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Abstract

The utilisation of space provides many opportunities to deliver pioneering innovations

during the 21st century. One of these opportunities is the gossamer spacecraft, an

emerging technology to achieve very low mass, large area and low stowage volume. Ex-

amples include large ultra-lightweight membrane reflectors and distributed tethered for-

mations. Gossamer spacecraft offer the potential to deliver innovative new science and

applications missions to aid our growing globalised societies: high-performing communi-

cations antennae, scientific telescopes and space-based solar power collectors. However,

the ability to control such large structures in space is essential for their successful op-

eration. To this aim, this thesis investigates a novel means to control large gossamer

spacecraft by exploiting modulated solar radiation pressure (SRP), thus by modifying

the nominal light pressure acting on the structure in space.

Various concepts have been proposed in the past to control the attitude of a gossamer

spacecraft, employing complex mechanical systems or thrusters. Furthermore, methods

to control the surface shape of a large membrane reflector using, for example, piezo-

electric actuators, are being developed. Since on-board control systems need to be

high-performance, reliable and importantly lightweight, this thesis investigates the use

of thin-film reflectivity control devices across the spacecraft surface. Controlling the

reflectivity modulates the Sun’s light pressure acting on a thin membrane thus con-

trolling its shape. In addition, body forces and torques become available to control

the attitude of such a large structure ‘optically’, without using traditional mechanical

systems.

The concept is demonstrated first by controlling a two-mass tethered formation in a

Sun-centred orbit, showing that the spacecraft attitude can be stabilised around new

equilibria created by controlling the surface reflectivity of the masses. Subsequently,

the concept is applied to control the attitude of a large membrane reflector, which
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confirms the viability of reflectivity modulation by generating variable optical torques

in the membrane plane. In particular, the nominal SRP forces are modified by in-

troducing different surface reflectivity distributions across the membrane. It is shown

that through these optical torques, the reflector can be steered, for example, to a Sun-

pointing attitude from an arbitrary initial displacement. The analysis also considers

the variation of the SRP force magnitude with changing light incidence angle towards

the Sun during the manoeuvre, thereby presenting solutions to a challenging attitude

control problem.

Furthermore, by adopting a highly-integrated multi-functional design approach, the

concept of reflectivity modulation is also employed to control the surface shape of a

large membrane reflector. First, the nominal (non-parabolic) deflection shapes due to

uniform SRP across the surface are presented. Subsequently, a closed-form solution

for the reflectivity function across the membrane required to create a true parabolic

deflection shape is derived. In order to improve the quite large focal lengths of the

deflected shapes that can be generated for a tensioned membrane, shape control of

a slack suspended surface is also considered. The achievable (shorter) focal lengths

support the feasibility of exploiting modulated SRP for controlled surface deflection.

In summary, this thesis demonstrates the potential of using surface reflectivity modula-

tion to control the attitude and morphology of large gossamer spacecraft without using

complex mechanical systems or thrusters. Therefore, the concept of optical control

represents a major step towards highly-integrated adaptive gossamer structures and

supports the development of this promising key-technology to deliver advanced space

applications.
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Chapter 1

Introduction

In this first chapter, the scientific framework and the research objectives of the thesis

will be defined. The development of large gossamer space structures as an architec-

ture for a range of space-based applications will be discussed in Section 1.1, in the

context of the limitations and challenges of this technology to date. The section will

highlight envisaged space-based applications, give a brief description of the required

key technologies, and review current methods for control. This discussion is then used

to define the research objectives in Section 1.2. The contributions of this thesis will

be highlighted in Section 1.3, while Section 1.4 will provide an overview of published

work. Finally, in Section 1.5, an outline of the thesis will be presented.

1.1 Large gossamer spacecraft

Since the early days of human flight, the fundamental challenge has been to achieve

ultra-lightweight designs to reach beyond the sphere of our planet. Besides the goal

of becoming ‘lighter-than-air’, as first seen in Chinese hot-air balloons (‘sky lanterns’)

in the 3rd century B.C., pioneering inventors such as Otto Lilienthal and the Wright

brothers based their designs on wooden trusses, bracing tethers and fabric surfaces in

the early 20th century [1]. In 1971, the first human-powered aircraft to cross the English

channel was aptly termed the ‘Gossamer Albatross’ (see Fig. 1.1). Today, modern

aircraft are built with composite materials to reduce weight, while at the same time,

meeting the requirements of structural integrity. With the dawn of modern rocketry

and spaceflight, early pioneers such as Konstantin Tsiolkovsky and Hermann Oberth

knew that propulsive thrust alone could not ‘outweigh’ the importance of realising

low-mass designs.
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Figure 1.1: Gossamer Albatross crossing the English Channel in 1971 (image
credit: AeroVironment Inc.)

Being synonymous for something thin, delicate, or light, the word ‘gossamer’ relates to

the Middle English term ‘goose summer’. At this time of the year in late summer, when

geese were sold at local markets, spider ballooning (so-called ‘angel hair’) was at its

peak, covering bushes and grass in the setting Sun. Having adopted this analogy, the

term ‘gossamer structure’ in modern engineering refers to a category of ultra-low-mass

structures in, for example, automotive design, architecture and aerospace technology.

Especially in space-related applications, the term ‘gossamer spacecraft’ is commonly

referred to as a particular type of spacecraft, which has found considerable interest

over the last decades.

In general, gossamer spacecraft are large ultra-light structures envisaged to accom-

plish a wide range of space-based applications, as will be detailed in Subsection 1.1.1.

Uniquely, gossamer space systems provide an opportunity to reduce the high launch

volume and launch cost of existing space technologies. Solar sails are a major category

of gossamer spacecraft [2], however, they also include deployables such as strings, teth-

ers, booms, and trusses, as well as inflatable or pressurised structures, lenses, antennae

and meshes [3]. The largest category of gossamer spacecraft are deployable or inflatable

membrane structures. Such membrane reflectors usually consist of a highly-reflective

thin film, folded into a packed configuration during lunch. Once delivered into orbit,

the membrane is deployed from a support structure to form a large reflecting surface, as

shown in Fig. 1.2. The surface can be used to collect and/or emit electro-magnetic ra-

diation for a wide range of applications such as, for example, science, communications,
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Figure 1.2: Inflatable circular membrane reflector, including subsystems (back)
and receiver unit in the aperture focus [4].

and the collection of (solar) energy.

Clearly, increasing the mirror aperture size of existing spacecraft provides significant

benefits for Earth observation, scientific telescopes and even surveillance and military

utilisation. Space reflectors with diameters of 30 m and more potentially enable more

accurate remote sensing, spectroscopy of fainter objects and imaging with higher resolu-

tion [4]. However, considering all current and proposed launch technologies, traditional

monolithic mirrors above 8 m in diameter are prohibitively large to be delivered into

orbit [5]. The only exception are segmented, deployable designs such as the 6.5 m

primary mirror of the James Webb Space Telescope (JWST) [6]. To overcome this

severe packaging limitation, various flexible mirror configurations such as deployable

membrane reflectors, supported by collapsible expandable booms [7, 8] or surrounded

by tensioning web cables [9], have been proposed to fulfil this need. Furthermore,

membranes supported by inflatable/rigidisable support structures [10] or pressurised

lenticular parabolic reflectors [11, 12] are being developed.

Research and development of large, lightweight membrane structures emerged in the

late 1950s [13], with the prospect of exploiting their potential to realise low-cost space

technology and low stowed volume. Indeed, early flight experiments with large inflat-

able and/or deployable structures have been conducted since the early 1960s (Echo

Balloon) [14]. More recent developments include the in-space demonstration of the

14 m diameter L’Garde ‘Inflatable Antenna Experiment’ (IAE) in 1996 [15], as shown

in Fig. 1.3, and the 12.2×18 m Sun-shield membrane of the JWST. Further examples of

inflatable gossamer structures include inflatable solar arrays [16], human habitats [17],
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Figure 1.3: L’Garde ‘Inflatable Antenna Experiment’ (IAE) after deployment
in 1996 (image credit: NASA)

and impact systems for planetary landers (Mars Pathfinder) [18]. Typical examples of

deployable gossamer systems also include thin-film solar arrays [19] and mesh antennae

[20]. A comprehensive review of recent trends in the analysis, experimentation, and

control of gossamer spacecraft has been provided in Ref. [21].

Tethered spacecraft configurations are similar to deployable membrane spacecraft, since

both are fabricated from continuous material which carries tension loads, but cannot re-

sist compression or shear stresses [13]. Furthermore, both types of gossamer structures

are envisioned to be extremely large in surface area or tether length, respectively, while

both are being deployed from extremely compact configurations. Almost uniquely,

and with the only alternative being a constellation of satellites flying in formation,

tethered spacecraft offer an opportunity to considerably improve applications such as

radio/optical interferometry [22]. For wavelengths in the sub-millimetre spectrum, for

example, a very large telescope with an effective aperture diameter in the kilometre

range would be required to obtain high quality angular resolution [23]. However, a

tethered configuration could enable much larger (synthetic) aperture diameters for sci-

ence applications than can practically be achieved by a monolithic mirror/membrane

surface. For example, a spin-stabilised tethered system, flying in precise formation,

could be employed to collect enough light from distant faint celestial objects. Light

collecting mirrors, mounted on separate members of the formation, provide access to

kilometre baselines. Slow spin rates then produce a centripetal acceleration, which

keeps the tethered arrangement tight, thus maintaining the shape of the formation

[24]. In comparison to purely formation-flying concepts, without tethers, this removes

the propulsive need for station-keeping [22].
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Finally, the concept of a ‘space tether’ was initially introduced by the Russian space

pioneer Konstantin Tsiolkovsky in 1895 [25] and reemerged in the 1960s [26] due to

its numerous applications in space exploration and exploitation, such as the space

elevator [27] and generating artificial gravity during NASA’s Gemini program from

1962-1966 [28]. Several missions have been proposed [29] and launched to verify the

concept of space tethers since the 1970s. The coupled orbit/attitude dynamics, stability

properties, and the control of tethered satellite systems (TSS) have been extensively

studied over recent decades [30, 31, 32]. In particular, the classical dumbbell problem,

namely two masses connected by a rigid massless tether, has been discussed extensively,

for example in Refs. [33, 34, 35, 36]. A comprehensive review of space tether research

has been provided in Refs. [37, 38].

1.1.1 Applications

Ultra-lightweight gossamer structures have been developed with the prospect of accom-

plishing, or even enabling, compelling new science and application missions. In order to

give an overview of the full range of technology applications envisaged for this type of

spacecraft, the different space applications will be introduced briefly in this subsection.

Communication

The reflective surface of a gossamer spacecraft can be used as a large antenna for

radio-frequency (RF) communications [39]. Although deployable mesh antennae and

phased arrays with projected aperture sizes of up to 25 m are already operational for

broadcasting and mobile satellite services [20], concepts based on a large parabolic mem-

brane antenna offer several advantages. In particular, antenna efficiency, bandwidth,

power consumption, complexity, mass and cost can be improved. Further examples for

Earth communication services that may see considerable growth over the next decade

include (air) traffic management, but also emergency and disaster management, and

communication with the Earth’s high latitudes and polar regions (e.g. science stations,

shipping). In terms of space communication, example applications include the support

of the Deep Space Network by installing relay-satellites to communicate with the far

side of the Moon and the Martian surface, especially during periods of solar occultation.
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Remote sensing

This category of applications includes Earth observation as well as observational astron-

omy and astrophysics using space telescopes [40]. With respect to Earth observation,

there is a growing demand for high-resolution imagers for resource and biomass moni-

toring, climate science and weather analysis, (natural) hazard assessment and disaster

management, and even reconnaissance and surveillance. One particular imaging con-

cept is synthetic-aperture radar (SAR), which is a novel form of radar used to create

images of objects and landscapes. The SAR concept uses the motion of the antenna

over a target region for sequential imaging, providing finer spatial resolution than is

possible with conventional beam-scanning radars using a physical aperture antenna [41].

However, SAR satellites require large and long antennae which in turn require a large

launcher fairing. The cost for SAR missions could therefore be reduced significantly, if

the antenna and its support structure is as large as possible, lightweight and foldable

during launch. Possible applications for interferometric SAR include tectonic mapping

of seismic activity, volcanism, glacier flow, and sounding of the Arctic and Antarctic ice

shields [42]. Membrane reflector spacecraft could achieve similar resolution/accuracy

as LEO satellites, while orbiting at much higher altitudes. For example, a single 30

m membrane mirror in a 5000 km equatorial orbit would obtain the same (10 cm)

accuracy as current LEO satellites, but could provide full (sub-polar) coverage [43].

Solar power collection

Early studies of solar concentrators for high temperature space power systems have

been conducted since the 1960’s [44]. Commonly termed ‘Solar Power Satellites’ (SPS),

the idea behind SPS is to collect solar energy in space and transmit a concentrated

microwave or laser beam to receivers on Earth [45]. The main advantages are the

unobstructed view of the Sun, independent of the day/night cycle, weather or seasons.

Furthermore, collecting solar energy above the atmosphere of Earth is more effective

than for ground-based photovoltaic (PV) systems due to the attenuation of the solar

flux density in the atmosphere.

A solar power collector essentially consists of four parts: (i) a large surface area to

collect solar energy, for example via PV cells or a parabolic (membrane) collector, (ii)

a subsequent heat engine at the aperture focus, (iii) a system for transmitting power

to Earth, and (iv) a ground-based receiver unit [46]. The main disadvantages of SPS

are the high launch cost to deliver the required platforms into orbit and the still low

technology readiness level (TRL) of the systems involved. For example, the energy
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beam transmitter on-board and the receiver on Earth must operate such that energy

losses are minimal, while at the same time, losses due to transmitting the beam through

the atmosphere are inevitable. Further utilisation of the collected energy could be, for

example, to heat propellant for in-orbit spacecraft manoeuvres, station-keeping of Earth

satellites or even interplanetary propulsion [45].

Sun shield

As noted previously, the large Sun-shield membrane of the JWST is a prominent exam-

ple of employing large and ultra-lightweight membrane structures for thermal control

of space systems. In general, a Sun shield (or ‘Sun shade’) is a protective surface that

blocks, diverts or otherwise reduces some of the Sun’s electro-magnetic radiation, pre-

venting it from impinging on a spacecraft or particular (sensitive) subsystems. In the

longer term, such devices may also be used above planetary surfaces, thereby reducing

solar insolation [47]. In this regard, large deployable membranes are of particular in-

terest towards mitigating global warming through solar radiation management. At the

same time, the shades could also be used to produce space solar power, as discussed

above.

1.1.2 Technology

In order to realise ultra-low-mass large-area space structures, a variety of materials

and technologies have been developed over the last decades. In simulation-based ap-

proaches, different models have been developed to predict the behaviour of such struc-

tures in space. Several design concepts have also been tested in ground-based ex-

perimental campaigns and during in-space technology demonstration missions. This

section focusses on the key technologies required to enable reliable, robust, and low-

cost operation of gossamer space structures, briefly highlighting current innovations

and challenges involved in ongoing developments.

Deployable/inflatable membrane structures

Again, as noted previously, achieving ultra-lightweight designs for gossamer spacecraft

poses engineering challenges in terms of low mass deployable or inflatable structures,

thin membrane films as well as subsystem miniaturisation.

One of the main drivers to reduce the spacecraft mass is the membrane thickness.

In principle, potential candidate materials for gossamer membranes have the follow-
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ing characteristics: high flexibility (low Young’s modulus) and low packaging volume,

which is commonly found in thin polymer films [13]. While a polymer substrate is re-

quired to provide adequate tensile strength for handling during manufacture, packing

and deployment, the final membrane is usually vapour coated on one or both sides

with Aluminium. The metal improves the resistance of the film to thermal loads and

radiation in the space environment, as well as providing a greater resistance to atomic

oxygen in LEO. Furthermore, the coating realises a smooth reflective surface with low

surface roughness. One of the earliest materials used in space-related applications was

Mylar (material density τ = 1, 350 kg/m3), a coated polyester film used to construct, for

example, the Echo balloon series in the 1960s. For recent space applications, the more

advanced polyimide Kapton is usually employed (material density τ = 1, 572 kg/m3)

[48].

A common problem associated with operating thin membranes in space is wrinkling [49].

This effect is due to many factors such as imperfections generated in the material during

manufacture, non-uniform mechanical and thermal loads, non-uniform tensioning, in-

plane compressive loads, and the dynamic response of the structure. Further analyses

consider the billowing of solar sail films attached to, for example, deployable booms

or web cables [9], an effect undesirable for sail propulsion due to the losses in thrust

magnitude. However, exploiting this effect to generate specific, for example, parabolic

deflection shapes of large gossamer membrane structures could be an advantage, as will

be discussed in this thesis.

In order to realise a rigid support assembly for large gossamer systems such as space

antennae and solar arrays, deployable structures such as foldable trusses, expandable

booms and unfurlable meshes are common established space technologies [20]. However,

they typically rely on a large number of mechanisms (hinges, bars, cables). These

support structures and their associated deployment mechanisms, launch restraints and

controls, comprise sometimes more than 90 percent of the total mass budget for a

deployed assembly [50]. Therefore, inflatable support structures have been established

as a promising technology to deploy and support the membrane over recent decades.

A common design concept suggests a toroidal polymer hoop that is pressurised in orbit

to induce self-inflation, after which the material is self-rigidised. A comprehensive

review of analysis and simulation methodologies is given in Ref. [51]. A study of useful

inflatables is also provided in Ref. [52].
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Solar sails

Solar sailing uses large deployable reflective membranes for propulsion by exploiting

solar radiation pressure (SRP) [53]. The main limitation of solar sailing, and challenge

for the coming years, is the development of high area-to-mass ratio (high ‘lightness

number’, see Section 2.1) spacecraft, in which the sail can provide a useful acceleration,

while carrying a reasonable payload mass and other spacecraft subsystems. A second,

but no less important issue is the attitude control of the large, thin membrane, as well

as its surface degradation during the mission. While an anomaly in pointing results

in the wrong thrust vector direction, the presence of wrinkles diminishes the efficiency

of the sail [54]. A recent overview contains several mission concept studies and the

current technology roadmap for solar sails [55].

Attitude control

Attitude control systems for gossamer spacecraft are required to compensate for various

disturbances acting on the structure in orbit such as aerodynamic drag, gravity-gradient

and magnetic torques [56]. Furthermore, the control system needs to counteract any

excess spacecraft angular momentum, for example, during launcher separation or (non-

ideal) deployment. In addition, internal torques are created by spacecraft subsystems

such as mechanisms, outgassing and attitude thruster misalignments. Another source

for disturbing torques is an offset between the centre-of-pressure (c.p.) and the centre-

of-mass (c.m.) of the structure, caused by SRP. However, this effect can also be exploited

for attitude control, by employing moving masses that can slide, for example, along sup-

port booms or tethers to change the position of the spacecraft c.m. with respect to the

c.p. [57]. Conventional attitude systems include thrusters, reaction wheels, magnetic

torquers or spin-stabilisation [58]. In addition, other concepts propose articulated tip

vanes mounted on the edges of the structure [59]. A comprehensive study of attitude

control systems, dynamic modelling and control analyses can be found in Refs. [60, 61].

1.1.3 Smart, multifunctional and adaptive gossamer

spacecraft

The key requirement for gossamer structures to achieve ultra-low-mass suggests the

introduction of concepts such as multi-functionality to its components. Novel innovative

space technologies could integrate functions of previously separate subsystems into one.

For example, it has been proposed to use the large membrane of a solar sail for other
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applications than providing propulsion during a mission [62]. Although a solar sail is

less efficient further from the Sun, a multi-functional sail membrane could still be used

otherwise, e.g. as a telecommunications antenna or remote sensing device. For example,

after reaching its target (e.g. an asteroid or the outer solar system), the membrane could

be re-configured as an antenna for data return or a science instrument, such as a radar

sounder for scanning the asteroid surface or characterising the Kuiper belt [62].

Furthermore, highly integrated membrane structures could host, for example, dis-

tributed power systems and active/passive thermal control systems [13]. This could

be achieved by embedding polymer MEMS actuators into the membrane material or

into a composite support structure, or by printing foldable graphene circuit boards on

the surface [63]. Further examples include inflatable shape changing colonies actuated

using MEMS devices to enable smart adaptive space structures [64].

However, future ’smart’ gossamer spacecraft could use highly distributed sensing and

actuation not only to reduce the system mass. Of further importance is the requirement

for membrane reflectors to reliably maintain their surface precision during the mission

lifetime, in particular for remote sensing and telescope applications. This has driven the

concept of adaptability in recent developments of gossamer membrane spacecraft. Such

systems could adapt to changing, highly dynamic environments and load cases such as,

for example, electrostatic switched radiators for thermal control [65]. Several examples

of adaptive ‘morphing’ aircraft exist (e.g. variable-sweep wing aircraft), however, very

little research has been done in this area for spacecraft [66, 67].

Integrating actuators and sensors into the surface and support structure of a membrane

reflector is necessary to evaluate the surface accuracy on orbit in terms of surface

distortion caused by thermal effects, imperfections in the manufacturing process, and

long-term changes in the material properties (degradation) [13]. The following summary

outlines various lightweight methods for active surface control of large space structures,

which have been developed in the past.

Surface shape control methods

Different technology concepts for adaptive compensation of surface shape error exist

to improve the aperture efficiency of membrane reflectors and thus, performance: for

example, through boundary displacements [68], active temperature gradients [69] or

pressurised lenticulars with transparent canopies [70]. More recent control techniques

employ electroactive materials such as piezoceramic lead zirconate titanate (PZT) ac-

tuators for shape correction of thin membrane mirrors for space telescopes [71, 72].

10



Piezoceramic macro-fiber composites (MFC) have also been used for excitation and

control of out-of-plane modes of solar sail membranes [73]. Employing electroactive

polymer (EAP) films such as polyvinylidene fluoride (PVDF) for surface control of

space membrane reflectors is currently being investigated [74]. Dielectric elastomers, a

type of EAP employing electrostatic forces between two electrodes to squeeze a polymer

film have been tested on the back of flexible mirrors [75]. A comprehensive review of

membrane shape control for gossamer structures has been conducted in Ref. [21].

1.1.4 Optical control of gossamer spacecraft

Currently developed methods for attitude control of large gossamer structures, as out-

lined in Section 1.1.2, will potentially be complex (moving masses), fragile (articulated

tip vanes), or will add considerable mass to the spacecraft (reaction wheels). In addi-

tion, recent developments in shape control methods for thin membranes indicate that

the efficiency of actuators is still limited. Therefore, a different concept will be adopted

in this thesis. Based on the principle of exploiting in-situ resources to achieve crucial

mass savings, SRP has the potential to replace traditional systems in a radically new

way. Although relatively small in magnitude, about 10µN/m2 at the Earth’s distance

from the Sun, SRP has already been used successfully for passive attitude control of

satellites [76] and for continuous propulsion of solar sail spacecraft [77]. Since the

aperture size of future gossamer spacecraft is expected to be in the order of 100 m

in diameter for membrane reflectors, and possibly in the kilometre range for tethered

spacecraft, light pressure applies a reasonable force sufficient to control the structure

in space.

Attitude stabilization of a satellite by SRP was first proposed in 1959 [78], and later

in 1965 [79], where the latter considered differential reflectivity on the spacecraft due

to local surface irregularities. Since then, the concept of employing an SRP gradient

for stabilisation and control of satellites has been investigated, for example, using ar-

ticulated reflective surfaces [80, 81, 82], where the latter also considered the combined

effect of gravity-gradient torques. SRP has already been used successfully for passive

attitude control in both Earth orbit and for inner solar system missions, where the

effect of SRP increases significantly due to the inverse square variation with solar dis-

tance [2]. Both the Mariner-10 [76] and MESSENGER spacecraft [83] used SRP by

design to reduce propellant requirements for attitude thrusters, while the Hayabusa

spacecraft was able to use SRP to recover from a partial failure of its attitude control

systems [84]. Today, so-called ’trim tabs’ are commonly used to aid attitude control

of large spacecraft in GEO, thereby reducing propellant requirements and extending
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mission lifetime. Trim tabs are typically mounted on the tips of solar arrays in order

to maximize the torque delivered [85]. A review of attitude dynamics of spacecraft in

the presence of environmental forces, with particular emphasis on SRP, is presented in

Ref. [86].

As will be demonstrated in this thesis, manipulating the surface reflectivity of gossamer

spacecraft offers the possibility of controlling the attitude without employing additional

mechanical systems or thrusters. Furthermore, by adopting a highly-integrated multi-

functional design approach, reflectivity modulation is also envisaged in this thesis to

control the surface deflection of gossamer membranes through SRP. In principle, this

can be achieved using materials with controllable surface properties that, when com-

bined with integrated control electronics, could adapt to changing environmental con-

ditions or mission needs. For example, so-called ‘electro-chromic devices’ have already

been employed successfully for attitude control on the IKAROS solar sail demonstrator

mission (JAXA) in 2010 [77]. In addition, such devices have been considered to sta-

bilise the orbit of a solar sail with a fixed attitude about an artificial Lagrange point

[87]. Such devices will be described in more detail in Section 2.4. In summary, the con-

cept of ‘optical control’ has the potential to provide a unique competitive advantage to

gossamer spacecraft over previously developed control techniques.

