Rebellious Hierarchy – overriding methods restrict or cancel inherited behaviour 

• Broken Hierarchy – the parent and child types do not share an is-a relationship 

• Multipath Hierarchy – a subtype inherits from a super-type directly and indirectly 

• Cyclic Hierarchy – a super-type depends on its subtype 

These smells show how high-level guidance can be made more concrete if it is with respect 

to a specific structure (in this case, inheritance). A further benefit of this grounding is that 

some cases are identified where action can always be taken - namely Unnecessary 

Hierarchy and Speculative Hierarchy.  However, the requirement for subjective assessment 

is not eliminated – there is no guarantee that a code smell is caused by underlying design 
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flaw, the nature of code smells is that they may simply indicate a deliberate design trade-

off.  

2.3 Metrics 

Closely related to these guidelines is a large body of work defining metrics that aim to 

measure properties associated with these design guidelines. Metrics rely on the fact that 

we can examine the various artefacts produced during the software design process. Metrics 

are attractive as they require little or no judgement to apply, and can be applied to large 

code bases cheaply (compared to manual inspection). 

Software metrics propose to provide insight into the quality of software using only features 

of the software.  Static metrics examine source code, while dynamic metrics assess runtime 

behaviour - this approach is attractive for several reasons: 

• Numerical summaries present a notionally representative, more manageable data 

set than manual examination of source code, especially in large systems.  

• Expensive manual processes can be targeted via metrics at critical or high-risk 

areas. 

• The properties that concern practitioners are often subjective or non-functional 

(e.g. complexity, cohesion) - metrics are a best effort to isolate this uncertainty. 

A widely-used metrics suite for object-oriented systems is that proposed by Chidamber and 

Kemerer (C&K), and variants derived from this, covering coupling, cohesion and inheritance 

relationships (Chidamber and Kemerer, 1994). Chidamber and Kemerer used viewpoints 

collected from practitioners to drive the development of their metrics. Concerns about the 

theoretical validity of some of the cohesion and coupling aspects of the original C&K 

metrics (Hitz and Montazeri, 1996; Kitchenham, 2010; Mayer and Hall, 1999b) have led to 

refinements such as LCOM4 (lack of cohesion) (Hitz and Montazeri, 1995) and Low level 

design Similarity-based Class Cohesion metric (LSCC) (Al Dallal and Briand, 2010). 

Object-oriented design guidelines and their associated metrics have been subject to a range 

of empirical evaluation. Most of the investigations explore potential relationships between 

internal factors, such as coupling and cohesion, and external factors such as fault- or 

change-proneness, development effort, ripple effect, and expert opinion (Briand et al., 

2002). A systematic literature review of 99 studies by Jabangwe et al. explored the 

potential link between object-oriented measures and external quality attributes (e.g. 
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reliability and maintainability). In relation to maintainability, the review found that 

“Overall, coupling, complexity and size measures seem to have a better relationship 

with maintainability than inheritance measures” (Jabangwe et al., 2014). Al Dallal found 

that most of the cohesion, size, and coupling metrics could predict the more maintainable 

classes in three open-source Java systems (Al Dallal, 2013).  Ferreira et al. identified 

threshold values for metrics which could help distinguish well-designed classes from less 

well-designed classes (Ferreira et al., 2012). Dallal and Morasca suggest that coupling and 

size have a positive impact on reuse-proneness (Al Dallal and Morasca, 2014). Bajeh et al. 

found a correlation between coupling and cohesion metrics and testability (Palomba et al., 

2016). Metrics have also been widely used for fault prediction (Radjenović et al., 2013) and 

identifying bug-prone code (Palomba et al., 2016). 

Kitchenham performed a preliminary mapping survey of empirical research on software 

metrics (Kitchenham, 2010). The key findings were that there is a large body of research 

related to metrics but that this is dogged by significance issues: invalid empirical validations 

(especially related to theoretical limitations of the C&K LCOM metrics and the treatment of 

code size), contradictory results and too many comparisons in single studies (e.g. 66 

different metrics). Other work has raised concerns about the value of such metrics in 

predicting design quality. Riaz et al.’s systematic review of maintenance prediction and 

metrics (Riaz et al., 2009) found weaknesses in terms of comparison with expert opinion 

and external validity, as well as differences in the definition of ‘maintenance’ used in the 

studies. Sjøberg et al. found that a range of size, complexity, coupling, cohesion and 

inheritance metrics were not mutually consistent and that only (large) size and low 

cohesion were strongly associated with increased maintenance effort (Sjøberg et al., 2012). 

Cinnéide et al. studied the use of five cohesion metrics to guide refactoring and concluded 

that the metrics often captured differing notions of cohesion (Ó Cinnéide et al., 2016). 

Veerappa and Harrison repeated Cinnéide et al.’s study focussing on coupling metrics 

(Veerappa and Harrison, 2013) finding that coupling metrics appeared less conflicting than 

cohesion metrics and that improving coupling did not necessarily improve cohesion. 

While potentially useful, the literature indicates that a variety of metrics might suffice for 

tracking maintainability.  However, the interaction between these metrics, their normal 

ranges, and overall validity are still poorly understood.  It is also notable that while metrics 

are often inspired by guidance, they appear to capture only narrow aspects of the guidance 
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- by trying to capture guidance in code, the semantics are lost much like for any other 

domain. 

Mayer and Hall make a case that the original C&K metrics do not accurately reflect the 

concerns expressed by the viewpoints in their original paper – noting that the viewpoints 

express design concerns using terms from structured programming.  They contend that 

“OOP has a number of design fundamentals, or mechanisms not present in structured 

programming that renders these attributes redundant.” (Mayer and Hall, 1999a). They 

have also noted flaws in other OO metrics suites such as the MOOD metrics (Mayer and 

Hall, 1999b).  

Page-Jones proposed that the concepts of coupling and cohesion from structured design 

should be considered as the same phenomenon in OO design – connascence – “two 

software elements A and B to be connascent if there is at least one change that could be 

made to A that would necessitate a change to B in order to preserve overall correctness” 

(Page-Jones, 1992).  

Sources of information must be presented to the practitioner when they are relevant, thus 

metrics are often integrated into development environments or build systems to provide 

timely warnings. 

2.3.1 Inheritance Metrics 

The C&K (Chidamber and Kemerer, 1994) metrics which relate to inheritance are: 

• Class Complexity 

o Weighted Methods per Class (WMC) = Sum of methods in a class, modified 

by some weighting per method, the default value for each method is one. 

• Scope of class properties: 

o Depth of Inheritance Tree (DIT) = Depth of a class in the inheritance tree. 

o Number of Children (NOC) = Number of immediate descendants of a class. 

In addition, Response for Class (RFC) and Lack of Cohesion in Methods (LCOM) may be 

indirectly affected by the structure of inheritance hierarchies. 

For example, WMC counts methods defined in a class, and does not account for inherited 

methods.  This appears to only partially account for one of the viewpoints which inspired 

the metric – “The larger the number of methods in a class the greater the potential 
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impact on children, since children will inherit all the methods defined in the class” 

(Chidamber and Kemerer, 1994). There is no indication if overridden or inherited methods 

are weighted differently by the practitioner – even though these affect the final method 

count of hierarchy leaves in different ways.   

Kitchenham notes that it can be difficult to separate code and design faults in the literature, 

as these are treated similarly, and often measured indirectly using the same metrics 

(Kitchenham, 2010). For example – DIT is motivated by concerns about complexity 

(prediction of behaviour, design effort) which is generally avoided, but also reuse potential 

which is beneficial.  Simply knowing the depth of a given hierarchy does not does not reveal 

whether this is a good use of inheritance.  At best, this can be used to identify candidate 

outlier structures for assessment. 

Gill and Sikka address the issue of comparing the relative fitness of inheritance hierarchies 

in terms of their core value – (current) reuse and (future) reusability (Gill, 2011).  They note 

that assessing negative factors such as magnitude/size and complexity do not shed much 

light on desirable qualities, there remains the issue of defining good ranges for the metrics 

(Emam et al., 2000).  The difference between avoiding risk and the desire for improvement 

is not as clear in metrics as it is in the viewpoints or design guidance which inspire them. In 

practice, metrics are used to define bounds and warnings on extreme values. 

For example, SonarQube, treats inheritance depth over 5 as a severe quality issue and 

calculates remediation time at “4h +30min Number of parents above the defined 

threshold”. Justification for this is that - “Most of the time a too deep inheritance tree is 

due to bad object oriented design” (SonarQube, 2013). This caveat illustrates that deep 

hierarchies are, at worst, a code smell rather than a fault. 

In a retrospective article, an originator of the C&K metrics reflects on the effectiveness of 

their metrics suite in the field (Darcy and Kemerer, 2005).  They note that in industrial 

practice the C&K metrics are used to detect areas of interest relating to “managerial-

performance variables including effort, reusability, defects and faults, maintainability, 

and cost savings”.  Again, there is an acknowledgement that “…local model calibration 

would be important” between languages and domains (Darcy and Kemerer, 2005). 

If local organisation and practice can overwhelm or confound metrics, this may make 

constructing an entity population model (see 2.5 Entity Population Model) very difficult for 
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software in general. Even if it is accepted that metrics address the issues raised by their 

proposers – these are predictions about risk factors, applied to code that has already been 

written.  This offers little in terms of design advice during development. 

Bajeh found that poor average understandability (many ancestors) and poor average 

modifiability (many descendants) in inheritance hierarchies are good proxies for complexity 

and correlate well with difficulty in making changes related to closing issues in two projects 

(junit, elasticsearch) (Bajeh et al., 2014). While this indicates that larger hierarchies may 

cause more maintenance issues than smaller hierarchies – it is not clear if size is the only 

factor in play. 

Niculescu investigates the “ratio of the number of inherited methods among all the 

methods executed in an instance of a class when running some scenario of business 

value”. (Niculescu et al., 2015)  This is based on the notion that good inheritance usage 

results in a balance between new and inherited behaviour. This work represents a rare 

dynamic metric for inheritance hierarchies which may yield insights into the complexity of 

the execution path inside hierarchies. This might have some bearing on the complexity of a 

hierarchy.  Complex execution paths may also indicate that a hierarchy exhibits the yoyo 

problem (Taenze et al., 1989). 

In summary, metrics measure aspects of existing code – these are interpreted or combined 

to relate to aspects of design – but it is not clear how well or completely the code metrics 

capture these more abstract and subjective concepts. Metrics which are defined to be more 

practitioner facing often include assumptions or simplifications to facilitate interpretation.  

Metrics are applied after design decisions have been made – once code has been written. 

Meaning that they cannot easily inform what code to write. Code metrics may be useful for 

quality assurance activities such as auditing or targeting code review, there is no indication 

that metrics are used to inform day-to-day design choices. While there appear to be high-

level similarities between systems, models of quality do not travel well, and normal ranges 

for metrics have little or no theoretical basis.  

2.3.2 Interface Metrics 

Interfaces can be difficult to measure using conventional measurements as they contain no 

executable code, thus they are often excluded from measurement-based studies. 
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Additionally, many of the design needs met by interfaces satisfy architectural or modelling 

needs, which may be difficult to detect in source code alone. 

Service Interface Usage Cohesion (SIUC) (Perepletchikov et al., 2007) encourages interfaces 

to be specific to each client – “an interface has a strong cohesion if each of its client 

classes actually uses all the methods declared in the interface”. This metric has been used 

as a measure of interface cohesion in recent work (Abdeen et al., 2013a; Romano and 

Pinzger, 2011), and is based on the interface segregation principle (ISP).  

This deviates subtly, yet significantly, from the original intent of the ISP – which advises to 

“…categorise clients [of an interface] by their type, and interfaces for each category of 

client should be created.”(Martin, 2000). Furthermore, in ISP the advice specifically allows 

for duplicating methods among different services (interfaces) to permit segregation of 

coincidentally similar clients.  

Paradoxically, the original literature for ISP describes a scenario which would score a 

perfect rating of 1 using SIUC: “The ISP does not recommend that every class that uses a 

service have its own special interface class that the service must inherit from. If that 

were the case, the service would depend upon each and every client in a bizarre and 

unhealthy way” (Martin, 2000). This highlights a risk when associating a specific metric 

with a guideline in name, without considering the original aim of the advice.  

The original formulation of SIUC by Perepletchikov (devised for service oriented 

architectures) was accompanied by three other metrics for other aspects of cohesion, 

including conceptual cohesion, which covers functional/model cohesion from the OO 

(object oriented) paradigm (Perepletchikov et al., 2010). 

The finding by Shata et al. that “…interfaces have a strong tendency to be designed 

according to the PTIP and ISP properties, but also with neglecting the cohesion 

property.”(Abdeen et al., 2013a), indicates that decoupling is of higher priority than 

eliminating ‘dead code’ represented by uncalled interface methods. This indicates some 

measure of tolerance among practitioners for the uncalled methods that SIUC is designed 

to detect. 

Loose Program to an Interface (LPTI) measures how many references to interface methods 

are via an interface vs via a concrete implementation of that interface (Abdeen et al., 

2013a).  This gives an estimate of how close interface use is to optimal (defined as when all 
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methods which can be accessed via an interface, are always accessed via an interface).  This 

metric makes no claim about the number, location, or fitness of interfaces in a system. 

Since object creation requires access to concrete types in Java, this metric cannot reach a 

score of 100%.   There are differing opinions on how object creation can (or should) be 

managed among practitioners – so this may factor into the interpretation of this metric. 

Interface Implementations Model (IIM) constructs a model by combining all the 

implementations of an interface.  This allows the logical cohesion of an interface to be 

investigated based on logical cohesion of methods in each implementation.  However, as 

implementation details are irrelevant during interface design, it is not clear if the designer 

of an interface would necessarily care if the implementations of that interface are cohesive. 

It could also be argued that the presence of an interface itself lends cohesion to the 

implemented methods from that interface. 

Assessment of interfaces using metrics focuses on the more tangible aspects of interfaces 

such as cohesion, number of methods and constants, naming, stability, number of 

implementers, number of clients. In addition to simple counting metrics, some metrics 

attempt to apply traditional quality aspects such as cohesion to interfaces, which may not 

be appropriate. 

The characteristics of interfaces are in some ways more difficult to interpret than metrics 

for concrete classes. Concrete classes have a ‘justification’ in their implementation – 

implementation can be divided up between different classes, that functionality must exist 

somewhere in the system. 

Unlike concrete classes, interfaces carry little information to justify their existence, and may 

be added to a design to address concerns above the implementation level. This presents an 

issue when discussing good value ranges for interfaces – it might be argued that an 

interface can only be assessed in terms of meeting its design goal, regardless of its 

implementation level properties. 

These metrics illustrate that it can be difficult to capture simple high-level rules in a single 

value. It may be more useful to describe how much, or what aspects of a guideline are 

being captured by a metric to aid in interpretation. 
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2.4 Modelling 

In this section, modelling is discussed in relation to the use of interfaces and inheritance. 

While there is little theoretical basis for ‘good’ metric score ranges, some attempts have 

been made to provide complete sets of use cases for specific structures. These models 

describe different ways in which structures ought to be used, blending existing guidance 

and experience to provide comprehensive advice.  

2.4.1 Modelling Interface Use 

Steimann and Mayer attempt to manually categorise different uses of interfaces based on 

arguments from design (Steimann and Mayer, 2005), and consideration of whether the 

caller or called benefit. These are further grouped by categories – general (G), offering (F), 

context-specific (C), enabling (E). 

Idiosyncratic (F, G) – an interface has a single implementation and the public 

interface of the implementing class matches the interface. No specific client. 

Family (F, G) – heads multiple implementations of a family of classes, often with 

alternative implementations or differing run-time behaviour, such as data 

structures. No specific client. 

Client/Server (F, C) – the implementer is the server, which offers the services 

needed by different clients.  Different interfaces may be offered to different clients. 

Server/Client (C, E) – implementing the interface allows access to services offered 

by some server(s), generally for the benefit of the client. 

Server/Item (C, E) – enables processing of item interface objects for the benefit of 

some third party e.g. Comparable, Printable. These are typically the ‘-able’ or ‘-ible’ 

classes in Java. 

Even though Steimann et al. were unable to identify “robust decision rules” to distinguish 

between these categories, manual classification was possible - indicating that subjective 

interpretation was required. Additionally, it is notable that there is no mention of metrics 

until after classification.  This may indicate that the notion of benefit from interface 

mediated interaction, while obvious during practitioner assessment, may not be easily 

automatable. 
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Other work by Steimann discusses the difference between role and natural types. Where 

roles are added and removed without affecting an object’s identity, and may be related to 

some specific interaction. Natural types on the other hand are not specific to a particular 

interaction, but are essential to the identity of an object (Steimann et al., 2003). This 

mirrors some of the UML colour modelling archetypes proposed by Coad – namely Coad’s 

“role” or “description” for Steimann’s role, and Coad’s “party, place, thing” for the natural 

type (Palmer and Coad, 2004). The distinct recognition of temporary roles is also a central 

principle in the Data-Context-Interaction method of OO modelling (Reenskaug and Coplien, 

2009). 

Models of interface use, based on design guidance can offer insight into the benefits of 

interface-mediated interactions. However, categorising these relationships may be highly 

subjective.  Given a lack of some record of this categorisation in a design, and system 

evolution, there is no guarantee that the original intention will be retrievable, or useful 

when the next practitioner examines the design. 

2.4.2 Modelling Inheritance 

Inheritance is a powerful technique which can create complex structures. In addition to the 

stand-alone guidelines presented in Section 2.2, some commentators have gone a step 

further and provided a more comprehensive set of guidelines for all uses of inheritance, 

including identification of ‘improper use’. 

Before discussing the LSP in detail, Liskov discounts so called implementation hierarchies 

from further consideration. This use of inheritance exists solely to re-use some functionality 

and is not intended to make use of polymorphism.  While Liskov’s work is not presented as 

a taxonomy – it does address inheritance under several categories (Liskov, 1988).  Some of 

these definitions show the age of the work – Grouping super-types might be better 

modelled as interfaces in Java, while implementation hierarchy appears to be the situation 

the Gang of Four (Gamma et al., 1994) had in mind when they suggested that composition 

is preferred over class-inheritance.  

Liskov identifies inheritance related concepts: 

Implementation hierarchy – extension solely to reuse code with no expectation of 

polymorphic use. Liskov notes that this level of reuse can already be achieved by other 
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means (composition) and that the only contribution of this approach is to damage 

encapsulation. This is essentially the same as sub-classing. 

Hierarchy Polymorphism – where a common operation or operations e.g. sortable are used 

to define a super-type. Super-types are not meaningfully related to their extenders as these 

are generic sets of behaviour.  

Multiple implementations – where a common super-type enables one implementation to 

be replaced by another. Requires only interface compliance with a common super-type.  

Although with more implementations, ‘discovered commonalities’ between leaf types – as 

recommended by Johnson and Foote - “…it is often possible to break a method into pieces 

and place some of the pieces in the superclass and some in the subclasses” (Johnson and 

Foote, 1988).  These layers, are driven by implementation reuse, rather than modelling – 

Liskov recommends separating sub-typing and implementation reuse.  In this case, reuse of 

common code drives increasing hierarchy depth because code can only be shared if it is 

moved ‘up’ in a hierarchy (towards the root), while alternative implementations (which 

must be in separate classes) drive increasing hierarchy-width. 

Incremental Design – a subtype may be an alternate view of its super-type, which allows 

the subtype to provide for the needs of different client objects than its parent type, while 

reusing functionality. This may mean adding multiple layers of extension to a single type.  

Intermediate types in the hierarchy may thus represent intermediate evolutionary steps 

between the root of the hierarchy and eventual leaf-types. This allows system extension 

without changing existing functionality. This may mainly be relevant during the 

maintenance or evolution stage of a system – where there is no design rationale for, or too 

much risk in consolidating older parts of a system. 

Meyer proposed a taxonomy of the many faces of inheritance (Table 4) – while also arguing 

that a single mechanism (of inheritance) was practical on the basis that “If we accept 

classes as both modules and types, then we should accept inheritance as both module 

accumulation and subtyping”.  This contradicts Liskov who preferred that “These uses 

should be kept separate” (Liskov, 1988). 

However, it is in line with Meyer’s very pragmatic approach - the key points are that 

“…inheritance is applicable only if you can seriously argue for the presence of an “is” 

relation between the instances of the heir and parent…”, and “…the only goals that count 
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- quality software and fast delivery…” (Meyer, 1996). In terms of ‘good’ design, this 

highlights that what ought to be done is a subset of what can be done, but that different 

guidance does not always agree where the boundaries of this subset lie. 

Meyer’s approach is that anything that is not misleading is potentially useful. This is much 

more permissive than other guidance, Meyer asserts that advice against implementation 

inheritance “lacks the strong theory that should support any such indictment”2. Meyer 

does note that there are categories of “improper use” – notably: 

• ‘Has’ relation with no ‘is’ relation - reuse without type relationships 

• Taxomania - Creation of types with no new features, which could be distinguished 

by flags e.g. TrafficLight having subtypes for RedTrafficLight, GreenTrafficLight, etc. 

• Convenience Inheritance - Inheriting from a type that is conceptually related, but 

is not a parent e.g. Apple is not a super-type of ApplePie  

Table 4 shows a summary of Meyer’s taxonomy – with separate high-level motivations for 

inheritance – these distinguish between model (or problem domain), software 

(implementation details), and variation inheritance.  The motivations suggest that there 

should be a clear and singular purpose behind each use of inheritance. 

Meyer’s taxonomy advocates use of many forms of inheritance that are considered harmful 

in other areas such as implementation inheritance, discouraged by Liskov and the design 

pattern literature.  Some modes of inheritance use have been superseded in modern 

languages e.g. View inheritance could be achieved even with Java’s single inheritance.  

Some of these improper uses map well onto categories identified by Taivalsaari i.e. flags 

might be better handled as a class property (classification), conceptual relationships may be 

better modelled by aggregation (composition) (Taivalsaari, 1996).  Considering the kind of 

abstract relationship can highlight how well this relationship maps to the properties of the 

chosen abstraction mechanism.  

When Mayer’s taxonomy was applied to a corpus of object oriented programs (English et 

al., 2005), it was found that the semantic aspects of the classification were not suitable for 

static analysis, consequently the analysis had to include opinion data from the practitioners 

and original designers. 

                                                           
2 Referring to Dijkstra's letter – “Go To statement considered harmful” (Dijkstra, 1968) 
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Table 4 : Meyers Taxonomy – abridged form of an inheritance taxonomy (Meyer, 1996) 

                                                           
3 The presence of both the restriction and extension variants is one of the paradoxes of inheritance. Extension applies to features, and restriction (and more generally specialization) applies to 
instances, but this does not eliminate the paradox. The problem is that the added features usually include attributes. So if we take the naive interpretation of a type (as given by a class) as the 
set of its instances, then it seems the subset relation is the wrong way around! (Meyer, 1996) 
4 if you do have access to the source code of the original class, you should examine whether it is not preferable to reorganize the inheritance hierarchy by introducing a more abstract class of 
which both A (the existing variant) and B (the new one) will both be proper descendants with peer status (Meyer, 1996). 
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Description Example 
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(B) 
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Subtype A and B represent A’ and B’ which are external objects, B’ is a subset of A’, 
any other subtype heir of A is disjoint from B’ 

Subtype inheritance is closest to the hierarchical taxonomies 
of the natural sciences 

abstract 
abstract or 
concrete 

View B describes the same abstraction as A, but viewed from a different angle, 
recombined via multiple inheritance, advanced technique 

Access pattern, representation, and traversal aspects of a data 
structure are selected and combined 

- - 

Restriction Instances of B are instances of A that satisfy a constraint, any feature 
added by B should be a result of the new constraint 

ELLIPSE <- CIRCLE, where the extra constraint is that the two 
focuses of an ellipse are merged 

Both abstract or both 
concrete 

Extension3 B introduces features not present in A and not applicable to direct 
instances of A 

Specialisation with the addition of new attributes. MOVING-
POINT <- POINT and add speed, for magnitude and direction 

concrete - 

V
a

ri
a
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Functional Variation B redefines some features of A, and some of the redefinitions affect 
feature bodies, not just signatures, B must not introduce any new features 
except for the direct needs of the redefined features 

Adapt an existing class without affecting the original class and 
its clients, avoids directly modifying existing software 4 

Both abstract or both 
concrete 

Type Variation B redefines some features of A, and the redefinitions affect only 
signatures, B must not introduce any new features except for the direct 
needs of the redefined features 

Adapt a class to return a type which is a sub-class of the 
original return type 

Both abstract or both 
concrete 

Uneffecting B redefines some of the concrete features of A into abstract features, this 
should not be common, goes against the normal direction of inheritance 

Commonly: Select functionality in multiple inheritance,  
or reuse a useful class that is too concrete  

- - 
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Reification A represents a general data structure and B represents a partial or 
complete implementation choice for that data structure. 

TABLE describes tables of a general nature, reification leads to 
SEQUENTIAL-TABLE, still abstract, Final reification leads to 
concrete classes ARRAYED-TABLE, LINKED-TABLE 

abstract 
abstract or 
concrete 

Structure A represents a general structural property, and B represents a certain type 
of object possessing that property. 

COMPARABLE super type abstract 
abstract or 
concrete 

Implementation B obtains a set of features from A (other than constant attributes and once 
functions) necessary to implement the abstraction associated with B 

ARRAYED-STACK inherits its specification from STACK and its 
implementation from ARRAY 

concrete concrete 

Facility A exists solely to provide a set of logically related features for the benefit 
of heirs such as B. 

Utility class providing facilities for detailed access to some 
mechanism, is inherited by classes that need those facilities 

- - 

 Constant Variation of Facility Features of A are all constants or once functions describing 
shared objects 

concrete concrete 

 Machine Variation of Facility Features of A are routines, which may be viewed as operations 
on an abstract machine. 

B is at least as concrete 
as A 
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The requirement for semantic comparison makes it difficult to apply the taxonomy after the 

fact as the intent of a developer is often not recorded at implementation time.  

Furthermore, since designs evolve, the classification of a particular use of inheritance may 

change over time, which may make the semantics less clear.   Finally, English notes the un-

even distribution of the various archetypes in the analysis – this suggests that creating a 

single entity population model for all hierarchies would have to account for the various 

norms within the population, rather than defining a single usual value. 

Dvorak proposed object-oriented conceptual modelling (OOCM) to make explicitly the 

hierarchy’s conceptual architecture and proposes quantitative sub-classing criteria. This 

model classifies hierarchy features as “essential, supportive, and incidental” to the 

hierarchy (Dvorak, 1994). Where essential properties “…capture the essence of a class 

concept, whereas supportive properties capture important but not crucial elements of 

the class. Incidental properties capture elements of a class concept that are 

implementation-oriented.”  These properties are then used to calculate conceptual 

specificity, consistency, and distance in inheritance hierarchy design. 

For sub-classing, Dvorak assigns values for generality from the problem domain to ensure 

that “…classes of greater generality are placed higher in the class hierarchy.” Conceptual 

consistency is ensured by only allowing sub-classes which: 

• Preserve the essential properties of the super-type 

• Do not negate any essential properties of the super-type (in Java, this would be 

refused bequest for an essential property) 

• Do not demote an essential property of a super-class to an incidental property 

A sub-classing algorithm is proposed to create one or more hierarchies from a pool of 

hierarchy members based on conceptual consistency values and specificity.  While this can 

be done automatically, it requires a great deal of manual documentation and that the 

practitioner requires sufficient (semantic) information to properly categorise the hierarchy 

features. These requirements indicate that this model may be useful at the initial design or 

review stages where this detailed analysis is more likely to be carried out. 

These taxonomies of inheritance illustrate that design demands and opinions on acceptable 

practice are diverse, while programming languages offer only a few structures to capture 

these differences.  These taxonomies focus on the motivations for use of inheritance, but 
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do not extrapolate what inheritance use would look like in practice at the system level if 

these models were followed. To the practitioner, the existence of a well-defined and 

meaningful is-a relationship is a valuable insight into a design. If inheritance is used as a 

mere implementation detail, then the information encoded in these structures may offer 

less insight. Additionally, inheritance structures may be more expensive to assess, refactor, 

and maintain as they become more complex – which may offset perceived benefits. The 

taxonomies presented above do not directly address these trade-offs. Notably, the models 

all deal with individual steps in a hierarchy – indicating that different extensions within a 

hierarchy may meet different purposes.  While not explicit, much of the guidance and 

teaching material imply that hierarchy growth means more of the same. 

Finally, the original design motivation for a specific structure may be absent from a design, 

or out-of-date after some system evolution. The same structure (contrary to some 

guidance) may satisfy multiple design motivations. Taking these issues into account, it may 

be more realistic to assess inheritance structures ‘as they are found’. So, then is there any 

useful assessment that can be done, without recourse to manual (subjective) classification? 

2.5 Entity Population Model 

An entity population model, as defined by Kitchenham, captures the normal values for a 

measurement. “When we measure an attribute on a particular entity, we assume our 

measurement can be interpreted by reference to the ‘normal values’ of specific attributes 

for specific entity classes under specific conditions. An entity population model allows 

us to define the normal values for an attribute.” (Kitchenham et al., 1995) There has been 

some effort to capture the current state of practice by examining large corpora of software 

in the wild. 

The creation of an entity population model relies on the assumption that measurements 

fall into a normal distribution across systems, and that the desirable part of the distribution 

can be identified. 

2.5.1 Inheritance in Practice 

Tempero et al. investigated the use of inheritance in 93 applications within the Qualitas 

Corpus - the focus of their work was inheritance in Java as it is used in practice – 

acknowledging that there may be a discontinuity between how inheritance is used in 

practice from what would be expected from following the guidance. One objective of the 
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study was to enable discussion of “typical or extreme” systems with respect to the rest of 

the corpus. The study found that “around three-quarters of user-defined classes use some 

form of inheritance in at least half the applications in our corpus” – with most classes 

extending other user-defined classes. They also found that “… applications generally have 

a lower proportion of classes implementing interfaces than classes extending classes” 

(Tempero et al., 2008). 

Tempero also notes that most types appear in the shallow part of hierarchies.  Emphasising 

that the population is skewed – so a comparison with a population norm may serve to 

highlight outliers, but not explain or advise on use of these less common structures.  It is 

also noted that a few classes have many children and that these classes tend to scale up 

with program size, all other types have few children.  Again, if advice is to be given or 

assessment made of these structures, it seems necessary first to identify the kind of 

structure that is being observed, then assess it on its own terms.  

Tempero et al. carried out a further study investigating what programmers do with 

inheritance in Java systems (Tempero et al., 2013).  This study is distinct from the previous 

study in that it was more focused on practitioner choice, than simply characterising a 

corpus.  The study was an assessment of byte-code and excluded references to Java library 

and third-party types. 

The study found that two-thirds of inheritance is used for sub-typing (substitutability), 

specifically where a subtype is used in place of a super type e.g. variable assignment or as a 

parameter.  They also identify that approximately a fifth of inheritance might be refactored 

to composition – though the appropriate criteria to make this decision or the design impact 

of this are unknown.  Overall, they conclude that “…there was a considerable amount of 

use of inheritance … most of that use is justified…”.  However, this is based exclusively on 

an inheritance required to compile criteria - a third of subclasses rely on down-calls to 

customise superclass behaviour, and two thirds of inheritance is used for sub-typing.  The 

authors do not infer anything about quality from this analysis. The study also raises the 

possibility of different kinds of hierarchies are hinted at when discussing the effect of 

inheritance hierarchy depth on maintainability may be more related to the kind of 

inheritance – “different uses of overriding could explain the variation” (Tempero et al., 

2013). 
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Collberg carried out a census-style style survey of 1132 Java-jar files sourced from internet 

software repositories, in this case, the analysis targeted byte code. The authors note that 

“most of our data have sharp ‘spikes’ and long ‘tails’. That is, one or a few (typically 

small) values are very common, but there are a small number of large outliers which by 

themselves are also interesting” (Collberg et al., 2007).  This illustrates that outliers are 

common in many of the measurements. 

Again, it was found that there are many shallow hierarchies with a few deep outliers.  It is 

interesting to note that Collberg also reported that 89% of classes have no subtypes – this is 

a view of the entire corpus.  It is not clear how many of these non-extended types are 

leaves in inheritance trees or simply classes that are not in hierarchies (Collberg et al., 

2007).  

Overall the census approach relies on the notion that some useful comparison might be 

drawn between aspects of an individual system and the same aspect of the systems over a 

large representative corpus.  Attempts to build reusable models between systems have not 

been successful, other than between very similar systems, and after controlling for 

differences in process and data collection (Murphy, 2011). 

Once inheritance is present in a system, there is an implicit cost to removing it - refactoring 

out an inheritance hierarchy may be difficult and resource intensive (redesign/testing). 

Kegel and Steimann note that although they found that 63% of inheritance structures could 

be refactored to composition, “…no insights can be derived from them as to whether or 

when applying the refactoring leads to better design.” (Kegel and Steimann, 2008). 

Inheritance is in common use and appears to be integral to the designs where it is present. 

Variations in expertise may account for different modes of use – however is it clear that 

inheritance is not ‘factored out’ of designs even where the change is feasible.  It is not clear 

if this staying power is due simply to the cost of removal, or if it is not clear when 

inheritance should be removed. 

Many concerns about inheritance are about system evolution. Though the relationship 

between inheritance and evolution problems, particularly maintenance effort, is 

inconsistent - suggesting that other factors than those measured are in play.  

2.5.2 Interfaces in Practice 

There have been a few studies that explore interface use in practice.  
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Gößner et al. focussed on the use of interfaces in JDK (J2SE 1.4.1_02) (Gößner et al., 2004). 

They found that the interfaces most frequently implemented were special purpose ‘marker’ 

interfaces (with no abstract methods) such as Serializable and Cloneable. The next most 

popular interfaces were a range of ‘listener’ interfaces, again fulfilling quite a specialised 

role but clearly supporting programming to an interface through the Observer interface - 

50% of all interface implementations examined were of these ‘enabling’ interface types. In 

terms of use of interfaces, they found that the head of families of objects, iterators and 

collection types to be the most widely used, and that most classes implement either 0 or 1 

interface only, only a small number implementing more than 8 interfaces and these being 

“rather exotic classes”. They found that although only 20% of the total types available in 

the JDK are interfaces, 31% of classes are accessed exclusively through interfaces, which 

they saw as a positive use of program to an interface. Finally, they showed that the class 

Vector is only accessed via its interfaces (e.g. List) 46% of the time when it could have been 

used via interfaces 85% of the time.  

While examining interface use in the JDK, Steimann et al. manually classified a sample of 

interfaces based on the 100 most implemented and 100 most referenced (by number of 

variables). These were distinguished by comparing variables of interface type and interface 

implementations. Categories of interface were identified – enabling interfaces are 

implemented by classes that are interchangeable ‘service providers’ who take part in the 

activities of one or few callers, while context-specific interfaces are often partial interfaces 

and are usually specific to a narrow interaction with many callers. It was found that 

enabling (a sub-group of context-specific) interfaces are implemented more often than they 

are referenced – the opposite being true for offering. Similarly offering interfaces tend to 

have a high number of methods (which the authors call a weak contract), with a mean of 19 

while enabling interfaces have fewer methods, with a mean of 5 (Steimann and Mayer, 

2005). 

These findings indicate that small interfaces are implemented many times because they 

capture roles in popular interactions, while larger interfaces capture general services 

interfaces with fewer implementations. Steimann and Mayer also found a consistent ratio 

of 5.5:1 of classes:interfaces across 5 releases of the JDK from 1.0.2 to 1.4.1. They also 

found that the ratio of interface-typed:class-typed variables nearly doubled with the 
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change to Java 2 (JDK 1.2) from 1:9 to 1:5. At the same time, the average number of 

interfaces implemented per class jumped from 0.8 to 1.8. 

This finding agrees with Tempero’s comment that “we can expect that as programs get 

larger, the numbers of implementations of popular interfaces and the number of 

descendants of popular classes will grow without limit.” (Tempero et al., 2008). However, 

this does not resolve the issue of assessing interfaces as these findings are the result of 

corpus studies, where the popular interfaces are only detectable because they are popular 

– given the presence of many non-popular interfaces, popularity cannot be the sole 

measure of quality, if at all (Stevenson, 2014). 

In a further study Steimann et al. investigated the use of interfaces in JDK 1.4, jboss and 

eclipse (Steimann et al., 2003). They found a ratio of class:interface definition ranging from 

3.7:1 to 6.6:1, ratio of implementations:classes ranging from 0.5:1 to 0.8:1, and the ratio of 

types defined by classes:defined by interface ranging from 4.5:1 to 2:1. In 2004, they found 

that the “use of classes in variable definitions still clearly dominates the use of 

interfaces” and speculated that this was partly due to the effort involved in introducing and 

maintaining interfaces and that there was a lack of “intuitive conceptualisation” of 

interfaces compared to classes.  

Abdeen and Shata, and their co-workers, have explored a wide range of interface usage in 

multiple studies using between three and twelve open source systems (Abdeen et al., 

2013a; Abdeen and Shata, 2014, 2012). Some of their key findings that are related to this 

study include: 

• Many interfaces were implemented by only one class 

• Many interfaces were identical to the public interfaces of their implementing 

classes. Only about 25% of interfaces were really “partial interfaces” for their 

implementing types 

• The ratio of classes to interfaces ranged from 3.3:1 to 27:1 

• The percentage of classes that “implement directly” interfaces range from 15% to 

40% 

• Evidence of overlapping between interfaces (8% to 44% of redundant method 

declarations) and even interface clones 

• 7% to 35% of interface methods unused in their applications 
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• Significant amounts of redundancy in interface hierarchies 

Attempts to model interfaces and inheritance-focused studies often ignore marker and 

constant interfaces (Abdeen et al., 2013a, 2013b; Amálio and Glodt, 2014; Tempero et al., 

2008). This is despite the fact that super-types that contain only constants are found to be 

“fairly common” in a different study by Tempero – with interfaces being preferred over 

classes for constant-carrying super types (Tempero et al., 2013). Tempero also found that 

marker interfaces (with no method definitions) are  common in larger systems (Tempero et 

al., 2013). There is also evidence of cases where interfaces are a standard practice, for 

example for accessing an API, or interacting with Java serialisation.  In these cases, the 

practitioner has no decision to make, but it may be difficult to distinguish these cases with 

automated tools. 

2.6 Survey Research and Practitioner Attitude 

This section provides a background for survey research, covering both survey 

methodologies and insights from surveys performed relating to software design practices. 

Surveys have been used to discover the state of industrial software engineering practices 

for more than three decades (Beck and Perkins, 1983). In recent years they have become 

particularly popular, taking advantage of online distribution of questionnaires, email and 

social media for contacting potential participants, and using highly-regarded survey 

guidance (Pfleeger and Kitchenham, 2001). 

One of the most similar design-related surveys to this work was on design patterns (Zhang 

and Budgen, 2013). The goal was to discover which of the Gang of Four patterns were 

considered useful by experienced users. They approached all authors of papers relating to 

design patterns in the mainstream software engineering literature. They received 206 

usable responses (response rate of 19%). More than half the respondents had over ten 

years of experience in object-oriented development. The survey was administered using 

the SurveyMonkey commercial site. It used a combination of Likert-item questions and 

open-ended questions but received “relatively few comments” – 338 in total. Their main 

finding was that only three design patterns – Observer, Composite, and Abstract Factory – 

were highly regarded.  

Simons et al. surveyed 50 professional developers comparing their opinion of design quality 

to that of metrics based on design size, coupling, and inheritance (Simons et al., 2015). They 
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found no correlation between the metrics used and professional opinion when assessing 

UML class diagrams. One of their main findings was the need to involve humans within the 

software design quality assessment process; metrics alone were insufficient. Yamashita and 

Moonen surveyed 85 professional developers exploring their knowledge and use of code 

smells (Yamashita and Moonen, 2013). 32% of respondents did not know of code smells. 

Only 26 were concerned about code smells and associated them with product evolvability. 

Respondents highlighted that they often had to make trade-offs between code quality and 

delivering a product on time. At Microsoft, Devanbu et al. found that practitioners have 

strong beliefs largely based on personal experience rather than empirical evidence 

(Devanbu et al., 2016). They call for empirical research to take practitioner beliefs into 

account when designing new empirical studies.  

Other recent, but less closely related, software engineering surveys include: the practices 

used in the Turkish software industry (Garousi et al., 2015), the use of modelling in the 

Italian software industry (Torchiano et al., 2013), the use of UML modelling for the design 

of embedded software in Brazil (Agner et al., 2013), testing practices used in the Canadian 

software industry (Garousi and Zhi, 2013), the data and analysis needs of developers and 

managers at Microsoft (Buse and Zimmermann, 2012),  and the use of software design 

models in practice, in particular UML (Gorschek et al., 2010). 

A number of common themes emerge from these surveys. All surveys tend to use an 

online, web-based delivery mechanism such as SurveyMonkey. Many closely follow the 

guidance of Pfleeger and Kitchenham on survey methodology (Pfleeger and Kitchenham, 

2001). Most focus on the use of Likert-item or fixed-response questions with associated 

(quite straightforward) quantitative analysis. There is some use of free-text questioning and 

routine qualitative analysis. Sampling is challenging, with a tendency to use personal 

contacts, public records of relevant organisations, mailing lists, and social media. The 

number of respondents typically ranges from about 50 to 250 (excepting one very large 

outlier (Gorschek et al., 2010)), in most of the studies respondents typically had 5-10 years 

of experience. Most of these survey papers tend to identify high level findings or guidelines, 

focusing on raising issues to be investigated further in more rigorous studies. 

In terms of practitioner attitude to inheritance, there have also been a few relevant 

surveys. In a wide-ranging survey (3785 responses) Gorshek et al. found that there is a 

distinction between awareness of guidelines on matters such as class size/inheritance 
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depth (which is widespread), and conformance to these guidelines (which varies) (Gorschek 

et al., 2010).  This may indicate that compliance is being achieved in some other way, or at 

least to the satisfaction of the practitioner. 

In a survey of OO practitioners (275 valid responses), it was found that around half of 

respondents think inheritance depth is a problem. Though more experienced programmers 

may have less of a problem with it.  Inheritance also occasionally caused difficulty of 

understanding for many (80%) of respondents (Daly et al., 1995). 

Dvorak found that deciding on the order and relationships within a hierarchy creates 

disagreement among practitioners, and even shallow hierarchies can make it difficult to 

place new members (Dvorak, 1994). A related concern is that complex hierarchies (using 

size as a proxy for complexity) have been shown to require stronger cognitive model-

building or de-centralised task handling skills to understand, and may require more effort to 

modify, especially for less experienced developers (Kelly and Buckley, 2009). 

2.7 Conclusions 

Inheritance has the potential to reduce system implementation time, eliminate duplicate 

code, and encourage reuse. It can also be used to capture important hierarchical 

relationships within a problem or solution domain. Like interface implementations, 

subtypes can be freely substituted at runtime, creating flexibility. The extra facility of code 

reuse introduces potential complications in design – redundancy in hierarchies, complex 

method execution paths, fragile base class – which make the design difficult to understand 

and thus prone to errors during modification. 

In contrast with inheritance are interfaces, which are often used to model roles – which 

may be transitory or incidental to the implementing type.  Advice promotes that 

inheritance relationships are true is-a relationships, which places a greater burden of choice 

on the implementer.  This may be made more difficult by Java’s single inheritance 

constraint – this only allows for a single, most important is-a relationship for each object. 

Studies of the inheritance population indicate that there are no clear norms – though most 

inheritance is shallow. In addition, there are clear outliers in the population independent of 

what is measured – methods, hierarchy depth, width. 

Guidance becomes more specific when applied to a specific structure, though this also 

highlights opposing points of view.  A central conflict is between optimal and practical. 
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Optimal inheritance is as deep as possible to maximise code reuse, and has small 

intermediate steps to promote common behaviour up to the highest shared point requiring 

frequent refactoring and good understanding of the whole hierarchy. Practical inheritance 

tempers indirection, depth, and overriding with the need to read and maintain the code. 

Unfortunately, there is no consensus on what constitute reasonable practical limits.  

Many of the guidelines address overlapping concerns, but often at different levels of 

abstraction, or in relation to different data structures. Some effort has been made to 

incorporate local context, or intuition into more ‘locally aware’ metrics. This, however, 

introduces the risk that these new metrics, which begin as rules of thumb much like other 

guidance, find their way into metrics and coding tools – what was rare or unusual becomes 

‘wrong’ or ‘to be avoided’ – introducing unexplained and out of context limits on designs. 

Much like reusing software modules – the design assumptions used to construct tools or 

models may limit their portability unless these assumptions are well documented.  

When corpora of object oriented programs are examined, inheritance is still an important 

design feature of many systems. There has been some investigation of the effect of the 

presence of inheritance on undesirable design properties, which overall, have proved 

inconclusive – there is no consistent relationship between inheritance markers such as 

hierarchy depth, and poor maintainability scores, or that ‘known issues’ such as the fragile 

base class problem is as problematic as the guidance suggests. It has been suggested there 

are perhaps other non-obvious properties such as hierarchy complexity which may need to 

be considered. 

Models of inheritance attempt to distil the concerns and opportunities for inheritance use 

into all-encompassing schemes or taxonomies, however these are based on the proposer’s 

interests, and make no claims about completeness or soundness. There is consensus that 

identifying an ‘is a’ relationship is key, but again there is difference of opinion on how this is 

recognised. So, even if compliance with one or more of the models could be demonstrated 

for a given design, it is not clear what assertions could then be made about that design. 

A recurring theme in software design is pragmatism, these findings indicate that 

practitioners are conscious of guidance, but that satisfactory solutions may be achieved 

before full compliance with guidance. In addition, the definition of ‘acceptable solution’ 

appears to vary with experience and concerns of the moment. So, it is perhaps not the case 

that important and relevant aspects of software designs cannot be measured – but more 
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accurate to say that design decisions can be difficult to reconstruct. Especially if the variable 

experience of the practitioner must be factored in to the definition of acceptable 

thresholds. 

2.7.1 Research Questions 

There is broad agreement that bad design is undesirable, evidenced by the volume and 

variety of design-guidance related material available to practitioners. However, there is also 

a noticeable gap between the popular guidance, which focuses mainly on low-level 

interactions between types and ought-arguments, and empirical measurement which 

focuses on prediction and population modelling.  

Thesis Question: Is it possible to close the gap between object-oriented design guidance and 

design practice by surveying practitioners and studying how constructs such as interfaces 

and inheritance are used in open-source systems? 

Consequently, it would be desirable to gather information from the environment where the 

guidance and metrics are used, under the constraints of time and production deadlines – 

from software practitioners.  This may yield insight into what remains useful and important 

in a production environment. 

RQ1.1: What does it mean for software to be of high quality, or well-designed? Can 

definition(s) of ‘good design’ be derived from the attitudes and beliefs of experienced 

practitioners, and the structure of mature software systems? 

It has been several decades since the publication of the Design Patterns (Gamma et al., 

1994) and the appearance of Program to an Interface – which is now a core principle in 

many object-oriented curricula, and is closely tied to more general programming 

approaches such as dependency inversion. Given this simple directive and the proposed 

benefits of programming with interfaces, it is surprising that recent code surveys have 

revealed that interface use remains relatively low. This raises the question of what good 

interface-based programming looks like at the system level. 

RQ1.2: How are programming language constructs used in practice? Specifically, powerful, 

mature, and ubiquitous abstractions - such as interfaces and inheritance. 

In contrast, despite warnings of detrimental effects, inheritance is still widely used – 

indicating that class inheritance is perceived as useful, or at the very least unavoidable by 
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many practitioners.   Previous research in characterising inheritance has focused on either 

counting, or proposing principle- or experience-driven models. Despite extensive 

examination, there is no good model of how inheritance should be used – much of the 

design advice for inheritance use predates modern language features (and indeed some 

modern languages). It may be more useful to characterise inheritance use as is – to 

examine how use of inheritance reflects guidance and if any modes of use appear 

inconsistent with guidance. 

RQ1.3: How does practice impact the structure of software? Specifically – is there any 

evidence within systems that guidance is being followed? Can (or should) systems be fully 

compliant with all guidance? 

The following chapters to address these questions by investigating practitioner attitude and 

examining the source code of mature software projects. 
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3 Survey of Practitioner Attitude to Design Guidance 

3.1 Introduction 

The literature review highlighted that software quality is a broad area and that there are 

different approaches to defining and assessing quality. It also highlighted that early work on 

quality measurement (Chidamber and Kemerer, 1994) used practitioner viewpoints to 

determine what aspects of software were considered important. This chapter follows on 

from this work, investigating how practitioners view software quality, with a specific focus 

on the perceived value of object-oriented guidelines and the importance of software 

quality in day-to-day practice. 

This survey aims to determine current attitudes to accepted object-oriented design 

guidance (as it is taught and promoted) among practitioners. There is much activity in the 

empirical software engineering field to validate the (supposed) popular guidance – 

underpinned by the assumption that this guidance is useful in practice.  Similarly, the 

teaching of object-oriented best practice has become increasingly standardised in 

computer science courses, based on the teachings of popular textbooks and mantra-like 

principles. This initial study aims to determine what guidance is relevant to practitioners ‘at 

the coalface’, and how such guidance is applied. 

3.1.1 Motivation 

This research was motivated by the lack of previous work that explores the techniques used 

by software developers in their day-to-day practice and which of these techniques are 

perceived as most useful. It is important for the software engineering research community 

to know what practitioners are really doing in terms of design, what is useful and what is 

less so - to help guide the direction of future research. It is also of potential interest to 

developers working in industry to know the techniques and practices that their colleagues 

are using and find useful. It is important for educators to base their teaching on techniques 

and practices that are used in industry, and known to be useful in practice. 

3.2 Study 

3.2.1 Problem Statement 

This research contributes to the problem identified by Baker et al. in their foreword to an 

IEEE Software special issue on Studying Professional Software Design (Baker et al. 2012): 

“Although we have quite a few high-level design methodologies we don’t have a 
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sufficient understanding of what effective professional developers do when they design … 

To produce insights that are relevant to practice, researchers need to relate to practice 

and be informed by it”.  

The research is further motivated by evidence-based software engineering (EBSE) (Dyba et 

al. 2005): “A common goal for individual researchers and research groups to ensure that 

their research is directed to the requirements of industry and other stakeholder groups”. 

Finally, Carver et al. recently explored practitioners’ views of empirical software 

engineering research (Carver et al. 2016) and one topic practitioners were keen to see more 

research on was “Define good qualities of software and help developers to implement 

software with great quality”. 

3.2.2 Research Objectives 

The goal of the survey was to discover the extent to which practitioners concern 

themselves with software design quality and the approaches practitioners use when 

considering design quality in practice. 

3.2.3 Context 

The key practices and techniques used in the design of software are long established and 

widely known. Multi-edition software engineering textbooks (Sommerville 2010; Pressman 

2014) have included chapters on software design for decades, there is a large collection of 

textbooks that specifically address software design (Coad and Yourdon 1991; Gamma et al. 

1994; Riel 1996; McLaughlin et al. 2006), and a large body of empirical research literature 

constantly proposing and evaluating new approaches to design. However, there does not 

appear to be much research exploring the techniques that software developers use in their 

day-to-day practice (Weyuker, 2011) and which of these techniques they find most useful. 

3.2.4 Experimental Design 

To address the goal of discovering how practitioners approach design quality, an online 

questionnaire consisting of 37 questions, in three sections, was developed. The first section 

explored high level views on design quality: how it is ensured by practitioners, its relative 

importance compared to functional correctness and the development methodologies used. 

The second, main section, explored opinion on well-established design guidelines and 
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practices. The third section captured demographic data. Questions consisted of fixed Likert-

scale options followed by free-text fields intended to gather more detailed insights. 

3.2.4.1 Subjects 

The target population for the survey was software developers with industrial experience 

using object-oriented technology. Obtaining access to a representative sample of this 

population was a major challenge in performing the study. Industrial software development 

is a worldwide activity currently involving perhaps as many as eleven million professional 

developers5. As Zhang and Budgen recognise “… this particular community is defined in 

terms of their specific skills and knowledge, rather than by location or through 

membership of any formal organisation, there is no way of knowing the size of the 

target population…” (Zhang and Budgen 2013).  

3.2.4.2 Objects 

Using the template suggested by Linaker et al. (Linaker et al. 2015), the Target Audience, 

Unit of Analysis, Unit of Observation, and Search Unit for this study are all: Software 

developers with industrial experience using object-oriented technology. The Source of 

Sampling are the authors’ contacts in the UK software industry and software engineering 

papers published in the period 2009-2014 by authors who held an industrial affiliation. 

3.2.4.3 Instrumentation 

The design of this survey was based on empirical advice popular in the related studies 

(Pfleeger and Kitchenham 2001). The questionnaire was based on a mixture of closed 

questions and open free-text questions which were intended to gain deeper insights into 

the participants’ responses. 

The questionnaire was developed, distributed and analysed using the Qualtrics Survey 

Software6. Qualtrics contains professional-grade survey building tools, including support for 

questions paths and customisation by scripting and stylesheets. Further analysis of the 

results was carried out using nVivo7. 

                                                           
5 http://www.infoq.com/news/2014/01/IDC-software-developers 
6 http://www.qualtrics.com/ 
7 http://www.qsrinternational.com/ 
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The questionnaire consisted of a mixture of Likert-item questions, mostly with five items 

including a neutral response in the middle. Including a neutral option avoids forcing a 

positive or negative choice (Shull et al. 2008), which seemed appropriate given the 

exploratory nature of the survey instrument. To increase respondent speed and 

comprehension, a similar question layout was used throughout the questionnaire. Each 

question topic finished with a free-text box intended to gather more detailed insights into 

the participants’ responses. 

The questionnaire landing page stated the study aim, identified its authors and gave their 

contact details. It confirmed that the survey had university ethics approval (obtained 

12/6/2014). It stated that questionnaire was only concerned with object-oriented design 

and defined design in the context of the survey: “The term design is used in this survey to 

discuss the organisation of packages and classes, class identification and interaction, 

and interface use.” This was followed by a section on privacy which explained how 

responses were to be kept anonymous, how the data was to be analysed, how long data 

would be retained, how to quit the questionnaire, if required, and how to contact the 

survey authors. There was also a consent section which blocked access to the rest of the 

questionnaire until consent was given. 

The first section of the survey explored the participant’s high-level views of software design 

quality: how they assess quality, their confidence in design decisions that they make, the 

relative importance of design quality compared to functional correctness, and the 

development methodologies that they use. 

