
L C', 3 2jý -6 ý-- C-3

ARTIFICIAL INTELLIGENCE AND ITS APPLICATION
IN ARCHITECTURAL DESIGN

Julian E. H. Mustoe

A thesis submitted for the
degree of Doctor of Philosophy

Department of Architecture and Building Science
University of Strathclyde

Glasgow

November 1990

The copyright of this thesis belongs to the
author under the terms of the United Kingdom
Copyright Acts as qualified by University of
Strathclyde Regulation 3.49. Due acknowledge-
ment must always be made of the use of any
material contained in, or derived from, this
thesis.

I would particularly like to thank my
supervisor at ABACUS, Dr Alan Bridges,
for his steady support of the work on
this thesis. I owe much to his good
humour and perspicacity.

I am also greatly in debt to Dr Karen
James for her advice and help, partic-
ularly with the intricacies of the
Pascal programming language.

Table of Contents

Chapter 1. Introduction 1
Four Generations of Design Studies 2
Architectural Design 9
Logic .. 11
The Structure of the Thesis 15

Chapter 2. AI as Machine Intelligence 19
Definitions 19
Scripts and Conceptual Dependency 24

Chapter 3. The Critique of John Searle 33
The Chinese Room 33
Conclusion 36

Chapter 4. The Critique of Hubert Dreyfus 37
Unfulfilled Promise - Machine Translation 40
Unfulfilled Promise - Computer Chess 43
Unfulfilled Promise - Pattern Recognition 45
The Human Situation 49
Conclusion 51

Chapter 5. Searle, Dreyfus & the Simulation of Cognition 52
Intentional States 52
Phenomenology 57
The Limits of Phenomenology ..; 61
Conclusion 65

Chapter 6. Wittgenstein and AI 67
The Vienna Circle 67
The Search for a Conceptual Base 72
Calculi and Computability 73
Independence of Atomic Facts 74
The Logic of a Double Negative 76
Rules and Truth-Functions 80
Conclusion 82

Chapter 7. AI and the Later Wittgenstein 83
Logic and Semantic Nets 84
Picture and Frame Theories of Representation . 86
Understanding as Mapping or Language-Game 90
Conclusion 92

(A) Chapter 8. The Taxonomy of Artificial Intelligence 94
Natural Language Processing 95
Visual Perception 97
Machine Learning 100
Search 104
Control 106
Problem Solving 108
Intelligent Artifacts 110
Intelligent Tutoring Systems 111

)(Expert Systems 116
Conclusion 118

- iv

Chapter 9. Graphs 120
Drawings 120
Maps ... 121
Graphs 122
Directed Graphs and Trees 126
Traversing a Simple Graph 127
Traversing a Looped Graph 129
Non-Monotonicity 130
Architecture and Non-Montonicity 134
Conclusion 137

I Chapter 10. Production Systems 138
The Work of Emile Post 138
Production Systems and AI 142
The DENDRAL Project 145
Production Systems and Programming 148
Conclusion 150

Chapter 11. Classifier Systems 151
Classification 151
Bit Strings 153
The Frey Algorithm 156
Critique of the Frey Algorithm 163

Chapter 12. The Plan of Cortex 167
Control in Cortex 167
Probability 171
The Coding of Cortex 173
Cortex in Pseudocode 175

Chapter 13. The Cortex Shell 178
The Segments 178
The Segments Individually 182

Chapter 14. Empleinentation of Cortex 240
Architectural Precedent 240
Slide Libraries 242
The Dublin Disc 244
The Questions 245
The Laservision Disc Reader 246
Cortex and the Dublin Disc 248

Chapter 15. Conclusion 250
Graph Theory 251
The Cortex Shell 253
Further Research 255

Appendix 1. Text of the Questions 259
Appendix 2. Listing of Cortex 273
Appendix 3. Listing of House. Bas 323

References ... 338

-

Index of Figures

Figure 8.1
8.2
8.3
8.4
8.5
8.6

Figure 9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Visual Edges 97
Filtering a Point 98
Example of Edge Detection 99
Scene Analysis by the Waltz Algorithm 100
Chromosome Cross-over During Cell Division .. 103
Bit-string Cross-over 103

The Bridges of Konigsberg 123
Graph of the Bridges of Konigsberg 124
Trees 127
" Simple Directed Graph 128
" Directed Graph Containing a Feedback Loop . 129
" Directed Graph Containing a Feedback Loop . 132
The Design Process as a Graph 135
Framework for Design management 136

Figure 10.1 Canonical Form of a Production 139
10.2 Normal Form of a Production 141
10.3 A Production System 143
10.4 A Hypothetical Production System 144
10.5 The Principle of Mass Spectrometry 146

Figure 11.1 Animal Identification Scheme 152
11.2 Duda & Gaschnig as a Matrix 153
11.3 Classification by Pattern Matching 155
11.4 The Frey Algorithm 159

Figure 12.1 Flow of Control in Cortex 177

Figure 14.1 Cortex Laservision Installation 247

Chapter 1. INTRODUCTION

There are many areas of human activity in which artificial
intelligence, when defined as "that part of computer

science concerned with designing intelligent computer

systems, that is, systems that exhibit the characteristics

we associate with intelligence in human behaviour" (Barr &

Feigenbaum, 1981), could be expected to have an applica-
tion. Visual perception and the ability to distinguish

patterns in the world, working with numbers in such a way

as to display mathematical discrimination rather than

merely an ability to calculate, and the ability to process

natural language at a higher level than formal symbol

manipulation, are three areas of investigation that are

embraced by the topic of artificial intelligence. The rate

at which research in artificial intelligence has progressed
has been uneven, and has varied from one topic to another.

sometimes, as in natural language processing, little has

been achieved beyond revealing how difficult the problems

are.

The activity of architectural design, which touches upon

all three of these topics, might be thought to be another

subject which is suitable for artificial intelligence

research. An architect must display visual ability, he must
have a grasp, perhaps somewhat rudimentary, of mathematics,

and he must be verbally literate. Workers in artificial
intelligence (Akin, 1978 & 1986) have made a number of

efforts to investigate design. Ramesh Krishnamurti (1985)

has attempted to interpret the activity of design as a kind

of set-based expert system. However, the topic has so far

resisted researchers from artificial intelligence, and
indeed from almost all other academic specialisms including

the discipline of engineering. It is instructive to inquire

as to why this is so, and the first half of this thesis is

an attempt to elucidate the relationship between architec-

ture and artificial intelligence.

page 1

The purpose of this introductory chapter is, in the first

place, to describe the point of view from which the inves-

tigation has been carried out. This entails a discussion of
the activity of design, and the drawing of a distinction

between the notions of reason and logic. Secondly, I give a
brief account of the main ideas contained in the body of
the work and outline the argument by which these ideas are

connected. In the third place, I identify the three topics

in the thesis which I claim to be contributions to knowl-

edge.

Four Generations of Design Studies

During the course of the last 30 years a sustained effort
has been made to study and understand design, including

architectural design, from a positivist point of view. An

area of study has grown up in which design is studied as an

academic topic, and in which it is assumed, often tacitly,

that design is an objective procedure which results in the

creation of a definable product. Design studies is now

referenced at D620.0042 in the Dewey library classification

system, and the topic is complete with research programs,
learned journals and shelves of specialist books. The

American journal Design Methods and Theories has been

published since 1976 while Design Studies has appeared in

Britain at regular intervals since July 1979. Many confer-

ences devoted to the subject have been held in Britain and

North America in the years since the pioneering meeting at

Imperial College in 1962 (Page, 1963). As a result of three

decades of research and publication in design studies, the

connotation of the word design has expanded and the notion

of design has come to embrace a broad spectrum of related

activities.

Brian Logan (1987) has distinguished four generations of

theories about architectural design. These he entitles A

Systematic Methodology, Participation in Design, The Nature

of the Design Activity, and The Failure of Method.

page

The first generation was a search for a systematic model of
the design process. The search was directed towards discov-

ering a working method which could be used by designers,

and which would enable them to improve their results.
Thomas Markus (1969) and Thomas Maver (1970) advanced their

development of Asimow's 1962 model of analysis-synthesis-

appraisal, Christopher Alexander (1964) prescribed a severe
Cartesian purgative, John Page (1964) advanced the virtues

and limitations of using physical three-dimensional models
in design, while Bruce Archer (1969) proposed a conceptual

model "which is intended to be compatible with the neigh-
bouring disciplines of management science and operational

research. " It is notable that graph theory played a promi-

nent part in the thinking of these investigators, particu-
larly Maver and Alexander. In Chapter 9 of this thesis I

also employ some aspects of the theory of graphs in an

attempt to explain why the formalisms of logic are poor

ways to try to represent the activityldesign.

First generation models were inadequate as descriptions of

design, and few designers found them to be useful. However,

they were successful in revealing some of the complexities

of the activity of architecture and design. The most pene-

trating description of the difficulties which have been

brought to light by the study of design is that given by

the German-American architect Horst Rittel in 1967. He

characterised design problems and the process of design as

"wicked". The 11 properties of a wicked problem as listed

by Rittel in 1972 are:

1. Wicked problems have no definitive formulation. Any

time a formulation is made, additional questions can
be asked and more information requested.

2. Every formulation of the wicked problem corresponds
to the formulation of the solution (and vice versa).
The information needed to understand the problem is

determined by one's idea or plan of a solution. In

other words, whenever a wicked problem is formulated

page

there already must be a solution in mind. (If the lack

of a desirable view is defined as a deficiency of an

architectural design, a solution to that problem -
the provision of the particular view - has also been

stated).
3. Wicked problems have no stopping rule. Anytime a

solution is formulated, it could be improved or

worked on more. one can stop only because one has run

out of resources, patience, etc. (An architect could
keep modifying a design solution forever - he stops
because he has exhausted his fee, because the build-
ing has to be finally built, or because he has ex-
hausted some other resource.)

4. Solutions to wicked problems cannot be correct or
false. They can only be good or bad. (There is no

correct or false building: there can only be a "good"

building or a "bad" building.)

5. In solving wicked problems there is no exhaustive
list of admissible operations. Any conceivable plan,

strategy or act is permissible in finding a solution

and none can be prescribed as mandatory.
6. For every wicked problem there is always more than

one possible explanation. The selection of an expla-

nation depends upon the employed Weltanschauung; the

explanation also determines the solution to the

problem. (The high cost of construction of a building

may be attributed to the "expensive" design, to the

high cost of materials, to the wages demanded by

unions, to high interest rates and inflation, etc.)

7. Every wicked problem is a symptom of another "higher

level" problem. (If the maintenance of the residence
is "too expensive" to its inhabitants,, this indicates

that there is a problem with the income of the inhab-

itants.)

8. No wicked problem and no solution to it has a defini-

tive test. In other words, at any time any test is

"successfully" passed it is still possible that the

solution will fail in some other respect. (If large

page

windows are designed for a residence to provide the
desired views, the heating of the residence may
become too expensive.)

9. Every wicked problem is a "one shot" operation. There
is no room for trial and error, and there is no
possibility for experimentation. (A house is designed

and built - there is no going back to the beginning
to design and rebuild it.)

1O. Every wicked problem is unique. No two problems are
exactly alike and no solutions or strategies leading

to solutions can readily be copied for the next
problem. (Even if two residences are designed for the

same family, under the same geographical conditions
they will never be identical.)

11. The wicked problem solver has no right to be wrong -
he is fully responsible for his action.

Every architect will recognise in this list an apt descrip-

tion of the type of problem to which he must address him-

self whenever he sits down to the drawing board or the

keyboard. Property number 1, according to which no step in

design is definitive, has influenced the interpretation of

graph theory that I give in Chapter 9 of this text. If

every formulation of a design problem can raise another

question or call for more information, then each new formu-

lation can invalidate any already-existing formulation.

This is the architectural equivalent to what has become

known recently as non-monotonicity in reasoning. It may be

contrasted with a monotonic inference, in which the deduc-

tively logical requirement that a conclusion cannot be

accepted without accepting that the premises are main-
tained.

The second generation of design studies, as identified by

Logan, tried to meet the difficulty of the wicked problem
by proposing to describe design as a dialogue rather than
in terms of a model. Perhaps no useful prescriptive model

of design could be found, but the usefulness and relevance

page

of design work might be improved if the level of design

discourse could be raised. Natural language has, since the

beginning of history, been a method of grappling with

wicked problems, and it might be that framing design in the

form of dialogue would meet the difficulty.

Rittel suggested a structure for argumentation, whereby
"the artificial separation between the expert who does the

work and the client (whose problem) the work is supposed to

deal with" (Rittel, 1972) is closed. Design as argumenta-
tion is described by Rittel himself in his 1972 paper as a
"second generation" in design studies. Alexander shifted
his attention away from mapping a problem onto a solution,

and towards providing good information to the designer by

means of patterns for building design. The patterns which
he describes are intended to provide a common ground for

discussions between client, architect and other partici-

pants in the design of a building.

"towns and buildings will not be able to become
alive, unless they are made by all the people
in a society, and unless these people share a
common pattern language, within which to make
these buildings, and unless this common pattern
language is alive itself. " (Alexander et al,
1977)

Second generation design methods proved to be no more

successful than their predecessors because, although the

complexity of design was to some extent recognised, the

methods themselves gave no guidance to the designer. As

noted by Geoffrey Broadbent:

"whilst functionalist/behaviourist techniques
cannot possibly work, citizen participation,
advocacy planning and Icharettel cannot work
either. At best they may identify a 'highest
common factor' of user needs, but compounded by
the existentialist designer's needs to become
himself, they may mislead him into thinking
other people want the same things ... It is
quite impossible for either of them to avoid
feeding their own preconceptions and values
into the solution of design problems" (Broad-

page

f eeding their own preconceptions and values
into the solution of design problems" (Broad-
bent, 1979)

The third of Logan's generations was characterised by an
empirical, rather than a conceptual or a discourse-struc-

tured, approach to the activity of design. The intention

was to move design practice closer to the model of the

scientific method, and was influenced by readings from the

work of Karl Popper.

William Hillier and his colleagues draw parallels between

design and Popper's principle of falsification.

"Design proceeds by conjecture-analysis rather
than by analysis-synthesis. It is argued that
if research is to make an impact upon design it
must influence designers at the pre-structuring
and conjectural stages. The idea that research
should produce knowledge in the form of pack-
aged information, coupled to rationalised
design procedures is therefore inadequate. The
aim of research should be seen more in terms of
providing designers with a stronger theoreti-
cal, operational and heuristic basis from which
to conjecture, rather than in terms of knowl-
edge to determine outcomes. " (Hillier et al,
1972)

But this interpretation of the matter is based upon a

misunderstanding of Popper's thought. Popper's intention is

not to provide a methodology of science, but rather to show
how scientific and non-scientific statements can be distin-

guished from one another.

"Thus my proposal was, and is, that it is this
(boldness of prediction], together with the
readiness to look out for tests and refuta-
tions, which distinguishes 'empirical' science
from non-science, and especially from pre-
scientific myths and metaphysics. [This] pro-
posal is what I still regard as the centre of
my philosophy. " (Popper, 1974: 981)

The only claim that Popper makes for his proposal is that
it has the power of demarcation between empirically scien-
tific and metaphysical statements. He nowhere prescribes

page

how science is to be conducted nor does he claim to de-

scribe 'what science really is'. Notions about design

which assume that Popper has invented a methodology of
science, and that an analogous methodology of architecture

can be formulated, are misguided. This may be clearly seen
if an effort is made to apply Popper's principle of falsi-

fiability to a problem of design. A wicked problem cannot
be definitively formulated, and it will be found that in

consequence it cannot be empirically falsified. We should,
I think, draw a Popperian conclusion from this, and recog-

nise that architecture and design are inherently non-scien-
tific in character.

The same objection must be made to Jane Darke's (1979)

notion of primary design generators. She adds a preliminary

stage, the generator, to the would-be Popperian conjecture-

analysis model. These unsatisfactory attempts to draw an

analogy between Popperian philosophy and design method has

lead Nigel Cross to stigmatise this area of design studies

as "the bastard field of design science. " (Cross, Naughton

& Walker, 1981)

Logan, ls fourth generation differs from the previous three.

The fourth generation is one of disillusion, and he enti-
tles it 'The Failure of Method', by which he means the

failure of the scientific method to function as an adequate

analogy for design. Third generation notions of design have

not proved to be useful to architects or to other design-

ers. Indeed, the lack of agreement about the correct inter-

pretation of the term 'scientific method' has lead some

commentators to doubt if improved clarity in design studies

can be achieved by reference to a notion that is itself

cloudy.

In his account of the modern history of design theory Logan

has shown, I think convincingly, that a number of otherwise

well-established models cannot be made to serve as analo-

gies for design. In their turn operations research, manage-

page 8

ment science, graph theory, advocacy planning and science
have failed to do much more than to show how hard it is to

understand the activity of design.

Architectural Design

Despite its allegedly dubious antecedence, the study of
design has brought into play a number of phrases and gener-

al concepts. Logan distinguishes and defines five important

terms.

design activity :a global term for all
actions of design

design theory :a system of ideas
describing or explain-
ing the design activity

design methodology :a framework within which
design decision making
is sequenced, the
strategic level of the
design activity.

design method a technique selected at
a particular point in
the design process to
achieve some objective
in relation to the
design problem.

design problem the context of the design

So pervasive have these phrases become that one or another

of them is apt to spring to mind unbidden whenever the term

'design' is heard. But lying behind such definitions is the

central notion of the act of design. Everyone who has

experience of designing a building must have been struck,

and sometimes thrilled, by the mysterious way in which an
idea will arrive before the conscious mind. Sometimes an
idea will give the impression that it was formulated far

out in space before dropping swiftly to earth and coming

silently to one's attention. It will often come into the

mind at some apparently inappropriate moment, when one's

conscious attention is occupied with other matters.

"When assigned a task I am in the habit of
storing it in my memory, that is not allowing
myself to make any sketches for months. The
human brain is made in such a way that it has a

page

certain independence; it is a box into which
one can pour in bulk the elements of a problem
and then let them float, simmer, ferment. Then,
one day, a spontaneous initiative of one's
inner being takes shape, something clicks, you
pick up a pencil, a stick of charcoal, some
coloured pencils (colour is the key to the
process) and give birth onto the paper: out
comes the idea ... 11 (Le Corbusier, undated)

This creative act, upon which the whole process of design
is focussed, can be facilitated, and the ability to think

creatively can be fostered, but the act itself cannot be

predicted, described or explained. That is why so much of

what has been written under the heading of design studies

seems to be merely pushing the description of design back a
few steps in the explanation. The industrial designer

Christopher Jones, for example, lists (1970) four methods

of searching for ideas, but devices such as brainstorming,

synectics, removing mental blocks and using morphological

charts are all ways of facilitating rather than explaining
the creative act. Hillier and his colleagues (1972), after

referring to instrumental sets, solution types, informal

codes, analogy and metaphor, are finally driven to call

upon "what is called inspiration" as a notion of last re

sort. In short, the whole panoply of models and methods

that have been proposed under the rubric of design studies

may have furthered understanding of matters peripheral to

the act of design, but they have little to say about the

act itself. I think that the topic of design studies, for

all the time and effort that has been expended upon it, is

concerned with the trappings but not the substance of

design.

When I employ the term 'design' in this thesis I am refer-

ring to the creative act of design and not to the concepts

and notions of design studies. Similarly, I use the phrase
'architectural design' in the sense of the intuitive crea-

tion of the idea of the building. The creative act, in the

course of which the substance of a design is formulated, is

the activity from which all else in design springs. Its

page 10

centrality is responsible for the fact that the designer,

and particularly the architect, will see the subject of
design from the point of view of one whose role it is to

practice creative invention. This thesis is written from

that same viewpoint, and my effort is therefore focussed

upon bringing artificial intelligence to bear not upon
design method, but upon facilitating the act of design
itself.

"Computers can aid in the design process by
generating alternative solutions that nurture
the intuitive leap, and can help design devel-
opment. However, they do not partake in per-
forming the intuitive leap itself, only facili-
tate it. " (Norman, 1987)

The unhappy history of design studies convinces me that

creation is not in fact explicable, nor is the process of

obtaining a novel notion capable of being imitated. I

suspect, although I cannot prove, that the intuitive leap

is inherently inexplicable and that it will always remain
inimitable. Therefore I confine my attention in this thesis

to finding ways of facilitating the work of the designer

rather than trying to replicate, formalise or mechanise the

central act of design itself.

Logic
It is sometimes asserted that there are three types of
reasoning. In most texts these are given as deduction,
induction and abduction.

"Deduction is' the basic building block of
formal reasoning systems. It is generally
recognised, however, that people have recourse
to two other modes of reasoning: namely, induc-
tion and abduction. " (Coyne et al, 1990)

However, I think that to include all three types of reason-
ing under a single undifferentiated heading, as if they are

equivalent, is to confuse the two quite different notions

of logic and of reasoning.

page 11

Reasoning is a more general term than logic, and by it is

meant the cognitive activity of making inferences. The word
inference has as its root the Latin verb infero, meaning to
introduce or to carry in. Inference implies no more than
the transference of meaning or, as the Oxford English
Dictionary has it "the forming of a conclusion from prem-
ises, either by induction or deduction". Reasoning therefore

allows one judgement to follow from another, but nothing is

specified about the inferential method to be employed. I
try in this thesis to use the terms reason and reasoning in

this general sense of thinking in an orderly and account-
able manner.

Logic, however, is more circumscribed and is concerned with
the study of valid argument. A concise statement of the

distinguishing features of the validity of a logical argu-

ment are:

"(a) its conclusions could not be false if all
its premises were true.
(b) its conclusions contain no more content
than is already provided in its premises.
(c) the addition of further premises can
neither strengthen nor weaken the argument,
which is already maximally strong. " (Rankin,
1988)

The effect of these requirements is that the conclusion of

a logical argument must necessarily be true so long as its

premises are true. A well-known example of argument by

means of deductive logic takes the form of the syllogism.
In a syllogism of what is known as the first figure form, a

major and a minor premise result in a conclusion which
differs from the premises. For example, if a major premise
is that all cats are animals and a minor premise is that

Orlando is a cat, then the conclusion is that Orlando is an

animal upon pain of contradiction. The terms given by

Aristotle to the parts of a syllogism are still in use.
Argument from premises to conclusion, of which the syllo-

page 12

gism is but one type, is known as deduction and when con-
ducted without contradiction it is logically valid of

necessity.

The phrase 'inductive logic' occurs frequently in texts

dealing with the methodology of science. Sometimes there is

a tone of desperation about efforts to establish the logi-

cality of induction. Bertrand Russell, for example, argues
that induction is indispensible to scientific thought.

"it seems clear that whatever is not experi-
enced must, if known, be known by inference...
If I ever have the leisure to undertake another
serious investigation of a philosophical prob-
lem, I shall attempt to analyse the inferences
from experience to the world of physics, assum-
ing them capable of validity, and seeking to
discover what principles of inference, if true,
would make them valid. Whether these princi-
ples, when discovered are accepted as true, is
a matter of temperament; what should not be a
matter of temperament should be the proof that
acceptance of this is necessary if solipsism is
to be avoided. " (Russell, 1944)

However, despite the desirability and usefulness of induc-

tion, I think that induction cannot be looked upon as a
form of logic. This is because no inductive argument can be

relied upon to be valid in all circumstances. An often-

quoted example of this fragility is the fact that swans

were known, on the basis of inductive 'logic', to be white

until the exploration of western Australia. When evidence

of the existence of the black swan Chenopis Altrata reached

Europe in the eighteenth century the supposed fact that all

swans are white had to be abandoned, and the argument upon

which the supposition was based was shown to be invalid.

Popper generalises this criticism of induction when he

observes that,

"I hold with Hume that there simply is no such
logical entity as an inductive inference: or,
that all so-called inductive inferences are
logically invalid - and even inductively in-
valid, to put it more sharply... We have many
examples of deductively valid inferences, and

page 13

even some partial criteria of deductive validi-
ty; but no example of an inductively valid
inference exists. " (Popper, 1972)

Valid deduction, then, is argumentation in which the prem-
ises cannot be true while the conclusion is false, while
induction can be summarised as argumentation from many

particulars to one conclusion. In the early years of this

century the American philosopher Charles Peirce proposed a
third type of reasoning derived from Aristotle's work on
the syllogism. Peirce's notion is that the minor premise of

a syllogism can be derived from the major premise and the

conclusion. Furthermore, according to Peirce, Aristotle
himself must have thought of abduction.

"he would have asked himself whether the minor
premise of such a syllogism is not sometimes
inferred from its other two propositions as
data. Certainly he would not have been Aristo-
tle to have overlooked this question-"
(Peirce, 1901)

To take the example of Orlando the cat, an abductive syllo-

gism would say that if all cats are animals and Orlando is

an animal, then Orlando is a cat. Clearly in this circum-

stance Orlando may be a cat, but the argument does not

preserve him from being a dog, a horse or any other example

of the class of animal. Peirce himself put forward abduc-
tion as a vehicle for discovery, but he nowhere describes

it as a logic.

In everyday thought one habitually employs abduction as a

method of speculation, but it is a mistake to suppose that

it is a generally valid form of logic. one may, for example,

suppose that today is a bank holiday from the major premise

that no newspapers appear on bank holidays and the conclu-

sion that the Correspondent cannot be bought today. Howev-

er, there are clearly other possible explanations for the

unavailability of the Correspondent, and such an abductive

argument is not a secure one.

page 14

In fact, Peirce likens abduction not to logic but to per-

ception.

"abductive inference shades into perceptual
judgement without any sharp line of demarcation
between them; or, in other words, our first
premises, the perceptual judgements, are to be
regarded as an extreme case of abductive infer-
ence, from which they differ in being absolute-
ly beyond criticism. The abductive suggestion
comes to us like af lash. It is an insight,
although of extremely fallible insight. "
(Peirce, 1903)

I conclude that the inherent fallibility of induction and

abduction means that arguments based upon them can never be

secure. We are left only with properly-formed deductive

argument as a logically valid procedure. As the American

philosopher David Israel (1987) has put it "logic - deduc-

tive logic, for there is no other kind". I have therefore

confined the use of the words logic and logical in this

thesis strictly to deductive argument. other forms of
inference, despite the fact that they are often described

elsewhere as logics, are referred to in this text as rea-

soning.

The Structure of the Thesis

This thesis is divided into three main sections. The first

two sections are a critical examination of some aspects of

artificial intelligence, and are theoretical in character.
The last section is an implementation based upon some parts

of the topic of knowledge engineering. It takes the form of

a non-deductive expert system working with a library of

photographs of buildings which is stored on an optical
disk.

The first part of the main body of this thesis is concerned

with a consideration of artificial intelligence in its role

as a way of using computers to replicate or to study the

action of the mind. This topic is variously known as ma-

page 15

chine thinking, machine intelligence or cognitive science.
In order to avoid prejudging the issue, I have used the

term cognitive simulation as a general designation for this

aspect of artificial intelligence.

Those theories that state or imply that a computer can

actually think I describe as strong cognitive simulation. A

well-known example of this line of thought is the idea of

scripts put forward by the American computer scientists
Roger Schank and Robert Abelson in 1977. Scripts are

equipped with an underlying theory of meaning referred to

by its authors as conceptual dependence. I give an account

of Shank and Abelson's theory of strong cognitive simula-
tion, and of its refutation by the Berkeley philosopher

John Searle.

In a less extreme version of cognitive simulation the claim
that the machine is thinking is abandoned, and the object
of the search becomes a machine that imitates, rather than

replicates, human thought. Three areas in which this has
been attempted are examined. These are machine translation

of natural language, computer chess and pattern recogni-
tion. I think that the American philosopher Hubert Dreyfus

shows convincingly that these activities, which I collec-
tively refer to as weak cognitive simulation, are also
impossible at any but a very elementary level.

There is a close parallel between the earlier and the later

epistemology of Ludwig Wittgenstein, and the evolution of
ideas about artificial intelligence which has occurred

during the last 35 years. In both cases the movement has

been away from logic and towards a recognition that meaning

is a function of the complex nature of human thought and
language. chapters 6 and 7 are taken up with an examination

of some aspects of Wittgenstein's thought, from which

emerges the conclusion that if the later Wittgenstein is

correct, then the earlier positivist program for artificial
intelligence is impossible. I claim that establishing a

page 16

Wittgensteinian perspective upon some aspect of artificial
intelligence is the first of the three contributions to
knowledge that is made in this thesis.

Pý

Dreyfus successfully disposes of weak cognitive simulation,
but he overstates his case when he concludes that artifi-

cial intelligence is a futile study because a computer
cannot fully imitate a human mind. It is true that high

quality human thinking will always rise above the best

performance of a computer, but that does not, in my opin-
ion, mean that such intelligence as a computer can simulate
may not be useful. This leads me to propose a taxonomy for

the whole field of artificial intelligence, from which I
have chosen the topic of expert systems as suitable for

further investigation. Intelligent tutoring systems are

also a department of artificial intelligence in which

progress could be made.

Expert systems, as they are usually constructed, are an

outcome of the automation of logic. I examine through the

7 medium of graph theory the rule-based expert systems that

emerge from this type of programming, and conclude that

they do not meet the needs of the architect. This is large-

ly as a result of the incompatibility of wicked design

problems and deductive logic.

However, an alternative type of expert system has been

suggested by the American computer scientist Peter Frey

which promises to be useful in the context of design. It is

possible to see an expert system as a method of classifying

solutions in terms of domain attributes. This notion opens

the way to producing an expert system which can classify

aspects of design with reference to the preoccupations and
interests of the designer, rather than according to some
inappropriate scheme of logic.

As a result of examining the coding of Frey's classifica-
tion system I propose in Chapter 12 an improved algorithm

page 17

for a classification expert system. The new algorithm
incorporates Frey's bit-matching technique while extending
it by improving the calculation of probabilities, by pro-

viding explanations for questions and solutions, by storing
the knowledge base in files and by replacing Microsoft

BASIC with the Prospero implementation of Pascal. This

program, called Cortex, is the second innovation to which I
lay claim in this text.

The method by which an expert system is controlled is the

part of its algorithm that has the greatest effect upon the

performance and effectiveness of the system. Cortex incor-

porates a novel method of control that is applicable to any

type of expert system. The control method used in Cortex is

the third of the three contributions to knowledge that I

claim in this thesis.

The final part of the thesis is an implementation of a

prototype version of Cortex which accesses an optical disc

intelligently. Sets of photographs of buildings are select-

ed from the 10,000 images on the disc, and are displayed

according to the user's conception of architecture and his

attitude toward the design of buildings. The result is

intended to be a system that responds to an individual

architect's viewpoint, and which casts light upon his

interests as a designer.

page 18

Chapter 2. ARTIFICIAL INTELLIGENCE AS MACHINE INTELLIGENCE

The two words that are juxtaposed in the phrase 'artificial
intelligence' possess widely different connotations when
they are used apart from one another in ordinary discourse.
'Artificial' in the sense of the Oxford English Dictionary
definition of 'made by art in imitation of what is natural
or real' carries with it an implication of something
feigned or fictitious. A thing which is artificial is close
to being an inferior substitute for that which is real and
natural. On the other hand intelligence is a human quality,
extended somewhat to the rest of the animal kingdom, which
is universally admitted to be estimable, natural and in-

nate. The dictionary definition of intelligence as "quick-

ness of mental apprehension; understanding as a quality

admitting of degree" is applicable, to at least some ex-
tent, to all the higher animals. It is a faculty that can
be trained and developed during life, but only nature can

create it. To speak of artificial intelligence is therefore

to employ a syncretism with an highly tensioned internal

structure. The connotation of artifice in the first term

strains against the implication of naturalness in the

other. Artificial intelligence is thus an inherently ambig-

uous piece-of terminology, and it is therefore not surpris-
ing that discussions in which the phrase occurs are often

confused and contradictory.

Definitions

Many attempts to formulate a specification for AI have been

made since the phrase was coined in 1956. The spectrum of

meaning to be found in the following 19 definitions closely

reflects the compound nature of the phrase itself. The

definitions are listed in chronological order.

John McCarthy proposed that "a two-month, ten-
man study of artificial intelligence be carried
out during the summer of 1956 at Dartmouth
College in Hanover, New Hampshire. The study is
to proceed on the basis of the conjecture that
every aspect of learning or any other feature

page 19

of intelligence can in principle be so precise-
ly described that a machine can be made to
simulate it. " (Charniak & McDermott, 1985)

"artificial intelligence is the science of
making machines do things that would require
intelligence if done by men. " (Minsky, 1968)

"By artificial intelligence' I ... mean the
use of computer programs and programming tech-
niques to cast light on the principles of
intelligence in general and human thought in
particular. " (Boden, 1977)

"artificial intelligence is the use of programs
as tools in the study of intelligent processes"
(Boden, 1977)

"Our approach to the AI problem involves iden-
tifying the intellectual mechanisms required
for problem solving and describing them pre-
cisely General intelligence will require
general models of situations changing in time,
actors with goals and strategies for achieving
them, and knowledge about how information can
be obtained. " (McCarthy, 1979)

"The ultimate AI program that we are all aiming
for is one that specifies the form in which
knowledge is to be input to the program, as
well as the form of the rules that use that
knowledge, and produces a program that effec-
tively models that domain. " (Schank, 1979)

IIAI is that part of computer science concerned
with designing intelligent computer systems,
that is, systems that exhibit the characteris-
tics we associate with intelligence in human
behaviour - understanding language, learning,
reasoning, solving problems, and so on. " (Barr
& Feigenbaum, 1981)

"Artificial intelligence is the study of how to
make computers do things at which, at the
moment, people are better. " (Rich, 1983)

"Artificial intelligence is the study of tech-
niques for solving exponentially hard problems
in polynomial time by exploiting knowledge
about the problem domain. " (Rich, 1983)

"the discipline of Artificial Intelligence, a
principle concern of which is the design of
computer programs to undertake activities
thought to require human intelligence. " (Alty &
Coombs, 1984)

page 20

"for the time being we are going to have to
define intelligence in machines in the same way
that Justice Potter Stewart described pornogra-
phy: 'I can't define it but I know it when I
see it. "' (Michie & Johnson, 1984)

"Artificial intelligence is the study of ideas
that enable computers to be intelligent. "
(Winston, 1984)

"Artificial intelligence is the study of mental
faculties through the use of computational
models. " (Charniak & McDermott, 1985)

"Artificial Intelligence has two different
products: models of human cognition and intel-
ligent artifacts. " (Sell, 1985)

AI "covers a broad spectrum of interests loose-
ly linked by a shared ambition to represent
more of human intelligence in machines. " (Bijl,
1986)

"A discipline concerned with the building of
computer programs that require intelligence
when done by humans. " (Illingworth, Glaser &
Pyle, 1986)

"The real goal of AI, after all, is to design
or understand systems that can reason about the
world, not themselves. " (Smith, 1986)

"As an attempt to sum up the various defini-
tions of AI, I would like to categorise sophis-
ticated programming techniques (the so-called
'smart programs') as syntactical approaches,
and the search for 'principles of intelligencef
as a semantic approach. A further development
would then be a pragmatical approach which I
would like to consider as a new paradigm (or
working philosophy). " (Born, 1987)

"As engineering, AI is concerned with the
concepts, theory, and practice of building
intelligent machines ... As science, AI is
developing concepts and vocabulary to help us
to understand intelligent behaviour in people
and in other animals. " (Genesereth & Nilsson,
1987)

Most of these quotations define artificial intelligence as
programming a computer to simulate, which is to say to

assume the appearance of, cognition. These definitions in

effect equate AI with cognitive simulation, which I shall

page 21

hereafter abbreviate to CS. The artificiality of artificial
intelligence is emphasised, and the intelligence that is

looked for is of an operational, not an ontological, type.
I shall discuss later the sense in which artificial intel-

ligence can be said to simulate human intelligence under
the heading of weak CS.

In the meantime, however, I propose to discuss the very
different conception of artificial intelligence which is
implied by the two definitions of artificial intelligence

produced by McCarthy and by Schank in 1979. Artificial
intelligence is, according to these authors, a matter of

creating the reality rather than the appearance of intelli-

gence. The emphasis in McCarthy and Schank is upon intelli-

gence rather than artifice. The intelligence displayed by

the computer, in this view of the matter, would be manufac-
tured by man but would possess a real existence. I refer to

this interpretation of artificial intelligence as strong
CS.

The ambition to create strong CS programs propelled much of
the early work on artificial intelligence, particularly
during the 1950's and 60's, and echoes of this idea can
still be heard. For example, the 1986 paper by Smith from

which one of the definitions in the above list is taken.
Several influential authors, Herbert Simon (1977) and
Marvin Minsky (1966) in particular, have written optimisti-
cally on the prospects for the achievement of strong CS.

Furthermore, the vision of a machine with its own independ-

ent intelligence is widespread in the popular imagination

and it is a favourite topic with, for instance, television
journalists (Vaux, 1988) and film makers (Austin, 1968). It
is important, therefore, for both theoretical and histori-

cal reasons to establish clearly what is meant by the term
intelligence and the sense, if any, in which a machine can
correctly be said to possess it.

page 22

It is easier to anthropomorphise the computer than any
other machine. one may, perhaps, speak of a motor car as
'tired' or a sailing yacht as 'gentle'. Sometimes, when
typing mistakes occur frequently, a typewriter may seen to

have acquired 'a mind of its own'. These phrases, of
course, are never meant to be taken in other than an ironic

or metaphorical sense. But a computer is a symbol manipu-
lating machine which is able to accept natural language
input, and which can produce output to which meaning may be

attributed. The process by which these symbolic transforma-

tions take place will generally be so complicated that no
human brain can comprehend it in its totality. A certain

mysteriousness adheres to the inner workings of a computer,

even for those who are accustomed to using them. Moreover,

output can follow input amazingly quickly. When faced with
the speed, complexity and dependability of a working com-

puter an observer can allow himself to suppose that the

machine is thinking, and consequently he may be prone to

attribute to it at least some of our own cognitive facul-

ties.

Furthermore, the use of phrases such as 'meaningful output'
in the previous paragraph can be taken to signify that

meaning is a property which resides in the output material
itself. I shall shortly give some reasons as to why this

single-term definition of meaning, is mistaken. But it

remains that our language has not yet developed ways of
describing accurately the new aspects of the relationship
between man and machine which the invention of the computer
has brought about. There is, for example, no accepted
linguistic distinction between, on the one hand, the way in

which information is processed by a computer and, on the

other, the sense in which human beings make use of informa-

tion. Indeed, some investigators allow themselves to assume
that because the same word is used the meaning must be the

same in the two cases. The confusion that characterises
Minsky's editorial introduction to Semantic Information
Processing (1968), for example, is principally due to a

page 23

failure to observe this distinction between two or more
different uses of such words as 'learn', 'understand' and
'intelligent'.

It seems to me that for the present we must live with a

situation in which the appearance of thinking possessed by

a functioning computer is compounded in our minds with a
deeply-seated verbal ambiguity about the nature of computer

operations. With the publication of his paper entitled
'Minds, Brains and Programs' in 1980 John Searle has tried

to dispel some of the confusion which results when familiar

concepts are used unguardedly in the novel context of

computing. I believe that Searle has, in large part, made
his case and the next chapter of my thesis is occupied with

an account of why I think that he has been successful.

Scripts and Conceptual Dependency

In 1977, three years before Searle's paper appeared Roger,

Schank and Robert Abelson published their 'Scripts, Plans,

Goals and Understanding'. These two authors were working at

that tire at the Department of Computer Science of Yale

University, and their book has since become well known in

artificial intelligence circles. 'Scripts, Plans, Goals and

Understanding' rehearses the author's notion of conceptual

dependency and it proposes a novel method of representing
knowledge under the name of scripts. The notion of scripts,

and the claims made for this method of representation by

Schank and Abelson, is the specific target of Searle's

critique. In his paper Searle attacks the idea of strong CS

as exemplified by scripts, and it is therefore necessary at

this point to devote some space to an account of Schank and

Abelson's proposal.

Two models of human memory are currently favoured by psy-

chologists. According to the semantic conception of memory

we possess in our minds, or from the physicalist perspec-

tive our brains, a permanent store of knowledge the items

of which are related to one another according to their

page 24

meanings. Meaning is then attributed to words or other
objects of experience by a mental process of searching a
tree-like structure of semantic concepts. For example,
'claws' are related to 'tigers', 'tigers' to 'cats', 'cats'

to 'carnivores' and 'carnivores' to 'animals' by means of a
hierarchy organised on semantic principles. The structure

of concepts, once learned, remains with us through life and
we access it as required during cognitive activity. The

semantic model of memory assumes, in effect, that our minds

are analogous to a library and that we make use of some-
thing equivalent to the Dewey Decimal Classification for

the purpose of locating and attributing meaning.

Schank and Abelson adopt the alternative view of memory,

according to which we accumulate a store of personal expe-

riences rather than semantic concepts, and that the mind

accesses memory according to a scale of time. This is

referred to in the literature of psychology as the episodic

model of memory.

"The over-all organisation of memory is a
sequence of episodes organised roughly along the
time line of one's life. If we ask a man 'Who
was your girlfriend in 1968? 1 and ask him to
report his strategy for the answer, his reply
is roughly: 'First I thought about where I was
and what I was doing in 1968. Then I remembered
who I used to go out with then. ' In other
words, it really isn't possible to answer such
a question by a direct look-up. Lists of 'past
girlfriends' do not exist in memory. Such a
list must be constructed. The process by which
that list is constructed is a search through
episodes organised around times and location in
memory. " (Schank & Abelson, 1977: 19)

It is a consequence of this view of memory that the mind

must be able to work with an assembly of items whose mean-
ings bear no intrinsic relationship to one another. Memory

episodes occur as a result of the chances of life, and
their structure and relationship in the mind reflects the

fortuitousness of events. The question therefore arises as
to how the mind relates one episode to another in such a

page 25

way as to acquire general knowledge or recognise repeating

occurrences? Some mechanism must be at work to place the

episodes into an organised and comprehensible form.

"If memory is organised around personal experi-
ences then one of the principal components of
memory must be a procedure for recognising
repeated or similar sequences. When a standard
repeated sequence is recognised, it is helpful
in 'filling in the blanks' in understanding.
Furthermore much of the language generation
behaviour of people can be explained in this
stereotyped way. " (Schank & Abelson, 1977: 18)

This requirement for a principle upon which memory episodes

can be ordered provides Schank & Abelson with the clue

which leads them to their notion of scripts.

L

"Some episodes are reminiscent of others. As an
economy measure in the storage of episodes,
when enough of them are alike they are remem-
bered in terms of a standardised generalised
episode which we will call a script. Thus,
rather than list the details of what happened
in a restaurant for each visit to a restaurant,
memory simply lists a pointer (link) to what we
call the restaurant script and stores the items
in this particular episode that are signifi-
cantly different from the standard script as
the only items specifically in the description
of that episode. This economy of storage has a
side effect of poor memory for detail. But such
a side effect, we shall argue, is the price of
having people able to remember anything at all.
Script based memory is what will enable comput-
ers to understand without having their memories
filled up with so much that search time is
horrendously long. " (Schank & Abelson, 1977: 19)

Schank and Abelson have developed the notion of scripts
into a structured formalism by means of what they refer to

as the theory of conceptual dependence. According to this

theory, which in point of fact is no more than an asser-

tion, there exists beneath language a foundation of meaning

which can be precisely described and to which any sentence
in any language can be reduced.

page 26

"Conceptual Dependency (henceforth CD) is a
theory of the representation of the meaning of
sentences. The basic axiom of the theory is:
A For any two sentences that are identical

in meaning, regardless of language, there
should be only one representation.

The above axiom has an important corollary that
derives from it.
B Any information in a sentence that is im-

plicit must be made explicit in the repre-
sentation of the meaning of that
sentence. " (Schank & Abelson, 1977: 11)

They proceed to list the 11 primitive actions which they

claim can, when qualified by means of a numerical scale
running from -10 to 10, serve to represent the meaning of
every conceivable sentence. The primitive actions are
presented as;

ATRANS The transfer of an abstract relationship such
as possession, ownership or control. -

PTRANS The transfer of the physical location of an
object.

PROPEL The application of physical force to an object.
MOVE The movement of a body part of an animal by

that animal.
GRASP The grasping of an object by an actor.
INGEST The taking of an object by an animal to the

inside of that animal.
EXPEL The expulsion of an object from the body of an

animal into the physical world.
MTRANS The transfer of mental information between

animals or within an animal.
MBUILD The construction by an animal of new informa-

tion from old information.
SPEAK The action of producing sounds.
ATTEND The action of attending or focusing a sense

organ towards a stimulus.

It is then asserted that separate sentences expressed in

this notation can be assembled into a complete text by

means of inferentially connected causal chains.