1.2 Thesis objectives

From the discussion of large gossamer space structures in Section 1.1 and their require-

ment to achieve low mass, high surface precision and robust control in Section 1.1.3,

the following research objectives can be defined:

Optical attitude control

- Investigate the use of SRP to control the attitude of large gossamer spacecraft

through the manipulation of their surface reflectivity

- In order to assess this type of control, develop and compare different reflectivity

distribution models across the surface

- Demonstrate the potential of optical control by applying these models to attitude

manoeuvres
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Optical shape control

- Investigate the effect of SRP loads on the surface shape of large gossamer mem-

brane reflectors

- Investigate the manipulation of the nominal deflection profile of the membrane

by controlling the reflectivity across the surface

- Demonstrate the potential of optical shape control by realising particular deflec-

tion shapes and investigating their performance

1.3 Contributions of thesis

In this thesis, the potential of exploiting SRP for the control of large gossamer space-

craft is demonstrated, in order to improve their performance by minimising the overall

system mass, system complexity and stowed volume during launch. To this aim, dif-

ferent mathematical tools are developed, which consider the control of gossamer struc-

tures by modulating the optical surface properties. Two different gossamer spacecraft

concepts are investigated: a two-mass tethered ‘dumbbell’ configuration and a large

gossamer membrane reflector, deployed by extendible booms (square surface) or by a

circular (spin-stabilised) hoop structure. In all the analyses, closed-form mathematical

approaches are employed, wherever possible, in order to seek for general analytic solu-

tions to the problems investigated, rather than finding individual solutions to specific

geometries in a finite element method (FEM) approach.

Optical attitude control

The feasibility of using optical attitude control for large gossamer spacecraft is demon-

strated first by considering a simple (non-spinning) long-baseline tethered formation

on a circular Sun-centred orbit.

As a first approximation, the spacecraft is modelled as two separate point masses,

connected by a rigid massless link to represent the objective of achieving an ultra-low-

mass spacecraft design. SRP is introduced to the system by assigning a variable surface

reflectivity to the tip masses, through the use of lightness numbers. The equations of

motion of the system in the combined gravitational and SRP force field are derived using

a Hamiltonian approach. The system’s dynamics and stability properties are analysed

and optical control of the spacecraft attitude is demonstrated through changing the

lightness numbers, exploiting the heteroclinic connections in the phase space of the
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problem. It is shown that introducing SRP creates artificial unstable equilibria that are

different from those of the pure gravity gradient dumbbell. In particular, by controlling

the lightness numbers of the tip masses, equilibrium attitudes at an arbitrary angle,

relative to the local vertical, can be created.

The additional SRP forces perturb the circular Keplerian motion of the system around

the central body. Accordingly, coupling of the orbit and attitude dynamics is reintro-

duced by deriving constraints for the lightness numbers, showing that the dumbbell

can be maintained on a circular non-Keplerian orbit for arbitrary attitudes using light

pressure. This analysis supports the concept of using modulated SRP for attitude

station-keeping of tethered gossamer systems at relatively low cost, since the light-

ness numbers, or surface reflectivities, respectively, can in principle be changed using

electro-chromic coatings. Therefore, no mechanical systems or thrusters are required

to maintain, for example, a fixed observation attitude.

Following these results, the concept of modulating the surface reflectivity for efficient

low-mass attitude control is further demonstrated for large gossamer membrane reflec-

tors. The literature has considered electro-chromic devices across the surface of a solar

sail for orbit stabilisation. However, using this concept for attitude control of the mem-

brane has not been investigated before. In this thesis, the nominal SRP forces acting

on a flat rigid reflector surface are controlled by introducing different surface reflec-

tivity models across the membrane. This generates variable optical torques about the

in-plane spacecraft axes. For the first time, this analysis is used to investigate two-axis

optical steering of large gossamer spacecraft.

Each reflectivity distribution model is applied to perform basic attitude manoeuvres, for

example, under the effect of gravity-gradient torques in LEO. To this aim, a quaternion-

based control framework is developed, which controls the reflectivity distribution across

the membrane surface, hence generating variable optical torques sufficient to steer the

spacecraft. It is shown that through these torques, the reflector can be brought, for

example, to a Sun-pointing attitude from an arbitrary initial displacement. The control

framework also considers the variation of SRP force magnitude with changing light

incidence angle towards the Sun during the manoeuvre, hereby presenting solutions to

a challenging attitude control problem.

Optical shape control

Again, for the first time, reflectivity modulation is also applied to control the shape of

large membrane surfaces, thereby replacing mechanical or piezoelectric systems. Previ-
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ously, the feasibility of exploiting SRP has only been validated for spacecraft attitude

stabilisation and control, as highlighted in Section 1.1.4. Limited electro-chromic coat-

ings have been applied during the IKAROS mission to demonstrate the concept for

attitude control of solar sails. In this thesis, a novel approach is developed that uses

modulated SRP to enable optical shape control of large gossamer membranes. There-

fore, this thesis supports the ongoing engineering effort to realise ultra-lightweight low-

cost spacecraft configurations for a variety of future space applications.

In particular, the nominal deflection profiles due to uniform SRP are calculated for

different elastic, tensioned membranes, in terms of surface diameter and solar distance,

using equations of non-linear thin membrane theory. Subsequently, the nominal (non-

parabolic) deflection shapes obtained are optimised by applying suitable reflectivity

distributions across the surface, hence generating a true parabolic profile. The required

reflectivity function is derived semi-analytically using an inverse problem approach.

Since the reflectivity function found does not depend on membrane size, thickness or

solar distance, these results indicate that a parabolic profile can be generated with

relatively low optical actuation effort.

In order to improve the quite large focal lengths of the deflected shapes that can be

generated for a tensioned membrane, possible ways to increase the deflection magni-

tude are investigated. Accordingly, a slack untensioned surface is further investigated,

through deploying an excess of film material from the supporting structure. The lit-

erature has considered the billowing of large solar sail films attached to, for example,

deployable booms. As summarised in Section 1.1.2, corresponding research focussed on

capturing the effect of non-ideal flatness on the SRP thrust produced by a solar sail

for in-space propulsion. However, in all cases, slack reflective films have not been used

intentionally to create specific (parabolic) surface deflections, as is the case here.

In summary, this thesis demonstrates the potential of controlling the spacecraft’s atti-

tude and morphology without using complex mechanical systems or thrusters. Under

the assumption that further development will allow future distribution of ultra-thin

(micron-level) electro-chromic coatings across large membranes, these findings repre-

sent a major step towards highly-integrated adaptive membrane reflectors and support

the development of this promising key-technology to deliver advanced space technology

applications.
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International Astronautical Congress (IAC), Naples, Italy, 1 - 5 October 2012

(IAC-12,C1,9,10,x14125).

1.5 Thesis structure

In order to pursue the research objectives defined in Section 1.2, Chapter 2 will provide

the necessary background information on SRP, including an overview of different SRP

force models, the concept of surface reflectivity control and a brief description of electro-

chromic devices. The remainder of this thesis can be divided into two main parts: the

first part covers Chapter 3 and Chapter 4, focussing on optical attitude control of

gossamer spacecraft. In particular, a two-mass tethered ‘dumbbell’ spacecraft and a

large membrane reflector will be considered. In the second part, Chapter 5 and Chapter

6, modulated SRP will be employed to control the shape of large gossamer membrane

structures.

In Chapter 3 the concept of optical attitude control will be considered for a long-

baseline tethered spacecraft. In particular, the analysis will extend the attitude dy-

namics of the classical planar dumbbell problem by introducing SRP. The system will

be modelled as a rigid body subject to central gravity and SRP acting on the tip masses.

To this aim, lightness numbers will be assigned to the tip masses to demonstrate the

effect of a SRP gradient on the equilibria of the system and its stability properties.

An analytical Hamiltonian approach will be employed to describe the planar motion

of the system in Sun-centred orbits. The stability of the decoupled problem on a cir-

cular Keplerian orbit will be investigated and control is considered by modulating the

lightness numbers. The character of new unstable equilibria, due to the SRP gradient,

and heteroclinic connections in the phase space of the problem will be investigated.

Finally, since SRP is perturbing the Keplerian motion of the system, the attitude/orbit

coupling is reintroduced by deriving constraints for the lightness numbers to maintain

the system on a circular non-Keplerian orbit.

In the following, Chapter 4, the attitude dynamics and the control of a large gossamer

membrane reflector with a variable surface reflectivity distribution will be investigated.

When modulating the reflectivity across the surface, the SRP forces and torques across

the membrane can be controlled. Three different reflectivity models, of increasing

complexity, will be presented. First, a continuous reflectivity function will be considered

to maintain a fixed Sun-pointing attitude under the effect of, for example, gravity

gradient torques in Earth orbit. The second approach will assume constrained high/low

reflectivity regions across the surface. Finally, a discrete reflectivity array of electro-
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chromic cells will be employed to generate a wide range of torques in the reflector

plane. A quaternion-based attitude control framework will be developed to address

each individual cell, which will enable two-axis attitude control of the spacecraft in

a Sun-centred orbit. This will demonstrate the potential of manipulating the SRP

to realise flexible attitude control of large gossamer spacecraft, while minimising the

actuation effort.

In Chapter 5, a non-uniform surface reflectivity will be considered for controlled elas-

tic deflection of a large circular membrane reflector. First, the nominal deflection profile

due to uniform vertical SRP will be investigated using the equations of non-linear thin

membrane theory. When changing the surface reflectivity across the membrane, the

nominal SRP loads can be manipulated optically, thus controlling the surface shape

without using mechanical or piezo-electric actuators. An analytic solution will be pre-

sented to the inverse problem of finding the necessary reflectivity distribution in order

to create a specific, for example, parabolic membrane deflection. The required reflec-

tivity distribution as a function of membrane size, thickness and solar distance will be

investigated. The resulting parabolic shapes will be evaluated in terms of the achievable

focal lengths as a function of aperture size and solar distance.

As a next step, the deflection profile of a large slack membrane surface, suspended from

its supporting hoop structure, will be considered in Chapter 6. This investigation

will be required to reduce the focal lengths found for a tensioned elastic membrane

in Chapter 5. To this aim, the circular film will be modelled using ‘catenary-type’

radial strings, suspended in between the rigid hoop. This approach is adopted from

natural spider webs and assumes that a slack ideal surface can be approximated by

a collection of inextensible, infinitely flexible strings. This approximation enables a

semi-analytic investigation of slack suspended surfaces involving very large deflections.

The governing equations of the string, subject to various distributed loads, will be

presented. In addition, the effect of centrifugal forces on a spin-stabilised reflector

disk will be considered. The nominal deflection profiles will be manipulated using

suitable reflectivity functions across the string. Finally, an inverse method, similar to

that developed in Chapter 5 will be employed to find the reflectivity distribution that

generates a parabolic deflection profile. As will be demonstrated, short focal lengths of

the reflector can be obtained when large slack lengths of the membrane are employed.

Each chapter finishes with a summary and highlights the conclusions, which come

together in the overall conclusions at the end of this thesis as well as a discussion on

future work.
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Chapter 2

Physical Background

In this chapter, the mathematical models employed throughout this thesis will be pre-

sented and discussed. The overarching principle exploited in this thesis is solar radiation

pressure, which will be briefly discussed in Section 2.1, followed by an overview of the

different SRP models considered in this thesis in Section 2.2. Finally, the concept of

the lightness number will be introduced in Section 2.3, while the chapter finishes with

a discussion of the concept of surface reflectivity control using electro-chromic devices.

2.1 Solar Radiation Pressure

The Sun constantly emits a vast amount of electro-magnetic radiation, or photons, into

space. When the photons interact with, for example, a surface or the atmosphere of a

planet, the photonic momentum is transferred and applies a pressure. Originating from

the combination of Max Planck’s quantum mechanics with Alberst Einstein’s special

relativity [2], the solar radiation pressure is defined as

p =
WS

c
(2.1)

with WS the solar energy flux (energy crossing unit area in unit time) and c the speed

of light in vacuum. When further introducing the radial distance from the Sun RS,

scaled with the Earth’s mean distance RS,0 = 149, 597, 871 km = 1 AU (Astronomical

Unit), the standard inverse square law for the SRP yields

p =
WS,0

c

(
RS,0

RS

)2

(2.2)
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where WS,0 = 1368 W/m2 denotes the mean value of the solar energy flux at 1 AU,

commonly termed the ‘solar constant’. Since the Earth’s orbit is slightly elliptic, the

energy flux varies by approx. 3.5 % during the year, but at the Earth’s mean distance

from the Sun, the SRP can be computed to be

p0 =
WS,0

c
= 4.563

µN

m2
(2.3)

The range of physical effects associated with SRP, and with the space environment in

general, are quite complex. Therefore, the following assumptions are adopted through-

out this thesis [2]:

• The optical surface properties of an object do not change over time. Therefore,

the degradation of the material caused by space environmental effects is not con-

sidered (see Section 2.2.5)

• Other forms of momentum transport such as solar wind or atmospheric drag are

neglected

• Other forms of radiation such as planetary albedo, thermal or cosmic microwave

background radiation are neglected

• At the solar distances considered in this thesis, the Sun’s rays are assumed to

be parallel. This assumption is adequate as the effect of the Sun being a disc of

finite angular size (causing non-parallel rays), is only relevant in close proximity

to the Sun (RS ≤ 0.05 AU)

• The effects of the limb-darkened solar disc and the decreased intensity in the

Sun’s outer regions are neglected

Further assumptions will be defined with respect to the optical surface properties, which

will be introduced in the next section.

2.2 SRP models

In order to describe, as well as to simplify, the rather complex interaction between the

solar photons and a surface in space, several SRP models are reported in the literature

[2]. Primarily, such models are derived from an analytical point of view, while some are

also complemented by empirical data resulting from experiments. All models commonly

express the resulting SRP acting on a surface as a function of, for example, the light
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Figure 2.1: Surface attitude with respect to the Sun in an orbit-fixed reference
frame E :=(xE, yE, zE)

incidence angle. For this reason, the attitude of a surface in space has to be defined

first.

As shown in Fig. 2.1, the attitude of a surface of area A can be described by the surface

normal vector n̂, the unit vector perpendicular to the surface in the direction of the

Sun. This vector can be described with respect to, for example, a right-handed orbit

reference frame E := (xE,yE, zE), centred at the c.m. of the surface, with the zE-axis

oriented towards the Sun. This coordinate system will be described in more detail in

Section 4.2.1. The direction of n̂ with respect to frame E can be described by the

surface cone angle α and the surface clock angle δ, which are both defined in Fig. 2.1.

As the figure shows, α is the angle between the zE-axis and the surface normal direction

n̂. The clock angle δ is the angle between the negative yE-axis and the projection of

n̂ in the (xE,yE)-plane. Note that solar radiation pressure is only effected by the cone

angle as a change in clock angle does not affect the projected sail area Aproj = A ·cosα,

which is encountered by the solar photons.

2.2.1 Ideal SRP Model

The so-called ideal SRP model assumes that the surface is a perfectly (specular) re-

flecting mirror and neglects all other forms of optical interactions between the solar

photons and the surface such as diffuse reflection (scattering), absorption, and ther-

mal re-emission. The model also does not account for wrinkles or a non-zero surface

roughness. Furthermore, Eq. (2.2) only accounts for the SRP induced by the incoming

photons, while a perfectly reflecting mirror doubles the pressure due to the additional

momentum created by the reflected photons. The light pressure exerted on a perfectly
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reflecting surface at 1 AU and perpendicular to the Sun then becomes

p = 2p0 = 9.126
µN

m2
(2.4)

In addition, accounting for other solar distances and the surface cone angle, the SRP

can be written as [2]

pSRP = 2p0

(
RS,0

RS

)2

cos2α (2.5)

Finally, the total SRP force vector FSRP acting on a surface area A equals

FSRP = −pSRPA n̂ (2.6)

Note that, due to the assumptions made in the ideal SRP model, the direction of the

resulting SRP force is always along the surface norm, −n̂. In addition, no material

properties have been accounted for in this model. However, more complex SRP models

exist, which will be introduced in the following.

2.2.2 Simplified SRP model

The so-called ‘simplified SRP model’ considers a non-perfectly reflecting surface, by

introducing the surface reflectivity coefficient ρ in the interval ρ = [0, 1]. Here, the

maximum reflectivity ρ=1 represents a perfectly reflecting mirror that experiences the

maximum possible SRP pSRP,max = 2p0, as seen in Eq. (2.5), when further assuming

a surface cone angle α = 0 at 1 AU solar distance. Contrary to this, the minimum

reflectivity, ρ = 0, represents an ideal absorber. This reduces the SRP to pSRP,min = p0,

under the assumption that (ideally) no photons are reflected and only the momentum

of the incoming photons exerts a pressure onto the surface.

Considering these assumptions, the SRP exerted on a surface of reflectivity ρ now

becomes

pSRP = p0(1 + ρ)

(
RS,0

RS

)2

cos2α (2.7)

Throughout this thesis, the simplified SRP model will be used to describe the effect of

electro-chromic coatings on the optical surface properties, which will be discussed in

Section 2.4.
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2.2.3 Standard SRP Model

To complete the overview of commonly used SRP models, although not used in this

thesis, the ’standard SRP model’ accounts for additional optical properties of a non-

ideal surface: diffuse reflection, absorption and emission [2]. In particular, the optical

surface is characterised by three thermo-optical parameters: the reflectivity ρ, the

absorptivity α̃ = 1− ρ and the transmittance τ̃ , fulfilling the constraint

ρ+ α̃+ τ̃ = 1 (2.8)

where the tilde notations α̃ and τ̃ are used to avoid confusion with the symbols for the

cone angle α and the material density τ , which will be used later in Chapter 5. Usually,

the transmittance is zero (opaque surface), such that the previous equation reduces to

α̃ = 1− ρ. (2.9)

Since a real surface is not an ideal mirror, not all photons are reflected specularly.

Therefore, the reflectivity coefficient ρ is further divided into the fraction of photons

undergoing specular reflection ρs, diffuse reflection ρd and back reflection ρb (in direc-

tion of the incident photons) with

ρs + ρd + ρb = 1. (2.10)

Conclusively, all the aforementioned effects are summarised in Fig. 2.2. Each type

of photonic interaction results in a different fraction of the total SRP force FSRP, as

discussed in detail in Ref. [2]. For example, as a result of the non-ideal reflection of the

surface, the total SRP force vector does not act perpendicular to the surface, because

the force due to reflected photons is smaller than the force due to the incoming photons.

2.2.4 Refined SRP model

Despite considering the optical properties of the surface, the standard SRP model can

not necessarily be regarded as ’realistic’, since all optical coefficients are assumed to

be constants. In reality, these coefficients depend on, for example, the surface cone

angle or the surface roughness of the material employed. To this aim, the so-called

‘refined SRP model’ has been developed, which introduces variable optical coefficients

to the standard SRP model [89]. The central refinement of the model is the variation

of the reflectivity ρ and the specular reflectivity ρs with the light incidence angle α.
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Figure 2.2: Interactions of solar photons (from direction of the Sun S) with an
optical surface [88]

In addition, the model also considers the surface roughness, representing a mechanical

property of the surface. In addition, the emissivity ε depends on the current surface

equilibrium temperature and thus on the surface attitude with respect to the Sun, as

well as on the solar distance.

2.2.5 SRP surface degradation model

Finally, all previous models assume that the optical and mechanical properties of the

surface material are constant over time. Long term, however, the surface is affected by

the severe space environment. To account for this, a parametric SRP model has been

developed that describes the surface degradation over time. In particular, the optical

coefficients are assumed to depend on the radiation dose that the material absorbs

during a mission. This parametric model is termed ’optical solar sail degradation’

model (OSSD) [90].

2.3 Lightness number

The lightness number β of an object describes the ratio of the SRP force or acceleration

to the solar gravitation force/acceleration:

β =
ac

a0
(2.11)
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Objects with a high surface reflectivity and a high area-to-mass ratio have a large

lightness number. In Eq. (2.11), a0 is the Sun’s gravitational acceleration at the Earth’s

distance from the Sun

a0 =
µ

R2
S,0

= 5.930
mm

s2
(2.12)

where µ = 1.3272×1011 km3/s2 denotes the Sun’s gravitational parameter. Further-

more, ac in Eq. (2.11) is the so-called characteristic acceleration, which is defined as

the SRP acceleration experienced by an object of mass m and surface area A, oriented

perpendicular to the Sun at 1 AU. Therefore, according to Eq. (2.5), the characteristic

acceleration is defined as

ac =
FSRP,0

m
=
pSRP,0A

m
=

2p0A

m
(2.13)

2.4 Electro-chromic devices

As shown in Section 2.2.2, the SRP force acting on a surface essentially depends on the

reflectivity coefficient of the material. According to Eq. (2.7), increasing the reflectivity

increases the total force, since fewer photons are absorbed or diffusely scattered by the

material. From a technical point of view, the surface reflectivity can in principle be

modified using thin-film electro-chromic coatings, which consist of an electro-active

material that changes its surface reflectivity according to an applied electric potential

[91, 92]. Such coatings are commonly termed ‘reflectivity control devices’ (RCDs). As

noted in Section 1.3, limited RCD cells have already been employed for attitude control

on the IKAROS solar sail in 2010 [77].

In view of applying RCD coatings to the surface of large gossamer membranes, the

mass per unit area of existing RCD coatings (thickness d = 70µm) is expected to be

higher than that of the reflector film itself. Therefore, future technology developments

are assumed whereby the mass per unit area of the membrane with integrated optical

control is similar to conventional films (see Section 1.1.2). For example, polymer-

based electro-chromic coatings of total thickness below a micrometre, using single-

walled carbon nanotubes, have recently been assembled for ultra-thin touch-screen

panels [93]. Therefore, the mass budget for a gossamer structure using optical control

compared to one using conventional thrusters and reaction wheels is not explicitly

considered. The focus of the thesis is on novel actuation and control methods.

The concept of reflectivity modulation using RCD cells is shown in Fig. 2.3. The

cell is actuated by electrodes to maintain either a low reflectivity state (‘off’, left-hand
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Figure 2.3: Reflectivity control device (RCD) actuated using an electric po-
tential and two reflectivity states: ‘off’ (low reflectivity, left) and ‘on’ (high
reflectivity, right) [94]

Figure 2.4: Achievable specular and diffuse surface reflectivity of RCD cells
operated in two states: ‘off’ (low reflectivity, left) and ‘on’ (high reflectivity,
right) [94]

side) or a high reflectivity state (‘on’, right-hand side). Throughout this thesis, it is

assumed that RCD coatings are able to modulate the surface reflectivity in the interval

ρ = [0, 1]. However, as shown in Fig. 2.4, currently developed RCDs can achieve a

maximum reflectivity ρmax = 0.6, depending on the wavelength of the incoming light.
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Chapter 3

Two-body tethered spacecraft

dynamics with SRP

In order to investigate the potential of using modulated SRP to control gossamer space-

craft, this chapter will provide an initial demonstration of the concept by considering a

tethered spacecraft configuration. As a first approximation, a gossamer spacecraft will

be modelled as a collection of distributed point masses, connected by massless links to

represent an ultra-low-mass gossamer spacecraft. In the simplest case, two masses are

linked by a rigid massless rod, rather than a flexible tether. Ideally, such a ’dumbbell’

system represents a simple long-baseline formation for many future space applications,

as detailed in Section 1.1.2. The concept and the problem definition will be introduced

in Section 3.1. After deriving the equations of motion of the system using a Hamil-

tonian approach in Section 3.2, the system’s dynamics and stability properties will be

analysed in Section 3.3. In Section 3.4, the attitude dynamics and control of the system

through SRP will be demonstrated in the phase space of the problem. Finally, Section

3.5 will summarise the chapter.

3.1 Classical dumbbell problem with SRP

This chapter extends the attitude dynamics and stability properties of the classical

planar dumbbell problem, i.e. two masses connected by a rigid massless tether (see

Section 1.1.2), by considering the effect of a solar pressure gradient between the tip

masses. To this aim, the widely used model of a tethered satellite system is adapted by

introducing SRP forces to each mass. These SRP forces act in the radial direction from

the Sun and are created by assigning a variable surface reflectivity to the tip masses
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through the use of lightness numbers, according to Section 2.3. Modulating the surface

reflectivity can be achieved, for example, using electro-chromic coatings, as discussed

in Section 2.4.

When a long tether is orbiting a central body, the relative attitude of the system

affects the total force acting on the dumbbell’s c.m.Ṫhis means that the equations

of motion (EOM) describing the orbit and attitude of the system are coupled [95].

This chapter will therefore start by defining the system’s Hamiltonian and the EOM

for the coupled orbit/attitude motion. By subsequently introducing a large central

mass, the satellite motion is constrained to a circular orbit such that the EOM become

decoupled. This allows for a stability analysis of the system’s equilibrium attitudes,

thereby investigating the connection between the relative equilibria and light pressure.

The dynamical behaviour of the system is investigated through iso-energy curves of

the Hamiltonian in phase space. Finally, motion between, and controllability around,

equilibria is demonstrated through the use of heteroclinic connections and by changing

the lightness numbers of the tip masses.

3.2 Equations of motion of the system

The planar motion of the dumbbell system is described with respect to a Sun-centred

inertial frame I : (X,Y) in the case of the coupled orbit/attitude problem and relative

to a rotating orbit frame O : (r,ν), with the origin at the c.m. of the system, for the

decoupled attitude dynamics (Fig. 3.1). The axes of frame O are aligned with the local

vertical and the local horizontal relative to the Sun.

