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Chapter 1. INTRODUCTION 

There are many areas of human activity in which artificial 
intelligence, when defined as "that part of computer 

science concerned with designing intelligent computer 

systems, that is, systems that exhibit the characteristics 

we associate with intelligence in human behaviour" (Barr & 

Feigenbaum, 1981), could be expected to have an applica- 
tion. Visual perception and the ability to distinguish 

patterns in the world, working with numbers in such a way 

as to display mathematical discrimination rather than 

merely an ability to calculate, and the ability to process 

natural language at a higher level than formal symbol 

manipulation, are three areas of investigation that are 

embraced by the topic of artificial intelligence. The rate 

at which research in artificial intelligence has progressed 
has been uneven, and has varied from one topic to another. 

sometimes, as in natural language processing, little has 

been achieved beyond revealing how difficult the problems 

are. 

The activity of architectural design, which touches upon 

all three of these topics, might be thought to be another 

subject which is suitable for artificial intelligence 

research. An architect must display visual ability, he must 
have a grasp, perhaps somewhat rudimentary, of mathematics, 

and he must be verbally literate. Workers in artificial 
intelligence (Akin, 1978 & 1986) have made a number of 

efforts to investigate design. Ramesh Krishnamurti (1985) 

has attempted to interpret the activity of design as a kind 

of set-based expert system. However, the topic has so far 

resisted researchers from artificial intelligence, and 
indeed from almost all other academic specialisms including 

the discipline of engineering. It is instructive to inquire 

as to why this is so, and the first half of this thesis is 

an attempt to elucidate the relationship between architec- 

ture and artificial intelligence. 

page 1 



The purpose of this introductory chapter is, in the first 

place, to describe the point of view from which the inves- 

tigation has been carried out. This entails a discussion of 
the activity of design, and the drawing of a distinction 

between the notions of reason and logic. Secondly, I give a 
brief account of the main ideas contained in the body of 
the work and outline the argument by which these ideas are 

connected. In the third place, I identify the three topics 

in the thesis which I claim to be contributions to knowl- 

edge. 

Four Generations of Design Studies 

During the course of the last 30 years a sustained effort 
has been made to study and understand design, including 

architectural design, from a positivist point of view. An 

area of study has grown up in which design is studied as an 

academic topic, and in which it is assumed, often tacitly, 

that design is an objective procedure which results in the 

creation of a definable product. Design studies is now 

referenced at D620.0042 in the Dewey library classification 

system, and the topic is complete with research programs, 
learned journals and shelves of specialist books. The 

American journal Design Methods and Theories has been 

published since 1976 while Design Studies has appeared in 

Britain at regular intervals since July 1979. Many confer- 

ences devoted to the subject have been held in Britain and 

North America in the years since the pioneering meeting at 

Imperial College in 1962 (Page, 1963). As a result of three 

decades of research and publication in design studies, the 

connotation of the word design has expanded and the notion 

of design has come to embrace a broad spectrum of related 

activities. 

Brian Logan (1987) has distinguished four generations of 

theories about architectural design. These he entitles A 

Systematic Methodology, Participation in Design, The Nature 

of the Design Activity, and The Failure of Method. 
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The first generation was a search for a systematic model of 
the design process. The search was directed towards discov- 

ering a working method which could be used by designers, 

and which would enable them to improve their results. 
Thomas Markus (1969) and Thomas Maver (1970) advanced their 

development of Asimow's 1962 model of analysis-synthesis- 

appraisal, Christopher Alexander (1964) prescribed a severe 
Cartesian purgative, John Page (1964) advanced the virtues 

and limitations of using physical three-dimensional models 
in design, while Bruce Archer (1969) proposed a conceptual 

model "which is intended to be compatible with the neigh- 
bouring disciplines of management science and operational 

research. " It is notable that graph theory played a promi- 

nent part in the thinking of these investigators, particu- 
larly Maver and Alexander. In Chapter 9 of this thesis I 

also employ some aspects of the theory of graphs in an 

attempt to explain why the formalisms of logic are poor 

ways to try to represent the activityldesign. 

First generation models were inadequate as descriptions of 

design, and few designers found them to be useful. However, 

they were successful in revealing some of the complexities 

of the activity of architecture and design. The most pene- 

trating description of the difficulties which have been 

brought to light by the study of design is that given by 

the German-American architect Horst Rittel in 1967. He 

characterised design problems and the process of design as 

"wicked". The 11 properties of a wicked problem as listed 

by Rittel in 1972 are: 

1. Wicked problems have no definitive formulation. Any 

time a formulation is made, additional questions can 
be asked and more information requested. 

2. Every formulation of the wicked problem corresponds 
to the formulation of the solution (and vice versa). 
The information needed to understand the problem is 

determined by one's idea or plan of a solution. In 

other words, whenever a wicked problem is formulated 
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there already must be a solution in mind. (If the lack 

of a desirable view is defined as a deficiency of an 

architectural design, a solution to that problem - 
the provision of the particular view - has also been 

stated). 
3. Wicked problems have no stopping rule. Anytime a 

solution is formulated, it could be improved or 

worked on more. one can stop only because one has run 

out of resources, patience, etc. (An architect could 
keep modifying a design solution forever - he stops 
because he has exhausted his fee, because the build- 
ing has to be finally built, or because he has ex- 
hausted some other resource. ) 

4. Solutions to wicked problems cannot be correct or 
false. They can only be good or bad. (There is no 

correct or false building: there can only be a "good" 

building or a "bad" building. ) 

5. In solving wicked problems there is no exhaustive 
list of admissible operations. Any conceivable plan, 

strategy or act is permissible in finding a solution 

and none can be prescribed as mandatory. 
6. For every wicked problem there is always more than 

one possible explanation. The selection of an expla- 

nation depends upon the employed Weltanschauung; the 

explanation also determines the solution to the 

problem. (The high cost of construction of a building 

may be attributed to the "expensive" design, to the 

high cost of materials, to the wages demanded by 

unions, to high interest rates and inflation, etc. ) 

7. Every wicked problem is a symptom of another "higher 

level" problem. (If the maintenance of the residence 
is "too expensive" to its inhabitants,, this indicates 

that there is a problem with the income of the inhab- 

itants. ) 

8. No wicked problem and no solution to it has a defini- 

tive test. In other words, at any time any test is 

"successfully" passed it is still possible that the 

solution will fail in some other respect. (If large 
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windows are designed for a residence to provide the 
desired views, the heating of the residence may 
become too expensive. ) 

9. Every wicked problem is a "one shot" operation. There 
is no room for trial and error, and there is no 
possibility for experimentation. (A house is designed 

and built - there is no going back to the beginning 
to design and rebuild it. ) 

1O. Every wicked problem is unique. No two problems are 
exactly alike and no solutions or strategies leading 

to solutions can readily be copied for the next 
problem. (Even if two residences are designed for the 

same family, under the same geographical conditions 
they will never be identical. ) 

11. The wicked problem solver has no right to be wrong - 
he is fully responsible for his action. 

Every architect will recognise in this list an apt descrip- 

tion of the type of problem to which he must address him- 

self whenever he sits down to the drawing board or the 

keyboard. Property number 1, according to which no step in 

design is definitive, has influenced the interpretation of 

graph theory that I give in Chapter 9 of this text. If 

every formulation of a design problem can raise another 

question or call for more information, then each new formu- 

lation can invalidate any already-existing formulation. 

This is the architectural equivalent to what has become 

known recently as non-monotonicity in reasoning. It may be 

contrasted with a monotonic inference, in which the deduc- 

tively logical requirement that a conclusion cannot be 

accepted without accepting that the premises are main- 
tained. 

The second generation of design studies, as identified by 

Logan, tried to meet the difficulty of the wicked problem 
by proposing to describe design as a dialogue rather than 
in terms of a model. Perhaps no useful prescriptive model 

of design could be found, but the usefulness and relevance 

page 



of design work might be improved if the level of design 

discourse could be raised. Natural language has, since the 

beginning of history, been a method of grappling with 

wicked problems, and it might be that framing design in the 

form of dialogue would meet the difficulty. 

Rittel suggested a structure for argumentation, whereby 
"the artificial separation between the expert who does the 

work and the client (whose problem) the work is supposed to 

deal with" (Rittel, 1972) is closed. Design as argumenta- 
tion is described by Rittel himself in his 1972 paper as a 
"second generation" in design studies. Alexander shifted 
his attention away from mapping a problem onto a solution, 

and towards providing good information to the designer by 

means of patterns for building design. The patterns which 
he describes are intended to provide a common ground for 

discussions between client, architect and other partici- 

pants in the design of a building. 

"towns and buildings will not be able to become 
alive, unless they are made by all the people 
in a society, and unless these people share a 
common pattern language, within which to make 
these buildings, and unless this common pattern 
language is alive itself. " (Alexander et al, 
1977) 

Second generation design methods proved to be no more 

successful than their predecessors because, although the 

complexity of design was to some extent recognised, the 

methods themselves gave no guidance to the designer. As 

noted by Geoffrey Broadbent: 

"whilst functionalist/behaviourist techniques 
cannot possibly work, citizen participation, 
advocacy planning and Icharettel cannot work 
either. At best they may identify a 'highest 
common factor' of user needs, but compounded by 
the existentialist designer's needs to become 
himself, they may mislead him into thinking 
other people want the same things ... It is 
quite impossible for either of them to avoid 
feeding their own preconceptions and values 
into the solution of design problems" (Broad- 
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f eeding their own preconceptions and values 
into the solution of design problems" (Broad- 
bent, 1979) 

The third of Logan's generations was characterised by an 
empirical, rather than a conceptual or a discourse-struc- 

tured, approach to the activity of design. The intention 

was to move design practice closer to the model of the 

scientific method, and was influenced by readings from the 

work of Karl Popper. 

William Hillier and his colleagues draw parallels between 

design and Popper's principle of falsification. 

"Design proceeds by conjecture-analysis rather 
than by analysis-synthesis. It is argued that 
if research is to make an impact upon design it 
must influence designers at the pre-structuring 
and conjectural stages. The idea that research 
should produce knowledge in the form of pack- 
aged information, coupled to rationalised 
design procedures is therefore inadequate. The 
aim of research should be seen more in terms of 
providing designers with a stronger theoreti- 
cal, operational and heuristic basis from which 
to conjecture, rather than in terms of knowl- 
edge to determine outcomes. " (Hillier et al, 
1972) 

But this interpretation of the matter is based upon a 

misunderstanding of Popper's thought. Popper's intention is 

not to provide a methodology of science, but rather to show 
how scientific and non-scientific statements can be distin- 

guished from one another. 

"Thus my proposal was, and is, that it is this 
(boldness of prediction], together with the 
readiness to look out for tests and refuta- 
tions, which distinguishes 'empirical' science 
from non-science, and especially from pre- 
scientific myths and metaphysics. [This] pro- 
posal is what I still regard as the centre of 
my philosophy. " (Popper, 1974: 981) 

The only claim that Popper makes for his proposal is that 
it has the power of demarcation between empirically scien- 
tific and metaphysical statements. He nowhere prescribes 
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how science is to be conducted nor does he claim to de- 

scribe 'what science really is'. Notions about design 

which assume that Popper has invented a methodology of 
science, and that an analogous methodology of architecture 

can be formulated, are misguided. This may be clearly seen 
if an effort is made to apply Popper's principle of falsi- 

fiability to a problem of design. A wicked problem cannot 
be definitively formulated, and it will be found that in 

consequence it cannot be empirically falsified. We should, 
I think, draw a Popperian conclusion from this, and recog- 

nise that architecture and design are inherently non-scien- 
tific in character. 

The same objection must be made to Jane Darke's (1979) 

notion of primary design generators. She adds a preliminary 

stage, the generator, to the would-be Popperian conjecture- 

analysis model. These unsatisfactory attempts to draw an 

analogy between Popperian philosophy and design method has 

lead Nigel Cross to stigmatise this area of design studies 

as "the bastard field of design science. " (Cross, Naughton 

& Walker, 1981) 

Logan, ls fourth generation differs from the previous three. 

The fourth generation is one of disillusion, and he enti- 
tles it 'The Failure of Method', by which he means the 

failure of the scientific method to function as an adequate 

analogy for design. Third generation notions of design have 

not proved to be useful to architects or to other design- 

ers. Indeed, the lack of agreement about the correct inter- 

pretation of the term 'scientific method' has lead some 

commentators to doubt if improved clarity in design studies 

can be achieved by reference to a notion that is itself 

cloudy. 

In his account of the modern history of design theory Logan 

has shown, I think convincingly, that a number of otherwise 

well-established models cannot be made to serve as analo- 

gies for design. In their turn operations research, manage- 
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ment science, graph theory, advocacy planning and science 
have failed to do much more than to show how hard it is to 

understand the activity of design. 

Architectural Design 

Despite its allegedly dubious antecedence, the study of 
design has brought into play a number of phrases and gener- 

al concepts. Logan distinguishes and defines five important 

terms. 

design activity :a global term for all 
actions of design 

design theory :a system of ideas 
describing or explain- 
ing the design activity 

design methodology :a framework within which 
design decision making 
is sequenced, the 
strategic level of the 
design activity. 

design method a technique selected at 
a particular point in 
the design process to 
achieve some objective 
in relation to the 
design problem. 

design problem the context of the design 

So pervasive have these phrases become that one or another 

of them is apt to spring to mind unbidden whenever the term 

'design' is heard. But lying behind such definitions is the 

central notion of the act of design. Everyone who has 

experience of designing a building must have been struck, 

and sometimes thrilled, by the mysterious way in which an 
idea will arrive before the conscious mind. Sometimes an 
idea will give the impression that it was formulated far 

out in space before dropping swiftly to earth and coming 

silently to one's attention. It will often come into the 

mind at some apparently inappropriate moment, when one's 

conscious attention is occupied with other matters. 

"When assigned a task I am in the habit of 
storing it in my memory, that is not allowing 
myself to make any sketches for months. The 
human brain is made in such a way that it has a 
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certain independence; it is a box into which 
one can pour in bulk the elements of a problem 
and then let them float, simmer, ferment. Then, 
one day, a spontaneous initiative of one's 
inner being takes shape, something clicks, you 
pick up a pencil, a stick of charcoal, some 
coloured pencils (colour is the key to the 
process) and give birth onto the paper: out 
comes the idea ... 11 (Le Corbusier, undated) 

This creative act, upon which the whole process of design 
is focussed, can be facilitated, and the ability to think 

creatively can be fostered, but the act itself cannot be 

predicted, described or explained. That is why so much of 

what has been written under the heading of design studies 

seems to be merely pushing the description of design back a 
few steps in the explanation. The industrial designer 

Christopher Jones, for example, lists (1970) four methods 

of searching for ideas, but devices such as brainstorming, 

synectics, removing mental blocks and using morphological 

charts are all ways of facilitating rather than explaining 
the creative act. Hillier and his colleagues (1972), after 

referring to instrumental sets, solution types, informal 

codes, analogy and metaphor, are finally driven to call 

upon "what is called inspiration" as a notion of last re 

sort. In short, the whole panoply of models and methods 

that have been proposed under the rubric of design studies 

may have furthered understanding of matters peripheral to 

the act of design, but they have little to say about the 

act itself. I think that the topic of design studies, for 

all the time and effort that has been expended upon it, is 

concerned with the trappings but not the substance of 

design. 

When I employ the term 'design' in this thesis I am refer- 

ring to the creative act of design and not to the concepts 

and notions of design studies. Similarly, I use the phrase 
'architectural design' in the sense of the intuitive crea- 

tion of the idea of the building. The creative act, in the 

course of which the substance of a design is formulated, is 

the activity from which all else in design springs. Its 
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centrality is responsible for the fact that the designer, 

and particularly the architect, will see the subject of 
design from the point of view of one whose role it is to 

practice creative invention. This thesis is written from 

that same viewpoint, and my effort is therefore focussed 

upon bringing artificial intelligence to bear not upon 
design method, but upon facilitating the act of design 
itself. 

"Computers can aid in the design process by 
generating alternative solutions that nurture 
the intuitive leap, and can help design devel- 
opment. However, they do not partake in per- 
forming the intuitive leap itself, only facili- 
tate it. " (Norman, 1987) 

The unhappy history of design studies convinces me that 

creation is not in fact explicable, nor is the process of 

obtaining a novel notion capable of being imitated. I 

suspect, although I cannot prove, that the intuitive leap 

is inherently inexplicable and that it will always remain 
inimitable. Therefore I confine my attention in this thesis 

to finding ways of facilitating the work of the designer 

rather than trying to replicate, formalise or mechanise the 

central act of design itself. 

Logic 
It is sometimes asserted that there are three types of 
reasoning. In most texts these are given as deduction, 
induction and abduction. 

"Deduction is' the basic building block of 
formal reasoning systems. It is generally 
recognised, however, that people have recourse 
to two other modes of reasoning: namely, induc- 
tion and abduction. " (Coyne et al, 1990) 

However, I think that to include all three types of reason- 
ing under a single undifferentiated heading, as if they are 

equivalent, is to confuse the two quite different notions 

of logic and of reasoning. 
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Reasoning is a more general term than logic, and by it is 

meant the cognitive activity of making inferences. The word 
inference has as its root the Latin verb infero, meaning to 
introduce or to carry in. Inference implies no more than 
the transference of meaning or, as the Oxford English 
Dictionary has it "the forming of a conclusion from prem- 
ises, either by induction or deduction". Reasoning therefore 

allows one judgement to follow from another, but nothing is 

specified about the inferential method to be employed. I 
try in this thesis to use the terms reason and reasoning in 

this general sense of thinking in an orderly and account- 
able manner. 

Logic, however, is more circumscribed and is concerned with 
the study of valid argument. A concise statement of the 

distinguishing features of the validity of a logical argu- 

ment are: 

"(a) its conclusions could not be false if all 
its premises were true. 
(b) its conclusions contain no more content 
than is already provided in its premises. 
(c) the addition of further premises can 
neither strengthen nor weaken the argument, 
which is already maximally strong. " (Rankin, 
1988) 

The effect of these requirements is that the conclusion of 

a logical argument must necessarily be true so long as its 

premises are true. A well-known example of argument by 

means of deductive logic takes the form of the syllogism. 
In a syllogism of what is known as the first figure form, a 

major and a minor premise result in a conclusion which 
differs from the premises. For example, if a major premise 
is that all cats are animals and a minor premise is that 

Orlando is a cat, then the conclusion is that Orlando is an 

animal upon pain of contradiction. The terms given by 

Aristotle to the parts of a syllogism are still in use. 
Argument from premises to conclusion, of which the syllo- 
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gism is but one type, is known as deduction and when con- 
ducted without contradiction it is logically valid of 

necessity. 

The phrase 'inductive logic' occurs frequently in texts 

dealing with the methodology of science. Sometimes there is 

a tone of desperation about efforts to establish the logi- 

cality of induction. Bertrand Russell, for example, argues 
that induction is indispensible to scientific thought. 

"it seems clear that whatever is not experi- 
enced must, if known, be known by inference... 
If I ever have the leisure to undertake another 
serious investigation of a philosophical prob- 
lem, I shall attempt to analyse the inferences 
from experience to the world of physics, assum- 
ing them capable of validity, and seeking to 
discover what principles of inference, if true, 
would make them valid. Whether these princi- 
ples, when discovered are accepted as true, is 
a matter of temperament; what should not be a 
matter of temperament should be the proof that 
acceptance of this is necessary if solipsism is 
to be avoided. " (Russell, 1944) 

However, despite the desirability and usefulness of induc- 

tion, I think that induction cannot be looked upon as a 
form of logic. This is because no inductive argument can be 

relied upon to be valid in all circumstances. An often- 

quoted example of this fragility is the fact that swans 

were known, on the basis of inductive 'logic', to be white 

until the exploration of western Australia. When evidence 

of the existence of the black swan Chenopis Altrata reached 

Europe in the eighteenth century the supposed fact that all 

swans are white had to be abandoned, and the argument upon 

which the supposition was based was shown to be invalid. 

Popper generalises this criticism of induction when he 

observes that, 

"I hold with Hume that there simply is no such 
logical entity as an inductive inference: or, 
that all so-called inductive inferences are 
logically invalid - and even inductively in- 
valid, to put it more sharply... We have many 
examples of deductively valid inferences, and 
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even some partial criteria of deductive validi- 
ty; but no example of an inductively valid 
inference exists. " (Popper, 1972) 

Valid deduction, then, is argumentation in which the prem- 
ises cannot be true while the conclusion is false, while 
induction can be summarised as argumentation from many 

particulars to one conclusion. In the early years of this 

century the American philosopher Charles Peirce proposed a 
third type of reasoning derived from Aristotle's work on 
the syllogism. Peirce's notion is that the minor premise of 

a syllogism can be derived from the major premise and the 

conclusion. Furthermore, according to Peirce, Aristotle 
himself must have thought of abduction. 

"he would have asked himself whether the minor 
premise of such a syllogism is not sometimes 
inferred from its other two propositions as 
data. Certainly he would not have been Aristo- 
tle to have overlooked this question-" 
(Peirce, 1901) 

To take the example of Orlando the cat, an abductive syllo- 

gism would say that if all cats are animals and Orlando is 

an animal, then Orlando is a cat. Clearly in this circum- 

stance Orlando may be a cat, but the argument does not 

preserve him from being a dog, a horse or any other example 

of the class of animal. Peirce himself put forward abduc- 
tion as a vehicle for discovery, but he nowhere describes 

it as a logic. 

In everyday thought one habitually employs abduction as a 

method of speculation, but it is a mistake to suppose that 

it is a generally valid form of logic. one may, for example, 

suppose that today is a bank holiday from the major premise 

that no newspapers appear on bank holidays and the conclu- 

sion that the Correspondent cannot be bought today. Howev- 

er, there are clearly other possible explanations for the 

unavailability of the Correspondent, and such an abductive 

argument is not a secure one. 
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In fact, Peirce likens abduction not to logic but to per- 

ception. 

"abductive inference shades into perceptual 
judgement without any sharp line of demarcation 
between them; or, in other words, our first 
premises, the perceptual judgements, are to be 
regarded as an extreme case of abductive infer- 
ence, from which they differ in being absolute- 
ly beyond criticism. The abductive suggestion 
comes to us like af lash. It is an insight, 
although of extremely fallible insight. " 
(Peirce, 1903) 

I conclude that the inherent fallibility of induction and 

abduction means that arguments based upon them can never be 

secure. We are left only with properly-formed deductive 

argument as a logically valid procedure. As the American 

philosopher David Israel (1987) has put it "logic - deduc- 

tive logic, for there is no other kind". I have therefore 

confined the use of the words logic and logical in this 

thesis strictly to deductive argument. other forms of 
inference, despite the fact that they are often described 

elsewhere as logics, are referred to in this text as rea- 

soning. 

The Structure of the Thesis 

This thesis is divided into three main sections. The first 

two sections are a critical examination of some aspects of 

artificial intelligence, and are theoretical in character. 
The last section is an implementation based upon some parts 

of the topic of knowledge engineering. It takes the form of 

a non-deductive expert system working with a library of 

photographs of buildings which is stored on an optical 
disk. 

The first part of the main body of this thesis is concerned 

with a consideration of artificial intelligence in its role 

as a way of using computers to replicate or to study the 

action of the mind. This topic is variously known as ma- 
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chine thinking, machine intelligence or cognitive science. 
In order to avoid prejudging the issue, I have used the 

term cognitive simulation as a general designation for this 

aspect of artificial intelligence. 

Those theories that state or imply that a computer can 

actually think I describe as strong cognitive simulation. A 

well-known example of this line of thought is the idea of 

scripts put forward by the American computer scientists 
Roger Schank and Robert Abelson in 1977. Scripts are 

equipped with an underlying theory of meaning referred to 

by its authors as conceptual dependence. I give an account 

of Shank and Abelson's theory of strong cognitive simula- 
tion, and of its refutation by the Berkeley philosopher 

John Searle. 

In a less extreme version of cognitive simulation the claim 
that the machine is thinking is abandoned, and the object 
of the search becomes a machine that imitates, rather than 

replicates, human thought. Three areas in which this has 
been attempted are examined. These are machine translation 

of natural language, computer chess and pattern recogni- 
tion. I think that the American philosopher Hubert Dreyfus 

shows convincingly that these activities, which I collec- 
tively refer to as weak cognitive simulation, are also 
impossible at any but a very elementary level. 

There is a close parallel between the earlier and the later 

epistemology of Ludwig Wittgenstein, and the evolution of 
ideas about artificial intelligence which has occurred 

during the last 35 years. In both cases the movement has 

been away from logic and towards a recognition that meaning 

is a function of the complex nature of human thought and 
language. chapters 6 and 7 are taken up with an examination 

of some aspects of Wittgenstein's thought, from which 

emerges the conclusion that if the later Wittgenstein is 

correct, then the earlier positivist program for artificial 
intelligence is impossible. I claim that establishing a 
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Wittgensteinian perspective upon some aspect of artificial 
intelligence is the first of the three contributions to 
knowledge that is made in this thesis. 

Pý 

Dreyfus successfully disposes of weak cognitive simulation, 
but he overstates his case when he concludes that artifi- 

cial intelligence is a futile study because a computer 
cannot fully imitate a human mind. It is true that high 

quality human thinking will always rise above the best 

performance of a computer, but that does not, in my opin- 
ion, mean that such intelligence as a computer can simulate 
may not be useful. This leads me to propose a taxonomy for 

the whole field of artificial intelligence, from which I 
have chosen the topic of expert systems as suitable for 

further investigation. Intelligent tutoring systems are 

also a department of artificial intelligence in which 

progress could be made. 

Expert systems, as they are usually constructed, are an 

outcome of the automation of logic. I examine through the 

7 medium of graph theory the rule-based expert systems that 

emerge from this type of programming, and conclude that 

they do not meet the needs of the architect. This is large- 

ly as a result of the incompatibility of wicked design 

problems and deductive logic. 

However, an alternative type of expert system has been 

suggested by the American computer scientist Peter Frey 

which promises to be useful in the context of design. It is 

possible to see an expert system as a method of classifying 

solutions in terms of domain attributes. This notion opens 

the way to producing an expert system which can classify 

aspects of design with reference to the preoccupations and 
interests of the designer, rather than according to some 
inappropriate scheme of logic. 

As a result of examining the coding of Frey's classifica- 
tion system I propose in Chapter 12 an improved algorithm 
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for a classification expert system. The new algorithm 
incorporates Frey's bit-matching technique while extending 
it by improving the calculation of probabilities, by pro- 

viding explanations for questions and solutions, by storing 
the knowledge base in files and by replacing Microsoft 

BASIC with the Prospero implementation of Pascal. This 

program, called Cortex, is the second innovation to which I 
lay claim in this text. 

The method by which an expert system is controlled is the 

part of its algorithm that has the greatest effect upon the 

performance and effectiveness of the system. Cortex incor- 

porates a novel method of control that is applicable to any 

type of expert system. The control method used in Cortex is 

the third of the three contributions to knowledge that I 

claim in this thesis. 

The final part of the thesis is an implementation of a 

prototype version of Cortex which accesses an optical disc 

intelligently. Sets of photographs of buildings are select- 

ed from the 10,000 images on the disc, and are displayed 

according to the user's conception of architecture and his 

attitude toward the design of buildings. The result is 

intended to be a system that responds to an individual 

architect's viewpoint, and which casts light upon his 

interests as a designer. 
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Chapter 2. ARTIFICIAL INTELLIGENCE AS MACHINE INTELLIGENCE 

The two words that are juxtaposed in the phrase 'artificial 
intelligence' possess widely different connotations when 
they are used apart from one another in ordinary discourse. 
'Artificial' in the sense of the Oxford English Dictionary 
definition of 'made by art in imitation of what is natural 
or real' carries with it an implication of something 
feigned or fictitious. A thing which is artificial is close 
to being an inferior substitute for that which is real and 
natural. On the other hand intelligence is a human quality, 
extended somewhat to the rest of the animal kingdom, which 
is universally admitted to be estimable, natural and in- 

nate. The dictionary definition of intelligence as "quick- 

ness of mental apprehension; understanding as a quality 

admitting of degree" is applicable, to at least some ex- 
tent, to all the higher animals. It is a faculty that can 
be trained and developed during life, but only nature can 

create it. To speak of artificial intelligence is therefore 

to employ a syncretism with an highly tensioned internal 

structure. The connotation of artifice in the first term 

strains against the implication of naturalness in the 

other. Artificial intelligence is thus an inherently ambig- 

uous piece-of terminology, and it is therefore not surpris- 
ing that discussions in which the phrase occurs are often 

confused and contradictory. 

Definitions 

Many attempts to formulate a specification for AI have been 

made since the phrase was coined in 1956. The spectrum of 

meaning to be found in the following 19 definitions closely 

reflects the compound nature of the phrase itself. The 

definitions are listed in chronological order. 

John McCarthy proposed that "a two-month, ten- 
man study of artificial intelligence be carried 
out during the summer of 1956 at Dartmouth 
College in Hanover, New Hampshire. The study is 
to proceed on the basis of the conjecture that 
every aspect of learning or any other feature 
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of intelligence can in principle be so precise- 
ly described that a machine can be made to 
simulate it. " (Charniak & McDermott, 1985) 

"artificial intelligence is the science of 
making machines do things that would require 
intelligence if done by men. " (Minsky, 1968) 

"By artificial intelligence' I ... mean the 
use of computer programs and programming tech- 
niques to cast light on the principles of 
intelligence in general and human thought in 
particular. " (Boden, 1977) 

"artificial intelligence is the use of programs 
as tools in the study of intelligent processes" 
(Boden, 1977) 

"Our approach to the AI problem involves iden- 
tifying the intellectual mechanisms required 
for problem solving and describing them pre- 
cisely ...... General intelligence will require 
general models of situations changing in time, 
actors with goals and strategies for achieving 
them, and knowledge about how information can 
be obtained. " (McCarthy, 1979) 

"The ultimate AI program that we are all aiming 
for is one that specifies the form in which 
knowledge is to be input to the program, as 
well as the form of the rules that use that 
knowledge, and produces a program that effec- 
tively models that domain. " (Schank, 1979) 

IIAI is that part of computer science concerned 
with designing intelligent computer systems, 
that is, systems that exhibit the characteris- 
tics we associate with intelligence in human 
behaviour - understanding language, learning, 
reasoning, solving problems, and so on. " (Barr 
& Feigenbaum, 1981) 

"Artificial intelligence is the study of how to 
make computers do things at which, at the 
moment, people are better. " (Rich, 1983) 

"Artificial intelligence is the study of tech- 
niques for solving exponentially hard problems 
in polynomial time by exploiting knowledge 
about the problem domain. " (Rich, 1983) 

"the discipline of Artificial Intelligence, a 
principle concern of which is the design of 
computer programs to undertake activities 
thought to require human intelligence. " (Alty & 
Coombs, 1984) 
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"for the time being we are going to have to 
define intelligence in machines in the same way 
that Justice Potter Stewart described pornogra- 
phy: 'I can't define it but I know it when I 
see it. "' (Michie & Johnson, 1984) 

"Artificial intelligence is the study of ideas 
that enable computers to be intelligent. " 
(Winston, 1984) 

"Artificial intelligence is the study of mental 
faculties through the use of computational 
models. " (Charniak & McDermott, 1985) 

"Artificial Intelligence has two different 
products: models of human cognition and intel- 
ligent artifacts. " (Sell, 1985) 

AI "covers a broad spectrum of interests loose- 
ly linked by a shared ambition to represent 
more of human intelligence in machines. " (Bijl, 
1986) 

"A discipline concerned with the building of 
computer programs that require intelligence 
when done by humans. " (Illingworth, Glaser & 
Pyle, 1986) 

"The real goal of AI, after all, is to design 
or understand systems that can reason about the 
world, not themselves. " (Smith, 1986) 

"As an attempt to sum up the various defini- 
tions of AI, I would like to categorise sophis- 
ticated programming techniques (the so-called 
'smart programs') as syntactical approaches, 
and the search for 'principles of intelligencef 
as a semantic approach. A further development 
would then be a pragmatical approach which I 
would like to consider as a new paradigm (or 
working philosophy). " (Born, 1987) 

"As engineering, AI is concerned with the 
concepts, theory, and practice of building 
intelligent machines ... As science, AI is 
developing concepts and vocabulary to help us 
to understand intelligent behaviour in people 
and in other animals. " (Genesereth & Nilsson, 
1987) 

Most of these quotations define artificial intelligence as 
programming a computer to simulate, which is to say to 

assume the appearance of, cognition. These definitions in 

effect equate AI with cognitive simulation, which I shall 
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hereafter abbreviate to CS. The artificiality of artificial 
intelligence is emphasised, and the intelligence that is 

looked for is of an operational, not an ontological, type. 
I shall discuss later the sense in which artificial intel- 

ligence can be said to simulate human intelligence under 
the heading of weak CS. 

In the meantime, however, I propose to discuss the very 
different conception of artificial intelligence which is 
implied by the two definitions of artificial intelligence 

produced by McCarthy and by Schank in 1979. Artificial 
intelligence is, according to these authors, a matter of 

creating the reality rather than the appearance of intelli- 

gence. The emphasis in McCarthy and Schank is upon intelli- 

gence rather than artifice. The intelligence displayed by 

the computer, in this view of the matter, would be manufac- 
tured by man but would possess a real existence. I refer to 

this interpretation of artificial intelligence as strong 
CS. 

The ambition to create strong CS programs propelled much of 
the early work on artificial intelligence, particularly 
during the 1950's and 60's, and echoes of this idea can 
still be heard. For example, the 1986 paper by Smith from 

which one of the definitions in the above list is taken. 
Several influential authors, Herbert Simon (1977) and 
Marvin Minsky (1966) in particular, have written optimisti- 
cally on the prospects for the achievement of strong CS. 

Furthermore, the vision of a machine with its own independ- 

ent intelligence is widespread in the popular imagination 

and it is a favourite topic with, for instance, television 
journalists (Vaux, 1988) and film makers (Austin, 1968). It 
is important, therefore, for both theoretical and histori- 

cal reasons to establish clearly what is meant by the term 
intelligence and the sense, if any, in which a machine can 
correctly be said to possess it. 
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It is easier to anthropomorphise the computer than any 
other machine. one may, perhaps, speak of a motor car as 
'tired' or a sailing yacht as 'gentle'. Sometimes, when 
typing mistakes occur frequently, a typewriter may seen to 

have acquired 'a mind of its own'. These phrases, of 
course, are never meant to be taken in other than an ironic 

or metaphorical sense. But a computer is a symbol manipu- 
lating machine which is able to accept natural language 
input, and which can produce output to which meaning may be 

attributed. The process by which these symbolic transforma- 

tions take place will generally be so complicated that no 
human brain can comprehend it in its totality. A certain 

mysteriousness adheres to the inner workings of a computer, 

even for those who are accustomed to using them. Moreover, 

output can follow input amazingly quickly. When faced with 
the speed, complexity and dependability of a working com- 

puter an observer can allow himself to suppose that the 

machine is thinking, and consequently he may be prone to 

attribute to it at least some of our own cognitive facul- 

ties. 

Furthermore, the use of phrases such as 'meaningful output' 
in the previous paragraph can be taken to signify that 

meaning is a property which resides in the output material 
itself. I shall shortly give some reasons as to why this 

single-term definition of meaning, is mistaken. But it 

remains that our language has not yet developed ways of 
describing accurately the new aspects of the relationship 
between man and machine which the invention of the computer 
has brought about. There is, for example, no accepted 
linguistic distinction between, on the one hand, the way in 

which information is processed by a computer and, on the 

other, the sense in which human beings make use of informa- 

tion. Indeed, some investigators allow themselves to assume 
that because the same word is used the meaning must be the 

same in the two cases. The confusion that characterises 
Minsky's editorial introduction to Semantic Information 
Processing (1968), for example, is principally due to a 
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failure to observe this distinction between two or more 
different uses of such words as 'learn', 'understand' and 
'intelligent'. 

It seems to me that for the present we must live with a 

situation in which the appearance of thinking possessed by 

a functioning computer is compounded in our minds with a 
deeply-seated verbal ambiguity about the nature of computer 

operations. With the publication of his paper entitled 
'Minds, Brains and Programs' in 1980 John Searle has tried 

to dispel some of the confusion which results when familiar 

concepts are used unguardedly in the novel context of 

computing. I believe that Searle has, in large part, made 
his case and the next chapter of my thesis is occupied with 

an account of why I think that he has been successful. 

Scripts and Conceptual Dependency 

In 1977, three years before Searle's paper appeared Roger, 

Schank and Robert Abelson published their 'Scripts, Plans, 

Goals and Understanding'. These two authors were working at 

that tire at the Department of Computer Science of Yale 

University, and their book has since become well known in 

artificial intelligence circles. 'Scripts, Plans, Goals and 

Understanding' rehearses the author's notion of conceptual 

dependency and it proposes a novel method of representing 
knowledge under the name of scripts. The notion of scripts, 

and the claims made for this method of representation by 

Schank and Abelson, is the specific target of Searle's 

critique. In his paper Searle attacks the idea of strong CS 

as exemplified by scripts, and it is therefore necessary at 

this point to devote some space to an account of Schank and 

Abelson's proposal. 

Two models of human memory are currently favoured by psy- 

chologists. According to the semantic conception of memory 

we possess in our minds, or from the physicalist perspec- 

tive our brains, a permanent store of knowledge the items 

of which are related to one another according to their 
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meanings. Meaning is then attributed to words or other 
objects of experience by a mental process of searching a 
tree-like structure of semantic concepts. For example, 
'claws' are related to 'tigers', 'tigers' to 'cats', 'cats' 

to 'carnivores' and 'carnivores' to 'animals' by means of a 
hierarchy organised on semantic principles. The structure 

of concepts, once learned, remains with us through life and 
we access it as required during cognitive activity. The 

semantic model of memory assumes, in effect, that our minds 

are analogous to a library and that we make use of some- 
thing equivalent to the Dewey Decimal Classification for 

the purpose of locating and attributing meaning. 

Schank and Abelson adopt the alternative view of memory, 

according to which we accumulate a store of personal expe- 

riences rather than semantic concepts, and that the mind 

accesses memory according to a scale of time. This is 

referred to in the literature of psychology as the episodic 

model of memory. 

"The over-all organisation of memory is a 
sequence of episodes organised roughly along the 
time line of one's life. If we ask a man 'Who 
was your girlfriend in 1968? 1 and ask him to 
report his strategy for the answer, his reply 
is roughly: 'First I thought about where I was 
and what I was doing in 1968. Then I remembered 
who I used to go out with then. ' In other 
words, it really isn't possible to answer such 
a question by a direct look-up. Lists of 'past 
girlfriends' do not exist in memory. Such a 
list must be constructed. The process by which 
that list is constructed is a search through 
episodes organised around times and location in 
memory. " (Schank & Abelson, 1977: 19) 

It is a consequence of this view of memory that the mind 

must be able to work with an assembly of items whose mean- 
ings bear no intrinsic relationship to one another. Memory 

episodes occur as a result of the chances of life, and 
their structure and relationship in the mind reflects the 

fortuitousness of events. The question therefore arises as 
to how the mind relates one episode to another in such a 
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way as to acquire general knowledge or recognise repeating 

occurrences? Some mechanism must be at work to place the 

episodes into an organised and comprehensible form. 

"If memory is organised around personal experi- 
ences then one of the principal components of 
memory must be a procedure for recognising 
repeated or similar sequences. When a standard 
repeated sequence is recognised, it is helpful 
in 'filling in the blanks' in understanding. 
Furthermore much of the language generation 
behaviour of people can be explained in this 
stereotyped way. " (Schank & Abelson, 1977: 18) 

This requirement for a principle upon which memory episodes 

can be ordered provides Schank & Abelson with the clue 

which leads them to their notion of scripts. 

L 

"Some episodes are reminiscent of others. As an 
economy measure in the storage of episodes, 
when enough of them are alike they are remem- 
bered in terms of a standardised generalised 
episode which we will call a script. Thus, 
rather than list the details of what happened 
in a restaurant for each visit to a restaurant, 
memory simply lists a pointer (link) to what we 
call the restaurant script and stores the items 
in this particular episode that are signifi- 
cantly different from the standard script as 
the only items specifically in the description 
of that episode. This economy of storage has a 
side effect of poor memory for detail. But such 
a side effect, we shall argue, is the price of 
having people able to remember anything at all. 
Script based memory is what will enable comput- 
ers to understand without having their memories 
filled up with so much that search time is 
horrendously long. " (Schank & Abelson, 1977: 19) 

Schank and Abelson have developed the notion of scripts 
into a structured formalism by means of what they refer to 

as the theory of conceptual dependence. According to this 

theory, which in point of fact is no more than an asser- 

tion, there exists beneath language a foundation of meaning 

which can be precisely described and to which any sentence 
in any language can be reduced. 
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"Conceptual Dependency (henceforth CD) is a 
theory of the representation of the meaning of 
sentences. The basic axiom of the theory is: 
A For any two sentences that are identical 

in meaning, regardless of language, there 
should be only one representation. 

The above axiom has an important corollary that 
derives from it. 
B Any information in a sentence that is im- 

plicit must be made explicit in the repre- 
sentation of the meaning of that 
sentence. " (Schank & Abelson, 1977: 11) 

They proceed to list the 11 primitive actions which they 

claim can, when qualified by means of a numerical scale 
running from -10 to 10, serve to represent the meaning of 
every conceivable sentence. The primitive actions are 
presented as; 

ATRANS The transfer of an abstract relationship such 
as possession, ownership or control. - 

PTRANS The transfer of the physical location of an 
object. 

PROPEL The application of physical force to an object. 
MOVE The movement of a body part of an animal by 

that animal. 
GRASP The grasping of an object by an actor. 
INGEST The taking of an object by an animal to the 

inside of that animal. 
EXPEL The expulsion of an object from the body of an 

animal into the physical world. 
MTRANS The transfer of mental information between 

animals or within an animal. 
MBUILD The construction by an animal of new informa- 

tion from old information. 
SPEAK The action of producing sounds. 
ATTEND The action of attending or focusing a sense 

organ towards a stimulus. 

It is then asserted that separate sentences expressed in 

this notation can be assembled into a complete text by 

means of inferentially connected causal chains. 

"not any action can result in any state, and 
not any state can enable any action. Thus, for 
every primitive action, there is associated 
with it the set of states which it can affect 
as well as the states that are necessary in 
order to effect it. " (Schank & Abelson, 
1977: 25) 

page 27 



The theory of conceptual dependency is made up, then, of 
two components. Firstly, the idea that all discourse can be 

described by reference to a definable set of semantic 
concepts, and secondly the notion that these concepts can 
be related to one another in a causal manner. A full de- 

scription of conceptual dependency, including examples of 
the notation, is given in Schank (1975). 

The concept of a script reaches its complete formulation 

when the problem of generality is addressed. A separate 

script to describe each story would defeat the purpose of 

scripts, which is to provide an economical way of repre- 

senting meaning. some generalising mechanism is called for. 

Schank and Abelson propose to achieve this by uniting a 

script, representing the structure of a type of situation, 

with a knowledge base containing the events that are char- 

acteristic of a particular state of affairs. The new com- 

posite and flexible representation they call a knowledge 

structure. 

"we are establishing a level of representation 
different from Conceptual Dependency. The 
primitive ACTS and causal links of Conceptual 
Dependency are used to describe real world 
events, while script names make reference to 
the knowledge structures that motivate or 
underlie real world events. These levels of 
representation are connected by what we will 
call the Script link. The representation that 
we used above (with $SCRIPTNAME and its various 
roles) is this higher Knowledge Structure 
level. It is connected by a Script link to the 
Conceptual Dependency structure that instanti- 
ated it. 
What we are proposing then is that there be 
both a knowledge structure (KS) and a Conceptu- 
al Dependency (CD) representation for any given 
text. Some texts will not actually impart 
information about both, but it is to be expect- 
ed that in most texts there will be enough 
complexity to necessitate that both levels be 
represented, with links between them. " (Schank 
& Abelson, 1977: 152) 

A script is thus a stereotyped representation of a sequence 

of events occurring in a particular context. It has proved 
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to be a serviceable idea when the events and their context 

permit the two axioms of conceptual dependency to be ad- 
hered to. That is to say, scripts are found to be adequate 
in straightforward contexts where a single representation 
is capable of embracing the meaning of two or more sen- 
tences, and in which the meaning is simple enough to be 

represented explicitly. Under these circumstances a text 

can be expressed fairly adequately in the form of the 

conceptual dependency notation. A restaurant is the context 

which crops up most often in the literature of scripts, and 
the events are such things as ordering a meal, eating it 

and paying the bill. In such circumstances the meaning of a 

sentence is unambiguous and the causal chain is reasonably 

clear. 

The authors have derived the notion of scripts from the 

episodic theory of memory, and they go on to claim that the 

script concept can in its turn throw light on the psycholo- 

gy of cognition. Scripts, they say, are a pattern for the 

way in which we understand the world. 

"By subscribing to a script-based theory of 
understanding we are making some strong claims 
about the nature of the understanding process. 
In order to understand the actions that are 
going on in a given situation, a person must 
have been in that situation before. That is, 
understanding is knowledge based. The actions 
of others make sense only in so far as they are 
part of a stored pattern of actions that have 
been previously experienced. " (Schank & Abel- 
son, 1977: 67) 

But circumstances in life are rarely so clear-cut. While it 

is true that previous experience is necessary for under- 

standing, it is also true that most real-life situations 

are too complicated to be explicable by reference to any 

one script or set of scripts. This is because as events 

occur they have the effect of redefining the significance 

of those events that have previously occurred. A diner's 

conduct in a restaurant, to take Schank and Abelson's 

favourite context, will be affected by, among other things, 
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what he has been told that he should expect of the particu- 
lar restaurant. What he makes of the food and the service, 

and how he responds to them, may then reflect back upon his 
judgement upon the restaurant itself or upon his opinion of 
his informant, or, upon both. Scripts are dependent upon 

understanding, as well as understanding being to some 

extent dependent upon scripts. 

That is why most texts, or stories to adopt the terminology 

of scripts, are to some degree metaphorical and allusive. 

In everyday discourse understanding is achieved by meta- 

phorical transference of meaning and accepted patterns of 

knowledge, for which one may read scripts, are modified by 

a process of allusion. To take an extreme and therefore 

illustrative example, no 'script-based theory of under- 

standing' could represent adequately the meaning, or rather 

the meanings, of the following passage from The Third 

Policeman. 

"The reader will be familiar with the storms 
that have raged over this most tantalising of 
holograph survivals. The 'Codexi (first so 
called by Bassett in his monumental De Selby 
compendium) is a collection of some two thou- 
sand sheets of foolscap closely handwritten on 
both sides. The signal distinction of the 
manuscript is that not one word of the writing 
is legible. Attempts made by different commen- 
tators to decipher certain passages which look 
less formidable than others have been characte- 
rised by fantastic divergences, not in the 
meaning of the passages (of which there is no 
question) but in the brand of nonsense which is 
evolved. one passage described by Bassett as 
being 'a penetrating treatise on old age' is 
referred to by Henderson (biographer of Bas- 
sett) as 'a not unbeautiful description of 
lambing operations on an unspecified farm'. 
Such disagreement, it must be confessed, does 
little to enhance the reputation of either 
writer. " (O'Brien, 1967) 

O'Brien's paragraph is meant to be read in at least four 

distinct ways. It functions as a part of the plot of his 

novel, it is an ironic comment on the difficulty of reading 
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accurately, it takes a swipe at self-important editors, and 
it implies that the only response to really intractable 

problems is laughter. The four levels of meaning interact 

with one another, and they alter their relative importance 

according to the presuppositions which each particular 

reader brings to the text. Consequently, there is no one 

representation into which even a single sentence of The 

Third Policeman could be mapped. It is therefore impossi- 

ble, because of axiom A, to apply the technique of Schanki- 

an scripts to a text which is as multi-layered and expres- 

sive as is the work of Flan O'Brien. 

However, it is sufficient for the present purpose to note 

two things about the notion of scripts. Firstly, it follows 

from axiom B above that a formal system of symbols would 

suffice to describe a script fully and completely. Scripts 

are therefore by definition computable. Secondly, Schank 

and Abelson make some large claims for their work. 

"SAM (Script Applier Mechanism) is a program 
running at Yale that was designed to understand 
stories that rely heavily on scripts.... 
SAM understands these stories and others like 
them. By 'understand' we mean SAM can create a 
linked causal chain of conceptual i zations that 
represent what took place in each story. SAM 
parses the story into conceptual i zations using 
Reisbeck's analyser (Reisbeck, 1975). These are 
then f ed to a program that looks f or script 
applicability (Cullingford, 1976). When a 
script seems to be applicable, it is used by 
the script applier to make inferences about 
events that must have occurred between events 
specifically mentioned. 
The f inal representation is a gigantic concep- 
tual Dependency network. We could claim that 
this output indicates understanding, but as no 
one can read it (and for the more obvious 
reasons) we have developed programs that oper- 
ate on the output of the understanding 
program. " (Schank & Abelson, 1977: 177) 

This amounts to saying that they have instantiated strong 

CS in the computer centre at Yale. The fact that they draw 

close parallels between human understanding and computer 
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processing of scripts demonstrates that their use of the 

word understanding in the phrase 'this output indicates 

understanding' is to be taken literally rather than figura- 

tively. The computer understands, they say, in the same way 

as a human being and strong CS has, for them, become a 

reality. However, I believe that Schank and Abelson are 
deluded when they claim to have reproduced cognition. John 

Searle's paper of 1980 shows, I think, why it is that they 

are mistaken. 
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Chapter 3. THE CRITIQUE OF JOHN SEARLE 

It falls to few philosophers to describe a Gedankenexperi- 

ment that becomes famous. It is true that Christian Huy- 

gens' use of symmetry arguments in the seventeenth century 
to derive the conservation laws for momentum and energy 

appear frequently in modern textbooks of mechanics (Layzer, 

1984). The paradox of Schrodinger's cat (Schrodinger, 

1935), which raises as-yet unanswered questions about 

quantum theory, is referred to regularly in recent scien- 
tific discussions. But Searle's Chinese room argument has 

appeared at least twice before the general public (Searle, 

1984, Vaux, 1988) as well as attracting the attention of 
innumerable philosophers, linguists and workers in artifi- 

cial intelligence since its publication only ten years ago. 
It has, in fact, come into use as a standard shorthand 
description of a certain type of critical comment on arti- 
ficial intelligence. 

The Chinese Rooia 

Searle describes his thought experiment in the following 

way. 

"Suppose that I'm locked in a room and given a 
large batch of Chinese writing. Suppose fur- 
thermore (as is indeed the case) that I know no 
Chinese, either written or spoken, and that I'm 
not even confident that I could recognise 
Chinese writing as Chinese writing as distinct 
from, say, Japanese writing or meaningless 
squiggles. To me, Chinese writing is just so 
many meaningless squiggles. Now suppose further 
that after this first batch of Chinese writing 
I am given a second batch of Chinese script 
together with a set of rules for correlating 
the second batch with the first batch. The 
rules are in English, and I understand these 
rules as well as any other native speaker of 
English. They enable me to correlate one set of 
formal symbols with another set of formal 
symbols, and all that 'formal' means here is 
that I can identify the symbols entirely by 
their shapes. Now suppose that I am given a 
third batch of Chinese symbols together with 
some instructions, again in English, that 
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t 

enable me to correlate elements of this third 
batch with the f irst two batches, and these 
rules instruct me how to give back certain 
Chinese symbols with certain sorts of shapes in 
response to certain sorts of shapes given me in 
the third batch. Unknown to me, the people who 
are giving me all these symbols call the f irst 
batch 'a script', they call the second batch a 
'story', and they call the third batch 'ques- 
tions'. Furthermore, they call the symbols I 
give them back in response to the third batch 
'answers to the questions', and the set of 
rules in English that they gave me, they call 
'the program'. (Searle, 1980a: 417-418) 

The events that take place in the Chinese room form an 

almost exact parallel with the highly anthropomorphic 

account of running the Script Applier Mechanism which is 

given by Schank and Abelson in section 8.2 of Scripts, 

Plans, Goals and Understanding. In a run of SAM, one or 

several scripts is read into computer memory, next a second 
input is made in the form of the story, then questions 

about the story are input, and lastly answers are computed 

and printed out. The function of SAM is to organise and 

control these processes. The only difference, and it is a 

critical difference, between the procedures at Yale and 

operations in the Chinese room is that SAM is processed on 

a computer while Searle's Chinese symbols are processed in 

a human brain. 

Searle's point is that when the Chinese room is regarded as 

an input/output system it is in fact simulating, and not 

replicating, understanding. 

"it seems to me to be quite obvious in the 
example that I do not understand a word of the 
Chinese stories. I have inputs and outputs that 
are indistinguishable from those of the native 
Chinese speaker, and I can have any formal 
program you like, but I still understand noth- 
ing. For the same reasons Schank's computer 
understands nothing of the stories, whether in 
Chinese, English or whatever since in the 
Chinese case the computer is me, and in cases 
where the computer is not me, the computer has 
nothing more than I have in the case where I 
understand nothing. " (Searle, 1980a: 418) 
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I think that it is no more than the simple truth to say 
that Searle, locked in his room and performing his role of 

an English speaking manipulator of Chinese symbols, does 

not understand the Chinese language. Searle's understanding 

of English suffices for him to follow the English program, 

and by following it to apply a Chinese script to a Chinese 

story. Similarly his knowledge of English enables him to 

use the English language program to supply answers in 

Chinese to questions about the story which are presented to 

him in Chinese. But the distinction between, on the one 
hand manipulating a system of formal symbols, as he is 

doing, and on the other hand understanding a story, remains 

clear and incontrovertible. It follows that if Searle does 

not understand the story then neither does a functionally 

analogous CPU in a computer which is occupied with, for 

example, a run of SAM. Claims made for strong CS thus 

emerge as the result of confusing symbol manipulation with 

understanding. 

Searle's refutation of the case for strong CS is important 

because he offers a conceptual, not an empirical, argument. 

"It is an empirical question whether any given 
machine has causal powers equivalent to the 
brain. My argument against strong AI is that 
instantiating a program is not enough to guar- 
antee that it has those causal powers. " 
(Searle, 1980b: 452) 

A better argument or a more accurate piece of logic might 

perhaps prove him wrong, but no experimental finding could, 
I believe, overturn his conclusion. Most commentators, 
including Danto (1980), Eccles (1980) Libet (1980), Maxwell 

(1980), Natsoulas (1980), Obermeier (1983), Puccetti (1980) 

and Ringle (1980) agree with this conclusion. However, 

there are those such as Dennett (1980), Minsky (1980) and 
Moor (1988) who adopt a naive empiricism, and claim that 

the progress of science may one day show how a machine can 

acquire intentionality. But they do not explain how it is 
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that an experiment could establish the truth of a faulty 

argument. 

The last part of Searle's paper is taken up with his at- 
tempt to answer the question of why the claims of strong 
CS, or strong AI as he phrases it, must necessarily be 

mistaken. He appeals to the concept of intentionality, and 
he puts forward in support of his position a 'monist-inter- 

actionist" (1980b) view of cognition. He explains the 
impossibility of strong CS by trying to demonstrate that an 

unbridgeable gulf exists between the operation of a machine 

and the functioning of the brain. These are experimental 

rather than conceptual matters, of course, and Searle's 

critics have not failed to try to undermine his explana- 
tions by reference to empirical data. 

conclusion 
Most hostile comments upon the Chinese room argument attack 
it not directly but by criticising Searle's attempt to 
justify his conclusion. Searle's critics raise objections 
based upon the nature of cognition, about which there has 

been and is much controversy, and their arguments bear upon 

weak as much as upon strong CS. The attack which has been 

made upon both strong and weak CS by Hubert Dreyfus is the 

subject of the next chapter. Dreyfus approaches the subject 
of artificial intelligence from a phenomenological point of 
view, and his critique casts a great deal of light upon the 

nature of human thinking and its relationship to machine 

computation. I shall therefore postpone a discussion of 
Searle's views on cognition, which underpin his Chinese 

room argument, until Chapter 5 of this text. 
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Chapter 4. THE CRITIQUE OF HUBERT DREYFUS 

Alfred North Whitehead, who was co-author with Bertrand 
Russell of 'Principia Mathematical, has observed in his 

'Adventures of Ideas' that: 

"(Platols) later dialogues circle round seven 
notions, namely - The Ideas, The Physical 
Elements, The Psyche, The Eros, The Harmony, 
The Mathematical Relations, The Receptacle. I 
mention them because I hold that all philosophy 
is in fact an endeavour to obtain a consistent 
system out of some modification of these no- 
tions. " (Whitehead, 1933: 354) 

That is as much as to say that more than 2000 years of 
Western philosophy amounts to little other than a series of 
footnotes on Plato. 

The work of Hubert Dreyfus goes some way to corroborate 
Whitehead's remark, for Dreyfus has much to say about Plato 

in his influential book 'What Computers Can't Do' first 

published in 1972. Dreyfus is interested in the legacy of 

Plato not on account of the metaphysical doctrines it 

contains, but rather as a foil and counter-example to his 

own epistemological point of view. Furthermore, he is a 

critical rather than an admiring commentator. Plato, for 

Dreyfus, is the originator of the view that thought can 

only be described as knowledge if it can be stated explic- 
itly. 

"Since the Greeks invented logic and geometry, 
the idea that all reasoning might be reduced to 
some kind of calculation - so that all argu- 
ments could be settled once and for all - has 
fascinated most of the Western tradition's 
rigorous thinkers. Socrates was the first to 
give voice to this vision. The story of artifi- 
cial intelligence might well begin around 450 
BC when (according to Plato) Socrates demanded 
of Euthyphro, a fellow Athenian who, in the 
name of piety, is about to turn in his own 
father for murder: 'I want to know what is 
characteristic of piety which makes all actions 
pious... that I may have it to turn to, and to 
use as a standard whereby to judge your actions 
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and those of other men. 11 Socrates is asking 
Euthyphro for what a modern computer theorist 
would call an 'effective procedure', 'a set of 
rules which tell us, from moment to moment, 
precisely how to behave'. 
Plato generalised this demand for moral cer- 
tainty into an epistemological demand. Accord- 
ing to Plato, all knowledge must be stateable 
in explicit definitions which anyone could 
apply. If one could not state his know-how in 
terms of such explicit instructions - if his 
knowing how could not be converted into knowing 
that - it was not knowledge but mere belief. " 
(Dreyfus, 1979: 67-68) 

Dreyfus goes on to trace the progress of the interpretation 

of knowledge as something necessarily explicit through the 

work of Galileo, Hobbs and Leibniz to Boole and Babbage. 

The development of computers in the 1940's brought this 

strand of Western thought to its culmination. 

"For, since a digital computer operates with 
abstract symbols which can stand for anything, 
and logical operations which can relate any- 
thing to anything, any digital computer (unlike 
an analogue computer) is a universal machine. 
First, as Turing puts it, it can simulate any 
other digital computer.... Second, and philo- 
sophically more significant, any process which 
can be formalised so that it can be represented 
as a series of instructions for the manipula- 
tion of discrete elements, can, at least in 
principle, be reproduced by such a machine. 
But such machines might have remained overgrown 
adding machines had not Plato's vision, refined 
by two thousand years of metaphysics, found in 
them its fulfilment. At last here was a machine 
which operated according to syntactic rules on 
bits of data. Moreover, the rules were built 
into the circuits of the machine. Once the 
machine was programmed there was no need for 
interpretation; no appeal to human intuition 
and judgement. This was just what Hobbs and 
Leibniz had ordered, and Martin Heideggar 
appropriately saw in cybernetics the culmina- 
tion of the philosophical tradition. " (Dreyfus, 
1979: 72) 

But if the power and generality of the new machine was to 

be realised in practice then some "technique for converting 

any practical activity such as playing chess or learning a 
language into a set of instructions" (Dreyfus, 1979: 74) was 
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I needed. Some of the early artificial intelligence programs 

appeared to be examples of such a technique. 

"With digital computers solving such problems 
as how to get three cannibals and three mis- 
sionaries across a river without the cannibals 
eating the missionaries, it seemed that finally 
philosophical ambition had found the necessary 
technology: that the universal high-speed 
computer had been given the rules for convert- 
ing reasoning into reckoning. 
The field of research, dedicated to using 
digital computers to simulate intelligent 
behaviour, soon became known as 'artificial 
intelligence'. " (Dreyfus, 1979: 77) 

We have seen earlier that John Searle defines strong AI as 
the reproduction of human intelligence by means of a com- 

puter. He proceeds to prove, I think convincingly, that 

what he calls strong AI is impossible. For Dreyfus, howev- 

er, artificial intelligence means not the reproduction of 
intelligence but the simulation of intelligent behaviour. 

This is the undertaking which Searle refers to as weak AI. 

I think that the two activities are more usefully described 

as strong and weak CS respectively. But regardless of 

terminology, it is clear that Searle and Dreyfus are ad- 
dressing themselves to different, if related, topics. 

Dreyfus's criticism of artificial intelligence is more far- 

reaching than Searle's. For Dreyfus, the point to be refut- 

ed is not that computers can think,, but that thought itself 

is a species of computation. For, he argues, if reasoning 

could be converted into reckoning by becoming mechanised, 

then far-reaching consequences for our ways of seeing 

everything will ensue. 

"Aristotle defined man as a rational animal, 
and since then reason has been held to be of 
the essence of man. If we are on the threshold 
of creating artificial intelligence we are 
about to see the triumph of a very special 
conception of reason. Indeed, if reason can be 
programmed into a computer, this will confirm 
an understanding of man as an object, which 
Western thinkers have been groping toward for 
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two thousand years but which they only now have 
the tools to express and implement. The incar- 
nation of this intuition will drastically 
change our understanding of ourselves. If, on 
the other hand, artificial intelligence should 
turn out to be impossible, then we will have to 
distinguish human from artificial reason, and 
this too will radically change our view of 
ourselves. Thus the moment has come either to 
face the truth of the tradition's deepest 
intuition or to abandon the mechanical account 
of man's nature which has been gradually de- 
veloping over the past two thousand years. " 
(Dreyfus, 1979: 78-79) 

Dreyfus's proclaimed intention to refute the notion that 

calculation is the same thing as thinking is therefore much 

more than an attempt to undermine artificial intelligence. 

It is, for him, the final battle in the war between man as 

a rational mechanism and man as a free intellect. And the 

casus belli is artificial intelligence. 

Dreyfus divides his task into three distinct stages. He 

begins by claiming that the promise of artificial intelli- 

gence remains unrealised, and will never in fact be ful- 

filled, because of intractable methodological difficulties. 

He takes as examples of unrealised promise the early of 

attempts at machine translation of natural language, prob- 
lem solving and pattern recognition. 

Unfulfilled Promise - Machine Translation 

one of the early machine translation programs was developed 

by a team at the National Physical Laboratory in Teddington 

lead by A[ ] Szanser. Work began in 1959 and by 1966 

it had achieved an assessment of "slightly less than good" 

(Szanser, 1967) The NPL program, like others which appeared 
during the late 50's and early 60's, was based upon a much 

oversimplified procedure which can be illustrated diagram- 

matically as; 

Source language ------ > Target language. 

The NPL program made use of a large dictionary of technical 
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terms in English and Russian which had been compiled at 
Harvard University (Oettinger, 1955). The hope was that by 

selecting matched English and Russian words, and then 

ordering them according to syntactic rules, a high quality 

machine translation in the direction of either language 

would result, at least of technical texts. But, as was 

suspected at the time and is known now, the complexity of 

natural languages will quickly overwhelm such a primitive 

scheme. There are four main defects in the simple NPL 

algorithm and other similar machine translation programs. 

In the first place, the source language may employ a single 

word with two meanings while the target language expresses 

each meaning with a separate word. For example, the two 

meanings of the English word 'pent, used of an implement 

for writing with ink and also to denote a small enclosure, 
is represented in French by 'plume' and 'parcl respective- 
ly. Therefore, in order to select the correct French word 

when translating an English text, and vice versa, it is 

necessary to know the meaning as well as the syntactical 
description of the words in a translation program's dic- 

tionary. This difficulty in making a translation is re- 
ferred to as lexical ambiguity. 