The next section explored how design guidelines for each of the following were used in 

practice (a questionnaire page dedicated to each in turn): program to an interface, 

inheritance, coupling, cohesion, size, complexity and design patterns. Again, the questions 

were a mixture of Likert-item followed by free-text questions to explore each topic further. 

Demographic questions were included at the end in order that these questions did not 

deter potential respondents from completing the questionnaire; as Kitchenham and 

Pfleeger note this is suggested by Bourke and Fielder (Kitchenham and Pfleeger 2002b). 

These questions were used to screen participants, and to provide a general summary of 

participants’ backgrounds. 
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3.2.4.4 Data Collection Procedures 

The questionnaire was initially distributed by email in July 2014 to 48 of the authors’ 

university contacts who worked in the UK software industry. At the same time, the 

questionnaire was published to various relevant social network communities and 34 email 

invitations were sent to business incubators affiliated with the Scottish Informatics and 

Computer Science Alliance (SICSA). The survey therefore used non-probabilistic sampling, 

convenience and snowballing (Kitchenham and Pfleeger 2002a).  

Two months after the initial distribution the authors then targeted a more global 

population using industrial authors who had recently published design-related research in 

key software engineering destinations. A range of software engineering journals and 

conferences (EMSE, ICSE, ICSM, IEEE Software, TSE, IST, SPE, SQJ, OOPSLA, SPLASH, 

MOBILESoft) were searched for the period 2009-2014 for software design-related papers 

with an author who appeared to have an industrial affiliation. Many of the publications 

printed the author’s email address. In cases where the email address was missing a web-

search was performed to discover whether the author’s email address was publicly 

available in another source e.g. the individual’s web page. This resulted in the identification 

of a further 275 contacts.  

Each contact was then sent a short email. This email introduced the authors and the 

purpose of the survey. It explained why they were being approached e.g. as an author of a 

technical paper in an identified journal or conference and their affiliation. The email stated 

that the questionnaire should be completed by programmers, designers or architects based 

on how they approach object-oriented design quality in practice. The email also stated that 

the questionnaire took between 15 and 30 minutes to complete (depending on how much 

text was written in the open-ended questions). The email also included an anonymised, 

reusable link to the questionnaire. (The Qualtrics survey system uses a machine’s IP address 

to identify unique participants. This information is not available for inspection, and is 

destroyed on completion of the survey. Duplicate responses are prevented using cookies.) 

The invitation email also included a request that the email be passed on to other relevant 

parties e.g. within the recipient’s organisation, if appropriate (snowball recruitment).  

The survey was closed at the end of December 2014, having run for six months. 
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3.2.4.5 Analysis Procedure 

For each of the closed questions the data is summarised and presented as is. The 

questionnaire contained 14 free-text questions that yielded over 25k words of feedback. 

The approach to qualitative analysis of free-text responses was similar to that adopted by 

Garousi and Zhi – synthesis, aggregation and clustering of responses to identify key 

categories (Garousi and Zhi 2013). 

There are many approaches available for coding such qualitative data (Saldaña 2015), here 

an iterative approach was used to allow the data to inform the coding schemes: 

• Holistic coding – collecting all the relevant sources for each basic theme or issue 

together for further analysis. 

• In vivo / verbatim coding – short words or phrases from the material – this may 

reveal major subjects, topics or themes that are explicit in the material. 

• Descriptive / topic coding – identifying the topic, not necessarily the content of the 

material. 

• Versus coding – any discussion of mutually exclusive activities, policies etc. 

Each of these types of coding was performed in its own pass over the free-text material. 

The coding process was iterative – with topics and relationships becoming more refined as 

more data was analysed. This inevitably carries the risk of bias – as coding is heavily 

dependent on the researcher. In this case, there was no pre-determined coding scheme 

and the aim was to let the responses speak for themselves. 

Coding was used to identify key topics in the responses for each individual free-text 

question. In the topic tables that follow, the first column identifies the topic code, the 

second column lists illustrative quotes for that topic, and the third column shows a count of 

how many respondents mentioned the topic for that question. It should be noted that this 

count of the number of mentions is not viewed as a sample from any population, but rather 

only an indication within this sample about popularity. 

To save space, only the most popular topics for each question are included in this thesis 

along with one or two illustrative quotes. Occasionally, where an illustrative quote was 

judged to be particularly interesting, some less popular topics have also been retained. As a 

result, some detail is inevitably lost to the reader - the complete set of raw data and full 
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results tables are available in the online experimental package (Stevenson and Wood, 

2017). 

3.2.4.6 Evaluation of Validity 

In this survey, it is recognised that there are numerous important threats to validity. In 

terms of construct validity, perhaps the biggest concern is the choice of design topics 

explicitly covered by the survey. It may be that other design topics should also have been 

explored, however the length of the questionnaire, and the associated time taken to 

complete it, were major concerns. Most questions had an ‘other’ option and associated 

free-text fields - there was little indication from respondents that important topics had 

been omitted. 

The pilot study was intended to help identify any major concerns with the design of the 

questionnaire. As a result, the original questionnaire was reduced in length, some 

potentially confusing terminology was clarified, and questions exploring the Law of 

Demeter (Lieberherr et al. 1988) were removed. An estimation of the time to complete the 

questionnaire was also included in the introduction. 

The most pertinent threat to internal validity is the methodology used to derive the key 

findings and associated conclusions. The key findings were derived using a mixture of 

quantitative and qualitative analyses, in attempt to distil the main messages. In a similar 

manner, these key findings were then merged together to form the main conclusions and 

answer the initial research questions. This procedure is open to researcher bias and others 

may have identified different findings. To address this, all the original questionnaire data 

has been made available publicly. In the analyses, there are traceable paths from the 

questionnaire data to the key findings (KF1-15) and then to the corresponding high-level 

conclusions and answers to the original research questions. 

The selection of participants for this study is also a concern when considering internal 

validity. Initially, participants were identified using industrial contacts of the authors and 

their university and, thereafter, by searching for industrial authors in the academic 

literature. This is clearly a limited selection procedure. Furthermore, the respondents who 

completed the questionnaire have been self-selected and may have biases and opinions 

which they were keen to express, quite possibly views that are not representative of the 
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mainstream. Also, there may be a tendency for subjects to give known, best practice 

responses. Lastly, there was very limited control of the questionnaire once distributed, it is 

possible that the questionnaire could be completed carelessly or even dishonestly. It is 

difficult to address such concerns, though, given the level of consensus and quality of free-

text responses, it is believed that these issues have not had a major impact on the findings.  

The ordering of questions is another potential threat, again, particularly, the ordering of 

specific design topics covered. There is the potential for rating fatigue (Zhang and Budgen 

2013) where respondents lose interest as they progress. There is little indication of this, 

with generally positive responses in initial questions, then more mixed views on 

inheritance, then being more positive again on coupling etc. and finishing with more mixed 

responses on design patterns and refactoring. 

There are recognised concerns regarding external validity and the generalisability of the 

findings. The target population was the millions of industrial software developers working 

around the globe. A key question is whether the actual population sampled is a 

representative subset of that target population (Kitchenham and Pfleeger 2002c). The 

respondents in this survey appear to have more industrial experience compared to related 

work (45% have over 10 years (Figure 3)), work in a wide range of locations around the 

world, are mostly active programmers (93/102) and have experience of multiple software 

development activities. The textual feedback provided in the questionnaires showed many 

respondents responding thoughtfully and knowledgeably which increases confidence in the 

relevance of the results. 

Finally, the number of respondents is relatively small (102), certainly in comparison to the 

potential size of the target population. However, this size is in keeping with that of recent, 

comparable studies. 

3.2.4.7 Pilot Study 

Prior to formal and widespread distribution, the initial questionnaire was evaluated in a 

pilot study. The questionnaire was sent to ten individuals asking them to complete it and 

provide feedback on the content and form of the questionnaire. The ten included six 

individuals from the target population, two researchers with software development 

experience and two academics with experience of survey research. The pilot was 
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distributed on 23/06/2014, a reminder was sent on 4/7/2014 and the pilot study closed on 

11/7/2014.  

Four completed and two partially completed questionnaires were received. Only one of the 

pilot respondents appeared to complete the questionnaire in a single session, taking 36 

minutes. Four of the respondents indicated their number of years working in industry: 1 

had 2-5 years, 2 had 6-10 years, and 1 had 11-20 years. The respondents used the (then) 

generous free-text spaces in the questionnaire to provide feedback. As a result of feedback 

on the questionnaire structure the following changes were made: 

• Some of the optional free-text boxes were removed as these had been perceived as 

mandatory or excessive despite being marked as optional. 

• A question about the Law of Demeter was removed as it seemed some respondents 

were not familiar with this concept and therefore it did not appear to meet the 

requirement for a commonly known guideline. 

• Some terms that appeared to cause confusion (e.g. framework, pattern) were 

clarified. 

• The options in some questions were simplified. 

The final version of the questionnaire consisted of an initial consent question and then 37 

questions: 29 topic questions (15 multiple-choice, 1 numerical, 13 free-text), 7 

demographic questions, and the final general free-text feedback question. A summary of 

the final questionnaire is available in Appendix D - Survey Questions and the complete 

questionnaire is available in the experimental package available at: 

http://dx.doi.org/10.15129/879fb7cf-7f98-49f5-bfa0-183dc5f7d85f. 

3.3 Research Questions 

The design of the questionnaire was guided by the following research questions: 

RQ3.1: Design Priorities - To what extent do practitioners concern themselves with design 

quality? 

This research question was motivated by the fact that there is that much of the research 

literature and empirical studies (discussed in Chapter 2) that investigate software design 
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quality but there is not much research that actually investigates the importance of design 

quality to practitioners in their day-to-day work. 

RQ3.2: Recognising Quality - How do practitioners recognise software design quality? 

This question was motivated by the need to discover how practitioners distinguish good (or 

better) design quality from bad (or worse). Again, there seems to be little prior research 

that investigates how practitioners recognise quality in their day-to-day work.  

RQ3.3: Guidance - What design guidelines do practitioners follow? 

This question was motivated by the need to discover whether well-known guidelines and 

practices from the literature are used, and are useful, in practice. Also, which of these are 

the most useful? 

RQ3.4: Decision Making - What information do practitioners use to make design decisions? 

This question was motivated by the need to discover the design information that 

practitioners use to make decisions about quality? Is it information from designs, from 

code, from metrics, from tools …? 

The answers to these research questions are important to researchers to help guide future 

research; to practitioners to see how other practitioners are addressing design quality; and, 

to educators to teach students the principles that underpin industry-relevant techniques. 

The Goal Question Metric approach (Basili, 1992) was used to derive the research questions 

from the original research goal. Prior to the distribution of the questionnaire, the research 

questions were mapped to survey questions, see Table 5. 

3.4 Results 

3.4.1 Descriptive Statistics 

The survey was open for 6 months and received 222 responses, 109 of which were 

considered valid.  No response rate can be calculated as sampling was non-probabilistic. 

The mean completion time for the questionnaire was 31 minutes, though many responses 

were completed over multiple days.  
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Table 5 - Original GQM mapping of survey goal to research questions to answerable survey questions 

High level goal: To what extent do practitioners concern themselves with design quality? 

RQ3.1: Design Priorities – To what extent do practitioners concern themselves with design 
quality? 
Questions about time spent improving quality, responses where poor quality is the cause 
of a problem. 

Q1, Q3, Q5, Q17, Q19, Q27, Q37 

RQ3.2: Recognising Quality - How do practitioners recognise software design quality? 
Questions about recognising quality and responses where following a particular guideline 
or practice is considered positive/reassuring. 

Q3, Q5, Q6, Q7, Q9, Q11, Q14, Q28 

RQ3.3: Guidance - What design guidelines do practitioners follow? 
Direct questions about selected guidelines, general question about any other useful 
guidelines. Responses where a tool, guideline or methodology is mentioned as useful. 

Q4, Q8, Q10, Q12, Q13, Q15, Q16, Q18, Q20, Q22, Q24, Q26 

RQ3.4: Decision Making - What information do practitioners use to make design 
decisions? 
Direct questions about design decision making, confidence, and what makes decisions 
difficult. Responses that mention choice, design decisions, doubt or uncertainty. 

Q1, Q4, Q9, Q20, Q11, Q14, Q15, Q16, Q28 
 

3.4.2 Data Set Reduction 

222 responses were received in total. Of these: 

• 96 questionnaires were complete. 

• 93 questionnaires were blank indicating that candidates had seen the landing page and 

not continued or had answered no to the consent question. 

• 23 questionnaires were partially completed – these respondents had completed a 

variety of multiple choice questions, omitting some free-text questions or some of the 

demographic questions. 

• 6 completed questionnaires from the pilot study were included, excluding the data from 

questions that were removed between the pilot and the main study. This didn’t include 

the two academics as it was known they didn’t respond - email tracking was used in the 

pilot so it was possible to tell who responded but not which response corresponded to 

which email.  

An examination of the partially completed questionnaires found that they appeared to 

contribute very little – mostly a few questions answered and small comments in the free-

text sections. A decision was therefore made to exclude these from the analysis. This 

resulted in a total of 102 complete questionnaires being used for the main analysis. All 102 

respondents stated that they were currently working in industry or had previously done so. 
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3.4.3 Respondents 

One hundred and two respondents completed the questionnaire, 56 from the UK, 40 from 

all over the world outside of the UK, and 6 who did not provide a location. The self-

reported years of experience for respondents is shown in Figure 3. Compared to the 

experience levels recorded in the surveys discussed in the Related Work section the 

experience level is high, 45% of respondents in this study have over 10 years of industry 

experience. 

 

Figure 3 - Q32 - How many years have you been involved in the software industry as a designer/developer? (102 
responses)8 

Figure 4 summarises the roles that the respondents fill in software development (they 

could fill more than one role). 93 of the respondents have some programming duties. Only 

two respondents were solely managers – however, these individual’s responses in other 

areas indicate that this is a technical lead, rather than an administrative role. 

 

Figure 4 – Q36 - What role(s) have you carried out in a software development environment?  
(102 responses, respondents could choose more than one option) 

                                                           
8 Unless shown otherwise, all figures consist of 102 responses. 
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 Figure 5 summarises the programming languages used by respondents (again respondents 

could choose more than one response). There is a good correspondence with the top 

programming languages identified by IEEE Spectrum (Cass 2015) which ranked 1: Java, 2: C, 

3: C++, 4: Python, 5: C#, 6: R, 7: JavaScript. 

 Figure 5 – Q34 - What programming language(s) do you use when developing software?  
(102 responses, respondents could choose more than one) 

As the study used non-probabilistic sampling, the findings cannot be generalised to a wider 

population (Stavru 2014). However, the respondents do appear to represent a diverse 

group of experienced practitioners and the common findings should therefore provide a 

useful indication of widely used approaches to design quality. Overall, it does appear that 

the respondents are all from the target population. Figure 6 shows the application domains 

that respondents work in. 

 

Figure 6 – Q35 - What kinds of problems are you most familiar with? 
(102 responses, respondents could choose more than one) 
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3.4.4 General Approaches to Design Quality 

Question 7, the first Likert-item question that focussed on design quality, asked 

respondents about their general approach to ensuring quality in their development 

process. The results are summarised in Figure 7. Note that diverging stacked bar charts 

(Figure 7, Figure 9, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15) show frequency 

data aligned along the neutral category. This emphasises the relative overall swing in the 

data, while allowing comparison between the relative proportions of each bar (Robbins et 

al., 2011). Note that the grey bars adjacent to the vertical axis indicate non-use and are thus 

set aside. 

Q7. How important is each of the following in ensuring the quality of software design in 
your development process? 

 

Figure 7 – Q7 - Activities ensuring software quality. Note that the categories have been ordered from most to 
least positive (total of Very and Extremely Useful). Counts for ‘not used’ are shown as grey bars for clarity. 

Responses show a clear bias towards personal experience – this is the strongest response 

for each of the categories, followed closely by peer review, team review, and expert review 

– all people-mediated inputs. This leads to the first key finding (KF) from the study. 

Table 6 shows the free-text responses associated with Q2 – further details on ensuring 

quality in the development process. The topic code for each category of response is shown 

in the first column, illustrative examples are listed in middle column, and the total count of 
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respondents who made responses in that category is provided in the third column. The 

complete set of response data is available in the online experimental package. 

The free-text responses in Table 6 might be summarised as knowing what to do – whether 

this is from previous experience, a review process, guideline, process, specification, or 

domain knowledge. The feedback on experience might be separated into two further 

categories: 

• General conscientiousness, following guidelines and design practices (discipline) 

• Prior experience with a specific technology or problem domain (specific 

knowledge), allowing the avoidance of common pitfalls 

Table 6 - Q2 responses – Further details on how software quality is ensured in the development process  
(example free-text responses) 

Topic Code Illustrative Quotes Mentions 

Review “…tight review by 1 or 2 technical experts.” 10 

Personal 
Experience 

“I think personal/peer experience is the starting point, as 
you can't consider using what you/your team don't know 
about.”  

9 

Tools 
“…with our build system, Sonar by SonarQube is ran and this 
runs Checkstyle, EclEmma, ...” 

9 

Peer 
Experience 

“…we are much more reliant on personal experience, team 
experience and access to domain experts than design 
guidelines. The latter can only take us so far...” 

7 

Design 
Space 
Problem 

“…there is no perfect choice but there are always different 
ways to reach your goal.” 

5 

Teamwork 

“…a general consideration and acknowledgement that 
others will have to use your code once you're done is IMO 
the single most important factor. There are experienced 
people who will produce lower quality designs than less 
experienced but conscientious designers…” 

4 

Processes 
“Separating design from implementation is itself an 
impediment to good design. Good design depends on 
feedback.”  

4 

Guidelines “…professional guidelines are very helpful.” 4 

Feedback 
“…feedback that matters is that which comes from end users 
and those concerned about the long-term evolution of the 
system.” 

3 

Design for 
change 

“…Re-architecting an existing design is rarely a simple task 
and so is often not a desired option.” 

3 

Domain 
Familiarity 

“Generally our team deals with a certain business domain… 
we can have a good idea whether or not a design proposal 
will work…” 

3 
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The next general design question was concerned with confidence in design decisions, see 

Figure 8 (Q3). The quantitative results suggest generally high confidence, however analysis 

of the free-text responses (Table 7) revealed a range of situations where there is less 

certainty. Many responses highlighted uncertainty in terms of the problem domain, 

requirements, choices amongst design options, lack of control, and design complexity. 

Q3. When making design decisions, how confident are you that you have chosen the best 

option from the alternatives you have considered? 

 

Figure 8 – Q3 - Confidence level when making design decisions 

Table 7 – Q4 responses - What type of problem makes it difficult to have confidence in a design decision? 
(sample free-text responses) 

Topic Code Illustrative Quotes Mentions 

Knowledge 
Gap 

“…lack of familiarity with the problem generally leads to 
more iterations over the designs as the project moves 
forward.” 
“...inexperience with any of the technologies involved 
and the feasibility of what can be done with them.” 

20 

Unclear 
Requirements 

“Customers who don't understand their own problem.” 18 

Choice Among 
Options 

“Many options may be good, and weighing their 
advantages and disadvantages is an inexact science” 

17 

Changing 
Requirements 

“It is far more time and cost efficient to be able to 
refactor code when we know how it is really being used, 
rather than try and concoct a perfect plan first time 
around.” 

15 

Lack of control “Confidence levels can drop when the use of external 
resources … is used as part of an overall project.” 

14 

Unknown 
Future Use 

“The best you can do is design for the requirements you 
were given, and with a bit of foresight…” 

13 

Complexity “Convoluted designs almost always suggest there’s 
something wrong with design, regardless of system 
complexity”  
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The next question (Q5) asked how designers recognise design quality. Table 8 summarises 

the main responses. Many topics are associated with well-defined practices such as Clean 

Code (Martin 2009): clarity of design including naming, small size, simplicity, modularity, 

documented, full set of tests. 

The other group of topics are much less concrete and relate back to the emphasis placed on 

experience in responses to Q1, intuition and even design hindsight: maintainable, clarity, 

complete, subjective (“design is an art”), reflects the problem domain. 

Table 8 – Q5 - What are the key features that allow you to recognize good design in your own work and in the 
work of others? (sample free-text responses) 

Topic Code Illustrative Quotes Mentions 

Maintainable / 
Extensible 

“…well designed components are easy to maintain over time 
though it takes longer to recognise this…” 

31 

Clarity “A good design should make it as simple as possible to 
understand the responsibility of each piece of code, and how 
they interact.” 

28 

Modular / 
Separation 

“Partitioning of functionality across interfaces i.e. a target 
balance of loosely coupled components. I tear my hair out on 
a regular basis when I see components poisoned with 
dependencies between logical boundaries (this is something 
you always see with graduate programmers but never with 
older hands).”  

18 
 
 
 

Smallness / 
Simplicity 

“…no genius code where a task is compacted into an 
unmaintainable mess.” 

18 

Tested / 
Testable 

“…code that doesn't have a decent set of tests is badly 
designed…” 

14 

Complete “Easy to understand, reuse, alter and maintain without 
needing to seek external explanation” 
“…you should be able to read the code as if it were written in 
English, without any comments…” 

13 

Documented “…programmers who think their code is 'self-documenting' or 
who give other excuses for failing to document are usually 
incompetent, in my experience.”  

12 

Quality is 
Subjective 

“There's a quote from R. Buckminster Fuller ‘When I am 
working on a problem, I never think about beauty, but when I 
have finished, if the solution is not beautiful, I know it is 
wrong.’”  
“…mostly gut feeling, I think design is an art.”  

10 

Reflects 
Problem  

“How well the model describes the domain and how little the 
technical platform has influence on the model” 

10 

There then followed a pair of questions that explored the relationship between functional 

correctness and design quality. The first of these (Q6) asked about the importance of 

functional correctness and design quality in the respondent’s work – see Figure 9. The 
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second (Q7) asked about the split of effort between focusing on correctness and design 

quality – see Figure 9.  

Functional correctness was defined in the questionnaire as “Ensuring that the software 

being created will meet the specified requirements”. Design quality was defined as “The 

suitability of the structural organisation of packages and classes, class identification 

and interaction, and interface use”. 

Most respondents (83) stated that functional correctness is Very Important in their work, 

with most of the rest (15) stating that it is Important. The responses for design quality (39 

Very Important and 53 Important) suggest that respondents, while not viewing design 

quality as important as correctness, still view design quality as an important consideration 

in their development work. 

Q6. How important are the following elements in your work? 

 

Figure 9 – Q6 - Importance of Functional Correctness vs. Design Quality 
(99 respondents answered both questions, 2 answered one each, 1 answered neither question) 

Figure 10 shows the distribution of effort spent on design quality compared to functional 

correctness, where each point is an anonymous respondent. Note that respondents could 

choose Other Tasks which is why many of the respondents are not on the diagonal 

representing a time split totalling 100%. The focus of this question was the split between 

functional correctness and design quality so no further questions were asked about other 

tasks. 

The chart has been scaled to 100% on each axis and the data points have also been jittered 

by <=2. (Jittering is the process whereby a small random amount is added or subtracted 

from each point to avoid overlapping points in scatter charts (Kitchenham et al. 2002)). The 
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tendency towards the top left in Figure 10 shows respondents favouring functional 

correctness over design quality. 

Q7. In the course of your software development work, approximately what percentage of 

your effort is split between the following tasks? (Ensuring Functional Correctness; Ensuring 

Design Quality; Other Tasks) 

 

Figure 10 - Q7 - Effort split between correctness and quality 
(Note that the data points have been jittered by <=2 on each axis to avoid overlapping points) 

Overall, Figure 10 shows most responses around two-thirds correctness and one-third 

quality (or about twice the effort spent on correctness compared to design quality), but 

also highlights a large spread in responses. Almost all of the respondents spend some time 

ensuring functional correctness, with a few respondents almost exclusively working on this 

aspect. Some respondents work more on design quality (those to the right of the diagram) 

– but this aspect has no dedicated full-time practitioners. Finally, one respondent pointed 

out the importance of both: “These are not mutually exclusive activities, and unless 

you're doing both all the time you aren't doing your job.” 

The final general design question (Q8) explored the development methodology that most 

influenced how practitioners do design. The key themes that emerged from this question 

are generally well known – the importance of an iterative approach and design for change, 

and the pressures of time and commercial factors. A more general finding was the need to 
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adapt the methodology to each new project rather than always adopting the same set 

process. 

As noted in the introduction, key findings will be listed as {KF ‘chapter number’.’finding 

number’} for ease of reference. 

Approaches to Design Summary: [KF 3.1] People-mediated feedback, including personal 

experience, is the primary means of ensuring software design quality. [KF 3.2]: Respondents 

were generally confident about design decisions that they make. Issues that reduce 

confidence include: lack of knowledge about the problem domain or technologies used; 

having a range of design options; imprecise or changing requirements; lack of control over 

all aspects of the system; design complexity. [KF 3.3] Respondents identified many well-

defined practices that help improve design quality: clarity of design especially naming, small 

size, simplicity, modularity, documented, full set of tests. [KF 3.4] Respondents identified a 

range of desirable properties for designs that are hard to define and acquire and which 

seem derived from experience, intuition and hindsight. [KF 3.5] Almost all respondents see 

both functional correctness and design quality as important or very important in their 

practice. Functional correctness is more important than design quality with respondents 

typical spending as much as twice the effort on functional correctness as design quality. 

3.4.5 Design Practices 

Each page regarding a particular guideline or aspect of design featured an initial question 

about the importance of that topic in the course of design work.  The results of these initial 

questions are compared in Figure 11. 

Figure 11 shows that, overall, there is positive support (blue segments) for all of the 

guidelines.  Coupling received the most positive responses, followed by method complexity. 

There is a notable drift towards ambivalence or disregard for some aspects – with 

controversial topics receiving a more mixed response.  

There then followed a series of questions that explored well known design practices. 
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Figure 11 – Q10, 13, 18, 20, 22, 24, 26 – Importance of various aspects of guidance in design work, note that the 
vertical categories are sorted by total positive responses (Important + Very Important) 

 

3.4.5.1 Design Practice – Program to an Interface 

The first of these (Q10) asked about program to an interface (Gamma et al. 1994). A follow-

up question (Q11) asked about specific factors that help to decide when to use an interface 

in a design, rather than a concrete (or abstract) class. 

Figure 11 shows that there is positive support for the guideline program to an interface, 

with 84/102 rating it Very Important or Important and no respondents rating it Not at all 

Important. 

Figure 12 illustrates that there is strong support for many of the program to an interface 

factors with over 60% of respondents seeing avoiding dependencies, multiple 

implementations, dependency injection (Fowler 2004) and containing change as Very 

Important or Important. On the other hand, there is still a notable group of respondents (at 

least 25%) who view these criteria neutrally or as unimportant. It is possible that program 

to an interface is not important in the particular development context in which these 

respondents work, rather than them viewing the practice itself as unimportant.  
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Q11. How important are the following factors when deciding if an interface should be used? 

 

Figure 12 – Q11 - Factors for deciding on Interface use 
Note that the vertical order is in most-to-least positive (total of the ‘important’ responses in each category) 

Table 9 shows the free-text responses for program to an interface. From these responses, 

the key factors that are identified include isolating systems, dependency injection, single 

responsibility, and aiding testing. It is also important to note the warnings regarding 

potential overuse of interfaces potentially “cluttering the code base”.  

Table 9 – Q12 - Feedback for Use of Interfaces (sample free-text responses) 

Factor Examples Count 

API / Isolating 
Systems 

 “Abstractions for core infrastructure classes such as 
repositories, data storage, messaging etc.” 
“…layer boundaries in application design.” 

7 

Dependency 
Injection 

“Depending on a concrete type becomes acceptable with 
dynamic or configurable composition.” 

6 

Testability “As that module inherits that interface and we can run 
tests against that interface out of the system we can hot-
swap a module in a live system without worry of error.” 

5 

Composability 
/ Abstraction 

“Reducing each class to a single role gives better 
compartmentalisation and composability…” 

5 

Overuse of 
Interfaces 

“Often the answer is: it depends. Overuse of interfaces can 
clutter the code base and make changes tedious.” 

5 

One Role per 
Class 

“Multiple interface inheritance (beyond obvious ones like 
IDisposable) is a code smell”  

4 

 

3.4.5.2 Design Practice – Inheritance 

The next section of the questionnaire explored inheritance – its importance (Q13), factors 

influencing its use (Q14), and the design of hierarchies (Q15). 
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Figure 11 shows that there was more ambivalence regarding inheritance use than program 

to an interface, although overall there were still more respondents rating it Very Important 

or Important (55) than Unimportant or Not at all Important (16).  

Figure 13 shows that Code Reuse, Type Substitution and Future Flexibility are all regarded 

positively (Very Important or Important) by over half of the respondents (with very few 

identifying Other reasons for inheritance usage). It is notable, however, that some 

respondents consider these inheritance factors Not at all Important.  

Q14. What factors or indicators do you consider to be most important when deciding to use 

inheritance? 

 

Figure 13 – Q14 - Importance of selected factors when using inheritance 

The free-text responses for Q15 (Table 10) indicate that code-reuse is the most commonly 

mentioned motivation for using inheritance, followed by reuse of concepts. However, in 

keeping with the responses to Q14, there are many negative responses regarding 

inheritance: not used (code smell), prefer composition (Gamma et al. 1994), as well as the 

view that inheritance hierarchies should be kept shallow (Daly et al. 1996), and that 

inheritance should follow a type substitution relationship (Liskov, 1988). 

Figure 14 shows the factors considered important when designing inheritance hierarchies. 

There is relatively strong support for consideration of inheritance depth, more modest 

support for consideration of dependency inversion, and more mixed opinions on 

inheritance width.  
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Table 10 – Q15 – Deciding on abstract or concrete inheritance 

Factor Examples Count 

Code Reuse  “…very important so as not to use the same code over and 
over…” 

12 

Behaviour / 
Concept Reuse 

“… identify concepts which are core and likely to evolve on 
the same path and refactor those to use a common base.”  

9 

Not used 
 

 “…avoid inheritance where possible … it's always ended up 
biting me.” “Creates code which is hard to read, difficult to 
maintain.” 

9 

Prefer 
Composition 

“Composition of behaviour has proven to be far more 
flexible and reusable.” 

7 

Flexibility  “Future flexibility … Abstract Inheritance over Object 
Inheritance.”  

5 

Dependency 
Injection /  

“…it's easier and generally considered safer and more 
testable/scalable, to inject interface dependency and use 
composition over inheritance.” 

4 

Framework / 
API  

“…abstract inheritance which allows us to share code and 
API between very similar classes 

4 

Shallow 
Hierarchy 

“…very shallow hierarchies (probably just one (maybe 
abstract) parent with few direct children), every child class 
100% ‘is a’ [parent class].” 

4 

Q16. When designing inheritance hierarchies, how important are the following features? 

 

Figure 14 – Q16 - Importance of selected features when designing inheritance hierarchies 

The free-text responses for Q17 (Table 11) provide useful insight into respondents’ 

thoughts on the use of inheritance in object-oriented designs. Again, there are strong views 

that inheritance should be avoided, and composition preferred, or, when used, it should be 

limited to inheritance from abstract classes only. In terms of hierarchy design, the most 

common views suggest that inheritance hierarchies should be shallow, model the problem 
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domain, and adhere to is-a relationships. Good tool support was recognised as important in 

understanding inheritance hierarchies. 

Table 11 – Q17 - Dealing with inheritance 

Factor Examples Count 

Hierarchy 
Structure 

“If a design calls for a deep inheritance hierarchy, so be it. Ditto for 
the width…” “You don't want your ears to pop when traversing 
down the inheritance hierarchy.”  

13 

Avoidance “…we very rarely find ourselves using inheritance.” 12 

Side Effects “…derived types must satisfy the Liskov Substitution Principle … 
very difficult to achieve, so we try to use composition…”  

7 

Tools “…modern IDEs help, but they only help traverse the hierarchy, 
they don't necessarily aid in understanding the structure.” 

5 

 

3.4.5.3 Design Practice – Coupling 

Respondents were very positive about the role of coupling in considering design quality 

with 89/102 rating it at least Important and none rating it Not at all Important – see Figure 

11. Coupling received the most positive responses of all the design considerations 

presented in the questionnaire. 

The free-text responses in Table 12 emphasise the popularity of coupling as an indicator of 

design quality with many practical approaches to its detection. These approaches include 

the use of tools (SonarQube) and methods such as dependency graphs. Recurring themes 

of experience and ease of testing were again highlighted, along with guidelines on keeping 

class interfaces small and simple, being able to understand classes in isolation, and avoiding 

access to, and minimising knowledge of, the state within other classes. One reason why 

coupling is popular may be the range of practical techniques for detecting it. 

Table 12 – Q19 - Dealing with coupling 

Factor Examples Count 

Tools and 
Methods 

“SonarQube, JUnit and the overall TDD approach.” 
 “Dependency graphs and a well understood domain model…”  

19 

Guidelines “‘Keep It Simple’, ‘Tell don't Ask’ and ‘Open/Closed’ (from SOLID) 
…”  
“Essential coupling in the business should show up as essential 
coupling in the code.” 

10 

Technique “Explicit API between classes and modules, and prohibiting 
classes from accessing others' internal state.” 

10 

Smells / 
Problems 

“…if you find yourself having to mock too many other objects … 
your subject under test probably has too many dependencies.” 

5 

No issue “We don't lose sleep over coupling” 1 
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3.4.5.4 Design Practices – Cohesion 

The summary of responses to Q20, included in Figure 11 shows a strong positive response 

(75/102 rating it at least Important). 

A theme that emerges from the free-text responses on cohesion (Q21), Table 13, is a 

difficulty in providing clear guidelines for detecting good or bad cohesion – many of the 

guidelines were statements of other design principles e.g. Low Coupling or small size. 

Indeed, one of the responses acknowledges this “It’s quite hard to explain and measure 

cohesion…”. 

One of strongest positive guidelines was the Single Responsibility Principle (SRP) from 

SOLID again (Martin 2003). There was some mention of tool use (SonarQube again), metrics 

and dependency analysis. Once again, ease of testing was highlighted as an indirect 

indicator of cohesion (difficulty in achieving high coverage).  

Table 13 – Q21 - Dealing with cohesion 

3.4.5.5 Design Practices – Size 

The next question, Q22, explored both class size and method size. Figure 11 includes these 

responses showing that a clear majority of respondents see both class size and method size 

as important indicators of design quality. There is a slight indication (about 10% of 

respondents) that method size is more important across the response categories. Around 

10% of respondents suggest that size is not important to design quality. 

In the free-text responses (Q23) many respondents expressed rules of thumb when 

considering class and method size. For example: “A method should rarely exceed the size 

Factor Examples Count 

Guidelines  “…programming to interfaces…should encourage splitting 
classes…” 
“Code size is important.” “…few dependencies are better…” 

9 

Tools and 
Methods 

“SonarQube uses the LCOM2 metric.” “Dependency Structure 
Matrix” 
“…low cohesion…often difficult to write tests for to get high 
coverage.” 

7 

SRP “One class should do one thing well and nothing else.” 7 

Middle 
Ground 

“…aim for high cohesion in models but certain things like logging 
libraries, utility classes and other things drag it down a bit…”  

3 

Not an 
issue 

“Not having cohesion is an indication of a bad design, but I never 
strive to get it for its own sake.” 

3 
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of one page on the screen”. What constitutes a screen varies amongst working 

environments - Table 14 summarises the specific size recommendations received. 

In contrast to the view that size should generally be small, another common view was to 

avoid excessive decomposition - “the kind of abstraction that discards essential 

complexity”. Like some views expressed under the coupling and inheritance questions, 

respondents suggested that some substantial (large, complex, coupled) pieces of code can 

be central to the design in terms of managing complexity and/or representing the domain. 

One of the challenges of design appears to be the recognition of such essential complexity. 

Table 14 – Q23 - Summary of responses on Size issues (LOC = Lines of Code) 

Attribute Response 

LOC in a 
Method 

1 “a 
few” 

<= 5 < 8 5 - 10 <= 20 non-
comment 

<= 30 < 50 half 
page 

page / 
screen 

short, no 
fixed limit 

Agreement 2 1 1 1 2 1 1 1 1 6 6 

Class Size <= 50 
LOC 

<= 100 
LOC 

<= 500 
LOC 

<= 7 non- 
get/set methods 

<= 12 
methods 

<= 15 
methods 

< page / 
screen 

< 2 pages 
/ screens 

Agreement 1 1 2 1 1 1 3 1 

Method 
Parameters 

2-3 3-4 <= 5 < 7  Inheritance 
Depth 

<=3 

Agreement 1 1 1 1 Agreement 3 

Practices Summary 1: [KF 3.6] Program to an Interface was identified as an important 

design guideline by a large majority of respondents (83%). The most important motivators 

for interface use are: depending on abstractions (avoid direct concrete dependency, multiple 

implementations, dependency injection), isolating (sub-) systems and aiding testability. 

Respondents warned against overuse of interfaces and stressed the Single Responsibility 

Principle in interface design. [KF 3.7] There was a clear spread of opinion on the role of 

inheritance in design quality with some practitioners considering it a design flaw. Code 

reuse, type substitution and future flexibility were all seen as positive reasons for using 

inheritance. Hierarchies should model the problem domain, adhere to is-a relationships and 

be kept shallow. [KF 3.8] Respondents viewed coupling as an important consideration in 

design quality (87% rated at least Important), with the most positive responses out of all the 

guidelines explored. Many different approaches to minimising coupling were identified 

including: use of tools, dependency analysis, experience, design guidelines, simple and small 

class interfaces, understanding classes in isolation, avoiding access to state within other 

classes and ease of testing as an indicator. [KF 3.9] Cohesion was identified as an important 

indicator of design quality (70% at least Important). Respondents suggest that cohesion is 

harder to assess than other design properties. Guidance on assessing cohesion included SRP, 
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use of tools and metrics, experience, and as a by-product of other design guidelines 

(coupling, size, interface use) and the ease with which classes can be tested. [KF 3.10] Both 

class and method size were viewed as important design factors (70-80% respondents), 

though about 10% viewed size as unimportant. Many respondents provided explicit 

comments on size which tended to constrain classes and methods to be ‘small’. 

3.4.5.6 Design Practices – Complexity 

The next question (Q24) explored the role of complexity in design quality. Like size there 

were separate questions on class and method complexity. Figure 11 shows that there was a 

strong view that complexity is an important consideration in design quality. 70-80% of 

respondents identified both class and method complexity as at least Important and less 

than 5% viewed it as Unimportant. 

There were many comments made in the free-text section on complexity, see Table 15. One 

of the main themes that arose was the relationship with size, keeping classes and methods 

small helps reduce complexity: “This is the same as size, just measured with different 

metrics”. Related to this was the recurring theme of striving for simplicity – “simplify, 

simplify, simplify” – and the emphasis once again of SOLID/Clean Code-like principles 

(Martin 2003, 2009) of separating conditionals into separate methods, one abstraction per 

method etc. There was some identification of some useful tools (SonarQube) and some 

metrics: cyclomatic complexity, npath (Nejmeh 1988). Once again, the recurring themes of 

review, experience and the relationship with the ease of testing were highlighted.  

Table 15 – Q25 - Dealing with complexity 

Factor Examples Count 

Guidelines “…making sure each class only has a single responsibility… 
(although at the cost of some increase in the complexity of 
arranging objects)…” 

16 

Tools “Using Sonar is like having a very knowledgeable Java 
programmer looking over your shoulder…” 

13 

Definition “Complexity is everything… the complexity of the solution 
should match the complexity of the problem.”  

8 

Techniques “… logical chunks of code are often moved to separate 
methods…” 

5 

Experience “All personal experience, try to keep things as simple as 
possible.” 

3 

Cause “… the problem is not sufficiently understood but it can also 
be an indicator of poor coding and design skills.” 

2 

Problems “Method complexity is something we consider as it affects 
our Unit Testing and Code Coverage.” 

2 
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The majority of responses suggested that complexity was avoidable and addressable by 

breaking down classes and methods into ever simpler components, there was also, (again) 

the recognition that some complexity is essential and is better explicitly modelled as such 

rather than artificially broken down. Pushing complexity out of a class may increase overall 

systemic complexity - which is less visible: “I'd rather have a more complex class than one 

that removes some of the real complexity”. This raises the fundamental question of what 

constitutes a good decomposition for a particular problem: “We don’t know what should 

be the aspects that need separating, and we don’t know when it is worth separating 

them and when it is not” (Fowler 2003). 

3.4.5.7 Design Practices – Design Patterns 

The second last question on design practices, Q26, explored the role and importance of 

design patterns, see Figure 11. Although there is a similar shape to the distribution of 

responses (~60% Important) there was more ambivalence on the role design patterns than 

the previous design practices. The free-text responses in Table 16 provide more detailed 

insight into this. 

Table 16 – Q27 - Dealing with design patterns 

Factor Examples Count 

Positive “General awareness of design patterns is essential for well 
written code.” 

15 

Usage “…applied, but very pragmatically. It's not about using DPs 
for the sake of using them.”  

13 

Common 
Language 

“…makes it instantly clear what something does and how it 
should be used, as we all understand the pattern” 

10 

Specific 
Pattern 

Builder, Factory, Observer, Template, Strategy, MVP, 
ViewHolder, Singleton, MVC, Composite, Command, Façade 

9 

Resistance / 
Controversy 

“Don't know of any developer I work with that makes use of 
design patterns.” 

8 

Guidelines “Simpler rules like inheritance, compositions, SOLID, etc. are 
better to master than design patterns.” 

3 

Negative “…younger programmers tend to shoehorn into every single 
problem… results in a lot of technical debt that other 
developers have to maintain” 

3 

Framework “…framework we use dictates what design patterns we use 
to interact with the hooks.”  

2 

 

Responses were, in the majority, positive, with comments about their use improving the 

quality of design and also the common language and sense of familiarity that patterns 

provide. However, there were also strong opinions expressed about overuse or blind 

application of patterns. Another view is that fundamental design principles such as low 
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coupling and SOLID are more important than design patterns. There was also an issue of 

how patterns should be used in design, up front – “...identify up front possible design 

patterns…” - or emerging as appropriate - “They emerge, they are not the starting point” - 

which seemed to be the more common view and more in line with the original proposal for 

design patterns (Gamma et al. 1994).  Nine design patterns were explicitly mentioned by 

respondents (five of these corresponding to the six identified by Zhang and Budgen as the 

most favoured patterns in their survey results (Zhang and Budgen 2013)). 

3.4.5.8 Design Practice – Refactoring 

The final section explored the use of refactoring to address each of the previously covered 

design concerns: complexity, coupling, size etc. Figure 15 summarises the responses, again 

ordered by popularity. Complexity and size lead the Most Often category for refactoring, 

with 62 respondents saying they Very Often or Quite Often refactor due to complexity 

issues. 

Q28. How often to you alter or refactor a design due to the following considerations? 

 

Figure 15 – Q28 - Causes of refactoring 

Coupling and cohesion are ranked next. It is striking that the refactoring ranking has a 

broad similarity to the overall importance respondents gave to the design practices in the 

previous section (Figure 11).  It may also be the case that complexity and size degrade more 

easily, or are easiest to detect, and are also closely related: “Size and complexity are often 

related and are much more likely to get out of hand as time goes by”. Notably, Program 

to and Interface (PtaI) is the most mobile factor – being important at the design stage (in 

Figure 11), but ranking low (by order) for refactoring. 
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Table 17 – Q29 – Final thoughts on design and assessing quality 

Factor Examples Count 

Methods “By adopting BDD and TDD methods in order to follow the high-
level Red-Green-Refactor cycle you will find that refactoring 
happens often…” 
“Refactoring just means that when you touch code, you should 
strive to leave it in better shape than when you found it.” “The 
Mikado Method” 

9 

Indicators 
/ Drivers 

“Annoyingly, I find a lot of it comes down to experience - 
sometimes a solution just feels wrong. Once you've refactored it 
it's easy to show that it's better, but I can't always articulate 
exactly what's wrong beforehand.” 
“… Bad names allow responsibilities to be assigned incorrectly. 
Good names make that a little bit harder.” 

7 

Tools / 
Metrics 

“Sonar keeps everyone honest on a day-to-day basis.” 
“Using introspection tools and metrics is important.” 

5 

The free-text responses on design in general (Q29), are summarised in Table 17. Although, 

for this question, there was a lack of commonality in the responses, they do identify a range 

of techniques for determining when to refactor: when changes are made code should 

always be improved, peer review, experience, formal and informal metrics, tools, and as 

part of test driven development. Finally, there was an illuminating comment on why 

refactoring is perhaps not practiced as widely as it should be: “Refactoring is rare, not 

because it isn’t important but because it is rarely the most important thing you need to 

do next”. 

Design Practices Summary 2: [KF 3.11] Both class and method complexity were viewed as 

important design factors (70-80% respondents), with less than 5% viewing them as 

unimportant. Practical approaches to managing complexity include the use of tools, metrics 

and the relationship to small size. More informal approaches include keeping classes and 

methods ‘simple’, using experience and reviews, and the ease of testing. There was 

recognition that ‘essential’ complexity in the problem or design domain should be kept 

together rather than artificially broken up. [KF 3.12] There were mixed views on the role of 

design patterns as a contributor to design quality, though, overall, most respondents viewed 

them as at least Important (~60%). They contribute positively to design structure and 

common understanding. They can also be over-used. There was mixed opinion on whether 

patterns should be used up-front during design or emerge where necessary and appropriate. 

[KF 3.13] Strong reasons for refactoring were complexity, coupling, size and cohesion, in 

that order. The relative importance of reasons to refactor broadly matched the overall 
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importance of the corresponding design practice. Developers use experience, peer review, 

formal and informal metrics, tools and test-driven development to determine when to 

refactor. Ideally, code should be refactored whenever it is changed but other pressures can 

make this unrealistic.  

3.4.6 Experience, Programming Languages, and Development Role 

The questionnaire data was also analysed to investigate whether there was any noticeable 

difference in responses based on experience, main programming language used, and 

software development role. Rather than fishing for statistically significant results the 

response data was explored visually using the Qualtrics software. Given the relatively small 

number of respondents overall, and the even smaller number in each sub-category, the aim 

was to check if there were any differences amongst responses based on subject 

background. (Only 97 of the subjects identified their years of experience and so the total 

numbers shown below are less than the 102 shown elsewhere in the thesis.) 

For each of the main results reported in this thesis (17 in total), a series of graphs was 

constructed which enabled visualisation of any major differences in response based on sub-

category (experience, language or role). For almost every result there did not appear to be 

a major difference amongst sub-categories. Figure 16 and Figure 17 shows the typical shape 

of the graphs, in these cases for Main Programming Language Used versus Inheritance and 

Experience versus Inheritance. 

 

Figure 16 - Response trend for importance of inheritance and main programming language, % of respondents in 
each category shown in brackets 
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Figure 17 - Response Trends for Importance of Inheritance and Experience, % of respondents in each category 
shown in brackets 

Both graphs show the same general trend as the overall Inheritance result shown in Figure 

13. All the sub-categories which have more than a few respondents in them peak at 

Important, with Neither Important or Unimportant the second most popular option. Almost 

all the other graphs followed a similar breakdown pattern, with each major sub-category 

following the same trend as the corresponding overall result for the question. This suggests 

a broadly similar view amongst respondents regardless of experience, main programming 

language used or development role. 

There were three cases where some difference in response based on sub-category could be 

seen. Figure 18 shows a plot of Experience versus Confidence in Design Decision making 

(see also Figure 8). It is interesting to compare those with 21 to 40 years of experience 

(blue) against those with 2 to 20 (orange, grey, and yellow) years. (The number of 

respondents with less than 1 year and over 40 is very small.) 13 (50%) of the respondents 

with more than 20 years of experience were Somewhat Confident or less in their design 

decisions while the other 13 (50%) were Confident. On the other hand, for those with 20 

years or less experience, 45 (63%) were Somewhat Confident or less and 26 (37%) were 

Confident. So, perhaps understandably, there is an indication that those with much more 

experience tend to be more confident in their design decisions. 

Figure 19 shows a similar plot to Figure 18 when comparing Experience against the 

Usefulness of Technical Lead / Expert Review in ensuring software design quality. The trend 

towards Extremely Useful can be seen in those with 21-40 years of experience (blue), 

whereas the peak is Very Useful for those with less experience. Again, this finding is not too 

surprising - those respondents with the most experience, who might have technical lead 
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responsibilities themselves, were more inclined to see the value of expert reviews in 

assuring software design quality.  

 

Figure 18 -Experience versus Confidence in Design Decision Making 
% of respondents in each category shown in brackets. (See also Figure 8) 

The third plot that showed some variation in response was Experience versus the 

Importance of Design Quality – see Figure 20. Again, the variation is based on those with 

the most experience in the 21-40 years’ experience category. Overall, respondents suggest 

that design quality was Important rather than Very Important (in contrast to Functional 

Correctness which is consistently Very Important – see Figure 9), the experienced 

respondents show more tendency to view design quality also as Very Important (blue). This 

would suggest that those respondents with most experience are more inclined to value 

design quality. 

 

Figure 19 - Experience versus role of Technical Lead in quality assurance 
% of respondents in each category shown in brackets 
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Figure 20 - Experience versus the Importance of Design Quality 
% of respondents in each category shown in brackets 

Overall, these findings show that there was a consistency in response for the design topics 

explored, regardless of years of experience, main programming language used and 

development role. This consistency across all question topics may help strengthen 

confidence in the general findings. Only 3 out of the 51 graphs showed any distinctive 

variation (Figure 18, Figure 19 and Figure 20). The patterns observed in those three figures 

suggest that experienced respondents may have more confidence in their design decisions, 

place more value on the role of technical leads in reviewing design quality, and place more 

importance on the role of design quality in the development process. 

Demographic data was collected primarily to verify that respondents were in the target 

population.  However, the population of respondents can be broken along broad lines. 

Figure 21 and Figure 22 show the responses for Q13 (importance of inheritance) with Q34 

(programming language familiarity). 

For familiar languages (Figure 21), respondents give a broadly similar response regarding 

the importance of inheritance.  When the same breakdown is done for main development 

language in Figure 22, the proportions change indicating that familiarity with a language 

may have some relationship with the perceived value of design guidelines. 
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Figure 21 – Importance of inheritance in design work, against programming languages respondents rated as 
‘familiar with’ 

 

Figure 22 – Importance of inheritance in design work, against programming languages respondents rated as 
‘main language’ 

Experience Summary: [KF 3.14] Findings did not appear to be influenced by experience, 

programming language or development role, though there was a suggestion that those with 

most experience are more confident in their design decisions, place more value on reviews 

by team leads and are more likely to rate design quality as very important. [KF 3.15] Degree 

of familiarity with a language appears to affect the perceived importance of guidelines.  It is 

not clear if a practitioners’ main languages shape their overall view, or if perceived guideline 

importance varies on a per-language basis. 
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3.5 Answers to Research Questions 

3.5.1 Evaluation of Results and Implications 

This section attempts to answer each of the research questions in turn. Some answers to 

research questions follow directly from the survey questions. For the rest, the Key Findings 

[KF] are the main source of answers to the research questions. Section 3.3 lists the original 

research questions and the survey questions that were designed with the intention of 

providing responses that could help answer these research questions.  

The first research question (RQ3.1) was: To what extent do practitioners concern 

themselves with design quality? This question is mainly addressed by answers to the survey 

questions that explicitly explored functional correctness and design quality (Q6 and Q7). It 

was clear that that practitioner priority is almost always functional correctness over design 

quality [KF 3.5]. However, most respondents said that design quality was still important or 

very important in their work. As a rough estimate, participants spend around twice as much 

effort on functional correctness than design quality. Commercial and other time pressures 

impact on the time spent on design quality. 

The second research question (RQ3.2) was: How do practitioners recognise software design 

quality? This was mainly addressed by answers to survey questions that explored possible 

approaches to quality (Q1, Q5), the follow-up free text questions (Q2) and questions which 

explored specific design practices (most of the questions Q10 to Q25). The key findings 

identified a range of mechanisms that practitioners use to determine software design 

quality: personal experience [KF 3.1], peer and manager review [KF 3.1], design practices: 

naming practices, simplicity – keep things simple, modularity, documentation, full set of 

tests [KF 3.3], coupling [KF 3.8], program to an interface [KF 3.6], class and method size [KF 

3.10], cohesion [KF 3.9], class and method complexity [KF 3.11]. Respondents also identified 

the role that tools (e.g. SonarQube), some metrics and standard design guidelines can play 

in determining design quality.  

Overall, it is concluded that designers use a combination of experience, peer review, tools, 

design guidelines and some metrics to recognise design quality. There appears to be a core 

of important design guidelines based on small size, minimal complexity, low coupling, good 

naming, high cohesion, ease of testing etc. It should be acknowledged, however, that a 

high-level questionnaire such as the one used here is only identifying indicators used by 
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practitioners, indicators which may suggest a design problem. The survey has not revealed 

exactly how they are linked to design quality or the extent to which there is any explicit 

relationship. It seems that experience prevents the blind application of guidelines, helps 

deal with new problem domains and technologies, helps to address changing and 

incomplete specifications, and in recognising essential complexity where it arises. 

The third research question (RQ3.3) was: What design guidelines do practitioners follow? 

This was mainly answered by survey questions which explicitly concerned guidelines (Q10 

through to Q27). There was clear, strong support for many of the long-standing design 

guidelines amongst the respondents. 87% of respondents said that coupling was an 

important or very important design guideline [KF 3.8]. 83% stated that programming to an 

interface was at least important [KF 3.6]. 70% said that cohesion was important. Over 70% 

said that both class and method size were at least important [KF 3.10]. Over 70% also said 

that both class and method complexity were at least important [KF 3.11]. There were more 

mixed views on inheritance [KF 3.7] and design patterns [KF 3.12], though both were 

recognised as potentially important when they are used appropriately. There are 

indications that the perceived relevance of specific guidance changes with programming 

language familiarity [KF 3.15]. 

The fourth and final research question (RQ3.4) was: What information do practitioners use 

to make design decisions? To answer this research question, responses to a range of survey 

questions were used, often from the free-text responses. As highlighted under RQ2 above, 

it seems clear that respondents believe that experience is a key factor in decision making – 

designers recognising situations similar to those they have encountered before and reusing 

design solutions [KF 3.1]. As such, unfamiliar problems can cause difficulty in making good 

design choices.  Beyond experience, it is clear that practitioners do make use of the main, 

established design guidelines (see RQ3) and other well-established design practices such as 

Clean Code and SOLID. There was evidence of the use of tools (e.g. SonarQube) and some 

metrics (e.g. LCOM for complexity) in supporting decision making. An interesting finding 

was the regular mention of the close link between testing and design, higher quality designs 

tend to be easier to test, and difficulty in writing test cases and achieving test coverage can 

indicate poor design quality. 
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3.5.2 Lessons Learnt 

The final question (Q37) asked whether the respondents had any comments on the 

questionnaire itself. The actual feedback here was quite sparse, with only a few issues 

raised. 