"not any action can result in any state, and
not any state can enable any action. Thus, for
every primitive action, there is associated
with it the set of states which it can affect
as well as the states that are necessary in
order to effect it. " (Schank & Abelson,
1977: 25)

page 27

The theory of conceptual dependency is made up, then, of
two components. Firstly, the idea that all discourse can be

described by reference to a definable set of semantic
concepts, and secondly the notion that these concepts can
be related to one another in a causal manner. A full de-

scription of conceptual dependency, including examples of
the notation, is given in Schank (1975).

The concept of a script reaches its complete formulation

when the problem of generality is addressed. A separate

script to describe each story would defeat the purpose of

scripts, which is to provide an economical way of repre-

senting meaning. some generalising mechanism is called for.

Schank and Abelson propose to achieve this by uniting a

script, representing the structure of a type of situation,

with a knowledge base containing the events that are char-

acteristic of a particular state of affairs. The new com-

posite and flexible representation they call a knowledge

structure.

"we are establishing a level of representation
different from Conceptual Dependency. The
primitive ACTS and causal links of Conceptual
Dependency are used to describe real world
events, while script names make reference to
the knowledge structures that motivate or
underlie real world events. These levels of
representation are connected by what we will
call the Script link. The representation that
we used above (with $SCRIPTNAME and its various
roles) is this higher Knowledge Structure
level. It is connected by a Script link to the
Conceptual Dependency structure that instanti-
ated it.
What we are proposing then is that there be
both a knowledge structure (KS) and a Conceptu-
al Dependency (CD) representation for any given
text. Some texts will not actually impart
information about both, but it is to be expect-
ed that in most texts there will be enough
complexity to necessitate that both levels be
represented, with links between them. " (Schank
& Abelson, 1977: 152)

A script is thus a stereotyped representation of a sequence

of events occurring in a particular context. It has proved

page 28

to be a serviceable idea when the events and their context

permit the two axioms of conceptual dependency to be ad-
hered to. That is to say, scripts are found to be adequate
in straightforward contexts where a single representation
is capable of embracing the meaning of two or more sen-
tences, and in which the meaning is simple enough to be

represented explicitly. Under these circumstances a text

can be expressed fairly adequately in the form of the

conceptual dependency notation. A restaurant is the context

which crops up most often in the literature of scripts, and
the events are such things as ordering a meal, eating it

and paying the bill. In such circumstances the meaning of a

sentence is unambiguous and the causal chain is reasonably

clear.

The authors have derived the notion of scripts from the

episodic theory of memory, and they go on to claim that the

script concept can in its turn throw light on the psycholo-

gy of cognition. Scripts, they say, are a pattern for the

way in which we understand the world.

"By subscribing to a script-based theory of
understanding we are making some strong claims
about the nature of the understanding process.
In order to understand the actions that are
going on in a given situation, a person must
have been in that situation before. That is,
understanding is knowledge based. The actions
of others make sense only in so far as they are
part of a stored pattern of actions that have
been previously experienced. " (Schank & Abel-
son, 1977: 67)

But circumstances in life are rarely so clear-cut. While it

is true that previous experience is necessary for under-

standing, it is also true that most real-life situations

are too complicated to be explicable by reference to any

one script or set of scripts. This is because as events

occur they have the effect of redefining the significance

of those events that have previously occurred. A diner's

conduct in a restaurant, to take Schank and Abelson's

favourite context, will be affected by, among other things,

page 29

what he has been told that he should expect of the particu-
lar restaurant. What he makes of the food and the service,

and how he responds to them, may then reflect back upon his
judgement upon the restaurant itself or upon his opinion of
his informant, or, upon both. Scripts are dependent upon

understanding, as well as understanding being to some

extent dependent upon scripts.

That is why most texts, or stories to adopt the terminology

of scripts, are to some degree metaphorical and allusive.

In everyday discourse understanding is achieved by meta-

phorical transference of meaning and accepted patterns of

knowledge, for which one may read scripts, are modified by

a process of allusion. To take an extreme and therefore

illustrative example, no 'script-based theory of under-

standing' could represent adequately the meaning, or rather

the meanings, of the following passage from The Third

Policeman.

"The reader will be familiar with the storms
that have raged over this most tantalising of
holograph survivals. The 'Codexi (first so
called by Bassett in his monumental De Selby
compendium) is a collection of some two thou-
sand sheets of foolscap closely handwritten on
both sides. The signal distinction of the
manuscript is that not one word of the writing
is legible. Attempts made by different commen-
tators to decipher certain passages which look
less formidable than others have been characte-
rised by fantastic divergences, not in the
meaning of the passages (of which there is no
question) but in the brand of nonsense which is
evolved. one passage described by Bassett as
being 'a penetrating treatise on old age' is
referred to by Henderson (biographer of Bas-
sett) as 'a not unbeautiful description of
lambing operations on an unspecified farm'.
Such disagreement, it must be confessed, does
little to enhance the reputation of either
writer. " (O'Brien, 1967)

O'Brien's paragraph is meant to be read in at least four

distinct ways. It functions as a part of the plot of his

novel, it is an ironic comment on the difficulty of reading

page 30

accurately, it takes a swipe at self-important editors, and
it implies that the only response to really intractable

problems is laughter. The four levels of meaning interact

with one another, and they alter their relative importance

according to the presuppositions which each particular

reader brings to the text. Consequently, there is no one

representation into which even a single sentence of The

Third Policeman could be mapped. It is therefore impossi-

ble, because of axiom A, to apply the technique of Schanki-

an scripts to a text which is as multi-layered and expres-

sive as is the work of Flan O'Brien.

However, it is sufficient for the present purpose to note

two things about the notion of scripts. Firstly, it follows

from axiom B above that a formal system of symbols would

suffice to describe a script fully and completely. Scripts

are therefore by definition computable. Secondly, Schank

and Abelson make some large claims for their work.

"SAM (Script Applier Mechanism) is a program
running at Yale that was designed to understand
stories that rely heavily on scripts....
SAM understands these stories and others like
them. By 'understand' we mean SAM can create a
linked causal chain of conceptual i zations that
represent what took place in each story. SAM
parses the story into conceptual i zations using
Reisbeck's analyser (Reisbeck, 1975). These are
then f ed to a program that looks f or script
applicability (Cullingford, 1976). When a
script seems to be applicable, it is used by
the script applier to make inferences about
events that must have occurred between events
specifically mentioned.
The f inal representation is a gigantic concep-
tual Dependency network. We could claim that
this output indicates understanding, but as no
one can read it (and for the more obvious
reasons) we have developed programs that oper-
ate on the output of the understanding
program. " (Schank & Abelson, 1977: 177)

This amounts to saying that they have instantiated strong

CS in the computer centre at Yale. The fact that they draw

close parallels between human understanding and computer

page 31

processing of scripts demonstrates that their use of the

word understanding in the phrase 'this output indicates

understanding' is to be taken literally rather than figura-

tively. The computer understands, they say, in the same way

as a human being and strong CS has, for them, become a

reality. However, I believe that Schank and Abelson are
deluded when they claim to have reproduced cognition. John

Searle's paper of 1980 shows, I think, why it is that they

are mistaken.

page 32

Chapter 3. THE CRITIQUE OF JOHN SEARLE

It falls to few philosophers to describe a Gedankenexperi-

ment that becomes famous. It is true that Christian Huy-

gens' use of symmetry arguments in the seventeenth century
to derive the conservation laws for momentum and energy

appear frequently in modern textbooks of mechanics (Layzer,

1984). The paradox of Schrodinger's cat (Schrodinger,

1935), which raises as-yet unanswered questions about

quantum theory, is referred to regularly in recent scien-
tific discussions. But Searle's Chinese room argument has

appeared at least twice before the general public (Searle,

1984, Vaux, 1988) as well as attracting the attention of
innumerable philosophers, linguists and workers in artifi-

cial intelligence since its publication only ten years ago.
It has, in fact, come into use as a standard shorthand
description of a certain type of critical comment on arti-
ficial intelligence.

The Chinese Rooia

Searle describes his thought experiment in the following

way.

"Suppose that I'm locked in a room and given a
large batch of Chinese writing. Suppose fur-
thermore (as is indeed the case) that I know no
Chinese, either written or spoken, and that I'm
not even confident that I could recognise
Chinese writing as Chinese writing as distinct
from, say, Japanese writing or meaningless
squiggles. To me, Chinese writing is just so
many meaningless squiggles. Now suppose further
that after this first batch of Chinese writing
I am given a second batch of Chinese script
together with a set of rules for correlating
the second batch with the first batch. The
rules are in English, and I understand these
rules as well as any other native speaker of
English. They enable me to correlate one set of
formal symbols with another set of formal
symbols, and all that 'formal' means here is
that I can identify the symbols entirely by
their shapes. Now suppose that I am given a
third batch of Chinese symbols together with
some instructions, again in English, that

page 33

4

t

enable me to correlate elements of this third
batch with the f irst two batches, and these
rules instruct me how to give back certain
Chinese symbols with certain sorts of shapes in
response to certain sorts of shapes given me in
the third batch. Unknown to me, the people who
are giving me all these symbols call the f irst
batch 'a script', they call the second batch a
'story', and they call the third batch 'ques-
tions'. Furthermore, they call the symbols I
give them back in response to the third batch
'answers to the questions', and the set of
rules in English that they gave me, they call
'the program'. (Searle, 1980a: 417-418)

The events that take place in the Chinese room form an

almost exact parallel with the highly anthropomorphic

account of running the Script Applier Mechanism which is

given by Schank and Abelson in section 8.2 of Scripts,

Plans, Goals and Understanding. In a run of SAM, one or

several scripts is read into computer memory, next a second
input is made in the form of the story, then questions

about the story are input, and lastly answers are computed

and printed out. The function of SAM is to organise and

control these processes. The only difference, and it is a

critical difference, between the procedures at Yale and

operations in the Chinese room is that SAM is processed on

a computer while Searle's Chinese symbols are processed in

a human brain.

Searle's point is that when the Chinese room is regarded as

an input/output system it is in fact simulating, and not

replicating, understanding.

"it seems to me to be quite obvious in the
example that I do not understand a word of the
Chinese stories. I have inputs and outputs that
are indistinguishable from those of the native
Chinese speaker, and I can have any formal
program you like, but I still understand noth-
ing. For the same reasons Schank's computer
understands nothing of the stories, whether in
Chinese, English or whatever since in the
Chinese case the computer is me, and in cases
where the computer is not me, the computer has
nothing more than I have in the case where I
understand nothing. " (Searle, 1980a: 418)

page 34

I think that it is no more than the simple truth to say
that Searle, locked in his room and performing his role of

an English speaking manipulator of Chinese symbols, does

not understand the Chinese language. Searle's understanding

of English suffices for him to follow the English program,

and by following it to apply a Chinese script to a Chinese

story. Similarly his knowledge of English enables him to

use the English language program to supply answers in

Chinese to questions about the story which are presented to

him in Chinese. But the distinction between, on the one
hand manipulating a system of formal symbols, as he is

doing, and on the other hand understanding a story, remains

clear and incontrovertible. It follows that if Searle does

not understand the story then neither does a functionally

analogous CPU in a computer which is occupied with, for

example, a run of SAM. Claims made for strong CS thus

emerge as the result of confusing symbol manipulation with

understanding.

Searle's refutation of the case for strong CS is important

because he offers a conceptual, not an empirical, argument.

"It is an empirical question whether any given
machine has causal powers equivalent to the
brain. My argument against strong AI is that
instantiating a program is not enough to guar-
antee that it has those causal powers. "
(Searle, 1980b: 452)

A better argument or a more accurate piece of logic might

perhaps prove him wrong, but no experimental finding could,
I believe, overturn his conclusion. Most commentators,
including Danto (1980), Eccles (1980) Libet (1980), Maxwell

(1980), Natsoulas (1980), Obermeier (1983), Puccetti (1980)

and Ringle (1980) agree with this conclusion. However,

there are those such as Dennett (1980), Minsky (1980) and
Moor (1988) who adopt a naive empiricism, and claim that

the progress of science may one day show how a machine can

acquire intentionality. But they do not explain how it is

page 35

that an experiment could establish the truth of a faulty

argument.

The last part of Searle's paper is taken up with his at-
tempt to answer the question of why the claims of strong
CS, or strong AI as he phrases it, must necessarily be

mistaken. He appeals to the concept of intentionality, and
he puts forward in support of his position a 'monist-inter-

actionist" (1980b) view of cognition. He explains the
impossibility of strong CS by trying to demonstrate that an

unbridgeable gulf exists between the operation of a machine

and the functioning of the brain. These are experimental

rather than conceptual matters, of course, and Searle's

critics have not failed to try to undermine his explana-
tions by reference to empirical data.

conclusion
Most hostile comments upon the Chinese room argument attack
it not directly but by criticising Searle's attempt to
justify his conclusion. Searle's critics raise objections
based upon the nature of cognition, about which there has

been and is much controversy, and their arguments bear upon

weak as much as upon strong CS. The attack which has been

made upon both strong and weak CS by Hubert Dreyfus is the

subject of the next chapter. Dreyfus approaches the subject
of artificial intelligence from a phenomenological point of
view, and his critique casts a great deal of light upon the

nature of human thinking and its relationship to machine

computation. I shall therefore postpone a discussion of
Searle's views on cognition, which underpin his Chinese

room argument, until Chapter 5 of this text.

page 36

Chapter 4. THE CRITIQUE OF HUBERT DREYFUS

Alfred North Whitehead, who was co-author with Bertrand
Russell of 'Principia Mathematical, has observed in his

'Adventures of Ideas' that:

"(Platols) later dialogues circle round seven
notions, namely - The Ideas, The Physical
Elements, The Psyche, The Eros, The Harmony,
The Mathematical Relations, The Receptacle. I
mention them because I hold that all philosophy
is in fact an endeavour to obtain a consistent
system out of some modification of these no-
tions. " (Whitehead, 1933: 354)

That is as much as to say that more than 2000 years of
Western philosophy amounts to little other than a series of
footnotes on Plato.

The work of Hubert Dreyfus goes some way to corroborate
Whitehead's remark, for Dreyfus has much to say about Plato

in his influential book 'What Computers Can't Do' first

published in 1972. Dreyfus is interested in the legacy of

Plato not on account of the metaphysical doctrines it

contains, but rather as a foil and counter-example to his

own epistemological point of view. Furthermore, he is a

critical rather than an admiring commentator. Plato, for

Dreyfus, is the originator of the view that thought can

only be described as knowledge if it can be stated explic-
itly.

"Since the Greeks invented logic and geometry,
the idea that all reasoning might be reduced to
some kind of calculation - so that all argu-
ments could be settled once and for all - has
fascinated most of the Western tradition's
rigorous thinkers. Socrates was the first to
give voice to this vision. The story of artifi-
cial intelligence might well begin around 450
BC when (according to Plato) Socrates demanded
of Euthyphro, a fellow Athenian who, in the
name of piety, is about to turn in his own
father for murder: 'I want to know what is
characteristic of piety which makes all actions
pious... that I may have it to turn to, and to
use as a standard whereby to judge your actions

page 37

and those of other men. 11 Socrates is asking
Euthyphro for what a modern computer theorist
would call an 'effective procedure', 'a set of
rules which tell us, from moment to moment,
precisely how to behave'.
Plato generalised this demand for moral cer-
tainty into an epistemological demand. Accord-
ing to Plato, all knowledge must be stateable
in explicit definitions which anyone could
apply. If one could not state his know-how in
terms of such explicit instructions - if his
knowing how could not be converted into knowing
that - it was not knowledge but mere belief. "
(Dreyfus, 1979: 67-68)

Dreyfus goes on to trace the progress of the interpretation

of knowledge as something necessarily explicit through the

work of Galileo, Hobbs and Leibniz to Boole and Babbage.

The development of computers in the 1940's brought this

strand of Western thought to its culmination.

"For, since a digital computer operates with
abstract symbols which can stand for anything,
and logical operations which can relate any-
thing to anything, any digital computer (unlike
an analogue computer) is a universal machine.
First, as Turing puts it, it can simulate any
other digital computer.... Second, and philo-
sophically more significant, any process which
can be formalised so that it can be represented
as a series of instructions for the manipula-
tion of discrete elements, can, at least in
principle, be reproduced by such a machine.
But such machines might have remained overgrown
adding machines had not Plato's vision, refined
by two thousand years of metaphysics, found in
them its fulfilment. At last here was a machine
which operated according to syntactic rules on
bits of data. Moreover, the rules were built
into the circuits of the machine. Once the
machine was programmed there was no need for
interpretation; no appeal to human intuition
and judgement. This was just what Hobbs and
Leibniz had ordered, and Martin Heideggar
appropriately saw in cybernetics the culmina-
tion of the philosophical tradition. " (Dreyfus,
1979: 72)

But if the power and generality of the new machine was to

be realised in practice then some "technique for converting

any practical activity such as playing chess or learning a
language into a set of instructions" (Dreyfus, 1979: 74) was

page 38

I needed. Some of the early artificial intelligence programs

appeared to be examples of such a technique.

"With digital computers solving such problems
as how to get three cannibals and three mis-
sionaries across a river without the cannibals
eating the missionaries, it seemed that finally
philosophical ambition had found the necessary
technology: that the universal high-speed
computer had been given the rules for convert-
ing reasoning into reckoning.
The field of research, dedicated to using
digital computers to simulate intelligent
behaviour, soon became known as 'artificial
intelligence'. " (Dreyfus, 1979: 77)

We have seen earlier that John Searle defines strong AI as
the reproduction of human intelligence by means of a com-

puter. He proceeds to prove, I think convincingly, that

what he calls strong AI is impossible. For Dreyfus, howev-

er, artificial intelligence means not the reproduction of
intelligence but the simulation of intelligent behaviour.

This is the undertaking which Searle refers to as weak AI.

I think that the two activities are more usefully described

as strong and weak CS respectively. But regardless of

terminology, it is clear that Searle and Dreyfus are ad-
dressing themselves to different, if related, topics.

Dreyfus's criticism of artificial intelligence is more far-

reaching than Searle's. For Dreyfus, the point to be refut-

ed is not that computers can think,, but that thought itself

is a species of computation. For, he argues, if reasoning

could be converted into reckoning by becoming mechanised,

then far-reaching consequences for our ways of seeing

everything will ensue.

"Aristotle defined man as a rational animal,
and since then reason has been held to be of
the essence of man. If we are on the threshold
of creating artificial intelligence we are
about to see the triumph of a very special
conception of reason. Indeed, if reason can be
programmed into a computer, this will confirm
an understanding of man as an object, which
Western thinkers have been groping toward for

page 39

two thousand years but which they only now have
the tools to express and implement. The incar-
nation of this intuition will drastically
change our understanding of ourselves. If, on
the other hand, artificial intelligence should
turn out to be impossible, then we will have to
distinguish human from artificial reason, and
this too will radically change our view of
ourselves. Thus the moment has come either to
face the truth of the tradition's deepest
intuition or to abandon the mechanical account
of man's nature which has been gradually de-
veloping over the past two thousand years. "
(Dreyfus, 1979: 78-79)

Dreyfus's proclaimed intention to refute the notion that

calculation is the same thing as thinking is therefore much

more than an attempt to undermine artificial intelligence.

It is, for him, the final battle in the war between man as

a rational mechanism and man as a free intellect. And the

casus belli is artificial intelligence.

Dreyfus divides his task into three distinct stages. He

begins by claiming that the promise of artificial intelli-

gence remains unrealised, and will never in fact be ful-

filled, because of intractable methodological difficulties.

He takes as examples of unrealised promise the early of

attempts at machine translation of natural language, prob-
lem solving and pattern recognition.

Unfulfilled Promise - Machine Translation

one of the early machine translation programs was developed

by a team at the National Physical Laboratory in Teddington

lead by A[] Szanser. Work began in 1959 and by 1966

it had achieved an assessment of "slightly less than good"

(Szanser, 1967) The NPL program, like others which appeared
during the late 50's and early 60's, was based upon a much

oversimplified procedure which can be illustrated diagram-

matically as;

Source language ------ > Target language.

The NPL program made use of a large dictionary of technical

page 40

terms in English and Russian which had been compiled at
Harvard University (Oettinger, 1955). The hope was that by

selecting matched English and Russian words, and then

ordering them according to syntactic rules, a high quality

machine translation in the direction of either language

would result, at least of technical texts. But, as was

suspected at the time and is known now, the complexity of

natural languages will quickly overwhelm such a primitive

scheme. There are four main defects in the simple NPL

algorithm and other similar machine translation programs.

In the first place, the source language may employ a single

word with two meanings while the target language expresses

each meaning with a separate word. For example, the two

meanings of the English word 'pent, used of an implement

for writing with ink and also to denote a small enclosure,
is represented in French by 'plume' and 'parcl respective-
ly. Therefore, in order to select the correct French word

when translating an English text, and vice versa, it is

necessary to know the meaning as well as the syntactical
description of the words in a translation program's dic-

tionary. This difficulty in making a translation is re-
ferred to as lexical ambiguity.

A corresponding difficulty, known as grammatical ambiguity,

results from the fact that an ambiguous sentence in the

source language may be represented by several different

grammatical structures in the target language. To say in

English that 'He follows Darridal could be correctly trans-

lated into French either as II1 suit Darridal or II1 sous-

crire au Darridism'. The intransitive English verb in the

first case is translated into a French intransitive verb,

while in the second case a transitive verb is required in

the translation. As with the lexical ambiguity of individu-

al words, the meaning of the English sentence must be

disambiguated before a corresponding French construction

can be found.

page 41

When a connective or a pronoun serves the grammatical
purpose of pointing back to something which has been said,
it is described as anaphoric. But a difficulty, in the

context of machine translation, is that it may well be

capable of referring to more than one preceding word or
clause. For instance, the pronoun fit' in the last sentence
may refer to the nouns 'connective' or 'pronoun' in the

sentence before, or to the noun phrase 'a difficulty for

machine translation' in the same sentence. References to

objects which occur later than the pronoun or which lie

outside the text altogether are known as cataphoric and
exophoric respectively (Halliday & Hasan, 1976). The prob-
lem of referential cohesion occurs frequently in linguistic

analysis. Texts containing these types of reference can

only be translated correctly if the exact referent is

known, and this is of course a question of semantics rather
than syntax.

A particularly intractable difficulty in all language

translation, both for a human linguist and a computer, is

dealing with idioms. An idiom is a linguistic construction

approved by usage whose significance differs from its

grammatical meaning. Elaine Rich (1983) observes that;

"An idiom in the source language must be recog-
nized and not [mechanically] translated direct-
ly into the target language. A classic example
of the failure to do this is illustrated by the
following pair of sentences. The first was
translated into Russian, and the result was
then translated back to English, giving the
second sentence:

1. The spirit is willing but the flesh is weak.
2. The vodka is good but the meat is rotten.

It is evident that a third element must be added to the

simple diagrammatic representation of machine translation

if it is to become a method capable of overcoming the

lexical, grammatical, referential and idiomatic obstacles.

page 42

The diagram must be expanded into the form;

Source language --- > Semantic encoding --- > Target language

Dreyfus agrees with the need for a semantic component in a

workable automatic machine translation algorithm. He goes

on to argue that fully automatic high quality translation,

often abbreviated to FAHQT, is impossible because meaning

cannot in fact be represented by any formal symbolic sys-
tem. Furthermore, he applies his comments on semantic

processing to problem solving and pattern recognition

programs as well as attempts at machine translation. His

reasons for this assertion, which makes up the second part

of his analysis of weak CS, are interesting and, I think,

cogent.

Unfulfilled Promise - Computer chess

It is possible, in principle, to solve many problems by

enumerating every possibility and then attempting to select

the best solution from the list. The problem to which this

exhaustive process of 'counting out' has most often been

applied is the game of chess. The conduct of a chess player
is completely rule bound but the immense number of possible
board states, some 10120, means that playing and winning

the game is not a simple matter. The combination of strict
formality and enormous extent has made chess a favourite

vehicle for experiments in problem solving by computer.

The algorithm upon which all modern chess playing programs

are based is the Ilookahead-evaluate-minimaxl model that

was first proposed by Claude Shannon in 1950. Using this

method the machine proceeds by searching ahead from the

current position along a branching tree of possible moves.

The result of each possibility is recorded on a numerical

scale and the move with the highest score is selected and

made. It has been found that in chess there is an average

of about 35 lookahead branches for each board state. Other

things being equal, therefore, the lookahead tree would

page 43

grow by powers of 35. Advances in the design of chess
playing programs have taken the form of finding ways to

prune the lookahead tree, and the recent Cray Blitz program
(Hyatt et al, 1986) grows by a power of only about 8 for

each ply.

By 1967 the MacHACK chess program had achieved the standard

of an average club player (Greenblatt, Eastlake & Crocker,

1967). More recently the Cray Blitz program has beaten

players of National Master standard and is rated at about
2300 on the United States Chess Federation scale (Hyatt et

al, 1986). Although progress in the techniques available
for pruning the lookahead tree have helped to reach what
is, by the standard of ordinary mortals, a very high rating

the most important factor has been an enormous increase in

the power of computers. MacHACK ran on a DEC PDP-6 capable

of 2x 105 arithmetic operations per second, while the Cray

X-MP two processor machine upon which the 1983 version of

Cray Blitz was implemented has a speed of 1012 arithmetic

operations per second, a five million-fold increase in

speed of processing.

Chess playing programs show clearly the effects of a funda-

mental difficulty facing any problem solving routine which

relies on exhaustively counting out the possibilities,

which is the fact that the necessary number of computations
increases exponentially with the size of the problem. This

phenomenon is known in computer jargon as 'the combinatori-

al explosion'.

"Chess, however, although decidable in princi-
ple by counting out all possible moves and
responses, presents the problem inevitably
connected with choice mazes: exponential
growth. Alternative paths multiply so'rapidly
that we cannot even run through all the branch-
ing possibilities far enough to form a reliable
judgement as to whether a given branch is
sufficiently promising to merit further explo-
ration. " (Dreyfus, 1979: 101)

page 44

Few people would disagree with Dreyfus when he claims that

an attempt to simulate cognition, even using a very large

computer to count out all the possibilities, is doomed to
fail in the case of any but trivially small problems. The

processing power of the human brain, which is about 1018

arithmetic operations per second, is some million times

faster than a supercomputer. However, despite the remarka-
ble power of the chemical computer housed within his skull,

a human player is no more able to count out all possible

moves in a game of chess than is Cray Blitz. The number of

possibilities remains much too large for the brain as it is

for the supercomputer.

Unfulfilled Promise - Pattern Recognition

Nearly everything that we do involves, if it does not

actually follow from, an act of perception. The word
'perceive' derives ultimately from the Latin Icaperel

meaning 'to lay hold of', and the modern usage similarly
implies the active acquisition of information or knowledge.

The enterprise of "making machines do things that would

require intelligence if done by men" therefore leads natu-

rally to experiments in computer perception. A sub-division

of this undertaking is the attempt to program a computer to

recognise patterns.

One might hope that pattern recognition would be easier to

do than perception by computer because the pre-existence of
the pattern to be recognised restricts the scope of the

problem. Perception in the general sense leaves open the

question of what it is that is to be perceived. But it

quickly emerges that pattern recognition is more difficult

than it at first seems. In his role of the gadfly of the

artificial intelligence community, Hubert Dreyfus has not
been slow to point out some of these difficulties and their

consequences.

"A computer must recognise all patterns in
terms of specific traits. This raises problems
of exponential growth which human beings are

page 45

able to avoid by proceeding in a different
way. Simulating recognition of even simple
patterns may thus require recourse to each of
the fundamental forms of human 'information
processing' discussed this far. And even if in
these simple cases artificial intelligence
workers have been able to make some headway
with mechanical techniques, patterns as complex
as artistic styles and the human face reveal a
loose sort of resemblance which seems to re-
quire a special combination of insight, fringe
consciousness, and ambiguity tolerance beyond
the reach of digital machines. It is no wonder,
then, that work in pattern recognition has had
a late start and an early stagnation. " (Drey-
fus, 1979: 120)

I think that much of what Dreyfus says here is perfectly
true. It is impossible to see how a computer, which has no
human or personal history nor is possessed of intentionali-

ty, can ever be programmed to recognise a Tinoretto, to

distinguish between a string quartet by Hayden and another
by Mozart, or to pick out a particular face in a crowd. He

could also have included in his list of impossibilities the

perception of significant patterns in a game of chess. But

the passage that I have quoted above displays the charac-
teristic weakness, as well as the cogency, of Dreyfus's

line of argument.

He correctly points out the impossibility of doing some-
thing difficult by imitating human methods of thought and
he goes on to imply, erroneously I think, that simpler
tasks of a similar type are therefore also impossible to

carry out. This follows from his failure to distinguish

between the imitation and the mere simulation of cognition.

Just as he was lead in 1965 to dismiss the possibility of

expert computer chess by the fact that:

"situations will always occur in which the
machine cannot pursue the chain of moves which
contains the winning combination; thus, there
will always be games that people can win and
machines cannot. " (Dreyfus, 1965)

page 46

So he concludes that all pattern recognition research is in

a state of stagnation because no computer could recognise a

painting in a museum. But more humble lines of pattern
recognition research are not at a halt. The last twenty

years has, for example, seen a great deal of progress in

the automatic recognition of printed and typewritten char-

acters. The topic of character recognition is often abbre-

viated as CR.

The most simple type of CR machine makes use of magnetic

printing ink. serial numbers on bank cheques, for example,
when read using a magnetic scanner, produce a characteris-
tic waveform. The waveform can be compared very easily with

a stored bank of waveforms representing. the elements of the

font used in printing the cheque forms, and the result

output to a computer screen or file. Magnetic CR machines

work very fast, but little intelligence, real or artifi-

cial, is required of them.

The reverse is true of programs written to recognise hand-

writing. The great variety of graphical forms which appears
in handwritten texts is often sufficient to confuse the

human eye. But despite great differences in size, regulari-
ty, shape and connectedness in cursive script it is possi-
ble to achieve recognition rates as high as 97% (Davis &

Lyall, 1986). This is done by extracting the elements of

which a character is composed and comparing them with a
database containing the set of possible graphical strokes
(Eden, 1968). The advantage of this method is that a stroke

which does not precisely match the pattern, a crossing of a

It' which is not accurately horizontal for example, can be

recognised as a rotated crossing stroke rather than being

rejected as outside the set. Furthermore, a character can
be recognised correctly even if one of its elements is

missing provided that the combination of characters that it

does exhibit is possessed by no other character. Cursive

script recognition, or CRS, programs have decipherment

page 47

capabilities which, were they exhibited by human readers,
would be considered to demonstrate intelligence.

An intermediate position on the artificial IQ scale is

occupied by the optical character reading, or OCR, ma-
chines. The type now frequently seen on office desks can
usually read only a restricted number of printed character
fonts. The DEST PC machine, for instance, can read a piece
of text provided that it is printed on one of 12 daisywheel
typefaces or 9 produced on a dot-matrix printer. Recogni-
tion is carried out by comparing the character as it is

read with a prepared database of standardised character
forms. These machines are accurate within their design

limits, but they are somewhat restricted in their capabili-
ties. The DEST PC will fail to recognise text that has, for

example, been enlarged or reduced in a photocopier. This

machine is a long way from displaying the "special combina-
tion of insight, fringe consciousness and ambiguity toler-

ance" which Dreyfus supposed to be indispensable, but it is

nevertheless a very useful device to anyone who has to

handle text.

However, the type of OCR machine that possesses a database

which is trainable rather than standardised can perform at

a level that is a convincing imitation of intelligence. The

KDEM system (Hockey & Scott, 1981) employs a vertical slit

optical reader by means of which an enlarged image of a

character is sent to the screen, together with the system's

guess as to which alphanumeric character it is. The opera-
tor confirms or corrects the system's judgement, whereupon
the character is entered into the database. The key to the

effectiveness of the system is that a character is stored

not as a single complete image, but rather as an assembly

of graphical features. This enables subsequently read

characters to be identified even if they differ in some
ways from any of the database records. An IiI without a
dot, for example, will be read correctly because the pro-
gram has been supplied with the fact that no other charac-

page 48

ter in the Roman alphabet possesses only a short perpendic-
ular stroke which springs from the baseline. The result of
the process of training is that the system soon ceases to

call for confirmation of the identity of a character, and
it is able to go ahead and read the rest of the document

without help from the operator. If the ability to accept
training is held to be a feature of intelligence, then the

KDEM system can lay claim to the artificial variety of that

faculty.

The Human Situation

It appears, on Dreyfus's assessment, that a computer will

never be able to translate text, play chess or recognise

patterns. He points to our human ability to recognise a
Degas, or to translate Dante, and one must concede in his

favour that a grandmaster can still defeat even a program

as powerful as the Cray Blitz. Wherein, then, lies the

difference between computing machines on the one hand and,

on the other, our own selves as cognitive beings? This

question brings us to the last part of Dreyfus's argument

against weak CS, which he sees as the final incarnation of
the Platonic tradition.

The last stage of Dreyfus's attempt to rebut the claims of

researchers in artificial intelligence consists of giving

an alternative account of how it is that humans display

actual intelligence. This he does from a phenomenological

point of view.

Dreyfus the phenomenologist approaches the question of
human performance by examining what a chess player thinks
he is doing while he is conducting his game. The American

chess master Eliot Hearst attributes the skill of the human

player not to the number of moves he can foresee, but to

his ability to judge the significance of the pattern and
structure which a game displays.

page 49

"Apparently the master perceives the setup in
large units, such as pawn structure or cooper-
ating pieces, and can even decide which side
has the advantage. When he does make an error,
it is very often one of putting a piece on a
very desirable square for that type of posi-
tion. " (Hearst, 1967: 35)

That is to say, the player begins by seizing upon the

overall pattern of the game. He identifies the places in

which he and his opponent is strong or weak, he recalls
previous games in which he has faced a similar situation,
and he exploits what he knows about his opponent's style of
play. only then does he count out the possible moves. This
type of problem solving Dreyfus calls 'zeroing-in'. Zero-
ing-in is based upon intuition and interpretation, not upon
calculation, and it works from the general to the particu-
lar. It is, in fact, the converse of 'counting out'.

Zeroing-in works for us because we can use the context of

our situation to judge the significance of things. A piece
is vulnerable in the context of a particular state of the

board, and a move is made because of later moves that it

may facilitate. But the context of the board is influenced

by the context of experience of the two players, and that
in its turn is partly a function of the state of chess
culture. And the culture of chess is a part of general
culture, which exists in history. It is impossible to

provide a computer with all that is needed to zero in on a
problem because the sequence of the layers of context forms

an infinite regress.

"Thus, for example, to pick out two dots in a
picture as eyes one must have already recog-
nised this context as a face. To recognise this
context as a face one must have distinguished
its relevant features such as shape and hair
from the shadow as and highlights, and these,
in turn, can be picked out as relevant only in
a broader context, for example, a domestic
situation in which the program can expect to
find faces. This context too will have to be
recognised by its relevant features, as social
rather than, say, meteorological, so that the
program selects as significant the people

page 50

rather than the clouds. But if each context can
be recognised only in terms of features select-
ed as relevant and interpreted in terms of
broader context, the AI worker is faced with a
regress of context. " (Dreyfus, 1979: 289)

Human beings, as sentient creatures, can cut short the

regress of context because they have a personal point of

view from which to decide what aspects of the context are

relevant. As Ludwig Wittgenstein puts the matter, "What has

to be accepted, the given, is - so one could say - forms of
life. " (PI 11,226). But a computing machine, which can do

no more than manipulate a formalism of symbols, would need

an infinite amount of information if it were to be able to

arrest the infinite regress of the problem context.

Conclusion
In the previous chapter I have given an account of Searle's

Chinese Room experiment in which, in my opinion, he dis-

poses of the notion that a computer can be said to be

thinking just because it is able to manipulate symbols.
Dreyfus's attack on artificial intelligence research has

been described in this chapter. He dismisses artificial
intelligence not just because it cannot instantiate think-
ing but because it cannot, he asserts, simulate thinking

either. But there are many parallels between the two analy-

ses offered by Searle and Dreyfus. In the next chapter I

attempt to compare their arguments in such a way as to come
to a conclusion about the status of cognitive simulation as

a sub-division of the topic of artificial intelligence.

page 51

Chapter 5. SEARLE, DREYFUS AND THE SINULATION OF COGNITION

Some conscious states of mind occur without direct refer-

ence to the outer world. For example, voluntary movement of
the body, the sensation of a painful tooth or the exercise

of memory are states of mind that are directed inwards upon

oneself. They are complete without reference to external

reality, and are in a sense intransitive. But other states
imply the relevance of something in the outside world. One

may believe that something is not so, one may wish some-
thing to be so, or one may be afraid of something. These

states, which are directed at an external object or set of
independent circumstances, are known as intentional states.

Intentional States
The fact that intentional states are internal mental phe-
nomena rather than percepts is shown by the fact that an
intentional state can be directed at an unknown or ficti-
tious object.

"for a large number of Intentional states I can
have the state without the object or state of
af f airs that the Intentional state is directed
at even existing at all: I can believe that the
king of France is bald even if, unknown to me,
there is no king of France; and I can hope that
it will rain even if it doesn't rain. " (Searle,
1979: 74)

Searle has capitalised the word Intentional in the text of

his paper in order to distinguish the philosophical use of

the term from its meaning in ordinary usage of "done on

purpose". In the absence of intentional states, in this

technical sense of the word, the mind would be isolated

from its environment and thinking would be impossible.

However, the essential point, in the context of artificial
intelligence, about the notion of intentionality is that it

involves a two-term relationship. There has to be the

object or circumstance which is referred to, and there must

be a conscious being capable of directing attention to

page 52

those things. Intentionality is the name for the logical
link which connects the two sides of the relation.

z
However, in the notion of meaning as proposed by Schank

(1975) as part of his theory of conceptual dependency there
is no room, nor any need, for intentional states.

5

6

"We define an interlingua as a representation
of meaning of natural language that does not
involve any of the words of the language. This
representation of meaning should be extractable
from any language and capable of being generat-
ed into any other language.
In order to try to develop an interlingual
representation it is necessary to reject the
idea that thought does not exist independent of
language. We thus propose that language has
words which name thoughts and that thoughts can
be separated. Thus we assume that any language
can be translated into any other language. "
(Schank, 1975: 8)

That is to say, meaning resides in the words themselves,

independently of the linguistic relation of an observer to

those words.

The semantic autonomy of the object is, no doubt, required
if semantic processing by computer is to become a reality.
But I think that Searle has placed his finger accurately

upon the feature that most clearly distinguishes thought

from computation. He explains the result of the Chinese

room experiment as following from the necessarily inten-

tional character of thought, and that this intentionality

is possessed by the programmers, not the computer.

"formal symbol manipulations by themselves
don't have any intentionality; they are quite
meaningless; they aren't even symbol manipula-
tions, since the symbols don't symbolise any-
thing. In the linguistic jargon, they have only
a syntax but no semantics. Such intentionality
as computers appear to have is solely in the
minds of those who program them and those who
use them, those who send in the input and those
who interpret the output. " (Searle, 1980a: 422)

page 53

In short, intentionality, which is indispensable for
thought, is a two-term relationship between a conscious
being and the external world. Conceptual dependency, on the
other hand, is based upon single terms each of which is
held to characterise something in the world. In short,
conceptual dependency attempts to replace a two-term inten-
tional relationship with a single-term property attribu-
tion. A computer may indeed be programmed to manipulate the

components of a Schankian script, but Searle's analysis of
intentionality shows why we should not mistake this for
thought.

Although Searle claims (1980b: 454) that "I am
concerned only incidentally with the 'mind-brain prob-
lem'. ", he does in fact devote much of the space in his

paper to what he calls the causal powers of the human
brain. He has shown that intentionality is indispensable to
thought, and he wants to go on to demonstrate that only
brains can display intentionality. Thus he is led, despite

a disclaimer, to say something about the vexed problem of
the relationship between the brain and the mind.

It is possible to argue, as did Rene Descartes, that the
brain as a part of the body is a physical object while
thought is immaterial and takes place in a sphere remote
from space and time where the laws of physics do not apply.
A person's bodily life, from this point of view, takes

place in the physical world and is external to him, while
those things that occupy his mind constitute his internal

life. There are a number of difficulties with Cartesian
dualism, the most intractable of which is the problem of
accounting for the interactions of the mind and the body.

David Hume was the first thinker to acknowledge this com-
pletely, and he found himself in consequence driven to

embrace a completely solipsistic view of the world. If

one's mind is indeed remote in space and time from one's
brain, then the only thing of which the possessor of a mind
can have knowledge is that same mind.

page 54

Most thinkers other than Hume have felt it necessary to try
to modify the doctrine of Cartesian dualism so as to evade
solipsism. Gilbert Ryle in his 'The Concept of Mind' (1949)

made a comprehensive attack of what he called "the ghost in
the machine", by which he meant the idea that our machine-
like bodies are inhabited by an immaterial ghost-like mind.
He advanced a monist conception of the relation of brain

and the mind. According to Ryle, to speak of a mind is to
discuss someone's propensity to do things.

"To talk of a person's mind is not to talk of a
repository which is permitted to house objects
that something called 'the physical world' is
forbidden to house; it is to talk of the per-
son's abilities, liabilities, and inclinations
to do and undergo certain sorts of things, and
of the doing and undergoing of these things in
the ordinary world. Indeed, it makes no sense
to speak as if there could be two or eleven
worlds. Nothing but confusion is achieved by
labelling worlds after particular avocations.
Even the solemn phrase 'the physical world' is
as philosophically pointless as would be the
phrase 'the numismatic world'i 'the haberdash-
ery world', or 'the botanical world. " (Ryle,
1949: 190)

To suppose otherwise, he says is to make the "category
mistake" of inventing a thing for whose reality the only
evidence is the existence of a word. Ryle's critique of
dualism is, like Descarte's proposal, conceptual, and
neither thinker makes any appeal to empirical evidence to
support his position.

For his part, Searle produces in his paper a sketch of a
position on the brain-mind problem which rests a little

awkwardly between the views of Ryle and Descartes. He

claims that there is a necessary biological relationship
between cognition and the kind of creatures we are.

"It is not because I am the instantiation of a
computer program that I am able to understand
English and have other forms of intentionality
(I am, I suppose, the instantiation of any

page 55

number of computer programs), but as f ar as we
know it is because I am a certain sort of
organism with certain biological (i. e. chemical
and physical) structure, and this structure,
under certain conditions, is causally capable
of producing perception, action, understanding,
learning, and other intentional phenomena. And
part of the present argument is that only
something that had those causal powers could
have that intentionality. " (Searle, 1980a: 422)

It seems to me that Searle has quite unnecessarily muddied
the water by appealing to what he claims is accepted empir-
ical knowledge. We have in recent years learned quite a lot

about how nerve impulses in the brain are transmitted, and
we know where in the brain some cognitive processes are
centred. But the manner in which thoughts and feelings are
related to, or result from, the physiological working of
the brain remains a deep and fascinating mystery. Neurobi-

ologists have been able to push back the frontier of our
understanding of how the brain works, but the mind-brain
problem has retreated in step with the advance of science.
one therefore stands on very shaky ground when one tries to

put neurobiology to use in epistemological discussions.
Searle would have saved himself some inconclusive skirmish-
es with empirically oriented critics such as Fodor (1980)
Hofstadter (1980) and Minsky (1980) had he recognised this.

But, it seems to me, Searle's case stands by its logical

coherence rather than by virtue of any empirical buttress-
ing. One may accept the conclusion of his argument while
regretting his ill-judged excursion into the biology of the
brain.

The fact that all formal symbol manipulation systems suffer
from a complementary pair of related limitations, which are
the combinatorial explosion in the direction of counting
out and infinite regress in the opposite direction of
contextual assessment, is Dreyfus's central insight and it
is the thought that underpins the whole of his book. I
think he is correct to conclude from this discovery that a
computer can never simulate thinking, and that the project

page 56

of weak CS is impossible. A computer that is instructed to

count out all possibilities will never complete the task,

while if it is to zero-in upon the problem it will require
an infinite amount of contextual information.

Searle has shown that strong CS, in the sense of the repro-
duction of cognition by computer, is also impossible. But
he does not attempt to extend his disproof to weak CS, or
to artificial intelligence in general.

"He (Schank) thinks I want 'to call into ques-
tion the enterprise of AI. 1 That is not true. I
am in favour of weak AI, at least as a research
program. " (Searle, 1980b: 453)

Phenomenology
Dreyfus, however, extends his argument against weak CS to

embrace any attempt to use computers in cognitive studies,
and indeed he takes it so far as to reject the entire
Western analytic attitude towards personal experience.