A corresponding difficulty, known as grammatical ambiguity, 

results from the fact that an ambiguous sentence in the 

source language may be represented by several different 

grammatical structures in the target language. To say in 

English that 'He follows Darridal could be correctly trans- 

lated into French either as II1 suit Darridal or II1 sous- 

crire au Darridism'. The intransitive English verb in the 

first case is translated into a French intransitive verb, 

while in the second case a transitive verb is required in 

the translation. As with the lexical ambiguity of individu- 

al words, the meaning of the English sentence must be 

disambiguated before a corresponding French construction 

can be found. 
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When a connective or a pronoun serves the grammatical 
purpose of pointing back to something which has been said, 
it is described as anaphoric. But a difficulty, in the 

context of machine translation, is that it may well be 

capable of referring to more than one preceding word or 
clause. For instance, the pronoun fit' in the last sentence 
may refer to the nouns 'connective' or 'pronoun' in the 

sentence before, or to the noun phrase 'a difficulty for 

machine translation' in the same sentence. References to 

objects which occur later than the pronoun or which lie 

outside the text altogether are known as cataphoric and 
exophoric respectively (Halliday & Hasan, 1976). The prob- 
lem of referential cohesion occurs frequently in linguistic 

analysis. Texts containing these types of reference can 

only be translated correctly if the exact referent is 

known, and this is of course a question of semantics rather 
than syntax. 

A particularly intractable difficulty in all language 

translation, both for a human linguist and a computer, is 

dealing with idioms. An idiom is a linguistic construction 

approved by usage whose significance differs from its 

grammatical meaning. Elaine Rich (1983) observes that; 

"An idiom in the source language must be recog- 
nized and not [mechanically] translated direct- 
ly into the target language. A classic example 
of the failure to do this is illustrated by the 
following pair of sentences. The first was 
translated into Russian, and the result was 
then translated back to English, giving the 
second sentence: 

1. The spirit is willing but the flesh is weak. 
2. The vodka is good but the meat is rotten. 

It is evident that a third element must be added to the 

simple diagrammatic representation of machine translation 

if it is to become a method capable of overcoming the 

lexical, grammatical, referential and idiomatic obstacles. 
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The diagram must be expanded into the form; 

Source language --- > Semantic encoding --- > Target language 

Dreyfus agrees with the need for a semantic component in a 

workable automatic machine translation algorithm. He goes 

on to argue that fully automatic high quality translation, 

often abbreviated to FAHQT, is impossible because meaning 

cannot in fact be represented by any formal symbolic sys- 
tem. Furthermore, he applies his comments on semantic 

processing to problem solving and pattern recognition 

programs as well as attempts at machine translation. His 

reasons for this assertion, which makes up the second part 

of his analysis of weak CS, are interesting and, I think, 

cogent. 

Unfulfilled Promise - Computer chess 

It is possible, in principle, to solve many problems by 

enumerating every possibility and then attempting to select 

the best solution from the list. The problem to which this 

exhaustive process of 'counting out' has most often been 

applied is the game of chess. The conduct of a chess player 
is completely rule bound but the immense number of possible 
board states, some 10120, means that playing and winning 

the game is not a simple matter. The combination of strict 
formality and enormous extent has made chess a favourite 

vehicle for experiments in problem solving by computer. 

The algorithm upon which all modern chess playing programs 

are based is the Ilookahead-evaluate-minimaxl model that 

was first proposed by Claude Shannon in 1950. Using this 

method the machine proceeds by searching ahead from the 

current position along a branching tree of possible moves. 

The result of each possibility is recorded on a numerical 

scale and the move with the highest score is selected and 

made. It has been found that in chess there is an average 

of about 35 lookahead branches for each board state. Other 

things being equal, therefore, the lookahead tree would 
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grow by powers of 35. Advances in the design of chess 
playing programs have taken the form of finding ways to 

prune the lookahead tree, and the recent Cray Blitz program 
(Hyatt et al, 1986) grows by a power of only about 8 for 

each ply. 

By 1967 the MacHACK chess program had achieved the standard 

of an average club player (Greenblatt, Eastlake & Crocker, 

1967). More recently the Cray Blitz program has beaten 

players of National Master standard and is rated at about 
2300 on the United States Chess Federation scale (Hyatt et 

al, 1986). Although progress in the techniques available 
for pruning the lookahead tree have helped to reach what 
is, by the standard of ordinary mortals, a very high rating 

the most important factor has been an enormous increase in 

the power of computers. MacHACK ran on a DEC PDP-6 capable 

of 2x 105 arithmetic operations per second, while the Cray 

X-MP two processor machine upon which the 1983 version of 

Cray Blitz was implemented has a speed of 1012 arithmetic 

operations per second, a five million-fold increase in 

speed of processing. 

Chess playing programs show clearly the effects of a funda- 

mental difficulty facing any problem solving routine which 

relies on exhaustively counting out the possibilities, 

which is the fact that the necessary number of computations 
increases exponentially with the size of the problem. This 

phenomenon is known in computer jargon as 'the combinatori- 

al explosion'. 

"Chess, however, although decidable in princi- 
ple by counting out all possible moves and 
responses, presents the problem inevitably 
connected with choice mazes: exponential 
growth. Alternative paths multiply so'rapidly 
that we cannot even run through all the branch- 
ing possibilities far enough to form a reliable 
judgement as to whether a given branch is 
sufficiently promising to merit further explo- 
ration. " (Dreyfus, 1979: 101) 
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Few people would disagree with Dreyfus when he claims that 

an attempt to simulate cognition, even using a very large 

computer to count out all the possibilities, is doomed to 
fail in the case of any but trivially small problems. The 

processing power of the human brain, which is about 1018 

arithmetic operations per second, is some million times 

faster than a supercomputer. However, despite the remarka- 
ble power of the chemical computer housed within his skull, 

a human player is no more able to count out all possible 

moves in a game of chess than is Cray Blitz. The number of 

possibilities remains much too large for the brain as it is 

for the supercomputer. 

Unfulfilled Promise - Pattern Recognition 

Nearly everything that we do involves, if it does not 

actually follow from, an act of perception. The word 
'perceive' derives ultimately from the Latin Icaperel 

meaning 'to lay hold of', and the modern usage similarly 
implies the active acquisition of information or knowledge. 

The enterprise of "making machines do things that would 

require intelligence if done by men" therefore leads natu- 

rally to experiments in computer perception. A sub-division 

of this undertaking is the attempt to program a computer to 

recognise patterns. 

One might hope that pattern recognition would be easier to 

do than perception by computer because the pre-existence of 
the pattern to be recognised restricts the scope of the 

problem. Perception in the general sense leaves open the 

question of what it is that is to be perceived. But it 

quickly emerges that pattern recognition is more difficult 

than it at first seems. In his role of the gadfly of the 

artificial intelligence community, Hubert Dreyfus has not 
been slow to point out some of these difficulties and their 

consequences. 

"A computer must recognise all patterns in 
terms of specific traits. This raises problems 
of exponential growth which human beings are 
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able to avoid by proceeding in a different 
way. Simulating recognition of even simple 
patterns may thus require recourse to each of 
the fundamental forms of human 'information 
processing' discussed this far. And even if in 
these simple cases artificial intelligence 
workers have been able to make some headway 
with mechanical techniques, patterns as complex 
as artistic styles and the human face reveal a 
loose sort of resemblance which seems to re- 
quire a special combination of insight, fringe 
consciousness, and ambiguity tolerance beyond 
the reach of digital machines. It is no wonder, 
then, that work in pattern recognition has had 
a late start and an early stagnation. " (Drey- 
fus, 1979: 120) 

I think that much of what Dreyfus says here is perfectly 
true. It is impossible to see how a computer, which has no 
human or personal history nor is possessed of intentionali- 

ty, can ever be programmed to recognise a Tinoretto, to 

distinguish between a string quartet by Hayden and another 
by Mozart, or to pick out a particular face in a crowd. He 

could also have included in his list of impossibilities the 

perception of significant patterns in a game of chess. But 

the passage that I have quoted above displays the charac- 
teristic weakness, as well as the cogency, of Dreyfus's 

line of argument. 

He correctly points out the impossibility of doing some- 
thing difficult by imitating human methods of thought and 
he goes on to imply, erroneously I think, that simpler 
tasks of a similar type are therefore also impossible to 

carry out. This follows from his failure to distinguish 

between the imitation and the mere simulation of cognition. 

Just as he was lead in 1965 to dismiss the possibility of 

expert computer chess by the fact that: 

"situations will always occur in which the 
machine cannot pursue the chain of moves which 
contains the winning combination; thus, there 
will always be games that people can win and 
machines cannot. " (Dreyfus, 1965) 
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So he concludes that all pattern recognition research is in 

a state of stagnation because no computer could recognise a 

painting in a museum. But more humble lines of pattern 
recognition research are not at a halt. The last twenty 

years has, for example, seen a great deal of progress in 

the automatic recognition of printed and typewritten char- 

acters. The topic of character recognition is often abbre- 

viated as CR. 

The most simple type of CR machine makes use of magnetic 

printing ink. serial numbers on bank cheques, for example, 
when read using a magnetic scanner, produce a characteris- 
tic waveform. The waveform can be compared very easily with 

a stored bank of waveforms representing. the elements of the 

font used in printing the cheque forms, and the result 

output to a computer screen or file. Magnetic CR machines 

work very fast, but little intelligence, real or artifi- 

cial, is required of them. 

The reverse is true of programs written to recognise hand- 

writing. The great variety of graphical forms which appears 
in handwritten texts is often sufficient to confuse the 

human eye. But despite great differences in size, regulari- 
ty, shape and connectedness in cursive script it is possi- 
ble to achieve recognition rates as high as 97% (Davis & 

Lyall, 1986). This is done by extracting the elements of 

which a character is composed and comparing them with a 
database containing the set of possible graphical strokes 
(Eden, 1968). The advantage of this method is that a stroke 

which does not precisely match the pattern, a crossing of a 

It' which is not accurately horizontal for example, can be 

recognised as a rotated crossing stroke rather than being 

rejected as outside the set. Furthermore, a character can 
be recognised correctly even if one of its elements is 

missing provided that the combination of characters that it 

does exhibit is possessed by no other character. Cursive 

script recognition, or CRS, programs have decipherment 
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capabilities which, were they exhibited by human readers, 
would be considered to demonstrate intelligence. 

An intermediate position on the artificial IQ scale is 

occupied by the optical character reading, or OCR, ma- 
chines. The type now frequently seen on office desks can 
usually read only a restricted number of printed character 
fonts. The DEST PC machine, for instance, can read a piece 
of text provided that it is printed on one of 12 daisywheel 
typefaces or 9 produced on a dot-matrix printer. Recogni- 
tion is carried out by comparing the character as it is 

read with a prepared database of standardised character 
forms. These machines are accurate within their design 

limits, but they are somewhat restricted in their capabili- 
ties. The DEST PC will fail to recognise text that has, for 

example, been enlarged or reduced in a photocopier. This 

machine is a long way from displaying the "special combina- 
tion of insight, fringe consciousness and ambiguity toler- 

ance" which Dreyfus supposed to be indispensable, but it is 

nevertheless a very useful device to anyone who has to 

handle text. 

However, the type of OCR machine that possesses a database 

which is trainable rather than standardised can perform at 

a level that is a convincing imitation of intelligence. The 

KDEM system (Hockey & Scott, 1981) employs a vertical slit 

optical reader by means of which an enlarged image of a 

character is sent to the screen, together with the system's 

guess as to which alphanumeric character it is. The opera- 
tor confirms or corrects the system's judgement, whereupon 
the character is entered into the database. The key to the 

effectiveness of the system is that a character is stored 

not as a single complete image, but rather as an assembly 

of graphical features. This enables subsequently read 

characters to be identified even if they differ in some 
ways from any of the database records. An IiI without a 
dot, for example, will be read correctly because the pro- 
gram has been supplied with the fact that no other charac- 
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ter in the Roman alphabet possesses only a short perpendic- 
ular stroke which springs from the baseline. The result of 
the process of training is that the system soon ceases to 

call for confirmation of the identity of a character, and 
it is able to go ahead and read the rest of the document 

without help from the operator. If the ability to accept 
training is held to be a feature of intelligence, then the 

KDEM system can lay claim to the artificial variety of that 

faculty. 

The Human Situation 

It appears, on Dreyfus's assessment, that a computer will 

never be able to translate text, play chess or recognise 

patterns. He points to our human ability to recognise a 
Degas, or to translate Dante, and one must concede in his 

favour that a grandmaster can still defeat even a program 

as powerful as the Cray Blitz. Wherein, then, lies the 

difference between computing machines on the one hand and, 

on the other, our own selves as cognitive beings? This 

question brings us to the last part of Dreyfus's argument 

against weak CS, which he sees as the final incarnation of 
the Platonic tradition. 

The last stage of Dreyfus's attempt to rebut the claims of 

researchers in artificial intelligence consists of giving 

an alternative account of how it is that humans display 

actual intelligence. This he does from a phenomenological 

point of view. 

Dreyfus the phenomenologist approaches the question of 
human performance by examining what a chess player thinks 
he is doing while he is conducting his game. The American 

chess master Eliot Hearst attributes the skill of the human 

player not to the number of moves he can foresee, but to 

his ability to judge the significance of the pattern and 
structure which a game displays. 
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"Apparently the master perceives the setup in 
large units, such as pawn structure or cooper- 
ating pieces, and can even decide which side 
has the advantage. When he does make an error, 
it is very often one of putting a piece on a 
very desirable square for that type of posi- 
tion. " (Hearst, 1967: 35) 

That is to say, the player begins by seizing upon the 

overall pattern of the game. He identifies the places in 

which he and his opponent is strong or weak, he recalls 
previous games in which he has faced a similar situation, 
and he exploits what he knows about his opponent's style of 
play. only then does he count out the possible moves. This 
type of problem solving Dreyfus calls 'zeroing-in'. Zero- 
ing-in is based upon intuition and interpretation, not upon 
calculation, and it works from the general to the particu- 
lar. It is, in fact, the converse of 'counting out'. 

Zeroing-in works for us because we can use the context of 

our situation to judge the significance of things. A piece 
is vulnerable in the context of a particular state of the 

board, and a move is made because of later moves that it 

may facilitate. But the context of the board is influenced 

by the context of experience of the two players, and that 
in its turn is partly a function of the state of chess 
culture. And the culture of chess is a part of general 
culture, which exists in history. It is impossible to 

provide a computer with all that is needed to zero in on a 
problem because the sequence of the layers of context forms 

an infinite regress. 

"Thus, for example, to pick out two dots in a 
picture as eyes one must have already recog- 
nised this context as a face. To recognise this 
context as a face one must have distinguished 
its relevant features such as shape and hair 
from the shadow as and highlights, and these, 
in turn, can be picked out as relevant only in 
a broader context, for example, a domestic 
situation in which the program can expect to 
find faces. This context too will have to be 
recognised by its relevant features, as social 
rather than, say, meteorological, so that the 
program selects as significant the people 
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rather than the clouds. But if each context can 
be recognised only in terms of features select- 
ed as relevant and interpreted in terms of 
broader context, the AI worker is faced with a 
regress of context. " (Dreyfus, 1979: 289) 

Human beings, as sentient creatures, can cut short the 

regress of context because they have a personal point of 

view from which to decide what aspects of the context are 

relevant. As Ludwig Wittgenstein puts the matter, "What has 

to be accepted, the given, is - so one could say - forms of 
life. " (PI 11,226). But a computing machine, which can do 

no more than manipulate a formalism of symbols, would need 

an infinite amount of information if it were to be able to 

arrest the infinite regress of the problem context. 

Conclusion 
In the previous chapter I have given an account of Searle's 

Chinese Room experiment in which, in my opinion, he dis- 

poses of the notion that a computer can be said to be 

thinking just because it is able to manipulate symbols. 
Dreyfus's attack on artificial intelligence research has 

been described in this chapter. He dismisses artificial 
intelligence not just because it cannot instantiate think- 
ing but because it cannot, he asserts, simulate thinking 

either. But there are many parallels between the two analy- 

ses offered by Searle and Dreyfus. In the next chapter I 

attempt to compare their arguments in such a way as to come 
to a conclusion about the status of cognitive simulation as 

a sub-division of the topic of artificial intelligence. 

page 51 



Chapter 5. SEARLE, DREYFUS AND THE SINULATION OF COGNITION 

Some conscious states of mind occur without direct refer- 

ence to the outer world. For example, voluntary movement of 
the body, the sensation of a painful tooth or the exercise 

of memory are states of mind that are directed inwards upon 

oneself. They are complete without reference to external 

reality, and are in a sense intransitive. But other states 
imply the relevance of something in the outside world. One 

may believe that something is not so, one may wish some- 
thing to be so, or one may be afraid of something. These 

states, which are directed at an external object or set of 
independent circumstances, are known as intentional states. 

Intentional States 
The fact that intentional states are internal mental phe- 
nomena rather than percepts is shown by the fact that an 
intentional state can be directed at an unknown or ficti- 
tious object. 

"for a large number of Intentional states I can 
have the state without the object or state of 
af f airs that the Intentional state is directed 
at even existing at all: I can believe that the 
king of France is bald even if, unknown to me, 
there is no king of France; and I can hope that 
it will rain even if it doesn't rain. " (Searle, 
1979: 74) 

Searle has capitalised the word Intentional in the text of 

his paper in order to distinguish the philosophical use of 

the term from its meaning in ordinary usage of "done on 

purpose". In the absence of intentional states, in this 

technical sense of the word, the mind would be isolated 

from its environment and thinking would be impossible. 

However, the essential point, in the context of artificial 
intelligence, about the notion of intentionality is that it 

involves a two-term relationship. There has to be the 

object or circumstance which is referred to, and there must 

be a conscious being capable of directing attention to 
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those things. Intentionality is the name for the logical 
link which connects the two sides of the relation. 

z 
However, in the notion of meaning as proposed by Schank 

(1975) as part of his theory of conceptual dependency there 
is no room, nor any need, for intentional states. 

5 

6 

"We define an interlingua as a representation 
of meaning of natural language that does not 
involve any of the words of the language. This 
representation of meaning should be extractable 
from any language and capable of being generat- 
ed into any other language. 
In order to try to develop an interlingual 
representation it is necessary to reject the 
idea that thought does not exist independent of 
language. We thus propose that language has 
words which name thoughts and that thoughts can 
be separated. Thus we assume that any language 
can be translated into any other language. " 
(Schank, 1975: 8) 

That is to say, meaning resides in the words themselves, 

independently of the linguistic relation of an observer to 

those words. 

The semantic autonomy of the object is, no doubt, required 
if semantic processing by computer is to become a reality. 
But I think that Searle has placed his finger accurately 

upon the feature that most clearly distinguishes thought 

from computation. He explains the result of the Chinese 

room experiment as following from the necessarily inten- 

tional character of thought, and that this intentionality 

is possessed by the programmers, not the computer. 

"formal symbol manipulations by themselves 
don't have any intentionality; they are quite 
meaningless; they aren't even symbol manipula- 
tions, since the symbols don't symbolise any- 
thing. In the linguistic jargon, they have only 
a syntax but no semantics. Such intentionality 
as computers appear to have is solely in the 
minds of those who program them and those who 
use them, those who send in the input and those 
who interpret the output. " (Searle, 1980a: 422) 
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In short, intentionality, which is indispensable for 
thought, is a two-term relationship between a conscious 
being and the external world. Conceptual dependency, on the 
other hand, is based upon single terms each of which is 
held to characterise something in the world. In short, 
conceptual dependency attempts to replace a two-term inten- 
tional relationship with a single-term property attribu- 
tion. A computer may indeed be programmed to manipulate the 

components of a Schankian script, but Searle's analysis of 
intentionality shows why we should not mistake this for 
thought. 

Although Searle claims (1980b: 454) that "I am 
concerned .... only incidentally with the 'mind-brain prob- 
lem'. ", he does in fact devote much of the space in his 

paper to what he calls the causal powers of the human 
brain. He has shown that intentionality is indispensable to 
thought, and he wants to go on to demonstrate that only 
brains can display intentionality. Thus he is led, despite 

a disclaimer, to say something about the vexed problem of 
the relationship between the brain and the mind. 

It is possible to argue, as did Rene Descartes, that the 
brain as a part of the body is a physical object while 
thought is immaterial and takes place in a sphere remote 
from space and time where the laws of physics do not apply. 
A person's bodily life, from this point of view, takes 

place in the physical world and is external to him, while 
those things that occupy his mind constitute his internal 

life. There are a number of difficulties with Cartesian 
dualism, the most intractable of which is the problem of 
accounting for the interactions of the mind and the body. 

David Hume was the first thinker to acknowledge this com- 
pletely, and he found himself in consequence driven to 

embrace a completely solipsistic view of the world. If 

one's mind is indeed remote in space and time from one's 
brain, then the only thing of which the possessor of a mind 
can have knowledge is that same mind. 
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Most thinkers other than Hume have felt it necessary to try 
to modify the doctrine of Cartesian dualism so as to evade 
solipsism. Gilbert Ryle in his 'The Concept of Mind' (1949) 

made a comprehensive attack of what he called "the ghost in 
the machine", by which he meant the idea that our machine- 
like bodies are inhabited by an immaterial ghost-like mind. 
He advanced a monist conception of the relation of brain 

and the mind. According to Ryle, to speak of a mind is to 
discuss someone's propensity to do things. 

"To talk of a person's mind is not to talk of a 
repository which is permitted to house objects 
that something called 'the physical world' is 
forbidden to house; it is to talk of the per- 
son's abilities, liabilities, and inclinations 
to do and undergo certain sorts of things, and 
of the doing and undergoing of these things in 
the ordinary world. Indeed, it makes no sense 
to speak as if there could be two or eleven 
worlds. Nothing but confusion is achieved by 
labelling worlds after particular avocations. 
Even the solemn phrase 'the physical world' is 
as philosophically pointless as would be the 
phrase 'the numismatic world'i 'the haberdash- 
ery world', or 'the botanical world. " (Ryle, 
1949: 190) 

To suppose otherwise, he says is to make the "category 
mistake" of inventing a thing for whose reality the only 
evidence is the existence of a word. Ryle's critique of 
dualism is, like Descarte's proposal, conceptual, and 
neither thinker makes any appeal to empirical evidence to 
support his position. 

For his part, Searle produces in his paper a sketch of a 
position on the brain-mind problem which rests a little 

awkwardly between the views of Ryle and Descartes. He 

claims that there is a necessary biological relationship 
between cognition and the kind of creatures we are. 

"It is not because I am the instantiation of a 
computer program that I am able to understand 
English and have other forms of intentionality 
(I am, I suppose, the instantiation of any 

page 55 



number of computer programs), but as f ar as we 
know it is because I am a certain sort of 
organism with certain biological (i. e. chemical 
and physical) structure, and this structure, 
under certain conditions, is causally capable 
of producing perception, action, understanding, 
learning, and other intentional phenomena. And 
part of the present argument is that only 
something that had those causal powers could 
have that intentionality. " (Searle, 1980a: 422) 

It seems to me that Searle has quite unnecessarily muddied 
the water by appealing to what he claims is accepted empir- 
ical knowledge. We have in recent years learned quite a lot 

about how nerve impulses in the brain are transmitted, and 
we know where in the brain some cognitive processes are 
centred. But the manner in which thoughts and feelings are 
related to, or result from, the physiological working of 
the brain remains a deep and fascinating mystery. Neurobi- 

ologists have been able to push back the frontier of our 
understanding of how the brain works, but the mind-brain 
problem has retreated in step with the advance of science. 
one therefore stands on very shaky ground when one tries to 

put neurobiology to use in epistemological discussions. 
Searle would have saved himself some inconclusive skirmish- 
es with empirically oriented critics such as Fodor (1980) 
Hofstadter (1980) and Minsky (1980) had he recognised this. 

But, it seems to me, Searle's case stands by its logical 

coherence rather than by virtue of any empirical buttress- 
ing. One may accept the conclusion of his argument while 
regretting his ill-judged excursion into the biology of the 
brain. 

The fact that all formal symbol manipulation systems suffer 
from a complementary pair of related limitations, which are 
the combinatorial explosion in the direction of counting 
out and infinite regress in the opposite direction of 
contextual assessment, is Dreyfus's central insight and it 
is the thought that underpins the whole of his book. I 
think he is correct to conclude from this discovery that a 
computer can never simulate thinking, and that the project 
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of weak CS is impossible. A computer that is instructed to 

count out all possibilities will never complete the task, 

while if it is to zero-in upon the problem it will require 
an infinite amount of contextual information. 

Searle has shown that strong CS, in the sense of the repro- 
duction of cognition by computer, is also impossible. But 
he does not attempt to extend his disproof to weak CS, or 
to artificial intelligence in general. 

"He (Schank) thinks I want 'to call into ques- 
tion the enterprise of AI. 1 That is not true. I 
am in favour of weak AI, at least as a research 
program. " (Searle, 1980b: 453) 

Phenomenology 
Dreyfus, however, extends his argument against weak CS to 

embrace any attempt to use computers in cognitive studies, 
and indeed he takes it so far as to reject the entire 
Western analytic attitude towards personal experience. 

"We have seen that what counts as 'a complete 
description' or an explanation is determined by 
the very tradition to which we are seeking an 
alternative. We will not have understood an 
ability, such as the human mastery of natural 
language, until we have found a theory, a 
formal system of rules, for describing this 
competence. We will not have understood beha- 
viour, such as the use of language, until we 
can specify that behaviour in terms of unique 
and precisely definable reactions to precisely 
defined objects in universally defined situa- 
tions. Thus, Western thought has already com- 
mitted itself to what would count as an expla- 
nation of human behaviour. It must be a theory 
of practice, which treats man as a device, an 
object responding to the influence of other 
objects, according to universal laws or rules. 
But it is just this sort of theory, which, 
after two thousand years of refinement, has 
become sufficiently problematic to be rejected 
by philosophers both in the Anglo-American 
tradition and on the Continent. It is just this 
theory which has run up against a stone wall in 
research in artificial intelligence. It is not 
some specific explanation, then, that has 
failed, but the whole conceptual framework 
which assumes that an explanation of human 
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behaviour can and must take the Platonic f orm, 
successful in physical explanation; that situa- 
tions can be treated like physical states; that 
the human world can be treated like the physi- 
cal universe. If this whole approach has 
failed, then in proposing an alternative ac- 
count we shall have to propose a different sort 
of explanation, a different sort of answer to 
the question 'How does man produce intelligent 
behaviour? ' or even a different sort of ques- 
tion, for the notion of 'producing' behaviour 
instead of simply exhibiting it is already 
coloured by the tradition. For a product must 
be produced in some way; and if it isn't pro- 
duced in some definite way, the only alterna- 
tive seems to be that it is produced 
magically. " (Dreyfus, 1979: 232) 

The point of view from which Dreyfus conducts his critique 

of artificial intelligence is that of the phenomenological 

school of thought. This many-syllabled word denotes a 

method of philosophical enquiry whose twentieth century 
form was initiated by Edmund Husserl with the publication 
in 1913 of his 'Ideen zu einer reinen Phanomenologie und 

phanomenologishen Philosophiel. The central idea upon which 

phenomenology is founded is Husserl's assertion that a 

study of meaning must rest upon insight rather than, as 

empiricists would have it, upon generalisations from expe- 

rience. Husserl maintains that no distinction can be made 
between perception and what is perceived, and that objects 

are correlated with states of mind. For Husserl conscious- 

ness was all. Husserl's ideas were developed principally by 

Martin Heidegger with his ISein und Zeit' of 1927 and by 

the French philosopher Maurice Merleau-Ponty whose 'Pheno- 

menologie de Perception' appeared in 1945. The later 

thought of Ludwig Wittgenstein has many parallels with, and 

some important differences from, the phenomenological 

mainstream. 

It is at once apparent that phenomenology is in conflict 
with the entire Western tradition of analytic philosophy, 
and in particular with the scientific view of reality. The 
scientific viewpoint is based upon the assumption that 
there exists an external physical reality and that human 
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thought occurs with reference to it. It is precisely this 

attitude to which Husserl attributes all our troubles and 
confusion. 

"Husserl contends that in striving to build up 
an objective picture of reality, scientific 
practice has progressively cut off subjective 
experience from the life-world to such an 
extent that Western man is in a permanent state 
of crisis, i. e. he feels that science is his 
only source of facts and loses consequently his 
lived relations to the historical and social 
reality of life. In brief, Western man is 
deprived of the immediate evidence of his world 
considered as the realm of significant rela- 
tions to objects and to his f ellow men, and is 
condemned to rely on intermediate abstract 
constructs: the lif e-world is concealed by the 
transcendental act of scientific elaboration. 
(Thines, 1987: 327) 

Few people whose reflective capacities are not completely 

atrophied can fail to see the force of Husserl's conten- 
tion. A purely calculative attitude, characterised in 

French by the adjective 'Cartesian', dominates much of 

modern life and it brings alienation as often as enlighten- 

ment in its train. The world does indeed turn to stone when 
it is subjected to the stare of an exclusively scientific 
Minerva. But only an over-riding impulse to be completely 

consistent in all of one's thoughts can drive one to place 

personal experience in diametric opposition to scientific 
knowledge. Fortunately, scientific rationality and human 

experience are only obliquely in conflict and one need not, 
I think, be either inflexibly scientific nor steadily 
introspective about everything. 

Hubert Dreyfus came to the study of artificial intelligence 

from a phenomenological background, and he has a character- 
istically wary attitude to science. 

"if my favourite thinkers (who might be called 
antiphilosophers) were right, the new computer 
approach should not work, based as it was on 
using programs or rules to impart 'knowledge' 
to machines. So I confidently continued to 
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teach Merleau-Ponty's claim that perception and 
understanding are based in our capacity f or 
picking up not rules, but flexible styles of 
behaviour. For example, someone who knows how 
to drive a car with a shift on the steering 
column can easily transfer the skill to a shift 
on the floor, even though the rule describing 
the sequence of movements required would be 
very different. Explaining Heideggar, I contin- 
ued to assert that we are able to understand 
what a chair or a chair or a hammer is only 
because it fits into a whole set of cultural 
practices in which we grow up and with which we 
gradually become familiar. As I taught I won- 
dered more and more how computers, which have 
no bodies, no childhood, and no cultural 
practices, but are disembodied, fully formed, 
nonsocial, purely analytic engines, could be 
intelligent at all. Clearly, if the word I was 
getting from the robot factory was right, then 
the antiphilosophers I was teaching were wrong. 
I realised that if I was to go on teaching 
those antiphilosophers to skeptical students, 
whom I now thought of as the heirs of Plato, 
Kant and Husserl, I had better find out just 
how intelligent computers were and how intelli- 
gent they were likely to become. " (Dreyfus & 
Dreyfus, 1986: 5) 

When Dreyfus turns his eye upon artificial intelligence he 

sees in it the culmination of the analytic de-humanisation 

of the Western world view. While this may seem to be rather 
a heavy burden to be borne by a mere sub-division of com- 

puter science, I think that it is important to take note of 
what he says. Dreyfus speaks as a philosophical historian, 

as a well informed critic of artificial intelligence and as 
a lucid spokesman for an anxiety about computers and compu- 
tation that is widespread in the educated public. 

"During the past two thousand years the impor- 
tance of objectivity; the belief that actions 
are governed by fixed values; the notion that 
skills can be formalised; and in general that 
one can have a theory of practical activity, 
have gradually exerted their influence in 
psychology and in social science. People have 
begun to think of themselves as objects able to 
fit into the inflexible calculations of disem- 
bodied machines: machine for which the human 
form-of-life must be analysed into meaningless 
facts, rather than a field of concern organised 
by sensory-motor skills. our risk is not the 
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advent of superintelligent computers, but of 
subintelligent human beings. " (Dreyfus, 
1979: 280) 

The Limits of Phenomenology 

I am not equipped to adjudicate upon Dreyfus's attempt to 

overturn nearly everything that has been thought in the 
West since the time of Plato. However, I do feel able to 

say that, so far as artificial intelligence is concerned, 
his argument against weak CS is sound, and that there is 
indeed a wide ontological gulf lying between our minds and 
our machines. But I also think that Dreyfus underestimates 
the scope and complexity of "the enterprise of AIII, and 
that he fails to recognise that artificial intelligence is 

not an exclusively conceptual undertaking. He is on weak 
ground when, embarking upon the last section of his task, 
he attempts to consign all parts of the subject of artifi- 
cial intelligence to the paper shredding machine. 

There is a discontinuity between the analysis that Dreyfus 

offers of machine thinking and the predictions he makes 
about the future of artificial intelligence. He has identi- 

fied, I think correctly, the reason why FAHQT is impossi- 
ble, which is the problem of the infinite regress of con- 
text. He then goes on to say, 

"The foregoing considerations concerning the 
essential role of context awareness and ambi- 
guity tolerance in the use of a natural lan- 
guage should suggest why, after the success of 
the mechanical dictionary, progress has come to 
a halt in the translating field. Moreover, 
since, as we have seen, the ability to learn a 
language presupposes the same complex combina- 
tion of human forms of 'information processing' 
needed to understand a language, it is hard to 
see how an appeal to learning can be used to 
bypass the problems this area must confront. " 
(Dreyfus, 1979: 111) 

It follows from the impossibility of FAHQT, Dreyfus main- 
tains, that every language translation program must be 

useless. But to say this is to needlessly circumscribe the 

topic artificial intelligence. Peter Sell's definition of 
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the subject which is given in Chapter 2 points out that 
"intelligent artifacts" and "models of human cognition" are 

equally important in artificial intelligence. 

Dreyfus is so preoccupied with what he thinks are faulty 

computer models of cognition that he fails to attach any 
importance to intelligent artifacts, in the field of ma- 
chine translation or elsewhere. But the development of 
translators' assistant programs (NLP, 1984), which facili- 

tate rather than conduct the process of translation, would 

not have occurred had Dreyfus's condemnations encompassed 
the whole truth about artificial intelligence. His assess- 

ment of the future of computer chess is similar to his 

predictions about machine translation. The human chess 

player, Dreyfus says, 

"sees that his opponent looks vulnerable in a 
certain area (just as one familiar with houses 
in general and with a certain house sees it as 
having a certain sort of back), and zeroing in 
on this area he discovers the unprotected Rook. 
This move is seen as one step in a developing 
pattern. 
There is no chess program which even tries to 
use the past experience of a particular game in 
this way. Rather, each move is taken up anew as 
if it were an isolated chess problem found in a 
book. This technique is forced upon program- 
mers, since a program which carried along 
information on the past position of each piece 
would rapidly sink under the accumulating data. 
What is needed is a program which selectively 
carries over from the past just those features 
which were signif icant in the light of its 
present strategy and the strategy attributed to 
its opponent. But present programs embody no 
long-range strategy at all. " (Dreyfus, 
1979: 105) 

This is all perfectly true, and it is indeed hard to see 
how it will ever be possible for a computer to be pro- 

grammed to assess the state of the board in the same way as 

a human player. But despite this, computer programs can be 

formidable and effective opponents for even highly skilled 

players. Dreyfus himself discovered this when, despite his 
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early claim that "Still no chess program can play even 
amateur chess" (1965), he was beaten by MacHACK (Hayes & 

Levy, 1976: 6). 

It has been pointed out by the Canadian psychologist Zenon 

Pylyshyn that Dreyfus's phenomenological point of view may 
be responsible for his blindness to pragmatic matters. 

"Clearly then the 'information' which Dreyfus 
is concerned to have represented involves that 
of which we have 'experiential evidence' in- 
cluding such subjective phenomena as the feel- 
ing of *zeroing-in' and our 'sense of 
oddness' .... It would not be enough to describe 
the function but one would have to simulate the 
appearances. But this amounts to a request that 
we reproduce the phenomena rather than simulate 
them. 
This can only reveal a basic misunderstanding 
as to the function of scientific understanding. 
As Einstein is said to have remarked, it is not 
the function of science to produce the taste in 
the soup! The scientist's task is not to 
duplicate phenomena but to make them accessible 
to the intellect. In contemporary Western 
science this can mean only one thing: The 
scientist must substitute for the 'real thing' 
a system built on principles which he can 
understand. " (Pylyshyn, 1974: 65) 

Dreyfus, like a good phenomenologist, wishes to emphasise 
the over-riding importance of authentic human experience 
and to marginalise those abstract and disembodied cerebra- 
tions which collectively go by the name of science. This 

viewpoint has enabled him to furnish a penetrating critique 
of that part of artificial intelligence which is closest to 

direct human experience, which is CS, but it also blinds 
him to the importance and usefulness of the other near- 

scientific topics which go to make up the subject of arti- 
ficial intelligence. Dreyfus's thought exhibits the 

strengths but also the weaknesses of those who adhere to 
the cause of insight in the ancient contest between ab- 
stract rationality and human intuition. 
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cognitive simulation may well be, as Dreyfus claims, a 
tainted study, but he takes no account of those artificial 
intelligence topics for which a mere correspondence, rather 
than an actual or conceptual identity, between thinking and 

computing is sufficient. Most of the traditional artificial 
intelligence topics other than CS are of this type, and I 

think that these survive his strictures intact. Dreyfus may 
be said to have carried out a valuable piece of surgery on 
the body of artificial intelligence, but far from expiring 

upon the operating table the patient has recovered success- 
fully and is now more healthy than before. 

The great changes that have occurred in artificial intelli- 

gence research during the last decade and a half are partly 
the result of the strictures of writers such as Searle and 

Dreyfus. After 15 years of publishing, during which it grew 
from 300 pages to 1000 pages a year, the journal Artificial 

Intelligence published a long article entitled 'Artificial 

Intelligence - Where Are WeV (Bobrow & Hayes, 1985). The 

purpose was "to ask some of the people who have been in, or 

observers of, the field during these years to comment on 

where we have been, where we are and what the future might 

hold. " The article is a stocktaking of the artificial 
intelligence workshop. 

Many replies were of the 'its early days yet' kind. Donald 

Michie, for example, commented that; 

"A historical analogy is with the first synthe- 
sis of an organic compound in 1828, when a 
trace of urea was made, previously believed 
impossible except by participation of living 
cells. " 

Most contributors reflected that 'its tougher than we 

thought it would be'. Roger Schank observes that; 

"The most significant advance in the last 
decade has been the appreciation of just how 
complex the nature of thinking is. We have come 
to understand how complex the issues are. " 
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But the usually tacit thought that informed most of the 

respondents' comments was that a fundamental change has 

come over all parts of the field of artificial intelligence 

studies. The nature of the change was most clearly de- 

scribed by Terry Winograd, who wrote; 

"My own work underwent a major change, as I 
moved away from the assumption that the way to 
make better and more useful computers (and 
interfaces) was to get them to be intelligent 
and use natural language. I recognised the 
depth of the difficulties in getting a machine 
to understand language in any but a superficial 
and misleading way, and am convinced that 
people will be much better served by machines 
that do well-defined and understandable things 
than those that appear to be like a person 
until something goes wrong (which won't take 
long), at which point there is only confusion. " 

However, the magazine editors did not ask their contribu- 
tors to give their reasons for their assessment of the 

direction in which artificial intelligence is evolving. No 

answers were sought or provided on the exact nature of the 

difficulties that have been experienced, nor why it is that 

many aspects of artificial intelligence have turned out to 

be so much harder than was once supposed. 

Conclusion 
I think that much light can be shed on these more fundamen- 
tal questions by making a comparison between the develop- 

ment of research in artificial intelligence and the evolu- 
tion of the thought of Ludwig Wittgenstein. 

In the second quarter of this century Wittgenstein evolved 
two very different philosophies. His first attempt upon the 

problems of meaning was close in spirit to that of the 

early workers on machine cognition. The cast of Wittgen- 

stein's later thinking has many parallels with the more 
mature attitudes towards AI that are exhibited in the 1985 

Artificial Intelligence article from which the preceding 

quotations have been taken. In the next two chapters I 
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shall try to contrast early and late notions of artificial 
intelligence by correlating them to the development of 

Wittgenstein's thought. The early Wittgenstein has little 

to offer the architect. However, the interpretation which 

wittgenstein gives in his later work to the notion of 

meaning throws much light upon the process of architectural 

design. 
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Chapter 6. WITTGENSTEIN AND ARTIFICIAL INTELLIGENCE 

During his lifetime Ludwig Wittgenstein published only one 
book, his Tractatus Logico-Philosophicus, the German edi- 
tion of which appeared in 1921. The translation into Eng- 
lish by Charles Ogden and Frank Ramsey, which was published 
in the following year with an introduction by Bertrand 
Russell, has been superseded by the 1961 translation of 
David Pears and Brian McGuiness, and it is the later ver- 
sion of Wittgenstein's text that I use in this thesis. The 
Tractatus is a young man's book - iconoclastic, rigorous 
and concise to the point of terseness. But Wittgenstein, 
despite the difficulty of the Tractatus, and even though he 
took no part in public life and shunned. all publicity, is 

"the most influential philosopher of the 20th century" 
(Block, 1987). He is the only philosopher in modern times 
to have fathered not one but two distinct schools of 
thought. 

The Vienna Circle 

The Vienna Circle, a group whose best-known members were 
Moritz Schlick, Rudolph Carnap, Kurt Godel, Otto Neurath 

and Friedrich Waismann, were the originators of logical 

positivism. Their purpose in philosophy was to develop the 

empirical tradition of John Locke, David Hume and Ernst 
Mach by applying to it the techniques of symbolic logic. 

The modern study of logic*was begun by Gottlob Frege with 
the publication in 1884 of his Die Grundlagen der Arithme- 

tik and continued by Russell and Whitehead with their 
Principia Mathematica of 1913. But Wittgenstein in the 

Tractatus transformed the discoveries of these pioneers 
into a lucid and internally coherent logical system. The 
importance of his achievement was recognised immediately. 

Russell in his 1922 introduction to the first English 

edition said of the Tractatus, 

"whether or not it proves to give the ultimate 
truth on the matters with which it deals, (the 
Tractatus] certainly deserves, by its breadth 
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and scope and profundity, to be considered an 
important event in the philosophical world. " 

The members of the Vienna Circle, whose collaboration 

spanned most of the 1920s and 1930s, were greatly indebted 

to Wittgenstein's ideas. One of the founder members of the 

group, and a central figure in the development of logical 

positivism, Moritz Schlick, has recorded his assessment of 
the Tractatus. 

"This book, which in my f irm conviction is the 
most significant philosophical work of our day, 
cannot be assigned to any particular 'tenden- 
cy', but it contends for the fundamental truth 
on which all empiricism is founded ........ the 
inestimable significance of Wittgenstein's work 
lies precisely in this, that in it this nature 
of the logical is completely elucidated and 
established for all time to come. This happens 
in that, for the first time, an entirely clear 
and rigorous concept of 'form' is provided, 
which banishes at a stroke those difficult 
problems of logic which have lately given so 
much trouble to serious investigators-" 
(Schlick, 1928) 

It is ironic that Schlick's high hopes of the Tractatus 

were to be undermined by the subsequent work of Wittgen- 

stein himself. 

After his return to Cambridge and to philosophy in 1929, 

Wittgenstein's ideas evolved away from the pure and crys- 

talline world of the Tractatus. He found reasons to doubt 

the status of logic as the irreducible structure of lan- 

guage, and from these doubts there emerged a fresh concep- 

tion of language as a type of game whose meaning was insep- 

arably bound up with usage. Wittgenstein in his work of the 

1930s and 1940s telescoped Schlick"s "for all time to come" 
into barely more than a quarter of a century. His later 

work was published posthumously, and collectively it con- 

stitutes the core texts of the Oxford school of natural 

language philosophy. 

"At oxford Wittgenstein's ideas entered a very 
different philosophical atmosphere from that 
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which prevailed at Cambridge. oxford philoso- 
phers, for the most part, have learnt their 
philosophy as a part of a course of study which 
is based upon classical scholarship: in partic- 
ular, the influence of Aristotle has been 
strong at Oxford as it has never been at Cam- 
bridge, where so far as any classical philoso- 
pher has been influential it is Plato, not 
Aristotle.... At Oxford, then, Wittgenstein's 
ideas were grafted onto an Aristotelian- 
philological stock; the stock has influenced 
the resultant fruits which, amongst other 
things, are considerably drier and cooler than 
their Cambridge counterparts. " (Passmore 1957) 

But Wittgenstein's association with the Vienna Circle was 
not entirely forgotten in the ebb of philosophical fashion 

and the flow of events. One of the Wittgensteins's 14 
posthumously published works, 'Ludwig Wittgenstein and the 
Vienna Circle', is a transcription and translation, pub- 
lished in English in 1979, of conversations with Wittgen- 

stein recorded in shorthand by Waismann between 1929 and 
1932. 

Although Continental European thinkers of the late twenti- 

eth century continue to be interested mainly in questions 
of logic and structure, the line of thought that derives 
from the oxford school retains its philosophical dominance 
in the English speaking countries to this day. So great was 
Wittgenstein's intellectual fertility that the doctrines of 
the Oxford philosophers, particularly their notion of 
meaning, effectively refute the earlier logical positivist 
school of thought. His unique achievement was to father two 
influential schools of thought, the second of which is a 
refutation of the first. 

Wittgenstein's death in 1951 occurred only five years 
before the first recorded use of the term 'artificial 
intelligence' (in Charniak & McDermott, 1985). The charac- 
ter of the new discipline of artificial intelligence that 

emerged in the 1950s had much in common with the concep- 
tions that lay behind the Tractatus. There was the same 
preoccupation with logic, a similar drive towards calcula- 
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bility and a shared assumption that meaning is synonymous 
with the truth function of a proposition. I think that the 

early workers in artificial intelligence were misguided in 
their approach to their subject for the same reasons that 
the assessment by Schlick and the Vienna Circle of the 
Tractatus was mistaken. The shortcomings in the Tractatus 

were elucidated by Wittgenstein himself in his later work, 
and they are summed up in the book published in 1953 as his 
Philosophical Investigations. 

Wittgenstein did not arrange his texts into the normal 
pattern of sentence, paragraph, page and chapter. The 

questioning nature of his thoughts could not be reconciled 
with a flowing and connected prose style. He therefore 

adopted the practice of extracting material from his note- 
books and editing it together into groups of short entries 
arranged according to topic. His literary executors have 
followed the same principles when preparing his posthumous- 
ly published works for the press. 

The Tractatus, for instance, consists of 526 continuously 
printed paragraphs which vary in length from a short sen- 
tence to nearly a whole page of text. In this book the 

paragraph numbering system follows an hierarchical classi- 
fication system and serves to guide the reader by grouping 
entries together under topic. Philosophical Investigations 
is divided into only two sections. Part II contains only 14 
long entries. Perhaps the editors despaired of subdividing 

and classifying such complex material more finely. The 

entries in Part I, however, are nearly as short and pithy 

as those of the Tractatus, and as in the earlier work they 

are roughly gathered into paragraphs according to topic. 

The editors of his notebooks and his conversations with 
Waismann, however, have provided no numbers to the para- 

graphs. 

Because Wittgenstein's style is so compressed, and his 

prose so pregnant with meaning, the customary method of 
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annotating a commentary is too clumsy to be applied to his 
work. When referring to his texts one needs to be able to 
identify a smaller unit than the complete page. In this 
section of my thesis I have therefore abandoned the Harvard 
convention of referencing. Following the practice of other 
commentators, my references to the Tractatus and Philosoph- 
ical Investigations are to the titles of these works, 
abbreviated to capital letters, followed by the paragraph 
number. The numbers following the abbreviations of the 
Notebooks and his conversations with Waismann are, however, 
to page numbers only. I refer to the Notebooks as NB, the 
Tractatus as TLP, to Ludwig Wittgenstein and the Vienna 
Circle as WVC, and to the two parts of Philosophical Inves- 
tigations as PI I and PI II. Full descriptions of all four 
books appear in the list of references. 

That an observable phenomenon must necessarily have an 
abstract theoretical cause is a conviction that comes 
easily to those of us who inherit the tradition of Western 
thought. A heated gas expands according to Boyle's law, an 
ice skater spins like a top because of the principle of the 

conservation of angular momentum, and the motion of an 
atomic particle cannot be described completely because of 
Heisenberg's uncertainty principle. These laws of nature 
are the culmination of 2500 years of intellectual effort 
and are in some ways the summit of our cultural achieve- 
ment. 

The profundity and durability, and the respect in which 
scientific generalisations are held, has lead many inferior 

writers to try to cloak speculation in the trappings of 
abstract principle. The 'laws' of Marx and the 'systems' 
beloved of sociologists come to mind. But despite these 

abuses I think that most people would agree'that necessary 
principles are more illuminating than contingent facts, and 
it is therefore not surprising that early workers in the 
field of artificial intelligence should begin by assuming 
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that explanation of observations made in the new discipline 

would follow from the discovery of fundamental principles. 

"The field of artificial intelligence is full 
of intellectual optimists who love powerful 
abstractions and who strive to develop all- 
embracing formalisms. (Schank & Abelson, 1977) 

I shall now try to show that the early investigators, when 
trying to deduce the "all-embracing formalisms" that would 
be appropriate to artificial intelligence, adopted a view- 

point very similar to that of the author of the Tractatus. 

The Search for a Conceptual Base 
A clear statement of the epistemological expectations of 

early workers in artificial intelligence is given in Roger 
Schank's contribution to a collection of papers that he and 
Kenneth Colby edited in 1973. This is the paper which 
introduced the idea of scripts to artificial intelligence. 

In it he says, 

"One basic assumption presented in this work is 
that since it is true that people can under- 
stand natural language, it should be possible 
to imitate the human understanding process on a 
computer, if it is possible to state those 
processes explicitly. Basically, the view of 
language understanding expressed here is that 
there exists a conceptual base into which 
utterances in natural language are mapped 
during understanding. Furthermore, it is as- 
sumed that this conceptual base is well-defined 
enough such that an initial input into the 
conceptual base can make possible the predic- 
tion of the kind of conceptual information that 
is likely to follow the initial input. 
Thus, we will be primarily concerned with the 
nature of the conceptual base and the nature of 
the mapping rules that can be employed to 
extract what we shall call the conceptualisa- 
tions underlying a linguistic expression. " 
(Schank, 1973: 187) 

Wittgenstein had a very similar notion when he wrote the 

Tractatus. In this work he gave to logic the role of 
"conceptual base". Logic must, as he says, "look after 
itself" because logic is prior to all experience. 
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"To give the essence of a proposition means to 
give the essence of all description, and thus 
the essence of the world. " (TLP 5.4711) 
"The description of the most general proposi- 
tional form is the description of the one and 
only general primitive sign in logic. " (TLP 
5.472) 
"Logic must look after itself. " (TLP 5.473) 

An unqualified, and as I think ill-founded, faith in the 

power of abstraction is characteristic of both early arti- 
ficial intelligence theory and of the Tractatus. 

Calculi and Computability 

The machine orientation of artificial intelligence carries 

with it a requirement for computability. Nearly 20 years 

ago Allen Newell summarised this aspect of artificial 
intelligence research from a Carnegie-Mellon point of view. 

"I should be explicit about the meaning of the 
term mechanism f or me (and f or the f ield of 
computer science, I might add). A mechanism is 
any determinate physical process. An abstract 
process constitutes a mechanism if , in princi- 
ple, there are ways to realise it by a physical 
process. Thus, any program for a digital com- 
puter constitutes a mechanism. Similarly, a 
rule for which we can build a physical device- 
that can realise its application is a mechanism 
(or represents one, if we want to be fussy). 
This idea can be formalised in the notion of 
effective procedure, Turing Machine, Markov 
Algorithm, Post Production System. Or we can 
start with the formal system as the primitive 
(ideal) notion of mechanism, and work back 
toward physical processes. But it all comes to 
the same thing. Extension of usage to stochas- 
tic, statistical, or probabilistic mechanism is 
straightforward, going from the abstract no- 
tions of probability to physical processes that 
obey these formal models. " (Newell, 1973: 4) 

A researcher who is of necessity concerned with issues of 

computability will be attracted to a conception of knowl- 

edge that has the characteristics of a calculus. The Trac- 
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tatus is built round a method of calculation based upon 
symbolic logic, and it was later referred to by Wittgen- 

stein as a calculus. 

"For there is not a mere analogy between our 
way of using words in a language and a calcu- 
lus; I can actually construe the concept of a 
calculus in such a way that the use of words 
will fall under it. " (WVC,, 168) 

The term 'mechanism' as used by Newell is virtually identi- 

cal to Wittgenstein's conception of a 'calculus'. 

Independence of Atoxic Facts 
By analogy with scientific reductionism, it is possible to 
hope that the bedrock of philosophy can be reached by means 
of analysis. If philosophical concepts are divided and 
subdivided sufficiently, and with enough rigour, then one 
will eventually get down to the irreducible pellets, or 
atoms, of thought whose existence serves to support all 
cognitive processes. This line of investigation took Rus- 

sell to his empirical version of logical atomism, a title 

of his own creation, in which the atoms are indivisibly 

simple sense impressions (Russell, 1918). For Wittgenstein, 
however, the atoms of interest were of a logical rather 
than an experiential character. Wittgenstein, it should be 

noted, never applied the term 'logical atomism' to his own 
work. 

"Every statement about complexes can be re- 
solved into a statement about their constitu- 
ents and into the propositions that describe 
the complexes completely. " (TLP 2.0201) 

Wittgenstein's enquiries lead him to believe that the world 
can be described by the logical structuring of the names of 
irreducible things. 

"The world is the totality of facts, not 
things. " (TLP 1.1) 
"The facts in logical space are the world. 
(TLP 1.13) 
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one consequence of this conception of reality is that 
logical facts are independent of one another. If two or 

more facts were found to be in any way dependent upon each 
other, then they would be composite rather than simple in 

nature and they would for this reason have to forfeit their 

atomic character. "Each item can be the case or not the 

case while everything else remains the same. " (TLP 1.21) 
Wittgenstein constructs the whole edifice of the Tractatus 

upon the simplicity and combinability of facts, and the 
logical innovations made in his work could not be based 

upon on any other supposition. 

But atomic simplicity and unfettered combinability are also 
attractive features in the symbols to be used in a comput- 
ing environment. Symbols that are independent of one anoth- 

er can then be manipulated freely, and the patterns that 

emerge from a computation would reflect the rules of combi- 

nation rather than the status of the symbol. Furthermore, a 

group of symbols can be added to or subtracted from without 
disturbing the structure of the set. These desirable fea- 

tures were not overlooked by early workers in the field of 

artificial intelligence. Terry Winograd, for instance, in a 
discussion of the problems involved in natural language 

processing, remarked that; 

"We can view production systems as a program- 
ming language in which all interaction is 
forced through a very narrow channel ..... The 
temporal interaction [of individual produc- 
tions] is completely determined by the data in 
this STM [short term memory], and a uniform 
ordering regime for deciding which productions 
will be activated in cases where more than one 
might apply.... of course it is possible to use 
the STM to pass arbitrarily complex messages 
which embody any degree of interaction we want. 
But the spirit of the venture is very much 
opposed to this, and the formalism is interest- 
ing to the degree that complex processes can be 
completely described without resort to such 
kludgery, maintaining the clear modularity 
between the pieces of knowledge and the global 
process which uses them. " (Winograd, 1975) 
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In fact, Winograd's paper proposes to construct an entire 
automatic natural language processing system upon the 

pattern of a production system. 

The claim that facts were independent of one another was 
the first doctrine of the Tractatus to be abandoned by 

Wittgenstein when he took up the study of philosophy again 
in 1929. Speaking in December of that year to Waismann 

about the Tractatus he said, 

"I thought that all inference was based on 
tautological form. At that time I had not yet 
seen that an inference can also have the form: 
This man is 2m tall, therefore he is not 3m 
tall. This is connected with the fact that I 
believed that elementary propositions must be 
independent of one another, that you could not 
infer the non-existence of one state of affairs 
from the existence, of another. But if my 
present conception of a system of propositions 
is correct, it will actually be the rule that 
from the existence of one state of affairs the 
non-existence of all other states of affairs 
described by this system of propositions can be 
inferred. " (WVC 64) 

Wittgenstein is saying here that some propositions are 
mutually exclusive in such a way that no amount of analysis 

will make them otherwise. In this he is, I think, correct. 
one must conclude, therefore, that Winograd's ambition to 

be able to add or subtract rules from a production system 

4s and when convenient, while maintaining its integrity as 

a semantic system, is impossible. The meaning of the indi- 

vidual rules will establish lkludgery' connections between 

them despite their formal independence. Furthermore, these 

connections will be invisible to a machine which is engaged 
in simply manipulating symbols according to a program. 

The Logic of a Double Negative 

The Tractatus interested Russell, and later the members of 

the Vienna circle, for technical as well as philosophical 

reasons. In the central third of the Tractatus, occupied by 

the paragraphs beginning with 4. and 5., Wittgenstein is 
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concerned with the nature and status of logical operations. 
He devotes such a large section of his text to this topic 
because of a dissatisfaction with the earlier methods 
adopted by Russell and Whitehead in their Principia. 

The logical notation adopted by Russell and Whitehead 
(1913, Vol 1: 6) is based upon that invented by Frege. 
Propositions are to be related to one another by means of 
five connectives, which can be set out in a list. 

Contradictory (negation) 
Logical Sum (either .... or) v 
Logical Product (and) 
Implicative (if .... then) 
Equivalence (equivalent) 

Wittgenstein in paragraph 5.101 gives the 16 truth-func- 
tions which can be derived from two propositions by using 
these connectives in all possible meaningful combinations. 
But he is dissatisfied with the notation because to make 

use of it at all is to imply that the two propositions are 
unrelated until they are brought together into one of these 

16 expressions. 

Wittgenstein's whole case in the Tractatus is that proposi- 
tions are related to one another on account of their inter- 

nal logical nature, not the contingent fact that they have 

been juxtaposed in an expression. 

"If the truth of one proposition follows from 
the truth of others, this finds expression in 
relations in which the forms of the proposi- 
tions stand to one another: nor is it necessary 
f or us to set up these relations between them, 
by combining them with one another in a single 
proposition; on the contrary, the relations are 
internal, and their existence is an immediate 
result of the existence of the propositions. 
(TLP 5.131) 

He is therefore driven to seek another notation which 

recognises the pre-existing nature of the relationship 
between one proposition and another. This he immediately 
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does in the next paragraph when he brings into his argument 
the notational device known as the Sheffer stroke, I 
(Sheffer, 1913). The Sheffer stroke means 'neither ... nor', 
so that IpjqI means neither p nor qI. By employing this 
notation, an expression which would have been written 

Ip, v qt by Russell and Whitehead can be stated as 
Ipjq. j. pjqI, and furthermore the double negative expression 
'~(~p. -q)l can be reduced to the single Sheffer connective. 
Wittgenstein describes the idea as follows; 

"When we inf er qf rom, pvq and -p, the rela- 
tion between the propositional forms of Ip v qI 
and I-pI is masked, in this case by our mode of 
signifying. But if instead of Ip v qI we write, 
f or example, IpIq. I. pIqI, and instead of I _P 10 1 IpIpI (pIq = neither p nor q), then the inner 
connexion becomes obvious. " (TLP 5.1311) 

Wittgenstein is saying that the fact that the five connec- 
tives used by Russell and Whitehead can be replaced by a 
single symbol proves his central point. This is, that a 
proposition can be inferred from others not on account of 
the connectives that we choose to place between them, but 
by the fact that when they are brought into relation by 

means of a connective their sense becomes immediately 

obvious from their nature. 

Wittgenstein has now established the two fundamental no- 
tions upon which his explication of language in the Tracta- 
tus are based. These are the independence of atomic facts 

and the derivation of propositions from previous proposi- 
tions by means of a single all-sufficient operation in 
logic. In paragraphs 5.2 to 5.52 Wittgenstein expands this 

argument, by means of a negative recursive procedure, into 

what he refers to as "the general propositional form" (TLP 
5.54). His description of general propositional form, 

omitting the long and difficult argument by which it was 
arrived at, is given in paragraph 5.3 of the Tractatus. 
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"All propositions are the results of truth- 
operations on elementary propositions. 
A truth-operation is the way in which a truth- 
function is produced out of elementary proposi- 
tions. 
It is the essence of truth-operations that, 
just as elementary propositions yield a truth- 
function of themselves, so too in the same way 
truth-functions yield a further truth-function. 
When a truth-operation is applied to truth- 
functions of elementary propositions, it always 
generates another truth-function of elementary 
propositions, another proposition. When a truth 
operation is applied to the results of truth- 
operations on elementary propositions, there is 
always a single operation on elementary propo- 
sitions that has the same result. 
Every proposition is the result of truth-opera- 
tions on elementary propositions. " 

Wittgenstein's expansion of Sheffer's discovery into a form 
in which it can be applied to the derivation of general 
propositions is the aspect of his work that most impressed 
his contemporaries. It is what is referred to by Russell as 
"an amazing simplification of the theory of inference" in 

his introduction to the Tractatus. 

I have thought it worthwhile to describe Wittgenstein's 

conception of the general form of a proposition at some 
length because it entails the use of the logical device of 

the double negative. In logic, but not in language, a 
double negative is equivalent to a positive. The whole 

crystalline structure of the Tractatus would shatter with- 

out the support of this notion. 

"The sense of a truth-function of p is a func- 
tion of the sense of p. 
Negation, logical addition, logical multiplica- 
tion, etc. etc. are operations. 
(Negation reverses the sense of a 
proposition. )" (TLP 5.2341) 
"An operation can vanish (e. g. negation in 
1--pt: --p = p). (TLP 5.254) 

The same conventional equivalence of the double negative 

and the positive is used in the logic of computer program- 

ming. It functions as part of both propositional and predi- 
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cate logic, where it is sometimes known as the generalised 
form of De Morgan's law, as well as doing duty in normal 
mathematical notation. 

"Theorem 1.4 (Generalised De Morgan's law) 
For an arbitrary proposition A constructed 
using only the connectives -. 

A -A --A 
-------- 

I 
--------- 

I 
---------- 

FTF 
TFT 

Fig. 1.15. Truth table showing the equivalence 
of A and ~-A. " (Dowsing, Rayward-Smith & 
Walter, 1986: 20) 

It is clear that all computer operations, including pro- 
grams written for the purpose of artificial intelligence, 

are as dependent upon the equivalence of the double nega- 
tive and the positive as is the Tractatus itself. 

Rules and Truth-Functions 

One of the participants in the 1956 Dartmouth Summer 
Project on Artificial Intelligence, for which John McCarthy 

coined the phrase 'artificial intelligence', was Marvin 
Minsky. His contribution to the proceedings was published 
later in an amplified form as 'Steps Toward Artificial 
Intelligence'. Most of his paper is taken up with describ- 
ing the domain of AI and with speculating about likely 

qvenues of advance. But in his concluding remarks Minsky 

gives an account of the epistemological assumptions that he 
believed must necessarily underlie the new discipline. 

"Suppose that we want 
la 

machine which, when 
embedded for a time in a complex environment or 
'universe', will essay to produce a description 
of that world - to discover its regularities 
or laws of nature. We might ask it to predict 
what will happen next. We might ask it to 
predict what would be the likely consequences 
of a certain action or experiment. or we might 
ask it to formulate the laws governing some 
class of events. In any case, our task is to 
equip the machine with inductive ability - with 
methods which it can use to construct general 
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statements about events beyond its recorded 
experience. Now, there can be no system for 
inductive inference that will work well in all 
possible universes. But given a universe, or an 
ensemble of universes, and a criterion for 
success, this (epistemological) problem for 
machines becomes technical rather than philo- 
sophical. " (Minsky, 1961: 27) 

Minsky's "method to construct general statements" is very 

close to Wittgenstein's law of the projection of inference, 

which he illustrates in the Tractatus by means of a musical 

analogy. Wittgenstein, however, shares Popper's distrust of 
induction, (TLP 5.135,6.363), and would see no point in 

giving a machine inductive ability. 

"There is a general rule by means of which the 
musician can obtain the symphony from the 
score, and which makes it possible to derive 
the symphony from the groove on the gramophone 
record, and, using the rule, to derive the 
score again. That is what constitutes the inner 
similarity between these things which seem to 
be constructed in such entirely different ways. 
And that rule is the law of projection which 
projects the symphony into the language of 
musical notation. It is the rule for translat- 
ing this language into the language of gramo- 
phone records. " (TLP 4.0141) 

Similarly, Wittgenstein's notion of the truth function of a 

proposition, which he derived from Frege, Russell and 

Whitehead, is a close parallel with Minsky's putative 

'$criterion for success". 