• One respondent questioned the focus on object-oriented technology. 

• One respondent pointed out that agile and iterative were not mutually exclusive 

development methodologies (Q8). (The questionnaire text did define what was 

intended by these two terms.) 

• One respondent commented on the lack of questions on testing. As the results of 

this survey have shown, design quality and testing are closely related. It may have 

been better to explore this relationship further. 

• The questionnaire presented design quality and functional correctness as separate 

topics. One respondent commented that these should not be viewed separately. 

Overall, respondents had very few issues with the wording of the questionnaire, the quality 

and variety of responses suggest that most had a clear understanding of what was being 

asked. 

If the questionnaire was to be used again there are a few ways it might be improved. Some 

of those would be to address the concerns raised in the previous section – being clearer 

regarding agile and iterative and perhaps introducing a few questions on the role of testing. 

Removing the focus on object-oriented technology would completely change the purpose 

of the questionnaire. The issue of separate consideration of design quality and functional 

correctness may require some change of wording (though this issue was only raised by one 

respondent). 

With hindsight, the main omission was some exploration of thoughts from respondents on 

where researchers could mostly usefully contribute to future improvements in software 

design quality. 

3.6 Discussion 

A major contribution from this research is confirmation of the importance of personal and 

peer experience to practitioners, the experience that comes from seeing similar problems 

and knowing what works in those situations. Practitioner experience has long been 
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recognised as important in software development, going back to the days of chief 

programmer teams (Mills 1971) and the emphasis placed on retaining experience in Lister 

and DeMarco’s Peopleware (Lister and DeMarco 1987). These findings confirm that the 

practitioners surveyed here see experience as the most important contribution to design 

quality. Figure 7, based on Question 7, emphasises the relative importance of experience 

and peer review compared to guidelines tools and metrics (which were still seen as useful). 

In discussing Lister and DeMarco’s Peopleware, Boehm and Turner say: “The agilists have 

it right in valuing individuals and interactions over processes and tools … Good people 

and teams trump other factors” (Boehm and Turner 2003). In their recent work on design 

smells and technical debt, Suryanarayana et al. argue that developers lacking in experience 

are often responsible for poor quality designs (Suryanarayana et al. 2014). Simons et al. also 

highlighted the need involve humans within the software design quality assessment 

process, metrics alone were insufficient (Simons et al. 2015). Wu et al. have also recently 

found a strong link between developer quality and software quality (Wu et al. 2014). 

How can inexperienced designers and novices gain such experience? One answer is learning 

on the job especially from experienced peers (Begel and Simon 2008). Can education and 

training do more? A solution might be to ensure that students are exposed to many 

examples of design, especially high-quality design. A useful contribution would therefore be 

the identification of a range of widely-recognised, high-quality software design case studies 

to be used in education and training. JHotdraw is often presented as one such example 

(Ferreira et al. 2012). Ducasse also argues that “… patterns (and smells) are really effective 

ways to capture such [design] experience” in her introduction to a refactoring manual by 

Suryanarayana et al. (Suryanarayana et al. 2014). Design patterns may therefore have a role 

to play, being small examples of high quality software design – though previous work 

(Zhang and Budgen 2012) and the findings from the current survey suggest mixed views on 

the value of patterns as a learning mechanism. 

Respondents said that functional correctness was more important than design quality, but 

that design quality was still important. There was an indication that practitioners spend 

about twice as much effort on functional correctness as design quality. Commercial 

pressures reduce the time afforded to design quality and for refactoring designs. In 

Yamashita and Moonen’s survey of practitioners exploring their knowledge and use of code 

smells (A. F. Yamashita and L. Moonen 2013), respondents highlighted that they often had 
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to make trade-offs between code quality and delivering a product on time. Again, Demarco 

and Lister recognised the commercial pressure of time to market (Lister and DeMarco 

1987). The implications of this finding suggest the need for approaches to design quality 

that fit efficiently and effectively into the development process – this is one reason why 

experience is so important, but also it also suggests the need for efficient and effective 

tools and metrics. 

It is clear that in this study that respondents viewed many of the long-standing design 

guidelines as helpful to identify and improve design quality. A large majority of respondents 

said that coupling was an important or very important indicator of design quality, similarly 

for programming to an interface, cohesion, class and method size, and complexity. The 

same key design factors were identified as important motivators for refactoring designs. 

The importance of inheritance and design patterns were more contentious. That 

respondents see coupling, complexity and size measures as important, and inheritance less 

so, is in keeping with the findings of Jabangwe et al.’s major systematic literature review 

(Jabangwe et al. 2015). These findings are also consistent with Al Dallal’s finding that most 

of the cohesion, size and coupling metrics could predict class maintainability (Al Dallal 

2013) and also Yamashita and Moonen’s finding that the code smells most closely 

associated with maintenance problems were associated with size, complexity and coupling 

(A. Yamashita and L. Moonen 2013). 

Tools were identified as useful, particularly for checking coupling, cohesion and complexity 

(with SonarQube receiving many mentions). The results suggest that there is a role for the 

right tools and that some metrics are useful, at least as indicators of minimum quality or to 

flag-up areas requiring careful attention. There is therefore a need to identify what tools 

and metrics are particularly useful, what aspects of these are helpful, and to what extent 

they can be improved. There is an ongoing research effort to convert general guidance on 

design guidelines into theoretically sound and empirically demonstrated metrics 

(Kitchenham 2010). It would appear, though, that despite theoretically weaknesses and 

inconsistences, metrics are used in practice - perhaps only as indicators, with additional 

expert judgement being used as the final arbiter. 

As an example of the importance of expert judgement being used to temper the blind 

application of metrics, there was a recurring theme of careful management of essential 
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complexity from the problem domain. Respondents suggested that blocks of essential 

complexity should be kept together, and understood as a whole rather, than thoughtlessly 

following design rules that would encourage breaking them down into less understandable, 

less cohesive, smaller units.  

An unanticipated but very important contribution of this study was the repeated emphasis 

that respondents put on Clean Code and the related SOLID principles. Respondents 

consistently identified a core set of these practices as positively contributing to software 

design quality. These included good naming practices, small size of methods and classes, 

simplicity (or reduced complexity), modularity and documentation, single responsibility, 

interface segregation, and Liskov substitution. This finding raises an important future 

research question: how much design quality can be achieved just by carefully following a 

set of such principles (perhaps along with the previous higher-level guidelines and some 

tool and metrics support). This relates to Becks view that “… a certain amount of flexibility 

just comes from doing a clean job, doing a workman-like job, acting like an engineer…” 

(K. Beck 2014).  

Another unanticipated and important contribution was the recurring theme of a potential 

relationship between ease of testing and design quality. The claim is that well-designed 

software systems are easier to test and, importantly, vice-versa, that using practices such as 

Test Driven Development (K. Beck 2003) can encourage better quality designs. Respondents 

noted that reduced coupling, increased cohesion and reduced complexity all made testing 

easier. This appears to be consistent with Bajeh’s recent work suggesting a correlation 

between coupling and cohesion metrics and testability (Bajeh et al. 2015). Again, some of 

this finding may be related to experience, knowing how to construct a design to make it 

easier to build test cases and achieve coverage. There would appear to be further valuable 

research to be done exploring the relationship between testing practices and software 

design quality. Some of this experience may reside in processes and organisations rather 

than with individuals. 

There was also some identification of practices that can have a negative impact on design 

quality: overuse of interfaces, inheritance not modelling the problem domain, inheritance 

not adhering to is-a relationships (Liskov substitution), non-shallow hierarchies and overuse 

of design patterns, particularly by novices. There were also negative comments about 
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“striving for cohesion for its own sake” and warnings against excessive decomposition 

that “discards essential complexity”. Again, this may be where experience is used to make 

the final decision rather than the unquestioning application of design guidelines. It is 

interesting that many of these issues are related to the application of interfaces and 

particularly inheritance. Chapter 4 investigates the relationship between interface practices 

and design quality – addressing the question:  To what extent good interface practices can 

be distinguished from bad? 

Finally, these research findings did not appear to be influenced by respondent experience, 

programming language used or development role, though there was a suggestion that 

those with most experience are more confident in their design decisions, place more value 

on reviews by team leads and are more likely to rate design quality as very important. 

3.6.1 Limitations 

One major limitation of the survey is the focus on object-oriented technologies.  While 

many modern languages are object-oriented (or incorporate OO elements), subtle 

differences in language implementation may mean that guidance does not travel between 

languages.  However, the design principles underpinning OO are strongly tied to the 

guidance for using this technology (e.g. separation of concerns, polymorphism), which are 

the focus of this survey. So, it might be argued that, while the details differ, wherever there 

is OO design, the concerns addressed by the questions in the survey remain relevant. 

A further limitation is the representativeness of the respondents, which may prevent 

incorporation of the presented findings into the larger picture of the software practitioners. 

Accepting validity concerns which have been addressed in section 3.2.4.6 (above), the 

demographic supplied by respondents indicates diversity in location, experience, 

technology, problem domain, and organisational role.  The respondents appear to fall 

within the target population – however the diversity within the respondents means that 

the sub-population within the respondents is too small to carry out further analysis based 

on most of the demographic distinctions. 

3.7 Conclusions  

Based on quantitative and qualitative analysis, drawing together key findings, and trying to 

answer the original research questions the following conclusions emerge: 
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1. Design quality is important to industrial practitioners, but not as important as functional 

correctness. 

2. Commercial and other time pressures limit the time spent on design quality and 

associated activities such as refactoring. 

3. Practitioner experience is the key contributor to design quality, both working as an 

individual and as part of the peer review process. 

4. Novel problems and changing or imprecise requirements make design more difficult. 

5. In the absence of specific knowledge of a programming language or problem domain, 

practitioners fall back to depend on general guidance and discipline. 

6. It is important to recognise essential complexity in a problem and be mindful of how it is 

distributed in design. 

7. Many of the traditional design guidelines are viewed as important to design quality: 

coupling, cohesion, complexity, size, and programming to an interface. Inheritance and 

design patterns are also important but controversial and susceptible to misuse. 

8. There are many lower level practices identified as contributing to good quality design 

e.g. SRP, LSP, OCP, small size, simplicity and good naming practices.  

9. Tool support such as SonarQube is often used to support software design quality; there 

was also some evidence to support the use of metrics. 

10. There is a close relationship between testing practices and design quality. Good testing 

methodology can help improve design, testable designs are thought to be better, and 

poor designs can be harder to test. 

11.  The findings did not appear to be influenced by experience, programming language or 

development role, though there was a suggestion that those with most experience are 

more confident in their design decisions, place more value on reviews by team leads and 

are more likely to rate design quality as very important. 

The contribution of this research is that the practitioners who were surveyed saw 

experience and peer review as the most important contribution to software quality. These 

practitioners do generally find design guidance (coupling, cohesion, complexity and size), 

metrics and tools useful but not as important as experience. The practitioners see design 

quality as important but not as important as functional correctness. More surprising, 

perhaps, was the importance of Clean Code / SOLID principles to practice - as important as 
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traditional guidelines and metrics - and the potential relationship between testability (ease 

of testing) and design quality. 

3.7.1 Impact 

There are implications from these findings for practitioners, researchers and educators. For 

practitioners, the findings confirm the importance of experience and peer review. As has 

been long recognised in the literature, it is vital that organisations recognise, reward and 

retain their experienced developers. However, it is also important for industry to recognise 

the need to support less experienced staff to and to support their development. 

Practitioners may also find some of the specific findings reported here on practices and 

tools useful in their own working environment. 

For researchers, more work could be done investigating the role of experience in the design 

process, to what extent the nebulous notion of experience can be translated into better 

guidelines, metrics and tools. The survey has only identified the high-level practices that 

those working in industry find to be useful indicators of quality. Much more work needs to 

be done with industry to discover exactly how these indicators are used in practice and the 

extent to which an explicit link can be demonstrated between them and design quality.  

There are also implications for the educators of students. Given that experience is so 

important in design, are there mechanisms that can accelerate students’ acquisition of 

appropriate experience? One possibility is through the study of high-quality examples of 

industrial-strength design and architecture case studies to do so, perhaps supported by 

experienced practitioners. Another is to ensure that students understand the fundamental 

principles underpinning design guidelines such as coupling, cohesion, complexity, size, and 

Clean Code practices. At the moment, many students are taught the basics of key 

techniques such as inheritance, programming to an interface and design patterns – these 

findings suggest that experienced practitioners know more than this – they appear to know 

when and how to best apply these techniques. 
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4 Profiles of Interface Use 

The survey responses discussed in Chapter 3 highlighted that design quality is important to 

practitioners, and that guidance to ‘program to an interface’ is popular and considered 

useful. Additionally, interfaces may help to address other concerns identified by the survey 

such as coupling, modularity, and testability. These findings motivate further investigation 

of interface use in object-oriented systems, which is the focus of this chapter. 

Interfaces allow the definition of types which are not constrained to a single 

implementation.  ‘Program to an interface’ is a key guideline from the influential design 

manual, Design Patterns (Gamma et al., 1994).  

4.1 Motivation 

The goal of this research study was to investigate how large-scale, ‘real-world’ Java 

programs use design guidelines. Specifically, it was to contribute to the understanding of 

how developers use interfaces in object-oriented (OO) systems with respect to guidelines 

such as ‘program to an interface’ which “greatly reduces implementation dependencies” 

(Gamma et al., 1994). As Abdeen et al. note, “In the literature, few recent works attempt 

to address the particularities of interfaces.” (Abdeen and Shata, 2012).  

Note that this is an observational study – no attempt is made to infer practitioner 

motivation or provide a high-level model. 

4.2 Problem Statement 

Interfaces are used in many stages of design, in architecture, specification, design patterns, 

and implementation details. Studies counting interfaces confirm that they are present in 

systems in many forms, some of which appear to defy guidance. 

A previous attempt was made to classify interfaces by arguments from design which 

illustrated that definitive and robust classification rules cannot be formulated in a top-down 

matter (Steimann and Mayer, 2005). This study, by contrast, takes a bottom-up approach - 

looking for patterns in interfaces and their use in practice. 

Insights into the use of interfaces would be informative to both education and practice. An 

understanding of how interfaces are used in industry would allow the creation of realistic 

examples and tasks to ground the more abstract guidelines. Additionally, a better 
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understanding of use in different scenarios may simplify making, and later reviewing, 

design decisions. 

While there are some unconventional uses of interfaces – marker or constant interfaces – 

these are easily detected due to their unusual structure and would be difficult to confuse 

with more conventional interface use. This does raise the question if there are other 

unconventional uses that are difficult to distinguish from the general interface population. 

4.3 Research Questions 

While interfaces feature in previous work, interfaces are often excluded as their lack of 

source code can confound metrics. This study focuses specifically on interfaces and their 

properties as the objects of study. The following research questions are explored: 

RQ4.1: How are interfaces defined in the systems? 

RQ4.2: What is the profile of interface size across the systems? 

RQ4.3: To what extent are interfaces implemented in the systems? 

RQ4.4: How are interfaces used in the systems? 

4.4 Research Objectives 

This study investigates how much information about interface use can be assembled from 

examining source code: 

• Gain insight into how interfaces are used both within and between systems, and 

determine if there is a useful ‘baseline’ for interface properties. 

• Determine if there are any natural categories of interfaces. 

• Determine how observed use compares to what would be expected if guidance, 

such as program to an interface, were followed. 

4.5 Context 

This research contributes to the goal of understanding the practices used by professional 

developers. As Baker et al. say in their foreword to an IEEE Software special issue on 

Studying Professional Software Design - “Although we have quite a few high-level design 

methodologies we don’t have a sufficient understanding of what effective professional 

developers do when they design … To produce insights that are relevant to practice, 

researchers need to relate to practice and be informed by it.” (Baker et al., 2012) 
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4.6 Methodologies 

Examining source code corpora is a common strategy in empirical software engineering, to 

the extent that there are large repositories of curated code available for data mining 

experiments. Several other large-scale studies have been conducted on similar corpora, to 

answer the question of ‘what software looks like’. 

This study is more detail oriented, with some aspects requiring manual inspection, so fewer 

systems were selected.  In addition, because byte-code analysis may lose some of the 

details of how source code is written, analysis was based on source-code, which presents 

different challenges.  

There are various frameworks for the analysis of source- and byte-code, such as MOOSE9 

and Soot10.  These are adapted for experiments as required, and it was not clear that the 

available tools could support the requirements for this study. Consequently, this project 

uses a code analysis tool based on the Java source code parser from a popular Integrated 

Development Environment (IDE) called Eclipse.    

The Eclipse JDT Core is a fully featured Java source code parser which is compatible with 

both the latest, and previous versions of Java. Parsed Java code is converted to an Abstract 

Syntax Tree (AST) which is accessed by defining appropriate visitor classes. 

4.7 Experimental Design  

This section explains the methodological and design choices for this empirical study. 

4.7.1 Subjects 

This study was based on eleven open source systems. The main criterion in choosing 

systems was that they be representative of ‘real world’ Java applications. The Qualitas 

Corpus11 (QC) provides a curated collection of Java applications intended for the purposes 

of carrying out “reproducible studies of software”. To ensure that the examined systems 

were mature, six systems were chosen from the evolution distribution of the QC (release 

20130901) – where included systems have at least ten versions. 

                                                           
9 moosetechnology.org 
10 sable.github.io/soot/ 
11 qualitascorpus.com 
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Since this is not a replication study, and to avoid overfitting to a very popular research 

corpus, a wider search for candidate systems was performed beyond the popular research 

corpus, looking for Java applications with at least ten release versions and some indication 

that the system was in active use. From this search, the following systems were also 

selected: btrace, easysim, jedit, lobo. Finally, jhotdraw (JHD) was added to the collection as 

it has been regularly studied as an exemplar of good design practices (Ferreira et al., 2012).  

For this study, the latest versions at the time were used – as shown in Table 18. For each 

system in the study, the application name and version number are listed. Additionally, 

column 4 indicates how many types (class, abstract class, interface) definitions are in the 

source code for that application. Note that some systems use inner classes and/or 

interfaces, and enumerated types to varying degrees, these are included in the counts 

shown to provide an unfiltered notion of system size. This count does not include 

references in the source code to third party types which are defined outside the analysed 

source code. 

4.7.2 Objects 

The objects of the study were interfaces in open source systems written in the Java 

language.  While the interfaces were segregated based on origin-system for some analysis, 

the interfaces are generally treated as a single population. 

Table 18 – Interface Study Corpus Overview 

Application Version Domain Types Defined in 
Local Source Code 

Source 

argouml 0.34 UML modelling tool 2297 Qualitas Corpus 

azureus 4.8.1.2 Bit torrent client 3971 Qualitas Corpus 

btrace 1.2.5.1 Dynamic tracing for Java 261 SourceForge 

easysim 4.3.6 Interactive simulation platform 1000 University of Murcia 

freecol 0.10.7 Turn based strategy game 978 Qualitas Corpus 

freemind 0.9.0 Mind mapping tool 763 Qualitas Corpus 

jedit 5.1.0 Programmers text editor 1033 SourceForge 

JHotDraw 
(JHD) 

7.6 GUI framework 748 SourceForge 

jmeter 2.9 Load-testing application 1123 Qualitas Corpus 

lobo 0.98.4 Web browser 903 Sourceforge 

weka 3.7.9 Machine learning 1647 Qualitas Corpus 
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4.7.3 Instrumentation 

In initial versions of this study, which only focused on direct implementation of interfaces 

i.e. a class had an implements statement in its header, the javaparser12 library was used as 

the basis of the analysis tool. It was then realised that it was also important to take indirect 

implementation into account i.e. many classes were implementing interfaces indirectly via 

inheritance, and so a more sophisticated tool was developed using the Eclipse JDT Core13 

library. In switching analysis tools confidence was gained from the fact that both tools 

provided similar results. Another issue addressed by the revised tool was that some 

systems had a regular pattern of interface implementation via anonymous inner classes – 

omission of these from the initial analysis tool suggested that many interfaces had wrongly 

appeared ‘unimplemented’. Although, as noted in other studies, the effect of inner classes 

is very small (Systa and Muller, 2000). 

4.7.4 Data Collection Procedures 

Source code from the Qualitas Corpus is provided in a standard archive format, including 

multiple versions of each application’s source code where available.  The first step of data 

collection was to unpack the Qualitas corpus using the supplied scripts, and collect the non-

Qualitas systems into the same format for ease of comparison. 

Analysis of source code occurred in two stages – initial extraction of data from source code 

is a relatively expensive operation as type-references must be resolved across the entire 

code-base for each application.  This step was carried out using a tool based on the Eclipse 

JDT Core, which can parse and analyse source code, this took longer for the larger systems, 

as resolving types can become more difficult as a system increases in size and complexity. 

The initial extraction was performed on laboratory PC with the larger systems requiring a 

reasonable amount of memory (4x 3.4Ghz, 16GB RAM), analysis of all systems was 

completed in a few hours. The next stage of analysis used the extracted data to perform 

further analysis, which was quicker, with the raw data acting as a cache. Using data 

extracted from the source code in this way traded memory for hard-drive space, which 

matched the available computing resources. The second stage of analysis took much less 

                                                           
12 javaparser.github.io/javaparser 
13 org.eclipse.jdt.core 
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time than the extraction of the initial raw data and could be performed on a normal 

desktop machine (2x 3.16Ghz, 6GB RAM). 

4.7.5 Analysis Procedure 

Data were collected over several passes of the resolved AST for each program for different 

elements of the program structures. Sample information collected is shown in Table 19.  

Table 19 : Definition for collected data 

Direct System Profile Detail Example 

D1 System name Name argouml 

D2 Types defined in source code Count 2297 

D3 Types that are interfaces Count 192 

- Interface uses as: - - 
8,13,14     Class attribute Count 233 
8,13,14     Method parameter Count 368 
8,13,14     Constructor parameter Count 75 
8,13,14     Local variable Count 488 
8,13,14     Return type Count 336 

 Entity Profile Detail Example 

D4 Name Full name and path org.argouml.uml.ui.TabTaggedValues
Model 

D5 Entity type Class, Interface, etc. CLASS 

6 Implements count Count of interfaces 
directly implemented 

3 

7 Extends count Count of types directly 
extended 

1 

D6 Implemented names Names of interfaces 
directly implemented 

(java.beans.VetoableChangeListener
, 

org.argouml.kernel.DelayedVChangeL
istener, 

java.beans.PropertyChangeListener) 

D7 Extended names Names of types directly 
extended 

(javax.swing.table.AbstractTableMo
del) 

- Dependency Relationship: 
B depends on A 

Detail Example 

D8 Type A nature Class, Interface, etc. Interface 

D9 
Type A origin 

User Defined, Java, Third 
Party 

User Defined 

D10 Type A name & path Location and Type name org.argouml.cognitive.Poster 

D11 Type B nature Class, Interface, etc. Class 

D12 Type B name & path Location and Type name org.argouml.cognitive.ToDoItem 

D13 Scope in Type B where 
dependency occurs  

Scope: Class, Method, 
Constructor 

CLASS 

D14 Type A used as Field, Parameter, Return FIELD 

- Interface Use Profile Detail Example 

D15 Origin system Name argouml 

D6 Name and path Full name and path org.argouml.kernel.Project 

D17 Method count Count 70 

D18 Method argument count Count 41 

17,18 
Average method arguments 

Method arguments / 
count 

0.44 

- Dependency on: -  

D19     Primitives Count 17 

D20      Self Count 0 

D21      Java types Count 57 

D22      Third-party types Count 0 
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- Dependency By: - - 

10,11     Concrete class Count 232 

10,11     Abstract class Count 36 

10,11     Interface Count 7 

6 Direct implementer count Count of types directly 
implementing this 

interface 
1 

5, 6 Direct implementers Names of types directly 
implementing this 

interface 
(org.argouml.kernel.ProjectImpl) 

5,6,7 Indirect implementer count Count of types indirectly 
implementing this 

interface 
0 

5,6,7 Indirect implementers Names of types indirectly 
implementing this 

interface 
() 

5,6,7 Total Implementer count Count 1 

- Uses as: - - 

D23 Concrete class constructor 
parameter 

Count 17 

D24 Abstract class constructor 
parameter 

Count 1 

D25 Concrete class local variable Count 15 

D26 Abstract class local variable Count 3 

D27 Concrete class method 
parameter 

Count 71 

D28 Abstract class method 
parameter 

Count 14 

D29 Interface method parameter Count 5 

D30 Concrete class method return Count 20 

D31 Abstract class method return Count 6 

D32 Interface method return Count 2 

D33 Class method variable Count 120 

D34 Abstract class method variable Count 0 

23-34 Total use as variable Count 274 

- Inheritance Hierarchy 
Properties 

Detail Example 

D35 Root name Full name and path of the 
root type 

org.argouml.cognitive.CompositeCM 

D36 Root implements interface Root type implements at 
least one interface 

true 

D37 Root origin Local, java, third party Local 

4,7 Type count Types in hierarchy 
(including root) 

4 

D38 Abstract type count Abstract classes in 
hierarchy (including root) 

1 

D39 Direct implementations Use of implements at 
each level [1 0 0] 

7, 39 Indirect implementations Indirect implementations 
at each level 

[0 2 1] 

Basic information about all types defined in the source code (class, abstract class, 

interfaces, including ‘inner’ structures) was recorded, with more detailed information being 

collected on interfaces and their use. In the Direct column, data derived directly from the 
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source code is indicated with a ‘D’ prefix. Information inferred from extracted data has no D 

prefix and instead lists the D-value(s) used to infer the information.  

For example, D2: Types defined in source code is a direct count, while Interface Used As : 

Class Attribute (row 5) is a derived value, using D8, D11, and D14.The Interface Used As 

indicate counts of how often interface types were used in each kind of variable. 

The initial stage of data collection collected ‘raw’ data such as registering the existence of 

all the types in the corpus, creating detailed records of interfaces present including such 

data as method counts, types and number of method parameters, each appearance of 

interface types in the source code in type definitions and signatures, including the scope of 

the use such as local method variables (as noted above, this is labelled with a ‘D’). This 

stage also gathered information about implementation of interfaces. The second stage of 

data processing used the source code and the initial information to infer more specific data 

such as overall implementation counts and the distribution of interfaces in inheritance 

hierarchies. Additional information about specific entries is included in Table 19 in the 

‘Detail’ column.The dependency relationship block shows a single recorded dependency. 

This data indicates the nature (class, abstract class, interface, enumerated type) of the 

types in the dependency relationship. In addition, the scope (class, constructor, method) 

and use as (field, parameter, return) can be combined to identify most uses of types. Some 

examples are constructor parameter, method return, class field (an attribute) vs method 

field (a local variable). 

Details shown in the Interface Use Profile section show the details available for each 

interface in the study. Most items are simple, but revealing, counting metrics. Beginning 

with internal properties - the number of method signatures defined, the number of method 

parameters across all method signatures defined in the interface. Some of these details 

were copied over from the more general entity profiles. Most of the counts capture how 

the interface interacts with the rest of the system. The dependencies of each interface are 

broken down by nature – this is to determine how much interfaces depend on other types 

(especially less abstract types). The Dependency by items along with the implementation 

counts give some notion of the popularity of an interface. Finally, each use of an interface 

(as recorded in the dependency relationships) are collated to show where that interface is 

used in code in terms of the kind of interface-typed references. 
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The final section of Table 19 shows information collected about interfaces in inheritance 

hierarchies. The last two rows show an array for each hierarchy with direct and indirect 

interfaces implementations at each depth. For example [1 0 0] indicate one interface 

implemented at depth zero, and no other interface implementations in the hierarchy which 

has a maximum depth of 2. From the last row [0 2 1] indicates that an inheritance hierarchy 

has three indirect interface implementations in total, none at the root, two at depth one, 

and one at depth two. This is like the BIT vector proposed by Harrison et al. for presenting 

breadth of inheritance hierarchies (Harrison et al., 2000), which is discussed in more detail 

in section 5.5.3.2. 

4.7.6 Evaluation of Validity 

This section addresses validity concerns for this study. Overall, this study faces similar 

challenges to previous corpus studies. 

4.7.6.1 Construct Validity 

There are many dimensions of software which could be considered when searching for 

patterns of use. In this case, the most obvious and manually recognisable features were 

chosen as these are the features that practitioners have immediate access to. As such, the 

outliers and modes of use identified will be recognisable in practice. The outliers and 

normal use identified in this study have been discussed in terms of recognised modes of 

interface use from the literature and design guidance where clear mappings exist. However, 

there is no attempt to infer motivation or provide a higher level, complete model. 

A further source of validity concern in software analysis studies is the tools used to extract 

the data. In this case, the tools used were based on a core component of a very popular IDE 

– ensuring that the core functions are well tested.  The novel parts of the tool were tested 

during development and validated against real data. Additionally, the project has involved 

extensive manual inspection of source code, which has further confirmed that the tools 

used have correctly identified structures and counts within the code corpus. 

4.7.6.2 Internal Validity 

Internal validity is concerned with alternative causes. Each design choice and modification 

is the result of deliberate human intervention. So, it could be argued that software designs 

are the way they are due to an accumulation of undocumented practitioner decisions – 

which are inaccessible to the researcher. Though it is clear from the literature and guidance 
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that these reasons may also be obscure to practitioners who rely on intuition, habit, and 

incomplete models of the systems they work in. 

Looking at design in the small or at specific categories of outliers, the primary motivation 

for the kind of outlier observed may be identified. For example, the listener archetype is a 

design need in event driven systems, which is observed to manifest as a common structure 

(small highly implemented interfaces, with ‘listener’ in the name). However, this mapping 

between design need and structure is not always reliable. 

This is only a threat to internal validity if there is an insistence that the mapping between 

design need and structure are always reliable. However, this research looks at identifying 

common uses – which does not require them to be complete. Practitioners are accustomed 

to using design heuristics – and would likely be suspicious of ‘hard and fast’ rules if they 

were offered. 

Alternate causes for design in the large or system level results appear to be difficult to 

separate from other factors such as practitioner style, architecture, problems domain, and 

the constraints placed on a design by the reuse of external libraries and frameworks. 

Consequently, no attempt has been made here to make useful predictions about system 

level characteristics.  

4.7.6.3 External Validity 

A general concern when experimenting with software is that it is not representative of the 

wider software ecosystem. There is a threat to validity arising from the small number of 

systems analysed and their properties. There was no consideration of how the developers, 

their individual practices, and their organisation contributed to the systems. The variety of 

findings in this and other studies regarding the differences in problem domain, 

programming style, programming languages, architecture – indicates that it is unlikely that 

software system is the correct unit of comparison for this type of research. 

The external population of interfaces in Java systems is a reasonable population to consider 

comparing the findings from this work to. It is reasonable to expect that any such external 

population must be at least as diverse as the systems examined here. Accepting, as much 

empirical software research does, that normal use is defined by what is observed – 

differences in opinion must be accounted for. For example, marker or constant interfaces 
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may be avoided by some practitioners, while others may welcome guidance on the use of 

these structures. 

On the other hand, while small, the corpus used in this study represents a varied selection 

of mature ‘real world’ applications that have serious application. Additionally, the initial 

high-level findings indicate that the corpus used in this study resemble larger corpora in 

terms of cross-system averages. It is therefore possible that these initial findings are 

representative of what may be found in wider practice, and in indeed some of the key 

findings are consistent with previous research. 

4.8  Results  

This section presents the main high-level observations across all eleven analysed systems 

and then discusses each system in turn. 

4.8.1 Descriptive Statistics 

Interface use in eleven open source Java systems was examined.  Systems ranged in size 

from 261 to 3971 types defined in local source, and contained 2048 interfaces overall, with 

15 to 1108 interfaces per system (4%-28% of defined types). Interface sizes range from 0 to 

393 methods, and are used as variables and parameters 14999 times. Interfaces defined in 

local source code were implemented 13342 times across all systems with individual 

interfaces implemented 0 to 605 times14. 

4.8.2 Data Set Reduction 

Despite the existence of conventions, there is no fixed way to lay out a Java program.  As 

such the organisation of source code, test code, and imported libraries varies between 

systems. When resolving types in source code, third party libraries may not be available 

with the code in the Qualitas Corpus (QC) archive format.  In these cases, the type of 

external imports can often be inferred from import statements. 

In a small number of cases (< 0.5%), imports are made using Java’s asterisk notation which 

can make it impossible to recover the original path of an imported type without access to 

the external library.  In these cases, a best effort was made to handle the unresolved types 

                                                           
14 weka.core.RevisionHandler – a one-method interface to access a ‘version identifier’, has 605 
implementers. 
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consistently – matching on type name and the source library. Note that this has little 

impact on findings as the relationships with unresolved types are still recorded. 

4.8.3  Results  

The following definitions and counts were used in this study: 

uT = The size of the set of user-defined types in source code. All types defined by the user in 

the source code, even if they are not referred to by other types or used in program 

execution.  This also includes inner classes, annotations, and enumerated types. Also 

referred to as ‘local’ types. 

uI = The size of the set of interfaces defined in the source code. 

Interface use = When an interface is used to specify a type e.g. as a class attribute, method 

field (local variable), parameter or return type.  

Direct interface implementation: Type A directly implements interface B when type A has a 

statement in its definition A implements B. 

Indirect interface implementation: Type A indirectly implements interface B where A does 

not implement B in its definition, but some super-type of A directly implements interface B. 

Local interface: An interface defined in the local source code of an application i.e. not from 

an application library or imported from a third-party component or framework. 

4.8.3.1 Presence of Interfaces 

Table 20 (column 5) shows the number of implementations of local interfaces in each 

system by non-interface types, this includes indirect implementation (inherited 

implementations), and shows that interface implementation is common across the 

examined systems. The table also shows the number of user-defined types (uT) in the 

systems (column 2) and the number of these that are interfaces (uI) (column 4). Column 6 

shows the percentage of all types defined in local source code that are interfaces in each 

system, therefore 8% of the user-defined types in argouml are interfaces. It is unlikely that 

% interfaces would reach 100% as any system would have a mixture of concrete classes and 

interfaces, e.g. one interface defined for each non-interface type would result in a % 

Interfaces of 50%. Column 6 illustrates that most of the analysed systems have a relatively 

low proportion of interface definitions amongst user-defined types, in the range 4-28% 

(mean 10%, median 8%) with outliers being lobo (20%) and azureus (28%). Note that in 
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column 5 azureus has many more implementations of local interfaces than shown in 

column 3 (total interface implementations by non-interface types), this is due to extensive 

use of anonymous inner classes which implement interfaces, but are not included in the 

count of user defined types. 

On average, the presence of interfaces is in keeping with the previous findings of Tempero 

et al.: “… the proportion of interfaces is rarely more than 20% of the total types, and 

usually around 10% [of user-defined types]” in their large-scale study of Java programs 

(Tempero et al., 2008). This is reiterated with the finding that “…classes and interfaces are 

used in stereotypically different ways, with approximately one interface being declared 

for every ten classes” (Tempero et al., 2008). However, specific systems vary with no clear 

relationship between system size and amount or ratio of interface presence. 

Table 20: High level system breakdown (direct +indirect implementations)  

Application 
User-

defined 
Types (uT) 

 Implementations 
of any interface 
by non-interface 

types in uT 

Local 
Interfaces 

(uI) 

Implementations 
of local interfaces 
by non-interface 

types in uT             

% of uT 
that are 

Interfaces 

Class : 
Interface 

(ratio) 

argouml 2297 6590 192 2201 8% 10:1 

azureus 3971 3464 1108 4697 28% 2:1 

btrace 261 92 15 28 6% 15:1 

easysim 1000 1469 70 549 7% 13:1 

frecol 978 1906 37 316 4% 22:1 

freemind 763 1890 79 462 10% 8:1 

jedit 1033 2137 65 265 6% 14:1 

jhotdraw 748 2201 57 530 8% 11:1 

jmeter 1123 3029 89 1249 8% 11:1 

lobo 903 1492 179 691 20% 4:1 

weka 1647 4720 157 2354 10% 9:1 

The rightmost column of Table 20 shows the ratio of class : interface presence in each 

system (mean 11:1, median 11:1), this is calculated by dividing concrete classes by 

interfaces in each system. For example, argouml has 1949 concrete classes and 192 

interfaces defined in the source code, so the ratio of classes is (rounded to) 10 classes to 

one interface. Steimann notes that as interface use in the JDK increases, the ratio of class to 

interface in the JDK remains nearly constant at 5.5:1 (class : interface) across versions 

(Steimann and Mayer, 2005). The JDK has fewer classes per interface than many of the 

systems examined - this difference may be due, in part, to the distinctive role of the JDK as 

a programming library. Only azureus and lobo meet this level of interface definition, with 

azureus having approximately one interface for every two classes. 
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Comparing the third and fifth columns of Table 20 shows that there are many more 

interface implementations in each system than can be accounted for by implementations of 

local interfaces (interfaces defined in the source code of the application). This indicates that 

interface implementation is a common means of interacting with external code such as 

code libraries. 

4.8.3.2 Interface Size 

Figure 23 shows a log-log plot of all the interfaces in the systems examined, plotting 

interface size (x-axis) against number of occurrences of that interface size (y-axis). Zero–

sized interfaces are not shown in this plot. A break-down of interface size in the population: 

• 50% of the interfaces across all analysed systems consisted of 0-2 methods 

• 80% of interfaces have 8 or fewer methods 

• The top 10% of interfaces have 17-393 methods 

• 1% of interfaces have 97-393 methods 

Marker interfaces (with zero methods) comprise 11% of the interfaces identified, indicating 

that they are not being used in the conventional sense to “program to an interface” 

(Gamma et al., 1994). To allow conventional interface-based programming, interfaces must 

provide behaviour (method signatures). These empty interfaces are present in all systems 

examined (containing between 2 and 75 such interfaces). While they may confound some 

forms of analysis, these interfaces are neither rare nor limited to specific systems. 

 

Figure 23: Number of methods in interface vs frequency of occurrence (log-log scale) 

Note also the characteristic ‘fat-tailed’ distribution that has received much attention in the 

discussion of scale-free properties in object-oriented systems (Potanin et al., 2005).  A fat 
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tailed distribution indicates that there may be a ‘natural’ scale-free size variation in the 

population. 

4.8.3.3 Interface Implementation – System Level 

This section examines how much interface implementation there is in each system. For 

each application, Table 21 shows the number of user-defined interfaces (column 2). A 

number of these interfaces are inner interfaces, (included in, and shown next to the uI 

total). Interfaces marked ‘abstract’ may indicate the presence of generated or legacy code – 

these are included in the total population of interfaces in the remainder of this section.  

The total number of direct and indirect (via inheritance) implementations of user-defined 

interfaces in that system (column 4), mean number of implementations per interface 

(column 5), and the mean number of implementations by user-defined, non-interface types 

(uT-uI) (column 6). For example, the first row shows that btrace has 15 (including 3 inner or 

abstract) interfaces which have 18 direct implementations, and 28 implementations in total 

(direct and indirect). 

Table 21: Number of interface implementations per system (Total Implementations: 13342)  

Application uI (inner) 
Direct 

Implementations 

Total 
Implementations              
(direct + indirect) 

Total 
Implementations 

/ uI 

Total 
Implementations 
/ (uT-(uI+enum)) 

btrace 15 (3) 18 28 1.87 0.12 

frecol 37 (6) 65 316 8.54 0.36 

jhotdraw 57 (0) 110 530 9.3 0.79 

jedit 65 (9) 106 265 4.08 0.28 

easysim 70 (2) 143 549 7.84 0.59 

freemind 79 (35) 127 462 5.85 0.68 

jmeter 89 (2) 341 1249 14.03 1.21 

weka 157 (9) 1110 2354 14.99 1.63 

lobo 179 (1) 163 691 3.86 0.96 

argouml 192 (22) 408 2201 11.46 1.05 

azureus 1108 (132) 1419 4697 4.24 1.64 

Some literature advocates that most references to concrete types should be via interfaces 

(Gamma et al., 1994; Holub, 2003; Martin, 2002). If this approach was pursued then each 

concrete type would be expected to implement at least one interface, this would be 

indicated by a value around 1 in column 6 (although the use of means hides the fact that 

some concrete classes are implementing many interfaces). The mean values range from the 

low (btrace, freecol, jedit) to perhaps higher than expected (weka, azureus), with over half 

the systems sitting below a value of one. This suggests that there are many types in these 
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applications that cannot be accessed via an interface. In the following sections, it will be 

shown that different interface implementation patterns lie behind these summary figures.  

Table 22 shows, for each system, how many user-defined classes or abstract classes 

implement interfaces, and how many interfaces are implemented. Taking the first row, 

argouml, as an example – 469 types (classes and abstract classes) in argouml implement 

zero interfaces, 588 implement one interface and so on up to 3 types implementing 20 

interfaces. The total of each row is the number of non-interface types defined in each 

system. This total is the value uT Table 20, less the interfaces and any enumerated types 

defined in the system. Multiplying each cell entry by the column header and summing 

across the row gives the number of interface implementations for each system, as noted in 

the fifth column of Table 20.  

The first column of Table 22 shows that most of the systems have some types that 

implement no interfaces (jhotdraw with a low 11% and btrace with a high 75%).  

Table 22 : Breakdown of interface implementation (direct & indirect) 

system 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 35 

argouml 
469 588 290 43 91 265 106 36 34 20 42 7 4 14 1  15 5 59 4 3   
22% 28% 14% 2% 4% 13% 5% 2% 2% 1% 2% <1% <1% <1% <1% 0% <1% <1% 3% <1% <1% 0% 0% 

azureus 
1048 1197 260 78 50 158 31 18 8 2 5  2  1      1 1  
37% 42% 9% 3% 2% 6% 1% <1% <1% <1% <1% 0% <1% 0% <1% 0% 0% 0% 0% 0% <1% <1% 0% 

btrace 
183 39 13 2 4 1                  
75% 16% 5% <1% 2% <1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

easysim 
323 387 50 20 39 28 20 27 15 13 8             
35% 42% 5% 2% 4% 3% 2% 3% 2% 1% <1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

freecol 
405 155 54 10 10 18 102 91 21 6   1           
46% 18% 6% 1% 1% 2% 12% 10% 2% <1% 0% 0% <1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

freemind 
127 188 72 49 37 99 57 36 8 7 1  2 1          
19% 28% 11% 7% 5% 15% 8% 5% 1% 1% <1% 0% <1% <1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

jedit 271 309 101 31 57 34 50 69 17 13 4  2          1 
28% 32% 11% 3% 6% 4% 5% 7% 2% 1% <1% 0% <1% 0% 0% 0% 0% 0% 0% 0% 0% 0% <1% 

jhotdraw 
76 141 79 51 85 89 95 46 9               

11% 21% 12% 8% 13% 13% 14% 7% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

jmeter 
287 285 58 22 47 57 57 132 41 14 6 8 7 5 3 2        
28% 28% 6% 2% 5% 6% 6% 13% 4% 1% <1% <1% <1% <1% <1% <1% 0% 0% 0% 0% 0% 0% 0% 

lobo 
206 250 67 12 13 75 35 54 6 1              
29% 35% 9% 2% 2% 10% 5% 8% <1% <1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

weka 
285 319 170 89 100 161 90 76 59 45 20 7 4 3 5 6 4 2 1     
20% 22% 12% 6% 7% 11% 6% 5% 4% 3% 1% <1% <1% <1% <1% <1% <1% <1% <1% 0% 0% 0% 0% 

Thereafter most types implement at least one interface - in eight of the systems more than 

50% of the types implement zero or one interface. The major exception to this is jhotdraw 

where 68% of its types implement two or more interfaces. Most of the systems have many 

types that implement up to 8-10 interfaces (btrace is the exception), all the way up to jedit 

with a type that implements 35 interfaces. Temporo et al. note that a type that implements 
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56 interfaces “seems rather extreme” (Tempero et al., 2008). Gößner reports that the 

number of interfaces implemented by a class is observed up to 20 in the JDK (J2SE 1.4.1-02) 

(Gößner et al., 2004). 

The most prolific implementers from Table 22 were examined to determine their role in 

their containing systems: 

• The implementer of 35 (33 direct, 2 indirect) interfaces is org.gjt.sp.jedit.bsh.JThis – 

which acts as a ‘sink’ for events – implementing many action listeners. 

• com.aelitis.azureus.ui.swt.views.skin.MyTorrentsView_Big implements 21 

interfaces (21 indirect), once again 14 of these are listeners. 

• 20 org.gudy.azureus2.ui.swt.views.MyTorrentsView (12 direct, 8 indirect) – 12 of 

which are listeners. 

• 20 org.argouml.uml.diagram.static_structure.ui.FigModel, FigPackage, 

FigSubsystem are part of an inheritance hierarchy where many listeners (9) are 

added which accumulate along with many small get/set access interfaces, and one 

substantial interface, (org.argouml.uml.diagram.ui.ArgoFig). 

It appears that some of the systems examined have a substantial event-driven architecture 

which promotes the creation of many small listener interfaces.  

Table 23 shows both the use of extends and implements in the systems studied. For 

example, row 1 shows 8% of types in argouml implement no interfaces and involve no 

concrete inheritance, 18% of types directly implement at least one interface and 51% 

implement an interface indirectly via inheritance.  

Table 23: Use of implements and extends in non-interface types 

System 

No inheritance 
(super-type, direct or 

indirect interface 
implementation) 

Directly 
implement an 

interface 

Indirectly 
implement 
an interface 

Extend 
Implement an 

interface or 
extend a type 

argouml 176 (8%) 369 (18%) 1063 (51%) 1468 (70%) 1920 (92%) 

azureus 836 (29%) 1017 (36%) 469 (16%) 1053 (37%) 2024 (71%) 

btrace 136 (56%) 24 (10%) 30 (12%) 84 (35%) 106 (44%) 

easysim 178 (19%) 181 (19%) 360 (39%) 593 (64%) 752 (81%) 

frecol 149 (17%) 84 (10%) 303 (35%) 667 (76%) 724 (83%) 

freemind 83 (12%) 174 (25%) 286 (42%) 439 (64%) 601 (88%) 

jedit 189 (20%) 286 (30%) 334 (35%) 487 (51%) 770 (80%) 

jhotdraw 57 (8%) 122 (18%) 387 (58%) 492 (73%) 614 (92%) 

jmeter 155 (15%) 184 (18%) 323 (31%) 702 (68%) 876 (85%) 

lobo 120 (17%) 203 (28%) 237 (33%) 404 (56%) 599 (83%) 

weka 56 (4%) 350 (24%) 437 (30%) 1054 (73%) 1390 (96%) 
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The final column shows how many types use inheritance at all. Note that the total of the 

second and final columns is the number of non-interface types for each system, which is uT-

uI in Table 20. The same type may be counted in more than one column. 

Bringing in inheritance (column 6) drastically changes the picture, compared to the variable 

use of interfaces indicated in columns 4 and 5, when inheritance is introduced a large 

majority of types in these systems either implement an interface or extend a type. Most of 

these systems are making extensive use of inheritance, it is also notable that many of the 

interface implementations are due to the presence of inheritance (indirect 

implementations). 

Abdeen and Shata previously found that 15-40% of classes directly implement (non-library 

and non-marker) interfaces. The findings here, with a direct implementation range of 10-

36%, seem to be consistent with those results (Abdeen and Shata, 2012). 

Tempero et al. found that most classes in Java programs are defined using inheritance from 

other user-defined types. Column 6 in Table 23 seems to support this with all except one of 

the systems having at least 71% of types defined using some form of inheritance 

(implements or extends). Tempero also reports that “Applications generally have a lower 

proportion of classes implementing interfaces than classes extending classes, and 

interfaces extending interfaces is lower still” (Tempero et al., 2008). Again, the findings in 

this study are consistent with that observation. 

Interface Implementation Summary: [KF 4.1] Interfaces make up around 10% of total types, 

reaching over 20% in some systems. [KF 4.2] Many classes and abstract classes (~70%) 

cannot be accessed via an interface. [KF 4.3] The presence of interfaces is like findings in 

previous studies. [KF 4.4] 50% of interfaces overall have size 0-2. In eight of the systems 

more than 50% of the types implement zero or one interface. [KF 4.5] Event driven 

architecture promotes the creation of many small ‘listener’ interfaces. [KF 4.6] 23% of 

interfaces are implemented indirectly (at least once) via inheritance. 
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4.8.3.4 Interface Implementation – Interface Level 

Figure 25 shows how interfaces of difference sizes (method counts) are implemented in 

each system. Note that inner and ‘abstract’ interfaces have been excluded here. Interfaces 

have been grouped by size based on the categories of method signature count identified by 

Figure 23 in the previous section: 0, 1-2, 3-8, 9-16, 17-96, 97-393.  Taking argouml as an 

example, the leftmost (light blue) column indicates that there are 42 implementations of 

size zero interfaces in the application.  Moving right, the columns indicate the number of 

implementations for size 1-2 interfaces (orange, 158), size 3-8 (grey, 144), and so on until 

the final category 97-393 (green, 8), as indicated by the data-table. Summing the figures in 

each column for each system matches the direct implementation count values shown in 

Table 21. Figure 25 shows that the most popular implementation range is interfaces of size 

1-2, followed by 3-8. In these systems, if there is a ‘usual’ range, it is interfaces with a size in 

the range 1-8 methods (75% of all interfaces observed). This is close to Ferreira et al.’s 

finding that “most classes have 0-10 public methods” (Ferreira et al., 2012). A few of the 

systems frequently implement 0-method interfaces: argouml, azureus, jmeter and weka. 

For example: 

org.argouml.model.DiDiagram  - extended by seven other interfaces, shown in Figure 25. 

Which in turn have 10 concrete implementations between them. This interface is 

documented as giving “better compile time safety”15 than passing object references 

                                                           
15 org.argouml.model.DiDiagram [source code JavaDoc, v 0.34, http://argouml.tigris.org/]  
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around. This allows a related factory class to offer generic operations over an inheritance 

hierarchy. 

org.gudy.azureus2.plugins.ddb – implemented by three inner classes, two of which are 

empty. In the case of the empty implementations, the name of the implementation carries 

information e.g. RCMSearchXFer indicates a ‘Related-Content Manager’ data transfer. 

org.apache.jmeter.samplers.Remoteable – implemented by four concrete classes. 

In all three cases, switching on subtype is used to disambiguate concrete subtypes in one 

place in the design – indicating that interfaces have been introduced with full knowledge 

that the ‘switching on type’ code smell would be required to make use of the concrete 

types. While switching on type is a possible indicator of missing inheritance, this solution is 

not directly applicable in these cases as the types being switched on do not share any 

behaviour because the shared polymorphic interface is empty. Consequently, a concrete 

super-type would not add any more information than the existing interface. Additionally, it 

is not clear that the subtypes in these classes share a common ‘is-a’ relationship. Based on 

the use shown here, a shared empty interface implementation might be regarded as a 

‘weak’ form of polymorphism where there is substitutability with no provided or required 

common behaviour. 

 
Figure 25 : DiDiagram Hierarchy 
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Several of the systems examined have many implementations of large interfaces – most 

systems still have many implementations in the range 3-8 (azureus has 307), and then, as 

might be expected, much less of size above 8 – though azureus has a noticeable number of 

implementations, even in the 17+ method size range.  

The high level of interface definition in azureus (one interface per two classes), indicates 

that there may be variations in style - in this case, the perceived cost/benefit of interfaces is 

favourable. 

Table 24 shows the range of implementation for the interfaces in each size category. The 

most obvious trend is that maximum implementers decreases with interface size. 

Interestingly, the median does not change much with interface size, indicating that many 

interfaces in each category are implemented only a few times. That being the case, it is 

important to note that while many of the ‘highly implemented’ interfaces are small, not all 

small interfaces are frequently implemented. 

Table 24 : Implementation rates for interface size bands 

Methods 0 1-2 3-8 9-16 17-96 96-393 

Min 0 0 0 0 0 0 

Max 48 183 142 28 10 3 

Mean 2.3 2.8 1.8 1.7 1.4 1.8 

Median 0 1 1 1 1 2 

St. Dev 5.8 10.6 6.5 2.7 1.2 0.7 

Implementation Summary: [KF 4.7] There is wide variety in interfaces sizes, 0-393 methods. 

[KF 4.8] Three-quarters of interfaces have 1-8 methods. [KF 4.9] Many interfaces are 

implemented a few times; few interfaces are implemented many times. Most 

implementation is in the interface size range 1-8. 

4.8.3.5 Use of Interfaces in Declarations 

Figure 26 shows the percentage of each kind of variable and parameter that is defined 

using an interface.  The left-most cluster of columns shows interface use in argouml – 

around the 5% level for all uses (class attribute, constructor parameter, constructor field, 

method parameter, method field and method return type). On the other hand, azureus has 

values ranging from 16% for class attribute up to 31% for method parameter. 

Figure 26 shows clear differences amongst the amount of interface use across the analysed 

systems. azureus and jhotdraw are using interfaces more than systems such as btrace and 

jedit, which appear to make little use of interfaces. It is also interesting to note that weka, 



127 
 

which had many implementations of interfaces in Table 22 has a low proportion of 

interface-typed variables. This indicates that the interfaces in weka are capturing relatively 

few of the internal dependencies. 

There does not appear to be consistency of interface use across the systems, if interfaces 

are used more, they are not necessarily used more in all areas – with substantial variation 

in easysim, freemind and jhotdraw. In these systems, if there is a stand-out usage, then it as 

parameters and return types (orange and yellow bars in Figure 26 and Figure 27).  

 
Figure 26: Percentage interface use in variables and parameters (primitives excluded) 

JHotDraw has been extensively studied in the research literature as its design was 

influenced by the design patterns community, and is considered an example of ‘good 

design’ (Ferreira et al., 2012), including compliance with program to an interface. In Table 

20 and Table 21 jhotdraw appears quite typical. However, in Figure 26, it does stand out 

with approximately double the use of interface-typed variables in all categories except as a 

class attribute. This might indicate that program to an interface is characterised by focus on 

abstractness in public protocols (constructor parameter, method parameter, method 

return). 

It is not uncommon for studies to exclude size-zero interfaces and third-party or library 

types from code-analysis due to possible differences in structure. This is done to allow a 

study to focus on “choice by the developer”(Brekelmans, 2014) rather than programming 

convention or the constraints of library APIs. This has been done in Figure 27, which shows 

the percentage of interface references where the reference type is locally defined. 
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Figure 27: Percentage interface use in variables and parameters (local types only) 

Figure 27 shows similar trends to Figure 26, but notably, use of interfaces is now up to 80% 

(e.g. method parameters in azureus and jhotdraw), with all systems showing a general 

increase. This difference indicates that practitioners are more inclined to use interfaces 

when referring to types that are locally defined i.e. their ‘own code’. 