"We have seen that what counts as 'a complete
description' or an explanation is determined by
the very tradition to which we are seeking an
alternative. We will not have understood an
ability, such as the human mastery of natural
language, until we have found a theory, a
formal system of rules, for describing this
competence. We will not have understood beha-
viour, such as the use of language, until we
can specify that behaviour in terms of unique
and precisely definable reactions to precisely
defined objects in universally defined situa-
tions. Thus, Western thought has already com-
mitted itself to what would count as an expla-
nation of human behaviour. It must be a theory
of practice, which treats man as a device, an
object responding to the influence of other
objects, according to universal laws or rules.
But it is just this sort of theory, which,
after two thousand years of refinement, has
become sufficiently problematic to be rejected
by philosophers both in the Anglo-American
tradition and on the Continent. It is just this
theory which has run up against a stone wall in
research in artificial intelligence. It is not
some specific explanation, then, that has
failed, but the whole conceptual framework
which assumes that an explanation of human

page 57

behaviour can and must take the Platonic f orm,
successful in physical explanation; that situa-
tions can be treated like physical states; that
the human world can be treated like the physi-
cal universe. If this whole approach has
failed, then in proposing an alternative ac-
count we shall have to propose a different sort
of explanation, a different sort of answer to
the question 'How does man produce intelligent
behaviour? ' or even a different sort of ques-
tion, for the notion of 'producing' behaviour
instead of simply exhibiting it is already
coloured by the tradition. For a product must
be produced in some way; and if it isn't pro-
duced in some definite way, the only alterna-
tive seems to be that it is produced
magically. " (Dreyfus, 1979: 232)

The point of view from which Dreyfus conducts his critique

of artificial intelligence is that of the phenomenological

school of thought. This many-syllabled word denotes a

method of philosophical enquiry whose twentieth century
form was initiated by Edmund Husserl with the publication
in 1913 of his 'Ideen zu einer reinen Phanomenologie und

phanomenologishen Philosophiel. The central idea upon which

phenomenology is founded is Husserl's assertion that a

study of meaning must rest upon insight rather than, as

empiricists would have it, upon generalisations from expe-

rience. Husserl maintains that no distinction can be made
between perception and what is perceived, and that objects

are correlated with states of mind. For Husserl conscious-

ness was all. Husserl's ideas were developed principally by

Martin Heidegger with his ISein und Zeit' of 1927 and by

the French philosopher Maurice Merleau-Ponty whose 'Pheno-

menologie de Perception' appeared in 1945. The later

thought of Ludwig Wittgenstein has many parallels with, and

some important differences from, the phenomenological

mainstream.

It is at once apparent that phenomenology is in conflict
with the entire Western tradition of analytic philosophy,
and in particular with the scientific view of reality. The
scientific viewpoint is based upon the assumption that
there exists an external physical reality and that human

page 58

thought occurs with reference to it. It is precisely this

attitude to which Husserl attributes all our troubles and
confusion.

"Husserl contends that in striving to build up
an objective picture of reality, scientific
practice has progressively cut off subjective
experience from the life-world to such an
extent that Western man is in a permanent state
of crisis, i. e. he feels that science is his
only source of facts and loses consequently his
lived relations to the historical and social
reality of life. In brief, Western man is
deprived of the immediate evidence of his world
considered as the realm of significant rela-
tions to objects and to his f ellow men, and is
condemned to rely on intermediate abstract
constructs: the lif e-world is concealed by the
transcendental act of scientific elaboration.
(Thines, 1987: 327)

Few people whose reflective capacities are not completely

atrophied can fail to see the force of Husserl's conten-
tion. A purely calculative attitude, characterised in

French by the adjective 'Cartesian', dominates much of

modern life and it brings alienation as often as enlighten-

ment in its train. The world does indeed turn to stone when
it is subjected to the stare of an exclusively scientific
Minerva. But only an over-riding impulse to be completely

consistent in all of one's thoughts can drive one to place

personal experience in diametric opposition to scientific
knowledge. Fortunately, scientific rationality and human

experience are only obliquely in conflict and one need not,
I think, be either inflexibly scientific nor steadily
introspective about everything.

Hubert Dreyfus came to the study of artificial intelligence

from a phenomenological background, and he has a character-
istically wary attitude to science.

"if my favourite thinkers (who might be called
antiphilosophers) were right, the new computer
approach should not work, based as it was on
using programs or rules to impart 'knowledge'
to machines. So I confidently continued to

page 59

teach Merleau-Ponty's claim that perception and
understanding are based in our capacity f or
picking up not rules, but flexible styles of
behaviour. For example, someone who knows how
to drive a car with a shift on the steering
column can easily transfer the skill to a shift
on the floor, even though the rule describing
the sequence of movements required would be
very different. Explaining Heideggar, I contin-
ued to assert that we are able to understand
what a chair or a chair or a hammer is only
because it fits into a whole set of cultural
practices in which we grow up and with which we
gradually become familiar. As I taught I won-
dered more and more how computers, which have
no bodies, no childhood, and no cultural
practices, but are disembodied, fully formed,
nonsocial, purely analytic engines, could be
intelligent at all. Clearly, if the word I was
getting from the robot factory was right, then
the antiphilosophers I was teaching were wrong.
I realised that if I was to go on teaching
those antiphilosophers to skeptical students,
whom I now thought of as the heirs of Plato,
Kant and Husserl, I had better find out just
how intelligent computers were and how intelli-
gent they were likely to become. " (Dreyfus &
Dreyfus, 1986: 5)

When Dreyfus turns his eye upon artificial intelligence he

sees in it the culmination of the analytic de-humanisation

of the Western world view. While this may seem to be rather
a heavy burden to be borne by a mere sub-division of com-

puter science, I think that it is important to take note of
what he says. Dreyfus speaks as a philosophical historian,

as a well informed critic of artificial intelligence and as
a lucid spokesman for an anxiety about computers and compu-
tation that is widespread in the educated public.

"During the past two thousand years the impor-
tance of objectivity; the belief that actions
are governed by fixed values; the notion that
skills can be formalised; and in general that
one can have a theory of practical activity,
have gradually exerted their influence in
psychology and in social science. People have
begun to think of themselves as objects able to
fit into the inflexible calculations of disem-
bodied machines: machine for which the human
form-of-life must be analysed into meaningless
facts, rather than a field of concern organised
by sensory-motor skills. our risk is not the

page 60

advent of superintelligent computers, but of
subintelligent human beings. " (Dreyfus,
1979: 280)

The Limits of Phenomenology

I am not equipped to adjudicate upon Dreyfus's attempt to

overturn nearly everything that has been thought in the
West since the time of Plato. However, I do feel able to

say that, so far as artificial intelligence is concerned,
his argument against weak CS is sound, and that there is
indeed a wide ontological gulf lying between our minds and
our machines. But I also think that Dreyfus underestimates
the scope and complexity of "the enterprise of AIII, and
that he fails to recognise that artificial intelligence is

not an exclusively conceptual undertaking. He is on weak
ground when, embarking upon the last section of his task,
he attempts to consign all parts of the subject of artifi-
cial intelligence to the paper shredding machine.

There is a discontinuity between the analysis that Dreyfus

offers of machine thinking and the predictions he makes
about the future of artificial intelligence. He has identi-

fied, I think correctly, the reason why FAHQT is impossi-
ble, which is the problem of the infinite regress of con-
text. He then goes on to say,

"The foregoing considerations concerning the
essential role of context awareness and ambi-
guity tolerance in the use of a natural lan-
guage should suggest why, after the success of
the mechanical dictionary, progress has come to
a halt in the translating field. Moreover,
since, as we have seen, the ability to learn a
language presupposes the same complex combina-
tion of human forms of 'information processing'
needed to understand a language, it is hard to
see how an appeal to learning can be used to
bypass the problems this area must confront. "
(Dreyfus, 1979: 111)

It follows from the impossibility of FAHQT, Dreyfus main-
tains, that every language translation program must be

useless. But to say this is to needlessly circumscribe the

topic artificial intelligence. Peter Sell's definition of

page 61

the subject which is given in Chapter 2 points out that
"intelligent artifacts" and "models of human cognition" are

equally important in artificial intelligence.

Dreyfus is so preoccupied with what he thinks are faulty

computer models of cognition that he fails to attach any
importance to intelligent artifacts, in the field of ma-
chine translation or elsewhere. But the development of
translators' assistant programs (NLP, 1984), which facili-

tate rather than conduct the process of translation, would

not have occurred had Dreyfus's condemnations encompassed
the whole truth about artificial intelligence. His assess-

ment of the future of computer chess is similar to his

predictions about machine translation. The human chess

player, Dreyfus says,

"sees that his opponent looks vulnerable in a
certain area (just as one familiar with houses
in general and with a certain house sees it as
having a certain sort of back), and zeroing in
on this area he discovers the unprotected Rook.
This move is seen as one step in a developing
pattern.
There is no chess program which even tries to
use the past experience of a particular game in
this way. Rather, each move is taken up anew as
if it were an isolated chess problem found in a
book. This technique is forced upon program-
mers, since a program which carried along
information on the past position of each piece
would rapidly sink under the accumulating data.
What is needed is a program which selectively
carries over from the past just those features
which were signif icant in the light of its
present strategy and the strategy attributed to
its opponent. But present programs embody no
long-range strategy at all. " (Dreyfus,
1979: 105)

This is all perfectly true, and it is indeed hard to see
how it will ever be possible for a computer to be pro-

grammed to assess the state of the board in the same way as

a human player. But despite this, computer programs can be

formidable and effective opponents for even highly skilled

players. Dreyfus himself discovered this when, despite his

page 62

early claim that "Still no chess program can play even
amateur chess" (1965), he was beaten by MacHACK (Hayes &

Levy, 1976: 6).

It has been pointed out by the Canadian psychologist Zenon

Pylyshyn that Dreyfus's phenomenological point of view may
be responsible for his blindness to pragmatic matters.

"Clearly then the 'information' which Dreyfus
is concerned to have represented involves that
of which we have 'experiential evidence' in-
cluding such subjective phenomena as the feel-
ing of *zeroing-in' and our 'sense of
oddness' It would not be enough to describe
the function but one would have to simulate the
appearances. But this amounts to a request that
we reproduce the phenomena rather than simulate
them.
This can only reveal a basic misunderstanding
as to the function of scientific understanding.
As Einstein is said to have remarked, it is not
the function of science to produce the taste in
the soup! The scientist's task is not to
duplicate phenomena but to make them accessible
to the intellect. In contemporary Western
science this can mean only one thing: The
scientist must substitute for the 'real thing'
a system built on principles which he can
understand. " (Pylyshyn, 1974: 65)

Dreyfus, like a good phenomenologist, wishes to emphasise
the over-riding importance of authentic human experience
and to marginalise those abstract and disembodied cerebra-
tions which collectively go by the name of science. This

viewpoint has enabled him to furnish a penetrating critique
of that part of artificial intelligence which is closest to

direct human experience, which is CS, but it also blinds
him to the importance and usefulness of the other near-

scientific topics which go to make up the subject of arti-
ficial intelligence. Dreyfus's thought exhibits the

strengths but also the weaknesses of those who adhere to
the cause of insight in the ancient contest between ab-
stract rationality and human intuition.

page 63

cognitive simulation may well be, as Dreyfus claims, a
tainted study, but he takes no account of those artificial
intelligence topics for which a mere correspondence, rather
than an actual or conceptual identity, between thinking and

computing is sufficient. Most of the traditional artificial
intelligence topics other than CS are of this type, and I

think that these survive his strictures intact. Dreyfus may
be said to have carried out a valuable piece of surgery on
the body of artificial intelligence, but far from expiring

upon the operating table the patient has recovered success-
fully and is now more healthy than before.

The great changes that have occurred in artificial intelli-

gence research during the last decade and a half are partly
the result of the strictures of writers such as Searle and

Dreyfus. After 15 years of publishing, during which it grew
from 300 pages to 1000 pages a year, the journal Artificial

Intelligence published a long article entitled 'Artificial

Intelligence - Where Are WeV (Bobrow & Hayes, 1985). The

purpose was "to ask some of the people who have been in, or

observers of, the field during these years to comment on

where we have been, where we are and what the future might

hold. " The article is a stocktaking of the artificial
intelligence workshop.

Many replies were of the 'its early days yet' kind. Donald

Michie, for example, commented that;

"A historical analogy is with the first synthe-
sis of an organic compound in 1828, when a
trace of urea was made, previously believed
impossible except by participation of living
cells. "

Most contributors reflected that 'its tougher than we

thought it would be'. Roger Schank observes that;

"The most significant advance in the last
decade has been the appreciation of just how
complex the nature of thinking is. We have come
to understand how complex the issues are. "

page 64

But the usually tacit thought that informed most of the

respondents' comments was that a fundamental change has

come over all parts of the field of artificial intelligence

studies. The nature of the change was most clearly de-

scribed by Terry Winograd, who wrote;

"My own work underwent a major change, as I
moved away from the assumption that the way to
make better and more useful computers (and
interfaces) was to get them to be intelligent
and use natural language. I recognised the
depth of the difficulties in getting a machine
to understand language in any but a superficial
and misleading way, and am convinced that
people will be much better served by machines
that do well-defined and understandable things
than those that appear to be like a person
until something goes wrong (which won't take
long), at which point there is only confusion. "

However, the magazine editors did not ask their contribu-
tors to give their reasons for their assessment of the

direction in which artificial intelligence is evolving. No

answers were sought or provided on the exact nature of the

difficulties that have been experienced, nor why it is that

many aspects of artificial intelligence have turned out to

be so much harder than was once supposed.

Conclusion
I think that much light can be shed on these more fundamen-
tal questions by making a comparison between the develop-

ment of research in artificial intelligence and the evolu-
tion of the thought of Ludwig Wittgenstein.

In the second quarter of this century Wittgenstein evolved
two very different philosophies. His first attempt upon the

problems of meaning was close in spirit to that of the

early workers on machine cognition. The cast of Wittgen-

stein's later thinking has many parallels with the more
mature attitudes towards AI that are exhibited in the 1985

Artificial Intelligence article from which the preceding

quotations have been taken. In the next two chapters I

page 65

shall try to contrast early and late notions of artificial
intelligence by correlating them to the development of

Wittgenstein's thought. The early Wittgenstein has little

to offer the architect. However, the interpretation which

wittgenstein gives in his later work to the notion of

meaning throws much light upon the process of architectural

design.

page 66

Chapter 6. WITTGENSTEIN AND ARTIFICIAL INTELLIGENCE

During his lifetime Ludwig Wittgenstein published only one
book, his Tractatus Logico-Philosophicus, the German edi-
tion of which appeared in 1921. The translation into Eng-
lish by Charles Ogden and Frank Ramsey, which was published
in the following year with an introduction by Bertrand
Russell, has been superseded by the 1961 translation of
David Pears and Brian McGuiness, and it is the later ver-
sion of Wittgenstein's text that I use in this thesis. The
Tractatus is a young man's book - iconoclastic, rigorous
and concise to the point of terseness. But Wittgenstein,
despite the difficulty of the Tractatus, and even though he
took no part in public life and shunned. all publicity, is

"the most influential philosopher of the 20th century"
(Block, 1987). He is the only philosopher in modern times
to have fathered not one but two distinct schools of
thought.

The Vienna Circle

The Vienna Circle, a group whose best-known members were
Moritz Schlick, Rudolph Carnap, Kurt Godel, Otto Neurath

and Friedrich Waismann, were the originators of logical

positivism. Their purpose in philosophy was to develop the

empirical tradition of John Locke, David Hume and Ernst
Mach by applying to it the techniques of symbolic logic.

The modern study of logic*was begun by Gottlob Frege with
the publication in 1884 of his Die Grundlagen der Arithme-

tik and continued by Russell and Whitehead with their
Principia Mathematica of 1913. But Wittgenstein in the

Tractatus transformed the discoveries of these pioneers
into a lucid and internally coherent logical system. The
importance of his achievement was recognised immediately.

Russell in his 1922 introduction to the first English

edition said of the Tractatus,

"whether or not it proves to give the ultimate
truth on the matters with which it deals, (the
Tractatus] certainly deserves, by its breadth

page 67

and scope and profundity, to be considered an
important event in the philosophical world. "

The members of the Vienna Circle, whose collaboration

spanned most of the 1920s and 1930s, were greatly indebted

to Wittgenstein's ideas. One of the founder members of the

group, and a central figure in the development of logical

positivism, Moritz Schlick, has recorded his assessment of
the Tractatus.

"This book, which in my f irm conviction is the
most significant philosophical work of our day,
cannot be assigned to any particular 'tenden-
cy', but it contends for the fundamental truth
on which all empiricism is founded the
inestimable significance of Wittgenstein's work
lies precisely in this, that in it this nature
of the logical is completely elucidated and
established for all time to come. This happens
in that, for the first time, an entirely clear
and rigorous concept of 'form' is provided,
which banishes at a stroke those difficult
problems of logic which have lately given so
much trouble to serious investigators-"
(Schlick, 1928)

It is ironic that Schlick's high hopes of the Tractatus

were to be undermined by the subsequent work of Wittgen-

stein himself.

After his return to Cambridge and to philosophy in 1929,

Wittgenstein's ideas evolved away from the pure and crys-

talline world of the Tractatus. He found reasons to doubt

the status of logic as the irreducible structure of lan-

guage, and from these doubts there emerged a fresh concep-

tion of language as a type of game whose meaning was insep-

arably bound up with usage. Wittgenstein in his work of the

1930s and 1940s telescoped Schlick"s "for all time to come"
into barely more than a quarter of a century. His later

work was published posthumously, and collectively it con-

stitutes the core texts of the Oxford school of natural

language philosophy.

"At oxford Wittgenstein's ideas entered a very
different philosophical atmosphere from that

page 68

which prevailed at Cambridge. oxford philoso-
phers, for the most part, have learnt their
philosophy as a part of a course of study which
is based upon classical scholarship: in partic-
ular, the influence of Aristotle has been
strong at Oxford as it has never been at Cam-
bridge, where so far as any classical philoso-
pher has been influential it is Plato, not
Aristotle.... At Oxford, then, Wittgenstein's
ideas were grafted onto an Aristotelian-
philological stock; the stock has influenced
the resultant fruits which, amongst other
things, are considerably drier and cooler than
their Cambridge counterparts. " (Passmore 1957)

But Wittgenstein's association with the Vienna Circle was
not entirely forgotten in the ebb of philosophical fashion

and the flow of events. One of the Wittgensteins's 14
posthumously published works, 'Ludwig Wittgenstein and the
Vienna Circle', is a transcription and translation, pub-
lished in English in 1979, of conversations with Wittgen-

stein recorded in shorthand by Waismann between 1929 and
1932.

Although Continental European thinkers of the late twenti-

eth century continue to be interested mainly in questions
of logic and structure, the line of thought that derives
from the oxford school retains its philosophical dominance
in the English speaking countries to this day. So great was
Wittgenstein's intellectual fertility that the doctrines of
the Oxford philosophers, particularly their notion of
meaning, effectively refute the earlier logical positivist
school of thought. His unique achievement was to father two
influential schools of thought, the second of which is a
refutation of the first.

Wittgenstein's death in 1951 occurred only five years
before the first recorded use of the term 'artificial
intelligence' (in Charniak & McDermott, 1985). The charac-
ter of the new discipline of artificial intelligence that

emerged in the 1950s had much in common with the concep-
tions that lay behind the Tractatus. There was the same
preoccupation with logic, a similar drive towards calcula-

page 69

bility and a shared assumption that meaning is synonymous
with the truth function of a proposition. I think that the

early workers in artificial intelligence were misguided in
their approach to their subject for the same reasons that
the assessment by Schlick and the Vienna Circle of the
Tractatus was mistaken. The shortcomings in the Tractatus

were elucidated by Wittgenstein himself in his later work,
and they are summed up in the book published in 1953 as his
Philosophical Investigations.

Wittgenstein did not arrange his texts into the normal
pattern of sentence, paragraph, page and chapter. The

questioning nature of his thoughts could not be reconciled
with a flowing and connected prose style. He therefore

adopted the practice of extracting material from his note-
books and editing it together into groups of short entries
arranged according to topic. His literary executors have
followed the same principles when preparing his posthumous-
ly published works for the press.

The Tractatus, for instance, consists of 526 continuously
printed paragraphs which vary in length from a short sen-
tence to nearly a whole page of text. In this book the

paragraph numbering system follows an hierarchical classi-
fication system and serves to guide the reader by grouping
entries together under topic. Philosophical Investigations
is divided into only two sections. Part II contains only 14
long entries. Perhaps the editors despaired of subdividing

and classifying such complex material more finely. The

entries in Part I, however, are nearly as short and pithy

as those of the Tractatus, and as in the earlier work they

are roughly gathered into paragraphs according to topic.

The editors of his notebooks and his conversations with
Waismann, however, have provided no numbers to the para-

graphs.

Because Wittgenstein's style is so compressed, and his

prose so pregnant with meaning, the customary method of

page 70

annotating a commentary is too clumsy to be applied to his
work. When referring to his texts one needs to be able to
identify a smaller unit than the complete page. In this
section of my thesis I have therefore abandoned the Harvard
convention of referencing. Following the practice of other
commentators, my references to the Tractatus and Philosoph-
ical Investigations are to the titles of these works,
abbreviated to capital letters, followed by the paragraph
number. The numbers following the abbreviations of the
Notebooks and his conversations with Waismann are, however,
to page numbers only. I refer to the Notebooks as NB, the
Tractatus as TLP, to Ludwig Wittgenstein and the Vienna
Circle as WVC, and to the two parts of Philosophical Inves-
tigations as PI I and PI II. Full descriptions of all four
books appear in the list of references.

That an observable phenomenon must necessarily have an
abstract theoretical cause is a conviction that comes
easily to those of us who inherit the tradition of Western
thought. A heated gas expands according to Boyle's law, an
ice skater spins like a top because of the principle of the

conservation of angular momentum, and the motion of an
atomic particle cannot be described completely because of
Heisenberg's uncertainty principle. These laws of nature
are the culmination of 2500 years of intellectual effort
and are in some ways the summit of our cultural achieve-
ment.

The profundity and durability, and the respect in which
scientific generalisations are held, has lead many inferior

writers to try to cloak speculation in the trappings of
abstract principle. The 'laws' of Marx and the 'systems'
beloved of sociologists come to mind. But despite these

abuses I think that most people would agree'that necessary
principles are more illuminating than contingent facts, and
it is therefore not surprising that early workers in the
field of artificial intelligence should begin by assuming

page 71

that explanation of observations made in the new discipline

would follow from the discovery of fundamental principles.

"The field of artificial intelligence is full
of intellectual optimists who love powerful
abstractions and who strive to develop all-
embracing formalisms. (Schank & Abelson, 1977)

I shall now try to show that the early investigators, when
trying to deduce the "all-embracing formalisms" that would
be appropriate to artificial intelligence, adopted a view-

point very similar to that of the author of the Tractatus.

The Search for a Conceptual Base
A clear statement of the epistemological expectations of

early workers in artificial intelligence is given in Roger
Schank's contribution to a collection of papers that he and
Kenneth Colby edited in 1973. This is the paper which
introduced the idea of scripts to artificial intelligence.

In it he says,

"One basic assumption presented in this work is
that since it is true that people can under-
stand natural language, it should be possible
to imitate the human understanding process on a
computer, if it is possible to state those
processes explicitly. Basically, the view of
language understanding expressed here is that
there exists a conceptual base into which
utterances in natural language are mapped
during understanding. Furthermore, it is as-
sumed that this conceptual base is well-defined
enough such that an initial input into the
conceptual base can make possible the predic-
tion of the kind of conceptual information that
is likely to follow the initial input.
Thus, we will be primarily concerned with the
nature of the conceptual base and the nature of
the mapping rules that can be employed to
extract what we shall call the conceptualisa-
tions underlying a linguistic expression. "
(Schank, 1973: 187)

Wittgenstein had a very similar notion when he wrote the

Tractatus. In this work he gave to logic the role of
"conceptual base". Logic must, as he says, "look after
itself" because logic is prior to all experience.

page 72

3

LI

5

"To give the essence of a proposition means to
give the essence of all description, and thus
the essence of the world. " (TLP 5.4711)
"The description of the most general proposi-
tional form is the description of the one and
only general primitive sign in logic. " (TLP
5.472)
"Logic must look after itself. " (TLP 5.473)

An unqualified, and as I think ill-founded, faith in the

power of abstraction is characteristic of both early arti-
ficial intelligence theory and of the Tractatus.

Calculi and Computability

The machine orientation of artificial intelligence carries

with it a requirement for computability. Nearly 20 years

ago Allen Newell summarised this aspect of artificial
intelligence research from a Carnegie-Mellon point of view.

"I should be explicit about the meaning of the
term mechanism f or me (and f or the f ield of
computer science, I might add). A mechanism is
any determinate physical process. An abstract
process constitutes a mechanism if , in princi-
ple, there are ways to realise it by a physical
process. Thus, any program for a digital com-
puter constitutes a mechanism. Similarly, a
rule for which we can build a physical device-
that can realise its application is a mechanism
(or represents one, if we want to be fussy).
This idea can be formalised in the notion of
effective procedure, Turing Machine, Markov
Algorithm, Post Production System. Or we can
start with the formal system as the primitive
(ideal) notion of mechanism, and work back
toward physical processes. But it all comes to
the same thing. Extension of usage to stochas-
tic, statistical, or probabilistic mechanism is
straightforward, going from the abstract no-
tions of probability to physical processes that
obey these formal models. " (Newell, 1973: 4)

A researcher who is of necessity concerned with issues of

computability will be attracted to a conception of knowl-

edge that has the characteristics of a calculus. The Trac-

page 73

tatus is built round a method of calculation based upon
symbolic logic, and it was later referred to by Wittgen-

stein as a calculus.

"For there is not a mere analogy between our
way of using words in a language and a calcu-
lus; I can actually construe the concept of a
calculus in such a way that the use of words
will fall under it. " (WVC,, 168)

The term 'mechanism' as used by Newell is virtually identi-

cal to Wittgenstein's conception of a 'calculus'.

Independence of Atoxic Facts
By analogy with scientific reductionism, it is possible to
hope that the bedrock of philosophy can be reached by means
of analysis. If philosophical concepts are divided and
subdivided sufficiently, and with enough rigour, then one
will eventually get down to the irreducible pellets, or
atoms, of thought whose existence serves to support all
cognitive processes. This line of investigation took Rus-

sell to his empirical version of logical atomism, a title

of his own creation, in which the atoms are indivisibly

simple sense impressions (Russell, 1918). For Wittgenstein,
however, the atoms of interest were of a logical rather
than an experiential character. Wittgenstein, it should be

noted, never applied the term 'logical atomism' to his own
work.

"Every statement about complexes can be re-
solved into a statement about their constitu-
ents and into the propositions that describe
the complexes completely. " (TLP 2.0201)

Wittgenstein's enquiries lead him to believe that the world
can be described by the logical structuring of the names of
irreducible things.

"The world is the totality of facts, not
things. " (TLP 1.1)
"The facts in logical space are the world.
(TLP 1.13)

page 74

one consequence of this conception of reality is that
logical facts are independent of one another. If two or

more facts were found to be in any way dependent upon each
other, then they would be composite rather than simple in

nature and they would for this reason have to forfeit their

atomic character. "Each item can be the case or not the

case while everything else remains the same. " (TLP 1.21)
Wittgenstein constructs the whole edifice of the Tractatus

upon the simplicity and combinability of facts, and the
logical innovations made in his work could not be based

upon on any other supposition.

But atomic simplicity and unfettered combinability are also
attractive features in the symbols to be used in a comput-
ing environment. Symbols that are independent of one anoth-

er can then be manipulated freely, and the patterns that

emerge from a computation would reflect the rules of combi-

nation rather than the status of the symbol. Furthermore, a

group of symbols can be added to or subtracted from without
disturbing the structure of the set. These desirable fea-

tures were not overlooked by early workers in the field of

artificial intelligence. Terry Winograd, for instance, in a
discussion of the problems involved in natural language

processing, remarked that;

"We can view production systems as a program-
ming language in which all interaction is
forced through a very narrow channel The
temporal interaction [of individual produc-
tions] is completely determined by the data in
this STM [short term memory], and a uniform
ordering regime for deciding which productions
will be activated in cases where more than one
might apply.... of course it is possible to use
the STM to pass arbitrarily complex messages
which embody any degree of interaction we want.
But the spirit of the venture is very much
opposed to this, and the formalism is interest-
ing to the degree that complex processes can be
completely described without resort to such
kludgery, maintaining the clear modularity
between the pieces of knowledge and the global
process which uses them. " (Winograd, 1975)

page 75

In fact, Winograd's paper proposes to construct an entire
automatic natural language processing system upon the

pattern of a production system.

The claim that facts were independent of one another was
the first doctrine of the Tractatus to be abandoned by

Wittgenstein when he took up the study of philosophy again
in 1929. Speaking in December of that year to Waismann

about the Tractatus he said,

"I thought that all inference was based on
tautological form. At that time I had not yet
seen that an inference can also have the form:
This man is 2m tall, therefore he is not 3m
tall. This is connected with the fact that I
believed that elementary propositions must be
independent of one another, that you could not
infer the non-existence of one state of affairs
from the existence, of another. But if my
present conception of a system of propositions
is correct, it will actually be the rule that
from the existence of one state of affairs the
non-existence of all other states of affairs
described by this system of propositions can be
inferred. " (WVC 64)

Wittgenstein is saying here that some propositions are
mutually exclusive in such a way that no amount of analysis

will make them otherwise. In this he is, I think, correct.
one must conclude, therefore, that Winograd's ambition to

be able to add or subtract rules from a production system

4s and when convenient, while maintaining its integrity as

a semantic system, is impossible. The meaning of the indi-

vidual rules will establish lkludgery' connections between

them despite their formal independence. Furthermore, these

connections will be invisible to a machine which is engaged
in simply manipulating symbols according to a program.

The Logic of a Double Negative

The Tractatus interested Russell, and later the members of

the Vienna circle, for technical as well as philosophical

reasons. In the central third of the Tractatus, occupied by

the paragraphs beginning with 4. and 5., Wittgenstein is

page 76

concerned with the nature and status of logical operations.
He devotes such a large section of his text to this topic
because of a dissatisfaction with the earlier methods
adopted by Russell and Whitehead in their Principia.

The logical notation adopted by Russell and Whitehead
(1913, Vol 1: 6) is based upon that invented by Frege.
Propositions are to be related to one another by means of
five connectives, which can be set out in a list.

Contradictory (negation)
Logical Sum (either or) v
Logical Product (and)
Implicative (if then)
Equivalence (equivalent)

Wittgenstein in paragraph 5.101 gives the 16 truth-func-
tions which can be derived from two propositions by using
these connectives in all possible meaningful combinations.
But he is dissatisfied with the notation because to make

use of it at all is to imply that the two propositions are
unrelated until they are brought together into one of these

16 expressions.

Wittgenstein's whole case in the Tractatus is that proposi-
tions are related to one another on account of their inter-

nal logical nature, not the contingent fact that they have

been juxtaposed in an expression.

"If the truth of one proposition follows from
the truth of others, this finds expression in
relations in which the forms of the proposi-
tions stand to one another: nor is it necessary
f or us to set up these relations between them,
by combining them with one another in a single
proposition; on the contrary, the relations are
internal, and their existence is an immediate
result of the existence of the propositions.
(TLP 5.131)

He is therefore driven to seek another notation which

recognises the pre-existing nature of the relationship
between one proposition and another. This he immediately

page 77

does in the next paragraph when he brings into his argument
the notational device known as the Sheffer stroke, I
(Sheffer, 1913). The Sheffer stroke means 'neither ... nor',
so that IpjqI means neither p nor qI. By employing this
notation, an expression which would have been written

Ip, v qt by Russell and Whitehead can be stated as
Ipjq. j. pjqI, and furthermore the double negative expression
'~(~p. -q)l can be reduced to the single Sheffer connective.
Wittgenstein describes the idea as follows;

"When we inf er qf rom, pvq and -p, the rela-
tion between the propositional forms of Ip v qI
and I-pI is masked, in this case by our mode of
signifying. But if instead of Ip v qI we write,
f or example, IpIq. I. pIqI, and instead of I _P 10 1 IpIpI (pIq = neither p nor q), then the inner
connexion becomes obvious. " (TLP 5.1311)

Wittgenstein is saying that the fact that the five connec-
tives used by Russell and Whitehead can be replaced by a
single symbol proves his central point. This is, that a
proposition can be inferred from others not on account of
the connectives that we choose to place between them, but
by the fact that when they are brought into relation by

means of a connective their sense becomes immediately

obvious from their nature.

Wittgenstein has now established the two fundamental no-
tions upon which his explication of language in the Tracta-
tus are based. These are the independence of atomic facts

and the derivation of propositions from previous proposi-
tions by means of a single all-sufficient operation in
logic. In paragraphs 5.2 to 5.52 Wittgenstein expands this

argument, by means of a negative recursive procedure, into

what he refers to as "the general propositional form" (TLP
5.54). His description of general propositional form,

omitting the long and difficult argument by which it was
arrived at, is given in paragraph 5.3 of the Tractatus.

page 78

"All propositions are the results of truth-
operations on elementary propositions.
A truth-operation is the way in which a truth-
function is produced out of elementary proposi-
tions.
It is the essence of truth-operations that,
just as elementary propositions yield a truth-
function of themselves, so too in the same way
truth-functions yield a further truth-function.
When a truth-operation is applied to truth-
functions of elementary propositions, it always
generates another truth-function of elementary
propositions, another proposition. When a truth
operation is applied to the results of truth-
operations on elementary propositions, there is
always a single operation on elementary propo-
sitions that has the same result.
Every proposition is the result of truth-opera-
tions on elementary propositions. "

Wittgenstein's expansion of Sheffer's discovery into a form
in which it can be applied to the derivation of general
propositions is the aspect of his work that most impressed
his contemporaries. It is what is referred to by Russell as
"an amazing simplification of the theory of inference" in

his introduction to the Tractatus.

I have thought it worthwhile to describe Wittgenstein's

conception of the general form of a proposition at some
length because it entails the use of the logical device of

the double negative. In logic, but not in language, a
double negative is equivalent to a positive. The whole

crystalline structure of the Tractatus would shatter with-

out the support of this notion.

"The sense of a truth-function of p is a func-
tion of the sense of p.
Negation, logical addition, logical multiplica-
tion, etc. etc. are operations.
(Negation reverses the sense of a
proposition.)" (TLP 5.2341)
"An operation can vanish (e. g. negation in
1--pt: --p = p). (TLP 5.254)

The same conventional equivalence of the double negative

and the positive is used in the logic of computer program-

ming. It functions as part of both propositional and predi-

page 79

I

z

cate logic, where it is sometimes known as the generalised
form of De Morgan's law, as well as doing duty in normal
mathematical notation.

"Theorem 1.4 (Generalised De Morgan's law)
For an arbitrary proposition A constructed
using only the connectives -.

A -A --A

I

I

FTF
TFT

Fig. 1.15. Truth table showing the equivalence
of A and ~-A. " (Dowsing, Rayward-Smith &
Walter, 1986: 20)

It is clear that all computer operations, including pro-
grams written for the purpose of artificial intelligence,

are as dependent upon the equivalence of the double nega-
tive and the positive as is the Tractatus itself.

Rules and Truth-Functions

One of the participants in the 1956 Dartmouth Summer
Project on Artificial Intelligence, for which John McCarthy

coined the phrase 'artificial intelligence', was Marvin
Minsky. His contribution to the proceedings was published
later in an amplified form as 'Steps Toward Artificial
Intelligence'. Most of his paper is taken up with describ-
ing the domain of AI and with speculating about likely

qvenues of advance. But in his concluding remarks Minsky

gives an account of the epistemological assumptions that he
believed must necessarily underlie the new discipline.

"Suppose that we want
la

machine which, when
embedded for a time in a complex environment or
'universe', will essay to produce a description
of that world - to discover its regularities
or laws of nature. We might ask it to predict
what will happen next. We might ask it to
predict what would be the likely consequences
of a certain action or experiment. or we might
ask it to formulate the laws governing some
class of events. In any case, our task is to
equip the machine with inductive ability - with
methods which it can use to construct general

page 80

statements about events beyond its recorded
experience. Now, there can be no system for
inductive inference that will work well in all
possible universes. But given a universe, or an
ensemble of universes, and a criterion for
success, this (epistemological) problem for
machines becomes technical rather than philo-
sophical. " (Minsky, 1961: 27)

Minsky's "method to construct general statements" is very

close to Wittgenstein's law of the projection of inference,

which he illustrates in the Tractatus by means of a musical

analogy. Wittgenstein, however, shares Popper's distrust of
induction, (TLP 5.135,6.363), and would see no point in

giving a machine inductive ability.

"There is a general rule by means of which the
musician can obtain the symphony from the
score, and which makes it possible to derive
the symphony from the groove on the gramophone
record, and, using the rule, to derive the
score again. That is what constitutes the inner
similarity between these things which seem to
be constructed in such entirely different ways.
And that rule is the law of projection which
projects the symphony into the language of
musical notation. It is the rule for translat-
ing this language into the language of gramo-
phone records. " (TLP 4.0141)

Similarly, Wittgenstein's notion of the truth function of a

proposition, which he derived from Frege, Russell and

Whitehead, is a close parallel with Minsky's putative

'$criterion for success".

"Like Frege and Russell I construe a proposi-
tion as a function of the expressions contained
in it. " (TLP 3.318)
"To understand a proposition means to know what
is the case if it is true.
(One can understand it, therefore, without
knowing whether it is true.)
It is understood by anyone who understands its
constituents. " (TLP 4.024)

But, as we have seen, there is no "criterion for success"
in artificial intelligence, and no method for mechanically

constructing general statements about events has been

forthcoming. I think that the explanation for this is that

page 81

the epistemology of early artificial intelligence was of
the same, as it now seems over-optimistic, type as that

which is set forth in the Tractatus.

Conclusion
If I am correct in this assessment, then Wittgenstein's
later criticisms of the Tractatus can be applied very
closely to the methods and assumptions of early artificial
intelligence, and to do so will serve to show why some of
its initial ambitions are impossible to realise. I there-
fore propose in the next section of my text to discuss,
from a late Wittgensteinian point of view, the attitudes to

knowledge implicit in the work of some of the pioneers of
artificial intelligence. I hope that this will lead to a

more correct and mature understanding of the subject.

page 82

Chapter 7. AI AND THE LATER WITTGENSTEIN

In the 30 years that elapsed between the publication of the
Tractatus and Wittgenstein's death in Cambridge his ideas

about the relationship between logic and language changed
greatly. One of the reasons for his change of attitude was
that he realised that language as it is used, as opposed to
how it may be structured, does not necessarily equate a
positive and a double negative.

In Philosophical Investigations Wittgenstein asked ques-
tions about language that in his Tractatus days would have

seemed meaningless.

"Imagine a language with two different words
for negation, IXI and IYI. Doubling IXI yields
an affirmative, doubling IYI a strengthened
negative. For the rest the words are used
alike. - Now have IXI and IYI the same meaning
in sentences where they occur without being
repeated? - We could give various answers to
this.
(a) The two words have different uses. So they
have different meanings. But sentences in which
they occur without being repeated and which for
the rest are the same make the same sense.
(b) The two words have the same function in
language-games, except for this one difference,
which is just a trivial convention. The use of
the two words is taught in the same way, by
means of the same actions, gestures, pictures
and so on; and in the explanations of the words
the differences in the ways they are used is
appended as something incidental, as one of the
capricious features of the language. For this
reason we shall say that IXI and IYI have the
same meaning.
(c) We connect different images with the two
nega tives. IXI as it were turns the sense
through 1800. And that is why two such nega-
tives restore the sense to its former position.
IYI is like the shake of the head. And just as
one does not annul a shake of the head by
shaking it again, so one doesn't cancel one IYI
by a second one. And so even if, practically
speaking, sentences with two signs of negation
come to the same thing, still IXI and 'Yt
express different ideas. " (PI 1,556)

page 83

Wittgenstein, in paragraph (c) above, has put his finger

upon one of the main difficulties inherent in semantic
information processing. The expression 1-2 x -4 = 8f and
the sentence 'I never, never drink spirits' are formally
identical, but they mean different sorts of things. This
kind of distinction is opaque to a symbol manipulating
machine such as a computer, and can only be overcome if the

computer is as conversant with language as is an educated
human being. It is impossible to imagine a program that

supplies a computer with all that can be known about lan-

guage and its use, for this is an infinite amount of infor-

mation, and there is no way of doing such a thing. For the

present, then, we must take Wittgenstein's point to heart,

and not expect from a computer what it cannot deliver.

Logic and Semantic Nets

Wittgenstein's objective in writing the Tractatus was to
discover the foundations upon which language and our under-

standing of the world must rest. He believed that he had
found his version of the holy grail in logic, and particu-
larly in his own refined version of symbolic logic.

"A logical picture of facts is a thought. " (TLP
3)
"The totality of true thoughts is a picture of
the world. " (TLP 3.01)
"Thought can never be of anything illogical,
since, if it were, we should have to think
illogically. " (TLP 3.03)

Logic, for him, was necessary to and independent of experi-
ence. "for Wittgenstein, there was an absolute distinction
between the empirical and the logical, such that the latter

would never depend upon the former. " (Mounce, 1981: 9)

In his paper of 1968, in which he introduces the idea of

semantic nets, Ross Quillian describes the logical struc-
ture that he believes is needed in order to achieve under-

standing by a machine.

page 84

"It further seems likely that if one could
manage to get even af ew word meanings ade-
quately encoded and stored in a computer memory
and a workable set of combination rules f orma-
lised as a computer program, we could then
bootstrap this store of encoded word meanings
by having the computer itself 'understand'
sentences that he has written to constitute the
definitions of other single words. That is,
whenever a new, as yet uncoded, word could be
defined by a sentence using only words whose
meanings had already been encoded, then the
representation of this sentence's meaning,
which the machine could build up by using its
previous knowledge together with its combina-
tion rules, would be the appropriate represen-
tation to add to its memory as the meaning of
the new word. Unfortunately, two years of work
on this problem led to the conclusion that the
task is much too difficult to execute at our
present state of knowledge. The process that
goes on in a person's head when he 'under-
stands' a sentence and incorporates its meaning
into his memory is very large indeed, practi-
cally all of it being done without his con-
scious knowledge. " (Quillian, 1968: 246)

Quillian confesses the difficulties he is experiencing, but

while doing so he implies that success can be expected when

more work has been done and the state of our knowledge has

improved. However, I think that his difficulties are inher-

ent rather than contingent, and that his ambition of mecha-

nising the process of meaning can never be realised. The

reasons that lead to this conclusion were identified by

Wittgenstein in his later work.

Much of Philosophical Investigations is taken up with the

development of a theory of meaning as use, and with the

exploration of the idea of language games. In the Tractatus

Wittgenstein tried to show that the truth of a statement

was a function of a well-formed proposition, and he assumed
that matters of meaning were psychological rather than

philosophical in character. "the relation of the constitu-

ents of the thought and of the pictured fact is irrelevant.

It would be a matter for psychology to find out. " (NB 129)

But in Philosophical Investigations he gave weight to the

page 85

notion that one cannot comprehend the truth or falsity of a
statement without knowledge of the use of the terms that

are employed.

"we might say that a sign OR' or IBO, etc.
may be sometimes a word and sometimes a propo-
sition. But whether it 'is a word or a proposi-
tion' depends on the situation in which it is
uttered or written For naming and describ-
ing do not stand on the same level: naming is a
preparation for description. Naming is so far
not a move in the language game - any more than
putting a piece in its place on the board is a
move in chess. We may say: nothing has so far
been done, when a thing has been named. It has
not even got a name except in the language
game. " (PI 1,49)

For example, a sign consisting of the letters 'speech' will
acquire a partly different meaning according to whether it

is used in a political, elocutional or ethnographic situa-
tion, the logical structure of the language notwithstand-
ing.

"It is interesting to compare the multiplicity
of the tools in language and of the ways they
are used, the multiplicity of the kinds of word
and sentence, with what logicians have said
about the structure of language. (Including the
author of the Tractatus Logico-Philosophicus.)"
(PI 1,23)

I think that Wittgenstein's later thoughts are correct on
this point, and that Quillian will never acquire a 'store

of encoded word meanings' nor a 'set of combination rules
formalised as a computer program'. Words will always shift

their meaning according to the use to which they are put,

and the rules for their combination will vary from one

linguistic situation to another. No logic can define even

one word in a permanent and unambiguous fashion, and I

therefore think that Quillian's notion of semantic net is

unsound. When he proposes semantic nets he is looking to

logic for something that it cannot provide.

page 86

L

Picture and Frwne Theories of Representation

Following Frege, Wittgenstein makes a distinction in the

Tractatus between the sense and the truth of a proposition.

"It is clear that we understand propositions
without knowing whether they are true or false.
But we can only know the meaning of a proposi-
tion when we know if it is true or false. What
we understand is the sense of the proposition. "
(NB 94)

That is to say, a proposition must have sense if it is to

be a proposition at all, but it will only possess meaning
if it is true. But how are we to know when a proposition is

true or false? Wittgenstein introduces his famous picture
theory of meaning in an attempt to answer this question.
The sense of a picture, he says, is to be found in the

arrangement of its constituent parts rather than in its

relation to external facts. This must be so, for otherwise
it would be impossible to have a picture of a non-existent

object. Its sense, then, is a property internal to the

picture. In the same way, he says, a proposition possesses

sense when it has an internal logical structure. But only

when the structure of a proposition corresponds to the

structure of some aspect of external reality can we say

that it possesses meaning as well as sense.