"Like Frege and Russell I construe a proposi- 
tion as a function of the expressions contained 
in it. " (TLP 3.318) 
"To understand a proposition means to know what 
is the case if it is true. 
(One can understand it, therefore, without 
knowing whether it is true. ) 
It is understood by anyone who understands its 
constituents. " (TLP 4.024) 

But, as we have seen, there is no "criterion for success" 
in artificial intelligence, and no method for mechanically 

constructing general statements about events has been 

forthcoming. I think that the explanation for this is that 
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the epistemology of early artificial intelligence was of 
the same, as it now seems over-optimistic, type as that 

which is set forth in the Tractatus. 

Conclusion 
If I am correct in this assessment, then Wittgenstein's 
later criticisms of the Tractatus can be applied very 
closely to the methods and assumptions of early artificial 
intelligence, and to do so will serve to show why some of 
its initial ambitions are impossible to realise. I there- 
fore propose in the next section of my text to discuss, 
from a late Wittgensteinian point of view, the attitudes to 

knowledge implicit in the work of some of the pioneers of 
artificial intelligence. I hope that this will lead to a 

more correct and mature understanding of the subject. 
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Chapter 7. AI AND THE LATER WITTGENSTEIN 

In the 30 years that elapsed between the publication of the 
Tractatus and Wittgenstein's death in Cambridge his ideas 

about the relationship between logic and language changed 
greatly. One of the reasons for his change of attitude was 
that he realised that language as it is used, as opposed to 
how it may be structured, does not necessarily equate a 
positive and a double negative. 

In Philosophical Investigations Wittgenstein asked ques- 
tions about language that in his Tractatus days would have 

seemed meaningless. 

"Imagine a language with two different words 
for negation, IXI and IYI. Doubling IXI yields 
an affirmative, doubling IYI a strengthened 
negative. For the rest the words are used 
alike. - Now have IXI and IYI the same meaning 
in sentences where they occur without being 
repeated? - We could give various answers to 
this. 
(a) The two words have different uses. So they 
have different meanings. But sentences in which 
they occur without being repeated and which for 
the rest are the same make the same sense. 
(b) The two words have the same function in 
language-games, except for this one difference, 
which is just a trivial convention. The use of 
the two words is taught in the same way, by 
means of the same actions, gestures, pictures 
and so on; and in the explanations of the words 
the differences in the ways they are used is 
appended as something incidental, as one of the 
capricious features of the language. For this 
reason we shall say that IXI and IYI have the 
same meaning. 
(c) We connect different images with the two 
nega tives. IXI as it were turns the sense 
through 1800. And that is why two such nega- 
tives restore the sense to its former position. 
IYI is like the shake of the head. And just as 
one does not annul a shake of the head by 
shaking it again, so one doesn't cancel one IYI 
by a second one. And so even if, practically 
speaking, sentences with two signs of negation 
come to the same thing, still IXI and 'Yt 
express different ideas. " (PI 1,556) 
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Wittgenstein, in paragraph (c) above, has put his finger 

upon one of the main difficulties inherent in semantic 
information processing. The expression 1-2 x -4 = 8f and 
the sentence 'I never, never drink spirits' are formally 
identical, but they mean different sorts of things. This 
kind of distinction is opaque to a symbol manipulating 
machine such as a computer, and can only be overcome if the 

computer is as conversant with language as is an educated 
human being. It is impossible to imagine a program that 

supplies a computer with all that can be known about lan- 

guage and its use, for this is an infinite amount of infor- 

mation, and there is no way of doing such a thing. For the 

present, then, we must take Wittgenstein's point to heart, 

and not expect from a computer what it cannot deliver. 

Logic and Semantic Nets 

Wittgenstein's objective in writing the Tractatus was to 
discover the foundations upon which language and our under- 

standing of the world must rest. He believed that he had 
found his version of the holy grail in logic, and particu- 
larly in his own refined version of symbolic logic. 

"A logical picture of facts is a thought. " (TLP 
3) 
"The totality of true thoughts is a picture of 
the world. " (TLP 3.01) 
"Thought can never be of anything illogical, 
since, if it were, we should have to think 
illogically. " (TLP 3.03) 

Logic, for him, was necessary to and independent of experi- 
ence. "for Wittgenstein, there was an absolute distinction 
between the empirical and the logical, such that the latter 

would never depend upon the former. " (Mounce, 1981: 9) 

In his paper of 1968, in which he introduces the idea of 

semantic nets, Ross Quillian describes the logical struc- 
ture that he believes is needed in order to achieve under- 

standing by a machine. 
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"It further seems likely that if one could 
manage to get even af ew word meanings ade- 
quately encoded and stored in a computer memory 
and a workable set of combination rules f orma- 
lised as a computer program, we could then 
bootstrap this store of encoded word meanings 
by having the computer itself 'understand' 
sentences that he has written to constitute the 
definitions of other single words. That is, 
whenever a new, as yet uncoded, word could be 
defined by a sentence using only words whose 
meanings had already been encoded, then the 
representation of this sentence's meaning, 
which the machine could build up by using its 
previous knowledge together with its combina- 
tion rules, would be the appropriate represen- 
tation to add to its memory as the meaning of 
the new word. Unfortunately, two years of work 
on this problem led to the conclusion that the 
task is much too difficult to execute at our 
present state of knowledge. The process that 
goes on in a person's head when he 'under- 
stands' a sentence and incorporates its meaning 
into his memory is very large indeed, practi- 
cally all of it being done without his con- 
scious knowledge. " (Quillian, 1968: 246) 

Quillian confesses the difficulties he is experiencing, but 

while doing so he implies that success can be expected when 

more work has been done and the state of our knowledge has 

improved. However, I think that his difficulties are inher- 

ent rather than contingent, and that his ambition of mecha- 

nising the process of meaning can never be realised. The 

reasons that lead to this conclusion were identified by 

Wittgenstein in his later work. 

Much of Philosophical Investigations is taken up with the 

development of a theory of meaning as use, and with the 

exploration of the idea of language games. In the Tractatus 

Wittgenstein tried to show that the truth of a statement 

was a function of a well-formed proposition, and he assumed 
that matters of meaning were psychological rather than 

philosophical in character. "the relation of the constitu- 

ents of the thought and of the pictured fact is irrelevant. 

It would be a matter for psychology to find out. " (NB 129) 

But in Philosophical Investigations he gave weight to the 
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notion that one cannot comprehend the truth or falsity of a 
statement without knowledge of the use of the terms that 

are employed. 

"we might say ..... that a sign OR' or IBO, etc. 
may be sometimes a word and sometimes a propo- 
sition. But whether it 'is a word or a proposi- 
tion' depends on the situation in which it is 
uttered or written ..... For naming and describ- 
ing do not stand on the same level: naming is a 
preparation for description. Naming is so far 
not a move in the language game - any more than 
putting a piece in its place on the board is a 
move in chess. We may say: nothing has so far 
been done, when a thing has been named. It has 
not even got a name except in the language 
game. " (PI 1,49) 

For example, a sign consisting of the letters 'speech' will 
acquire a partly different meaning according to whether it 

is used in a political, elocutional or ethnographic situa- 
tion, the logical structure of the language notwithstand- 
ing. 

"It is interesting to compare the multiplicity 
of the tools in language and of the ways they 
are used, the multiplicity of the kinds of word 
and sentence, with what logicians have said 
about the structure of language. (Including the 
author of the Tractatus Logico-Philosophicus. )" 
(PI 1,23) 

I think that Wittgenstein's later thoughts are correct on 
this point, and that Quillian will never acquire a 'store 

of encoded word meanings' nor a 'set of combination rules 
formalised as a computer program'. Words will always shift 

their meaning according to the use to which they are put, 

and the rules for their combination will vary from one 

linguistic situation to another. No logic can define even 

one word in a permanent and unambiguous fashion, and I 

therefore think that Quillian's notion of semantic net is 

unsound. When he proposes semantic nets he is looking to 

logic for something that it cannot provide. 
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Picture and Frwne Theories of Representation 

Following Frege, Wittgenstein makes a distinction in the 

Tractatus between the sense and the truth of a proposition. 

"It is clear that we understand propositions 
without knowing whether they are true or false. 
But we can only know the meaning of a proposi- 
tion when we know if it is true or false. What 
we understand is the sense of the proposition. " 
(NB 94) 

That is to say, a proposition must have sense if it is to 

be a proposition at all, but it will only possess meaning 
if it is true. But how are we to know when a proposition is 

true or false? Wittgenstein introduces his famous picture 
theory of meaning in an attempt to answer this question. 
The sense of a picture, he says, is to be found in the 

arrangement of its constituent parts rather than in its 

relation to external facts. This must be so, for otherwise 
it would be impossible to have a picture of a non-existent 

object. Its sense, then, is a property internal to the 

picture. In the same way, he says, a proposition possesses 

sense when it has an internal logical structure. But only 

when the structure of a proposition corresponds to the 

structure of some aspect of external reality can we say 

that it possesses meaning as well as sense. 

"The essence of a propositional sign is very 
clearly seen if we imagine one composed of 
spatial objects (such as tables, chairs and 
books) instead of written signs. Then the 
spatial arrangements of these things will 
express the sense of the proposition. " (TLP 
3.1431) 

In the next paragraph he expresses this thought in a more 

general and abstract way. 

"Instead of, 'The complex sign 11aRb11 says that 
a stands to b in the relation R1, we ought to 
put 'That a stands to b in a certain relation 
says that aRb. 1 (TLP 3.1432) 
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That is to say, it is the fact of the relation between a 
and b that gives meaning to the proposition aRb, and not 
the reverse. So it transpires that a proposition will have 
sense if it is logical, and meaning if it pictorially 
corresponds to external reality. I think that it is worth 
discussing these rather difficult aspects of the Tractatus 
in a thesis about artificial intelligence because Wittgen- 
stein's concept of the proposition as picture is so closely 
parallelled by Minsky's notion of frames. 

Minsky claims a fellow feeling with Schank, Abelson and 
Norman when he finds himself "moving away from the tradi- 
tional attempts by behaviouristic psychologists and by 
logic-oriented students of artificial intelligence in 

attempts to represent knowledge as collections of separate, 
simple fragments. " (Minsky, 1975: 211). In an attempt to 

supply "a unified, coherent theory"-he proposes that: 

"We can think of af rame as a network of nodes 
and relations. The 'top levels' of a frame are 
fixed, and represent things that are always 
true about the supposed situation. The lower 
levels have many terminals - slots that must be 
filled by specific instances or data. Each 
terminal can specify conditions its assignments 
must meet. " (Minsky, 1975: 212) 

0 

His fixed 'top level' corresponds almost exactly to the 
logical sense of a Wittgensteinian proposition, while the 
'terminals' reflect the situation from which the frame 

obtains its meaning. If the Tractatus is right about this 
interpretation of meaning then Minsky and his idea of 
frames is also right. But Wittgenstein himself, in his 
later work, has cut the ground from under both the picture 
and the frame theory of meaning. 

It is possible to maintain that a Wittgensteinian picture 
must be complete when the mood of a proposition is indica- 
tive. 
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"I can describe a state of affairs which con- 
sists in there being a circle of specific size 
at a specific point of the square. This is a 
complete picture. For to what follows it does 
not matter what description I choose, whether I 
use co-ordinates for example; what matters is 
only this, that the form of description has the 
right multiplicity. " (WVC, 39) 

3 

(J 

But a difficulty arises when the mood of the phrase is 

conditional - when, for instance, the size of the circle is 

conditional upon a numerical qualifier. Then the picture 

may or may not be complete depending upon how its defini- 

tion is qualified. 

"Thus when numbers occur in the sentence and 
indicate where the circle is and how large it 
is, it may happen that I replace the numbers by 
variables or perhaps only by intervals, e. g. (6- 
7,8-9), and then I shall get an incomplete 
picture. Imagine a portrait in which I have 
left our the mouth, then this can mean two 
things; first, the mouth is white like the 
blank paper: second, the picture is always 
correct, whatever the mouth is like. " (WVC, 39) 

For these reasons Wittgenstein was driven to the conclusion 
that, despite what he had written in the Tractatus, a 

picture may have sense but nevertheless be incomplete. From 

this it follows that a picture, because it may be incom- 

plete, can have no necessary truth-function and with this 

admission the whole structure of meaning as set out in the 

Tractatus falls to the ground. Wittgenstein recognised this 

conclusion when he wrote; 

"We see that what we call 'sentence' and 
'language' has not the formal unity that I 
imagined, but is the family of structures more 
or less related to one another ..... The precon- 
ceived idea of crystalline purity can only be 
removed by turning our whole examination round. 
(one might say: the axis of reference of our 
examination must be rotated, but about the 
fixed point of our real need. )" (PI 1,108) 

I shall describe what I believe are the consequences for AI 

of Wittgenstein's later views shortly. In the meantime one 

must conclude that Minsky's frames, like Wittgenstein's 
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pictures, will be incomplete and misleading when they 
incorporate quantifiers. But a frame must if it is to be 

useful incorporate quantifiers, described by Minsky as 
'terminals', and a Minskyan frame can therefore never be 

complete. I conclude that frames cannot fulfil Minsky's 

purpose of providing "a unified, coherent theory" of knowl- 

edge. Nevertheless, frames may be useful tools. 

Understanding as Mapping or Language-Game 

Any discussion of the nature of artificial intelligence 

must attempt to come to terms with the notion of under- 

standing. In her book Artificial Intelligence Elaine Rich 

makes this attempt in Chapter 9, where she says that; 

"understanding is the process of mapping a 
statement from its original form to a more 
useful one. " (Rich, 1983: 298) 

The mapping analogy of meaning appears frequently in the 
literature of AI (Schank & Abelson 1977, Simon 1977, 

Nilsson 1980, Akman, ten Hagen & Tomiyama, 1990). An exam- 
ple from the writings of Schank has been quoted earlier in 

this chapter. The notion that meaning is something to be 

searched for, and that it can be found by employing the 

right procedure, is also implicit in Wittgenstein's picture 
theory of meaning. 

"The pictorial relationship consists of the 
correlations of the picture's elements with 
things. " (TLP 2.1514) 

Mapping procedures lend themselves to description by rules 

- Quillian's semantic nets are an effort to do just this - 

and they will therefore be attractive to workers in artifi- 

cial intelligence who are trying to program a computer to, 

in a certain sense, understand. Some successes have been 

achieved by artificial intelligence programs which rely 

upon automatic mapping methods. Students have, for example, 

been helped to diagnose faults in electronic circuit de- 

signs by using SOPHIE (Brown et al, 1982). SOPHIE contains 
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a sub-routine, called the "referee" by the authors, that 

maps student answers onto a library of known fault condi- 
tions, and in this sense the program 'understands' the 

student-machine dialogue. I think that these methods can be 

very useful in artificial intelligence provided that one 

remembers the restricted sense in which they display the 

quality of understanding. Mapping procedures transform 

symbols, but they do not possess knowledge. 

Wittgenstein begins his Philosophical Investigations with a 

quotation from Saint Augustine's Confessions. The saint 

recounts how as a child he learnt to map the words that he 

heard used by his elders onto the objects that these words 
denoted. This is, in fact, a very elementary theory of 
language, and Wittgenstein's purpose in beginning with so 

simple an example is to show by contrast how complex lan- 

guage really is. 

"That [Augustine's] philosophical concept of 
meaning has its place in a primitive idea of 
the way language functions. But one can also 
say that it is the idea of a language more 
primitive than ours. " (PI 1,2) 

Learning the name of something is just one example of a 
language-game. 

"This [asking something's name], with its 
correlate, ostensive definition, is, we might 
say, a language-game of its own. That is really 
to say: we are brought up, trained, to ask: 
'What is that called? '- upon which the name is 
given. And there is also the language-game of 
inventing a name for something, and hence of 
saying, 'This is .... I and then using the new 
name. " (PI 1,27) 

By the use of the term language-game Wittgenstein means to 

draw an analogy between the use of language and playing a 

game. In both there is a set of rules and conventions which 
determine which moves are permissible, and a given move can 

only be judged according to the rules of the game to which 
it belongs. Thus, kicking the ball is a legitimate - which 
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is to say, meaningful - move in soccer or rugby, but not in 
cricket. By analogy, a word will have one meaning when 
functioning in an interrogative and another in a jocular 
language-game. Wittgenstein lists 24 examples of language- 
games in paragraph 23 of Philosophical Investigations, and 
countless others occur throughout the body of the book. But 
he nowhere gives rules for identifying or defining the 
entire set of language-rules. This omission is for the very 
good reason that it would be impossible to do this without 
describing the entire structure and content of the language 
itself. 

"We remain unconscious of the prodigious diver- 
sity of all the everyday language-games because 
the clothing of our language makes everything 
alike. 
Something new (spontaneous, 'specific') is 
always a language-game. " (PI 11,124) 

I think Wittgenstein is right when he characterises lan- 

guage as made up of an infinite number of language-games. 
Dreyfus, in his concern with context, is in effect restat- 
ing Wittgenstein's thesis in Philosophical Investigations. 
It follows that, for true understanding to take place in a 
computing environment, an infinite number of representa- 
tions are required in order that, as Rich says, a correla- 
tion can take place between the original form and a more 
useful one. But this is a task that is quite beyond us. No 
program can embrace the "prodigious diversity" of language 

games, let alone incorporate an infinite set of representa- 
tions. I think, therefore, that we must leave the question 
of computer understanding in abeyance, at least for the 

present and probably forever, as insoluble. 

Conclusion 
I am driven to conclude that there is no solution, nor is 
there ever likely to be a solution, to some of the problems 
which have during the last 30 years been investigated under 
the auspices of artificial intelligence. The case advanced 
by searle against the ambition to get a computer to under- 
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stand is, it seems to me, irrefutable. No program can make 
up for the fact that a machine cannot acquire a point of 

view. Dreyfus has shown that the notion of information 

processing by computer is based upon a confusion between 

the two senses, the weak and the strong, of the idea of 
information. Thirdly, a Wittgensteinian analysis shows that 

no system of rules can encompass. the vast number of proce- 
dures that go to make up natural language. In fact, the 

insoluble problems in artificial intelligence are just 

those which involve machine understanding of natural lan- 

guage. This is the reason why linguistic philosophy is able 
to illuminate the study of artificial intelligence. 

If this conclusion is correct then we must be content to 

classify any artificial intelligence topic that embraces 

natural language, representing common-sense knowledge or 

understanding language for example, as a long-term research 

project. It follows that, for the present, we should forgo 

any claim to be able to make use of computers as processors 

of natural language. 

But there are many other aspects of artificial intelligence 

that take the computer for what it really is, which is - 

simply a fast and tireless symbol manipulator. Traditional 

artificial intelligence subjects which lend themselves to 

computer processing, and in which progress can be-made, are 

pattern recognition, voice recognition, robotics, games 

playing, problem solving, intelligent tutoring systems and 

expert systems. These are the topics that make up weak 

artificial intelligence, in the sense in which this term 

was used in Chapter 3 by Searle. The next section of my 
text will attempt to bring cognitive simulation, general 

artificial intelligence and intelligent artifacts together 
into a coherent taxonomy of artificial intelligence. 
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Chapter 8. THE TAXONOMY OF ARTIFICIAL INTELLIGENCE 

cognitive simulation continues to occupy a prominent place 
in the lay conception of artificial intelligence. Although 
it is an interesting topic, the study of which throws much 
light upon epistemology, cognitive simulation is only one 
small department of the enterprise of artificial intelli- 

gence. Artificial intelligence programs that are likely to 
be useful to the architect will emerge from other parts of 
the subject. 

The Encyclopedia of Artificial Intelligence (Shapiro, 
Eckroth & Vallasi, 1987) contains several hundred separate- 
ly entitled subject entries. They range in specificity from 
'The Nature of Logic' to short entries on lesser-known 
language parsers. However, there are a few fundamental 
topics upon which the large number of particular subjects 
that are embraced by artificial intelligence depend. Natu- 

ral language, visual perception, machine learning, search, 
control, and solving problems are the underlying techniques 

of artificial intelligence. These, together with cognitive 
simulation, intelligent tutoring systems and expert systems 
are the headings of the taxonomy of artificial intelligence 

which is attempted in this chapter. 

In one of the definitions of artificial intelligence that 

was quoted in Chapter 2 Peter Sell divided the topic into 

two parts, "models of human cognition and intelligent 

artifacts. " Efforts to create programs of both these have 
been central to the enterprise of artificial intelligence 

since its beginning, but Sell's definition leaves out most 
of what might be called mainstream artificial intelligence. 

Many topics in artificial intelligence are attempts to 

produce useful programs by advancing our understanding of 
thought processes. Mainstream artificial intelligence lies 
between Sell's two categories, and in effect tries to unite 
them. 
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Natural Language Processing 
Perhaps the most characteristic manifestation of natural 
intelligence is our use of language. By far the larger part 
of human language use, and all of the simple language-like 

activities of animals, takes the form of spoken language. 
In speech the representation of thought is by means of 
words, and the words are themselves represented by sounds. 
But in speech the spoken words are modified and qualified 
by tone of voice, facial expression, body language, timing 

and volume. Spoken language is thus much more than a simple 
verbal phenomenon, and it is not susceptible to purely 
linguistic dissection. 

So great is the complexity and subtlety. of language that 

some theorists have been driven to the conclusion that 
linguistic ability is innate. How otherwise can a three- 

year-old child, years away from playing chess or under- 

standing calculus, use language sufficiently well to hold a 

meaningful conversation? Some commentators have come close 
to asserting the existence of a human 'language organ', on 
the analogy of a hand or a foot, which one comes to use as 

a result of experience and education (Miller & Chonsky, 

1963). Other researchers, notably the Swiss psychologist 
Jean Piaget (1936), take the view that the ability to use 
language emerges as part of the general intellectual devel- 

opment of the human personality. The theories of both 

Chomsky and Piaget imply, to a greater or lesser extent, 
the existence of some kind of inherited propensity to 

speak. Perhaps we shall understand the nature of this 
feature of our minds one day. In the meantime, however, the 

lack of understanding of how we acquire and use language 

hampers efforts to write language processing computer 

programs. 

The slowness of progress in creating speech processing 
programs is the result of a poor understanding of the 

phenomenon of language, and of the fact that spoken lan- 

guage is only a component part of our apparatus of everyday 
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communication. The written word is, however, a somewhat 
more describable phenomenon. When words are represented not 
by fleeting sounds but by written symbols they acquire a 
certain stability, and also a set of rules for their use. A 
written sentence is distinguished as a declaration or a 
question by rules of grammar, and not by means of the 
intonation of the voice as in speech. 'These rules give a 
handle on written text, and furnish a means by which text 
processing algorithms may be devised. This is the reason 
why research in natural language programming is largely 

concerned with the written word. 

Commercial natural language processing programs are usually 
intended to facilitate access to databases for the non- 
technical user. Some are available for use with desktop 
machines, but the most long-established system is INTELLECT 
(Harris, 1977) which runs on IBM mainframes. It functions 
by matching input strings with a lexicon of words and 
concepts. The lexicon can be-extended by the user to cover 
the words applicable to a particular domain. All goes well 
provided that the user follows the rules that reside in the 

system, but errors occur when the input is too natural, 
that is to say, when the user fails to frame his enquiry in 

a full and complete style. INTELLECT, unlike a human inter- 
locutor, cannot understand when an inquirer takes part of 
the answer for granted. 

Programs such as INTELLECT are interesting, but their value 
lies at least as much in showing what the problem is as in 
their functionality. They can work only in a very circum- 
scribed domain, and for the moment one must conclude that 
there is no language processing program which would be 

useful to the architect. Furthermore, it is hard for the 

reasons advanced in Chapter 4 to see how progress towards a 
useful system can be made. 
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Visual Perception 

Architecture is by its nature centred upon visual experi-. 

ence and any artificial intelligence program that displayed 

visual capability would be close to the architects sphere 

of interest. Conventional computer-aided drawing programs 
display no more intelligence than a drafting pen. However, 

it is possible to imagine a program which could do very 

much more. For example, a program could be devised which 

could read a set of photographs or a video tape of a build- 

ing and output drawings of its plan and elevations. Such a 

program would be both an interesting and a useful tool in 

the design studio. 

A good deal of progress has been made in the optical as- 

pects of automatic visual perception. A photograph or a 

video image consists of an arrangement of tones and, if a 

colour image, of hues. But it is difficult to analyse them 

because tones merge into one another, making it hard to 

distinguish the edges between tones that denote the edges 

of the objects that are being represented. The reality of a 

visual edge is shown in Figure 8.1(a), in contrast to the 

computationally desirable shape of the step in 8.1(b). 

IMNSITY 

(00 
Figure 8.1 
Visual Edges. 
(Redrawn from Winston, 1984) 

(b) 

If an image is divided in a grid-like fashion then the 

average tone of the whole is the average of the individual 

cells. Edges occur where the tone of adjacent cells are on, 

above or below the plane of the tonal average. It is not 

difficult to calculate the position of the edges by summing 
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the degree to which each point in the image contributes to 
forming an intersection with the plane of the average 
intensity. The procedure is illustrated diagrammatically in 

Figure 8.2. 

(ar) 
-- (k, ) 

0--4 0- - 6--0 "11 
(G) 

IF. 

Figure 8.2. 
Filtering a Point. 
(a) brightness change to be analysed. (b) each point 
averaged with respect to its neighbours. (c) averaged 
difference between points in (b). (d) averaged differences 
in (c) step is localised to the point at which the line 
crosses the x-axis. 
(Redrawn from Winston, 1984) 

The result of analysing a tone image is shown in Figure 

8.3. Most of the important edges in the photograph have 

been detected, but the output is far from accurate. This is 

because some dark tone is shadow while other is shade. The 

algorithm cannot distinguish between the two types of 
darkness, and the wayward edges in Figure 8.3(b) reflect 
this unresolved ambiguity. Nevertheless, the broad picture 

emerges correctly. 
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Figure 8.3 
Example of Edge Detection 
(a) machinery part in coarse-grained half-tone (b) comput- 
er derived edge locations of (a) 
(from Zucher, 1987) 

The planes of which every six-sided polyhedron, such as a 

cube or a rectangular block, is made up meet at 12 arises 

and at eight vertices. Each vertex in such an object is the 

meeting point of three planes. Most buildings, and many 

other objects such as paving materials, books and contain- 

ers of all kinds, are made up of six-sided polyhedra, and a 

computer system that can interpret them correctly would 

have many applications in architecture and elsewhere. 

In 1975 the American computer scientist David Waltz pub- 

lished a paper in which he was able to show that a scene 

made up of blocks, when represented by a line drawing, is 

composed of a surprisingly small number of line junctions. 

A glance at Figure 8.4(a) might give the impression that 

the lines join in a myriad ways, but Waltz demonstrated 

that the vertices at which three planes meet can only 

belong to a set of as few as 18 types. The set consists of 

four T's, three arrows, five forks and six L's. When this 

fact is systematically applied as a constraint to a scene 

of blocks it is possible to resolve the ambiguities of a 

two-dimensional drawing and output the three-dimensional 
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nature of the objects. The interpretation shown in Figure 

8.4(b) has been derived by machine from 8.4(a) by means of 
waltz's algorithm. 

Figure S. 4 
Scene Analysis by The Waltz Algorithm 
(adapted from Waltz, 1975) 

r7st 

A system that could filter the edges from a scene and then 

resolve the volumetric nature of the objects of which the 

scene is composed could be a powerful tool in visual per- 

ception and a very useful aid to architects and other 
designers working on the built environment. There are no 
insurmountable obstacles standing in the way of construct- 
ing such a system, and it is likely that artificial intel- 

ligence will put a functioning scene analysis system into 

the hands of the architect in due course. 

machine Learning 

To learn is to acquire knowledge. The activity of acquiring 

mere information is a lesser thing, and is usually known by 

such terms as rote learning or memorisation. The critique 

that Hubert Dreyfus directs at artificial intelligence is 

based upon this distinction, and the difference between the 

two things must assume importance in any discussion of 

machine learning. I think that Dreyfus's analysis is cor- 

rect, and that knowledge is inaccessible to a computer for 

the want of a machine point of view. It is not fruitful, 

therefore, to discuss machine learning in terms of episte- 

mology. However, a feature of human learning is that the 

behaviour of the learner is modified by what he has 
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learned. It is useful, then, to take a behaviourist approach 
to the matter and to consider to what extent a computer can 
be programmed to simulate the process of learning. 

At the most elementary level, the performance of a computer 

can be changed by the simple acquisition of data. A data- 

base that, for example, outputs a different total when a 

new record is added fails the test of intelligence, for 

such a task calls for no more than straightforward reckon- 
ing. The relationship between input and output is a 

straight line, and the performance of the system is linear. 

However, a program, if it is to imitate the characteristics 

of human thinking, must display a non-linear correlation 
between data acquired and system performance. 

The generalised programming technique whereby a computer 

can be set up to imitate human understanding is known as 

concept learning. In contrast to merely memorising data, 

the process of learning involves the acquisition of struc- 
tures of information, or concepts. A person's behaviour is 

more likely to be altered by becoming appraised of a con- 

cept than just learning a fact. It is, for example, a 

correct datum that there are 100 pence in one pound ster- 
ling, but the notion of money as a medium of exchange and a 

measure of value is a concept. 

A program procedure can be set up so that the receipt of 

one or more parameters has the effect of assigning values 

to a number of related variables. The group of variables 

constitute a concept, whose characteristics will vary 

according to the value of the parameter. A price list can 

be thought of as a simple type of concept, by which a group 

of objects are classified according to their monetary 

value. Input of object description, price or both will 

determine the nature of the output. The internal structure 

of a large programming concept, however, can be extremely 

complicated and its imitation of learning may be very life- 

like. 
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A concept may imitate learning by logical steps, as in a 
production system, by analogy, or by means of classifica- 
tion procedures. Logic is employed in the 'memo functions' 

algorithm proposed by Donald Michie in 1968. Semantic nets 
are proposed as a method of analogical learning by Patrick 
Winston (1980). The expert system shell Cortex that I de 

scribe in Chapter 13 enables complex concepts to be assem- 
bled by a classification algorithm, and its output mimics a 
process of learning from the input. 

The evolution of living things over time can be seen as a 
kind of collective learning process. Evolutionary learning 

occurs in two stages. In the first stage the population 

reproduces in such a way as to produce new individuals 

whose characteristics differ from the parental stock. In 

the second stage environmental pressures favour the better" 

adapted individuals by killing off those who are less well 

adapted. The new parental stock is thus composed of those 

who have had the greatest success in the race to survive. 

The population is, in effect, continuously winnowed by an 

environmental wind which disperses the chaff and conserves 

the grain for the next cycle of reproduction. The surviving 

population has learnt from the reproductive mistakes of its 

forebears by a process of involuntary adaption. 

The American computer scientist John Holland has worked for 

some 15 years upon the notion that a computer program can 

be devised which will be able to adapt, or 'learn', by 

means of a kind of Darwinian selection process acting on 

its data. An illustration such as Figure 8.5 makes it hard 

not to regard a chromosome as a one-dimensional array, with 

each chromatid standing in the place of an array element. 
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Figure 8.5 
Chromosome Cross-over During Cell Division 
(from Russell, 1986) 

Exchange 
compicte 

Holland's (1986) idea is to represent information by means 

of bit strings, and to form new concepts by recombining 
blocks of data on the analogy of chromosome cross-over. The 

new information structures can then be selected according 
to the success that they achieve when applied to problem 

solving. The method that he proposes to sift the new infor- 

mation structures is akin to Michie's nemo-function proce- 
dure, and is referred to by Holland as a bucket-brigade 

algorithm. In effect, the most well-adapted structures are 

promoted, while those that fail the test of utility are 
demoted and eventually dropped. 
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Figure 8.6 
Bit-string Cross-over 
(Booker, Holland & Goldberg, 1989) 

The success of a genetic-learning algorithm hinges upon 

solving the problem of control.. Holland proposed to exploit 
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the fact, taken over from genetics, that widely separated 
data will be crossed-over more frequently than items lying 
close together on the string. This feature can be utilised 
in a control scheme. 

"Contiguity of constituents, and the building 
blocks constructed from them, are significant 
under the cross-over operator. Close constitu- 
ents tend to be exchanged together. Operators 
for rearranging the atomic constituents defin- 
ing the rules, such as the genetic operation inversion, can bias the rule-generation process 
towards the use of certain kinds of building 
blocks. " (Booker, Holland & Goldberg, 1989) 

The most complicated and intractable of all learning con- 
cepts is the process of design. For the reasons put forward 
in Chapter 11 think that design itself will always be 
uncomputable, but one can envisage design support programs 
that are capable of learning and which would be very useful 
to the architect. A technical analysis program that is set 
up to deduce a suitable energy conservation strategy from 
input about the. design of the building, or another that is 

able to identify likely legal constraints from the configu- 
ration of the building would be of great value in architec- 
ture. Both programs would function as examples of machine 
learning, and there is no reason why artificial intelli- 

gence cannot furnish design aids of this type. 

search 
In some situations the process of learning takes the form 
of a search. A subtle form of search process is involved in 
doing a crossword puzzle, for instance. But search is also 
an integral part of other areas of artificial intelligence. 
Solving problems, translating natural language, game play- 
ing, and theorem proving may all entail a search for a 
solution. 

In principle any problem can be solved by examining all 
possible solutions as a preliminary to choosing that which 
is the best fit. However, exponentiation sees to it that 
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only the solutions to small problems can be found in this 
way. Noughts and crosses can be played successfully with a 
brute force algorithm, but that is a reflection of the fact 
that every schoolboy gets the hang of the game at an early 
age. Problems that are of interest in real life must be 
structured in some way if the combinatorial-explosion is to 
be evaded and a computer is to be able to search for and 
find a solution. 

The steps that must occur in a search for a solution to a 
problem can be represented as a tree, as a network, or as a 
classification scheme. What appear to be other ways of 
structuring the search space all resolve themselves into 

one of these three types. Games playing algorithms are 
usually structured in the form of a tree. A network is the 
structure which underlies the notion of scripts which was 
discussed in Chapter 2, and the same can be said of Marvin 
Minsky's suggestion of frames. Production systems, dis- 

cussed in Chapter 8 also conform to the pattern of a net- 
work. Classification structures have been studied but 
little in artificial intelligence. This is surprising, for 
the notion of classification is the most general of all 
available concepts by which a search space can be struc- 
tured. Indeed, at a sufficiently abstract level both trees 

and networks can be regarded as methods of classification. 
The expert system shell Cortex, which is described in 
detail in Chapter 13, is based upon classification princi- 
ples. 

It is very difficult to structure the search space of a 
large problem adequately. A thorough understanding of the 

problem in hand is needed, and a good deal of native inven- 
tiveness is also called for. But it is possible, when an 
effective structure has been found, to apply a number of 
well-established techniques to the task of conducting the 

search. 
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In the index to his textbook Winston (1984) lists 16 search 
methods, and there are few trees or networks that will not 
yield to one of them. However, the scoring system used by 
Peter Frey (1986a) in his expert system House. Bas is the 
only method of searching a classification scheme of which I 
am aware in the literature of artificial intelligence. In 
the description of Cortex I present another, and I believe 
better, way of searching a classification structure. Cortex 
proceeds by means of repeated cycles of counting, compari- 
son and exclusion. 

Search is not so much an artificial intelligence research 
topic in itself as a study that lies behind and which 
supports investigation into all the other areas of the 

subject. Structuring and traversing the solution space 
occurs in almost every artificial intelligence endeavour. 
Perhaps it is the artificial intelligence manifestation of 
the long-held belief that 'Nothing's so hard, but search 
will find it out. ' (Herrick, 1648) 

control 
In the decisions which form so large a part of everyday 
life we are guided by what are the known facts of a situa- 
tion, but also by what we know about those facts. One may 
confidently cross a street when the pedestrian's traffic 
light turns green. However, if the light is already green 
when first seen the crossing may be postponed because one 
knows that the light will not remain green for long. Our 
human methods of decision are semantic, in the sense that 
what one does is a function of what are the facts and what 
one understands about the facts. But our human methods of 
arriving at a decision cannot be implemented upon a comput- 
er because the machine has no point of view and it is 
impossible to furnish it with understanding. It is neces- 
sary, when programming a computer, to use formal rather 
than semantic techniques. 
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A symbol, such as the spoken or written word 'cat' is 
interpreted in the English language to mean a feline ani- 
mal. other symbols, such as Igattol or 'chat' are inter- 

preted in such a way as to possess the same meaning in 
Italian and French respectively. Natural languages are all 
interpreted systems, in which the symbol has meaning to an 
informed human user. This remains true of restricted lan- 
guages such as Basic English or computer programming lan- 

guages. It is not true, however, of other symbolic systems. 

The variables 'pl and Iql in a logical statement to the 

effect that lp - q' are uninterpreted and carry no meaning. 
The symbol 1-1 is a connective which states that in all 
circumstances 'a' implies Iql. It is a feature of formal 
languages, of which mathematics is the best known and the 

most pervasive, that the state of the system is exclusively 
a result of the transformation rules acting upon the sym- 
bols of the system. For example, it is a rule of elementary 
arithmetic that a pair of the symbols 121 are transformed 
to the symbol 141 when the connectives are 1+1 and 1=1. The 

application of the formalisms of arithmetic to practical 
matters such as measurement, forecasting or resource esti- 
mation take place outside the formalism, and are semantic 
rather than formal in character. 

Procedural programming, which is exclusively concerned with 
logical or mathematical operations, relies upon the well- 
established formation rules of these subjects. A procedural 
program will solve the bracketed parts of a complex expres- 
sion first, for instance, while every programming language 

makes use of the logical principle of modus ponens in the 
form of the IF-THEN formalism. 

However, these methods are not adequate for the type of 
declarative programming called for in artificial intelli- 

gence. The decisions that must be taken are too complicat- 
ed, and fresh rules have to be devised to suit the nature 
of the programming declaration. A blackboard system, for 
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example, will attempt to choose from several the solution 
method best suited to the problem. But how is the best 

method to be decided upon? 

"The control problem is fundamental to all 
cognitive processes and intelligent systems. In 
solving the control problem, a system decides, 
either implicitly or explicitly, what problems 
it will attempt to solve, what knowledge it 
will bring to bear, and what problem-solving 
methods and strategies it will apply. It de- 
cides how it will evaluate alternative problem 
solutions, how it will know when specific 
problems are solved, and under what circum- 
stances it will interrupt its attention to 
selected problems or sub-problems. Thus, in 
solving the control problem, a system deter- 
mines its own cognitive behavior. " (Hayes- 
Roth, 1985) 

In a rule-based expert system a solution is found by work- 
ing through a network of production rules. But in what 

order are the rules to be used? An intelligent tutoring 

system will try to furnish answers to questions according 
to the knowledge level of the user, which raises the prob- 
lem of how the user's knowledge is to be assessed. This 

topic is known as the problem of control, and it makes 
itself felt in all aspects of artificial intelligence. 

Control, as it manifests itself in expert systems, is 

discussed in greater detail in Chapter 12 of this text. 

Problem Solving 
Some of the early workers in artificial intelligence at- 
tempted to develop a general-purpose problem solving pro- 

gram which would exhibit a capacity to learn. They hoped 

that a search method could be devised whose capacity to 

learn about its environment would enable it to be applied 
to a wide variety of cognitive problems. 

It is observable that a feature of many types of problem is 

that a gap exists between the existing and a desired situa- 
tion. In some cases a procedure, or operator, can be found 

which narrows or closes the gap. This is the simple notion 
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that underlies what is known in artificial intelligence as 

means-end analysis. However, complications arise as soon as 
the idea comes to be applied, beginning with the recogni- 
tion that an operator may be able to close only part of the 

gap. If the remaining gap exists either before or after the 

operator it will need to work with other operators, while 
it may itself require another operator to close a gap in 

its own capability. In the first case the operators must be 

chained, while in the second they will need to be nested. 

The best-known solver program was General Problem Solver, 

or GPS, written at Carnegie-Mellon University and the Rand 

Corporation under the direction of Alan Newell, Cliff Shaw 

and Herbert Simon. A distinction was made in GPS between 

problem-dependent parts of the system and those which are 
independent of the particular problem. This enabled the 

problem-independent parts to be treated formally, and they 

could in consequence be made computable. The formal method 

upon which the authors decided to rely was a 'table-of- 

connections' with which to select the appropriate operator. 

In practice GPS worked well with clearly definable puzzles 

such as the Towers of Hanoi or Cannibals and Missionaries, 

or with theorem proving tasks where the constraints can be 

completely described. GPS failed, despite its name, when it 

was applied to problems of a general type. 

"In the construction of a general problem 
solver, employing af ixed set of problem-solv- 
ing techniques, the internal representation is 
critical; that is, it must be general so that 
tasks can be expressed in it; yet the structure 
must be simple enough for the problem solving 
techniques to be applicable. Since the tech- 
niques require that certain information be 
extracted f rom the internal representation, 
they are applicable only if processes that 
abstract the necessary information from the 
internal representation are feasible. Thus the 
difficulty of constructing a general problem 
solver is determined primarily by the variety 
and complexity of its problem-solving tech- 
niques. " (Ernst & Newell, 1969) 
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This is a rather obscure way of saying that they found it 
impossible to design a table of operators appropriate to a 

problem which is only partially formulated. In fact, GPS 

was brought to a halt by problems of control. 

It has, in practice, proved to be impossible to discover a 

set of control rules for a search method which is valid 
generally. The response of workers in artificial intelli- 

gence to this difficulty has been to restrict the scope of 
the problem to which a program is applied. When the domain 

of the problem is sufficiently circumscribed it is possible 
to devise a method of control whereby the program will work 

effectively. This is the reason, for instance, for the 

attention that is now given to expert systems rather than 

to general problem solvers. In Chapter 13 of this thesis I 

have attempted to contribute a solution to the type of 

control problem that occurs in the design of expert system 

shells. 

Intelligent Artifacts 
The topics proposed so far as making up the taxonomy of 
artificial intelligence are subjects of active research 
programs. This work opens the way to programs that exhibit 
increasingly intelligent performance, as well as contribut- 
ing to more long-standing investigations. Research into 

classification systems and methods of search have contrib- 

uted to mathematical combinatorics (Holland, 1986) while 
machine learning programs have thrown light upon education- 
al psychology. Not all artificial intelligence research has 

a positive outcome. Work on language processing, for exam- 

ple, has done little but bring into sharper relief the 

profound nature and baffling complexity of natural lap- 

guage. Optimistic researchers in this field are now rare. 
(Bobrow & Hayes, 1985: 382) 

Nevertheless, programs which are examples of Peter Sell's 

'intelligent artifacts' are emerging from 30 years of 
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theoretical work. These have taken the form of intelligent 

tutoring systems, and expert systems. 

Intelligent Tutoring Systems 

A textbook can, in artificial intelligence terms, be 

thought of as a knowledge base together with a problem- 

solving algorithm bound between cardboard covers. The 

author assembles the information he wants to communicate, 

and presents calculations, arguments and other routines 

such as indexes which are designed to make the topic acces- 

sible and useful to the reader. Some interaction with the 

reader may take place in the form of exercises, answers to 

questions and suggestions for further reading. However, the 

form of a book isýfixed, and as a tutorial system it is 

essentially static. Nevertheless, books have served mankind 

well for some 3000 years and the future of civilisation, 
like its past, seems to be intimately involved with books 

and their use. 

Every functional feature of a book can be reproduced on a 

computer, with the screen taking the place of the printed 

page. But a static program, reflecting the fixed nature of 

the book, would fail to take advantage of the possibilities 

of the computer. 

All but the very simplest of computer programs are to some 

degree interactive. A program will solve an expression 
differently according to the input value of a variable. It 

is true that every reader obtains from a book something 

unique to himself, since reading is a mentally active 

process, but no book can modify its text according to 

information that it has received from the reader. The fact 

that a computer can be programmed to do just this, and to 

alter its performance in the light of response from the 

user, has lead to the development of entirely new forms of 

teaching and learning systems. 
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Early examples of teaching programs, such as the National 
Development Programme (Hooper, 1977), were hardly more 
dynamic than a book. The interactiveness of NDP was con- 
fined to question answering, and such static programs are 

now best referred to as examples of computer assisted 
instruction, or CAI. 

The first intelligent teaching system, or ITS, was SCHOLAR 

written by Jaime Carbonell while a research student at the 

Massachusetts Institute of Technology. Carbonell's notion 

was to use artificial intelligence techniques in such a way 

as to obtain a response that varied according to the nature 

of a user's inquiry (Carbonell, 1970). This was done by 

using Ross Quillian's suggestion of semantic nets. In 

SCHOLAR the user's answer to a question prompted the output 

of the information at a network node and also invoked 

output from other connected nodes. Many routes would be 

available through a large network, and the particular route 
that a user found himself taking was partly selected by the 

character of his own input. SCHOLAR was in this sense 
interactive, and this is the basis of the statement that it 

was the first intelligent tutoring system, or ITS. However, 

the program suffered from the inflexibility of semantic 

nets, and is ill-adapted to represent the changing nature 

of the inter-relationships between concepts that is charac- 
teristic of matters in the real world. Furthermore, the 

program made no attempt to assess a student's learning 

needs. 

If every student possessed the same style of mental appre- 
hension and readiness of comprehension then the task of the 

educator, human or machine, would be greatly simplified. 
But the very ability to understand is a function of the 

possession of an individual point of view, and the learning 

performance of every student is therefore unique. A skilled 
human tutor will be able to communicate expert knowledge 

about a subject, but to be effective he will also need to 

know how to teach according to the state of understanding 

page 112 



of the individual student. When the tutor is a computer a 
comparable interaction is called for between student and 
machine. 

Some of the features to be sought in an effective ITS have 
been listed by Johnson and Keravnou. 

"The characteristic features of a tutoring 
system are that it has: 

1. The ability to evaluate the student's 
hypotheses and, in the light of the hy- 
potheses, to criticise requests for addi- 
tional information. 
2. The ability to communicate (explain) to 
the student its strategies for attacking 
problems and demonstrate application of 
the strategies to concrete problems 
(probably problems formulated by the 
student). 
3. The ability to answer (in terms under- 
standable to the student) any relevant 
questions raised by the student. 

Additional, and very welcome, features of a 
tutoring system are: 

4. Provision for unconstrained initiative 
on the part of the student. 
5. Provision for a 'natural language** 
interface mechanism. " (Johnson & Kerav- 
nou, 1988) 

Between 1973 and 1982 the computer scientists John Brown, 

Richard Burton and Johan de Kleer developed their SOPHIE 

programs while working at Bolt, Beranek and Newman in 

Cambridge, Massachusetts. SOPHIE was designed to perform 
interactively with an individual student rather than to 

merely instruct an inquirer. 

The performance of electronic circuits is a complicated 

area of technology which has been intensively studied. 
Brown and Burton chose the diagnosis of faults in electron- 
ic equipment as the domain for their ITS. Electronic trou- 

bleshooting relies upon a detailed knowledge of the tech- 

nology, but it is not itself programmable. The operation of 

Kirchoff's current and voltage laws, for example, are well 

understood, but no algorithm is available as to how these 

page 113 



laws can explain a specific equipment failure. The effec- 
tive application of knowledge in electronic troubleshooting 
is, as in so many other domains, a matter of skill. SOPHIE 
incorporates a large amount of information about electron- 
ics in its knowledge base, and attempts to use it in such a 
way as to engender this skill in its human students. 

In its developed form of SOPHIE III Brown and Burton's 

program consists of three main components. These are the 

electronic expert, the troubleshooter and the coach. Infor- 

mation about the specific circuit as well as general knowl- 

edge of electronics is stored in the electronic expert, and 
this part of SOPHIE is therefore domain specific. Output of 
the expert is made in the form of deductions about the 

state of the circuit and about the values which measure- 

ments upon the circuit would produce. 

The troubleshooter and the coach are both self-contained 

and independent of the particular circuit which is under 

consideration. The function of the coach is to examine the 

deductions of the electronic expert and decide whether or 

not to interrupt or to advise the student. The trouble- 

shooter monitors the measurement values produced by the 

electronics expert and chooses the most informative one. 

These two components of SOPHIE worked well but the elec- 
tronic expert, despite its name, raised some difficulties 

to which the authors could find no answers. 

Two of the unsolved difficulties were caused by assumptions 

about component performance without which the program could 

not work. In the first place, the program assumes that a 

malfunction is the result of only one fault. 

"The single-fault presupposition is the most 
pervasive. Almost every deduction employed by 
SOPHIE III relies upon it. Without it a corrob- 
oration cannot logically be used to verify the 
underlying components nor can a conflict be 
used to verify the components that aren't 
mentioned in the underlying assumptions that 
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lead to the conflict. Much of the behaviour of 
the reasoning mechanism of the behaviour-tree 
is no longer valid. (Brown, Burton & de Kleer, 
1982) 

Secondly, the program assumes that all Possible faults are 
known. This may not in fact be so, for all possible modes 

of failure are impossible to foresee even in a field as 

well-studied as electronics. The third assumption listed by 

the authors of SOPHIE is the most subtle and gives rise to 

the greatest difficulty. 

"The third important presupposition, that a 
circuit symptom is a direct consequence of some 
component behaving symptomatically, is only 
true for circuits which do not have some kind 
of "memory". Suppose a device has a circuit 
breaker on its input which blew every time the 
power supply was plugged in. The power supply 
is manifesting a symptom, but every component 
is functioning correctly: ... The problem is, of 
course, that the circuit breaker "remembers" 
that some component was behaving symptomatical- 
ly, even though the component might not be 
doing so at present. This type of fault is 
notoriously hard to find since the trouble- 
shooter does not get the opportunity to see the 
faulted component manifest its symptom. " 
(Brown, Burton & de Kleer, 1982) 

The authors of SOPHIE conclude that although they suffered 
from the limited memory of their computer, 

"The issues concerning the need for a theory of 
human understanding of complex systems, in 
particular circuits, was clearly the more 
challenging one. Indeed, much of our recent 
research has been directed at attacking this 
problem. It quickly became clear to us that the 
work that went into SOPHIE II and III on expla- 
nation put the cart before the horse. We have 
no adequate theory of what it meant to under- 
stand a circuit and hence no well defined 
"target" model of what we wanted the student to 
learn. As a consequence no real theory of 
explanation was forthcoming. " (Brown, Burton & 
de Kleer, 1982) 
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In recent years de Kleer and Brown have endeavoured to form 

a theory of understanding which will, they hope, correct 
the shortcomings of their ITS. Their notion has become 
known by the title of 'qualitative physics'. 

"qualitative physics yields qualitative de- 
scriptions of behaviour based upon qualitative 
descriptions of the physical situation and 
physical laws. The key contribution that makes 
qualitative physics useful and possible is that 
moving to the qualitative level preserves the 
important behavioural distinctions. For exam- 
ple, important concepts and distinctions under- 
lying behaviour are state, cause, law, equilib- 
rium, oscillation, momentum, quasistatic ap- 
proximation, contact force, feedback, etc. 
These terms are qualitative and can be intui- 
tively understood. " (de Kleer, 1987) 

However, this list of the features of a fundamental struc- 
ture to perceived events is open to the same objections as 
is Roger Schank's notion of scripts. That is, the supposed 

units of qualitative physics themselves need interpretation 

if they are to be understood. I fear that this avenue of 
inquiry will lead the researcher into another infinite re 

gress of meaning. Many observers confess themselves to be 

sceptical about the likely outcome of this line of investi- 

gation. 

"It is only fair to remark that the research 
programme advocated has been pursued by some of 
the best minds in AI for the last 20 years, but 
with very little to show for the effort so far. 
This lack of results has recently become the 
subject of some debate in the AI literature; 
codification of commonsense reasoning (based 
upon a naive understanding of physics) is 
generally regarded as one of the hardest un- 
solved problems in AI research today. " (Akman, 
ten Hagen & Tomiyama, 1990) 

Expert Systems 

Expert systems are specialised problem-solving programs 
which are designed to apply to particular circumscribed 
problems. They are the result of an attempt to use a com- 
puter to penetrate a problem deeply on a narrow front, 
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rather than to merely scratch at the-edges of a broad 

problem. Interest in expert systems is pragmatic. 

"We have already remarked that a shift took 
place in AI research over the past two decades. 
It was a shift from a search for broad, general 
laws of thinking towards an appreciation of 
specific knowledge - facts, experiential knowl- 
edge, and how to use that knowledge - as the 
central issue of intelligent behaviour. This 
shift came not as a consequence of irrefutable 
arguments that immediately persuaded all re- 
searchers by their cogency and correctness. 
Rather, the shift came about because demonstra- 
tion projects that used large amounts of knowl- 
edge simply worked. " (Feigenbaum & McCorduck, 
1983) 

The technical reason as to why the demonstration programs 

worked was not simple, but followed from the fact that it 

becomes possible to control a large amount of information 

when it is concerned with a single homogeneous topic. The 

restricted and defined topic within which an expert system 
is designed to work is known as its domain. 

The distinction, first made in the design of GPS, between 

the problem-specific and the problem-independent parts of 

the program are a prominent feature of expert systems. In 

the jargon, the domain-dependent component is known as the 

knowledge base while the independent part of the program, 

which operates upon the knowledge base, is referred to as 

the inference engine. The distinction is a useful one, and 
it is maintained in the design of Cortex, because it dis- 

tinguishes as clearly as possible the data with which the 

program operates. In procedural programming the difference 

between data and procedure is blurred, and much of the 

method of the program is encoded tacitly rather than ex- 

plicitly. In Cortex, the knowledge base consists of files 

separate from the procedural code and whose informational 

content can be read in plain English. 

Furthermore, the inference engine can, in principle, be 

used to operate upon more than one knowledge base and so be 
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applicable to several domains. A disembodied inference 

engine, complete with its control mechanism, is known as a 

shell. A shell is an expert system without knowledge. 

Cortex is a prototype shell, and it is implemented in 

Chapter 14 in the domain of an optical disc reader and the 

University College Dublin architectural video disc (Hast- 
ings, 1986). 

If a layman consults a human expert, the solution that he 

receives to his problem will be better understood and is 

more likely to be believed if the expert can explain his 

solution. A patient will be more likely to improve his diet 
if a doctor explains that too much weight strains the 
heart, and a motorist will pay more attention to the choke 
if a mechanic explains that a rich petrol/air mixture 
damages the valves of an engine. Similarly, an expert 
system should be designed to give the reasons for proposing 
a particular solution to a problem. A computer program that 

baldly outputs a solution without an explanation will lack 

credibility. 

conclusion 
I think that artificial intelligence can most usefully be 

classified under three main headings. These are cognitive 
simulation, mainstream topics, and intelligent artifacts. 

cognitive simulation, in either its strong or its weak 
form, is very unlikely to be successful. Knowledge and 
understanding are human facilities and are shared to some 
degree by all higher animals. The cognitive faculties of 
the knower or the understander are dependent upon the 

possession of a point of view, and therefore can only be 

exhibited by an entity which is not only conscious but 

self-conscious. A human knows something because he knows 

that he knows it. No computer, however powerful, can ac- 

quire a point of view, and therefore cannot escape an 
infinite regress of meaning. Searle and Dreyfus discuss 

these issues because they are interesting and fruitful, and 

page 118 



I think that their conclusions about the impossibility of 

cognitive simulation are correct. 

The topics of mainstream artificial intelligence do not 

suffer from inherent contradictions, although the difficul- 

ties involved in natural language processing by computer 

are extremely daunting. Mainstream artificial intelligence 

is an active area of research, and will I think produce 
both understanding and useful programs in due course. 

In the meantime, I have chosen to try to devise an intelli- 

gent program which will be useful in the field of architec- 

ture. My intention is to exploit and expand upon already- 
known techniques, rather to embark upon. a task that cannot 

be completed without the results of future research work. 

Expert systems are at present the most highly evolved 

artificial intelligence artifact, and my effort in this 
3 

thesis is to try to advance the design of expert systems to 

a further stage of development. The majority of working 

expert systems are written according to a formalism known 

as a production system. Production systems are logical in 

the strict sense of the word. Conclusions that are arrived 

at by employing such a system are valid if the premises are 

valid. However, production systems cannot, in my opinion, 

represent the process of design effectively and the conven- 
tional type of expert system that is based upon them is not 

suitable for use in architectural design. The next two 

chapters attempt to show why this is so. 
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Chapter 9. GRAPHS 

In the opinion of some authors the whole of human life can 
best be described as an exercise in solving problems. 

"When we wish to explain the behaviour of human 
problem solvers (or computers, for that 
matter), we discover that their flexibility - 
their programmability - is the key to under- 
standing them. Their variability depends upon 
their being able to behave adaptably in a wide 
range of environments. " (Newell & Simon, 1972) 

If the interpretation of the word 'problem' is made suffi- 

ciently wide, then everything can indeed be said to be a 

matter of solving one of an infinite array of problems. But 

a definition, when it is so all-embracing, loses its ex- 

planatory power and is apt to decline into little more than 

a truism. It does not seem to be particularly useful, for 

example, to be told by Matthew Arnold (1865) that criticism 

is "a disinterested endeavour to learn and propagate the 

best that is known and thought in the world. " In a similar 

way, I think that Newell and Simon's characterisation of 

human beings as problem solvers is so broad that it ex- 

plains almost nothing. I believe with Feigenbaum that, to 

be useful in the practice of artificial intelligence, the 

notion of problem solving should be restricted to discrete 

problems which are definable and which are amenable to 

solution. The range of problems to which knowledge engi- 

neering methods can be applied is circumscribed by practi- 

cality. The most useful forms of problem representation, 
for architects and other visually oriented people, are 

graphical in character. 

Dravings, 

Techniques of graphical representation have been put to use 

from earliest times as a help in solving some types of 

empirical problem. The most pressing problem which faced 

palaeolithic mankind some 15,000 years ago was the hunt. 

Food, other than that which could be gathered, had to be 
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secured by hunting. Finding prey, therefore, and killing 

and retrieving it were the matters that were uppermost in 

the minds of Magdalenian men. The logic of sympathetic 

magic induced them to paint on rock walls vivid graphic 

representations of hunting parties and their prey. Those 

that were painted on walls deep in limestone caves such as 
those of Lascaux, Trois Freres and Altamira in southwestern 
France and northern Spain have survived virtually intact to 

the present day. 

Writing of European prehistoric art, Nancy Sandars has 

observed that; 

"The special relationship between hunter and 
prey, that is nor only physical, gives to 
Palaeolithic animal art its peculiar power; the 
impression that the animals are not neutral. 
Without this relationship it is doubtful if 
there could have been any such art at all. " 
(Sandars, 1968) 

The notion, 15 millennia ago, was that a graphical repre- 

sentation of what was hoped for would help to realise those 

hopes. In modern times the progress chart pinned upon the 

wall of the foreman's hut sometimes seems to be connected 
to the state of the work on the building site only by a 

similarly slender thread of magical association. 

Maps 
Topographical maps do not have so great an antiquity as 

cave paintings, but they have been made by peoples in every 

corner of the earth for a very long time. The earliest 

examples to survive were drawn on clay tablets at about 
230OBC in Babylonia, but map making no doubt began long 

before the third millennium. 

A map is connected with physical reality not by the links 

in a chain of sympathetic magic, but rather it stands in 

relation to the world as an analogy. The first syllable of 

this word is the Greek preposition 'anal meaning in this 
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context 'anew', signifying that an analogy provides a fresh 

and different account of something. The graphical symbols 
which make up the map correspond to features on the surface 
of the earth in the manner of an analogical representation 
of those events. The map is thus a fresh account of the 

actual geographical facts. While maps, like the wall paint- 
ings of our prehistoric ancestors, will often be beautiful 

objects to look at their primary purpose is not decorative, 
but rather they are intended to serve as problem solving 
devices. 

Far away from the district that is represented, the user of 
a map can discover accurate information about areas, dis- 
tances, depths and heights on the land. He can identify the 

presence of settlements and discover the uses to which the 
land is put. Furthermore, he can solve problems of travel. 

Because of the analogous character of a map, a route on a 
map will provide an itinerary which, when followed on the 

ground, will take the traveller to a destination which he 

may never have seen in actuality. A search conducted 
through the symbol& on the map thus leads to the solution 
of a practical problem. These two notions, of symbolic 

representation and of search, appear in all branches of 
artificial intelligence. They are particularly prominent in 

the design and implementation of expert systems. The opera- 
tion of using a road or rail map to conduct a journey is 

very similar to the process of searching the knowledge that 
is represented in an expert system in order to arrive at 
the solution to a problem. 

Graphs 

A well-known puzzle is based upon what was until 1945 the 

layout of the medieval centre of the city of Konigsberg in 

Prussia. The positions of seven bridges over the river 
Pregel that connect two islands to the mainland and to one 

another is shown in Figure 9.1. The problem that is set by 

the puzzle is, in a single continuous journey, to cross 
each bridge only once and to arrive back at the starting 

page 122 



point. Although it is not obvious from a topographical map, 
there is in fact no solution to this puzzle. 

Figure 9.1 The Bridges of Konigsberg. 

Figure 9.1 is a conventional topographical map of the 

analogical type. However, it is not well suited to repre- 
sent the puzzle of the bridges of Konigsberg because of the 
fact that it is drawn to scale. The length of a bridge, or 
its exact rotational position on the periphery of an island 
is of no significance in arriving at a solution to the 

puzzle. In fact, the redundant information contained in 

Figure 9.1 is a disadvantage in this context because its 

presence makes the problem itself more difficult to think 

about clearly. However, by dispensing with the representa- 
tion of scale it is possible to raise the diagram to a 
higher level of abstraction and so to reduce the depiction 

of the problem to it essential features. This is done by 
introducing the convention of the graph. 

Those of us who are not mathematicians are accustomed to 
think of a graph as a Cartesian diagram. Two or three axes 
diverge at right angles from a common origin. The axes are 
scaled and a value in the field of the graph is determined 

by its position when projected onto the axes. A function 

can be represented on a graph by means of a set of such 
points. But a geometrical diagram of this sort is a partic- 
ular type of the more general notion of a graph. 

It is convenient to define a graph, in the general sense, 
as a diagram made up of only two types of component, points 
and lines. The set of points associated with a graph is 
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known as the vertices of the graph. A curve that is not 

self-intersecting is said to be a simple curve. The rela- 
tionship that exists between the vertices of a graph is 

indicated by a set of simple curves, known as edges. The 

term node is often used for vertex in American texts. 

If, for example, two related points are v, and v2 , then 

the relation between them would be indicated by an edge 

which is designated by e= (vj v2) or by the converse e 
(v2 vj ). Since the function of the edge is solely to 

indicate graphically that a relation exists between the two 

vertices, the length, straightness or layout of the curve 
is of no significance. This characteristic of an edge 

allows the topographical map in Figure 9.1 to be redrawn as 

a graph in this generalised sense of the term. Figure 9.2, 

made up only of vertices and edges, is the graph of the map 

appearing in Figure 9.1. The scale feature of the map has 

been dispensed with in the graph. 

Figure 9.2 Graph of the Bridges of Konigsberg. 

If there is a solution to the bridges of Konigsberg puzzle, 
then it must be possible to find a connected succession of 

edges through Figure 9.2 which traverses each edge only 

once and which returns to its starting vertex. A sequence 

of edges which traverses all the edges of a graph once 

only, and which ends where it began, is referred to as 

closed and, in distinction to a chain which is open ended, 
it is termed a circuit. It is possible simply from inspec- 

tion to see that Figure 9.2 contains no such circuit. But a 

larger and more complicated graph would defeat the unsys- 
tematic observer. Is there, then, a general proof that the 
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bridges of Konigsberg puzzle has no solution? It turns out 
that a conclusive proof can be obtained by paying attention 
to the vertices of the graph. What is termed the degree of 

a vertex is the number of edges in contact with it. In 

Figure 9.2 vertex A is degree 5, while B, C and D are 
degree 3. 