The system is modelled as a rigid body with a central mass MB located at the c.m.

and two tip masses m1 and m2 at each end of a massless tether. The tether length

ratio λ = l/R describes the ratio of total tether length l to orbit radius R. The three

masses are approximated as point masses, with the mass ratio κ = m1/(m1 + m2)

and the total mass M = m1 +m2 +MB. The Sun’s gravitational force is augmented

by introducing SRP forces to the tip masses, assigning arbitrary lightness numbers in

the interval βi = [0, 1] (with i = 1, 2) to each of the masses, according to Section 2.3.

Compared to the tip masses, the area-to-mass ratio of the central mass is assumed to

be small, and therefore the lightness number of MB can be neglected.

For a rigid body, the position vector R of the c.m. is defined as

R =
1

M

2∑
i=1

miRi (3.1)

28



Figure 3.1: Geometry of dumbbell system in Sun-centred orbit with lightness
numbers β1 and β2, representing SRP forces acting on the tip masses.

With respect to the inertial frame I, the position vectors of the three masses are

described as R = R (cos ν, sin ν)T, R1 = R + r1 and R2 = R + r2. Here, r1 =

(κ − 1) l (cos θ, sin θ)T and r2 = κ l (cos θ, sin θ)T are the position vectors of the tip

masses with respect to the c.m., using the constraint that l = r1 + r2 is constant. In

the above equations, ν denotes the true anomaly and θ the attitude angle relative to

the inertial X-axis, according to Fig. 3.1. The norms of the position vectors are

R1 = R

[
1−2λ(1−κ) cos(θ−ν)+λ2(1−κ)2

]1/2

(3.2a)

R2 = R

[
1+2λκ cos(θ−ν)+

(
λκ
)2]1/2

(3.2b)

The planar EOM for the tethered satellite system including SRP can now be formulated

using a Hamiltonian approach [96].

3.2.1 Coupled orbit/attitude EOM

The SRP forces can be included into the potential energy function V of the system,

because they act in the radial direction and thus originate from a conservative force

field

g = −µMB

R2
R−

2∑
i=1

µ̃imi

R2
i

Ri = −∇V (3.3)
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where µ = 1.3272×1011 km3/s2 denotes the Sun’s gravitational parameter. The so-

called effective gravitational parameter µ̃i = µ(1−βi) for each mass is introduced to

represent the reduced effect of the gravitational force due to a radially outward SRP

force [2]. The effective potential energy of the system can now be written as

V = −µMB

R
−

2∑
i=1

µ̃imi

Ri
= −µMB

R
− µm1(1−β1)

R1
− µm2(1−β2)

R2
(3.4)

The kinetic energy of the system is split into a translational part Ktransl attached to

the c.m. and a rotational part Krot, representing the contribution of the two rotating

masses to the total kinetic energy such that

Ktransl =
1

2
MṘ·Ṙ =

1

2
(m1+m2+MB)(Ṙ2 +R2ν̇2) (3.5a)

Krot =
1

2

2∑
i=1

miṙiṙi =
1

2

m1m2l
2

m1 +m2
θ̇2 (3.5b)

Using the Lagrangian L = K − V and introducing three generalised coordinates qj =

(R, ν, θ), which describe the degrees of freedom of the system, the coupled Hamiltonian

function of the dynamical system can be written as [97]

H =
3∑
j=1

∂L

∂q̇j
q̇j − L = Ṙ

∂L

∂Ṙ
+ ν̇

∂L

∂ν̇
+ θ̇

∂L

∂θ̇
− L (3.6)

After calculating the generalised momenta pj

p1 =
∂L

∂Ṙ
= (m1+m2+MB)Ṙ (3.7a)

p2 =
∂L

∂ν̇
= (m1+m2+MB)R2ν̇ (3.7b)

p3 =
∂L

∂θ̇
=
m1m2l

2

m1+m2
θ̇ (3.7c)

the coupled Hamiltonian function of the system is found as

H =
1

2
M(Ṙ2 +R2ν̇2) +

1

2

m1m2l
2

m1+m2
θ̇2 − µMB

R
− µm1(1−β1)

R1
− µm2(1−β2)

R2

(3.8)

It is well-known that for generalised coordinates qj(t), j = 1, ..., n, the trajectory of

q(t) = (q1(t), ..., qn(t)) through the configuration space satisfies the Euler-Lagrange
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equations [96]

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 (3.9)

Using the above equation, the coupled EOM of the three-mass system including SRP

can be formulated in terms of the free parameters κ, λ, β1 and β2 as

R̈−Rν̇2 +
µMB

MR2
+
µRm1(1−β1)

(
1− λ(1− κ) cos(θ−ν)

)
MR3

1

+
µRm2(1−β2)

(
1 + λκ cos(θ−ν)

)
MR3

2

= 0 (3.10a)

ν̈ +
2Ṙν̇

R
+
µκm2λ sin(θ−ν)

M

(
(1−β2)

R3
2

− (1−β1)

R3
1

)
= 0 (3.10b)

θ̈ +
µ sin(θ−ν)

λ

(
(1−β1)

R3
1

− (1−β2)

R3
2

)
= 0 (3.10c)

3.2.2 Decoupled attitude EOM

Assuming a central mass MB�mi, the attitude motion of the system decouples from

the orbit dynamics, thus Eqs. (3.10a) and (3.10b) reduce to the common two-body

problem and no longer depend on θ. Introducing the above condition for MB into Eq.

(3.10) results in the decoupled EOM of the dumbbell including SRP, given by

R̈+
µ

R2
−Rν̇2 = 0 (3.11a)

ν̈ +
2Ṙν̇

R
= 0 (3.11b)

θ̈ +
µ sin(θ−ν)

λ

(
(1−β1)

R3
1

− (1−β2)

R3
2

)
= 0 (3.11c)

When the c.m. of the system initially follows a circular orbit with ν̇ =
√
µ/R3 and

Ṙ = 0, Eqs. (3.11a) and (3.11b) further reduce to R̈ = 0 and ν̈ = 0, respectively. When

considering again Fig. 3.1, γ represents the angle between the dumbbell axis and the

local vertical, thus it can be seen from the geometry that θ−ν = γ. Since ν̈ = 0, it

follows that θ̈ = γ̈. Inserting this identity into Eq. (3.11c) together with the norms of
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the position vectors, Eq. (3.2), the decoupled attitude EOM can now be written as

γ̈ +
µ sin γ

λ

[
1−β1

R3
[
1−2λ(1−κ) cos γ+λ2(1−κ)2

]3/2
− 1−β2

R3
[
1+2λκ cos γ+(λκ)2

]3/2
]

= 0

(3.12)

3.3 Relative equilibria and stability

The dumbbell is in an equilibrium state whenever γ̇ = 0 and the total torque on the

system is zero, thus γ̈ = 0. Solving the decoupled attitude EOM, Eq. (3.12), for γ̈ = 0

gives the equilibrium angles as a function of the four parameters κ, λ, β1 and β2. The

condition γ̈ = 0 has two invariant solutions for sin(γeq) = 0 and two further solutions

as

cos(γeq) =

[
(1−β2)

2
3

(
1+(1−κ)2λ2

)
− (1−β1)

2
3

(
1+
(
κλ)2

)
[
(1−β1)

2
3 (2κλ)+(1−β2)

2
3 2(1−κ)λ

] ]
(3.13)

Equation (3.13) shows that the relative equilibria γeq of the system are a function of the

free parameters β1 and β2. When both lightness numbers are zero and for a mass ratio

of κ = 0.5, the stable equilibria are 0 and ±180 degrees, while the unstable equilibria

are located at ±90 degrees, corresponding to the classical gravity gradient dumbbell

[98].

The stable/unstable character of the new equilibria can be evaluated through a stability

analysis for which the eigenvalues of the Jacobian of the linearised system are considered

[99]. In general, linearisation of a non-linear 2nd order differential equation f(γ̈, γ̇, γ) =

0, evaluated at a point γeq through a Taylor series expansion up to 1st order terms, can

be written as

∂f(γ̈, γ)

∂γ̈

∣∣∣∣
γeq

∂γ̈ +
∂f(γ̈, γ)

∂γ̇

∣∣∣∣
γeq

∂γ̇ +
∂f(γ̈, γ)

∂γ

∣∣∣∣
γeq

∂γ = 0 (3.14)

When further using three coefficients A, B and C, representing the partial derivatives,

Eq. (3.14) yields

A∂γ̈ +B ∂γ̇ + C ∂γ = 0 (3.15)

Since the decoupled attitude EOM is not a function of γ̇, the partial derivative B is

zero. Furthermore, the coefficient A = ∂f(γ̈, γ)/∂γ̈ is unity. The 2nd order linearised
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equation is transformed into a linear differential equation system (DES) of 1st order as(
∂γ̇

∂γ̈

)
=

[
0 1

−C 0

](
∂γ

∂γ̇

)
= [J ]

(
∂γ

∂γ̇

)
(3.16)

with the Jacobian [J ]. The partial derivative C, evaluated at an equilibrium angle γeq,

can be written as

C =
∂f(γ, γ̈)

∂γ

∣∣∣∣
γeq

=
µ cos(γeq)

λ

(
(1−β1)

R3
1

− (1−β2)

R3
2

)

− 3µ sin2(γeq)

(
(1−β1)(1−κ)

R5
1

+
(1−β2)κ

R5
2

) (3.17)

thus the Jacobian is a function of µ, λ, κ, β1, β2 and γeq. The eigenvalues εk of the

Jacobian are calculated through evaluation of its characteristic equation ε2k + C = 0,

thus εk = ±
√
−C. The nature of the eigenvalues determines the type of equilibrium: 1)

real, opposite sign: saddle point, 2) purely imaginary, with zero real part: centre, and

3) real, same sign: stable/unstable node. Here, the eigenvalues of [J ] with β1, β2 ∈ [0, 1]

for a given dumbbell configuration are either stable centres or unstable saddles.

Figure 3.2 shows the stable (grey) and unstable (black) regions of γeq as a function

of β1 and β2 for a chosen reference dumbbell with equal masses m1 =m2 and tether

length l = 100 km on a circular orbit at R = 1 AU (i.e. Earth’s distance from the

Sun), thus λ = 6.685 × 10−7. The lightness numbers are scaled in both figures using

βi = β∗i 2×10−6 with β∗i = [0, 1] to improve readability, since the differential SRP and

gravity gradient forces on the dumbbell are very small at the 1 AU distance from the

Sun. In the figure, the grey plane indicates the stable equilibrium at 0 degrees. The two

black curved planes indicate new unstable equilibria created by introducing SRP to the

classical dumbbell problem. The system can now obtain an arbitrary equilibrium state

in the range ±180 degrees for a maximum difference between the lightness number on

each of the two tip masses of ∆β = |β2−β1| = 2×10−6. Although achieving such a small

difference in lightness number may be technically very challenging, the results illustrate

the possibility of controlling a tethered satellite system using an SRP gradient.

When solving Eq. (3.13) for β2, the possible combinations (β1, β2)γeq for a given equi-

librium angle, hereafter referred to as ‘β-sets’, can be obtained as

β2(β1, γeq) = 1−

[
[1 + (κλ)2](1−β1)

2
3 − 2κλ cos γ (1−β1)

2
3

1− 2(1− κ)λ cos γ + ((1− κ)λ)2

] 3
2

(3.18)
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(a) Centred view

(b) Rotated view

Figure 3.2: Stable (grey) and unstable (black) equilibria γeq as function of
lightness numbers β∗

1 and β∗
2 for dumbbell with equal masses.

Please note that the previous equation is also valid for unequal masses. For the cho-

sen reference dumbbell and for equilibrium angles in the interval [0, 180] degrees, the

possible (β1, β2)γeq sets are shown in Fig. 3.3, parameterised in steps of ∆γ = 10 de-

grees. Each point on one of the curves can be chosen to create the respective unstable

equilibrium attitude γeq.
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Figure 3.3: Possible lightness number sets (β∗
1, β

∗
2)γeq to create unstable equi-

libria γeq for dumbbell with equal masses.

As a side note, without SRP, the equilibrium equation, Eq. (3.13), reduces to

cos
(
γeq,GG

)
=

[
λ

2
−κλ

]
(3.19)

describing the unstable equilibria γeq,GG of the pure gravity gradient (GG) dumbbell.

By removing the effect of SRP, the present analysis is no longer limited to Sun-centred

orbits and the scope of potential applications can be extended to orbits around small

bodies such as asteroids. Figure 3.4 shows the equilibria as a function of the mass ratio

κ and tether length ratio λ. In order to magnify the effect of the gravity gradient on

unequal masses, very high values of λ are chosen for the purpose of illustration. The

tether length is set to be in the same order of magnitude as the orbit radius and a set

of different tether length ratios λ = 0.1, 0.5, 1, 2, 3, 4, 5, 20 is chosen. As can be seen in

the figure, for a relatively small tether length (λ = 0.1), γeq,GG deviates only slightly

from ±90 degrees, even for small/high mass ratios. However, when increasing λ, the

effect of unequal masses (κ 6= 0.5) is to shift the unstable equilibria within the range of

[±75.52,±104.48] degrees in the case of λ = 0.5 and within [±60,±120] degrees in the

case of λ = 1. When further increasing the tether length ratio to λ ≥ 2, the dumbbell

can even obtain any unstable equilibrium γeq,GG ∈ [−180, 180] degrees, depending on

the chosen mass ratio. Clearly, due to the planar problem investigated in this chapter,
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Figure 3.4: Unstable equilibria γeq,GG of the pure gravity gradient dumb-
bell as a function of mass ratio κ and for different tether length ratios
λ = 0.1, 0.5, 1, 2, 3, 4, 5, 20.

values of λ ≥ 1 are theoretical due to the high risk of collision with the central body.

The effect of large values of λ on the unstable equilibria is usually not accounted for

in the literature investigating the pure gravity gradient dumbbell [100]. However, for

orbits centred around an asteroid, the tether length would only have to be in the range

of a few kilometres.

3.3.1 Maintaining dumbbell system on circular orbit using SRP

The decoupled attitude EOM, Eq. (3.12), is only valid under the assumption that the

c.m. remains on a circular orbit with uniform orbital rate ω0 = ν̇0. This condition is

satisfied when introducing a large central mass, as shown above, or approximated when

assuming a small tether length, thus λ � 1. However, regardless of the tether length,

the radial outward SRP force will always perturb the circular Keplerian motion of the

dumbbell: the SRP forces decrease the effective solar gravity experienced by the two

masses, as shown earlier by the introduction of the effective gravitational parameter
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µ̃ = µ(1−βi). The effective orbital rate ω̃ =
√
µ̃/R3

0 < ω0 now corresponds to a circular

non-Keplerian orbit in the combined gravitational and SRP forces [2]. For the dumbbell

to remain on this non-Keplerian orbit constraints on β1 and β2 are derived that allow

circular orbital motion for any given attitude γ. This reintroduces the coupling of the

orbit and attitude dynamics of the system.

Considering the coupled EOM, Eq. (3.10), without the central mass, thus MB = 0,

and introducing the conditions R̈ = Ṙ = 0, ν̈ = 0 and ν̇ = ω̃ results in two constraint

equations for β1 and β2

β1 = 1− ω̃2

µ
R3

1

[
1

κ[1−λ(1−κ) cos γ] + (1−κ)[1+λκ cos γ]

]
= β1(γ) (3.20a)

β2 = 1− ω̃2

µ
R3

2

[
1

κ[1−λ(1−κ) cos γ] + (1−κ)[1+λκ cos γ]

]
= β2(γ) (3.20b)

Note that the above equations are coupled through the angle γ. Figures 3.5 and 3.6

show the constrained (β1, β2)γ sets over the range of attitude angles γ ∈ [−180, 180]

degrees for the reference dumbbell. The concept is further illustrated by a family of

circular non-Keplerian orbits with decreasing orbital rates ω̃i ≤ ω0, starting with the

nominal rate ω0 =
√
µ/R3

0 for the circular Keplerian orbit. The figures show that for

ω0 the orbit cannot be maintained for any given attitude, since βi becomes negative

for some intervals of γ, which is not a physical solution. When decreasing the orbital

rate to ω̃1 = (1−1.5×10−7)ω0, ω̃2 = (1−3.5×10−7)ω0 and ω̃3 = (1−5.0×10−7)ω0, the

region of feasible attitudes can be increased gradually, as can be seen in Figs. 3.5 and

3.6. For ω̃ ≤ ω̃3, all equilibrium attitudes are possible.

Adding the new β-constraints to the previously defined β-sets that create a respective

unstable equilibrium attitude γeq, as seen before in Fig. 3.3, results in Fig. 3.7. While

the original (β1, β2)γeq sets in the decoupled problem are lines for βi ∈ [0, 1], the con-

straints that reintroduce the orbit/attitude coupling now restrict the sets to a single

point for each γeq, depending on the chosen orbit rate ω̃ of the non-Keplerian circular

orbit.

3.4 Attitude dynamics and control of dumbbell using SRP

This section further analyses the decoupled problem, Eq. (3.12), for lightness numbers

that satisfy the constraints in Eq. (3.20) such that the c.m. of the dumbbell will remain

on a circular non-Keplerian orbit with orbital rate ω̃<ω0.
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Figure 3.5: Constrained β∗
1 for reference dumbbell to maintain a circular non-

Keplerian orbit with orbital rates ω̃i for given attitude γ.
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Figure 3.6: Constrained β∗
2 for reference dumbbell to maintain a circular non-

Keplerian orbit with orbital rates ω̃i for given attitude γ.
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Figure 3.7: Possible (β∗
1, β

∗
2)γeq sets for reference dumbbell to create a respec-

tive γeq and superimposed β-constraints for different circular non-Keplerian
orbits with reduced orbital rates.

3.4.1 Phase space of the decoupled problem

The Hamiltonian of the decoupled system is found using one generalised coordinate

q1,dec = γ in the rotating orbit frame O : (r,ν), according to Fig. 3.1. After dividing by
1
2(m1+m2)ω2

0l
2, the non-dimensional Hamiltonian can be written as [36]

Ĥdec =
2

(m1+m2)ω2
0l

2

[
1

2

m1m2l
2

m1+m2
(γ̇2−ω2

0)− µm1(1−β1)

R1
− µm2(1−β2)

R2

]
(3.21)

Since the decoupled Hamiltonian is a constant of motion, for each value of Ĥdec, the

motion of the system is represented by a two-dimensional phase space (γ, γ̇) [96] with

free parameters β1 and β2. Figure 3.8 shows the iso-energy curves in the phase space for

the reference dumbbell and for particular values of the lightness numbers. The arrows

indicate the direction of motion along a curve. Whenever the curves are closed, they

correspond to librations around the equilibrium point, while open curves correspond

to rotations. Two superimposed phase spaces for different β-sets and the respective

location of the stable and unstable equilibria are visible. The first set (β1, β2)A = (0, 0)

(black solid curves) corresponds to the pure gravity gradient dumbbell without SRP,

showing the well-known unstable equilibria at +/-90 degrees and the stable equilibria
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Figure 3.8: Superimposed phase spaces (γ, γ̇) of pure gravity gradient dumbbell
with (β1, β2)A = (0, 0) (black solid curves) and including SRP with lightness
numbers (β∗

1, β
∗
2)B = (0.86, 0.15) (dashed grey curves).

at 0 and ±180 degrees (black points). The second set B (grey dashed curves) is chosen

according to the derived β-constraints. Here, as an example, the lightness numbers

are selected such that they shift the unstable equilibria to ±45 degrees (grey crosses).

For a chosen orbit of radius R0 = 1 AU and orbital rate ω0 = 0.0172 rad/day, the

non-Keplerian orbit in terms of orbital rate ω̃ and the corresponding set (β1, β2)B that

creates the ±45 degree equilibria can be obtained from Fig. 3.7, or likewise Eq. (3.20).

As found above, an orbit rate of ω̃3 = (1−5.0×10−7)ω0 allows for positive β-sets in the

full range of attitudes between [−180, 180] degrees. Accordingly, the resulting β-set is

(β∗1 , β
∗
2)B = (0.86, 0.15).

3.4.2 Motion in phase space

The phase space of the system is characteristic for a particular β-set. Switching to

another set, the phase space and the respective equilibria change accordingly, as shown

above. This property of the system can be exploited to find heteroclinic connections

between equilibria of different phase spaces. By providing a qualitative switching law
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Figure 3.9: Detail view of superimposed phase spaces A and B from Fig. 3.8.
Two possible sequences are highlighted: attitude change between unstable equi-
libria (blue dashed path) and control sequence around an unstable equilibrium
(red dotted path).

between different β-sets, this section shows how the attitude of the dumbbell can be

changed and controlled in the vicinity of a desired (unstable) attitude.

When again inspecting Fig. 3.8, possible controlled sequences in the phase space in

order to change the dumbbell attitude can be identified. Whenever the dumbbell is in

a state at (or close to) an unstable equilibrium (saddle), there a two unstable manifolds

for the system to move away from the saddle. The other two stable manifolds always

lead towards the unstable point, as can be seen in Fig. 3.9, which shows a detail view

of the two superimposed phase spaces A and B from Fig. 3.8. For example, the system

can move along the bold dashed path away from the π/2 saddle, as indicated through

the arrows in the figure. Likewise, there are also two stable manifolds leading towards

the π/4 saddle of the second phase space (dashed grey lines). When switching between

the previously chosen sets (β1, β2)A and (β1, β2)B, at the point in phase space indicated

with a bold ‘S’, the dumbbell will consequently change its equilibrium attitude from π/2

to π/4, when following the dashed path. In this way, intersections between manifolds

of different phase spaces can be exploited. In order to further control the dumbbell in
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the vicinity of an unstable saddle point, a control sequence such as the one indicated

with the dark dotted path can be used. When the system initially moves away from

the saddle on one of the outgoing manifolds (within phase space B), switching to set A

(black solid curves) at the point marked with a bold ‘1’ will let it move along a closed

path around the stable centre of phase space A. When it reaches point ‘2’, which is the

crossing with the ingoing manifold, switching back to set B will complete a closed loop

around the desired unstable equilibrium of π/4.

3.5 Chapter summary

In this chapter, the concept of optical control has been considered for a long-baseline

tethered spacecraft configuration. By using an analytical Hamiltonian approach, the

planar attitude dynamics of the classical rigid-body dumbbell system including SRP

forces on the tip masses have been investigated for Sun-centred orbits. The equations

of motion for the coupled orbit/attitude dynamics of the system have been derived

and decoupled through the use of a large central mass. The additional mass enabled a

stability analysis of the system’s attitude, with the lightness numbers of the tip masses

as free control parameters. It has been shown that introducing SRP creates artificial

unstable equilibria that are different from those of the pure gravity gradient dumb-

bell. In particular, by controlling the lightness numbers of the tip masses, equilibrium

attitudes at an arbitrary angle, relative to the local vertical, can be created.

In addition, the influence of unequal tip masses and extremely long tethers on the atti-

tude dynamics of the pure gravity gradient dumbbell without SRP have been analysed

for orbits around small celestial bodies such as asteroids. For tether lengths up to

the same order of magnitude as the orbit radius, the imbalance of gravity forces again

creates unstable equilibrium attitudes in the interval of [±60,±120] degrees. Such long

tethers are usually not accounted for in the literature. However, for orbits centred

around an asteroid, the tether length would only have to be in the range of a few

kilometres.

For the dumbbell problem including SRP, optical control of the dumbbell attitude has

been demonstrated through changing the lightness numbers, exploiting the heteroclinic

connections in the phase space of the problem. The additional SRP forces perturb

the circular Keplerian motion of the system around the central body. Accordingly,

coupling of the orbit and attitude dynamics has been reintroduced by deriving con-

straints for the lightness numbers, showing that the dumbbell can be maintained on a

circular non-Keplerian orbit for arbitrary attitudes using light pressure. This supports
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the concept of using SRP for attitude control of tethered gossamer systems at rela-

tively low cost, since the lightness numbers, or surface reflectivities, respectively, can in

principle be changed using electro-chromic coatings. Therefore, no mechanical systems

or thrusters are required to maintain, for example, a fixed observation attitude. This

chapter therefore provides the basis for more complex models developed later in the

thesis.
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Chapter 4

Optical attitude control of

membrane reflectors

In Chapter 3, a reflectivity gradient between the surfaces of two separate, but connected

units has been used to demonstrate the potential of manipulating SRP for optical

control of a spacecraft attitude. Following these results, the concept of exploiting

variable optical surface properties to modulate light pressure shall now be introduced

for a large gossamer membrane spacecraft. In particular, the attitude dynamics of a

flat rigid membrane with a variable surface reflectivity distribution will be investigated

in this chapter. When changing the reflectivity coefficient across the surface, the SRP

forces (and torques) acting on this type of spacecraft can be exploited to control the

spacecraft attitude without the use of mechanical actuators or thrusters, as proposed in

Section 1.1.4. Three different reflectivity distribution models, of increasing complexity,

will be considered for the surface reflectivity: the first model introduces a continuous

reflectivity distribution across the surface (Section 4.1); the second divides the surface

into two regions of high and low reflectivity (Section 4.2); and the third models the

surface as a discrete array of multiple reflectivity cells (Section 4.3). Each distribution

model will be applied to perform basic attitude manoeuvres and the conclusions will

be summarised in Section 4.4.

4.1 Continuous reflectivity distribution

In this first section, a continuous reflectivity distribution across the surface of a large

gossamer membrane structure is considered for optical control of the spacecraft attitude.