"The essence of a propositional sign is very
clearly seen if we imagine one composed of
spatial objects (such as tables, chairs and
books) instead of written signs. Then the
spatial arrangements of these things will
express the sense of the proposition. " (TLP
3.1431)

In the next paragraph he expresses this thought in a more

general and abstract way.

"Instead of, 'The complex sign 11aRb11 says that
a stands to b in the relation R1, we ought to
put 'That a stands to b in a certain relation
says that aRb. 1 (TLP 3.1432)

page 87

I

That is to say, it is the fact of the relation between a
and b that gives meaning to the proposition aRb, and not
the reverse. So it transpires that a proposition will have
sense if it is logical, and meaning if it pictorially
corresponds to external reality. I think that it is worth
discussing these rather difficult aspects of the Tractatus
in a thesis about artificial intelligence because Wittgen-
stein's concept of the proposition as picture is so closely
parallelled by Minsky's notion of frames.

Minsky claims a fellow feeling with Schank, Abelson and
Norman when he finds himself "moving away from the tradi-
tional attempts by behaviouristic psychologists and by
logic-oriented students of artificial intelligence in

attempts to represent knowledge as collections of separate,
simple fragments. " (Minsky, 1975: 211). In an attempt to

supply "a unified, coherent theory"-he proposes that:

"We can think of af rame as a network of nodes
and relations. The 'top levels' of a frame are
fixed, and represent things that are always
true about the supposed situation. The lower
levels have many terminals - slots that must be
filled by specific instances or data. Each
terminal can specify conditions its assignments
must meet. " (Minsky, 1975: 212)

0

His fixed 'top level' corresponds almost exactly to the
logical sense of a Wittgensteinian proposition, while the
'terminals' reflect the situation from which the frame

obtains its meaning. If the Tractatus is right about this
interpretation of meaning then Minsky and his idea of
frames is also right. But Wittgenstein himself, in his
later work, has cut the ground from under both the picture
and the frame theory of meaning.

It is possible to maintain that a Wittgensteinian picture
must be complete when the mood of a proposition is indica-
tive.

page 88

"I can describe a state of affairs which con-
sists in there being a circle of specific size
at a specific point of the square. This is a
complete picture. For to what follows it does
not matter what description I choose, whether I
use co-ordinates for example; what matters is
only this, that the form of description has the
right multiplicity. " (WVC, 39)

3

(J

But a difficulty arises when the mood of the phrase is

conditional - when, for instance, the size of the circle is

conditional upon a numerical qualifier. Then the picture

may or may not be complete depending upon how its defini-

tion is qualified.

"Thus when numbers occur in the sentence and
indicate where the circle is and how large it
is, it may happen that I replace the numbers by
variables or perhaps only by intervals, e. g. (6-
7,8-9), and then I shall get an incomplete
picture. Imagine a portrait in which I have
left our the mouth, then this can mean two
things; first, the mouth is white like the
blank paper: second, the picture is always
correct, whatever the mouth is like. " (WVC, 39)

For these reasons Wittgenstein was driven to the conclusion
that, despite what he had written in the Tractatus, a

picture may have sense but nevertheless be incomplete. From

this it follows that a picture, because it may be incom-

plete, can have no necessary truth-function and with this

admission the whole structure of meaning as set out in the

Tractatus falls to the ground. Wittgenstein recognised this

conclusion when he wrote;

"We see that what we call 'sentence' and
'language' has not the formal unity that I
imagined, but is the family of structures more
or less related to one another The precon-
ceived idea of crystalline purity can only be
removed by turning our whole examination round.
(one might say: the axis of reference of our
examination must be rotated, but about the
fixed point of our real need.)" (PI 1,108)

I shall describe what I believe are the consequences for AI

of Wittgenstein's later views shortly. In the meantime one

must conclude that Minsky's frames, like Wittgenstein's

page 89

pictures, will be incomplete and misleading when they
incorporate quantifiers. But a frame must if it is to be

useful incorporate quantifiers, described by Minsky as
'terminals', and a Minskyan frame can therefore never be

complete. I conclude that frames cannot fulfil Minsky's

purpose of providing "a unified, coherent theory" of knowl-

edge. Nevertheless, frames may be useful tools.

Understanding as Mapping or Language-Game

Any discussion of the nature of artificial intelligence

must attempt to come to terms with the notion of under-

standing. In her book Artificial Intelligence Elaine Rich

makes this attempt in Chapter 9, where she says that;

"understanding is the process of mapping a
statement from its original form to a more
useful one. " (Rich, 1983: 298)

The mapping analogy of meaning appears frequently in the
literature of AI (Schank & Abelson 1977, Simon 1977,

Nilsson 1980, Akman, ten Hagen & Tomiyama, 1990). An exam-
ple from the writings of Schank has been quoted earlier in

this chapter. The notion that meaning is something to be

searched for, and that it can be found by employing the

right procedure, is also implicit in Wittgenstein's picture
theory of meaning.

"The pictorial relationship consists of the
correlations of the picture's elements with
things. " (TLP 2.1514)

Mapping procedures lend themselves to description by rules

- Quillian's semantic nets are an effort to do just this -

and they will therefore be attractive to workers in artifi-

cial intelligence who are trying to program a computer to,

in a certain sense, understand. Some successes have been

achieved by artificial intelligence programs which rely

upon automatic mapping methods. Students have, for example,

been helped to diagnose faults in electronic circuit de-

signs by using SOPHIE (Brown et al, 1982). SOPHIE contains

page 90

/

a sub-routine, called the "referee" by the authors, that

maps student answers onto a library of known fault condi-
tions, and in this sense the program 'understands' the

student-machine dialogue. I think that these methods can be

very useful in artificial intelligence provided that one

remembers the restricted sense in which they display the

quality of understanding. Mapping procedures transform

symbols, but they do not possess knowledge.

Wittgenstein begins his Philosophical Investigations with a

quotation from Saint Augustine's Confessions. The saint

recounts how as a child he learnt to map the words that he

heard used by his elders onto the objects that these words
denoted. This is, in fact, a very elementary theory of
language, and Wittgenstein's purpose in beginning with so

simple an example is to show by contrast how complex lan-

guage really is.

"That [Augustine's] philosophical concept of
meaning has its place in a primitive idea of
the way language functions. But one can also
say that it is the idea of a language more
primitive than ours. " (PI 1,2)

Learning the name of something is just one example of a
language-game.

"This [asking something's name], with its
correlate, ostensive definition, is, we might
say, a language-game of its own. That is really
to say: we are brought up, trained, to ask:
'What is that called? '- upon which the name is
given. And there is also the language-game of
inventing a name for something, and hence of
saying, 'This is I and then using the new
name. " (PI 1,27)

By the use of the term language-game Wittgenstein means to

draw an analogy between the use of language and playing a

game. In both there is a set of rules and conventions which
determine which moves are permissible, and a given move can

only be judged according to the rules of the game to which
it belongs. Thus, kicking the ball is a legitimate - which

page 91

is to say, meaningful - move in soccer or rugby, but not in
cricket. By analogy, a word will have one meaning when
functioning in an interrogative and another in a jocular
language-game. Wittgenstein lists 24 examples of language-
games in paragraph 23 of Philosophical Investigations, and
countless others occur throughout the body of the book. But
he nowhere gives rules for identifying or defining the
entire set of language-rules. This omission is for the very
good reason that it would be impossible to do this without
describing the entire structure and content of the language
itself.

"We remain unconscious of the prodigious diver-
sity of all the everyday language-games because
the clothing of our language makes everything
alike.
Something new (spontaneous, 'specific') is
always a language-game. " (PI 11,124)

I think Wittgenstein is right when he characterises lan-

guage as made up of an infinite number of language-games.
Dreyfus, in his concern with context, is in effect restat-
ing Wittgenstein's thesis in Philosophical Investigations.
It follows that, for true understanding to take place in a
computing environment, an infinite number of representa-
tions are required in order that, as Rich says, a correla-
tion can take place between the original form and a more
useful one. But this is a task that is quite beyond us. No
program can embrace the "prodigious diversity" of language

games, let alone incorporate an infinite set of representa-
tions. I think, therefore, that we must leave the question
of computer understanding in abeyance, at least for the

present and probably forever, as insoluble.

Conclusion
I am driven to conclude that there is no solution, nor is
there ever likely to be a solution, to some of the problems
which have during the last 30 years been investigated under
the auspices of artificial intelligence. The case advanced
by searle against the ambition to get a computer to under-

page 92

stand is, it seems to me, irrefutable. No program can make
up for the fact that a machine cannot acquire a point of

view. Dreyfus has shown that the notion of information

processing by computer is based upon a confusion between

the two senses, the weak and the strong, of the idea of
information. Thirdly, a Wittgensteinian analysis shows that

no system of rules can encompass. the vast number of proce-
dures that go to make up natural language. In fact, the

insoluble problems in artificial intelligence are just

those which involve machine understanding of natural lan-

guage. This is the reason why linguistic philosophy is able
to illuminate the study of artificial intelligence.

If this conclusion is correct then we must be content to

classify any artificial intelligence topic that embraces

natural language, representing common-sense knowledge or

understanding language for example, as a long-term research

project. It follows that, for the present, we should forgo

any claim to be able to make use of computers as processors

of natural language.

But there are many other aspects of artificial intelligence

that take the computer for what it really is, which is -

simply a fast and tireless symbol manipulator. Traditional

artificial intelligence subjects which lend themselves to

computer processing, and in which progress can be-made, are

pattern recognition, voice recognition, robotics, games

playing, problem solving, intelligent tutoring systems and

expert systems. These are the topics that make up weak

artificial intelligence, in the sense in which this term

was used in Chapter 3 by Searle. The next section of my
text will attempt to bring cognitive simulation, general

artificial intelligence and intelligent artifacts together
into a coherent taxonomy of artificial intelligence.

page 93

Chapter 8. THE TAXONOMY OF ARTIFICIAL INTELLIGENCE

cognitive simulation continues to occupy a prominent place
in the lay conception of artificial intelligence. Although
it is an interesting topic, the study of which throws much
light upon epistemology, cognitive simulation is only one
small department of the enterprise of artificial intelli-

gence. Artificial intelligence programs that are likely to
be useful to the architect will emerge from other parts of
the subject.

The Encyclopedia of Artificial Intelligence (Shapiro,
Eckroth & Vallasi, 1987) contains several hundred separate-
ly entitled subject entries. They range in specificity from
'The Nature of Logic' to short entries on lesser-known
language parsers. However, there are a few fundamental
topics upon which the large number of particular subjects
that are embraced by artificial intelligence depend. Natu-

ral language, visual perception, machine learning, search,
control, and solving problems are the underlying techniques

of artificial intelligence. These, together with cognitive
simulation, intelligent tutoring systems and expert systems
are the headings of the taxonomy of artificial intelligence

which is attempted in this chapter.

In one of the definitions of artificial intelligence that

was quoted in Chapter 2 Peter Sell divided the topic into

two parts, "models of human cognition and intelligent

artifacts. " Efforts to create programs of both these have
been central to the enterprise of artificial intelligence

since its beginning, but Sell's definition leaves out most
of what might be called mainstream artificial intelligence.

Many topics in artificial intelligence are attempts to

produce useful programs by advancing our understanding of
thought processes. Mainstream artificial intelligence lies
between Sell's two categories, and in effect tries to unite
them.

page 94

Natural Language Processing
Perhaps the most characteristic manifestation of natural
intelligence is our use of language. By far the larger part
of human language use, and all of the simple language-like

activities of animals, takes the form of spoken language.
In speech the representation of thought is by means of
words, and the words are themselves represented by sounds.
But in speech the spoken words are modified and qualified
by tone of voice, facial expression, body language, timing

and volume. Spoken language is thus much more than a simple
verbal phenomenon, and it is not susceptible to purely
linguistic dissection.

So great is the complexity and subtlety. of language that

some theorists have been driven to the conclusion that
linguistic ability is innate. How otherwise can a three-

year-old child, years away from playing chess or under-

standing calculus, use language sufficiently well to hold a

meaningful conversation? Some commentators have come close
to asserting the existence of a human 'language organ', on
the analogy of a hand or a foot, which one comes to use as

a result of experience and education (Miller & Chonsky,

1963). Other researchers, notably the Swiss psychologist
Jean Piaget (1936), take the view that the ability to use
language emerges as part of the general intellectual devel-

opment of the human personality. The theories of both

Chomsky and Piaget imply, to a greater or lesser extent,
the existence of some kind of inherited propensity to

speak. Perhaps we shall understand the nature of this
feature of our minds one day. In the meantime, however, the

lack of understanding of how we acquire and use language

hampers efforts to write language processing computer

programs.

The slowness of progress in creating speech processing
programs is the result of a poor understanding of the

phenomenon of language, and of the fact that spoken lan-

guage is only a component part of our apparatus of everyday

page 95

communication. The written word is, however, a somewhat
more describable phenomenon. When words are represented not
by fleeting sounds but by written symbols they acquire a
certain stability, and also a set of rules for their use. A
written sentence is distinguished as a declaration or a
question by rules of grammar, and not by means of the
intonation of the voice as in speech. 'These rules give a
handle on written text, and furnish a means by which text
processing algorithms may be devised. This is the reason
why research in natural language programming is largely

concerned with the written word.

Commercial natural language processing programs are usually
intended to facilitate access to databases for the non-
technical user. Some are available for use with desktop
machines, but the most long-established system is INTELLECT
(Harris, 1977) which runs on IBM mainframes. It functions
by matching input strings with a lexicon of words and
concepts. The lexicon can be-extended by the user to cover
the words applicable to a particular domain. All goes well
provided that the user follows the rules that reside in the

system, but errors occur when the input is too natural,
that is to say, when the user fails to frame his enquiry in

a full and complete style. INTELLECT, unlike a human inter-
locutor, cannot understand when an inquirer takes part of
the answer for granted.

Programs such as INTELLECT are interesting, but their value
lies at least as much in showing what the problem is as in
their functionality. They can work only in a very circum-
scribed domain, and for the moment one must conclude that
there is no language processing program which would be

useful to the architect. Furthermore, it is hard for the

reasons advanced in Chapter 4 to see how progress towards a
useful system can be made.

page 96

Visual Perception

Architecture is by its nature centred upon visual experi-.

ence and any artificial intelligence program that displayed

visual capability would be close to the architects sphere

of interest. Conventional computer-aided drawing programs
display no more intelligence than a drafting pen. However,

it is possible to imagine a program which could do very

much more. For example, a program could be devised which

could read a set of photographs or a video tape of a build-

ing and output drawings of its plan and elevations. Such a

program would be both an interesting and a useful tool in

the design studio.

A good deal of progress has been made in the optical as-

pects of automatic visual perception. A photograph or a

video image consists of an arrangement of tones and, if a

colour image, of hues. But it is difficult to analyse them

because tones merge into one another, making it hard to

distinguish the edges between tones that denote the edges

of the objects that are being represented. The reality of a

visual edge is shown in Figure 8.1(a), in contrast to the

computationally desirable shape of the step in 8.1(b).

IMNSITY

(00
Figure 8.1
Visual Edges.
(Redrawn from Winston, 1984)

(b)

If an image is divided in a grid-like fashion then the

average tone of the whole is the average of the individual

cells. Edges occur where the tone of adjacent cells are on,

above or below the plane of the tonal average. It is not

difficult to calculate the position of the edges by summing

page 97

the degree to which each point in the image contributes to
forming an intersection with the plane of the average
intensity. The procedure is illustrated diagrammatically in

Figure 8.2.

(ar)
-- (k,)

0--4 0- - 6--0 "11
(G)

IF.

Figure 8.2.
Filtering a Point.
(a) brightness change to be analysed. (b) each point
averaged with respect to its neighbours. (c) averaged
difference between points in (b). (d) averaged differences
in (c) step is localised to the point at which the line
crosses the x-axis.
(Redrawn from Winston, 1984)

The result of analysing a tone image is shown in Figure

8.3. Most of the important edges in the photograph have

been detected, but the output is far from accurate. This is

because some dark tone is shadow while other is shade. The

algorithm cannot distinguish between the two types of
darkness, and the wayward edges in Figure 8.3(b) reflect
this unresolved ambiguity. Nevertheless, the broad picture

emerges correctly.

page 98

Figure 8.3
Example of Edge Detection
(a) machinery part in coarse-grained half-tone (b) comput-
er derived edge locations of (a)
(from Zucher, 1987)

The planes of which every six-sided polyhedron, such as a

cube or a rectangular block, is made up meet at 12 arises

and at eight vertices. Each vertex in such an object is the

meeting point of three planes. Most buildings, and many

other objects such as paving materials, books and contain-

ers of all kinds, are made up of six-sided polyhedra, and a

computer system that can interpret them correctly would

have many applications in architecture and elsewhere.

In 1975 the American computer scientist David Waltz pub-

lished a paper in which he was able to show that a scene

made up of blocks, when represented by a line drawing, is

composed of a surprisingly small number of line junctions.

A glance at Figure 8.4(a) might give the impression that

the lines join in a myriad ways, but Waltz demonstrated

that the vertices at which three planes meet can only

belong to a set of as few as 18 types. The set consists of

four T's, three arrows, five forks and six L's. When this

fact is systematically applied as a constraint to a scene

of blocks it is possible to resolve the ambiguities of a

two-dimensional drawing and output the three-dimensional

page 99

nature of the objects. The interpretation shown in Figure

8.4(b) has been derived by machine from 8.4(a) by means of
waltz's algorithm.

Figure S. 4
Scene Analysis by The Waltz Algorithm
(adapted from Waltz, 1975)

r7st

A system that could filter the edges from a scene and then

resolve the volumetric nature of the objects of which the

scene is composed could be a powerful tool in visual per-

ception and a very useful aid to architects and other
designers working on the built environment. There are no
insurmountable obstacles standing in the way of construct-
ing such a system, and it is likely that artificial intel-

ligence will put a functioning scene analysis system into

the hands of the architect in due course.

machine Learning

To learn is to acquire knowledge. The activity of acquiring

mere information is a lesser thing, and is usually known by

such terms as rote learning or memorisation. The critique

that Hubert Dreyfus directs at artificial intelligence is

based upon this distinction, and the difference between the

two things must assume importance in any discussion of

machine learning. I think that Dreyfus's analysis is cor-

rect, and that knowledge is inaccessible to a computer for

the want of a machine point of view. It is not fruitful,

therefore, to discuss machine learning in terms of episte-

mology. However, a feature of human learning is that the

behaviour of the learner is modified by what he has

page 100

learned. It is useful, then, to take a behaviourist approach
to the matter and to consider to what extent a computer can
be programmed to simulate the process of learning.

At the most elementary level, the performance of a computer

can be changed by the simple acquisition of data. A data-

base that, for example, outputs a different total when a

new record is added fails the test of intelligence, for

such a task calls for no more than straightforward reckon-
ing. The relationship between input and output is a

straight line, and the performance of the system is linear.

However, a program, if it is to imitate the characteristics

of human thinking, must display a non-linear correlation
between data acquired and system performance.

The generalised programming technique whereby a computer

can be set up to imitate human understanding is known as

concept learning. In contrast to merely memorising data,

the process of learning involves the acquisition of struc-
tures of information, or concepts. A person's behaviour is

more likely to be altered by becoming appraised of a con-

cept than just learning a fact. It is, for example, a

correct datum that there are 100 pence in one pound ster-
ling, but the notion of money as a medium of exchange and a

measure of value is a concept.

A program procedure can be set up so that the receipt of

one or more parameters has the effect of assigning values

to a number of related variables. The group of variables

constitute a concept, whose characteristics will vary

according to the value of the parameter. A price list can

be thought of as a simple type of concept, by which a group

of objects are classified according to their monetary

value. Input of object description, price or both will

determine the nature of the output. The internal structure

of a large programming concept, however, can be extremely

complicated and its imitation of learning may be very life-

like.

page 101

A concept may imitate learning by logical steps, as in a
production system, by analogy, or by means of classifica-
tion procedures. Logic is employed in the 'memo functions'

algorithm proposed by Donald Michie in 1968. Semantic nets
are proposed as a method of analogical learning by Patrick
Winston (1980). The expert system shell Cortex that I de

scribe in Chapter 13 enables complex concepts to be assem-
bled by a classification algorithm, and its output mimics a
process of learning from the input.

The evolution of living things over time can be seen as a
kind of collective learning process. Evolutionary learning

occurs in two stages. In the first stage the population

reproduces in such a way as to produce new individuals

whose characteristics differ from the parental stock. In

the second stage environmental pressures favour the better"

adapted individuals by killing off those who are less well

adapted. The new parental stock is thus composed of those

who have had the greatest success in the race to survive.

The population is, in effect, continuously winnowed by an

environmental wind which disperses the chaff and conserves

the grain for the next cycle of reproduction. The surviving

population has learnt from the reproductive mistakes of its

forebears by a process of involuntary adaption.

The American computer scientist John Holland has worked for

some 15 years upon the notion that a computer program can

be devised which will be able to adapt, or 'learn', by

means of a kind of Darwinian selection process acting on

its data. An illustration such as Figure 8.5 makes it hard

not to regard a chromosome as a one-dimensional array, with

each chromatid standing in the place of an array element.

page 102

Homologs
Chromosomes

Chromatids Breakage

1080000080111001

Reunion

Figure 8.5
Chromosome Cross-over During Cell Division
(from Russell, 1986)

Exchange
compicte

Holland's (1986) idea is to represent information by means

of bit strings, and to form new concepts by recombining
blocks of data on the analogy of chromosome cross-over. The

new information structures can then be selected according
to the success that they achieve when applied to problem

solving. The method that he proposes to sift the new infor-

mation structures is akin to Michie's nemo-function proce-
dure, and is referred to by Holland as a bucket-brigade

algorithm. In effect, the most well-adapted structures are

promoted, while those that fail the test of utility are
demoted and eventually dropped.

I

Crossing-over

3

**to$ as$ $loosens

108820008
I ---r=7

0111 a at

I
100aa () 0001090aaa

84 10 14111oIIIaaI

Figure 8.6
Bit-string Cross-over
(Booker, Holland & Goldberg, 1989)

The success of a genetic-learning algorithm hinges upon

solving the problem of control.. Holland proposed to exploit

page 103

the fact, taken over from genetics, that widely separated
data will be crossed-over more frequently than items lying
close together on the string. This feature can be utilised
in a control scheme.

"Contiguity of constituents, and the building
blocks constructed from them, are significant
under the cross-over operator. Close constitu-
ents tend to be exchanged together. Operators
for rearranging the atomic constituents defin-
ing the rules, such as the genetic operation inversion, can bias the rule-generation process
towards the use of certain kinds of building
blocks. " (Booker, Holland & Goldberg, 1989)

The most complicated and intractable of all learning con-
cepts is the process of design. For the reasons put forward
in Chapter 11 think that design itself will always be
uncomputable, but one can envisage design support programs
that are capable of learning and which would be very useful
to the architect. A technical analysis program that is set
up to deduce a suitable energy conservation strategy from
input about the. design of the building, or another that is

able to identify likely legal constraints from the configu-
ration of the building would be of great value in architec-
ture. Both programs would function as examples of machine
learning, and there is no reason why artificial intelli-

gence cannot furnish design aids of this type.

search
In some situations the process of learning takes the form
of a search. A subtle form of search process is involved in
doing a crossword puzzle, for instance. But search is also
an integral part of other areas of artificial intelligence.
Solving problems, translating natural language, game play-
ing, and theorem proving may all entail a search for a
solution.

In principle any problem can be solved by examining all
possible solutions as a preliminary to choosing that which
is the best fit. However, exponentiation sees to it that

page 104

only the solutions to small problems can be found in this
way. Noughts and crosses can be played successfully with a
brute force algorithm, but that is a reflection of the fact
that every schoolboy gets the hang of the game at an early
age. Problems that are of interest in real life must be
structured in some way if the combinatorial-explosion is to
be evaded and a computer is to be able to search for and
find a solution.

The steps that must occur in a search for a solution to a
problem can be represented as a tree, as a network, or as a
classification scheme. What appear to be other ways of
structuring the search space all resolve themselves into

one of these three types. Games playing algorithms are
usually structured in the form of a tree. A network is the
structure which underlies the notion of scripts which was
discussed in Chapter 2, and the same can be said of Marvin
Minsky's suggestion of frames. Production systems, dis-

cussed in Chapter 8 also conform to the pattern of a net-
work. Classification structures have been studied but
little in artificial intelligence. This is surprising, for
the notion of classification is the most general of all
available concepts by which a search space can be struc-
tured. Indeed, at a sufficiently abstract level both trees

and networks can be regarded as methods of classification.
The expert system shell Cortex, which is described in
detail in Chapter 13, is based upon classification princi-
ples.

It is very difficult to structure the search space of a
large problem adequately. A thorough understanding of the

problem in hand is needed, and a good deal of native inven-
tiveness is also called for. But it is possible, when an
effective structure has been found, to apply a number of
well-established techniques to the task of conducting the

search.

page 105

In the index to his textbook Winston (1984) lists 16 search
methods, and there are few trees or networks that will not
yield to one of them. However, the scoring system used by
Peter Frey (1986a) in his expert system House. Bas is the
only method of searching a classification scheme of which I
am aware in the literature of artificial intelligence. In
the description of Cortex I present another, and I believe
better, way of searching a classification structure. Cortex
proceeds by means of repeated cycles of counting, compari-
son and exclusion.

Search is not so much an artificial intelligence research
topic in itself as a study that lies behind and which
supports investigation into all the other areas of the

subject. Structuring and traversing the solution space
occurs in almost every artificial intelligence endeavour.
Perhaps it is the artificial intelligence manifestation of
the long-held belief that 'Nothing's so hard, but search
will find it out. ' (Herrick, 1648)

control
In the decisions which form so large a part of everyday
life we are guided by what are the known facts of a situa-
tion, but also by what we know about those facts. One may
confidently cross a street when the pedestrian's traffic
light turns green. However, if the light is already green
when first seen the crossing may be postponed because one
knows that the light will not remain green for long. Our
human methods of decision are semantic, in the sense that
what one does is a function of what are the facts and what
one understands about the facts. But our human methods of
arriving at a decision cannot be implemented upon a comput-
er because the machine has no point of view and it is
impossible to furnish it with understanding. It is neces-
sary, when programming a computer, to use formal rather
than semantic techniques.

page 106

A symbol, such as the spoken or written word 'cat' is
interpreted in the English language to mean a feline ani-
mal. other symbols, such as Igattol or 'chat' are inter-

preted in such a way as to possess the same meaning in
Italian and French respectively. Natural languages are all
interpreted systems, in which the symbol has meaning to an
informed human user. This remains true of restricted lan-
guages such as Basic English or computer programming lan-

guages. It is not true, however, of other symbolic systems.

The variables 'pl and Iql in a logical statement to the

effect that lp - q' are uninterpreted and carry no meaning.
The symbol 1-1 is a connective which states that in all
circumstances 'a' implies Iql. It is a feature of formal
languages, of which mathematics is the best known and the

most pervasive, that the state of the system is exclusively
a result of the transformation rules acting upon the sym-
bols of the system. For example, it is a rule of elementary
arithmetic that a pair of the symbols 121 are transformed
to the symbol 141 when the connectives are 1+1 and 1=1. The

application of the formalisms of arithmetic to practical
matters such as measurement, forecasting or resource esti-
mation take place outside the formalism, and are semantic
rather than formal in character.

Procedural programming, which is exclusively concerned with
logical or mathematical operations, relies upon the well-
established formation rules of these subjects. A procedural
program will solve the bracketed parts of a complex expres-
sion first, for instance, while every programming language

makes use of the logical principle of modus ponens in the
form of the IF-THEN formalism.

However, these methods are not adequate for the type of
declarative programming called for in artificial intelli-

gence. The decisions that must be taken are too complicat-
ed, and fresh rules have to be devised to suit the nature
of the programming declaration. A blackboard system, for

page 107

example, will attempt to choose from several the solution
method best suited to the problem. But how is the best

method to be decided upon?

"The control problem is fundamental to all
cognitive processes and intelligent systems. In
solving the control problem, a system decides,
either implicitly or explicitly, what problems
it will attempt to solve, what knowledge it
will bring to bear, and what problem-solving
methods and strategies it will apply. It de-
cides how it will evaluate alternative problem
solutions, how it will know when specific
problems are solved, and under what circum-
stances it will interrupt its attention to
selected problems or sub-problems. Thus, in
solving the control problem, a system deter-
mines its own cognitive behavior. " (Hayes-
Roth, 1985)

In a rule-based expert system a solution is found by work-
ing through a network of production rules. But in what

order are the rules to be used? An intelligent tutoring

system will try to furnish answers to questions according
to the knowledge level of the user, which raises the prob-
lem of how the user's knowledge is to be assessed. This

topic is known as the problem of control, and it makes
itself felt in all aspects of artificial intelligence.

Control, as it manifests itself in expert systems, is

discussed in greater detail in Chapter 12 of this text.

Problem Solving
Some of the early workers in artificial intelligence at-
tempted to develop a general-purpose problem solving pro-

gram which would exhibit a capacity to learn. They hoped

that a search method could be devised whose capacity to

learn about its environment would enable it to be applied
to a wide variety of cognitive problems.

It is observable that a feature of many types of problem is

that a gap exists between the existing and a desired situa-
tion. In some cases a procedure, or operator, can be found

which narrows or closes the gap. This is the simple notion

page 108

that underlies what is known in artificial intelligence as

means-end analysis. However, complications arise as soon as
the idea comes to be applied, beginning with the recogni-
tion that an operator may be able to close only part of the

gap. If the remaining gap exists either before or after the

operator it will need to work with other operators, while
it may itself require another operator to close a gap in

its own capability. In the first case the operators must be

chained, while in the second they will need to be nested.

The best-known solver program was General Problem Solver,

or GPS, written at Carnegie-Mellon University and the Rand

Corporation under the direction of Alan Newell, Cliff Shaw

and Herbert Simon. A distinction was made in GPS between

problem-dependent parts of the system and those which are
independent of the particular problem. This enabled the

problem-independent parts to be treated formally, and they

could in consequence be made computable. The formal method

upon which the authors decided to rely was a 'table-of-

connections' with which to select the appropriate operator.

In practice GPS worked well with clearly definable puzzles

such as the Towers of Hanoi or Cannibals and Missionaries,

or with theorem proving tasks where the constraints can be

completely described. GPS failed, despite its name, when it

was applied to problems of a general type.

"In the construction of a general problem
solver, employing af ixed set of problem-solv-
ing techniques, the internal representation is
critical; that is, it must be general so that
tasks can be expressed in it; yet the structure
must be simple enough for the problem solving
techniques to be applicable. Since the tech-
niques require that certain information be
extracted f rom the internal representation,
they are applicable only if processes that
abstract the necessary information from the
internal representation are feasible. Thus the
difficulty of constructing a general problem
solver is determined primarily by the variety
and complexity of its problem-solving tech-
niques. " (Ernst & Newell, 1969)

page 109

This is a rather obscure way of saying that they found it
impossible to design a table of operators appropriate to a

problem which is only partially formulated. In fact, GPS

was brought to a halt by problems of control.

It has, in practice, proved to be impossible to discover a

set of control rules for a search method which is valid
generally. The response of workers in artificial intelli-

gence to this difficulty has been to restrict the scope of
the problem to which a program is applied. When the domain

of the problem is sufficiently circumscribed it is possible
to devise a method of control whereby the program will work

effectively. This is the reason, for instance, for the

attention that is now given to expert systems rather than

to general problem solvers. In Chapter 13 of this thesis I

have attempted to contribute a solution to the type of

control problem that occurs in the design of expert system

shells.

Intelligent Artifacts
The topics proposed so far as making up the taxonomy of
artificial intelligence are subjects of active research
programs. This work opens the way to programs that exhibit
increasingly intelligent performance, as well as contribut-
ing to more long-standing investigations. Research into

classification systems and methods of search have contrib-

uted to mathematical combinatorics (Holland, 1986) while
machine learning programs have thrown light upon education-
al psychology. Not all artificial intelligence research has

a positive outcome. Work on language processing, for exam-

ple, has done little but bring into sharper relief the

profound nature and baffling complexity of natural lap-

guage. Optimistic researchers in this field are now rare.
(Bobrow & Hayes, 1985: 382)

Nevertheless, programs which are examples of Peter Sell's

'intelligent artifacts' are emerging from 30 years of

page 110

theoretical work. These have taken the form of intelligent

tutoring systems, and expert systems.

Intelligent Tutoring Systems

A textbook can, in artificial intelligence terms, be

thought of as a knowledge base together with a problem-

solving algorithm bound between cardboard covers. The

author assembles the information he wants to communicate,

and presents calculations, arguments and other routines

such as indexes which are designed to make the topic acces-

sible and useful to the reader. Some interaction with the

reader may take place in the form of exercises, answers to

questions and suggestions for further reading. However, the

form of a book isýfixed, and as a tutorial system it is

essentially static. Nevertheless, books have served mankind

well for some 3000 years and the future of civilisation,
like its past, seems to be intimately involved with books

and their use.

Every functional feature of a book can be reproduced on a

computer, with the screen taking the place of the printed

page. But a static program, reflecting the fixed nature of

the book, would fail to take advantage of the possibilities

of the computer.

All but the very simplest of computer programs are to some

degree interactive. A program will solve an expression
differently according to the input value of a variable. It

is true that every reader obtains from a book something

unique to himself, since reading is a mentally active

process, but no book can modify its text according to

information that it has received from the reader. The fact

that a computer can be programmed to do just this, and to

alter its performance in the light of response from the

user, has lead to the development of entirely new forms of

teaching and learning systems.

page Ill

Early examples of teaching programs, such as the National
Development Programme (Hooper, 1977), were hardly more
dynamic than a book. The interactiveness of NDP was con-
fined to question answering, and such static programs are

now best referred to as examples of computer assisted
instruction, or CAI.

The first intelligent teaching system, or ITS, was SCHOLAR

written by Jaime Carbonell while a research student at the

Massachusetts Institute of Technology. Carbonell's notion

was to use artificial intelligence techniques in such a way

as to obtain a response that varied according to the nature

of a user's inquiry (Carbonell, 1970). This was done by

using Ross Quillian's suggestion of semantic nets. In

SCHOLAR the user's answer to a question prompted the output

of the information at a network node and also invoked

output from other connected nodes. Many routes would be

available through a large network, and the particular route
that a user found himself taking was partly selected by the

character of his own input. SCHOLAR was in this sense
interactive, and this is the basis of the statement that it

was the first intelligent tutoring system, or ITS. However,

the program suffered from the inflexibility of semantic

nets, and is ill-adapted to represent the changing nature

of the inter-relationships between concepts that is charac-
teristic of matters in the real world. Furthermore, the

program made no attempt to assess a student's learning

needs.

If every student possessed the same style of mental appre-
hension and readiness of comprehension then the task of the

educator, human or machine, would be greatly simplified.
But the very ability to understand is a function of the

possession of an individual point of view, and the learning

performance of every student is therefore unique. A skilled
human tutor will be able to communicate expert knowledge

about a subject, but to be effective he will also need to

know how to teach according to the state of understanding

page 112

of the individual student. When the tutor is a computer a
comparable interaction is called for between student and
machine.

Some of the features to be sought in an effective ITS have
been listed by Johnson and Keravnou.

"The characteristic features of a tutoring
system are that it has:

1. The ability to evaluate the student's
hypotheses and, in the light of the hy-
potheses, to criticise requests for addi-
tional information.
2. The ability to communicate (explain) to
the student its strategies for attacking
problems and demonstrate application of
the strategies to concrete problems
(probably problems formulated by the
student).
3. The ability to answer (in terms under-
standable to the student) any relevant
questions raised by the student.

Additional, and very welcome, features of a
tutoring system are:

4. Provision for unconstrained initiative
on the part of the student.
5. Provision for a 'natural language**
interface mechanism. " (Johnson & Kerav-
nou, 1988)

Between 1973 and 1982 the computer scientists John Brown,

Richard Burton and Johan de Kleer developed their SOPHIE

programs while working at Bolt, Beranek and Newman in

Cambridge, Massachusetts. SOPHIE was designed to perform
interactively with an individual student rather than to

merely instruct an inquirer.

The performance of electronic circuits is a complicated

area of technology which has been intensively studied.
Brown and Burton chose the diagnosis of faults in electron-
ic equipment as the domain for their ITS. Electronic trou-

bleshooting relies upon a detailed knowledge of the tech-

nology, but it is not itself programmable. The operation of

Kirchoff's current and voltage laws, for example, are well

understood, but no algorithm is available as to how these

page 113

laws can explain a specific equipment failure. The effec-
tive application of knowledge in electronic troubleshooting
is, as in so many other domains, a matter of skill. SOPHIE
incorporates a large amount of information about electron-
ics in its knowledge base, and attempts to use it in such a
way as to engender this skill in its human students.

In its developed form of SOPHIE III Brown and Burton's

program consists of three main components. These are the

electronic expert, the troubleshooter and the coach. Infor-

mation about the specific circuit as well as general knowl-

edge of electronics is stored in the electronic expert, and
this part of SOPHIE is therefore domain specific. Output of
the expert is made in the form of deductions about the

state of the circuit and about the values which measure-

ments upon the circuit would produce.

The troubleshooter and the coach are both self-contained

and independent of the particular circuit which is under

consideration. The function of the coach is to examine the

deductions of the electronic expert and decide whether or

not to interrupt or to advise the student. The trouble-

shooter monitors the measurement values produced by the

electronics expert and chooses the most informative one.

These two components of SOPHIE worked well but the elec-
tronic expert, despite its name, raised some difficulties

to which the authors could find no answers.

Two of the unsolved difficulties were caused by assumptions

about component performance without which the program could

not work. In the first place, the program assumes that a

malfunction is the result of only one fault.

"The single-fault presupposition is the most
pervasive. Almost every deduction employed by
SOPHIE III relies upon it. Without it a corrob-
oration cannot logically be used to verify the
underlying components nor can a conflict be
used to verify the components that aren't
mentioned in the underlying assumptions that

page 114

lead to the conflict. Much of the behaviour of
the reasoning mechanism of the behaviour-tree
is no longer valid. (Brown, Burton & de Kleer,
1982)

Secondly, the program assumes that all Possible faults are
known. This may not in fact be so, for all possible modes

of failure are impossible to foresee even in a field as

well-studied as electronics. The third assumption listed by

the authors of SOPHIE is the most subtle and gives rise to

the greatest difficulty.

"The third important presupposition, that a
circuit symptom is a direct consequence of some
component behaving symptomatically, is only
true for circuits which do not have some kind
of "memory". Suppose a device has a circuit
breaker on its input which blew every time the
power supply was plugged in. The power supply
is manifesting a symptom, but every component
is functioning correctly: ... The problem is, of
course, that the circuit breaker "remembers"
that some component was behaving symptomatical-
ly, even though the component might not be
doing so at present. This type of fault is
notoriously hard to find since the trouble-
shooter does not get the opportunity to see the
faulted component manifest its symptom. "
(Brown, Burton & de Kleer, 1982)

The authors of SOPHIE conclude that although they suffered
from the limited memory of their computer,

"The issues concerning the need for a theory of
human understanding of complex systems, in
particular circuits, was clearly the more
challenging one. Indeed, much of our recent
research has been directed at attacking this
problem. It quickly became clear to us that the
work that went into SOPHIE II and III on expla-
nation put the cart before the horse. We have
no adequate theory of what it meant to under-
stand a circuit and hence no well defined
"target" model of what we wanted the student to
learn. As a consequence no real theory of
explanation was forthcoming. " (Brown, Burton &
de Kleer, 1982)

page 115

In recent years de Kleer and Brown have endeavoured to form

a theory of understanding which will, they hope, correct
the shortcomings of their ITS. Their notion has become
known by the title of 'qualitative physics'.

"qualitative physics yields qualitative de-
scriptions of behaviour based upon qualitative
descriptions of the physical situation and
physical laws. The key contribution that makes
qualitative physics useful and possible is that
moving to the qualitative level preserves the
important behavioural distinctions. For exam-
ple, important concepts and distinctions under-
lying behaviour are state, cause, law, equilib-
rium, oscillation, momentum, quasistatic ap-
proximation, contact force, feedback, etc.
These terms are qualitative and can be intui-
tively understood. " (de Kleer, 1987)

However, this list of the features of a fundamental struc-
ture to perceived events is open to the same objections as
is Roger Schank's notion of scripts. That is, the supposed

units of qualitative physics themselves need interpretation

if they are to be understood. I fear that this avenue of
inquiry will lead the researcher into another infinite re

gress of meaning. Many observers confess themselves to be

sceptical about the likely outcome of this line of investi-

gation.

"It is only fair to remark that the research
programme advocated has been pursued by some of
the best minds in AI for the last 20 years, but
with very little to show for the effort so far.
This lack of results has recently become the
subject of some debate in the AI literature;
codification of commonsense reasoning (based
upon a naive understanding of physics) is
generally regarded as one of the hardest un-
solved problems in AI research today. " (Akman,
ten Hagen & Tomiyama, 1990)

Expert Systems

Expert systems are specialised problem-solving programs
which are designed to apply to particular circumscribed
problems. They are the result of an attempt to use a com-
puter to penetrate a problem deeply on a narrow front,

page 116

rather than to merely scratch at the-edges of a broad

problem. Interest in expert systems is pragmatic.

"We have already remarked that a shift took
place in AI research over the past two decades.
It was a shift from a search for broad, general
laws of thinking towards an appreciation of
specific knowledge - facts, experiential knowl-
edge, and how to use that knowledge - as the
central issue of intelligent behaviour. This
shift came not as a consequence of irrefutable
arguments that immediately persuaded all re-
searchers by their cogency and correctness.
Rather, the shift came about because demonstra-
tion projects that used large amounts of knowl-
edge simply worked. " (Feigenbaum & McCorduck,
1983)

The technical reason as to why the demonstration programs

worked was not simple, but followed from the fact that it

becomes possible to control a large amount of information

when it is concerned with a single homogeneous topic. The

restricted and defined topic within which an expert system
is designed to work is known as its domain.

The distinction, first made in the design of GPS, between

the problem-specific and the problem-independent parts of

the program are a prominent feature of expert systems. In

the jargon, the domain-dependent component is known as the

knowledge base while the independent part of the program,

which operates upon the knowledge base, is referred to as

the inference engine. The distinction is a useful one, and
it is maintained in the design of Cortex, because it dis-

tinguishes as clearly as possible the data with which the

program operates. In procedural programming the difference

between data and procedure is blurred, and much of the

method of the program is encoded tacitly rather than ex-

plicitly. In Cortex, the knowledge base consists of files

separate from the procedural code and whose informational

content can be read in plain English.

Furthermore, the inference engine can, in principle, be

used to operate upon more than one knowledge base and so be

page 117

applicable to several domains. A disembodied inference

engine, complete with its control mechanism, is known as a

shell. A shell is an expert system without knowledge.

Cortex is a prototype shell, and it is implemented in

Chapter 14 in the domain of an optical disc reader and the

University College Dublin architectural video disc (Hast-
ings, 1986).

If a layman consults a human expert, the solution that he

receives to his problem will be better understood and is

more likely to be believed if the expert can explain his

solution. A patient will be more likely to improve his diet
if a doctor explains that too much weight strains the
heart, and a motorist will pay more attention to the choke
if a mechanic explains that a rich petrol/air mixture
damages the valves of an engine. Similarly, an expert
system should be designed to give the reasons for proposing
a particular solution to a problem. A computer program that

baldly outputs a solution without an explanation will lack

credibility.

conclusion
I think that artificial intelligence can most usefully be

classified under three main headings. These are cognitive
simulation, mainstream topics, and intelligent artifacts.

cognitive simulation, in either its strong or its weak
form, is very unlikely to be successful. Knowledge and
understanding are human facilities and are shared to some
degree by all higher animals. The cognitive faculties of
the knower or the understander are dependent upon the

possession of a point of view, and therefore can only be

exhibited by an entity which is not only conscious but

self-conscious. A human knows something because he knows

that he knows it. No computer, however powerful, can ac-

quire a point of view, and therefore cannot escape an
infinite regress of meaning. Searle and Dreyfus discuss

these issues because they are interesting and fruitful, and

page 118

I think that their conclusions about the impossibility of

cognitive simulation are correct.

The topics of mainstream artificial intelligence do not

suffer from inherent contradictions, although the difficul-

ties involved in natural language processing by computer

are extremely daunting. Mainstream artificial intelligence

is an active area of research, and will I think produce
both understanding and useful programs in due course.

In the meantime, I have chosen to try to devise an intelli-

gent program which will be useful in the field of architec-

ture. My intention is to exploit and expand upon already-
known techniques, rather to embark upon. a task that cannot

be completed without the results of future research work.