However, all the vertices which lie on a circuit must 

possess an'outgoing edge for every incoming edge, which is 

to say that its degree must be multiples of 2 and therefore 

must be even. If the path is a chain rather than a circuit 

then two and only two vertices, at the open ends of the 

chain, may be odd of degree 1. In 1736 the Swiss mathemati- 

cian Leonhard Euler generalised this rule to include paths 

which traverse a vertex more than once. He observed that 

each time a vertex is traversed by a circuit its degree is 

raised by 2, which is to say that its degree must always be 

even. Graphs in which all vertices are of even degree are 

known as Euler graphs. An Euler graph is therefore the only 

type of graph in which a circuit may be found. But since 

the vertices of the graph of the bridges of Konigsberg are 

all of odd degree it follows that no circuit is possible 

and therefore that the puzzle has no solution. This conclu- 

sion would hold true no matter how complicated the graph. 

I have devoted some space to the puzzle of the bridges of 

Konigsberg because it shows that graphs can serve as sur- 

prisingly simple problem solving diagrams. Furthermore, a 

problem when represented as a graph can often be completely 

solved by calculation. A computer can, for example, easily 

be programmed to count the degree of all the vertices of 

even a very large graph. If all are even then a circuit can 

be found, and a chain through the graph exists if only two 

of its vertices are of odd degree. In this way the ability 

of a large number of edges to combine into a circuit or a 

chain may be computed quickly and economically. Further- 

more, the Kirchoff-Bernoulli laws, relating flows and 

potential differences in a graph, are readily computable. 
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Such calculations are an important part of SOPHIE intelli- 
gent tutoring system described in Chapter 8. 

For these reasons artificial intelligence programs for 

games playing, decision making and computer-aided learning 
often make use of graph theory. The application of graph 
theory to the type of graph known as a production system is 

of particular interest in the design and operation of 
expert systems. 

Directed Graphs and Trees 
An edge in the graph shown in Figure 9.2 indicates no more 
than that there is a relationship between two vertices. 
However, it is possible to use the convention of the graph 
to convey more than the bare fact of relationship. If the 

edge is given the attribute of direction, to indicate a 
flow of piped fluid or of electric current for example, it 

can be represented graphically by an arrow. A directed edge 
is known as an arc, and a graph made up of arcs is a di- 

rected graph. An arc designated by a= (v, Iv2) is quite 
distinct from the arc a=N vj). An entire directed 

graph can be represented by the expression G(V, A) where V 

and A are the sets of the vertices and arcs respectively. 

Directed graphs can also represent non-material entities. 
An arc can, for instance, depict an energy flow or the flow 

of information from one vertex to another. When the graph 
is drawn in such a way that the vertices stand for deci- 

sions and the arcs for information flow, then what is 

represented is the structure of a logical process. When 
defined in this way graphs are useful devices for solving 
problems in logic. 

Finally, one must take note of a particular type of graph 
known as a tree. The edges of the graph in Figure 9.2 
divide the surface of the paper into 5 regions when the 

area surrounding the diagram is included in the count. A 

graph is a tree when, like the two diagrams in Figure 9.3, 
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it has only a single region. It follows that every pair of 
vertices in a tree is connected by exactly one edge, and 
that every sequence of arcs in a tree is a path. 

- 41-ý 

Figure 9.3 Trees. 

A tree can, like a graph, be directed, and the problem of 

searching for a path in a directed tree has been and is an 
important topic in artificial intelligence. 

Traversing a Staple Graph 

A graph such as that shown in Figure 9.4 is known as a 

simple directed graph. The adjective simple denotes the 

fact that it has no parallel arcs and contains no feedback 

loops. Logic properly so called, which is deductive logic, 
is adequate for the purpose of traversing a simple graph 
but it will not serve to traverse a graph with one or more 
feedback loops. As I shall argue later, the process of 
design is characterised by the frequent and unavoidable 

occurrence of feedback loops. It is necessary, therefore, 

to consider the differences which exist between the formal 

properties of looped and simple graphs. 

Let Figure 9.4 be a generalised representation of a process 

of reasoning about a problem. 
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Figure 9.4 
A Simple Directed Graph 

I 

The graph tells the reader that there are two possible 

solutions to the problem, denoted by vertices F and G, and 
that these solutions may be arrived at by two different 

routes of four or of five steps. At each vertex a decision 

as to whether to proceed or not must be taken, while at 

vertices B and E additional decisions are required as to 

which of the two succeeding arcs is to be followed. For our 

purposes it is sufficient to observe that each of these 

decisions can be taken independently of any subsequent 
decision. The graph contains no arc by which a decision at 
B, for example, would be affected by decisions taken later 

at vertices C to G. All deductive logical systems possess 
this feature, according to which a decision need never be 

reversed in the light of later decisions. 

In deductive logic the flow of inference proceeds steadily 
forward from the premises until a conclusion is arrived at. 
Each inference is made by reference to a rule, and the 

resulting "well formed formula", or wff, ensures that the 

result is valid. The rules of logic are readily adapted to 

meet the requirements of the computer. For example, the 

rule of modus ponens in propositional logic emerges as the 
IF.. THEN conditional statement to be found in some form in 

all computer languages. Quantifiers in the predicate calcu- 
lus ar6 conveniently represented on a computer as varia- 
bles. The rule of double negation is accommodated arith- 
metically, and comparable representations are available for 
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all the rules of formal logic. It is therefore always 
possible to derive an algorithm to describe a wff, and wffs 
are consequently always computable. It follows that any 
process of reasoning that can be expressed in the form of a 
simple directed graph can be represented as a program and 
solved by computer. The converse also holds true. Under- 
graduates studying logic at oxford University now make use 
of computer programs for the purpose of learning the rules 
of propositional and predicate calculus (Darby, 1988). 
However, the situation is less straightforward when the 

reasoning process under consideration includes feedback 
loops. 

Traversing a Looped Graph 

The graph shown in Figure 9.5 is identical to that in 
Figure 9.4 except that the direction of the arrow between 

vertices B and D has been reversed. The arc is DB rather 
than BD. The graph is no longer simple, for the three arcs 
joining vertices B, C and D form a feedback loop. The 

consequences of this configuration become evident when 
attention is given to vertex B. 

Figure 9.5 
A Directed Graph Containing a Feedback Loop 

Here, the decision to proceed along arc BC follows from the 
traversing of arc AB, but it is also dependent upon arc DB. 
That is to say, the decision at B is conditional upon a 
decision at D which has not yet been taken. This feature of 
Figure 9.5 violates the formation rules of deductive logic, 
by which no decision can be invalidated by a subsequent 
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decision. Were such a thing to occur, the argument would 
degenerate into mere circularity. There are therefore no 
logical rules by which the inferences which are depicted in 

Figure 9.5 can be guided. It follows that no algorithms are 

available, and that reasoning processes that are represent- 

ed by directed graphs containing feedback loops are not 

computable. 

Non-Monotonicity 

one of the characteristics of inductive reasoning is that 

the conclusion reached may differ as new evidence is 

brought into the argument. The example of the revision of 

the notion that 'all swans are white' with the discovery of 

the black Australian swan was quoted in Chapter 1. This 

feature of induction has come to be known in the context of 

artificial intelligence as non-monotonicity. 

"'Non-monotonic' logical systems are logics in 
which the introduction of new axioms can inval- 
idate old theorems. Such logics are very impor- 
tant in modelling the beliefs of active proc- 
esses which, acting in the presence of incom- 
plete information, must make and subsequently 
reverse assumptions in the light of new knowl- 
edge. " (McDermott & Doyle, 1980) 

The distinction between monotonic and non-monotonic reason- 
ing brought forward by McDermott and Doyle has proved to be 

useful because it summarises a basic structural feature of 

all systems of inference. Every process of reasoning must 
be either monotonic or non-monotonic. It is evident, in the 

present context, that a simple directed graph is monotonic, 

while a directed graph containing a feedback loop is non- 

monotonic. I shall employ these two terms in the following 

discussion of looped graphs and computability. However, I 

shall not, for the reasons put forward in Chapter 1, employ 
the term logic or logical with reference to non-monotonic 
inference. 

Non-monotonic reasoning processes do possess meaning, the 

absence of graph theorems notwithstanding. It is perfectly 
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reasonable for an architect to decide, for example, to clad 
a building under design in stone on condition that suitable 

stone turns out to be available in sufficient quantity. The 
decision is made provisionally, and in recognition of the 

fact that it may have to be revised later. In fact, a great 
many of the decisions that one makes in general life are 

meaningful in this provisional sense. Much of our thinking 

remains reasonable even when it lies outside the bounds of 
formal logic. Is it possible to bring computers to bear 

upon problems of this type nevertheless? It may be, per- 
haps, that an heuristic algorithm will meet the case and 

enable non-monotonic reasoning to be computed. The term 

'heuristic' is used here in its artificial intelligence 

sense of "a technique that improves the. efficiency of a 

search process, possibly by sacrificing claims of complete- 

ness" (Rich, 1983) rather than indicating something that 

stimulates investigation. 

In an attempt to answer this question I return to a consid- 
eration of vertex B in Figure 9.5. It is possible to devise 

an algorithm which will enable the system to proceed from B 
to C provided that a later decision produces a certain 
predefined result. For example, the system might be set to 
traverse BC only if a variable at D exceeds a certain 
value. If the condition is not met the system loops back 
through arc DB and the process is repeated, perhaps with a 
different value for the variable. However, it is important 
to notice that the graph itself contains nothing which 
describes the character or the operation of this hypotheti- 

cal variable. That is to say, the condition without which a 

non-monotonic system is paralysed is independent of the 

structure of the system. The condition that we have sup- 
posed to exist at vertex D in Figure 9.5 has been imposed 

upon the system rather than constituting a part of the 

graph itself. The graph, as a description of the process of 
inference, is incomplete. 
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The significance of this apparently inconsequential fact 

can be seen when the notion of incompleteness is expanded. 
Figure 9.6 is a variation upon the structure of Figure 9.5. 

Figure 9.6 
A Directed Graph Containing a Feedback Loop 

Here the feedback loop is formed by the arc EB rather than, 

as before, by the arc DB. This graph might, for example, 

represent a situation in which the decision to proceed 

along BC was dependent upon whether EF or EG was subse- 

quently selected at E. An alternative way of making the 

decision at B thus calls for the imposition of a fresh 

condition upon the system. 

As in the case of the graph in Figure 9.5, the imposed 

condition implies knowledge of the system's context. The 

hypothetical variable at vertex D in Figure 9.5 might 

perhaps be a temperature or time interval, or a boolean 

state. The selection of arc EF or EG in Figure 9.6 could be 

made according to some measure of precedence, location or 
dimension. Contextual criteria such as these are all func- 

tions of the context in which the system of inference 

represented by the graph is designed to operate. 

It emerges, then, that every distinct feedback loop in a 

graph calls for the imposition of at least one separate 
condition, and that every condition depends upon a knowl- 

edge of the system's context. Clearly, the parallel rise in 

the number of contextual conditions with the increase in 

the number of loops is an example of the infinite regress 

of context. But, as Hubert Dreyfus has pointed out, no 
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algorithm can be conceived of which can embrace an infinite 

quantity of knowledge. Despite the efforts of many ingeni- 

ous logicians it remains true to say that non-monotonic 
reasoning is not computable, even by means of heuristics. 
It follows from these considerations that no algorithm can 
ever be devised which is capable of traversing a looped 

graph in an autonomous fashion. The difficulty has been put 
concisely by John McCarthy. 

"in order to fully represent the conditions for 
the successful performance of an action, an 
impractical and implausible number of qualifi- 
cations would have to be included in the sen- 
tences describing them. For example, the suc- 
cessful use of a boat to cross a river re- 
quires, if the boat is a rowboat, that the oars 
and the rollocks be present and unbroken, and 
that they fit each other. Many other qualifica- 
tions can be added, making the rules for using 
a rowboat almost impossible to apply, and yet 
anyone will be able to think of additional 
requirements not yet stated. " (McCarthy, 1980) 

A human being can make an exit from the regress of context, 

and so act successfully, because he possesses a point of 
view from which to judge the significance of the conditions 

and qualifications with which he is presented. His attempt 
to row across the river would be guided by what is suc- 

cinctly described as common sense. Can a computer, which 
has no common sense, be programmed in such a way that it 

can, for its part, evade the infinite regress of context? 
Much ingenuity has been displayed in searching for an 

answer to this question (Winograd, 1980). 

It is possible to decide that the rowing trip may go ahead 
unless a reason is known as to why it should not. This type 

of procedure, of belief in the absence of contradiction, is 

the basic notion of what are known as default logics. One 

might make a list of perhaps ten or a dozen reasons why the 

rowing trip should not be made, and then say that in the 

absence of any of these qualifications the trip may go 
ahead. These reasons can be stated as metarules (Reiter, 
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1980) or as a set of predicates. McCarthy (1980) proposed 
his circumscription method of default logic as a way of 
representing predicates and variables in a manner that 
lends itself to programming in LISP. In either case, and as 
the title of McCarthy's method suggests, the problem of 
regress of context is addressed by drawing a bound around 
that part of the problem context that is assumed to be 

pertinent. All other contextual issues are then assumed to 

be irrelevant. The quality of the automatic reasoning 

process is therefore entirely dependent upon the manner in 

which the conditions are specified. For this reason, de- 
fault reasoning can only be applied to domains in which all 
the relevant conditions can be identified and described in 

advance. If, in the rowboat example, only qualifications 

about the size of the boat and the condition of the oars 

are included in the metarules or the set of predicates, 
then the system will not predict failure even if the hull 

has a leak below the waterline. Heuristic non-monotonic 

methods of reasoning, such as circumscription, are limited 
in scope because of the complexity of the context of any 

serious problem. For the same reason, a graph containing a 
feedback loop is a useful form of representation only when 
the problem is small and simple. 

Architecture and Non-Nonotonicity 

The first of the 11 properties furnished by Horst Rittel in 

his description of design problems is that 

"Wicked questions have no definitive formula- 
tion. Any time a formulation is made, addition- 
al questions can be asked and more information 
requested. " (Rittel, 1972) 

The effect of this observation, whose truth no architect 

can deny, is that every decision that is taken in the 

process of designing a building is provisional, and subject 
to revision in the light of later events. For example, the 

orientation of a building may have to be changed when the 

number of spaces needing north light becomes known, the 
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building may need to be broken down into several units if 

it becomes to bulky, and in a few cases a good building is 

impossible to design on the proposed site and another 
location must be found. Reasoning processes of this kind, 

in which any decision may call into question any previous 
decision, are non-monotonic in character. Design is the 

most non-monotonic of all reasoning processes, because 

every decision can call for a reconsideration of not just 

some but every previous decision. 

The conventions of graph theory break down when a complete- 
ly non-monotonic process such as design is to be represent- 

ed. If Figure 9.4, for instance, is redrawn to include the 

feedback loops characteristic of the process of design then 

the diagram no longer has any meaning. 

Figure 9.7 
The Design Process as a Graph 

The descriptive capacity of graph theory evaporates in a 

diagram such as Figure 9.7, and the truth preservation 

properties of deductive logic are destroyed by the presence 

of the feedback loops. 

In the past attempts have been made, under the heading of 

design studies, to evade this difficulty. The best known 

effort to apply graph theory to design was that made in 

the late 1960's by Maver. The notion upon which his work 

was based was that a design proceeds from analysis of the 

problem to the synthesising of a solution. The solution is 

then appraised and the result of the appraisal is fed back 
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to a fresh attempt at synthesising a solution. The analy- 
sis-synthesis-appraisal model of design is illustrated in 

Figure 9.8. 
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Figure 9.8 
Framework for Design Management 
(from Maver, 1970) 

The need for feedback is recognised in this scheme. Howev- 

er, feedback is strictly circumscribed by the interpreta- 

tion that has been given to design. There is no scope for 

the scheme design stage to influence the outline proposals, 

nor for detail design to feed back to either preceding 

stage. In fact, backtracking of this kind is discouraged. 

"The characteristic of a morphology is that the 
stages are sequential and not iterative; return 
from a later stage to an earlier stage is 
recognised as failure in the management of the 
design activity. " (Maver, 1970) 

In reality, this embargo is necessary if the breakdown in 

meaning which is illustrated in Figure 9.7 is to be avoid- 

ed. But Figure 9.7 describes the necessary and inescapable 

process of decision making in design, and the fact that it 
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cannot be represented in terms of graph theory is responsi- 
ble for the lack of interest on the part of architects in 

deductive models of design. 

conclusion 
A simple directed graph is logically monotonic, and it can 
therefore be traversed by means of a suitably programmed 
computer. Problems of traversing a network in CPM or PERT 

analysis, which are monotonic in character, are routinely 
solved by computer. However, the pattern of inference of 

any graph which contains a feedback loop is non-monotonic. 
Because non-monotonic reasoning entails an infinite regress 

of context it is impossible in principle to solve this type 

of problem fully by means of a computer. Heuristic non- 

monotonic algorithms, which try to evade the regress, are 
limited by the scope of contextual considerations to small 

and simple problems. 

These conclusions are very important when the problem under 

consideration is architecture. This follows from the fact 

that every inference in architectural design is non-mono- 

tonic and a graph which correctly represents the design 

process is replete with feedback loops. Computer programs 

applicable to architecture and design must, consequently, 
be able to function non-monotonically. It follows, also, 

that architectural design itself is inherently impossible 

to compute. 
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Chapter 10. PRODUCTION SYSTEKS 

The methods of graph theory are capable of deciding if some 
path through a directed graph exists. There is, however, no 
general theorem which is capable of providing an answer to 
the more difficult question of which succession of arcs 

constitutes such a path. Operations like finding the criti- 
cal path through a network representing a project, for 

example, can only be performed by numerical means. Dijk- 

stra's algorithm, in which the path is assembled iterative- 

ly (Dijkstra, 1959), is often used to solve this problem in 

commercial network analysis programs. 

The type, of diagram to which conventional graph theory is 

applied has to be a static structure. Euler's rule would be 

powerless to find a circuit over the bridges of Konigsberg, 

were there one, if the graph in Figure 9.2 were to change 

while an answer to the puzzle was being sought. Similarly, 
if the sequence of operations on a building site which is 

being monitored by critical path analysis should be forced 

to change, then the revised situation must be represented 
by a fresh network if the new sequence of events on the 

critical path is to be rediscovered. The obligation to 

redraw the network frequently, so as to cast the operation 
into a new fixed form, is the main drawback to monitoring 

projects by network analysis. For this and similar reasons 

graph theory is a useful tool only when the problem under 

consideration has, at least for the time being, a fixed 

structure. This restriction excludes most of the problems 

of practical life, for events in the world are always in a 

state of flux. Proverbially, times change and we with them, 

and real-world events elude the static representation of a 

graph. 

The Work of Emile Post 

In the early 1940's, however, when computers were in their 

infancy the American mathematician Emile Post invented a 

novel type of dynamic directed graph through which it is 
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always possible to find a path (Post, 1943). Nearly all the 

expert systems that have been written during the last 25 

years are based upon Post's formalism. Some space must 
therefore be devoted to his proposal. 

Post begins his paper by observing that although the meth- 

ods of symbolic logic can embrace an infinite set of varia- 
bles, these methods apply equally well to a system that is 

defined as possessing only a finite sequence of symbols. 
Accordingly, Post's enunciates a formal system consisting 

of a pair of symbols, a primitive quantity 'a' and an 

operational variable IPI. Quantities are described as 

primitive when they cannot be analysed within the system - 
in a particular situation they may be conceptually compli- 

cated while remaining primitive from the point of view of 
the system. A further symbol Ig' represents a finite se- 

quence of a's and may include the null sequence. The three 

symbols are purely formal and may be held to represent any 

quantity or operation whatsoever. 

Then the relationship of the quantity/operator pairs can be 

written: 

11P; s1 
lat p1 lez 

L 
9aInb Pi* 

I............... 
Nlý 9. Pit PC 30 

PRODUCL5 

91 pi, ge Pit ---ý. k 9". 1. 

Figure 10.1 
Canonical Form of a Production System 

The sequences it to it, and ill to illm appearing in lines 1 

and 2 are any finite sets of parameters. Line 3 of Figure 

10.1 is therefore the description of the system for any 

sequence of parameters in any set of i. The symbol Ik' 

denotes the set of i. For any particular value the parame- 
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ter k can be cancelled out, to produce the expression in 

line 4. The formalism now consists of a small alphabet g, 
i, m and P, the single axiom that an operational variable 

may act upon a quantity, and the productions represented in 

line 4. Line 4 is described as the system in its canonical 
form because all other statements that emerge from the 

operation of the symbols derive from this first perfectly 

generalised statement. The canonical form states the 

'general combinatorial decision problem' of the title of 
Post's paper. 

Line 4 is referred to by Post as a production system be- 

cause each term is produced from its predecessor and pro- 
duces its successor entirely within the notational system. 

The word production, when used in this way, has no connec- 
tion with practical activities such as making things or 

manufacturing products. Note that nothing is said about 

what the primitives or the operators consist of. Post's 

concern is with the formal relationships of the symbols and 

not with them as representations of entities outside the 

system. 

Thus far the reader may be forgiven for thinking that 

Post's paper consists of little more than long-winded 

truisms. But the second stage in his argument makes the 

novel stipulation that the premises of a production must 

contain all the operational variables that appear in the 

conclusion. 

"We then add the restriction that each opera- 
tional variable in the conclusion of a produc- 
tion is present in at least one premise of that 
production... 11 (Post, 1943: 198) 

That is to say, Pim in line 4 of Figure 10.1 must appear 

somewhere back down the line. The effect of this require- 

ment is to make a production a cumulatively selective 

process. Operators, and consequently quantities, may be 

eliminated from the production system, but if they are then 
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any subsequent identical operator will also be removed. The 

usefulness of this stipulation will become apparent in the 

discussion of Alan Newell's adoption of the production 

system formalism in the 19601s. 

The main body of Post's paper is taken up with the reduc- 
tion of the canonical form of a production rule to its 

normal form. Normal here means establishing, rather than 

conforming to, a type or standard. This is carried out in 

four stages. The first step is to reduce the arbitrarily 
long sequence of assertions in the canonical form in Figure 

10.1 to a single assertion. Secondly, the operational 

variables in the system are reduced to the one. Thirdly, 

the number of directions in which the system can proceed is 

reduced to one. Lastly, production is reduced to the form 

shown in Figure 10.2, which is a production in normal form. 

9p 

PRODUCEZ which may be written gP - Pgl 

P9, 

Figure 10.2 
Normal Form of a Production 

What this representation is saying is that for any set of 

sequences of primitives the repeated application of an 

operational variable to a pair of those sequences will 

always produce a new sequence in the set. A chain of pro- 
ductions, therefore, will not degenerate however long the 

sequence. It is Postfs achievement to prove that the most 

general set of symbols can be combined by means of one 

remarkably simple rule. 
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It has become accepted terminology in the literature of 
artificial intelligence to represent a production as; 

condition - action 

This is equivalent to gP - Pg', even though Post himself 

never made use of these more recent terms. 

Post's paper is written in a very abstract style and it 

runs to 20 closely argued pages. No commentaries upon it 

have been published, and for the lack of a detailed gloss I 

am unable to give as complete an account as I would wish of 
his reduction of the canonical to the normal form. Chapter 

12 of Minsky (1967) is the best, but still unsatisfactory, 

explanatory text. 

Production Systems and Artificial Intelligence 

The interest of Post's formalism for artificial intelli- 

gence is that it offers a dependable mechanism by which a 
fresh tree can be created in response to a new structure of 
the data. Production systems evade the fixed character of 
fixed graphs. This feature was noticed by the American 

psychologist and computer scientist Allen Newell in 1966, 

when it was taken up by him as a promising way to structure 

a computer program which could, he hoped, simulate human 

thought processes. 

"Production systems are still a perfectly 
general scheme for information processing; they 
simply divide up the computation somewhat 
differently than a standard sequential program- 
ming language. The generality of production 
systems does not imply theoretical neutrality. 
They make it easy to express certain forms of 
organisation, hard to express others. Thus, 
they mould psychological theory to some extent. 
The issue will not be explored further in this 
paper, but its existence should be noted. " 
(Newell, 1966a) 

Throughout his paper Post discussed production systems as 
if they were one-dimensional phenomena. The lines of Figure 
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10.1 give a strong picture of linearity. However, the 

production rule formalism survives intact if the condition 
is the action of more than one preceding rule. It was 
Newell's achievement to realise the significance of this 
feature of the 1943 paper, which is only implied by Post's 
text, and so to place himself in a position to interpret 

production systems as a network. 

During a discussion of the Firing Squad Synchronisation 

Problem, Newell suggests that the problem space, delineated 

by the square outline of Figure 10.3, can be thought of as 
traversable by a set of interconnected production rules. 

A6 ?- 

Figure 10.3 
A Production System 
(redrawn from Newell, 1966b) 

In Figure 10.3 all the actions can occur if P, or P2-are 

satisfied by C1, while only A3, A4 and A5 will result from 

the firing of P3. Thus a production system can describe 

many possible processes by means of a single representa- 
tion. 

When a production system is interpreted according to New- 

ell's insight it can be represented by means of a two- 
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dimensional network such as that shown in Figure 10.4(a). 
Vertices 1 to 7 are the conditions of 10 Postian rules, 
while vertices 19,20 and 21 are the actions of five rules 
in this hypothetical system. The remaining vertices func- 

tion as both conditions and actions according to which rule 
is under consideration. 

FA LA 

() 

IRUL 

(b) (C) (60 (9) 

Figure 10.4 
A Hypothetical Production System 

The five stages (a) to (e) demonstrate the dynamic nature 

of a production system. If condition I is found to be 

false, then only the part of the graph in (b) remains 

active. The rules 1-8,2-8,8-15 and 15-19 are removed 
because vertex 1 is false, and rules 5-11,6-11,11-16 and 
16-19 are also rendered inactive by the fact that action 19 

has been proved false. If condition 2 in (b) is found to be 

true only rule 2-9 need be removed, and only rules 3-10 and 
10-17 are lost if vertex 3 is true. If vertex 4 is false 

then the graph is clearly reduced to (e), in which action 
21 is realised or not according to the state of condition 
7. 

. e- 

Clearly the graph would modify into another pattern when 
the conditions are satisfied differently. It is the ability 

of a graph of production rules to adapt itself to informa- 

tion received about its environment that makes it a useful 

artificial intelligence tool. Production systems are par- 
ticularly well adapted to representing domains which con- 
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tain many independent states. Problems of diagnosis, human 

and mechanical, frequently fall under this heading. There 
is no procedure capable of inferring the identity of a 
patient's illness deductively from a list of symptoms, for 

example, nor can the cause of a mechanical breakdown be 

calculated reliably from the observed malfunctions. The 

symptoms seem to be conceptually independent, but the 

source of the trouble can often be found by means of a 

search through the rules of a properly descriptive produc- 
tion system. 

The DENDRAL Project 

At the same time that Newell at Carnegie was adapting 
Post's idea to his own area of interest the geneticist 
Joshua Lederberg, the chemist Carl Djerassi and the comput- 

er scientist Edward Feigenbaum were at work at Stanford 

University on the other side of the North American conti- 

nent. The topic with which their collaboration was con- 

cerned was organic chemistry rather than psychology. 

The elements of which a chemical compound is made up can be 

found in a number of ways, one of which is the technique of 

mass spectrometry. If a compound is broken up into its 

components, by heat or bombardment with electrons, the 

resulting ions can be focussed into a beam and accelerated 
through a magnetic field. The path taken by the ions 

through the field will vary according to their mass, and 
the mass of all the components of the original compound can 

thus be measured. Furthermore, the ions can be counted and 
the spectrometer produces a result in the form of a histo- 

gram. 
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Figure 10.5 
The Principle of Mass Spectrometry 
(adapted from Gove, 1987) 

It is no simple matter to interpret the output of a mass 

spectrometer. This is because any one spectrum of ions 

could represent the fragments of may different compounds. 
Which compound is the parent of the spectrum depends upon 
the regular but highly complex rules governing the ways 

which ions can combine with one another. The problem is at 
its most severe in organic chemistry because of the large 

size of many carbon compounds. A human chemist who is able 
to read a mass spectrograph, particularly of an organic 

compound, must have a large stock of knowledge about atomic 

and molecular structures at his disposal. Long training and 

much experience is needed to acquire this knowledge, and 

skilled mass spectrograph analysts are in short supply. The 

project undertaken by Lederberg, Djerassi and Feigenbaum at 
Stamford was therefore to write a computer program that 

could carry out organic mass spectrometry analysis at a 
human level of skill. 

The outcome of their work was DENDRAL, an acronym for 

DENDRitic ALgorithm, in recognition of the tree-like nature 

of the program's search procedure. The first paper to be 

published on what later became known as Heuristic DENDRAL 

was Lederberg (1964). Heuristic DENDRAL works in three 

stages. Firstly, the operator provides a list of the likely 

compounds and a second list of those that are to be exclud- 
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ed as impossible. This shrinks the search space 'manually'. 

The second stage uses the program at the core of Heuristic 

DENDRAL, which searches a tree of structure building sub- 

programs and forms a list of all the molecular structures 
that are possible given the output of the spectrometer. 
Each sub-program is based upon what is known about a par- 
ticular type of chemical compound, and the success or 
failure of the system is critically dependent upon the 

selection of the correct sub-program. Lastly, Heuristic 

DENDRAL outputs the mass spectra of all the solution candi- 
dates, and ranks them in order of goodness of fit with the 

experimental result. 

Subsequent versions of DENDRAL, such as. META-DENDRAL which 
incorporated an improved second stage known as COGEN, 

performed as well as a skilled organic chemist and deserve 

their reputations as the first useful expert systems. 
DENDRAL in its many versions functioned by means of a tree- 

search algorithm, and without using the formalism of a 

production system. The designers of DENDRAL attributed 
their success two features of the program in particular. 

The first characteristic is that the program depends upon 

and makes use of a great deal of knowledge. 

"Behind the discussion of the information 
transfer process is the unquestioned assumption 
that the performance of Heuristic DENDRAL 
system depends critically on the amount of 
knowledge it has about mass spectrometry. Thus 
it is necessary to be able to add more and more 
theory to the program in the easiest possible 
way. " (Buchanan, Sutherland & Feigenbaum, 
1969) 

Secondly, the program worked because its information cov- 

ered only a restricted area of expertise, known as its 

'domain'. 

"The Heuristic DENDRAL project, from 1968 to 
the present, and including COGEN, has produced 
a number of results of significance to chem- 
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I ists. The work has shown that it is possible 
for a computer program to equal the performance 
of experts in some very specialised areas of 
science. " (Bennett et al, 1982) 

No part of Heuristic DENDRAL is general or abstract in 

character. In this respect DENDRAL stands in opposition to 

GPS, which aspired to a general scope of applicability. 

5 

Production Systems and Programming 

These two notions, of programming with knowledge and of 

using production systems as dynamic directed graphs, were 
brought together for the first time by Donald Waterman when 
he was working as a graduate student under the direction of 
Feigenbaum at Stanford University. In 1968 he submitted a 
doctoral thesis which contained what would now be called a 

rule-based expert system for playing poker. Waterman's 

program was published in the first issue of the journal 

Artificial Intelligence in 1970. In that paper Waterman 

acknowledges the help of Edward Feigenbaum and Allen New- 

ell. 

Waterman begins his paper by identifying what he calls the 

basic problem. The term 'heuristic' in this context means a 
technique for solving a problem by approximation. 

6 

"Most heuristic programs to date have the 
heuristics built in as an integral part of the 
program. Even on close inspection it is diffi- 
cult to decide exactly what heuristics are 
being used, what their effects are, and how 
they are related to one another. Then entire 
program, in a sense, becomes the representation 
of the embodied heuristics ... In the scheme 
proposed in this paper, heuristics in a program 
are represented as an ordered set of production 
rules. " (Waterman, 1970) 

Waterman's ordered set of production rules would now be 

referred to as the program's knowledge base. The notion, 
introduced in this paper, of structuring a program so as to 
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distinguish clearly between knowledge and operations upon 
that knowledge has become one of the cornerstones of de- 

clarative programming. 

The action of setting up a separate knowledge base brings 

in its train a difficulty that is not encountered in pro- 

grams of a procedural style. Information in a computational 

procedure is processed according to the structure of the 

algorithm and control is exercised upon it in a tacit way. 

However, a knowledge base made up of production rules calls 

for an explicit control strategy if it is to be used cor- 

rectly. Waterman employs a system of scoring designed to 

disfavour unsuccessful rules. 

"To make a decision via production rules, a 
symbolic subvector representing the game situa- 
tion is compared to all left parts of the 
action rules, going from top to bottom until a 
match is found. The action rule which defines 
the decision, that is, the one whose left part 
matches the symbolic subvector, is easily 
located. After the decision is evaluated, the 
credit or blame can be assigned to the action 
rule, and to those above it, which defined the 
decision. Here blame is assigned to action 
rules leading to poor decisions, while action 
rules leading to good or acceptable decisions 
are ignored. " (Waterman, 1970) 

The final two thirds of Waterman's paper is devoted to 

using this scoring system of control to render the program 

self-modifying, or able to 'learn', in such a way as to 

improve its performance as a poked player. His work here is 

a continuation of that of Claude Shannon on playing the 

game of drafts, known in the United States as checkers. 

Waterman's program displays three of the four distinguish- 

ing characteristics of what are now known as expert sys- 

tems. These are the employment of the formalism of the 

production system, the separation of the knowledge base 

from the procedural parts of the program and the devising 

of a method of control. His poker playing program cannot, 
however, communicate why it has decided upon a particular 
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play. It possesses no facilities for explanation. Neverthe- 

less, I think that Waterman's achievement is significant 

and his program can be regarded as the ancestor of all 

expert systems. The term 'expert system' was first used by 

Edward Shortliffe and Lawrence Fagan in a Stanford Univer- 

sity research report of 1972. 

conclusion 
Production systems have in recent years come into wide- 
spread use in the guise of expert system programs. Their 

success as a method of representing the knowledge of a 
domain follows from their self-modifying capability. The 

representation changes to reflect the state of the pro- 

gram's environment, forming a kind of mirror of events in 

the domain. However, a production system is a logical 
formalism in the strict sense that its inferences are 
deductive. 

The deductive character of a production system can be 

gathered from a reconsideration of Figure 10.4. The rule 11 

- 16, for example, was removed from the network in state 

(b) as a result of condition 1 being found to be false. 

This means that the rule cannot be used when the system is 

in subsequent states even if state (c) or (d) should bring 

it into relevance. Truth maintenance precludes the use of 

feedback loops in production systems, just as it does in 

every other type of deductive inference procedure. 

I have argued in Chapter 9 that architecture, because of 

the non-monotonic nature of the activity of design, cannot 

be adequately represented by deductive logic. The necessity 

of introducing a feedback loop from each vertex to every 

previous vertex will defeat any deductive system. This is 

why expert systems, in the form in which they have evolved, 

are not used by architects in their role as building de- 

signers. However, non-deductive types of expert systems 

based upon classification methods are a programming possi- 

bility and promise to evade the restrictions of deduction. 
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Chapter 11. CLASSIFIER SYSTEms 

It is evident when analysing rule-based expert systems that 

the function of the network of rules is to place a set of 
individual productions into a correct relationship with a 

particular solution. on this interpretation, solutions are 

classified according to their question set, while questions 

are classified by reference to the solutions which they 

verify. The notion of classification is the basis of an 

alternative type of expert system which, as I hope to show, 

promises to be useful in the field of architectural design. 

classification 

The concept of an expert system as a classifier can be 

illustrated by means of an example. Figure 11.1 shows, in 

the form of a production system, the well-known animal 

identification scheme proposed by Winston and Horn in 1981 

and described by Duda and Gaschnig in the same year. I have 

chosen this small domain, which contains only 20 questions 

and seven solutions, because it is just big enough to 

illustrate the working of an expert system and because it 

calls for no specialist knowledge on the part of the user. 

The system in this representation has only 15 production 

rules. 
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Figure 11.1 
Animal Identification Scheme 
(Duda & Gaschnig, 1981) 
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In this domain correct affirmative answers to the set of 

questions (lays eggs, flies, has feathers, flies well) 

results in the selection of the solution albatross as the 

identified animal. Similarly, the set (hair, gives milk, 

has hoofs, chews cud, has black stripes) identifies the 

animal as a zebra. There is a good deal of redundancy in 

this production system. An albatross cannot fly well, for 

instance, unless it can fly at all, while only mammals have 

hairy skins. However, it is a feature of a useful expert 

system that it can function properly when it is supplied 

with redundant information. Problems in the real world are 

very difficult to describe in a strictly logical fashion, 

and one of the main purposes in implementing a problem in 

the form of an expert system is to spare the user from 

unnecessary logical analysis. 

The relationship between the 20 questions and the seven 

solutions can represented as accurately as a matrix as it 

cab in the form of a network. Figure 11.2 places the solu- 

r 
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tions on the x-axis of a matrix while the y-axis contains 
the questions relating to the Duda and Gaschnig domain. 

Questions which must be answered 'yes' are marked by a 
black dot. 
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Figure 11.2 
Duda & Gaschnig as a Matrix 

Bit-strings 

In Pascal, as in most other programming languages, varia- 
bles are stored as strings of binary bits. A character 

variable is stored as an eight-bit string, known as a byte, 

integers occupy the 32 bits of a four byte representation, 

while boolean variables are stored in the form of a single 
byte. A data type of particular interest in the present 

context is the array of integers. An array of integers is 

stored as a continuous sequence of four byte binary inte- 

gers, and it therefore constitutes a bit string of arbi- 
trary length. In Prospero Pascal the size of an array is 
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restricted to 64K bytes, which makes the largest possible 

array of integers the equivalent of a bit string containing 
544,768 separate bits. 

Bit-strings are a very compact way of representing informa- 

tion. By manipulating individual bits in the string, the 

presence or absence of 8 facts, or the truth or falsehood 

of 8 assertions, can be stored in memory within a single 
byte. Furthermore, bit-strings lend themselves to rapid 

processing, since an alteration to the state of a variable 
is only a matter of changing a single bit. This property of 
bit strings has for long been exploited in the architecture 

of data base programs. But the properties of bit strings 

can be used to represent data in a metaphorical manner as 

well as literally. 

It is evident, from an inspection of Figure 11.2, that the 

seven solutions can each be thought of as a variable repre- 

sented by a bit-string consisting of 20 binary bits. 

Furthermore, the bits are ordered in such a way that the 

questions are represented consistently. That is to say, the 

ninth bit represents the question "Has it feathers? " in all 

seven strings. Answers to questions can be recorded by 

setting the appropriate bit to 0 for false or I for true. 

It can be seen that the solutions in this toy domain, where 
few questions need to be asked, can be represented as 
integers. In a useful expert system, where some hundreds of 

questions may be needed, the 32 bits of an integer string 
is too short, and a longer string composed of an array of 
integers will be called for. 

This notion of an expert system as a classification of 

knowledge represented by bit-strings was taken up by Peter 

Frey, of Northwestern University in Illinois in the early 

80's. In 1986 he published a description of his invention 

in the form of a magazine article and an accompanying 5k" 

floppy disk (Frey 1986a and 1986b). The article describes, 

in a rather terse fashion, the design of his classifier 
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shell while the disk contains the listing of an implementa- 

tion of the system. The implementation takes the form of a 

method of identifying domestic house styles in New England, 

and it is therefore of direct interest to architects. 

The logical operations of a rule based expert system writ- 
ten in a conventional programming language are performed by 

a network of IF-THEN statements, while a shell in Prolog 

will proceed by trying to match a stated predicate with all 
the predicates in the knowledge base before moving on to 

the next rule. Both these operations are prodigal of proc- 

essor time. Conventional expert systems, particularly those 

written in Prolog, are in consequence notably slow in 

operation. 

However, strings of bits can be compared very concisely and 

economically by means of a pattern matching process such as 
that illustrated diagrammatically in Figure 11.3. 
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Figure 11.3 
classification by Pattern Matching. 

In this diagram the term 'message, is adopted from Hol- 

land's work, referred to in Chapter 8, to denote a body of 
information about the current state of the environment of a 

system, while his word 'classifier' refers to a bit map 
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whose configuration represents the features of a situation. 
The two strings are shown in the diagram as corresponding 
to one another, although this may or may not be true of a 

particular case. I have followed Frey's example and have 

employed Holland's terms in the remainder of this text and 
in the design of my expert system shell Cortex. 

Each horizontal arrow in Figure 11.3 indicates a matching 

of two binary bits, and achieves the same result as proc- 

essing a rule in a production system. A pair of bit strings 

which were 33 bits long could carry out all the logic of 
the productions system shown in Figure 11.1 as 33 binary 

bit comparisons. This operation places a far smaller load 

on the processor than does a chain of conditional state- 

ments or the predicate matching operations of Prolog. It is 

one of the attractions of a bit-string based shell that 

logical operations can be carried out simply by comparing 
individual bits. The computational economy of the procedure 

opens the way to implementing large and very fast expert 

systems on table-top microcomputers. 

The Frey Algorithm 

In the expert system shell proposed by Frey the relevant 
facts about the topic of interest are recorded in a bit 

string known as the classifier. The pattern of this string 
is provided by the knowledge engineer, since its configura- 

tion is dependent upon an accurate and detailed knowledge 

of the domain. The classifier must, of course, be written 

beforehand as an essential step in any implementation of 

the shell. Answers provided to the system by the user are 

recorded in a second bit string known as the message. The 

system works by matching the pattern of these two strings. 

t" 

But the elements of both these strings are binary, while 

the facts to which they refer are many-sided. A false bit 

in the message may record either that the answer is nega- 

tive, or that the question has not been answered at all. 

The classifier must be able to distinguish between the 
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features of the domain that are definitely known and those 

about which knowledge is imprecise or conjectural. In a 

system for identifying the style of a building, for in- 

stance, a mason's mark can securely date a building as 
Medieval, but plate window tracery may be attributable to 

the Gothic or to the Victorian eras. A useful expert system 

ought to be capable of making this kind of distinction. 

That binary logic can serve to represent multi-dimensional 

entities was recognised by George Boole himself when he 

observed that; 

"We may in fact lay aside the logical interpre- 
tation of the symbols in the given equation; 
convert them into quantitative symbols, suscep- 
tible only to the values 0 and 1; perf orm upon 
them all the requisite processes of solution; 
and finally restore to them their logical 
interpretation. " (Boole, 1854) 

To make use of what in recent years has become more famil- 

iar terminology, Boole observed that any degree of logical 

complexity can be represented by a sufficiently large 

binary tree. Frey utilises this same principle by proposing 
to incorporate in his system additional bit-strings whose 
function is to specify the relative importance of bits in 

the message and classifiers. These additional strings he 

calls 'masks'. 

Under the influence of the American behavioural psycholo- 

gist Eleanor Rosch, Frey has adopted a three-fold model of 

the classifier for use in his expert system. Rosch (1977) 

observes that cognitive categories are conventionally 
thought of as discrete. 

"most studies carry the unexamined assumption 
that categories are arbitrary logical conjunc- 
tions of critical attributes which have defi- 
nite boundaries and within which all instances 
possessing the critical attributes have a full 
and equal degree of membership. " (Rosch, 1977) 
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Against this notion she argues that categories are cha- 
racterised by the possession of a salient attribute around 
which other attributes are closely or loosely grouped. She 

concludes; 

"that color, and possibly form, categories 
appear round perceptually salient points in the 
domain and that such points form cognitive 
prototypes for the categories of those 
domains. " (Rosch, 1977) 

Rosch employs a metaphor drawn from computing when she 
likens the first notion of categorisation as 'digital' 

while describing the second and more adequate conception as 
'analogue'. In coming to this conclusion she is, perhaps 
unknowingly, placing herself in agreement with Hubert 

Dreyfus's observations about the analogical character of 
human thinking. 

q 

While discussing the structure of his expert system Frey 

observes that "Eleanor Rosch has argued persuasively that 

natural categories do not have fixed boundaries" and he 

goes on to propose three classifier masks designed to model 
the Roschian categories. 

"To represent this aspect of categorising 
people, objects or events we employ three 
classifier masks specifying which attributes 
are absolutely essential to the category (type 
A), which ones are usually present (type B), 
and which ones are sometimes present (type 
C). This strategy permits flexibility in defin- 
ing category prototypes (the classifiers) that 
seem necessary for real-world applications. " 
(Frey, 1986a) 

ý5 

By way of these considerations Frey arrives at a design for 

an expert system which makes use of a message and a message 

mask, together with a classifier and three classifier 

masks. All five elements are represented in the computer as 
bit-strings. The manner in which these strings work togeth- 

er is shown in Figure 11.4. 
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The Frey Algorithm 

(D 

r7F 
ý' 

ýEý 
.rFi 

5F 

rT 

PF 

4 F1 

6 

ýT 
:1 

T 
ýF 

T [F, 

TT T T ýF 

7T 
s rTIANOL; ýt I 

" 

MT 
'ýF 

'I 
IL 

p 

ýF it ýT 

ITI 

F 

m 

41501"46 OCCASIMAl. 

Tl I-F, 71 

T T 
I 

ýT 

Xr -r 
FF 

4T1 Fl 
I T1 Tf ITI 

Tý MM IF -"F 

, -T, 7 -Fl 

'Ti F ýa - Ft -ri 
71 : F: 
IT TI 

FI 
F 

TI F F-1 
:�ME 11 LE Ei 

11-FI 

The message is a string of bits which records the answers 

given by the user of the system to the questions. A bit set 
to T in the message records that a question has been cor- 

rectly answered, while an F means either that the answer 

given was wrong or that no answer was supplied. The answers 
that are needed if a particular solution is to be true are 

written into the classifier by the knowledge engineer. 

In stage 1 of the algorithm the classifier and the message 
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when the operands differ, which occurs when the answer 
required by the classifier differs from the answer to the 

question. A NOT operation then reverses this result and 
produces intermediate result 1, in which a bit is set to 
true when the answer and the required answer are the same, 
and to false otherwise. 

Because of the ambiguity of the message, a second stage is 

needed to distinguish a wrong answer from no answer at all. 
This is accomplished by stage 2. Here the message mask is 

ANDed with the essential mask of the classifier. The mes- 
sage mask records whether or not a question has been an- 
swered, while the essential mask identifies by means of a 
bit set to T those questions which must receive a correct 
answer. The AND operator returns T when both bits are true, 

and F otherwise. This result is recorded in intermediate 

result 2. 

Finally, stage 3 ANDs the two intermediate results. The 

effect of this is to return T if the question is an essen- 
tial one and it has been answered correctly. otherwise the 
bit is set to F. A solution achieves a possible status when 
the bit string called essential result in Figure 11.4 is 

the same as the essential mask. 

In a similar manner, when the message mask and the usual 
mask are ANDed and the result is ANDed with intermediate 

result 1, a usual result bit string is produced. This is 

set to T when a usual question has been correctly answered, 
and F otherwise. The correct answer to an occasional answer 
is identified by the same method, but this time involving 

the occasional mask in stage 2. In Figure 11.4 all four 

usual questions are shown as receiving correct answers, but 
the answers that appear in the message to two of the three 

occasional questions are found to be wrong. These bit 

matching procedures are carried out by the ADJ subroutine 
of House. Bas. 
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Frey says that his system is designed to reflect the ideas 

of Rosch on the nature of classification. The three-fold 

result produced by the procedures illustrated in Figure 
11.4 must therefore be weighted in such a way as to reflect 
their status as type A, B or C attributes. This is done, in 

his House. Bas program, by attaching a score to each of the 

questions. As the file name extension indicates, the pro- 

gram is written in BASIC. 

In the first place, the questions relevant to the domain of /-, 
-House. Bas are recorded in a long list of data items. The 

following is an excerpt from the questions data list. 

REM COMPOSITION OF EXTERIOR WALL 
DATA 10, "wood exterior" 
DATA 11, "stone exterior" 
DATA 12, "brick exterior" 
DATA 13, "stucco or adobe exterior" 
DATA 14, "combination of wood and masonry or 
stucco" 
DATA 15, "unconventional exterior cladding" 

The second part of the data section of the program is a 
list of classifiers. The first line of a classifier con- Z? 
sists of an index number, a name string and a threshold 

value. For example; 

DATA 27, "Richardsonian Romanesque", 30 
DATA 3,11,999 
DATA 71, -83,101,999 
DATA 43,64,126,129,151,999 

tj 

The three lines ending in 999 are the essential, usual and 

occasional classifier masks. It is essential that the 

massive masonry character of the style of H. H. Richardson 

should be reflected in a house built in his style, and 

consequently question 11, "stone exterior",, is a question 
that must receive a correct answer in this case. If it does 

a contribution of 5 is made towards the threshold value of 
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30, while an incorrect answer scores -99. The effect of a 
wrong answer to an essential question is to exclude those 

classifiers to which it is relevant. 

Questions which require negative answers are distinguished 
by a negative data entry. Question 83, for example, reads 
"symmetrically placed windows about a centered front door". 
The picturesque massing of a Richardsonian composition 
would preclude a symmetrical facade, and this question must 
therefore receive a negative answer. 

When a usual question is correctly answered a score of 5 is 

added to a classifier's score, while an incorrect answer 
deducts 5. A question about a feature which is sometimes 
relevant also scores 5 if correctly answered, while an 
incorrect answer deducts only 1. In this way those ques- 
tions which are identified by the knowledge engineer as 
essential to the identification of a classification are 
given a veto over the choice of a solution. Questions which 
relate to features usually present in the answer contribute 
to or detract from the score even-handedly, while those 

questions which are sometimes relevant may contribute to 

the score but can only slightly reduce it. In this fashion 
Frey implements the ideas of Rosch concerning human cate- 
gorisation. The scoring operations of the masks are also 
carried out in the ADJ subroutine of House. Bas. 

u 

After each question is answered by the user of the system 
the program selects the three classifiers with the highest 

score. The questions that are relevant to these classifiers 
are then selected for presentation to the user. In due 

course the threshold value of one of these classifiers is 

reached, and it is then declared to be the correct solu- 
tion. In this manner the program is so arranged as to 

concentrate upon the most likely solution. As Prey ob- 
serves, "This strategy approximates the hypothesis-testing 

approach that is commonly observed in humans. " 
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In Chapter 41 have given an abbreviated account of the 

objections that Hubert Dreyfus has made to the computation- 

al model of human thinking. During the course of a discus- 

sion of the 'brute force' type of chess playing program 
Dreyfus contrasts the machine and the human ways of assess- 
ing a problem. 

"We need not appeal to introspection to discov- 
er what a player in f act does bef ore he begins 
to count out; the protocol itself indicates it: 
the subject 'zeroed in' on the promising situa- 
tion ('I notice that one of his pieces is not 
defended'). Only after the player has zeroed in 
on an area does he begin to count out, to test, 
what he can do from there. " (Dreyfus, 1979) 

This is closely analogous to the two main stages of the 

Frey algorithm. These are, firstly,, a concentration upon a 

promising solution, and then the calculation of its proba- 
bility. The close parallel gives one good hope that the 

algorithm will be useful in areas of application where, as 
Dreyfus points out, conventional computational methods have 

been largely unsuccessful. 

Critique of the Frey Algorithm 

The algorithm which has been described in outline in the 

previous section is an original contribution by Peter Frey 

to the literature of AI. It seems to me to be most ingeni- 

ous, admirably original and to be very relevant to the 

practice of design. 

In Chapter 10 1 have argued that expert systems based upon 
formal logic cannot be applied to design problems success- 
fully because design is not a deductive process. The Frey 

algorithm, which is based upon classification rather than 

logic, evades this difficulty and it therefore promises to 

be useful in the practice of design. Of particular impor- 

tance is the ability of a classification system to accommo- 
date feedback loops simply by structuring the classifier 

and its masks. The Frey algorithm, unlike rule-based expert 

systems, is well adapted to non-monotonic logic. 
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Input and output in the Frey algorithm is by means of 

character strings. It is therefore able to make use of the 
interpretive power of natural language at the point of 
interface with the user. (Finin, Joshi & Webber, 1986) 

However, its internal functioning is numerical rather than 

logical or linguistic and it is this feature of the algo- 

rithm that is, I believe, most open to criticism. 

The scoring system just described is a purely numerical 

procedure. All three types of question contribute the same 

value of 5 to the selection of a solution, but essential, 

usual and sometimes questions subtract 99,5 and 1 respec- 
tively from the score. There is no principle by means of 

which the values of these numbers can be substantiated. Why 

do all three question types have the same positive value? 

Why does a usual question have exactly five times the 

negating power of a sometimes question? Does not the Rosch 

thesis indicate that some usual questions are more closely 

related than others to a category? The only answer which 

can be returned to such objections is that the chosen 

values seem to make the system work. But a, resort to un- 

structured empiricism at this point in the argument is 

lame. I conclude that, for the lack of a justifying princi- 

ple, the scoring system of the Frey algorithm is unsound. A 

choice from amongst the classifiers ought to be made on 

logical rather than arbitrarily arithmetical grounds. 

A more fundamental, if rather less sharply focussed, objec- 
tion can be made to the notion of A, B and C questions. 

Frey sees the classifiers of his system as Roschian proto- 

types, and the three types of questions are intended to 

define them as such. His algorithm is, in fact, structured 
in such a way as to model reality according to Rosch's 

ideas. But it is, I think, a mistake to confuse a represen- 

tation with a model of something. The relation of a model 

to reality is literal whereas a representation stands as a 

symbol in the place of some aspect of reality. For example, 
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the area of a large circle can be modelled by a small disk, 

but the formula vr2 is a representation of it. Representa- 

tion is more abstract than modelling, and there is no one- 
to-one relationship between the sign and what is signified 
in a representation. 

If the purpose of an expert system is to mimic the perform- 

ance of a human expert, then I think that it should be 

framed in such a way as to represent his knowledge rather 
than to model his methods. This means that an algorithm 

which obtains a seemingly expert answer to a problem quick- 
ly is better than a slower system which works in the same 

way as does the human expert. In the light of this distinc- 

tion, I have designed the Cortex expert system shell to 

identify a solution quickly and accurately by representing 
it usefully, rather than creating a system to model the 

domain faithfully. The Cortex algorithm differs substan- 
tially from Frey's algorithm in ways that I shall explain 
in the next chapter. 

When a particular classifier in the Frey algorithm has been 

selected as a possible solution, all the remaining ques- 

tions in its masks must be asked and answered before anoth- 

er candidate classifier can be examined. This requirement 

follows from the necessity to arrive at an arithmetical 

score for the solution. 

For example, if question 3 in the essential mask of classi- 

fier 27, Richardsonian Romanesque, is answered correctly 

with 'yes' then question 11 must be asked and answered. If 

this also receives a correct answer the first question in 

the usual mask, question 71 "rounded arches above windows? " 

must be asked. The procedure is repeated until the last 

question in the occasional mask, question 151 "a pinnacle 

on the roof? " is reached. If all questions receive a cor- 

rect answer the classifier achieves its maximum possible 

score of 55. The effect of this way of sequencing the 
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presentation of questions is that the user of the system is 

required to answer a large number of questions including 

many which are irrelevant. 

I think it is less burdensome to the user, as well as 

computationally more efficient, to ask him to supply an- 

swers only to those questions that differentiate one clas- 21 

sifier from all other possible classifiers. This is the 

procedure that I have adopted in the design of the method 

of control in the Cortex shell. 
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Chapter 12. THE PLAN OF CORTWC 

The design of Cortex is inspired by the work of Peter Frey. 
The notion of regarding an expert system as a classifica- 
tion system which can be represented by means of strings of 
bits is his invention, and it is the starting point for the 

development of Cortex. The most original programming rou- 
tine in the Frey algorithm is the bit-matching procedure 

which has been described in Figure 11.4.1 have made use of 
this routine in Cortex, where it appears in the procedure 
CalculateProbability. In addition, a modification of the 

routine is made use of in the procedure RemoveContradicted- 

Solutions. 

However, Cortex differs from Frey's implementation in 

almost all other respects. This is for three reasons. 
Firstly, I believe that I have been able to design a better 

way of controlling the system, and that the method of 
calculating probability in Cortex is an improvement upon 
Frey's procedure. Secondly, Cortex is written in Pascal 

rather than Microsoft BASIC, and I have therefore been able 
to make use of much more advanced programming procedures 
than were available to Frey. A feature that has been of 
particular importance in the development of Cortex is the 
bit manipulation functions that are available in the 
Prospero Pascal compiler. The third difference follows from 

the fact that Cortex is written as a true shell whereas 
House. Bas is specific to its knowledge domain. File han- 

dling procedures are available in BASIC, but the knowledge 
base in House. Bas is encoded in the form of DATA state- 

ments. Files are of general applicability, but a DATA 

statement is specific and it must be embedded in a particu- 
lar place in a BASIC program. 

Control in Cortex 
The scoring system of the Frey algorithm is intended to 
build up progressively to the identification of a solution 
as the correct one. Each answer supplied by the user makes 
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its contribution to the plausibility of a classifier, and 
in this way the environment of the system serves to provide 

evidence for the choice of one of the possible domain 

solutions as the best. Thus Frey's method is based, tacit- 

ly, upon an inductive procedure. But, as I have argued,. 
there is a price to be paid for adopting this approach to 

the problem. In the Frey algorithm everything depends upon 
the allocation of scores, but no consistent explanation for 

the structure of the scores is available. This gives an 

arbitrary character to the results that can be obtained 
from the implementation of the algorithm in his House. Bas. 

I think that a better and more rigorous algorithm can be 

created by looking at the problem from a Popperian, and 

non-inductive, point of view. 

Popper (1934) argues, that the scientific acceptability of 

a theory is dependent both upon its falsifiabilty and upon 
its resistance to empirical falsification. Hypotheses nay 
be freely conjectured, but their acceptability as scientif- 
ic theories is reserved for those hypotheses which can be 

but are not falsified. In a similar way, every solution 

contained in the implementation of an expert system is 

capable of being falsified by an answer supplied by the 

user to a question. If it is not so falsifiable then it has 

no role to play in the system. 

An expert system which functions by rejecting falsified 

solutions will finish either with one or more unfalsified 

solutions, or with a confession that it can find no solu- 
tion within the domain environment. This is the non-induc- 
tive control principle upon which the Cortex expert system 

shell is built. Since a solution in Cortex, like a Popperi- 

an theory, remains possible until it has been falsified no 

system of scoring is called for. The arithmetically arbi- 
trary scoring mechanism of the Frey algorithm is not repro- 
duced in Cortex. 
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The notion of a falsifiable solution points the way to a 

novel method of controlling an expert system. The problem 

of control is solved in Frey algorithm in the conventional 

way, which is by means of an ordered list. The next ques- 
tion to be sent to the screen is the next one in the list 

of questions relating to a favoured solution. The answer 

received from the user either causes the solution to be 

rejected, by giving it a score of -99 if the question is an 

essential one and the answer does not match or, if it is a 

correctly answered usual or occasional question, it con- 
tributes a score of 5 towards reaching its threshold value. 

However, this procedure overlooks an important feature of 
the questions which are stored in the knowledge base. This 

is the fact that the greater the number of solutions in 

whose classifiers a particular question appears, the great- 

er is the power of that question to falsify a solution. A 

question whose answer is called for by only a single solu- 

tion string can contradict only that solution while a 

question appearing in 50 solution strings may, when an- 

swered, contradict them all. It is for this reason that 

Cortex solves the problem of which question to ask next by 

selecting that question which appears most frequently in 

the classifiers of those solutions which have not been 

falsified. The operation is performed by the procedure 
FindMostFrequentQuestion whose draft code is given in the 

next chapter. Controlling the system in this way has the 

effect of eliminating solutions as rapidly as possible and 

so concentrating the search upon the small number of possi- 

ble solutions that remain. Conventional control methods, in 

which a fixed list must be worked through, zero-in upon the 

solution slowly by a process of sequential elimination 

rather than quickly by excluding early on all those solu- 

tions which cannot be correct. 

But it is no more sufficient to select the next question on 

the basis of its frequency alone than it is to ask the next 

question that appears in a prepared list. In either case 
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the result will be that the user will have to find answers 
to many questions that are illogical or redundant in the 
light of the answers already given. In the domain illus- 
trated in Figure 11.2, for example, there is no point in 

asking whether the animal has feathers if the system has 

already been told that it has hair. Question 9 is therefore 

redundant once question 1 has been answered affirmatively. 
The Cortex algorithm makes use of a question's power of 
discrimination to solve this aspect of the problem of 
control. 

If, in Figure 11.2, the possible solutions have been re- 
duced to numbers 5,6 and 7 then the animal in question 
must be a bird. If so, there is no point in asking either 
question 9, has it feathers, nor question 11, does it lay 

eggs, since the required answers to both questions are the 

same in all three solutions. That is the same thing as 
saying that these two questions have no power to discrimi- 

nate between the remaining solutions. Those questions which 
are devoid of discriminatory power are identifiable solely 
by virtue of the formal feature that their required answers 
are the same in all the remaining possible solutions. 

Cortex makes use of this fact, and excludes from the ques- 
tions to be presented to the user any question for which 
all remaining required answers are the same. The algorithm 

according to which I have structured Cortex therefore works 
in two stages. First the list of solutions is pruned by 

obtaining an answer to the most frequently occurring ques- 
tion. This is in effect a search for features common to 

many of the possible solutions in the domain. Then those 

questions which cannot discriminate between the remaining 

solutions are excluded from the list of questions to be 

asked. This as a process of zeroing-in upon a shortened 
list of still-possible solutions. The cycle is then repeat- 
ed. The code for both stages in the control of Cortex are 
in the procedure FindMostFrequentQuestion. 
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In this way the classification algorithm opens the way to a 
new method of control in expert systems. It is based nei- 
ther upon ordered lists nor metaknowledge, but upon the 
falsifiabilty of solutions and questions. I claim two 
advantages for this algorithm. Firstly, it closely mimics 
the method of a human expert, who will begin by surveying 
the scope of the problem before concentrating his attention 
upon the most promising of the remaining solutions. Cortex 
therefore appears to the user to be acting in a natural 
way. Secondly, the algorithm is very flexible because its 

way of working is purely formal. The method requires no 
knowledge of the world, and the algorithm may therefore be 
implemented in any domain whatsoever. This flexibility 
follows from the abandonment of Frey's inductionism in 
favour of a procedure analogous to Popper's method of 
falsification. 

Probability 

Every useful expert system must have a way of assessing the 
degree of reliance that can be placed upon its solution to 

a problem. In conventional rule-based systems this is 

usually done by employing Baysian or Dempster-Shafian 

methods of calculating a probability. Frey was understand- 
ably reluctant to add arithmetical complications to his 

program if it could be avoided. In his algorithm the solu- 
tion that first reaches its threshold value is assumed to 
be the correct one. Probability in House. Bas is implied 

rather than calculated. 

"If one classifier accumulates a score that 
exceeds a predetermined threshold, this house 
type is declared the winner and no further 
information is needed. The notion is that the 
weight of the evidence for this hypothesis is 
so strong that the decision is obvious. " (Frey, 
1986a) 

However, it remains that the threshold value upon which the 

emergence of the winning candidate is based in the Frey 

algorithm is arrived at subjectively. For instance, the 
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threshold value of 30 which is assigned to Richardsonian 
Romanesque in the example quoted in the last chapter, could 
have been 25 or 40 without any loss of consistency or 
logic. As in the case of the problem of control, I have 

found-that by abandoning Frey's scoring system an alterna- 
tive and better method of assessing probability can be 
discoveredý 

In both the Frey algorithm and in Cortex, an essential 
question which fails to receive a correct answer has the 

effect of eliminating a solution from the list of possible 
candidates. Frey makes use of answers to usual and occa- 

sional questions to advance or retard the progress of the 

remaining candidates towards his system's winning post. 

However, if the attempt to model reality along the lines of 
Rosch's categories is rejected in favour of the view of an 

expert system as a representation of reality, then the 

distinction between usual and occasional questions disap- 

pears. One attribute which is usually present and another 

which is sometimes present in a particular situation are 

alike in that neither need be present. Accordingly, Cortex 

contains only essential and usual questions in the knowl- 

edge base. Essential questions, as in the Frey algorithm, 

must receive matching answers, while usual questions may or 

nay not. 

u 

If the answer to a usual question can corroborate the 

likelihood of a solution being correct, then it follows 

that the proportion of the usual questions relating to a 

particular solution that receive matching answers is a 

measure of the probability of the solution being correct. 
If, for example, a solution contains 50 usual questions in 

its question set and 35 of them receive matching answers, 
then the probability of the solution being correct is 70%. 