To this end, a square membrane reflector is modelled as an ideally flat rigid surface, as
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Figure 4.1: Square membrane reflector with continuous reflectivity distribu-
tion across the surface (left) and membrane reflector model with infinitesimal
electro-chromic strip (right).

shown in Fig. 4.1. A continuous reflectivity distribution is approximated through the

assumption that the entire membrane surface A is covered with strips of infinitesimally

narrow electro-chromic coating elements, as introduced in Section 2.4. Each strip can

change its reflectivity in the interval ρ ∈ [0, 1] and thus, continuously between diffuse

and specular reflection, as previously introduced in Section 2.2.2, while the additional

mass and thickness of the coating elements are neglected.

Throughout this chapter, a body-fixed Cartesian coordinate frame B := (x,y, z),

aligned with the body’s principal axes of inertia, is used to represent the reflector

spacecraft, with (x,y) in the membrane plane and z along the surface normal, accord-

ing to Fig. 4.1. The surface cone angle α denotes the angle between the Sun-reflector

line RS and the membrane plane normal. When changing the reflectivity of a rectan-

gular surface element of area dA = Ldy, the difference in SRP force across the surface

creates a torque TSRP,x about the spacecraft x-axis. For now, a constant reflectivity is

assumed in the element’s x-axis such that no torque is generated about the spacecraft

y-axis.

This optical steering method is further demonstrated by controlling the spacecraft

attitude in a planar low Earth orbit (LEO). In particular, the concept is applied to

counteract the gravity-gradient torques acting on the structure in orbit. It shall be

demonstrated that a constant Sun-pointing attitude can be maintained along the orbit,

using the proposed concept. To this aim, the c.m. is assumed to move on a fixed circular

LEO in the ecliptic plane, as shown in Fig. 4.2, while air drag and solar eclipses are
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Figure 4.2: Constant Sun-pointing attitude of membrane reflector spacecraft
on Earth-centred circular LEO of 400 km altitude in the ecliptic plane.

ignored for illustration. The reflector shall be always Sun-pointing along the orbit,

hence a constant surface cone angle α=0 deg is assumed. In this preliminary analysis,

the spacecraft x-axis is constrained to be always perpendicular to the ecliptic plane.

This allows only one degree of rotational freedom, while rotation about the y and z

axes is omitted.

4.1.1 Gravity-gradient torque compensation on planar circular orbit

The GG torque along the orbit depends on the angle γ between the reflector plane

and the Earth radial direction R⊕, according to Fig. 4.2, where γ coincides with the

dumbbell attitude angle used in Section 3.2.2. The GG torque can be approximated

using the well-known relation [101]

TGG,x = 3
µE

R3
sin γ cos γ (Izz − Iyy) (4.1)

with µ⊕ = 3.9860×106 km3/s2 the Earth’s gravitational parameter and R = r⊕ + h⊕

the radial distance of the spacecraft c.m. from the Earth’s centre, where r⊕ = 6, 371 km

is the Earth’s radius and h⊕ the orbit altitude. A variable reflectivity distribution ρ(y)

in the surface y-direction is now assumed to counteract this torque. The SRP force

and torque about the spacecraft c.m. are calculated using the simplified SRP model, as

previously introduced in Section 2.2.2. According to Eq. (2.7) and assuming a constant

solar distance RS = 1 AU along the orbit, the solar radiation pressure pSRP can be
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Figure 4.3: Linear reflectivity function (in y-direction) across the membrane
surface.

written as

pSRP = p0 [1 + ρ(y)] cos2 α (4.2)

As seen before, the forces induced by SRP can now be modified directly when changing

the surface reflectivity. When considering again Fig. 4.1, the incremental SRP force

and torque acting on a rectangular surface element can be written as

dFSRP = p0L [1 + ρ(y)] cos2 α dy (4.3a)

dTSRP,x = p0Ly [1 + ρ(y)] cos2 α dy (4.3b)

When further introducing a linear reflectivity function in the y-direction of the form

ρ(y) = a0 + a1 y (4.4)

according to Fig. 4.3, Eqs. (4.3a) and (4.3b) can be integrated over the interval [−L/2, L/2],

while assuming α = 0 along the orbit due to the Sun-pointing constraint. The resulting

SRP force and torque are found to be

FSRP = p0L

∫ L/2

−L/2
[1 + a0 + a1 y] dy = p0L

2 [1 + a0] (4.5)

TSRP,x = p0L

∫ L/2

−L/2
y [1 + a0 + a1 y] dy =

1

12
p0L

4a1 (4.6)

It can be seen that the magnitude of the SRP force is only a function of the coefficient

a0. Furthermore, the SRP torque only depends on the slope a1 of the linear reflectivity
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function, thus on the difference of the SRP force on the left and right hand side of the

reflector. If the forces are equal on both sides (a1 = 0), the torque on the spacecraft is

zero, regardless of the absolute value of the SRP force, as determined by a0. Clearly,

the maximum torque occurs when the reflectivity reaches its maximum, ρ = 1, at

one surface edge, while ρ = 0 at the other edge. Accordingly, the absolute coefficient

is a0 = 0.5, since it is the intersection with the z-axis at the centre of the surface.

Inserting this into Eq. (4.4), together with the condition at the edge, results in a1 = 1/L.

Furthermore, inserting into Eq. (4.6) yields the maximum optical torque

TSRP,x,max =
1

12
p0L

3 (4.7)

Equation (4.6) represents the SRP torque that must be generated in order to counteract

the gravity-gradient torque TGG,x along the orbit, thus TSRP,x must always be equal

to TGG,x. As a result, the coefficients a0 and a1 of the linear function ρ(y) that are

required to counteract the gravity-gradient torque (or any other disturbance torque

about the spacecraft x-axis) can be calculated using the following equations

a1 =
12TGG,x

p0L4
, a0 =

FSRP

p0L2
− 1 (4.8)

While a1 is determined by the local torque TGG,x that needs to be compensated, a0 is

in principle only constrained by the maximum possible SRP force FSRP, max = 2p0L
2,

for which a0 = 1 and thus, ρ(y) = 1 and is constant across the surface (assuming

a1 = 0). However, a reflectivity gradient a1 6= 0 is necessary to create a torque, while

at the same time ρ(y) ≤ 1 (maximum reflectivity) must be satisfied across the entire

surface. The minimum value of a0 is determined by the additional condition ρ(L/2) = 0

or ρ(−L/2) = 0 at the edge of the reflector. Inserting this into the linear reflectivity

function, Eq. (4.4), results in a0,min = ±a1L/2, depending on the sign of the torque

that needs to be created. Since a1 only depends on the external torque, a0,min defines

the minimum reflectivity distribution in terms of the smallest values of ρ across the

surface.

In order to demonstrate the concept, a sample reflector configuration with an arbitrary

membrane thickness t = 2.5 × 10−6 m and edge length L = 50 m is chosen, ideally

without assembly or payload masses in this initial analysis. The film material employed

is Kapton, as previously introduced in Section 1.1.2. Using the density of this film

material (τ = 1, 572 kg/m3), the membrane mass m results in only 9.83 kg, with quite

low mass moments of inertia Ixx = Iyy = 2046.9 kg m2 and Izz = 4093.8 kg m2 about

the principal body axes. This preliminary configuration is orbiting on a fixed circular
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Figure 4.4: Minimum reflectivity distribution across 50 m edge-length mem-
brane surface (in y-direction) to counteract gravity gradient in LEO during
one orbit

LEO of 400 km altitude, where the maximum GG torque acting on the membrane is

of the order TGG,x = 4×10−3 Nm about the x-axis, according to Eq. (4.1).

Figure 4.4 shows the resulting reflectivity distribution ρ(y) across the membrane as a

function of the spacecraft attitude angle γ during one revolution along the orbit. It

can be seen that the necessary reflectivity to balance the gravity-gradient torque is

relatively small compared to the maximum reflectivity ρmax = 0.6 that can be achieved

with currently developed electro-chromic devices (Section 2.4). This indicates that

for the chosen application to counteract gravity gradient torques, the proposed optical

steering method has not reached its full potential. According to Eq. (4.7), the maximum

control torque that can be achieved for the current reflector, is TSRP,x = 0.048 Nm,

thus 12 times larger than the maximum gravity gradient torque in LEO. However, it

shall be noted that only the membrane’s mass moments of inertia have been considered

in this preliminary analysis. Therefore, the final mass moments of inertia of the real

reflector spacecraft, including all subsystems, membrane support structure and payload,

are expected to be much larger. This investigation in terms of counteracting gravity

gradient torques in LEO shall be subject to future analysis. However, in the following

sections 4.2 and 4.3, respectively, more complex reflectivity distribution models will

be introduced and demonstrated on a realistic reflector spacecraft configuration with

much larger mass moments of inertia.
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Figure 4.5: Square membrane reflector with two constrained reflectivity re-
gions controlled by moving a boundary line between two states, ’on’ (specular
reflection) and ’off’ (diffuse reflection), and torques created about the in-plane
spacecraft axes.

4.2 Constrained high/low reflectivity region

In this section, a more realistic approach is considered, using two constrained regions of

active and inactive (on/off) surface reflectivity, separated by a variable boundary line,

as shown in Fig. 4.5. Instead of varying ρ in the interval [0, 1], as assumed in Section

4.1, the electro-chromic coatings in each region are now restricted between two states,

either ‘on’ (ρmax = 1) or ‘off’ (ρmin = 0). By controlling the position of the boundary

line across the surface, a wide range of torque vector directions in the reflector plane

(x,y) can be generated. However, torques perpendicular to the surface are not possible.

This is due to the simplified SRP model employed, which assumes that the forces due

to light pressure are always perpendicular to the surface, according to Section 2.2.2.

The potential of this approach is demonstrated in this section for two-axis attitude

control of the spacecraft in a Sun-centred orbit.

The on/off boundary line is described by a linear function

yBL(x) = ax+ b (4.9)

in the x-direction across the membrane, with an arbitrary slope coefficient a and offset

coefficient b, describing its vertical offset from the x-axis. Furthermore, two geometri-

cally mirrored on/off cases can be chosen for the electro-chromic coatings above and

below the boundary line, as shown in Fig. 4.6. The first case represents an active reflec-

tivity state above the boundary line and inactive below (further named as the ‘upper

case’), or vice versa, the second case indicates reflectivity ’off’ above yBL and ’on’ below

(termed the ’lower case’). Switching between the two cases only changes the sign of the
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torques, not their magnitude. The SRP torques now depend on the two coefficients a

and b, the cone angle α (i.e. the current surface attitude), and the considered on/off

case.

According to Fig. 4.5, the in-plane SRP torque components in x and y-direction at 1

AU solar distance can be written as

Tx = −p0 cos2 α

∫ L/2

−L/2

∫ L/2

ax+b
y dydx x (4.10a)

Ty = p0 cos2 α

∫ L/2

−L/2

∫ L/2

ax+b
x dydx y (4.10b)

when assuming the ‘upper case’, thus only the electro-chromic coatings above the

boundary line are active. When the coating elements are switched into the ‘lower

case’, the limits of both inner integrals need to be inverted to [−L/2, ax+ b], which is

equivalent to changing the signs of the torques.

When integrating Eqs. (4.10a) and (4.10b), seven torque cases have to be considered,

depending on the intersection of the boundary line with the limits of the surface domain

in x-direction, −L/2 and L/2, as shown in Fig. 4.7 for illustration. Note that the

coloured areas in the figure do not represent the activation state of the two reflectivity

regions above and below the boundary line. In order to assist the computation of each

Figure 4.6: Possible on/off cases for the two reflectivity regions on the mem-
brane surface, separated by a movable boundary line.
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Figure 4.7: Schematic representation of torque cases, depending on the position
of the boundary line across the membrane surface.

torque case, the following conditionals are introduced at the edges of the membrane

yBL,low = −a
(
L

2

)
+ b ≶ ±L

2
(4.11a)

yBL,up = a

(
L

2

)
+ b ≶ ±L

2
(4.11b)

The above conditionals are simply the intersections of the boundary line with each

membrane edge in y-direction, as shown in Fig. 4.5. For example, if the coefficients of

the boundary line are chosen such that −L/2 ≤ yBL,low ≤ L/2 and −L/2 ≤ yBL,up ≤
L/2, the resulting torques are of type ‘Case 1’, as shown in Fig. 4.7.

After defining all seven cases accordingly, analytic expressions for the optical torques

can be found. In particular, a set of boundary equations for a and b can be introduced

to identify the torque case for a given boundary line. As a result, the torques are now
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fully determined by the following conditional scheme, given here for the ‘upper case’,

when the surface region above the boundary line is activated (excerpt only)

Case 1 a ≥ 0 ∧ L/2(a− 1) ≤ b ≤ L/2(1− a) or

a ≤ 0 ∧ −L/2(a+ 1) ≤ b ≤ L/2(a+ 1)

Tx,upper = p0L
3 cos2 α

[
1

2

b2

L2
− 1

8
+

1

24
a2

]
x (4.12a)

Ty,upper =
1

12
p0aL

3 cos2 α y (4.12b)

Case 2 a > 0 ∧ −L/2(a+ 1) < b < L/2(1− a) ∧ b < L/2(a− 1)

Tx,upper = p0L
3 cos2 α (4.13a)[

1

6

b3

aL3
+

1

4

b2

L2
− 1

8

b

aL
+

1

8

ab

L
− 1

16
− 1

24

1

a
+

1

48
a2

]
x

Ty,upper = p0L
3 cos2 α (4.13b)[

1

6

b3

a2L3
+

1

4

b2

a2L2
− 1

8

b

L
+

1

8

b

a2L
− 1

16
− 1

24
a+

1

48

1

a2

]
y

The remaining cases can be derived in the same way. Switching from the ‘upper case’ to

the ‘lower case’ changes signs in the previous equations such that Tx,lower = −Tx,upper

and Ty,lower = −Ty,upper.

In order to demonstrate the concept, a sample reflector configuration with edge length

L = 100 m is now considered. Including the membrane assembly mass and the payload

mass, the total mass of the spacecraft is assumed to be m= 200 kg. The spacecraft’s

total mass moments of inertia are Ixx = Iyy = 1.67× 105 kg m2 and Izz = 3.34 ×
105 kg m2. The achievable torques, as a function of the boundary line coefficients a, b

and for increasing cone angle α, are shown in Fig. 4.8, with the electro-chromic elements

activated in the ‘lower case’. As can be seen, this activation state creates a positive

Tx over the entire (a, b)-domain, while the torque magnitude decreases for increasing

α. The maximum torque is created for (a, b) = (0, 0), hence for the slope and the

vertical offset of yBL(x) being zero. Clearly, this matches the condition for which all

electro-chromic coatings on the lower half of the surface are active. In the y-direction,
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(a) Torque in membrane x-direction

(b) Torque in membrane y-direction

Figure 4.8: In-plane reflector torques over boundary line coefficients a and b
and for selected surface cone angles α (coloured). Reflectivity regions activated
in ’lower case’.
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Figure 4.9: In-plane optical torques Tx (solid lines) and Ty (dashed lines) as
function of boundary line coefficients a and b, with surface cone angle α = 0
deg. Coloured regions indicate each torque case. Constrained reflectivity re-
gions activated in ‘upper case’.

the achievable torques mainly depend on the slope a of the boundary line and only to

a very limited extent on the offset b. In addition, negative torques can also be created,

which is not possible in the x-direction for the selected activation state. The maximum

torques about both spacecraft axes are found to be Tx,max = Ty,max = ± 0.57 Nm,

which occurs when all coating elements on one half of the membrane surface are active.

For example, applying this torque to the given sample reflector results in a full 360 deg

rotation of the spacecraft in approximately 1900 s ≈ 32 min.

All seven torque cases over the selected (a, b)-domain are shown in Fig. 4.9 through the

use of coloured regions, showing both torque components for a cone angle of α = 0 deg

and the ‘upper case’ activation state. Each colour represents the same torque case as

in Fig. 4.7. The solid lines in Fig. 4.9 indicate Tx, while the dashed lines characterise

Ty. From the figure, the feasible torques for each reflectivity-line in terms of the

coefficients a and b can be obtained. It can be seen that no arbitrary torques about

both spacecraft axis can be generated, even when staying below Tmax for a chosen

reflector configuration.
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In the following, the control concept is demonstrated through a sample spacecraft

manoeuvre in three rotational degrees of freedom (3 DOF). Therefore, the equations of

rotational motion of the reflector spacecraft are derived first.

4.2.1 Rigid-body attitude dynamics

The rigid-body attitude dynamics of the spacecraft are formulated using Euler’s equa-

tion in quaternion notation [101, 102]. The attitude of the body-fixed frame B is

described with respect to the so-called ecliptic reference frame E := (xE,yE, zE), cen-

tred in the spacecraft c.m. on a Sun-centred orbit, as can be seen in Fig. 4.5. The

zE-axis is oriented towards the Sun, the yE component is always in the ecliptic plane,

and xE completes the right-handed coordinate system. It is assumed that attitude

changes do not affect the spacecraft’s Sun-centred orbit, thus the orbit and attitude

motion are decoupled. Choosing quaternions for attitude representation is beneficial

compared to other attitude descriptors such as Euler angles, since quaternions have one

redundant parameter and thus, no singularities occur. Furthermore, quaternions offer a

lower computational effort, since the quaternion algebra does not require trigonometric

functions, which appear, for example, in the Euler rotation matrices [101].

The (four-dimensional) attitude quaternion q̄ = (q1, q2, q3, q4)T is a hypercomplex num-

ber system in the Cartesian basis (1, i, j,k) in R4 [103, 104]. It has the general form

q̄ = q1 + q2i + q3j + q4k (4.14)

with four real numbers qi, termed the components of q̄, and the upper (̄ ) denoting a

quaternion vector. Since the subspace (i, j,k) represents a basis in R3, the components

of the vector q = (q2, q3, q4)T can be regarded as the vector component and q1 as

the scalar component of q̄. Following the derivation given in the Appendix A, the

quaternion can be rewritten as

q̄ = cos

(
θ

2

)
+
(
axi + ayj + azk

)
sin

(
θ

2

)
(4.15)

with the rotation angle θ between the body frame B and the reference frame E about the

Euler axis of rotation a = (ax, ay, az)
T, which is defined relative to B. In other words,

a denotes the axis about which the body frame B has been displaced by the angle θ

with respect to the reference frame E, according to Fig. A.1 in the Appendix A. This

notation simplifies the attitude description considerably. In contrast, the traditional

Euler angle notation, for example, requires 3 angles (e.g. roll, pitch and yaw), which
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are defined w.r.t. different body axes.

Using the above definitions, the governing kinematic equation of the rotational motion

of a rigid body can be written as

˙̄q =
1

2
q̄ ⊗ ω̄ (4.16)

representing the rate of change of q̄ due to the spacecraft’s angular velocity ω̄ =

[0, ωx, ωy, ωz]
T, written in quaternion notation. In the previous equation, the oper-

ator ⊗ represents the quaternion product [103], which is described in the Appendix

A.

Euler’s equation, constituting the kinetic equation of the rotational motion [101],

describes the rate of change of the angular velocity ω̇ due to an external torque

T = (Tx, Ty, Tz)
T about the body axes as

ω̇ = [I]−1(T− ω × [I]ω) (4.17)

with [I] the mass moment of inertia tensor.

Alternatively, the kinetic equation can also be formulated with respect to the second

derivative of the attitude quaternion [102], which results in

¨̄q = ˙̄q ⊗ q̄−1 ⊗ ˙̄q +
1

2
q̄ ⊗ ˙̄ω with ˙̄ω =

(
0

[I]−1(T− ω × [I]ω)

)
(4.18)

Equation (4.18) represents a second order DES and can be formulated as an initial

value problem (IVP)

¨̄q =f
(

˙̄q, q̄, ˙̄ω, t
)
, q̄(t = t0) = q̄0, ˙̄q(t = t0) = ˙̄q0, ˙̄ω(t = t0) = ˙̄ω0 (4.19)

with arbitrary initial attitude q̄0, attitude rate of change ˙̄q0 and angular rate ˙̄ω0 at

time t0. In the following, the system is solved using a Runge-Kutta Nyström (RKN)

integration scheme [105].

In order to demonstrate the optical control concept proposed, a basic rest-to-rest ma-

noeuvre is considered. In principle, a constant optical torque is applied to steer the

reflector spacecraft from its initial to final attitude. Halfway during the manoeuvre,

when the spacecraft attitude has changed over an angle θ/2, the sign of the torque is in-

verted to decelerate the motion until the final attitude is reached (bang-bang control).

Since the SRP torque magnitude depends on the current attitude of the membrane
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with respect to the Sun (cone angle α), the position and shape of the boundary line

has to be controlled during the manoeuvre. Therefore, after selecting the required

torque components (Tx, Ty)req to perform the manoeuvre, the corresponding boundary

line coefficients as a function of the current reflector attitude must be found. This can

be achieved through the formulation of an inverse problem, as will be shown below.

4.2.2 Inverse problem approach for boundary line control

When re-writing the torque equations, Eqs. (4.12) and (4.13) for the coefficients a and

b, the boundary line can be expressed as a function of the (required) torques and the

current cone angle α. Given here for torque Case 1 (and the ‘upper case’ activation

state) only, the inverse problem results in

Case 1 a ≥ 0 ∧ L/2(a− 1) ≤ b ≤ L/2(1− a)

a = −12
Ty,upper

p0L3 cos2 α
(4.20a)

b = ±L
2

√
1 +

8Tx,upper

p0L3 cos2 α
−

48T 2
y,upper

(p0L3)2 cos4 α
(4.20b)

where the following conditions apply for the two torque components

− 1

12
p0L

3 cos2 α ≤ Ty,upper ≤ 0 (4.21a)

−1

8

(
L3 cos2 α−

48T 2
y,upper

p0L3 cos2 α

)
≤ Tx,upper ≤ 3Ty,upper +

24T 2
y,upper

p0L3 cos2 α
(4.21b)

The above scheme can be applied as follows. First, the required torques for a particular

manoeuvre are selected, which have to satisfy the maximum achievable limits for a given

reflector configuration, as well as the conditions of Eqs. (4.21). Second, the shape and

position of the boundary line, in terms of the coefficients a and b, in order to create

these torques can be computed according to Eqs. (4.20).
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Figure 4.10: Manoeuvre sequence for selected initial reflector attitude α0 = 40
deg and clock angle δ0 = 52 deg towards final Sun-pointing attitude, and active
surface reflectivity region.

4.2.3 Sample Attitude Manoeuvre

The previously described attitude control concept of employing constrained reflectivity

regions across the membrane is now applied to perform a basic spacecraft manoeuvre.

Considering the sample reflector configuration (edge length L=100 m, total mass m=

200 kg) in a Sun-centred orbit. As introduced before, the spacecraft shall be steered

from an arbitrary initial attitude towards Sun-pointing, using combined torques Tx and

Ty in the reflector plane.

Initially, the reflector is chosen to be tilted over a cone angle α0 = 40 deg and clock

angle δ0 = 52 deg, as shown in Fig. 4.10 (upper left). This translates into a rotation

angle θx = 38 deg and θy = 12 deg about the in-plane spacecraft axes. After the

manoeuvre, the reflector shall be Sun-pointing, thus αfinal = 0. From the quaternion

approach, the Euler axis follows as a = (−0.3,−0.1, 0). This axis can be obtained from

the initial attitude quaternion q̄0 that is calculated from the initial displacement angles

θx and θy. Accordingly, a constant torque couple of Tx = −0.3 Nm and Ty = −0.1 Nm
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Figure 4.11: In-plane torques Tx (solid lines) and Ty (dashed lines) as function
of boundary line coefficients a and b and surface cone angle α = 40 deg. Red
dots indicate feasible sets (a0,b0) = (0.45,±9.59) for the required manoeuvre
torques.

is selected such that the total torque vector matches the initial displacement of the

reflector with respect to frame E. Since the torque Tx is negative, the ‘upper case’

distribution needs to be used, as was shown in Fig. 4.9.

For the selected initial cone angle, the achievable torques over the (a, b)-domain of the

boundary line are shown in Fig. 4.11, for an active ‘upper case’ reflectivity distribution.

The solid lines again indicate Tx, while the dashed lines represent Ty. Red points iden-

tify the two feasible sets (a0, b0) = (0.45,±9.59) for the selected torques, as calculated

from the inverse problem in Section 4.2.2. They both require the same slope of the

boundary line, however, a positive or negative offset in the y-direction can be chosen.

Furthermore, from Eq. (4.20) of the inverse problem, the boundary line coefficients

are fully determined as a function of the local cone angle during the manoeuvre, as

shown in Fig. 4.12. When adapting the reflective region across the surface during the

manoeuvre, according to the derived control scheme for the boundary line, the in-plane

torques can be kept constant, although the light incidence angle α, and thus the SRP

forces across the membrane, change over time. The reflector attitude is computed
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(a) slope coefficient

(b) offset coefficient

Figure 4.12: Controlled boundary line coefficients a and b as function of surface
cone angle α for selected manoeuvre towards Sun-pointing attitude.

through the DES of rotational motion, Eq. (4.18), by solving the IVP, as described in

Subsection 4.2.1. The resulting time history of the cone angle and angular rates ωx and

ωy of the spacecraft about the in-plane axes are shown in Fig. 4.13, together with the

applied bang-bang torque profile. The total manoeuvre time to rotate the surface into

a Sun-pointing attitude is 1216 s ≈ 20 min.
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(a) cone angle α

(b) angular rate in x-direction (c) torque in x-direction

(d) angular rate in y-direction (e) torque in y-direction

Figure 4.13: Spacecraft manoeuvre time-history towards final Sun-pointing
attitude.