Expert systems are at present the most highly evolved

artificial intelligence artifact, and my effort in this
3

thesis is to try to advance the design of expert systems to

a further stage of development. The majority of working

expert systems are written according to a formalism known

as a production system. Production systems are logical in

the strict sense of the word. Conclusions that are arrived

at by employing such a system are valid if the premises are

valid. However, production systems cannot, in my opinion,

represent the process of design effectively and the conven-
tional type of expert system that is based upon them is not

suitable for use in architectural design. The next two

chapters attempt to show why this is so.

page 119

Chapter 9. GRAPHS

In the opinion of some authors the whole of human life can
best be described as an exercise in solving problems.

"When we wish to explain the behaviour of human
problem solvers (or computers, for that
matter), we discover that their flexibility -
their programmability - is the key to under-
standing them. Their variability depends upon
their being able to behave adaptably in a wide
range of environments. " (Newell & Simon, 1972)

If the interpretation of the word 'problem' is made suffi-

ciently wide, then everything can indeed be said to be a

matter of solving one of an infinite array of problems. But

a definition, when it is so all-embracing, loses its ex-

planatory power and is apt to decline into little more than

a truism. It does not seem to be particularly useful, for

example, to be told by Matthew Arnold (1865) that criticism

is "a disinterested endeavour to learn and propagate the

best that is known and thought in the world. " In a similar

way, I think that Newell and Simon's characterisation of

human beings as problem solvers is so broad that it ex-

plains almost nothing. I believe with Feigenbaum that, to

be useful in the practice of artificial intelligence, the

notion of problem solving should be restricted to discrete

problems which are definable and which are amenable to

solution. The range of problems to which knowledge engi-

neering methods can be applied is circumscribed by practi-

cality. The most useful forms of problem representation,
for architects and other visually oriented people, are

graphical in character.

Dravings,

Techniques of graphical representation have been put to use

from earliest times as a help in solving some types of

empirical problem. The most pressing problem which faced

palaeolithic mankind some 15,000 years ago was the hunt.

Food, other than that which could be gathered, had to be

page 120

secured by hunting. Finding prey, therefore, and killing

and retrieving it were the matters that were uppermost in

the minds of Magdalenian men. The logic of sympathetic

magic induced them to paint on rock walls vivid graphic

representations of hunting parties and their prey. Those

that were painted on walls deep in limestone caves such as
those of Lascaux, Trois Freres and Altamira in southwestern
France and northern Spain have survived virtually intact to

the present day.

Writing of European prehistoric art, Nancy Sandars has

observed that;

"The special relationship between hunter and
prey, that is nor only physical, gives to
Palaeolithic animal art its peculiar power; the
impression that the animals are not neutral.
Without this relationship it is doubtful if
there could have been any such art at all. "
(Sandars, 1968)

The notion, 15 millennia ago, was that a graphical repre-

sentation of what was hoped for would help to realise those

hopes. In modern times the progress chart pinned upon the

wall of the foreman's hut sometimes seems to be connected
to the state of the work on the building site only by a

similarly slender thread of magical association.

Maps
Topographical maps do not have so great an antiquity as

cave paintings, but they have been made by peoples in every

corner of the earth for a very long time. The earliest

examples to survive were drawn on clay tablets at about
230OBC in Babylonia, but map making no doubt began long

before the third millennium.

A map is connected with physical reality not by the links

in a chain of sympathetic magic, but rather it stands in

relation to the world as an analogy. The first syllable of

this word is the Greek preposition 'anal meaning in this

page 121

context 'anew', signifying that an analogy provides a fresh

and different account of something. The graphical symbols
which make up the map correspond to features on the surface
of the earth in the manner of an analogical representation
of those events. The map is thus a fresh account of the

actual geographical facts. While maps, like the wall paint-
ings of our prehistoric ancestors, will often be beautiful

objects to look at their primary purpose is not decorative,
but rather they are intended to serve as problem solving
devices.

Far away from the district that is represented, the user of
a map can discover accurate information about areas, dis-
tances, depths and heights on the land. He can identify the

presence of settlements and discover the uses to which the
land is put. Furthermore, he can solve problems of travel.

Because of the analogous character of a map, a route on a
map will provide an itinerary which, when followed on the

ground, will take the traveller to a destination which he

may never have seen in actuality. A search conducted
through the symbol& on the map thus leads to the solution
of a practical problem. These two notions, of symbolic

representation and of search, appear in all branches of
artificial intelligence. They are particularly prominent in

the design and implementation of expert systems. The opera-
tion of using a road or rail map to conduct a journey is

very similar to the process of searching the knowledge that
is represented in an expert system in order to arrive at
the solution to a problem.

Graphs

A well-known puzzle is based upon what was until 1945 the

layout of the medieval centre of the city of Konigsberg in

Prussia. The positions of seven bridges over the river
Pregel that connect two islands to the mainland and to one

another is shown in Figure 9.1. The problem that is set by

the puzzle is, in a single continuous journey, to cross
each bridge only once and to arrive back at the starting

page 122

point. Although it is not obvious from a topographical map,
there is in fact no solution to this puzzle.

Figure 9.1 The Bridges of Konigsberg.

Figure 9.1 is a conventional topographical map of the

analogical type. However, it is not well suited to repre-
sent the puzzle of the bridges of Konigsberg because of the
fact that it is drawn to scale. The length of a bridge, or
its exact rotational position on the periphery of an island
is of no significance in arriving at a solution to the

puzzle. In fact, the redundant information contained in

Figure 9.1 is a disadvantage in this context because its

presence makes the problem itself more difficult to think

about clearly. However, by dispensing with the representa-
tion of scale it is possible to raise the diagram to a
higher level of abstraction and so to reduce the depiction

of the problem to it essential features. This is done by
introducing the convention of the graph.

Those of us who are not mathematicians are accustomed to
think of a graph as a Cartesian diagram. Two or three axes
diverge at right angles from a common origin. The axes are
scaled and a value in the field of the graph is determined

by its position when projected onto the axes. A function

can be represented on a graph by means of a set of such
points. But a geometrical diagram of this sort is a partic-
ular type of the more general notion of a graph.

It is convenient to define a graph, in the general sense,
as a diagram made up of only two types of component, points
and lines. The set of points associated with a graph is

page 123

known as the vertices of the graph. A curve that is not

self-intersecting is said to be a simple curve. The rela-
tionship that exists between the vertices of a graph is

indicated by a set of simple curves, known as edges. The

term node is often used for vertex in American texts.

If, for example, two related points are v, and v2 , then

the relation between them would be indicated by an edge

which is designated by e= (vj v2) or by the converse e
(v2 vj). Since the function of the edge is solely to

indicate graphically that a relation exists between the two

vertices, the length, straightness or layout of the curve
is of no significance. This characteristic of an edge

allows the topographical map in Figure 9.1 to be redrawn as

a graph in this generalised sense of the term. Figure 9.2,

made up only of vertices and edges, is the graph of the map

appearing in Figure 9.1. The scale feature of the map has

been dispensed with in the graph.

Figure 9.2 Graph of the Bridges of Konigsberg.

If there is a solution to the bridges of Konigsberg puzzle,
then it must be possible to find a connected succession of

edges through Figure 9.2 which traverses each edge only

once and which returns to its starting vertex. A sequence

of edges which traverses all the edges of a graph once

only, and which ends where it began, is referred to as

closed and, in distinction to a chain which is open ended,
it is termed a circuit. It is possible simply from inspec-

tion to see that Figure 9.2 contains no such circuit. But a

larger and more complicated graph would defeat the unsys-
tematic observer. Is there, then, a general proof that the

page 124

bridges of Konigsberg puzzle has no solution? It turns out
that a conclusive proof can be obtained by paying attention
to the vertices of the graph. What is termed the degree of

a vertex is the number of edges in contact with it. In

Figure 9.2 vertex A is degree 5, while B, C and D are
degree 3.

However, all the vertices which lie on a circuit must

possess an'outgoing edge for every incoming edge, which is

to say that its degree must be multiples of 2 and therefore

must be even. If the path is a chain rather than a circuit

then two and only two vertices, at the open ends of the

chain, may be odd of degree 1. In 1736 the Swiss mathemati-

cian Leonhard Euler generalised this rule to include paths

which traverse a vertex more than once. He observed that

each time a vertex is traversed by a circuit its degree is

raised by 2, which is to say that its degree must always be

even. Graphs in which all vertices are of even degree are

known as Euler graphs. An Euler graph is therefore the only

type of graph in which a circuit may be found. But since

the vertices of the graph of the bridges of Konigsberg are

all of odd degree it follows that no circuit is possible

and therefore that the puzzle has no solution. This conclu-

sion would hold true no matter how complicated the graph.

I have devoted some space to the puzzle of the bridges of

Konigsberg because it shows that graphs can serve as sur-

prisingly simple problem solving diagrams. Furthermore, a

problem when represented as a graph can often be completely

solved by calculation. A computer can, for example, easily

be programmed to count the degree of all the vertices of

even a very large graph. If all are even then a circuit can

be found, and a chain through the graph exists if only two

of its vertices are of odd degree. In this way the ability

of a large number of edges to combine into a circuit or a

chain may be computed quickly and economically. Further-

more, the Kirchoff-Bernoulli laws, relating flows and

potential differences in a graph, are readily computable.

page 125

Such calculations are an important part of SOPHIE intelli-
gent tutoring system described in Chapter 8.

For these reasons artificial intelligence programs for

games playing, decision making and computer-aided learning
often make use of graph theory. The application of graph
theory to the type of graph known as a production system is

of particular interest in the design and operation of
expert systems.

Directed Graphs and Trees
An edge in the graph shown in Figure 9.2 indicates no more
than that there is a relationship between two vertices.
However, it is possible to use the convention of the graph
to convey more than the bare fact of relationship. If the

edge is given the attribute of direction, to indicate a
flow of piped fluid or of electric current for example, it

can be represented graphically by an arrow. A directed edge
is known as an arc, and a graph made up of arcs is a di-

rected graph. An arc designated by a= (v, Iv2) is quite
distinct from the arc a=N vj). An entire directed

graph can be represented by the expression G(V, A) where V

and A are the sets of the vertices and arcs respectively.

Directed graphs can also represent non-material entities.
An arc can, for instance, depict an energy flow or the flow

of information from one vertex to another. When the graph
is drawn in such a way that the vertices stand for deci-

sions and the arcs for information flow, then what is

represented is the structure of a logical process. When
defined in this way graphs are useful devices for solving
problems in logic.

Finally, one must take note of a particular type of graph
known as a tree. The edges of the graph in Figure 9.2
divide the surface of the paper into 5 regions when the

area surrounding the diagram is included in the count. A

graph is a tree when, like the two diagrams in Figure 9.3,

page 126

it has only a single region. It follows that every pair of
vertices in a tree is connected by exactly one edge, and
that every sequence of arcs in a tree is a path.

- 41-ý

Figure 9.3 Trees.

A tree can, like a graph, be directed, and the problem of

searching for a path in a directed tree has been and is an
important topic in artificial intelligence.

Traversing a Staple Graph

A graph such as that shown in Figure 9.4 is known as a

simple directed graph. The adjective simple denotes the

fact that it has no parallel arcs and contains no feedback

loops. Logic properly so called, which is deductive logic,
is adequate for the purpose of traversing a simple graph
but it will not serve to traverse a graph with one or more
feedback loops. As I shall argue later, the process of
design is characterised by the frequent and unavoidable

occurrence of feedback loops. It is necessary, therefore,

to consider the differences which exist between the formal

properties of looped and simple graphs.

Let Figure 9.4 be a generalised representation of a process

of reasoning about a problem.

page 127

Figure 9.4
A Simple Directed Graph

I

The graph tells the reader that there are two possible

solutions to the problem, denoted by vertices F and G, and
that these solutions may be arrived at by two different

routes of four or of five steps. At each vertex a decision

as to whether to proceed or not must be taken, while at

vertices B and E additional decisions are required as to

which of the two succeeding arcs is to be followed. For our

purposes it is sufficient to observe that each of these

decisions can be taken independently of any subsequent
decision. The graph contains no arc by which a decision at
B, for example, would be affected by decisions taken later

at vertices C to G. All deductive logical systems possess
this feature, according to which a decision need never be

reversed in the light of later decisions.

In deductive logic the flow of inference proceeds steadily
forward from the premises until a conclusion is arrived at.
Each inference is made by reference to a rule, and the

resulting "well formed formula", or wff, ensures that the

result is valid. The rules of logic are readily adapted to

meet the requirements of the computer. For example, the

rule of modus ponens in propositional logic emerges as the
IF.. THEN conditional statement to be found in some form in

all computer languages. Quantifiers in the predicate calcu-
lus ar6 conveniently represented on a computer as varia-
bles. The rule of double negation is accommodated arith-
metically, and comparable representations are available for

page 128

t

all the rules of formal logic. It is therefore always
possible to derive an algorithm to describe a wff, and wffs
are consequently always computable. It follows that any
process of reasoning that can be expressed in the form of a
simple directed graph can be represented as a program and
solved by computer. The converse also holds true. Under-
graduates studying logic at oxford University now make use
of computer programs for the purpose of learning the rules
of propositional and predicate calculus (Darby, 1988).
However, the situation is less straightforward when the

reasoning process under consideration includes feedback
loops.

Traversing a Looped Graph

The graph shown in Figure 9.5 is identical to that in
Figure 9.4 except that the direction of the arrow between

vertices B and D has been reversed. The arc is DB rather
than BD. The graph is no longer simple, for the three arcs
joining vertices B, C and D form a feedback loop. The

consequences of this configuration become evident when
attention is given to vertex B.

Figure 9.5
A Directed Graph Containing a Feedback Loop

Here, the decision to proceed along arc BC follows from the
traversing of arc AB, but it is also dependent upon arc DB.
That is to say, the decision at B is conditional upon a
decision at D which has not yet been taken. This feature of
Figure 9.5 violates the formation rules of deductive logic,
by which no decision can be invalidated by a subsequent

page 129

decision. Were such a thing to occur, the argument would
degenerate into mere circularity. There are therefore no
logical rules by which the inferences which are depicted in

Figure 9.5 can be guided. It follows that no algorithms are

available, and that reasoning processes that are represent-

ed by directed graphs containing feedback loops are not

computable.

Non-Monotonicity

one of the characteristics of inductive reasoning is that

the conclusion reached may differ as new evidence is

brought into the argument. The example of the revision of

the notion that 'all swans are white' with the discovery of

the black Australian swan was quoted in Chapter 1. This

feature of induction has come to be known in the context of

artificial intelligence as non-monotonicity.

"'Non-monotonic' logical systems are logics in
which the introduction of new axioms can inval-
idate old theorems. Such logics are very impor-
tant in modelling the beliefs of active proc-
esses which, acting in the presence of incom-
plete information, must make and subsequently
reverse assumptions in the light of new knowl-
edge. " (McDermott & Doyle, 1980)

The distinction between monotonic and non-monotonic reason-
ing brought forward by McDermott and Doyle has proved to be

useful because it summarises a basic structural feature of

all systems of inference. Every process of reasoning must
be either monotonic or non-monotonic. It is evident, in the

present context, that a simple directed graph is monotonic,

while a directed graph containing a feedback loop is non-

monotonic. I shall employ these two terms in the following

discussion of looped graphs and computability. However, I

shall not, for the reasons put forward in Chapter 1, employ
the term logic or logical with reference to non-monotonic
inference.

Non-monotonic reasoning processes do possess meaning, the

absence of graph theorems notwithstanding. It is perfectly

page 130

reasonable for an architect to decide, for example, to clad
a building under design in stone on condition that suitable

stone turns out to be available in sufficient quantity. The
decision is made provisionally, and in recognition of the

fact that it may have to be revised later. In fact, a great
many of the decisions that one makes in general life are

meaningful in this provisional sense. Much of our thinking

remains reasonable even when it lies outside the bounds of
formal logic. Is it possible to bring computers to bear

upon problems of this type nevertheless? It may be, per-
haps, that an heuristic algorithm will meet the case and

enable non-monotonic reasoning to be computed. The term

'heuristic' is used here in its artificial intelligence

sense of "a technique that improves the. efficiency of a

search process, possibly by sacrificing claims of complete-

ness" (Rich, 1983) rather than indicating something that

stimulates investigation.

In an attempt to answer this question I return to a consid-
eration of vertex B in Figure 9.5. It is possible to devise

an algorithm which will enable the system to proceed from B
to C provided that a later decision produces a certain
predefined result. For example, the system might be set to
traverse BC only if a variable at D exceeds a certain
value. If the condition is not met the system loops back
through arc DB and the process is repeated, perhaps with a
different value for the variable. However, it is important
to notice that the graph itself contains nothing which
describes the character or the operation of this hypotheti-

cal variable. That is to say, the condition without which a

non-monotonic system is paralysed is independent of the

structure of the system. The condition that we have sup-
posed to exist at vertex D in Figure 9.5 has been imposed

upon the system rather than constituting a part of the

graph itself. The graph, as a description of the process of
inference, is incomplete.

page 131

The significance of this apparently inconsequential fact

can be seen when the notion of incompleteness is expanded.
Figure 9.6 is a variation upon the structure of Figure 9.5.

Figure 9.6
A Directed Graph Containing a Feedback Loop

Here the feedback loop is formed by the arc EB rather than,

as before, by the arc DB. This graph might, for example,

represent a situation in which the decision to proceed

along BC was dependent upon whether EF or EG was subse-

quently selected at E. An alternative way of making the

decision at B thus calls for the imposition of a fresh

condition upon the system.

As in the case of the graph in Figure 9.5, the imposed

condition implies knowledge of the system's context. The

hypothetical variable at vertex D in Figure 9.5 might

perhaps be a temperature or time interval, or a boolean

state. The selection of arc EF or EG in Figure 9.6 could be

made according to some measure of precedence, location or
dimension. Contextual criteria such as these are all func-

tions of the context in which the system of inference

represented by the graph is designed to operate.

It emerges, then, that every distinct feedback loop in a

graph calls for the imposition of at least one separate
condition, and that every condition depends upon a knowl-

edge of the system's context. Clearly, the parallel rise in

the number of contextual conditions with the increase in

the number of loops is an example of the infinite regress

of context. But, as Hubert Dreyfus has pointed out, no

page 132

algorithm can be conceived of which can embrace an infinite

quantity of knowledge. Despite the efforts of many ingeni-

ous logicians it remains true to say that non-monotonic
reasoning is not computable, even by means of heuristics.
It follows from these considerations that no algorithm can
ever be devised which is capable of traversing a looped

graph in an autonomous fashion. The difficulty has been put
concisely by John McCarthy.

"in order to fully represent the conditions for
the successful performance of an action, an
impractical and implausible number of qualifi-
cations would have to be included in the sen-
tences describing them. For example, the suc-
cessful use of a boat to cross a river re-
quires, if the boat is a rowboat, that the oars
and the rollocks be present and unbroken, and
that they fit each other. Many other qualifica-
tions can be added, making the rules for using
a rowboat almost impossible to apply, and yet
anyone will be able to think of additional
requirements not yet stated. " (McCarthy, 1980)

A human being can make an exit from the regress of context,

and so act successfully, because he possesses a point of
view from which to judge the significance of the conditions

and qualifications with which he is presented. His attempt
to row across the river would be guided by what is suc-

cinctly described as common sense. Can a computer, which
has no common sense, be programmed in such a way that it

can, for its part, evade the infinite regress of context?
Much ingenuity has been displayed in searching for an

answer to this question (Winograd, 1980).

It is possible to decide that the rowing trip may go ahead
unless a reason is known as to why it should not. This type

of procedure, of belief in the absence of contradiction, is

the basic notion of what are known as default logics. One

might make a list of perhaps ten or a dozen reasons why the

rowing trip should not be made, and then say that in the

absence of any of these qualifications the trip may go
ahead. These reasons can be stated as metarules (Reiter,

page 133

1980) or as a set of predicates. McCarthy (1980) proposed
his circumscription method of default logic as a way of
representing predicates and variables in a manner that
lends itself to programming in LISP. In either case, and as
the title of McCarthy's method suggests, the problem of
regress of context is addressed by drawing a bound around
that part of the problem context that is assumed to be

pertinent. All other contextual issues are then assumed to

be irrelevant. The quality of the automatic reasoning

process is therefore entirely dependent upon the manner in

which the conditions are specified. For this reason, de-
fault reasoning can only be applied to domains in which all
the relevant conditions can be identified and described in

advance. If, in the rowboat example, only qualifications

about the size of the boat and the condition of the oars

are included in the metarules or the set of predicates,
then the system will not predict failure even if the hull

has a leak below the waterline. Heuristic non-monotonic

methods of reasoning, such as circumscription, are limited
in scope because of the complexity of the context of any

serious problem. For the same reason, a graph containing a
feedback loop is a useful form of representation only when
the problem is small and simple.

Architecture and Non-Nonotonicity

The first of the 11 properties furnished by Horst Rittel in

his description of design problems is that

"Wicked questions have no definitive formula-
tion. Any time a formulation is made, addition-
al questions can be asked and more information
requested. " (Rittel, 1972)

The effect of this observation, whose truth no architect

can deny, is that every decision that is taken in the

process of designing a building is provisional, and subject
to revision in the light of later events. For example, the

orientation of a building may have to be changed when the

number of spaces needing north light becomes known, the

page 134

building may need to be broken down into several units if

it becomes to bulky, and in a few cases a good building is

impossible to design on the proposed site and another
location must be found. Reasoning processes of this kind,

in which any decision may call into question any previous
decision, are non-monotonic in character. Design is the

most non-monotonic of all reasoning processes, because

every decision can call for a reconsideration of not just

some but every previous decision.

The conventions of graph theory break down when a complete-
ly non-monotonic process such as design is to be represent-

ed. If Figure 9.4, for instance, is redrawn to include the

feedback loops characteristic of the process of design then

the diagram no longer has any meaning.

Figure 9.7
The Design Process as a Graph

The descriptive capacity of graph theory evaporates in a

diagram such as Figure 9.7, and the truth preservation

properties of deductive logic are destroyed by the presence

of the feedback loops.

In the past attempts have been made, under the heading of

design studies, to evade this difficulty. The best known

effort to apply graph theory to design was that made in

the late 1960's by Maver. The notion upon which his work

was based was that a design proceeds from analysis of the

problem to the synthesising of a solution. The solution is

then appraised and the result of the appraisal is fed back

page 135

to a fresh attempt at synthesising a solution. The analy-
sis-synthesis-appraisal model of design is illustrated in

Figure 9.8.

Design process
2 Feasibility

3 Outline proposals

Analysis Synthesis App.... 1 Docision H
r-

"

I
Iý

5 Dotal design

A proisal I
'ý

L

41 14,

, F---
4 Sch*me d*sign

Analysis
ý4'

Synth*sis
.
L- Aporaosal

h

6 Production information

D*cWw

Docision

Figure 9.8
Framework for Design Management
(from Maver, 1970)

The need for feedback is recognised in this scheme. Howev-

er, feedback is strictly circumscribed by the interpreta-

tion that has been given to design. There is no scope for

the scheme design stage to influence the outline proposals,

nor for detail design to feed back to either preceding

stage. In fact, backtracking of this kind is discouraged.

"The characteristic of a morphology is that the
stages are sequential and not iterative; return
from a later stage to an earlier stage is
recognised as failure in the management of the
design activity. " (Maver, 1970)

In reality, this embargo is necessary if the breakdown in

meaning which is illustrated in Figure 9.7 is to be avoid-

ed. But Figure 9.7 describes the necessary and inescapable

process of decision making in design, and the fact that it

page 136

cannot be represented in terms of graph theory is responsi-
ble for the lack of interest on the part of architects in

deductive models of design.

conclusion
A simple directed graph is logically monotonic, and it can
therefore be traversed by means of a suitably programmed
computer. Problems of traversing a network in CPM or PERT

analysis, which are monotonic in character, are routinely
solved by computer. However, the pattern of inference of

any graph which contains a feedback loop is non-monotonic.
Because non-monotonic reasoning entails an infinite regress

of context it is impossible in principle to solve this type

of problem fully by means of a computer. Heuristic non-

monotonic algorithms, which try to evade the regress, are
limited by the scope of contextual considerations to small

and simple problems.

These conclusions are very important when the problem under

consideration is architecture. This follows from the fact

that every inference in architectural design is non-mono-

tonic and a graph which correctly represents the design

process is replete with feedback loops. Computer programs

applicable to architecture and design must, consequently,
be able to function non-monotonically. It follows, also,

that architectural design itself is inherently impossible

to compute.

page 137

Chapter 10. PRODUCTION SYSTEKS

The methods of graph theory are capable of deciding if some
path through a directed graph exists. There is, however, no
general theorem which is capable of providing an answer to
the more difficult question of which succession of arcs

constitutes such a path. Operations like finding the criti-
cal path through a network representing a project, for

example, can only be performed by numerical means. Dijk-

stra's algorithm, in which the path is assembled iterative-

ly (Dijkstra, 1959), is often used to solve this problem in

commercial network analysis programs.

The type, of diagram to which conventional graph theory is

applied has to be a static structure. Euler's rule would be

powerless to find a circuit over the bridges of Konigsberg,

were there one, if the graph in Figure 9.2 were to change

while an answer to the puzzle was being sought. Similarly,
if the sequence of operations on a building site which is

being monitored by critical path analysis should be forced

to change, then the revised situation must be represented
by a fresh network if the new sequence of events on the

critical path is to be rediscovered. The obligation to

redraw the network frequently, so as to cast the operation
into a new fixed form, is the main drawback to monitoring

projects by network analysis. For this and similar reasons

graph theory is a useful tool only when the problem under

consideration has, at least for the time being, a fixed

structure. This restriction excludes most of the problems

of practical life, for events in the world are always in a

state of flux. Proverbially, times change and we with them,

and real-world events elude the static representation of a

graph.

The Work of Emile Post

In the early 1940's, however, when computers were in their

infancy the American mathematician Emile Post invented a

novel type of dynamic directed graph through which it is

page 138

always possible to find a path (Post, 1943). Nearly all the

expert systems that have been written during the last 25

years are based upon Post's formalism. Some space must
therefore be devoted to his proposal.

Post begins his paper by observing that although the meth-

ods of symbolic logic can embrace an infinite set of varia-
bles, these methods apply equally well to a system that is

defined as possessing only a finite sequence of symbols.
Accordingly, Post's enunciates a formal system consisting

of a pair of symbols, a primitive quantity 'a' and an

operational variable IPI. Quantities are described as

primitive when they cannot be analysed within the system -
in a particular situation they may be conceptually compli-

cated while remaining primitive from the point of view of
the system. A further symbol Ig' represents a finite se-

quence of a's and may include the null sequence. The three

symbols are purely formal and may be held to represent any

quantity or operation whatsoever.

Then the relationship of the quantity/operator pairs can be

written:

11P; s1
lat p1 lez

L
9aInb Pi*

I...............
Nlý 9. Pit PC 30

PRODUCL5

91 pi, ge Pit ---ý. k 9". 1.

Figure 10.1
Canonical Form of a Production System

The sequences it to it, and ill to illm appearing in lines 1

and 2 are any finite sets of parameters. Line 3 of Figure

10.1 is therefore the description of the system for any

sequence of parameters in any set of i. The symbol Ik'

denotes the set of i. For any particular value the parame-

page 139

ter k can be cancelled out, to produce the expression in

line 4. The formalism now consists of a small alphabet g,
i, m and P, the single axiom that an operational variable

may act upon a quantity, and the productions represented in

line 4. Line 4 is described as the system in its canonical
form because all other statements that emerge from the

operation of the symbols derive from this first perfectly

generalised statement. The canonical form states the

'general combinatorial decision problem' of the title of
Post's paper.

Line 4 is referred to by Post as a production system be-

cause each term is produced from its predecessor and pro-
duces its successor entirely within the notational system.

The word production, when used in this way, has no connec-
tion with practical activities such as making things or

manufacturing products. Note that nothing is said about

what the primitives or the operators consist of. Post's

concern is with the formal relationships of the symbols and

not with them as representations of entities outside the

system.

Thus far the reader may be forgiven for thinking that

Post's paper consists of little more than long-winded

truisms. But the second stage in his argument makes the

novel stipulation that the premises of a production must

contain all the operational variables that appear in the

conclusion.

"We then add the restriction that each opera-
tional variable in the conclusion of a produc-
tion is present in at least one premise of that
production... 11 (Post, 1943: 198)

That is to say, Pim in line 4 of Figure 10.1 must appear

somewhere back down the line. The effect of this require-

ment is to make a production a cumulatively selective

process. Operators, and consequently quantities, may be

eliminated from the production system, but if they are then

page 140

any subsequent identical operator will also be removed. The

usefulness of this stipulation will become apparent in the

discussion of Alan Newell's adoption of the production

system formalism in the 19601s.

The main body of Post's paper is taken up with the reduc-
tion of the canonical form of a production rule to its

normal form. Normal here means establishing, rather than

conforming to, a type or standard. This is carried out in

four stages. The first step is to reduce the arbitrarily
long sequence of assertions in the canonical form in Figure

10.1 to a single assertion. Secondly, the operational

variables in the system are reduced to the one. Thirdly,

the number of directions in which the system can proceed is

reduced to one. Lastly, production is reduced to the form

shown in Figure 10.2, which is a production in normal form.

9p

PRODUCEZ which may be written gP - Pgl

P9,

Figure 10.2
Normal Form of a Production

What this representation is saying is that for any set of

sequences of primitives the repeated application of an

operational variable to a pair of those sequences will

always produce a new sequence in the set. A chain of pro-
ductions, therefore, will not degenerate however long the

sequence. It is Postfs achievement to prove that the most

general set of symbols can be combined by means of one

remarkably simple rule.

page 141

It has become accepted terminology in the literature of
artificial intelligence to represent a production as;

condition - action

This is equivalent to gP - Pg', even though Post himself

never made use of these more recent terms.

Post's paper is written in a very abstract style and it

runs to 20 closely argued pages. No commentaries upon it

have been published, and for the lack of a detailed gloss I

am unable to give as complete an account as I would wish of
his reduction of the canonical to the normal form. Chapter

12 of Minsky (1967) is the best, but still unsatisfactory,

explanatory text.

Production Systems and Artificial Intelligence

The interest of Post's formalism for artificial intelli-

gence is that it offers a dependable mechanism by which a
fresh tree can be created in response to a new structure of
the data. Production systems evade the fixed character of
fixed graphs. This feature was noticed by the American

psychologist and computer scientist Allen Newell in 1966,

when it was taken up by him as a promising way to structure

a computer program which could, he hoped, simulate human

thought processes.

"Production systems are still a perfectly
general scheme for information processing; they
simply divide up the computation somewhat
differently than a standard sequential program-
ming language. The generality of production
systems does not imply theoretical neutrality.
They make it easy to express certain forms of
organisation, hard to express others. Thus,
they mould psychological theory to some extent.
The issue will not be explored further in this
paper, but its existence should be noted. "
(Newell, 1966a)

Throughout his paper Post discussed production systems as
if they were one-dimensional phenomena. The lines of Figure

page 142

10.1 give a strong picture of linearity. However, the

production rule formalism survives intact if the condition
is the action of more than one preceding rule. It was
Newell's achievement to realise the significance of this
feature of the 1943 paper, which is only implied by Post's
text, and so to place himself in a position to interpret

production systems as a network.

During a discussion of the Firing Squad Synchronisation

Problem, Newell suggests that the problem space, delineated

by the square outline of Figure 10.3, can be thought of as
traversable by a set of interconnected production rules.

A6 ?-

Figure 10.3
A Production System
(redrawn from Newell, 1966b)

In Figure 10.3 all the actions can occur if P, or P2-are

satisfied by C1, while only A3, A4 and A5 will result from

the firing of P3. Thus a production system can describe

many possible processes by means of a single representa-
tion.

When a production system is interpreted according to New-

ell's insight it can be represented by means of a two-

page 143

dimensional network such as that shown in Figure 10.4(a).
Vertices 1 to 7 are the conditions of 10 Postian rules,
while vertices 19,20 and 21 are the actions of five rules
in this hypothetical system. The remaining vertices func-

tion as both conditions and actions according to which rule
is under consideration.

FA LA

()

IRUL

(b) (C) (60 (9)

Figure 10.4
A Hypothetical Production System

The five stages (a) to (e) demonstrate the dynamic nature

of a production system. If condition I is found to be

false, then only the part of the graph in (b) remains

active. The rules 1-8,2-8,8-15 and 15-19 are removed
because vertex 1 is false, and rules 5-11,6-11,11-16 and
16-19 are also rendered inactive by the fact that action 19

has been proved false. If condition 2 in (b) is found to be

true only rule 2-9 need be removed, and only rules 3-10 and
10-17 are lost if vertex 3 is true. If vertex 4 is false

then the graph is clearly reduced to (e), in which action
21 is realised or not according to the state of condition
7.

. e-

Clearly the graph would modify into another pattern when
the conditions are satisfied differently. It is the ability

of a graph of production rules to adapt itself to informa-

tion received about its environment that makes it a useful

artificial intelligence tool. Production systems are par-
ticularly well adapted to representing domains which con-

page 144

tain many independent states. Problems of diagnosis, human

and mechanical, frequently fall under this heading. There
is no procedure capable of inferring the identity of a
patient's illness deductively from a list of symptoms, for

example, nor can the cause of a mechanical breakdown be

calculated reliably from the observed malfunctions. The

symptoms seem to be conceptually independent, but the

source of the trouble can often be found by means of a

search through the rules of a properly descriptive produc-
tion system.

The DENDRAL Project

At the same time that Newell at Carnegie was adapting
Post's idea to his own area of interest the geneticist
Joshua Lederberg, the chemist Carl Djerassi and the comput-

er scientist Edward Feigenbaum were at work at Stanford

University on the other side of the North American conti-

nent. The topic with which their collaboration was con-

cerned was organic chemistry rather than psychology.

The elements of which a chemical compound is made up can be

found in a number of ways, one of which is the technique of

mass spectrometry. If a compound is broken up into its

components, by heat or bombardment with electrons, the

resulting ions can be focussed into a beam and accelerated
through a magnetic field. The path taken by the ions

through the field will vary according to their mass, and
the mass of all the components of the original compound can

thus be measured. Furthermore, the ions can be counted and
the spectrometer produces a result in the form of a histo-

gram.

page 145

Figure 10.5
The Principle of Mass Spectrometry
(adapted from Gove, 1987)

It is no simple matter to interpret the output of a mass

spectrometer. This is because any one spectrum of ions

could represent the fragments of may different compounds.
Which compound is the parent of the spectrum depends upon
the regular but highly complex rules governing the ways

which ions can combine with one another. The problem is at
its most severe in organic chemistry because of the large

size of many carbon compounds. A human chemist who is able
to read a mass spectrograph, particularly of an organic

compound, must have a large stock of knowledge about atomic

and molecular structures at his disposal. Long training and

much experience is needed to acquire this knowledge, and

skilled mass spectrograph analysts are in short supply. The

project undertaken by Lederberg, Djerassi and Feigenbaum at
Stamford was therefore to write a computer program that

could carry out organic mass spectrometry analysis at a
human level of skill.

The outcome of their work was DENDRAL, an acronym for

DENDRitic ALgorithm, in recognition of the tree-like nature

of the program's search procedure. The first paper to be

published on what later became known as Heuristic DENDRAL

was Lederberg (1964). Heuristic DENDRAL works in three

stages. Firstly, the operator provides a list of the likely

compounds and a second list of those that are to be exclud-

page 146

ed as impossible. This shrinks the search space 'manually'.

The second stage uses the program at the core of Heuristic

DENDRAL, which searches a tree of structure building sub-

programs and forms a list of all the molecular structures
that are possible given the output of the spectrometer.
Each sub-program is based upon what is known about a par-
ticular type of chemical compound, and the success or
failure of the system is critically dependent upon the

selection of the correct sub-program. Lastly, Heuristic

DENDRAL outputs the mass spectra of all the solution candi-
dates, and ranks them in order of goodness of fit with the

experimental result.

Subsequent versions of DENDRAL, such as. META-DENDRAL which
incorporated an improved second stage known as COGEN,

performed as well as a skilled organic chemist and deserve

their reputations as the first useful expert systems.
DENDRAL in its many versions functioned by means of a tree-

search algorithm, and without using the formalism of a

production system. The designers of DENDRAL attributed
their success two features of the program in particular.

The first characteristic is that the program depends upon

and makes use of a great deal of knowledge.

"Behind the discussion of the information
transfer process is the unquestioned assumption
that the performance of Heuristic DENDRAL
system depends critically on the amount of
knowledge it has about mass spectrometry. Thus
it is necessary to be able to add more and more
theory to the program in the easiest possible
way. " (Buchanan, Sutherland & Feigenbaum,
1969)

Secondly, the program worked because its information cov-

ered only a restricted area of expertise, known as its

'domain'.

"The Heuristic DENDRAL project, from 1968 to
the present, and including COGEN, has produced
a number of results of significance to chem-

page 147

I ists. The work has shown that it is possible
for a computer program to equal the performance
of experts in some very specialised areas of
science. " (Bennett et al, 1982)

No part of Heuristic DENDRAL is general or abstract in

character. In this respect DENDRAL stands in opposition to

GPS, which aspired to a general scope of applicability.

5

Production Systems and Programming

These two notions, of programming with knowledge and of

using production systems as dynamic directed graphs, were
brought together for the first time by Donald Waterman when
he was working as a graduate student under the direction of
Feigenbaum at Stanford University. In 1968 he submitted a
doctoral thesis which contained what would now be called a

rule-based expert system for playing poker. Waterman's

program was published in the first issue of the journal

Artificial Intelligence in 1970. In that paper Waterman

acknowledges the help of Edward Feigenbaum and Allen New-

ell.

Waterman begins his paper by identifying what he calls the

basic problem. The term 'heuristic' in this context means a
technique for solving a problem by approximation.

6

"Most heuristic programs to date have the
heuristics built in as an integral part of the
program. Even on close inspection it is diffi-
cult to decide exactly what heuristics are
being used, what their effects are, and how
they are related to one another. Then entire
program, in a sense, becomes the representation
of the embodied heuristics ... In the scheme
proposed in this paper, heuristics in a program
are represented as an ordered set of production
rules. " (Waterman, 1970)

Waterman's ordered set of production rules would now be

referred to as the program's knowledge base. The notion,
introduced in this paper, of structuring a program so as to

page 148

(

L

5

distinguish clearly between knowledge and operations upon
that knowledge has become one of the cornerstones of de-

clarative programming.

The action of setting up a separate knowledge base brings

in its train a difficulty that is not encountered in pro-

grams of a procedural style. Information in a computational

procedure is processed according to the structure of the

algorithm and control is exercised upon it in a tacit way.

However, a knowledge base made up of production rules calls

for an explicit control strategy if it is to be used cor-

rectly. Waterman employs a system of scoring designed to

disfavour unsuccessful rules.

"To make a decision via production rules, a
symbolic subvector representing the game situa-
tion is compared to all left parts of the
action rules, going from top to bottom until a
match is found. The action rule which defines
the decision, that is, the one whose left part
matches the symbolic subvector, is easily
located. After the decision is evaluated, the
credit or blame can be assigned to the action
rule, and to those above it, which defined the
decision. Here blame is assigned to action
rules leading to poor decisions, while action
rules leading to good or acceptable decisions
are ignored. " (Waterman, 1970)

The final two thirds of Waterman's paper is devoted to

using this scoring system of control to render the program

self-modifying, or able to 'learn', in such a way as to

improve its performance as a poked player. His work here is

a continuation of that of Claude Shannon on playing the

game of drafts, known in the United States as checkers.

Waterman's program displays three of the four distinguish-

ing characteristics of what are now known as expert sys-

tems. These are the employment of the formalism of the

production system, the separation of the knowledge base

from the procedural parts of the program and the devising

of a method of control. His poker playing program cannot,
however, communicate why it has decided upon a particular

page 149

I

2-

U

play. It possesses no facilities for explanation. Neverthe-

less, I think that Waterman's achievement is significant

and his program can be regarded as the ancestor of all

expert systems. The term 'expert system' was first used by

Edward Shortliffe and Lawrence Fagan in a Stanford Univer-

sity research report of 1972.

conclusion
Production systems have in recent years come into wide-
spread use in the guise of expert system programs. Their

success as a method of representing the knowledge of a
domain follows from their self-modifying capability. The

representation changes to reflect the state of the pro-

gram's environment, forming a kind of mirror of events in

the domain. However, a production system is a logical
formalism in the strict sense that its inferences are
deductive.

The deductive character of a production system can be

gathered from a reconsideration of Figure 10.4. The rule 11

- 16, for example, was removed from the network in state

(b) as a result of condition 1 being found to be false.

This means that the rule cannot be used when the system is

in subsequent states even if state (c) or (d) should bring

it into relevance. Truth maintenance precludes the use of

feedback loops in production systems, just as it does in

every other type of deductive inference procedure.

I have argued in Chapter 9 that architecture, because of

the non-monotonic nature of the activity of design, cannot

be adequately represented by deductive logic. The necessity

of introducing a feedback loop from each vertex to every

previous vertex will defeat any deductive system. This is

why expert systems, in the form in which they have evolved,

are not used by architects in their role as building de-

signers. However, non-deductive types of expert systems

based upon classification methods are a programming possi-

bility and promise to evade the restrictions of deduction.

page 150

Chapter 11. CLASSIFIER SYSTEms

It is evident when analysing rule-based expert systems that

the function of the network of rules is to place a set of
individual productions into a correct relationship with a

particular solution. on this interpretation, solutions are

classified according to their question set, while questions

are classified by reference to the solutions which they

verify. The notion of classification is the basis of an

alternative type of expert system which, as I hope to show,

promises to be useful in the field of architectural design.

classification

The concept of an expert system as a classifier can be

illustrated by means of an example. Figure 11.1 shows, in

the form of a production system, the well-known animal

identification scheme proposed by Winston and Horn in 1981

and described by Duda and Gaschnig in the same year. I have

chosen this small domain, which contains only 20 questions

and seven solutions, because it is just big enough to

illustrate the working of an expert system and because it

calls for no specialist knowledge on the part of the user.

The system in this representation has only 15 production

rules.

page 151

CHEETAH TIGER

tR
10

DAR"
SPOIS

IýIýE
A

4 RII

0

LONG
LEGS

rIIIIA

rl I VES
. ILK

rCARNIVORE

POINTED
TEETH

CLAWS

a LACX
STRIPES

UNGULATE

HOOFS

FORWARD
EYES

Figure 11.1
Animal Identification Scheme
(Duda & Gaschnig, 1981)

CMEWS
CUD

I
BIRD

ALSATROSSi
I

pis

FLIES,
WV. L

LAYS EGGS

In this domain correct affirmative answers to the set of

questions (lays eggs, flies, has feathers, flies well)

results in the selection of the solution albatross as the

identified animal. Similarly, the set (hair, gives milk,

has hoofs, chews cud, has black stripes) identifies the

animal as a zebra. There is a good deal of redundancy in

this production system. An albatross cannot fly well, for

instance, unless it can fly at all, while only mammals have

hairy skins. However, it is a feature of a useful expert

system that it can function properly when it is supplied

with redundant information. Problems in the real world are

very difficult to describe in a strictly logical fashion,

and one of the main purposes in implementing a problem in

the form of an expert system is to spare the user from

unnecessary logical analysis.

The relationship between the 20 questions and the seven

solutions can represented as accurately as a matrix as it

cab in the form of a network. Figure 11.2 places the solu-

r

page 152

tions on the x-axis of a matrix while the y-axis contains
the questions relating to the Duda and Gaschnig domain.

Questions which must be answered 'yes' are marked by a
black dot.

*L I. Rai I,

Z. Doei Lt '9ývt
MPLWL ?

3. Dot6 a eAt Aiwa ?
4. Has L"t pavýýeL "T

S. HOS Ck CIOAVr, ?

4. Hits It frNantp"
7. Ht s Ct komm ý
S. OOeS ý-t dL60 tkC CAldl
9. H't s tt
10. Does it
11. Eýbes it
12. Is

13. HLs tl 5poti,
14. Ho4 it to%,, Leg 6?
15. Hu btxck 51fý ?
16. HA4 AL LCV! l ^uk ?
17. Is It Wtaý Le-, tb f-ý f
is. Is it b" Pý4 01,; iL
0. Doe5 ýt sw-ýý
20. COIA, It

I

t. Z. I
S
S

I
I
S

0
0

el
0

S

.

.
S
.

0
0

0

0
a

0

0
0

0
0

0

0 0

0

S
.
S

.

.