This is the definition of probability that is employed in 

Cortex. It is implemented in a straightforward piece of 

code in the procedure CalculateProbability. 
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The Coding of Cortex 

The house style identification program House. Bas, with 
which Frey (1986b) demonstrates his algorithm, is written 
in Microsoft BASIC. The usual penalties that must be paid 
by those who program in BASIC, which are that the code is 

very difficult to read and the program runs slowly, are 
evident in House. Bas. In addition, two particular shortcom- 
ings of BASIC have forced Frey's program into an awkward 
shape. These are the absence of bit manipulation functions 

and the impossibility of compiling separate segments. 

In a BASIC program all variables are common variables. 
Consequently, changes in the value of a variable can be 

made by any piece of code that invokes its name. In a 
complicated program it is very difficult to prevent such 
changes from occurring unintentionally, a phenomenon known 

as "programming by side-effects" (Cooper & Clancy, 1985). 
Bugs of this type can be very hard to find. In Cortex, data 
types which are used by more than one procedure are de- 

clared as commoh, but every variable is declared locally. 
Values are passed to other procedures when required as 
parameters. The structure of Cortex therefore makes it 

possible to identify the procedure in which any variable 
receives a value, and to trace the source of the value of 
any variable. 

Cortex consists of 51 separately compiled segments which 
contain a total of some 1600 lines of Pascal code. With 
this structure a segment may be edited in the knowledge 
that the changes in the performance of the program are 
attributable to changes made to that segment and to no 
other. When combined with the local declaration of varia- 
bles, a program in which all procedures and functions are 
contained in separately compiled segments is more robust, 
more easily read and is simpler to maintain than a typical 
BASIC program. 
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A program structure that combines the local declaration of 

variables with separate compilation of segments can hide 

information on a "need to know" (Sommerville, 1985) basis. 

In Cortex, for example, the list of possible solutions can 

only be pruned by RemoveContradictedSolutions, and the 

pruning can only take place as a result of the answer to 

the question passed to it as the most frequent question by 

the procedure FindResult. If variables were common and a 

side effect were to occur whereby the answer to a different 

question was selected, then the program would produce a 

wrong answer. These programming methods, which were not 

available to Frey when writing House. Bas, form the basis of 
the structure of Cortex. 

Frey has good reason to bemoan a further difficulty with 

which he must contend. 

"Some mainframes have machine level instruc- 
tions that count the number of bits that are 
set in a word. Microprocessors do not have this 
instruction, so the only way to do a speedy bit 
count is to examine the word in 8-bit sections 
and to use a table with 256 entries to look up 
the proper bit count. " (Frey, 1986a) 

This limitation forces Frey to resort to an extensive use 

of arrays. For example, in House. Bas the array MK is dimen- 

sioned to 16, the word length in Microsoft BASIC, and the 

elements are then filled with the 16 integer values found 

in the first four lines of DATA. Each value in turn sets 

the next bit in the word with the result that the elements 

of the array contain one set bit for all possible bit 

positions in the word. The elements of MK are then used to 

identify the bit corresponding to a particular classifier 
in line L2, or a question in the subroutine Query. In this 

way House. Bas places a heavy load on the processor, and the 

Frey algorithm cannot be expected to run fast, even when 

written in a compiled language, if the implementation calls 

for more than a few questions and solutions. 
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4 

Although it is true, as Frey observes, that desktop comput- 
ers do not have built-in facilities for counting bits it is 

also true that bit manipulation can be carried out by 

software as well as hardware means. BASIC, which is a kind 

of computer baby talk, lacks such facilities. However the 

Prospero Pascal compiler, with which Cortex has been writ- 
ten, contains four functions which enable an individual bit 

to be addressed and manipulated. The bits which represent a 

simple variable, or an array or a field of a record for 

example, can be tested, set, cleared or flipped using the 

Prospero functions. Cortex makes use of the Prospero func- 

tions to manipulate the message, classifier and mask 

strings directly, and in such a way as to make the contort- 

ed manoeuvres of House. Bas unnecessary. For example, the 

job of the array MK subroutine Query in House. Bas is per- 
formed by only two lines of code containing the testbit 

function in the procedure FindMostFrequentQuestion in 

Cortex. It may be noted that Turbo Pascal, its popularity 

notwithstanding, does not contain bit manipulation func- 

tions. 

Cortex in Pseudocode 

Display sign-on message 
domain specific information 

CASE 1. user is knowledge engineer 

call knowledge base menu 
2. user wants to interrogate system 

call FindResult 

1. KnowledgeBaseMenu 

CASE set up questions 

write, edit, delete, display or print question 
texts 

ditto question explanation texts 

set up solutions 

write, edit, delete, display or print solution 
texts 

ditto solution explanation texts 

set up classifiers 
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display solution texts 
display question texts successively 
IF question is relevant 

set bit 

IF classifier is incorrect 

edit classifier 
delete classifier 

2. FindResult 

set up linked list of solutions in memory 
WHILE some essential questions remain unanswered 

find most frequently occurring question 

obtain answer 

make any solution contradicted by the answer inactive 

pass over question if all remaining answers are 
identical 

obtain answers to usual questions 

calculate probability 
display most likely solution 

IF probability is zero search is a failure 

This program structure is represented in the following 

diagram. 
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Chapter 13. THE CORTEX SHELL 

The Segments of Cortex 

The following segments, listed by their procedure names, will 
be required by the system. 
1. Cortex - main program 

(i) initialise 

(ii) sign-on 
(iii) implementation 

(iv) FirstMenu 

2. sign-on - display on screen 
(i) welcome message 
(ii) implementation message 

3. Initialise - some preliminaries 
(i) count questions 
(ii) count solutions 

4. ImplementationMessage - message describing the domain 

(i) display information about the implementation 

(ii) display number of questions & solutions on file 

5. FirstMenu - choose between 

(i) use Cortex, by the user or 
(ii) work on knowledge base, by knowledge engineer 

6. KnowledgeBaseMenu - knowledge engineer's menu to 

(i) work on the questions 
(ii) work on the solutions 
(iii) write implementation message 
(iv) set up classifiers and masks 

7. WriteImplementationText - message for the user 
(i) write the text 

(ii) store on disk 

8. FormFileName - set up name in form needed to access disk 

files 

(i) obtain keynumber, title and DOS directory of file 

(ii) concatenate as a string 

9. PushPen - manage the writing of text 

(i) call WRITER 

(ii) write text 

(iii) store text on file 
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10. DisplayTextFile - on screen 
(i) obtain file 

(ii) display text on screen 
11. ZeroiseBitString - set all elements of a bit string to 

zero 
(i) pass sting title and field to procedure 
(ii) loop through all elements setting each to 0 

12. QuestionMenu - choose work to be done on question files 
13. QuestionSelection - manage procedure calls from Ques- 

tionMenu 

14. WriteQuestionText - write and store the text of a question 
15. WriteQuestionExplanation - write and store an explanation 

(i) check for question on file 
(ii) check for explanation on file 

16. EditQuestion - alter the text of a question 
17. EditExplanation - alter the text of an explanation 
18. DeleteQuestionFile - remove a question text from file 

(i) delete question diskfile 

(ii) delete corresponding explanation diskfile 
(iii) recalculate CountOfQuestions 

(iv) renumber classifier 
(v) renumber essential masks 
(vi) renumber usual masks 

19. ReNumberFiles - after a deletion 

(i) renumber subsequent files 

(ii) re-set bit strings 
20. DeleteExplanation - delete the text the explanation of a 

question or solution 
21. DisplayQuestion - display the text of a question on the 

screen 
22. DisplayTextFile - obtain from disk and display on the 

screen 
(i) question text files 

(ii) solution text files 

(iii) explanation text files 

23. DisplayExplanation - display the text of an explanation 
24. PrintAllFiles - print questions, solutions or explanations 
25. SolutionsMenu - choose work to be done on solution texts 
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26. SolutionSelection - manage procedure calls from Solu- 
tionMenu 

27. WriteSolutionText - write and store the text of a solution 
28. WriteSolutionExplanation - write and store an explanation 

(i) check for question on file 
(ii) check for explanation on file 

29. EditSolution - alter the text of a solution 
30. DeleteSolutionFile 

(i) delete solution diskfile 
(ii) delete solution explanation diskfile 
(iii) delete classifier and masks 

31. ReNumberClassifier - renumber classifiers following a 
deletion 

32. DisplaySolution - display the text of a solution on the 

screen 
33. ClassifierMenu - choose operations on the classifier file 
34. SetUpClassifier - set up the classifiers one by one 

(i) set fields of classifier file elements to 0 
(ii) display text of the solution 
(iii) display texts of all the questions 

35. InitialiseClassifierBits 
36. SetClassifierBits - operate on the bit strings 

(i) ask if the question is essential or usual, or is 
irrelevant 

(ii) ask if the answer must be T or F 
(iii) record answers on disk file with elements containing 

the fields 
(a) classifier 
(b) essential mask 
(c) usual mask 

37. SetUsualBits - operate on the bit strings 
(i) set the bits for usual questions 
(ii) return to SetClassifierBits 

38. EditClassifier - alter the bit settings of a classifier 
39. DeleteClassifier - remove a classifier from the file 
40. FindResult - main procedure for forming and using the 

message 
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41. SetUpSolutionsList - set up a linked list of solutions 
(i) fields to include essential and usual masks as arrays 

of integers, usual questions that have been answered, 

usual questions that have been answered correctly 

42. FindMostFrequentQuestion - most frequently occurring 
question 

(i) search all the essential masks in the knowledge base 

(ii) count the occurrence of each question 
(iii) find the most frequently occurring question 

43. MessageAndMasks - form the message 
(i) call MostFrequentQuestion 

(ii) display the most frequent question 
(iii) record the user's answer in the message 
(iv) record the user's answer in the message mask 
(v) repeat 

44. RemoveContradictedSolution - search essential masks and; 
(i) compare each essential mask with the message bit 

(ii) delete from the list any solution whose essential 

mask is contradicted by a bit in the message string 
(iii) find the question which appears most often in the 

remaining essential masks by calling MostFrequent- 

Question 

45. FindUsual Question - find any unanswered questions in the 

possible solutions 

(i) search the list of possible solutions 
(ii) if any usual questions are unanswered, return the 

number of the question 

46. CalculateProbability - find the probability of the possi- 
ble solutions 

(i) find out usual result 

(ii) count the number of matching answers for each usual 

mask 
(iii) calculate probability for each solution, using the 

count of usual questions 

47. DisplayResult - screen display of; 
(i) most probable solution with probability or 

(ii) failure message 

48. ClearHeap - remove the remaining solution list elements 
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The Segments Individually. 

13.1 Cortex 

As the diagram in Figure 12.1 shows, the main program of 
CORTEX serves only to start the system. It controls the pre- 
sentation of the preliminary displays and 

of the program. 
13.1.1 Pseudocode. 
display sign-on message 
call implementation procedure 
pass number of questions and solutions 
provide for exiting the program 
13.1.2 Draft Source Code. 
PMGW Cortex; 

( Main proqrain. 

the 

f ile 

initialisation 

to first menu 

PROCEDURE SignOn (VAR CountOfQuestions, CountofSolutions: integer); EXTERNAL; 
PROCEDURE ImpleventationMessage (CountOfQuestions, CountOfSolutions: integer; 

PROCEDURE FirstMenu (CountOfQuestions, CountOfSolutions: integer); EXTERNAL; 

VAR CountOfQuestions, CountofSolutions: integer; 

BEGIN 

SignOn (CountOfQuestions, CountOfSolutions); 

lzpleaentationMessage (CountOfQuestions, CountOfSolution); 

FirstMenu (CountOfQuestions, CountOfSolutions); 

END. 

13.2 SignOn 

Display a screen welcoming the 

13.2.1 Pseudocode. 

welcome the user to CORTEX 

user to 

on 

EXTERNAL; 

the system. 

use colour screen and draw a border 

carry out initialisation while 

13.2.2 Draft Source Code. 

SEGMENT SignOn, * 

[ Sign on display. 

insert PASPC 

insert PASDOS 

PROCEWRE Blankln (number: integer); EXTERNAL; 

welcome display is on screen 
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PROCEDURE Initialise (VAR CountOfQuestions, CountOfSolutions: integer); EXTERNAL; 

PROCEDURE SigM (VAR CountOfQuestions, CountOfSolutions: integer); 

VAR Greeting: text 

Cate: char; 
BEGIN 

InitScreen; 
Paper (7); 
Ink (1); 
TextFrame (true); 
ScreenFile (Greeting); 

Cursoroff; 

GoToXY (31,6); 
writeln (Greetftg, '*****************#); 

GoToXY (31,7); 

writeln (Greeting, 'Welcome to Cortex'); 

GoToXY (31,8); 

uriteln (Greeting, #*****************#); 

writeln; 
Ink (9); 
GoToXY (23,10); 
writeln (Greeting, 'The thinking man's expert system'); 
GoToXY (7,22) 

writeln (Greeting, 'Please wait while the solutions and questions on file are counted. '); 
Initialise (CountOfQuestions, CoutOfSolutions); 
GoToXY (7,22); 
PutChattr (1 1,7,9,66); 
GoToXY (23,22); 
writeln (Greeting, 'Press any key to continue. '); 
Gate: = ConSllent; 
Cursor0n; 
InitScreen 
END; 

BEGIN END, 

13.3 Initialise. 

The number of questions and the number of solutions that are 

held on file are parameters that are used in several places in 
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Cortex. The number of files that exist when the program is 

entered is calculated before the first menu is sent to the 

screen. 
13.3.1 Pseudocode. 

count number of questions on file 

form question name 
WHILE fstat (question name) = true 

increment CountOfQuestions 

count number of solutions on file 

form solution name 
WHILE fstat (solution name) = true 

increment CountOfSolutions 

13.3.2 Draft Source Code. 

SEGMENT Initial; 

(Count questions and solutions on file. 

insert comon types 

insert PASPC 
insert PASDOS 

PROCEDURE ForiffleName (f Renumber: Integer; title: string; VAR FileMame: string); EXTERNAL; 

PROCEDURE 2eroiseBItString (VAR Bits: bitstring); EXTERNAL; 

PROCEDURE Initiallse (VAR CountOfQuestions, CountOfSolutions: integer); 

VAR FileMame: string; 
QuestionFile, SolutionFile: string; 

BEGIN 

MkDir (1\shell\question'); 

ChDir (1\shell\question'); Calculate CountoQuestions 

CountOfQuestions: = 0; 

FindFile (Iquestl', QuestionOnF! le); ( Is there a questl? I 

WHILE QuestionOnFile 0 11 DO BEGIN ( If so, count through the questions 
CoutOfQuestions: = CoutOfQuestions + 1; 

FormFileName (CoutOfQuestions + 1,1question'JileName); Is the next question on file? 

FindFile (FileName, QuestiononFile); ( Returns QuestionOnFile as empty when no question is found 

END; ( of WHILE ) 

M ir (1\shell\solution'); 

ChDir (1\shell\solution'); Calculate CoutOfSolutions 
Coutof Solutions: = 0; 
FindFile (Isolutl', SolutionOnFile); ( Is there a soluti? ) 

WHILE SolutionOnfile (> 11 DO BEGIN ( If so, count through the solutions 
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Countofsolutions: z Countofsolutions + 1; 
FonFileNaze (countofsolutions, lsolution,, FileNaEe); Is the next solution on file? 

Findfile (FileName, SolutionOnFile); Returns SolutiononFile as empty when no solution is found 

END; { of WHILE 
ChDir ('\shell'); 
END; 
BEGIN END. 

13.4 ImplementationNessage. 

When Cortex has been implemented the user must be provided 

with information about the domain in which the implementa- 

tion has been made. For example, information will be re- 

quired about the type of domain and the scope of the imple- 

mentation, and help may be needed as to the best way to 

formulate answers to the questions. This segment displays 

the required information by writing the implementation file 

to the screen. 
13.4.1 PseudoCode. 

display screen heading 

write information to screen 

13.4.2 Draft Source Code. 

SEGMENT Impment; 

( Display information about the domain. 

insert PASPC 

PROCEDURE Blankln, PressKey; EXTERNAL; 

PROCEDURE Implewntationgessage; 

VAR Disk: text; 

Line: string[100]; 
Counter: integer; 

BEGIN 

ClrScr; 

IF fstat (Ilmplment\messagel) = true THEN BEGIN 

writeln (I 1: 21, 'Impleventation Information'); 

writeln (I 

assign (Disk, l\shell\lmplemnt\messagel); 

reset (Disk); 

Counter: z 8; 

WHILE NOT eof(Disk) DO BEGIN 
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readln (Disk, Line); ( Copy a line from Disk to Line ) 
GoToXY (10, Counter); ( Move cursor to starting point of text 

writeln (Line); j Send contents of Line to screen 
Counter: = Counter +1 Move to next screen line 

END; { of WHILE 

close (Disk, true); 

writeln ('There are 1, CountOfQuestion, l questions and 1, CountOfSolutions, l solutions on file. '); 

END { of IF 

ELSE 

writeln (I 1: 7, 'No izplementation file has been written. '); 

END; 

BEGIN END. 

13.5 First Menu. 

Cortex, like any expert system, will be worked upon by a 
knowledge engineer or worked with by a user. This segment 
is the menu at which a decision is made as to the mode of 

operation of the system. 
13.5.1 Pseudocode. 

display list of choices 

use Cortex? 

work on knowledge base? 

make selection with a CASE statement 

13.5.2 Draft Source Code. 

SEGMENT FrstXenu; 

( Chooses between work on the knowledge base or use of the implemented system. 
insert PASPC 

PROCEDURE Blankln (number: integer); EXTERNAL; 

PROCEDURE MenuError (range: integer); EXTERNAL; 

PROCEDURE KnowledgeBaseMenu (CountOfQuestions: integer); EXTERNAL; 

PROCEDURE FindResult (CountofQuestions, CountOfSolutions: integer); EXTERNAL; 

PROCEDURE FirstAm (CoutOfQuestions, CountOfSolutions: integer); 

VAR Flag: boolean; 

Selector: integer; 

BEGIN 

Flag: = true; 

WHILE Flag z true DO BEGIN 

writeln ('Do you want to; '); 
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writeln (11. Use Cortex? '); 

writeln (12. Work on the knovledge base? '); 
writeln (13. Exit from Cortex? '); 
writeln ('Make your choice by typing a key number. Then press RETURN. '); 
read Selector; 
CASE Selector OF 

1: FindResult (CountOfQuestions, CountOfSolutions); 
2: KnowledgeBaseMenu (CountOfQuestions, CountOfSolutions); 
3. Flag: = false; 
OTHERWISE BEGIN 

ClrScr; 
Blankln (8); 
MenuError (3) 

END; ( of OTHERWISE 
END; of CASE 
END; of WHILE 
END; 
BEGIN END. 

13.6 XnovledgeBaseftnu. 

The work of the knowledge engineer can be divided into 

three main tasks. These are the creation of the questions, 
the creation of the solutions and the writing of the clas- 

sifier and its masks. A secondary task is the writing of 
the implementation message. This segment consists of the 

menu that chooses between these alternatives. 

-13.6.1 Pseudocode. 

display list of choices 

work on questions 

work on solutions 

write a classifier 

write an implementation message 

make selection with a CASE statement 
13.6.2 Draft Source Code. 

SEGMENT KBMenu; 

( Knowledge engineering main menu. 
insert PASPC 

PROCEDURE Blankln (number: integer); EXTERNAL; 
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PROCEDURE MenuError (range: integer); EXTERNAL; 

PROCEDURE QuestionMenu; EXTERNAL; 

PROCEDURE SolutionMenu; EXTERNAL; 

PROCEDURE ClassifierMenu; EXTERNAL; 

PROCEDURE WriteImplementationText; EXTERNAL; 

PROCEDURE Kwledgdaselen (CountOfQuestions, CountOfSolutions: integer); 

VAR Flag: boolean; 

Selector: integer; 

BEGIN 

Flag: = true; 

WHILE Flag = true DO BEGIN 

writeln ('Knowledge Base Menu. '); 

writeln ('Do you want to; '); 

writeln (11. Write, edit, delete, display or print the text of a question? '); 

writeln (12. Write, edit, delete, display or print the text of a solution? '); 

writeln (13. Write, edit or delete a classifier? '); 

ýwriteln (14. Write the text of the implementation screen? '); 

writeln (15. Return to the main Cortex menu? '); 

writeln ('The Cortex shell can accept up to a maximum of 1, MaxNumberOfQuestions: 3,1 questions. '); 

writeln ('There is effectively no limit upon the number of solutions that can be accommodated. '); 

writeln ('Make your choice by typing a key number. Then press RETURN. '); 

read Selector; 

CASE Selector OF 

1: QuestionMenu (CountOfQuestions); 

2: SolutionMenu (CountOfSolutions); 

3: ClassifierMenu (CountOfOuestions); 

4: WriteImplementationText; 

5: Flag: = false; 

OTHERWISE BEGIN 

ClrScr; 

Blankln (8); 

MenuError (5) 

END; ( of OTHERWISE 

END; ( of CASE 

END; ( of WHILE 

END; 

BEGIN END. 
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13.7 WritelupleinentationText. 

This segment writes and stores the text of the message that 
is sent to the screen by Implementation. 

13.7.1 Pseudocode. 

create text using PushPen 

store text as a disk file 

13.7.2 Draft Source Code. 

SEGMENT WritImpl; 

( Create text of implementation message. 
PROCEDURE PushPen (directory, FileNave: string); EXTERNAL; 

PROCEDURE Writelap1mmUtionTeirt; 

BEGIN 

writeln ('Please write the text for the implementation message. '); 

PushPen (Impletntl, 'Messagel); 

END; 

BEGIN END. 

13.8 FoinaMeNaime. 

The disk files that are used by CORTEX are stored in sub- 
directories named 'question' and 'solution'. In each direc- 

tory the file may be a question text, a solution text, or 

an explanation of either. There are, consequently, three 

titles under which a text file may need to be accessed. 
This segment forms these titles as strings. 

21.8.1 Pseudocode. 

for questions, solutions and explanations 

obtain keynumber and title as value parameters 

obtain FileName as variable parameter 

convert keynumber to a sting 
insert keynumber onto end of title 

21.8.2 Draft Source Code. 

SEGXENT Formfile; 

( Set up name of file to be accessed on disk. 

PR0CME Foroffielams (Index: integer; title: string; VAR FileName: string); 
UR Key: string; 
BEGIN 

str (Index, Key); Form the string Key from the integer Index 

IF title = 'question' THEN BEGIN 
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FileXame: = 'quest'; { Write the stem of a questions filename ) 
insert (Key, FileNave, 6); { Append the key number to complete the filename 

END ( of IF ) 

ELSE IF title = 'solution' THEN BEGIN 

FileXame: z Isolut'; Write the stem of a solution filename 
Insert (Key, FileName, 6); Append the key number to complete the filename 

END ( of ELSE IF ) 

ELSE IF title = 'explanation' THEN BEGIN 

FileName: =Iexplan'; ( Write the stem of an explanation filename 

Insert (Key, FileName, 7); { Append the key number to complete the filename 

END; ( of ELSE IF ) 

END; 
BEGIN END. 

13.9 PushPen. 

The text editor WRITER accepts keyboard input and organises 
it into a textfile on disk. This segment calls WRITER, and 
then takes the formed text, gives it a name, and stores it 

in a specified sub-directory. 
13.9.1 Pseudocode. 

call WRITER 

set up directory 

form file name 

read text from WRITER into new named file 

13.9.2 Draft Source Code. 

SEGMENT PushPen, * 
( Compose text and store it in specified sub-directory. 

PROCEDURE Writer; EXTERNAL; 

PROCEDURE PusbPen (directory, FileName: string); 
VAR Disk, DiskText; text; 

Line: string[100]; 
BEGIN 

writer; Writer stores text as DiskText on disk file TempFile 

assign (DiskText, 'TempFile'); TempFile is on \SHELL, not on \FORXAT 

reset (DiskText); Open DiskText for input 

chDir (directory); 

assign (Disk, FileXame); 

rewrite (Disk); Open Disk for output 
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WHILE NOT eof(DiskText) DO BEGIN 

readln (DiskText, Line); { Pead a line of DiskText into Line 

writeln (Disk, Line) ( Write Line to Disk 

END; ( of WHILE 

close (Disk, true); 

erase (DiskText) 

END; 

BEGIN END. 

13-10 DisplayTextFile. 

Files stored on disk must be capable of being extracted and 
displayed. This segment accesses and displays such files. 

13.10.1 Pseudocode. 

connect disk file to temporary local file 

change to disk file sub-directory 
display heading 

extract disk file 

display at specified position on screen 

return to SHELL sub-directory 
13.10.2 Draft Source Code. 

SEGMENT DispFile; 

( Display text file on screen. 
insert PASPC 
insert PASDOS 

PROCEDURE DisplayTextfile (DiskFile, directory, heading: string; Index, displayline: integer); 

VAR TempFile: text; 

Line: string[100]; 
BEGIN 

assign (DiskjileNaze); ( Connect disk file to temporary local file 

ChDir (directory); ( Change to directory containing the file 

reset (TempFile); ( Open Disk for input 

GoToXY (l, displayline); 

writeln (heading, lno 1, Index: 3,1.1); ( Display heading 

WHILE NOT eof(TempFile) DO BEGIN 

readln (TempFile, Line); ( lead a line of Disk into Line 

GoToXY (24, displayline); Position cursor 

writeln (Line); Display Line ) 
displayline: = displayline +1 Move cursor down one line 
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END; ( of WHILE 

close (Disk, true); 

ChDir ('\SHELL'); 

END; 

BEGIN END. 

( Return to SHELL sub-directory ) 

13.11 ZeroiseBitString. 

The classification of questions and answers are recorded in 

CORTEX in the form of bitstrings, which take the form of 

arrays of integers. The program functions by setting every 
bit in a string to zero initially, and then setting indi- 

vidual bits to 1 as required by the classification scheme. 
This segment carries out the initialisation. 

13.11.1 Pseudocode. 

pass name of bitstring and relevant field as a VAR parame- 
ter 

FOR loop through all the questions 

set each element to 0 

13.11.2 Draft code. 
SEGMENT ZeroBit; 

( Initialise bit strings. 
insert comn types 

PROCEDURE SeroiseB! tStriDg (VAR Bits: bitstring); 

VkR Index: integer; 

BEGIN 

FOR Index: = 0 TO MaxMumberOfIntegers DO 

Bits[Index]: = 0; 

END; 

BEGIN END. 

13.12 QuestiorMenu. 

When the knowledge engineer chooses to work on the ques- 
tions there are 10 operations that may need to be carried 

out. This procedure makes the selection between them. 

13.12.1 Pseudocode. 

display choice of operations 

use a CASE statement to call the relevant procedure 
13.12.2 Draft Source Code. 
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SEGMENT Question; 

( Selects the operations to be performed on the questions file. 
insert PASPC 

PROCEDURE QuestionSelection (Selector: integer; VAR CountOfQuestion: integer; VAR Flag: boolean); EXTER- 

NAW 

PROCEDURE qaestioWkm (VAR CountOfQuestions: integer); 

VAR Flag: boolean; 

Selector: integer; 

BEGIN 

ClrScr; 

Flag: = true; 

WHILE Flag = true DO BEGIN 

writeln ('Questions Menu'); 

writeln 

writeln (To you want to; '); 

writeln (11. Write the text of a question? '); 

writeln (12. Write the explanation of a question? '); 

writeln (13. Edit the text of a question? '); 

writeln (14. Edit the explanation of a question? '); 

writeln (15. Delete a question from the questions file? '); 

writeln (16. Delete the explanation of a question from the file? '); 

writeln (17. Display the text of a question? '); 

writeln (18. Display the explanation of a question? '); 

writeln (19. Print the text of a question? '); 

writeln (110. Print the explanation of a question? '); 

writeln (111. Return to the Knowledge Base Menu? '); 

writeln ('Xake your choice by entering a key number. '); 

writeln ('Then press RETURN. '); 

read (Selector); 

QuestionSelection (Selector, CountOfQuestions, Flag); 

END; ( of WHILE 

END; 

BEGIN END. 

13.13 QuestionSelection. 

Carries out the calling of procedures from the question 

menu. 
13.13.1 Pseudocode. 
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CASE 

procedure calls 
OTHERWISE 

menuerror 
13.13.2 Draft Source Code. 
SEGMENT QstSelec; 

( Manage the calling of procedures by the question and solution menus. 
insert PASPC 

PROCEDURE WriteQuestionText (VAR CountOfQuestions: integer); EXTERNAL; 

PROCEDURE WriteQuestionExplanation; EXTERNAL; 

PROCEDURE EditQuestion; EXTERNAL; 

PROCEDURE EditQuestionExplanation; EXTERNAL; 

PROCEDURE DeleteQuestion (VAR CountOfQuestions: integer); EXTERNAL; 

PROCEDURE DeleteExplanation (title: string); EXTERNAL; 

PROCEDURE DisplayQuestion; EXTERNAL; 

PROCEDURE DisplayExplanation (title: string); EXTERNAL; 

PROCEDURE PrintAll; EXTERNAL; 

PROCEDURE Blankln (number: integer); EXTERNAL; 

PROCEDURE MenuError (range: integer); EXTERNAL; 

PROCEDURE Questiom%lection (Selector: integer; VAR CountOfQuestions: integer; VAR Flag: boolean); 

BEGIN 

CASE Selector OF 

1: WriteQuestionText (CountOfQuestions); 

2: WriteQuestionExplanation; 

3: EditQuestion; 

4: EditQuestionExplanation; 

5: DeleteQuestion (CountOfQuestions); 

6: DeleteExplanation ('question); 

7: DisplayQuestion; 

8: DisplayExplanation ('question'); 

9: PrintAll; 

10: PrintAll; 

11: Flag: = false; 

OTHERWISE 

MenuError (11); 

END; { of CASE 

END; 

BEGIN END. 
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13.14 WriteQuestionText. 

The knowledge base consists of questions, solutions and of 

classifiers which relate the other two. This segment writes 
the text of a question and stores it on disk. 

13.14.1 Pseudocode. 

find the number of the last question on file 

form file name with sequential number 

write the text of the question using writer 

store file on disk using PushPen 
increment CountOfQuestions 

13.14.2 Draft Source Code. 

SEGMENT WritQust; 

{ Write the text of a question and store it on disk. 

insert PASPC 
insert PASDOS 

PROCEDURE PushPen (directory, FileName: string); EXTERNAL; 

PROCEDURE FormFileXame (index: integer; title: string; VAR FileName: string); EXTERNAL; 

PROCEDURE WriteQuestionTert (VAR CoutOfQuestions: integer); 

VAR FileName: string; 
QuestionOnFile: string; 
Counter: integer; 

BEGIN 

ClrScr; 

ChDir (I\shell\question'); Questions are filed on Question sub-directory 
Counter: = 0; 

REPEAT 

Counter: = Counter + 1; 

ForvFileName (Counter, lquestion', FileXame); 

FindFile (FileMaze, QuestionOnFile); 

UNTIL QuestionOnFile = 11; ( Until QuestionOnFile returns empty 

writeln ('Enter the text of the question'); 

writeln ('Question no 1, Couter: 3); 

PushPen (Iquestion', FileName); { Write question and store in Question sub-directory 
CountOfQuestions: z CountOfQuestions + 1; 

ChDir ('\shell') 

END; 

BEGIN END. 
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13.15 WriteQuestionExplanation. 

This segment writes the explanation text for a question and 
stores it in the correct sub-directory. When the knowledge 

engineer chooses a question for which to write an explana- 
tion he may accidently input a number for which no question 
has been written, or for which an explanation has already 
been written. Both these occurrences must be provided for. 

13.15.1 Pseudocode. 

ask for the number of the question needing explanation text 

IF question not on file 

display warning 
IF explanation already written 

display warning 
ELSE write explanation text with PushPen 

13.15.2 Draft Source Code. 

SEGMENT WrtQexpl; 

( Write the text of the explanation of a question. I 

insert PkSPC 
insert PASDOS 

PROCEDURE Blankln, PressKey, PushPen, ForzFileNaze; EXTERNAL; 

FUNCTION YesNo: boolean; EXTERNAL; 

PROCEDURE *iteQuestionftplanation; 

VAR QuestionNaine, FileName: string; 
Index: integer; 

OK: boolean; 

BEGIN 

ClrScr; 

ChDir ('question'); 

writeln ('Enter the number of the question whose explanation you want to write. '); 

writeln ('Then press RETURN. '); 

GoToXY (8,8); 

read (Index); 

ForifileNave (Indox, lquestion', QuestionNate); 

FormFileName (Index, lexplanation', FileNate); 

OK: = true; 

If fstat (QuestionNave) z false THEN BEGIN 

writeln ('No question with this key number is on file. '); 
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PressKey; 

ClrScr 

END; j of IF 

IF (fstat(QuestionName) = true) AND (fstat(FileName) = true) THEN BEGIN 

writeln ('There is already an explanation for this question on file., ); 

writeln (To you want to overwrite it? If so, press Ily" or "Y". 1); 

GoToXY (9,13); 

OK: = YesNo; 

ClrScr 

END; ( of IF 

If (fstat(QuestionName) = true) AND (OK = true) THEN BEGIN 

ClrScr; 

writeln ('Enter the text of the explanation. '); 

writeln ('Explanation no 1, Index: 3); 

PushPen (Iquestion', FileName); Write explanation and store in Question sub-directory 
ClrScr 

END; ( of IF 

ChDir ('\shell'); 

END; 

BEGIN END. 

13.16 EditQuestion. 

A question textfile, like any other piece of text, will 
frequently need to be altered and improved. This procedure 

edits questions that exist on file. 

13.16.1 Pseudocode. 

prompt for the question to be edited 
IF question not on file 

issue warning 
display question on screen 

edit using Writer 

return corrected text to file 

13.16.2 Draft Source Code. 

This procedure has not yet been written. 

13.17 EditExplanation. 

This procedure edits an explanation of a question or a 
solution, and stores the amended text in the correct sub- 
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directory. 

13.17.1 Pseudocode. 

prompt for the question whose explanation is to be edited 
IF question is not on file 

issue warning 
IF explanation is not on file 

issue warning 
ELSE edit text with Writer 

13.17.2 Draft Source Code. 

This procedure has not yet been written. 

13.18 DeleteQuestionFile. 

A question is represented, in an implemented version of 

Cortex, by a bit in the classifier string as well as a bit 

in the essential mask or the usual mask, and it may have an 

explanation text on file as well as the text of the ques- 

tion itself. All these must be removed when a question is 

deleted. The succeeding files and the three bit strings 

must be closed up by re-numbering all the subsequent ques- 

tions. 

13.18.1 Pseudocode. 

prompt for the number of question to be deleted 

ERASE the question and the explanation files 

decrement the number of the next question by 1 

REPEAT for all subsequent questions 

decrement the number of the next question explanation by 1 

REPEAT for all subsequent explanations 

for classifier, essential and usual mask in turn 

move bits for subsequent questions one place up the 

list 
REPEAT until end of the string is reached 

13.18.2 Draft Source Code. 

SEGMENT DelQuest; 

{ Delete question file together with any explanation file, and reset classifier bit strings. 

insert common types 

insert PASPC 

insert PASDOS 

PROCEDURE FormFileNaze (index: integer; title: string; VAR FileXame: string); EXTERNAL; 
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PROCEDURE ReNumberFiles (Flag, CountOfQuestions: integer; title, MeName: string); EXTERNAL; 

PROCEDURE Blankln (number: integer); EXTERNAL; 

PROCEDURE DeleteQuestion (VAR CoutOfQuestions: integer); 

VAR TextFile: text; 

TempFile: FILE OF classifiertype; 
FileName: string; 
Duny: boolean; 

Flag, Index: integer; 

BEGIN 

writeln ('What is the number of the question to be deleted? '); 

read (Flag); 

FormfileName (Flag, lquestion', FileNate); 

ChDir ('question'); 

IF fstat (FileName) = true THEN BEGIN 

assign (TextFile, FileName); 

erase (TextFfle); 

ReNumberFiles (Flag, CountOfQuestioins, lquestion'); 

FormFileName (Flag, lexplanation', FileNate); 

IF fstat (FileName) = true THEN BEGIN 

assign (TextFile, FileName); 

He ) 
erase (TextFile); 

ReNumbeffiles (Flag, CountofQuestions, lexplanation'); 

END; j of IF 

END; ( of IF ) 

CountOfQuestions: = CountOfQuestions + 1; 

ChDir ('class'); 

IF fstat ('Classifl) = true THEN BEGIN 

assign (TempFile, 'Classifl); 

reset (TeipFile); 

WHILE NOT eof(TeipFile) DO BEGIN 

FOR Index: = Flag TO CountOfQuestions DO BEGIN 

( Form question file name ) 

( Connect variable to question disk file 

( Delete selected question disk file 

( Close up succeeding files 

( Form explanation file name 

( Connect variable to explanation disk 

Delete explanation disk file 

Close up succeeding files ) 

( Connect variable to classifier disk file ] 

WHILE (Index+l) <= MaxNuiaberOfQuestions DO BEGIN 

IF testbit(TeapPile"I. essentialmask, Index) <> testbit(TeiapFilell. essentialmask, lndex+l) THEN 

Duimy = flipbit(TempFilel,. essentialmask, Index) t Flip bit to value of next bit 

If testbit(TempFilell. usualmask, lndex) <> testbit(Tezpfilell. usualiask, Index+l) THEN 

Duimy = flipbit(TempFile. usualmask, Index) t Flip bit to value of next bit 

IF testbit(TempFile A classifier, Index) <> testbit(TempFileA. classifier, Index+l) THEN 
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Duny = flipbit(TempFile, *,. classifier, Index) Flip bit to value of next bit 
END; ( of WHILE 

END; ( of FOR 

get (TempFile); 

END; [ of WHILE 

END; { of IF 

ClrScr; 

END; - 
BEGIN END. 

13.19 ReNumiberFiles. 

When a file is deleted, the succeeding files must be re- 

numbered so as to close up the series. This segment per- 
forms the necessary operations. 
13.19.1 Pseudocode. 

begin with the file immediately succeeding the deleted file 

FOR this file TO end of list of disk files 

rename file to name of previous file 

go to next file 

13.19.2 Draft Source Code. 

SEGNENT ReNus; 

( Re-number a series of disk files. 

PROCEDURE FonFileXame (index: integer; title: string; VAR FileNaze: string); EXTERNAL; 

PROCEDURE Mhnberfiles (Flag, CountofQuestions: integer; title: string); EXTERNAL; 

VAR TextFile: text; 

FileName, ThisFileName, NextFileName: string; 

Index; integer; 

BEGIN 

FormFileName (Flag, title, FileNate); ( Form name of deleted file 

ThIsFileName: z FileName: 

FOR Index: = (Flag + 1) TO CountOf'Questions DO BEGIN 

FortfileNave (Flag, title, FileNate); [ Form name of next file 

NextFileName: z FileName; 

IF fstat (NextFileNate) = true THEN BEGIN 

assign (TextFile, NextFileName); Connect variable with the next disk file 

rename (TextFile, ThIsFileName); Rename disk file with the name of the previous file 

close (TextFile, true) 

END; { of IF ) 



ThisFileName: z NextFileNave 

END; ( of FOR 

END; 

BEGIN M. 

{ Update variable ) 

13.20 DeleteExplanation. 

The text of an explanation of a question or a solution will 
often need to be deleted from the disk. However, a question 
may or may not have an explanation written for it. Explana- 
tions do not, like questions and solutions, form a continu- 
ous series and renumbering of files or closing up of bit 

strings is therefore unnecessary when an explanation is 

deleted. 

13.20.1 Pseudocode. 

Prompt for the number of the question or solution to be 
deleted 

form the name of the explanation 

check that it is on file 

IF not 
issue warning 

ELSE erase file 

13.20.2 Draft Source Code. 

SEGMENT DelExpl; 

( Delete the explanation of a question or solution. 
insert PASPC 
insert PkSDOS 

PROCEDURE Blankln, PressKey; EXTERNAL; 

PROCEDURE ForiffileXame (index: integer; title: string; VAR FileName: string); EXTERNAL; 

PROCEDURE Deleteliplanation (title: string); 
VAR TextFile: text; 

FileXame: string; ' 

Flag: integer; 

BEGIN 

ClrScr; 

writeln ('What is the number of the ', title, ' whose explanation you want to delete? '); 

read (Flag); 

FordileXame (Flag, lexplanation', FileNate); 

ChDir (title); 
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IF fstat (FileName) = true THEN BEGIN 

assign (TextFile, FileNate); 

erase (TextFile); 

END { of IF 

ELSE BEGIN 

writeln ('No explanation for this ', title. ' is on file. '); 

PressKey; 

END; j of ELSE 

ChDir ('\shell'); 

ClrScr; 

END; 

BEGIN END. 

13.21 DisplayQuestion. 

The knowledge engineer will need to be able to display the 
text of a question on the screen. This procedure obtains 
the display. 

13.21.1 Pseudocode. 

prompt for the question to be displayed 

form the name of the question 

check that it is on file 

IF not 
issue warning 

ELSE 

display question using DisplayTextFile 

13.21.2 Draft Source Code. 

SEGMENT DispQust; 

( Display the text of a question on screen. 
insert PASPC 

PROCEDURE Blankln, PressKey, ForiffleNave, DisplayTextFile; EXTERNAL; 

PROCEDURE DisplayQuestion; 

VAR FileNaze: string; 
Key: integer; 

BEGIN 

ClrScr; 

writeln ('Enter the number of the question that you want to display, '); 

writeln ('Then press RETURN. '); 

read (Index); 
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FordileName (Index, lquestion', FileName); 

FileName: = concat (1\shell\question\1, FileName); 

IF fstat (FileXame) = false THEN BEGIN 

writeln ('No question with this key number is on file. '); 

PressKey; 

ClrScr; 

END [ of IF 

ELSE BEGIN 

ClrScr; 

DisplayTextFile (FileNaine, lquestionl, 'Question', Index, 7); 

PressKey (5); 

ClrScr 

END; { of ELSE 

END; 

BEGIN END. 

13.22 DisplayTextFile. 

Calling a file from disk and displaying it on the screen is 

a task which frequently recurs. This procedure carries out 
the operation for a specified file. 

13.22.1 Pseudocode. 

connect a temporary file variable to the disk file 

open file 

read the file a line at a time into a string 

write the string to the screen 

repeat until end of file 

close file 

13.22.2 Draft Source Code. 

SEGKENT DispFile; 

( Display disk file on screen. 
insert PASPC 

insert PASDOS 

PROCEDURE Display? eftfile (DiskFile, directory, heading: string; Index, displayline: integer); 

VAR TempFile: text; 

Line: string; 
BEGIN 

assign (TempFile, DiskFile); 

ChDir (directory); 
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reset (TempFile); 

writeln (beading, ' no 1, Index: 3,1.1); 

WHILE NOT eof(TempFile) DO BEGIN 

readln (TempFile, Line); 

writeln (Line); 

displayline: = displayline + 1; 

END; ( of WHILE ) 

close (TempFile, true); 

ChDir (I\sbell'); 

END; 

BEGIN EJD. 

13.23 DisplayExplanation. 

This procedure carries out the display on the screen of 

either a question or a solution explanation disk file. 

13.23.1 Pseudocode. 

prompt for the explanation to be displayed 

form the name of the explanation 

check that it is on file 

IF not 
issue warning 

ELSE 

display the file using DisplayTextFile 

Draft Source Code. 

SEGMENT DispExpl; 

( Display the text of the explanation of a question or a solution. 
insert PASPC 

PROCEDURE PressKey, Blankln, ForEFileXame, DisplayTextFile; EXTERNAL; 

PROCEDURE DisplayErplaution (title: string); 
VAR FileNaze: string; 

Index: integer; 

} 

BEGIN 

ClrScr; 

writeln ('Enter the number of the ', title, ' whose explanation you want to display., ); 

writeln ('Then press RETURN. '); 

read (Index); 

FormFileXame (Index, lexplanation', FileName); 

FileName: = concat (1\shell\1, title, 1\1, FileName); 
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IF fstat (FileNave) = false THEN BEGIN 

writeln ('No explanation of this ', title. ' is on file. '); 

PressKey (7); 

ClrScr, * 
END ( of IF 

ELSE BEGIN 

ClrScr; 

DisplayTextFile (FileName, lquestionl, 'Explanation', Index, 7); 

PressKey; 

ClrScr 

END; ( of ELSE 

END; 

BEGIN END. 

13.24 Printall. 

When a screen display is not sufficient a printout of a 
text file may be needed. This procedure obtains a file from 

disk and sends it to the printer. 
13.24.1 Pseudocode. 

prompt for the number of the file to printed 
form the name of the file 

using the Prospero Command procedure 

use the DOS command type>prn to send the file to the 

printer 
13.24.1 Draft Source Code. 

This procedure has not yet been written. 

13.24 SolutionsHenu 

When the knowledge engineer chooses to work on the solu- 

tions there are 10 operations that may need to be carried 

out. This procedure makes the choice between them. 

13.24.1 Pseudocode. 

display choice of operations 

13.12.2 Draft Source Code. 

SEGMENT Solution; 

( Selects the operations to be performed on the solution files. 

PROCEDURE Blankln (number: integer); EXTERNAL; 

PROCEDURE SolutionSelection (Selector: integer; VAR Flag: boolean); EXTERNAL; 
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PROCEDURE Solutionmenu; 

VAR Flag: boolean; 

Selector: integer; 

BEGIN 

ClrScr; 
Flag: = true; 

WHILE Flag = true DO BEGIN 

iriteln; 

writeln (I 1: 18, 'Solutions Text Menu. '); 

writeln (I 

Blankln (2); 

writeln (I 1: 7, 'Do you want to; '); 

writeln; 

writeln (1 1: 10,11. Write the text of a solution? '); 

writeln (1 1: 10,12. Write the explanation of a solution? '); 

writeln (1 1: 10,13. Edit the text of a solution? '); 

vriteln (1 1: 10,14. Edit the explanation of a solution? '); 

writeln (1 1: 10,15. Delete a solution from the solutions file? '); 

writeln (1 1: 10,16. Delete the explanation of a solution from the file? '); 

writeln (1 1: 10,17. Display the text of a solution? '); 

writeln (1 1: 10,18. Display the explanation of a solution? '); 

writeln (1 1: 10,19. Print the text of a solution? '); 

writeln (1 1: 10,110. Print the explanation of a solution? '); 

writeln (1 1: 10,111. Return to the knowledge base menu? '); 

Blankln (2); 

writeln ('Make your choice by entering a key number. '); 

writeln ('Then press RETURN. '); 

read (Selector); 

SolutionSelection (Selector, Flag); 

END; ( of WHILE 

END; 

BEGIN END. 

13.26 SolutionSelection. 

Carries out the calling of procedures from the solutions 

menu. 

13.26.1 Pseudocode. 
CASE 
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procedure calls 
OTHERWISE 

menuerror 
13.26.2 Draft Source Code. 

SEGMENT SolSelec; 

( Manages the calling of procedures by the solutions menu. 
[$I \PROWPASK) 

PROCEDURE 

PROCEDURE 

PROCEDURE 

PROCEDURE 

PROCEDURE 

PROCEDURE 

PROCEDURE 

PROCEDURE 

PROCEDURE 

PROCEDURE 

PROCEDURE 

PROCEDURE 

BEGIN 

WriteSolutionText; EXTERNAL; 

WriteSolutionExplanation; EXTERNAL; 

EditSolution; EXTERNAL; 

EditSolutionExplanation; EXTERNAL; 

DeleteSolution; EXTERNAL; 

DeleteExplanation (title: string); EXTERNAL; 

DisplaySolution; EXTERNAL; 

DisplayExplanation (title: string); EXTERNAL; 

PrintAll (title: string); EXTERNAL; 

Blankln (number: integer); EXTERNAL; 

MenuError (range: integer); EXTERNAL; 

SolutionSelection (Selector: integer; 

CASE Selector OF 

1: WriteSolutionText; 

2: WriteSolutionExplanation; 

3: EditSolution; 

4: EditSolutionExplanation; 

5: DeleteSolution; 

6: DeleteExplanation ('solution#); 

7: DisplaySolution; 

8: DisplayExplanation ('solutions); 

9: PrintAll ('solution'); 

10: PrintAll ('solution'); 

11: Flag: = false; 

OTHERWISE BEGIN 

ClrScr; 

Blankln (9); 

MenuError (11) 

END; ( of OTHERWISE 

END; ( of CASE ) 

VAR Flag: boolean); 
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END; 

BEGIN END. 

13.27 WriteSolutionText. 

The knowledge base consists of questions, solutions and of 
classifiers which relate the other two. This segment writes 
the text of a solution and stores it on disk. 

13.27.1 Pseudocode. 

find the number of the last solution on file 

form file name with sequential number 

write the text of the solution using Writer 

store file on disk using PushPen 
increment CountOfSolutions 

13.27.2 Draft Source Code 

SEGMENT WritSoln, * 
( Write the text of a solution and store it on disk. 

PROCEDURE Blankln (number: integer); EXTERNAL; 

PROCEDURE FormFileName (index: integer; title: string; VAR FileNave: string); EXTERNAL; 

PROCEDURE PushPen (title, FileName: string); EXTERNAL; 

PROCEDURE WriteSolutionText (VAR CountOfSolutions: integer); 

VAR FileMame: string[30]; 
SolutionOnFile: string[30]; 
Counter: integer; 

BEGIN 

ChDir (1\shell\solution'); Solutions are filed on solution sub-directory 
Counter: = 0; 

REPEAT 
Counter: = Counter + 1; 
ForvFileName (Counter, lsolution', FileName); 

FindFile (FileNaze, SolutiononFile); 

UNTIL SolutionOnFile = 11; ( Until SolutionOnFile returns empty 

writeln (I 1: 7, 'Enter the text of the solution. '); 

writeln ('Solution no 1, Counter: 3); 

PushPen ('solution', FileName); Write solution , and store in 'solution' sub-directory 
CountofSolutions: z CountOfSolutions + 1; 

ChDir ('\shell') 

END; 

BEGIN END. 
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13.28 WriteSolutionExplanation. 

This segment writes the explanation text for a solution and 

stores it in the correct sub-directory. When the knowledge 

engineer chooses a solution for which to write an explana- 
tion he may accidently input a number for which no solution 
has been written, or for which an explanation has already 
been written. Both these occurrences must be provided for. 

13.28.1 Pseudocode. 

ask for the number of the solution needing explanation text 

IF solution not on file 

display warning 

IF explanation already written 

display warning 

ELSE write explanation text with PushPen 

13.28.2 Draft Source Code. 

SEGMENT WrtSexpl; 

( Write the text of the explanation of a solution. 

PROCEDURE Blankln (nuzl)er: integer); EXTERNAL; 

PROCEDURE PressKey (margin: integer); EXTERNAL; 

FUNCTION YesNo: boolean; EXTERNAL; 

PROCEDURE FortFileNate (index: integer; title: string; VAR FileXame: string); EXTERNAL; 

PROCEDURE PushPen (titlejileNave: string); EXTERNAL; 

PROCEDURE WriteSolutionExplanation; 

VAR SolutionNave, FileNaze: string; 

Index: integer; 

OK: boolean; 

BEGIN 

ClrScr; 

ChDir ('solution'); 

writeln (I 1: 7, 'Enter the number of the solution'); 

writeln (I 1: 7,1whose explanation you want to write. '); 

writeln; 

writeln (I 1: 7, 'Then press RETURN. '); 

GoToXY (8,9); 

read (Index); 

FormFileNaze (Index, lsolution', SolutionName); 

FormFileXame (Index, lexplanation', FileNate); 
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OK: = true; 

IF fstat (SolutionName) = false THEN BEGIN 

writeln (I 1: 7, 'No solution with this key number is on file. '); 

PressKey (7); 

END; ( of IF ) 

IF (fstat(SolutionName) = true) M (fstat(FileNate) = true) THEN BEGIN 

Yriteln (I 1: 7, 'There is already an explanation for this solution on file., ); 

writeln (I 1: 7, 'Do you want to overwrite it? If so, press "y" or "Y". 0); 

GoToXY (8,13); 

OK: = YesNo; 

END; ( of IF 

IF (fstat(SolutionName) = true) M (OK z true) THEN BEGIN 

Blankln (2); 

writeln (I 1: 7, 'Enter the text of the explanation. '); 

writeln ('Explanation no 1, Index: 3); 

PushPen (Isolution'JileXame); Write explanation and store in Solution sub-directory 

END; ( of IF ) 

ChDir ('\shell'); 

END; 

BEGIN END. 

13.29 EditSolution. 

A solution textfile, like any other piece of text, will 

frequently need to be altered and improved. This procedure 

edits solutions that exist on file. 

13.16.1 Pseudocode. 

prompt for the solution to be edited 

IF solution not on file 

issue warning 

display solution on screen 

edit using Writer 

return corrected text to file 

13.16.2 Draft Source Code. 

SEGMENT EditSoln; 

( Edit the text of an existing solution. 

PROCME PressKey (margin: integer); EXTERNU; 

PROCEDUIE Blankln (nurber: integer); EXTERNR; 

PRocEDURE EditSolution; 
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BEGIN 

ClrScr; 

Blankln (8); 

writeln (I 1: 7, 'The procedure EditSolution has not yet been written. '); 

Blankln (15); 

PressKey (7); 

ClrScr; 

END; 

BEGIN END. 

13.30 DeleteSolutionFile. 

A solution is represented, in an implemented version of 
Cortex, by a classifier bit-string, and it may have an 

explanation text on file as well as the text of the solu- 
tion itself. Both must be removed when a solution is delet- 

ed. The succeeding files and bit strings must be closed up 
by re-numbering all the subsequent solutions. 
13.30.1 Pseudocode. 

prompt for the number of solution to be deleted 

ERASE the solution and the explanation files 

decrement the number of the next solution by 1 

REPEAT for all subsequent solutions 
decrement the number of the next solution explanation by 1 

REPEAT for all subsequent explanations 
13.30.2 Draft Source Code. 

SEGXENT DelSoln; 

( Delete solution file. 

PROCEDURE PressKey (zargiminteger); EXTERNAL; 

PROCEDURE Blankln (numbeninteger); EXTERNAL; 

PROCEDURE DeleteSolution: 

BEGIN 

writeln (I 1: 7, 'The procedure DeleteSolution has not yet been written. '); 

PressKey (7); 

END; 

BEGIN END. 

13.31 ReNumberClassifier. 

When a solution file is deleted the corresponding classifi- 
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er bit-string must be removed from the file 'Classif'. 

13.31.1 Pseudocode. 

find the next record using Seek 

write this to the preceding record (the one to be deleted) 

repeat until end of file 

13.31.2 Draft Source Code. 

This procedure has not yet been written. 

13.32 DisplaySolution. 

The knowledge engineer will need to be able to display the 

text of a solution on the screen. This procedure obtains 
the display. 

13.32.2 Pseudocode. 

prompt for the solution to be displayed 

form the name of the solution 

check that it is on file 

IF not 
issue warning 

ELSE 
display question using DisplayTextFile 

13.32.2 Draft Source Code. 

SEGMENT DispSoln; 

( Display the text of a question on screen. 

PROCEDURE PressKey (margin: integer); EXTERNAL; 

PROCEDURE Blankln (number: integer); EXTERNAL; 

PROCEDURE ForvFileName (filenumber: integer; title: string; VAR FileName: string); EXTERNAL; 

PROCEDURE DisplayTextFile (FileName, directory, heading: string; Index, displayline: integer); EXTERNAL; 

PROCEDURE DisplaySolution; 

VAR FileName: string[301; 
Index: integer; 

BEGIN 

writeln (I 1: 7, 'Enter the number of the solution'); 

writeln (I 1: 7,1that you want to display. '); 

writeln (I 1: 7, 'Then press RETURN. '); 

GoToXY (8,11); 

read (Index); 

FormFileNaze (Index, lsolution', FileNate); 

FileNase: = concat (1\shell\solut1on\1, FileXame): 
0 
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IF fstat (FileNaze) = false THEN BEGIN 

Blankln (2); 

writeln (I 1: 7, 'No solution with this key number is on file. '); 

PressKey (7); 

END ( of IF 

ELSE BEGIN 

DisplayTextFile (FileNave, 'solution', 'Solution', Index, 7); 

PressKey (5); 

END; ( of ELSE 

END; 

BEGIN END. 

13.33 ClassifierMenu. 

When the knowledge engineer chooses to work on the ques- 
tions there are three operations that may need to be car- 

ried out. This procedure makes the selection between them. 

13.33.1 Pseudocode. 

display the choice of operations 

use a CASE statement to call the relevant procedure 
13.33.2 Draft Source Code. 

SEGXENT Classify; 

( Select the operations to be performed on the classifier file. 

PROCEDURE Blankln (nuiber: integer); EXTERNAL; 

PROCEDURE MenuError (range: integer); EXTERNAL; 

PROCEDURE SetUpClassifier (CountOfQuestions: integer); EXTERNAL; 

PROCEDURE EditClassifier; EXTERNAL; 

PROCEDURE DeleteClassifier; EXTERNAL; 

PROCEDURE Classifierlem (CountOfQuestions: Integer); 

VAR Flag: boolean; 

Selector: integer; 

BEGIN 

ClrScr; 

Flag: = true; 

WHILE Flag a true DO BEGIN 

writeln (I 1: 20, 'Classifier Menu. '); 

writeln (I 

writeln (I 1: 11, 'Do you want to; '); 

writeln (1 1: 14,11. Set up a classifier? '); 
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writeln (1 1: 14,12. Edit a classifier? '); 

writeln (1 1: 14,13. Delete a classifier?, ); 

vriteln (1 1: 14,14. Return to the Knowledge Engineering Menu? '); 

writeln (I 1: 7, 'Make your choice by typing a keynumber. 1); 

writeln (I 1: 7, 'Then press RETURN. '); 

read (Selector); 

CASE Selector OF 

1: SetUpClassifier (CountofQuestions); 

2: EditClassifier; 

3: DeleteClassifier; 

4: Flag: = false; 

OTHERWISE BEGIN 

ClrScr; 

Blankln (8); 

MenuError (4) 

END; ( of OTHERWISE 

END; ( of CASE 

END; j of WHILE ) 

END; 

BEGIN END. 

13-34 SetUpClassifier. 

When the texts of the questions and the solutions have been 

written and stored on file, the knowledge engineer must set 
them into relationship with each other. This is done by 

writing a classifier for every solution. 

When the part of CORTEX which is concerned with writing 
classifiers is entered, the knowledge engineer calls up the 

solution for which he wants to write a classifier. The text 

of the solution is displayed at the top of the screen. On the 
bottom half of the screen is displayed the text of the first 

question in the questions sub-directory. The display asks for 

an answer to two queries. 

First, is it essential that this question be answered cor- 
rectly if the solution is to be true? If so the first bit in 
the essential mask is set to true, otherwise it is left set 
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to false. Should the question be recorded as not essential, a 
further query is displayed asking if it is usually necessary 
for the question to be answered correctly. If it is, the 

first bit in the usual mask is set to true. Otherwise, it is 

left set to false and the next question from the questions 

sub-directory is displayed on the screen. 

When the knowledge engineer defines a question as either 

essential or usual an additional query is displayed asking 

whether the answer must be true or false. His answer is 

recorded in the first bit of the classifier, whereupon the 

next question in the questions sub-directory is displayed. 

The process is then repeated for the next question, and so on 
through all the questions in the knowledge base. When all the 

questions have been defined for the first solution the knowl- 

edge engineer can call another solution onto the screen, or 
he can exit to the CORTEX main menu. 

The effect of working through all the solutions in the knowl- 

edge base in this manner is that every solution is provided 

with its own classifier, essential mask and usual mask. This 

information is stored as a disk file so that it is available 

to the procedures which are brought into play by user of the 

system. The skill and knowledge which goes into the way that 

the classifiers are set up is the principle factor in deter- 

mining the intelligence with which the implemented system 

will operate. 
13.34.1 Pseudocode. 

add record type to common type file 

declare TempFile of common type item3 

declare Temp a record of common type item3 

set Temp fields to zero 

display "What is the number of the solution for which you 

want to set up a classifier? " 

read SolutionNumber: integer 

display solution text 

call SetClassifierBits to 

display the question texts in succession 
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manipulate the bit strings 

store the record Temp, on the disk file Classif 

END ( of FOR ) 

start over or exit 
13.34.2 Draft source code. 
SEGNENT StUpClas; 

( Write the classifier, essential task and usual mask for a solution. 
insert common types 

insert PASPC 
insert PASDOS 

PROCEDURE Blankln (number: integer); EXTERNAL; 

PROCEDURE FormFileName (filenumbeT: integer; title, directory: string; VAR FileName: string); EXTERNAL; 

PROCEDURE DisplayTextFile (FileName, directory, heading: string; filenumber, firstline: integer); EXTERNAL 

PROCEDURE InitialiseClassifierRecord (SolutionNumber: integer; VAR Temp: solutiontype); EXTERNAL: 

PROCEDURE SetClassifierBits (CoutOfQuestions: integer; VAR Tetp: solutiontype; VAR Flag: boolean); EXTERNAL; 

FUNCTION Ask (leftmargin: integer; question: string): boolean; EXTERNAL; 

PROCEDURE SetUpClassifier (CountOfQuestions: integer); 

VAR TempFile: FILE OF solutiontype; 
Temp: classifiertype; 
FileName: string; 
SolutionNumber: integer; 

Answer, Flag: boolean; 

BEGIN 

Flag: = true; 

WHILE Flag = true DO BEGIN 

writeln ("What is the number of the solution for which you want to write a classifier? "); 

read (SolutionNusber); 

InitialiseClassifierRecord (SolutionNumberjemp); 

ClrScr; 

writeln ("Solution no 0, SolutionNumber: 3); 

ForaFileNave (SolutionNuiber, lsolutionl, lsolution', FileNale); 

FileName: = concat (1\SHELL\SOLUTION\1, FileName); 

IF fstat (FileXame) = false THEN 

writeln ('No solution with this key number is on file. '); 

ELSE BEGIN 

DisplayTextFile (filename, lsolutionl, 'Solution', SolutionNumber, 2); Display solution text ) 

SetClassifierBits (CountOfQuestions, Temp, Flag); 

assign (TempFile, 'Classifl); ( Connect file variable TempFile to disk file Classif ) 
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append (TempFile); ( Move pointer to end of file 

write (TeipFile, Tezp); ( Add Temp to end of TempFile 

close (TempFile, true); 

END; ( of ELSE ) 

Answer: = Ask (7, 'Do you want to write another classifier. '); 

IF Answer = true THEN BEGIN 

Flag: = true; Exit from procedure 
TextWindow (1,1,25,80) Restore text window to whole screen 

ELSE BEGIN 

Flag: = false; 

END; ( of WHILE 

END; 

BEGIN END. 

13.35 InitialiseClassifierRecord 

Before a classifier is written the fields of its record, 

other than the keynumber, must be set to zero. 
13.35.1 Pseudocode. 

Set keynumber field to solution number. 
Set other fields to zero, using procedure ZeroiseBitString 

for bit strings 
13.35.2 Draft Source Code. 

SEGMENT InitClas; 

( Intitialise the fields of the record Temp. 

insert common types 

PROCEDURE ZeroiseBitString (VAR Bits: bitstring); EXTERNAL; 

PROCEDURE InitialiseClassifierRecord (SolutionNumber: integer; VAR Temp: solutiontype); 
BEGIN 

Temp. keynuiber: = SolutionNusber; 

ZeroiseBitString (Temp. essentialmask); 
ZeroiseBitString (Temp. usualmask); 
Temp. totalusual: = 0; 

Temp. usualtrue: z 0; 

Temp. probability: = 0; 

ZerolseBitString (Temp. classifier); 
END; 

BEGIN END. 
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13.36 SetClassifierBits. 

This procedure manipulates the classifier bit strings. 
13.36.1 Pseudocode. 