Note also in Figure 27 that azureus has a more uniform use of interfaces across all 

categories, where the other high-interface-use systems have marked deficiencies in some 

areas, such as constructor field. 

Figure 28 shows a plot of the number of interfaces defined in a system (x-axis) versus the 

percentage of references to user-defined types (as in Figure 27) that are interfaces (y-axis). 

This indicates how many static dependencies are captured by interfaces defined in each 

system. The most interesting feature of this diagram is the relative positioning of jhotdraw 

and azureus.  

The diagram clearly shows the relatively high usage of interfaces that jhotdraw achieves 

with a relatively small proportion of interfaces (only 8% of user-defined types), whereas 

azureus has many more interfaces (they constitute 28% of user defined types). This shows 

that the number of interfaces defined in a system does not necessarily relate to the 

proportion of interface-mediated interactions in that system. 

This may relate to the generality of the interfaces within a system. It is not clear if it is 

desirable to (re)design a system so that it has a lower number of highly used interfaces 

rather than many interfaces which each capture fewer interactions – in Figure 28 this would 

translate to moving azureus to the left. If the problem domain influences the number and 
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reuse-level of abstractions that can be extracted, then this is a further indicator that a 

general notion of ‘good’ is highly variable. 

 

Figure 28: Percentage dependencies to interfaces vs no of interfaces defined in local source 

Declarations Summary: [KF 4.10] There appear to be more interface-typed references in 

‘public’ protocols such as constructor- and method-parameter, and return types. [KF 4.11] 

Practitioners are more inclined to use interfaces when they are referring to types that are 

locally defined. [KF 4.12] The number of interfaces defined in a system is not directly related 

to the amount of interface-mediated interactions in that system (highlighted by jhotdraw vs 

azureus differences). 

4.8.3.6 Marker Interfaces 

Interfaces with no methods are known as marker interfaces (Steimann and Mayer, 2005). 

These interfaces, can be used as containers for collections of constants, as a root super-

type for hierarchies of interfaces, or as markers/flags for type checking.  While these may 

be useful functions – this cannot be said to be “programming to an interface” in the 

conventional sense (Gamma et al., 1994), as empty interface do not guarantee the 

presence of any behaviour (methods) in subtypes. Marker interfaces appear in all examined 

systems, as shown in Table 25, but most notably in azureus (75 interfaces, 177 uses).   

Row two of Table 25 indicates the number of marker interfaces in each system, followed in 

row three by the number of classes or abstract classes which implement marker interfaces. 

Row four indicates how many marker interfaces are not extended. Finally, row five 

indicates how often marker interfaces are used in variable declarations in each system. 
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Table 25 : Presence of marker interfaces across systems 

System 
argouml 

(0.34) 
azureus 
(4.8.1.2) 

btrace 
(1.2.5.1) 

easysim 
(4.3.6) 

frecol 
(0.10.7) 

freemind 
(0.9.0) 

jedit 
(5.1.0) 

jhd 
(7) 

jmeter 
(2.9) 

lobo 
(0.98.4) 

weka 
(3.7.9) 

Interfaces 24 75 3 54 4 2 6 4 8 4 19 

Implementers 42 156 5 14 3 2 18 2 50 3 166 

Not Extended 5 19 1 50 1 1 1 2 1 1 8 

Use as 
Variable 

15 177 0 32 2 1 0 7 0 8 2 

As markers are used to ‘tag’ types or group together the root of inheritance hierarchies, 

they can be implemented many times via inheritance. This means that inheriting types 

must also be compliant with the ‘tagged’ behaviour, with no mechanism (methods) to 

enforce this. 

Use of markers as holders of constant values, while currently unfashionable, is less 

problematic. Constants are, by definition, less volatile so all implementers will have access 

to the same constant information while avoiding global variables. However, use of constant 

interfaces introduces structural coupling in that a subtype can depend on the fact that its 

super-type implements a constant interface. 

Given that a constant interface is arguably more stable than a (non-interface) super-type, 

having each user of a constant refer to or implement that interface directly is more 

compliant with “depend in the direction of stability” (Martin, 2000). However, this may 

introduce the same interface to a hierarchy at multiple points – trading an increase in 

redundancy for less coupling (Abdeen and Shata, 2012).  This illustrates why using a 

constant class rather than an interface is considered to be a better solution – references to 

a class do not carry the same design ‘baggage’ as implementing an interface. 

4.8.3.7 Java Collection Interfaces 

The Java language provides a variety of data structures in the form of a Collections library.  

These consist of abstract data types (ADTs) such as ‘List’ or ‘Map’ defined using interfaces, 

which are accompanied by various implementations. Figure 29 illustrates how types 

associated with the Java Collections framework are used across the systems.  

The types are grouped by concrete class, abstract class, and interface for clarity.  The most 

obvious point is the large preference for interfaces (76% of Collections references) over the 

respective implementations. For example, the Map interface is used in 4362 declarations, 

while the most common map implementation (Hashmap) reaches only 531 references. 
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Figure 29 : Use of Java Collections Types in Type Declarations 

Figure 29 also indicates that the Java collections types are mainly referenced via their 

respective interfaces. Though it is interesting to note a few exceptions. ArrayList is an 

outlier of sorts as there are both large numbers of concrete and interface (List) 

declarations. This may be due to the common use of lists as the ‘default data structure’ in 

place of tuples (which Java does not have), or primitive arrays. Collections interfaces are 

most present in method fields (local variables) and return types. 

4.8.4 Interface Archetypes 

While the sentiments from guidance are constant – decouple, abstract, modularise – the 

opportunity, time, and motivation to apply these principles appears to vary. As such the 
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observed population of interfaces is where interface use meets the balance of not ‘too 

expensive’ and ‘useful enough’ – which may have to be the working definition of good for 

this section. 

This suggests that the relevant population for future study should be ‘places where an 

interface could have been used’, whether an interface is present or not. 

This section presents notable uses of interfaces which, it is proposed, represent acceptable 

compromises of cost and utility to appear in many, if not all, of the systems studied.  By 

identifying common design trade-offs, it becomes possible to formalise the design forces 

involved and to try and estimate, if not identify the limits of applicability of that trade off – 

thus helping to reduce the number of unassessed interfaces. As pointed out in Al Dallal and 

Morasca’s work on reuse – not all elements of a design are constructed with every quality 

attribute in mind – so we should assess the salient qualities of each element (Al Dallal and 

Morasca, 2014). 

4.8.4.1 Listener Interface 

A key feature of OO systems is that objects communicate via message passing. This allows 

various architectures to emerge, one of which is ‘event driven’ architecture.  In Java, this is 

often achieved via subscribing listener objects to other ‘observable’ objects. This common 

style of programming inflates the implementation count, given its popularity across systems 

– it may simplify analysis to consider the listener structure of a system as a distinct 

architectural feature.  

While not enforced, it is conventional to append the term ‘Listener’ or ‘Observer’ to the 

end of the name of a listener definition. This is commonly used to indicate that an object is 

compatible with Java’s native java.util.Observable implementation.  The corpus examined 

contains 393 (387 listener, 6 observer) such interfaces, a summary of which are shown in 

Table 26. 

Table 26 illustrates that just under half of the listeners identified have the expected single 

method required by the Java event-handling model (void actionPerformed (ActionEvent 

e)). The responsibility of a listener is well-defined and is indicative of a high-level decision 

to use an event driven approach. Variations in listener type names and the number and 

name of the listener methods indicate that there is still some choice available to the 

practitioner even when the overall structure is fixed by a higher level architectural decision. 
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Table 26 : Listener Interfaces 

System Listener 
Interfaces 

Implementers Methods 

Range Total 0 1 2 3 4 5 6 7 8 9 12 13 

argouml 17 0-15 43 2 5 4 2 2 2             

azureus 287 0-183 543 8 133 69 29 20 15 7 2 1 1 1 1 

btrace 1 1 1   1                     

easysim 9 0-12 17 3 5   1                 

freecol 3 0-1 1   1 1 1                 

freemind 6 0-8 14   5 1                   

jedit 11 0-2 11   3 2 2 2   1   1       

jmeter 13 0-25 70 1 5 4 1 1       1       

lobo 7 0-2 6   5 1           1       

weka 32 0-16 107 1 29 1     1             

jhotdraw 7 0-3 6   2 2 1 1     1         

   Total 15 194 85 37 26 18 8 3 4 1 1 1 

   % 3.8 49.4 21.6 9.4 6.6 4.6 2.0 0.8 1.0 0.3 0.3 0.3 
 

4.8.4.1.1 Anonymous Classes 

In addition to ‘full’ classes, Java allows the use of anonymous classes which are unnamed 

and often used to describe objects which will only be used once or few times. Note that 

anonymous classes are not included in the type counts for each system. Table 27 shows the 

number of anonymous classes used in each system (column 2). Columns 3 – 7 show counts 

for implementation of interfaces by anonymous inner classes. It is notable that many inner 

classes are used to implement the EventListener interface – which is a common super-

interface for ‘wiring up’ user interface elements to their handlers. The other popular 

category of interface is Runnable – which can be used to define some sub-process to be 

executed by a thread. Azureus, once again stands out. While it does not use the interfaces 

described above to a great extent, there are various specific ‘-Listener’ and’-Performer’ 

interfaces defined in the system which have the expected levels of use, indicating a 

preference for local interfaces over library types. 

Overall, Listeners (local and library defined) account for around two thirds (62%) of 

anonymous classes. This indicates that an interface can be useful, even when not 

implemented by a ‘real’ class. By defining a simple interface such as an EventListener, a 

component is advertising what is required to interact with it.  This is most like the 

Server/Client category of interfaces described by Meyer et.al “…that enables its 

implementors to profit from some service offered by the caller.”, in this case, access to an 

event subscription mechanism (Steimann and Mayer, 2005).  
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Table 27: Anonymous classes in examined systems 

System Total 
java.util. 

EventListener 
java.lang. 
Runnable 

Local 
‘-Listener’ 

Local  
‘-Performer’ 

Other 

argouml 148 53 (36%) 35 (24%)   60 (40%) 

azureus 1904 1 (<1%) 147 (8%) 1186 (62%) 143 (8%) 427 (22%) 

btrace 41 1 (2%) 13 (32%)   27 (66%) 

easysim 310 227 (73%) 83 (27%)    

freecol 272 120 (44%) 30 (11%)   122 (45%) 

freemind 138 62 (45%) 28 (20%)   48 (35%) 

jedit 132 45 (34%) 81 (61%)   6 (5%) 

jhd 182 123 (68%) 53 (29%)   6 (3%) 

jmeter 98 49 (50%) 3 (3%)   46 (47%) 

lobo 130 33 (25%) 40 (31%)   57 (44%) 

weka 597 567 (95%) 11 (2%)   19 (3%) 

However, this highlights an issue with Meyer et al.’s proposal that there is a clear 

beneficiary in this relationship with one side of the server/client relationship gaining the 

most ‘benefit’. Arguably an event-producer benefits from being able to gain subscribers. 

Indeed, an event producer that cannot be subscribed to is not very useful. So, it might be 

argued that the listener mechanism is an intrinsic part of the event producer. 

Consequently, it may be necessary to assess such interfaces in terms of the relationship 

they mediate e.g. publish-listen, observe-observable, in addition to their ‘use’ by the other 

parts of the system. 

4.8.4.2 Constant Interface 

Constant interfaces used to store constant values.  These occasionally contain static ‘utility 

methods’ and, as such, are sometimes considered poor object-oriented style. 

Across all systems examined, there are 203 interfaces with no methods, while some are 

suggestive of the heads of hierarchies or Marker interfaces (see 4.8.4.3).  Constant 

declarations were not recorded in this study, however, like listeners, some practitioners 

follow a naming convention which identifies some instances of this kind of interface. Table 

28 shows the constant interfaces which follow this naming convention. 

Given the small number of constant interfaces, the purpose of each interface was 

determined by manual inspection. It is interesting to note that there are distinct categories 

of constant interface which are obvious from the definitions of the constants: 

• Pattern matching – the interface records constants which represent flags or tags in 

some external format such as byte-codes or html tags. 

• Enumerated types – the interface defines flags related to local state, often with 

smaller subsets of distinct flags. These often require no values other than to be 
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comparable and could be replaced with the newer enumerated types introduced in 

Java 1.5. 

o Note that some enumerated types use rotated bit patterns for uniqueness 

checks. 

• Properties – stored values or strings for configuration/localisation. 

• Other cases are where the constant interface behaves as an object factory. 

Table 28 : Constant Interfaces, interfaces documented as ‘generated’ are marked with an asterisk (*). 

System Constant Interface Implementers Constants Use 

azureus org.bouncycastle.math.ec.ECConstants 4 5 Factory 

org.gudy.azureus2.ui.swt.mainwindow.IMenuConstants 2 83 Enum (Bit)/Properties 

org.gudy.azureus2.ui.swt.progress.IProgressReportConstants 6 25 Enums (Bit) 

org.gudy.azureus2.ui.swt.twistie.ITwistieConstants 2 4 Enum (Bit) 

freecol net.sf.freecol.common.networking.NetworkConstants 2 5 Enums 

net.sf.freecol.server.ai.goal.GoalConstants 1 1 Property 

jedit de.masters_of_disaster.ant.tasks.ar.ArConstants 1 11 Properties 

installer.BZip2Constants 2 11 Abstract Class 

org.gjt.sp.jedit.bsh.org.objectweb.asm.Constants 1 177 Pattern Matching 

org.gjt.sp.jedit.bsh.ParserConstants * 13 140 Pattern Matching 

org.gjt.sp.jedit.bsh.ParserTreeConstants * 1 39 Pattern Matching 

jmeter org.apache.jmeter.protocol.http.util.HTTPConstantsInterface 3 39 Pattern Matching 

lobo com.steadystate.css.parser.SACParserConstants * 2 83 Pattern Matching 

weka weka.classifiers.lazy.kstar.KStarConstants 3 16 Enums/Properties 

weka.gui.graphvisualizer.GraphConstants 5 6 Enums 

While the Pattern Matching constant interfaces tend to be larger, and enumerated types 

tend to be smaller - there is no clear distinction by the size (number of constants) of the 

constant interfaces. 

Defining enumerated types avoids errors associated with arbitrary ‘flags’. Properties can be 

handled in various ways in modern systems – Java has a native properties subsystem; 

dependency injection is also popular.  Property entities represent an effort to document 

and isolate these kinds of constants in a single place, which satisfies modularity. Similarly, 

pattern matching interfaces document external values which the program must be ‘fluent’ 

in when dealing with external artefacts – opcodes, html tags, etc. Again, the constant 

interface acts as an insulating barrier between the internal representation (constant fields) 

and a suitable external representation. 

In terms of guidance, however constant interfaces present some issues. The figures in Table 

28 indicate that constant interfaces are usually implemented to access the constant values 

contained therein. This allows constants to be used as if they are local, which creates a 

static dependency on the structure (rather than the behaviour) of an interface at compile 
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time.  Furthermore, should the constant interface change, there is no other record of the 

constants used or required by the system. This is contrary to the usual design preference 

where protocol/policy (interface) and mechanism (implementation) are distinct. 

This runs counter to most of the design guidance and intent surrounding interfaces – which 

are supposed to indicate flexibility. This is perhaps acceptable because of the very low 

chance of change in the purpose and function of the dependency – as it is a direct mapping 

to part of the problem domain. 

4.8.4.3 Marker Interface 

Marker interfaces are discussed in the literature (Abdeen and Shata, 2014; Fontana et al., 

2016; Steimann and Mayer, 2005) – primarily when excluding them from studies – these sit 

in a niche in the practitioner’s toolbox. In the first case, there are some places where 

marker interfaces effectively must be used due to design choices in the Java language – 

Serializable and Cloneable being the main examples in the design literature. It is unclear 

how these examples in the core Java language influence the perception of marker 

interfaces in practice. 

More generally, Marker interfaces are characterised by their lack of behaviour. However, 

this is also a property of the constant interfaces identified above. Excluding the known 

constant interfaces identified above, leaves 188 zero-method interfaces which do not 

announce themselves as constant interfaces. Note that some of the listener interfaces 

described above in Table 25 may be more correctly categorised as markers, as they are 

used to group other more functional listeners into an abstract hierarchy. 

An examination of the marker interfaces reveals no obvious categories or naming 

conventions (note that these are all interfaces from application source code and not the 

usual suspects from the java library – Serializable and Cloneable).  It appears that this easily 

recognisable feature (no methods), is not sufficient to identify a specific motivation for use. 

A more detailed analysis of the use of these interfaces, and perhaps their role in the 

surrounding design and evolution is required to gain more insight into their purpose. 

4.8.4.4 Token Decoupling 

Much is made of decoupling in both the design guidance (comprising advocacy and design 

manuals) and empirical literature (studies on coupling metrics). However, there is evidence 
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that the ‘extract interface’ refactor is sometimes performed mechanically, with little or no 

improvement on the situation at hand.  

Here, token decoupling is defined as having occurred when an interface is present, but does 

little to improve the design. This is most notable when a large and non-cohesive class is the 

single implementer of a similarly diverse and unfocused interface.  While this does 

technically eliminate a concrete dependency from the clients of the implementer, there is 

no distinct useful abstraction and the structure of the interface and its implementer are 

synonymous. 

No formal definition of token decoupling (for the purposes of detection) is offered as the 

examples below have been noted during review of designs of the systems under study in 

this work. As the ‘token decoupling’ interfaces noted during inspection were large, the top 

1% of interfaces (by method count) have been examined. Note that in most cases the larger 

interfaces are reasonable abstractions over the problem domain. So, size alone is not 

enough to determine the ‘goodness’ of an interface. 

Table 29 shows the top 1% of interfaces (by method count), with the ‘token decoupling’ 

interfaces highlighted in red. Abdeen et al. noted that there is a large incidence of unused 

methods in interfaces – this might be expected if interfaces are being extracted ‘by rote’ 

(Abdeen et al., 2013b). The function of each interface was determined by manual 

inspection and is noted in the Comment column. 

The token interfaces do not document an abstraction such as the need of the client (or 

group of clients), a service offered by the implementer, a transient role, or an ability. 

Consequently, they may harm navigation and comprehension of the design. Although, 

adding an interface, even to a badly designed class still provides runtime flexibility. 

Accordingly, the motivation to create a token interface must be considered an architecture-

level design decision, creating a modular boundary that serves to insulate the design at 

large from a ‘toxic’ or ‘unwieldy’ component, regardless of the suitability of the abstraction 

(SRP) or the needs of the interface’s clients (ISP). 

The existence of large entities in designs is not unprecedented – the recent work on the 

‘scale free’ structure of software (Potanin et al., 2005; Taube-schock et al., 2011) indicates 

that entities with high fan in and high fan out may be inevitable. However – there are, as 

noted above, cases where single abstractions appear to be doing too much. 
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Table 29 : Sample ‘token decoupling’ interfaces 

System Interface Methods Comment 

argouml org.argouml.kernel.Project 70 Extracted mechanically with 
the intent to refactor, which 
has not been done. 

org.argouml.language.cpp.reveng.Modeler 109 Object builder 

org.argouml.model.CoreFactory 77 Factory 

org.argouml.model.CoreHelper 151 Stateless operations on UML 
elements 

org.argouml.model.Facade 393 Cohesive, but Object 
references force clients to do 
lots of casting. 

org.argouml.model.MetaTypes 143 

azureus org.gudy.azureus2.core3.download. 
DownloadManager 

161 Diverse functions, client 
groups, and levels of 
abstraction 

com.aelitis.azureus.ui.common.table.TableView 67 View element access 

org.gudy.azureus2.core3.download.DownloadMan
agerState 

72 Properties getter/setter, uses 
primitive flags 

org.gudy.azureus2.core3.peer.PEPeer 86 Domain element 

org.gudy.azureus2.core3.peer.PEPeerManager 97 Tools for domain element 

org.gudy.azureus2.plugins.download.Download 96 Domain element 

org.gudy.azureus2.plugins.PluginConfig 107 Plug-in architecture hook 

org.gudy.azureus2.ui.swt.views.table.TableOrTree
SWT 

178 Generic view element access 

freemind freemind.modes.MindMapNode 92 Diverse functions 

freemind.modes.mindmapmode.actions. 
MindMapActions 

64 Tools for domain element 

freemind.modes.ModeController 75 Mostly a controller view of 
the model. Some 
unnecessary behaviour. 

lobo org.w3c.dom.css.CSS2Properties 244 Documents domain element 

Finally it is interesting to note that most of the large interfaces examined in the top 1% are 

focused and have high conceptual cohesion. This raises the possibility that large interfaces, 

in contrast to large classes, may be better maintained as they grow. Possibly due to the low 

cost of change in interfaces compared to concrete classes.  

4.8.4.5 Other Naming Conventions 

In this section, a brief breakdown of the population is provided showing the need for 

individual assessment at the interface level. 

Excluding the identified interfaces noted in the above sections (marker, listener, constant, 

token) from the population this leaves 1325 (69.6%) interfaces.  Of these, there are other 

notable groups: 

• 43 interfaces across 8 systems have names ending in ‘-able’, 40 of which have only 

one or two methods. These correspond to Liskov’s ‘grouping’ and Meyers ‘enabling’ 

archetypes. 
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• There is evidence of design pattern use with 33 interfaces with names ending in ‘-

Factory’, 24 ending in ‘-Adapter’, 10 in ‘-Component’, and 4 in ‘-State’. 

• Finally, there is evidence of graph or tree structures, with 13 interfaces ending in ‘-

Node’ 

While not completely reliable, naming conventions are clearly important and may give 

some indication of the purpose an interface and thus which criteria might be used for its 

assessment. 

Marker and constant interfaces may not be considered to ‘program to an interface’ in the 

conventional sense as the clients of the interfaces are not able to ‘ignore the 

implementation details’ (Gamma et al., 1994). In the case of the markers - these require 

that the client pay attention to the implementing type(s) as no information is available 

programmatically via the marker. While clients of constants depend on non-abstract 

properties of an interface. In both cases – no implementation details are hidden from the 

clients. 

Listener interfaces are the low-level manifestation of a high level (architectural) decision. 

Decoupling between event source and event sink must occur, so interface use is in a sense 

‘mandatory’. With this in mind, listener interfaces may be better assessed with an 

appreciation of the constraints which cannot be changed. This still leaves some choice in 

implementation details in terms of which listener methods are grouped together in 

interfaces and naming choices. 

Interface Archetype Summary: [KF 4.13] Marker, constant, and listener interfaces are not 

programming to an interface in the conventional sense, so must be assessed by other 

criteria. [KF 4.14] Naming conventions appear to be an important way of recording design 

intent in interface use. 

4.8.4.6 Presence of Previous Models 

As discussed above (2.4.1), there have been previous efforts in the direction of identifying 

different use categories of interfaces. The most notable is the set of uses defined by 

Steimann and Mayer derived from “the semantics of relationships between types” 

(Steimann and Mayer, 2005): 

Idiosyncratic – an interface has a single implementation and the public interface of 

the implementing class matches the interface. No specific client. 
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Family – heads multiple implementations of a family of classes, often with 

alternative implementations or differing run-time behaviour, such as data 

structures. No specific client. 

Client/Server – the implementer is the server, which offers the services needed by 

different clients.  Different interfaces may be offered to different clients. 

Server/Client – implementing the interface allows access to services offered by 

some server(s), generally for the benefit of the client. 

Server/Item – enables processing of item interface objects for the benefit of some 

third party e.g. Comparable, Printable. These are typically the ‘-able’ or ‘-ible’ 

classes in Java. 

It is interesting to note that most of these categories do not constrain the form of the 

interface, this may go some way to explain why the proposers were unable to derive a 

robust means of classifying interfaces into these categories. In order: 

Idiosyncratic interfaces can be detected to some extent (733, 40% of interfaces have a 

single implementations), however, congruence with the public methods of the implementer 

was not recorded in this study. Furthermore – the ‘specificity’ of a client of the interface is a 

subjective as all abstractions have inherent assumptions. 

• Proposal to improve definition: Idiosyncratic interfaces contain all of the public 

methods of their implementer, and all interactions with the implementer are via 

the interface. 

Family – Some interfaces are implemented indirectly via inheritance (KF 2.6 23% of 

interfaces are implemented indirectly at least once via inheritance), however, the Family 

category requires that implementations are ‘variations’ without providing some notion of 

how far is too far. Implementation similarity has not been assessed in this study. 

• Proposal to improve definition: In addition to having variations in implementation, 

the implementers of the family interface must be used interchangeably by some 

clients(s) of the system containing them. 

Client/Server – The definition is clear, but rather general. It is possible to detect types which 

implement multiple interfaces – it is not clear if this is sufficient to qualify as a ‘server’ given 

how specific some interfaces can be. Some additional criteria may be required, such as the 

existence and attributes of clients. 
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• Proposal to improve definition: The server class should be able to perform its 

functions without having any clients via these (external) client-service interfaces. 

This is in contrast to dependency inversion via (internal) interfaces to sub-

components of the server. 

Server/Client – The notion of ‘benefit’ is not always clear at a modelling level, as is the idea 

that a type may ‘publish’ an interface which allows others to interact with it. However, 

these are semantic distinctions. In practice – it can be difficult to determine the ‘direction 

of benefit’ in the relationship between types. For example - some types of abstraction 

create dependencies in unexpected directions – such as double dispatch, or dependency 

inversion. 

Server/Item – This category specifically references certain classes in Java. There is evidence 

that naming conventions are useful enough to be used in practice for some kinds of 

interfaces (KF 4.14). However, it not clear if all such interfaces can be included in this 

category as the name of a type places on constrain on its definition, or the details of its 

implementation(s). 

It is interesting to note the amount of semantic information required to assess these 

interface categories. For example – the notion of an internal component/composition 

relationship is obvious to a designer, but not annotated on an interface. This may be 

mitigated to some degree by the addition of criteria related to interactions with these 

interfaces. 

While some insight may be gained from these archetypes, the semantic details required to 

make these classifications is not recorded in the structure of source code. Unless this 

semantic information is preserved, these categories may be best considered at the level of 

other design tools such as CRC cards. As such, a more operational definition of ‘direction of 

benefit’ which can be inferred from available source code may allow progress in the 

absence of semantic information. 

4.9 Answering the Research Questions 

This section relates the material in the discussion back to the research questions. 

4.9.1 RQ4.1: How is interface definition used in systems? 

Interface definition in the systems examined matches previous work when compared at a 

high level [KF 4.2] – using average percentage of types defined as previous work reports. 
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However, averaging across systems hides wide variation among systems [KF 4.1].  In 

addition, care must be taken to separate the ideas of interface definition, interface 

implementation, and interface-typed dependencies which all vary in different ways within 

each system [KF 4.12]. 

The proportion of local types that are interfaces appears to have no obvious relationship to 

other features such as system size [KF 4.12]. Low numbers of interfaces observed in some 

systems indicate that there is high tolerance for concrete dependencies - this may indicate 

variations in the local ‘style’ for each system [KF 4.2, 4.3]. However, there is also evidence 

that the amount of ‘abstraction’ (abstract dependencies) gained from interfaces varies [KF 

4.12], indicating that there cannot be an ‘optimal’ proportion of interfaces and that 

assessing the remaining concrete dependencies may be a better indication of the system-

level effectiveness of abstractions [KF 4.4]. 

Special cases of interface use which are commonly excluded from studies (marker, 

constant, listener) are common to all systems, or are common programming idioms. In this 

case naming conventions and similar structure, allow this subset of interfaces to be isolated 

from a more general assessment [KF 4.13, 4.14]. 

For example, many of the systems appear to use event-driven architectures, indicated by 

the presence of many ‘listener’ derivatives which should perhaps be excluded or at least 

separately assessed [KF 4.5]. It would be reasonable to argue that once an event-driven 

architecture has been chosen, the choice to use individual listener interfaces is not 

‘optional’. At the very least, these specific interfaces can be subject to more specific 

assessment criteria, specifically, how well they preserve or promote the high-level goals of 

an event driven architecture. 

4.9.2 RQ4.2: What is the profile of interface size across the systems? 

The relevant design guidance advises which interactions should be interface mediated (as 

many as possible), or the subjective properties of interfaces such as being a ‘complete’ 

abstraction (Consistent, Essential, General, Minimal, Opaque (Hoffman, 1990)). This advice 

has no direct bearing on size, and illustrates that many design considerations operate at a 

higher level than implementation details such as how many methods are in an interface, 

offering little guidance on this matter. 



143 
 

The interface population is composed mostly of small interfaces - 50% having two or less 

methods, and 80% having 8 or fewer methods [KF 4.4]. Size allows identification of one kind 

of outlier for separate assessment [KF 4.8]. Marker and constant interfaces satisfy very 

specific design needs [KF 4.13]. Setting aside the general question of ‘proper use’, meeting 

a specific need maps to specific assessment – allowing segments of the population to be 

treated separately. This has the advantage of making the remaining population more 

uniform [KF 4.8]. 

Similarly, looking at the larger outliers – the top 1% of interfaces are size 97-393 methods.  

On further examination, these very large interfaces meet very specific design needs: 

External documentation – some set of features or entity from the problem domain 

– this ‘guarantees’ conceptual cohesion, but may not otherwise be of high 

measurable quality. 

Token decoupling – decouples the rest of the system from a class, which usually has 

a large and diverse set of methods. While this does avoid a concrete dependency, 

the interface has the same low conceptual cohesion as the (usually) sole 

implementer.  

These illustrate that in practice, unusual properties may be justified by some design needs, 

such as very large numbers of methods in interfaces [KF 4.7]. However, these justifications 

are not always obvious, so size alone is not sufficient to classify even the extreme outliers 

as good or bad. The examples discussed above are obvious due to their size, however there 

may be other motivations for interface use at more ‘usual’ interface sizes which are less 

visible. 

4.9.3 RQ4.3: To what extent are interfaces implemented across the systems? 

In non-interface types, direct implementation of interfaces is found in 12-48% (median 

35%) cases, while 14-65% (median 43%) indirectly implement interfaces [KF 4.6]. These 

levels of use indicate that interface use for type definition is relevant to practitioners but is 

highly variable. The high variability between systems, again, indicates that there is a 

different amount of tolerance for concrete dependencies between systems [KF 4.10, 4.12]. 

It appears that the implementation of interfaces is amplified by the presence of inheritance 

– casting some doubt on the ‘either/or’ relationship presented between composition and 

inheritance portrayed in the guidance (particularly the patterns literature) [KF 4.6]. 
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To completely comply with ‘program to an interface’, there would have to be a way to 

interact with all the concrete types in a design via an interface.  This is not the case as 19-

76% (median 28%) of the classes and abstract classes in the systems examined cannot be 

accessed via an interface [KF 4.2, 4.3]. This does agree, at a high level, with Tempero et al’s 

finding that around 75% of non-interface types are defined using some form of inheritance 

[KF 4.3]. However, the variation indicates major differences between designs. 

Across all systems examined, the trend is that smaller interfaces (size 1-8) are implemented 

more often [KF 4.9]– this becomes more evident in the larger systems which may relate to 

the claim by Tempero et al that “…we can expect that as programs get larger, the 

numbers of implementations of popular interfaces and the number of descendants of 

popular classes will grow without limit.” (Tempero et al., 2008). This does not address the 

interaction between inheritance and interfaces – where the presence of inheritance and 

interfaces together appears to give a ‘boost’ to interface use via indirect implementation 

[KF 4.6].  While this could be achieved via interface inheritance and defining more 

interfaces, this approach (as seen in azureus) requires much more interface implementation 

than is usual. This may not sit well with practitioners who express concern over the 

maintenance cost of what is viewed as unnecessary interface definition “cluttering the 

codebase” (See 3.4.5.1 Survey: Program to an Interface). 

Ease of implementation may contribute to this difference as larger interfaces carry more 

behaviour and thus require more effort to implement. On the other hand, smaller 

interfaces may be used to represent interactions between types (roles), rather than types 

themselves. This would go some way to explain the larger number of implementers for 

some small interfaces [KF 4.9]. 

Of the interfaces observed, few with over 50 methods have more than a couple of 

implementations, while smaller interfaces have tens (size 18 and below) or even hundreds 

(size 1) of implementations [KF 4.4.9]. On examining the implementers of interfaces, some 

types implement very high numbers of interfaces - these interfaces tend to be small 

indicating that the implementing classes play many roles [KF 4.10, 4.12].  This supports 

Potanin et al’s finding that there are “hub objects” in OO systems  which take part in many 

more interactions than other parts of the system (Potanin et al., 2005). However, Potanin 

et al. identified high fan-in hubs among runtime objects rather than the static dependencies 

identified here.  It is not clear if these can be compared in a useful way.  
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Potanin et al. used memory models of Java programs which do not exactly reflect the usual 

programmer-facing static view of coupling (Potanin et al., 2005). Indeed, high fan in to 

abstract types (see 8.2.4.2) may be considered desirable. This illustrates that using static 

metrics to assess dynamic structures yields results which require careful interpretation to 

preserve the intent behind the metric or guideline. 

4.9.4 RQ4.4: How are interfaces used in the systems? 

‘Use of an interface’ in relation to guidance is where an interface-type reference is used by 

a client where a concrete type may be used.  This study considered the use of interfaces in 

declarations of: class attributes, constructor parameters, method parameters, constructor 

fields, method fields, and method returns. 

There was considerable variation in the systems examined – there were a few clear ‘low 

use’ systems where interface use is around 3-5% in all categories [KF 4.10]. In systems 

which reach up to 30% there is much variation, with constructor parameter, method 

parameter, and method return showing more interface use than the other categories. 

Previous studies on interfaces have attempted to isolate instances where the practitioner 

has a ‘choice’ unburdened by library use or language-library conventions. When only locally 

(practitioner) defined types are considered, the use of interfaces across all systems 

increases, but not uniformly [KF 4.11].  Notably, the systems which previously showed low 

interface use overall still fail to make much use of interfaces (~10%) when there is ‘choice’ – 

indicating that even when there is an unhindered opportunity to use an interface, this 

opportunity is not always taken. However, this finding, does lend some weight to the aim of 

studying interfaces where there is practitioner choice, which has been used to frame other 

work in the area (Abdeen and Shata, 2012).  

The systems which show very high interface type dependencies (~60%) in some categories 

still fail to meet Holub’s goal of programming in terms of interfaces 80% of the time (Holub, 

2003).  It may be the case that this is an aspirational goal in the 80/20 sense, rather than 

the basis for a metric. 

The high use of interfaces again appears primarily in method parameter, constructor 

parameter, and method return – what may be considered the more public parts of a class 

[KF 4.10]. However, this is not consistent between systems – even in the high interface-use 

systems, there is variation in the relative ranking of these three uses. 
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While other factors may be in play, it appears that practitioner ‘style’ and approach to 

design can account for an order of magnitude difference in interface use between systems. 

This raises questions about what feedback different practitioners would want to receive 

about interface use in their designs. For example – how distinct client subsets must be 

before application of interface segregation principle, or what criteria are used to justify the 

choice between interface and abstract class. These are perhaps best characterised as 

‘consistency’ – where the practitioner should be notified if they are adhering to their own 

standards. 

Further evidence of the influence of ‘style’ or domain variation can be seen when 

comparing azureus and jhotdraw.  These systems achieve the highest levels of use of 

interfaces (~60%), with wildly different proportions of interfaces.  This illustrates that the 

same level of ‘interface use’ may require different numbers of interfaces. There is no 

indication that these dimensions vary due to the same factors – the desired degree of 

abstraction/flexibility at the design level, and the number of interfaces at the 

implementation level.  

It is also clear that naming conventions allow some common uses of interfaces to be 

identified (and thus assessed) more accurately [KF 4.14]. 

4.10 Discussion/Interpretation  

This section discusses the results in the broader context of the research goal – closing the 

gap between guidance and practice. 

4.10.1 Interface Definition  

The presence of interfaces is like that reported in previous large studies.  This is usually 

expressed as % of types defined in the local source as this allows comparison between 

systems. Previous work has indicated levels of around 10% interface definition on average 

across systems which broadly matches the findings here. There is, however, no good 

explanation why this should be the typical value, and there is obvious variation amongst 

the systems examined. 

This cross-system comparison raises the issue of what should be considered a proper 

interface – while many studies exclude marker or constant-bearing interfaces – it is notable 

that these are present in most systems. Overall these do not have a great impact on system 
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level metrics, so while it may be appropriate to exclude them from some analyses, they 

should not be considered uncommon. 

In terms of guidance – based solely on proportion of interfaces, the key message of 

‘program to an interface’ appears to be applied less than may be expected - there are 

simply insufficient interfaces present to be able to refer to all non-interface types via an 

interface. This may indicate that compliance with ‘program to an interface’ is subtler than 

adding interfaces at every dependency and, in practice, does not simply mean that all non-

interface types should be referenced via an interface. 

With this in mind, Gamma et al. does acknowledge that the ‘native interface’ of a type is 

still an interface – so the issue may be how to distinguish when a dependency on a concrete 

is acceptable, and when the dependency must be replaced with an abstraction (Gamma et 

al., 1994).  

With some interfaces being considered improper use, and some native interfaces being 

considered on par with abstract interfaces – the notion of what counts as a real interface 

for the purposes of applying guidance becomes more complex depending on which of these 

definitions the practitioner accepts. This may form the basis of local ‘style’, and practitioner 

tolerance for concrete dependencies. 

There is some evidence of difference in style between systems – with some systems being 

very interface light, others where interfaces have been incorporated extensively. It appears 

that the developers of these systems use different criteria for determining how many 

interfaces should be in their respective systems and therefore different approaches to 

Program to an Interface. 

4.10.2 Interface Size 

There is little guidance relating to interface size – much of the design guidance in general is 

related to modelling considerations (cohesion) and relationships (dependencies), where 

size is the scope of one ‘reason to change’, ‘single responsibility’, or ‘abstraction’. In 

contrast, the primary means of measuring size in the empirical literature is by counting 

abstract method definitions. 

This immediately raises some questions about common, but nonetheless edge cases. 

Interfaces with no method signature definitions are present in most systems examined, 

suggesting that these are more common than the literature expects.  Most studies set 
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these aside as they may not be considered real interfaces for the study e.g. confounding 

metrics.  Without method signatures, these interfaces are found to serve two main 

purposes – marker interfaces and constant interfaces. 

Marker interfaces are empty of everything but a name and are used to tag an implementer.  

They appear in all the systems examined, ranging from 2-75 per system, overall accounting 

for 11% of the interfaces studied – marker interfaces are not rare or unusual. While marker 

interfaces are used by the Java language (e.g. Serializable) the JVM has support for 

detecting these flags. 

Marker interfaces used by practitioners lack this support and may require type-checking to 

detect the presence of a marker interface. Guidance has little direct impact on marker 

interfaces – there is no behaviour to program to and no conventional notion of 

responsibility.  Marker interface may however impact coupling (low coupling) and bypassing 

abstractions (if cast). 

Constant interfaces are used to store constant values in a system and may be implemented 

to share these constants via type inheritance. In modern practice Java, this may be 

considered an anti-pattern as interfaces are an abstraction mechanism while the 

representation of constants is, by definition, an implementation detail.  Assessing the 

quality of these interfaces is limited to assessing cohesion i.e. how many constants each 

implementer makes use of. 

Moving to from the small to the very large, the most notable categories of very large, the 

top 1% of interfaces range from 57 to 393 methods. Anything near 100 methods seems to 

be excessive and unlikely to meet design guidelines such as Martin’s Single Responsibility 

Principle (Martin, 2005b). The notable uses for large interfaces are external documentation 

and token decoupling (as noted in 4.8.4.4). 

External documentation interfaces reflect some external standard such as a document 

format – creation of these interfaces is mechanical in a sense, as the details of the concept 

being represented are defined in the problem domain. Indeed, some of these interfaces 

have been generated automatically. In these cases, the conceptual cohesion of the 

interface is in some sense guaranteed by the tie to an external standard or specification.  

However, this is no guarantee that the interface will appear consistent to metrics or code 

review, without understanding of this context. 
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Token decoupling occurs when an interface is used to decouple the rest of the systems 

from a class with many responsibilities – where the interface is as cluttered and un-

cohesive as its source class. There is commonly only one implementation of these large 

interfaces, which are characterised by their diverse sets of responsibilities. In a few cases 

developer documentation notes that the interface has been extracted from a concrete 

class, with the intent to refactor the interface at some point. While there may be other 

smaller instances of these uses for interfaces, they are conspicuous within the largest 

interfaces overall. 

A further notable category of use in Java applications are small enabling or grouping 

interfaces – these are implemented to indicate suitability for a specific ‘narrow’ interaction 

– common examples in Java applications are ActionListener and Observer which are library 

interfaces.   

Examined systems show that 192 of 459 size one interfaces have ‘listener’ in their name – 

which might indicate that these interfaces can in some way get a free pass as they exist to 

support a specific (event driven) architectural style. However, there are 180 other 

interfaces with ‘listener’ in the name containing 2-13 methods. It is not clear how much 

complexity should be accommodated by such high-level design decisions before those 

decisions must be re-examined. 

This highlights that while there may be good justification for interfaces being the way they 

are - such as some reason external to the design, being an intermediate refactoring step, or 

a common programming idiom.  There is no easy way to segregate these during analysis 

without some extra knowledge of the system, or perhaps its evolution.  

Interface size varies widely, with a ‘fat-tailed’ distribution.  This indicates that there may be 

a scale-free aspect to the distribution of interface size (Potanin et al., 2005). If this is the 

case, then a small number of very large interfaces may be a natural part of the landscape.  

So there is general guidance to ‘keep things small’ (SRP, (Martin, 2005b)) and essential 

(Hoffman, 1990) on one hand – but evidence that large interfaces are in some sense 

inevitable.  This raises the question of how to distinguish between interfaces where the size 

is suitable for purpose, and one where the interface is too large and should be reduced or 

separated. This highlights the need to tie implementation decisions to domain knowledge. 
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Existing metrics for interfaces factor in tangible code properties such as dependencies by 

subsets of clients, and the diversity of types in method signatures (Boxall and Araban, 

2004).  Metrics cannot account for instances where there is an external design force in 

action, which may supersede (make irrelevant) a given property of an interface.  This 

should be considered when extracting baseline metrics from large corpora, and interpreting 

the metrics at the systems or interface level. 

4.10.3 Interface Implementation 

Guidance advocates preferring references to abstract types, examination of source code 

indicates that most of the systems examined do not implement interfaces enough to enable 

access to all concrete types via an abstract option. So, there is a mismatch between the 

implementation rate of guidance and the reality of designs as they are encountered. 

The level to which non-interface types implement interfaces varies in two main ways.  

Many types, as noted above, do not implement interfaces. This is a distinct issue – which is 

set aside by ‘program to an interface’ studies (Abdeen et al., 2013a), which focus on the use 

of existing interfaces.  Why are there so many concrete types that have no interfaces? 

On the other hand – there are a few types in most systems which implement many 

interfaces.  The highest value in the systems examined is 35 interfaces indicating not only 

that the implementer has many ‘roles’, but that it also likely has many collaborating objects 

which access the implementer via these interfaces. Tempero reports a “rather extreme” 

value of 56 interfaces (for gnu.trove.SerializarionProceedure) – this particular example 

stores methods for serialising many types – much like a visitor – with many implemented 

interfaces specifying the same overloaded method (Tempero et al., 2008). While outliers, 

these illustrate that an implementer may increase in size without necessarily becoming 

more complex, or changing its ‘responsibility’. 

Overall, small interfaces are implemented more – this may be due to the lower cost of 

implementing a smaller number of methods.  In addition, small interfaces may capture a 

common interaction or cross-cutting concern at the system level – in which case more 

implementation would be of practical benefit. In systems with few interfaces, small 

interfaces persist even where no larger interfaces are defined. This may indicate that small 

‘non-architectural’ interfaces can be useful, even in systems with little abstraction. This is 

another indication that there are sub-groups of interfaces which may require separate 

assessment. 
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The types which implement the most interfaces, implement many small interfaces that 

appear to be incidental to that implementer’s main function. These smaller interfaces offer 

a restricted view of the implementer, while allowing the implementer to ‘hook into’ existing 

facets of a design. For example, in argouml there are small interfaces such as Highlightable 

and Owned which support implementation by offering a vocabulary of established concepts 

within the system. Use of interfaces in this way may indicate conceptual reuse where new 

types can be easily integrated into existing subsystems by describing themselves with 

existing interfaces. This may contribute to the observation by Tempero et al. that 

“…programs become more inward looking as they age, depending on their own 

abstractions…” (Tempero et al., 2008). These ‘enabling’ (Steimann and Mayer, 2005) 

interfaces are observed in many of the examined systems.  

The interaction between inheritance and interfaces is complex, as it is not clear if the 

indirect implementation of interfaces via inheritance is deliberate or incidental for each 

case.  However, the high amount of inherited behaviour indicates that polymorphism that 

might be achieved via interfaces is being accomplished via inheritance.  In line with Gamma 

et al.’s recognition of the ‘native interface’ of concrete types (Gamma et al., 1994), it may 

be that case that super-classes (in particular abstract super-classes) provide enough 

abstractness without going all the way to implement an interface. If so – is there a 

recognisable design need that the abstract type is fulfilling, that would normally be handled 

by an interface? 

If local (not library or third party) interfaces are considered in isolation – local interfaces 

appear to be implemented more often.  This may indicate that there are other factors in 

play when non-local interfaces are considered or used, so guidelines for use of interfaces 

(or their absence) may also need to consider the origin of the interacting types before 

making a recommendation. 

Considering the amount of type-type dependency captured by interfaces – the systems 

which appear to have been subject to intense design effort capture around 60% of non-

primitive dependencies with interfaces.  JHotDraw appears to capture a high degree of 

dependencies with relatively few interfaces, while azureus which has an unusual structure 

uses many more interfaces (possibly in part due to the low use of inheritance).  This may 

indicate that there are diminishing returns on achieving higher proportions of interface use 
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than this. In addition to considering the interfaces that are present – it may be informative 

to consider where interfaces are not used. 

It is not clear to what extent the ability to capture many type-type interactions with a 

relatively low number of interfaces is a property of a design or the problem domain.  

It is also worth considering the role of inheritance in enhancing apparent uptake of an 

interface – the pattern guidance presents the view that class inheritance and composition 

with interfaces are in competition. Rather than these being in opposition, the presence of 

inheritance enhances the number of interface implementations. Reducing concrete 

dependencies upon hierarchy members may mitigate some of the complications associated 

with introducing inheritance to a design. 

In summary, interface implementation is closely related to dependency management, 

which is considered at (and thus has input from) all levels of design. There are indications 

that some motivations for interface use are ‘non-local’. This may explain why abstractions 

are sometimes bypassed by those unfamiliar with such non-obvious or situational design 

motivations. As noted by a survey respondent “I tear my hair out on a regular basis when 

I see components poisoned with dependencies between logical boundaries (this is 

something you always see with graduate programmers but never with older hands)” (See 

3.4.5.4 Survey: Coupling). 

4.10.4 Interface Use in Declarations 

There is uneven use of interfaces in place of other concrete types. Systems showing high 

use of interface-typed references favour interfaces in what may be considered more public, 

protocol areas – constructor/method parameters and method return types.  This highlights 

the difference between simply adding more interfaces (azureus) and systems with high-

impact interfaces (jhotdraw, freemind, lobo) which capture many interactions. 

Use of interfaces in constructor parameters especially may indicate that interfaces are used 

as injected dependencies – where the constructed object does not have access to the 

precise implementation being supplied. Similarly, it is not enough that methods are called 

on abstract types – to have properly decoupled relationships, concrete dependencies 

should also be avoided among the parameters and return types.  This appears to be the 

case and echoes Martin’s stable dependencies principle which indicates that ‘good’ 
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abstractions should depend on more stable abstractions or (preferably) have no 

dependencies at all (Martin, 2000). 

Practitioners have the most freedom to use interfaces when they are using types that are 

defined in the local source code – and thus under their control.  Practitioners appear to use 

interfaces more freely under these circumstances in most of the systems examined.  This 

may indicate that that externally supplied types are perceived as already abstract-enough – 

or that adding an interface to third party or library types would not merit the effort 

involved. If this is that case, feedback from tools should be adapted to avoid prompting 

changes that need not or cannot be made due to higher level choices. 

In summary – rather than assessing individual interfaces, it may be more useful to take a 

‘whole protocol’ view between interacting objects – taking account of the entire 

interaction.  This would include factors such as acquisition of references, and consider the 

‘least abstract’ interaction between the types. 

4.10.5 JHotDraw 

This section discusses the notable properties of the ‘design exemplar’ JHotDraw16 (JHD).  

This application was developed with high design quality in mind, including contributions 

from prominent members of the design pattern community. It has been used as an 

example of good design in several studies (Kegel and Steimann, 2008; Ó Cinnéide et al., 

2016; Steimann, 2007), and was successfully used by Ferreira et al. to validate metric 

thresholds (Ferreira et al., 2012). 

In this study, JHD is unremarkable in some areas, while it stands out in others. While not a 

large system, JHD (727 types) is comparable in size to other popular and well-used 

applications such as freemind (751 types). The system has an average rate of interface 

definition (8.8:1 class : interface ratio), which is almost exactly the median rate (8.7:1) 

found by Tempero et al. in their survey of a large corpus (Tempero et al., 2008). Considering 

system-level interface implementation, JHD again, is unremarkable in implementations per 

interface, and implementations per non-interface type. 

JHD begins to stand out when ‘abstract dependencies’ are considered - 68% of its types 

implement two or more interfaces, it has few classes which implement no interfaces (11%), 

compared to the other systems. This indicates that there is the potential to refer to most of 

                                                           
16 http://www.randelshofer.ch/oop/jhotdraw/ 
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the concrete types in JHD via an interface. Furthermore, there is a high use of interfaces in 

‘public’ protocols such as (method and constructor) parameters and return types indicating 

that – in addition to presence and use, ‘placement’ of interfaces may also be important. 

Other work has noted that JHD “is programmed against interfaces” (Steimann, 2007) and 

has a “rich inheritance hierarchy” (Ó Cinnéide et al., 2016). This draws attention to the 

fact that JHD also exhibits the highest level of indirect interface implementation (65% of 

types), which is a sizable contribution to the overall rate of interface implementation. If 

there is substantial use of inheritance in a design, and the inheritance is used to implement 

interfaces, then it is likely that those interfaces will have more impact on dependencies due 

to indirect implementation. 

This may indicate that interfaces are useful for identifying abstractions, while inheritance is 

more suited to the variations in implementation of that abstraction.  This raises a doubt 

about the ‘prefer interfaces over inheritance’ view of design presented in some of the 

design literature. While there are perhaps cases where either interfaces or inheritance are a 

better choice, it appears that some combination of the two form the basis of many 

solutions. 

4.10.6 Comparison of Findings with Interface-Related Guidance 

The analysis found that overall implementation of interfaces was also lower than might be 

expected, especially if program to an interface was being pursued zealously.  While some 

systems did achieve a high level of interfaced typed references, these appear to be the 

exception rather than the rule, with one being a recognised example of good design 

(jhotdraw), and the other having a very high number of specific interfaces (azureus). 

Modularity appeared in several ways – most noticeably in larger interfaces which were 

often boundaries with external libraries (constant interfaces) or interfaces extracted to 

contain known areas of concern in a design. 

Interface Segregation Principle compliance, is more difficult to detect – it is not clear what 

constitutes a ‘good’ compromise between client subsets for a given type. However, there 

are concrete types which implement high numbers of interfaces in the corpus – indicating 

segregated client groups. Though it is notable that many of these interfaces are very small 

and range from listener interfaces to locally defined enabler interfaces which may 

represent a system’s internal vocabulary.  
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This is a further area where more context would inform – or at least preclude some forms 

of assessment. If an interface is imposed or supplied for implementation by the rest of the 

design, it is not reasonable to consider segregating that interface. This maps to the idea of a 

server/client interface proposed by Steimann and Meyer where there is some notion of an 

“external service”(Steimann and Mayer, 2005). Because this ‘service’ is defined outside the 

implementer of the client interface, the implementer has no ‘ownership’ of the protocol 

and must comply with the interface as it is. As such, it is doubtful if the ISP should be 

considered at this ‘end’ of the protocol relationship, simplifying assessment of whether the 

interface should be implemented. 

As discussed above (4.10.2), the software design guidance offers little indication of what 

the properties of a system in the large should be if the guidance is followed. This is because 

in many cases, the guidance creates a ‘pull’ or demand for interfaces at individual points of 

need (often at the statement level), rather than prescribing a plan for the whole system. 

Program to an interface encourages use of interfaces at the statement level, indeed the 

original patterns manual proposed several ways of hiding even object creation to allow 

most of a design to purely ‘speak in interfaces’. Similarly, ISP encourages interface design to 

be guided based on the demands of one or more clients. Finally, modularity emphasises the 

benefits of the placement of interfaces at system boundaries, regardless of the size or 

characteristics of that boundary. 

With these motivations in play, much of the information about a potential interface is not 

contained in the implementer, but the surrounding design. In addition, these demands may 

change as a system develops – roles may expand, groups of clients may diverge. Taking all 

of this into account – the definition of interfaces should be considered in light of all of the 

interacting types, not just the client or a specific implementation.  

4.10.7 Interface-related Guidance and Interface Use Categories 

The ISP and SRP promote similar ends in terms of interfaces – they should serve a single 

purpose. While SRP mandates a ‘single reason to change’ for objects – this may be 

rephrased as ‘a single abstraction’ for interfaces.  In line with ISP – this single abstraction 

may be the abstraction required by a group of clients. 

In terms of single abstractions – many of the subgroups of interfaces observed appear to 

represent a single abstraction: 
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• Marker interfaces have purely semantic meaning, arguably this cannot become 

bloated as there is no specified behaviour, though it may be reinterpreted by each 

practitioner. 

• Listener interfaces have a very specific intent – the low method count in most of 

these interfaces indicate that there is little function creep away from event 

handling. 

• There is indication that there are many smaller sub-groups of interfaces which have 

been marked by naming conventions for enabling and pattern related functions 

such as state, adapter, or composite (see 4.8.4.5). 

However, some groups do not map clearly to a single abstraction: 

• Constant interfaces may not constitute an abstraction as such, and while they do 

serve a single purpose, many of those observed contain multiple subgroups of 

unrelated constants. 

• Token decoupling interfaces are by definition, neither SRP nor ISP compliant. 