.
S
S
S

0

Figure 11.2
Duda & Gaschnig as a Matrix

Bit-strings

In Pascal, as in most other programming languages, varia-
bles are stored as strings of binary bits. A character

variable is stored as an eight-bit string, known as a byte,

integers occupy the 32 bits of a four byte representation,

while boolean variables are stored in the form of a single
byte. A data type of particular interest in the present

context is the array of integers. An array of integers is

stored as a continuous sequence of four byte binary inte-

gers, and it therefore constitutes a bit string of arbi-
trary length. In Prospero Pascal the size of an array is

page 153

L

restricted to 64K bytes, which makes the largest possible

array of integers the equivalent of a bit string containing
544,768 separate bits.

Bit-strings are a very compact way of representing informa-

tion. By manipulating individual bits in the string, the

presence or absence of 8 facts, or the truth or falsehood

of 8 assertions, can be stored in memory within a single
byte. Furthermore, bit-strings lend themselves to rapid

processing, since an alteration to the state of a variable
is only a matter of changing a single bit. This property of
bit strings has for long been exploited in the architecture

of data base programs. But the properties of bit strings

can be used to represent data in a metaphorical manner as

well as literally.

It is evident, from an inspection of Figure 11.2, that the

seven solutions can each be thought of as a variable repre-

sented by a bit-string consisting of 20 binary bits.

Furthermore, the bits are ordered in such a way that the

questions are represented consistently. That is to say, the

ninth bit represents the question "Has it feathers? " in all

seven strings. Answers to questions can be recorded by

setting the appropriate bit to 0 for false or I for true.

It can be seen that the solutions in this toy domain, where
few questions need to be asked, can be represented as
integers. In a useful expert system, where some hundreds of

questions may be needed, the 32 bits of an integer string
is too short, and a longer string composed of an array of
integers will be called for.

This notion of an expert system as a classification of

knowledge represented by bit-strings was taken up by Peter

Frey, of Northwestern University in Illinois in the early

80's. In 1986 he published a description of his invention

in the form of a magazine article and an accompanying 5k"

floppy disk (Frey 1986a and 1986b). The article describes,

in a rather terse fashion, the design of his classifier

page 154

shell while the disk contains the listing of an implementa-

tion of the system. The implementation takes the form of a

method of identifying domestic house styles in New England,

and it is therefore of direct interest to architects.

The logical operations of a rule based expert system writ-
ten in a conventional programming language are performed by

a network of IF-THEN statements, while a shell in Prolog

will proceed by trying to match a stated predicate with all
the predicates in the knowledge base before moving on to

the next rule. Both these operations are prodigal of proc-

essor time. Conventional expert systems, particularly those

written in Prolog, are in consequence notably slow in

operation.

However, strings of bits can be compared very concisely and

economically by means of a pattern matching process such as
that illustrated diagrammatically in Figure 11.3.

ACTION.)

MWACE, CUASSIF(Er-

I

w L1
[1
rai '-4

4ýII

-4 0

-) I

-)0

---31
)I

4- -)I
4- -) o

Figure 11.3
classification by Pattern Matching.

In this diagram the term 'message, is adopted from Hol-

land's work, referred to in Chapter 8, to denote a body of
information about the current state of the environment of a

system, while his word 'classifier' refers to a bit map

page 155

whose configuration represents the features of a situation.
The two strings are shown in the diagram as corresponding
to one another, although this may or may not be true of a

particular case. I have followed Frey's example and have

employed Holland's terms in the remainder of this text and
in the design of my expert system shell Cortex.

Each horizontal arrow in Figure 11.3 indicates a matching

of two binary bits, and achieves the same result as proc-

essing a rule in a production system. A pair of bit strings

which were 33 bits long could carry out all the logic of
the productions system shown in Figure 11.1 as 33 binary

bit comparisons. This operation places a far smaller load

on the processor than does a chain of conditional state-

ments or the predicate matching operations of Prolog. It is

one of the attractions of a bit-string based shell that

logical operations can be carried out simply by comparing
individual bits. The computational economy of the procedure

opens the way to implementing large and very fast expert

systems on table-top microcomputers.

The Frey Algorithm

In the expert system shell proposed by Frey the relevant
facts about the topic of interest are recorded in a bit

string known as the classifier. The pattern of this string
is provided by the knowledge engineer, since its configura-

tion is dependent upon an accurate and detailed knowledge

of the domain. The classifier must, of course, be written

beforehand as an essential step in any implementation of

the shell. Answers provided to the system by the user are

recorded in a second bit string known as the message. The

system works by matching the pattern of these two strings.

t"

But the elements of both these strings are binary, while

the facts to which they refer are many-sided. A false bit

in the message may record either that the answer is nega-

tive, or that the question has not been answered at all.

The classifier must be able to distinguish between the

page 156

features of the domain that are definitely known and those

about which knowledge is imprecise or conjectural. In a

system for identifying the style of a building, for in-

stance, a mason's mark can securely date a building as
Medieval, but plate window tracery may be attributable to

the Gothic or to the Victorian eras. A useful expert system

ought to be capable of making this kind of distinction.

That binary logic can serve to represent multi-dimensional

entities was recognised by George Boole himself when he

observed that;

"We may in fact lay aside the logical interpre-
tation of the symbols in the given equation;
convert them into quantitative symbols, suscep-
tible only to the values 0 and 1; perf orm upon
them all the requisite processes of solution;
and finally restore to them their logical
interpretation. " (Boole, 1854)

To make use of what in recent years has become more famil-

iar terminology, Boole observed that any degree of logical

complexity can be represented by a sufficiently large

binary tree. Frey utilises this same principle by proposing
to incorporate in his system additional bit-strings whose
function is to specify the relative importance of bits in

the message and classifiers. These additional strings he

calls 'masks'.

Under the influence of the American behavioural psycholo-

gist Eleanor Rosch, Frey has adopted a three-fold model of

the classifier for use in his expert system. Rosch (1977)

observes that cognitive categories are conventionally
thought of as discrete.

"most studies carry the unexamined assumption
that categories are arbitrary logical conjunc-
tions of critical attributes which have defi-
nite boundaries and within which all instances
possessing the critical attributes have a full
and equal degree of membership. " (Rosch, 1977)

page 157

Against this notion she argues that categories are cha-
racterised by the possession of a salient attribute around
which other attributes are closely or loosely grouped. She

concludes;

"that color, and possibly form, categories
appear round perceptually salient points in the
domain and that such points form cognitive
prototypes for the categories of those
domains. " (Rosch, 1977)

Rosch employs a metaphor drawn from computing when she
likens the first notion of categorisation as 'digital'

while describing the second and more adequate conception as
'analogue'. In coming to this conclusion she is, perhaps
unknowingly, placing herself in agreement with Hubert

Dreyfus's observations about the analogical character of
human thinking.

q

While discussing the structure of his expert system Frey

observes that "Eleanor Rosch has argued persuasively that

natural categories do not have fixed boundaries" and he

goes on to propose three classifier masks designed to model
the Roschian categories.

"To represent this aspect of categorising
people, objects or events we employ three
classifier masks specifying which attributes
are absolutely essential to the category (type
A), which ones are usually present (type B),
and which ones are sometimes present (type
C). This strategy permits flexibility in defin-
ing category prototypes (the classifiers) that
seem necessary for real-world applications. "
(Frey, 1986a)

ý5

By way of these considerations Frey arrives at a design for

an expert system which makes use of a message and a message

mask, together with a classifier and three classifier

masks. All five elements are represented in the computer as
bit-strings. The manner in which these strings work togeth-

er is shown in Figure 11.4.

page 158

STACIE I
I

< ýAGF- =Z*,

T,
TF

IT , -F. 7

TI 'T,
IT' L,
J-1 T
T1 II

AWD IT ýT'
]ý

T T ýT

F* 11 F
FF

ITT
T

It i Fý

<__ýTALE
_4__> 01 eowm.

Pt5uw

777
TT

F

(D
r

'_F T, PTT, ýT

...
11

TF ýF
ll

7F :!

F: T
IFI J- F>T

77 7T

i XJTII % _F, NOT
l',

rf
T

FFF Ti

it ly: -f, T, ý--f -
,3 14
5 ITI

LT I

Figure 11.4
The Frey Algorithm

(D

r7F
ý'

ýEý
.rFi

5F

rT

PF

4 F1

6

ýT
:1

T
ýF

T [F,

TT T T ýF

7T
s rTIANOL; ýt I

"

MT
'ýF

'I
IL

p

ýF it ýT

ITI

F

m

41501"46 OCCASIMAl.

Tl I-F, 71

T T
I

ýT

Xr -r
FF

4T1 Fl
I T1 Tf ITI

Tý MM IF -"F

, -T, 7 -Fl

'Ti F ýa - Ft -ri
71 : F:
IT TI

FI
F

TI F F-1
:�ME 11 LE Ei

11-FI

The message is a string of bits which records the answers

given by the user of the system to the questions. A bit set
to T in the message records that a question has been cor-

rectly answered, while an F means either that the answer

given was wrong or that no answer was supplied. The answers
that are needed if a particular solution is to be true are

written into the classifier by the knowledge engineer.

In stage 1 of the algorithm the classifier and the message

are compared by the XOR logical operator. This returns aT

T 7, -r- T T T, T' XMXT MPTCKE4 i F TH - VZ
T

ýr-7
T' T' -T7

,:
F _FI 1 Tt, 01*Snc"ls

F MATC-M Vl- 2Fý

dF f:
F

MLU-46 LPSVAý
Ak*, %r. mAsic.

Z

(D
ri

F
7ý A&M IF21;

m

. -Th OCLAIOI3øt.

ý1;
11

,

qfF,:

T* if

. F.
11

'F,

T, F1 1ý

rFi

F
fl

page 159

when the operands differ, which occurs when the answer
required by the classifier differs from the answer to the

question. A NOT operation then reverses this result and
produces intermediate result 1, in which a bit is set to
true when the answer and the required answer are the same,
and to false otherwise.

Because of the ambiguity of the message, a second stage is

needed to distinguish a wrong answer from no answer at all.
This is accomplished by stage 2. Here the message mask is

ANDed with the essential mask of the classifier. The mes-
sage mask records whether or not a question has been an-
swered, while the essential mask identifies by means of a
bit set to T those questions which must receive a correct
answer. The AND operator returns T when both bits are true,

and F otherwise. This result is recorded in intermediate

result 2.

Finally, stage 3 ANDs the two intermediate results. The

effect of this is to return T if the question is an essen-
tial one and it has been answered correctly. otherwise the
bit is set to F. A solution achieves a possible status when
the bit string called essential result in Figure 11.4 is

the same as the essential mask.

In a similar manner, when the message mask and the usual
mask are ANDed and the result is ANDed with intermediate

result 1, a usual result bit string is produced. This is

set to T when a usual question has been correctly answered,
and F otherwise. The correct answer to an occasional answer
is identified by the same method, but this time involving

the occasional mask in stage 2. In Figure 11.4 all four

usual questions are shown as receiving correct answers, but
the answers that appear in the message to two of the three

occasional questions are found to be wrong. These bit

matching procedures are carried out by the ADJ subroutine
of House. Bas.

page 160

Frey says that his system is designed to reflect the ideas

of Rosch on the nature of classification. The three-fold

result produced by the procedures illustrated in Figure
11.4 must therefore be weighted in such a way as to reflect
their status as type A, B or C attributes. This is done, in

his House. Bas program, by attaching a score to each of the

questions. As the file name extension indicates, the pro-

gram is written in BASIC.

In the first place, the questions relevant to the domain of /-,
-House. Bas are recorded in a long list of data items. The

following is an excerpt from the questions data list.

REM COMPOSITION OF EXTERIOR WALL
DATA 10, "wood exterior"
DATA 11, "stone exterior"
DATA 12, "brick exterior"
DATA 13, "stucco or adobe exterior"
DATA 14, "combination of wood and masonry or
stucco"
DATA 15, "unconventional exterior cladding"

The second part of the data section of the program is a
list of classifiers. The first line of a classifier con- Z?
sists of an index number, a name string and a threshold

value. For example;

DATA 27, "Richardsonian Romanesque", 30
DATA 3,11,999
DATA 71, -83,101,999
DATA 43,64,126,129,151,999

tj

The three lines ending in 999 are the essential, usual and

occasional classifier masks. It is essential that the

massive masonry character of the style of H. H. Richardson

should be reflected in a house built in his style, and

consequently question 11, "stone exterior",, is a question
that must receive a correct answer in this case. If it does

a contribution of 5 is made towards the threshold value of

page 161

30, while an incorrect answer scores -99. The effect of a
wrong answer to an essential question is to exclude those

classifiers to which it is relevant.

Questions which require negative answers are distinguished
by a negative data entry. Question 83, for example, reads
"symmetrically placed windows about a centered front door".
The picturesque massing of a Richardsonian composition
would preclude a symmetrical facade, and this question must
therefore receive a negative answer.

When a usual question is correctly answered a score of 5 is

added to a classifier's score, while an incorrect answer
deducts 5. A question about a feature which is sometimes
relevant also scores 5 if correctly answered, while an
incorrect answer deducts only 1. In this way those ques-
tions which are identified by the knowledge engineer as
essential to the identification of a classification are
given a veto over the choice of a solution. Questions which
relate to features usually present in the answer contribute
to or detract from the score even-handedly, while those

questions which are sometimes relevant may contribute to

the score but can only slightly reduce it. In this fashion
Frey implements the ideas of Rosch concerning human cate-
gorisation. The scoring operations of the masks are also
carried out in the ADJ subroutine of House. Bas.

u

After each question is answered by the user of the system
the program selects the three classifiers with the highest

score. The questions that are relevant to these classifiers
are then selected for presentation to the user. In due

course the threshold value of one of these classifiers is

reached, and it is then declared to be the correct solu-
tion. In this manner the program is so arranged as to

concentrate upon the most likely solution. As Prey ob-
serves, "This strategy approximates the hypothesis-testing

approach that is commonly observed in humans. "

page 162

In Chapter 41 have given an abbreviated account of the

objections that Hubert Dreyfus has made to the computation-

al model of human thinking. During the course of a discus-

sion of the 'brute force' type of chess playing program
Dreyfus contrasts the machine and the human ways of assess-
ing a problem.

"We need not appeal to introspection to discov-
er what a player in f act does bef ore he begins
to count out; the protocol itself indicates it:
the subject 'zeroed in' on the promising situa-
tion ('I notice that one of his pieces is not
defended'). Only after the player has zeroed in
on an area does he begin to count out, to test,
what he can do from there. " (Dreyfus, 1979)

This is closely analogous to the two main stages of the

Frey algorithm. These are, firstly,, a concentration upon a

promising solution, and then the calculation of its proba-
bility. The close parallel gives one good hope that the

algorithm will be useful in areas of application where, as
Dreyfus points out, conventional computational methods have

been largely unsuccessful.

Critique of the Frey Algorithm

The algorithm which has been described in outline in the

previous section is an original contribution by Peter Frey

to the literature of AI. It seems to me to be most ingeni-

ous, admirably original and to be very relevant to the

practice of design.

In Chapter 10 1 have argued that expert systems based upon
formal logic cannot be applied to design problems success-
fully because design is not a deductive process. The Frey

algorithm, which is based upon classification rather than

logic, evades this difficulty and it therefore promises to

be useful in the practice of design. Of particular impor-

tance is the ability of a classification system to accommo-
date feedback loops simply by structuring the classifier

and its masks. The Frey algorithm, unlike rule-based expert

systems, is well adapted to non-monotonic logic.

page 163

Input and output in the Frey algorithm is by means of

character strings. It is therefore able to make use of the
interpretive power of natural language at the point of
interface with the user. (Finin, Joshi & Webber, 1986)

However, its internal functioning is numerical rather than

logical or linguistic and it is this feature of the algo-

rithm that is, I believe, most open to criticism.

The scoring system just described is a purely numerical

procedure. All three types of question contribute the same

value of 5 to the selection of a solution, but essential,

usual and sometimes questions subtract 99,5 and 1 respec-
tively from the score. There is no principle by means of

which the values of these numbers can be substantiated. Why

do all three question types have the same positive value?

Why does a usual question have exactly five times the

negating power of a sometimes question? Does not the Rosch

thesis indicate that some usual questions are more closely

related than others to a category? The only answer which

can be returned to such objections is that the chosen

values seem to make the system work. But a, resort to un-

structured empiricism at this point in the argument is

lame. I conclude that, for the lack of a justifying princi-

ple, the scoring system of the Frey algorithm is unsound. A

choice from amongst the classifiers ought to be made on

logical rather than arbitrarily arithmetical grounds.

A more fundamental, if rather less sharply focussed, objec-
tion can be made to the notion of A, B and C questions.

Frey sees the classifiers of his system as Roschian proto-

types, and the three types of questions are intended to

define them as such. His algorithm is, in fact, structured
in such a way as to model reality according to Rosch's

ideas. But it is, I think, a mistake to confuse a represen-

tation with a model of something. The relation of a model

to reality is literal whereas a representation stands as a

symbol in the place of some aspect of reality. For example,

page 164

the area of a large circle can be modelled by a small disk,

but the formula vr2 is a representation of it. Representa-

tion is more abstract than modelling, and there is no one-
to-one relationship between the sign and what is signified
in a representation.

If the purpose of an expert system is to mimic the perform-

ance of a human expert, then I think that it should be

framed in such a way as to represent his knowledge rather
than to model his methods. This means that an algorithm

which obtains a seemingly expert answer to a problem quick-
ly is better than a slower system which works in the same

way as does the human expert. In the light of this distinc-

tion, I have designed the Cortex expert system shell to

identify a solution quickly and accurately by representing
it usefully, rather than creating a system to model the

domain faithfully. The Cortex algorithm differs substan-
tially from Frey's algorithm in ways that I shall explain
in the next chapter.

When a particular classifier in the Frey algorithm has been

selected as a possible solution, all the remaining ques-

tions in its masks must be asked and answered before anoth-

er candidate classifier can be examined. This requirement

follows from the necessity to arrive at an arithmetical

score for the solution.

For example, if question 3 in the essential mask of classi-

fier 27, Richardsonian Romanesque, is answered correctly

with 'yes' then question 11 must be asked and answered. If

this also receives a correct answer the first question in

the usual mask, question 71 "rounded arches above windows? "

must be asked. The procedure is repeated until the last

question in the occasional mask, question 151 "a pinnacle

on the roof? " is reached. If all questions receive a cor-

rect answer the classifier achieves its maximum possible

score of 55. The effect of this way of sequencing the

page 165

presentation of questions is that the user of the system is

required to answer a large number of questions including

many which are irrelevant.

I think it is less burdensome to the user, as well as

computationally more efficient, to ask him to supply an-

swers only to those questions that differentiate one clas- 21

sifier from all other possible classifiers. This is the

procedure that I have adopted in the design of the method

of control in the Cortex shell.

page 166

Chapter 12. THE PLAN OF CORTWC

The design of Cortex is inspired by the work of Peter Frey.
The notion of regarding an expert system as a classifica-
tion system which can be represented by means of strings of
bits is his invention, and it is the starting point for the

development of Cortex. The most original programming rou-
tine in the Frey algorithm is the bit-matching procedure

which has been described in Figure 11.4.1 have made use of
this routine in Cortex, where it appears in the procedure
CalculateProbability. In addition, a modification of the

routine is made use of in the procedure RemoveContradicted-

Solutions.

However, Cortex differs from Frey's implementation in

almost all other respects. This is for three reasons.
Firstly, I believe that I have been able to design a better

way of controlling the system, and that the method of
calculating probability in Cortex is an improvement upon
Frey's procedure. Secondly, Cortex is written in Pascal

rather than Microsoft BASIC, and I have therefore been able
to make use of much more advanced programming procedures
than were available to Frey. A feature that has been of
particular importance in the development of Cortex is the
bit manipulation functions that are available in the
Prospero Pascal compiler. The third difference follows from

the fact that Cortex is written as a true shell whereas
House. Bas is specific to its knowledge domain. File han-

dling procedures are available in BASIC, but the knowledge
base in House. Bas is encoded in the form of DATA state-

ments. Files are of general applicability, but a DATA

statement is specific and it must be embedded in a particu-
lar place in a BASIC program.

Control in Cortex
The scoring system of the Frey algorithm is intended to
build up progressively to the identification of a solution
as the correct one. Each answer supplied by the user makes

page 167

4

its contribution to the plausibility of a classifier, and
in this way the environment of the system serves to provide

evidence for the choice of one of the possible domain

solutions as the best. Thus Frey's method is based, tacit-

ly, upon an inductive procedure. But, as I have argued,.
there is a price to be paid for adopting this approach to

the problem. In the Frey algorithm everything depends upon
the allocation of scores, but no consistent explanation for

the structure of the scores is available. This gives an

arbitrary character to the results that can be obtained
from the implementation of the algorithm in his House. Bas.

I think that a better and more rigorous algorithm can be

created by looking at the problem from a Popperian, and

non-inductive, point of view.

Popper (1934) argues, that the scientific acceptability of

a theory is dependent both upon its falsifiabilty and upon
its resistance to empirical falsification. Hypotheses nay
be freely conjectured, but their acceptability as scientif-
ic theories is reserved for those hypotheses which can be

but are not falsified. In a similar way, every solution

contained in the implementation of an expert system is

capable of being falsified by an answer supplied by the

user to a question. If it is not so falsifiable then it has

no role to play in the system.

An expert system which functions by rejecting falsified

solutions will finish either with one or more unfalsified

solutions, or with a confession that it can find no solu-
tion within the domain environment. This is the non-induc-
tive control principle upon which the Cortex expert system

shell is built. Since a solution in Cortex, like a Popperi-

an theory, remains possible until it has been falsified no

system of scoring is called for. The arithmetically arbi-
trary scoring mechanism of the Frey algorithm is not repro-
duced in Cortex.

page 168

The notion of a falsifiable solution points the way to a

novel method of controlling an expert system. The problem

of control is solved in Frey algorithm in the conventional

way, which is by means of an ordered list. The next ques-
tion to be sent to the screen is the next one in the list

of questions relating to a favoured solution. The answer

received from the user either causes the solution to be

rejected, by giving it a score of -99 if the question is an

essential one and the answer does not match or, if it is a

correctly answered usual or occasional question, it con-
tributes a score of 5 towards reaching its threshold value.

However, this procedure overlooks an important feature of
the questions which are stored in the knowledge base. This

is the fact that the greater the number of solutions in

whose classifiers a particular question appears, the great-

er is the power of that question to falsify a solution. A

question whose answer is called for by only a single solu-

tion string can contradict only that solution while a

question appearing in 50 solution strings may, when an-

swered, contradict them all. It is for this reason that

Cortex solves the problem of which question to ask next by

selecting that question which appears most frequently in

the classifiers of those solutions which have not been

falsified. The operation is performed by the procedure
FindMostFrequentQuestion whose draft code is given in the

next chapter. Controlling the system in this way has the

effect of eliminating solutions as rapidly as possible and

so concentrating the search upon the small number of possi-

ble solutions that remain. Conventional control methods, in

which a fixed list must be worked through, zero-in upon the

solution slowly by a process of sequential elimination

rather than quickly by excluding early on all those solu-

tions which cannot be correct.

But it is no more sufficient to select the next question on

the basis of its frequency alone than it is to ask the next

question that appears in a prepared list. In either case

page 169

the result will be that the user will have to find answers
to many questions that are illogical or redundant in the
light of the answers already given. In the domain illus-
trated in Figure 11.2, for example, there is no point in

asking whether the animal has feathers if the system has

already been told that it has hair. Question 9 is therefore

redundant once question 1 has been answered affirmatively.
The Cortex algorithm makes use of a question's power of
discrimination to solve this aspect of the problem of
control.

If, in Figure 11.2, the possible solutions have been re-
duced to numbers 5,6 and 7 then the animal in question
must be a bird. If so, there is no point in asking either
question 9, has it feathers, nor question 11, does it lay

eggs, since the required answers to both questions are the

same in all three solutions. That is the same thing as
saying that these two questions have no power to discrimi-

nate between the remaining solutions. Those questions which
are devoid of discriminatory power are identifiable solely
by virtue of the formal feature that their required answers
are the same in all the remaining possible solutions.

Cortex makes use of this fact, and excludes from the ques-
tions to be presented to the user any question for which
all remaining required answers are the same. The algorithm

according to which I have structured Cortex therefore works
in two stages. First the list of solutions is pruned by

obtaining an answer to the most frequently occurring ques-
tion. This is in effect a search for features common to

many of the possible solutions in the domain. Then those

questions which cannot discriminate between the remaining

solutions are excluded from the list of questions to be

asked. This as a process of zeroing-in upon a shortened
list of still-possible solutions. The cycle is then repeat-
ed. The code for both stages in the control of Cortex are
in the procedure FindMostFrequentQuestion.

page 170

In this way the classification algorithm opens the way to a
new method of control in expert systems. It is based nei-
ther upon ordered lists nor metaknowledge, but upon the
falsifiabilty of solutions and questions. I claim two
advantages for this algorithm. Firstly, it closely mimics
the method of a human expert, who will begin by surveying
the scope of the problem before concentrating his attention
upon the most promising of the remaining solutions. Cortex
therefore appears to the user to be acting in a natural
way. Secondly, the algorithm is very flexible because its

way of working is purely formal. The method requires no
knowledge of the world, and the algorithm may therefore be
implemented in any domain whatsoever. This flexibility
follows from the abandonment of Frey's inductionism in
favour of a procedure analogous to Popper's method of
falsification.

Probability

Every useful expert system must have a way of assessing the
degree of reliance that can be placed upon its solution to

a problem. In conventional rule-based systems this is

usually done by employing Baysian or Dempster-Shafian

methods of calculating a probability. Frey was understand-
ably reluctant to add arithmetical complications to his

program if it could be avoided. In his algorithm the solu-
tion that first reaches its threshold value is assumed to
be the correct one. Probability in House. Bas is implied

rather than calculated.

"If one classifier accumulates a score that
exceeds a predetermined threshold, this house
type is declared the winner and no further
information is needed. The notion is that the
weight of the evidence for this hypothesis is
so strong that the decision is obvious. " (Frey,
1986a)

However, it remains that the threshold value upon which the

emergence of the winning candidate is based in the Frey

algorithm is arrived at subjectively. For instance, the

page 171

threshold value of 30 which is assigned to Richardsonian
Romanesque in the example quoted in the last chapter, could
have been 25 or 40 without any loss of consistency or
logic. As in the case of the problem of control, I have

found-that by abandoning Frey's scoring system an alterna-
tive and better method of assessing probability can be
discoveredý

In both the Frey algorithm and in Cortex, an essential
question which fails to receive a correct answer has the

effect of eliminating a solution from the list of possible
candidates. Frey makes use of answers to usual and occa-

sional questions to advance or retard the progress of the

remaining candidates towards his system's winning post.

However, if the attempt to model reality along the lines of
Rosch's categories is rejected in favour of the view of an

expert system as a representation of reality, then the

distinction between usual and occasional questions disap-

pears. One attribute which is usually present and another

which is sometimes present in a particular situation are

alike in that neither need be present. Accordingly, Cortex

contains only essential and usual questions in the knowl-

edge base. Essential questions, as in the Frey algorithm,

must receive matching answers, while usual questions may or

nay not.

u

If the answer to a usual question can corroborate the

likelihood of a solution being correct, then it follows

that the proportion of the usual questions relating to a

particular solution that receive matching answers is a

measure of the probability of the solution being correct.
If, for example, a solution contains 50 usual questions in

its question set and 35 of them receive matching answers,
then the probability of the solution being correct is 70%.

This is the definition of probability that is employed in

Cortex. It is implemented in a straightforward piece of

code in the procedure CalculateProbability.

page 172

The Coding of Cortex

The house style identification program House. Bas, with
which Frey (1986b) demonstrates his algorithm, is written
in Microsoft BASIC. The usual penalties that must be paid
by those who program in BASIC, which are that the code is

very difficult to read and the program runs slowly, are
evident in House. Bas. In addition, two particular shortcom-
ings of BASIC have forced Frey's program into an awkward
shape. These are the absence of bit manipulation functions

and the impossibility of compiling separate segments.

In a BASIC program all variables are common variables.
Consequently, changes in the value of a variable can be

made by any piece of code that invokes its name. In a
complicated program it is very difficult to prevent such
changes from occurring unintentionally, a phenomenon known

as "programming by side-effects" (Cooper & Clancy, 1985).
Bugs of this type can be very hard to find. In Cortex, data
types which are used by more than one procedure are de-

clared as commoh, but every variable is declared locally.
Values are passed to other procedures when required as
parameters. The structure of Cortex therefore makes it

possible to identify the procedure in which any variable
receives a value, and to trace the source of the value of
any variable.

Cortex consists of 51 separately compiled segments which
contain a total of some 1600 lines of Pascal code. With
this structure a segment may be edited in the knowledge
that the changes in the performance of the program are
attributable to changes made to that segment and to no
other. When combined with the local declaration of varia-
bles, a program in which all procedures and functions are
contained in separately compiled segments is more robust,
more easily read and is simpler to maintain than a typical
BASIC program.

page 173

A program structure that combines the local declaration of

variables with separate compilation of segments can hide

information on a "need to know" (Sommerville, 1985) basis.

In Cortex, for example, the list of possible solutions can

only be pruned by RemoveContradictedSolutions, and the

pruning can only take place as a result of the answer to

the question passed to it as the most frequent question by

the procedure FindResult. If variables were common and a

side effect were to occur whereby the answer to a different

question was selected, then the program would produce a

wrong answer. These programming methods, which were not

available to Frey when writing House. Bas, form the basis of
the structure of Cortex.

Frey has good reason to bemoan a further difficulty with

which he must contend.

"Some mainframes have machine level instruc-
tions that count the number of bits that are
set in a word. Microprocessors do not have this
instruction, so the only way to do a speedy bit
count is to examine the word in 8-bit sections
and to use a table with 256 entries to look up
the proper bit count. " (Frey, 1986a)

This limitation forces Frey to resort to an extensive use

of arrays. For example, in House. Bas the array MK is dimen-

sioned to 16, the word length in Microsoft BASIC, and the

elements are then filled with the 16 integer values found

in the first four lines of DATA. Each value in turn sets

the next bit in the word with the result that the elements

of the array contain one set bit for all possible bit

positions in the word. The elements of MK are then used to

identify the bit corresponding to a particular classifier
in line L2, or a question in the subroutine Query. In this

way House. Bas places a heavy load on the processor, and the

Frey algorithm cannot be expected to run fast, even when

written in a compiled language, if the implementation calls

for more than a few questions and solutions.

page 174

4

Although it is true, as Frey observes, that desktop comput-
ers do not have built-in facilities for counting bits it is

also true that bit manipulation can be carried out by

software as well as hardware means. BASIC, which is a kind

of computer baby talk, lacks such facilities. However the

Prospero Pascal compiler, with which Cortex has been writ-
ten, contains four functions which enable an individual bit

to be addressed and manipulated. The bits which represent a

simple variable, or an array or a field of a record for

example, can be tested, set, cleared or flipped using the

Prospero functions. Cortex makes use of the Prospero func-

tions to manipulate the message, classifier and mask

strings directly, and in such a way as to make the contort-

ed manoeuvres of House. Bas unnecessary. For example, the

job of the array MK subroutine Query in House. Bas is per-
formed by only two lines of code containing the testbit

function in the procedure FindMostFrequentQuestion in

Cortex. It may be noted that Turbo Pascal, its popularity

notwithstanding, does not contain bit manipulation func-

tions.

Cortex in Pseudocode

Display sign-on message
domain specific information

CASE 1. user is knowledge engineer

call knowledge base menu
2. user wants to interrogate system

call FindResult

1. KnowledgeBaseMenu

CASE set up questions

write, edit, delete, display or print question
texts

ditto question explanation texts

set up solutions

write, edit, delete, display or print solution
texts

ditto solution explanation texts

set up classifiers

page 175

display solution texts
display question texts successively
IF question is relevant

set bit

IF classifier is incorrect

edit classifier
delete classifier

2. FindResult

set up linked list of solutions in memory
WHILE some essential questions remain unanswered

find most frequently occurring question

obtain answer

make any solution contradicted by the answer inactive

pass over question if all remaining answers are
identical

obtain answers to usual questions

calculate probability
display most likely solution

IF probability is zero search is a failure

This program structure is represented in the following

diagram.

page 176

[WriteQuestionText I

EditQuestion --l

DeleteQuestion k--41-0-umb-er Fir Tle-s

QuestionSelection I DisplayQuestion

QuestionMenu -K PrintAll

Displayftplanationý

f -Del-eteExplanation-I

WriteQuestionExpl
[EditQuestionExpl

I WriteSolutionText

WriteImplementationText I /[Solution
,ýI DisplaySolution

KBMenu -ýýEoflutiom"=enu

ISicnOn I
Initia1ise 1

lImplementatioriMessage I

Figure 12
Flow of C6nltrol in Cortex

I DisplaySoldý

[DeleteExplanation

WriteSolutionExpl-

EditSolutionExpl

PrintAll

EditClassifier

ZeroiseBitStrinq

InitclassifierRec

I

FindUsualQuestion
CalculateProbability--l
DisplayResult
ClearHeap

I RemContradictedSolution 1

page 177

Chapter 13. THE CORTEX SHELL

The Segments of Cortex

The following segments, listed by their procedure names, will
be required by the system.
1. Cortex - main program

(i) initialise

(ii) sign-on
(iii) implementation

(iv) FirstMenu

2. sign-on - display on screen
(i) welcome message
(ii) implementation message

3. Initialise - some preliminaries
(i) count questions
(ii) count solutions

4. ImplementationMessage - message describing the domain

(i) display information about the implementation

(ii) display number of questions & solutions on file

5. FirstMenu - choose between

(i) use Cortex, by the user or
(ii) work on knowledge base, by knowledge engineer

6. KnowledgeBaseMenu - knowledge engineer's menu to

(i) work on the questions
(ii) work on the solutions
(iii) write implementation message
(iv) set up classifiers and masks

7. WriteImplementationText - message for the user
(i) write the text

(ii) store on disk

8. FormFileName - set up name in form needed to access disk

files

(i) obtain keynumber, title and DOS directory of file

(ii) concatenate as a string

9. PushPen - manage the writing of text

(i) call WRITER

(ii) write text

(iii) store text on file

page 178

10. DisplayTextFile - on screen
(i) obtain file

(ii) display text on screen
11. ZeroiseBitString - set all elements of a bit string to

zero
(i) pass sting title and field to procedure
(ii) loop through all elements setting each to 0

12. QuestionMenu - choose work to be done on question files
13. QuestionSelection - manage procedure calls from Ques-

tionMenu

14. WriteQuestionText - write and store the text of a question
15. WriteQuestionExplanation - write and store an explanation

(i) check for question on file
(ii) check for explanation on file

16. EditQuestion - alter the text of a question
17. EditExplanation - alter the text of an explanation
18. DeleteQuestionFile - remove a question text from file

(i) delete question diskfile

(ii) delete corresponding explanation diskfile
(iii) recalculate CountOfQuestions

(iv) renumber classifier
(v) renumber essential masks
(vi) renumber usual masks

19. ReNumberFiles - after a deletion

(i) renumber subsequent files

(ii) re-set bit strings
20. DeleteExplanation - delete the text the explanation of a

question or solution
21. DisplayQuestion - display the text of a question on the

screen
22. DisplayTextFile - obtain from disk and display on the

screen
(i) question text files

(ii) solution text files

(iii) explanation text files

23. DisplayExplanation - display the text of an explanation
24. PrintAllFiles - print questions, solutions or explanations
25. SolutionsMenu - choose work to be done on solution texts

page 179

26. SolutionSelection - manage procedure calls from Solu-
tionMenu

27. WriteSolutionText - write and store the text of a solution
28. WriteSolutionExplanation - write and store an explanation

(i) check for question on file
(ii) check for explanation on file

29. EditSolution - alter the text of a solution
30. DeleteSolutionFile

(i) delete solution diskfile
(ii) delete solution explanation diskfile
(iii) delete classifier and masks

31. ReNumberClassifier - renumber classifiers following a
deletion

32. DisplaySolution - display the text of a solution on the

screen
33. ClassifierMenu - choose operations on the classifier file
34. SetUpClassifier - set up the classifiers one by one

(i) set fields of classifier file elements to 0
(ii) display text of the solution
(iii) display texts of all the questions

35. InitialiseClassifierBits
36. SetClassifierBits - operate on the bit strings

(i) ask if the question is essential or usual, or is
irrelevant

(ii) ask if the answer must be T or F
(iii) record answers on disk file with elements containing

the fields
(a) classifier
(b) essential mask
(c) usual mask

37. SetUsualBits - operate on the bit strings
(i) set the bits for usual questions
(ii) return to SetClassifierBits

38. EditClassifier - alter the bit settings of a classifier
39. DeleteClassifier - remove a classifier from the file
40. FindResult - main procedure for forming and using the

message

page 180

41. SetUpSolutionsList - set up a linked list of solutions
(i) fields to include essential and usual masks as arrays

of integers, usual questions that have been answered,

usual questions that have been answered correctly

42. FindMostFrequentQuestion - most frequently occurring
question

(i) search all the essential masks in the knowledge base

(ii) count the occurrence of each question
(iii) find the most frequently occurring question

43. MessageAndMasks - form the message
(i) call MostFrequentQuestion

(ii) display the most frequent question
(iii) record the user's answer in the message
(iv) record the user's answer in the message mask
(v) repeat

44. RemoveContradictedSolution - search essential masks and;
(i) compare each essential mask with the message bit

(ii) delete from the list any solution whose essential

mask is contradicted by a bit in the message string
(iii) find the question which appears most often in the

remaining essential masks by calling MostFrequent-

Question

45. FindUsual Question - find any unanswered questions in the

possible solutions

(i) search the list of possible solutions
(ii) if any usual questions are unanswered, return the

number of the question

46. CalculateProbability - find the probability of the possi-
ble solutions

(i) find out usual result

(ii) count the number of matching answers for each usual

mask
(iii) calculate probability for each solution, using the

count of usual questions

47. DisplayResult - screen display of;
(i) most probable solution with probability or

(ii) failure message

48. ClearHeap - remove the remaining solution list elements

page 181

The Segments Individually.

13.1 Cortex

As the diagram in Figure 12.1 shows, the main program of
CORTEX serves only to start the system. It controls the pre-
sentation of the preliminary displays and

of the program.
13.1.1 Pseudocode.
display sign-on message
call implementation procedure
pass number of questions and solutions
provide for exiting the program
13.1.2 Draft Source Code.
PMGW Cortex;

(Main proqrain.

the

f ile

initialisation

to first menu

PROCEDURE SignOn (VAR CountOfQuestions, CountofSolutions: integer); EXTERNAL;
PROCEDURE ImpleventationMessage (CountOfQuestions, CountOfSolutions: integer;

PROCEDURE FirstMenu (CountOfQuestions, CountOfSolutions: integer); EXTERNAL;

VAR CountOfQuestions, CountofSolutions: integer;

BEGIN

SignOn (CountOfQuestions, CountOfSolutions);

lzpleaentationMessage (CountOfQuestions, CountOfSolution);

FirstMenu (CountOfQuestions, CountOfSolutions);

END.

13.2 SignOn

Display a screen welcoming the

13.2.1 Pseudocode.

welcome the user to CORTEX

user to

on

EXTERNAL;

the system.

use colour screen and draw a border

carry out initialisation while

13.2.2 Draft Source Code.

SEGMENT SignOn, *

[Sign on display.

insert PASPC

insert PASDOS

PROCEWRE Blankln (number: integer); EXTERNAL;

welcome display is on screen

page 182

PROCEDURE Initialise (VAR CountOfQuestions, CountOfSolutions: integer); EXTERNAL;

PROCEDURE SigM (VAR CountOfQuestions, CountOfSolutions: integer);

VAR Greeting: text

Cate: char;
BEGIN

InitScreen;
Paper (7);
Ink (1);
TextFrame (true);
ScreenFile (Greeting);

Cursoroff;

GoToXY (31,6);
writeln (Greetftg, '*****************#);

GoToXY (31,7);

writeln (Greeting, 'Welcome to Cortex');

GoToXY (31,8);

uriteln (Greeting, #*****************#);

writeln;
Ink (9);
GoToXY (23,10);
writeln (Greeting, 'The thinking man's expert system');
GoToXY (7,22)

writeln (Greeting, 'Please wait while the solutions and questions on file are counted. ');
Initialise (CountOfQuestions, CoutOfSolutions);
GoToXY (7,22);
PutChattr (1 1,7,9,66);
GoToXY (23,22);
writeln (Greeting, 'Press any key to continue. ');
Gate: = ConSllent;
Cursor0n;
InitScreen
END;

BEGIN END,

13.3 Initialise.

The number of questions and the number of solutions that are

held on file are parameters that are used in several places in

page 183

Cortex. The number of files that exist when the program is

entered is calculated before the first menu is sent to the

screen.
13.3.1 Pseudocode.

count number of questions on file

form question name
WHILE fstat (question name) = true

increment CountOfQuestions

count number of solutions on file

form solution name
WHILE fstat (solution name) = true

increment CountOfSolutions

13.3.2 Draft Source Code.

SEGMENT Initial;

(Count questions and solutions on file.

insert comon types

insert PASPC
insert PASDOS

PROCEDURE ForiffleName (f Renumber: Integer; title: string; VAR FileMame: string); EXTERNAL;

PROCEDURE 2eroiseBItString (VAR Bits: bitstring); EXTERNAL;

PROCEDURE Initiallse (VAR CountOfQuestions, CountOfSolutions: integer);

VAR FileMame: string;
QuestionFile, SolutionFile: string;

BEGIN

MkDir (1\shell\question');

ChDir (1\shell\question'); Calculate CountoQuestions

CountOfQuestions: = 0;

FindFile (Iquestl', QuestionOnF! le); (Is there a questl? I

WHILE QuestionOnFile 0 11 DO BEGIN (If so, count through the questions
CoutOfQuestions: = CoutOfQuestions + 1;

FormFileName (CoutOfQuestions + 1,1question'JileName); Is the next question on file?

FindFile (FileName, QuestiononFile); (Returns QuestionOnFile as empty when no question is found

END; (of WHILE)

M ir (1\shell\solution');

ChDir (1\shell\solution'); Calculate CoutOfSolutions
Coutof Solutions: = 0;
FindFile (Isolutl', SolutionOnFile); (Is there a soluti?)

WHILE SolutionOnfile (> 11 DO BEGIN (If so, count through the solutions

page 184

Countofsolutions: z Countofsolutions + 1;
FonFileNaze (countofsolutions, lsolution,, FileNaEe); Is the next solution on file?

Findfile (FileName, SolutionOnFile); Returns SolutiononFile as empty when no solution is found

END; { of WHILE
ChDir ('\shell');
END;
BEGIN END.

13.4 ImplementationNessage.

When Cortex has been implemented the user must be provided

with information about the domain in which the implementa-

tion has been made. For example, information will be re-

quired about the type of domain and the scope of the imple-

mentation, and help may be needed as to the best way to

formulate answers to the questions. This segment displays

the required information by writing the implementation file

to the screen.
13.4.1 PseudoCode.

display screen heading

write information to screen

13.4.2 Draft Source Code.

SEGMENT Impment;

(Display information about the domain.

insert PASPC

PROCEDURE Blankln, PressKey; EXTERNAL;

PROCEDURE Implewntationgessage;

VAR Disk: text;

Line: string[100];
Counter: integer;

BEGIN

ClrScr;

IF fstat (Ilmplment\messagel) = true THEN BEGIN

writeln (I 1: 21, 'Impleventation Information');

writeln (I

assign (Disk, l\shell\lmplemnt\messagel);

reset (Disk);

Counter: z 8;

WHILE NOT eof(Disk) DO BEGIN

page 185

readln (Disk, Line); (Copy a line from Disk to Line)
GoToXY (10, Counter); (Move cursor to starting point of text

writeln (Line); j Send contents of Line to screen
Counter: = Counter +1 Move to next screen line

END; { of WHILE

close (Disk, true);

writeln ('There are 1, CountOfQuestion, l questions and 1, CountOfSolutions, l solutions on file. ');

END { of IF

ELSE

writeln (I 1: 7, 'No izplementation file has been written. ');

END;

BEGIN END.

13.5 First Menu.

Cortex, like any expert system, will be worked upon by a
knowledge engineer or worked with by a user. This segment
is the menu at which a decision is made as to the mode of

operation of the system.
13.5.1 Pseudocode.

display list of choices

use Cortex?

work on knowledge base?

make selection with a CASE statement

13.5.2 Draft Source Code.

SEGMENT FrstXenu;

(Chooses between work on the knowledge base or use of the implemented system.
insert PASPC

PROCEDURE Blankln (number: integer); EXTERNAL;

PROCEDURE MenuError (range: integer); EXTERNAL;

PROCEDURE KnowledgeBaseMenu (CountOfQuestions: integer); EXTERNAL;

PROCEDURE FindResult (CountofQuestions, CountOfSolutions: integer); EXTERNAL;

PROCEDURE FirstAm (CoutOfQuestions, CountOfSolutions: integer);

VAR Flag: boolean;

Selector: integer;

BEGIN

Flag: = true;

WHILE Flag z true DO BEGIN

writeln ('Do you want to; ');

page 186

writeln (11. Use Cortex? ');

writeln (12. Work on the knovledge base? ');
writeln (13. Exit from Cortex? ');
writeln ('Make your choice by typing a key number. Then press RETURN. ');
read Selector;
CASE Selector OF

1: FindResult (CountOfQuestions, CountOfSolutions);
2: KnowledgeBaseMenu (CountOfQuestions, CountOfSolutions);
3. Flag: = false;
OTHERWISE BEGIN

ClrScr;
Blankln (8);
MenuError (3)

END; (of OTHERWISE
END; of CASE
END; of WHILE
END;
BEGIN END.