4.3 Discrete reflectivity array

In this section, the constrained reflectivity regions are replaced by a number of discrete

electro-chromic coating elements, or ‘RCDs’, as introduced in Section 2.4. The square

RCDs are assumed to be uniformly distributed across the entire membrane surface, as

in a dot matrix. Each cell can maintain two states, either ’on’ (high reflectivity) or

’off’ (low reflectivity). Consequently, the achievable control torques are expected to be

discrete as well, while being a function of number, position and activation state of the
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Figure 4.14: Square membrane reflector spacecraft with discrete number of
RCD cells across the surface to modulate SRP torques acting on the structure
for attitude control.

coating elements. With this concept a wide range of torque vector directions in the

reflector plane can be generated, while torques normal to the surface are again zero.

In order to steer the spacecraft using this discrete RCD matrix (or RCD array, re-

spectively), an attitude control framework can be formulated using, for example, a

quaternion feedback controller. This framework shall compute the required reference

torques (e.g. for a particular manoeuvre) that have to be matched by the actuating

RCD matrix. The aim is towards finding the optimal reflectivity pattern in terms of

the number and combination of active cells to create the required control torque. This

‘optical attitude controller’ has to take into account that control torques can be de-

livered with two (in-plane) components only for controlling three rotational degrees of

freedom. Furthermore, the two in-plane torque components both depend on the dis-

tribution and activation state of the RCD elements simultaneously; thus, they cannot

be controlled independently. In addition, the torque magnitudes vary with changing

spacecraft attitude (surface cone angle α), as seen previously in Section 4.2, which

constitutes a challenging attitude control problem.

4.3.1 Membrane Surface Model using RCD matrix

As shown in Fig. 4.14, the membrane surface A is assumed to be covered with a square

matrix [M ] :=(n, n) of electro-chromic coating cells, with n the number of cells per side,

that are restricted to operate at two discrete reflectivity states, either ’on’ (ρon = 1)
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or ’off’ (ρoff = 0). The additional mass and thickness of the elements is neglected,

while the membrane is assumed ideally flat and rigid. Each cell i of area Ai = ∆x∆y

and distance xi and yi from the in-plane x and y-axes, respectively, creates a discrete

torque Ti = (Tx,i, Ty,i). Written in x and y-components, the SRP torques created by

each individual element i at 1 AU solar distance are

Tx,i = −p0 [1 + ρ] cos2 α yiAi (4.22a)

Ty,i = p0 [1 + ρ] cos2 αxiAi (4.22b)

with ρ ∈ (ρon, ρoff). The total torque T = (Tx, Ty) is simply the sum of all RCD cells

across the surface

Tx =
N∑
i=1

Tx,i and Ty =
N∑
i=1

Ty,i (4.23)

with N the total number of cells. The number of possible reflectivity combinations Cn

using two-state elements (on/off) follows the relation

Cn = 2n
2

(4.24)

and thus, increases rapidly with increasing size of the square RCD matrix [M ], as shown

in Table 4.1. For example, using a (6×6)-matrix, and thus a total number of N = 36

Table 4.1: Number of possible discrete reflectivity combinations Cn as a func-
tion of the square matrix size [M ]=(n, n) and total element number N = n2

n N Cn

2 4 16
3 9 512
4 16 65,536
5 25 33.554 ×106

6 36 68.719 ×109

elements across the surface, the number of possible combinations is already C6 = 68.7

billion. In order to compute the large number of reflectivity combinations expected,

the properties of the discrete torque sets, created by Cn, need to be examined. If,

for example, potential recurring patterns within the torque sets can be identified, this

would allow for a truncation of the number of total combinations to the number of

combinations that create unique torques. Furthermore, as shown for a (3×3)-array in

Fig. 4.15, every (axially) symmetric combination does not create a torque, since SRP
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Figure 4.15: (3×3)-size RCD matrix with two axis-symmetric reflectivity com-
binations, creating zero torque about both in-plane axes.

torques created by opposite RCD elements cancel out. For example, the two active

cells labelled ‘3’ and ‘7’ create the same torques about both in-plane axes, but with

opposite signs. As a result, if only these two cells are active (or inactive), the total

torque is zero. Furthermore, each inverted combination of the binary-state matrix [M ]

generates the exact counter torque about both in-plane axes, as can be seen in Fig. 4.16.

According to the figure, the four upper-left cells are active on the left-hand side, while

the remaining five cells are inactive. In the right-hand figure, the inverted combination

is shown. The total torque vector, highlighted in red, has the same magnitude, but

opposite sign. This property is again shown in Fig. 4.17. The figure shows one subset

of the total of C3 = 512 combinations, in which each combination creates the same

torques about the x and y-axis. Only the sign of the two torques changes, as indicated

by the (+) and (−) sign at the top of each column. For example, the two sets of

frame axes (solid and dashed, respectively) mark two inverted combinations, one from

the (++) column, one from the (−−) column. As can be seen, middle elements that

contain one of the axes only produce a torque about the other axis. The centre-element

never produces a torque. Therefore, the total number of discrete torques that can be

generated is much smaller than Cn.

In total, four truncation laws can be formulated to find the number of same-torque

reflectivity combinations for a given set Cn

Figure 4.16: (3×3)-size RCD matrix with two inverse reflectivity combinations,
creating opposite torque of same magnitude (red arrow).
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Figure 4.17: Largest subset (112 combinations) of possible reflectivity combi-
nations (C3 = 512) using a (3×3)-array. Each combination generates the same
torque about the x and y-axes. Signs of Tx and Ty are different in each column,
as indicated with + (positive) and - (negative)
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Figure 4.18: Non-dimensional discrete torques in x and y-direction, generated
by a (4×4)-array. Each entry may contain several reflectivity combinations
that result in the same torque.

1. axis-symmetric combinations do not create a torque (opposite elements cancel

out)

2. middle elements along one of the axes only produce a torque about the other axis

3. the centre element never produces a torque

4. each inverted combination generates a counter torque of same magnitude (sign

inversion)

Finally, a large number of reflectivity combinations create the same torques about the

x and y-axis. For example, the total number of combinations for a (4×4)-array is

C4 = 65, 536. Removing the same-torque combinations reduces this number to 376+1

unique torque combinations (including zero-torque combinations). This is a reduction

of 99.4 %.

The remaining discrete torque pairs for the (4×4)-array are shown in Fig. 4.18, nor-

malised by the maximum possible torque about each in-plane axis, Tx,max and Ty,max.

The distance between two torque pairs in the x and y-directions represents the mini-

mum discrete torque increment that can be generated using a (4×4)-array. This is also

demonstrated by Fig. 4.19, which provides the total torque magnitude T = (T 2
x +T 2

y )1/2
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Figure 4.19: Non-dimensional discrete torques in x and y-direction, generated
by a (4×4)-array, and total magnitude of the torque.

that can be generated by each reflectivity combination. This already indicates potential

challenges for membrane attitude control, in case a limited number of RCD elements

across the surface are used.

4.3.2 Optical Attitude Control using RCD matrix

In the following, a feedback control scheme for two-axis attitude control of the mem-

brane reflector using a discrete (n×n) actuation matrix is introduced. The rigid-body

attitude dynamics of the spacecraft are described using Euler’s Equation in quaternion

notation, as introduced in Subsection 4.2.1. The two equations of rotational motion,

Eqs. (4.16) and (4.17), can be solved numerically by formulating the IVP

q̄(0) = q̄0, ω(0) = ω0 (4.25)

and using, for example, the MATLABTM ode45 routine that employs an explicit Runge-

Kutta (4, 5) scheme [106].

The spacecraft attitude is controlled using a quaternion feedback scheme in SimulinkTM,

as shown schematically in Fig. 4.20. First, the scheme calculates the error quaternion

q̄err, between the desired final attitude q̄final and the current attitude q̄, which is known

from the DES of rotational motion. The DES is represented by the function block

termed ‘attitude dynamics’ in Fig. 4.20. The error quaternion q̄err is calculated through
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Figure 4.20: Quaternion feedback control scheme. Dashed line indicating ref-
erence torque Tref loop without RCD actuation Tact.

the quaternion product

q̄err = q̄final ⊗ q̄ (4.26)

according to Eq. A.13 in the Appendix A. Second, q̄err is fed into the ‘controller’, which

will be described below, together with the current angular velocity vector ω. Third, the

controller calculates the reference torque Tref = (Tx, Ty)ref that is required to minimise

the error quaternion, and thus, the angular displacement of the spacecraft from its

final attitude q̄final. Finally, Tref can either be used directly to control the spacecraft

attitude, as indicated by the dashed line in Fig. 4.20, connecting the ‘controller’ with

the ‘attitude dynamics’ block. Alternatively, Tref can be fed into the optical RCD array

that can be configured in terms of the number of elements (n×n). The RCD array

returns a discrete optical torque TRCD from Tref in order to steer the spacecraft, as

will be described below.

According to Fig. 4.20, a PD-controller is employed, consisting of two loops: first, an

inner loop using a proportional controller Pω for the angular velocity. Second, an outer

loop employing a proportional controller Pq for the tracking of the current attitude

error. The combined controller can be formulated as [107]

Tref = −Pq · qerr − Pω · ω =


Tx,ref

Ty,ref

0

 (4.27)
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with qerr the vector component of the current error quaternion, according to Eq. (4.15).

The Tz,ref component is to be neglected, since no torque normal to the membrane plane

can be provided by the employed RCD array. The values of the gains Pω and Pq are

defined empirically such that the maximum output torque Tref matches the maximum

discrete torque TRCD that can be achieved by the employed RCD array and for a given

reflector spacecraft configuration. The maximum torque is generated when one half of

the employed RCD cells is active (ρ = 1), while ρ = 0 for the other half.

Before the control loop is executed, the chosen (n×n) RCD array is initialised by

calculating all possible discrete torques (Tx, Ty)RCD for all reflectivity combinations,

truncated using the previous laws in Subsection 4.3.1. The remaining torques are

stored in a lookup table, together with the respective combination number of the active

element(s). For example, the set of possible torques using a (4×4) element array has

been shown in Fig. 4.18.

When the control loop is active, the controller returns the reference torque Tref , accord-

ing to Eq. (4.27), which is then provided to the optical RCD array. In here, the achiev-

able torque from the employed (n×n) RCD-array is computed by browsing the lookup

table of discrete RCD torques. In particular, the optimal torque T
∗
RCD = (Tx, Ty)

∗
RCD

is found by scanning the lookup table for the closest match torque about the x and

y-axes. As noted before, the array can only generate a finite number of torques, with

the torque magnitude further depending on the current surface cone angle α towards

the Sun, according to Eq. (4.2). Finally, the found T
∗
RCD is used within the ‘attitude

dynamics’ block to compute the new attitude, according to Eqs. 4.16 and 4.17.

4.3.3 Attitude Manoeuvre using discrete RCD array

The optical RCD array is now applied to control the attitude of a membrane reflector

spacecraft on a Sun-centered orbit. Starting from an arbitrary initial attitude and an-

gular rate, the final spacecraft attitude shall be Sun-pointing. The final attitude about

the z-axis is not controllable and will be neglected throughout the present analysis.

This can be justified by the fact that the reflector attitude about the z-axis has no

impact on the SRP torque magnitudes.

The same square reflector configuration with edge length L = 100 m and total mass

m = 200 kg, see Section 4.2, is used for demonstration. The optical controller shall

perform a basic manoeuvre to obtain a Sun-pointing attitude, thus with cone angle

αfinal = 0. Initially, the membrane surface is chosen to be tilted by the Euler angles

θx,0 = θy,0 = −40 deg about the in-plane x and y-axis. This attitude translates into an
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Figure 4.21: Reference torque Tref from quaternion feedback controller.

initial cone angle of α0 =54 deg. Additionally, the spacecraft is rotating with an initial

angular rate of ωx,0 = ωy,0 = 0.1 deg/s. First, the manoeuvre is controlled using the

reference torques Tref from the ideal feedback controller, without RCD actuation, as

shown by the dashed path in Fig. 4.20. Second, a (4×4) RCD-array is used to translate

the reference torques into the closest-match optical SRP torques T
∗
RCD.

The second control setup, using the discrete RCD torques to steer the spacecraft, is

further repeated to include the effect of the current surface cone angle α on the SRP

torques during the manoeuvre. The SRP variation with changing α can be switched

off in the feedback scheme and results are given for comparison.

The resulting reference torque components (Tx, Ty)ref for the chosen attitude manoeu-

vre, as computed by the controller, are shown in Fig. 4.21. The simulation is finished

at the time tfinal for which α(t) stays below a certain threshold αlim ≤ 0.1 deg. This

is achieved at time tfinal = 3000 s = 50 min. The simulation is repeated after activa-

tion of the (4×4) RCD array. The achievable discrete torques from the RCD array

are given in Fig. 4.22, which shows that the RCD array can follow the controller’s

demands by returning the closest matching torques available. Please note that in the

figure, a constant cone angle α = 0 is assumed to highlight the discrete character of the

torques. When including the cone angle influence on the SRP during the manoeuvre,

as shown in Fig. 4.23, the actuated torques (Tx, Ty)RCD are modulated towards lower

values, in particular for high α(t). According to Fig. 4.24, the cone angle is highest
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Figure 4.22: Achievable torque TRCD from RCD array, assuming constant cone
angle α = 0 during the manoeuvre.
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Figure 4.23: Achievable torque TRCD from RCD array and considering varia-
tion of SRP with changing surface cone angle α over time.

at the start of the simulation and during the time interval [700, 1500] sec, when the

membrane overshoots the targeted Sun-pointing attitude. The overshooting is higher
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Figure 4.24: Membrane surface pitch angle α time-history using reference
torque control (solid line) and using RCD array control, considering SRP vari-
ation with α (dashed line)

in case of the RCD actuation (dashed line in Fig. 4.24), due to the limited capacity

of the RCD-array to provide the required control torques. The cone angle reaches the

required αlim condition in approximately twice the simulation time (not shown in Fig.

4.24), which is likely to be due to the minimum threshold of discrete torque that can

be generated by the employed RCD-array.

4.4 Chapter summary

A variable reflectivity distribution across the surface of a square membrane reflector

has been considered in this chapter, in order to investigate ultra-lightweight optical

steering of large gossamer spacecraft. The nominal SRP forces across the membrane

have been modulated using different surface reflectivity models, which generate optical

torques about the in-plane spacecraft axes.

First, a continuous reflectivity model across the surface of the membrane has been

employed to control the attitude of the spacecraft in LEO and under the influence of

gravity-gradient torques. While the spacecraft has been restricted to planar motion in

a fixed orbital plane, it has been shown that a constant Sun-pointing attitude can be
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maintained, when modulating the coefficients of a linear reflectivity function across the

membrane.

Second, a more complex model using constrained regions of high reflectivity across

the surface has been employed to enable two-axis attitude control of the membrane

spacecraft. When controlling the boundary line between two regions of high and low

reflectivity, a wide range of torques in the membrane plane can be generated. Since the

SRP force magnitude depends on the surface cone angle towards the Sun, an analytic

control scheme has been derived that maintains a constant SRP torque even when the

surface is rotating during manoeuvre phases. The control scheme moves the boundary

line across the surface, depending on the current spacecraft attitude with respect to

the Sun. It has been shown that by controlling the SRP torques in the membrane

plane, the reflector can be brought to a Sun-pointing attitude from an arbitrary initial

displacement.

Finally, a discrete array of RCDs across the membrane surface has been considered.

Each cell can maintain two states, either ‘on’ (high reflectivity) or ‘off’ (low reflectivity).

The resulting discrete torques have been calculated for a given reflector size, and as a

function of number, position and activation state of the coating elements. The concept

has been demonstrated by a basic Sun-pointing manoeuvre, after the discrete actuation

model has been implemented into a quaternion feedback control scheme. Starting from

an arbitrary initial attitude and angular rate, a (4,4)-array of reflectivity cells has

been employed, which can obtain 65, 536 reflectivity combinations and 376 discrete

torques in the membrane plane. The array was able to steer the spacecraft into final

resting attitude, despite the limitation on the discrete torques that can be generated

by such low number of reflectivity cells. Compared to the reference control torques,

the optical-array torques have been in good agreement, although the total manoeuvre

time has been twice as long, compared to the reference manoeuvre time. This has been

attributed to the minimum threshold of discrete torques that can be generated by the

employed array.

Exploiting variable SRP forces across the surface to steer space membrane reflectors

introduces a more flexible and potentially lightweight attitude control method to large

gossamer spacecraft. Therefore, the concept of optical attitude control may contribute

to reduce the overall system mass.
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Chapter 5

Shape control of elastic

membrane reflectors

The previous two chapters considered optical attitude control of large rigid gossamer

structures by exploiting SRP in space. This chapter will now investigate the concept

of optical shape control of large elastic gossamer structures to enable ultra-lightweight

surface actuation and high shape accuracy for this type of spacecraft. In Section 5.1, the

governing equations of a thin circular membrane subject to SRP loads, perpendicular

to the undeflected surface plane, will be introduced. The nominal deflection profiles

due to uniform SRP across the surface will be assessed first in Section 5.2, for different

membrane sizes and distances from the Sun. Subsequently, in Section 5.3, suitable

reflectivity functions across the surface will be used to modulate light pressure for

controlled surface deflection. To this aim, the required reflectivity distribution to obtain

a particular deflection, e.g. a parabolic profile, will be calculated by formulating an

inverse problem (Section 5.3.1). The resulting deflection shapes and magnitudes will

be evaluated in Section 5.4 in terms of the achievable focal lengths as a function of

aperture size and solar distance. Section 5.5 will summarise the chapter.

5.1 Elastic membrane deflection through SRP

As discussed in Chapter 1, deploying a large highly-reflective membrane in space en-

ables a variety of future space-based applications. However, it is essential to keep the

system mass as low as possible to reduce launch costs, while at the same time providing

controllability, reliability and shape accuracy of the surface in the space environment.
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Figure 5.1: Circular membrane reflector with thin-film electro-chromic coatings
(left) and modulated surface reflectivity enabling variable SRP loads (right).

To this end, controlling the membrane shape by modulating the SRP forces acting on

the structure in space is considered throughout this chapter.

The circular membrane reflector is modelled as a thin circular polymer film, according

to Section 1.1.2. The membrane is supported by a circumferential hoop structure,

as shown in Fig. 5.1, forming hinged-support type boundary conditions (BC) at the

edges. The mass of the hoop is assumed to be much larger than the membrane mass.

Thin-film electro-chromic coatings are further assumed to be uniformly distributed

across the surface, while neglecting the additional mass and thickness that would be

introduced to the membrane. As shown schematically in Fig. 5.1, these coatings are

capable of modulating the surface reflectivity in the interval ρ = [0, 1]. The SRP loads

are calculated using the simplified SRP model, according to Eq. (2.7). The membrane

(including electro-chromic coatings) is assumed to be of uniform thickness with uniform

mechanical properties in all directions (isotropic). Prior to deflection, the membrane

surface is assumed to be flat and perpendicular to the Sun-reflector line, thus the cone

angle α = 0.

In the present analysis, only the static structural bending of the membrane is accounted

for, ignoring any dynamical response (e.g. vibrational modes) of the real structure due

to time-dependent loads, movement of the structure or flexibilities in the supporting

hoop. A thin circular isotropic membrane of radius R and thickness t under uniform

vertical SRP load pSRP, perpendicular to the undeflected membrane plane, is shown in

Fig. 5.2. In here, w0 denotes the out-of-plane deflection at the centre of the membrane.

Due to the very small thickness and relatively large deflections w to be expected (i.e.

a high W = w/t ratio), the use of non-linear bending theory [108] is required, ac-
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Figure 5.2: Circular membrane under uniform vertical SRP load, perpendicular
to the undeflected membrane plane, and initial in-plane tension (left), and
membrane cross-section with hinged-edge support and deflected shape (right).

counting for the non-negligible in-plane tension within the material. In general, thin

membrane-like structures offer a very small flexural rigidity and therefore cannot re-

sist bending loads [109]. Furthermore, radial and circumferential in-plane tensions are

non-negligible, while for low W ratios, they are usually ignored within the well-known

linear beam and plate theory [110].

According to [111, 112], the symmetrical out-of-plane deflection can be described by a

third-order non-linear coupled system as

d3w

dr3
+

1

r

d2w

dr2
− 1

r2

dw

dr
− N0

D

dw

dr
− Ñr

D

dw

dr
=
pSRPr

2D
(5.1)

dÑr

dr
+
Ñr − Ñθ

r
= 0 (5.2)

dÑθ

dr
− Ñr − Ñθ

r
+
Et

2r

(dw

dr

)2
= 0 (5.3)

with the radial and circumferential in-plane tensions Nr and Nθ and the initial in-plane

tension N0 at the edges, according to Fig. 5.2. By further definition, E is the Young’s

modulus, ν the Poisson ratio, and D the flexural rigidity (bending stiffness) of the

membrane material, which is defined as

D =
Et3

12(1− ν2)
(5.4)

Please note that Eqs. 5.1-5.3 originate form the equilibrium equations for the symmet-

rical bending of thin membranes only. The system has been chosen for the present

analysis, because it accounts for non-linear load distributions and large deflections.
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Since the membrane is initially stretched by the load N0, the in-plane tensions are

decomposed as follows

Nr = N0 + Ñr and Nθ = N0 + Ñθ (5.5)

where Ñr and Ñθ are incremental changes from N0 due to the SRP load.

The system in Eqs. (5.1) to (5.3) can further be written in non-dimensional form as

χ′′ +
χ′

ξ
−
(
k2 +

1

ξ2

)
χ− 12(1− ν2)Srχ = 6(1− ν2)PSRPξ (5.6)

S′r +
Sr − Sθ

ξ
= 0 (5.7)

S′θ −
Sr − Sθ

ξ
= − 1

2ξ
χ2 (5.8)

where the following non-dimensional variables are used

ξ =
r

R
, �′ =

d

dξ
, W =

w

t
(5.9)

χ =
dW

dξ
=
R

t

dw

dr
, Sr =

ÑrR
2

Et3
, Sθ =

ÑθR
2

Et3
(5.10)

and after introducing the initial tension parameter k and the loading parameter PSRP

k =

√
N0R2

D
and PSRP =

pSRPR
4

Et4
(5.11)

Combining Eqs. (5.7) and (5.8), the system can be recast as two second-order coupled

equations in the variables χ and Sr

ξ2χ′′ + ξχ′ − [1 + ξ2(k2 + 12(1− ν2)Sr)]χ = 6(1− ν2)PSRPξ
3 (5.12)

ξ2S′′r + 3ξS′r = − χ2

2
(5.13)

Within the scope of this thesis, no initial in-plane tension is accounted for to maximise

the deflection, so the parameter k is zero. The corresponding BCs to solve the boundary

value problem (BVP) for a hinged edge support are then

χ = 0

Sr = 0

}
for ξ = 0 and

χ′′ = 0

S′r + (1− ν)Sr = 0

}
for ξ = 1 (5.14)
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Figure 5.3: Reproduction of relative out-of-plane deflection for Mylar films
(t = 1µm) at 1 AU for different membrane radii, as considered in [113].

This type of support was chosen to represent the real conditions in the best way, since

the (assumed rigid) hoop structure inhibits membrane deflections in radial direction,

but allows for a non-zero slope dW/dξ at the edges.

In principle, the above BVP can be solved for any radial-symmetric load distribution

PSRP(ξ) [109]. After finding a solution for χ (ξ), the relative membrane deflection is

obtained through

W =
w

d
=

∫
χdξ (5.15)

The BVP is solved numerically using the MATLABTM bvp4c routine that employs

a three-stage Lobatto IIIa collocation method [106]. The implementation was vali-

dated using results observed in Ref. [112] for Silicon Nitride membranes with clamped-

edge support under uniform vertical load, showing that the deflections found and non-

dimensional in-plane tensions Sr(ξ) could be reproduced (results not included here).

Furthermore, the chosen approach was validated with a numerical FEM analysis con-

ducted in Ref. [113], using circular polyester Mylar films (density τ = 1, 350 kg/m3,

E = 3.5× 109 N/m2, ν = 0.38 and tMylar = 1.0× 10−6 m) of varying radius, subjected

to uniform vertical light pressure at the Earth’s distance from the Sun (1 AU). Figure

5.3 shows the relative out-of-plane deflections obtained when solving the coupled ODE

system for the same conditions. The (relative) central deflections w0/R are in the order

of 0.2% and in good agreement with the results found in Ref. [113]. Note that Ref. [113]

takes the variation of SRP magnitude due to the local deflection angle of the surface
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into account: the film deflection changes the local light incidence angle, cf. cone angle

α in Eq. (2.7), reducing the nominal SRP load. However, comparing the results in Fig.

5.3 with Ref. [113] indicates that this effect is negligible, due to very small slope angles

of the deflected surface.

5.2 Nominal membrane deflection for constant reflectivity

As noted in Section 1.1.2, the material likely to be employed for future space reflec-

tors is Kapton, due to its higher resistance to heat and radiation compared to Mylar.