FOR index: = 1 TO CountOfQuestions DO BEGIN 
display text of first question 
display "Is it essential for this question to receive 

a correct answer? " 

IF "yes" set essential mask bit to T 

setbit (Temp. essentialmask, index); 

ELSE display "Does the solution usually require a correct 
answer to this question? " 

IF "yes" set usual mask bit to T 

setbit (Temp. usualmask, index); 

IF essential or usual mask set to T 

display "Does the solution require this question to be 

answered by 'yes' or by no,. Y/N? 11 

IF answer is 'yes' set the classifier bit to T 

setbit (Temp. classifier, index); 

append Temp to disk file 

13.36.2 Draft Source Code. 

SEGNENT ClasB! ts; 

( Set the bits of the classifier and its masks. 
insert common types 
insert PASPC 
insert PASDOS 

PROCEDURE ForiFileName (filenumber: integer; title, directory: string; VAR FileName: string); EXTERNAL; 

PROCEDURE DisplayTextFile (FileName, directory, beading: string; filenumber, firstline: integer); EXTERNAL; 

PROCEDURE SetUsualBits (Index: integer; VAR Terp: solutiontype); EXTERNAL; 

FUNCTION Ask (leftmargin: integer, -question: string): boolean; EXTERNAL; 

FUNCTION YesNo: boolean; EXTERNAL; 

PROCEDURE SetClassifierBits (CountOfQuestions: integer, *VAR Teinp: solutiontype; VkR Flag: boolean); 

VAR TempFile: FILE OF solutiontype; 
FileName: string; 
Index: integer; 

kaswer, Dummy: boolean; 

BEGIN 

FOR Index: = 1 TO CountOfQuestions DO BEGIN Loop through all the questions 
TextWindow (1,10,80,25); 
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FormFileXame (Index, lquestion', FileNne); 

FileName: = concat (I\shell\question\', FileName); 

DisplayTextFfte (FileName, lquestionl, 'Question', Index, 8); Display question text 

GoToXY (8,7); 

Answer: = Ask (1, 'Is it essential that this question receives a correct answer. Y/N71); 

IF Answer = true THEN BEGIN 

Dummy: = setbit (Teip. essentialmask, Index); Set essential mask to true 

Answer: = Ask (7,11s the answer that is always needed to this question "yes" or "no". Y/N7.1); 

IF Answer true THEN 

Dummy: = setbit (Temp. classifier, Index); 

END ( of IF 

ELSE 

SetUsualBits (Index, Temp); 

END; { of FOR 

END; 

BEGIN END. 

13.37 SetUsualBits. 

This procedure manipulates the bits of the classifier and 
its masks that record the status of usual questions. 

13.37.1 Pseudocode. 

when a question is defined as not essential 

prompt for usual question 
IF answer is 'yes' 

set usual mask to true 

increment totalusual field 

- prompt for answer true or false 

IF true 

set bit to true 

13.37.2 Draft Source Code. 

SEGMENT UsulBits; 

( Set the usual bits in a classifier. 
insert conon types 

insert PASPC 

insert PASDOS 

FUNCTION YesNo: boolean; EXTERNAL; 

FUNCTION Ask (leftmargin: integer; question: string): boolean; EXTERNAL; 

PROCEDURE SetUsualBits (Index: integer); 
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VAR Temp: classifiertype; 
Answer, Duny: boolean; 

BEGIN 

writeln ('Does the solution usually require'); 

writeln (I 1: 7,1a correct answer to this question. Y/Pl); 

Answer: = YesNo; 

IF Answer = true THEN BEGIN 

Dmy: = setbit (Temp. usualmask, Index); 

Temp. totalusual: = Temp. totalusual + 1; 

ClrScr; 

writeln ('Is the answer that is usually needed'); 

writeln (I 1: 7,1to this question "yes" or "no". Y/N? 1); 

Answer: = YesNo; 

IF Answer = true THEN 

Duny: = setbit (Temp. classifier, Index); 

END; ( of IF 

END; 

BEGIN END. 

( Set usual mask to true ) 

( Set classifier to true ) 

13.38 EditClassifier. 

Adjustments and improvements to the way that Cortex func- 

tions are made by working on the questions and solutions, 

and also by editing the classifiers that establish the 

relations between them. This procedure edits a selected 

classifier and places the revised version on file in the 

disk file Classif. 

13.38.1 Pseudocode. 

prompt for the solution whose classifier is to be edited 

if the solution has no classifier on file 

issue a warning 

ELSE call set up classifier 

rewrite classifier 

store revised classifier on file 

13.38.2 Draft Source Code. 

SEGMENT EditClas; 

( Edit a classifier. 

insert conon types 

PROCEWRE Blankln (nuipbeninteger); EXTERNAL; 
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PROCEDURE FormFileName (filenuiber: integer; title: string; VkR FileMalle: string), * EXTERNAL; 

FUNCTION Ask (leftioargin: integer; question: string): boolean; EXTERNAL; 

PROCEDURE EditClassifier; 

VAR TevpFile: FILE OF solutiontype; 

SolutionFile, QuestionFile: text; 

TexpRecord: solutiontype; 

FileName: string[301; 

Line: string[100]; 

SolutionNuiber, QuestionNuiber, Counter: integer; 

Answer, ClassifierSetting, Dmy: boolean; 

BEGIN 

writeln (I ': 7, 'Enter the nurber of the solution whose classifier you want to edit., ); 

read (SolutionNumber); 

writeln (I 1: 7, 'The text of the solution whose classifier you are editing is;, ); 

ForzFileNave (SolutionNuiMr, lsolution', FileNaiie); 

FileName: z concat (1\shell\solution\1, FileNave), * 

assign (SolutionFile, FileNaime); 

reset (SolutionFile); 

Counter: = 9; 

WHILE NOT eof(SolutionFile) DO BEGIN 

readln (SolutionFile, Line); 

writeln (Line); 

Counter: = Counter + 1; 

END; ( of WHILE ) 

writeln (I 1: 7, 'Enter the number of the question that you want to change., ); 

read (QuestionNuzber), * 

writeln (I 1: 7, 'The question whose bit you are editing is; '); 

FormMeName (QuestionNuidxrllquestion', FileHave); 

FileName: = concat (1\shell\question\1, F1leNave); 

assign (QuestionFile, FileNate); 

reset (QuestionFile); 

Counter: = 16; 

WHILE NOT eof(QuestionFile) DO BEGIN 

readln (QuestionFile, Line); 

writeln (Line); 

Counter: = Counter +1 

END; ( of WHILE ) 

assign (TempFile, 'Classifl); 
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update (TempFile); 

seek (TempFile, (SolutionNumber - 1)); 

read (TempFile, TempRecord); 

ClassifierSetting: = testbit(TeiapRecord. classifier, QuestionNumber); 

writeln (I 1: 7, 'The setting of this question bit is 1, ClassifierSetting); 

Answer: = Ask (7, 'Do you want to change its setting. Y/N? '); 

IF Answer = true THEN BEGIN 

Dmy: c flipbit(Te&pRecord. classifier, QuestionNumber); 

seek (TempFile, (SolutionNumber - 1)); 

write (TempFile, TempRecord); 

close (TempFile, true) 

END; ( of IF 

END; 

BEGIN END. 

13.39 DeleteClassifier. 

If a solution is no longer relevant, but its text is to be 

retained on disk, the corresponding classifier will need to 

be deleted. This procedure removes a classifier from the 

disk file Classif. Classifiers are stored as elements of 
this file, and when an element is removed the succeeding 

elements must be closed up so as to maintain a continuous 

sequence. 
13.39.1 Pseudocode. 

prompt for the solution whose classifier is to be deleted 

go to file element with this key number 

IF no file element has this number 
issue warning 

ELSE read the next file element into a temporary record 

overwrite the element for deletion with the temporary 

record 

repeat for all succeeding file elements 

13.39.2 Draft Source Code. 

SEGMENT DelClass; 

( Delete a specified classifier and close up the succeeding file elements. 
insert PASPC 

insert PASDOS 

PROCEDURE DeleteClassifier (CountOfQuestions: integer); 
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VAR TempFile: FILE OF classifiertype; 
Temp: classifiertype; 
Selector, Counter, Index: integer; 

BEGIN 

writeln ('What is the number of the solution whose classifier you want to delete?, ); 

read (Selector); 

assign (TempFile, 'Classifl); 

reset (TempFile); 

WHILE NOT eof(TempFile) DO BEGIN 

IF TempFile A keynumber <) Selector THEN Filepointer not at selected element ) 

get (TempFile); [ Go to next element 

IF eof (TempFile) = true THEN 

writeln ('No classifier has been written for this solution. ') ( Selected classifier not found ) 

ELSE BEGIN ( File pointer is at selected element ) 

Couter: z Selector; 

FOR Index: = Selector TO CountOfQuestions DO BEGIN 

seek (TempFile, (Counter+1)); [ Go to next file element 

Temp. essentialmask: = TempFileA. essentialmask; { Set Temp's fields to this element's 

values ) 
Temp. usualmask: = TempFi JeA usualmask; 

Temp. classifier: = TempFile A classifier; 

Temp. totalususal: = TempFilell. totalusual; 

Counter: = Counter - 1; 

seek (TempFile, Couter); Go back to selected file element 

write (TeapFile, Tetp); Overwrite element with values of next element 

seek (TempFile, (Counter+l)); Go to next file element 

END; ( of FOR 

END; ( of ELSE 

END; ( of WHILE ) 

close (TezpFile, true); 

END; 

BEGIN END. 

13.40.1 FindResult. 

When the user starts up CORTEX the system presents the 

welcome screen followed by the implementation screen. This 

tells him what is the domain in which CORTEX has been 

implemented, and it may contain advice on how to answer the 
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questions to the best effect. 
The system, using SetUpSolutionList and MostFrequentQues- 
tion, creates a linked list of all the solutions in the 
knowlege base. The essential masks are then searched and 
the number of the question that occurs in them most often 
is ascertained. Upon exiting from the implementation screen 
the user is presented with this first question on the 

screen and he is prompted for an answer. 

The user provides an answer to the question which follows 
from his knowledge of, and point of view towards, the 
implementation domain. His answers are recorded in the 

message and message mask strings by the procedure Messag- 

eAndMask. But an answer to a question will, in logic and 
sense, make some of the other questions in the knowledge 
base redundant. For example, if in an animal identification 

system the user replies that the creature lays eggs, then 
it is otiose to go on to ask if the same creature gives 
milk. For the sake of completeness, one may observe that 
the last statement holds true unless one is wading in a 
Tasmanian swamp and the creature under inspection happens 
to be a duckbilled platypus. An expert system must be 

provided with a means of excluding from the list of ques- 
tions those which have been rendered irrelevant by already 
answered questions. 

As soon as an answer is given the system eliminates from 
the list of solutions all those solutions whose bits con- 
tradict the answer. The remaining solutions are again 
searched by MostFrequentQuestion and the question that 

appears in them most often is displayed to the user for 

answering. This process is repeated until a possible solu- 
tion is obtained, or until all the questions in the knowl- 

edge base have been answered and no solution has been 

arrived at. In this way the number of solutions to be 

searched is progressively reduced as the user provides more 
answers to questions. 
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Every solution for which all the essential questions have 
been correctly answered is a possible solution. The best 

candidate is identified by searching their usual masks, and 

obtaining the answer to all the questions that occurs in 

those masks. When all the questions that appear in the 

usual masks of the possible solutions have been answered, 
the probabilities of each can be calculated and the most 
likely solution is then displayed. 

By means of this process of exclusion, the number of rele- 

vant questions and possible solutions is quickly restrict- 

ed. Such a method of ordering the presentation of questions 
has'the double advantage of excluding irrelevant questions, 

and of narrowing the search onto the most promising solu- 
tion candidates. This is in accord with the way in which a 
human expert might work. He will devote most attention to 

the candidate solutions which emerge as the most likely to 

be correct, while progressively excluding those which 

appear unpromising. 
13.40.2 Pseudocode. 

set Message and MessageMask arrays to zero 

call SetUpSolutionList to create linked list of solutions 

call MostFrequentQuestion to find most common question in 

the solutions 

WHILE there is another essential question to be found 

call MessageAndMask to record the user's answer to a 

question 
call RemoveSolution to remove any solution contradicted 

by the answer 
IF all elements of the solutions list are removed 

display failure message and exit progam 

call UsualQuestion to search the usual masks of the 

possible solutions 

get answers to the usual questions of the possible solu- 
tions 

call Probability to calculate the probability of each 

solution 
display the most probable result with its probability 
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finish by clearing the solutions list from memory 
13.40.3 Draft source code. 
SEGMENT FindRslt: 

( Main procedure for writing the message and obtaining the result. 
insert common types 

PROCEDURE ZeroiseBitString (VAR Bit: bitstring); EXTERNAL; 

PROCEDURE SetUpSolutionL! st (CountOfSolutions: integer; VAR Read: solutionpointer); EXTERNAL; 

PROCEDURE MessageAndMask (XostFrequentQuestion: integer; VkR Message, MessageMask: bitstring); EXTERNAL; 

PROCEDURE RemoveContradictedSolution (Nessage, XessageMask: bitstring; CountOfQuestions: integer; 

VAR Read: solutionpointer); EXTERNAL; 

PROCEDURE CalculateProbability (Nessage, MessageMask: bitstring; CountofQuestions: integer 

Read: solutionpointer); EXTERNAL; 

PROCEDURE DisplayResult (Read: solutionpointer); EXTERNAL; 

PROCEDURE Clearffeap (Head: solutionpointer); EXTERNAL; 

FUNCTION FindMostFrequentQuestion (NessageMask: bitstring; CountOfQuestions: integer; 

Head: solutionpointer): integer; EXTERNAL; 

FUNCTION FindUsualQuestion (CountOfQuestions: integer; Head: solutionpointer): integer; EXTERNAL; 

PROCEDURE FimSesult (CountOfQuestions, CountOfSolutions: integer); 

VAR Message, MessageMask: bitstring; 

Head: solutionpointer; 
UQ, MFQ: Integer; 

BEGIN 

zeroiseBitString (Message); Set Message and MessageMask to zero 

zeroiseBitstring (MessageMask); 

SetUpSolutionList (CountOfSolutions, Head); Create solutions list 

MFQ: = FindKostFrequentQuestion (MessageMask, CountOfQuestions, Hea4); Find number of KFQ ) 

WHILE KFQ (> 0 DO BEGIN { Search essential masks and prune solutions list 

MessageAndMask (MFQ, Message, MessageMask); { Set Message and Messagelask for XFQ ) 

RemoveContradictedSolutions (Message, MessageMask, MFQ, Head); ( Remove any contradicted solution ) 

MFQ: = FindMostFrequentQuestion (MessageMask, CountOfQuestions, Head); Find no of KFQ remaining 

END; ( of WHILE ) 

UQ: = FindUsualQuestion (CountOfQuestions, Head); Find number of UQ 

WHILE UQ 00 DO BEGIN 

MessagekndMask (UQ, Message, MessageMask) Set Message and MessageMask for UQ 

UQ: = FindUsualQuestion (CoutOfQuestions, Head); Find number of next UQ 

END; { of WHILE ) 

CalculateProbability (Message, MessageMask, CountOfQuestions, Head); 

DisplayResult (Head); 
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ClearHeap (Head) 

END; 

BEGIN END. 

13.41 SetUpSolutionList. 

This segment creates a linked list of all the solutions in 

the database. A linked list keeps track of relevant solu- 
tions more efficiently than arrays because no-longer-rele- 

vant elements can be erased from the list readily. It is 

impossible to erase elements selectively from an array, and 
therefore the length of a search path through an array 

cannot be curtailed. 

The values of the essential mask,, usualmask and classifier 
fields are copied from the disk file of the classifier into 

the corresponding fields of the linked list. It is by 

consulting the value of the essential masks in the list 

that the possible solutions are identified, while the 

classifier and the usual mask enable the probability of the 

possible solutions to be calculated. 

13.41.1 Pseudocode. 

make space in memory for the last element in the solution 

list 

set its key to total number of solutions and its pointer to 

NIL 

working back through the total number of solutions 

make space for temporary variable 

store the loop index as its serial number 

link this element to current variable 

make the new element the current variable 

finish by making the head pointer the current variable 
link a variable to the disk file containing the classifier 

working through the total number of solutions 

copy classifier, masks and totalusual fields from file 

variable to current pointer 

set usualtrue and probable fields to zero 

get the next element of the file variable 

13.41.2 Draft Source Code. 
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SEGMENT SetUpSol; 

[ Set up a linked list of solutions and return the Head pointer. 
insert global types 

PROCEIRE SeWpSolutionList (CountOfSolutions: integer; VAR Head: solutionpointer); 

VAR Classifier: FILE OF solutiontype; 

TempRecord: solutiontype; 

Temp, Current: solutionpointer; 

Index: integer; 

BEGIN 

new (Current); Make space in heap for last element in the list 

Current". KeyNumber: z CountOfSolutions; Number of last element :z total number of solutions 
CurrentA Next: = NIL; [ Set pointer field of last element to NIL) 

FOR Index: = (CountOfSolutions - 1) DOWNTO 1 DO BEGIN ( Work backwards from last element in the list 

new (Temp); Make space in heap for a new element in the list 

TeMpA. keynumber: = Index; Set keynumber to loop index ) 

TempA. neXt: = Current; Set to point to current element in the list 

Current: = Temp Make the current element the new element) 

END; ( of FOR ) 

Head: = Current; ( Move head pointer to first solution, which is current pointer, on exiting from FOR loop 

assign (Classifier, 'Classif'); ( Connect Classifier to disk file 'Classif', written with SetUpClassifier 

reset (Classifier); 

Temp: = Head; t Position Head at beginning of solutions list 

FOR Index: = 1 TO CountOfSolutions DO BEGIN 

read (Classifier, TempRecord); j By-pass record 0, which is blank 

TempA. essentialtask: z Classifier A essentialmask; ( Set essentialmask to value in Classifier field 

TeMpA. usualiask: z Classifier A usualmask; ( Set usualmask to value in Classifier field 

TempA. classifier: = ClassifierA. classifier; ( Set classifier to value in Classifier field 

TempA. totalusual: = ClassifierA. totalusual; ( Set totalusual to value in Classifier field 

TempA. usualtrue: z 0; 

TeMpA. probability: =O; 
Temp: = Temp". next; Move pointer to next record 

END; I of FOR 

END; 

BEGIN END. 

13.42 FindftstfteguentQuestion. 

When the implemented shell is started up, the first ques- 
tion to be presented to the user must be that which occurs 
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most frequently in the essential masks. This segment finds 
thatquestion. Subsequent questions to be presented to the 
user are always the most frequent to occur in the remaining 
relevant solutions, and this segment finds these also. The 
linked list of solutions which was created in SetUpSolu- 
tionList contains fields for the essential and the usual 
mask applying to each solution. The solutions list serves 
as the vehicle for the search. 

If no more unanswered questions can be found 
' 
in the essen- 

tial masks of the elements of the solution list, then those 

elements that remain in the list are all possible solu- 
tions. In this case, the function returns a value of 0 and 
control passes to the segment UsualQuestion to search the 

usual masks, rather than the essential masks, of the candi- 
date solutions. 
13.40.1 Pseudocode. 

declare type in common types file 

declare variable, TopQuestion, to record 
(i) the key number of the most frequent question so far 
(ii) the number of times it occurs in the essential 

masks 
declare another variable, QuestionCounter, to record 
(i) the key number of the question about to be counted 
(ii) the number of times it occurs in the essential masks 
set both fields of TopQuestion to zero 
for each question in turn, 

(i) go to the first element in the solution list 
(ii) set QuestionCounter. questionnumber to I 
(iii) use testbit to read the bit representing question 1 
(iv) increment QuestionCounter. countofoccurrance if the bit 

is set 
to true 
(v) IF QuestionCounter. countofoccurrances > 

TopQuestion. countofoccurrances 
set TopQuestion = QuestionCounter 

IF there are no more essential questions to be asked 
then all the questions needed to identify all the possible 
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solutions have been asked 
in which case, the function returns the value of zero 

ELSE assign TopQuestion. questionnumber to MostFrequentQues- 

tion, and return this value to the calling procedure-Fin- 
dResult 

13.42.2 Draft Source Code. 

SEGHENT MFrqQust; 
insert common types 

insert PASDOS 

FUNCTION FindRostfrequentQuestion (MessageNask: bitstring; CoutOfQuestions: integer; 

Head: solutionpointer): integer; 

VAR Current: solutionpointer; 
TopQuestion, QuestionCounter: questiontype; 
Index: integer; 

AllFalseFlag, AllTrueFlag: boolean; 

BEGIN 

TopQuestion. questionnumber: = 0; 

TopQuestion. countofoccurrance: = 0; 

FOR Index: = 1 TO CountOfQuestions DO BEGIN 

QuestionCounter. questionnumber: = Index; 

QuestionCounter. countofoccurrance: z 0; 

Current: = Read; 

WHILE Current <> NIL DO BEGIN 

IF (testbit (CurrentA essentialiask, Index) = true) AND (testbit (MessageMask, Index) false) THEN 

QuestionCouter. countofoccurrance = (QuestionCounter. countofoccurrance + 1); 
IF testbit(CurentA. classifier, Index) = true THEN 

AllTrueFlag: = true 

ELSE 

kIlFalseFlag: = true; 

END; ( of IF ) 

Current: = CurrentA next 
END; ( of WHILE ) 

IF AllFalseFlag M AllTrueFlag = true THEN 

IF QuestionCounter-countofoccurrance > TopQuestion. countofoccurrance THEN 

TopQuestion: = QuestionCounter 

page 230 



END; ( of FOR ) 

FindMostFrequentQuestion: z TopQuestion. questionnumber { No of remaining most freq occurring question 

END; 

BEGIN END. 

13.43 MessageAndMask. 

When a question is answered by the user the bit in the 

message mask corresponding to that question is set to true. 

Whether the answer is true or false is recorded in the 

message. The code in this segment sets up these two bit- 

strings. 

The message and the message mask may be several hundred 

bits long in a realistic implementation of the shell. 

However, in Prospero Pascal an integer is represented by 

four eight-bit bytes, or 32 bits. A single CORTEX bit 

string will consequently represent more than one integer. 

in an array of integers, however, the 32 bit integers 

follow sequentially from one array element to the next. A 

long bit string therefore represents an array of integers, 

rather than a single integer. For this reason the message 

and the message array are declared as integer arrays. 

13.43.1 Pseudocode. 

declare message and messagemask as VAR parameters 

display most frequently occurring question 

display cue for explanation 

IF asked, display explanation 

ask for answer to the question 

IF answer is yes 

set message and messagemask to true 

ELSE 

set messagemask to true 

leave message false 

13.43.2 Draft Source Code. 

SEGMENT MessMask; 

( Display the most frequently occurring question and obtain the user's answer to it. 

insert conon types 

insert PkSPC 
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insert PASDOS 

PROCEDURE Blankln (number: integer); EXTERNAL; 

PROCEDURE PressKey (margin: integer); EXTERNAL; 

PROCEDURE FormFileName (filenumber: integer; title: string; VAR FileName: string); EXTERNAL; 

PROCEDURE DisplayTextFile (DiskFile, directory, heading: string; filenuid*r, firstline: integer); EXTERNA- 

FUNCTION Ask (margin: integer; question: string): boolean; EXTERNAL; 

PROCEDURE Setlessageindlask (LiyeQuestion: integer; VAR Message, MessageMask: bitstring); 

VAR FileNave: string[30]; 
Cb: char; 
Answer, Dumy: boolean; 

BEGIN 

FormFileName (LiveQuestion, lquestion', FileName); 

DisplayTextFile (FileName, lquestionl, 'Question', LiveQuestion, 2); Display the question text 

writeln ('Please answer the question "Yes" or "No". '); 

writeln ('Press IIWII for "Why" if you want to see an explanation of this question. '); 

Gate: = ConSilent; 

IF (Gate = IWI) OR (Gate z Iwl) THEN BEGIN 

FormFileName (LiveQuestion, lexplanation', FileNate); 

FileName: z concat('\shell\question\', FileNate); 

IF fstat (FileNave) z false THEN BEGIN 

writeln ('No explanation for this question is on file. '); 

PressKey (7); 

END ( of IF 

ELSE BEGIN 

DisplayTextFile (FileNate, lquestionl, 'Explanation', LiveQuestion, g); Display the explanation text 

END; of ELSE ) 

REPEAT Gate: = ConSilent UNTIL 

(Gate IYI) OR (Gate = IyI) OR (Gate = IN') OR (Gate z In'); 

END; ( of IF ) 

IF (Gate = IYI) OR (Gate = IyI) THEN 

Duimy: = setbit (Message, LiveQuestion); Set Message to true if answer is 'yes' 

Duimy: = setbit (MessageNask, LiveQuestion); Set MessageMask to true if answer is 'yes' or 'no' 

END; 

BEGIN END. 

13.44 RemoveContradictedSolution. 

A solution whose essential classifier contains a bit that 

does not match the corresponding message bit must be incor- 
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rect. This segment of CORTEX removes from the list of 

solutions any solution which, for this reason, cannot be 

correct. The effect of shortening the list is to accelerate 
the next search for the most frequently occurring question. 

A question removes a solution from the list because one of 
the solution's essential questions has been found to be 

contradicted by the answer. It follows, as a corollary, 
that all the solutions which remain in the solutions list 

must be possible solutions if the answer to a question 
fails to remove any solution. This is an important mile- 

stone in the working of CORTEX bacause from this point 

onwards it is no longer necessary to search for the most 
frequently occurring question. It is sufficient, when all 
the remaining solutions are possibly correct, to find which 
is the most probably correct. For this reason, this proce- 
dure sets a switch to true and returns its value to Message 

as soon as no more elements can be removed from the solu- 

tions list. 

13.44.1 Pseudocode. 

go to the first element of the solutions list 

compare the message bit with the corresponding essential 

mask bit using the Frey algorithm 

IF they differ THEN 

remove solutions list element 

repeat for all solutions list elements 

13.44.2 Draft Source Code. 

SEGNEK RemSoln; 

( Remove from the list of solutions any whose essential mask is contradicted by an answer to a question 
insert global types 

PROCEDURE Rezovecontradictedsolutions (message, XessageXask: bitstring; XFQ: integer; 

VAR Head: solutionpointer); 

VAR Current, Previous: solutionpointer; 
IntermediateResultl, IntervediatResult2, EssentialResult: boolean; 

BEGIN 

Current: = Head; Current set to first element of solutions list 

WHILE Current <> NIL DO BEGIN 

InteriediateResultl: = NOT (testbit(Nessage, XFQ) XOR testbit(Currentl. classifier, NFQ)); 
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IntermediateResult2: = testbit (MessageMask, MFQ); 

IF IntermediateResultl kND IntermediateResult2 = false THEN ( If the result is false, 

IF Current = Head THEN BEGIN To delete first solution record 

Head: = Head A next; Move head pointer to next element 
dispose (Current); Delete first element ) 

Current: = Head; Set current pointer to what is now the first element 

END ( of IF 

ELSE BEGIN 

Previous'l. next: = CurrentA. next; 
dispose (Carrent); 

Current: = Previous". next; 
END ( of ELSE 

ELSE BEGIN 

Previous: = Current; 

Current: = Current". next 
END; ( of ELSE 

END; ( of WHILE 

END; 

BEGIN END. 

Delete if non-head element 
By-pass current element 
Delete by-passed element 

Set current pointer equal to next element 

Not deleting element because still possible solution ) 

( move previous pointer to current element ) 

( Move current pointer to next element ) 

If CurrentA. next is NIL, WHILE loop is exited ) 

13.45 FindUsualQuestion. 

When no element can be removed from the solution list by 

RemoveContradictedSolutions then all the remaining elements 

are possible solutions. These possible solutions must be 

ranked in order of probability so that the most probable 

can be presented to the user as the solution to the prob- 

lem. This is done by obtaining answers to all the questions 

that appear in their usual masks, and then choosing the 

solution with the largest proportion of correctly answered 

usual questions. 

This function returns the number of any question that 

appears in the usual mask of any of the possible solutions. 

By checking the message mask for that question each time, 

those questions that have already received an answer be- 

cause they are essential to some other solution are not 

asked again. 
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13.45.1 Pseudocode. 

go to the first element of the solutions list 

find the first question in the usual mask 
IF the message mask for that bit = false 

return the number of the question to FindResult 

so that an answer can be obtained with MessageAndMask 

ELSE go to next element in solutions list 

go to the next element of the solutions list 

13.45.2 Draft Source Code. 

SEGMENT UsulQust; 

( Return the number of next unanswered usual question for all the possible solutions 
insert global types 

FUNCTION Find0sualQuestion (MessageMask: bitstring; CountOfQuestions: integer; Head: solutionpointer): integer; 

VAR Current: solutionpointer; 
Found: boolean; 

Index, QuestionNumber: integer; 

BEGIN 

Current: = Head; Go to beginning of solutions list 

Found: = false; 

WHILE (Current <> NIL) AND (Found = false) DO BEGIN 

Index: = 1; 

WHILE (Index <= CountOfQuestions) AND (Found z false) DO 

IF (testbit(CurrentA usualmask, Index) true) W (testbit(MessageMask, lndex) false) THEN BEGIN 

Found: = true; 

QuestionNuiber: = Index; 

END { of IF 

ELSE 

Index: = Index + 1; 

Current: = CurrentA. next; 
END; ( of WHILE 

IF Found = true THEN 

FindUsualQuestion: = QuestionNumber 

ELSE 

FindUsualQuestion: = 0; 

END; 

BEGIN END. 
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13.46 CalculateProbability 

Answers will have been provided for all the questions that 

appear in the usual masks of the possible solutions by the 

time that this procedure is called. The number of usual 

questions for each solution will have been calculated when 
the classifiers and their masks were written. This proce- 
dure obtains the total of usual questions which have been 

answered correctly, and calculates a percentage probability 

of the solution being the correct one. 
13.46.1 Pseudocode. 

go to the beginning of the solutions list 

find the first question in the usual mask 

obtain a result for this question 
IF the result is true 

increment a counter 

go to the next usual question 

go to the next solutions list element 
13.46.2 Draft Source Code. 

SEGMENT Probable; 

( Calculate the probability of the possible solutions being correct. 
insert global types 

PROCEIXJRE calculateProbability (Message, MessageMask: bitstring; CountOfQuestions: integer; 

Read: solutionpointer); 
UR Current: solutionpointer; 

IntervediateResultl, IntermediateResult2, UsualResult: boolean; 

Index: integer; 

BEGIN 

Current: z Head; Go to beginning of solutions list 

WHILE Current (> NIL DO BEGIN 

FOR Index: = 1 TO CountOfQuestions DO BEGIN 

IntermediateResultl: = NOT (testbit(Xessage, Index) XOR testbit(Currentl,. classifier, Index)); 

IntersediateResult2: z testbit(MessageMask, Index) AND testbit(Currentl,. usualmask, Index); 

UsualResult: = IntermediateResultl M InterrediateResult2 

IF UsualResult = true THEN t True when the answer to the usual question is correct 
Current'l. ususaltrue: = Current". usualtrue + 1; Increment counter 

END; { of FOR ) 

Current'l. probability: = (CurrentA. usualtrue DIV CurrentA. totalUSUal) * 100; 
Current: = Current, ". next ( Go to next solutions list element 
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END; ( of WHILE 

END; 

BEGIN END. 

13.47 DisplayResult. 

The system produces the solution that, in the light of the 

answers supplied by the user to the questions, is most 
likely to be the correct one. This procedure extracts the 

text of the most probable solution from disk and displays 
it together with its probability expressed as a percentage. 
13.47.1 Pseudocode. 

go to the beginning of the solutions list 

find the solution with the largest probability 

record its keynumber as a variable 

read its probability field 

extract that solution from the solutions disk file 

display the text of the solution and its probability 

pause the program 

13.47.2 Draft Source Code. 

SEGMENT DispRslt; 

( Display the most likely solution with its probability on screen. 
insert global types 

insert PASPC 
insert PASDOS 

PROCEDURE PressKey (margin: integer); EXTERNAL; 

PROCEDURE ForiffileMame (filenumber: integer; title: string; VAR FileName: string); EXTERNAL; 

PROCEDURE DisplayTextFile (DiskFile, directory, heading: string; filenumber, firstline: integer); EXTERNAL; 

FUNCTION YesNo (margin: integer); EXTERNAL; 

PROCEDURE Displaylesult (Head: solutionpointer); 
VAR Disk: text; 

Current: solutionpointer; 
Line: string(100]; 
Gate: char; 
FileName: string[30]; 
FrontRunner, Counter: integer; 

Probability: real; 

BEGIN 

CIrScr; 
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IF Head, ', = NIL THEN BEGIN 

writeln (1 1: 7,, 1 know of no solution that matches these answers. ') 

PressKey; 

END ( of IF 

ELSE BEGIN 

Current: = Head; Go to first solution list element 

Frontlunner: z Currentl%keynumber; 

Probability: = CurrentA probability; 

WHILE Current 0 NIL DO BEGIN 

IF CurrentA probability > Probability THEN BEGIN j Next element is the more probable 

Frontkunner: = CurrentA keynumber; ( Update FrontRunner 

Probability: = CurrentA Probability ( Update Probable 

END; [ of IF ) 

Current: = CurrentA. neXt 

END; ( of WHILE Current 

ForinFileName (FrontRunner, 'solution', FileName); 

assign (Disk, FileName); Connect Disk with FrontRunner on disk file 

ChDir ('solution'); 

reset (Disk); 

writeln (I 1: 7, 'The most likely solution is; '); 

TextW! ndow (10,8j6,60); ( Emphasise displayed solution text 

TextFrame (true); 

Counter: = 10; 

WHILE NOT eof(Disk) DO BEGIN ( Write solution text into screen box 

readln (Disk, Line); 

GoToXY (12, Counter); 

writeln (Line) 

Counter: = Counter +1 

END; j of WHILE ) 

close (Disk, true); 

ChDir ('\shell'); 

writeln (I 1: 7, 'The probability of this solution being correct is 1, Probable: 2,1 percent. ); 

writeln ('Press "W" for "Why" if you want to see an explanation of this solution., ); 

writeln ('Press any other key to clear the screen and begin another session. '); 

Gate: = ConSilent; 

IF (Gate = IWI) OR (Gate = V) THEN BEGIN 

FormFileName (FrontRunner, lexplanation', FileNaze); 

FileName: = concat('\shell\solution\', FileNate); 
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IF fstat (FileName) = false THEN 

writeln ('No explanation for this solution is on file. ') 

USE 

DisplayTextFile (FileXame. lquestionl, 'Explanation', FrontRunner, l); 

Gate: = Consilent; 

END; ( of IF 

END; ( of ELSE 

END; 

BEGIN M. 

13.48 ClearHeap. 

When the program has found the most probable solution, the 

heap will still contain all the remaining possible solu- 

tions. Upon leaving the program, in order to try another 

CORTEX analysis or to run another program, the solutions 
list should be removed from memory. This segment empties 

the heap. 

13.48.1 Pseudocode. 

go to head of linked list 

WHILE NOT end of list 

dispose of list element 

exit to the segment FindResult 

13.48.2 Draft Source Code. 

SEGMENT ClrHeap; 

( Remove the solutions linked list from memory. 
insert common types 

-PROCEDURE ClearSeap (VkR Head: solutionpointer); 

VAR Current, Succeeding: solutionpointer; 

BEGIN 

Current: = Read; 

WHILE Current <> NIL DO BEGIN 

Succeeding: = CurrentA. next; 
dispose (Current); 

Current: = Succeeding; 

END; ( of WHILE 

Head: = NIL 

END; 

BEGIN END. 
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Chapter 14. IMPLEMENTATION OF CORTEX 

An architectural design project will take on a different 

character according to the observer's point of view. To an 
historian it is a manifestation of its times, to a banker 
it is a money pump, to a building scientist it may be a 
thermal transfer network, a critic will see it in terms of 

stylistic trends, while to a conservationist it will proba- 
bly be something fearful. An architect's own design can 

manifest itself to him in equally varied terms. It could be 

an attempt to explore a design idea in built form, perhaps 

merely a way of earning a living, or it may be the response 
to an inner compulsion to make visual sense of some corner 

of the built environment. The implementation that I propose 
to make of the Cortex shell starts from this last preoccu- 

pation. 

A design will often begin with a diffused appreciation that 

something is amiss with someone's physical environment. A 

business cannot work effectively in its existing surround- 
ing, a family is living less than well because its dwelling 

is ill-adjusted, or the public life of a community lacks a 

point of focus. An attempt to deal with the malaise usually 
begins as a dual process of gathering together information 

and starting to generate more information. Site and build- 

ing surveys accumulate, regulations are appraised, client's 

needs and resources are assessed and drawings are made in 

an effort to summarise the steadily increasing mass of 
information. Other drawing, the early design sketches, 
begin the exploration of formal possibilities and them- 

selves reveal the need to acquire more information. In this 

way the definition of the problem and the search for a 

solution proceed together and in a state of mutual support. 

Architectural Precedent 

The most pervasive type of design information, using that 

word in its general sense of 'that of which one is ap- 

praised', is knowledge of the work of other architects. 
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Every design is to some extent the result of the processing 

within the imagination of the architect of the buildings he 

has visited, seen illustrated, or heard described. observa- 

tion and assessment of the buildings of others goes on in 

the mind independently of a particular project, but it 

increases in intensity and specificity when a building 

design is in hand. Gathering information on examples of 

architecture and on architectural precedent is a part of 

every serious building design enterprise. 

Most of this processing occurs subconsciously, and the 

results emerge in a way that is largely outside the control 

of the conscious mind. That is why Le Corbusier adopted the 

practice of letting a design task mature silently in his 

mind for some months before beginning to commit his ideas 

to paper. During that time the elements of the problem, 
including images of the buildings that he had studied over 
the years, would "float, simmer and ferment" in his imagi- 

nation and lay the foundation for the emergence of the 

design of the building. This process is entirely non-mono- 

tonic, and can be regarded as the architect's response to 

the Rittellian 'wickedness' of design problems. 

In the past an architect's knowledge of buildings that he 

has not himself visited was gained from books, magazines, 

and illustrations thrown onto auditorium or television 

screens by lecturers and film makers. The computer screen, 

however, has so far played little part in the visual en- 

richment of the architect's imagination. This is on account 

of the large data storage requirements of pictorial proc- 

essing. 

Because of the need to identify and specify each pixel, a 

single whole-screen colour image on a VGA monitor requires 

as much as Imb of memory. Conventional magnetic storage 

media are rapidly overwhelmed by such large storage needs. 
But recently a new data storage medium has appeared in the 

form of optical disc technology. Because the data is read 
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my means of an, extremely fine laser beam the tracks on an 
optical disc can be very close together, and the density of 
data storage is in consequence much higher than a floppy or 
a hard magnetic disc. A 12cm CD-ROM, for example, contains 
a track 20km long and can hold 525mb of data. 

The high storage capacity of the optical disc makes it now 
possible for the architect to use the screen of a desk-top 

computer for pictorial, as opposed to graphical, purposes. 
Whole-screen full colour images, rather than simply vecto- 
rised line drawings, can be stored in large numbers on an 
optical disc and displayed on the screen of a modest size 

computer. The implementation of Cortex makes use of this 
technology for the purpose of describing the visual proper- 
ties of the built environment. 

Slide Libraries 

Every school of architecture in Britain has a collection of 

35mm slides of buildings, usually kept as part of its 

library stock. If the librarian or a member of staff is 

diligent the slide collection will be indexed and available 

for consultation or loan. The largest school slide library 

in Europe, that belonging to the Architectural Association, 

is the product of nearly a century of photography, collec- 

tion and maintenance, The AA collection now consists of 

some 80,000 slides and it is an architectural visual re- 

source of international importance. It contains photographs 

of nearly every significant twentieth-century building, 

together with views of most important European townscapes. 

So large is the AA collection, however, that it is hard to 

exploit it fully. A whole morning spent with the index and 

slide viewer is not enough to ensure that all the photo- 

graphs in the library which are relevant to a particular 

essay or lecture topic have been found. The inquirer is 

overwhelmed by the quantity of information which has been 

put together in the collection by so many photographers. In 
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fact, the collection is difficult to use at all unless the 
inquirer has a clear idea beforehand of what he is looking 

for. 

No other school has so large a slide collection, and few 

have one that is as well-managed as that of the AA. Howev- 

er, most school slide libraries, despite their more modest 

size, are as difficult to use as is the AA collection. It 
is instructive to consider what are the problems which 

confront the user in his search for the right set of slides 

and what is the source of his difficulties. 

The slides in the AA collection are indexed in three ways. 
Every slide can be found provided that the architect, the 

building type, or its date is known. A fourth 'subject' 

catalogue is kept on a card index. Each of the four indexes 

is structured hierarchically. The architect index is in the 

3 style of a telephone directory. An alphabetical order of 

surname is subdivided by first name. Dates are in simple 

chronological order, while the building type index is in 

alphabetical order subdivided according to country. Three 

presuppositions underlie the design of an indexing method 

of this type. 

Firstly, the user is assumed to have a limited range of 
interest. No facility exists for finding all pictures 

showing brick domes, for instance, nor can examples of 

axially planned spaces be found. only if author, building 

type, subject or date are known can the inquirer make 

progress, and no other information is useful. In the second 

place, the indexes are structured deductively. If the user 
begins a search with the name of a particular country then 

it is assumed that he can only be concerned with places 

within that country. This makes no provision for finding, 

perhaps, comparative examples of houses built on mountain 

slopes in both Spain and Peru or, alternatively, photo- 

graphs of naturally ventilated buildings in several differ- 

ent desert climates. But an architect, when he is evolving 
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a design, does not think deductively. He will want to see 
what it looks like if two spaces interlock at the corners, 
for example, or how the circulation can work if a building 
is planned round courtyards. Furthermore, if no illustra- 

tions of a suitable courtyard circulation pattern can be 

found the area of interest may be shifted to buildings 

consisting of linked pavilions. In fact, the search pattern 

of a designer will evolve according to a non-monotonic 

principle of association rather than follow a logical 

deductive pathway. 

The third presupposition is that the index system is pas- 

sive. The initiative in the inquiry is provided by the user 

and the catalogue will yield, but not proffer, the informa- 

tion. Expert systems, which are by their nature interac- 

tive, are a type of artificial intelligence program which 

can overcome this limitation and provide the user of a 

slide library with intelligent access to its contents. 

The Dublin Disc 

The difficulty that users experience in using conventional- 
ly indexed collections of slides persuaded the slide li- 

brarian of the School of Architecture at University Col- 

lege, Dublin, to make an experiment using optical disc 

technology. About 10,000 slides from the school's collec- 
tion of architectural photographs was copied onto a 30cm 

Philips Laservision optical disc during the autumn of 1985. 

The slides include images from all historical periods from 

the neolithic onward, and photographs of the important 

buildings of most European countries are recorded on the 

disc. (Hastings, 1986) 

only part of the capacity of a 30cm Laservision optical 
disc was taken up by images of buildings in the Dublin 

experiment. A single disc can contain as many as 54,000 
images, which is more than two thirds the number of slides 
in the AA collection. One disc could hold more than five 
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collections the size of the Dublin slide library. So many 
images cannot be utilised effectively by means of conven- 
tional manual search methods. 

A part of the Dublin experiment was to provide access to 

the contents of the disc through an IBM PC. The special 

software that was written to control the Laservision disc 

drive makes use of conventional database techniques. A 

search can be made on any of eight fields, and the usual 
help facilities are provided. However, the search method 

adopted at Dublin is only a small improvement on the manual 
index with which the user if faced at the AA. A computer 
keyboard is more convenient to use than a card index draw- 

er, but the search method is the same. 

The Questions 
Since the act of formal creation occurs within the mind of 
the individual designer it follows that there are as many 

attitudes towards the design of buildings as there are 

architects. A computer system to access the images con- 
tained in a slide library, if it is to be useful to the 

architect in his role as a creator of form, needs to be 

responsive to this fact. It must make a selection of the 

material according to the point of view of the particular 

architect who is making the inquiry. 

Appendix 1 of this thesis contains 47 quotations taken from 

the writings of architects, critics and historians which 

have appeared in print during the course of the last 130 

years. They have been selected so as to express as wide a 

spectrum as possible of modern British and American atti- 

tudes towards architecture. Other approaches to the subject 

have characterised earlier periods of architecture, such as 

the Palladian or the Gothic revivals, but they are excluded 

from the list of questions because they are of antiquarian 

rather than operational interest to designers. 
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The area of architectural interest of the user is elucidat- 
ed by asking him a selection of the quotations listed in 
Appendix 1. They are sent to the screen enclosed in quota- 
tion marks, but without title or attribution, and the user 
is asked if he agrees with the statement. His attitude 
towards his role as a designer of buildings is built up 
from the pattern of his answers. 

An answer to a particular question will often render other 
questions irrelevant. For example, if the user concurs with 
the moral determinism of question 9 then it would make 
little sense to ask if he also agrees with the eclecticism 

of Charles Moore and Gerald Allen expressed in question 37. 
Conversely, the scope of the set of images to be displayed 

can be narrowed if the user agree with both the functional- 
ism of question 17 and the industrialism of question 30. 

Cortex is written to respond to both of these circum- 

stances. 

It is possible for the user's answers to indicate an atti- 
tude that lies outside the understanding of the system. 
Should both questions 5 and 41 receive agreement, then the 

user will receive the answer that no suitable selection of 

slides can be made. An explanation to the effect that 

futurism and nostalgia are incompatible is available for 

sending to the screen in this case. 

The Laservision Disc Reader 

The equivalent of 12cm audio compact discs, known in the 

context of computer science as CD-ROM's, can be read by 

drives which are built into the chassis of a desk-top 

computer. Laservision discs, however, which are 30cm in 

diameter, require a separate disk drive. The drive is 

similar in size to the computer itself. 

An analogue 30cm optical disc, such as that produced in 

Dublin, can be played on one of the six types of Philips 
Laservision disc drives. All six machines except the sim- 

page 246 



plest, known as the VP835, can be controlled by a desk-top 

computeri Larger models of Laservision disc drives include 

a CPU so that they can use application program read direct- 
ly from the optical disc. However, the VP835B model which 
is used to implement Cortex contains no CPU and must be 

controlled by an external computer. 

Output from the Laservision is in video format, and it 
therefore cannot be accepted by a computer monitor. Inter- 
face cards are available which are able to convert a video 
signal to digital so that a computer's own screen can 
display the image. The Cortex implementation, however, 

makes use of a separate video monitor to display output 
from the optical disk. Cortex output appears only on the 

computer screen. The installation is shown diagrammatically 
in Figure 14.1. 

Computef 
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Figure 14.1 
Cortex Laservision Installation 

The VP835B is equipped with a built-in code, known as F- 

code, consisting of 73 commands for controlling the opera- 
tion of the drive. The codes enable the computer to issue 

instructions to the disc drive to scan the disc forwards or 
backwards, to regulate the speed of scan, to select any 
frame, to group frames into chapters, to repeat a sequence 
of frames a specified number of time, to turn sound on and 

off, and to carry out a number of auxiliary operations such 
as beep, clearing the screen and ejecting the disc. For 

example, the command F1473R will bring frame 1473 to the 
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monitor screen and hold it there while Q18R will access the 
frames in chapter 18. In this implementation of Cortex the 

output of the program takes the form of F-code commands. 

Cortex and the Dublin Disc 
There is effectively no limit to the number of classifiers 
that can be written in a Cortex implementation. A classifi- 
er in Cortex is simply another record-type variable, upon 
which there is no limitation as to number. A separate 
classifier can therefore be written to represent the atti- 
tude to architecture that is revealed by any combination of 
answers to questions that a user may give. The first re- 

striction upon search imposed by conventional indexing 

systems, that the user must be assumed to have a limited 

range of interests, is overcome in this implementation of 
Cortex. In a fully developed system as many attitudes as 
the knowledge engineer can think of can each be provided 
for. 

Secondly, there is no necessity for one picture to be 

selected for display just because another has already been 

selected. There is no logical connection between the selec- 
tion of one image and another, nor between the definitions 

of sets of images. The output of the system is determined 
by the associations of which the knowledge engineer is 

aware between the visual significance of the images that 

are recorded on the optical disc. An intimate and subtle 
knowledge of architecture and the process of design is 

needed to do this successfully, but no familiarity with 
logic or logic programming is called for. The knowledge 

engineer is free in Cortex to classify the images in a non- 
monotonic way that is appropriate to architectural design. 

In the third place, the passive nature of traditional 
library systems is superseded in this implementation. A 
card index, or a computer search system such as GEAC will 
furnish the user with a reference provided that the correct 
information is supplied. The user must know ahead of time 
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what this information is, and the system has no ability to 

prompt him for the necessary input. A user cannot, for 

example, expect to succeed with a card index arrange ac- 
cording to architect if he inputs the name of a building, 

nor can the GEAC library system do more than confess fail- 

ure under the same circumstance. But Cortex, like any 
developed expert system, will prompt the user to supply the 
information that is needed to complete a search successful- 
ly. The user must, in order to understand the significance 

of the images that are displayed on screen, bring to the 

system a knowledge of architecture and design but he can 

afford to be perfectly ignorant of the way that the comput- 

er search system functions. 

An optical disc such as that produced by University College 

Dublin, because of its huge capacity, makes it possible for 

very large quantities of visual information to be stored 

and displayed. Cortex offers a way in which such large 

stores of pictures can be accessed in such a way as to be 

useful to the architect as designer and provider of build- 

ing form. I think that a classificationist expert system 

and an optical disc of information can be brought together 

in a way that is useful to the architect when functioning 

in his central role as the designer of buildings and ci-' 
ties. 
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Chapter 15. CONCLUSION 

( 

I 

-3 

In Chapter I of this text I attributed a predominant role 
to the leap of the imagination that is a necessary part of 
the creation of the design of a building. It is a point 
that has to be made because so many authors on design and 
computing assert otherwise, and attempt to show that design 

can sooner or later be represented by an algorithm. 

"Once we get used to the idea of applying rules 
to manipulate representations, it is easy to 
imagine designs and their descriptions generat- 
ed in computations. The procedures followed to 
carry out these computations def ine and inter- 
pret languages of designs. " (Stiny, 1985) 

Similar notions have gained expression in Australia. 

"Meta-languages have been discussed as a way of 
formalising the complex mappings between mean- 
ing and artifact in design, such that designs 
can be generated that exhibit desired at- 
tributes. The rules of a grammar that operate 
on a vocabulary are considered as actions. We 
have considered how other grammars might oper- 
ate on those actions. The assumption is made 
that designers are readily able to articulate 
such grammars and that they constitute a type 
of knowledge about design. " (Coyne & Gero, 
1986) 

These two quotations are based upon the same assumption as 
that which underlay Wittgenstein's Tractatus, which is that 

meaning is a consequence of correct formal representation. 
They are similar to the claim that Wittgenstein makes for 

logic as the glue of semantics. 

"If we turn the constituent of a proposition 
into a variable, there is a class of proposi- 
tions all Of which are values of the resulting 
variable proposition. In general, this class 
too will be dependent on the meaning that our 
arbitrary conventions have given to parts of 
the original proposition. But if all the signs 
in it that have arbitrarily determined meanings 
are turned into variables, we shall still get a 
class of this kind. This one, however, is not 
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dependent upon any convention, but solely on 
the nature of the proposition. It corresponds 
to a logical form -a logical prototype. " (TLP 
3.315) 

I argue in Chapter 7 that the search for an effective 
procedure to represent the processes of thought must be 

abandoned for the same reason that Wittgenstein came to 

reject his notion, put forward in the Tractatus, that 

meaning is founded upon logic. The early assumptions of 
Herbert Simon, Allen Newell and Roger Schank about the 

algorithmic nature of thinking were too lightly entered 
into. Similarly, I think that any effort to underpin design 

with rules or meta-languages is vain. These ideas too, 

although many of the papers in which they appear date from 

the mid-1980's, belong to the infancy of artificial intel- 

ligence. 

Graph Theory 

The pictorial nature of graphs, using the term in its 

general sense of a diagram made up of points and lines, 

seems to place graph theory in close relationship to the 

graphic arts. There are indeed areas of overlap between the 

two. A map, for instance, may be regarded both as a terres- 

trial graph and as a work of graphic art. Furthermore, the 

words graph and graphic both derive from the Greek 1graphi- 

kos", meaning drawing or writing, which itself is ambiguous 

when translated into English. This intertwining of notions 
has lead commentators to sometimes confuse graph theory 

with graphical design. For example, an influential 27-page 

paper by Archer (1970) contains 59 graphs in support of an 

attempt to 'form the basis of a science of design. ' It is 

necessary to disentangle the matted threads of this line of 

argument. 

A graph can illuminate a logical argument. The puzzle of 
the bridges of Konigsberg proved to be amenable to graph 
theory analysis in Chapter 9 because the rules of the 

puzzle are fixed and the bridges across the Pregel do not 
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move. Consequently the solution to the puzzle can be de- 
duced in a strictly logical manner from the premises. Graph 
theory is used to solve very large scale problems of this 
kind in electronic design, hydraulic systems and the con- 
struction of industrial plant. Success in these areas of 
activity make it superficially attractive to apply graph 
theory to conceptual activities such as design. Are not all 
graphs fundamentally the same? But argument by analogy is 

notoriously unreliable, because it is based upon a supposi- 
tion that since the two terms of a comparison are alike in 

some respects they will be similar in others. But to do 

this begs the question, and inference by analogy is logi- 

cally unsound. Much design theory rests upon this weak 

conceptual foundation. 

The analogy breaks down when the logical character of graph 
theory is compared with the non-monotonic nature of design. 

The most conspicuous feature of the graph of the design 

process is the presence of a feedback loop leading from 

every vertex to every preceding vertex. Two things are 

achieved by this representation of feedback and repetition 
in design. Firstly, the true nature of the problem, which 
initially defied description, is elucidated. Second, a 

solution to that problem is revealed. That is the sense in 

which Dennis Lasdun observed that; 

3 
"Handbooks will tell you that the job of an 
architect is to give the client what he wants. 
That is not your job or mine. Our job is to 
give the client, on time and on cost, not what 
he wants but what he never dreamed he wanted 
and, when he gets it, he recognises it as some 
thing he wanted all the time. " (Lasdun, 1965) 

That is to say, it is only when a design is completed that 

one is able to see what the problem was. This essential 

point, central to the enterprise of design, is generally 
ignored in design studies texts. It is often asserted, for 

example, that design is in some sense goal-directed or 

concerned with problem-solving. 

page 252 



I 

"The activity of designing is thus a goal- 
directed activity and normally a goal-directed 
problem-solving activity. The properties which 
are required to be exhibited by the proposed 
artifact are defined by the objectives of the 
problem. The details of the design are the 
designer's conclusions as to the means by which 
those properties may be provided. " (Archer, 
1970) 

Graph theory could no doubt elucidate the activity of 
design if design were logical and goal-directed. However, 

design is in reality non-monotonic, iterative and explora- 
tory. I think that the kind of misunderstanding of design 

which is exhibited by Bruce Archer in this quotation is the 

main reason why design studies have yet to exert any influ- 

ence on the way that designers actually work. 

A special type of self-adjusting graph derived from Emil 

Post's work on combinatorics has proved to be useful in 

artificial intelligence. Rule-based expert systems make use 

of the formalism of a production system to trace a path 
from a description of the problem environment to a solu- 

tion. But production systems too are deductive, and they 

are therefore a poor representation of the process of 

design. 

The Cortex Shell 

In this thesis I have drawn a distinction between the 

necessarily logical functioning of computer hardware and 
the ability of a computer program to work in a non-monoton- 
ic fashion. It is possible to distinguish between the two 

aspects of computing because the workings of the machine 
itself cannot be altered by the user -a decision statement 

will always make a specified comparison, for example - 

whereas the output of the computer is susceptible to inter- 

pretation by a human mind. A logical result, such as an 

arithmetical solution, is no more or less valuable than a 
descriptive, diagnostic or exploratory program output. The 

type of output likely to be useful depends upon the needs 
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and viewpoint of the user of the system. Different minds 
will interpret the output symbols according to different 

criteria. 

The principle upon which the expert system shell Cortex is 
based is that of classification. A method or system is 

required if a classification is to be made, but the method 
may or may not be logical in character. Hierarchical clas- 

sifications are logical, in that items are reached by 

progression through sub-classes, sub-sub-classes and so on 

until the required fineness of definition is achieved. A 

small part of the Library of Congress catalogue reads; 

Architectural design 
Design, Architectural 
Design 
Structural design 
Architectural drawing 
Architecture 

Composition, proportion, etc 
Details 

communication in architectural design 
crime prevention and architectural design 
Decoration and ornament, Architectural 
Data processing 

Architecture, computers in 

Other classifications, such as the set of flowers growing 
in an herbaceous border, for example, or the constellations 
by which the fixed stars are identified, are based upon 

pictorial or associational rather than logically related 
ideas. The same could be said of the contents of the front 

page of a daily newspaper, the program of an orchestral 

concert, and not less important, the influences that shape 
the design of a building. Ideas and notions are associated 
in these cultural spheres in accordance with a real or 

possible human point of view rather than the abstract 
definitions of meaning which feature in logical systems 

such as library indexes. 

In Cortex the classification of one item with respect to 

another is made when the classifiers are set up. The ele- 

page 254 



ments of a classifier are binary bits, and the information 

which can be conveyed by each bit is strictly Boolean. The 
fact, concept or assertion represented by a bit in a clas- 
sifier is labelled true of false, but nothing is said about 
its relation with any other bit in its own or any other 
classifier. The classification which is achieved in any 
implementation of Cortex may therefore be deductive or not 

according to the circumstances of the case. In an implemen- 

tation concerned perhaps with one of the technical aspects 

of architecture the domain could be represented in a 

strictly logical manner. However, in the implementation of 
the Dublin optical disc described in chapter 14 the non- 

monotonic properties of Cortex are exploited. This feature 

of the implementation corresponds to the non-monotonic 

nature of architectural design. 

Further Research 

In Chapter 81 concluded the section on intelligent tutor- 

ing systems with a brief note about the line of research 

undertaken in recent years by the authors of SOPHIE. The 

qualitative physics that they have evolved is intended to 

provide a bridge between the external physical world and 
the inner mental world of meaning. But I believe that no 
formal system can bridge that gap. The proposal made by de 

Kleer that general terms such as equilibrium, oscillation 

or feedback can provided the bridge is vain, for qualita- 
tive physics only pushes the gulf between things and 
thought backwards by one step in the argument. When quali- 
tative physics is in place, the question remains as to what 
do its general terms mean. This, like all such questions, 

can only be answered with reference to a point of view, or 
in terms of what Wittgenstein calls a language game. For 

the lack of an observing consciousness, the regress of 

meaning in qualitative physics becomes infinite. 

I believe that a more promising line of research would be 

to implement the method of control that I have used in 

Cortex in the design of an ITS. In Cortex only a single 
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classification of solutions is necessary and it can be 
compared directly to the pattern of the userts answers. An 
ITS would necessitate an intermediate stage, in which 
selection is made from a set of mental models of the stu- 
dent and from operational models of the domain. These 
procedures would use the same selection algorithm as is 

employed in Cortex. A bit string recording the result of 
these selections would then be compared with a classifier 
representing the available advice in order to choose the 
next screen display. An ITS designed in this way would have 
the advantages that I claim for Cortex, of being very fast 
in operation and being applicable to any domain. 

Blackboards were invented at Carnegie-Mellon University in 

the 1970ts as part of an effort to program a computer to 

understand speech. The idea was that a central management 

procedure, or blackboard, would select from a number of 

software tools, or knowledge sources, according to their 

usefulness and applicability in solving part of a complex 

problem. Acting in unison under the direction of the black- 

board, the knowledge sources would in combination find a 

complete solution to the whole problem. The blackboard of 
Hearsay-II, for example, could call on knowledge sources 
developed for; 

"extracting acoustic parameters, classifying 
acoustic segments into phonetic classes, recog- 
nising words, parsing phrases, and generating 
and evaluating predictions for undetected words 
of syllables. " (Erman et al, 1980) 

The problem of control in blackboard systems is similar to 

that which is encountered in the design of expert systems 

and intelligent tutoring systems. 

"The knowledge sources respond opportunistical- 
ly to changes on the blackboard. There is a set 
of control modules that monitor the changes on 
the blackboard and decide what actions to take 
next. Various kinds of information are made 
globally available to the control modules. The 
information can be on the blackboard or kept 
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separately. The control information is used by 
the control modules to determine the focus of 
attention. " (Englemore, Morgan & Nii, 1988) 

No one method of control has been found to be superior to 

all others in blackboard programs. However, all make use of 
information and thus are domain specific. 

The most general control method for blackboard systems that 

has been devised so far is that proposed by Hayes-Roth 

(1985). The core of her program is a scheduling mechanism 
that maintains a rating for each knowledge source, and 

calculates a score according to the state of the system. 
When a score and a rating coincide the particular knowledge 

source is triggered. When the action of the knowledge 

source is finished the cycle is repeated. 

This procedure is a more developed versions of the scoring 

system devised by Frey for his House-Bas program. An ac- 

count of the Frey algorithm is given in Chapter 11. In both 

the Hayes-Roth and the Frey programs an action is taken as 

a result of a score accumulating to exceed a threshold 

value. But as in House. Bas, the scoring Hayes-Roth algo- 

rithm is arithmetical and, at root, arbitrary. In the 

example given in her paper, for example, one knowledge 

source is assigned a credibility of 1.0, and another of 

0.8. No explanation of these figures is supplied, for the 

reason that they are the result of judgements about the 

usefulness of the, particular tool in the domain under 

consideration. 

In recent years the notion of a blackboard has been expand- 

ed to include any program whose purpose is to utilise 

several different sub-programs in a co-ordinated way so as 

to find the answer to large problems. I think that the 

Cortex algorithm, in which control is logical rather than 

arithmetic in character, could be developed to manage a 
blackboard system in a more efficient and consistent way 

than is possible with present methods. 
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The version of the Cortex shell that is presented in this 

thesis is developed only to the stage of a prototype. The 

prototype demonstrates that the algorithm is functional, 

that the capacity of the system is large and that it works 

very fast. Furthermore, it is an example of a department of 

artificial intelligence that can be of use to the archi- 
tect. The system contains 512 questions, only 47 of which 

are linked to question files, and it can accept an effec- 
tively unlimited number of solutions. Processing takes 

place so quickly that no pause is visible to the eye. 

However, the input and output routines are underdeveloped, 

and the screen displays are graphically-poor. Cortex can 

readily accommodate windows and icons, and the system would 
be much more convenient to use with a mouse than it is with 

a keyboard. Cortex in the form of a developed product would 
be a convenient as well as a powerful system, and appropri- 

ate implementations of Cortex would be fast and responsive 

assistants to architects and other designers. 
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Appendix 1. TEXT OF THE QUESTIONS 

In the optical disk implementation of Cortex the following 

questions are sent to the screen for answering by the user. 
The questions are presented to the user in quotation marks, 
but without title or attribution. 

Question 1. 

Truth 
"In architecture there are two necessary ways of 
being true. It must be true according to the 
programme and true according to the methods of con 
struction. To be true according to the program is to 
fulfil exactly and simply the conditions imposed by 
need: to be true according to the methods of con- 
struction is to employ the materials according to 
their qualities and properties.... purely artistic 
questions of symmetry and apparent form are only 
secondary conditions in the presence of our dominant 
principles. " (Viollet-le-Duc, 1863) 

Question 2. 

Arts & Crafts 
"architectural beauty is the result of the harmoni- 
ous and intelligent co-operation of the whole body 
of people engaged in producing the work of the 
workman. " (Morris, 1893) 

Question 3. 