13.6 XnovledgeBaseftnu.

The work of the knowledge engineer can be divided into

three main tasks. These are the creation of the questions,
the creation of the solutions and the writing of the clas-

sifier and its masks. A secondary task is the writing of
the implementation message. This segment consists of the

menu that chooses between these alternatives.

-13.6.1 Pseudocode.

display list of choices

work on questions

work on solutions

write a classifier

write an implementation message

make selection with a CASE statement
13.6.2 Draft Source Code.

SEGMENT KBMenu;

(Knowledge engineering main menu.
insert PASPC

PROCEDURE Blankln (number: integer); EXTERNAL;

page 187

PROCEDURE MenuError (range: integer); EXTERNAL;

PROCEDURE QuestionMenu; EXTERNAL;

PROCEDURE SolutionMenu; EXTERNAL;

PROCEDURE ClassifierMenu; EXTERNAL;

PROCEDURE WriteImplementationText; EXTERNAL;

PROCEDURE Kwledgdaselen (CountOfQuestions, CountOfSolutions: integer);

VAR Flag: boolean;

Selector: integer;

BEGIN

Flag: = true;

WHILE Flag = true DO BEGIN

writeln ('Knowledge Base Menu. ');

writeln ('Do you want to; ');

writeln (11. Write, edit, delete, display or print the text of a question? ');

writeln (12. Write, edit, delete, display or print the text of a solution? ');

writeln (13. Write, edit or delete a classifier? ');

ýwriteln (14. Write the text of the implementation screen? ');

writeln (15. Return to the main Cortex menu? ');

writeln ('The Cortex shell can accept up to a maximum of 1, MaxNumberOfQuestions: 3,1 questions. ');

writeln ('There is effectively no limit upon the number of solutions that can be accommodated. ');

writeln ('Make your choice by typing a key number. Then press RETURN. ');

read Selector;

CASE Selector OF

1: QuestionMenu (CountOfQuestions);

2: SolutionMenu (CountOfSolutions);

3: ClassifierMenu (CountOfOuestions);

4: WriteImplementationText;

5: Flag: = false;

OTHERWISE BEGIN

ClrScr;

Blankln (8);

MenuError (5)

END; (of OTHERWISE

END; (of CASE

END; (of WHILE

END;

BEGIN END.

page 188

13.7 WritelupleinentationText.

This segment writes and stores the text of the message that
is sent to the screen by Implementation.

13.7.1 Pseudocode.

create text using PushPen

store text as a disk file

13.7.2 Draft Source Code.

SEGMENT WritImpl;

(Create text of implementation message.
PROCEDURE PushPen (directory, FileNave: string); EXTERNAL;

PROCEDURE Writelap1mmUtionTeirt;

BEGIN

writeln ('Please write the text for the implementation message. ');

PushPen (Impletntl, 'Messagel);

END;

BEGIN END.

13.8 FoinaMeNaime.

The disk files that are used by CORTEX are stored in sub-
directories named 'question' and 'solution'. In each direc-

tory the file may be a question text, a solution text, or

an explanation of either. There are, consequently, three

titles under which a text file may need to be accessed.
This segment forms these titles as strings.

21.8.1 Pseudocode.

for questions, solutions and explanations

obtain keynumber and title as value parameters

obtain FileName as variable parameter

convert keynumber to a sting
insert keynumber onto end of title

21.8.2 Draft Source Code.

SEGXENT Formfile;

(Set up name of file to be accessed on disk.

PR0CME Foroffielams (Index: integer; title: string; VAR FileName: string);
UR Key: string;
BEGIN

str (Index, Key); Form the string Key from the integer Index

IF title = 'question' THEN BEGIN

page 189

FileXame: = 'quest'; { Write the stem of a questions filename)
insert (Key, FileNave, 6); { Append the key number to complete the filename

END (of IF)

ELSE IF title = 'solution' THEN BEGIN

FileXame: z Isolut'; Write the stem of a solution filename
Insert (Key, FileName, 6); Append the key number to complete the filename

END (of ELSE IF)

ELSE IF title = 'explanation' THEN BEGIN

FileName: =Iexplan'; (Write the stem of an explanation filename

Insert (Key, FileName, 7); { Append the key number to complete the filename

END; (of ELSE IF)

END;
BEGIN END.

13.9 PushPen.

The text editor WRITER accepts keyboard input and organises
it into a textfile on disk. This segment calls WRITER, and
then takes the formed text, gives it a name, and stores it

in a specified sub-directory.
13.9.1 Pseudocode.

call WRITER

set up directory

form file name

read text from WRITER into new named file

13.9.2 Draft Source Code.

SEGMENT PushPen, *
(Compose text and store it in specified sub-directory.

PROCEDURE Writer; EXTERNAL;

PROCEDURE PusbPen (directory, FileName: string);
VAR Disk, DiskText; text;

Line: string[100];
BEGIN

writer; Writer stores text as DiskText on disk file TempFile

assign (DiskText, 'TempFile'); TempFile is on \SHELL, not on \FORXAT

reset (DiskText); Open DiskText for input

chDir (directory);

assign (Disk, FileXame);

rewrite (Disk); Open Disk for output

page 190

WHILE NOT eof(DiskText) DO BEGIN

readln (DiskText, Line); { Pead a line of DiskText into Line

writeln (Disk, Line) (Write Line to Disk

END; (of WHILE

close (Disk, true);

erase (DiskText)

END;

BEGIN END.

13-10 DisplayTextFile.

Files stored on disk must be capable of being extracted and
displayed. This segment accesses and displays such files.

13.10.1 Pseudocode.

connect disk file to temporary local file

change to disk file sub-directory
display heading

extract disk file

display at specified position on screen

return to SHELL sub-directory
13.10.2 Draft Source Code.

SEGMENT DispFile;

(Display text file on screen.
insert PASPC
insert PASDOS

PROCEDURE DisplayTextfile (DiskFile, directory, heading: string; Index, displayline: integer);

VAR TempFile: text;

Line: string[100];
BEGIN

assign (DiskjileNaze); (Connect disk file to temporary local file

ChDir (directory); (Change to directory containing the file

reset (TempFile); (Open Disk for input

GoToXY (l, displayline);

writeln (heading, lno 1, Index: 3,1.1); (Display heading

WHILE NOT eof(TempFile) DO BEGIN

readln (TempFile, Line); (lead a line of Disk into Line

GoToXY (24, displayline); Position cursor

writeln (Line); Display Line)
displayline: = displayline +1 Move cursor down one line

page 191

END; (of WHILE

close (Disk, true);

ChDir ('\SHELL');

END;

BEGIN END.

(Return to SHELL sub-directory)

13.11 ZeroiseBitString.

The classification of questions and answers are recorded in

CORTEX in the form of bitstrings, which take the form of

arrays of integers. The program functions by setting every
bit in a string to zero initially, and then setting indi-

vidual bits to 1 as required by the classification scheme.
This segment carries out the initialisation.

13.11.1 Pseudocode.

pass name of bitstring and relevant field as a VAR parame-
ter

FOR loop through all the questions

set each element to 0

13.11.2 Draft code.
SEGMENT ZeroBit;

(Initialise bit strings.
insert comn types

PROCEDURE SeroiseB! tStriDg (VAR Bits: bitstring);

VkR Index: integer;

BEGIN

FOR Index: = 0 TO MaxMumberOfIntegers DO

Bits[Index]: = 0;

END;

BEGIN END.

13.12 QuestiorMenu.

When the knowledge engineer chooses to work on the ques-
tions there are 10 operations that may need to be carried

out. This procedure makes the selection between them.

13.12.1 Pseudocode.

display choice of operations

use a CASE statement to call the relevant procedure
13.12.2 Draft Source Code.

page 192

SEGMENT Question;

(Selects the operations to be performed on the questions file.
insert PASPC

PROCEDURE QuestionSelection (Selector: integer; VAR CountOfQuestion: integer; VAR Flag: boolean); EXTER-

NAW

PROCEDURE qaestioWkm (VAR CountOfQuestions: integer);

VAR Flag: boolean;

Selector: integer;

BEGIN

ClrScr;

Flag: = true;

WHILE Flag = true DO BEGIN

writeln ('Questions Menu');

writeln

writeln (To you want to; ');

writeln (11. Write the text of a question? ');

writeln (12. Write the explanation of a question? ');

writeln (13. Edit the text of a question? ');

writeln (14. Edit the explanation of a question? ');

writeln (15. Delete a question from the questions file? ');

writeln (16. Delete the explanation of a question from the file? ');

writeln (17. Display the text of a question? ');

writeln (18. Display the explanation of a question? ');

writeln (19. Print the text of a question? ');

writeln (110. Print the explanation of a question? ');

writeln (111. Return to the Knowledge Base Menu? ');

writeln ('Xake your choice by entering a key number. ');

writeln ('Then press RETURN. ');

read (Selector);

QuestionSelection (Selector, CountOfQuestions, Flag);

END; (of WHILE

END;

BEGIN END.

13.13 QuestionSelection.

Carries out the calling of procedures from the question

menu.
13.13.1 Pseudocode.

page 193

CASE

procedure calls
OTHERWISE

menuerror
13.13.2 Draft Source Code.
SEGMENT QstSelec;

(Manage the calling of procedures by the question and solution menus.
insert PASPC

PROCEDURE WriteQuestionText (VAR CountOfQuestions: integer); EXTERNAL;

PROCEDURE WriteQuestionExplanation; EXTERNAL;

PROCEDURE EditQuestion; EXTERNAL;

PROCEDURE EditQuestionExplanation; EXTERNAL;

PROCEDURE DeleteQuestion (VAR CountOfQuestions: integer); EXTERNAL;

PROCEDURE DeleteExplanation (title: string); EXTERNAL;

PROCEDURE DisplayQuestion; EXTERNAL;

PROCEDURE DisplayExplanation (title: string); EXTERNAL;

PROCEDURE PrintAll; EXTERNAL;

PROCEDURE Blankln (number: integer); EXTERNAL;

PROCEDURE MenuError (range: integer); EXTERNAL;

PROCEDURE Questiom%lection (Selector: integer; VAR CountOfQuestions: integer; VAR Flag: boolean);

BEGIN

CASE Selector OF

1: WriteQuestionText (CountOfQuestions);

2: WriteQuestionExplanation;

3: EditQuestion;

4: EditQuestionExplanation;

5: DeleteQuestion (CountOfQuestions);

6: DeleteExplanation ('question);

7: DisplayQuestion;

8: DisplayExplanation ('question');

9: PrintAll;

10: PrintAll;

11: Flag: = false;

OTHERWISE

MenuError (11);

END; { of CASE

END;

BEGIN END.

page 194

13.14 WriteQuestionText.

The knowledge base consists of questions, solutions and of

classifiers which relate the other two. This segment writes
the text of a question and stores it on disk.

13.14.1 Pseudocode.

find the number of the last question on file

form file name with sequential number

write the text of the question using writer

store file on disk using PushPen
increment CountOfQuestions

13.14.2 Draft Source Code.

SEGMENT WritQust;

{ Write the text of a question and store it on disk.

insert PASPC
insert PASDOS

PROCEDURE PushPen (directory, FileName: string); EXTERNAL;

PROCEDURE FormFileXame (index: integer; title: string; VAR FileName: string); EXTERNAL;

PROCEDURE WriteQuestionTert (VAR CoutOfQuestions: integer);

VAR FileName: string;
QuestionOnFile: string;
Counter: integer;

BEGIN

ClrScr;

ChDir (I\shell\question'); Questions are filed on Question sub-directory
Counter: = 0;

REPEAT

Counter: = Counter + 1;

ForvFileName (Counter, lquestion', FileXame);

FindFile (FileMaze, QuestionOnFile);

UNTIL QuestionOnFile = 11; (Until QuestionOnFile returns empty

writeln ('Enter the text of the question');

writeln ('Question no 1, Couter: 3);

PushPen (Iquestion', FileName); { Write question and store in Question sub-directory
CountOfQuestions: z CountOfQuestions + 1;

ChDir ('\shell')

END;

BEGIN END.

page 195

13.15 WriteQuestionExplanation.

This segment writes the explanation text for a question and
stores it in the correct sub-directory. When the knowledge

engineer chooses a question for which to write an explana-
tion he may accidently input a number for which no question
has been written, or for which an explanation has already
been written. Both these occurrences must be provided for.

13.15.1 Pseudocode.

ask for the number of the question needing explanation text

IF question not on file

display warning
IF explanation already written

display warning
ELSE write explanation text with PushPen

13.15.2 Draft Source Code.

SEGMENT WrtQexpl;

(Write the text of the explanation of a question. I

insert PkSPC
insert PASDOS

PROCEDURE Blankln, PressKey, PushPen, ForzFileNaze; EXTERNAL;

FUNCTION YesNo: boolean; EXTERNAL;

PROCEDURE *iteQuestionftplanation;

VAR QuestionNaine, FileName: string;
Index: integer;

OK: boolean;

BEGIN

ClrScr;

ChDir ('question');

writeln ('Enter the number of the question whose explanation you want to write. ');

writeln ('Then press RETURN. ');

GoToXY (8,8);

read (Index);

ForifileNave (Indox, lquestion', QuestionNate);

FormFileName (Index, lexplanation', FileNate);

OK: = true;

If fstat (QuestionNave) z false THEN BEGIN

writeln ('No question with this key number is on file. ');

page 196

PressKey;

ClrScr

END; j of IF

IF (fstat(QuestionName) = true) AND (fstat(FileName) = true) THEN BEGIN

writeln ('There is already an explanation for this question on file.,);

writeln (To you want to overwrite it? If so, press Ily" or "Y". 1);

GoToXY (9,13);

OK: = YesNo;

ClrScr

END; (of IF

If (fstat(QuestionName) = true) AND (OK = true) THEN BEGIN

ClrScr;

writeln ('Enter the text of the explanation. ');

writeln ('Explanation no 1, Index: 3);

PushPen (Iquestion', FileName); Write explanation and store in Question sub-directory
ClrScr

END; (of IF

ChDir ('\shell');

END;

BEGIN END.

13.16 EditQuestion.

A question textfile, like any other piece of text, will
frequently need to be altered and improved. This procedure

edits questions that exist on file.

13.16.1 Pseudocode.

prompt for the question to be edited
IF question not on file

issue warning
display question on screen

edit using Writer

return corrected text to file

13.16.2 Draft Source Code.

This procedure has not yet been written.

13.17 EditExplanation.

This procedure edits an explanation of a question or a
solution, and stores the amended text in the correct sub-

page 197

directory.

13.17.1 Pseudocode.

prompt for the question whose explanation is to be edited
IF question is not on file

issue warning
IF explanation is not on file

issue warning
ELSE edit text with Writer

13.17.2 Draft Source Code.

This procedure has not yet been written.

13.18 DeleteQuestionFile.

A question is represented, in an implemented version of

Cortex, by a bit in the classifier string as well as a bit

in the essential mask or the usual mask, and it may have an

explanation text on file as well as the text of the ques-

tion itself. All these must be removed when a question is

deleted. The succeeding files and the three bit strings

must be closed up by re-numbering all the subsequent ques-

tions.

13.18.1 Pseudocode.

prompt for the number of question to be deleted

ERASE the question and the explanation files

decrement the number of the next question by 1

REPEAT for all subsequent questions

decrement the number of the next question explanation by 1

REPEAT for all subsequent explanations

for classifier, essential and usual mask in turn

move bits for subsequent questions one place up the

list
REPEAT until end of the string is reached

13.18.2 Draft Source Code.

SEGMENT DelQuest;

{ Delete question file together with any explanation file, and reset classifier bit strings.

insert common types

insert PASPC

insert PASDOS

PROCEDURE FormFileNaze (index: integer; title: string; VAR FileXame: string); EXTERNAL;

page 198

PROCEDURE ReNumberFiles (Flag, CountOfQuestions: integer; title, MeName: string); EXTERNAL;

PROCEDURE Blankln (number: integer); EXTERNAL;

PROCEDURE DeleteQuestion (VAR CoutOfQuestions: integer);

VAR TextFile: text;

TempFile: FILE OF classifiertype;
FileName: string;
Duny: boolean;

Flag, Index: integer;

BEGIN

writeln ('What is the number of the question to be deleted? ');

read (Flag);

FormfileName (Flag, lquestion', FileNate);

ChDir ('question');

IF fstat (FileName) = true THEN BEGIN

assign (TextFile, FileName);

erase (TextFfle);

ReNumberFiles (Flag, CountOfQuestioins, lquestion');

FormFileName (Flag, lexplanation', FileNate);

IF fstat (FileName) = true THEN BEGIN

assign (TextFile, FileName);

He)
erase (TextFile);

ReNumbeffiles (Flag, CountofQuestions, lexplanation');

END; j of IF

END; (of IF)

CountOfQuestions: = CountOfQuestions + 1;

ChDir ('class');

IF fstat ('Classifl) = true THEN BEGIN

assign (TempFile, 'Classifl);

reset (TeipFile);

WHILE NOT eof(TeipFile) DO BEGIN

FOR Index: = Flag TO CountOfQuestions DO BEGIN

(Form question file name)

(Connect variable to question disk file

(Delete selected question disk file

(Close up succeeding files

(Form explanation file name

(Connect variable to explanation disk

Delete explanation disk file

Close up succeeding files)

(Connect variable to classifier disk file]

WHILE (Index+l) <= MaxNuiaberOfQuestions DO BEGIN

IF testbit(TeapPile"I. essentialmask, Index) <> testbit(TeiapFilell. essentialmask, lndex+l) THEN

Duimy = flipbit(TempFilel,. essentialmask, Index) t Flip bit to value of next bit

If testbit(TempFilell. usualmask, lndex) <> testbit(Tezpfilell. usualiask, Index+l) THEN

Duimy = flipbit(TempFile. usualmask, Index) t Flip bit to value of next bit

IF testbit(TempFile A classifier, Index) <> testbit(TempFileA. classifier, Index+l) THEN

page 199

Duny = flipbit(TempFile, *,. classifier, Index) Flip bit to value of next bit
END; (of WHILE

END; (of FOR

get (TempFile);

END; [of WHILE

END; { of IF

ClrScr;

END; -
BEGIN END.

13.19 ReNumiberFiles.

When a file is deleted, the succeeding files must be re-

numbered so as to close up the series. This segment per-
forms the necessary operations.
13.19.1 Pseudocode.

begin with the file immediately succeeding the deleted file

FOR this file TO end of list of disk files

rename file to name of previous file

go to next file

13.19.2 Draft Source Code.

SEGNENT ReNus;

(Re-number a series of disk files.

PROCEDURE FonFileXame (index: integer; title: string; VAR FileNaze: string); EXTERNAL;

PROCEDURE Mhnberfiles (Flag, CountofQuestions: integer; title: string); EXTERNAL;

VAR TextFile: text;

FileName, ThisFileName, NextFileName: string;

Index; integer;

BEGIN

FormFileName (Flag, title, FileNate); (Form name of deleted file

ThIsFileName: z FileName:

FOR Index: = (Flag + 1) TO CountOf'Questions DO BEGIN

FortfileNave (Flag, title, FileNate); [Form name of next file

NextFileName: z FileName;

IF fstat (NextFileNate) = true THEN BEGIN

assign (TextFile, NextFileName); Connect variable with the next disk file

rename (TextFile, ThIsFileName); Rename disk file with the name of the previous file

close (TextFile, true)

END; { of IF)

ThisFileName: z NextFileNave

END; (of FOR

END;

BEGIN M.

{ Update variable)

13.20 DeleteExplanation.

The text of an explanation of a question or a solution will
often need to be deleted from the disk. However, a question
may or may not have an explanation written for it. Explana-
tions do not, like questions and solutions, form a continu-
ous series and renumbering of files or closing up of bit

strings is therefore unnecessary when an explanation is

deleted.

13.20.1 Pseudocode.

Prompt for the number of the question or solution to be
deleted

form the name of the explanation

check that it is on file

IF not
issue warning

ELSE erase file

13.20.2 Draft Source Code.

SEGMENT DelExpl;

(Delete the explanation of a question or solution.
insert PASPC
insert PkSDOS

PROCEDURE Blankln, PressKey; EXTERNAL;

PROCEDURE ForiffileXame (index: integer; title: string; VAR FileName: string); EXTERNAL;

PROCEDURE Deleteliplanation (title: string);
VAR TextFile: text;

FileXame: string; '

Flag: integer;

BEGIN

ClrScr;

writeln ('What is the number of the ', title, ' whose explanation you want to delete? ');

read (Flag);

FordileXame (Flag, lexplanation', FileNate);

ChDir (title);

page 201

IF fstat (FileName) = true THEN BEGIN

assign (TextFile, FileNate);

erase (TextFile);

END { of IF

ELSE BEGIN

writeln ('No explanation for this ', title. ' is on file. ');

PressKey;

END; j of ELSE

ChDir ('\shell');

ClrScr;

END;

BEGIN END.

13.21 DisplayQuestion.

The knowledge engineer will need to be able to display the
text of a question on the screen. This procedure obtains
the display.

13.21.1 Pseudocode.

prompt for the question to be displayed

form the name of the question

check that it is on file

IF not
issue warning

ELSE

display question using DisplayTextFile

13.21.2 Draft Source Code.

SEGMENT DispQust;

(Display the text of a question on screen.
insert PASPC

PROCEDURE Blankln, PressKey, ForiffleNave, DisplayTextFile; EXTERNAL;

PROCEDURE DisplayQuestion;

VAR FileNaze: string;
Key: integer;

BEGIN

ClrScr;

writeln ('Enter the number of the question that you want to display, ');

writeln ('Then press RETURN. ');

read (Index);

page 202

FordileName (Index, lquestion', FileName);

FileName: = concat (1\shell\question\1, FileName);

IF fstat (FileXame) = false THEN BEGIN

writeln ('No question with this key number is on file. ');

PressKey;

ClrScr;

END [of IF

ELSE BEGIN

ClrScr;

DisplayTextFile (FileNaine, lquestionl, 'Question', Index, 7);

PressKey (5);

ClrScr

END; { of ELSE

END;

BEGIN END.

13.22 DisplayTextFile.

Calling a file from disk and displaying it on the screen is

a task which frequently recurs. This procedure carries out
the operation for a specified file.

13.22.1 Pseudocode.

connect a temporary file variable to the disk file

open file

read the file a line at a time into a string

write the string to the screen

repeat until end of file

close file

13.22.2 Draft Source Code.

SEGKENT DispFile;

(Display disk file on screen.
insert PASPC

insert PASDOS

PROCEDURE Display? eftfile (DiskFile, directory, heading: string; Index, displayline: integer);

VAR TempFile: text;

Line: string;
BEGIN

assign (TempFile, DiskFile);

ChDir (directory);

page 203

reset (TempFile);

writeln (beading, ' no 1, Index: 3,1.1);

WHILE NOT eof(TempFile) DO BEGIN

readln (TempFile, Line);

writeln (Line);

displayline: = displayline + 1;

END; (of WHILE)

close (TempFile, true);

ChDir (I\sbell');

END;

BEGIN EJD.

13.23 DisplayExplanation.

This procedure carries out the display on the screen of

either a question or a solution explanation disk file.

13.23.1 Pseudocode.

prompt for the explanation to be displayed

form the name of the explanation

check that it is on file

IF not
issue warning

ELSE

display the file using DisplayTextFile

Draft Source Code.

SEGMENT DispExpl;

(Display the text of the explanation of a question or a solution.
insert PASPC

PROCEDURE PressKey, Blankln, ForEFileXame, DisplayTextFile; EXTERNAL;

PROCEDURE DisplayErplaution (title: string);
VAR FileNaze: string;

Index: integer;

}

BEGIN

ClrScr;

writeln ('Enter the number of the ', title, ' whose explanation you want to display.,);

writeln ('Then press RETURN. ');

read (Index);

FormFileXame (Index, lexplanation', FileName);

FileName: = concat (1\shell\1, title, 1\1, FileName);

page 204

IF fstat (FileNave) = false THEN BEGIN

writeln ('No explanation of this ', title. ' is on file. ');

PressKey (7);

ClrScr, *
END (of IF

ELSE BEGIN

ClrScr;

DisplayTextFile (FileName, lquestionl, 'Explanation', Index, 7);

PressKey;

ClrScr

END; (of ELSE

END;

BEGIN END.

13.24 Printall.

When a screen display is not sufficient a printout of a
text file may be needed. This procedure obtains a file from

disk and sends it to the printer.
13.24.1 Pseudocode.

prompt for the number of the file to printed
form the name of the file

using the Prospero Command procedure

use the DOS command type>prn to send the file to the

printer
13.24.1 Draft Source Code.

This procedure has not yet been written.

13.24 SolutionsHenu

When the knowledge engineer chooses to work on the solu-

tions there are 10 operations that may need to be carried

out. This procedure makes the choice between them.

13.24.1 Pseudocode.

display choice of operations

13.12.2 Draft Source Code.

SEGMENT Solution;

(Selects the operations to be performed on the solution files.

PROCEDURE Blankln (number: integer); EXTERNAL;

PROCEDURE SolutionSelection (Selector: integer; VAR Flag: boolean); EXTERNAL;

page 205

PROCEDURE Solutionmenu;

VAR Flag: boolean;

Selector: integer;

BEGIN

ClrScr;
Flag: = true;

WHILE Flag = true DO BEGIN

iriteln;

writeln (I 1: 18, 'Solutions Text Menu. ');

writeln (I

Blankln (2);

writeln (I 1: 7, 'Do you want to; ');

writeln;

writeln (1 1: 10,11. Write the text of a solution? ');

writeln (1 1: 10,12. Write the explanation of a solution? ');

writeln (1 1: 10,13. Edit the text of a solution? ');

vriteln (1 1: 10,14. Edit the explanation of a solution? ');

writeln (1 1: 10,15. Delete a solution from the solutions file? ');

writeln (1 1: 10,16. Delete the explanation of a solution from the file? ');

writeln (1 1: 10,17. Display the text of a solution? ');

writeln (1 1: 10,18. Display the explanation of a solution? ');

writeln (1 1: 10,19. Print the text of a solution? ');

writeln (1 1: 10,110. Print the explanation of a solution? ');

writeln (1 1: 10,111. Return to the knowledge base menu? ');

Blankln (2);

writeln ('Make your choice by entering a key number. ');

writeln ('Then press RETURN. ');

read (Selector);

SolutionSelection (Selector, Flag);

END; (of WHILE

END;

BEGIN END.

13.26 SolutionSelection.

Carries out the calling of procedures from the solutions

menu.

13.26.1 Pseudocode.
CASE

page 206

procedure calls
OTHERWISE

menuerror
13.26.2 Draft Source Code.

SEGMENT SolSelec;

(Manages the calling of procedures by the solutions menu.
[$I \PROWPASK)

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

BEGIN

WriteSolutionText; EXTERNAL;

WriteSolutionExplanation; EXTERNAL;

EditSolution; EXTERNAL;

EditSolutionExplanation; EXTERNAL;

DeleteSolution; EXTERNAL;

DeleteExplanation (title: string); EXTERNAL;

DisplaySolution; EXTERNAL;

DisplayExplanation (title: string); EXTERNAL;

PrintAll (title: string); EXTERNAL;

Blankln (number: integer); EXTERNAL;

MenuError (range: integer); EXTERNAL;

SolutionSelection (Selector: integer;

CASE Selector OF

1: WriteSolutionText;

2: WriteSolutionExplanation;

3: EditSolution;

4: EditSolutionExplanation;

5: DeleteSolution;

6: DeleteExplanation ('solution#);

7: DisplaySolution;

8: DisplayExplanation ('solutions);

9: PrintAll ('solution');

10: PrintAll ('solution');

11: Flag: = false;

OTHERWISE BEGIN

ClrScr;

Blankln (9);

MenuError (11)

END; (of OTHERWISE

END; (of CASE)

VAR Flag: boolean);

page 207

END;

BEGIN END.

13.27 WriteSolutionText.

The knowledge base consists of questions, solutions and of
classifiers which relate the other two. This segment writes
the text of a solution and stores it on disk.

13.27.1 Pseudocode.

find the number of the last solution on file

form file name with sequential number

write the text of the solution using Writer

store file on disk using PushPen
increment CountOfSolutions

13.27.2 Draft Source Code

SEGMENT WritSoln, *
(Write the text of a solution and store it on disk.

PROCEDURE Blankln (number: integer); EXTERNAL;

PROCEDURE FormFileName (index: integer; title: string; VAR FileNave: string); EXTERNAL;

PROCEDURE PushPen (title, FileName: string); EXTERNAL;

PROCEDURE WriteSolutionText (VAR CountOfSolutions: integer);

VAR FileMame: string[30];
SolutionOnFile: string[30];
Counter: integer;

BEGIN

ChDir (1\shell\solution'); Solutions are filed on solution sub-directory
Counter: = 0;

REPEAT
Counter: = Counter + 1;
ForvFileName (Counter, lsolution', FileName);

FindFile (FileNaze, SolutiononFile);

UNTIL SolutionOnFile = 11; (Until SolutionOnFile returns empty

writeln (I 1: 7, 'Enter the text of the solution. ');

writeln ('Solution no 1, Counter: 3);

PushPen ('solution', FileName); Write solution , and store in 'solution' sub-directory
CountofSolutions: z CountOfSolutions + 1;

ChDir ('\shell')

END;

BEGIN END.

page 208

13.28 WriteSolutionExplanation.

This segment writes the explanation text for a solution and

stores it in the correct sub-directory. When the knowledge

engineer chooses a solution for which to write an explana-
tion he may accidently input a number for which no solution
has been written, or for which an explanation has already
been written. Both these occurrences must be provided for.

13.28.1 Pseudocode.

ask for the number of the solution needing explanation text

IF solution not on file

display warning

IF explanation already written

display warning

ELSE write explanation text with PushPen

13.28.2 Draft Source Code.

SEGMENT WrtSexpl;

(Write the text of the explanation of a solution.

PROCEDURE Blankln (nuzl)er: integer); EXTERNAL;

PROCEDURE PressKey (margin: integer); EXTERNAL;

FUNCTION YesNo: boolean; EXTERNAL;

PROCEDURE FortFileNate (index: integer; title: string; VAR FileXame: string); EXTERNAL;

PROCEDURE PushPen (titlejileNave: string); EXTERNAL;

PROCEDURE WriteSolutionExplanation;

VAR SolutionNave, FileNaze: string;

Index: integer;

OK: boolean;

BEGIN

ClrScr;

ChDir ('solution');

writeln (I 1: 7, 'Enter the number of the solution');

writeln (I 1: 7,1whose explanation you want to write. ');

writeln;

writeln (I 1: 7, 'Then press RETURN. ');

GoToXY (8,9);

read (Index);

FormFileNaze (Index, lsolution', SolutionName);

FormFileXame (Index, lexplanation', FileNate);

page 209

OK: = true;

IF fstat (SolutionName) = false THEN BEGIN

writeln (I 1: 7, 'No solution with this key number is on file. ');

PressKey (7);

END; (of IF)

IF (fstat(SolutionName) = true) M (fstat(FileNate) = true) THEN BEGIN

Yriteln (I 1: 7, 'There is already an explanation for this solution on file.,);

writeln (I 1: 7, 'Do you want to overwrite it? If so, press "y" or "Y". 0);

GoToXY (8,13);

OK: = YesNo;

END; (of IF

IF (fstat(SolutionName) = true) M (OK z true) THEN BEGIN

Blankln (2);

writeln (I 1: 7, 'Enter the text of the explanation. ');

writeln ('Explanation no 1, Index: 3);

PushPen (Isolution'JileXame); Write explanation and store in Solution sub-directory

END; (of IF)

ChDir ('\shell');

END;

BEGIN END.

13.29 EditSolution.

A solution textfile, like any other piece of text, will

frequently need to be altered and improved. This procedure

edits solutions that exist on file.

13.16.1 Pseudocode.

prompt for the solution to be edited

IF solution not on file

issue warning

display solution on screen

edit using Writer

return corrected text to file

13.16.2 Draft Source Code.

SEGMENT EditSoln;

(Edit the text of an existing solution.

PROCME PressKey (margin: integer); EXTERNU;

PROCEDUIE Blankln (nurber: integer); EXTERNR;

PRocEDURE EditSolution;

page 210

BEGIN

ClrScr;

Blankln (8);

writeln (I 1: 7, 'The procedure EditSolution has not yet been written. ');

Blankln (15);

PressKey (7);

ClrScr;

END;

BEGIN END.

13.30 DeleteSolutionFile.

A solution is represented, in an implemented version of
Cortex, by a classifier bit-string, and it may have an

explanation text on file as well as the text of the solu-
tion itself. Both must be removed when a solution is delet-

ed. The succeeding files and bit strings must be closed up
by re-numbering all the subsequent solutions.
13.30.1 Pseudocode.

prompt for the number of solution to be deleted

ERASE the solution and the explanation files

decrement the number of the next solution by 1

REPEAT for all subsequent solutions
decrement the number of the next solution explanation by 1

REPEAT for all subsequent explanations
13.30.2 Draft Source Code.

SEGXENT DelSoln;

(Delete solution file.

PROCEDURE PressKey (zargiminteger); EXTERNAL;

PROCEDURE Blankln (numbeninteger); EXTERNAL;

PROCEDURE DeleteSolution:

BEGIN

writeln (I 1: 7, 'The procedure DeleteSolution has not yet been written. ');

PressKey (7);

END;

BEGIN END.

13.31 ReNumberClassifier.

When a solution file is deleted the corresponding classifi-

page 211

er bit-string must be removed from the file 'Classif'.

13.31.1 Pseudocode.

find the next record using Seek

write this to the preceding record (the one to be deleted)

repeat until end of file

13.31.2 Draft Source Code.

This procedure has not yet been written.

13.32 DisplaySolution.

The knowledge engineer will need to be able to display the

text of a solution on the screen. This procedure obtains
the display.

13.32.2 Pseudocode.

prompt for the solution to be displayed

form the name of the solution

check that it is on file

IF not
issue warning

ELSE
display question using DisplayTextFile

13.32.2 Draft Source Code.

SEGMENT DispSoln;

(Display the text of a question on screen.

PROCEDURE PressKey (margin: integer); EXTERNAL;

PROCEDURE Blankln (number: integer); EXTERNAL;

PROCEDURE ForvFileName (filenumber: integer; title: string; VAR FileName: string); EXTERNAL;

PROCEDURE DisplayTextFile (FileName, directory, heading: string; Index, displayline: integer); EXTERNAL;

PROCEDURE DisplaySolution;

VAR FileName: string[301;
Index: integer;

BEGIN

writeln (I 1: 7, 'Enter the number of the solution');

writeln (I 1: 7,1that you want to display. ');

writeln (I 1: 7, 'Then press RETURN. ');

GoToXY (8,11);

read (Index);

FormFileNaze (Index, lsolution', FileNate);

FileNase: = concat (1\shell\solut1on\1, FileXame):
0

page 212

IF fstat (FileNaze) = false THEN BEGIN

Blankln (2);

writeln (I 1: 7, 'No solution with this key number is on file. ');

PressKey (7);

END (of IF

ELSE BEGIN

DisplayTextFile (FileNave, 'solution', 'Solution', Index, 7);

PressKey (5);

END; (of ELSE

END;

BEGIN END.

13.33 ClassifierMenu.

When the knowledge engineer chooses to work on the ques-
tions there are three operations that may need to be car-

ried out. This procedure makes the selection between them.

13.33.1 Pseudocode.

display the choice of operations

use a CASE statement to call the relevant procedure
13.33.2 Draft Source Code.

SEGXENT Classify;

(Select the operations to be performed on the classifier file.

PROCEDURE Blankln (nuiber: integer); EXTERNAL;

PROCEDURE MenuError (range: integer); EXTERNAL;

PROCEDURE SetUpClassifier (CountOfQuestions: integer); EXTERNAL;

PROCEDURE EditClassifier; EXTERNAL;

PROCEDURE DeleteClassifier; EXTERNAL;

PROCEDURE Classifierlem (CountOfQuestions: Integer);

VAR Flag: boolean;

Selector: integer;

BEGIN

ClrScr;

Flag: = true;

WHILE Flag a true DO BEGIN

writeln (I 1: 20, 'Classifier Menu. ');

writeln (I

writeln (I 1: 11, 'Do you want to; ');

writeln (1 1: 14,11. Set up a classifier? ');

page 213

writeln (1 1: 14,12. Edit a classifier? ');

writeln (1 1: 14,13. Delete a classifier?,);

vriteln (1 1: 14,14. Return to the Knowledge Engineering Menu? ');

writeln (I 1: 7, 'Make your choice by typing a keynumber. 1);

writeln (I 1: 7, 'Then press RETURN. ');

read (Selector);

CASE Selector OF

1: SetUpClassifier (CountofQuestions);

2: EditClassifier;

3: DeleteClassifier;

4: Flag: = false;

OTHERWISE BEGIN

ClrScr;

Blankln (8);

MenuError (4)

END; (of OTHERWISE

END; (of CASE

END; j of WHILE)

END;

BEGIN END.

13-34 SetUpClassifier.

When the texts of the questions and the solutions have been

written and stored on file, the knowledge engineer must set
them into relationship with each other. This is done by

writing a classifier for every solution.

When the part of CORTEX which is concerned with writing
classifiers is entered, the knowledge engineer calls up the

solution for which he wants to write a classifier. The text

of the solution is displayed at the top of the screen. On the
bottom half of the screen is displayed the text of the first

question in the questions sub-directory. The display asks for

an answer to two queries.

First, is it essential that this question be answered cor-
rectly if the solution is to be true? If so the first bit in
the essential mask is set to true, otherwise it is left set

page 214

to false. Should the question be recorded as not essential, a
further query is displayed asking if it is usually necessary
for the question to be answered correctly. If it is, the

first bit in the usual mask is set to true. Otherwise, it is

left set to false and the next question from the questions

sub-directory is displayed on the screen.

When the knowledge engineer defines a question as either

essential or usual an additional query is displayed asking

whether the answer must be true or false. His answer is

recorded in the first bit of the classifier, whereupon the

next question in the questions sub-directory is displayed.

The process is then repeated for the next question, and so on
through all the questions in the knowledge base. When all the

questions have been defined for the first solution the knowl-

edge engineer can call another solution onto the screen, or
he can exit to the CORTEX main menu.

The effect of working through all the solutions in the knowl-

edge base in this manner is that every solution is provided

with its own classifier, essential mask and usual mask. This

information is stored as a disk file so that it is available

to the procedures which are brought into play by user of the

system. The skill and knowledge which goes into the way that

the classifiers are set up is the principle factor in deter-

mining the intelligence with which the implemented system

will operate.
13.34.1 Pseudocode.

add record type to common type file

declare TempFile of common type item3

declare Temp a record of common type item3

set Temp fields to zero

display "What is the number of the solution for which you

want to set up a classifier? "

read SolutionNumber: integer

display solution text

call SetClassifierBits to

display the question texts in succession

page 215

manipulate the bit strings

store the record Temp, on the disk file Classif

END (of FOR)

start over or exit
13.34.2 Draft source code.
SEGNENT StUpClas;

(Write the classifier, essential task and usual mask for a solution.
insert common types

insert PASPC
insert PASDOS

PROCEDURE Blankln (number: integer); EXTERNAL;

PROCEDURE FormFileName (filenumbeT: integer; title, directory: string; VAR FileName: string); EXTERNAL;

PROCEDURE DisplayTextFile (FileName, directory, heading: string; filenumber, firstline: integer); EXTERNAL

PROCEDURE InitialiseClassifierRecord (SolutionNumber: integer; VAR Temp: solutiontype); EXTERNAL:

PROCEDURE SetClassifierBits (CoutOfQuestions: integer; VAR Tetp: solutiontype; VAR Flag: boolean); EXTERNAL;

FUNCTION Ask (leftmargin: integer; question: string): boolean; EXTERNAL;

PROCEDURE SetUpClassifier (CountOfQuestions: integer);

VAR TempFile: FILE OF solutiontype;
Temp: classifiertype;
FileName: string;
SolutionNumber: integer;

Answer, Flag: boolean;

BEGIN

Flag: = true;

WHILE Flag = true DO BEGIN

writeln ("What is the number of the solution for which you want to write a classifier? ");

read (SolutionNusber);

InitialiseClassifierRecord (SolutionNumberjemp);

ClrScr;

writeln ("Solution no 0, SolutionNumber: 3);

ForaFileNave (SolutionNuiber, lsolutionl, lsolution', FileNale);

FileName: = concat (1\SHELL\SOLUTION\1, FileName);

IF fstat (FileXame) = false THEN

writeln ('No solution with this key number is on file. ');

ELSE BEGIN

DisplayTextFile (filename, lsolutionl, 'Solution', SolutionNumber, 2); Display solution text)

SetClassifierBits (CountOfQuestions, Temp, Flag);

assign (TempFile, 'Classifl); (Connect file variable TempFile to disk file Classif)

page 216

append (TempFile); (Move pointer to end of file

write (TeipFile, Tezp); (Add Temp to end of TempFile

close (TempFile, true);

END; (of ELSE)

Answer: = Ask (7, 'Do you want to write another classifier. ');

IF Answer = true THEN BEGIN

Flag: = true; Exit from procedure
TextWindow (1,1,25,80) Restore text window to whole screen

ELSE BEGIN

Flag: = false;

END; (of WHILE

END;

BEGIN END.

13.35 InitialiseClassifierRecord

Before a classifier is written the fields of its record,

other than the keynumber, must be set to zero.
13.35.1 Pseudocode.

Set keynumber field to solution number.
Set other fields to zero, using procedure ZeroiseBitString

for bit strings
13.35.2 Draft Source Code.

SEGMENT InitClas;

(Intitialise the fields of the record Temp.

insert common types

PROCEDURE ZeroiseBitString (VAR Bits: bitstring); EXTERNAL;

PROCEDURE InitialiseClassifierRecord (SolutionNumber: integer; VAR Temp: solutiontype);
BEGIN

Temp. keynuiber: = SolutionNusber;

ZeroiseBitString (Temp. essentialmask);
ZeroiseBitString (Temp. usualmask);
Temp. totalusual: = 0;

Temp. usualtrue: z 0;

Temp. probability: = 0;

ZerolseBitString (Temp. classifier);
END;

BEGIN END.

page 217

13.36 SetClassifierBits.

This procedure manipulates the classifier bit strings.
13.36.1 Pseudocode.

FOR index: = 1 TO CountOfQuestions DO BEGIN
display text of first question
display "Is it essential for this question to receive

a correct answer? "

IF "yes" set essential mask bit to T

setbit (Temp. essentialmask, index);

ELSE display "Does the solution usually require a correct
answer to this question? "

IF "yes" set usual mask bit to T

setbit (Temp. usualmask, index);

IF essential or usual mask set to T

display "Does the solution require this question to be

answered by 'yes' or by no,. Y/N? 11

IF answer is 'yes' set the classifier bit to T

setbit (Temp. classifier, index);

append Temp to disk file

13.36.2 Draft Source Code.

SEGNENT ClasB! ts;

(Set the bits of the classifier and its masks.
insert common types
insert PASPC
insert PASDOS

PROCEDURE ForiFileName (filenumber: integer; title, directory: string; VAR FileName: string); EXTERNAL;

PROCEDURE DisplayTextFile (FileName, directory, beading: string; filenumber, firstline: integer); EXTERNAL;

PROCEDURE SetUsualBits (Index: integer; VAR Terp: solutiontype); EXTERNAL;

FUNCTION Ask (leftmargin: integer, -question: string): boolean; EXTERNAL;

FUNCTION YesNo: boolean; EXTERNAL;

PROCEDURE SetClassifierBits (CountOfQuestions: integer, *VAR Teinp: solutiontype; VkR Flag: boolean);

VAR TempFile: FILE OF solutiontype;
FileName: string;
Index: integer;

kaswer, Dummy: boolean;

BEGIN

FOR Index: = 1 TO CountOfQuestions DO BEGIN Loop through all the questions
TextWindow (1,10,80,25);

page 218

FormFileXame (Index, lquestion', FileNne);

FileName: = concat (I\shell\question\', FileName);

DisplayTextFfte (FileName, lquestionl, 'Question', Index, 8); Display question text

GoToXY (8,7);

Answer: = Ask (1, 'Is it essential that this question receives a correct answer. Y/N71);

IF Answer = true THEN BEGIN

Dummy: = setbit (Teip. essentialmask, Index); Set essential mask to true

Answer: = Ask (7,11s the answer that is always needed to this question "yes" or "no". Y/N7.1);

IF Answer true THEN

Dummy: = setbit (Temp. classifier, Index);

END (of IF

ELSE

SetUsualBits (Index, Temp);

END; { of FOR

END;

BEGIN END.