Accordingly, the deflection properties of a Kapton membrane (tKapton = 2.5 × 10−6 m,

E = 2.48 × 109 N/m2 and ν = 0.34 [114]) are investigated in the following. Figures

5.4 and 5.5 show the relative membrane deflections obtained for different hoop radii

R = 1, 5, 10, 25, 50 and 100 m, and for solar distances RS = 0.5, 0.75, 1.0, 1.5, 2.5 and

3.0 AU, using a 100 m radius membrane for the second figure. The dashed lines in-

dicate ideal parabolic reference curves that satisfy the same boundary conditions and

the same central deflection. As can be seen, the deflected profiles obtained are clearly

not ideal paraboloids, as will be discussed below. The figures also show the increase in

central deflection for larger membrane sizes and smaller solar distances, as expected.

In general, all absolute deflections remain below 0.6 m, even for relatively large mem-
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Figure 5.4: Relative out-of-plane deflection for Kapton membrane (t = 2.5 µm)
at 1 AU for different membrane radii (solid lines) and ideal parabolic reference
curves (dashed lines).
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Figure 5.5: Relative out-of-plane deflection for Kapton membrane
(R = 100 m, t = 2.5 µm) at different solar distances (solid lines) and ideal
parabolic reference curves (dashed lines).

branes (100 m radius) and close to the Sun (0.5 AU). This already indicates large focal

distances when using the membrane as a solar power collector or antenna. The achiev-

able focal distances will be discussed in Section 5.4. The maximum radial tensile stress

is found to be σmax =Nr,c/t=7.595× 104 N/m2 at the centre for a membrane radius of

R= 100 m at 0.5 AU. Compared to the ultimate tensile strength of Kapton, which is

σlim = 2.31× 108 N/m2 (at 23◦Celsius) and 1.39× 108 N/m2 (at 200◦Celsius) [114], the

maximum stresses never exceed 0.05 % of the limit load case. This indicates that even

much thinner membranes could be employed for future space membrane reflectors.

Polynomial fits of different order are applied to the deflection curves to characterise their

shape, which is found to be in good agreement with a third order (cubic) approximation.

This trend is shown in Fig. 5.6 for a 100 m radius membrane at 1 AU, together with

a parabolic fit using a second-order (parabolic) polynomial. Both polynomial fits are

constrained to the central deflection value w0/R. The cubic fit (dotted blue line) is

almost identical with the deflection curve (solid black line). Although the parabolic

fit (dashed red line) does not match the BC at the outer edge exactly, it represents

a better second-order fit than the parabolic reference curves used in Figs. 5.4 and

5.5. The deviation of the membrane deflection curve from the ideal parabolic shape

is most visible in the mid-region of the membrane. Here, the local gradient dw/dξ is
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Figure 5.6: Nominal deflection curve for uniform load using Kapton mem-
brane (R=100 m, t=2.5 µm) at 1 AU (black line), and second and third-order
polynomial fits, constrained to central deflection value w0/R.

smaller than the gradient of the parabola and vice-versa close to the outer edge. This

indicates that the Kapton surface will not concentrate incoming light (or other forms

of electro-magnetic radiation) into a single focal point due to distortion. In particular,

the cubic surface reflects incoming light at the mid-part towards larger focal lengths

and vice-versa for light impinging on the outer region. In the following, it will be shown

that the cubic deflection can be corrected to a true parabolic one using non-uniformly

distributed reflectivity across the membrane surface.

5.3 Shape control using variable surface reflectivity

In order to change the nominal deflection shapes that were found for a uniform light

pressure load, the surface reflectivity distribution across the membrane needs to be con-

trolled. As seen in Eq. (2.7), a modulated SRP load can be employed by incorporating

the reflectivity ρ(ξ) as a function of the position ξ across the surface. Thus, when uni-

formly distributing electro-chromic coatings across the surface, the reflectivity function

directly represents the SRP load distribution. Solving Eq. (2.7) for ρ(ξ) results in

ρ(ξ) =
pSRP(ξ)

p0

(
RS,0
RS

)−2

− 1 (5.16)

82



where an arbitrary symmetric load function pSRP(ξ) can be used, as long as the phys-

ical constraint for ρ(ξ) ∈ [0, 1] is satisfied. This property is now used to control the

membrane shape, neglecting again the additional mass and thickness that would be

introduced to the membrane when distributing an electro-chromic coating layer on the

surface.

Expressing pSRP(ξ) in terms of the non-dimensional load parameter PSRP in Eq. (5.11)

yields

PSRP(ξ) =
pSRP(ξ)R4

Et4
(5.17)

Substitution of Eq. (5.17) for the uniform load distribution PSRP within the coupled

ODE system, Eq. (5.12), introduces an arbitrary (radial symmetric) load function into

the system that can be solved as a BVP, with corresponding boundary conditions at

the centre and at the edges.

5.3.1 Inverse problem approach for given shape profile

An inverse problem can now also be formulated, which is defined as calculating the

necessary reflectivity function ρ(ξ) to obtain a given membrane deflection shape W (ξ).

This can be, for example, a parabolic shape in order to use the membrane as a large

antenna, telescope or solar power satellite. A parabolic deflection curve, as used already

in Figs. 5.4 and 5.5, has the generic form

Wp(ξ) = −Aξ2 +Bξ + C (5.18)

The coefficient A is the curvature and C is the vertex of the parabola. The parameter

B is zero, because Wp(ξ) has no horizontal offset from the symmetry axis, which could

only be created through an asymmetric load. When inserting the ideal parabolic curve

into the coupled ODE system, it can be solved for PSRP(ξ) in order to obtain the load

distribution necessary to create this curve. Rearranging Eq. (5.12) for PSRP(ξ) and Eq.

(5.13) for the non-dimensional in-plane tension Sr(ξ) gives

PSRP(ξ) =
1

ν∗

[
W ′′′

ξ
+
W ′′′

ξ2
− [1 + ξ2(k2 + 2ν∗Sr)]

W ′

ξ3

]
(5.19)

S′′r = −3

ξ
S′r −

1

2ξ2
(W ′)2 (5.20)
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using the Poisson parameter ν∗ = 1 − ν2. Inserting the parabolic curve Wp(ξ) for W ,

the above equations now become

PSRP(ξ) = 4ASr (5.21)

S′′r = −3

ξ
S′r − 2A2 (5.22)

Equation (5.22) can be solved in general for Sr, without specifying boundary conditions

Sr = −1

4
A2ξ2 − C1

2ξ2
+ C2 (5.23)

When again using the boundary conditions for a hinged edge support, Eq. (5.14), the

above equation becomes

Sr = −1

4
A2ξ2 +

1

4

3−ν
1−ν

A2 (5.24)

Inserting Eq. (5.24) into Eq. (5.21), the load distribution associated with a general

parabolic deflection curve can now be written as

PSRP(ξ) = −A3ξ2 +
3−ν
1−ν

A3 (5.25)

which shows that PSRP(ξ) is fully determined by the polynomial coefficient A and the

Poisson ratio ν.

The inverse problem is now applied to create a parabolic deflection shape for a 100 m

Kapton membrane of thickness t = 2.5 µm at the Earth’s distance from the Sun. Figure

5.7 shows the nominal cubic deflection for constant reflectivity, thus a uniform load

distribution. A parabolic reference curve (dotted black line) is taken as input for the

inverse problem. In order to match the central deflection of the nominal cubic deflection

curve (Fig. 5.4) and the zero-deflection condition at the edge, the coefficients are chosen

to be A = C = W0,nom, where W0,nom represents the nominal central deflection obtained

for constant reflectivity. Accordingly, the parabolic reference curve is now

Wp(ξ) = −W0,nomξ
2 +W0,nom (5.26)

and by inserting into Eq. (5.25), the light pressure distribution becomes

PSRP(ξ) = W 3
0,nom

(
3−ν
1−ν

− ξ2

)
(5.27)

After introducing this function into the coupled ODE system, it can be solved as a

regular BVP. As can be seen in Fig. 5.7, the resulting deflection curve (dashed red line)
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Figure 5.7: Nominal deflection curve for uniform load using Kapton mem-
brane (R=100 m, t=2.5 µm) at 1 AU (black line), parabolic reference curve
(dotted line), deflection using distributed load function (dashed red line) and
constrained load function (green line).

exactly matches the input curve.

When reformulating Eq. (5.27), the absolute SRP load distribution can be written as

pSRP(ξ) =
Et4

R4
W 3

0,nom

(
3−ν
1−ν

− ξ2

)
(5.28)

However, this distribution does not necessarily match the condition not to exceed the

maximum possible light pressure pmax = 2p0(RS,0/RS)2 at a certain solar distance or,

equivalently, not to exceed the maximum reflectivity ρmax(ξ) = 1. As can be seen in Fig.

5.8, the load distribution for the chosen parabolic deflection case exceeds pmax (dashed

red line), showing that it is not possible to achieve the same nominal central deflection

when simply constraining the membrane to a parabolic shape. After introducing the

additional constraint pSRP(ξ) ≤ pmax into Eq. (5.28), the coefficients Ac = Cc = W0,c

for the constrained parabola can be calculated as

W0,c =

(
2p0R

4

Et4
1−ν
3−ν

(
RS,0
RS

)2
) 1

3

(5.29)

In Eq. (5.29), the constrained central deflection W0,c is now fully determined by the

membrane size, material, thickness and solar distance. The resulting constrained load

distribution is also shown in Fig. 5.8 (green solid curve). The respective central deflec-
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Figure 5.8: Non-dimensional load distribution for unconstrained parabolic de-
flection curve (dashed red line) and for constrained parabolic deflection (solid
green line).

tion is about 3% smaller compared to the unconstrained parabolic deflection curve.

The corresponding reflectivity distribution ρ(ξ) is finally found after inserting the SRP

load distribution, Eq. (5.28), into Eq. (5.16)

ρ(ξ) =
Et4

p0R4

(
RS
RS,0

)2

W 3
0,c

(
3−ν
1−ν

− ξ2

)
− 1 (5.30)

After inserting the constraint for the central deflection W0,c into Eq. (5.30), the reflec-

tivity distribution becomes

ρ(ξ) = 1− 2 (1−ν)

3−ν
ξ2 (5.31)

It can be seen that the reflectivity distribution for a parabolic deflection shape is inde-

pendent of the membrane parameters (except the Poisson ratio ν) and solar distance.

The latter indicates the possibility of maintaining a parabolic profile at any solar dis-

tance, which allows a pre-fabricated, fixed reflectivity distribution on the membrane

surface, instead of using electro-chromic coatings. The reflectivity distribution is shown

in Fig. 5.9, along with the constrained distribution that satisfies ρ ≤ 1.
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Figure 5.9: Reflectivity distribution for unconstrained parabolic deflection
curve (dashed red line) and distribution for constrained parabolic deflection
(solid green line).

5.4 Optical performance of elastic membrane reflector

A large reflective parabolic surface deployed in space has many potential applications,

such as communication, sensing and power collection. In order to evaluate the per-

formance of the deflected shapes that can be generated, some properties of parabolic

membrane reflectors will be assessed in the following. A paraboloid concentrates incom-

ing electro-magnetic radiation into a single focal point, depending on its geometrical

precision and surface quality. The corresponding focal length, thus the focal distance

from the vertex of the parabola, can be calculated after converting the expression ob-

tained for the central deflection, Eq. (5.29), into dimensional form as

w0,c =

(
2p0R

4

Et

1−ν
3−ν

(
RS,0
RS

)2
) 1

3

(5.32)

When also transforming the parabolic reference curve Wp(ξ), Eq. (5.26), into dimen-

sional form

wp = W0,c t
( r
R

)2
+W0,c t =

W0,c t

R2
r2 +W0,c t = ar2 + c (5.33)
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Figure 5.10: Achievable focal length of parabolic space reflector as function of
Kapton membrane radius and solar distance.

where a = w0,c/R
2 and c = w0,c, the focal length can now be expressed as

f =
1

4a
=

R2

4w0,c
(5.34)

The achievable focal lengths for the deflected Kapton membrane are shown in Fig. 5.10,

as a function of radius and solar distance. For example, a deflected membrane of 100

m radius at the Earth’s distance from the Sun has a focal length of fKapton = 7.54 km.

However, when employing Mylar films with a currently achievable thickness of only

0.9µm [115], the focal length could be further reduced to fMylar = 6.11 km, since the

focal length scales with t1/3 for the membrane thickness, according to Eqs. (5.32) and

(5.34).

For some applications of a space-based optical device, it is desirable to achieve shorter

focal lengths in order to operate a receiver/transmitter unit in the focus. This could

be achieved either by physically connecting the unit with the space reflector, or more

likely through positioning a detached platform at the focus, which is flying in formation

with the reflector. Such formation flying is a well understood technology [116].

As can be seen in Figs. 5.11 and 5.12, the trend of the central deflection w0,c scales with

R1/3 for the membrane radius and with 1/R
2/3
S for the solar distance. The former figure
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Figure 5.11: Relative central membrane deflection as a function of membrane
radius R and power-law fit to the data.
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Figure 5.12: Relative central membrane deflection as a function of solar dis-
tance RS and power-law fit to the data.

shows that increasing the membrane radius in order to achieve higher deflections (and

thus smaller focal lengths) is not necessarily beneficial, since the resulting deflections

do not increase linearly with the membrane size. Accordingly, a very large membrane
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diameter in the kilometre-range may not outweigh the increase in launch mass and

hence launch cost. The latter figure shows that the deflection decreases slower than

1/R2
S with solar distance (i.e. the rate at which the flux density of solar photons

and thus usable electric power scale), indicating that moderate focal lengths are still

available at far distances from the Sun.

5.4.1 Solar concentrator performance

So far, the analysis of a paraboloid membrane reflector has been simplified by assum-

ing, for example, ideal geometric conditions and surface properties. This section will

determine the effect of these assumptions on the optical performance of the surface by

considering the membrane for the use of space solar power collection.

Within the focal length equation, Eq. 5.34, it has been assumed that the incoming Sun

rays are parallel to each other, creating a single focal point. Therefore, the concentra-

tion ratio

Cr =
A

Af
(5.35)

with A the collecting surface area (normal to the Sun) and Af the area of the reflected

spot in the focal plane, is infinitely large. However, the finite angular size of the solar

disk results in non-parallel rays incident at each point of the reflective surface, as shown

in Fig. 5.13. Accordingly, the reflected rays do not all pass through the focal point, but

form an ‘image’ of finite size centred about the focus. The angular size of the Sun (or

Figure 5.13: Finite angular size η of the Sun’s disk and beam width bw of the
reflected ‘image’ at the focus of a parabolic reflector
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any other object) can be calculated as

η = 2 tan−1
( dS

2Rs

)
(5.36)

with dS = 1, 391, 684 km the Sun’s diameter and RS the solar distance. Accordingly,

the angular size of the Sun disk at Earth distance (RS = 1 AU) is η = 9.3028 mrad

(0.533 deg). As a result, the ‘image’ size at the focus, the so-called beam width bw (or

beam spread), can be obtained through

bw = 2f tan
(η

2

)
(5.37)

according to Fig. 5.13 and assuming that the line p through the focus and the focal

length f are of the same length, thus p≈ f . Therefore, the beam width depends on

the overall focal length of the paraboloid surface, according to Eq. 5.34. This is the

minimum beam spread that will occur. Any errors in, for example, the precision of the

mirror slope will cause additional spreading of the image size. For the elastic membrane,

using the focal length fKapton = 7.54 km, calculated earlier for an R = 100 m radius

reflector at Earth distance from the Sun, the beam width would be bw,100 = 70.14 m.

According to Eq. 5.35, the concentration ratio would be

Cr,100 =
A

Af
=

πR2

π(bw/2)2
= 4

R2

b2w
≈ 8 (5.38)

This result suggests a quite low efficiency of the collector, while the receiver surface in

the focal plane needs to be impractically large. However, as seen from Eq. 5.37, the

beam width largely depends on the focal length, which is in the kilometre range for

elastic membranes deflected by SRP. In Chapter 6, a method to reduce the focal length

by increasing the surface deflection will be introduced. Consequently, the resulting

beam width in the focal plane is expected to be smaller.

The collection efficiency of the reflector also strongly depends on the membrane surface

quality. Clearly, an ideal mirror (ρ = 1) provides the highest performance due to

specular reflection of the sunlight. However, when changing the reflectivity distribution

in order to introduce optical control of the membrane deflection, the specular reflection

requirement can no longer be met. This will cause power collection losses due to non-

ideal reflection. The total collected solar power of the reflector, including a variable

reflectivity distribution across the membrane, is

Wtot = WS,0Aρ(r) (5.39)
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with WS,0 = 1368 W/m2 the solar constant, according to Section 2.1, and ρ(r) the

(symmetric) reflectivity function in radial direction. According to the simplified SRP

model introduced in Section 2.2.2, a surface reflectivity ρ < 1 causes the fraction of

photons not undergoing specular reflection to be absorbed by the surface. Consequently,

such photons do not contribute to the total collected power in the aperture focus.

Equation 5.39 can be solved when introducing the reflectivity function found from the

inverse problem that creates a parabolic surface. After inserting Eq. 5.31, Eq. 5.39 can

be rewritten as

Wtot = WS,0

∫ 2π

0

∫ R

0
r

(
1− 2 (1−ν)

3−ν

(
r

R

)2)
dr dθ (5.40)

with θ the surface angle in circumferential direction. Integrating Eq. 5.40 results as

Wtot = WS,0πR
2

(
1− 2 (1−ν)

3−ν

)
(5.41)

As can be seen from the previous equation, the term WS,0πR
2 represents the total

collected power in case of specular reflection across the entire surface. However, after

introducing the Poisson ratio of Kapton (ν=0.34) into Eq. 5.41, the effective collected

solar power is obtained as

Wtot = WS,0πR
2 0.7519 (5.42)

The result suggests that approximately 75% of the total power collected by the surface

can effectively be reflected into the focus.

5.5 Chapter summary

It has been shown in this chapter that the deflection shape of a circular membrane

reflector exposed to vertical SRP loads can be controlled by changing the reflectivity

distribution across the surface. At first, using non-linear thin membrane theory, the

nominal deflection due to a uniform light pressure distribution has been calculated for

various membrane diameters and solar distances. The results showed a cubic poly-

nomial deflection curve, which indicates that the deflected surface does not naturally

concentrate incoming light (or other forms of electro-magnetic radiation) into a sin-

gle focal point due to non-parabolic distortion. However, by formulating an inverse

problem to obtain the required load distribution for a given (e.g. parabolic) profile,

an analytical expression for the reflectivity function across the surface has been de-

rived, enabling a true parabolic deflection shape. As for the vertical SRP load cases
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investigated, this reflectivity function is radially symmetric and does not depend on

membrane size, thickness or solar distance. The latter will enable a parabolic profile at

any solar distance and thus to potentially prefabricate a fixed reflectivity distribution

on the membrane surface, instead of using electro-chromic coatings.

Although the absolute deflection and thus focal length changes with solar distance, this

can be compensated for by a detached receiver/transmitter platform that is flying in

formation at the current focus. All absolute membrane deflections for a 2.5µm Kapton

film have been found to be smaller than 0.6 m, even for relatively large membranes

(100 m radius) and close to the Sun (half the Sun-Earth distance), while no initial

in-plane tension has been accounted for to maximise the deflection. The focal lengths

of the resulting parabolic reflectors have been calculated, resulting for example in a

focal length of 7.54 km for a 100 m radius membrane at the Earth’s distance from

the Sun. Finally, when employing Mylar films with a currently achievable thickness of

only 0.9µm, the focal length could be further reduced to 6.11 km, since the deflection

increases for smaller membrane thickness.
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Chapter 6

Shape control of slack space
reflectors

In the previous chapter, optical shape control was used to create paraboloid-type de-

flection profiles for tensioned elastic membranes. In order to reduce the achievable

focal distance of the aperture, this chapter will consider the shape control of slack

’membrane-like’ surfaces. This will enable very large membrane reflectors with the fo-

cal point close to the reflector itself. To this aim, Section 6.1 will introduce the concept

of modelling the circular film using ’catenary-type’ radial strings, suspended in between

a rigid hoop. This approximation enables a semi-analytic investigation of ideally slack

surfaces involving very large deflections. The governing equations of the string, sub-

ject to various distributed loads, will be presented in Section 6.2. In Section 6.3, the

resulting deflection profiles for all load cases will be compared. The manipulation of

the nominal deflection profiles to generate parabolic shapes through the use of suitable

reflectivity functions will be discussed in Section 6.4. The resulting deflections will be

assessed in Section 6.5 in terms of the achievable focal lengths. The chapter will end

with conclusions.

6.1 Modelling slack gossamer surfaces

It has been demonstrated in Chapter 5 that the central deflection of a thin tensioned

membrane due to SRP is below one percent of the aperture radius. The resulting focal

lengths were found to be in the range of a few kilometres. This imposes ambitious

requirements on the relative position of an emitter/receiver unit at the aperture focus.

For this reason, an alternative concept to reduce the focal distance will be investigated

in this chapter. According to Eq. (5.34), the larger the central deflection of a parabolic

surface, the smaller its focal length. Therefore, considering a slack reflective surface
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Figure 6.1: Spin-stabilised space reflector with slack suspended film attached
to rigid hoop structure and surface covered with electro-chromic coatings

should result in larger deflections due to SRP. In order to investigate this effect, a slack

suspended reflector film is now considered, attached to a spin-stabilised rigid hoop

structure, as shown in Fig. 6.1. The mass of the hoop is assumed to be much larger

than the film, while the surface (including electro-chromic coatings) is assumed to be

of uniform thickness (isotropic). The additional mass introduced by the coating layer

is included in the surface areal density.

The corresponding equations are derived from idealising the two-dimensional (2D) sur-

face as a ’cobweb’ of radially spanned 1D strings (or threads), as can be found, for

example, in natural spider webs. As shown in Fig. 6.2, these grid-like structures consist

of radial ’carrier threads’ to carry the load of the web and slack circumferential ’capture

threads’ to hold the prey [118]. It has been shown that the static structural integrity

of spider webs remains intact even when multiple capture threads are damaged, in-

dicating that they are not contributing to carrying the web’s own weight. Applying

this analogy to the slack film, circumferential tension is ideally assumed to be zero and

only radial forces are considered. When further ignoring the usually quite significant

elasticity of spider webs, the reflector surface can be approximated as a set of inex-

tensible, infinitely flexible strings. Throughout this analysis, inextensible means that

the film material is rigid to applied tensile loads and flexible means that the thin film

cannot absorb bending moments or shear stresses. The radial strings are suspended

from the rigid hoop structure in a catenary-like manner and intersect at the centre of

the circular surface, as shown in Fig. 6.3. By increasing the total slack length of the
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Figure 6.2: Natural spider web consisting of radially spanned ’carrier threads’
(in vertical direction) and circumferential ’capture threads’ in horizontal di-
rection (image source: [117])

strings, thus by suspending more material in between the fixed hoop, the sagging is

expected to increase accordingly. As a result, the focal length of the deflected surface

could be modified and, ultimately, minimised.

6.2 Catenary-type deflection

The deflection of a slack inextensible catenary-type string of uniform thickness, subject

to different load distributions, are presented in this section. As shown in Fig. 6.4, the

string is supported by a rigid outer hoop of radius R and diameter D, forming hinged-

support type boundary conditions at the edges. The mathematical model idealises the

string by assuming that it is thin enough to be regarded as a 1D curve. The ordinary

differential equation (ODE) describing the static deflection (as a function of the radial

position r along the curve) is derived from the equilibrium of forces over a curve segment

of length ∆s, thickness t and depth h, according to Fig. 6.4. The load case of a uniform

vertical field of gravity is described first in order to demonstrate that the catenary

profile differs from the required parabolic deflection. Following this, a generic pressure

distribution, centrifugal forces and finally SRP (using a constant surface reflectivity)

are introduced into the model.

6.2.1 Equations of the classical catenary

The classical equation of catenary deflection due to gravity (commonly termed as a

’hanging chain’) can be found in the literature, as derived by Leibniz, Huygens and
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Figure 6.3: Circular reflector film modelled as a cobweb of slack radial ’carrier
threads’, suspended from a rigid supporting hoop structure. Circumferential
’capture threads’ ideally carry no tension and are not considered in the model

Bernoulli in 1691 [119]. Ideally, the infinitesimal chain links are connected by friction-

free hinges and thus cannot absorb bending moments. Considering a small chain (curve)

segment ∆s, the external force ∆G due to vertical gravity is

∆G = −τgA∆sw (6.1)

where w is the unit vector in the vertical direction, τ is the density of the material,

g is the gravitational acceleration and A is the (constant) cross-sectional area of the

segment, according to Fig. 6.4. Furthermore, the internal (restoring) forces are the

tension forces T (r) and T (r + ∆r), respectively, acting in the tangential direction at

the radial position r and (r+ ∆r) of the curve segment. The angle ϕ denotes the local

pitch angle of the segment between the horizontal axis and the tangential direction.