This hints at two different motivations for interface use: 

Variation or Flexibility decoupling – where there is an intent to exploit polymorphism by 

programming with abstractions.  This is the kind of motivation for interface use promoted 

by the patterns literature which exploits polymorphism to create highly adaptable, flexible 

solutions.  

Defensive decoupling – where the primary motivation is separating good from bad parts of 

a design, containing change, and avoiding a concrete dependency. This motivation is 

captured in the ISP and ‘depend towards stability’ promoted by Martin and Parnas. 

Again, these approaches highlight that different assessment criteria may be required 

depending on the motivation for the interface. For example, the usefulness of a flexibility-

inspired interface may be measured by how well it matches the needs of its clients, and if it 

is reusable. While it may be more relevant to determine if a defensive interface has been 

bypassed, or if it leaks information such as implementation details. 

4.10.8 How can interface use be assessed? 

Interfaces are used to meet many design needs – this means that there are likely to be 

general quality concerns for interfaces, and specific concerns for each different mode of 
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use.  If these categories can be identified, the various means of assessing interfaces can be 

ranked by relative importance. 

Marker interfaces contain no method signatures or constants and are often used as ‘flags’ 

to indicate object capabilities or to act as the root of a hierarchy.  While the use of these 

interfaces may be controversial from a design point of view, once they appear in a system, 

this gives some indication that they are considered useful by the developer.  The lack of 

content means that the only assessment that can be meaningfully made of a marker 

interface is the location of the definition of the marker interface in the source code and 

whether the name of the marker interface is appropriate. 

Marker interfaces are used to avoid references of Object type – notionally, this provides a 

guarantee that the implementing object is ‘reasonable’. However, a marker provides little 

more information about the object which implements it. Further operations on the 

‘marked’ object require type checking. The conventional methods to avoid this would be to 

promote the required behaviour (methods) to the marker interface, thus avoiding the need 

to switch on type, or move the varying behaviour to the implementations to avoid the need 

to check for the raw type. Another ‘smelly’ solution would be to provide some 

programmatic ‘flag’ or ‘memo’ to indicate the type to eliminate the cost of the instanceof 

check. 

In summary – marker interfaces provide a small amount of safety, but do not reduce the 

main source of coupling which is the type-checking code which must disambiguate and 

manipulate the ‘marked’ objects. 

Listener interfaces are very common in OO applications as many adopt an event driven 

paradigm.  Listeners are implemented so that the implementer can subscribe to some 

source of events.  In their usual form, these interfaces extend one of the Java library 

ActionListener interfaces or one of its derivatives, detailing only the inherited methods.  In 

most cases, the implementer is required to implement this interface to access a service, so 

there may be little choice in implementation if the system is using an event-driven 

architecture. It may be more appropriate to consider the entire event-driven architecture 

to address quality concerns. 

Constant interfaces are used to store various constant values.  Much like marker interfaces, 

these may provoke discussion of whether these are a suitable OO construct.  Constant 
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interfaces do not address any of the concerns of conventional interfaces – there is no value 

in implementing them as they provide data statically, they contain no executable code to 

speak of, in fact if they are used to share constants by implementation, they may never be 

invoked at all. Assessment is limited to suitability of interface name and whether the 

individual static constant values belong in the same constant interface. 

Token Decoupling interfaces are found where there has been some effort to decouple parts 

of a system – often a ‘god class’ with an interface which has the same low-cohesion 

interface as its sole implementer.  This interface may have many disparate sets of 

functionalities as it was born from its implementer. The priority for this interface is 

decoupling – so bypassing should be detected to ensure that the ‘walled off’ part of the 

system is in fact contained behind the interface. 

Architectural interfaces represent system boundaries and components and as such may 

exist despite local needs. Again, the primary focus here is decoupling, however an interface 

such as a module boundary may offer multiple related services, or aggregate module 

functionality (for example through a facade) – so decoupling may trump even cohesion. 

Abstract Data Type interfaces from the Java collections framework are present in large 

numbers. These are used in a manner which indicate that interface-typed references are 

preferred for data-types especially in protocol areas such as method return types. However, 

concrete references remain common for some data type such as ArrayList or Vector, 

indicating different uses of data types (4.8.3.7). 

4.10.9  Motivation for Interface Use 

Interfaces provide abstraction or stability in a design based on the teaching material and 

guidance. The main motivations for interface use are observed to fall into high-level 

categories, which might be described as: 

• Architecture – represents a design abstraction (e.g. Model, API) 

• Domain element – represents some domain or model concept (e.g. Salaried) 

• Module boundary – prevent direct access to a type or module (e.g. Database) 

• Perspective – provides a restricted or partial view of implementer (e.g. 

ImmutableList) 

• Enabling – represents that the implementer has some narrow ability (e.g. Sortable) 

• Role: 
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o Client – optionally implement this interface to access a service (e.g. Visitor) 

o Specified Sub-Component – required by another type to function (e.g. 

State) 

Several of these may apply to a single interface – for example an interface in an API may be 

a module boundary, and represent an element from the problem domain. However, in 

satisfying these different uses, interfaces may be assessed by different criteria.   

Architectural interfaces describe the ‘overall shape’ of a system. Mapping interfaces to 

domain elements may lend these interfaces high conceptual cohesion, but the specifics of 

the interface may change as more is learned about the domain. Module boundaries exist to 

‘keep things apart’. Perspective (or ‘partial’) interfaces are the result of application of the 

interface segregation principle (ISP), and are derived from the implementer to restrict 

access, for example, to read-only methods. Role has been divided by a subtle but important 

difference – whether the interface is a local requirement or a ‘published’ means of 

interaction. Specified clients are often ‘enabling’ interfaces where these are implemented 

(at the option of the client) to access a service or sub-system. Specified components are 

required (locally/internally) by a client to function such as a state or strategy pattern object 

– which is less likely to be useful to the rest of the system.  

These appear to illustrate different kinds of stability - some interfaces offer a specific 

(static) set of behaviour and will not change under any circumstances, possibly leading to 

multiple versions of the same interface e.g. an API. While other interfaces exist to separate 

elements, so may have to change in the small to reflect changes in the elements being 

separated, while remaining ‘immobile’ between client and implementer e.g. internal 

module interface. 

There are different sources of motivation for interface use, which emerge at different levels 

of a design, these formed the basis of the interface use model defined by Mayer et al. 

(Steimann and Mayer, 2005). This models the cost and benefit to each of the objects 

involved – however it is difficult to reconstruct solely from the source code. 

4.11 Conclusion   

The key contributions of this work include identification of high level trends of interface 

definition, implementation and usage: typically 4-10% of user-defined types are interfaces; 

many of which are only implemented once (39%), or not at all (9%), a small number are 
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implemented many times; many user defined types directly implement no interfaces and 

the majority of the remainder one interface; the marked use of small (0-2 method) 

interfaces and the common occurrence of extremely large (100+ method) interfaces, some 

of which are used many times. Using these analyses to profile the individual systems shows 

a wide variety of interface usage and apparent motivation e.g. systems with high amounts 

of interface definition and usage but very limited implementation variation behind those 

interfaces.                                                                                                                                                                                                                                                                                                                                                                                                                                               

This study has shown that useful insights can be gained from a high-level quantitative 

analysis of interface usage in large-scale software systems. As well as gaining common 

insights into the amount of interface definition, usage, implementation and size it also 

found that interfaces are being used in different ways, not all in keeping with the design 

motivation behind the guideline program to an interface.  The findings of this study indicate 

that this guidance is applicable at the ‘statement level’ which can manifest in different ways 

at the system level. 

Mechanically extracting interfaces does not appear to be sufficient to ensure good 

abstractions. The practitioner may have to consider current and possible clients of an 

existing or proposed interface, the burden on the implementer(s), interactions with existing 

patterns or abstractions, and architectural decisions that are in force. It appears that some 

domains or solutions may have more opportunities to define ‘high value’ interfaces which 

capture many interactions. Finally, there is the tolerance of the individual, team, and 

reviewer preference for ‘how much’ interface use is expected or acceptable. Creating 

interfaces is potentially very complex, requiring information from different levels of the 

design process, some of which may not be obvious or easily accessible. 

This work has identified common and distinctive patterns in the way that individual systems 

use interfaces: some only making little use, some using interfaces in keeping with the 

expected practice of implementation variation hidden behind relatively small interfaces and 

others having limited implementation of much-used and very large interfaces. 

Again, these approaches highlight that different assessment criteria may be required 

depending on the motivation for the interface. For example, the usefulness of a flexibility-

inspired interface may be judged by how well it matches the needs of its clients, and if it is 

reusable. While it may be more relevant to determine if a defensive interface has been 

bypassed, or if it leaks information or implementation details. 
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To gain a full insight further, more detailed research is required. Inheritance should be 

considered in conjunction with interface use, partly because interface implementation is 

often achieved indirectly via inheritance, but also because it appears that there is a large 

amount of inheritance being used in these systems. 

4.11.1 Lessons Learnt 

Framing of experiments to remove non-local interfaces does seem justified in terms of 

difference in use levels. But it might be worth considering whether the same motivation for 

non-use of interfaces persists in some way into the ‘choice’ areas. Third party and library 

types are easily detectable, however excluding them without due consideration may ignore 

secondary effects on a design. 

The recent increase in ‘connection based’ views of software designs (Baldwin et al., 2014; 

Potanin et al., 2005; Schocken, 2012; Taube-schock et al., 2011) where there is a focus on 

dependencies and interaction, rather than the properties of individual types may yield 

more insights into the questions raised by this research. While some metrics do consider 

the clients or implementations of interfaces, there is not yet a holistic way of assessing the 

cost/benefit of interface use at all places interfaces might be used. The volume of data 

generated by even the small corpus in this study highlighted the need for more automated 

analysis support.  

4.11.2 Limitations 

This study was conducted on a relatively small corpus of open source object-oriented 

system written in Java.  As with any study of this nature, the work would benefit greatly 

from replication in another language or using larger industrial systems. However, given the 

popularity of OO languages, and the similarities in language constructs there may be some 

useful insights in the findings of this work which can inform the wider body of OO design 

guidance. 

4.11.3 Impact 

The guidance regarding OO design is the matter of much debate – strong opinions are 

expressed about methods which affect design – agile, test driven development (TDD), 

design patterns; metrics are proposed, and debunked; code ‘advisor’ tools come and go, 

while core concepts still lack concrete definitions. 
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One issue in these debates is that the examples are often very general, or lack sufficient 

constraints to allow a useful conclusion to be reached.  This work looks at specific uses of 

specific design elements and how these relate to the high-level language-agnostic guidance. 

The designs discussed here reflects real-world use of design elements which have not been 

constructed to demonstrate a specific point or flaw. It is hoped that this work highlights the 

complexities of interpreting guidance ‘downwards’ to specific problems, and the 

compromises that are made ‘in the wild’. 
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5 Properties of Inheritance Hierarchies 

It was found in Chapter 3 that the popular object-oriented design guidance is perceived as 

useful and relevant by practitioners. Chapter 4 focused specifically on the guideline 

‘Program to an interface’ and how interfaces are used in object-oriented systems. 

Examination of interface use highlighted a close relationship between interface use and 

inheritance. However, ‘correct use’ of inheritance remains contentious and guidance, while 

plentiful, is incomplete.  

This chapter examines the use of inheritance in open source systems with two main aims. 

Firstly, to build up a more detailed picture of inheritance use than previous work. Second, a 

corpus of inheritance hierarchies ‘in the wild’ are examined to determine if it compliance 

with guidance is detectable. This also highlights hierarchy properties which do not fall 

under popular guidelines – indicating a need to expand existing guidance.  

5.1 Introduction 

Inheritance in Java allows the definition of one type in terms of another.  In practice, using 

inheritance to define a type has two inseparable effects: 

• Type inheritance - the new type is considered a subtype of the parent type. 

Simultaneously, the extended type is a super-type of the new type. 

• Module accumulation - the subtype inherits some of the substance of the super-type 

such as attributes and method definitions. Some of the inherited material may already 

be second hand, inherited by the super-type from its ancestors. 

A difficulty is caused when the intended meaning of inheritance (if planned at all) is not 

explicitly encoded in source code for a design element, any predicted use (and therefore 

any extension) may be inconsistent, so the eventual use may be in an entirely different 

context to the original intention or predicted use. Furthermore, due to the variety of 

motivations for use of inheritance, it may be impossible to infer the original intent. 

Upon encountering an inheritance structure, a practitioner must deal with many possible 

complex interactions such as self-calls, dependency inversion, and overriding.  Examination 

of many types may be required to understand potential side-effects of any maintenance or 

extension activities.  This is to say nothing of assessing the potential usefulness of the 

inheritance hierarchy or any of its members. 
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Like any powerful technique – inheritance provokes discussion between what can be done 

and what ought to be done.  Practitioners have both modelling and operational needs 

during the design of software systems and inheritance can be used to solve these problems 

in various ways.  For example, Meyer identifies thirteen useful (and three discouraged) uses 

for inheritance describing varying levels of rarity and conceptual difficulty (Meyer, 1996). 

Inheritance structures intersect with low level concerns such as object composition and 

indirection, to higher level concerns such as pattern implementation and cross package 

dependency management. This means that there is a lot of potentially applicable or 

conflicting guidance which may apply to various aspects of an inheritance use. 

There has been a great deal of varied advice and debate on the proper use of inheritance – 

this research aims to contribute to the growing body of empirical work on how inheritance 

is used ‘in the wild’ (in open source systems) and reflects on how the findings may close the 

gap between guidance and practice. 

In addition, the use of inheritance is examined in more detail than in previous studies and 

an effort is made to characterise and explain the observed inheritance, paying more 

attention to hierarchy structure and local context. 

Inheritance is an important feature of many programming languages, allowing practitioners 

to define new program elements by building on what already exists and reducing 

duplication in source code. 

Design guidelines are high-level and conflict in some cases – little empirical work aims to 

inform practitioner decision-making at the same level as design guidelines. While simple in 

concept, inheritance appears in a variety of forms between languages, often with differing 

mechanisms for multiple inheritance, and method overriding. 

This study investigates the extent to which inheritance use be characterised - with a view to 

informing design choices and objectively improving design quality. Thus, closing the gap 

between practice and guidance. 

Java is a popular programming language both in industry and teaching environments. It is 

the subject language in much of the empirical software engineering literature, and well-

studied corpora of Java systems are available facilitating comparison with other work. In 

addition, the popularity of Java means that it is the subject of many design textbooks and 
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online debate – which has resulted in an extensive body of guidance. Finally, similarities 

between Java and other industrial languages such as C# mean that this work will be 

amenable to replication in the wider software ecosystem. 

5.2 Research Objectives 

Analyse: Inheritance use in open source systems, specifically inheritance hierarchies, their 

members, and the interactions between these elements and the surrounding system. 

Purpose: Explore and characterise the presence and use of inheritance use with respect to 

the intentions raised in the survey (Chapter 3) and compliance with design guidelines. 

The point of view is primarily that of the empirical software researcher, although insights 

gained may be of interest to practitioners, and users and designers of software metrics. 

The context is object-oriented (OO) design literature and OO design guidelines. 

Research Goal: How is inheritance used in practice and to what extent can its usage be 

related to OO design guidance? 

This goal has been further refined into Research Questions: 

1. How is inheritance used? 

2. How can inheritance hierarchies be characterised? 

3. To what extent can inheritance usage patterns be related to design quality where 

quality is defined via Guidance, Metrics, Code Smells, Entity Population Models, and 

Modelling? 

5.2.1 Context 

This study uses a corpus of open source Java systems assembled from systems in the 

Qualitas Corpus (Tempero et al., 2010b) and additional systems of interest which are also 

available from various open source repositories (see Table 30). Analysis was carried out 

with a counting tool based on the Eclipse JDT Core17. While this tool is novel, the core 

components are very reliable as they are sourced from the Eclipse Project, a well-known 

and widely used integrated development environment (IDE). 

The systems examined are of varying size and problem domain. Six were sourced from the 

evolution release of the Qualitas Corpus as these systems represent mature systems with a 

                                                           
17 http://www.eclipse.org/jdt/core/ 
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robust version history and user base. A further seven systems were selected from the non-

evolution Qualitas Corpus to provide a variety of problem domains. A student-generated 

system (gizmoball) was also added to the corpus as an example of ‘design as taught’. Some 

of the systems in the corpus have already been discussed in other work, namely eclipse, 

jhotdraw, and jdk (Cai et al., 2011; Dyer et al., 2014; Kegel and Steimann, 2008; Rocha and 

Valente, 2011; Tempero et al., 2010b). 

While the corpus analysed here is smaller than in other recent studies – high-level 

similarities with other corpora are shown.   

Furthermore, while this study attempts to characterise inheritance use, there is no 

intention to establish an entity population model (characteristic normal ranges) for all other 

software systems as was the goal in previous work.  In this case, inheritance use is 

characterised with a view that the entire corpus of software systems will be at least as 

diverse as those studied here. 

5.3 Analysis Technology 

While the structure of Java code remains relatively stable over versions of the language, 

there are diverse ways to target a corpus of Java programs for empirical study. 

Byte-code analysis is perhaps the most accessible as most software is deployed as compiled 

jar files.  Analysis of byte code has been used in popular high level code surveys (Baxter et 

al., 2006; Brekelmans, 2014; Collberg et al., 2007; Tempero et al., 2013, 2010a, 2008).   

These studies use tools based on various open source analysis frameworks. 

While analysis of byte code does not present any inherent validity threats, it must be 

suitable for the experiment - as some of this work acknowledges, “some aspects of the 

original code are lost” (Collberg et al., 2007), such as through optimisation or deliberate 

obfuscation (Brekelmans, 2014).  In addition, it can be difficult to reconstruct which specific 

element of source code has been converted to a given byte code.  This is important as it 

was anticipated that some manual inspection of source code would be required to 

investigate/validate some of the findings in this study (Stevenson and Wood, 2018). 

Since this study is concerned with the structural elements of the design, and practitioner 

decisions, it was decided that source-code analysis was more suitable in this case. Studying 

original source code has the advantage of “maintaining full integrity of semantics and 

intent” (Brekelmans, 2014). 
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5.3.1 Instrumentation 

Data was collected using a tool built based on the Java Development Tools (JDT) Core 

component of the Eclipse project.  It was noted that other studies have used analysis 

frameworks (e.g. MOOSE), which are large and inevitably carry with them the assumptions 

and requirements of their primary users.  In addition, initial attempts to use the more 

heavyweight modelling frameworks revealed the time and (computing) resources required 

may be prohibitive for the analysis of large systems. 

Indeed, in more recent studies of large corpora, it is stated that smaller tools have been 

constructed or that resources limited the extent of the analysis in some cases e.g. Tempero 

et al.’s study on inheritance use in Java “had memory limitations that restricted the size 

of the systems that we could analyse” (Tempero et al., 2013). 

The influential and rigorous studies by Tempero use bytecode analysis using a purpose-built 

analysis tool (Tempero et al., 2008). The tools Byte Code Engineering Library (BCEL) and 

javap (a java byte code disassembler) have been used to study bytecode (Baxter et al., 

2006).  A further study examines bytecode using a tool “based on the Soot Framework” 

(Tempero et al., 2013).  

Kegel uses source code analysis and abstract syntax tree (AST) manipulation using a tool of 

their own devising (Kegel and Steimann, 2008).  Other tools used in similar studies include 

Codecrawler (visualisation) (Lanza et al., 2006) and MOOSE (re-engineering) (Girba et al., 

2005).  These in turn are based on abstract meta-models such as FAMIX (Lanza, 2003).  

Finally, Sabané estimates that the time and effort required to understand and adapt 

(possibly unsuitable and usually out of date) existing research tools is too high and 

developed a new tool based on an existing modelling framework to detect fragile base-class 

structures (Sabané et al., 2016). 

These tools are well-regarded in the area and have been validated over many studies – 

however, it was not clear from the outset if the tools available would be sufficient for what 

was initially a very exploratory study.  It was also apparent that the assumptions of the tool-

makers may influence the direction of the study and that documentation is often an 

afterthought.  Given the learning curve and resource requirements for the use of these 

tools, and the potential for mismatch with the experimental requirements, it was decided 

that one or more small tools specific to the study would be more suitable. 
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Add to these considerations the exploratory nature of this project – the decision was made 

to produce a minimal tool that would avoid model building where possible by making 

multiple passes over the sample source code.  This produced several benefits: 

• The initial models build by the JDT core component only need to be built to 

retrieve primary data, subsequent analysis components depend only upon the 

gathered data sets. 

• Sub-sets of the target corpus systems can be expanded on demand, such as only 

building and resolving ASTs for inheritance hierarchies. 

• The memory requirements for the tool are relatively modest as it accumulates a 

large flat (file based) data store, which can be used as a backing store for 

subsequent analysis modules. 

• Each analysis is recorded in code or script, so experiments are explicitly 

documented to promote reuse, validation, and replication. 

Figure 30 shows a high-level overview of the tool used for data gathering and analysis.  In 

the interests of reproducibility and ease of tracing what processing was done, each sub-

experiment has been archived in its own package. 

Figure 30 – Inheritance Analysis Tool  

The Script is a python program which serves to record the exact parameters of the 

experiment including the details of the target source code, and location of output data. 
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Source Code is in Qualitas Corpus format. Parameter Marshalling extracts and distributes 

input parameters, and determines the type of experiment, triggering data extraction from 

source code if instructed. Analysis performs second stage data extraction which relies on 

direct or indirect data from the source code. Results is a cache for ‘raw’ data and calculated 

results, initialisation is ‘lazy’ which means that cached data is preferred, and new data is 

only calculated if it is required by a request from Analysis.  AST is one or more Java abstract 

syntax trees which are generated by the JDT Core. Visitor represents one or more visitors 

uses to traverse JDTCore structures. Note that lazy initialisation can result in a call-back to 

Analysis from Results, however in these experiments the more primitive analysis would 

have already been calculated as part of an earlier query. In a more general setting, care 

would have to be taken to avoid circular dependencies between derived calculations which 

could lead to deadlock. 

Once an experiment has been run, the package responsible is not modified thereafter, 

providing a permanent record of the experimental process and environmental variables.  

The main effects this had on the design of the tool were: 

Redundancy/duplication – some experimental elements are very similar and might be 

refactored out in a conventional software design. However, since this duplication 

constitutes a permanent record, there is no need to keep all the duplicates in sync – which 

is the main issue with duplicate code. 

This could have been achieved by looking back with version-control, however future 

accessibility is improved if all analyses are available in the same place.  Similarly, the 

configuration parameters of each tool execution were captured as Python scripts, which 

can be re-run to exactly reproduce the experiments. 

Intermediate results – the design makes heavy use of intermediate plain-text files.  These 

are used as pipes between the various data gathering and analysis modules of the tool. 

These allow verification at each stage of the analysis, and allow more complex analysis to 

be done without re-constructing fresh models each time.  This also allows (time) expensive 

initial data extractions to be run only once. 

5.4 Experimental Design 

This section describes all the information that is necessary to repeat the study. 
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5.4.1 Goals, Hypothesis, Variables 

In this section, the research questions are refined down into a related set of sub-questions. 

1. How is inheritance used? 

a) How much inheritance is used in software systems? 

b) How is inheritance used to define types? 

2. How can inheritance hierarchies be characterised?  

a) How representative of hierarchy members is the root type? 

b) What are the overall shape characteristics of hierarchies? 

c) Can casting tell us anything about inheritance hierarchies? 

d) Can any insight be gained from method invocation patterns? 

e) How are abstract types used in inheritance hierarchies? 

3. To what extent can inheritance usage patterns be related to Design Quality where 

quality is defined via Guidance, Metrics, Code Smells, Entity Population Models, and 

Modelling? 

a) Is it clear where inheritance or composition should be used?   

b) To what extent is compliance with guidelines evident in source code? 

c) Are any of the models of inheritance detectable? 

d) How well do the proposed models of inheritance reflect current practice? 

5.4.2 Study Design 

This is a case study of inheritance in open source java systems, with a view to gaining 

greater understanding of what kinds of inheritance structures are present in production 

code. With the exception of two special systems of interest (jhotdraw and gizmoball) 

detailed in the next section, the corpus was chosen to be of mature systems and/or from 

diverse domains to avoid bias from a particular domain.   

All candidate systems in this study have been sourced from the Qualitas Corpus (QC) or 

other open source repositories and prepared into the same format as the unpacked QC 

systems.  It was found that systems often contained compartmentalised source code or 

unusual package structures – even containing unpacked library code among the source 

code files in some cases.  This presents a similar issue noted by Brekelmans, where C# 

binaries can be merged for distribution (Brekelmans, 2014). 
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Rather than attempt to separate code from disparate sources, it was decided that since all 

the code in a repository is notionally visible to a practitioner (usually via an IDE of some 

description), it does fall within the category of practitioner facing inheritance. 

Similarly – while many studies exclude types from the standard Java libraries, the java 

libraries have been built into this study.  This allows comparison of different hierarchies 

with the same library-root within and between systems. 

In terms of the data required, the goal of this study was to gain insight into inheritance ‘as it 

is’. Thus it was decided that pre-existing metrics (such as the popular C&K suite (Chidamber 

and Kemerer, 1994)) might obscure features of the population of inheritance hierarchies 

due to the function of metrics as ‘opinionated’ detectors for specific phenomena or 

features. This study attempts to focus on the natural features of inheritance structures that 

might be identified by inspection or practitioner familiarity. 

5.4.3 Subjects 

The subject systems used in this study are detailed in Table 30. It was anticipated that the 

analysis of each system may take some time, given the focus on context and structure over 

volume.  Additionally, large scale surveys (of hundreds of systems) have already been 

replicated on the QC, using both source code and byte code analysis.  The research goal of 

this project was more focused on the finer details of each system. Consequently, four 

additional systems were chosen to investigate if the projects had any design properties 

relating to this study: 

• eclipse – this IDE has been the subject of evolution studies on its own and has 

undergone several major refactorings.  The system is based on an actively 

developed framework – so it may be expected that this is an example of a good 

working design. 

• gizmoball – this is a small game set as a design challenge by MIT (Yue et al., 2004) 

and used in many undergraduate CS programs.  This version was chosen as it was 

submitted by a group of students displaying a good grasp of undergraduate design 

principles – and so is an example of guidelines as taught. 

• JDK – the java development kit is the core library of the Java language, containing 

many day-to-day library functions. This is an example of Java as it is spoken by its 

designers. 
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• jhotdraw – was created as an exemplar of good pattern usage by an author of the 

original design patterns manual (Gamma et al., 1994), and is recognised as such in 

other empirical work (Ferreira et al., 2012). 

JHotDraw (and to a lesser extent gizmoball) were included in this study to provide a 

comparison between the more general systems and education-facing systems used to 

illustrate good design to students.  It is hoped that these would highlight any major 

differences in inheritance use between these approaches to system construction.  

Radjenović et al. discovered size ranges for data-sets from a review of code-survey work 

ranging from small, medium , or large (<=200 |200-1000 |> 1000 classes respectively) 

(Radjenović et al., 2013). The systems selected here are representative of these ranges, and 

in aggregate place the study well into the large category. 

The systems shown in Table 30 which also appear in the previous chapter have slight 

differences in the type counts compared to those shown for the corpus shown in Chapter 4 

(Table 18).   

Table 30 – Inheritance Study Corpus Details 

Name Version Types 
Inheritance 
Hierarchy 
Members 

Domain Source 

ant 1.8.4 1203 605 parser, generator, make 

Qualitas Corpus 
Version: 20130901e 

(Tempero et al., 
2010b) 

argouml 0.34 1972 1522 
diagramming/ 
visualisation 

azureus 4.8.1.2 3319 1040 torrent client, database 

freecol 0.10.7 727 617 game 

freemind 0.9.0 445 343 
diagramming/ 
visualisation 

eclipse 
SDK 

4.3 22636 13053 IDE 

aoi 2.8.1 493 328 3D, graphics, media 

Qualitas Corpus 
Version: 20130901 

axion 1.0 M2 237 148 database 

columba 1.0 1181 883 email client 

freecs 
1.3.2010

0406 
139 80 chat server 

galleon 2.3.0 258 152 3D, graphics, media 

JDK 8u60 7659 3862 language library 
JHotDraw 

(JHD) 
7.0.618 310 237 

graphics framework 
(design exemplar) 

gizmoball - 84 43 
game (student design 

project) 
www.github.com/ 

tomcurran/gizmoball 

                                                           
18 Note that the version 7.6 of jhotdraw is used in Chapter 4 
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This study is focused on the gross properties of ‘conventional’ inheritance hierarchies, so 

niche uses such as inner classes, inner interface, and enumerated types are excluded, thus 

the counts shown in Table 30 are lower than for the same systems in Chapter 4. The fourth 

column shows the total number of classes and abstract classes in the inheritance 

hierarchies contained in each system – note that this count includes third party and library 

types. 

5.4.4 Objects 

The objects of study in these experiments are system, hierarchy, and hierarchy member. 

System – discreet applications sourced from the QC or another open source repository.  

Since source code is often organised in unusual ways, the primary targets of the tools used 

are source-code containing directories within the source files supplied. However, to 

properly resolve types, the entire source is used to locate types.  

For example, if source folders contain an unpacked (and possibly modified) third party 

library, the third-party types will be resolved as super-types in the source code.  Similarly, 

the resolver is aware of the types in the standard Java libraries and can resolve the types in 

a hierarchy discovered where a user-defined file extends a Java library type.  Note that the 

origin of a type is tagged as Local, Java, or Third Party based on its source namespace. 

Due to the nature of some systems, resolving Third Party types is done on a best effort 

basis.  If source code contains a type that extends a missing third-party library type, the 

possibility that the absent super-type is a Java library type, or a local type can be 

eliminated.  This leaves only the possibility that the unknown type is Third Party. While it is 

possible to retrieve the name of the missing third-party type that is extended from the type 

declaration of its subtype, it is impossible to know if there are any further members in that 

third-party hierarchy. 

Hierarchy – a hierarchy is a directed acyclic graph of concrete or abstract classes which may 

be defined in the source code of an application, part of the Java standard libraries, or 

imported from a third-party library. The hierarchy members in a hierarchy are arranged 

such that there are no unconnected types.  The member with no ancestors is known as the 

root. The relationships within a hierarchy are often described as subtype : super-type or 

parent : child.  Noting that Java does not allow multiple inheritance – each subtype can only 

have one immediate (non-interface) super-type. 
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Hierarchy Member – an abstract class or concrete class which is a member of an inheritance 

hierarchy.  To qualify as a member, the type must extend or be extended by another type. 

Note that this definition refers to the inheritance mechanisms in Java (extends, 

implements) and does not imply or require any semantic relationship between the types 

involved. Interface implementation by hierarchy members is recorded, but interfaces 

themselves are not considered to be hierarchy members in this study. Since all objects in 

Java inherit ‘Object’ as an implicit super-type, Object is ignored in this analysis. 

5.4.5 Data Collection Procedures 

Experiments were run as part of the tool development process, with each develop-validate-

analysis cycle yielding more results. 

Environment: Most of the analysis was run on an Intel Core 2 Duo (3.16 GHz) machine with 

6GB of RAM, running a 64-bit version of Windows 7 Enterprise.  Initial data gathering using 

the JDT Core required more memory for larger systems (eclipse, JDK) and was run on an 

Intel i5 (3.4 GHz) machine with 16GB of RAM, running a 64-bit version of Windows 7 

Enterprise. 

5.4.5.1 Data Set Reduction 

While no outliers were removed, there are a few instances where a missing library, 

generated code, or unconventional syntax meant that the type of a variable or formal 

parameter was not resolved.  In these cases, the number of unresolved types is negligible, 

but is listed in the figures where appropriate. 

5.4.6 Analysis Procedure 

This study follows in the footsteps of the more recent census style studies where reporting 

the corpus qualities is done without much post-processing.  The intention is to describe 

what is observed, rather than validate a metric or find a correlation. 

While an effort was made to eliminate testing code from the corpus, the development 

styles of different teams mean that some testing code may be integrated with the main 

code base, or that some public method functionality may be for the sole purpose of testing.  

Similarly, code written for use with injection frameworks may have a different structure 

from the same design that does not such a facility.   However, these phenomena are a 

result of current practice, so must be considered in an analysis of programming practices. 
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During analysis, some corpus properties are segmented by natural breaks in the observed 

ranges, for example, the first 80% and last 1% of long-tailed distributions to properly 

represent outliers.  In either case, these are explained near the relevant charts. 

5.4.7 Evaluation of Validity 

This section discusses the steps taken to increase the reliability of measurements – 

ensuring complete and correct collection of data. 

Operational – As presented, the meaning of the various counts is taken directly from what 

is counted, these are highly representative.  The second stage analysis involves comparing 

these more direct measures with each other.  While no new measurements are named, it is 

reasonable to question if these comparisons are appropriate – this issue is addressed near 

the comparisons where appropriate. 

Additionally, some of the scalar values e.g. depth of inheritance, are occasionally grouped 

into ranges for clarity of presentation.  These ranges are based on the distribution of the 

observed population of inheritance hierarchies.  In these cases, any noted trends or findings 

have been checked on the unabbreviated charts to ensure the ranges do not exaggerate or 

misrepresent the findings. 

Internal – Creating a new tool carries with it inherent risks.  At each stage in the building 

process (and analysis) the results from the tool were compared with reference hierarchies 

in the testing suite.  In addition, spot checks were carried out on the actual corpus results 

to confirm that the tool had correctly recorded inheritance structures.  Finally – any easily 

reachable measures that could serve as a checksum on collected data and have been used 

for validation. 

External – An obvious issue with this study might be the size of the corpus.   However, up 

until relatively recently, very large corpus studies were the exception rather than the rule, 

so corpus size on its own is not a major threat to validity depending on the claims being 

made. 

Similarities to larger corpora in other studies are highlighted in the initial corpus summary.   

These similarities recur throughout the study, and appear to confirm that the smaller 

corpus selected here has similar general properties to larger corpora. 
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In addition, systems have been selected from a range of problem domains and application 

sizes to reduce issues with domain-specific programming styles. This study does not aim to 

build an entity population model; the generalisability of the hierarchy characteristics relies 

on innate characteristics of inheritance hierarchies and while it seems likely that other uses 

of inheritance may indeed exist, these would merely expand the discovered list of uses 

without necessarily invalidating the patterns of use that have already been identified. 

Reliability – All the experimental methods relating to this chapter have, literally, been 

codified in the source code of the analysis tool and configuration scripts.  While portability 

was not a primary goal for the tool it has been successfully used in undergraduate projects 

in different hardware and OS environments – the students could re-run and modify the 

experiments with minimal supervision. Finally – as noted in the findings, this analysis is re-

applicable, but the numeric values ranges (e.g. max depth, max width) may be system 

specific. 

While the software tool created here is specific to this study, it is based around a well-

supported framework (eclipse JDT Core), and has been written in small, reusable modules 

which make the experimental apparatus easy to understand. 

5.5 Results 

5.5.1 Descriptive Statistics 

The analysis tool developed for this study was applied to 14 systems, comprising of 40663 

types defined in source code (range 84–22636 types).  The systems studied contain 2440 

inheritance hierarchies (range 6–1277 hierarchies), consisting of 22913 hierarchy members 

(range 2-1366 members). Hierarchy depth ranged from 2 to 11 (DITMAX 1 to 10), and 

hierarchy width ranged from 1 to 542. 

5.5.2 Presence of Inheritance 

The initial data collected were cross-system counts of how many concrete classes and 

abstract classes had been defined and how much inheritance has been used to define these 

types. 

Table 31 shows the amounts and proportions of types defined by inheritance and/or 

interfaces in each system, which are broken down by type (concrete class, abstract class, or 

interface), and summarised for each system. Finally, the types are broken down by their 

exposure to inheritance (extension of a type, direct implementation, combinations 



177 
 

thereof). Note that the percentage (%) figures shown are the percentages within that 

category for ease of comparison. 

For example, in the first row, Gizmoball has 21 concrete classes that extend (are a sub-class 

of a concrete class or abstract class), which is 28% of all concrete classes in that system.  

Note that the first number column shows the number of types defined in the system for 

reference (local type definitions only, excluding library and Java types). 

There is notable variation between systems, even in this small corpus there are exceptions 

to generalisations that could be made. For example, most interfaces are not defined using 

inheritance (except in freemind, JDK, jhotdraw), most concrete classes extend rather than 

implement interfaces (except axion, galleon, gizmoball), abstract classes are usually defined 

with some form of inheritance (except aoi, JDK). 

The ranges of values are also notable – it is fair to say that most of the concrete classes 

examined are defined using some form of inheritance. There is some variation between 

systems in the neither category for concrete classes (10-29%, median 15%), but even the 

highest value (29%) indicates that concrete classes in all systems meet (and usually exceed) 

the finding by Tempero et al. that “around three-quarters of user-defined classes use 

some form of inheritance”(Tempero et al., 2008).  

Abstract classes have much more variability in the neither category indicating various uses, 

for example abstract classes can be at the root of a hierarchy, or somewhere inside a 

hierarchy. The total of neither + only implement (0-100%, median 20%) indicates which 

abstract classes are at the top of a hierarchy (has no super-types that are not interfaces), 

while only extend+both (0-100%, median 23%) indicates which abstract classes are inside a 

hierarchy (the abstract class extends some other concrete class or abstract class). Across all 

systems abstract types are split approximately in half between being hierarchy roots 

(1760), and being inside a hierarchy (1648). However, there is noticeable variation between 

systems with extremes of both kinds – JDK notably has a high number of abstract class 

hierarchy roots, but many of these implement no interfaces. 
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Table 31 - Shows what proportion of each type defined using inheritance – Note that % shown are within each category e.g. red figures are % of all classes in that system 

System 
Total 
Types 

Concrete Class Abstract Class Interface Total 

only 
extend 

only 
implement 

both neither 
only 

extend 
only 

implement 
both neither 

only 
extend 

neither 
only 

extend 
only 

implement 
both neither 

gizmoball 84 
21 33 12 8 1 0 2 0 1 6 22 34 14 14 

28% 45% 16% 11% 33% 0% 67% 0% 14% 86% 26% 40% 17% 17% 

JHotDraw 
(7.0.6) 

310 
158 35 26 28 12 8 4 2 17 20 170 60 30 50 

64% 14% 11% 11% 46% 31% 15% 8% 46% 54% 55% 19% 10% 16% 

JDK 
(8u60) 

7659 
2408 1043 732 765 200 182 111 439 869 910 2608 2094 843 2114 

49% 21% 15% 15% 21% 20% 12% 47% 49% 51% 34% 27% 11% 28% 

ant 
(1.8.4) 

1203 
659 110 130 153 38 10 16 8 14 65 697 134 146 226 

63% 10% 12% 15% 53% 14% 22% 11% 18% 82% 58% 11% 12% 19% 

aoi 
(2.8.1) 

493 
232 62 34 104 14 2 2 14 2 27 246 66 36 145 

54% 14% 8% 24% 44% 6% 6% 44% 7% 93% 50% 13% 7% 29% 

argouml 
(0.34) 

1972 
1073 235 196 163 65 27 27 16 48 121 1138 310 223 301 

64% 14% 12% 10% 48% 20% 20% 12% 28% 72% 58% 16% 11% 15% 

axion                
(1.0 M2) 

237 
74 41 37 18 5 12 7 5 14 24 79 67 44 47 

44% 24% 22% 11% 17% 41% 24% 17% 37% 63% 33% 28% 19% 20% 

azureus 
(4.8.1.2) 

3319 
516 728 337 640 25 56 11 30 127 849 541 911 348 1519 

23% 33% 15% 29% 20% 46% 9% 25% 13% 87% 16% 27% 10% 46% 

columba           
(1.0) 

1181 
527 119 228 155 8 17 8 2 32 85 535 168 236 242 

51% 12% 22% 15% 23% 49% 23% 6% 27% 73% 45% 14% 20% 20% 

eclipse_SDK 
(4.3) 

22636 
8700 2974 2034 3392 701 435 340 468 1245 2347 9401 4654 2374 6207 

51% 17% 12% 20% 36% 22% 17% 24% 35% 65% 42% 21% 10% 27% 

freecol 
(0.10.7) 

727 
447 23 76 108 20 3 13 6 2 29 467 28 89 143 

68% 4% 12% 17% 48% 7% 31% 14% 6% 94% 64% 4% 12% 20% 

freecs 
(1.3.20100406) 

139 
73 19 1 27 0 3 0 0 0 16 73 22 1 43 

61% 16% 1% 23% 0% 100% 0% 0% 0% 100% 53% 16% 1% 31% 

freemind 
(0.9.0) 

445 
195 49 82 49 7 7 8 4 19 25 202 75 90 78 

52% 13% 22% 13% 27% 27% 31% 15% 43% 57% 45% 17% 20% 18% 

galleon 
 (2.3.0) 

258 
90 66 27 55 1 2 2 2 4 9 91 72 29 66 

38% 28% 11% 23% 14% 29% 29% 29% 31% 69% 35% 28% 11% 26% 
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Interfaces, as might be expected, are the least often defined by inheritance (0-49%, median 

28%). Indicating that, while interfaces themselves are common, hierarchies of interfaces 

are relatively rare or small in most of the examined systems. There is least variation in the 

definition of classes in the both or neither categories (St Dev 0.06) – indicating that there is 

more variability between only implement and only extend. This may indicate different 

approaches regarding the use of interfaces vs inheritance.  

All but one of the systems (freecol) define more interfaces than abstract classes. The JDK 

has a high percentage of abstract classes in the neither category, indicating that they are 

the root of a hierarchy with no interfaces. Systems with fewer abstract types appear to 

have more outliers – due to the low numbers in each category and the use of proportions 

to facilitate comparison.  It is notable that in the medium and larger sized systems there is 

no consistent proportion of interfaces defined – but the smaller systems have distinctly 

(predictably) fewer interfaces. It is not clear if this is due to fewer opportunities to use 

interfaces in smaller systems, or a perceived lack of need of interfaces when a system is 

small.  

Figure 31 shows the data from the last four columns of Table 31 in stacked proportional 

bars more clearly illustrate the breakdown of definition-by-inheritance use within each 

system.  

Figure 31 - Total types defined using inheritance, systems in order of size (number of types), largest system at 
the top. 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Gizmoball
freecs (1.3.20100406)

axion (1.0 M2)
galleon (2.3.0)

JHotDraw (7.0.6)
freemind (0.9.0)

aoi (2.8.1)
freecol (0.10.7)

columba (1.0)

ant (1.8.4)
argouml (0.34)

azureus (4.8.1.2)

JDK  (8u60)

eclipse_SDK (4.3)

Total types defined using inheritance (%)

Total which do both Total Only Extend Total Only Implement Total do Neither
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The last category (Total do Neither) is striped to illustrate that the solid categories are all 

definition by inheritance in some way. Note that this chart shows the systems in size order 

with the larger systems represented by the topmost bars.  

As noted above, Tempero et al. reported that as much as “around three-quarters of user-

defined classes use some form of inheritance” (Tempero et al., 2008). Figure 31 shows 

that, unlike concrete classes, only 7 of the systems examined meet the three quarters figure 

across all their types, and only one system (azureus) falls noticeably short.  

Figure 31 also shows that the medium sized systems are using (proportionally) more 

abstract definitions, namely more class inheritance. This may indicate a diversity of 

requirements in the larger systems, which permits less use of generalised abstractions. 

Azureus appears to have low use of inheritance, which has not ‘been made up for’ by the 

high definition of interfaces.  

Figure 32 shows the extended types for each system, broken down by how many times 

each type has been extended.  For example, the first bar shows that in eclipse_SDK-4.3, 

over 65% of the types that are extended are extended only once.  The bars show the 

distribution and the actual counts are in the data table below the chart.  The top 1% of 

types (18-172 extensions) and 10% of types (5-172 extensions) overall have been 

compressed into two ranges for legibility. 

The first point of interest is the degree of uniformity among the large and medium systems 

(on the left of Figure 32, this contrasts with the smaller systems on the right. This indicates 

that some norms may only ‘kick in’ after system reach a certain size or complexity. 

All observed systems have hierarchies in the top 10% range, indicating that popular 

abstractions are not necessarily restricted to larger systems – even with order of magnitude 

differences in system size. Considering the top 1%, there are several systems which do not 

have types that are this popular – this very high range may be empty in some systems as 

the number of hierarchy members would approach the system size of the smaller systems. 

This provides a natural limit and should perhaps be considered when assessing the 

significance of ‘number of extensions’. 
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Note that, across all systems, over 80% of the extended types are extended only one (64%) 

or two (17%) times indicating that most individual uses of inheritance do not generally 

widen the containing hierarchy (i.e. NOC is low for most super-types), there are few types 

that see extensive direct reuse. It appears that even with one or few opportunities for 

reuse, extension is still used.  

Figure 32 - Types extended in each system, broken down by number of times extended (order from largest 
system on left to smallest system on the right). 

Some guidance indicates that super-types should be extracted after some number of 

examples with common code have appeared (commonly three similar types (Beck, 2014)), 

however this does not explain 81% of the extended types with one or two subtypes. This 

may indicate that much of the observed inheritance is a result of extension from an existing 

type, rather than extraction of a super-type. This would concur with the lack of available 

refactoring time noted by respondents in Chapter 3, however these different scenarios may 

present different concerns and trade-offs to the practitioner. 

Summary of Presence of Inheritance: [KF 5.1] Inheritance is present in high amounts, 

meeting or exceeding levels found in related work, and is thus important in software design. 

[KF 5.2] If class and interface inheritance are included, levels are like those found in the 

literature. [KF 5.3] Types that are extended are only extended once or twice in most cases. 
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[KF 5.4] Some similarities may only appear as system grow, medium and large systems show 

similar distributions of type-extension. 

5.5.3 Hierarchy Properties 

There are a range of notions of magnitude or size relating to inheritance hierarchies. Figure 

33 shows the number of hierarchy members across the hierarchies examined.  These have 

been sub-divided based on their proportion of the total number of hierarchy members. For 

example, the bottom 80% of hierarchy members are in hierarchies with 2-7 members. 

Similarly, the top 1% of hierarchies range in membership size from 177-1366 hierarchy 

members. 

Figure 33 displays a ‘long tail’ distribution (Tempero et al., 2010a). In a survey of software 

properties, Baxter et al. (Baxter et al., 2006) suggested that such distributions are evidence 

that practitioners are less aware of incoming dependencies.  

 
Figure 33 : Size in Inheritance Hierarchies 

Since there is no indication within each hierarchy member of a hierarchy’s size, using or 

extending a hierarchy member may ignore an arbitrary number of hierarchy members. 

5.5.3.1 Depth of Inheritance 

In this study, DITMAX has been measured by isolating all the inheritance hierarchies in each 

system.  This included third party types when available, and also java library types 
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calculated by a simple recursive algorithm, starting from a count of zero at the root of the 

hierarchy. When calculating depth, interfaces are not counted.  

Figure 35 shows the distribution of depths of inheritance hierarchies in the corpus.  For 

example, the first column (ant-1.8.4) shows that the ant system contains 47 inheritance 

hierarchies with a DITMAX of one, 12 hierarchies with a DITMAX of two, two hierarchies with a 

DITMAX of three, and finally one hierarchy with a DITMAX of six. Note that the number of 

members in each hierarchy are not considered in this chart. 

 

Most inheritance across the systems is trivial, with well over half (1739 of 2440, 71%) of 

hierarchies observed being of depth one. Additionally, all systems have >60% (avg. 76.66%) 

depth two hierarchies. 

Tempero et al. notes that “the depth of classes in the inheritance tree, does not increase 

with program size” (Tempero et al., 2008).  However, there is a clearly difference in use of 

(or attitude to) deeper inheritance hierarchies. While the deeper hierarchies are not 

Figure 34 - This chart shows counts of inheritance hierarchies by maximum depth of any root to leaf 
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restricted to larger systems, it is perhaps fair to say that there is more opportunity to 

accommodate more and deeper hierarchies in larger systems. 

Recommended values for DIT range from  a ‘typical’ value of 2 (Ferreira et al., 2012), in a 

survey of practitioners, Gorsheck obtained preferred thresholds of 3 or 5 for inheritance 

depth, although 20% of respondents did not care about inheritance maximum depth, and 

31% responded “indicating an awareness of depth but a tendency not to act on this 

information” (Gorschek et al., 2010). 

If a depth of two, three, or five were assumed as a ‘safe’ maximum, this would exclude 

10.33%, 4.71%, or 0.94% of hierarchies respectively. It is not clear what to do with this 

information. Ideally, guidance would have to cover every possible case – but a rule of 

thumb may only need to be applicable in most cases. However, if a hierarchy satisfies other 

design criteria (usefulness, domain modelling, low complexity), a depth cut-off seems 

arbitrary. 

The deepest hierarchy (org.eclipse.core.commands.common.EventManager, depth 10) from 

the eclipse system is a performant replacement for a common Java library type 

(java.util.Observable). However, it appears that many of the sub-classes of EventManager 

are implementation inheritance (Liskov, 1988) seeking to re-use the EventManager public 

methods and functionality while ignoring, in many cases, the accumulated functions of the 

super-types. As such this may not be a ‘proper use’ of inheritance. Large hierarchies are 

discussed in more detail in section 5.5.7.2.  

A further aspect to consider is reuse. The original DIT metric was inspired by the trade-off 

between beneficial reuse and the cost of keeping track of an increasing number of methods 

and classes (Chidamber and Kemerer, 1994). The relative lack of deep hierarchies indicates 

that the anecdotal ‘unmanageable’ deep hierarchies are relatively rare. 

In addition to application size, the notable users of inheritance (eclipse, JDK) are large, 

mature frameworks, which have been the subject of intense design effort.  As such, much 

of the common behaviour may have been consolidated – the presence of inheritance may 

indicate the degree of ‘compactness’ in the design. 

It is possible that other factors are in play – some work on inheritance depth has focused on 

non-functional factors such as conceptual integrity in hierarchies (Dvorak, 1994), or effect 

of inheritance depth on maintenance (Daly et al., 1996; Harrison et al., 2000). However, 
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there is no general accepted way to assess the conceptual integrity or maintainability of an 

inheritance hierarchy. 

Summary of Depth of Inheritance: [KF 5.5] Most inheritance is shallow. [KF 5.6] Inheritance 

hierarchy depth thresholds proposed in other work are not representative of ‘normal’ use –

with many falling well under the limits and well over the limits. 

5.5.3.2 Hierarchy Width 

This study has not focused on the conventional NOC metric (Chidamber and Kemerer, 

1994), instead looking at overall hierarchy width. The NOC width measurement focuses on 

the number of descendants from an individual super-type.  This is considered a measure of 

hierarchy complexity (more methods and classes), member complexity (behaviour may be 

difficult to predict), and potential reuse (Chidamber and Kemerer, 1994).  

Harrison et al. discuss the issue of the representativeness of the traditional NOC measure 

and notes that their solution was to develop a similar metric, Breadth of Inheritance Tree 

(BIT) which summarises the width of a hierarchy into a vector of widths at each hierarchy 

depth (Harrison et al., 2000). In this study, the interest was primarily in capturing a single 

notion of width per hierarchy, without any notion of growth rate which the vectors 

generated by the BIT metric might permit. 

Hierarchy width in this case is defined as BITMAX, the maximum count of classes at any depth 

throughout the entire depth of a hierarchy.  This figure will be at least as large as the 

largest NOC measure in each hierarchy, and would be the maximum value in the BIT vector. 

So, previous work on NOC will provide a lower bound on what is observed when examining 

hierarchy width as it is defined here. 

Figure 36 shows the structure of a hierarchy from the ant system – where yellow circles are 

local types that are abstract classes, and red circles indicate local concrete classes.  This 

hierarchy may be considered ‘well formed’ in that it has an abstract body, with concrete 

class leaves. In this hierarchy, the NOC for any node will be no higher than two (for direct 

children), however the BIT (hierarchy width) of the third level is four (four classes wide). If 

this hierarchy were to continue to expand in the same way, the NOC would remain steady 

at a value of two for any given node, while the BIT would double at each level. The BITMAX of 

the hierarchy is the largest number in the BIT column. 
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Figure 36 shows the BITMAX of the hierarchies in the examined corpus – for example the left 

most column indicates that ant-1.8.4 has 29 hierarchies of width one (light blue), up to one 

hierarchy in the top 1% range (44-542). 

Like depth, small values dominate across the systems. Many inheritance hierarchies (1043, 

43%) do not branch (are width one), and 21% (515) of hierarchies’ branch only once. While 

the accumulation of ancestors is a concern for comprehension of leaf types, there is less 

discussion of hierarchy width in the literature.  Wider hierarches may generate more paths 

from hierarchy root to leaf, but sibling classes (at the same depth) do not increase 

complexity as ancestors do. Consequently, the perceived ‘cost’ of widening a hierarchy may 

be less than that of deepening it. 

In contrast to depth (Figure 35), wide hierarchies are more common in systems 

independent of size.  Most systems contain a hierarchy in the top 10% of widths, and many 

having at least one in the top 1%. Another point to note is the very high numbers in the top 

1% (44-542) range of hierarchy widths. Depth tails off at depth 10 in this study, though 

depths as high as 39 have been reported in other studies (Collberg et al., 2007). This is still 

an order of magnitude lower than the widest hierarchies (542) indicating that hierarchies 

grow more by widening, than by deepening – and that that widening is less limited. 

Figure 35 - Illustration of NOCx: 2 vs BITMAX: 4 (org.axiondb.event.BaseTableModificationListener) 

DIT 

1 

2 

3 

NOC BIT 

2 1 

2,2 2 

0,0,0,0

0,0 

4 



187 
 

This may contribute to high fan-in objects identified by Potanin et al., as a hierarchy widens 

the root type may attract more dependants to use the types in the hierarchy 

polymorphically, especially if each leaf or subtype represents a separate use case or service 

(Potanin et al., 2005). This is not necessarily an indicator of poor design, simply that useful 

generalisations may attract many dependents. 

Figure 36 - Hierarchy widths in the examined corpus. Note that the top 1% and top 10% have been compressed 
for scale 

Guidelines recommend that hierarchies should be refactored to extract intermediates with 

common behaviour when the number of immediate subtypes from one parent is larger 

than some value such as 27 (Johnson and Foote, 1988) or 9 (Suryanarayana et al., 2015). It 

is not clear if the wide hierarchies identified here have no common behaviour, or if this has 

simply not been consolidated. 
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Summary of Hierarchy Properties: [KF 5.7] Most hierarchies are simple and narrow (width 1 

or 2), with depth rarely reaching 10, while width often reaches 10 and frequently goes well 

beyond this value.  [KF 5.8] Population is not uniform and this imbalance calls into question 

the representativeness (and thus usefulness) of system and corpus level averages. [KF 5.9] 

Depth may be limited somewhat by system size, width less so. [KF 5.10] Contrary to 

guidance, very wide hierarches are common. 