Nationalism 
"To a casual observer, the interest we feel in the 
subject may appear to be the result of local preju- 
dice or local choice, and our national style may 
seem to have no greater claim upon us than the style 
of a hundred other periods or countries. The fact, 
however, is the reverse - that the style is marked 
out from that of other countries in the most signal 
and remarkable manner... The character of a style of 
art does not depend upon the mere material from 
which it has been fabricated, but upon the senti- 
ments and conditions under which it has been de- 
veloped. " (Mackintosh, 1893) 
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Question 

Ornamentation 
"I have made the following discovery and I pass it 
on to the world: The evolution of culture is synony- 
mous with the removal of ornament from utilitarian 
objects. I believed that with this discovery I was 
bringing joy to the world; it has not thanked me. 
People were sad and hung their heads. What depressed 
them was the realisation that they could produce no 
new ornaments. " (Loos, 1908) 

Question 

Puturisin 
"The tremendous antithesis between the modern and 
the ancient world is the outcome of all those things 
that exist now and did not exist then. Elements have 
entered into our life of whose very possibility the 
ancients did not even dream. Material possibilities 
and attitudes of mind have come into being that have 
had a thousand repercussions, first and foremost of 
which is the creation of a new ideal of beauty, 
still obscure and embryonic, but whose fascination 
is already being f elt by the masses. We have lost 
the sense of the monumental, of the heavy, of the 
static; we have enriched our sensibility by a 'taste 
for the light, the practical, the ephemeral and the 
swift'. We feel that we are no longer the men of the 
cathedrals, the palaces, the assembly halls; but of 
big hotels, railway stations, immense roads, colos- 
sal ports, covered markets, brilliantly lit galler- 
ies, freeways, demolition and rebuilding schemes. " 
(Sant'Elia, 1914) 

Question 6. 

Humanisin 
"by the same excellent - because unconscious - 
testimony of speech, arches 'spring', vistas 
'stretch, domes 'swell', Greek temples are Icaln' 
and baroque facades 'restless'. The whole of archi- 
tecture is, in fact, unconsciously invested by us 
with human movement and human moods. Here, then, is 
a principle complementary to the one just stated. We 
transcribe architecture into terms of ourselves. " 
(Scott, 1914) 
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Question 

Standardisation 
"Standard i sati on, to be understood as the result of 
beneficial concentration, will alone make possible 
the development of a universally valid, unfailing 
good taste. " (Muthesius & Van de Velde, 1914) 

Question 8. 

Glass Architecture 
"The surface of the earth would change greatly if 
brick architecture were everywhere displaced by 
glass architecture. It would be as though the Earth 
clad itself in jewellry of brilliants and enamel. 
The splendour is absolutely unimaginable. And we 
should have on the Earth more exquisite things than 
the gardens of the Arabian Nights. Then we should 
have a paradise on Earth and would not need to gaze 
longingly at the paradise in the sky-" (Scheerbart, 
1914) 

Question 9. 

Moral Determinism 
"No one can doubt the educative value of visible 
beauty; therefore it would revolutionise our lives, 
if in all we produced and made we recognised the 
necessity of conveying some common moral 
sentiments. " (Voysey, 1915) 

Question 10. 

Stripped Classicism 
"if our structure remains simple, unadorned, without 
moulding, bare, we are then best able to arrange the 
decorative arts so that each object of art will 
retain its purest and clearest expression because it 
will be totally independent of the construction. 
Besides, who would not see that the use of such 
materials results in the obtaining of the horizon- 
tals and verticals that are proper to give to the 
construction that calm and equilibrium that will 
harmonise with the lines of nature? " (Garnier, 
1917) 
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Question 11. 

Rxpressionism 
"Tell me what love is, what faith, and the iron will 
of hope - and I will tell you what it means to 
build: to bring the seventh day of creation one wave 
further in the tidal chain that lovingly toys with 
eternity. There is no greater Affirmer than the true 
builder. Everything about him is expansion, pressing 
outwards - the more rhythmical, harmonious and 
healthy the pulse of his soul, the more perfect and 
inimitable will be the superstructure he sets upon 
the world's countenance, like a victorious seal upon 
his existence. " (Finsterlin, 1920) 

Question 12. 

Purism 
"Architecture is the masterly, correct and magnif i- 
cent display of masses brought together in light. 
Our eyes are made to see forms in light; light and 
shade reveal those forms; primary forms which light 
reveals to advantage; the image of these is distinct 
and tangible within us and without ambiguity. It is 
for that reason that these are beautiful forms, the 
most beautiful forms. Everybody is agreed as to 
that, the child, the savage and the metaphysician. 
It is of the very nature of the plastic arts. " (le 
Corbusier, 1920) 

Question 13. 

Ville Radieuse 
"Their outlines softened by distance, the skyscrap- 
ers raise immense geometrical facades all of glass, 
and in them is reflected the blue glory of the sky. 
An overwhelming sensation. Immense but radiant 
prisms. This is no dangerous futurism, a sort of 
literary dynamite flung violently at the spectator. 
It is a spectacle organised by an Architecture which 
has plastic resources for the modulation of forms 
seen in light. " (le Corbusier, 1924) 

Question 14. 

Form Follows Function 
"This meant in his courageous mind that he would put 
to the test a formula he had evolved, through long 
contemplation of living things, namely that form 
follows function, which would mean, in practice, 
that architecture might again become a living art, 
if this formula were but adhered to. " (Sullivan, 
1924) 
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Question 15. 

Constructivism 
"the machine naturally gives rise to a conception of 
entirely new and modern organisms possessing the 
distinctly expressed characteristics of movement - its tensions and intensity, as well as keenly ex- 
pressed direction. Both of these characteristics 
give rise to concepts of new forms, whereby the 
tension and concentration inherent in this movement 
will unwittingly - irrespective of the author's own 
desires - become one of the fundamental moments of 
artistic conception. " (Ginzberg, 1924) 

Question 16. 

The Bauhaus 
"It is only through contact with newly evolving tech- 
niques, with the discovery of new materials and with 
new ways of putting things together, that the crea- 
tive individual can learn to bring the design of 
objects into a living relationship with tradition 
and f rom that point to develop a new attitude to- 
wards design, which is: 

a resolute affirmation of the living environment of 
machines and vehicles; 
the organic design of things based on their own 
present-day laws, without gloss and wasteful fri- 
volity; 
the limitation to characteristic, primary forms and 
colours, readily accessible to everyone; 
simplicity in multiplicity, economical use of 
space, material, time and money. 
The creation of standard types for all practical 
commodities of everyday use is a social necessity. " 

(Gropius, 1926) 

Question 17. 

Functionalism 
"Architecture as 'an emotional act of the artist' 
has no justification. Architecture as 'a continua- 
tion of the traditions of building' means being 
carried along by the history of architecture. This 
functional, biological interpretation of architec- 
ture as giving shape to the functions of life, 
logically leads to pure construction: this world of 
constructive forms knows no native country. It is 
the expression of an international attitude in 
architecture. Internationality is a privilege of the 
period. Pure construction is the basis and charac- 
teristic of the new world of forms. " (Meyer, 1928) 
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Question 18. 

Zeitgeist 
"building is an elementary activity of man intimate- 
ly linked with evolution and the development of 
human life. The destiny of architecture is to ex- 
press the orientation of the age. Works of architec- 
ture can spring only from the present time. " (CIAM, 
1928) 

Question 19. 

Vitalisit 
"Consider well that a house is a machine in which to 
live but architecture begins where that concept of 
the house ends. All life is machinery in a rudimen- 
tary sense, and yet machinery is the life of noth- 
ing. Machinery is machinery only because of life. It 
is better for you to proceed f rom, the generals to 
the particulars. So do not rationalise from machin- 
ery to life. Why not think from life to machines? 
The utensil, the weapon, the automaton - all are 
appliances. The song, the masterpiece, the edifice 
are a warm outpouring of the heart of man - human 
delight in life triumphant: we glimpse the 
infinite. " (Wright, 1931) 

Question 20. 

organic Architecture 
"There remains an essential difference between the 
architect and the engineer. The work of the engineer 
has as its goal merely the performance of material 
work within the limits or in the domain of economic 
effects. That the result frequently contains other 
expressive values as well is a side-effect, a sub- 
sidiary phenomenon of his work. The architect, on 
the other hand, creates a Gestalt, a total form of 
work of spiritual vitality and fulfilment, an object 
that belongs to and serves an idea, a higher cul- 
ture. This work begins where the engineer, the 
technologist leaves off: it begins when the work is 
given life. Life is not given to the work by fash- 
ioning the object, the building, according to a 
viewpoint alien to it, but by awakening, fostering, 
and cultivating the essential form enclosed within 
it. " (Haring, 1932) 
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Question 21. 

Priority of Space 
"The effect of mass, of static solidity, hitherto 
the prime quality of architecture, has all but 
disappeared: in its place there is an effect of 
volume, or more accurately, of plane surfaces 
bounding a volume. The prime architectural symbol is 
no longer the dense brick, but the open box. Indeed, 
the great majority of buildings are in reality, as 
well as effect, mere planes surrounding a volume. 
With skeleton construction enveloped only by a 
protective screen, the architect can hardly avoid 
achieving this effect of surface, of volume, unless 
in deference to traditional design in terms of mass 
he goes out of his way to achieve the contrary 
effect. " (Hitchcock & Johnson, 1932) 

Question 22. 

Broadacre City 
"This tract of four miles square, by way of such 
liberal general allotment determined by acreage and 
type of ground, including apartment buildings and 
hotel facilities, provides for about 1400 families 
at, say, an average of five or more persons to the 
family. To reiterate: the basis of the whole is a 
general decentralization as an applied principle and 
architectural reintegration of all units into one 
f abric; f ree use of the ground held only by use and 
improvements; public utilities and government itself 
owned by the people of Broadacre City; privacy on 
one's own ground for all and a fair means of sub- 
sistence for all by way of their own work on their 
own ground or in their own laboratory or in common 
offices serving the life of the whole. " (Wright, 
1935) 

Question 23. 

Humanised Modernism 
"The term 'rationalism' appears in connection with 
Modern architecture about as often as does 'func- 
tionalism'. Modern architecture has been rationa- 
lised mainly from the technical point of view, in 
the same way as the technical functions have been 
emphasised. Although the purely rational period of 
Modern architecture has created constructions where 
rationalised technique has been exaggerated and the 
human functions have not been emphasised enough, 
this is not a reason to fight rationalism in archi- 
tecture. It is not the rationalisation itself which 
was wrong in the first and now past period of Modern 
architecture. The wrongness lies in the fact that 
the rationalisation has not gone deep enough. In- 

page 265 



stead of fighting rational mentality, the newest 
phase of Modern architecture tries to project ra- 
tional methods from the technical field out to human 
and psychological fields. " (Aalto, 1940) 

Question 24. 

Biological Analogy 
"It has become imperative that in designing our 
physical environment we should consciously raise the 
fundamental question of survival, in the broadest 
sense of this term. Any design that impairs and 
imposes excessive strain on the natural human equip- 
ment should be eliminated, or modified in accordance 
with the requirements of our nervous and, more 
generally, our total physiological functioning. This 
principle is our only operational criterion in 
judging design or any detail of man-made environ- 
ment, regardless of how difficult it may seem to 
apply the principle in specific cases. " (Neutra, 
1954) 

Question 25. 

Anarchism 
"No inhibitions should be placed upon the individu- 
al's desire to build! Everyone ought to be able and 
compelled to build, so that he bears real responsi- 
bility for the four walls in which he lives. We must 
face the risk that a crazy structure of this kind 
may later collapse, and we should not and must not 
shrink from the loss of life which this new way of 
building will, or at least may, exact. A stop must 
finally be put to the situation in which people move 
into their living quarters like hens and rabbits 
into their coops. " (Hundertwasser, 1958) 

Question 26. 

Monumentalisation of Technique 
"I believe that in building you must deal with con 
struction directly. You must, therefore, understand 
construction. When you refine the structure and when 
it becomes an expression of our time, it will then 
and only then become architecture. " (van der Rohe, 
1960) 
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Question 27. 

Order 
"Design is form-making in order 
Form emerges out of a system of construction 
Growth is a construction 
In order is creative force 
In design is the means - where with what when with 
how much 
The nature of space reflects what it wants to be 

Is the auditorium a Stradivarius 
or an ear 

Is the auditorium a creative instrument 
keyed to Bach or Bartok 
played by the conductor 
or is it a conventional hall 

In the nature of space is the spirit and the will to 
exist in a certain way. " 
(Kahn, 1960) 

Question 28. 

Scientisin 
"Man has been blindly flying into his future on 
scientific instruments and formulas. The great news 
on the artist-scientist-intellectual frontier is 
that as the fog-and-black shadow of ignorance and 
misconception recedes, there looms a sublimely 
comprehensible conceptual patterning, which charac- 
terizes all mathematical principles heretofore only 
formulatively employed by the scientist, yet intui- 
tively pursued by the artist as potentially modela- 
ble. Experimental science has validated the artist's 
intuitions but not his disciplines. " (Puller, 1960) 

Question 29. 

Place 
"Man may readily identify himself with his own 
hearth, but not easily with the town within which it 
is placed. 'Belonging, is a basic human need - its 
associations are of the simplest order. From 'be- 
longing' - identity - comes the enriching sense of 
neighbourliness. The short narrow street of the slum 
succeeds where spacious redevelopment frequently 
fails. " (Newman, 1961) 

Question 30. 

Industrialism 
"There can be no doubt that the first prerequisite 
for a good building has always been the best tools 
and the best methods, and it is in industrialisation 
that this condition is best fulfilled. For industri- 
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alisation brings within our reach a level of techni- 
cal accuracy, quality and precision never before 
attained in the history of building. Industry, not 
the individual and nor craftsmanship, determines 
what can be achieved and thus establishes the bound- 
aries of the possible. " (Wachsmann, 1961) 

Question 31. 

Contextualism 
"The main justification for honky-tonk elements in 
architectural order is their very existence. They 
are what we have. Architects can bemoan or try to 
ignore them or even try to abolish them, but they 
will not go away. or they will not go away for a 
long time, because architects do not have the power 
to replace them (nor do they know what to replace 
them with)., and because these commonplace elements 
accommodate existing needs for variety and communi- 
cation. The old cliches involving both banality and 
mess will still be the context of our new architec- 
ture, and our new architecture will significantly 
will be the context for them. " (Venturi, 1966) 

Question 32. 

Archigras 
"Architecture will become infinite and transient. At 
last the dividing line between the things which we 
carry round in the palm of the hand and the whole 
city will merge together as parts of the hierarchy 
of designed, phased, chosen objects; to suit the 
condition and requirements of the time they will be 
able to be changed for something better. " (Cook, 
1967) 

Question 33. 

Visionary Architecture 
"As architecture grows into a phenomenon of human 
ecology, the cities will become organisms reflecting 
in their structural complexity the complexity of the 
life they contain. Upgrading from aggregation to 
organisation signals the end of present-day archi- 
tecture and the concept of individual structures... 
Life itself will be the servant of a rational proto- 
human world. If aesthetic man measures the weight of 
his burden, disassociates himself from the whimsical 
and the fashionable, he will conceive the cradles 
of future cultures and be responsible for the advent 
of the ultrarational world. " (Soleri, 1971) 

page 268 



Question 34. 

Conservation 
"The architectural heritage is a capital of irre- 
placeable spiritual, cultural, social and economic 
value ... This capital has been built up over the cen 
turies: the destruction of any part of it leaves us 
poorer, since nothing new that we create, however 
fine, will make good the loss. " (Committee of 
Ministers, 1975) 

Question 35. 

Urbanism 
"The debate .... is that of urban morphology as 
against the zoning of planners. The restoration of 
precise forms of urban space as against the waste- 
land which is created by zoning. The design of urban 
spaces, both traffic and pedestrian, linear and 
focal is, on the one hand, a method which is general 
enough to allow flexibility and change and, on the 
other, precise enough to create both spatial and 
built continuity within the city. " (Krier, 1975) 

Question 36. 

Typology 
"The design process is a way of bringing the ele- 
ments of a typology - the idea of a formal structure 
- into the precise state that characterises the 
single work. " 
(Moneo, 1976) 

Question 37. 

Eclecticism 
"All of us every day face the onslaught of experi- 
ences which require varied, complex, and agile 
responses. This is to say that we inhabit a plural- 
ist world, and that we ourselves are many-faceted 
creatures. Thus no single orthodoxy - including the 
single-minded return to copying buildings from the 
past - will do, no single set of forms and images to 
shape the environment we build for ourselves. The 
meaning of buildings like those around Rockefeller 
Plaza and the new ones along the Avenue of the 
Americas is that architecture can have many potent 
likenesses. The choice is altogether ours, and the 
task is to learn to cast our nets backwards in time 
- and outwards - to find what feels right for a 
given design problem, and what among the many op- 
tions seems really worthwhile. " (Moore & Allen, 
1976) 
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Question 38. 

Small is Beautiful 
"Town planning needs to shift emphasis towards 
encouraging and managing the kinds of small scale 
change likely to be most relevant, the detailed 
planning of small sites and of such local environ- 
mental schemes. In other words, there needs to be a 
new and more sensitive style of working geared to 
the management of small scale urban change. " 
(Shankland et al, 1977) 

Question 39. 

Zen of Architecture 
"Architects sometimes say that in order to design a 
building, you must have 'an image' to start with, so 
as to give coherence and order to the whole. But you 
can never create a natural thing in this state of 
mind. If you have an idea - and try to add the 
patterns to it, the idea controls, distorts, makes 
artificial, the work which the patterns are trying 
to do in your mind. Instead you must start with 
nothing in your mind. " (Alexander, 1979) 

Question 40. 

Seniotics 
"Every human society communicates architectonically. 
The component units of an architectonic code or 
system consist of contrastively-opposed formations 
in media addressed to visual perception. Distinc- 
tions or disjunctions in material formation are 
intended to cue culture-specific difference in 
meaning in a manner precisely analogous to other 
semiotic systems such as verbal language or bodily 
gesturing. In the broadest sense, communication 
consists of the transmission of information regard- 
ing the perception of similarities and differences. 
The system of the built environment, like any semi- 
otic code, is a complexly-ordered device for the 
cuing of such perceptions. " (Preziosi, 1979) 

Question 41. 

Nostalgia 
"For nostalgia is a strange and enigmatic longing 
for that which escapes reasoning but survives pro- 
foundly and forcefully in the feelings of the citi- 
zens. They themselves have never lost their taste 
for classical architecture and, despite all the 
efforts of the media to convince them of the con- 
trary, they have never longed for the Bauhaus boxes 

page 270 



or other experiments of the building industry. " 
(Krier, 1981) 

Question 42. 

Ritual 
"Today if I were to talk about architecture, I would 
say that it is a ritual rather than a creative 
process. I say this fully understanding the bitter- 
ness and the comfort of the ritual. " (Rossi, 1981) 

Question 43. 

Post Nodernisis 
"architecture is doubly-coded, one half Modern and 
one half something else (usually traditional build- 
ing) in its attempt to communicate with the public 
and a concerned minority, usually other 
architects ... treating the city as an historical 
artifact, in stressing metaphor, complexity, symbol- 
ism, irony and a host of rhetorical means. " 
(Jencks, 1983) 

Question 44. 

classicism 
"There are practically no ugly Georgian houses. I 
live in a Georgian house myself and I notice that 
most architects choose to live in them too. The 
estate agent will attach the word 'Georgian, or 
'Queen Anne' to a house he is trying to sell because 
he knows it is very near everyone's dream. And why 
is this? It is because these houses have the right 
balance of window to wall, they give permanent 
protection from wind and weather, they are comfort- 
able and beautiful, and they seem perfectly suited 
to man. And whether one is elderly and poor in a 
terraced almshouse, or noble and great in a mansion, 
the needs and aspirations of humanity are expressed 
in classical terms through bricks and stone. " 
(Terry, 1983) 

Question 45. 

The Skyscraper 
"the skyscraper - in terms of size, structure, and 
function, scale and symbolism, and, above all, human 
and urban impact - remains the single most challeng- 
ing design problem of our time ... The twentieth 
century architect's most telling and lasting re- 
sponse to his age is the topless tower of trade. 
(Huxtable, 1984) 
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Question 46. 

Behavioural Deterninisin 
"we can deduce that the various forms of social 
breakdown tend to occur in a set order as design 
features worsen to the successive degrees of deprav- 
ity needed to undermine each social taboo in turn. 
The effect is a general one ... and it is not a 
question of different designs being responsible for 
different kinds of behavioural lapse. Design varia- 
bles appear to exert the same kind of demoralising 
influence, and the values within each variable 
affect the degree of demoralisation. 11 (Coleman, 
1985) 

Question 47. 

Coimercialism 
"Any client, whether his building is a museum or a 
hotel, surely wants to employ a designer who will 
provide high quality and efficient design fused into 
a building which is completed to budget and to 
programme. In short, he wants a friendly commercial 
service provided quickly and effectively, not patro- 
nising arrogance, selectively dispensed. " (Wheat- 
ley, 1990) 
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Appendix 2. LISTING OF CORTEX 

I 
( Cononl. Typ) 
i Common types for use with CORTEX. ) 

CONST XaxNuW*rOfQuestions = 512; 
MaxNumberOfIntegers = 16; Prospero integers are 32 bit (1602 = 512) 

TYPE bitstring a ARRAY [l.. XaxNuaberOfIntegers] OF integer; I type of Message and 
MessageNask ) 

classifiertype = RECORD 
kepumber: integer; type of Classifier in SetUpSolutionList 
essentialvask: bitstring; 
usualmask: bitstring; 
classifier: bitstring; 
totalusual: integer 
END; 

solutionpointer - I'solutiontype; t type of Classif disk file ) 

solutiontype z RECORD 
keynuiber: integer; 
essentialmask: bitstring; 
usualmask: bitstring; 
totalusual: real; 
usualtrue: real; 
probability: real; 
classifier: bitstring; 
next: solutionpointer 
END; 

( type of elements of solution list ) 

questiontype = RECORD 
questionnuW*r: integer; 
countofoccurrance: integer 
END; 

( type of MostFrequentQuestion ) 
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PROGRAM Cortex; 
( Main progam. 

($I Comnonl. Typ) 
PROCEDURE Signon (vAR countofQuestions, CountOfSolutions: integer); EXTERNAL; 
PROCEDURE ImpleventationMessage (CoutOfQuestions, CountOfSolutions: integer); EXTERNAL; 
PROCEDURE FirstMenu (CoutOfQuestions, Count0fSolutions: integer); EXTERNAL; 

VkR CountOfQuestions: integer; 
CountOfSolutions: integer; 

BEGIN 

siqnon (countofQuestions, Coutofsolutions); 
ImplementationNessage (CountofQuestions, CountOfSolutions); 
FirstMenu (CountOfQuestions, CountOfSolutions); 

END. 
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I 
SEGMENT Sign0n; 

($I \PROPAS\PASPC) 
($1 \PROPAS\PASDOS) 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE PressKey (margin: integer); EXTERNAL; 
PROCEDURE Initialise (VAR CountOfQuestions, CountOfSolutions: integer); EXTERNAL; 

PROCME Signon (Va CountofQuestions, CountOfSolutions: integer); 
VkR Greeting: text; 

Gate: char; 

BEGIN 

InitScreen; 
Paper (7); 
Ink (1); 
ClrScr; 
TextFrame (true); 
ScreenFile (Greeting); 
CursorOff, * 
GoToXY (31,6); 
writeln (Greeting, $*****************'); 
GoToXY (31,7); 
writeln (Greeting, 'Welcome to CORTEX'); 
GoToXY (31, B); 
writeln (Greethg, #****************V); 
writeln; 
Ink (9); 
GoToXY (23,10); 
writeln (Greeting, 'The thinking man"s expert system. '); 
ýMXY (7,22); 
writeln (Greeting, 'Please wait while the solutions and questions on file are couted. 1); 
Initialise (CoutOfQuestions, CountOfSolutions); 
CoToXY (7,22); 
PutChattr (1 1,7,9,66); 
GoToXY (23,22); 
writeln (Greeting, 'Press any key to continue. '); 
Gate: = ConSilent; 
CursorOn; 
InitScreen 

END; 

BEGIN M. 
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I 
SEGMENT Initial; 

( Count questions and solutions on file. 

($I Commonl. Typ) 
J$I \PROPAS\PASPC) 
($I \PROPAS\PASDOS) 
PROCEDURE FordileNare (filenumber: integer; title: string; VAR FileNaine: string); EXTERNAL; 
PROCEDURE ZeroiseBitString (VAR Bits: bitstring); EXTERNAL; 

PROCEDURE Initialise (VAR CountOfQuestions, CountOfSolutions: integer); 
VAR FileXame: string; 

QuestionOnFile, SolutionOnFile: string; 

BEGIN 

MkDir ('\shell\question'); 
ChDir('\shell\question'); 
countofQuestions: c 0; 
FindFile (Iquestll, QuestionOnFile); 

( calculate countofQuestions ) 

( Is there a questl? ) 

WHILE QuestionOnFile (> 11 DO BEGIN If so, cout through the questions ) 
CountOfQuestions: z CountOfQuestions + 1; 
FormFileName ((CountOfQuestions + 1), Iquestion', FileRate); ( Is the next question on file? ) 
FindFile (FileName, QuestionOnFile); Returns Questiononfile empty if no question found ) 

END; ( of WHILE ) 

Wir ('\sbell\solution'); 
ChDir ('\sbell\solution'); 
countofsolutions: = 0; 
FindFile (Isolutll, SolutionOnFile); 

( Calculate CountOfSolutions ) 

( Is there a solutl? ) 

WHILE SolutiorftFile <> 11 DO BEGIN If so, count through the solutions 
Coutofsolutions: c Coutofsolutions + 1; 
ForzFileName ((CountOfSolutions + 1), Isolution', FileXame), * ( Is the next solution on file? 
FindFile (FileName, SolutionOnFile); { Returns SolutionOnFile as empty if no solution found 

END; ( of WHILE ) 

ChDir ('\shell'); 

END; 

BEGIN END. 
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SEGMENT Impment; 
( Display Implementation information. 

($1 \PROPAS\PASPQ 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE PressKey (margin: integer); EXTERNAL; 

PROCEDURE ImplementationMessage (CountOfQuestions, CountOfSolutions: integer); 
VAR Disk: text; 

Line: string[100]; 
Counter: integer; 

BEGIN 

ClrScr; 
IF fstat ('\Shell\Ipplent\Messagel) a true THEN BEGIN 

Blankln (2); 
writeln (I 1: 21,11oplementation Information'); 
writeln (I 
Blankln (3); 
assign (Disk, l\Shell\Implemnt\Messagel); 
reset (Disk); 
Counter: = 8; 

WHILE NOT eof(Dis ) DO BEGIN 
readln (Disk, Line); ( Copy a line froz Disk to Line 
GoToXY (10, Counter); ( Move cursor to starting position of text 
writeln (Line); j Send contents of Line to screen 
Counter: = Counter +1 Move to next screen line 

END; { of WHILE ) 

close (Disk, true); 
Blankln (3); 
writeln (I 1: 10, 'There are 1, CountOfQuestions: 311 questions and 1, CountOfsolutions: 3,1 

solutions on file. $); 
END ( of IF 
USE BEGIN 

Blankln (9); 
writeln (I 1: 12, 'No implementation file has been written. '); 

END; { of ELSE ) 

Blankln (2); 
PressKey (10); 

END; 

BEGIN END. 
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SEGMENT FrstMenu; 
( Chooses between work on the knowledge base or use of the implemented system. 

f$I \PROPAS\PASPC) 
PROCEDURE Blankln (nuriber: integer); EXTERNAL; 
PROCEDURE MenuError (range: integer); EXTERNAL; 
PROCEDURE KnowledgeBaseMenu (VAR CountOfQuestions, CountOfSolutions: integer); EXTERNAL; 
PROCEDURE FindResult (CountOfQuestions, CountOfSolutions: integer); EXTERNAL; 

PROCEDURE FirstMenu (CountOfQuestions, CountofSolutions: integer); 
VAR Flag: boolean; 

Selector: integer; 

BEGIN 

Flag: = tne; 

WHILE Flag = true DO BEGIN 
CIrScr; 
Blankln (6); 
writeln (I 1: 10, 'Do you want to; '); 
writeln; 
writeln (1 1: 13,11. Use CORTEXV); 
writeln (1 1: 13,12. Work on the knowledge base? '); 
writeln (1 1: 13,13. Exit from Cortex? '); 
writeln; 
writeln (I 1: 10, 'Make your selection by typing a key nurber. 1); 
writeln (I 1: 10, 'Then press RETURN. '); 
blankln (4); 
read (Selector); 

CASE Selector OF 
1: FindResult (CountOfQuestions, CountOfSolutions); 
2: KnowledgeBaseMenu (CountOfQuestions, CountOfSolutions); 
3: Flag: = false; 
OTHERWISE BEGIN 

ClrScr; 
Blankln (8); 
MenuError (3) 

END; ( of OTHERWISE 
END; ( of CASE ) 

END; ( of WHILE 

END; 

BEGIN END. 

t 
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SEGMENT KBMenu; 
( Knowledge engineering main menu. I 

($I Coasonl. Typ) 
($I \PROPAS\PASPC) 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE MenuError (range: integer); EXTERNAL; 
PROCEDURE QuestionMenu (VAR CountOfQuestions: integer); EXTERNAL; 
PROCEDURE SolutionKenu (VAR CounOfSolutions: integer); EXTERNAL; 
PROCEDURE ClassifierMenu (CountOfQuestions: integer); EXTERNAL; 
PROCEDURE WriteImplementationText; EXTERNAL; 

PROCEDURE KnowledgeBaseMenu (VAR CountofQuestions, Countofsolutions: integer); 
VkR Flag: boolean; 

Selector: integer; 

BEGIN 
Flag: = true; 
WHILE Flag z true DO BEGIN 

ClrScr; 
Selector: = 0; 
Blankln (3); 
writeln (I 1: 18, 'Knowledge Engineering Menu. '); 
writeln (I 
blankln (2); 
writeln (I 1: 7, 'Do you want to; '); 
writeln; 
writeln (1 1: 10,11. Write, edit, delete or print the text of a question? '); 
writeln (1 1: 10,12. Write, edit, delete or print the text of a solution? '); 
writeln (1 1: 10,13. Set up, edit or delete a classifier? '); 
writeln (1 1: 10,14. Write the text of the implementation screen? '); 
writeln (1 1: 10,15. Return to the main Cortex renu? '); 
Blankln (2); 
writeln (I 1: 7, 'Make your choice by typing a key nuzter. '); 
writeln (I 1: 7, 'Then press RETURN. '); 
Blankln (4); 
writeln (I 1: 7, 'The Cortex shell can accept up to a maximum of 1, MaxNumberOfQuestions: 3,1 

questions. '); 
uriteln (I 1: 7, 'There is effectively no limit upon the number of solutions. '); 
read (Selector); 
CASE Selector OF 

1: QuestionMenu (CountOfQuestions); 
2: SolutionMenu (CountOfSolutions); 
3: ClassifierKenu (CountOfQuestions); 
4: WritelaplementationText; 
5: Flag: = false; 
OTHERWISE BEGIN ClrScr; Blankln (8); MenuError (5) END; 

END; I of CASE 
END; ( of WHILE 
END; 

BEGIN END. 
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I 
SEGMENT WritImpl; 

t Create text of implementation message. 

{$I \PROPkS\PkSPC) 
PROCEDURE Blankln (nuxiber: integer); EXTERNAL; 
PROCEDURE Pushpen (directory, FileNave: string); EXTERNAL; 

PROCENRE WriteImplementationText; 

BEGIN 

ClrScr: 
Blankln (2); 
writeln (I ': 12, 'Please write the text for the implementation message. '); 
Pushpen ('Implentl, 'Messagel) 

END; 

BEGIN END. 
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SEGMENT FormFile; 
( Set up the name of a file to be accessed on disk. 

PROCEDURE FormFileName (index: integer; title: string; VAR FileXame: string); 
VAR Key: string; 

BEGIN 

str (index, Key); ( Form the string Key from the integer index 
IF title = 'question' THEN BEGIN 

FileName: z 'quest'; ( Write the stem of a question filename I 
insert (Key, FileNave, 6); Append the key nuWxr to complete the filenave 

END ( of IF ) 
ELSE IF title a 'solution' THEN BEGIN 

FileName: = Isolut'; Write the stein of a solution filename 
insert (KeyjileName, fl; Append the key number to complete the filename 

END ( of ELSE IF ) 
ELSE IF title z 'explanation' THEN BEGIN 

FileName: z lexplan'; t Write the stem of an explanation filename) 
insert (Key, MeName, 7) { Append the key number to complete the filename 

END; ( of ELSE IF) 

END; 

BEGIN END. 
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SEGMENT PushPen; 
( Calls Writer to compose text, then stores it onto disk in specified sub-directory. 

($1 \PROPAS\PASDOS) 
PROCEDURE Writer; EXTERKIL; 

PROCEDURE PushPen (directory, FileNave: string); 
VAR Disk, DiskText: text; 

Line: string[100]; 

BEGIN 

Writer; Writer stores text as DiskText on diskFile TempFile. 
assign (DiskText, 'TempFile'); { TempFile is on \SHELL, not \FORMAT. 
reset (DiskText); ( Open DiskText for input. 
ChDir (directory); 
assign (Disk, FileName); 
rewrite (Disk); { Open Disk for output. 

WHILE NOT eof(DiskText) DO BEGIN 
readln (DiskText, Line); Read TempFile to FileName line by line. 
writeln (Disk, Line) 

END; ( of WHILE ) 

close (Disk, true); 
erase (DiskText) 

END; 

BEGIN END. 
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f 
SEGMENT ZeroBit; 

( Initiallse bit strings. 

($I Cononl. Typ) 
PROCEDURE ZeroiseBitString (VkR Bits: bitstring); 

VhR Index: integer; 

BEGIN 

FOR Index: = 1 TO MaxNumberOfIntegers DO 
Bits[Index]: z 0; 

END; 

BEGIN END. 
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SEGMENT Question; 
( Selects the operations to be performed on the question files. 

{$I \PROPAS\PkSPC) 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE QuestionSelection (Selector: integer; VAR CoutOfQuestion: integer; VAR Flag: 
boolean); EXTERNAL; 

PROCEDURE Question)(enu (VAR CountOfOuestions: integer); 
VAR Flag: boolean; 

Selector: integer; 

BEGIN 

ClrScr; 
Flag: = tne; 

WHILE Flag = true DO BEGIN 
writeln; 
writeln (I 1: 18, 'Questions Text Menu. '); 
writeln (I 
Blankln (2); 
writeln (I 1: 7, 'Do you want to; '); 
writeln; 
writeln (1 1: 10,11. Write the text of a question? '); 
writeln (1 1: 10,12. Write the explanation of a question? '); 
writeln (1 1: 10,13. Edit the text of a question? '); 
writeln (1 1: 10,14. Edit the explanation of a question? '); 
writeln (1 1: 10,15. Delete a question from the questions file?, ); 
writeln (1 1: 10,16. Delete the explanation of a question from the file? '); 
writeln (1 1: 10,17. Display the text of a question? '); 
writeln (1 1: 10,18. Display the explanation of a question? '); 
writeln (1 1: 10,19. Print the text of a question? '); 
writeln (1 1: 10,110. Print the explanation of a question? '); 
writeln (1 1: 10,111. Return to the knowledge base menu?, ); 
Blankln (2); 
writeln C 1: 7, 'Make your choice by entering a key nuiber. 1); 
writeln (I 1: 7, 'Then press RETURV); 
read (Selector); 
QuestionSelection (Selector, CoutOfQuestions, Flag); 

END; ( of WHILE ) 

END; 

BEGIN END. 
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SEGMENT QstSelec; 
( Manage the calling of procedures by the question menu. 

($I \PROPAS\PASPC) 
PROCEDURE WriteQuestionText (VAR CountOfQuestions: integer); EXTERNAL; 
PROCEDURE WriteQuestionExplanation; EXTERNAL; 
PROCEDURE EditQuestion; EXTERNAL; 
PROCEDURE EditQuestionExplanation; EXTERNAL; 
PROCEDURE DeleteQuestion (VAR CountOfQuestions: integer); EXTERNAL; 
PROCEDURE DeleteExplanation (title: string); EXTERNAL; 
PROCEDURE DisplayQuestion; EXTERNAL; 
PROCEDURE DisplayExplanation (title: string); EXTERNAL; 
PROCEDURE PrintAll; EXTERNAL; 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE NenuError (range: integer); EXTERNAL; 

PROCEDURE QuestionSelection (Selector: integer; VAR CountOfQuestions: integer; 
VAR Flag: boolean); 

BEGIN 

CASE Selector OF 
1: WriteQuestionText (CountOfQuestions); 
2: WriteQuestionExplanation; 
3: EditQuestion; 
4: Ed! tQuestionExplanation; 
5: DeleteQuestion (CountOfQuestions); 
6: DeleteExplanation ('question'); 
7: DisplayQuestion; 
8: DisplayExplanation ('question'); 
9: PrintAll; 
10: PrintAll; 
11: Flag: = false; 
OTHERWISE BEGIN 

ClrScr; 
Blankln (9); 
MenuError (11) 

END; { of OTHERWISE 
END; ( of CASE ) 

END; 

BEGIN END. 
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SEGMENT WritQust; 
( Write the text of a question and store it on disk. 

($1 \PROPAS\PASPC) 
{$I \PROPAS\PASDOS) 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE ForzFileNave (index: integer; title: string; VAR FileName: string); EXTERNAL; 
PROCEDURE PushPen (title, FileName: string); EXTERNAL; 

PROCEDURE WriteQuestionText (VAR CountOfQuestions: integer); 
VAR FileName: string[30]; 

QuestionOnFile: string[30]; 
Counter: integer; 

BEGIN 

ClrScr; 
ChDir (I\shell\question'); 
Couter: = 0; 

( Questions are filed on question sub-directory ) 

REPEAT 
Couter: z Couter + 1; 
FormFileNave (Counter, lquestion', FileName); 
FindFile (FileNate, QuestionOnFile); 

UNTIL QuestionOnFile - 10; ( Until QuestiononFile returns empty ) 

Blankln (2); 
writeln (I ': 7, 'Enter the text of the question. '); 
writeln; 
writeln ('Question no 1, Counter: 3); 
PushPen ('question', FileName); t Write question , and store in 'question' sub-directory 
CountOfQuestions: = CoutOfQuestions + 1; 
ChDir ('\shell') 

END; 

BEGIN END. 
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SEGMENT WrtQexpl, * 
( Write the text of the explanation of a question. I 

($1 \PROPAS\PASPC) 
($I \PROPAS\PASDOS) 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE PressKey (margin: integer); EXTERNAL; 
FUNCTION YesNo: boolean; EXTERNAL; 
PROCEDURE FormFileName (indevinteger; title: string; VAR FileXame: string); EXTERNAL; 
PROCEDURE PushPen (title, FileName: string); EXTERNAL; 

PROCEDURE WriteQuestionExplanation; 
VAR QuestionName, FileNaze: string; 

Index: integer; 
OK: booleav 

BEGIN 
ClrScr; 
Blankln (3); 
ChDir ('question'); 
writeln (I 1: 7, 'Enter the number of the question'); 
, orriteln (I 1: 7,1whose explanation you want to write. '); 
writeln; 
writeln (I 1: 7, 'Tben press RETURN. '); 
GoToXY (8,8); 
read (Index); 
FormFileName (Index, lquestion', QuestionName); 
FonFileName (Index, lexplanation', FileNate); 
OK: = true; 
IF fstat (QuestionName) z false THEN BEGIN 

Blankln (2); 
writeln (I 1: 7, 'No question with this key number is on file. '); 
PressKey (7); 
ClrScr 

END; ( of IF 
IF (fstat(QuestionName) = true) AND (fstat(FileName) = true) THEN BEGIN 

Blankln (2); 
writeln (I 1: 7, 'There is already an explanation for this question on file., ); 
writeln (I 1: 7, 'Do you want to overwrite it? If so, press Ily" or "Y". 1); 
GoToXY (8,13); 
OK: = YesNo; 
ClrScr 

END; f of IF 
IF (fstat(QuestionName) = true) AND (OK z true) THEN BEGIN 

ClrScr; 
Blankln (2); 
writeln (I 1: 7, 'Enter the text of the explanation. '); 
writeln; 
writeln ('Explanation no 1, Index: 3); 
PushPen (Iquestion', FileNate); Write explanation and store in Question sub-directory 
ClrScr 

END; ( of IF 
ChDir ('\shell'); 
END; 

BEGIN END. 
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SEGMENT EditQust; 
( Edit the text of an existing question. 

($I \PROPAS\PASPC) 
PROCEDURE PressKey (margin: integer); EXTERNAL; 
PROCEDURE Blankln (number: integer); EXTERNAL; 

PROCEDURE EditQuestiono 

BEGIN 

ClrScr; 
Blankln (8); 
writeln (I 1: 7, 'The procedure EditQuestion has not yet been written., ); 
Blankln (15); 
PressKey (7); 
ClrScr 

END; 

BEGIN END. 
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I 
SEGMENT EdtQExpl; 

( Edit the explanation of a question. j 

[$1 \PROPAS\PASPQ 
PROCEDURE PressKey (isargin: integer); EXTERNAL; 
PROCEDURE Blankln (nusber: integer); EXTERNAL; 

PROCEIXJRE EditQuestionExplanation; 

BEGIN 

ClrScr; 
Blankln (8); 
writeln (I 1: 7, 'The procedure EditQuestionExplanantion has not yet been written. '); 
Blankln (15); 
PressKey (7); 
ClrScr 

END; 

BEGIN 
END. 
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SEGMENT DelQust; 

strings. )( 
Delete question file together with any explanation file, and reset classifier bit 

($1 Commonl. Typ) 
($1 \PROPAS\PASPC) 
($I \PROPAS\PASDOS) 
PROCEDURE ForiFileName (index: integer; title: string; VAR FileName: string); EXTERNAL; 
PROCEDURE ReNaberFiles (Flag, CountOfQuestions: integer; title: string); EXTERNAL; 
PROCEDURE Blankln (nuiber: integer); EXTERNAL; 

PROMXJRE DeleteQuestion (VAR CountOfQuestions: integer); 
VAR TextFile: text; 

TexpFile: FILE OF classifiertype; 
FileXame: string; 
Duny: boolean; 
Flag, Index: integer; 

BEGIN 
ClrScr; 
Blankln (5); 
writeln (I 1: 7,1Wbat is the number of the question to be deleted? '); 
GoToXY (8,8); 
read (Flag); 
FormFileName (Flag, lquestion', FileNate); Form question file name 
ChDir ('question'); 
IF fstat (FileName) = true THEN BEGIN 

assign (TextFile, FileNate); ( Connect variable to question disk file ) 
erase (TextFile); ( Delete the selected question disk file ) 
ReNumberFiles (Flag, CountOfQuestions, lquestion'); { Close up succeeding question files 
FormFileXame (Flag, lexplanation', FileName); ( Form explanation file name I 
IF fstat (FileName) = true THEN BEGIN 

assign (TextFile, FileName); Connect variable to explanation disk file 
erase (Textfile); Delete corresponding explanation disk file ) 
ReNuiberFiles (Flag, CountOfQuestions, lexplanationl), * j Close up succeeding explan files ) 

END; ( of IF 
END; ( of IF ) 
CountOfQuestions: z CountOfQuestions - 1; 
ChDir ('\class'); 
IF fstat ('Classifl) = true THEN BEGIN 

assign (TePpFile, 'Classifl); Connect variable to classifier disk file 
reset (TezpFile); Go to first file element 
WHILE NOT eof(TempFile) DO BEGIN 

FOR Index: = Flag TO CountOfQuestions DO BEGIN 
WHILE (Index+l) <= MaxNumberOfQuestions DO BEGIN Check against over-run 

IF testbit(Tempfile A essentialmask, lndex) <> testbit(TempFileA. essentialmask, Index+l) THEN 
Davy: = flipbit(TempFile A essentialmask, Index); ( Flip bit to value of next bit ) 

IF testbit(TempFile A usualmask, Index) <> testbit(TempFileA. usualzask, lndex+l) THEN 
Dummy: z flipbit(TempFile A usualmask, Index); ( Flip bit to value of next bit ) 

IF testbit(TeapF! le A classifier, Index) <> testbit(TempFile A classifier, Index+1) THEN 
Dummy: z flipbit(TempFile A classifier, Index); Flip bit to value of next bit ) 

END; ( of WHILE 
END; ( of FOR 

get (TempFile) Go to next file element 
END; ( of WHILE 

END; ( of IF ) 
ClrScr; END; BEGIN END. 
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SEGMENT Renum: 
( Re-number a series of disk files. 

PROCEDURE FomFileName (Index: integer; title: string; VkR FileNave: string); EXTERML; 

PROCEDURE ReNuiberFiles (Flag, CountOfQuestions: integer; title: string); 
VAR TextFile: text; 

FileNaze, ThisFileName, NextFileName: string; 
Index: integer; 

BEGIN 

ForiaFileXame (Flag, title, FileNate); Form name of deleted file I 
ThisFileXame: z FileName; Set variable to value of deleted file 

FOR Index: = (Flag+l) TO CountOfQuestions, DO BEGIN 
FormFileName (Index, title, FileNate); Form name of next disk file 
NextFileName: = FileName; ( Set variable NextFileName to name of next disk file 

IF fstat (NextFileName) = true THEN BEGIN 
assign (TextFile, NextFileXame); Connect file variable with the next disk file 
rename (TextFile, ThisFileNate); Rename disk file with the name of the previous file 
close (TextFile, true); 

END; ( of IF ) 

ThisFileXame: z NextFileName Update ThisFileName to the name of the next disk file 
END; ( of FOR ) 

END; 

BEGIN END. 
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SEGMENT DelExpl, * 
( Delete the explanation of a question or solution. 

0I \PROPAS\PASPC) 
($I \PROPAS\PASDOS) 
PROCEDURE Blankln (nuiber: integer); EXTERNAL; 
PROCEDURE PressKey (margin: integer); EXTERNAL; 
PROCEDURE ForioFileName (index: integer; title: string; VAR FileName: string); EXTERNAL; 

PROCEDURE DeleteExplanation (title: string); 
VAR TextFile: text; 

FileName: string; 
Flag: integer; 

BEGIN 

ClrScr; 
Blankln (5); 
writeln (I 1: 7, 'What is the number of the ', title); 
writeln (I 1: 7,1whose explanation you want to delete? '); 
GoToXY (8,9); 
read (Flag); 
FormFileName (Flag, lexplanation', FileName); 
ChDir (title); 
IF fstat (FileName) = true THEN BEGIN 

assign (TextFile, FileName); 
erase (Textfile); 

END ( of IF 
ELSE BEGIN 

writeln (I 1: 7, 'No explanation for this ', title, ' is on file., ); 
PressKey (7); 

END; ( of ELSE 

ChDir ('\shell'); 
CIrScr; 

END; 

BEGIN END. 
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SEGMENT DispQust; 
( Display the text of a question on screen. 

($1 \PROPkS\pkSpq 
PROCEDURE PressKey (margin: integer); EXTERNAL; 
PROCEDURE Blankln (number: Integer); EXTERNAL; 
PROCEDURE FormFileName (filenuWxr: integer; title: string; VAR FileNave: string); EXTERNAL; 
PROCEDURE DisplayTextFile (FileNave, directory, heading: string; Index, displayline: integer); 
EXTERNAL; 

PROCEDURE DisplayQuestion; 
VkR FileNave: string[301; 

Index: Integer; 

BEGIN 

ClrScr; 
Blankln (6); 
writeln (I 1: 7, 'Enter the number of the question'); 
writeln (I 1: 7,1that you want to display. '); 
writeln, * 
writeln (I 1: 7, 'Then press RETURN. '); 
GoToXY (8,11); 
read (Index); 
FormFileName (Index, lquestion', FileNate); 
FileNaRe: z concat (1\SHELL\QUESTION\1, F1leName); 

IF fstat (MeNave) c false THEN BEGIN 
Blankln (2); 
writeln (I 1: 7, 'No question with this key number is on file-'); 
PressKey (7); 
ClrScr, e 

END ( of IF 
ELSE BEGIN 

ClrScr; 
Blankln (6); 
DisplayTextFile (FileName, 'question', 'Question', Index, 7); 
Blankln (12); 
PressKey (5); 
ClrScr 

END; ( of ELSE 

END; 

BEGIN END. 
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SEGMENT DispFile; 
( Display disk file on screen 

($1 \PROPAS\PASPC) 
($I \PROPAS\PASDOS) 
PROCEDURE DisplayTextFlle (DiskFile, directory, heading: string; Index, displayline: integer); 
VkR TevpFile: text; 

Line: string[1001; 

BEGIN 

assign (TempFile, DiskFile); 
ChDir (directory); 
reset (TetpFile); 
GoToXY (l, displayline); 
writeln (heading, ' no 1, Index: 3,1.1); 

( Change to subdirectory containing the file. ) 

WHILE NOT eof(TempF! le) DO BEGIN 
readln (TempFile, Line); Read a line of text from TempFile to Line. 
GOTOXY (24, displayline); Position cursor. ) 
writeln (Line); output line of text to screen. 
displayline: - displayline +1 move cursor position down one line. 

END; { of WHILE ) 

close (TempFile, true); 
ChDir ('\shell'); Return to SHELL directory. 

M; 

BEGIN END. 
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SEGXENT DispExpl, - 
J Display the text of the explanation of a question or a solution. 

($1 \PROPAS\PASPQ 
PROCEDURE PressKey (margin: integer); EXTERNAL; 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE FormFileName (index: integer; title: string; VAR FileName: string); EXTERNAL; 
PROCEDURE DisplayTextFile (filenase, directory, heading: string; index, firstline: integer); 
EXTERNAL; 

PROCEDURE DisplayExplanation (title: string); 
VkR FileName: string[301; 

Index: integer; 

BEGIN 

ClrScr; 
Blankln (6); 
writeln (I 1: 7, 'Enter the number of the ', title); 
writeln (I 1: 7,1whose explanation you want to display. '); 
writeln; 
writeln (I 1: 7, 'Then press RETURN. '); 
GoToXY (8,11); 
read (Index); 
FormFileName (Index, lexplanation'JileName); 
FileXame: x concat (1\shell\1, title, 1\1, F1leName); 

IF fstat (FileNave) z false THEN BEGIN 
Blankln (2); 
writeln (I 1: 7, 'No explanation for this ', title, ' is on file. '); 
PressKey (7); 
ClrScr; 

M( of IF 
ELSE BEGIN 

ClrScr, e 
Blankln (6); 
DisplayTextF! le (FileNave, 'question', 'Explanation', Index, 7); 
Blankln (12); 
PressKey (5); 
ClrScr 

END; ( of ELSE 

END; 

BEGIN END. 
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SEGXENT PrintAll; 
( Print the text of a question, solution or explanation. 

(si \PROPAS\PASPCJ 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE PressKey (margin: integer); EXTERNAL; 

PROCEDURE PrintAll; 

BEGIN 

ClrScr; 
Blankln (8); 
writeln (I 1: 7, 'The procedure PrintAll has not yet been written. '); 
Blankln (15); 
PressKey (7); 
ClrScr 

END; 

BEGIN END. 

} 
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SEGMENT Solution; 
( Selects the operations to be performed on the solution files. 

($I \PROPks\PkSPC) 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE SolutionSelection (Selector: integer; VAR Flag: boolean); EXTERNAL; 

PROCEDURE SolutionMenu; 
VAR Flag: boolean; 

Selector: integer; 

BEGIN 

ClrScr; 
Flag: z true; 

4ILE Flag - true DO BEGIN 
writeln: 
writeln (I 1: 18, 'Solutions Text Menu-'); 
writeln (I 
Blankln (2); 
writeln (I 1: 7, 'Do, you want to; '); 
writeln; 
writeln 1: 10,11. write the text of a solution? '); 
writeln 1: 10,12. Write the explanation of a solution? '); 
writeln (1 1: 10,13. Edit the text of a solution? '); 
writeln (1 1: 10,14. Edit the explanation of a solution? '); 
writeln (1 1: 10,15. Delete a solution from the solutions file? '); 
writeln (1 1: 10,16. Delete the explanation of a solution from the file? '); 
writeln (1 1: 10,17. Display the text of a solution? '); 
writeln (1 1: 10,18. Display the explanation of a solution? '); 
writeln (1 1: 10,19. Print the text of a solution? '); 
writeln (1 1: 10,110. Print the explanation of a solution? '); 
writeln (1 1: 101,11. Return to the knowledge base inenu? '); 
Blankln (2); 
writeln ('Make your choice by entering a key number. '); 
writeln ('Then press RETURN. '); 
read (Selector); 
SolutionSelection (Selector, Flag); 

END; [ of WHILE ) 

END; 

BEGIN END. 
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SEGMENT SolSelec; 
( Manages the calling of procedures by the solutions renu. 

(sl \PROPAS\PISPC) 
PROCEDURE WriteSolutionText; EXTERNAL; 
PROCEDURE WriteSolutionExplanation; EXTERNAL; 
PROCEDURE EdItSolution; EXTERNAL; 
PROCEDURE EdItSolutionExplanation; EXTERNAL; 
PROCEDURE DeleteSolution; EXTERNAL; 
PROCEDURE DeleteExplanation (title: string); EXTERNAL; 
PROCEDURE DisplaySolution; EXTERNAL; 
PROCEDURE DisplayExplanation (title: string); EXTERNAL; 
PROCEDURE PrintAll (title: string); EXTERNAL; 
PROCEDURE Blankln (nusber: integer); EXTERNAL; 
PROCEDURE MenuError (range: Integer); EXTERNAL; 

PROCEDURE SolutionSelection (Selector: Integer; VkR Flag: boolean), * 

BEGIN 

CASE Selector OF 
1: WriteSolutionText; 
2: WriteSolutionExplanation; 
3: EditSolution; 
4: EfitSolutionExplanation; 
5: DeleteSolution; 
6: DeleteExplanation ('solution'); 
7: DisplaySolution; 
8: DisplayExplanation ('solution'); 
9: PrintAll, ('solution'); 
10: PrintAll, ('solution'); 
11: Flag: z false; 
OTHERWISE BEGIN 

ClrScr; 
Blankln (8); 
MenuError (11) 

END; ( of OTHERWISE 
END; ( of CASE ) 

END; 

BEGIN END. 
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SEGXENT WritSoln; 
( write the text of a solution and store it on disk. 

(sl \PROPAS\PASPC) 
($I \PROPAS\PASDOS) 
PROCEDURE Blankln (nurber: integer); EXTERNAL; 
PROCEDURE ForzFileNave (index: integer; title: string; VAR FileNave: string); EXTERNAL; 
PROCEDURE PushPen (title, FileName: string); EXTERNAL; 

PROCEDURE WriteSolutionText (VAR CountOfSolutions: integer); 
VAR FileName: string[30]; 

SolutionOnFile: string[30]; 
Counter: integer; 

BEGIN 

CIrScr; 
ChDir (I\shell\solution'); 
Counter: = 0; 

REPEAT 
Counter: m Counter + 1; 
FortFileName (Counter, lsolution', FileNaine); 
FindFile (FileMaine, SolutionOnFile); 

UNTIL SolutionOnFile z 11; 

Blankln (2); 
writeln (I 1: 7, 'Enter the text of the solution. '); 
writeln; 
writeln ('Solution no 1, Counter: 3); 
PushPen ('solution', FileXame); Write solution 
Countofsolutions: = Countofsolutions + 1; 
qhDir ('\shell') 

( Solutions are filed on solution sub-directory ) 

( until solutiononFile returns empty ) 

END; 

BEGIN END. 

I and store in 'solution' sub-directory ) 
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SEGMENT EditSoln; 
( Edit the text of an existing solution. 

($I \PROPAS\Pkspc) 
PROCME PressKey (margiminteger); EXTERNR; 
PROCME Blankln (nuidnrinteger); EXTERNK; 

PROCEDURE EditSolutiono 

BEGIN 

CIrScr; 
Blankln (8); 
writeln (I 1: 7, 'The procedure EditSolution has not yet been written. '); 
Blankln (15); 
PressKey (7); 
CIrScr; 

END; 

BEGIN END. 
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SEGMENT DelSoln; 
( Delete solution file. 

($I \PROPAS\Pkspc) 
PROCEDURE PressKey (margiminteger); EXTERNAL; 
PROCEDURE Blankln (number: integer); EXTERNAL; 

PROCEDURE Deletegolution; 

BEGIN 

ClrScr; 
Blankln (9); 
writeln (I 1: 7, 'The procedure DeleteSolution has not yet been written., ); 
Blankln (15); 
PressKey (7); 
ClrScr; 

END; 

BEGIN END. 
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SEGNENT DispSoln; 
( Display the text of a question on screen. 

($1 \PROPAS\PASPC) 
PROCEDURE PressKey (zargin: integer); EXTERNAL; 
PROCEDURE Blankln (nuaber: integer); EXTERNAL; 
PROCEDURE FormFileName (filenumber: integer; title: string; VAR FileName: string); EXTERNAL; 
PROCEDURE DisplayTextFile (FileNave, directory, heading: string; Index, displayline: integer); 
EXTERNAL; 

PROCEDURE DisplaySolution, * 
VAR FileXame: string[301; 

Index: integer; 

BEGIN 

ClrScr; 
Blankln (6); 
writeln (I ': 7, 'Enter the number of the solution'); 
writeln (I 1: 7,1that you want to display. '); 
vriteln,, 
vriteln (I 1: 7, 'Then press RETURN. '); 
GoToXY (8,11); 
read (Index); 
FormFileName (Index, lsolution', FileName); 
FileName: z concat (1\shell\solut1on\1, FileName); 

IF fstat (FileName) = false THEN BEGIN 
Blankln (2); 
writeln (I 1: 7, 'No solution with this key number is on file. '); 
PressKey (7); 
ClrScr; 

END { of IF 
ELSE BEGIN 

ClrScr; 
Blankln (6); 
DisplayTextFile (MeName, 'solution', 'Solution', Index, 7); 
Blankln (12); 
PressKey (5); 
ClrScr 

END; { of ELSE 

END; 

BEGIN END. 
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t 
SEGMENT WrtSexpl; 

( Write the text of the explanation of a solution. 

($1 Cononl. Typ) 
($1 \PROPAS\Pkspc) 
($I \PROPAS\PASDOS) 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE PressKey (margin: integer); EXTERNAL; 
FUNCTION YesNo: boolean; EXTERNAL; 
PROCEDURE FormFileName ( index: integer; title: string, *VAR FileName: string); EXTERNAL; 
PROCEDURE PushPen (title, FileNate: string); EXTERNAL; 

PROCEDURE WriteSolutionExplanation; 
VkR SolutionNave, MeNave: string; 

Index: integer; 
OK: boolean; 

BEGIN 
ClrScr; 
Blankln (3); 
ChDir ('solution'); 
ýriteln (I 1: 7, 'Enter the number of the solution'); 
writeln (I 1: 7,1whose explanation you want to write. '); 
,, I*riteln; 
writeln (I 1: 7, 'Then press RETURN. '); 
GoToXY (8,8); 
read (Index); 
FormFileName (Index, lsolution', SolutionName); 
ForzFileName (Index, lexplanation', FileName); 
OK: z true; 
IF fstat (SolutionName) = false THEN BEGIN 

Blankln (2); 
writeln (I 1: 7, 'No solution with this key number is on file. '); 
PressKey (7); 
ClrScr 

END; ( of IF 
IF (fstat(SolutionName) - true) M (fstat(FileNate) = true) THEN BEGIN 

Blankln (2); 
writeln (I 1: 7, 'There is already an explanation for this solution on file., ); 
writeln (I 1: 7, 'Do you want to overwrite it? If so, press Ily" or "Y". 1; 
GoToXY (8,13); 
OK: = YesNo; 
ClrScr 

END; ( of IF 
IF (fstat(SolutionNaine) = true) AM (OK = true) THEN BEGIN 

ClrScr; 
Blankln (2); 
writeln (I 1: 7, 'Enter the text of the explanation. '); 
writeln; 
writeln ('Explanation no 1, Index: 3); 
PushPen (Isolution'JileName); Write explanation and store in Solution sub-directory 
ClrScr 

END; ( of IF 
ChDir ('\shell'); 
END; 
BEGIN END. 
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SEGMENT EdtSExpl; 
( Edit the explanation Of a SOlUtiOn- 

($1 \PROpAs\PASPC) 
PROCEDURE PressKey (margin: integer); EXTERNAL; 
PROCEDURE Blankln (nuaberinteger); EXTERNAL; 

PROCEDURE EdItSolutionExplanation; 

BEGIN 

ClrScr, * 
Blankln (9); 
writeln (I 1: 7, 'The procedure EditSolutionExplanation has not yet been written. '); 
Blankln (15); 
PressKey (7); 
ClrScr, * 

END; 

BEGIN END. 
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SEGMENT Classify; 
( Select the operations to be performed on the classifier file. 

Or \PROPAS\PASPC) 

PROCEDURE Blankln (nuaber: integer); EXTERNAL; 
PROCEDURE MenuError (range: integer); EXTERNAL; 
PROCEDURE SetUpClassiffer (CountOfQuestions: integer); EXTERNAL; 
PROCEDURE EditClassifier; EXTERNAL; 
PROCEDURE DeleteClassifier (CountOfQuestions: integer); EXTERNAL; 

PROCURE ClassifierMenu (CountOfQuestions: integer); 
V&R Flag: boolean; 

Selector: Integer; 

BEGIN 

ClrScr; 
Flag: = true; 

WHILE Flag a true DO BEGIN 
Blankln (5); 
writeln (I 1: 20, 'Classifier Menu. '); 
writeln (I 
Blankln (2); 
writeln (I 1: 11, 'Do you want to; '); 
writeln; 
writeln 1: 14,11. Set up a classifier? '); 
writeln 1: 14,12. Edit a classifier? '); 
writeln (1 1: 14,13. Delete a classifier? '); 
writeln (1 1: 14,14. Return to the Knowledge Engineering Menu? '); 
writeln, e 
writeln (I 1: 7,1Make your choice by typing a keynumber. 1); 
writeln (I 1: 7, 'Then press RETURN. '); 
read (Selector); 

CASE Selector OF 
1: SetUpClassifier (CoutOfQuestions); 
2: EditClassifier; 
3: DeleteClassifier (CountOfOuestions); 
4: Flag: = false; 
OTHERWISE BEGIN 

ClrScr; 
Blankln (8); 
MenuError (4) 

END; ( of OTHERWISE 
END; ( of CASE ) 

END; ( of WHILE 

END; 

BEGIN END. 
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SEGMENT StUpClas; 
( Write the classifier, essential mask and usual task for a solution. 

($I Comionl. Typ) 
($1 \PROPAS\PASPC) 
($1 \PROPAS\PASDOS) 
PROCEDURE Blankln (nuiber: Integer); EXTERNAL; 
PROCEDURE FonFileXame (filenuakr: integer; title: string; VAR FileName: string); EXTERNAL; 
PROCEDURE DisplayTextFile (FileNaine, directory, heading: string, - 

filenuW*r, firstline: integer); EXTERNAL; 
PROCEDURE InitialiseClassifferRecord (SolutionNumber: integer; VAR Temp: solutiontype), * EXTERNAL; 
PROCEDURE SetClassiflerBits (CountOfQuestions: integer; VAR Temp: solutiontype, - 

VAR Flag: boolean); EXTERNAL; 
FUNCTION Ask (leftsargin: integer; question: string): boolean; EXTERNAL; 
FUNCTION YesNo: boolean; EXTERNAL; 

PROCEDURE SetUpClassifier (CoutOfQuestions: integer), * 
VAR TempFile: FILE OF solutiontype; 

Temp: solutiontype; 
FileName: string; 
SolutionNuber: integer; 
Answer, Flag: boolean; 

BEGIN 
CursorOff; 
Flag: - true; 
WHILE Flag - true DO BEGIN 

ClrScr; Blankln (5); 
writeln (I 1: 7, 'What is the number of the solution'); 
writeln (I 1: 7,1for which you want to write a classifier? '); 
GoToXT (8,8); 
read (SolutionNuid*r); 
InitialiseClassifierRecord (SolutionNumber, Temp); Initialise the fields of Temp 
ClrScr; 
FormFileNaze (SolutionNumber, lsolution', FlleNate); 
FileName: z concat (1\shell\solution\1, FileName); 
IF fstat (FileXame) - false THEN 

writeln (I 1: 7, 'No solution with this key number is on file. ') 
ELSE BEGIN 

TextWindow (1,2,90,9); 
TextFrave (false); 
DisplayTextFile (filenatellsolutionl, 'Solution', SolutionNumber, 2); ( Disp solution text 
SetClassifierBits (CountOfQuestions, Teip, Flag); 
assign (TempFile, 'Classifl); Connect file variable TempFile to disk file Classif 
append (Tempfile); ( Move pointer to end of file 
write (TezpFilejemp); t Add Temp to end of Tempfile 
Close (TezpFile, true); 

END; ( of ELSE ) 
TextWindow (1,1,80,25); 
ClrScr; GoToXY (8,3); 
Answer: = Ask (1, 'Do you want to write another classifier. Y/N7, ); 
IF Answer r- true THEN BEGIN 

Flag: z true; ClrScr; END 
ELSE BEGIN 

Flag: z false; ClrScr; END; 
END; ( of WHILE ) 
ClrScr; END; BEGIN END. 
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SEGMENT Initclas; 
( Initialise the fields of the record Temp. 