The equilibrium conditions over the segment in the r (radial) and w (vertical) direction

can be written as

−T (r) cosϕ(r) + T (r+∆r) cosϕ(r+∆r) = 0 (6.2a)

−T (r) sinϕ(r) + T (r+∆r) sinϕ(r+∆r) = −∆G (6.2b)

It can be seen from Eq. (6.2a) that the horizontal tension force component is always

constant along r

T cosϕ = T0 = const (6.3)
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Figure 6.4: Deflection model of classical catenary, with force equilibrium over
segment ∆s in vertical gravitational field

with a constant tension force T0. After taking the limit ∆s→ 0, the vertical component,

Eq. (6.2b), can be rewritten as

d(T sinϕ) = −dG (6.4)

and after introducing Eq. (6.3)

T0 d(tanϕ) = −dG (6.5)

Defining tanϕ(r) = dw/dr = w′, where �′ denotes the derivative in the radial direction,

according to Fig. 6.4, the equilibrium equation is written in differential form as

T0 dw′ = τgA ds (6.6)

Considering now the arc length equation

∆s =
(
∆r2 + ∆w2

) 1
2 =

(
1 +

(∆w

∆r

)2 ) 1
2
∆r (6.7)

and taking the limit ∆s→ 0, such that

ds = (1 + w′2)
1
2 dr (6.8)

98



this relation can be introduced into Eq. (6.6). The resulting ODE describes the deflected

catenary in a gravitational field

w′′ =
τgA

T0
(1 + w′2)

1
2 (6.9)

with tension at the centre T0. Introducing the gravity force coefficient aG = T0/(τgA),

this coefficient determines the geometrical shape of the catenary curve, as will be de-

scribed below.

The resulting deflection curve due to gravity (subscript G) can be obtained analytically

through integration of Eq. (6.9) as

w′G = sinh
( r

aG

)
+ c1 (6.10)

with c1 = 0, after introducing the BC w′G(0) = 0. Further, integration gives

wG = aG cosh
( r

aG

)
+ c2 (6.11)

with c2 = −aG cosh
(
R/aG

)
= cG, after introducing the BC wG(R) = 0. The deflection

curve for the classical gravity catenary can thus be written as

wG = aG cosh
( r

aG

)
+ cG (6.12)

with aG and cG in units of length. The two coefficients together define the deflection

w0,G at the centre, where cosh(0) = 1. Accordingly, the central deflection is

w0,G = aG cosh(0) + cG = aG

(
1− cosh

(
R

aG

))
(6.13)

The resulting catenary curve when setting aG = 1 and R = 1 is shown in Fig. 6.5,

together with the corresponding parabolic reference curve wp = apr
2 + cp of the same

central deflection w0,p = w0,G and BC wp(R) = 0. As can be seen, the two curves are

not identical, with the catenary curve being more deflected than the parabola. As a

note, it was only in 1669 when Jungius disproved Galileo’s claim that the curve of a

chain hanging under gravity would be a parabola [119].

According to Eq. (6.12), the coefficient aG completely defines the shape of the catenary

curve. Although the value of the central tension force T0 is unknown, the coefficient aG

can be calculated when introducing an additional constraint for the total curve length.

Without derivation, the total arc length SG of the catenary curve can be calculated as
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Figure 6.5: Comparison of catenary curve wG and parabolic curve wp of same
central deflection w0 and radius R = 1

[119]

SG(R) = aG sinh
( R
aG

)
(6.14)

This transcendental equation in aG can only be solved numerically. However, inserting

aG obtained for a specified total catenary length SG and radius R into Eq. (6.12) results

in the corresponding deflection curve. Thus, knowing the value of T0 is not necessary

to find aG, as it can be computed as a function of R and SG.

6.2.2 Deflection due to generic pressure and centrifugal forces

The previously introduced deflection model for a hanging chain is now extended by

considering a generic pressure distribution p(r), as shown in Fig. 6.6(a). Furthermore,

centrifugal forces, acting on a spin-stabilised reflector disk, are introduced into the

model. Centrifugal forces are exploited, since such a large spacecraft structure can

be stabilised by rotation very efficiently, without introducing additional mass through

mechanical attitude-control systems.

Considering again a small curve segment of length ∆s, the forces acting on the segment

are now given by the pressure force vector ∆FP, which is always normal to the segment,

∆FP(r) = −p(r)h∆sn (6.15)

with the segment’s surface area h∆s, according to Fig. 6.4, and the centrifugal force
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Figure 6.6: Deflection models of slack catenary-type string, with force equilib-
rium over segment ∆s under (a) generic pressure, and (b) uniform SRP load,
with centrifugal force FCF, due to spin-stabilised reflector disk with constant
angular rate ωD about w-axis

vector

∆FCF(r) = ∆mω2
D r r (6.16)

with ωD the constant angular velocity of the disk and ∆m the mass of the segment,

such that

∆m = τA∆s (6.17)

The two equilibrium conditions over a curve segment in the r and w directions are now

−T (r) cosϕ(r) + T (r + ∆r) cosϕ(r + ∆r) = −p(r) sinϕ(r)h∆s− τAω2
Dr∆s (6.18a)

−T (r) sinϕ(r) + T (r + ∆r) sinϕ(r + ∆r) = p(r) cosϕ(r)h∆s (6.18b)

It can be seen that, in contrast to the deflection of a hanging chain in a gravitational

field, a generic pressure causes a force component in the radial direction. This force

component is a function of the local pitch angle ϕ with the segment normal. Further-

more, the additional centrifugal forces are proportional to the radial distance r from

the rotation axis and only appear in the radial force equation. Dividing both equations

by ∆r and taking the limit ∆s → 0, while using again the arc length equation, Eq.
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(6.8), gives

d

dr

(
T cosϕ

)
= −(p(r)h sinϕ+ τAω2

Dr)
(
1 + w′2

) 1
2 (6.19a)

d

dr

(
T sinϕ

)
= p(r)h cosϕ

(
1 + w′2

) 1
2 (6.19b)

Using elementary trigonometric relations, the sinϕ and cosϕ expressions can be written

as

cosϕ =

(
1 +

(dw

dr

)2
)− 1

2

=
(
1 + w′2

)− 1
2 (6.20a)

sinϕ =
dw

dr

(
1 +

(dw

dr

)2
)− 1

2

= w′
(
1 + w′2

)− 1
2 (6.20b)

Introducing the previous relations into Eqs. (6.19) gives

d

dr

(
T
(
1 + w′2

)− 1
2

)
= −

(
p(r)hw′

(
1 + w′2

)− 1
2 + τAω2

Dr
)(

1 + w′2
) 1

2 (6.21a)

d

dr

(
Tw′

(
1 + w′2

)− 1
2

)
= p(r)h

(
1 + w′2

)− 1
2
(
1 + w′2

) 1
2 (6.21b)

Expanding the left-hand side, while introducing the centrifugal force coefficient CCF =

τAω2
D to simplify the equations, gives

T ′
(
1 + w′2

)− 1
2 − Tw′w′′

(
1 + w′2

)− 3
2 = −p(r)hw′ − CCF r

(
1 + w′2

) 1
2 (6.22a)

T ′w′
(
1 + w′2

)− 1
2 + Tw′′

(
1 + w′2

)− 1
2 − Tw′2w′′

(
1 + w′2

)− 3
2 = p(r)h (6.22b)

Solving Eq. (6.22a) for T ′ then yields

T ′ = −p(r)hw′
(
1 + w′2

) 1
2 − CCF r

(
1 + w′2

)
+ Tw′w′′

(
1 + w′2

)−1
(6.23)

So collecting second-order derivative terms in Eq. (6.22b) returns

w′′
[(

1 + w′2
)− 1

2 − w′2
(
1 + w′2

)− 3
2

]
=
p(r)h

T
− T ′

T
w′
(
1 + w′2

)− 1
2 (6.24)
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and thus the ODE system can be written as

T ′ = −p(r)hw′
(
1 + w′2

) 1
2 − CCF r

(
1 + w′2

)
+ Tw′w′′

(
1 + w′2

)−1
(6.25a)

w′′ =
p(r)h

T

(
1 + w′2

) 3
2 − T ′

T
w′
(
1 + w′2

)
(6.25b)

Furthermore, inserting Eq. (6.25b) in Eq. (6.25a) to eliminate w′′ in the first equation,

it can be shown that

T ′ = −CCF r (6.26)

Finally, by inserting Eq. (6.26) into Eq. (6.25b), the ODE system for a generic pressure

distribution p(r) with centrifugal forces can be written as

w′′ =
p(r)h

T

(
1 + w′2

) 3
2 +

CCF

T
w′ r

(
1 + w′2

)
(6.27a)

T ′ = −CCF r (6.27b)

In the case of a non-spinning reflector disk, thus CCF = 0, the tangential tension T is

constant along r, according to Eq. (6.27b). Therefore, Eq. (6.27a) simplifies to

w′′ =
p(r)h

T0

(
1 + w′2

) 3
2 (6.28)

When comparing Eq. (6.28) with the classical gravity catenary, Eq. (6.9), it is clear that

the two systems are not the same, and thus, a different shape of the deflection curve

due to a generic pressure distribution is anticipated. In Section 6.3, this ODE system

will be compared to the system obtained for a uniform SRP load, which is derived in

the following section.

6.2.3 Deflection due to solar pressure and centrifugal forces

The deflection model is now modified by replacing the generic pressure load p(r), as

shown in Fig. 6.6(b), with a uniform vertical SRP load (normal to the undeflected

reflector plane). The SRP force acting on the reflector film is calculated using the

simplified SRP model, as described in Section 2.2.2. In the following, the incoming

photons are assumed parallel to the spacecraft’s spin axis vector ŵ, while the spacecraft

is orbiting at a constant solar distance. Furthermore, a constant reflectivity ρ(r) = 1

is chosen across the reflector film, which simplifies Eq. (2.7) to

pSRP = 2p∗0 cos2 ϕ (6.29)
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where p∗0 = p0

(
RS,0/RS

)2
is the SRP scaled by the inverse square-law of solar distance.

Note that in Eq. (6.29) the cone angle α has been replaced by the local pitch angle

ϕ of the deflected surface. Previously, α denoted the angle of the hoop plane normal

towards the Sun, which is assumed to be always zero throughout this analysis.

Considering again a small curve segment ∆s, the forces acting on the segment are now

described by the SRP force vector

∆FSRP = −2p∗0 cos2ϕh∆sn (6.30)

with n the local normal to the segment. The centrifugal force vector ∆FCF is still

described by Eq. (6.16). When further introducing the trigonometric relation in Eq.

(6.20a) for cosϕ into Eq. (6.29) gives

pSRP = 2p∗0
(
1 + w′2

)−1
(6.31)

The resulting ODE system can now be derived by replacing the generic pressure load

p(r) in Eq. (6.27) with the SRP load pSRP in Eq. (6.31). Accordingly, the new ODE

system can be written as follows

w′′ =
2p∗0h

T

(
1 + w′2

) 1
2 +

CCF

T
w′ r

(
1 + w′2

)
(6.32a)

T ′ = −CCF r (6.32b)

In the case of a non-spinning reflector disk, thus CCF = 0, the tangential tension T is

constant along r, according to Eq. (6.32b). Therefore, Eq. (6.32a) simplifies to

w′′ =
2p∗0h

T0

(
1 + w′2

) 1
2 (6.33)

Comparing Eq. (6.33) to the ODE of the classical catenary, Eq. (6.9), shows that,

remarkably, both ODEs are the same, apart from the constant gravity force coefficient

aG = T0/(τgA), which is replaced by the new SRP force coefficient aSRP = T0/(2p
∗
0h)

in Eq. (6.33). Note that, according to the ODE system found for a generic pressure

distribution, Eq. (6.27), any other distribution p(r) would not lead to the same result.

The ODE system of Eq. (6.32) can be solved as BVP on the interval I = [a, b], with

a = 0 at the centre of the circular reflector film and b = R at the supported edge.

Assuming a hinged support at the edge, the BCs are

w(R) = 0, w′(0) = 0, T (0) = T0 (6.34)
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However, an analytical solution cannot be found and the BVP is therefore solved nu-

merically, using the same MATLABTM bvp4c routine as previously in Chapter 5. For

a non-spinning disk, T0 can again be computed from Eq. (6.14) when replacing aG

by aSRP. However, for the spinning case, T0 cannot be obtained analytically. There-

fore, a continuation approach on the spin rate ωD is adopted. Starting from the so-

lution for the non-spinning case, ωD is gradually increased to its final value through

ωD,j+1 = ωD,j + ∆ωD where the solution of step j is used as initial guess for step j+1.

In order to create a converging solution of the BVP for each continuation step, the spin

rate has to be increased using appropriate increments, e.g. ∆ωD = 1 deg/s.

6.2.4 Parabolic reference deflection

In order to compare the resulting deflection curves with an ideal parabolic profile,

a reference parabola needs to be defined first. Its curve must be of equal total arc

length, since it results from the same reflector film suspended from a rigid hoop of the

same diameter. Assuming a generic parabolic deflection curve (subscript p) and its

derivatives along the radial direction r

wp = apr
2 + bpr + cp (6.35a)

w′p = 2apr + bp (6.35b)

w′′p = 2ap (6.35c)

and considering a vertical symmetric load distribution, thus w′p(0) = 0, the coefficient

bp is zero. The constant coefficient cp represents the deflection value at the centre, thus

cp = w0 (6.36)

Inserting Eq. (6.35b) into the arc length equation, Eq. (6.8), and integrating, yields

Sp =

∫ R

0

√
1 + w′2p dr =

1

2
r
√

1 + 4a2
pr

2 +
1

4ap
sinh−1(2apr) + Cp (6.37)

which enables calculation of the coefficient ap, once the slack arc length Sp of the film

material is selected. From the condition Sp(0) = 0 it follows that Cp = 0. The resulting

constraint equation

1

2
R
√

1 + 4a2
pR

2 +
1

4ap
sinh−1(2apR)

!
= Sp,tot (6.38)
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can be solved numerically for the coefficient ap, after specifying the total parabolic

curve length Sp,tot(R). The BC at the edge, w(R) = 0, finally returns the coefficient

cp = −apR
2 (6.39)

From this, the reference parabola is now completely defined as

wp = ap

(
r2 −R2

)
(6.40)

According to Eq. 6.40, the parabolic shape equation depends on the hoop radius and

the parabolic coefficient, which is a function of the string’s arc length, as seen from Eq.

6.38.

6.3 Results

The resulting nominal deflection profiles are presented in this section. For all load

cases, a rigid hoop of radius R = 100 m and a slack length of S = 105 m (from hoop to

centre) is used. The string is modelled using polyimide Kapton (see Section 1.1.2) with

thickness t = 2.5µm, according to Fig. 6.4. The deflection profiles for vertical gravity

and for a uniform pressure distribution p(r) = 2p∗0 are shown in Fig. 6.7. The profiles

are compared to a reference parabola with the same slack length Sp. As can be seen

in the figure, the solution considering uniform pressure is more displaced towards the

outer hoop and shows a smaller central deflection than the classical gravity catenary.

This is due to the horizontal component of the pressure load along the curve. For the

classic catenary, this horizontal component is zero. The shape of the ideal parabolic

deflection curve is very similar to the classical catenary, as noted in Section 6.2.1. The

parabolic deflection is smaller towards the outer regions, compared to the other load

cases, while its central deflection is larger. The tension force distribution along the

r-axis for all three load cases is shown in Fig. 6.8.

In the following, the effect of varying the slack length on the deflection is investigated.

A reflector hoop radius of 100 m is used again for all cases. The deflection curves due to

uniform SRP for slack lengths S := [101, 102, 103, 104, 105, 106] m are shown in Fig. 6.9.

For comparison, the curves for each corresponding reference parabola are also shown.

As expected, the deflection magnitude increases with increasing slack length and can

be as large as 30 m at the centre for S = 106 m. As will be discussed in Section 6.5, a

larger central deflection results in a smaller focal length of the reflector disk. According

to Fig. 6.9, all deflections due to SRP are no ideal paraboloids, as indicated through
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Figure 6.7: Comparison of deflection due to gravity (classical catenary) and
uniform pressure and parabolic reference curve, for hoop radius R = 100 m and
slack length S = 105 m (from hoop to centre)
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Figure 6.8: Resulting tension force for different load cases: gravity (classical
catenary), uniform pressure and uniform SRP (non-spinning reflector disk),
for hoop radius R = 100 m and slack length S = 105 m

the dashed parabolic reference curves for each value of S. However, the difference is

smaller for smaller slack length.
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Figure 6.9: Comparison of deflection due to uniform SRP (non-spinning reflec-
tor disk) for different slack lengths S (hoop radius R = 100 m) and parabolic
reference curves

Figure 6.10 shows the resulting deflection shapes for a spin-stabilised reflector disk

with rates ωD = 0, 20, 30 and 40 deg/s. The slack length is again S = 105 m with a

hoop radius of R = 100 m. As can be seen, the centrifugal force pushes the reflector

Figure 6.10: Comparison of deflection due to uniform SRP for different spin
rates ωD, using hoop radius R = 100 m and slack length S = 105 m
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film material away from the spin axis, causing an increased displacement towards the

outer regions, while at the same time reducing the central deflection. Hence, the effect

of a spinning reflector film is to shift the deflected profile further away from the ideal

parabolic deflection, as indicated by the dashed curve in the figure, thus increasing the

effect of SRP. This means that, in order to counteract non-parabolic shape errors, the

cumulated effect of SRP and centrifugal forces has to be accounted for.

6.4 Shape control using variable reflectivity distribution

In this section, the deflection shape is controlled by varying the surface reflectivity,

in order to create parabolic shapes useful for employing the spacecraft as a large an-

tenna, telescope or power collector. Therefore, the previously defined parabolic refer-

ence curve, Eq. (6.40), shall now be generated by modulating the SRP load distribution

across the string. For this purpose, an inverse problem, similar to the approach in Sec-

tion 5.3.1 is formulated. It is defined as finding the necessary reflectivity function ρ(r)

that creates a given deflection curve. In doing so, the constant reflectivity ρ in the SRP

equation, Eq. (2.7), is again replaced by a generic reflectivity function ρ(r) that varies

across the reflector surface as

pSRP(r) = p∗0(1 + ρ(r)) (6.41)

The reflectivity is constrained to be within the interval ρ = [0, 1], as introduced in

Section 2.2.2. Using Eq. (6.41), the ODE system of Eq. (6.32) modifies into

w′′ =
p∗0h(1 + ρ(r))

T

(
1 + w′2

) 1
2 +

CCF

T
w′ r

(
1 + w′2

)
(6.42a)

T ′ = −CCF r (6.42b)

with CCF = τAω2
D denoting again the centrifugal force coefficient. Inserting the ref-

erence parabola, Eq. (6.35b) and 6.35c, into Eq. (6.42a) and solving for the unknown

reflectivity function, results as

ρ(r) =
2apTp

p∗0h

(
1 + (2apr)

2
)− 1

2 − 2apCCF r
2

p∗0h

(
1 + (2apr)

2
) 1

2 − 1 (6.43)
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with Tp(r) now being the (unknown) tension force that corresponds to the parabolic

displacement. In order to find an expression for Tp, Eq. (6.42b) is integrated as

Tp = −1

2
CCF r

2 + Tp,0 (6.44)

Inserting into Eq. (6.43) yields

ρ(r) =
ap

p∗0h

[
2Tp,0 − CCF r

2
(

3 + (2apr)
2
)](

1 + (2apr)
2
)− 1

2 − 1 (6.45)

When further considering the reflectivity constraint at the edge of the disk, ρ(R) = 0,

the unknown tension Tp,0 can be computed from Eq. (6.45) as

Tp,0 =
p∗0h

2ap

(
1 + (2apr)

2
) 1

2
+

1

2
CCFR

2
(

3 + (2apR)2
)

(6.46)

Inserting this equation back into Eq. (6.45) yields the reflectivity distribution that

creates a parabolic deflection curve as

ρ(r) =

(
1 + (2apR)2

1 + (2apr)2

) 1
2

+
apCCF

p∗0h

(
1 + (2apr)

2
)− 1

2
[
3(R2 − r2) + 8ap(R4 − r4)

]
− 1 (6.47)

Equation 6.47 is a function of the hoop radius R and the parabolic coefficient ap and

thus, the slack length S, according to Eq. (6.38). The distribution further depends on

the centrifugal force coefficient CCF, thus on the chosen material in terms of density τ

and cross section A, and the spin rate ωD of the disk. Note that Eq. (6.47) is also a

function of the solar distance, as can be seen through the coefficient p∗0 in Eq. (6.29).

For a non-spinning reflector disk, CCF = 0, the required reflectivity distribution sim-

plifies to

ρ(r) =

(
1 + (2apR)2

1 + (2apr)2

) 1
2

− 1 (6.48)

which shows that in the special case of a non-spinning reflector disk, the necessary

reflectivity distribution to create a parabolic deflection depends on the hoop radius R

and ap only, with the latter being a function of the chosen value of slack length S. In

particular, Eq. (6.48) does not depend on the solar distance, as it was found previously

for the spin-stabilised case. This indicates that the reflectivity distribution can be pre-

fabricated into the film, as could be seen also in Eq. 5.31 for the elastic membrane

case. The reflectivity distributions, according to Eq. (6.48), are shown in Fig. 6.11, for

different slack lengths S. The resulting surface reflectivities are promising in terms of
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Figure 6.11: Required reflectivity distribution across reflector surface, creating
parabolic film deflection (slack length S = 105 m)

their required magnitude, less than ρ = 0.2 even for high values of S, since achieving

high surface reflectivities through electro-chromic coatings is generally more demanding

(see Section 2.4). To validate the results in Fig. 6.11, the modified ODE system of Eq.

(6.42) has been solved with the required reflectivity distribution for the non-spinning

disk. The resulting deflection curve indeed matches the reference parabola, as can be

seen in Fig. 6.12.

In the case of a spin-stabilised reflector disk, the possibility of creating a parabolic

deflection profile strongly depends on the magnitude of the spin rate. The centrifugal

forces always increase the deflection away from the ideal parabolic profile, as shown

previously in Fig. 6.10. Since the reflectivity, and thus the achievable SRP force mag-

nitudes to counteract this distortion from the parabolic shape, is limited to ρ ∈ [0, 1],

a maximum spin rate that can still be controlled into a parabolic profile is anticipated.

In order to find the maximum spin rate ωD,lim for a given reflector, the reflectivity

function, Eq. (6.47), is solved for ωD. In addition, the maximum reflectivity is assumed

to be at the centre of the disk, thus ρ(0) = 1. When further considering the minimum

reflectivity constraint at the edge of the disk, ρ(R) = 0, the allowed maximum spin

rate is found to be

ωD,lim =

(
1

τA

[
1− 2(

1 + (2apR)2
)2] 6app

∗
0

(
1 + (2apR)2

)2
1−
(
1 + (2apR)2

)3/2
(1 + 12a2pR

2)

)1/2

(6.49)
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Figure 6.12: Deflection profiles due to uniform SRP (non-spinning reflector
disk), inverse problem solution and parabolic reference curve for hoop radius
R = 100 m and slack length S = 105 m

The maximum spin rate is a function of the hoop radius R, the parabolic coefficient ap

and thus, the slack length S, and the chosen material in terms of density τ and cross

section A. Therefore, the maximum allowed spin rate to achieve a parabolic deflection

is fully defined for given reflector properties. Figure 6.13 shows the maximum spin rate

as a function of the reflector disk radius and for different slack lengths. For example,

the maximum spin rate for a reflector of radius R = 100 m and S = 105 m is found to

be ωD,lim = 16.46 deg/s. The corresponding reflectivity distributions for different spin

rates, according to Eq. (6.47), are shown in Fig. 6.14. As can be seen, for spin rates

above ωD,lim = 16.46 deg/s, the required distribution exceeds ρ = 1 towards the centre

of the disk, which is physically not possible.

In general, typical angular rates for spin-stabilised space structures such as solar sails

are more likely to be smaller than the identified limit case. For example, a spin-

stabilised 76× 76 m square sail with a spin rate of 0.45 deg/s was selected for the

NASA/JPL Geostorm mission concept study [60, 120]. This rate was found to be

sufficient to always keep the sail surface perpendicular to the Sun within 1 deg to the

Sun/sail line. In the case of a circular sail design, the selected sail area would correspond

to a disk of radius R ≈ 43 m. As can be seen in Fig. 6.13, the maximum spin rate

in order to control the film into a parabolic deflection profile is between 40−70 deg/s,

depending on the diameter of the slack length. This limit is significantly larger than the
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Figure 6.14: Reflectivity distributions for various spin rates, using hoop radius
R = 100 m and slack length S = 105 m. For the chosen reflector dimensions, the
maximum spin rate such that a parabolic deflection can be created is ωD,lim =
16.46 deg/s
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selected spin rate for the proposed Geostorm sail. As a further example, the IKAROS

sail with a 14×14 m square sail membrane was spin-stabilised at a nominal rate between

6−15 deg/s to maintain a flat sail surface [58]. Therefore, also the IKAROS spin rate

is within the feasible spin rate interval to create a parabolic deflection.

6.5 Optical performance of slack parabolic reflector

In order to compare the parabolic shapes found in this chapter with the deflected mem-

brane profiles in Chapter 5, the achievable focal lengths are now calculated, assuming

an extension of the 1D model into 2D. According to Eq. (5.34), the focal length of the

slack catenary surface can be calculated as

f =
1

4ap
=

R2

4|w0|
(6.50)

when considering the quadratic coefficient ap = −cp/R
2 = −w0/R

2, as discussed in

Section 6.2.4. Thus, the focal length is a function of hoop radius R and central deflection

w0. The latter depends on the chosen slack film radius, as seen in Fig. 6.9. The focal

lengths are calculated for a set of rigid hoop radii Ri := [1, 5, 10, 25, 50, 100] m, each

suspending a reflector film of varying slack radius Si := [101, 102, 103, 104, 105, 106] per

cent of all Ri, where the spacecraft is assumed to be non-spinning and at a distance of

1 AU from the Sun. For each case, the nominal deflection profile due to uniform SRP

is corrected through a non-uniform reflectivity distribution, according to Eq. (6.48), to

generate an ideal paraboloid surface shape. The resulting focal lengths for all deflected

profiles are shown in Fig. 6.15.