5.5.4 Public Interfaces and Method Novelty 

A native interface is defined in this study as all the public methods provided by a concrete 

class or abstract class. This includes inherited public methods from super-classes and 

interfaces. Figure 37 shows the distribution of size in native interfaces among hierarchy 

members – this yields a long-tailed distribution with 80% of hierarchy members having 10 

or fewer public methods.  

Figure 37 - Hierarchy Members - public interface size (public method count) 

Most inheritance members (and thus hierarchies) have relatively small (narrow) public 

interfaces. Based on public method count, the top 10%, 1%, and 0.1% of hierarchy 

members have methods in the range 17-1260, 56-1260, and 150-1260 respectively. The 

inheritance hierarchy members with very high numbers of methods are shown in Table 32.  

Note that the very largest hierarchy members (in terms of public methods) are all 

constrained, to a greater or letter extent, by some external standard.  Three of the largest 

hierarchy members are ‘generated classes’, while another is constrained by operating 

system API calls. 
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Table 32 - Top 0.1% of hierarchy members by size (number of public methods) 

Inheritance Member Methods Purpose 

org.eclipse.jface.text.TextViewer 150 Text displaying ‘widget’ 

org.eclipse.ui.internal.WorkbenchPage 150 UI view manager 

org.eclipse.jdt.internal.debug.eval.ast.engine.ASTInstructionCompiler 158 Compiles an AST to instructions 

javax.swing.text.JTextComponent 159 Base class for text component 

javax.swing.plaf.synth.ParsedSynthStyle 168 Look and feel format component 

org.eclipse.jdt.internal.corext.dom.GenericVisitor 170 No-op visitor for AST 

org.eclipse.jdt.core.dom.DefaultASTVisitor 170 No-op default visitor for AST 

org.eclipse.swt.custom.StyledText 175 Styled text renderer 

org.eclipse.swt.internal.ole.win32.COM 183 Native OS system calls 

org.eclipse.swt.internal.gdip.Gdip 186 Low-level graphics operations 

org.eclipse.jdt.internal.corext.dom.HierarchicalASTVisitor 188 ASTNode decorator 

net.sf.freecol.common.model.Unit 201 Game concept, fat class 

net.sf.freecol.common.model.Player 209 Game concept, fat class 

javax.swing.JTree 211 Complex JComponent 

javax.swing.JTable 277 Complex JComponent 

com.sun.corba.se.impl.logging.POASystemException 288 Generated class, POA protocol 

org.eclipse.jdt.internal.compiler.problem.ProblemReporter 466 Error reporting tools 

com.sun.corba.se.impl.logging.OMGSystemException 528 Generated class, ORB protocol 

org.eclipse.swt.internal.win32.OS 1246 OS system calls 

com.sun.corba.se.impl.logging.ORBUtilSystemException 1260 Generated code, ORB protocol 

In addition, there are design constraints on other large hierarchy members that indicate 

that their size is not avoidable. For example, the abstract-syntax tree, and Java byte-code 

facing classes must provide, respectively, many similar methods, overloaded methods, and 

methods for handling each byte-code instruction. It is unlikely that the classes could be 

smaller while preserving cohesion.  

Consequently, when assessing size, it may be appropriate to consider the size of the set of 

possible messages. For example, a class may have a getter-setter pair for each attribute or 

handling method for each event type over some set of related properties. It may be difficult 

to argue that that class is too large simply because the set of properties in the problem (or 

indeed solution) domain is very large. Under these circumstances, a dimension of the 

design (class size) is directly driven by a dimension in the problem domain (size of a set of 

related properties). 

A novel method is defined here as a public method appearing in an inheritance hierarchy 

member that is not defined in the root type of the enclosing hierarchy. While a root method 

is a method appearing in a hierarchy member which is defined in a root type – redefinition 

likely means overriding.  

Figure 38 shows the presence of novel and root methods at each depth of inheritance 

hierarchy.  For example, the first column shows that at inheritance depth one (where the 
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hierarchy root is depth zero), among all hierarchy members at that depth, 89590 inherited 

public root methods are redefined, and 77903 public non-root methods are defined.  

Hierarchy members at depth one and two have a wide spread of novel method proportions.  

However, with increasing depth in a hierarchy, there are more hierarchy members with 

proportionately more novel methods, until depth ten, where most (86-94%) of the public 

methods in each hierarchy member are novel. Note also that the amount of overriding falls 

away with hierarchy depth indicating that very deep hierarchy members may be adding 

variation by some other means, such as re-defining non-root methods. 

Figure 38 – Overriding vs novel methods 

In shallower areas of the hierarchies there are members with very high novelty scores, 

indicating that novelty does not need to gradually build up.  Conversely deep hierarchy 

members show less of a continuum – there is a split around depth 4-5 where hierarchy 

members either become more novel or stay at novelty zero.  

These zero-novelty hierarchy members may only override or use constructor configuration 

to introduce variation, rather than novel methods. Around a twentieth (9542, 6.51%) of the 

hierarchy members analysed are in this ‘zero’ category, which do not add any novel public 

methods to their interface. These hierarchy members may be mostly or completely 

motivated by polymorphism – if so polymorphic criteria may be applied more stringently 

during assessment of these hierarchy members. Hierarchies with no novel methods (7%, 

398 in total) appear to be constrained in growth – with most of these (91%, 364) at depth 

one and none over depth three.  The largest no-novelty hierarchy (javax.swing.plaf. 
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nimbus.State) has 22 members, and the hierarchy member with the largest public interface 

(most methods) (org.eclipse.e4.ui.css.core.impl.dom.CSS2PropertiesImpl) in a no-

novelty hierarchy is 245 methods, again this non-novel hierarchy is shallow (depth 1). 

In terms of normal use, Figure 38 illustrates that a great many subtypes provide methods 

other than the public interfaces of the root type in their hierarchy. In addition, method 

overriding appears to tail off as the hierarchies deepen. While there is no direct relation to 

a specific guideline, the addition of novel methods indicates that access to hierarchy 

members is available other than via the native interface of the root-type, indicating that 

substitutability with super-type (polymorphism) is not the sole driver for inheritance use. 

This suggests that differentiation in shallow hierarchy members is via overriding and adding 

functionality, while deeper hierarchy members tend to be distinguished via adding 

behaviour. 

If this is generally the case – this may indicate that once overriding stops in a hierarchy, the 

deeper portions which are merely adding new behaviour might instead be ‘composed’ with 

the shallower parts of the hierarchy. 

Figure 39 shows an effect of depth in hierarchy on the amount of novel (non-root) methods 

in each type – note that the >50-60% novelty category is marked in red, so anything above 

(and including) this category indicates that these children are more different from the root 

type than they are like the root type. For example, the first column indicates that there are 

just under 9000 hierarchy members at depth one – of these 2428 have no novel methods.  

Figure 39, shows that a quarter of (non-root) inheritance members (5070, 25%) have zero 

novelty (introduce no new methods), and one-seventh are completely novel (2851, 15%). 

The effect of depth shows that there is a ‘base’ of zero-novelty in each depth category 

down to a depth of eight, while the remaining hierarchy members tend towards mid-high 

novelty as depth increases. Notably – there is also a bump in the figures in the 40-50% 

range indicating that slightly more hierarchy members than might be expected sit at around 

half inherited, half novel methods.  This increase is noticeable, even as hierarchies deepen. 

Niculescu et al. proposed that inheritance hierarchy members should contain a balance of 

inherited and implemented behaviour, with 50/50 being a good range this balance, with a 

tolerance of around 25% (Niculescu et al., 2015). Using this 25-75% novelty range covers 
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around two-fifths (7985, 39%) of hierarchy members, indicating that an assumption of 

balance may be useful in some cases, but is by no means the general case.  

 

Figure 39 - Effect of depth on % novel methods 

Summary of Public Interfaces: [KF 5.11] Large public interfaces are relatively rare in 

hierarchy members; most hierarchy members have narrow public interface (<10 methods). 

[KF 5.12] Some large hierarchy members are generated code or are constrained to be large 

due to some external factor such as a domain entity – so the reason for their size is non-

local. [KF 5.13] Novel methods are common - most inheritance hierarchy members are not 

consistent with the native interface of their root type.  [KF 5.14] Zero-novelty hierarchy 

members are usually in shallow hierarchies – novelty (adding functionality) may be required 

for depth. [KF 5.15] The frequency of novel methods indicate that reuse is a more common 

motivator than polymorphism [KF 5.16] Overriding falls away faster with depth than adding 

more methods. 
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5.5.5 Hierarchy Structure 

Inheritance use unavoidably creates structures as it is used. More extensive use of 

inheritance creates larger structures – a single root type may support tens or even 

hundreds of subtypes.   

5.5.5.1 Shape 

While some metrics capture the shape of a hierarchy indirectly, shape has not previously 

been studied in detail.  The structures identified here are based on observed structural 

differences between inheritance hierarchies, and not on any specific design guidance: 

• Line - hierarchy with no branching (includes simple two-member hierarchies) 

• Fan - hierarchy consists solely of one root and its immediate sub-types, previous 

literature has noted very wide hierarchies as a flying saucer shape (Lanza, 2003) 

• Subtrees - hierarchy consists of a branching root with at least one other branching 

node 

• Line-Branch - hierarchy root node that has a single child, then branches later (one 

or more times) 

• Branch-Line - hierarchy root node branches, and has no later branches, but does 

have depth of more than one. 

o May be considered a derivative Fan. 

These categories are based on observations via visualisation of hierarchies and provide an 

immediately accessible summary of an inheritance structure’s shape. Furthermore, these 

categories can be applied to any hierarchy, and include all possible legal hierarchy 

structures. 

Examples of each shape are shown in Figure 41, Figure 42, Figure 43, Figure 44, and Figure 

45. These figures show schematic views of inheritance hierarchies from systems in the 

Qualitas Corpus.   Round nodes indicate that a type is defined in local code (not third party 

or language libraries), the colours are red for concrete classes and yellow for abstract 

classes. 
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 Figure 44 – Line -  
org.eclipse.debug.internal.ui.viewers.AsynchonousModel 

Figure 43 - Branch-Line - 
org.eclipse.team.internal.core.subscribers.ChangeSetManager 

Figure 41 - Line-Branch - org.eclipse.jdt.internal.ui.viewsupport.JavaUILabelProvider 

Figure 40 - Fan or 'Flying Saucer' - org.eclipse.swt.graphics.Resource 

Figure 42 - Sub-Trees - org.eclipse.jdt.apt.core.internal.declaration.EclipseDeclarationImpl 
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Figure 45 shows the counts of each shape of hierarchy in each of the systems in the corpus. 

Most systems show a similar break-down of shapes, with line, fan, then subtrees being the 

most popular (note the logarithmic scale). 

Figure 45 - Breakdown of shape in corpus systems. Note: Log scale on number of hierarchies 

Line dominates – a further indication that much of the inheritance present in systems is un-

complicated (in this case non-branching).  The next most common shape in each system is 

fan, which represent many one-depth variations on a single super-type. The line and fan 

shapes account for 74% (1803) of all hierarchies examined – 94% (979) of line-shaped 

hierarchies are of depth one, and all but one line-hierarchy is shallow (DITMAX 1-3).  Finally, 

line hierarchies appear with 979 at depth one, 58 at depth two, 5 at depth three, and 1 at 

four, indicating that depth without branching is rare. Additionally, if a hierarchy does not 

branch at the root (line, line-branch), it is unlikely to branch subsequently. 

The next most common shape is subtrees, which capture 86% of the hierarchies in medium 

(DITMAX 5-6) and 96% of deep (DITMAX 7-10) hierarchies – indicating that branching is 

required for depth.  If we consider hierarchy width (BITMAX 1-542), 80% of hierarchies are of 

width 4 or lower, so width 2-4 might be considered a reasonable size for most hierarchies. 

Of the 497 hierarchies with a width (BITMAX) greater than four, 53% (263) of these are 

subtrees (31% are fan), if we consider hierarchies larger than width 19, the proportion that 

are subtrees increases to 79% - so not only do wide hierarchies branch, their branches 
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branch. The sub-tree category constitutes 15% of hierarchies examined, but contains 63% 

of all hierarchy members due to the size of these hierarchies.  

This has implications for the perception of inheritance in a system. With two thirds of 

hierarchy members being part of wider, deeper, overall larger hierarchies, this may be the 

default impression of inheritance hierarchy members, even though these members 

represent only 15% of hierarchies.  This may skew the perception of inheritance use, since 

the larger (and potentially less comprehensible) hierarchies are more visible. 

The largest hierarchy found has the root org.eclipse.core.commands.common.EventManager 

and consists of 1366 types in a hierarchy of depth 8, and root methods are never 

overridden.  The root of the hierarchy defined a replacement for a common idiom in OO 

languages – an observable type to which other objects can subscribe. There are 138 nodes 

which branch, many with dozens of children.  The hierarchy is too large to show here in any 

practical format. 

Summary of Shape: [KF 5.17] The same profile of shapes appears at the system level in most 

of the corpus. [KF 5.18] Inheritance use is dominated by simple hierarchy structures – line 

and fan. [KF 5.19] The fan structures examined indicate that hierarchies can grow arbitrarily 

wide. [KF 3.20] Deeper hierarchies without branching are rare. [KF 5.21] Relatively few 

hierarchies contain over half of inheritance hierarchy members [KF 5.22] The imbalance in 

scale of the larger hierarchies skews the apparent complexity of hierarchies. 

5.5.6 Abstract classes 

In this section, the use of abstract classes in inheritance hierarchies is discussed.  54% 

(1325) of the inheritance hierarchies examined contain at least one abstract class – with 

50% (1207) of the hierarchies containing 1-3 abstract classes.  This is especially true in 

larger hierarchies where the abstract hierarchies form large backbones within the 

hierarchies. Hierarchies are observed to have either a contiguous backbone where all the 

abstract classes in the hierarchy form a contiguous structure, or a fragmented backbone 

has gaps in the structure of its abstract classes. Examples of intact (Figure 47) and 

fragmented (Figure 46) use of abstract classes are shown below. Note that in Figure 46, the 

large yellow arrows indicate the locations of abstract classes, all other types in the 

hierarchy shown are concrete classes. 
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Inheritance is used to satisfy two properties – polymorphism, and reuse – which require a 

common root type, and new classes with access to the re-used code respectively. These 

properties do not place any constraints on the intermediate structure connecting the root 

type to the eventual leaves. 

The relevant guidance encourages the use of abstract classes to fill in the intermediate 

structure between the root type and the leaves of a hierarchy. The most relevant guidance 

is the Dependency Inversion Principle which states that “High level modules should not 

depend upon low level modules. Both should depend on abstractions. Abstractions 

should not depend on details. Details should depend on abstractions” (R. C. Martin, 

1996), and Johnson and Foote’s recommendation that “The top of the class hierarchy 

should be abstract” where their example indicates that one concrete class directly 

inheriting from another should be avoided by creating a common abstract super-type 

(Johnson and Foote, 1988). 

In Figure 48 each grey circle represents the number of abstract classes in a hierarchy, while 

the red spots indicate the number of abstract classes in that hierarchy that are linked in a 

contiguous sub-tree (or backbone) within that hierarchy. Hence each grey circle containing 

Figure 47 - Hierarchy with a complete abstract 'backbone' (freemind.modes.LineAdapter) 

Figure 46 - Hierarchy with sub-trees shape and fragmented abstract class structure, abstract classes indicated with yellow 
arrows (freemind.extensions.HookAdapter) 
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a red dot represents a hierarchy with a contiguous backbone consisting of all abstract 

classes in the hierarchy. 

 Figure 48 - Abstract classes in hierarchy vs largest contiguous abstract tree in that hierarchy 

This shows that most of the hierarchies’ largest abstract-class tree (the red dots) are the 

same sizes as the count of all abstract types on that hierarchy (the grey circle). In the 

hierarchies observed, only 3% (70 of 2440) of the hierarchies have abstract classes that are 

not in a contiguous sub-graph within the containing hierarchy. These fragmented 

hierarchies are indicated where the red spot is not in the centre of the grey circle. Note that 

while there are non-contiguous hierarchies as small as 7 members, most non-contiguity is 

found in the larger hierarchies, with over half of the largest 50 hierarchies being non-

contiguous. The cumulative total percentage of non-contiguous hierarchies is shown as an 

orange line to illustrate that that the non-contiguous hierarchies have a higher count of 

types. 

Hierarchies with fewer types (concrete classes and abstract classes) appear to have a more 

regular internal structure, as they lie on or near the diagonal indicating that all their 

abstract classes are on one contiguous structure. Among the very large hierarchies there is 

more of a mixture – there are at least two factors at play in these cases. 
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Firstly, as hierarchies become larger (usually via branching and depth as described above), a 

higher proportion of the hierarchy is composed of leaves, which are usually concrete 

classes – this may explain why the larger hierarchies do not approach the diagonal as much 

as the smaller hierarchies. Secondly, as hierarchies grow, abstract classes appear to be used 

more intermittently, introducing non-contiguous abstract classes, which means that (for 

each hierarchy) the largest contiguous tree (dot) will drift further from the count of abstract 

classes (grey circle). 

With regards to the guidance, it may be better to assess – what proportion of non-leaf 

hierarchy members are abstract classes. It is also not clear if non-abstract non-leaf classes 

could or should be made abstract. 

Summary of Abstract Classes: [KF 5.23] Abstract classes, are present in around half of the 

hierarchies and are, in most cases, arranged in a continuous ‘backbone’ within the 

hierarchy.  [KF 5.24] Larger hierarchies make proportionately less use of abstract classes 

and are more likely to have non-contiguous abstract backbones. 

5.5.6.1 Interaction of Shape and Abstract Classes 

Only 3% (70 of 2440) of the hierarchies examined have abstract classes that are not in a 

contiguous sub-graph within the containing hierarchy.  When broken down by hierarchy 

shape, 93% (65) of these fragmented hierarchies have a sub-trees shape, with the other 

shape categories having only one or two out-of-order abstract classes (where an abstract 

class depends on a concrete class).   

Figure 49 shows the hierarchies in each shape and depth division along the x-axis, note 

once again that depth one is root plus one level and so on.  Each column is further divided 

by how cohesive the abstract backbone inside the hierarchies are in terms of what 

proportion of the abstract classes in the tree is contiguous (0%/1-25%/26-50%/51-75%/75-

99%/100%).  For example, the first column represents that there are 156 depth-2 branch-

line hierarchies (root type plus two or more direct subtypes).  The divisions in the bar 

indicate that most of these hierarchies (green segment) have an intact abstract skeleton, 

one has a somewhat fragmented inner structure (yellow segment), and the remainder have 

no abstract classes (blue segment).  



200 
 

Overall, a similar pattern to that shown in  Figure 48 is shown – the large number of green 

segments indicate fully contiguous abstract-class structures across many of the shape 

categories.  Notably, this contiguity falls off with depth in sub-tree hierarchies, and 

increases with depth in line-branch hierarchies. In addition, when contiguous (100% green) 

falls away in sub-trees hierarchies, this is replaced by almost contiguous ratings indicating 

that there are holes in the structure of the abstract class backbone, rather than a general 

absence of abstract classes. Contrast this with the replacement of full contiguous 

backbones (green) with no backbones (light blue) at all in branch-line, fan, and line – 

indicating an all or nothing approach to adding abstract classes in these hierarchies. 

Figure 49 - Shape and Depth of hierarchy effect on abstract backbone integrity. Note root = depth zero. 

A hierarchy is considered out-of-order if it contains a sequence of types where one type 

inherits from a less abstract type – this is direct breech of the DIP - commonly where an 

abstract class inherits from a concrete class.  Figure 46 shows an example of a sub-tree’s 

structure with out-of-order use of abstract classes. Overall, 46% of hierarchies contain no 

abstract classes, of the remaining 54%, only 6% (146) are out-of-order. Sub-trees account 

for 75% (109) of out-of-order hierarchies – so in larger hierarchies, where a continuous 
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chain of abstractions may be of most use in managing a complex abstraction – there are 

more out-of-order hierarchies. This may indicate that hierarches that grow over time are 

not being consolidated to keep their structure uniform. 

Summary of Shape and Abstract Classes: [KF 5.25] In many hierarchies, there is an all or-

nothing approach, where abstract classes in a hierarchy form a continuous structure, or are 

not present at all.  [KF 5.26] In deeper hierarchies, abstract classes may form an inner 

structure, but these are often also out-of-order. [KF 5.27] Hierarchies which contain abstract 

classes are generally in-order, (most super-types are abstract classes). 

5.5.7 Method Invocation 

In this section, method invocations on inheritance hierarchy members are used to gain 

insight into how hierarchies are used in systems. Guidelines and textbook examples of 

inheritance hierarchies emphasise that hierarchy members are accessed polymorphically 

via the native interface of the hierarchy root.  Alternatively, an inheritance member may be 

used directly, relying on hierarchy membership primarily for code-reuse. 

Overall, 45% (18141, median 51%) of hierarchy members have no direct method calls 

(excluding constructors), this may indicate that these hierarchy members are being 

accessed polymorphically. This can be confirmed further by separating out method 

invocations to root types. Figure 50 shows method invocations on hierarchy members 

divided by locally defined methods (grey), and inherited methods (orange).  

To see past the size differences between systems, each pair of rows represents 100% of the 

method invocations to hierarchies in each system. For example, the first two rows show 

that jhotdraw root types receive 78% of method invocations to hierarchy members, while 

the next row shows that the non-root methods receive 9% of method calls as local (novel) 

methods, and the remaining 13% are inherited method calls to non-root types. 

In all but one system (freecol), there is a much higher proportion of method invocations to 

root types than subtypes. Calculated as total invocations to root types minus total 

invocations to non-root types - this ranges from 25-86% (median 49%) in favour of root 

types. This indicates that the ‘textbook’ view of accessing hierarchy members via the root-

type is not unfounded, but that this does not explain all method invocations on hierarchy 

members. For example – the low invocation-to-root systems appear to have a higher 
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proportion of invoking inherited methods on subtypes. To investigate this further, the 

pattern of method invocations must be considered for each hierarchy. 

Figure 50 - Method Invocations - roots vs non-root types 

Patterns of method invocation on hierarchies can be classified by the main motivators for 

the use of inheritance - polymorphism and reuse. Reuse is difficult to estimate as it may 

depend upon object composition, and how often methods are invoked at runtime 

(Niculescu et al., 2015).  Polymorphic access, on the other hand may be estimated because 

it leaves a structural trace where dependent code refers to a super-type in place of a 

subtype. Each hierarchy member may be classified into one of four possible categories - 

never directly invoked, invoked only for root-defined methods, invoked only for local (novel) 

methods, and invoked for both root-defined and local methods. If, for example, a hierarchy 

is used polymorphically, methods calls would be directed to a reference of the root type, 

regardless of the actual subtype of the object handling the method call. From this, five 

distinct (automatically distinguishable) modes of use for hierarchies can be defined at the 

hierarchy level, shown in Table 33. The category names have been defined to reflect the 

use of the hierarchies. 
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Table 33 - Method invocation patterns 

Invocation 
Pattern 

Description 

Invocations 
on Root 

Invocations on  
Non-Root 

Root 
Methods 

Root 
Methods 

Novel 
Methods 

Strict 
Polymorphism 

All invocations to hierarchy members 
are to root-type references (excepting 

constructors) 
✓   

Common 
Interface 

Polymorphism 

Methods are invoked on non-root type 
references, BUT only root methods are 

invoked. 
✓ ✓  

Balanced Reuse 

Novel methods are invoked on 
hierarchy members, BUT if a member is 
directly invoked, at least one invocation 

is a root method. 

✓ ✓ 

Aggressive Reuse 
Members are only invoked for novel 

methods 
  ✓ 

Fragmented 
Invocations to hierarchy members are a 

mixture of the above. 
Mixed 

Each category of use has been labelled to describe the property of the hierarchy that is 

captured. While it is obvious in the case of Strict and Common Interface Polymorphism that 

substitutability is important, the other categories are less clear. With increasing invocations 

of non-root methods, the hierarchies in the reuse- categories appear to be less well defined 

by the root of the hierarchy, indicating that polymorphism is perhaps less important in 

these cases. With decreasing method invocations to root methods, these have been 

distinguished by the severity of this ‘distance’ from the root type. Finally, the fragmented 

category is assigned where there is no other suitable category. 

Categorisation was performed by applying the above criteria to each to method invocation 

on each hierarchy member, then to each hierarchy in turn and was applied strictly. For 

example, a single non-root invocation on one hierarchy member is sufficient to downgrade 

a hierarchy from strict- to common-interface polymorphism. As such fragmented is a catch 

all category for hierarchies where invocations pattern varies among members, and the 

entire hierarchy cannot be placed in one of the other categories. 

Figure 51 shows the number of hierarchies which exhibit each pattern of method 

invocation. This is further broken down by the number of members in the hierarchies, and 

whether the root of the hierarchy implements an interface.  

For example, the first column indicates that there are just under 1200 hierarchies with 2-7 

members where the root implements no interfaces.  Of these hierarchies, 487 show strict 
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polymorphism (light blue) in which all method invocations are via the hierarchy root type. 

 

Figure 51 : Invocation Pattern vs Hierarchy Count 

The invocations via interfaces are not counted here, so hierarchies where there the root 

implements an interface have been segregated for clarity.  Figure 51 shows that this makes 

surprisingly little difference in the profiles – the reason for this is not clear.  

54% of hierarchies are in the Strict or Common Interface Polymorphism categories 

indicating that access to just over half of hierarchies is exclusively polymorphic, of these, 

47.1% are accounted for by fan and line hierarchies. This illustrates that larger hierarchies 

tend to be in the non-polymorphic categories indicating that these hierarchies are perhaps 

more driven by reuse.  

It is important to stress, as above, the skewing effect of large hierarchies on what might be 

viewed as ‘normal’. Figure 52 shows the same plot as Figure 51, except that the sizes 

(member count) of the hierarchies in each category are used. This illustrates that most 

inheritance members are in fragmented hierarchies which do not have uniform use of 

polymorphism use across hierarchy members.  

Summary of Method Invocation: [KF 5.28] Method invocations on hierarchy roots indicate 

that just over half of hierarchies appear to be used exclusively for polymorphism. [KF 5.29] 

Method invocation patterns indicate that larger hierarchies have inconsistent ‘use’ among 

their members.   
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Figure 52 : Invocation Pattern vs Hierarchy Member Count 

5.5.7.1 Casting 

One of key properties of inheritance in Java is polymorphism – the ability to have multiple 

objects play the same ‘role’ without the need to know the raw type of the object. Casting 

might be viewed as the opposite operation – the practitioner asserts in code that an object 

of one type can be used as an object of another type. Casting can be used to gain access to 

object properties that are hidden by abstractions – such as bypassing an interface to 

retrieve a raw type. 

Across the systems there are 127736 cast operations. Of these, 80565 (63%) involve an 

inheritance hierarchy member. Across the examined systems, 4-36% (median 20%) of 

hierarchy members are involved in at least one cast. This proportion of casting-participation 

is similar if other population features such as depth in hierarchy, % of novel methods are 

considered. This indicates that casting may simply be another ‘fact of life’ where 

inheritance is used. 

Of these 80565 casts, some are from one hierarchy member to another in the same 

hierarchy (21%, 1659).  Other notable groups are casts are into a hierarchy from outside 

(6%, 2769), out of a hierarchy (4%, 1846). The remaining casts are between hierarchy 

members that are not in the same hierarchy (37%, 29448), on examination, many of these 

involve interfaces implemented by all of part of the hierarchy. There appears to be a high 

level of substitution ‘traffic’ between library super-types, interfaces, and user defined 

hierarchy members that would require much more detailed study to characterise. 
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Figure 53 shows a breakdown of casting for inheritance hierarchy members at each depth. 

For example, the first column shows that there are just over 1000 cast-participant 

inheritance hierarchy members at depth zero (hierarchy roots), of these, most 51% (orange, 

535) are cast to some other type, 17% (blue, 182) have been cast from another type, and 

finally 31% (grey, 329) have been involved in casting in both directions. The yellow line is 

scaled against the right-hand side axis and shows the average number of cast operations on 

cast participants at each depth. Note that there are no hierarchy members at depth nine 

which are party to any cast operations. 

 
Figure 53 - Effect of Depth in Hierarchy on Casting Incidence 

There is a marked decrease in proportion of types involved in casting among the root types 

(depth zero), which corresponds to fewer root types – this is reasonable given the root is 

the narrowest part of the hierarchy. However, there is a notably high amount of average 

cast operations on root types – both in terms of the type (to, from, both), and the number 

of casts. This indicates that abstractions are frequently bypassed, suggesting that they may 

be insufficient for meeting the needs of hierarchy clients in these systems. 

Overall, most hierarchy members participate in ‘cast-to’ operations, in the case of the root 

it is not clear why this would be the case – the only conversion that would require a cast to 

a root type are interface or java.lang.Object types are being downcast. On the other hand, 

casting may be used for documentation purposes. For non-root types, the case is perhaps 

clearer although it is notable that there is no sign of large numbers of casting operations in 

deeper hierarchies. 
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Summary of Casting: [KF 5.30] There is a lot of casting in the systems examined, including a 

large number related to inheritance hierarchies. [KF 5.31] Root types are slightly less likely 

to be involved in a cast, but if they are, they are involved in about twice as much casting on 

average compared to non-root types. 

5.5.7.2 Large Hierarchies 

This section reports on the largest hierarchies and what observations can be made about 

them. 

The largest hierarchy examined is EventManager (DIT 10) in eclipse, which is similar to the 

java.util.Observable class supplied in the standard Java libraries – though the 

documentation of EventManager notes - “This handles the management of a list of 

listeners -- optimizing memory and performance. All the methods on this class are 

guaranteed to be thread-safe.” – these additional constraints explain why the library class 

was not used. The developers of the eclipse system have detected an issue with such a 

large and sprawling hierarchy – as one recommends: 

“Deprecate org.eclipse.core.commands.common.EventManager. This class is 

unnecessary and promotes an "implementation inheritance" pattern that is wrong in so 

many ways.” 

(Keller, 2016) 

They also note that “EventManager is the superclass of many API classes”, so any future 

improvements are constrained by these dependencies.  The structure, is depreciated and 

documented to discourage future reuse, but remains in the design. 

The next deepest hierarchies (DIT 8) have the roots org.eclipse.jface.viewers.Viewer (15 

root methods) and org.eclipse.jface.window.Window (18 root methods). While these 

hierarchies are not quite as large (85 and 361 types respectively), they do have similarities 

to EventManager. 

• They are deep and wide compared to the rest of the corpus. 

• They have a distinct, continuous, backbone of abstract classes comprised of most of 

the abstract classes in the hierarchy (83-88%), and their root type is an abstract 

class. 

• Method invocation is fragmented (see Table 33) – with some subtype methods 

being invoked directly, and others only via root methods. 
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However, there are differences. The Viewer and Window hierarchies have fragmented 

method invocation and increasing method overriding as depth increases– indicating 

functional divergence from the root type. Contrast this with EventManager, which has no 

overriding of root-defined methods. These examples indicate that hierarchies can grow 

very large with or without substantial amounts of overriding. A factor to consider is the 

amount of behaviour that is available to override, Viewer and Window have 15 and 18 public 

methods respectively, while EventManager has 5 protected final methods – meaning that 

these cannot be overridden. This may reflect the approach proposed by Bloch where 

practitioners should “design and document for inheritance or else prohibit it” (Bloch, 

2008). 

There are 48 sub-tree hierarchies of depth 5 or greater (of 377 total) – these include the 

top half of hierarchy members in sub-trees structures (7244 of 14338 types).  These most 

complex hierarchies have been manually inspected to identify any commonalities in the 

purpose or characteristics in these large structures. If there is no obvious mapping to the 

property under consideration, the hierarchy is left unassigned, in line with the manual 

classification process used by Steimann and Meyer when classifying interfaces against a 

theory-based taxonomy (Steimann and Mayer, 2005).  A full listing is shown in Table 34, 

note that the large hierarchies are listed in order of the number of hierarchy members. 

Initially, the abstraction represented by the root type is considered in relation to guidelines:  

• Generalisation (12) – The root type forms the top of a recognisable is-a 

relationship. Sometimes called a partial type (Halbert and O’Brien, 1987). 

• Grouping (6) – The root abstraction is small and well-defined, but does not define 

the subtypes and there is lots of semantic variation in the hierarchy (Steimann and 

Mayer, 2005). 

• Cross Cutting Concern (8) – an aspect or trait that is more associated with a 

concrete implementation than a Grouping root type – representing an 

implementation detail or architectural abstraction. 

This spread of uses indicates that generalisation (the textbook polymorphic ‘is a’ 

relationship), is a common motivator for large hierarchies. However, many hierarchies also 

exist to propagate enabling capabilities or simply reuse implementation. Additionally, 12 

hierarchies remain unclassified –indicating that these high-level distinctions are not always 
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clear. Next, the overall structure of the hierarchy is examined to determine if there are any 

patterns or architectural aspects to the hierarchy: 

• Context (DCI) (1) –  hierarchy members resemble Contexts from DCI  – enactment 

of a use case (Reenskaug and Coplien, 2009). 

• Event/Message (2) – subtypes are messages, where type variation (names) carries 

semantic information, rather than variations in behaviour. 

• Mirror (4) – the hierarchy mirrors another structure, defining members (e.g. 

decorators, visitors) based on the other structure which is usually another 

inheritance hierarchy. 

• Pattern (18) – the hierarchy structure is defined by an obvious architectural or 

design pattern.  (Adapter (1), Composite (11), Observable (3), Pipe and Filter (2), 

Strategy (1)) 

Over half of the large hierarchies (25/48) examined have a recognisable pattern – which 

may make understanding and maintaining the hierarchy simpler. However, these require 

reviewing the entire hierarchy in some cases, for example, mirror hierarchies are more 

comprehensible if the reader has a passing familiarity with an additional external model.  

Note that composite structures are the most common patterns in large hierarchies by some 

way – demonstrating that whole-part relationships are commonly modelled using 

inheritance.  This does highlight that the structure, purpose, and trade-offs relating to many 

large hierarchies may not be recognised by a practitioner without training in design 

patterns.  

The manual examination of the large hierarchies revealed two further high-level 

motivations for the creation of hierarchies – again these are shown in Table 34. Firstly, as a 

Framework Hook (12), demonstrating that framework extension points are being used, and 

can form the basis of substantial-sized hierarchies. The second conspicuous influence has 

been labelled Specification/API Tied (12) – where the structure of the hierarchy is bound to 

some external standard – indicating that the hierarchies represent a highly structured 

problem domain e.g. 5 of these are Composites representing structures such as document 

standards. These are of note as there may be an obvious mapping form the domain to 

particular implementations (such as inheritance or design patterns) which may simplify 

design-decision making. 
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Table 34 : Summary of inspection of large hierarchies (DIT >=5) 

      Root Structure 

Types 
in Tree 

Source System Root Type depth width Abstraction 
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20 argouml-0.34 org.tigris.gef.presentation.FigText 6 6 GUI elements            X  

21 Gizmoball java.util.Observable 5 5 Enable observer pattern X        X     

21 aoi-2.8.1 buoy.widget.CustomWidget 5 11 GUI elements            X  

24 columba-1.0 javax.swing.tree.DefaultMutableTreeNode 5 8 Mutable tree nodes     X       X  

25 eclipse_SDK-4.3 org.eclipse.jdt.apt.core.internal.declaration.EclipseDeclarationImpl 5 7 AST declaration nodes        X     Java AST 

28 eclipse_SDK-4.3 org.eclipse.ui.internal.intro.impl.model.AbstractIntroElement 5 8 
Start-up configuration for 

plugin 
            Plugin 

configuration 

29 eclipse_SDK-4.3 org.eclipse.jdt.internal.core.JavaElementInfo 6 9 Java language elements   X           

31 JHotDraw_7.0.6 org.jhotdraw.draw.AbstractFigure 5 12 Figure in drawing canvas     X       X  

31 eclipse_SDK-4.3 org.eclipse.jdt.ui.text.java.correction.ChangeCorrectionProposal 5 17 
Context sensitive change 

proposal 
 X         X   

34 java_8u60 javax.swing.text.View 6 10 
View in MVC - lightweight 

proxy for model entity 
    X       X  

37 java_8u60 com.sun.org.apache.xerces.internal.dom.NodeImpl 5 12 Document object model     X        DOM 

40 eclipse_SDK-4.3 org.eclipse.jdt.internal.compiler.lookup.Binding 5 15 Type bindings for compiler     X        Compiler 
notation 

40 java_8u60 java.io.OutputStream 5 15 Writing bytes  X        X    

40 java_8u60 org.omg.CORBA.LocalObject 5 22 
CORBA interface definition 

language object 
representation 

            CORBA IDL 

43 java_8u60 java.io.InputStream 5 17 Reading bytes  X            

51 eclipse_SDK-4.3 org.eclipse.pde.internal.core.text.DocumentXMLNode 5 29 XML document nodes     X         

53 freemind-0.9.0 freemind.extensions.HookAdapter 5 26 
Plugin 'hook' 

implementations 
X            Plugin API 

56 java_8u60 java.util.AbstractCollection 5 29 
Skeleton for collections 

implementations 
 X            

56 eclipse_SDK-4.3 org.eclipse.jdt.core.dom.ASTVisitor 6 31 Visitor companion hierarchy   X     X      

60 eclipse_SDK-4.3 org.eclipse.core.runtime.jobs.JobChangeAdapter 7 19 
Adapter to implement 

JobChangeListener 
  X           

62 argouml-0.34 org.tigris.gef.presentation.FigNode 5 23 Diagram elements  X          X  

65 eclipse_SDK-4.3 org.eclipse.core.databinding.observable.ChangeManager 5 35 Making things observable X        X     
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65 eclipse_SDK-4.3 org.eclipse.emf.ecore.impl.MinimalEObjectImpl.Container 6 18 Wrapper   X X        X  

72 eclipse_SDK-4.3 org.eclipse.jetty.util.component.AbstractLifeCycle 7 20 
Has lifecycle start, end, and 

stages 
X  X         X  

74 eclipse_SDK-4.3 org.xml.sax.helpers.DefaultHandler 5 40 XML parser/generator            X XML 

76 eclipse_SDK-4.3 org.eclipse.ltk.core.refactoring.Change 5 25 Change to UI or data element      X        

76 java_8u60 java.util.EventObject 5 32 Message to be passed  X     X       

84 eclipse_SDK-4.3 org.eclipse.swt.internal.mozilla.nsISupports 5 64 Platform neutral commands            X Mozilla NSL 

85 eclipse_SDK-4.3 org.eclipse.jface.viewers.Viewer 8 16 
Adapts model to viewable 

widget 
 X            

87 argouml-0.34 javax.swing.JPanel 5 37 GUI elements            X  

97 eclipse_SDK-4.3 org.eclipse.core.databinding.property.value.ValueProperty 5 48 Program administration   X           

99 eclipse_SDK-4.3 org.apache.lucene.util.AttributeSource 5 78 Language processing filters          X    

103 java_8u60 com.sun.org.apache.xpath.internal.Expression 6 34 XPath expressions     X        Xpath 
standard 

106 java_8u60 java.awt.Component 6 42 UI non-menu components     X         

109 azureus-4.8.1.2 org.bouncycastle.asn1.ASN1Encodable 5 56 Encryption library component            X  

110 java_8u60 com.sun.org.apache.xalan.internal.xsltc.compiler.SyntaxTreeNode 6 57 XSLT expressions     X        XSLT  

141 freecol-0.10.7 net.sf.freecol.common.model.FreeColObject 6 57 Save/loadable entity X             

142 eclipse_SDK-4.3 org.eclipse.ui.forms.AbstractFormPart 6 62 
Part of a form, mainly 

concerned with saving, 
validating and updating data 

 X            

157 eclipse_SDK-4.3 org.eclipse.swt.widgets.Widget 7 58 UI element  X            

177 eclipse_SDK-4.3 org.eclipse.jdt.internal.compiler.ast.ASTNode 7 44 Java abstract syntax tree     X        Java AST 

238 java_8u60 javax.swing.plaf.ComponentUI 6 93 Pluggable look and feel        X      

361 eclipse_SDK-4.3 org.eclipse.jface.window.Window 8 135 Window inside main UI  X            

373 ant-1.8.4 org.apache.tools.ant.ProjectComponent 6 155 Component in a project X             

449 eclipse_SDK-4.3 org.apache.tools.ant.ProjectComponent 6 200 Grouping   X  X         

460 eclipse_SDK-4.3 org.eclipse.jface.dialogs.DialogPage 6 183 Dialogue page  X      X      

620 eclipse_SDK-4.3 org.eclipse.core.runtime.PlatformObject 7 186 Adaptable object X             

650 java_8u60 java.lang.Throwable 5 290 Exceptional event for JVM  X     X      JVM 
specification 

1366 eclipse_SDK-4.3 org.eclipse.core.commands.common.EventManager 10 542 Observable entity X        X     
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There is no strong relationship between the semantic characteristics presented in Table 34 

and the shape or usage characteristics described in the other sections.  Most (45) of the 

large hierarchies show a Fragmented or Balanced Reuse invocation profile, with only the 

most generic hierarchies (container and adapter) having Common Interface Polymorphism.  

Most (36) of the hierarchies also show a mixture of overriding and new methods. 

Summary of Large Hierarchies: [KF 5.32] Reuse and substitutability appear to be strong 

influences for some large hierarchies, but not all. [KF 5.33] Many large hierarchies have 

strong external motivators such as design patterns, other design structures, or structures in 

the domain, which may determine final shape more than practitioner choice. [KF 5.34] There 

is no indication that the external motivations correspond to the empirical properties of 

hierarchies, indicating that understanding of both is required to assess a hierarchy. 

5.6 Discussion 

This section discusses the results in relation to the research questions and surrounding 

literature and relates the findings to previous work. 

5.6.1 RQ5.1: How is inheritance used? 

Inheritance is present in large amounts in the corpus [KF 5.1] – inheritance is in common 

use and is thus important to software construction and design. The average levels of 

definition-using-inheritance are like those found in previous studies [KF 5.2] - around three-

quarters of types are defined using some form of inheritance. However, systems achieve 

similar levels of definition-by-inheritance in different ways [KF 5.4] - smaller systems have 

proportionally more type-definition using inheritance, but prefer interfaces; while larger 

systems define proportionately fewer types using inheritance, but are more likely to use 

concrete inheritance when they do. Variation between systems calls into question the value 

of corpus-wide averages [KF 5.8]. 

Use of inheritance enables logical substitutability and optional reuse. Based on method 

invocations to hierarchy members, just over half of hierarchies are only accessed via the 

root type [KF 5.28] indicating substitutability is a key motivator for inheritance use. 

However, the number of novel methods present indicate that reuse is also a common 

motivation for inheritance use [KF 5.15] since these novel methods must be accessed via a 

direct reference to the raw type or indirectly via other methods.  
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Much of inheritance use is trivial. Many types are only extended one or two times in most 

cases [KF 5.3] indicating that low-level reuse is common, but that few individual types are 

extended (directly or indirectly) many times. Most hierarchies are shallow [KF 5.5], and 

most hierarchy members offer a small number of methods [KF 5.11], with most hierarchy 

members having < 10 methods. Most inheritance hierarchies are also simple – many 

variations on a single type (fan), or repeated specialisation without branching (line) [KF 

5.18]. However, there are major differences within the population [KF 5.8], with much more 

variation in width than depth [KF 5.7], and some outlier hierarchies growing very deep and 

wide [KF 5.6].  

Outlying hierarchies are noticeably large and wide compared to most hierarchies and 

guidance on depth [KF 5.6]. Deeper hierarchies are more common as system grow larger, 

while hierarchy width appears to be less constrained by system size [KF 5.9], growing by an 

order of magnitude over depth in many cases. 

5.6.2 RQ5.2: How can inheritance hierarchies be characterised? 

The most obvious influence on large hierarchies are patterns from the problem or solution 

domain [KF 5.12, 5.33] such as a protocol, document format, or design pattern. These 

provide regularity in the hierarchies which allows faster comprehension and identification 

of inconsistent structure. These are specific to each hierarchy however, and do not 

necessarily inform a general inheritance-use strategy. 

Relatively few hierarchies contain over half of all hierarchy members [KF 5.21, 5.22]. This 

skews the apparent presence of large branching hierarchies – it is not the case that these 

large hierarchies are common, but they are more likely to be encountered. So, strategies or 

guidance for dealing with large hierarchies are, in fact, targeting exceptions – it is not clear 

if these guidelines are equally applicable to smaller hierarchies. 

Hierarchies can be categorised by shape (line, fan, line-branch, branch-line, sub-trees) – 

which are present in similar proportions across the examined systems [KF 5.17]. Many 

hierarchies are simple (line and fan) [KF 5.18] reflecting again that much inheritance is 

trivial [KF 5.5, KF 5.3], and that this distribution of inheritance use is common. The high 

presence of fan shaped hierarchies indicates that hierarchies can grow arbitrarily wide [KF 

5.19]. Indeed, deeper hierarchies without branching are rare [KF 5.20], and very deep 

hierarchies always branch. The different shapes grow in different ways, so any notion of 

size must account for the type of hierarchy being considered.  Similar distributions of type-
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extension are found in medium and large systems indicating that some guidance may be 

less useful when assessing smaller systems [KF 5.4]. Many of the largest hierarchies appear 

to be strongly guided by an external abstraction [KF 5.32, 5.33]. 

Method invocations indicate that just over half of hierarchies are invoked exclusively via 

references to their root type [KF 5.28]. Again, some larger hierarchies show inconsistent 

patterns of invocations – with references to subtypes being used in some cases [KF 5.29]. In 

addition, there is a substantial amount of casting in the examined systems, much of which 

involves inheritance hierarchy members [KF 5.30]. Root types involved in casting have twice 

as much casting as non-root types [KF 5.31]. The fact that some attempts to ‘program with 

abstractions’ must be bypassed, indicates some mismatch between client and abstraction. 

Large hierarchies have less consistent patterns of method invocation among members, 

indicating varying degrees of non-polymorphic access [KF 5.29]. Overriding declines with 

depth in a hierarchy, while novel methods continue to be added [KF 5.13, 5.16], indicating 

that initial subtypes tend to refine root behaviour, and deeper subtypes tend to add 

behaviour.  In contrast, hierarchy members with no-novel methods are usually in shallow 

hierarchies [KF 5.14]. While method invocation patterns indicate reuse- and polymorphism-

motivations as noted above, upon closer examination, some large hierarchies are not easily 

classified in this way [KF 5.32].  

Only one system appears to be built in an inheritance-avoiding style (azureus), and this still 

contains a large amount of inheritance. Azureus does have a great deal of interfaces – it not 

clear if these are included as a separate phenomenon from the low amount of inheritance, 

or if the extra interfaces substitute for some use of inheritance. As noted previously, there 

are synergies between inheritance and interface use as interfaces and their 

implementations can be propagated cheaply within inheritance hierarchies. 

The use of abstract classes to form structures within hierarchies is common [KF 5.23], but 

not universal. This abstract structure is generally observed to be continuous within a 

hierarchy or not present at all [KF 5.25], though in very larger hierarchies, this structure 

becomes fragmented [KF 3.26], indicating lack of consolidation. 

For example – a fan with Strict Polymorphism and uniform overriding in the leaves is a 

comprehensible, regular structure regardless of how wide it becomes. While a smaller 

structure with inconsistent patterns of overriding may indicate a poorly defined 
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abstraction. Assessing local regularity may be more useful than comparing numerical values 

between hierarchies. This may provide guidance for interpreting the purpose of a hierarchy, 

allow consolidation of common functionality, facilitating extension, and determining if 

composition is a better option.  

5.6.3 RQ5.3: To what extent can inheritance usage patterns be related to Design 

Quality where quality is defined via Guidance, Metrics, Code Smells, Entity 

Population Models, and Modelling? 

Practically all the guidance regarding inheritance is in the form of ‘what not to do’ so 

evidence of compliance would be in the form of minimising unjustified breeches of these 

guidelines. Closer examination reveals that there is variation in the use of inheritance 

between and within systems [KF 5.2]. Using simple, direct measurements it is possible to 

illustrate that that most inheritance use is trivial [KF 5.5, 5.18, 5.22]. Inheritance represents 

an effort-saving language feature and the presence of many trivial hierarchies indicates that 

there is little design risk (perceived or actual) for most inheritance hierarchies. 

Guidance regarding depth does not reflect usage of inheritance ‘in the wild’ [KF 5.6]. Most 

hierarchies are well below the suggested limits on depth (DIT 3-5) [KF 5.5], although 

outliers grow very deep and wide [KF 5.6] so depth limit suggestions are not suitable for 

either of these groups. Definition by inheritance (interfaces and inheritance) only displays a 

‘regular’ rate of use when considered at the highest level [KF 5.2], but in general interfaces 

and inheritance are not assessed together – guidance treats these as ‘separate tools’. It 

appears that system size may restrict some properties [KF 5.9] with small systems 

accommodating wider, but not deeper hierarchies. Additionally, some consistent patterns 

of inheritance use only emerge in medium or large systems [KF 5.4] indicating that models 

may have to be adjusted for system size in some cases.  

Guidance regarding consolidation of wide hierarchies is not followed in many cases [KF 

5.10]. The wide hierarchy smell is linked to ‘lack of consolidation’ or missing intermediate 

types – however the range of hierarchy widths observed varies wildly [KF 5.19].  In addition, 

the ‘fan’ shape is common [KF 5.18] – indicating that extracting intermediates is either not 

possible, or regularly left undone. 

In line with the dependency inversion principle and depending towards abstractions, 

abstract classes are often present in hierarchies, and often as a continuous ‘backbone’ 
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within the hierarchy [KF 5.23]. There appears to be somewhat of an all-or-nothing approach 

to use of abstract classes [KF 5.25] – possibly indicating practitioner style (Chow and 

Tempero, 2011). Large hierarchies make proportionately less use of abstract classes [KF 

5.24] - since larger hierarchies tend to be composed of proportionately more leaves, and 

leaves are generally concrete classes. Additionally, as hierarchies grow very large, the 

abstract backbone tends to become fragmented [KF 5.26], while this fragmentation is not 

severe [KF 5.27], this does indicate non-compliance with DIP.  

Some hierarchies are constrained to mirror highly specified external structures [KF 5.12] 

such as document standards. Similarly, there are clear examples of large design-pattern 

driven hierarchies [KF 5.33]. There is no indication that these external motivators 

correspond to internal measurements indicating that understanding of both is required to 

assess a hierarchy [KF 5.34], and more importantly that a strong motivation can override 

lower level guidance. 

Casting is common in the examined systems, including a notable number of casts involving 

inheritance hierarchy members [KF 5.30]. The casts commonly involve root types – root 

types involved in casting show higher levels of casting [KF 5.31]. This indicates that the root 

abstractions are commonly being bypassed, and may mean that reuse has come at the cost 

of poor abstraction. Though some designs use casting to translate between API/library 

types and more local types. 

There is a rule of thumb noted by Beck that three similar classes suggest a missing super-

class (Beck, 2014). Since most types that are extended are only extended once or twice [KF 

5.3], this this rule is evidently not the cause of many instances of inheritance use, but 

creating a common super-type from three classes seems reasonable given that it is often 

done for one or two types. 

It is obvious that simple inheritance is used in many cases [KF 5.1, 5.5, 5.18]. From the 

literature, the focus on inheritance related problems are related to size and complexity, and 

conceptual/modelling problems. Some of these smells cannot manifest in small hierarchies 

(deep or wide hierarchy), or are unlikely to (multipath or cyclic hierarchy). It is evident that 

practitioners are freely using inheritance when it is in the form of simple hierarchies. 

There is also evidence that the structure of many of the larger hierarchies are strongly 

guided by a design pattern or well-defined domain entity, such as a document standard, or 
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communication protocol [KF 5.12, 5.33]. These hierarchies can grow very large but are self-

consistent because the external model has a suitable structure such as hierarchical, whole-

part, or composite. It would be difficult to justify not using inheritance in these cases, 

however the guidance indicates otherwise. This suggests that a clear external motivation or 

model may preclude recourse to guidance, as the way to proceed is ‘obvious’.  

Meyer’s taxonomy for inheritance (Meyer, 1996) describes three broad categories of 

inheritance use, depending on the model inspiring the inheritance hierarchy – model 

inheritance (is-a relationships in the problem domain), software inheritance (solution 

domain relationships), variation inheritance (similarity or difference relationship). There is 

some evidence that model and software inheritance are present in high amounts in the 

large hierarchies examined [KF 5.33], and that these supersede the need for some lower 

level guidance. However, these were detected via manual inspection and do not have 

consistent indicators in the counting metrics. This is consistent with previous attempts to 

validate this taxonomy (English et al., 2005). 

5.6.4 Presence of Inheritance 

It is confirmed that all the observed systems are using large amounts of inheritance [KF 

5.1], with levels similar to those in large code surveys (Tempero et al., 2008). However, 

inheritance appears to be used in different ways. These system level inheritance counts 

hide internal differences - for example JDK and aoi, have similar proportions overall of non-

inheriting types (28% and 29% respectively). When examined in more detail, the systems 

have different internal breakdowns, with aoi favouring extension (class inheritance), while 

JDK is more evenly split between extension and implementation (class inheritance and 

interface implementation).  Systems with broadly the same amount of abstraction achieve 

this in different ways.   

Some inner proportions of the systems vary independently of system size (number of user 

defined types), while other features appear to be consistent across systems [KF 5.3, 5.4, 

5.9, 5.17]. Some previous work has suggested that some large-scale trends in systems such 

as coupling are unavoidable (Potanin et al., 2005; Taube-schock et al., 2011),  in contrast 

Chow and Tempero note that “developer culture” can have a large impact (Chow and 

Tempero, 2011). While variation can be attributed to developer variation – it may also be 
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the case that similarities between systems are due to consistency in developer style or 

training. 

Similarly, while most of the systems display all the categories of use – width and depth [KF 

5.5, 5.7], shape [KF 5.17], abstract classes [KF 5.25], the actual proportions of use vary. For 

example, the smaller systems have fewer abstract classes overall which may be expected as 

fewer types means less common code to consolidate. Gizmoball and JHotDraw systems are 

known to be intensely designed (Ferreira et al., 2012). However, this has not resulted in any 

noticeable common features at this level of analysis. This indicates that more nuanced 

definition of ‘good design’ may be required. 

Most of the systems in the corpus have similar ranges for use of the extends keyword [KF 

5.3] – if the frequency of extension is compared, all systems have frequently extended 

types in the top 10% (5-172 extensions), and most into the top 1% (18-172 extensions).  