J$l Cononl. Typ) 
PROCEDURE ZeroiseBitString (VAR Bits: bitstring); EXTERNAL; 

PROCEDURE InitialiseClassifierRecord (SolutionNutber: integer; VAR Teip: solutiontype); 

BEGIN 

Temp. keynuaber: m SolutionNunber; 
ZeroiseBitString (Teip. essentialaask); 
ZeroiseBitString (Temp. usualaask); 
Temp. totalusual: 2 0; 
Temp. usualtrue: z 0; 
Temp. probabillty: m 0; 
ZeroiseB! tString (Temp. classifier); 

END; 

BEGIN END. 
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SEGMENT ClasBits; 
( Set the bits of the classifier and its masks. 

($I Cononl. Typl 
($I \PROPAS\PASPC) 
($1 \PROPAS\PASDOS) 
PROCEDURE ForaffleXame (filenumber: integer; title: string; VkR FileName: string); EXTERNAL; 
PROCEDURE DisplayTextfile (FileName, directory, heading: string; 

filenumber, firstline: integer); EXTERNAL; 
PROCEDURE SetUsualBlts (Index: integer; VAR Temp: solutiontype); EXTERNAL; 
FUNCTION Ask (leftmargin: integer; question: string): boolean; EXTERNAL; 
FUNCTION YesNo: boolean; EXTERNAL; 

PROCEDURE SetClassiflerBits (CoutOfQuestions: integer; VkR Temp: solutiontype; VkR Flag: boolean); 
VkR TempFile: FILE OF solutiontype; 

FileName: string; 
Index: integer; 
knswer, Duzzy: boolean; 

BEGIN 

CursorOff; 

FOR Index: = 1 TO CountOfQuestions DO BEGIN Loop through all the questions 
TextWindow (1,10,80,25); 
FormFileXame (Index, lquestion', FileName); 
FileName: - concat (I\shell\question\', FileName); 
CIrScr; 
DisplayTextFile (FileName, lquestionl, 'Question', Index, 2); Display question text 
GoToXY (8,7); 
Answer: = Ask (1,, Is it essential that this question receives a correct answer. Y/N? '); 

IF Answer - true THEN BEGIN 
Duny: - setbit (Temp. essentialmask, Index); Set essential task bit to true 
GoToXY (8,9); 
writeln ('Is the answer that is always needed'); 

00noillf writeln (I 1: 7,1to this question "yes" or 
knswer: z YesNo; 
IF Answer = true THEN 

Dummy: z setbit (Temp. classifier, Index); Set classifier bit to true 
END ( of IF 
ELSE 

SetUsualBits (Index, Temp); 
ClrScr; Clear only the lower part of the screen 

END; ( of FOR 

END; 

BEGIN END. 

page 308 



SEGMENT Usulbits; 
( Set the usual bits In a classifier. 

($1 Comnl. Typ) 
($I \PROPAS\PASPC) 
($1 \PROPAS\PASDOS) 

FUNCTION YesNo: boolean; EXTERNAL; 
FUNCTION Ask (leftnargin: integer; question: string): boolean; EXTERNAL; 

PROCEDURE SetUsualBlts (Index: integer; VAR Teiap: solutiontype); 
VAR Answer, Duamy: boolean; 

BEGIN 

TextWindov (1,12,80,25); 
ClrScr; 
GoToXY (8,5); 
writeln (Toes the solution usually require'); 
writeln (I 1: 7,1a correct answer to this question. Y/N7'); 
Answer: z YesNo; 

IF Answer - true THEN BEGIN 
Dummy: - setbit (Teap. usualmask, Index); Set usual mask bit to true 
Temp. totalusual: z Temp. totalusual + 1; 
ClrScr: 
GoToXY (9,5); 
writeln ('Is the answer that is usually needed'); 
writeln (I 1: 7,1to this question "yes" or "no". Y/0); 
knswer: z YesNo; 

IF Answer r- true THEN 
Dumpa setbit (Temp. classifier, Index); Set classifier bit to true 

END; ( of IF ) 

END; 

BEGIN END. 
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SEGMENT EdItClas; 
t Edit a classifier. 

($1 Comnl. Typ) 
t$I \PROPAS\PASPC) 
($1 \PROPAS\PASDOS) 
PROCEDURE Blankln (nuRber: integer); EXTERNAL; 
PROCEDURE FoniffleNave (filenusber: integer; title: string; VAR FileXame: string); EXTERNAL; 
FUNCTION Ask (leftiargin: integer; question: string): boolean; EXTERNAL; 

PROCEWRE EditClassifier; 
VAR TempFile: FILE OF solutiontype; 

Solutionfile, Questionfile: text; 
TempRecord: solutiontype; 
FileXame: string[301; 
Line: string[1001; 
SolutionNumber, QuestionNumber, Counter: integer; 
Answer, ClassifierSetting, Duny: boolean; 

BEGIN 
ClrScr; 
CursorOff; 
Blankln (8); 
writeln (I 1: 7, 'Enter the nuiber of the solution whose classifier you want to edit. '); 
read (SolutionNumber); 
ClrScr; 
Blankln (5); 
writeln (I 1: 7, 'The text of the solution whose classifier you are editing is;, ); 
ForzFileName (SolutionNusber, lsolutionl, fileName); 
MeName: m concat (1\shell\solution\1, F1leName); 
assign (SolutionFile, FileName); 
reset (SolutionFile); 
Counter: - 8; 
WHILE NOT eof(SolutionFfle) DO BEGIN 

readln (SolutionFile, Line); 
GoToXY (15, Counter), * 
writeln (Line); 
Counter: = Counter + 1; 

END: ( of WHILE 
writeln, - 
vriteln (I 1: 7, 'Enter the nurber of the question that you want to change. '); 
read (QuestionNumber); 
writeln; 
writeln (I 1: 7, 'The question whose bit you are editing is;, ); 
FormFileXame (QuestionNumber, lquestionl, fileNaiie); 
FileName: - concat (1\shell\question\1, FileXaze); 
assign (QuestionFile, FileNate); 
reset (QuestionFile); 
Counter: = 16; 
WHILE NOT eof(QuestionFile) Do BEGIN 

readln (QuestionFile, Line); 
GoToXY (15, Counter); 
writeln (Line); 
Counter: m Counter +1 

END; ( of WHILE ) 
assign (TempFile, 'Classifl); 

page 310 



update (TempFile); 
seek (TevpFile, (SolutionNuiber - 1)); 
read (Temphle, TempRecord); 
writeln; 
ClassifierSetting: - testbit(TempRecord. classifier, QuestionNuiaber); 
writeln (I 1: 7, 'Tbe setting of this question bit is 1, ClassifierSetting); 
Answer: = Ask (7, 'Do you want to change its setting. Y/N71); 
IF Answer - true THEN BEGIN 

Duzzy: x flipbit(TespRecord. classifier, QuestionNumber); 
seek (TempFile, (SolutionNumber - 1)); 
write (TempFile, TempRecord); 
close (TempFile, true) 

END; ( of IF 
ClrScr 
END; 
BEGIN END. 
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SEGMENT DelClass; 
( Delete a specified classifier and close up the succeeding file elements. 

($I Cononl. Typ) 
($I \PROPAS\PASPC) 
($I \PROPAS\PASDDS) 

PROCEDURE DeleteClassifler (CountOfQuestions: integer); 
VAR TempFile: FILE OF classifiertype; 

Temp: classifiertype; 
Selector, Counter, Index: integer; 

BEGIN 
CIrScr; 
writeln (I 1: 7, 'What is the number of the solution'); 
writeln (I 1: 7,1whose classifier you want to delete? '); 
read (Selector); 
assign (TezpFile, 'Classifl); 
reset (TempFile); 
WHILE NOT eof (TempFfle) DO BEGIN 

IF Tempffle A keynumber (> Selector THEN File pointer not at selected element 
get (TempFile); ( Go to next element 

IF eof (TempFile) z true THEN 
writeln (I 1: 7, 'No classifier has been written for this solution. ') ( Selected classifier 

not found 
ELSE BEGIN File pointer is at selected element 

Counter: x Selector; 
FOR Index: z Selector To CountofQuestions DO BEGIN 

seek (TempFile, (Counter+l)); Go to next file element 
Temp. keynuzber: = TempFileA. keynumber; Set Temp's fields to this element's values 
Temp. essentialmask: z TempFile A essentialmask; 
Temp. usualmask: = TempFile, ". usualmask; 
Temp. classifier: z TempFile A classifier; 
Temp. totalusual: z TempFilell. totalusual; 
Counter: z Counter - 1; Go back to selected file element 
write (TempFile, Temp); Overwrite element with values of next element 
seek (TempFile, (Counter+l)) 

END; { of FOR 
END; of ELSE 
END; of WHILE 
close (TempFile, true) 
END; 
BEGIN M. 
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SEGMENT FindRslt; 
( Main procedure for writing the message and obtaining the result. 

($1 Cownl. Typ) 
PROCEDURE ZeroiseBitString (VAR Bit: Bitstring); EXTERNAL; 
PROCEDURE SetUpSolutionList (CountOfSolut1ons: integer; VkR Bead: solutionpointer); EXTERNAL; 
PROCEDURE SetMessageAndMask (LiveQuestion: integer; VAR Message, XessageMask: bitstring); EXTERNAL; 
PROCEDURE lemoveContradictedSolutions (Xessage, MessageMask: bitstring; NFQ: integer; 

VAR Head: solutionpointer); EXTERNAL; 
PROCEDURE CalculateProbability (Message, MessageXask: bitstring; CountOfQuestions: integer, * 

Head: solutionpointer); EXTERNAL; 
PROCEDURE DisplayResult (Head: solutionpointer),, EXTERNAL; 
PROCEDURE ClearHeap (Read: solutionpointer), * EXTERNAL; 
FUNCTION FindMostFrequentQuestion (MessageMask: bitstring; CountOfQuestions: integer; 

Bead: solutionpointer): integer; EXTERNAL; 
FUNCTION FindUsualQuestion (MessageMask: bitstring; CountOfQuestions: integer; 

Head: solutionpointer): integer; EXTERNAL; 

PROCURE FindResult (CoutOfQuestions, CountOfSolutions: integer); 
VAR Message, MessageMask: bitstring; 

Head: solutionpointer; 
UQ, XFQ: integer; 

BEGIN 

ZeroiseBitString (Message); Set Message and Mask to zero 
ZerolseBitString (MessageMask): 
SetUpSolutionList (CountOfSolutions, Head); Create solutions list 
MFQ: = FindMostFrequentQuestion (MessageMask, CountOfQuestions, Head); { Find number of MFQ 

WHILE MFQ (> 0 DO BEGIN ( Search essential masks & prue solutions list 
SetMessageAndMask (MFQ, Message, MessageMask); ( Set Message and MessageMask for MFQ ) 
RemoveContradictedSolutions (Message, MessageMask, MFQ, Head); ( Remove contradicted solution I 
MFQ: x FindMostFrequentQuestion (MessageMask, CountOfQuestions, Head); ( Find no KFQ remaining ) 

END; ( of WHILE ) 

UQ: x FindUsualQuestion (MessageMask, CountOfQuestions, Head); ( Find number of UQ ) 

WHILE UQ (> 0 Do BEGIN 
SetMessageAndMask (UQ, Message, MessageMask); Set Message and 

MessageMask for UQ ) 
UQ: x FindUsualQuestion (MessageMask, CountOfQuestions, Head); Find nuiber of next UQ 

END; ( of WHILE ) 

CalculateProbability (Message, MessageMask, CountOfQuestions, Head); 
DisplayResult (Head); 
ClearHeap (Head); 

END; 

BEGIN END. 
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SEGMENT SetUpSol; 
( Set up a linked list of solutions and return the Head pointer. 

($1 Cononl. Typ) 
($1 \PROPAS\PASPC) 

PROCEDURE SetUpSolutionList (CountOfSolutions: integer; VAR Head: solutionpointer); 
VAR Classifier: FILE OF solutiontype; 

TempRecord: solutiontype; 
Teap, Ourrent: solutionpointer; 
Index: integer; 

BEGIN 

new (Current); { Make space in beap for last element in the list ) 
Current'l. keynuaber: z CountOfSolutions; [ Number of last element := total number of solutions 
Current%next: z NIL; ( get pointer field of last element to NIL ) 

FOR Index: z (CountOfSolutions - 1) DOWNTO 1 DO BEGIN ( Work backward from last element in list 
new (Temp); ( Make space in heap for a new element in the list 
Temp, ',. keynuW)er: - Index; ( Set keynuiber to loop index I 
TempA. next: z Current; ( Set pointer to current element in the list 
Current: z Temp; ( Make the current element the new element 

END; ( of FOR ) 

Head: = Current; ( Move head pointer to first solution - current pointer - on exiting FOR loop 
assign (Classifier, 'Classifl); Connect Classifier to disk file 'Classifl 
reset (Classifier); 
Temp: z Read; Position Temp at beginning of solutions list 

FOR Index: - 1 TO CountOfSolutions DO BEGIN 
read (Classifier, Templecord); 
TempA. essentialmask: z Te%pRecord. essentialmask; 
TeMpA. usualmask: z TempRecord. usualmask; 
TempA. classifier: z TespRecord. classifier; 
TeMpA. totalUSUal: z TempRecord. totalusual; 
TempA. usualtrue: z 0; 
TeEpA probability: = 0; 
ClrScr; 
Temp: z TempA. next; Move pointer to next record 

END; ( of FOR ) 

W; 

BEGIN END. 
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SEGMENT MFrqQust; 

($I Commonl. Typ) 
($1 ', PROPAS\PASDOS) 

FUNCTION FindMostFrequentQuestion (MessageMask: bitstring; CountOfQuestions: integer; 
Head: solutionpointer): integer; 

VkR Current: solutionpointer; 
TopQuestion, QuestionCounter: questiontype; 
Index: integer; 
AllFalseFlaq, kllTrueFlag: boolean; 

BEGIN 

TopQuestion. questionnumber: m 0; 
TopQuestion. countofoccurrance: = 0; 

FOR Index: = 1 TO CountOfQuestions DO BEGIN 
AllFalseFlag: x false; 
AliTrueFlag: = false; 
QuestionCounter. questionnumber: z Index; 
QuestionCounter. countofoccurrance: = 0; 
Current: = Head; 

4 

RILE Current <> NIL DO BEGIN 
IF (testbit(Current". essentialmask, Index) = true) AND (testbit(MessageMask, Index) = false) THEN BEGIN 

QuestionCounter. countofoccurrance: = (QuestionCounter. countofoccurrance + 1); 
IF testbit(CurrentA. classifier, Index) = true THEN 

AllTrueFlaq: x true 
ELSE 

AllFalseFlag: = true; 
END; ( of IF ) 

Current: = Current". next 
END; ( of WHILE ) 

IF AllFalseFlag W AllTrueFlag = true THEN 
IF QuestionCounter. countofoccurrance > TopQuestion. countofoccurrance THEN 

. 
TopQuestion: = QuestionCounter 

END; t of FOR ) 

FindMostFrequentQuestion: = TopQuestion. questionnumber; 

END; 

BEGIN END. 
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SEGXENT XessXask; 
( Display the most frequently occurring question and obtain the user's answer to it. 

($1 Conwnl. Typ) 
($1 \PROPAS\PASPC) 
($1 \PROPAS\PASDOS) 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE PressKey (vargin: integer); EXTERNAL; 
PROCEDURE ForaFileName (filenumber: integer; title: string; VAR FileName: string); EXTERNAL; 
PROCEDURE DisplayTextFile (DiskFile, directory, beading: string; filenuaber, firstline: integer); 
EXTERNAL; 

PROCEDURE SetHessageAndMask (LiveQuestion: integer, *VAR Message, MessageMask: bitstring); 
VAR FileNave: string[301; 

Gate: char; 
Answer, Duny: boolean; 

BEGIN 
CursorOff; 
TextWindow (1,1,80,7); 
TextFrave (true); 
ClrScr, s 
FormFileName (LiveQuestion, lquestion', FileName); 
DisplayTextFlle (FileNave, lquestionl, 'Question', L! YeQuestion, 2); Display question text 
TextWindow (1,1,80,25); 
GoToXY (1,10); 
writeln (I 1: 7, 'Please answer the question "Yes" or "No". #); 
TextWindov (1,23,80,25); 
TextFrame (false); 
GoToXY (1,23); Position display at bottom of screen 
writeln (I 1: 3, 'Press 11W11 for "Why" if you want to see an explanation of this question. '); 
Gate: * ConSilent; ( Wait for Y, N or W keyboard input 
IF (Gate a IWI) OR (Gate a 'w') THEN BEGIN 

TextWindow (1,11,80,25); ( Set text window to lower part of screen 
ForaffleName (LiveQuestion, lexplanation', FileMate); 
FileName: - concat('\shell\question\', FileNate); 
IF fstat (FileName) - false THEN BEGIN 

Blankln (3); 
writeln (I 1: 7, 'No explanation for this question is on ffle., ); 
PressKey (7); 
ClrScr; 

END ( of IF 
ELSE BEGIN 

TextWindov (1,18,80,22); 
TextFrave (False); 
DisplayTextFile (FileNate, lquestionl, 'Explanation', LiveQuestion, l); Display explan text ) 

END; ( of ELSE ) 
Gate: z ConSilent; Wait for new Y or N keyboard input ) 
ClrScr; 

END; ( of IF 
IF (Gate - IYI) OR (Gate a ly') THEN 

D=y: - setbit (Message, LiveQuestion); Set Message to true if answer is 'yes') 
Duny: - setbit (Messagemask, LiveQuestioii); ( Set MessageMask to true if answer is 'yes' or 'no' 
TextWindow (1,1,80,25); Restore window to whole screen 
ClrScr, * 
END; BEGIN END. 
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SEGMENT RezSoln,, 
( Remove from list of solutions any whose essential masks is contradicted by an answer to a ques- 
tion. ) 

($1 Commonl. Typ) 

PROCEDURE lemoveContradictedSolutions (Message, MessageMask: bitstring; NFQ: integer; 
VAR Read: solutionpointer); 

VkR Current, Previous; solutionpointer; 
InteriediateResultl, IntervediateResult2: boolean; 

BEGIN 

Current: - Head; ( Current set to first element of solutions list ) 

WHILE Current 0 NIL DO BEGIN 
IntersediateResultl: z NOT (testbit(Message, XFQ) XOR testbit(Currentl. classifier, MFQ)); 
IntersediateResult2: z testbit(Current,,. essentialmask, XFQ); 
IF IntermediateResultl AND IntermediateResult2 z false THEN ( If the result is false, 

delete no-longer-possible solution element. 
IF Current - Head THEN BEGIN To delete first solution record ) 

Head: - HeadA. next; ( Move Head pointer to next element 
dispose (Current); { Delete first element ) 
Current: - Head; Set current pointer to what is now the first element 

END ( of IF ) 
ELSE BEGIN Delete if non-head element 

PrevioUSA next: = Current',. next; By-pass current element 
dispose (Current); Delete by-passed element 
Current: x PreviousA. Dext; Set current pointer equal to next element 

END ( of ELSE ) 

ELSE BEGIN Not deleting element because still possible solution 
Previous: = Current; Move previous pointer to current element 
Current: = CurrentA next Move current pointer to next element ) 

END; ( of ELSE ) IF CurrentA next is NIL, WHILE loop is exited 

END; ( of WHILE 

END; 

BEGIN END. 
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SEGMENT UsulQust; 
( Return the number of next unanswered usual question for all the possible solutions. 

f$I Comnl. Typ) 

FUNCTION FindUsualQuestion (MessageMask: bitstring; CountofQuestions: integer; 
Head: solutionpointer): integer; 

VAR Current: solutionpointer; 
Found: boolean; 
Index, questionnuid)er: integer; 

BEGIN 

Current: z Head: Go to beginning of solutions list 
Found: x false; 

WHILE (Current (> NIL) AND (Food = false) DO BEGIN 
Index: x 1: 

WHILE (Index (a CountofQuestions) AND (Found - false) DO 
IF (testbit(Currentl. usualiask, Index) = true) M (testbit(MessageMask, Index) = false) THEN 

BEGIN 
Found: - true; 
QuestionnuW*r: - Index; 

END ( of If 
ELSE 

Index: = Index + 1; 

Current: - Ozrent",. next; 
END; ( of WHILE ) 

IF Found a true THEN 
FindUsualQuestion: z QuestionNumber 

ELSE 
FindUsualQuestion: - 0; 

END; 

BEGIN END. 
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SEGMENT Probable; 
( Calculate the probability of the possible solutions being correct. 

($1 Covwnl. Typ) 
PROCEDURE PressKey (margiminteger); EXTERNAL; 

PROCEDURE CalculateProbability 
(Message, MessageMask: bitstring; CountOfQuestions: integer; Head: solutionpointer); 

VAR Current: solutionpointer; 
IntervediateResultl, IntervediateResult2, UsualResult: boolean; 
Index: integer; 

BEGIN 

Current: - Head; 

WHILE oirrent o NIL DO BEGIN 

( Go to beginning of solutions list ) 

FOR Index: m I TO CountOf'Questions DO BEGIN 
TntermediateResultl: = NOT (testbit(Message, Index) XOR testbit(CurrentA classifier, Index)); 
IntenediateResult2: x testbit(NessageMask, lndez) W testbit(CurrentA. usuallask, lndex); 
UsualResult: = IntermediateResultl AND IntermediateResult2; 
IF UsualResult a true THEN ( True when the answer to the usual question is correct 

Current, ". usualtrue: z (CurrentA. usualtrue + 1); 
END; ( of FOR ) 

WrentA probability: x (CurentA. usualtrue / CurrentA. totalusual) * 100; 
Current: x CurrentA. neXt ( Go to next solutions list element 

END; ( of WHILE 

M; 

BEGIN END. 
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SEGMENT DiSpRSlt; 
( Display the most likely solution with its probability on screen. 

($1 Coimonl. Typ) 
($I \PR0PAS\PkSPC) 
($I \PROPkS\PLSDOS) 
PROCEDURE Blankln (number: integer); EXTERNAL; 
PROCEDURE PressKey (sargin: integer); EXTERNAL; 
PROCEDURE FormFileName (filenumber: integer; title: string; VkR FileXame: string); EXTERNAL; 
PROCEDURE DisplayTextFile (DiskFile, directory, heading: string; 

filenumber, firstline: integer); EXTERNAL; 
FUNCTION YesNo (margiminteger): boolean; EXTERNAL; 

PROCEDURE DisplayResult (Head: solutionpointer); 
VkR Disk: text; 

Carrent: solutionpointer; 
Line: string[100]; 
FileName: string[30]; 
Cate: char; 
FrontRunner, Counter: integer; 
Probability: real; 

BEGIN 
ClrScr; 
IF Head - NIL THEN BEGIN 

Blankln (8); 
writeln (1 1: 7,11 know of no solution that matches these answers. '); 
PressKey (7); 

END ( of IF 
ELSE BEGIN 

Current: = Head; Go to first solution list element 
FrontRunner: =Olrrent'l. keynumber; 
Probability: = CurrentA probability; 
WHILE Current <> NIL DO BEGIN 

IF Currentl. probability > Probability THEN BEGIN Next element is the more probable 
FrontRunner: z CurrentA keynumber; ( Update FrontRunner 
Probability: x CurrentA. probability; ( Update Probability 

END; ( of IF ) 
Current: - CurrentA next; 

END; ( of WHILE ) 
FormFileName (FrontRunner, lsolution', FileNave); 
assign (Disk, fileName); Connect Disk with FrontRunner on disk file 
ChDir ('solution'); 
reset (Disk); 
Blankln (3); 
writeln (I 1: 7, 'Tbe most likely solution is; '); 
Counter: z 6; 
WHILE NOT eof(Disk) DO BEGIN Write solution text into screen box 

readln (Disk, Line); 
GoToXY (8, Counter); 
writeln (Line); 
Counter: z Counter +1 

END; ( of WHILE ) 
close (Disk, true); 
ChDir ('\shell'); 
GoToXY (7,13); 
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writeln (I 1: 1, 'The probability that the solution is correct is ', tnnc(Probability): 3, ' per- 
cent. 9; 

TextWindov (1,1,90,15); TextFrame (true); Emphasise displayed solution text 
TextWindow (1,1,80,25); 
GoToXY (5,23); 
writeln ('Press "W" for "Why" if you want to see an explanation of this solution., ); 
GoToXY (5,24); 
writeln ('Press any other key to clear the screen and begin another session. '); 
TextWindow (1,22,90,25); 
TextFrame (false); 
Gate: x ConSilent; 
IF (Gate a W) 01 (Gate - Y) THEN BEGIN 

TextWindov (1,17,80,21); 
TextFrame (false); 
FormMeName (FrontRunner, lexplanation', FileName); 
FileNane: z concat('\shell\solution\', FileName); 
IF fstat (FileName) - false THEN BEGIN 

GoToXY (7,2); 
vriteln ('No explanation for this solution is on file. '); 
PressKey (7); 
ClrScr; 

END ( of IF 
ELSE BEGIN 

DisplayTextFile (FileNate, lquestionl, 'Explanation', FrontRunner, l); 
END; ( of ELSE 

Gate: = ConSilent; 
END; ( of IF ) 

TextWindow (1,1,80,25); Restore text window to whole screen 
ClrScr 
END; ( of ELSE 
END; 

BEGIN END. 
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SEGMENT ClrHeap; 
( Removes the solutions linked list from memory. 

($1 Comnl. Typ) 

PROCEDURE ClearHeap (VAR Head: solutionpointer); 
VAR Current, Succeeding: solutionpointer; 

BEGIN 

Current: - Head; 
WHILE Current <> NIL DO BEGIN 

Succeeding: m Currentl. next; 
dispose (Current); 
Current: x Succeeding 

END; ( of WHILE 
Head: = NIL 

END; 
BEGIN END. 
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Appendix 3. LISTING OF HOUSE. BAS 

REM HOUSE ARCHITECTURE WITH CLASSIFIERS 
REX LIST OF VARIABLES *** 
REM C Array of Integers representing classifiers 
REX first index z classifier number 
REM second index = 16 bit field within each classifier 
REM CR Array of integers indicating relevant bits in classifier 
REX first index = type A or B or C 
REX second index z classifier number 
REX third index z 16 bit field within each classifier 
REX Q$ Array of diagnostic questions (string variables) 
REX NQ Number of questions (integer variable) 
REX H$ Array of house architectual types (string variables) 
REM FG Boolean array for presence of graphic info for each feature 
REM FP Integer array with bits set for features which are present 
REM FT Integer array with bits set for features tested 
REX CT Integer array of threshold value for each classifier 
REX MK Integer array of words used as bit tasks 
REX CV Integer array of values for each classifier 
REX NC Number of classifiers 
REM NE Number of houses for which all features are known 

REX *** INITIALIZATION 
DEFINT B-Z: OPTION USE 1 
WINDOW CLOSE 1 
DIN C(60,10), CR(3,60,10), CT(60), CV(60) 
DIN FP(lO)j FT(10), KK(16), FG(160) 
DIN Q$(160)lH$(60) 
FG(23)zl: FG(24)=l: FG(25)xl 
T$(l)="A": T$(2)z"B": T$(3)="C" 
FOR Jc1 TO 10 

FP(J) = O: FT(J)=O 
NEXT J 
FOR I=1 TO 59 

CV(I) a0 
NEXT I 
NE=O: BS=60: CV(BS)=-500 
Ba MOUSE(O) 

REM *** READ 16 BIT-MASKS 
FOR J=1 TO 16: REkD MK(J): NEXT J 

REM *** DISPLAY INFORMATION 
WINDOW 1,, (40170)-(472,280)12 
PRINT: PRINT TAB(12); "EXPERT SYSTEM FOR HOUSE ARCHITECTURE" 
PRINT: PRINT TAB(3); "This program is designed to help you identify the architectural" 
PRINT "style of family homes. The computer will ask you questions about" 
PRINT "specific attributes of the house you are examining. Respond to these" 
PRINT "questions by clicking the mouse on the appropriate answer. If you" 
PRINT "are not sure about the proper response, choose the alternative which" 
PRINT "is most nearly correct. " 

REM READ LIST OF QUESTIONS 
Ll: READ X: IF X= 999 THEN L2 
READ Q$(N): NQ=N: GOTO Ll 
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REM IUD CLAMIFIERS & RELEVANCE KASKS 
L2: READ N: IF Na 999 THEN L3 
READ H$(N), CT(N): NC zN 
FOR HI TO 3 
Cl: READ N: IF N=999 THEN C2 

NA ABS(N) 
Ja INT((NA-I)/16) +I 
Ka ((NA-1) MOD 16) +1 
CR(H, NC, J) a CR(B, NCiJ) OR MK(K) 
IF N>0 THEN C(NC, J) - C(NC, J) OR KK(K) 
GOTO Cl 

C2: NEXT H 
COTO L2 

ki* 

L3: PIINT: PRINT TA. B(18); "CLICK THE MOUSE TO BEGIN" 
DZ: IF HOUSE(O) a0 THEN DZ 
WINDOW CLOSE I 

REX *** CREATE MENUS 
MENU 6,0,1, "Debug" 
MENU 6,1j, "Nessage" 
MENU 6,2,1, "Cl us iflers" 
MENU 7,0,1, "Crosstabs" 
MENU 7,1,1, "House Types" 
MENU 7,2,1, wFeatures" 
ON MENU GOSUB PME 
MENU ON 

REM W DETERMINE DATE OF CONSTRUCTION 
Q$ - "When was the house built ?" 
WINDOW I, Q$, (120,60)-(390,310), l 

BUTTON 1,1, wbefore 1820", (90,20)-(190,40) 
BUTTON 2,1, "1820 to 1980", (80,65)-(180,85) 
BUTTON 3,1, "1890 to 1940"8(80,110)-(1801130) 
BUTTON 4,1, "after 1940", (80,155)-(180,175) 
BUTTON 5,1, "un]mown", (8O, 2OO)-(l8O, 220) 
GOSUB QUERY 
IF B, a5 THEN L4 
J31: K=B: FP(J) a FP(J) OR MK(K) 
FOR K-1 TO 16: FT(J) - FT(J) OR XK(K): NEXT K 

WINDOW CLOSE I 
FOR Ka1 TO 4: GOSUB AAJ: NEXT K 

i** 

REM GET SLOPE OF THE ROOF *** 
L4: Q$ - "What Is the slope of the roof ?" 
WINDOW I, Q$, (90,60)-(420,290) 

BUTTON 1, l, "flatw, (60,20)-(330,45), 2 
BUTTON 2,1, "less than 30 degrees", (60,60)-(330,95), 2 
BUTTON 3,1, "30 to 45 degrees", (60,100)-(330,125), 2 
BUTTON 4,1, "more than 45 degrees", (60,140)-(330,165), 2 
BUTTON 5,1, "combination of the above", (60,180)-(330,200), 2 
COSUB QUERY 
Jxl: KxB+4: FP(J) z FP(J) OR MK(K) 

WINDOW CLOSE 1 
FOR Kz5 TO 9: GOSUB ADJ: NEXT K 
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REX *** COMPOSITION OF EXTERIOR WALLS 
Q$ a *The exterior walls are vade of 
WINDOW 1, Q$, (90,60)-(420,300) 

BUTTON l, l, "wood", (6O, 20)-(26O, 45), 2 
BUTTON 2, I, "stone*, (6O, 55)-(26O, $O), 2 
Km 3,1, lbrick", (60,90)-(260,115), 2 
BUTTON 4,1, "stucco or adobe", (60,125)-(260,150), 2 
BU TTO K 5j, "codination of the above", (60,160)-(260,185), 2 
BU TTO M 6,1, "other", (60,195)-(260,220), 2 
GOSUB QUERY 
Jzl: KzB+9: FP(J) z FP(J) OR MK(K) 

WINDOW CLOSE I 
FOR K-10 TO 15: GOSUB ADJ: XEXT K 

REX *** ROOF-WALL JUNCTION *** 
0z "Junction between roof and exterior wall 
WINDOW 1, Q$, (40,55)-(465,315) 

BUTTON 1,1, "little or no overhang (no eaves)", (50,30)-(380,50), 2 
BUTTON 2,1, Oexterior wall extends above roof (parapet)", (50,60)-(390,80), 2 
BU MN3,1, "slight overhang with exposed rafters", (50,90)-(380,110), 2 
BU MN4,1, Oslight overhang with boxed eaves", (50,120)-(380,140), 2 
BUTTON 5,1, "wide overhang with exposed rafters", (50,150)-(380,170), 2 
BUTTON 6,1, ftwide overhang with boxed eavesw, (50,180)-(380,200), 2 
BUTTON 7,1, "otherw, (50,210)-(380,230), 2 
GOSUB QUERY: BIT -B+ 15 
Ja INT((BIT-1)/16) +1 
Ka ((BIT-1) MOD 16) +1 
FP(J) z FP(J) OR MK(K) 
J-2: FOR K -1 TO 6: FT(J) - FT(J) OR MK(K): NEXT K 

WINDOW CLOSE I 
J*I: Kzl6: GOSUB AW 
Jz2: FOR Kz1 TO 6: GOSUB ADJ: NEXT K 
GOSUB UP 

REX MIN LOOP *** 
REX GET NEXT QUESTION 
L9: IF CV(Kl) ) CT(Xl) THEN L40 
IF CV(BS)+470 CV(Kl) THEN Xl=BS: GOTO L40 
H-0 
L10: H+1: IF H)3 THEN L20 
j-1 
Lll: JJ+1: IF J) 10 THEN L10 

Q=CR(H, Nl, J): IF Q=O THEN Lll 
Ka0 

L12: K-K+1: IF K> 16 THEN Lll 
T-QW MK(K) MM NOT FT(J) 
If Tc0 THEN L12 
Na 16*(J-J) +K 
0a QVX) 
GOSUB YN 
FT(J) = FT(J) OR MK(K) 
IF B--l THEN FP(J) z FP(J) OR XK(K) 
GOSUB ADJ 
GOSUB TAP 
GOTO L9 
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L20: CV(Ml) a CV(xl)-500 
IF CV(Ml) ) CV(BS) THEN BS=Ml 
NE a NE + l: IF KEA THEN L30 
WINDOW 3, "BEST SO FkR", (320,170)-(500,220) 
MOVETO 20,20: PRINT H$(BS); SPC(2); CV(BS)+5OO; 
GOSUB UP 
GOTO L9 

L30: IF CV(11)+500 > 15 THEN Nl=Rl: GOTO L40 
WINDOW CLOSE 2: WINDOW CLOSE 3 
WINDOW 1,, (80,120)-(430,220), 2 
XOVETO 30,50: PRINT "This bouse does not fit any of my categories" 
GOTO TRAP 

L40: WINDOW CLOSE 2: WIXDOW CLOSE 3 
WINDOW 111(80,120)-(430,220), 2 
XOVETO 30,50: PRINT "The architectural style is "; H$(Nl); 

TRAP: GOTO TRAP 

REX *** AWUST CLASSIFIER VALUES 
AM FOR IxI TO NC 

IF CV(I) a -99 THEN A3 
TR z NOT(C(10J) XOR FP(J)) 
Hal: RB - CR(H, I, J) AND KK(K) 
IF RB a0 THEN Al 
TB a TR AND RB 
IF TB a0 THEN CV(I)z-99 ELSE CV(I)=CV(I)+5 
GOTO A3 

AD H-2: RB - CR(H, I, J) AND MK(K) 
IF RB a0 THEN A2 
TB a TR AND RB 
IF TB a0 THEN CV(I)=CV(I)-5 ELSE CV(I)=CV(I)+5 
COTO A3 

A2: Hc3: RB m CR(H, I, J) AND MK(K) 
IF RB z0 THEN A3 
TB a TR W RB 
IF TB 20 THEN CV(I)=CV(I)-l ELSE CV(I)=CV(I)+5 

A3: NEXT I 
RETURN 

REM SUBROUTINE TO CHECK DESKTOP *** 
QUERY: Du DIALOG(O): IF Do1 THEN QUERY 
Ba DIALOG(l): BUTTON B, 2 
RETURN 

REM SUB TO ASK YES-NO QUESTION 
YN: IF FG(N) -0 THEN Yl 
WINDOW 4,1(70,135)-(260,235), 3 
TQ - N-22: ON TQ GOSUB Gl, G2, G3, G4, G5 
Yl: WINDOW l, "Does the house have", (30,50)-(490,130), l 
Y2: NT=O: NL - LEN(Q$): LB z 200 - NL*3 

MOVETO LB, 20: PRINT Q$; " ? "; 
BUTTON 1,1, "Yes", (150,40)-(190,60) 
BUTTON 2,1, "No", (230,40)-(270,60) 
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Y3: D a DIALOG(O): NT z XT + l: IF NT > 600 THEN Y2 
IF D01 THEN Y3 
8a DIM(l): BUMN B, 2 

WINDOW CLOSE l: WTNDOW CLOSE 4 
RETURN 

REX PROCESS MENU SELECTION *** 
PME: Mx MENU(O): IF Mz7 THEN CRT 
IF X06 THEN RETURN 
MENU 6, S, I: S a MENU(l) 
MENU 6, S, 2: XENU 
ON S GOSUB MESSr CLAS 
RETURN 

REX DISPLAY MESSAGE 
MESS: WINDOW CLOSE 2 
WINDOW 4, ""j(20,35)-(490,305), 2 
PRIMT: PRINT TkB(22); "CUlREMT MESSAGE" 
PRINT TkB(13); NBITS TESTED"; SPC(14); "BITS SET" 
FOR J2 a1 TO 10: PRINT TkB(10); 

FOR K2 aI TO 161 a FT(J2) AND MK(K2) 
IF To0 THEN PRINT 111"; ELSE PRINT "011; 

NEXT K2: PRINT SPC(6); 
FOR K2 aI TO 161 a FP(J2) AND MK(K2) 

IF T00 THEN PRINT "?; ELSE PRINT V; 
NEXT K2: PRINT 

NEXT J2 
PRINT: PlINT TAB(20); "HIT ANY KEY TO CONTINUE"; 
Mz: R$zINKEY$: IF R$ a "" THEN XZ 
WINDOW CLOSE 4 
RETURN 

CLkS: WINDOW CLOSE 2 
WINDOW 4, "", (10,35)-(500,320)12 
PRINT: PRINT TAB(20); "LUDING ACTIVE CANDIDATE" 
PRINT TkB(22); H$(Ml) 
PRINT TAB(7); "Classifier"; SPC(14); "Mask A"; SPC(13); "Masks B C" 
FOR J3 z1 TO 10 

PRINT TAB(3); 
FOR K3 aI TO 16 

Tz C(MI, J3) AND MK(K3) 
IF To0 THEN PRINT 01"; ELSE PRINT "0"; 

NEXT K3: PRINT SPC(4); 
FOR K3 aI TO 16 

Ta CR(1, MI, J3) M MK(K3) 
IF To0 THEN PRINT Nl"; ELSE PRINT V; 

NEXT K3: PRINT SPC(4); 
FOR K3 -1 TO 16 

Tz (CR(2, Ml, J3) OR CR(3, Ml, J3)) AND MK(K3) 
IF To0 THEN PRINT "I"; ELSE PRINT V; 

NEXT K3: PRINT 
NEXT J3 
PRINT: PRINT TAB(21); "HIT ANY KEY TO CONTINUE"; 
CZ: R$zINKEY$: IF R$ THEN CZ 
WINDOW CLOSE 4 
RETURN 
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TAP: Mlx60: X2z60: X3=60: CV(Xl) a -500 
FOR IaI TO NC 

IF cv(r) ) CV(Xl) THEN X3zM2: M2=Xl: Xlxl: GOTO Tl 
IF CV(I) > CV(X2) THEN X3zX2: K2-1: GDTO Tj 
IF CV(I) ) CV(M3) THEN M3xI 

TI: NEXT r 
WINDOW 2, "ACTIVE CANDIDATES", (20,260)-(480,330), l 
XOVETO 40,15 
PRINT CV(Ml); "/"; CT(Xl); SPC(3); H$(Xl); 
MOMPO 40,35 
PRINT CV(X2); "/"; CT(M2), *SPC(3); H$(X2),, 
MOVM 40,55 
PRINT CV(M3); "/"; CT(K3); SPC(3); H$(M3); 
RETURN 

REX PROCESS MENU INTERRUPT 
CRT: WINDOW CLOSE 2 
MENU: NX=O: IF MENU(I) a2 THEN PM5 
IF MENU(l) 01 THEN RETURN 
PKI: WINDOW 3, "WHICH HOUSE TYPE ? ",, l 
MXlzl2: IF XXI)NC-NX THEN XXIzNC-NX 
FOR lIsl TO XXI 

BUTTON 11,1, H$(II+NX), (40,20*11-5)-(240,20*II+10), 2 
NEXT II: IF NC-KX(13 THEN PM2 
MXIx24: IF MXI)NC-NX THEN XXIzNC-NX 
FOR II a 13 TO XXI 

BUTTON 11,1, H$(II+NX), (260,20*11-245)-(470,20*II-230), 2 
NEXT 11 
PM2: IF NX+24(NC THEN BUTTON 25,11"MORE", (80,260)-(200,280), 3 
BUTTON 26, lt"EXIT"1(300,260)-(420,280), 3 
PM3: IF DIALOG(O) 01 THEN PM3 
KCH=DIMA(l): BUTTON KCH, 2 
IF KCHz25 THEN NX--NX+24: GOTO PM1 
IF KCHx26 THEN PM9 
HC=KCH+NX: R$, "RELEVANT FEATURES FOR "+H$(HC) 
WINDOW 3, R$,, l 
NFcO 
FOR HH zI TO 3 

FOR JJ aI TO 10 
FOR KK -I TO 16 

TCB, a CR(HH, HC, JJ) AND MK(KK) 
IF TCB a0 THEN PM4 
XFtNF+I: NN=(JJ-I)*16 +M 
PRINT SPC(l); T$(HH); SPC(3); Q$(NN) 
IF NF - 16 THEN GOSUB, PAU 

PM4: NEXT KK 
NEXT JJ 

NEXT UH 
BUTTON 1,1, "EXIT", (430,270)-(490,290), 3 
PM4A: IF DIALOG(O) 01 THEN PX4A 
KCHzDIALOG(l): IF KCHOI THEN PM4A 
BUTTON 1,2: GOTO PM9 
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PMS: WINWW 3, "WHICH FEATURE ? "oil 
MXIxl2: IF MIT)NQ-Nl THEN XXIxNQ-NI 
FOR IIxI TO KII 

, BUTTON 11,1, Q$(II+NX), (10,20ilI-5)-(480,20*II+10), 2 
NEIT 11 
If NX+12(NQ THEN BU MN 13ol, "MORE", (80#260)-(200,280), 3 
BU MN 14,1, 'EXIT", (300,260)-(420,280), 3 

PX6: IF DIM(O) 01 THEN PM6 
KCH a DIMX(l): BUTTON KCH, 2 
IF KCH*13 THEN NI-tNX+12: GOTO PX5 
IF KCHxl4 THEN PM9 
FC-KCH+XX: WIM 3#Q$(FC)#, l 
BU MN1,1, "EIIT", (430,270)-(490,290), 3 
JJ a INT((FC-I)/16) +I 
KK a ((FC-1) NOD 16) +1 
FOR KH aI TO 3 

FOR Il a1 TO NC 
TBC a CR(B, 11, JJ) W XK(KK) 
IF TBC a0 THEN PM6A 
IF HVII) aM THEN PM6A 
PRINT SPC(l); T$(HH); SPC(l); H$(II) 
PH$ - Hs(II) 

px6A: 
NEXT HE 

NEXT II 

PK7: IF DIALOG(O) 01 THEN PM7 
KCHzDIALOG(l): IF KCHM THEN PK7 
BUTTON 1,2 
PN9: WINDOW CLOSE 3 
RETURN 

PAU: BUTTON 1,1, "XORE", (430,270)-(490,290), 3 
PAI: IF DIALOG(0)01 THEN PAl 
KCH=DIALOG(l): IF KCHol THEN PAI 
BUTTON 1,2: BUTTON CLOSE I: RETURN 

REX GRAPHICS FOR BOARD-AND-BATTEN FRONT DOOR 
Gl: LINE (75,13)-(117,87),, B 
FOR IzI TO 6 

LINE (75+1*6,13)-(75+1*6,87) 
NEXT I 
RETURN 

REM GRAPHICS FOR RECESSED PANELS IN FRONT DOOR 
G2: LIKE (75,12)-(117s88)l, B 
FOR I-I TO 4 

LIKE (84,6+16*I)-(92,16+16*I),, B 
LINE (98,6+16*I)-(106,16+16*1),, B 

NEXT I 
RETURN 

*k* 
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REX PILASTERS ON EACH SIDE OF FRONT DOOR 
G3: LIKE (80,20)-(112,80),, B 
LIKE (69,20)-(74,80),, B 
LIKE (118,20)-(123,80),, B 
LINE (67,80)-(76,83),, B 
LINE (116,80)-(125,83),, B 
LINE (78,80)-(114,83),, B 
LINE (67,17)-(76,20),, B 
LINE (116,17)-(125,20),, B 
RETURN 

REX *** XASKS FOR BIT WIPULATION 
DATA 08000,04000,02000,01000 
DATA 0800,0400JH200,0100 
DATA 080,040,020,210 
DATA 08,04,02,01 

REX LIST OF ARCHITECTURAL FEATURES 
REM DATE OF CONSTRUCTION 
DATA 1,11before 1820" 
DATA 2, "1820 to 1880" 
DATA 3, "1880 to 1940" 
DATA 4, "after 1940" 
REX *** ROOF SLOPE 
DATA 5, "flat roof" 
DATA 6, "Iow slope roof" 
DATA 7, "moderate slope roof" 
DATA 8,11steep slope roof" 
DATA 9, "several different roof slopes" 
REX *** COMPOSITION OF EXTERIOR WALLS 
DATA 10, "wood exteriorn 
DATA ll, "stone exterior" 
DATA 12, "brick exterior" 
DATA 13, "stucco or adobe exterior" 
DATA 14, "coabination of wood and masonry or stucco" 
DATA 15, "unconventional exterior cladding" 
REX *** JUNCTION OF ROOF AND EXTERIOR WALL 
DATA 16, "no roof overhang" 
DATA 17, "parapet at roof-line" 
DATA 18, "slight overhang with exposed rafters" 
DATA 19, "slight overhang with boxed eaves" 
DATA 20, "wide overhang with exposed rafters" 
DATA 21, "wide overhang with boxed eaves" 
DATA 22, "uusual roof-wall junction" 
REX *** ENTRYWAY *** 
DATA 23, "a board-and-batten front door" 
DATA 24, wslx or eight recessed panels in the front door" 
DATA 25, "pilasters on each side of the front door" 
DATA 26, "a pediment (crown) above the front door" 
DATA 27, "a front door split into upper and lower halves" 
DATA 28, "more than one external front door" 
DATA 29, "paired entry doors" 
DATA 30, "a semi-circular or elliptical fanlight over the front door" 
DATA 31, "slender columns supporting a forward-extending pediment" 
DATA 32, "siall rectangular windows on either side of the front door" 
DATA 33, "a round-arched front doorway" 
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DATA 34, "onate decorations on or around the front door" 
DATA 35, "a recessed or obscurred main entrance" 
DATA 36, "a row of small, rectangular glass panes above the front door" 
DATA 37, "an entryway dominated by a large, formal portico (entry porch)" DATA 38, "a fancy metal canopy extending forward above the front door" 
DATA 39, wcantilevered (unsupported) section of house, roof, or balcony" 
REX *** FRONT PORCH *** 
DATA 40, "a full-height (ground to roof-line) entry porch" 
DATA 41, "a large, one-story front porch" 
DATA 42, wa porch wrapping around more than one side of the house" 
DATA 43, "classical (Roman) columns" 
DATA 44, "porch roof supported by heavy, squared columns" 
DATA 45, "porch roof supported by delicate, turned columns" 
DATA 46, Ospindled porch railings" 
DATA 47, "porch roof supports which look like bundles of sticks flared at the top" 
DATA 48, "a second-story porch (balcony) with balustrade" 
DATA 49, "lacy spandrels (gingerbread) along porch roof-line" 
DATA 50, "no front porch" 
DATA 51, "porch roof supported by plain, slender, wooden columns" 
DATA 52, "a porch which covers the entire front facade" 
DATA 53, "rough-bewn porch supports, roof bears, and window lintels" 
DATA 54, "visor-shaped, horizontal extension along front of house" 
REM *** WIMS *** 
DATA 55, "one or tore palladian windows" 
DATA 56, "one or tore oriel. windows" 
DATA 57, "one or sore bay windows" 
DATA 59, "a large, rectangular picture window" 
DATA 59, "metal casement windows set flush with exterior wall" 
DATA 60, "a window with a large pane bounded by many smaller panes" 
DATA 61, "double-hung windows with vulti-pane glazing" 
DATA 62, "windows grouped in side-by-side pairs" 
DATA 63, "tall, narrow windows with sulti-pane glazing" 
DATA 64, "three or tore contiguous windows" 
DATA 65, "upper-story windows less elaborate than first-story ones" 
DATA 66, "horizontal window openings with many rectangular panes" 
DATA 67, "windows constructed of glass blocks" 
DATA 68, "windows with many, small, diamond-shaped panes" 
DATA 69, "windows with blank lower panes and patterned upper panes" 
DATA 70, "segmental arches above windows" 
DATA 71, "rounded arches above windows" 
DATA 72, "pointed arches above vindowsn 
DATA 73, "label molding above windows" 
DATA 74, "hood molding above windows" 
DATA 75, "bracketed awnings above windows" 
DATA 76, "pedivented windows" 
DATA 77, Osmall iron balconies at the base of window openings" 
DATA 78, "flat lintels above window openings" 
DATA 79, "round or elliptical windows" 
REM *** GENERAL ARCHITECTURAL FEATURES 
DATA 80, "an irregular roof shape" 
DATA 81, "a second story which partially overhangs the first story" 
DATA 82, " a round or polygonal tower at one corner of the facade" 
DATA 83, "symmetrically placed windows about a centered front door" 
DATA 84, "two or more front-facing gables" 
DATA 85, "a prominent gable on the front facade" 
DATA 86, "upper and lower stories with different exteriors" 
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DATA 87, wone or more pedimented dormers" 
DATA $$, "a sculptured (fancy shape) dormer" 
DATA 99, "ground to roof-line pilasters" 
DATA 90, "cross gables (90 degree angle from each other)" 
DATA 91, wa gambrel roof (dual pitched gables)" 
DATA 92, "a mansard roof (hipped with differing upper and lower slopes)" 
DATA 93, "a hipped roof" 
DATA 94,1flared eaves" 
DATA 95, "rounded ceramic roof tiles" 
DATA 96, "flat ceramic roof tiles" 
DATA 97, wwooden roof shingles" 
DATA 99, "a thatched or false-thatched roof" 
DATA 99, "exterior walls arranged in an octagonal shape" 
DATA 100, wwooden shingles covering a curved or rounded exterior wall" 
DATA 101, "a prominent round tower with a conical roof" 
DATA 102, "a prominent square, hexagonal, or octagonal tower" 
DATA 103, "a long, sprawling floor plan (ranch style)" 
DATA 104, "an attached garage" 
DATA 105, wwide masonry columns supporting the house" 
DATA 106, "a simple rectangular floor plan and a side-gabled roof" 
DATA 107, "a multi-directional shed roofu 
DATA 108, "three different floor levels in a two-story house (split level)" 
DATA 109, "a central wing projecting forward from the front facade" 
DATA 110, "two stall wings at either end with a recessed central entryway" 
DATA lll, wtwo or more stories" 
DATA 112, "wall cladding which extends up into the gable without a break" 
DATA 113, wgradually curved vertical corners" 
DATA 114, "a long horizontal ribbon of connecting windows" 
REX *** ROOF-LINE ORNAMENTATION *** 
DATA 115, "ornamental brackets under the eaves" 
DATA 116, "zodillions or dentils under the eaves" 
DATA 117, wdecorated verge boards" 
DATA 118, "trusses in the gables" 
DATA 119, "false beams at the end of the gables" 
DATA 120, Nspindlework detailing (gingerbread) in the gables" 
DATA 121, "decorative terra cotta panels on the face of the gables" 
DATA 122, "decorative half-timbering in the gables" 
DATA 123, "a roof-line balustrade" 
DATA 124, "a wide band of trim under the eaves" 
DATA 125, "a small, horizontal ledge (coping) at the roof line" 
DATA 126, "parapeted gables without half-timbering" 
DATA 127, "fancy, ornate decorative detailing along the roof-line" 
DATA 128, "horizontal rectangular openings just below the roof-linen 
DATA 129, "an eyebrow dormer" 
REK *** EXTERIOR WALL DEOORATIONS 
DATA 130, "decorative half-timbering on upper-stories" 
DATA 131, wexterior details which avoid a smooth-walled appearance" 
DATA 132, "patches of patterned or textured shingles" 
DATA 133, "masonry walls with patterned brickwork or stonework" 
DATA 134,11brackets accentuating simulated upper-story overhangn 
DATA 135, "wood shingle wall cladding" 
DATA 136, "quoins decorating corners of masonry exterior" 
DATA 137, "a belt course on masonry exterior" 
DATA 138, "garlands or other floral decorations on exterior" 
DATA 139, "rectanqular shutters along side the windows" 
DATA 140, "patterned stickwork decorations on exterior walls" 
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DATA 141,11wooden roof beams projecting from top of exterior wall" 
DATA 142, "zigzag, chevron, or lozenge decorations on exterior" 
DATA 143, "conice and facade detailing emphasizing horizontal lines" 
DATA 144, "dorner windows on the steep lower slope of a mansard roof" 
DATA 145, "hipped dormer" 
DATA 146, "shed dormer" 
DATA 147, "exterior detailing with a vertical emphasis" 
DATA 148, "small towers and other vertical projections on the roof" 
DATA 149, "floor-to-ceiling windows" 
REX ROOF-TOP DECORATIONS 
DATA 150, "a roof-top cupola" 
DATA 151, "a pinnacle on the roof" 
DATA 152, "castellations on the roof" 
DATA 153, "metal roof cresting" 
DATA 154, "spires projecting above one or more gables" 
DATA 155, "a large onion-shaped (Turkish) dome on the roof" 
DATA 156, "decorative chimney pots" 
DATA 157, "a prominent, tall, decorative chimney" 
DATA 158, "a wide, flat, plain chimney" 
DATA 159, "a roof-top balustrade" 
DATA 160, "large chimneys at both ends of the house" 
DATA 999 

REX *** LIST OF CLASSIFIERS 
DATA 1, "Queen Anne Victorian", 35 
DATA 3,8,80, -83,999 
DATA 41,131,999 
DATA 14,42,43,45,48,49,55,57,60,69,82,84,116,117,157 
DATA 118,120,121,122,132,133,134,153,999 
DATA 2, "Tudor", 30 
DATA 3,8, -41,999 
DATA 90,157,112,999 
DATA 12,23,33,63,64,98,126,130,156,999 
DATA 3, "Italian Renaissance", 30 
DATA 3,21,93,999 
DATA 6, -10,115,999 
DATA 25,26,65,71,76,109,110,136,137,999 
DATA 4, "Italian Renaissance", 30 
DATA 3,5,11,999 
DATA 93,116,123,999 
DATA 25,26,43,44,65,71,76,136,137,999 
DATA 5, "Northern Postmedieval English", 25 
DATA 1,8,16,999 
DATA 10,23,68,106,111,999 
DATA 81,135,157,999 
DATA 6, "Southern Postmedieval English", 25 
DATA 1,8,16,999 
DATA 23,68,106,999 
DATA 12,111,160,999 
DATA 7, "Urban Dutch Colonial", 30 
DATA 1,999 
DATA 8,12,17,106, -111,146,999 
DATA 27,61,91,160,999 
DATA 8, "Rural Dutch Colonial", 30 
DATA 1,999 
DATA -10,106,999 
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DATA 27,61,91,94, -111,146,999 
DATA 9, "Urban French Colonial", 35 
DATA 50,999 
DATA 1,8,13,106, -111,999 
DATA 17,28,29,30,63,94,999 
DATA 10, "Rural French Colonial", 30 
DATA 1,999 
DATA 8,13,41,999 
DATA 29,51,63,92,105,999 
DATA 11, "Spanish Colonial", 25 
DATA 6, -10,999 
DATA 1,28, -34,95,999 
DATA 23,48,999 
DATA 12, "Spanish Colonial", 30 
DATA 5, -10,17,999 
DATA 1,28, -34, -111,999 
DATA 23,41,141,999 
DATA 13, "Georgian", 40 
DATA 1, -30, -62,111,999 
DATA 7,19,61,83,999 
DATA 24,25,26,36,54,76,85,87,89,91,106,116,136,137,159,999 
DATA 14, "Adain, 40 
DATA 1, -62,999 
DATA 7,19,30,61,999 
DATA 24,25,31,32,55,77,78,83,85,116,123,127,137,138,139,999 
DATA 15, "Early Classical Revival", 35 
DATA 37,43,83,999 
DATA 1,7,19,30,40,999 
DATA 24,25,48,79,116,123,999 
DATA 16, "Greek Revival", 35 
DATA 2, -30,124,999 
DATA 6,19,32,43,999 
DATA 25,36,40,49,52,128,999 
DATA 17, "Gothic Revival", 40 
DATA 2,8,999 
DATA 10,18,41,72,90,112,999 
DATA 56,57,73,84,95,102,117,118,999 
DATA 18, "Gothic Revival", 30 
DATA 2, -10, -13,999 
DATA 102,152,999 
DATA 32,72,73,151,999 
DATA 19, "Italianate", 35 
DATA 2,999 
DATA 6,111,115,999 
DATA 25,29,32,41,43,62,72,74,75,85,102,128,150,999 
DATA 20, "Egyptian Revival", 25 
DATA 2, -10,47,999 
DATA 6,111,999 
DATA 25,62,78,115,116,999 
DATA 21, "Oriental Revival", 25 
DATA -10,93,155,999 
DATA 2,72,133,999 
DATA 115,999 
DATA 22, "Swiss Chalet Revival", 25 
DATA 6,10,20,999 
DATA 2,127,999 
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DATA 48,140,999 
DATA 23, "Octagon", 25 
DATA 2,99,999 
DATA 6,21,93,999 
DATA 41,42,115,150,999 
DATA 24, "Second Empire Victorian", 35 
DATA 2,144,999 
DATA 9,92,115,999 
DATA 25,29,41,57,62,71,74,75,79,102,109,136,137,150,999 
DATA 25, "Stick Victorian", 35 
DATA 10,140,999 
DATA 2,8,18,90,999 
DATA 41,57,75,94,102,118,999 
DATA 26, "Shingle Victorian", 35 
DATA 3,135,999 
DATA 7,41,80, -83,999 
DATA 55,57,64,82,100,129,145,999 
DATA 27, "Ricbardsonian Romanesque", 30 
DATA 3,11,999 
DATA 71, -83,101,999 
DATA 43,64,126,129,151,999 
DATA 28, "Folk Victorian", 30 
DATA 3,10,999 
DATA 7,41,49,999 
DATA 19,45,46,93,115,999 
DATA 29, "Colonial Revival", 33 
DATA 61,999 
DATA 3,7,19,999 
DATA 25,26,31,32,54,57,62,71,81,83,87,91,109,116,135,136,146,999 
DATA 30, "Neoclassical", 33 
DATA 40,43,999 
DATA 3,7,19,61,83,999 
DATA 25,26,32,116,123,999 
DATA 31, "Chateauesque", 35 
DATA 3,8, -10,999 
DATA 157,999 
DATA 11,33,71,74,101,126,151,154,999 
DATA 32, "Beaux Arts", 25 
DATA 3,92,138,999 
DATA 11,83,87,999 
DATA 38,76,77,136,999 
DATA 33, "Beaux Arts", 20 
DATA 3,5,138,999 
DATA 11,43,83,123,999 
DATA 71,136,999 
DATA 34, "Beaux Arts", 20 
DATA 3,6,93,138,999 
DATA 11,83,999 
DATA 71,136,999 
DATA 35, "French Eclectic", 30 
DATA 3,8, -10,999 
DATA 19, -90,93,999 
DATA 33,77,83,94,145,157,999 
DATA 36, "French Eclectic", 35 
DATA 3,8, -10,101,999 
DATA 19, -90,93,999 
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DATA 33,64,81,94,130,157,999 
DATA 37, "Mission", 25 
DATA 3,999 
DATA 7,13,95,999 
DATA 17,20,33,41,44,54,88,102,999 
DATA 38, "Spanish Eclectic", 25 
DATA 3,999 
DATA 6,13,16, -83,95,999 
DATA 23,33,34,71,77,999 
DATA 39, "Monterey", 25 
DATA 6, -93,111,999 
DATA 3,48,999 
DATA 51,86,97,999 
DATA 40, "Pueblo Revival", 25 
DATA 3,5,999 
DATA 13,17,141,999 
DATA 23,53, -83,999 
DATA 41, "Pueblo Revival", 25 
DATA 4,5,999 
DATA 13,17,141,999 
DATA 23,53, -83,999 
DATA 42, "Prairie", 35 
DATA 3,6,999 
DATA 21,111,143,999 
DATA 34,41,44,64,93,95,119,145,158,999 
DATA 43, "Craftsman", 30 
DATA 3,6,999 
DATA 20,999 
DATA 41,44,64, -93,94,115,118,119,130,146,999 
DATA 44, "Art Moderne", 30 
DATA 3,5,999 
DATA 13, -83,125,143,999 
DATA 67,79,113,999 
DATA 45, "Art Deco", 20 
DATA 3,51142,999 
DATA 13,999 
DATA 127,147,148,999 
DATA 46, "International", 35 
DATA -1, -2,5, -83,999 
DATA -17,59, -125,999 
DATA 13,35,39,51,114,149,999 
DATA 47, "Minimal Traditional", 25 
DATA 4, -5, -8,999 
DATA 16,85,999 
DATA -111,157,999 
DATA 48, "Ranch", 20 
DATA 4,103,999 
DATA 6, -16, -83, -111,999 
DATA 58,104,139,999 
DATA 49, "Split-Level", 15 
DATA 4,108,999 
DATA 6, -16,999 
DATA 14,104,999 
DATA 50, "Contemporary", 20 
DATA 4,999 
DATA 6,20,999 
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DATA 14,147,149,999 
DATA 51, "Sbed", 15 
DATA 4,107,999 
DATA 16,999 
DATA 10,35t999 
DATA 52, "Neoeclectic Mansard", 25 
DATA 4,9,92,999 
DATA -10,63,71,999 
DATA 29,30,50,999 
DATA 53, "Neocolonial", 25 
DATA 4, -5,999 
DATA 7,61,111,999 
DATA 81,83,139,999 
DATA 54, nNeo-French", 25 
DATA 418,93,999 
DATA -10,63,999 
DATA 71, -83, -104,999 
DATA 55, "Neo-Tudor", 30 
DATA 4,8,999 
DATA -10,63, -83190,999 
DATA 64,80,84,130,157,999 
DATA 56, "Neo-Kediterranean", 25 
DATA 4,6, -10,999 
DATA 71,999 
DATA 12,13,20,21,29,95, -104,999 
DATA 57, "Neoclassical Revival", 25 
DATA 4,40,999 
DATA 37,43,83, -104,999 
DATA 49,124,136,999 
DATA 58, "Neo-Victorian", 35 
DATA 4,10, -50,111,999 
DATA 45,46, -83,131,999 
DATA 42,49,61,999 
DATA 999 
END 

(Frey, 1986b) 
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