All focal lengths are below 200 m distance from the reflector surface. Previous results

for tensioned elastic membranes subject to controlled SRP loads were in the kilometre

range of focal length for the same surface diameters, according to Chapter 5, showing a

significant improvement with the slack inextensible approach in this chapter. It can be

seen in Fig. 6.15 that for all investigated slack film radii, a larger hoop radius increases

the focal length. However, when suspending more material from the supporting hoop

structure, the focal length decreases. Theoretically, by controlling the amount of film

suspended in between the rigid outer hoop, for example through attaching the reflective

film to cable rolls inside the hoop, the focal length can also be controlled during the

mission.

As shown previously in Chapter 5.4.1, the finite size of the solar disk causes a beam

spread in the focal plane, which reduces the efficiency of the surface in terms of, for
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Figure 6.15: Focal lengths of deflected parabolic surface as a function of reflec-
tor hoop radius R (non-spinning) and slack film radius S at 1 AU

example, solar power collection. The beam width further depends on the focal length

of the collector, according to Eq. 5.37. Therefore, employing a slack surface with much

smaller focal lengths should improve the aperture efficiency. For example, considering

again a focal length fKapton = 7.54 km, calculated in Section 5.4 for an elastic membrane

reflector of R = 100 m radius at Earth distance from the Sun, the beam width was

found to be bw,100 = 70.14 m. Assuming the same hoop radius, the focal length of a

slack suspended surface would only be about fslack = 100 m. Accordingly, the beam

width in the focal plane would only be bw,slack = 0.93 m, with a concentration ratio

Cr,slack ≈ 46, 000. Such a large increase in the optical performance clearly supports the

concept of controlled surface billowing demonstrated in this chapter.

Since ultra-thin films are very susceptible to wrinkling, the feasibility of employing

a slack suspended surface for the proposed applications still has to be investigated.

Wrinkles cause multiple reflections of solar photons on the surface, which reduces the

optical quality of the surface and potentially induces thermal peaks in the material.

Although it has been demonstrated in this chapter that the available SRP loads are

sufficient to allow for controlled (parabolic) billowing of the film, it is not clear whether

the induced in-plane tensions will counteract wrinkles due to stowing/folding during

launch or during the deployment of the surface.
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6.6 Chapter Summary

In this chapter, a non-uniform reflectivity distribution across the surface of a thin slack

circular film has been considered to investigate the shape control of slack suspended

surfaces using modulated SRP. In this model, the film has been approximated as a ’cob-

web’ of one-dimensional slack radial strings, suspended from a rigid hoop. Initially, the

nominal deflection profiles due to gravity, generic pressure and SRP have been calcu-

lated semi-analytically, by solving the coupled equations of inextensible catenary-type

string deflection. It has been demonstrated that SRP is the only pressure distribution

which yields the classical gravity catenary profile. Using different slack lengths of the

string, it has been shown that the nominal deflection shapes due to light pressure are

expected to be non-parabolic. When including centrifugal forces for a spin-stabilised

reflector disk, the deflection profiles deviate even further from the ideal parabolic shape,

thus controlling the spin rate cannot be exploited to generate parabolic surfaces.

Instead, an analytical expression for the reflectivity distribution across the modelled

string, necessary to create a true parabolic deflection profile, has been derived. For a

non-spinning disk, the expression obtained does not depend on the solar distance and is

only a function of the hoop radius and slack length. Therefore, the required reflectivity

function across the reflector could be pre-fabricated into the film surface, instead of

using electro-chromic coatings. In the case of a spin-stabilised reflector spacecraft,

the maximum spin rate that can still be controlled into a parabolic shape has been

calculated as a function of reflector dimensions and material properties.

Assuming an extension of the 1D model to a real 2D surface, the focal lengths of the

resulting paraboloids have been derived for different hoop radii and slack lengths and

are typically below two hundred metres. Comparing the results with the elastic case

of a tensioned membrane (Chapter 5), the achievable focal distances are one order of

magnitude smaller.
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Conclusions

In this final chapter, the research objectives of the thesis will be reviewed and the

conclusions in response to the research objectives stated in Section 1.2 will be discussed.

In addition, possible future research directions will be recommended.

Summary and conclusions

Optical attitude control of gossamer spacecraft

The first research objective of this thesis considered the investigation of the use of solar

radiation pressure (SRP) to control the attitude of large gossamer spacecraft through

the manipulation of their surface reflectivity. First, this concept has been demonstrated

for a long-baseline tethered dumbbell formation in a combined gravity and SRP force

field in a planar circular Sun-centred orbit. It has been shown that introducing SRP to

the tip masses creates new unstable equilibria that are different from those of the pure

gravity gradient dumbbell. In particular, by controlling the surface reflectivity of the

two masses in the decoupled attitude problem, equilibria at an arbitrary angle, relative

to the local vertical, have been presented. Furthermore, optical control of the unstable

dumbbell attitude has been demonstrated through changing the surface reflectivity.

Introducing SRP forces to the system perturbs the circular Keplerian motion of the

spacecraft around the central body. Therefore, the coupling of the orbit and attitude

dynamics has been reintroduced by deriving constraints for the surface reflectivity,

showing that the dumbbell can be maintained on a circular non-Keplerian orbit for

arbitrary attitudes using light pressure. The results obtained for the pure gravity

gradient dumbbell suggest that for unequal masses and tether lengths up to the same

order of magnitude as the orbit semi-major axis, unstable equilibria can be created

also without SRP. Despite the theoretical nature of such configurations for planet- and

Sun-centred orbits, however, for orbits centred around an asteroid, the tether length

would only have to be in the range of a few kilometres.
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The second research objective comprised an assessment of different reflectivity distri-

butions across the surface of a large gossamer spacecraft. To this aim, three different

distribution models, of increasing complexity, have been considered for a large (ideally

rigid) membrane reflector. First, a linear reflectivity distribution along one of the in-

plane axes has been employed, while keeping the reflectivity constant along the other

in-plane axis. For the case where the resulting optical torques are used to compensate

for the gravity-gradient torque acting on the membrane reflector in a circular LEO,

the coefficients of the linear reflectivity distribution have been derived analytically.

This scheme has been applied successfully to maintain the structure in a Sun-pointing

attitude in LEO.

Second, a more complex model of two constrained regions of high and low reflectivity,

separated by a controlled boundary line, has been employed. This reflectivity dis-

tribution has been shown to create a wide range of torques in the membrane plane,

depending on the slope and position of the boundary line on the surface. Through this

model, two degrees of freedom attitude control about the two in-plane spacecraft axes

has been achieved. Since the SRP force magnitude depends on the membrane’s attitude

with respect to the Sun, an analytic control scheme has been derived that maintains a

constant SRP torque during attitude manoeuvres by moving the boundary line across

the surface. This scheme has been successfully applied to changing the membrane’s

attitude from an arbitrary initial attitude and angular rate to a Sun-pointing attitude.

In the third model, a discrete array of reflectivity control devices (RCDs) across the

membrane surface has been considered. Each cell can maintain two states, either ’on’

(high reflectivity) or ’off’ (low reflectivity). The resulting discrete torques have been

calculated for a given reflector size, and as a function of the number, position and

activation state of the coating elements. For example, a (4 × 4)-array of reflectivity

cells comprises 65, 536 reflectivity combinations, which reduce to 376 unique (discrete)

torques in the membrane plane, after applying suitable truncation laws. In light of

the third research objective, this optical control model has been applied to the same

attitude manoeuvre as for the second model: from an arbitrary initial attitude and

initial rate to a Sun-pointing attitude. To this end, a quaternion-based control scheme

has been developed, which controls the reflectivity combinations across the membrane

surface. Despite the limited number of discrete torques that can be generated with a

small number of reflectivity cells (e.g. a (4× 4)-array), the controller is able to execute

the manoeuvre successfully, showing a good agreement between the available optical

array torques and the reference torques computed by the feedback controller.

Conclusively, optical attitude control through variable SRP forces has been demon-
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strated to be a novel means for steering a large membrane reflector. By not relying

on conventional attitude systems such as thrusters and reaction wheels, the concept of

optical attitude control in principle introduces a lightweight attitude control method

for large gossamer spacecraft, reducing the overall system mass, and thereby launch

cost.

Optical shape control of gossamer spacecraft

The first research objective associated with optical shape control of large gossamer

spacecraft required the investigation of the effect of SRP loads on the surface shape

of large membrane structures. To this aim, the deflection of a thin circular membrane

reflector, supported by a rigid hoop structure and exposed to vertical SRP loads (per-

pendicular to the membrane surface) have been derived. The equations of non-linear

elastic membrane theory have been employed to calculate the nominal deflection profile

due to a uniform light pressure distribution for various membrane diameters and solar

distances in a Sun-centred orbit. The results indicated a cubic polynomial deflection

curve, showing that the deflected surface does not naturally concentrate incoming light

into a single focal point due to non-parabolic distortion.

Considering the second research objective, the manipulation of the nominal membrane

deflection has been investigated by controlling the reflectivity across the surface. A

closed-form solution for the reflectivity function across the membrane required to create

a true parabolic deflection shape has been derived. As for the vertical SRP load cases

investigated, this reflectivity function does not depend on membrane size, thickness or

solar distance. Therefore, rather than using thin-film RCDs, the required reflectivity

distribution can be prefabricated into the film surface, saving the additional mass of

the coating elements. However, this would also be less flexible during the mission,

considering the potential of RCDs for attitude control during manoeuvre phases, as

demonstrated in this thesis. Although the required reflectivity distribution does not

change with solar distance, the absolute deflection of the membrane does. An analytical

expression has been derived for this absolute deflection at the centre of the membrane

for a given diameter, film thickness, material properties and solar distance.

Regarding the final research objective, the potential of optical shape control has been

investigated in terms of the absolute membrane deflection and focal length of the

parabolic membrane. All absolute membrane deflections using a 2.5µm Kapton film

have been found to be smaller than 0.6 m, even for relatively large membranes (up to

200 m in diameter) and close to the Sun (half the Sun-Earth distance), while no initial
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in-plane tension has been accounted for to maximise the deflection. In general, the

central deflection due to SRP and for all elastic membranes investigated is below one

percent of the aperture radius. The focal length of the largest membrane is 7.54 km at

the Earth’s distance from the Sun. This focal length can be reduced to 6.11 km when

employing Mylar films with a currently achievable thickness of only 0.9µm.

Achieving focal lengths in the kilometre range imposes ambitious requirements on the

relative position of an emitter/receiver unit in the aperture focus. Most likely, a de-

tached platform will be required, which flies in formation with the main reflector space-

craft. For this reason, an alternative concept to reduce the focal length has been inves-

tigated. The resulting analyses have followed the same research objectives as before.

In particular, instead of using a tensioned elastic membrane, shape control of a slack

suspended surface using modulated SRP has been investigated. For this, the film has

been approximated as a ’cobweb’ (or parachute) of one-dimensional slack radial strings,

suspended from a rigid hoop. This analogy allowed a semi-analytic investigation of the

surface deflection subject to various distributed loads, while centrifugal forces for a

spin-stabilised reflector disk have also been considered.

By solving the coupled equations of inextensible string (or ‘catenary’) deflection, it has

been demonstrated that SRP is the only pressure distribution that yields the classical

gravity catenary deflection, and is therefore non-parabolic. The profiles for both load

cases follow the same hyperbolic-cosine law.

When including centrifugal forces for a spin-stabilised reflector disk, the deflection

profiles deviate even further from an ideal parabolic shape, thus controlling the spin

rate cannot be exploited to generate parabolic surfaces.

Instead, an analytical expression for the reflectivity distribution across the modelled

string, necessary to create a true parabolic deflection profile, has been derived. For a

non-spinning disk, the expression found does not depend on the solar distance and is

only a function of the hoop diameter and slack length. Again, this indicates that the

required reflectivity function could be pre-fabricated into the film surface. In case of a

spin-stabilised reflector spacecraft, it has been shown that a maximum spin rate exists

at which the membrane can still be controlled into a parabolic shape.

Assuming an extension of the 1D string model to a real 2D surface, the focal lengths

of the achievable parabolic surfaces have been obtained for a range of hoop diameters

and slack lengths. For all investigated hoop sizes up to 200 m in diameter and slack

lengths up to 212 m, the focal lengths are below two hundred meters. Comparing the

results with the elastic case of a tensioned membrane, the achievable focal distances are
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one order of magnitude smaller. In terms of the emitter/receiver unit in the aperture

focus, the results indicate that the platform can be physically connected with the main

reflector, instead of operating a detached unit flying in formation with the spacecraft.

Lastly, optical shape control through variable SRP forces has been demonstrated to

be a novel means to create parabolic surface deflections of large membrane reflectors.

Potentially, this allows the membrane to be used as a multifunctional device for a range

of communications, sensing and science applications.

Future research

The research presented in this thesis has demonstrated the potential of using modulated

SRP for optical attitude and shape control of large gossamer spacecraft. Therefore,

this thesis supports the ongoing engineering effort to realise ultra-lightweight low-cost

technology concepts for a range of future space applications. In order to complement

or improve the current results, additional analyses are considered below.

In general, the SRP model employed throughout this thesis is valid under the assump-

tion of an ideal, specular reflecting, surface. In addition, when modulating the reflectiv-

ity, using the simplified SRP model, the remaining fraction of photons not undergoing

specular reflection are assumed to be simply absorbed without re-emission. However,

a real surface would scatter this fraction of light in the form of diffuse reflection, and

thus, generating an additional SRP force fraction normal to the surface. Furthermore,

due to the force contribution from the impinging photons, this results in an in-plane

component of the total SRP force acting on the real surface. This could have an impact

on the optical torques created and also on the deflection magnitudes of the membrane.

Optical attitude control

The analyses presented in this thesis for a tethered formation in the combined gravity

and SRP force field have been constrained to planar Sun-centred orbits. This investi-

gation could be continued by deriving the three-dimensional orbit/attitude dynamics

problem and by considering the control of the configuration around small bodies such

as asteroids. Applying optical attitude control to such a scenario could be promising

as the ratio of SRP and the gravitational force is much greater and therefore a higher

control authority can be achieved. In addition, orbit stabilisation of a tethered solar

observatory about a sub-L1 point for space weather monitoring could be investigated.

Positioning the tether system closer to the Sun with respect to a spacecraft at the L1-
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point increases the warning time for a solar storm. Furthermore, a tethered formation

could be used for solar observation using long baseline interferometry.

Surface reflectivity modulation has been investigated in this thesis for attitude control

of large gossamer membrane spacecraft. In particular, an RCD reflectivity array across

the surface of the membrane has been employed to demonstrate the control of the

spacecraft attitude without using mechanical systems or thrusters. The discrete torques

that can be generated using a square array have been derived from the total number

of reflectivity combinations on the array. However, many reflectivity combinations

generate the same discrete torque. As a way of reducing the number of combinations to

be considered, truncation laws have been defined that select one reflectivity at random

to represent that particular discrete torque. However, instead of selecting a viable

reflectivity combination, it would be beneficial to select the combination that requires

the least amount of active RCD cells to minimise the power required to operate the

array. Furthermore, each time the control scheme switches between two combinations

on the array, in order to generate the closest-match torque from the set of available

torques, the control scheme could be further improved. It could be enabled to choose the

combination that requires the least amount of cell switches. Again, such improvements

potentially reduce the amount of power required for actuation, especially during times

when extended attitude station-keeping is required. In addition, it might be sufficient

to implement only larger groups of RCD cells across the surface, which are controlled at

once to accomplish specific control tasks. Since this would reduce the level of fine control

available, the feasibility strongly depends on the desired application, for example, solar

power collection or space communication, and the requirements on station-keeping and

pointing accuracy. However, this would reduce the system’s complexity and minimise

the additional mass introduced to the surface.

Optical shape control

In this thesis, the analyses of optical shape control of the membrane have focussed on

vertical load distributions, normal to the undeflected surface. However, this condition

is potentially undesirable during operation, especially for applications such as Earth

communication and observation. For this reason, future analyses could include unsym-

metric load cases and further derive the reflectivity required for a parabolic deflection

as a function of light incidence angle. Potentially, such analyses would require finite

element modelling (FEM) of the membrane for the general load case. In addition, the

elastic membrane could be modelled as a composite membrane, thus considering the

thickness of the electro-chromic coatings and different material properties for each in-
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dividual layer. This would result in a more realistic modelling approach, which aims

towards the best possible prediction of the behaviour of the membrane during the

mission.

It has been shown in this thesis that the absolute deflection of the parabolic surface, and

thus focal length, changes with solar distance. This variation could be compensated

for, for example, by a detached receiver/transmitter platform that is flying in formation

at the current focus. However, the reflectivity function obtained could potentially be

modified to adapt to this condition, i.e. maintain the same parabolic deflection at

different solar distances. This could be achieved, for example, by fixing the value of

the central deflection of the film in the inverse problem.

Considering the investigation of slack suspended surfaces, the model developed could

be extended by considering material in the circumferential direction between the radial

strings, thereby considering a real 2D surface. This investigation could be supported by

an FEM analysis, as has been conducted previously for a structural analysis of inflated

parachutes [121].

With respect to both the attitude and shape control of gossamer spacecraft, the ef-

ficiency of optical control compared to other concepts that are currently developed

could also be assessed, by considering an analysis on the system level. The analysis

would compare mass budget, power consumption and control performance of compet-

ing methodologies and actuator systems. Clearly, this investigation has to consider

the ongoing development of thin-film RCDs and possibly also ways to distribute thin

foldable electric circuits across thin membranes [63]. Polymer-based electrochromic

coatings of total thickness below a micrometre, using single-walled carbon nanotubes,

have recently been assembled for ultra-thin touch-screen panels [14]. For solar sails in

particular, the concept of optical control has the potential to support the technology

roadmap for this promising type of low-thrust propulsion.

Further applications of optical control

One of the key objectives of this research was to develop a highly-integrated multi-

functional control concept for gossamer membrane spacecraft. Beyond the scope of

controlling the attitude and the shape of the reflector, optical control involves further

advantages, which depend on the desired application. For example, in terms of solar

power collection, controlling the surface reflectivity allows a modulation of the thermal

load on the heat engine in the aperture focus. In this case, the RCD cells could be

operated in low (diffuse) reflectivity mode instead of having to rotate the reflector away
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from the Sun, in event of thermal loads being exceeded.

Furthermore, instead of limiting the application of RCDs to the light collecting front

of the membrane, the same devices could also be applied to the back of the reflector.

This could improve the thermal state of the structure by controlling the emissivity of

the far side, hence disposing of excess of thermal energy. In comparison to a black

back surface, this could minimise thermal heating in case the back of the membrane is

exposed to solar or planetary irradiation.

Finally, in the future, a functional RCD array fabricated on the surface of a membrane

spacecraft may comprise 10,000 or even 100,000 individual cells. When operating the

array in a communication mode, each cell could be addressed individually to produce

one element of a large ‘QR code’ (a matrix barcode commonly used for product track-

ing, item identification or commercial marketing). When further pointing the reflector

towards, for example, a ground-based optical receiver, digital coding of the RCD array

would enable transfer of huge amounts of data through high-speed optical switching.
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Appendix

A Quaternion Algebra

In this appendix, some mathematical properties of the quaternion and its usefulness to

represent the spacecraft attitude will be explained.

The (four-dimensional) quaternion q̄ = (q1, q2, q3, q4)T is a hypercomplex number sys-

tem in the Cartesian basis (1, i, j,k) in R4 [103, 104], with i = (1, 0, 0)T, j = (0, 1, 0)T

and k = (0, 0, 1)T, representing three unit vectors in R3. The quaternion has the general

form

q̄ = q1 + q2i + q3j + q4k (A.1)

with four real numbers qi, termed the components of q̄, and the upper (̄ ) denoting a

quaternion vector. Since the subspace (i, j,k) represents an orthonormal basis in R3,

the components of the vector q = (q2, q3, q4)T can be regarded as the vector component

and q1 as the scalar component of q̄. Therefore, q̄ represents a mathematically strange

object, which is not defined in ordinary linear algebra: the sum or a scalar and a vector

[103]. The quaternion number system was first described by the Irish mathematician

Sir W. R. Hamilton in 1843.

By convention, the quaternion must satisfy the Euclidean norm of q̄ being unity (nor-

malization condition)

|q̄| =
√
q2

1 + q2
2 + q2

3 + q2
4 =

√
q2

1 + q2 = 1 (A.2)

The latter constraint implies that only unit quaternions are applicable for attitude

descriptions and rotations. Therefore, q̄ with |q̄| = 1 is called the unit quaternion or

normalised quaternion.

The conjugate complex of q̄ is defined as

q̄∗ = q1 − iq2 − jq3 − kq4 = q1 − q (A.3)
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which is also the inverse quaternion, thus q̄∗ = q̄−1, for normalised q̄ (without deriva-

tion). Furthermore, a quaternion with a scalar component q1 = 0 is called a pure

quaternion. For example, the vector p = (p1, p2, p3)T is the vector part of the pure

quaternion p̄ = (0, p1, p2, p3)T.

The unit quaternion q̄ represents an attitude description like the classical rotation

matrix or Euler angles. A fundamental theorem explains the characteristics of an

attitude quaternion:

Euler’s Theorem

A coordinate frame can be brought from an arbitrary initial attitude to an arbitrary

final attitude by a single rotation by an angle θ (with −π ≤ θ ≤ π) about a single axis

of rotation a, which is called the Euler axis [101]. The theorem implies that the axis

of rotation a remains unchanged in both the rotated frame B and the reference frame

E, thus a rotation has no effect on a

a
B

= a
E

Figure A.1 shows Euler’s Theorem. Assuming that both frames initially have the same

attitude (parallel axes), the axis of rotation a (red) has the same components in B and

E such as

Figure A.1: Attitude of body frame B := (x, y, z) relative to ecliptic reference
frame E :=(xE, yE, zE), as described by Euler’s Theorem: a) same attitude
(left), and b) rotated by the angle θ = 180 deg about Euler axis a (right).
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(ax, ay, az)
T
B

= (axE , ayE , azE)T
E

However, from the previous definition of the quaternion q̄, according to Eq. A.1, the

rotation angle and thus, the quaternion’s rotational character, is not directly visible.

The following derivation gives a quaternion notation in terms of rotation axis a and

rotation angle θ.

Applying Euler’s theorem on q̄ = q + q4, while considering the Euclidean norm

|q̄|2 = |q1|2 + |q|2 = 1 (A.4)

with the Pythagorean theorem cos2 θ+ sin2 θ = 1 for a unit circle (and arbitrary angle

θ), leads to the relations

|q1|2 = cos2 θ ⇒ q1 = cos θ ∧

|q|2 = sin2 θ ⇒ |q| = sin θ
(A.5)

After defining a unit vector a, which represents the direction of q

a =
q

|q|
=

q

sin θ
⇒ q = a · sin θ (A.6)

the quaternion q̄ results as

q̄ = q1 + q = cos θ + a · sin θ (A.7)

It can be shown that q̄ actually represents a rotation by the angle 2θ (without deriva-

tion). Therefore, a so-called ‘half-angle transformation’ is applied to q̄

q̄ = q1 + q = cos

(
θ

2

)
+ a · sin

(
θ

2

)
(A.8)

Written in 4-dimensional vector form, the rotational character of a quaternion becomes

visible

q̄ =


q1

q2

q3

q4

 =


cos(θ/2)

ax · sin(θ/2)

ay · sin(θ/2)

az · sin(θ/2)

 =

(
q4

q

)
= cos

(
θ

2

)
+ a · sin

(
θ

2

)
(A.9)

Therefore, the quaternion q̄ represents a single-axis rotation about the axis a = (ax, ay, az)
T
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by the angle θ, thus

q̄ = f(a, θ) (A.10)

In order to use quaternions for rotation operations such as two consecutive rotations,

the product of two quaternions, for example, s̄ and t̄, is defined as follows [122]

q̄ = s̄⊗ t̄ = (s1 + s2i + s3j + s4k) · (t1 + t2i + t3j + t4k) (A.11)

In here, q̄ is the final attitude obtained after both rotations s̄ and t̄ have been applied.

In other words, the quaternion s̄ describes the initial attitude and t̄ denotes the attitude

change in order to receive the final attitude q̄. The mathematical operation given in

Eq. A.11 can be translated into matrix form such as

q̄ = s̄⊗ t̄ =

(
s1 · t1 − s · t

s1 · t + t1 · s + s× t

)
=


s1t1 − s2t2 − s3t3 − s4t4

s2t1 + s1t2 + s3t4 − s4t3

s3t1 + s1t3 + s4t2 − s2t4

s4t1 + s1t4 + s2t3 − s3t2

 (A.12)

The quaternion product, according to Eq. A.12, can also be used from a different point

of view, namely, when comparing two attitudes with a desired reference attitude. For

example, this reference attitude can be the Sun-pointing attitude. In this scenario, q̄

shall denote the current attitude of the spacecraft-fixed frame B, and q̄ref shall be the

reference attitude. Consequently, the product

q̄err = q̄ref ⊗ q̄ (A.13)

represents the attitude error between the reference and the current attitude. Therefore,

the error quaternion q̄err describes the attitude of the spacecraft w.r.t. the desired

reference attitude. If the Euler axis of q̄err returns the zero vector, a = (0, 0, 0)T, the

current attitude matches the desired reference attitude.
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