Despite being very large, eclipse has similar proportions to, say, argouml which is an order 

of magnitude smaller.  Most systems contain at least one very highly extended type - 

indicating that all examined systems contain at least one hierarchy that conflicts with the 

guidance on width (Suryanarayana et al., 2015).  

Other than being a little top heavy, the framework-like JDK is not distinct in the distribution 

of extended types, and has the same proportions as aoi.   Frameworks are often treated 

separately in software corpus studies on the basis that they are structured differently from 

full applications.  While frameworks are not full applications, they often contain a detailed 

domain model – this may be sufficient to make a framework application-like for the 

purposes of some static analyses, such as this one. 

Guidance indicates that abstract types should be used to contain common code among 

subtype peers.  However, there is also advocacy for a wait and see approach to determine if 

shared code is truly a common abstraction or simply coincidental.  If, as is indicated, most 

types that are extended, are not extended very much, then confirmation for the proposed 

abstract class (in the form of more sibling types) may never arrive. This may give some 
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credence to Foote’s proposal of automatic (and pre-emptive) abstract classes for any non-

leaf role in a hierarchy (Johnson and Foote, 1988). 

5.6.5  Depth of Inheritance 

Overall, hierarchies with depth one or two account for over 79.9% of all hierarchies [KF 5.3], 

so from this point of view, all deeper hierarchies could be viewed as outliers - as Tempero 

notes “most inheritance is shallow” (Tempero et al., 2008). It follows that some attempts 

to characterise the overall approach to inheritance used in a system might be dominated by 

this bedrock of shallow inheritance.  Similarly, assembling corpuses of many systems may 

produce mean levels that reflect most common use - but not necessarily the diversity of 

inheritance use.  Depth alone does not capture the range of complexity which can exist at 

each depth. 

The maximum values for hierarchy depth found in this study match many of the maximum 

values identified in previous studies in both Java and C++ systems discussed in Chapter 2. 

Given the notable depth of the eclipse system, and the popularity of the Qualitas Corpus, 

this may be the reason for some similar maximum values.  Other studies report depth 

ranges around 1-6, except for eclipse and JDK, systems in the corpus presented here have a 

span of depths in this range.  This indicates that the “rule of thumb” of five (SonarQube, 

2013), or six suggested by the guidance ((Suryanarayana et al., 2015)) is adhered to in most 

cases – though it is unclear if this is a natural limit or a result of practitioner restraint. 

Most hierarchies are very shallow [KF 5.5], so a limit of six gives does not address size issues 

that might occur if most hierarchies double or even triple in size. Additionally, there are a 

substantial number of large (depth >6) well-formed hierarchies [KF 5.12, 5.33] which do not 

comply with this guidance. This guideline is based on observation, and maintainability 

considerations. Experimental work on maintainability investigated inheritance depths of 3 

and 5 (Cartwright, 1998; Daly et al., 1996; Harrison et al., 2000), which suggest that depth 

cannot be reliably related to maintainability issues. This indicates that factors other than 

depth affect maintainability. Indeed, work on hierarchy design (Dvorak, 1994) suggests that 

the arrangement and relatedness of members within a hierarchy is a more important 

consideration. 
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5.6.6  Hierarchy Width 

As with depth, most hierarchies are narrow [KF 5.18], although most of the systems have 

some extremely wide hierarchies – small systems appear to accommodate hierarchy width 

more easily than hierarchy depth [KF 5.9]. Even azureus, which has low inheritance use 

overall, has a few wide hierarchies. 

Width is not discussed much in guidance as such – this may be because increasing re-use or 

polymorphism must increase the number of leaves in a hierarchy. Guidance does, however, 

have something to say about duplication, both generally (Don’t Repeat Yourself), and 

specifically in relation to hierarchy members.  Johnson and Foote suggest that common 

features in subtypes should be extracted to intermediate subtypes (Johnson and Foote, 

1988), reducing the “un-factored hierarchy” smell (Suryanarayana et al., 2015).  This does 

not decrease the number of leaf-types as such, but it may simplify their implementations 

and reduce error, while increasing hierarchy depth.  Use of inheritance for such 

consolidation of common behaviour may be considered ‘convenience reuse’, rather than 

proper ‘is-a’ relationships. Both Liskov and Meyer discourage this type of reuse - which 

violates the “meaningful classification” requirement proposed by Suryanarayana et al., who 

identify this violation with the “broken hierarchy” smell (Liskov, 1988; Meyer, 1996; 

Suryanarayana et al., 2015). This study also observes that overriding tends to appear in 

shallower parts of hierarchies – indicating that shared re-definition of root-behaviour may 

be being ‘pushed up’ within the hierarchy [KF 5.16]. 

This study identifies that wide inheritance structures are not only common [KF 5.5, 5.18], 

but that in some cases decedents of a single node accounts for most or all of the width of a 

hierarchy. This indicates that abstractions with many direct descendants is a more common 

design need than chains of repeated specialisation. 

Tempero compares inheritance structures to binary trees to provide a baseline for 

discussing branching behaviour (Tempero et al., 2008) – this is not an appropriate model.  

The width of observed hierarchies does not increase regularly with depth as a binary-tree 

does.  Width, especially in very wide hierarchies, is the result of a few nodes with very 

many direct descendants.   

It appears that the natural growth of hierarchies prefers width over depth by an order of 

magnitude [KF 5.7].  Given the lack of restrictions on the Java language, this must to be due 

to some limit of process (or practitioners), rather than feasibility.  Alternatively, it may be 
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that increases in width indicate reuse of existing abstractions is easy, while increasing depth 

requires some extra effort. This echoes the preferential attachment model of system 

growth where “existing nodes link to new nodes with probability proportional to the 

number of links they already have” (Baxter et al., 2006). However, this appears to conflict 

with code smell guidance which recommends a limit of nine immediate types before some 

consolidation action is considered (Suryanarayana et al., 2015). 

Tempero describes the deeper hierarchies as “tall and skinny” (Tempero et al., 2008).  This 

is reminiscent of Smalltalk guidance proposed by Foote and Johnson, who recommend that 

“Class hierarchies should be deep and narrow” (Johnson and Foote, 1988) – on the basis 

that a deeper hierarchy structure reuses more code as common functions are pulled up the 

hierarchy.   Very wide fan structures [KF 5.18] observed in the corpus are directly at odds 

with these arguments from design (see section 5.5.5.1 Shape). 

This modest corpus shares some characteristics regarding amount and range of inheritance 

with larger and more diverse corpora that have been examined in previous large scale 

studies. It is likely that use of a larger corpus would provide more robust mean figures and 

perhaps provide more of a continuum of system profiles. 

5.6.7  Public Interfaces and Method Novelty 

Design guidelines do not have anything specific to say about the size of public interfaces in 

inheritance hierarchies (root or subtype), even the large class smell is more concerned with 

the number of class variables (Fowler et al., 1999). However, general object-oriented 

guidelines encourage that public interfaces expose only necessary behaviour and that 

objects have a single responsibility (Martin, 2005b). 

This study confirms that most inheritance hierarchy members have relatively few public 

methods [KF 5.7]. It is thought that aspects of design which are visible to a designer (such as 

the number of methods in a public interface) are less likely to get out of hand, due to their 

obviousness (Baxter et al., 2006).  Inheritance hierarchies can contain irregular structures 

and indirect relationships where cause and effect may be many steps apart – it may be 

difficult to ‘get the whole picture’ by looking at one part or member of a hierarchy [KF 5.8, 

5.10, 5.24, 5.34]. 

Only around 6% of hierarchy members retain the same public interface as their root type 

[KF 5.13], indicating that pure variations on a type represent a minority of the uses for 
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inheritance. This is surprisingly low as polymorphism-driven inheritance is often the 

textbook example of inheritance hierarchies. The addition of novel (non-root signature) 

methods in subtypes is common - these novel methods begin to dominate after a single 

level of inheritance. So, in many cases after depth two, the majority of public methods 

presented to the practitioner may not be part of the essential abstraction captured by the 

hierarchy.  It is conceivable that this may obscure the true purpose of a hierarchy when a 

practitioner encounters the leaf of a deeper hierarchy. 

If no methods are being added, subtypes can alter behaviour in other ways - by constructor 

based configuration, implementing abstract methods, or overriding methods.  Hierarchies 

with no additional methods represent 903 (3.9% of total) hierarchy members. Which means 

that, a maintainer will rarely encounter a hierarchy member implementing only root 

methods – when they do that hierarchy member is likely to be at depth one. 

By considering the count of methods in hierarchy members, there are a handful of 

hierarchy members with hundreds or even thousands of distinct methods, however, these 

are the exception.  There is little common ground among these – JDK graphic components, 

eclipse OS interface, and key modelling concepts in a game (e.g. unit, player) freecol.  These 

represent implementation, facility, and subtype inheritance use respectively from Meyer’s 

taxonomy (Meyer, 1996). 

A major complication of this analysis is that the novel behaviours (methods and attributes) 

may be entirely suitable conceptual expansion to the root type, so simply being novel does 

not mean that the new behaviour represents a conceptual drift from the root type.  A high 

proportion of method novelty may indicate that a root type is conceptually very abstract. 

This would necessitate adding novel methods to specialise the root. However, since new 

public methods represent behaviour outside the polymorphic interface offered by the root 

of a hierarchy, more novel methods indicate that the new behaviour is not related to the 

polymorphic use. This corroborates that idea that overriding (and thus polymorphic) 

refinement takes place in shallower parts of hierarchies, while deeper elements add 

behaviour (see 5.6.2). 

5.6.8  Hierarchy Structure  

Classifying inheritance hierarchies by overall shape gives a population breakdown that is 

repeated across most of the systems in the corpus. Most (12 of 14) systems following in 

order line, fan, sub-trees, branch-line, line-branch [KF 5.17].  The popularity of line is likely 
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due to the shallowness of most hierarchies. Line structures indicate repeated specialisation 

– without knowledge of the purpose of the specialisation it is still possible to link this to 

incremental modification (Taivalsaari, 1996), or local replacement (Liskov, 1988). 

Some line hierarchies (e.g. java.awt.KeyboardFocusManager) indicate that they are 

versioning hierarchies, where the super-types represent ‘older’ versions of the class, and 

the single leaf-type is the ‘current’ version. This is compliant with the OCP (R. Martin, 1996) 

and indicates a further use for inheritance in design – balancing backwards compatibility 

with change. Versioning might be considered a sub-set of reuse where some constraint 

requires preservation of multiple versions of the same type in a design.  

Fan structures indicate one super-type with at least two, but often many, direct 

descendants [KF 5.10]. These structures could relate to grouping super-types - where the 

super-type defines some commonly required behaviour, but where “no attempt is made to 

relate” the subtypes (Liskov, 1988). Lack of relation would explain the lack of common 

behaviour that can be extracted to intermediate subtypes. However, this grouped 

behaviour is also often used for easy substitutability – so use of the hierarchy members by 

the rest of the system [KF 5.28] is necessary to identify if use of subtypes is solely 

polymorphic. 

Subtrees comprise the largest and most complex hierarchies, the prevalence of very wide 

branches in large hierarchies [KF 5.20] indicates that these highly branching nodes may 

have particular properties that require examination independently of the containing 

hierarchy. 

In terms of complexity – it may be argued that a fan can become arbitrarily wide before 

introducing too much complexity, because the relationships that must be considered are 

between one root type and one child type.  With a single layer of inheritance and a stable 

base class, there is a lot of horizontal freedom to add more leaves at the same level, 

without adding much complexity. However, finding and extracting common behaviour is 

likely to require more effort as the number of subtypes increases. 

Johnson and Foote recommend deeper structures to maximise reuse – “A well-developed 

class hierarchy should be several layers deep. A class hierarchy consisting of one 

superclass and 27 subclasses is much too shallow.”  (Johnson and Foote, 1988) The 

writers imply that common elements are common in a large fan hierarchy – “it is often 
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possible to break a method into pieces and place some of the pieces in the superclass 

and some in the subclasses.” 

The prevalence of fan structures indicate that this is not always done – in some cases there 

may be no common behaviour – for example in grouping hierarchies (e.g. Serializable). The 

refactoring literature does make an exception for protocol inheritance where there are 

likely to be many subtypes of a single super-type (Suryanarayana et al., 2015). However, it 

could be argued that any super-type or interface describes a protocol so this notion, again, 

requires subjective assessment. 

Extracting a common super-type is a trade-off. On one hand, there may be duplicate code 

among the candidate subtypes. On the other hand, adding a common super-type creates a 

relationship between subtypes and an expectation of substitutability. If reduced duplication 

is required without substitutability, then composition would be more suitable for meeting 

this need. This may be one aspect of the guidance to “prefer composition over 

inheritance” (Gamma et al., 1994). 

It is not clear if any of the common fan structures [KF 5.18] are is-a, or only exist to indicate 

common support for “needed operations”(Liskov, 1988). Manual examination reveals that 

there are ‘is-a’ relationships in some fan hierarchies (e.g. AbstractBrowserMessageListener 

in azureus). These appear at first appear to be grouping hierarchies which Meyer and Liskov 

do not consider to be ‘proper use’ of inheritance (Liskov, 1988). However, the subtypes are 

true variations on a type based on an implementation abstraction. This illustrates software 

inheritance which describes “relations within the software itself rather than in the 

model” (Meyer, 1996). This kind of inheritance can be difficult to identify as the concept 

represented has no analogue in the problem domain. 

It is notable that the large size of these hierarchies is mainly due to the multiple branches 

[KF 5.20] – some of the internal fans alone constitute large hierarchies [KF 5.19]. Once again 

this indicates that the wide hierarchy smell is often not addressed or is not considered to be 

a problem. This may indicate that the guidance overestimates the problem of wide 

hierarchies – much like the apparent low-impact of the fragile base class problem in 

practice (Sabané et al., 2016). 
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5.6.9  Large Hierarchies 

Large sub-tree hierarchies illustrate the skew in the inheritance hierarchy population [KF 

5.21].  The largest 48 (of 377 total) sub-tree hierarchies are all over depth 5 and contain half 

of the members in sub-tree hierarchies [KF 5.21]. The literature on code smells considers 

depth 6 to be the limit for reasonable hierarchies, this is cited from Riel, which is based on 

experience and practice.  Although Riel does note that “…some designers have noted that 

this is due to a lack of tools.” (Riel, 1996; Suryanarayana et al., 2015). 

Large hierarchies are proposed as sources of possible complexity or confusion in the 

literature, however, on examination there is high level consistency within the largest 

hierarchies [KF 5.12, 5.23, 5.33].  Inheritance hierarchies do not exist in a vacuum – they are 

subject to constraints and responsibilities which limit and guide their growth: 

• 12 of the 48 are constrained to model some external standard, such as a document 

specification – indicating that the hierarchy is likely to be stable and well specified.  

• 25 of the 48 have a clear design pattern structure which may constrain growth to 

be regular. 

Just over half of the large hierarchies examined show design pattern influence (usually 

Composite pattern). There is no small irony in the fact that the most obvious structures in 

the large inheritance hierarchies are design patterns which urged practitioners to "Favour 

'object composition' over 'class inheritance'." (Gamma et al., 1994). 

On closer examination - most complex hierarchies have recognisable high-level design 

motivations – recovering these motivations require understanding the design [KF 5.33, 

5.34]. There is no indication that very deep hierarchies should be associated with poor 

design although they may be inherently unwieldy due their size. While there may be some 

individual poor examples, treating depth as a concern does not reflect use of inheritance in 

practice. 

The presence of these existing design constraints in many of the complex hierarchies may 

allow easier detection of unsuitable leaf-types. For example – if there is a clear composite 

structure for most of a hierarchy – it may be worth re-considering if a non-compose-able 

leaf is being added.  This might be considered a special case of the LSP (Liskov, 1988). 

Furthermore, structural motifs such as design patterns can often be detected automatically. 
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5.6.10  Abstract Classes 

Just over half (54%) of the hierarchies examined contain abstract classes, but there is no 

observed proportional increase in abstract types with an increase in hierarchy size [KF 5.24] 

– this may be explained by the fact that most hierarchies are dominated by the fringe of 

leaf nodes (in terms of hierarchy member count).    

Where there are abstract types, however, they are often grouped together in a contiguous 

subtree within the containing hierarchy. While there are a few instances of fragmented or 

out of order (less to more abstract) relationships, these are uncommon. Additionally – all 

large hierarchies observed have a substantial contiguous structure of abstract classes.  This 

indicates that, regardless of design pressures and local style, a backbone of abstract classes 

emerges when large hierarchies are being constructed [KF 5.23]. Consequently, the 

‘completeness’ of the abstract structure of a hierarchy may be one indication of its ‘health’. 

The presence of abstract classes was gathered, but not reported during earlier work 

(Tempero et al., 2008), there is little other work to compare this with. 

This appears to corroborate guidance offered by Johnson and Foote that “the top of the 

class hierarchy should be abstract” and confirm the usefulness of the dependency 

inversion principle in practice (Johnson and Foote, 1988; R. C. Martin, 1996). Most 

hierarchies have an all-or-nothing approach to abstract class use (0% or 100%) – with few 

in-between [KF 5.25].  Depth appears to be accompanied by the use of abstract classes, but 

some sub-tree hierarchies show a fragmented abstract class structure. It is not clear if the 

abstract class backbone in these deeper, branching types of hierarchy are aggregating or 

disintegrating over time. 

5.6.11  Method Invocation 

While there is no direct means of identifying the intent of the practitioner – there are some 

hints as to the eventual usage of inheritance structures by the rest of the design. Based on 

method invocations by the rest of the design, hierarchies that are primarily polymorphic 

(public root methods only, invoked on root or other hierarchy member) in terms of use can 

be identified – these account for 54% of hierarchies.  Most of these hierarchies (47%) are 

accounted for by fan and line hierarchies indicating that purely polymorphic hierarchies are 

usually shallow. 
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The remaining hierarchies show varying levels of direct access to public methods that are 

not root-defined, indicating that the use of inheritance may be motivated more by the 

desire for reuse or occasional compliance (the super-type is a partial interface). Of the 758 

hierarchies which have the fan shape, 38% (287) are accessed (method invocations) 

exclusively via the root type of the hierarchy which suggests that it may be possible to 

isolate archetypical modes of inheritance use which may simplify comprehension and 

navigation, even in very wide hierarchies.   

While this is not practical for all hierarchies, it may provide a way to triage hierarchies 

during review or familiarisation to illustrate to the practitioner how internally consistent a 

hierarchy is. This would mesh will with the principle of least astonishment – to confirm to 

the practitioner, at a glance, that there are no unusual corner cases or inconsistencies in a 

hierarchy. 

5.6.12  Casting 

Casting is common in all systems indicating, perhaps, that more guidance is required for 

this mechanism. This indicates that circumventing the root abstraction is relatively common 

- despite being discouraged by guidance. 

Only 6% of casts are casts into a hierarchy - the ‘cast from’ types in these cases are related 

to hierarchy members but do not have access to the hierarchy – references to very general 

types such as java.lang.Object, or to interfaces implemented by hierarchy members. 

More interestingly perhaps is the traffic within the hierarchy (21 % of hierarchy member 

facing casting) – since inheritance members may be freely substituted for one of their 

super-types without a cast, casting within the hierarchy may indicate casting down or 

sideways within the inheritance hierarchy.  This can be considered a breach of 

encapsulation as the programmer is ‘looking past’ an abstraction to get information that 

has been deliberately hidden.  Switching on type is usually associated with the Missing 

Hierarchy code smell (Suryanarayana et al., 2015), in this case a hierarchy is present – so 

this may indicate that behaviour is not properly distributed within the hierarchy (i.e. 

Unfactored Hierarchy smell).  

Finally – some systems have a few instances of casting from inside a hierarchy to a type 

outside of that hierarchy.   Notable outliers are aoi and java (and eclipse to some extent). 

These casts indicate that access to the inheritance hierarchy member via its native interface 
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is not sufficient at the point of use.  Examination of these casts indicates that they are casts 

from a more general type within the application or java libraries and are cast to translate 

them back to the local implementation e.g. 

artofillusion.object.MeshVertex -> artofillusion.object.TriangleMesh.Vertex 

java.lang.Thread -> org.eclipse.jface.operation.ModalContext.ModalContextThread 

These examples show that different parts of the host systems are operating at different 

levels of abstraction, where the more general type is useful for some operations, but the 

abstraction must be broken at some point retrieve the more specific local type. The high 

proportion of this category in the java libraries may reflect that operations offered by the 

language libraries operate on partial abstractions e.g. generic operations on collections, 

traversing syntax trees. 

So, casting is not a rare or special event, as the general tone of the guidance suggests – 

casting can be error prone “uncheckable run-time dependency” (Gurp and Bosch, 2001), 

and be based on unsafe assumptions (Eichberg et al., 2015). There has not been a great 

deal of research into the use of casting – so there is no easy way to compare these findings 

with previous work.  It appears that the types and hierarchies in these systems are unable 

to meet the requirements made of the abstractions.  It is not clear, if this is a general 

weakness of Java, OO design, or if high rates of casting indicate poor choice of abstractions. 

5.6.13 Conclusion 

Inheritance is more common than the current guidance such as ‘program to an interface’ 

would indicate. In line with previous work, this study confirms that a high proportion of 

types are defined using inheritance. 

The systems all deviate from high level trends averages in different ways as might be 

expected from conventional metrics, there is no sense of uniform distance from the 

average, and growth of inheritance use is not consistent between systems. This indicates 

that system level measures or averages cannot meaningfully represent the population. 

However, using various features of inheritance hierarchies and their members, this study 

found that there are distinct structural motifs that show remarkable similarity between 

systems.  These are based solely on design structure and require no manual classification – 

an issue which often plagues this sort of design analysis. 
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 Several distinct sub-populations of inheritance were observed – based on shape, method 

invocation patterns, and method introduction and overriding.  These may map to use-

intention or design needs.  More importantly, these sub-populations may facilitate rapid 

identification and familiarisation of specific hierarchies. 

Comparing the guidance to the findings highlights a tension between ‘ideal’ and pragmatic 

use of inheritance. This tension results in exclusions and caveats in guidance, for example – 

where convention or library design force the practitioner to use inheritance in a specific 

way or reasonable breeches of guidance (e.g. wide hierarchy smell vs protocol inheritance). 

Much of this everyday use of inheritance is excluded from studies and guidance as improper 

use. 

Unfortunately, it is not always clear how to distinguish between exceptional or improper 

uses of inheritance (which are necessary, or at least cost effective) and badly formed 

‘proper’ inheritance (which guidance aims to prevent). 

The further mismatch between guidance and practice is in the population distribution. This 

study has found that most uses of inheritance are trivial – consisting of small, well defined 

hierarchies which fall well within the limits of guidance. Much of the guidance and feedback 

relating to inheritance discusses the size and complexity of hierarchies. There is little 

guidance for assessing quality in small hierarchies. This illustrates that the guidance is 

focused on avoiding rare large hierarchies, rather than providing advice for most 

inheritance use cases. 

At the other end of the scale – all systems examined have at least one large hierarchy. 

Examination of the largest hierarchies indicate that many of these have internally 

consistent designs. The growth of large hierarchies is often moderated by higher level 

considerations such as modelling, or design patterns, indicating that these supersede 

implementation level guidance.  

Much of the guidance relates to easily observable qualities of inheritance hierarchies, such 

as depth or width. However, most trivial hierarchies fall well within these limits, and the 

limits appear to be ignored by the well-designed larger hierarchies. This leaves the case 

where hierarchies grow past trivial size, but lack strong ‘external’ motivation or constraints 

– which may indeed be where guidance is required. Analysis has shown that many 

hierarchies, especially larger hierarchies, have an ‘internal consistency’ - both in terms of 
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extension of an abstraction, and use of that abstraction by the rest of the system. This may 

be used to ensure that hierarchies that confound conventional size metrics can still be 

assessed. Inconsistencies in these larger structures may indicate different motivations for 

extensions. Ultimately these must be assessed subjectively, but it may be valuable to 

identify inconsistencies to assist in inspection, navigation, and familiarisation. 

Returning to the ‘gold standard’ for inheritance use – the presence of an ‘is-a’ relationship. 

This is fundamentally a semantic distinction and is this currently beyond the reach of 

automated inspection. Each step in a hierarchy may represent one or more reasons to 

inherit. While it may be impossible to recover this motivating information – it would also be 

useful to have some guidance based on the information that is present i.e. hierarchy 

structure. 

Structural regularities in inheritance hierarchies hint that some low-level good practices 

may be identifiable without full knowledge of the design considerations involved.  With this 

in mind, inheritance hierarchies can be constructed to be as regular as possible to assist in 

detecting what design needs are being met by a particular inheritance hierarchy. 
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6 Conclusions 

This thesis investigates what design guidance is perceived as useful in practice, and how 

high-level, generic guidance is balanced with low-level, project-specific concerns. 

Production software was also examined for evidence of these compromises. Specifically, 

how popular guidance relates to practitioner attitude, and the use of interfaces and 

inheritance in open source OO systems. 

The contribution made by this thesis is that it helps close the gap between object-oriented 

design guidance and practice. It achieves this by i) discovering how practitioners approach 

design quality ii) discovering how interfaces are used in open-source Java systems, iii) 

discovering how inheritance is used in open-source systems, and iv) relating use back to 

practitioner sentiment and guidelines. 

The literature indicates that there is serious interest in design quality and its measurement, 

but that the enduring overarching design principles are difficult to capture and measure in 

relation to specific programming languages or structures.  In addition, there are varying 

opinions on ‘pure’ versus ‘pragmatic’ application of design principles in the literature, which 

further complicates an already subjective area. 

RQ1.1: What does it mean for software to be of high quality, or well-designed? Can 

definition(s) of ‘good design’ be derived from the attitudes and beliefs of experienced 

practitioners, and the structure of mature software systems? 

Good design is framed in terms of impact on development and maintenance. A large part of 

recognising quality is the judgement of practitioners (individuals and as a group). Principles 

are valued over rules. Time constraints heighten sensitivity to the rework cost of poor design 

decisions. 

An investigation into the opinions of practitioners confirmed that popular design guidelines 

are well-known, and considered important by practitioners. However, it highlighted that 

software construction remains highly people-oriented as there is a marked reliance on 

personal and peer knowledge. Furthermore, the well-regarded guidelines are those which 

provide generally-applicable high-level object-oriented advice, while allowing for 

practitioner judgement. As guidance becomes more specific – such as for inheritance and 

design patterns – opinion becomes split on its usefulness. It is notable that much of the 

negative feedback for the more controversial guidance was about misapplication, especially 
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by novices. This was seen to carry the risk of a high potential rework cost. This may explain 

the strong aversion to such prescriptive advice – as a key objective in software design is to 

postpone expensive or hard-to-undo decisions. 

This indicates that general principles are more portable than specifics among practitioners 

– possibly because principles are used to support decision making in the absence of specific 

experience or complete specification. This is echoed by the fact that many of the general 

software design principles pre-date object-oriented design. 

As noted in section 2.3.1, metrics often have some root in design principles, but can lose 

their connection to the original practitioner-facing concern during conversion to 

measurement. Without a strong link to principles, metrics may be a difficult to interpret 

into actionable feedback. This may go some way to explain the low uptake of software 

quality metrics. Contrast this with the popularity of code quality frameworks such as Sonar 

among respondents, which prompted positive comments from practitioners. These 

frameworks combine simple, metrics with many hand-crafted rules of thumb – this was 

perceived to be more like ‘expert advice’ by some respondents. These frameworks are also 

highly customisable and can be used to enforce consistent ‘local style’ or practice. 

RQ1.2: How are programming language constructs used in practice? Specifically, mature 

and ubiquitous abstractions - such as interfaces and inheritance. 

There is some evidence of ‘textbook’ use, and much use is simple. Outliers and ‘misuse’ are 

wide-spread indicating a pragmatic approach. High level decisions override general 

guidance – often in a specific dimension, indicating specifically overridden guidance, rather 

than general ‘bad design’. 

Chapter 4 investigates a well-known guideline – Program to an Interface – which was 

popularised by an influential design manual (Gamma et al., 1994). This guideline is at the 

level of design or implementation advice, but captures the intent behind higher level advice 

such as ‘depend towards abstractions’. Support for interface-type abstraction is common in 

modern programming languages. 

An analysis of 11 open source systems revealed that interface use is relatively low. Though 

there is a wide variety of use levels between systems. One issue that arose was the lack of a 

‘baseline’ of interface use. It is not clear that all systems which vary in size and problem 
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domain should have the same level of interface use. Indeed, survey feedback indicates that 

overuse of interfaces is perceived to create an unnecessary maintenance overhead. 

Many user-defined types are not accessible via an interface at all, indicating that interfaces 

are not added to types as a matter of course. Analysis of interface ‘impact’ highlighted a 

major difference in implementation styles, with some systems having many ‘low impact’ 

interfaces which captured a low number of interactions. In one system (azureus), there 

appeared to be a ‘rote’ approach to interface creation, the system appears to compensate 

for a low use of inheritance with a high number of interfaces. This is in contrast to the 

remaining systems where interface definition appeared to be more ad hoc. 

Systems that showed very high interface ‘impact’ had many dependencies captured by a 

low number of interfaces. This indicates that at least some systems can be arranged such 

that many of the type-type interactions can be mediated by interfaces without including 

interfaces that might be regarded as unnecessary. It is not clear if all systems can be 

economically arranged such that most of the type-type interactions can be mediated by 

meaningful interfaces (or other abstractions). 

The analysis of interfaces highlighted common patterns of use at the individual interface 

level that are consistent with language or pattern conventions. While these have value in 

that they are easily recognisable and provide conventional architectures – they are 

common enough that they skew the entity population model for interfaces. By corollary, 

these patterns of use are internally consistent or defined by convention, so they would not 

be improved by moving them toward global ‘norms’ or averages. This highlights that 

comparison with a ‘norm’ is only useful if there is no overriding concern that can be used to 

assess or define an element. This suggests that interfaces could be assessed by identifying 

the (relevant) attributes of interest of their sub-population, deferring to global norms only 

when there is no better information. This provides the opportunity to acknowledge non-

negotiable design constraints and preserve the important aspects of the specific structure, 

while avoiding un-actionable ‘advice’. 

For example, an interface may represent some external standard or protocol. This gives a 

way to ensure the cohesion of the interface by deferring to the external definition, at the 

cost of losing control over aspects such as the interface size and complexity. By contrast, a 

set of interfaces that represent the client sub-groups of a server object may be relatively 

volatile, evolving independently, but their main ‘reason to exist’ may be to provide module 
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boundaries, so they could be assessed primarily in this capacity. These examples illustrate 

that there may be a different ranking of concerns in different circumstances, with some 

aspects being almost entirely subsumed by a higher-level design decision. 

This is echoed in survey responses which warned against obscuring ‘essential complexity’ 

through over-design, or destroying locality simply to meet some generic thresholds. This is 

especially pertinent because, as noted above, the guideline thresholds do not appear to 

capture or explain the distribution of structures found in the examined systems. 

Chapter 5 examined inheritance use in open source object-oriented systems. In line with 

previous work studying similar corpora, inheritance is used to define around three-quarters 

of types. However, much inheritance is trivial – indicating that ‘use of inheritance’ should 

not be equated with ‘problems arising from large hierarchies’. Despite this fact, many 

inheritance guidelines and metrics focus on large structures. Indeed, some hierarchies are 

so large they are as complex as small applications – it appears unreasonable to attempt to 

assess these extremes with the same instruments. 

Considering the gross properties of inheritance hierarchies across the systems highlights 

different aspects of inheritance which may be used to assess the hierarchies in ‘inheritance-

specific’ terms.  Classical ‘strictly polymorphic’ use of inheritance was confirmed – with 

around half of the hierarchies accessed exclusively via their root type. However, a high 

degree of novelty in some hierarchy members was also detected, indicating that many 

hierarchies prioritise reuse over substitutability. Again, this indicates that these different 

hierarchies would require different assessment. For example – if a hierarchy leans more 

towards novel methods and reuse, assessment may focus more on consolidation of 

common code. Contrast this with ‘completely substitutable’ hierarchies which must be LSP 

compliant. This is evidence that Meyer’s pragmatic approach is more reflective of reality 

that Liskov’s restrictive view of inheritance use. 

Hierarchy shape and the pattern of method invocation on hierarchy members also hints at 

different uses of inheritance. The invocation of methods on hierarchy members can provide 

clear indication of whether a hierarchy is used as a ‘pure’ LSP-compliant hierarchy, or if it 

exists more for reuse. Similarly, identifying hierarchy members or sub-hierarchies with 

markedly different invocation patterns may identify where refactoring opportunities. This 

view of inheritance hierarchies recognises that there may be different kinds of ‘self-

consistent’ hierarchies, which perhaps should not be mixed. 
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For example – a line hierarchy where inheritance is used for incremental modification 

(versioning) of a type. This use of inheritance can be repeated without issue as the newest 

leaf is always the ‘latest version’ of the root type. However, if the hierarchy were to branch, 

this would indicate a new purpose for the hierarchy, indicating more reassessment may be 

required. In this case – it may be useful to highlight the ‘self-sameness’ of existing 

structures as an aspect of quality to highlight change as a departure from what has already 

been done. These may allow a practitioner to judge if a proposed modification to a 

hierarchy is ‘more of the same’ or changes the overall role of the hierarchy. Additionally 

this would leverage local (system) examples, which are more representative of local 

development style and tolerances. 

As was discussed with interfaces above, there are sub-populations of inheritance 

hierarchies with different design constraints which in turn present different ‘degrees of 

freedom’. It is important to understand which aspects of these structures are ‘fixed’ by 

other design decisions to avoid duplicate assessment and to avoid, as noted in the survey 

response, obscuring the essential properties of the solution by trying to make everything 

uniformly compliant with general guidance. 

RQ1.3: How does practice impact the structure of software? Specifically – is there any 

evidence within systems that guidance is being followed? Can (or should) systems be fully 

compliant with all guidance? 

Design reflects the pressures of practice – high-level decisions justify ‘designed’ structures 

and architecture, while volatile specifications or uncertainty leads to deferred design 

decisions – simpler structures, repetition, and unconsolidated design. Some sub-populations 

of structures can be identified which may represent common trade-offs, which might be 

assessed in their own terms. 

Practitioners have indicated a desire to produce high quality systems – pragmatically 

described as easy to work with, or unsurprising to the examiner. This suggests that given 

enough time and resources, most parts of most systems might resemble the Lego 

hypothesis (Potanin et al., 2005). However, the survey respondents also indicated there is 

insufficient time and resources to achieve this. 

With limited effort to spend on design quality, the key motivating qualities of each 

structure must take priority. Consequently, some components of a software system may 
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indistinguishably represent: quickly implemented compromise, work in progress, or domain 

specific solution. This also suggests that what a practitioner considers to be a ‘good’ 

solution varies with available time and information. How then is quality to be recognised?  

There is evidence of archetypical uses of interfaces and inheritance. These indicate that 

there are common design trade-offs or ‘modes of use’ that are acceptable to practitioners 

across systems, examples include – inheritance for versioning, inheritance for reuse, 

inheritance for substitutability, interface for decoupling monolithic class, empty interface 

for grouping other interfaces to facilitate runtime checks, not to mention design patterns, 

and common architectures which inform interface use and inheritance structures. 

Firstly – the fact that these are trade-offs indicates that a design or elements of designs 

cannot be compliant with all guidance, all the time. This appears to be especially true 

where there is ‘essential complexity’ or some overriding high level decision. All guidelines 

might be considered, but some are set aside or deliberately deprioritised. Second - it is not 

clear how to detect the difference between deliberate setting aside of a guideline in favour 

of some other constraint, versus a place where a guideline could be applied, but has not. 

These issues may explain why tools based on hand-crafted sets of rules have more positive 

response than metrics. They capture what is already known by practitioners. For example – 

it is possible to exclude specific elements from specific rules in Code Sonar where the 

outlier is a ‘justified’ violation to avoid repeated warnings. 

Overall, an entity population model consisting of a normal distribution over the examined 

population aspect could not capture most of the aspects of design examined. However, 

sub-populations can be identified, which may allow definition of key features for these 

groups, and provide hints as to which guidelines are most relevant for assessment given 

limited time.  

6.1 Research Goal Response 

Goal: To close the gap between object oriented design guidance and practice. 

Practitioner responses indicate that design guidelines can provide direction when there is 

no more specific guidance such as prior experience. Examination of systems indicate that 

most structures are simple, and that complexity is often related to modelling the problem 

domain, or the result of architectural choices. This indicates that the drive to comply with 

guidance should not override domain or architecture specific design decisions. If this is the 
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case, this should inform the interpretation of general guidance based assessment (and 

metrics). 

Collect information on the usefulness object oriented design guidance to practitioners. 

A survey of practitioner attitude highlighted that experience is considered to be the most 

important factor affecting design quality. Many of the popular design guidelines were 

considered useful by respondents. Guidelines provide a ‘fall back’ when there is uncertainty 

or no specific prior experience. There was less support for more procedural guidance such 

as design patterns. There is some feeling that misapplied guidance can incur rework cost. 

Analyse object-oriented systems for evidence of compliance with design guidance. 

There is evidence of compliance with guidance but current guidance does not provide a 

clear picture of what compliance would look like at a system level – so compliance 

assessment must be done on individual interfaces or hierarchies. For interfaces, much use 

falls outside the normal usage (marker, constant) promoted by ‘program to an interface’, 

but these are present in all systems examined. Interfaces examined in context often show 

evidence of a high-level design motivation that justifies the addition of an interface, but is 

not motivated by a specific guideline. Similarly, examination of inheritance use revealed 

that most hierarchies are trivial – making size and complexity based guidance less relevant 

to these structures. The few large hierarchies usually have a domain or architectural 

motivation which overrides general guidance or limits. 

Develop advice for guideline application or refine existing guidelines based on actual use 

and practitioner attitude (rather than arguments from theory). 

Guideline compliance is variable. While guidance indicates what to do, it does not appear to 

capture when to do it. This is most obvious as there are many concrete dependencies in 

each system that are not mediated by interfaces. Additionally, observations indicate that it 

may not be the case that all uses of a give structure can be tied back to a guideline. If this is 

the case, guideline-based assessment may not be suitable in all cases. 

6.2 Lessons Learnt 

While instructive, construction of a tool for this study was time-consuming and raised 

additional validity threats that had to be addressed. Other researchers are strongly 

encouraged to consider all existing tools before embarking on creation of a new suite.  In 
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addition to the time and effort involved, this can impact reproducibility if the tools 

developed are not available or usable by other researchers. While there were well defined 

research questions, the volume of data produced and the exploratory nature of the study 

did entail longer periods of analysis than planned. This has yielded some of the more 

interesting findings in this report, and was mitigated somewhat by the iterative approach to 

tool development. 

Scaling the size of the experiment to the available resources in terms of available hardware 

and person-hours is important if the work is to finish in a reasonable amount of time.  Some 

of the systems selected for analysis have order-of-magnitude differences in size, which 

required careful consideration to present data in a representative format. 

6.2.1 Observations and Recommendations 

One of the goals of the empirical software engineering field is to discover ‘Entity Population 

Models'. This would allow the measurement of a specific design elements such as 

inheritance hierarchies to be ‘situated’ within the population. However, the findings 

presented here raise question about some underlying assumptions of this view. 

The proportions and usage of language features vary dramatically within systems – with 

many structures being simple or small. This indicates that the high-level goal of ‘simplicity’ 

holds much of the time. While the ‘Lego hypothesis’ that systems are constructed of many 

small regular components (Potanin et al., 2005) may not hold all of the time – it does 

describe most of the elements in the systems examined, most of the time. 

On examination, many ‘outliers’ – are remarkably uniform and well defined. These often 

have some overriding justification specific to the application, indicating information is 

available that is more specific and authoritative than generic guidance. The question then 

becomes how to assess these structures other than using system level averages or 

thresholds.  

Survey responses indicated that a large component of design assessment is in the ‘eye of 

the beholder’, varying with available time (what is economical), experience (what is easy to 

read), familiarity (domain models/processes). This information is not easily recovered or 

captured. 

However, it was found that there are traces of context in source code – types of interfaces, 

naming conventions, recognisable design patterns, ties to external standards, invocation 
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patterns and abstract structures in hierarchies. These provide hints where structures might 

be self-consistent, and where the local conventions and patterns have been ‘broken’ or 

might be restored. These might require hand-crafted rules for each category identified – 

however rule based tools are already seen as valuable and this approach would allow 

practitioners to include their ‘approach’ on these structures in the tooling. 

Comprehending the design of software takes a substantial proportion of the time, and thus 

cost, of system maintenance and evolution.  The findings presented here suggest that 

interface and inheritance use can be characterised by recognising context-specific patterns 

of use, which may provide some benefits to practitioners and design teaching. 

It appears possible to identify some archetypical kinds of use which may assist in rapid 

comprehension of large structures by leverage existing knowledge of common patterns and 

structures. Decision-making might be assisted by presentation of the existing design trade-

offs that can be detected in a code base. Finally, self-consistency within hierarchies and in 

use of a hierarchy by the rest of the system may indicate a novel notion of quality and how 

well an abstraction serves the rest of the system without the need to necessarily 

understand the design motivation. 

6.3 Limitations 

This work examines interface and inheritance use in OO systems with a view to determine 

how these are used and what aspects of use are assessable using the available information. 

This work may be applicable in other OO languages. However, this would require more 

information about what kinds of structures are possible in these languages and what 

guidance is popular among the practitioners using each language. While it is likely that the 

high-level principles remain, specific guidance may differ. 

As discussed in Chapters 4 and 5, the number of system examined here is smaller compared 

to large corpus studies. However, the populations examined were the interfaces and 

inheritance hierarchies within these systems, which provided many more units of 

comparison than the number of systems. Additionally, as stated previously – the goal of this 

study was to investigate these structures as they are used, rather than validate population 

norms over many systems. As such the interfaces and inheritance hierarchies examined 

here are likely to be representative of some similar structures in other systems. However, it 

is impossible to say what other categories of use may exist in the wider population. 
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Longitudinal analysis is common in the related work, indeed the corpus chosen for the 

inheritance study (Chapter 5) uses elements of the evolution set of its source corpus. 

Longitudinal analysis may have highlighted if the different user patterns identified in this 

study (both for interfaces and inheritance) have the same origins, or if these use patterns 

perhaps converge from different starting configurations. Additionally, it would be 

informative to determine if the new ways of examining these structures show stable 

patterns over time. This would highlight if the new methods of examining interface and 

inheritance use can be linked to system lifecycle properties such as aging or refactoring 

efforts. 

6.4 Future Work 

The findings presented above identify a variety of topics for further research.  

The findings confirm that design guidelines associated with coupling, cohesion, size, 

complexity and programming to an interface are considered useful by practitioners. 

Following up on survey comments – practitioners identify a relationship between ease of 

testing, testing practices, and design quality – this relationship between quality and 

testability requires further investigation. 

This work has identified that many concrete types are not accessible via an abstraction. To 

fully appreciate ‘trade-off’ a study should be carried out to consider all the places in design 

where interfaces (or other abstractions) are not used, and whether interface placement is 

appropriate, or at least consistent with placement in the rest of the system (i.e. can we 

identify the interface placement criteria in each system). 

Systems evolve over time - assessment may be informed by the history of each interface – 

specifically to examine how these relate to ‘kinds’ of interface, or interface use. 

Additionally, evolution of the abstract backbones within hierarchies may give insight into 

developer practices – if these accumulate over time, this may indicate that they fall out of 

refactoring effort naturally.  Indicators or checklists may be devised to assist in this process.  

The use of inheritance for versioning is clear in isolated line hierarchies – but it is 

conceivable that this kind of inheritance is present, currently undetected, in other 

hierarchies.  The balance between code churn and open-closed principle-style extension is 

not clear and would require an evolutionary study to examine in more detail. 
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Practitioner style appears to have a strong influence on the variability between systems. It 

may be useful to attempt to quantify style factors such as tolerance for concrete 

dependencies, complexity avoidance, or interface placement. This may identify exceptions 

to design rules, or set thresholds to withhold advice that is not of interest to a specific 

practitioner. This kind of model may also be used to highlight practitioner habits and set 

goals for improvement. 

A key question raised is whether inheritance use can usefully be described by a limited set 

of structural patterns. Initial patterns suggested from this study are documented in 

Appendix H - Structural Patterns for Inheritance Hierarchies. Investigation of this question 

would involve automated identification of these patterns of use in a larger corpus. 

Validation with practitioners may involve incorporating the proposed patterns either as 

guidance or tools. 

A further practitioner-facing problem is that of reassessing a design after a change. Changes 

may provide enough information to inform factors such as distribution of functions in 

abstract super-types, or reassessing complex execution paths. This is the sort of automated 

heavy lifting that might bring non-obvious or early problems to the designer’s attention. In 

this vein – it may also be useful to investigate what factors practitioners consider when 

assessing inheritance (including how much of a hierarchy they examine) and how this 

information can be presented in a clear and timely manner at the time of decision making. 

Lastly, there is ever-important possibility of replicating these studies with other 

practitioners and corpora, including refinements that have been discussed. 

It is important that many of these suggestions involve mirroring or understanding 

practitioner behaviour, as most key principles and guidance are derived from early 

experience reports. Similarly, practitioner concerns underpin early work on metrics such as 

the ‘viewpoints’ which inspired the classic K&C suite.  
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8 Appendices 

8.1 Appendix A – Terminology 

8.1.1 Literature Review Terminology 

Clean Code – A popular set of implementation guidance and methods based on industry 

experience (Martin 2009), advocating ‘software craftsmanship’. Includes: clarity of design 

including naming, small size, simplicity, modularity, documentation, test driven 

development. 

Entity Population Model – Allows us to define what normal values are for a measurement, 

allowing a measurement to be interpreted. (Kitchenham et al., 1995) 

Native Type – the set of all method signatures defined by an objects operations. (Gamma 

et al., 1994) 

Type – a particular interface, defined by a name and a set of (possibly abstract) method 

signatures. (Gamma et al., 1994) 

Ripple effect –a change to one part of a system causes new change(s) to be required 

elsewhere in the system (Yau et al., 1978) 

8.1.2 Inheritance Chapter Terminology 

The java language definition recognises two main categories of entity which may be 

referred to: 

• Primitive types – byte, short, int, long, char, float, double, boolean 

• Reference types – pointers to objects – class, abstract class, interface, array, enum 

In this chapter, ‘primitives’ will be used to refer to the first type of entity. 

When discussing object references: 

• ‘class’ will be referred to as ‘concrete class’ to avoid ambiguity 

• ‘type’ will be used in place of ‘concrete class, abstract class, or interface’ where the 

specific reference type is not important. 

• The terms ‘concrete class’, ‘abstract class’, and ‘interface’ will be used separately 

and specifically, where disambiguation is required. 

Terms that have already been defined that are mentioned in this chapter: 
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DITMAX – Depth of Inheritance Tree – DIT is the longest path from the root to a leaf in an 

inheritance hierarchy, where the root of the hierarchy is at DIT zero. DIT was first proposed 

in  the C&K metrics suite (Chidamber and Kemerer, 1994).  DITMAX is the largest DIT value 

across all members in an inheritance hierarchy. In this study, interfaces are not included in 

DIT calculations. 

BITMAX – Breadth of Inheritance Tree – derived from BIT (Harrison et al., 2000), this value 

indicates the number of hierarchy members at the widest point in an inheritance hierarchy. 

Key findings are summarised at the end of each section in the form [KF chapter.finding] for 

ease of reference. e.g. [KF 3.1] is key finding one, in chapter three.  
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8.2 Appendix B - Object-Oriented Concepts 

Object-oriented design, and software design in general, has a rich vocabulary of concepts. 

These are useful when discussing different properties of designs and source code. These 

concepts are defined and discussed for reference in this appendix  

8.2.1 Classes 

A class is a description of a category of things. In object-oriented (OO) software, a class is a 

blueprint which can be used to construct objects. An object constructed from a class at 

runtime is known as an instance of that class. Different instances of a class lead separate 

existences and may change independently from each other. For example, a program may 

contain objects which represent files – these objects may all be instances of a File class. This 

means that the file objects have the same kinds of properties, such as a stored file path, but 

have different individual values for those paths. 

Classes facilitate encapsulation, which is the “… process of compartmentalizing the 

elements of an abstraction that constitute its structure and behavior; encapsulation 

serves to separate the contractual interface of an abstraction and its implementation” 

Booch et al. in (Voigt et al., 2010). 

8.2.2 Types 

The term type has different technical meanings in areas related to computer science. A 

definition relating to object-oriented design is provided in the Design Patterns manual - “A 

type is a name used to denote a particular interface. We speak of an object as having the 

type "Window" if it accepts all requests for the operations defined in the interface named 

"Window." An object may have many types,…” (Gamma et al., 1994). Where a native 

interface is “The set of all signatures defined by an object's operations…”(Gamma et al., 

1994). Note that while instances of the same class (discussed above) share a common type, 

objects may have types other than the type of the class of which they are an instance. 

Much of the effort in object-oriented design is to define types and their interactions. 

8.2.3 Inheritance 

This section describes a key design feature of object-oriented programming languages – 

inheritance, which is “a semantic notion by which the responsibilities (properties and 

constraints) of a subclass are considered to include the responsibilities of a superclass, 

in addition to its own, specifically declared responsibilities.” (ISO/IEC, 2010). The section 
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focuses on class- or concrete-inheritance where both implementation and interface are 

inherited. Abstract inheritance is covered in the next section. 

Inheritance allows a practitioner to define a new feature in terms of code that already 

exists - potentially reducing the amount of new code that must be introduced. This is more 

precisely defined by Taivalsaari -  “subclassing – an implementation mechanism for 

sharing code and representation” (Taivalsaari, 1996). Figure 54 shows an example of 

inheritance, note that language-specific details have been omitted for clarity.  On the left, 

two similar classes are defined separately, which requires the duplicate definition of 

multiple identical behaviours.  While on the right, the class PausableAverage has been 

defined using class inheritance, by extending the class Average.  

Definition by extension means that the child class, (PausableAverage) immediately gains 

access to all the behaviour of the parent class (Average). It is often possible to find existing 

classes which have behaviour similar to that which is required.  This allows rapid 

development by adapting what already exists and avoids code duplication. 

 

Figure 54 - Simple inheritance (reuse), in org.gudy.azureus2.core3.util.Average and 
org.gudy.azureus2.core3.util.PausableAverage, note that method definitions have been omitted for clarity 

Note that in this thesis, subtype and super-type are used in preference to child and parent, 

these terms are normally interchangeable. In Figure 54 the Average type provides a 

protected getEffectiveTime() method which is used for internal calculations, this method is 

class Average 
private long values[] 
… 
long getEffectiveTime() 
void clear () 

void cloneFrom (Average other) 
void addValue (long value) 

long getAverage () 
… 

class PausableAverage 
private long values[] 
private long offset, 
pause_time; 
… 
long getEffectiveTime() 
 
void clear () 

void cloneFrom (Average other) 

void addValue (long value) 
long getAverage () 
… 
void pause () 

class Average 
private long values[] 
… 
protected long getEffectiveTime() 
 
void clear () 

void cloneFrom (Average other) 

void addValue (long value) 
long getAverage () 
… 

class PausableAverage extends Average 
private long offset, pause_time; 
… 
protected long getEffectiveTime() 
void pause () 

void resume () 

… 
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redefined in PausableAverage to account for paused time. This allows methods inherited 

from the parent class to behave consistently in the new class.  Note that this re-definition 

of an inherited method is called overriding. 

Consequently – the amount of additional testing, review, and maintenance required for the 

new behaviour may be reduced if the reused components have already been validated. 

8.2.4 Interfaces 

In the design literature, an interface is the “…set of all signatures defined by an object’s 

operations is called the interface to the object”(Gamma et al., 1994).  Note that ‘object’ 

indicates that this is a run-time description. Interfaces define types without specifying 

implementation details. This allows method or function signatures to be defined as a 

contract of behaviour with no practical details of how the specified behaviour is to be 

implemented.  This is of practical benefit, as it allows the expected or required behaviour of 

a type to be specified at a high level before implementation begins. Additionally, different 

implementations of an interface may be defined at a later time.  

The  IEEE Standards Definition Database (IEEE, 2014) contains 27 definitions of the word 

interface, 16 of which could be applied to interfaces as they exist in software without any 

difficulty or stretch of the definitions.  Table 35 shows some of the more relevant 

definitions for the topics presented here. 

While some languages offer a construct that consists entirely of signatures (abstract 

interfaces), it is possible to discuss the interface of a concrete type as all the public method 

signatures defined in that type. The concept of an abstract type or protocol appears in 

many modern programming languages as can been seen in Table 37 (see section 8.3 

Appendix C), 44% of the entries in a survey of modern languages (RosettaCode, 2015) have 

native support for interfaces, with a further 37% having the capacity to simulate interfaces 

in some way - giving a total of 81%. 

8.2.4.1 Interfaces in Java 

Interfaces are defined in the Java programming language as structures which “…allow the 

description (definition) of a type with the understanding that the type is entirely 

abstract and represents a behavioural contract.” (Oracle, 2014a). In terms of use – 

interfaces are described as “a contract between the class and the outside world, and this 

contract is enforced at build time by the compiler” (Oracle, 2014a).  These definitions 
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describe the constraints interfaces place on implementers and the guarantees they provide 

for clients, but offer no guidance as to when and how interfaces should be used.  

Table 35 - Selected definitions of the term "interface" from (IEEE, 2014), emphasis added to match source. 

A shared boundary between two functional entities. 
 
A standard specifies the services in terms of the functional characteristics and behavior 
observed at the interface. The standard is a contract in the sense that it documents a 
mutual obligation between the service user and provider and assures a stable definition 
of that obligation. 

IEEE STD 1003.0-1995 IEEE GUIDE TO THE POSIX OPEN SYSTEM ENVIRONMENT (OSE) 

A shared boundary that specifies the interconnection between two units or systems, 
hardware or software. In hardware, the specification includes the type, quantity, and 
function of the interconnection circuits and the type and form of signals to be 
interchanged via those circuits. In software, the specification includes the object type 
and, where necessary, the name or instance handle of specific objects copied or shared 
between the two systems. 

IEEE STD 1226-1998 IEEE TRIAL-USE STANDARD FOR A BROAD-BASED ENVIRONMENT FOR TEST (ABBET) 

OVERVIEW AND ARCHITECTURE 
IEEE STD 1671™-2010 IEEE STANDARD FOR AUTOMATIC TEST MARKUP LANGUAGE (ATML) FOR EXCHANGING 

AUTOMATIC TEST EQUIPMENT AND TEST INFORMATION VIA XML 
The declaration of the meaning and the signature for a property or constraint. The 
interface states “what” a property (responsibility) knows or does or what a constraint 
(responsibility) must adhere to. The interface specification consists of the meaning 
(semantics) and the signature (syntax) of a property or constraint. 

IEEE STD 1320.2-1998 IEEE STANDARD FOR CONCEPTUAL MODELING LANGUAGE SYNTAX AND SEMANTICS FOR IDEF1X97 

(IDEFOBJECT) 

 
Java interfaces are, by default, visible only in the package where they are declared.  This 

allows the segregation of local (package) interfaces and global (public) interfaces that are 

visible to any class in any package. Interfaces can take on most of the same roles as any 

other reference type – variable declarations, method parameters, method return types, use 

in parameterised types, etc.  The main difference being that no objects can be created 

(instantiated) from interfaces.  To obtain an interface-typed object, an object must be 

created from a class that implements that interface. 

A Java interface can contain zero or more (abstract) method signatures – meaning that the 

methods have only a method signature and no definition.  Interfaces in Java may also 

contain static variables, inner class definitions including enumerated types, and more 

recently default implementations (of methods).  

Interfaces take part in three main types of interaction in Java programs: 
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1. Implementation by a more concrete class – i.e. an abstract class or concrete class 

2. Use as a type – e.g. as a type in a variable declaration statement 

3. Interface Inheritance - extension by another interface 

Of these relationships, the second is perhaps most relevant to design work – as it allows 

clients of an interface to depend on an abstraction, rather than a specific implementation. 

Figure 55 illustrates a possible interface relationship – the objects on the right implement 

the ProgressObserver interface, meaning that these objects can be used anywhere the 

ProgressObserver type is declared. 

 

Figure 55 - Example relationship between client, interface and implementer (Types from jedit (5.1.0)) 

Each of the client objects may refer to objects of type ProgressObserver and may also refer 

any of the methods specified in the ProgressObserver interface at design time, before 

implementations of ProgressObserver type have been defined.  As Liskov notes – “… a 

programmer cares only about what it [a method] does and not how it is implemented.” 

(Liskov, 1988) 

Conversely, any class may implement the ProgressObserver interface, so long as that 

implementing class provides the methods described in the interface.  This involves 

matching the method signatures exactly (method name, return type, parameters). At 

compile time, errors will result if a client attempts to call a method not defined by a type 

(or interface).  Similarly, a concrete class implementing an interface will not compile if it 

does not provide adequate implementations for methods it has promised to implement. 

At runtime, methods called on interface types are resolved via dynamic-binding (sometimes 

called late-binding) of the method call to whatever object is implementing the interface. 

This allows the specific implementer of an interface to be chosen or changed at runtime. 

This illustrates that static (compile time) dependency is between client and interface, not 

client and interface-implementer. 

org.gjt.sp.util
.IOUtilities 

org.gjt.sp.jedit.pl
uginmgr.MirrorList 

org.gjt.sp. 
jedit.io.VFS 

uses 

implements 

<interface> 
ProgressObserver 

void setValue (long value) 
void setMaximum (long value) 

void setStatus (String status) 

org.gjt.sp.jedit.
pluginmgr.Plugin 
ManagerProgress 

org.gjt.sp.util. 
Task 
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Note that the use of an interface ensures logical compatibility in the client-interface and 

interface-implementer relationships.  Interface use makes no guarantee about the 

behaviour of the implementing class in terms of what operations are carried out when 

methods are executed.  This is no more or less of a guarantee of good behaviour than a 

dependency on a concrete type. 

8.2.4.2 Abstract Classes 

Abstract classes are non-instantiable partial implementations. These can be used as a code-

sharing mechanism to reduce duplication in a hierarchy by storing common 

implementation details in a shared ancestor, without creating full classes. Abstract classes 

are used to consolidate common behaviour in hierarchies. 

Abstract classes can define methods and other functionality as a class, but may also leave 

some details undefined by including abstract methods as an interface does. Abstract classes 

are implemented by extension (class inheritance) and occupy a mid-point between the 

class-inheritance motivation of code-reuse and interface-inheritance motivation of 

decoupling type specification from implementation as discussed in Design Patterns 

(Gamma et al., 1994). 

8.2.4.3 Marker Interfaces 

So-called marker or tag interfaces contain no methods; these interfaces may indicate that 

an object has a capability, but do not enforce this via definition of abstract methods. 

A key example of this use of interfaces is the Cloneable interface in Java.  This interface 

must be implemented by any object which overrides the clone() method defined in the 

universal root type, Object.  In this case, the interface is used as a flag by the Java Virtual 

Machine (JVM) to detect that a specific library method has been overridden. Without the 

interface, Java’s native implementation of the clone operation from Object will indicate an 

error (CloneNotSupportedException). 

Implementing the Cloneable interface has nothing to do with inheriting the clone() method 

signature, since all classes already inherit this signature automatically from Object (which 

does not implement the Cloneable interface).  Cloning a class can be complex, indeed, the 

default implementation in the Object class is empty, and throws an exception if called. It 

would be more conventional for developers to opt in to define an implementation in their 

classes. 
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The reason that Cloneable is considered broken is summarised by Joshua Bloch - “…making 

something Cloneable doesn't say anything about what you can do with it. Instead, it says 

something about what it can do internally” (Venners, 2002). 

The use of the Cloneable interface described fulfils none of the usual functionality of an 

interface i.e. hiding implementer from client or enforcing implementation on an 

implementer.  Arguably, this use of interfaces is being used to fill in a gap where another 

language-level mechanism might suffice, such as annotation which was introduced to Java 

later. 

Similarly, the Serializable interface has “no methods or fields and serves only to identify the 

semantics of being serializable” (Oracle, 2014b).  In the simplest cases, use of this marker 

interface allows the programmer to depend on the default methods of the serialisation 

subsystem of the JVM to save and restore objects.  However, implementing the Serializable 

interface gives the option to provide more detailed instructions to the JVM in the form of 

customised read and write methods for a given type. 

In summary – marker interfaces may be used as flags for the JVM or compiler to trigger the 

interest of specific subsystems concerned with operations that may be considered to sit 

outside the programming language. 

More recently new ways of adding meta-data to classes such as annotation have been 

introduced, though it is still thought by some that the use-case for marker cases remain as 

they are better described by interfaces than annotation.  The reason is that subclasses of a 

‘marked’ type are also marked and that the marker interfaces allow runtime checking while 

annotations do not (Bloch, 2008). 

8.2.4.4 Other Uses of Interfaces 

A peripheral use of interfaces is as containers for constant values.  Modern Java practice is 

to use class references to access constant values. However, it is not uncommon to grant 

access to constant values by implementation of an interface carrying only constant values, 

and no method signatures.  These interfaces are what Liskov identifies as convenience 

inheritance (Liskov, 1988). However, there is no way to turn off the polymorphism granted 

by implementing the constant interface which may lead to misinterpretation of a design. 

Specifically – there is no intention that all the implementers and inheritors of a constant 

interface would be interchangeable in any meaningful way. 
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The matter of correct interface use is further confused by the continued expansion of 

features interfaces are used to support.  Interfaces are used in the definition of annotations 

which allow the addition of meta-data to classes. Interfaces have also been incorporated in 

to the newer functional aspects of Java.   

Finally, a facility for default implementation has also been added to interfaces – while this 

feature was defined to have a specific role in maintaining backward compatibility, there is 

no constraint on how programmers will use this feature in their designs, which may further 

muddy the waters in terms of how interfaces should be used.  Specifically, adding 

executable code to interfaces conflicts with the aim of separating specification from 

implementation. 

8.2.5 Polymorphism 

Polymorphism (meaning multiple forms) is a core concept in OO programming.  This 

mechanism allows a single object to have types other than the type of the class of which it 

is an instance. Conversely, it allows a component or function to interact with different 

objects if they share a common type. 

Polymorphism is historically a description applied to a function or operator, sometimes 

called ad hoc polymorphism (Strachey, 2000), such as the ‘+’ operator which behaves 

differently in many languages based on input as shown in Table 36. These examples rely on 

the operator having the capacity to deal with various input types correctly. 

A further important property is subtyping, which is a “substitutability relationship: an 

instance of a subtype can stand in for an instance of its super-type” (Taivalsaari, 1996). 

Since a subtype can be substituted in place of its super-type, code which depends on the 

behaviour of a super-type may operate on the subtype, reducing the number of changes 

required to the design/codebase to accommodate the new behaviour (in the form of a new 

subtype). 

Table 36: Example operations with polymorphic operator '+' in Java 

Expression Evaluates To Operation 
“abc” + “def” “abcdef” String concatenation 

“abc” + 1 “abc1” 
String concatenation with automatic conversion of 
integer (second parameter) to String 

100 + 200 300 Integer addition 

2 + 3.14 5.14 
Floating point addition with automatic widening 
conversion of (first parameter) integer to double 
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This is shown in Figure 57 where a class accepts a super-type parameter at construction.  

The parameter is specified as Average however the PausableAverage subclass defined in 

Figure 54 may be substituted for its super-type.   

This has two effects. Firstly, AverageWrapper class has no direct way of telling if the 

parameter object is of type Average, or some subtype of Average. However, the parameter 

is guaranteed to have the same set of defined behaviours (method signatures) as Average.  

Though some of these behaviours may have different effects in a subtype. Secondly, 

AverageWrapper only has access to the behaviours defined by the parameter type 

(Average).  If a subtype is passed as a parameter and it has additional behaviours, such as 

pause() (see Figure 54), this additional behaviour is not visible to AverageWrapper. 

This principle of substitutability is formalised in the Liskov Substitution Principle (LSP) 

(Liskov, 1988). Liskov asserts that uniformity of operations (interface signatures) is not 

sufficient to maintain substitutability of subtypes, it must be the case that “[the same] 

operations do the same things”.  Liskov illustrates this point by comparing a stack and 

queue that have the same operational signatures, but behave differently in practice. 

8.2.6 Dynamic Binding 

Dynamic binding is a mechanism which allows the specific implementation of a type or 

method call to be looked up at runtime.  This allows increased run-time flexibility. Gamma 

et al. present an object-oriented approach to polymorphism where they stress the 

importance of dynamic binding, which is the ability to “substitute objects that have identical 

interfaces for each other at run-time” (Gamma et al., 1994).  This is also the definition of 

polymorphism in the glossary of their book, Design Patterns. 

Figure 56 – Simple Inheritance (polymorphism) 

class AverageWrapper { 
    private Average avg; 
    public AverageWrapper (Average a) { 
        avg = a; 
    } 
} 

AverageWrapper aw1 = new AverageWrapper (new Average()); 

AverageWrapper aw2 = new AverageWrapper (new PausableAverage()); 

 



263 
 

8.2.7 Reuse versus Polymorphism 

Reuse and polymorphism are discussed as ‘two sides’ of inheritance. These concepts are 

not unique to inheritance. Reuse addresses an implementation-level concern. Reuse 

reduces repetition and thus error, and speeds implementation. The usefulness of this 

approach is illustrated by the similar libraries of functions to emerge in most general-

purpose programming languages. Re-use is a key driver of the composition technique 

where small units of code (functions, objects, etc.) are built into larger components much 

like ‘off the shelf’ components. 

Polymorphism on the other hand relates to abstraction, which is more design-facing. 

Polymorphism allows substitutability between similar implementations. If implementations 

are identical there would be no need to have polymorphism. So, there must be some 

tolerance for ‘acceptable variation’ in each group of substitutable types.  It is interesting to 

note that polymorphism also provides reusability of the dependent code, as operations 

across many similar types only need to be written once. Polymorphism can also be achieved 

with abstract types (interfaces or abstract classes in Java) which may contain partial 

implementation details. 

Inheritance complicates the issue by providing both polymorphism and code reuse. Class-

inheritance can be used to extend a type without altering dependent code, and class-

inherited subtypes are fully substitutable for their parent.  This allows designers to provide 

new variations of classes with minimal changes to a design – incremental modification 

(Taivalsaari, 1996). This cannot be achieved with interfaces. Furthermore, a variation on an 

existing type is likely to share much of the original’s behaviour, so reuse of super-type code 

is highly appropriate for new subtypes. 

Substitutability can be achieved without sub-classing (reuse). Interfaces allow the designer 

to provide enough information to program with, without needing to provide 

implementation details. Interfaces indicate a contract of behaviour, definition of a role, or 

permit partial access to another type.  Interfaces may be used in an inheritance hierarchy to 

define a root public interface or to capture the idea that all members will play additional 

role(s) indicated by the interface(s). 

Dvorak investigated where in a hierarchy types are attached – he notes “Without a shared 

view of the domain … developers will classify concepts according to their own viewpoint” 

leading to “increasing conceptual inconsistency as we travel down the hierarchy” 
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(Dvorak, 1994). This is identified as conceptual entropy. Dvorak further notes that “the 

effects of identifying sub-classes and super-classes are not local to those entities” – 

highlighting the potentially non-local effects of hierarchy membership. 

A key difference between interfaces and inheritance is when they can be introduced, and 

the (effort) cost of introduction. Inheritance can be used to create a ‘modified’ version of a 

class or concrete class and preserve substitutability even after the initial stages of design. In 

contrast, adding new interfaces to allow substitutability may involve many changes within a 

design. 
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8.3 Appendix C – Presence of Abstract Types in Selected Programming 

Languages 

This is a comparison of the presence of abstract types and interfaces in various 
programming languages from a source at http://rosettacode.org/wiki/Interface, [Accessed: 
2015/01/8]. Entries in the table are based on the information provided on the site, not the 
author’s familiarity with the various languages. 
 

Table 37 - Comparison of Support for interfaces and abstract types in various programming languages 

 Abstract Type Interface 

Language 
Supported 

Can be 
Simulated 

Supported 
Can be 

Simulated 
ABAP Yes - Yes - 
ActionScript No Yes Yes - 
Ada Yes - Yes - 
Agda No - No Yes 
Aikido Yes - Yes - 
Argile Yes - Yes - 
AutoHotkey Yes - No - 
BBC BASIC Yes - No - 
C No - No Yes 
C# Yes - Yes - 
C++ Yes - No Yes 
Caché ObjectScript Yes - No Yes 
Clojure No - Yes - 
COBOL No - Yes - 
Common Lisp No Yes No Yes 
Component Pascal Yes - No Yes 
D Yes - Yes - 
Delphi Yes - No Yes 
DWScript Yes - Yes - 
E Yes - Yes - 
Eiffel Yes - No Yes 
Fantom Yes - No Yes 
Forth No Yes No Yes 
F# No Yes No Yes 
Genyris Yes - No Yes 
Go No - Yes - 
Groovy Yes - Yes - 
Haskell No Yes No Yes 
Icon and Unicon Yes - No - 
J No - No - 
Java Yes - Yes - 
Julia Yes - No - 
Lasso No Yes No - 
Logtalk No Yes Yes - 
Lua No Yes No - 
Nemerle Yes - Yes - 
NetRexx Yes - Yes - 
NewLISP Yes - No Yes 
Nim Yes - No - 
Nit Yes - Yes - 
Objeck Yes - No Yes 
OCaml Yes - No - 
ooRexx Yes - Yes - 
OxygenBasic Yes - No - 
Oz No Yes No Yes 
PARI/GP No - No Yes 

http://rosettacode.org/wiki/Interface
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Pascal and Object Pascal Yes - Yes - 
Perl Yes - Yes - 
Perl 6 Yes - No Yes 
PHP Yes - Yes - 
PicoLisp Yes - No - 
Python Yes - Yes - 
Racket No - Yes - 
REBOL Yes - No - 
Ruby Yes - No Yes 
Scala Yes - Yes - 
Seed7 Yes - Yes - 
Sidef Yes - No Yes 
Standard ML No Yes No Yes 
Tcl No Yes No Yes 
Visual Basic No - Yes - 
Visual Basic .NET Yes - Yes - 
zkl No Yes No Yes 

Yes 42 12 28 23 
No 21 Cumulative 35 Cumulative 

% 67% 86% 44% 81% 
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8.4 Appendix D - Survey Questions 

1 

How important is each of the following in ensuring the quality of 
software design in your development process? 
Personal Experience; Design Guidelines; Software Metrics; Design 
Tools; Peer Review; Team Review; Technical Lead / Expert Review; 
Other 

Likert 

2 
Please use this space to provide any details that would help to 
support or clarify your answers above. 

Free Text 

3 
When making design decisions, how confident are you that you have 
chosen the best option from the alternatives you have considered? 

Likert 

4 
What types of problem make it difficult to have confidence in a 
design decision? 

Free Text 

5 
What are the key features that allow you to recognise good design in 
your own work and in the work of others? 

Free Text 

6 
How important are the following elements in your work? 
Functional Correctness; Ensuring Design Quality; Other Tasks 

Likert 

7 
In the course of your software development work, approximately 
what percentage of your effort is split between the following tasks? 
Ensuring Functional Correctness; Ensuring Design Quality; Other Tasks 

Number (%) 

8 

What software development methodology most influences your 
approach to design? 
Process based (e.g. Waterfall); Iterative (e.g. RUP); Agile based (e.g. 
Scrum); Other 

Multi-Choice 
+ Other 

9 
If you have any other comments about how development 
methodology affects design quality in your work, please note them 
here. 

Free Text 

10 How important is Program to an Interface in your design work?  Likert 

11 

How important are the following factors when deciding if an Interface 
should be used? 
Avoiding dependency on a concrete type; Multiple possible 
implementations of a class; A class plays multiple roles in a design; 
Similar behaviour is required from multiple classes; Composing or 
decomposing existing interfaces; Containing a foreseeable change 
(flexibility/hotspot); Variation point for dependency injection or 
business logic; Other 

Likert 

12 Metrics or tools which you find useful for managing Interfaces. Free Text 

13 How important is Inheritance in your design work? Likert 

14 
Which factors or indicators do you consider to be most important 
when deciding to use Inheritance? 
Code Reuse; Type Substitution; Future Flexibility; Other 

Likert 

15 
Which factors do you consider to be most important factors when 
deciding between Object Inheritance (concrete super class) or 
Abstract Inheritance (abstract super class)? 

Free Text 

16 

When designing inheritance hierarchies, how important are the 
following features? 
Depth of Inheritance Hierarchy; Width of Inheritance Hierarchy; 
Dependency Inversion (keeping concrete classes at the fringes of the 
inheritance hierarchy); Other 

Likert 
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17 
Please use this space to provide any additional details about how you 
deal with Inheritance, such as any Guidelines, Metrics, or Tools that 
make this task more manageable. 

Free Text 

18 How important is the consideration of Coupling in your design work? Likert 

19 
Are there any Guidelines, Metrics, or Tools that you find especially 
useful when thinking about Coupling? 

Free Text 

20 How important is Cohesion in your design work? Likert 

21 
Are there any Guidelines, Metrics or Tools that you find especially 
useful when thinking about Cohesion? 

Free Text 

22 
How important is Size in your design work? 
Method Size; Class Size 

Likert 

23 
Are there any Guidelines, Metrics or Tools that you find especially 
useful when thinking about Size? 

Free Text 

24 
How important is Complexity in your design work? 
Method Complexity; Class Complexity 

Likert 

25 
Are there any Guidelines, Metrics or Tools that you find especially 
useful when thinking about Complexity? 

Free Text 

26 How important are Design Patterns in your design work? Likert 

27 
Please provide any other details on how you deal with Design 
Patterns in your designs in this space. 

Free Text 

28 

How often do you alter or refactor a design due to the following 
design considerations? 
Program to an Interface; Inheritance; Coupling; Cohesion; Size; 
Complexity; Design Patterns 

Likert 

29 
Are there any Guidelines, Metrics or Tools that have not already been 
discussed that you find particularly helpful when designing software 
or assessing design quality? 

Free Text 

30 
In which country is your software house or production environment 
located? 

Multi-Choice 

31 
What is the nature of the software development you have taken part 
in? 
(Please select all that apply) 

Multi-Choice 

32 
How many years have you been involved in the software industry as a 
designer/developer? 

Multi-Choice 
(ranges) 

33 

What formal training have you completed in relation to your role as a 
designer? 
College; University; Masters; PhD; Apprenticeship; Industry 
Accreditation; Other 

Multi-Choice 
+ Other 

34 
What programming language(s) do you use when developing 
software? 

Multi-Choice 
+ Other 

35 What types of design problems are you most familiar with? Multi-Choice 
+ Other 

36 
What role(s) have you carried out in a software development 
environment? 

Multi-Choice 
+ Other 

37 
If you have any final thoughts or comments on Design Quality or on 
the survey in general, please note them here. 

Free Text 
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8.5 Appendix E – Semantic Characteristics of Deep Hierarchies 

Table 38 - Survey of Semantic Characteristics for deepest sub-tree hierarchies (DIT 5 – 10)  

depth width Abstraction 
Overall 

Category 
Structure 

Framework 
Hook 

Specification/API 
Tied 

5 5 
Enable observer 

pattern 
Cross Cutting 

Concern 
Observable   

5 7 AST declaration nodes  Mirror  Java AST 

5 8 Mutable Tree nodes  Composite Yes  

5 8 Start-up configuration     Plugin API 

5 11 GUI Elements   Yes  

5 12 
Document Object 

Model 
 Composite  DOM 

5 12 
Figure in drawing 

canvas 
 Composite Yes  

5 15 
Type Bindings for 

Compiler 
 Composite  Compiler 

Notation 

5 15 Writing bytes Generalisation Pipe and Filter   

5 17 
Context sensitive 
change proposal 

Generalisation Strategy   

5 17 Reading bytes Generalisation    

5 22 
CORBA Interface 

Definition Language 
object representation 

   CORBA IDL 

5 23 Diagram Elements Generalisation  Yes  

5 25 
Change to UI or data 

element 
 Context (DCI)   

5 26 
Plugin 'hook' 

implementations 
Cross Cutting 

Concern 
  Plugin API 

5 29 XML document nodes  Composite   

5 29 
Skeleton for 
Collections 

implementations 
Generalisation    

5 32 Message to be Passed Generalisation Event/Message   

5 35 
Making things 

observable 
Cross Cutting 

Concern 
Observable   

5 37 GUI Elements   Yes  

5 40 XML parser/generator   Yes 
XML 

Specification 

5 48 
Program 

administration 
Grouping    

5 56 
Encryption library 

component 
  Yes  

5 64 
Platform Neutral 

Commands 
  Yes Mozilla NSL 

5 78 
Language Processing 

Filters 
 Pipe and Filter   

5 290 
Exceptional Event for 

JVM 
Generalisation Exceptions  JVM 

Specification 

6 6 GUI Elements   Yes  

6 9 
Java Language 

Elements 
Grouping    
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6 10 
View in MVC - 

lightweight proxy for 
model entity 

 Composite Yes  

6 18 Wrapper Grouping Adapter Yes  

6 31 
Visitor companion 

hierarchy 
Grouping Mirror   

6 34 XPath Expressions  Composite  Xpath Standard 

6 42 
UI Non-menu 
Components 

 Composite   

6 57 Save/Loadable entity 
Cross Cutting 

Concern 
   

6 57 XSLT Expressions  Composite  XSLT Standard 

6 62 

Part of a form, mainly 
concerned with 

saving, validating and 
updating data 

Generalisation    

6 93 
Pluggable Look and 

Feel 
 Mirror   

6 155 
Component in a 

Project 
Cross Cutting 

Concern 
   

6 183 Dialogue Page Generalisation Mirror   

6 200 Grouping Grouping Composite   

7 19 
Adapter to implement 

JobChangeListener 
Grouping    

7 20 
Has lifecycle start, 

end, and stages 
Cross Cutting 

Concern 
 Yes  

7 44 
Java Abstract Syntax 

Tree 
 Composite  Java AST 

7 58 UI Element Generalisation    

7 186 Adaptable Object 
Cross Cutting 

Concern 
   

8 16 
Adapts model to 
viewable Widget 

Generalisation    

8 135 
Window inside main 

UI 
Generalisation    

10 542 Observable Analogue 
Cross Cutting 

Concern 
Observable   
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8.6 Appendix F – Candidate Component Sub-Hierarchies for a Large Hierarchy 
Table 39 - EventManager hierarchy candidate sub-hierarchies 

Inner Root Members % of containing 
hierarchy 

Description 

org.eclipse.jface.resource.ResourceRegistry 5 0.4% Abstract base class for various registries (works with IPropertyChangeListener) 

org.eclipse.core.commands.State 9 0.7% Possibly persisted, state information for things that ‘toggle’ (works with 
IStateListener) 

org.eclipse.jface.viewers.BaseLabelProvider 126 9% Maps model elements to optional images and/or Strings, notes that it implements 
an IBaseLabelProvider interface indicating perhaps that it is also a grouping 
inheritance root type – which is all the worse as this means that it may be 
extended many times, constraining all of these leaves to the EventManager 
hierarchy (works with ILabelProviderListener) 

org.eclipse.core.commands.AbstractHandler 200 15% Connector for pluggable execution handler (works with IHandlerListener), has a 
direct interface IHandler2 which has other children e.g. 
org.eclipse.ui.internal.handlers.E4HandlerProxy which implements IHandler2 and 
then uses a delegate to pass implementation. 

org.eclipse.ui.SubActionBars 6 0.4% Generic implementation of org.eclipse.ui.IActionBars used by a (UI) part to access 
menu, toolbar and status line (works with IPropertyChangeListener).  This 
interface is more specific to the class. 

org.eclipse.core.commands.common.HandleObject 8 0.6% Creates handles for things that may not yet exist so that simple operations can be 
performed on them (e.g. comparison, listener attachment).  Seems incidental this 
this uses EventManager as update mechanism. 

org.eclipse.jface.action.AbstractAction 820 60% Implements org.eclipse.jface.action.IAction which represents the non-UI side of a 
triggered command, together with a further abstract sub-class, 
org.eclipse.jface.action.Action.  This is a substantial sub tree with a clear separate 
responsibility 

org.eclipse.ui.part.WorkbenchPart 160 12% Abstract base implementation of all workbench parts (works with 
IPropertyListener). Implements several other interfaces including interfaces based 
on org.eclipse.ui.IWorkbenchPart which appear to be a more defining super-type. 

http://grepcode.com/file/repository.grepcode.com/java/eclipse.org/4.4.0/org.eclipse/jface/3.10.0/org/eclipse/jface/util/IPropertyChangeListener.java#IPropertyChangeListener
http://grepcode.com/file/repository.grepcode.com/java/eclipse.org/3.7.2/org.eclipse.core/commands/3.6.0/org/eclipse/core/commands/IStateListener.java#IStateListener
http://grepcode.com/file/repository.grepcode.com/java/eclipse.org/4.3/org.eclipse.core/commands/3.6.100/org/eclipse/core/commands/IHandlerListener.java#IHandlerListener
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8.7 Appendix G – Large Hierarchy Summaries 
Table 40 - Large Hierarchy Summaries 

Hierarchy Root Member 
Count 

Description Category 

java.lang.Throwable 650 is a feature of the Java exception handling system and the hierarchy is comprised mainly of simple message wrappers. The 
main purpose of the hierarchy is as flags (the type of exception), which is conveyed by defining ever more specialist types in 
the hierarchy. With this in mind, this hierarchy might expand to an arbitrary size without much increase in complexity as 
more kinds of (ever more specific) exceptions are defined. 

Documenting 

org.eclipse.osgi.util. 
NLS 

311 NLS documents messages type to facilitate localisation.  While the root type holds common functionality, the leaves are very 
simple and all at depth one. 

Documenting 

org.eclipse.core. 
runtime. 
PlatformObject 

602 Root is a convenient abstract implementation of org.eclipse.core.runtime.IAdaptable. Documentation notes “In situations 
where it would be awkward to subclass this class, the same effect can be achieved simply by implementing the 

IAdaptable interface and explicitly forwarding the getAdapter request”19. Good (not perfect) use of abstract types where 

there are obvious branches – this is not the case where there are leaves-of-leaves at the fringe of the hierarchy.  It is 
interesting to note that, in the types that implement the IAdaptable interface (60 interfaces, 68 classes), some do delegate as 
the documentation advised, but others implement the functionality locally, or rely on an inherited implementation.  

Grouping. Rule 3 
compliant. 

org.eclipse.jface. 
dialogs.DialogPage 

460 Root has a similarly named interface, (org.eclipse.jface.dialogs.IDialogPage), which is not implemented elsewhere, however it 
is extended by other interfaces – so this may be the primary reason for its existence. Mostly using abstract types where there 
are branches, some sub hierarchies are exception to this, but are otherwise suitable for the hierarchy (e.g. 
org.eclipse.ui.dialogs.WizardNewFileCreationPage). 

Generalisation (is-
a). Rule 3 compliant, 
but not a grouping 
hierarchy. 

javax.swing. 
AbstractAction 

166 An expanded version of ActionListener and is generally sub-classed by inner classes representing actions in UI elements. 
While the utilitarian nature of the top level abstract class (and interface) suggest grouping, there is little variation in the 
public interface between types.  In addition to having many subtypes within Java, this hierarchy is extended in other 
applications in the corpus (argouml, columba, freecol, freemind, jhotdraw). Possible comparison? 

Implementation 
generalisation (is-a). 
Rule 3 compliant, 
not a grouping 
hierarchy. 

com.aelitis.azureus.ui. 
common.table.impl. 
TableColumnImpl 

182 Represents table columns in this application – inherits many methods and some constants from multiple interfaces 
representing views of a column (model, rendering information). Variations on a type – little overriding in leaves, and mostly 
the same methods (refresh(), fillTableColumnInfo()). Not clear why the root is not an abstract class. 

Generalisation (is-
a). 

                                                           
19 
http://grepcode.com/file/repository.grepcode.com/java/eclipse.org/4.2/org.eclipse.equinox/common/3.6.100/org/eclipse/core/runtime/PlatformObject.java#PlatformObj
ect 
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8.8 Appendix H - Structural Patterns for Inheritance Hierarchies 

Metrics and models of inheritance have not penetrated in the decision-making space where 

practitioners think on their feet.  These tools are generally applied after the fact or part of 

software lifecycle.  Traditional guidelines do affect decision making, but require 

interpretation – which is a source of disagreement within the design community. 

By examining the corpus of inheritance hierarchies, recurring patterns can be identified – 

these might be described as what lot of developers usually do, a lot of the time.  Much like 

other guidance – these patterns are intended to be informative, but also to give 

practitioners pause before breaking them. 

This differs from the metrics approach as there is no intention to summarise all systems in a 

single average or normal value.  These patterns are structural, like inheritance - which 

makes them more suitable for considering some aspects of inheritance use.  More 

importantly – compliance with the patterns is observed in the wild and there is some 

evidence that deviation from the patterns leads to undesirable outcomes. 

8.8.1 Pattern 1 

Single parent-child inheritance is allowed - for whatever purpose. 

Specifically: Inheritance hierarchies which consist of two members – one super-type with a 

single subtype. 

Reasoning: Many hierarchies are not larger than this - the design cost to undo is small, 

there may not be enough information at this stage to assess the suitability of inheritance.  

The complexity that can be introduced by this kind or inheritance is low, so take advantage 

of the convenience of inheritance. 

Population Presence: 40.12% (979 of 2440) of hierarchies examined are in this category, 

being small, these contain only 8.55% (1958 of 22913) of all hierarchy members examined. 

Figure 57 indicates the diversity of the root types in these hierarchies.  

Many of these extensions are to library types in which case, extension may be the standard 

mode of access. The figure shows all size two hierarchies broken down by the origin of the 

root type and the kind of the root.  The first column shows that there are just under 300 

hierarchy roots that are classes from the Java library.  These are broken down further by 

the pattern of method calls directed to the hierarchy from the rest of the system. Note that 

even at depth one, the variation in method invocations indicates a variety of uses. 
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Figure 57 - Breakdown of high level characteristics for 2-member hierarchies 

Link to Guidance: Inheritance use is encouraged to reuse existing code, while this can create 

problems, many of these do not occur until hierarchies grow.  There are many recognised 

uses of inheritance and a hierarchy with only two members could represent any of these – 

indeed the kind of inheritance may not be entirely clear to the implementer on the initial 

extension. 

An initial extension of a type may indicate the desire to preserve the smallness/single 

responsibility/cohesion of the super-type while indicating in the design that a new type is 

required. At minimum, this satisfies concerns about size (not bloating the super-class) and 

documents the requirement for the new type in the design – which may inform later design 

changes. 

8.8.2 Pattern 2 

Non-leaf types should be abstract. 

Specifically: The root type and subsequent intermediates before the leaves of the tree 

should be abstract.  This should also be enforced when adding new leaves to the hierarchy. 

This may involve adding more abstract classes. 

Reasoning: The motivation for using inheritance over interfaces is the reuse of 

implementation. The sole purpose of the intermediate types in a hierarchy is to store 

implementation – so this should be explicit in the structure. This allows for behaviour reuse, 

and reduces concrete dependencies.  Extracting abstract types by default will force the 
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implementer to document how certain they are about the similarity of leaves. Additionally, 

this allows separate responsibilities to be stored in separate abstract intermediates, 

decoupling them from each other. Finally, revision of the inner structure of a hierarchy 

encourages re-assessment of placement of behaviour in the hierarchy, avoiding the un-

factored hierarchy smell (Suryanarayana et al., 2015). 

Population Presence: Of the hierarchies examined, 54.3% (1325 of 2440) contain abstract 

classes. Figure 58 shows the presence of abstract types in these hierarchies.  The legend 

indicates how contiguous the inner tree structure is in percent.  Green bars indicate 

continuous abstract hierarchies – these are present across all hierarchy size ranges though 

they do start to become more fragmented as hierarchies get larger. Blue indicates almost 

contiguous abstract tree structures within a hierarchy. Notably, all very large hierarchies 

(177-1366 members range) contain abstract types. In large hierarchies, abstract types are 

generally organised near the root of the tree. 

Figure 58 - Hierarchies which include abstract types 

The highest level of horizontal expansion is seen in fan hierarchies - 65.2% (496 of 760) of 

which have abstract roots. This rule offers a little more protection to the many subtypes in 

these wide structures, by ensuring that they depend on an abstract type.  

Link to Guidance: This approach excludes the possibility that one concrete type will depend 

on another, retaining implementation reuse, while reducing direct coupling - this is 
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compliant with the DIP “depend upon abstractions” (R. C. Martin, 1996).  In addition, this 

approach moves the change-prone concrete types to the leaves of the hierarchy, 

encouraging stable intermediates – linking the rule to the OCP (R. Martin, 1996), the 

approach advocated by the Smalltalk community “The top of the class hierarchy should be 

abstract” (Johnson and Foote, 1988), and Riel’s “All base classes should be abstract”(Riel, 

1996). 

8.8.3 Pattern 3 

Grouping super-types should be capped with an interface. 

Specifically: If using inheritance for a grouping abstraction, add an interface on top of the 

grouping super-type class to allow type compliance without requiring inheritance of the 

default implementation – the interface must be implemented for compliance, while 

behaviour may be acquired by composition or inheritance. 

Reasoning: Grouping super-types are an implementation convenience – so make this 

decision easy to opt out from (e.g. acquire instead by delegation).  This also avoids the need 

to stack up required abstractions by implementing them in sub-trees, when the 

abstractions are unrelated.  

Figure 59 shows two solutions for the same design problem.  In both cases, there is an 

existing hierarchy with an abstract class root A.  The second hierarchy with root abstract 

class (B) is required to comply with the ‘native’ interface provided by A. In the left panel this 

is achieved by appending the root of the deficient hierarchy to the existing definition.  The 

attachment could have been made anywhere in hierarchy A to achieve this effect. 

Figure 59 - Illustration of pattern 3 (red = concrete class, yellow/amber = abstract class, green = interface) 

In the right hand panel, pattern 3 is in force on the grouping hierarchy. The option now 

exists for B (and thus C) to comply with the published interface E, while optionally re-using 

the implementation of this behaviour in A. 
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Population Presence: Estimating the at risk population of grouping hierarchies can be done 

by counting the hierarchies where the root implements no interfaces AND method 

invocations from the rest of the design are to root methods: 363 hierarchies with 3029 

hierarchy members. In these cases there is evidence that all invocations are polymorphic, 

and concrete dependency on the root type. 

Eclipse contains an example that is especially bad as it creates API commitments that are 

not easily changed (org.eclipse.core.commands.common.EventManager).  This hierarchy 

has 1366 members (depth 10, 542 wide). The abstract root class is an implementation of an 

Observer-style designed for “optimising memory and performance … guaranteed to be 

thread-safe.” 

So, this is definitely a grouping hierarchy – the root type tells us very little about the 

children, other than that they can be observed (notified of events). While there are many 

direct descendants which benefit from easy access to this behaviour, there are also several 

large sub-hierarchies within the hierarchy that appear to be attached solely for the sake of 

convenience. This comes at a price, however. Individual sub-hierarchies each have their 

own reasons to grow and change – which violates SRP at the hierarchy level. Additionally, 

by including diverse sub-hierarchies, the overall structure becomes more difficult to 

understand. 

Eight possible sub-hierarchies within the EventManager hierarchy are shown in Table 39 

(Appendix F), these describe diverse concepts such as – property caches, UI elements, 

handles for unloaded components, and controller elements – and range in size from 5 to 

820 members. Many of these sub-hierarchies are distinct enough (variation on a type 

hierarchies) to merit considering separation from the top level hierarchy. If all the identified 

sub-trees were removed by composition, this would leave just 32 members (31 subtypes, 

2%) of the original class inheritance hierarchy.  In the case of EventManager, the 

developers are aware of the problem with this hierarchy but are unable to make changes 

due to API commitments. Pattern 3 would prevent exactly this sort of problem. 

While not unique to Java, this problem may be more common where there is no option to 

multiply inherit. This problem may only become obvious after the fact; however vulnerable 

hierarchies are those where candidate new leaves types are likely to already have other 

super types. 
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The next largest hierarchies are summarised in Table 40 (Appendix G) – which shows that 

this pattern is already in effect in some large hierarchies in eclipse. A good example of this 

is in the hierarchy with root org.eclipse.core.runtime.PlatformObject (602 members). This 

hierarchy has a root interface, with a default implementation, which notes – “In situations 

where it would be awkward to subclass this class, the same effect can be achieved simply 

by implementing the IAdaptable interface and explicitly forwarding the getAdapter 

request”. The hierarchy contains a variety of mechanisms for accessing implementations of 

the root interface – direct inheritance, delegation, local implementation, indirect 

inheritance. These are all possible (increasing the practitioner’s design options) because of 

the separation of the root interface from the default implementation. 

Link to Guidance: Much of the design guidance is pragmatic – it suggests how to prevent 

future design issues while providing some input for consistency and disciplined design. This 

rule allows the designer to achieve reuse, without introducing unnecessary concrete 

dependencies. This form of separation of desirable outcome and mechanism is similar to 

modularity (Parnas, 1972), depending towards stability or abstraction (R. C. Martin, 1996), 

or programming to interfaces (Gamma et al., 1994). The choice to use inheritance in this 

case is itself a design decision that the rest of the system can be protected from. 

As discussed above – this sort of protocol inheritance is technically an is-a relationship in 

the sense of compliance with the root behaviour and substitutability (LSP).  However, 

grouping inheritance adds a protocol to hierarchy members, without much semantic 

constraint. This pattern recognises this less defining relationship by reducing coupling with 

the default implementation. 

8.8.4 Pattern 4  

An abstract class root-type without an interface should be used only to represent a 

‘complete type’ sub-typing hierarchy (is-a relationships). 

Specifically: A hierarchy root without an interface (ideally an abstract class) should be a 

well-defined abstraction that contains minimal, very high level common code that is 

common to all subtypes.  This code may even be static methods and constants - essentially 

an interface-like abstraction with some documentation. 

Reasoning: Simple re-use hierarchies can be concrete if there are only two members (as per 

rule one), but as soon as more than one type relies on the same code, separate mechanism 
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of reuse from the reuse dependency (pattern 2).  However, this may leave some doubt as 

to whether the hierarchy is grouping, or sub-typing. 

While pattern 3 warns against committing to a grouping super-type.  This pattern captures 

an alternative situation where there is a clear (modelling or implementation) super-type 

that defines the essential nature of its subtypes - which are going to be specialisations of 

that root type. 

Population Presence: 561 (23%) of hierarchies have an abstract root and no interface – 

while this is not confirmation that these are not grouping hierarchies, it does indicate that 

an abstract-class root is considered abstract enough for some purposes by practitioners. 

For example: 

org.apache.tools.ant.ProjectComponent (499 members) - The root describes members as 

‘components of a project’, and defines a few generic facilities such as logging and cloning. 

Good (not perfect) inclusion of abstract classes at branch points. 

org.eclipse.jface.window.Window (361 members) – abstract spine. Many intermediate hub 

types are non-abstract – although documentation indicates this this may be an oversight 

(e.g. ViewSettingsDialog is documented as an abstract class, but it is not). 

Link to Guidance: One of the promises of OO design is that it captures meaning from the 

problem or solution domain.  There is some debate over how closely the types defined in 

the design should be drawn from either domain – as some design elements are clearly 

implementation abstractions (GRASP – Pure Fabrication (Larman, 2004)).  This pattern 

captures the level of certainty – in this case the documentation is (pragmatically) an 

abstract class, rather than an interface. 

8.8.5 Pattern 5 

Inheritance between concrete types is a last resort - when the existing code cannot be 

changed (OCP) or if the new leaf completely replaces its ancestors (versioning). 

Specifically: In some cases, the only mechanism available to allow incremental evolution of 

a base class is to allow one concrete type to inherit from another. This is reasonable if the 

new subtype is going to replace its super-type. 
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Reasoning: The trade-off here may involve modification constraints, reuse, and avoiding 

complexity. Incremental evolution suggests that each subtype modifies the super type 

while retaining its overall purpose. 

In the case where there are going to be a sequence of versions of a class (line shaped 

hierarchy, no branches), the complexity remains relatively low – there is a clear motivation 

for each version.  If branching does occur, then this should be an indication that there is 

more going on than simple incremental modification. 

Similarly, in the case where it is known that only the latest version of the class (the single 

leaf) is going to be instantiated, the risk of side effects from the interaction of up-or down 

calls can be well-documented in the hierarchy. 

Population Presence: Line hierarchies are common 1043 (43%), but generally not deep (979 

at depth 2, 58 at 3, 5 at 4, 1 at 5). Deeper line hierarchies illustrate this use of inheritance.  

It is not clear if this form of versioning is present in more complex hierarchies where it 

would be more difficult to isolate. 

java.awt.KeyboardFocusManager (5 members) While not entirely related to versioning, the 

documentation indicates that the current leaf type (DelegatingDefaultFocusManager) is 

current version compliant, but delegates to a deprecated class further up the hierarchy. 

org.omg.CORBA.portable.Delegate (4 members) The base type implements an standard API 

(CORBA Object), while later subtype notes “It extends org.omg.CORBA.portable.Delegate 

and provides new methods that were defined by CORBA 2.3” 

(org.omg.CORBA_2_3.portable.Delegate). 

Link to Guidance: Reuse is a commonly stated benefit of using inheritance. However, as 

noted by Taivalsaari, class inheritance allows a new class to be substituted for its super-

type, incrementally modifying (Taivalsaari, 1996) the program after it has been written. This 

is another use mode of inheritance and should be recognised as such. 

8.8.6 Pattern 6 

There are different kinds of similarity – more examples will clarify what kind of hierarchy 

you are growing. 

Specifically: When common code is identified in sibling leaves, consider if this is co-

incidental or real commonality.  
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Reasoning: The kind of similarity modelled by a changing hierarchy may only become clear 

as more leaves are added: 

• If the hierarchy is grouping - add an interface above the grouping super-type as in 

Pattern 3 

• Only pull out common code to the hierarchy if it is related to the common 

abstraction, including decomposing common method fragments (Johnson and 

Foote, 1988). 

o Otherwise, refactor to composition would avoid contaminating the abstract 

super-type with incidentally common code. 

o Pay attention to the purpose and function of the root abstraction to assess 

if any sub-hierarchies differ enough to be extracted to new hierarchies. 

Population Presence: N/A. Pattern 6 applies as new leaves are being added. 

Link to Guidance: This rule represents an evolution concern - conceptual entropy, while the 

future is often uncertain, attempting to add a new type to an existing hierarchy may be 

very revealing in terms of how well the design matches the needs of the practitioner.  

Additionally, each new leaf may broaden or narrow the scope of the root abstraction in the 

system. This begins to incorporate the notion of where things belong, so conceptual 

entropy is related to cohesion, and the impact of new information. 

8.8.7 Patterns Summary 

This section reviews the patterns presented above in the context of the corpus used in this 

study: 

8.8.7.1 How much of the corpus is covered by these patterns? 

Note that the patterns are not mutually exclusive e.g. a grouping hierarchy should be 

capped by an interface, but it should also have abstract non-leaf layers. So, some of the 

populations may overlap. As for being important most of the time – these cover the main 

motivations for using inheritance, namely polymorphism, reuse, grouping, variation, and 

evolution. 

8.8.7.2 How much evidence there is that the patterns are already being followed? 

There are concrete examples for each category noted above. These are isolated using the 

criteria noted under the Population Presence section under each pattern, and are 
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summarised in Table 41. Since these patterns are primarily structural, and derived from the 

corpus, it may seem obvious that they would be represented in the corpus. Nevertheless, it 

is notable how few patterns are required to capture most of what is observed in the corpus. 

Table 41 - Estimated presence of structural patterns for inheritance in corpus 

No Pattern Hierarchies Members 

1 
Single parent-child inheritance is allowed - for 

whatever purpose 
40% 9% 

2 Non-leaf types should be abstract 54% 19% 

3 
Grouping super-types should be capped with an 

interface 
Few large 

hierarchies 
44% 

4 

An abstract class root-type without an interface should 

be used only to represent a sub-typing hierarchy (is-a 

relationships). 

23% 26% 

5 
Concrete inheritance may be unavoidable – when used 

to version the root of the hierarchy 
Unclear  Unclear 

 


	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Response
	1.4 Contribution
	1.5 Roadmap

	2 Literature Review
	2.1 Introduction
	2.2 Object-Oriented Design Guidance
	2.2.1 Defining Design Quality
	2.2.2 The Emergence of Design Guidelines
	2.2.3 Dependency Inversion Principle (a.k.a. Program to an Interface)
	2.2.4 Coupling and Cohesion
	2.2.5 Information Hiding
	2.2.6 Favour Object Composition Over Class Inheritance (Gamma et al., 1994)
	2.2.7 SOLID and GRASP
	2.2.8 Interface Segregation Principle
	2.2.9 Is-a Relationships and the Liskov Substitution Principle
	2.2.10 Single Responsibility Principle
	2.2.11 Open-Closed Principle
	2.2.12 Code Smells and Design Patterns
	2.2.13 Interface Related Guidance
	2.2.13.1 Interface Design Criteria

	2.2.14 Inheritance Related Guidance
	2.2.14.1 Hierarchy Shape
	2.2.14.2 Fragile Base Class
	2.2.14.3 Use of Abstract Classes
	2.2.14.4 Interaction Between Guidelines and Inheritance
	2.2.14.5 Inheritance Code Smells


	2.3 Metrics
	2.3.1 Inheritance Metrics
	2.3.2 Interface Metrics

	2.4 Modelling
	2.4.1 Modelling Interface Use
	2.4.2 Modelling Inheritance

	2.5 Entity Population Model
	2.5.1 Inheritance in Practice
	2.5.2 Interfaces in Practice

	2.6 Survey Research and Practitioner Attitude
	2.7 Conclusions
	2.7.1 Research Questions


	3 Survey of Practitioner Attitude to Design Guidance
	3.1 Introduction
	3.1.1 Motivation

	3.2 Study
	3.2.1 Problem Statement
	3.2.2 Research Objectives
	3.2.3 Context
	3.2.4 Experimental Design
	3.2.4.1 Subjects
	3.2.4.2 Objects
	3.2.4.3 Instrumentation
	3.2.4.4 Data Collection Procedures
	3.2.4.5 Analysis Procedure
	3.2.4.6 Evaluation of Validity
	3.2.4.7 Pilot Study


	3.3 Research Questions
	3.4 Results
	3.4.1 Descriptive Statistics
	3.4.2 Data Set Reduction
	3.4.3 Respondents
	3.4.4 General Approaches to Design Quality
	3.4.5 Design Practices
	3.4.5.1 Design Practice – Program to an Interface
	3.4.5.2 Design Practice – Inheritance
	3.4.5.3 Design Practice – Coupling
	3.4.5.4 Design Practices – Cohesion
	3.4.5.5 Design Practices – Size
	3.4.5.6 Design Practices – Complexity
	3.4.5.7 Design Practices – Design Patterns
	3.4.5.8 Design Practice – Refactoring

	3.4.6 Experience, Programming Languages, and Development Role

	3.5 Answers to Research Questions
	3.5.1 Evaluation of Results and Implications
	3.5.2 Lessons Learnt

	3.6 Discussion
	3.6.1 Limitations

	3.7 Conclusions
	3.7.1 Impact


	4 Profiles of Interface Use
	4.1 Motivation
	4.2 Problem Statement
	4.3 Research Questions
	4.4 Research Objectives
	4.5 Context
	4.6 Methodologies
	4.7 Experimental Design
	4.7.1 Subjects
	4.7.2 Objects
	4.7.3 Instrumentation
	4.7.4 Data Collection Procedures
	4.7.5 Analysis Procedure
	4.7.6 Evaluation of Validity
	4.7.6.1 Construct Validity
	4.7.6.2 Internal Validity
	4.7.6.3 External Validity


	4.8  Results
	4.8.1 Descriptive Statistics
	4.8.2 Data Set Reduction
	4.8.3  Results
	4.8.3.1 Presence of Interfaces
	4.8.3.2 Interface Size
	4.8.3.3 Interface Implementation – System Level
	4.8.3.4 Interface Implementation – Interface Level
	4.8.3.5 Use of Interfaces in Declarations
	4.8.3.6 Marker Interfaces
	4.8.3.7 Java Collection Interfaces

	4.8.4 Interface Archetypes
	4.8.4.1 Listener Interface
	4.8.4.1.1 Anonymous Classes

	4.8.4.2 Constant Interface
	4.8.4.3 Marker Interface
	4.8.4.4 Token Decoupling
	4.8.4.5 Other Naming Conventions
	4.8.4.6 Presence of Previous Models


	4.9 Answering the Research Questions
	4.9.1 RQ4.1: How is interface definition used in systems?
	4.9.2 RQ4.2: What is the profile of interface size across the systems?
	4.9.3 RQ4.3: To what extent are interfaces implemented across the systems?
	4.9.4 RQ4.4: How are interfaces used in the systems?

	4.10 Discussion/Interpretation
	4.10.1 Interface Definition
	4.10.2 Interface Size
	4.10.3 Interface Implementation
	4.10.4 Interface Use in Declarations
	4.10.5 JHotDraw
	4.10.6 Comparison of Findings with Interface-Related Guidance
	4.10.7 Interface-related Guidance and Interface Use Categories
	4.10.8 How can interface use be assessed?
	4.10.9  Motivation for Interface Use

	4.11 Conclusion
	4.11.1 Lessons Learnt
	4.11.2 Limitations
	4.11.3 Impact


	5 Properties of Inheritance Hierarchies
	5.1 Introduction
	5.2 Research Objectives
	5.2.1 Context

	5.3 Analysis Technology
	5.3.1 Instrumentation

	5.4 Experimental Design
	5.4.1 Goals, Hypothesis, Variables
	5.4.2 Study Design
	5.4.3 Subjects
	5.4.4 Objects
	5.4.5 Data Collection Procedures
	5.4.5.1 Data Set Reduction

	5.4.6 Analysis Procedure
	5.4.7 Evaluation of Validity

	5.5 Results
	5.5.1 Descriptive Statistics
	5.5.2 Presence of Inheritance
	5.5.3 Hierarchy Properties
	5.5.3.1 Depth of Inheritance
	5.5.3.2 Hierarchy Width

	5.5.4 Public Interfaces and Method Novelty
	5.5.5 Hierarchy Structure
	5.5.5.1 Shape

	5.5.6 Abstract classes
	5.5.6.1 Interaction of Shape and Abstract Classes

	5.5.7 Method Invocation
	5.5.7.1 Casting
	5.5.7.2 Large Hierarchies


	5.6 Discussion
	5.6.1 RQ5.1: How is inheritance used?
	5.6.2 RQ5.2: How can inheritance hierarchies be characterised?
	5.6.3 RQ5.3: To what extent can inheritance usage patterns be related to Design Quality where quality is defined via Guidance, Metrics, Code Smells, Entity Population Models, and Modelling?
	5.6.4 Presence of Inheritance
	5.6.5  Depth of Inheritance
	5.6.6  Hierarchy Width
	5.6.7  Public Interfaces and Method Novelty
	5.6.8  Hierarchy Structure
	5.6.9  Large Hierarchies
	5.6.10  Abstract Classes
	5.6.11  Method Invocation
	5.6.12  Casting
	5.6.13 Conclusion


	6 Conclusions
	6.1 Research Goal Response
	6.2 Lessons Learnt
	6.2.1 Observations and Recommendations

	6.3 Limitations
	6.4 Future Work

	7 References
	8 Appendices
	8.1 Appendix A – Terminology
	8.1.1 Literature Review Terminology
	8.1.2 Inheritance Chapter Terminology

	8.2 Appendix B - Object-Oriented Concepts
	8.2.1 Classes
	8.2.2 Types
	8.2.3 Inheritance
	8.2.4 Interfaces
	8.2.4.1 Interfaces in Java
	8.2.4.2 Abstract Classes
	8.2.4.3 Marker Interfaces
	8.2.4.4 Other Uses of Interfaces

	8.2.5 Polymorphism
	8.2.6 Dynamic Binding
	8.2.7 Reuse versus Polymorphism

	8.3 Appendix C – Presence of Abstract Types in Selected Programming Languages
	8.4 Appendix D - Survey Questions
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	8.2
	8.3
	8.4
	8.5 Appendix E – Semantic Characteristics of Deep Hierarchies
	8.6 Appendix F – Candidate Component Sub-Hierarchies for a Large Hierarchy
	8.7 Appendix G – Large Hierarchy Summaries
	8.8 Appendix H - Structural Patterns for Inheritance Hierarchies
	8.8.1 Pattern 1
	8.8.2 Pattern 2
	8.8.3 Pattern 3
	8.8.4 Pattern 4
	8.8.5 Pattern 5
	8.8.6 Pattern 6
	8.8.7 Patterns Summary
	8.8.7.1 How much of the corpus is covered by these patterns?
	8.8.7.2 How much evidence there is that the patterns are already being followed?