13.37 SetUsualBits.

This procedure manipulates the bits of the classifier and
its masks that record the status of usual questions.

13.37.1 Pseudocode.

when a question is defined as not essential

prompt for usual question
IF answer is 'yes'

set usual mask to true

increment totalusual field

- prompt for answer true or false

IF true

set bit to true

13.37.2 Draft Source Code.

SEGMENT UsulBits;

(Set the usual bits in a classifier.
insert conon types

insert PASPC

insert PASDOS

FUNCTION YesNo: boolean; EXTERNAL;

FUNCTION Ask (leftmargin: integer; question: string): boolean; EXTERNAL;

PROCEDURE SetUsualBits (Index: integer);

page 219

VAR Temp: classifiertype;
Answer, Duny: boolean;

BEGIN

writeln ('Does the solution usually require');

writeln (I 1: 7,1a correct answer to this question. Y/Pl);

Answer: = YesNo;

IF Answer = true THEN BEGIN

Dmy: = setbit (Temp. usualmask, Index);

Temp. totalusual: = Temp. totalusual + 1;

ClrScr;

writeln ('Is the answer that is usually needed');

writeln (I 1: 7,1to this question "yes" or "no". Y/N? 1);

Answer: = YesNo;

IF Answer = true THEN

Duny: = setbit (Temp. classifier, Index);

END; (of IF

END;

BEGIN END.

(Set usual mask to true)

(Set classifier to true)

13.38 EditClassifier.

Adjustments and improvements to the way that Cortex func-

tions are made by working on the questions and solutions,

and also by editing the classifiers that establish the

relations between them. This procedure edits a selected

classifier and places the revised version on file in the

disk file Classif.

13.38.1 Pseudocode.

prompt for the solution whose classifier is to be edited

if the solution has no classifier on file

issue a warning

ELSE call set up classifier

rewrite classifier

store revised classifier on file

13.38.2 Draft Source Code.

SEGMENT EditClas;

(Edit a classifier.

insert conon types

PROCEWRE Blankln (nuipbeninteger); EXTERNAL;

page 220

PROCEDURE FormFileName (filenuiber: integer; title: string; VkR FileMalle: string), * EXTERNAL;

FUNCTION Ask (leftioargin: integer; question: string): boolean; EXTERNAL;

PROCEDURE EditClassifier;

VAR TevpFile: FILE OF solutiontype;

SolutionFile, QuestionFile: text;

TexpRecord: solutiontype;

FileName: string[301;

Line: string[100];

SolutionNuiber, QuestionNuiber, Counter: integer;

Answer, ClassifierSetting, Dmy: boolean;

BEGIN

writeln (I ': 7, 'Enter the nurber of the solution whose classifier you want to edit.,);

read (SolutionNumber);

writeln (I 1: 7, 'The text of the solution whose classifier you are editing is;,);

ForzFileNave (SolutionNuiMr, lsolution', FileNaiie);

FileName: z concat (1\shell\solution\1, FileNave), *

assign (SolutionFile, FileNaime);

reset (SolutionFile);

Counter: = 9;

WHILE NOT eof(SolutionFile) DO BEGIN

readln (SolutionFile, Line);

writeln (Line);

Counter: = Counter + 1;

END; (of WHILE)

writeln (I 1: 7, 'Enter the number of the question that you want to change.,);

read (QuestionNuzber), *

writeln (I 1: 7, 'The question whose bit you are editing is; ');

FormMeName (QuestionNuidxrllquestion', FileHave);

FileName: = concat (1\shell\question\1, F1leNave);

assign (QuestionFile, FileNate);

reset (QuestionFile);

Counter: = 16;

WHILE NOT eof(QuestionFile) DO BEGIN

readln (QuestionFile, Line);

writeln (Line);

Counter: = Counter +1

END; (of WHILE)

assign (TempFile, 'Classifl);

page 221

update (TempFile);

seek (TempFile, (SolutionNumber - 1));

read (TempFile, TempRecord);

ClassifierSetting: = testbit(TeiapRecord. classifier, QuestionNumber);

writeln (I 1: 7, 'The setting of this question bit is 1, ClassifierSetting);

Answer: = Ask (7, 'Do you want to change its setting. Y/N? ');

IF Answer = true THEN BEGIN

Dmy: c flipbit(Te&pRecord. classifier, QuestionNumber);

seek (TempFile, (SolutionNumber - 1));

write (TempFile, TempRecord);

close (TempFile, true)

END; (of IF

END;

BEGIN END.

13.39 DeleteClassifier.

If a solution is no longer relevant, but its text is to be

retained on disk, the corresponding classifier will need to

be deleted. This procedure removes a classifier from the

disk file Classif. Classifiers are stored as elements of
this file, and when an element is removed the succeeding

elements must be closed up so as to maintain a continuous

sequence.
13.39.1 Pseudocode.

prompt for the solution whose classifier is to be deleted

go to file element with this key number

IF no file element has this number
issue warning

ELSE read the next file element into a temporary record

overwrite the element for deletion with the temporary

record

repeat for all succeeding file elements

13.39.2 Draft Source Code.

SEGMENT DelClass;

(Delete a specified classifier and close up the succeeding file elements.
insert PASPC

insert PASDOS

PROCEDURE DeleteClassifier (CountOfQuestions: integer);

page 222

VAR TempFile: FILE OF classifiertype;
Temp: classifiertype;
Selector, Counter, Index: integer;

BEGIN

writeln ('What is the number of the solution whose classifier you want to delete?,);

read (Selector);

assign (TempFile, 'Classifl);

reset (TempFile);

WHILE NOT eof(TempFile) DO BEGIN

IF TempFile A keynumber <) Selector THEN Filepointer not at selected element)

get (TempFile); [Go to next element

IF eof (TempFile) = true THEN

writeln ('No classifier has been written for this solution. ') (Selected classifier not found)

ELSE BEGIN (File pointer is at selected element)

Couter: z Selector;

FOR Index: = Selector TO CountOfQuestions DO BEGIN

seek (TempFile, (Counter+1)); [Go to next file element

Temp. essentialmask: = TempFileA. essentialmask; { Set Temp's fields to this element's

values)
Temp. usualmask: = TempFi JeA usualmask;

Temp. classifier: = TempFile A classifier;

Temp. totalususal: = TempFilell. totalusual;

Counter: = Counter - 1;

seek (TempFile, Couter); Go back to selected file element

write (TeapFile, Tetp); Overwrite element with values of next element

seek (TempFile, (Counter+l)); Go to next file element

END; (of FOR

END; (of ELSE

END; (of WHILE)

close (TezpFile, true);

END;

BEGIN END.

13.40.1 FindResult.

When the user starts up CORTEX the system presents the

welcome screen followed by the implementation screen. This

tells him what is the domain in which CORTEX has been

implemented, and it may contain advice on how to answer the

page 223

questions to the best effect.
The system, using SetUpSolutionList and MostFrequentQues-
tion, creates a linked list of all the solutions in the
knowlege base. The essential masks are then searched and
the number of the question that occurs in them most often
is ascertained. Upon exiting from the implementation screen
the user is presented with this first question on the

screen and he is prompted for an answer.

The user provides an answer to the question which follows
from his knowledge of, and point of view towards, the
implementation domain. His answers are recorded in the

message and message mask strings by the procedure Messag-

eAndMask. But an answer to a question will, in logic and
sense, make some of the other questions in the knowledge
base redundant. For example, if in an animal identification

system the user replies that the creature lays eggs, then
it is otiose to go on to ask if the same creature gives
milk. For the sake of completeness, one may observe that
the last statement holds true unless one is wading in a
Tasmanian swamp and the creature under inspection happens
to be a duckbilled platypus. An expert system must be

provided with a means of excluding from the list of ques-
tions those which have been rendered irrelevant by already
answered questions.

As soon as an answer is given the system eliminates from
the list of solutions all those solutions whose bits con-
tradict the answer. The remaining solutions are again
searched by MostFrequentQuestion and the question that

appears in them most often is displayed to the user for

answering. This process is repeated until a possible solu-
tion is obtained, or until all the questions in the knowl-

edge base have been answered and no solution has been

arrived at. In this way the number of solutions to be

searched is progressively reduced as the user provides more
answers to questions.

page 224

Every solution for which all the essential questions have
been correctly answered is a possible solution. The best

candidate is identified by searching their usual masks, and

obtaining the answer to all the questions that occurs in

those masks. When all the questions that appear in the

usual masks of the possible solutions have been answered,
the probabilities of each can be calculated and the most
likely solution is then displayed.

By means of this process of exclusion, the number of rele-

vant questions and possible solutions is quickly restrict-

ed. Such a method of ordering the presentation of questions
has'the double advantage of excluding irrelevant questions,

and of narrowing the search onto the most promising solu-
tion candidates. This is in accord with the way in which a
human expert might work. He will devote most attention to

the candidate solutions which emerge as the most likely to

be correct, while progressively excluding those which

appear unpromising.
13.40.2 Pseudocode.

set Message and MessageMask arrays to zero

call SetUpSolutionList to create linked list of solutions

call MostFrequentQuestion to find most common question in

the solutions

WHILE there is another essential question to be found

call MessageAndMask to record the user's answer to a

question
call RemoveSolution to remove any solution contradicted

by the answer
IF all elements of the solutions list are removed

display failure message and exit progam

call UsualQuestion to search the usual masks of the

possible solutions

get answers to the usual questions of the possible solu-
tions

call Probability to calculate the probability of each

solution
display the most probable result with its probability

page 225

finish by clearing the solutions list from memory
13.40.3 Draft source code.
SEGMENT FindRslt:

(Main procedure for writing the message and obtaining the result.
insert common types

PROCEDURE ZeroiseBitString (VAR Bit: bitstring); EXTERNAL;

PROCEDURE SetUpSolutionL! st (CountOfSolutions: integer; VAR Read: solutionpointer); EXTERNAL;

PROCEDURE MessageAndMask (XostFrequentQuestion: integer; VkR Message, MessageMask: bitstring); EXTERNAL;

PROCEDURE RemoveContradictedSolution (Nessage, XessageMask: bitstring; CountOfQuestions: integer;

VAR Read: solutionpointer); EXTERNAL;

PROCEDURE CalculateProbability (Nessage, MessageMask: bitstring; CountofQuestions: integer

Read: solutionpointer); EXTERNAL;

PROCEDURE DisplayResult (Read: solutionpointer); EXTERNAL;

PROCEDURE Clearffeap (Head: solutionpointer); EXTERNAL;

FUNCTION FindMostFrequentQuestion (NessageMask: bitstring; CountOfQuestions: integer;

Head: solutionpointer): integer; EXTERNAL;

FUNCTION FindUsualQuestion (CountOfQuestions: integer; Head: solutionpointer): integer; EXTERNAL;

PROCEDURE FimSesult (CountOfQuestions, CountOfSolutions: integer);

VAR Message, MessageMask: bitstring;

Head: solutionpointer;
UQ, MFQ: Integer;

BEGIN

zeroiseBitString (Message); Set Message and MessageMask to zero

zeroiseBitstring (MessageMask);

SetUpSolutionList (CountOfSolutions, Head); Create solutions list

MFQ: = FindKostFrequentQuestion (MessageMask, CountOfQuestions, Hea4); Find number of KFQ)

WHILE KFQ (> 0 DO BEGIN { Search essential masks and prune solutions list

MessageAndMask (MFQ, Message, MessageMask); { Set Message and Messagelask for XFQ)

RemoveContradictedSolutions (Message, MessageMask, MFQ, Head); (Remove any contradicted solution)

MFQ: = FindMostFrequentQuestion (MessageMask, CountOfQuestions, Head); Find no of KFQ remaining

END; (of WHILE)

UQ: = FindUsualQuestion (CountOfQuestions, Head); Find number of UQ

WHILE UQ 00 DO BEGIN

MessagekndMask (UQ, Message, MessageMask) Set Message and MessageMask for UQ

UQ: = FindUsualQuestion (CoutOfQuestions, Head); Find number of next UQ

END; { of WHILE)

CalculateProbability (Message, MessageMask, CountOfQuestions, Head);

DisplayResult (Head);

page 226

ClearHeap (Head)

END;

BEGIN END.

13.41 SetUpSolutionList.

This segment creates a linked list of all the solutions in

the database. A linked list keeps track of relevant solu-
tions more efficiently than arrays because no-longer-rele-

vant elements can be erased from the list readily. It is

impossible to erase elements selectively from an array, and
therefore the length of a search path through an array

cannot be curtailed.

The values of the essential mask,, usualmask and classifier
fields are copied from the disk file of the classifier into

the corresponding fields of the linked list. It is by

consulting the value of the essential masks in the list

that the possible solutions are identified, while the

classifier and the usual mask enable the probability of the

possible solutions to be calculated.

13.41.1 Pseudocode.

make space in memory for the last element in the solution

list

set its key to total number of solutions and its pointer to

NIL

working back through the total number of solutions

make space for temporary variable

store the loop index as its serial number

link this element to current variable

make the new element the current variable

finish by making the head pointer the current variable
link a variable to the disk file containing the classifier

working through the total number of solutions

copy classifier, masks and totalusual fields from file

variable to current pointer

set usualtrue and probable fields to zero

get the next element of the file variable

13.41.2 Draft Source Code.

page 227

SEGMENT SetUpSol;

[Set up a linked list of solutions and return the Head pointer.
insert global types

PROCEIRE SeWpSolutionList (CountOfSolutions: integer; VAR Head: solutionpointer);

VAR Classifier: FILE OF solutiontype;

TempRecord: solutiontype;

Temp, Current: solutionpointer;

Index: integer;

BEGIN

new (Current); Make space in heap for last element in the list

Current". KeyNumber: z CountOfSolutions; Number of last element :z total number of solutions
CurrentA Next: = NIL; [Set pointer field of last element to NIL)

FOR Index: = (CountOfSolutions - 1) DOWNTO 1 DO BEGIN (Work backwards from last element in the list

new (Temp); Make space in heap for a new element in the list

TeMpA. keynumber: = Index; Set keynumber to loop index)

TempA. neXt: = Current; Set to point to current element in the list

Current: = Temp Make the current element the new element)

END; (of FOR)

Head: = Current; (Move head pointer to first solution, which is current pointer, on exiting from FOR loop

assign (Classifier, 'Classif'); (Connect Classifier to disk file 'Classif', written with SetUpClassifier

reset (Classifier);

Temp: = Head; t Position Head at beginning of solutions list

FOR Index: = 1 TO CountOfSolutions DO BEGIN

read (Classifier, TempRecord); j By-pass record 0, which is blank

TempA. essentialtask: z Classifier A essentialmask; (Set essentialmask to value in Classifier field

TeMpA. usualiask: z Classifier A usualmask; (Set usualmask to value in Classifier field

TempA. classifier: = ClassifierA. classifier; (Set classifier to value in Classifier field

TempA. totalusual: = ClassifierA. totalusual; (Set totalusual to value in Classifier field

TempA. usualtrue: z 0;

TeMpA. probability: =O;
Temp: = Temp". next; Move pointer to next record

END; I of FOR

END;

BEGIN END.

13.42 FindftstfteguentQuestion.

When the implemented shell is started up, the first ques-
tion to be presented to the user must be that which occurs

page 228

most frequently in the essential masks. This segment finds
thatquestion. Subsequent questions to be presented to the
user are always the most frequent to occur in the remaining
relevant solutions, and this segment finds these also. The
linked list of solutions which was created in SetUpSolu-
tionList contains fields for the essential and the usual
mask applying to each solution. The solutions list serves
as the vehicle for the search.

If no more unanswered questions can be found
'
in the essen-

tial masks of the elements of the solution list, then those

elements that remain in the list are all possible solu-
tions. In this case, the function returns a value of 0 and
control passes to the segment UsualQuestion to search the

usual masks, rather than the essential masks, of the candi-
date solutions.
13.40.1 Pseudocode.

declare type in common types file

declare variable, TopQuestion, to record
(i) the key number of the most frequent question so far
(ii) the number of times it occurs in the essential

masks
declare another variable, QuestionCounter, to record
(i) the key number of the question about to be counted
(ii) the number of times it occurs in the essential masks
set both fields of TopQuestion to zero
for each question in turn,

(i) go to the first element in the solution list
(ii) set QuestionCounter. questionnumber to I
(iii) use testbit to read the bit representing question 1
(iv) increment QuestionCounter. countofoccurrance if the bit

is set
to true
(v) IF QuestionCounter. countofoccurrances >

TopQuestion. countofoccurrances
set TopQuestion = QuestionCounter

IF there are no more essential questions to be asked
then all the questions needed to identify all the possible

page 229

solutions have been asked
in which case, the function returns the value of zero

ELSE assign TopQuestion. questionnumber to MostFrequentQues-

tion, and return this value to the calling procedure-Fin-
dResult

13.42.2 Draft Source Code.

SEGHENT MFrqQust;
insert common types

insert PASDOS

FUNCTION FindRostfrequentQuestion (MessageNask: bitstring; CoutOfQuestions: integer;

Head: solutionpointer): integer;

VAR Current: solutionpointer;
TopQuestion, QuestionCounter: questiontype;
Index: integer;

AllFalseFlag, AllTrueFlag: boolean;

BEGIN

TopQuestion. questionnumber: = 0;

TopQuestion. countofoccurrance: = 0;

FOR Index: = 1 TO CountOfQuestions DO BEGIN

QuestionCounter. questionnumber: = Index;

QuestionCounter. countofoccurrance: z 0;

Current: = Read;

WHILE Current <> NIL DO BEGIN

IF (testbit (CurrentA essentialiask, Index) = true) AND (testbit (MessageMask, Index) false) THEN

QuestionCouter. countofoccurrance = (QuestionCounter. countofoccurrance + 1);
IF testbit(CurentA. classifier, Index) = true THEN

AllTrueFlag: = true

ELSE

kIlFalseFlag: = true;

END; (of IF)

Current: = CurrentA next
END; (of WHILE)

IF AllFalseFlag M AllTrueFlag = true THEN

IF QuestionCounter-countofoccurrance > TopQuestion. countofoccurrance THEN

TopQuestion: = QuestionCounter

page 230

END; (of FOR)

FindMostFrequentQuestion: z TopQuestion. questionnumber { No of remaining most freq occurring question

END;

BEGIN END.

13.43 MessageAndMask.

When a question is answered by the user the bit in the

message mask corresponding to that question is set to true.

Whether the answer is true or false is recorded in the

message. The code in this segment sets up these two bit-

strings.

The message and the message mask may be several hundred

bits long in a realistic implementation of the shell.

However, in Prospero Pascal an integer is represented by

four eight-bit bytes, or 32 bits. A single CORTEX bit

string will consequently represent more than one integer.

in an array of integers, however, the 32 bit integers

follow sequentially from one array element to the next. A

long bit string therefore represents an array of integers,

rather than a single integer. For this reason the message

and the message array are declared as integer arrays.

13.43.1 Pseudocode.

declare message and messagemask as VAR parameters

display most frequently occurring question

display cue for explanation

IF asked, display explanation

ask for answer to the question

IF answer is yes

set message and messagemask to true

ELSE

set messagemask to true

leave message false

13.43.2 Draft Source Code.

SEGMENT MessMask;

(Display the most frequently occurring question and obtain the user's answer to it.

insert conon types

insert PkSPC

page 231

insert PASDOS

PROCEDURE Blankln (number: integer); EXTERNAL;

PROCEDURE PressKey (margin: integer); EXTERNAL;

PROCEDURE FormFileName (filenumber: integer; title: string; VAR FileName: string); EXTERNAL;

PROCEDURE DisplayTextFile (DiskFile, directory, heading: string; filenuid*r, firstline: integer); EXTERNA-

FUNCTION Ask (margin: integer; question: string): boolean; EXTERNAL;

PROCEDURE Setlessageindlask (LiyeQuestion: integer; VAR Message, MessageMask: bitstring);

VAR FileNave: string[30];
Cb: char;
Answer, Dumy: boolean;

BEGIN

FormFileName (LiveQuestion, lquestion', FileName);

DisplayTextFile (FileName, lquestionl, 'Question', LiveQuestion, 2); Display the question text

writeln ('Please answer the question "Yes" or "No". ');

writeln ('Press IIWII for "Why" if you want to see an explanation of this question. ');

Gate: = ConSilent;

IF (Gate = IWI) OR (Gate z Iwl) THEN BEGIN

FormFileName (LiveQuestion, lexplanation', FileNate);

FileName: z concat('\shell\question\', FileNate);

IF fstat (FileNave) z false THEN BEGIN

writeln ('No explanation for this question is on file. ');

PressKey (7);

END (of IF

ELSE BEGIN

DisplayTextFile (FileNate, lquestionl, 'Explanation', LiveQuestion, g); Display the explanation text

END; of ELSE)

REPEAT Gate: = ConSilent UNTIL

(Gate IYI) OR (Gate = IyI) OR (Gate = IN') OR (Gate z In');

END; (of IF)

IF (Gate = IYI) OR (Gate = IyI) THEN

Duimy: = setbit (Message, LiveQuestion); Set Message to true if answer is 'yes'

Duimy: = setbit (MessageNask, LiveQuestion); Set MessageMask to true if answer is 'yes' or 'no'

END;

BEGIN END.

13.44 RemoveContradictedSolution.

A solution whose essential classifier contains a bit that

does not match the corresponding message bit must be incor-

page 232

rect. This segment of CORTEX removes from the list of

solutions any solution which, for this reason, cannot be

correct. The effect of shortening the list is to accelerate
the next search for the most frequently occurring question.

A question removes a solution from the list because one of
the solution's essential questions has been found to be

contradicted by the answer. It follows, as a corollary,
that all the solutions which remain in the solutions list

must be possible solutions if the answer to a question
fails to remove any solution. This is an important mile-

stone in the working of CORTEX bacause from this point

onwards it is no longer necessary to search for the most
frequently occurring question. It is sufficient, when all
the remaining solutions are possibly correct, to find which
is the most probably correct. For this reason, this proce-
dure sets a switch to true and returns its value to Message

as soon as no more elements can be removed from the solu-

tions list.

13.44.1 Pseudocode.

go to the first element of the solutions list

compare the message bit with the corresponding essential

mask bit using the Frey algorithm

IF they differ THEN

remove solutions list element

repeat for all solutions list elements

13.44.2 Draft Source Code.

SEGNEK RemSoln;

(Remove from the list of solutions any whose essential mask is contradicted by an answer to a question
insert global types

PROCEDURE Rezovecontradictedsolutions (message, XessageXask: bitstring; XFQ: integer;

VAR Head: solutionpointer);

VAR Current, Previous: solutionpointer;
IntermediateResultl, IntervediatResult2, EssentialResult: boolean;

BEGIN

Current: = Head; Current set to first element of solutions list

WHILE Current <> NIL DO BEGIN

InteriediateResultl: = NOT (testbit(Nessage, XFQ) XOR testbit(Currentl. classifier, NFQ));

page 233

IntermediateResult2: = testbit (MessageMask, MFQ);

IF IntermediateResultl kND IntermediateResult2 = false THEN (If the result is false,

IF Current = Head THEN BEGIN To delete first solution record

Head: = Head A next; Move head pointer to next element
dispose (Current); Delete first element)

Current: = Head; Set current pointer to what is now the first element

END (of IF

ELSE BEGIN

Previous'l. next: = CurrentA. next;
dispose (Carrent);

Current: = Previous". next;
END (of ELSE

ELSE BEGIN

Previous: = Current;

Current: = Current". next
END; (of ELSE

END; (of WHILE

END;

BEGIN END.

Delete if non-head element
By-pass current element
Delete by-passed element

Set current pointer equal to next element

Not deleting element because still possible solution)

(move previous pointer to current element)

(Move current pointer to next element)

If CurrentA. next is NIL, WHILE loop is exited)

13.45 FindUsualQuestion.

When no element can be removed from the solution list by

RemoveContradictedSolutions then all the remaining elements

are possible solutions. These possible solutions must be

ranked in order of probability so that the most probable

can be presented to the user as the solution to the prob-

lem. This is done by obtaining answers to all the questions

that appear in their usual masks, and then choosing the

solution with the largest proportion of correctly answered

usual questions.

This function returns the number of any question that

appears in the usual mask of any of the possible solutions.

By checking the message mask for that question each time,

those questions that have already received an answer be-

cause they are essential to some other solution are not

asked again.

page 234

13.45.1 Pseudocode.

go to the first element of the solutions list

find the first question in the usual mask
IF the message mask for that bit = false

return the number of the question to FindResult

so that an answer can be obtained with MessageAndMask

ELSE go to next element in solutions list

go to the next element of the solutions list

13.45.2 Draft Source Code.

SEGMENT UsulQust;

(Return the number of next unanswered usual question for all the possible solutions
insert global types

FUNCTION Find0sualQuestion (MessageMask: bitstring; CountOfQuestions: integer; Head: solutionpointer): integer;

VAR Current: solutionpointer;
Found: boolean;

Index, QuestionNumber: integer;

BEGIN

Current: = Head; Go to beginning of solutions list

Found: = false;

WHILE (Current <> NIL) AND (Found = false) DO BEGIN

Index: = 1;

WHILE (Index <= CountOfQuestions) AND (Found z false) DO

IF (testbit(CurrentA usualmask, Index) true) W (testbit(MessageMask, lndex) false) THEN BEGIN

Found: = true;

QuestionNuiber: = Index;

END { of IF

ELSE

Index: = Index + 1;

Current: = CurrentA. next;
END; (of WHILE

IF Found = true THEN

FindUsualQuestion: = QuestionNumber

ELSE

FindUsualQuestion: = 0;

END;

BEGIN END.

page 235

13.46 CalculateProbability

Answers will have been provided for all the questions that

appear in the usual masks of the possible solutions by the

time that this procedure is called. The number of usual

questions for each solution will have been calculated when
the classifiers and their masks were written. This proce-
dure obtains the total of usual questions which have been

answered correctly, and calculates a percentage probability

of the solution being the correct one.
13.46.1 Pseudocode.

go to the beginning of the solutions list

find the first question in the usual mask

obtain a result for this question
IF the result is true

increment a counter

go to the next usual question

go to the next solutions list element
13.46.2 Draft Source Code.

SEGMENT Probable;

(Calculate the probability of the possible solutions being correct.
insert global types

PROCEIXJRE calculateProbability (Message, MessageMask: bitstring; CountOfQuestions: integer;

Read: solutionpointer);
UR Current: solutionpointer;

IntervediateResultl, IntermediateResult2, UsualResult: boolean;

Index: integer;

BEGIN

Current: z Head; Go to beginning of solutions list

WHILE Current (> NIL DO BEGIN

FOR Index: = 1 TO CountOfQuestions DO BEGIN

IntermediateResultl: = NOT (testbit(Xessage, Index) XOR testbit(Currentl,. classifier, Index));

IntersediateResult2: z testbit(MessageMask, Index) AND testbit(Currentl,. usualmask, Index);

UsualResult: = IntermediateResultl M InterrediateResult2

IF UsualResult = true THEN t True when the answer to the usual question is correct
Current'l. ususaltrue: = Current". usualtrue + 1; Increment counter

END; { of FOR)

Current'l. probability: = (CurrentA. usualtrue DIV CurrentA. totalUSUal) * 100;
Current: = Current, ". next (Go to next solutions list element

page 236

END; (of WHILE

END;

BEGIN END.

13.47 DisplayResult.

The system produces the solution that, in the light of the

answers supplied by the user to the questions, is most
likely to be the correct one. This procedure extracts the

text of the most probable solution from disk and displays
it together with its probability expressed as a percentage.
13.47.1 Pseudocode.

go to the beginning of the solutions list

find the solution with the largest probability

record its keynumber as a variable

read its probability field

extract that solution from the solutions disk file

display the text of the solution and its probability

pause the program

13.47.2 Draft Source Code.

SEGMENT DispRslt;

(Display the most likely solution with its probability on screen.
insert global types

insert PASPC
insert PASDOS

PROCEDURE PressKey (margin: integer); EXTERNAL;

PROCEDURE ForiffileMame (filenumber: integer; title: string; VAR FileName: string); EXTERNAL;

PROCEDURE DisplayTextFile (DiskFile, directory, heading: string; filenumber, firstline: integer); EXTERNAL;

FUNCTION YesNo (margin: integer); EXTERNAL;

PROCEDURE Displaylesult (Head: solutionpointer);
VAR Disk: text;

Current: solutionpointer;
Line: string(100];
Gate: char;
FileName: string[30];
FrontRunner, Counter: integer;

Probability: real;

BEGIN

CIrScr;

page 237

IF Head, ', = NIL THEN BEGIN

writeln (1 1: 7,, 1 know of no solution that matches these answers. ')

PressKey;

END (of IF

ELSE BEGIN

Current: = Head; Go to first solution list element

Frontlunner: z Currentl%keynumber;

Probability: = CurrentA probability;

WHILE Current 0 NIL DO BEGIN

IF CurrentA probability > Probability THEN BEGIN j Next element is the more probable

Frontkunner: = CurrentA keynumber; (Update FrontRunner

Probability: = CurrentA Probability (Update Probable

END; [of IF)

Current: = CurrentA. neXt

END; (of WHILE Current

ForinFileName (FrontRunner, 'solution', FileName);

assign (Disk, FileName); Connect Disk with FrontRunner on disk file

ChDir ('solution');

reset (Disk);

writeln (I 1: 7, 'The most likely solution is; ');

TextW! ndow (10,8j6,60); (Emphasise displayed solution text

TextFrame (true);

Counter: = 10;

WHILE NOT eof(Disk) DO BEGIN (Write solution text into screen box

readln (Disk, Line);

GoToXY (12, Counter);

writeln (Line)

Counter: = Counter +1

END; j of WHILE)

close (Disk, true);

ChDir ('\shell');

writeln (I 1: 7, 'The probability of this solution being correct is 1, Probable: 2,1 percent.);

writeln ('Press "W" for "Why" if you want to see an explanation of this solution.,);

writeln ('Press any other key to clear the screen and begin another session. ');

Gate: = ConSilent;

IF (Gate = IWI) OR (Gate = V) THEN BEGIN

FormFileName (FrontRunner, lexplanation', FileNaze);

FileName: = concat('\shell\solution\', FileNate);

page 238

IF fstat (FileName) = false THEN

writeln ('No explanation for this solution is on file. ')

USE

DisplayTextFile (FileXame. lquestionl, 'Explanation', FrontRunner, l);

Gate: = Consilent;

END; (of IF

END; (of ELSE

END;

BEGIN M.

13.48 ClearHeap.

When the program has found the most probable solution, the

heap will still contain all the remaining possible solu-

tions. Upon leaving the program, in order to try another

CORTEX analysis or to run another program, the solutions
list should be removed from memory. This segment empties

the heap.

13.48.1 Pseudocode.

go to head of linked list

WHILE NOT end of list

dispose of list element

exit to the segment FindResult

13.48.2 Draft Source Code.

SEGMENT ClrHeap;

(Remove the solutions linked list from memory.
insert common types

-PROCEDURE ClearSeap (VkR Head: solutionpointer);

VAR Current, Succeeding: solutionpointer;

BEGIN

Current: = Read;

WHILE Current <> NIL DO BEGIN

Succeeding: = CurrentA. next;
dispose (Current);

Current: = Succeeding;

END; (of WHILE

Head: = NIL

END;

BEGIN END.

page 239

Chapter 14. IMPLEMENTATION OF CORTEX

An architectural design project will take on a different

character according to the observer's point of view. To an
historian it is a manifestation of its times, to a banker
it is a money pump, to a building scientist it may be a
thermal transfer network, a critic will see it in terms of

stylistic trends, while to a conservationist it will proba-
bly be something fearful. An architect's own design can

manifest itself to him in equally varied terms. It could be

an attempt to explore a design idea in built form, perhaps

merely a way of earning a living, or it may be the response
to an inner compulsion to make visual sense of some corner

of the built environment. The implementation that I propose
to make of the Cortex shell starts from this last preoccu-

pation.

A design will often begin with a diffused appreciation that

something is amiss with someone's physical environment. A

business cannot work effectively in its existing surround-
ing, a family is living less than well because its dwelling

is ill-adjusted, or the public life of a community lacks a

point of focus. An attempt to deal with the malaise usually
begins as a dual process of gathering together information

and starting to generate more information. Site and build-

ing surveys accumulate, regulations are appraised, client's

needs and resources are assessed and drawings are made in

an effort to summarise the steadily increasing mass of
information. Other drawing, the early design sketches,
begin the exploration of formal possibilities and them-

selves reveal the need to acquire more information. In this

way the definition of the problem and the search for a

solution proceed together and in a state of mutual support.

Architectural Precedent

The most pervasive type of design information, using that

word in its general sense of 'that of which one is ap-

praised', is knowledge of the work of other architects.

page 240

Every design is to some extent the result of the processing

within the imagination of the architect of the buildings he

has visited, seen illustrated, or heard described. observa-

tion and assessment of the buildings of others goes on in

the mind independently of a particular project, but it

increases in intensity and specificity when a building

design is in hand. Gathering information on examples of

architecture and on architectural precedent is a part of

every serious building design enterprise.

Most of this processing occurs subconsciously, and the

results emerge in a way that is largely outside the control

of the conscious mind. That is why Le Corbusier adopted the

practice of letting a design task mature silently in his

mind for some months before beginning to commit his ideas

to paper. During that time the elements of the problem,
including images of the buildings that he had studied over
the years, would "float, simmer and ferment" in his imagi-

nation and lay the foundation for the emergence of the

design of the building. This process is entirely non-mono-

tonic, and can be regarded as the architect's response to

the Rittellian 'wickedness' of design problems.

In the past an architect's knowledge of buildings that he

has not himself visited was gained from books, magazines,

and illustrations thrown onto auditorium or television

screens by lecturers and film makers. The computer screen,

however, has so far played little part in the visual en-

richment of the architect's imagination. This is on account

of the large data storage requirements of pictorial proc-

essing.

Because of the need to identify and specify each pixel, a

single whole-screen colour image on a VGA monitor requires

as much as Imb of memory. Conventional magnetic storage

media are rapidly overwhelmed by such large storage needs.
But recently a new data storage medium has appeared in the

form of optical disc technology. Because the data is read

page 241

my means of an, extremely fine laser beam the tracks on an
optical disc can be very close together, and the density of
data storage is in consequence much higher than a floppy or
a hard magnetic disc. A 12cm CD-ROM, for example, contains
a track 20km long and can hold 525mb of data.

The high storage capacity of the optical disc makes it now
possible for the architect to use the screen of a desk-top

computer for pictorial, as opposed to graphical, purposes.
Whole-screen full colour images, rather than simply vecto-
rised line drawings, can be stored in large numbers on an
optical disc and displayed on the screen of a modest size

computer. The implementation of Cortex makes use of this
technology for the purpose of describing the visual proper-
ties of the built environment.

Slide Libraries

Every school of architecture in Britain has a collection of

35mm slides of buildings, usually kept as part of its

library stock. If the librarian or a member of staff is

diligent the slide collection will be indexed and available

for consultation or loan. The largest school slide library

in Europe, that belonging to the Architectural Association,

is the product of nearly a century of photography, collec-

tion and maintenance, The AA collection now consists of

some 80,000 slides and it is an architectural visual re-

source of international importance. It contains photographs

of nearly every significant twentieth-century building,

together with views of most important European townscapes.

So large is the AA collection, however, that it is hard to

exploit it fully. A whole morning spent with the index and

slide viewer is not enough to ensure that all the photo-

graphs in the library which are relevant to a particular

essay or lecture topic have been found. The inquirer is

overwhelmed by the quantity of information which has been

put together in the collection by so many photographers. In

page 242

fact, the collection is difficult to use at all unless the
inquirer has a clear idea beforehand of what he is looking

for.

No other school has so large a slide collection, and few

have one that is as well-managed as that of the AA. Howev-

er, most school slide libraries, despite their more modest

size, are as difficult to use as is the AA collection. It
is instructive to consider what are the problems which

confront the user in his search for the right set of slides

and what is the source of his difficulties.

The slides in the AA collection are indexed in three ways.
Every slide can be found provided that the architect, the

building type, or its date is known. A fourth 'subject'

catalogue is kept on a card index. Each of the four indexes

is structured hierarchically. The architect index is in the

3 style of a telephone directory. An alphabetical order of

surname is subdivided by first name. Dates are in simple

chronological order, while the building type index is in

alphabetical order subdivided according to country. Three

presuppositions underlie the design of an indexing method

of this type.

Firstly, the user is assumed to have a limited range of
interest. No facility exists for finding all pictures

showing brick domes, for instance, nor can examples of

axially planned spaces be found. only if author, building

type, subject or date are known can the inquirer make

progress, and no other information is useful. In the second

place, the indexes are structured deductively. If the user
begins a search with the name of a particular country then

it is assumed that he can only be concerned with places

within that country. This makes no provision for finding,

perhaps, comparative examples of houses built on mountain

slopes in both Spain and Peru or, alternatively, photo-

graphs of naturally ventilated buildings in several differ-

ent desert climates. But an architect, when he is evolving

page 243

11

a design, does not think deductively. He will want to see
what it looks like if two spaces interlock at the corners,
for example, or how the circulation can work if a building
is planned round courtyards. Furthermore, if no illustra-

tions of a suitable courtyard circulation pattern can be

found the area of interest may be shifted to buildings

consisting of linked pavilions. In fact, the search pattern

of a designer will evolve according to a non-monotonic

principle of association rather than follow a logical

deductive pathway.

The third presupposition is that the index system is pas-

sive. The initiative in the inquiry is provided by the user

and the catalogue will yield, but not proffer, the informa-

tion. Expert systems, which are by their nature interac-

tive, are a type of artificial intelligence program which

can overcome this limitation and provide the user of a

slide library with intelligent access to its contents.

The Dublin Disc

The difficulty that users experience in using conventional-
ly indexed collections of slides persuaded the slide li-

brarian of the School of Architecture at University Col-

lege, Dublin, to make an experiment using optical disc

technology. About 10,000 slides from the school's collec-
tion of architectural photographs was copied onto a 30cm

Philips Laservision optical disc during the autumn of 1985.

The slides include images from all historical periods from

the neolithic onward, and photographs of the important

buildings of most European countries are recorded on the

disc. (Hastings, 1986)

only part of the capacity of a 30cm Laservision optical
disc was taken up by images of buildings in the Dublin

experiment. A single disc can contain as many as 54,000
images, which is more than two thirds the number of slides
in the AA collection. One disc could hold more than five

page 244

A

z

q

collections the size of the Dublin slide library. So many
images cannot be utilised effectively by means of conven-
tional manual search methods.

A part of the Dublin experiment was to provide access to

the contents of the disc through an IBM PC. The special

software that was written to control the Laservision disc

drive makes use of conventional database techniques. A

search can be made on any of eight fields, and the usual
help facilities are provided. However, the search method

adopted at Dublin is only a small improvement on the manual
index with which the user if faced at the AA. A computer
keyboard is more convenient to use than a card index draw-

er, but the search method is the same.

The Questions
Since the act of formal creation occurs within the mind of
the individual designer it follows that there are as many

attitudes towards the design of buildings as there are

architects. A computer system to access the images con-
tained in a slide library, if it is to be useful to the

architect in his role as a creator of form, needs to be

responsive to this fact. It must make a selection of the

material according to the point of view of the particular

architect who is making the inquiry.

Appendix 1 of this thesis contains 47 quotations taken from

the writings of architects, critics and historians which

have appeared in print during the course of the last 130

years. They have been selected so as to express as wide a

spectrum as possible of modern British and American atti-

tudes towards architecture. Other approaches to the subject

have characterised earlier periods of architecture, such as

the Palladian or the Gothic revivals, but they are excluded

from the list of questions because they are of antiquarian

rather than operational interest to designers.

page 245

The area of architectural interest of the user is elucidat-
ed by asking him a selection of the quotations listed in
Appendix 1. They are sent to the screen enclosed in quota-
tion marks, but without title or attribution, and the user
is asked if he agrees with the statement. His attitude
towards his role as a designer of buildings is built up
from the pattern of his answers.

An answer to a particular question will often render other
questions irrelevant. For example, if the user concurs with
the moral determinism of question 9 then it would make
little sense to ask if he also agrees with the eclecticism

of Charles Moore and Gerald Allen expressed in question 37.
Conversely, the scope of the set of images to be displayed

can be narrowed if the user agree with both the functional-
ism of question 17 and the industrialism of question 30.

Cortex is written to respond to both of these circum-

stances.

It is possible for the user's answers to indicate an atti-
tude that lies outside the understanding of the system.
Should both questions 5 and 41 receive agreement, then the

user will receive the answer that no suitable selection of

slides can be made. An explanation to the effect that

futurism and nostalgia are incompatible is available for

sending to the screen in this case.

The Laservision Disc Reader

The equivalent of 12cm audio compact discs, known in the

context of computer science as CD-ROM's, can be read by

drives which are built into the chassis of a desk-top

computer. Laservision discs, however, which are 30cm in

diameter, require a separate disk drive. The drive is

similar in size to the computer itself.

An analogue 30cm optical disc, such as that produced in

Dublin, can be played on one of the six types of Philips
Laservision disc drives. All six machines except the sim-

page 246

plest, known as the VP835, can be controlled by a desk-top

computeri Larger models of Laservision disc drives include

a CPU so that they can use application program read direct-
ly from the optical disc. However, the VP835B model which
is used to implement Cortex contains no CPU and must be

controlled by an external computer.

Output from the Laservision is in video format, and it
therefore cannot be accepted by a computer monitor. Inter-
face cards are available which are able to convert a video
signal to digital so that a computer's own screen can
display the image. The Cortex implementation, however,

makes use of a separate video monitor to display output
from the optical disk. Cortex output appears only on the

computer screen. The installation is shown diagrammatically
in Figure 14.1.

Computef

F-code
corvwrwws
4 ol ý Mýl 0

VP SSt

Vkleo#ALx%o

Qýig
1111

Figure 14.1
Cortex Laservision Installation

The VP835B is equipped with a built-in code, known as F-

code, consisting of 73 commands for controlling the opera-
tion of the drive. The codes enable the computer to issue

instructions to the disc drive to scan the disc forwards or
backwards, to regulate the speed of scan, to select any
frame, to group frames into chapters, to repeat a sequence
of frames a specified number of time, to turn sound on and

off, and to carry out a number of auxiliary operations such
as beep, clearing the screen and ejecting the disc. For

example, the command F1473R will bring frame 1473 to the

page 247

monitor screen and hold it there while Q18R will access the
frames in chapter 18. In this implementation of Cortex the

output of the program takes the form of F-code commands.

Cortex and the Dublin Disc
There is effectively no limit to the number of classifiers
that can be written in a Cortex implementation. A classifi-
er in Cortex is simply another record-type variable, upon
which there is no limitation as to number. A separate
classifier can therefore be written to represent the atti-
tude to architecture that is revealed by any combination of
answers to questions that a user may give. The first re-

striction upon search imposed by conventional indexing

systems, that the user must be assumed to have a limited

range of interests, is overcome in this implementation of
Cortex. In a fully developed system as many attitudes as
the knowledge engineer can think of can each be provided
for.

Secondly, there is no necessity for one picture to be

selected for display just because another has already been

selected. There is no logical connection between the selec-
tion of one image and another, nor between the definitions

of sets of images. The output of the system is determined
by the associations of which the knowledge engineer is

aware between the visual significance of the images that

are recorded on the optical disc. An intimate and subtle
knowledge of architecture and the process of design is

needed to do this successfully, but no familiarity with
logic or logic programming is called for. The knowledge

engineer is free in Cortex to classify the images in a non-
monotonic way that is appropriate to architectural design.

In the third place, the passive nature of traditional
library systems is superseded in this implementation. A
card index, or a computer search system such as GEAC will
furnish the user with a reference provided that the correct
information is supplied. The user must know ahead of time

page 248

I

what this information is, and the system has no ability to

prompt him for the necessary input. A user cannot, for

example, expect to succeed with a card index arrange ac-
cording to architect if he inputs the name of a building,

nor can the GEAC library system do more than confess fail-

ure under the same circumstance. But Cortex, like any
developed expert system, will prompt the user to supply the
information that is needed to complete a search successful-
ly. The user must, in order to understand the significance

of the images that are displayed on screen, bring to the

system a knowledge of architecture and design but he can

afford to be perfectly ignorant of the way that the comput-

er search system functions.

An optical disc such as that produced by University College

Dublin, because of its huge capacity, makes it possible for

very large quantities of visual information to be stored

and displayed. Cortex offers a way in which such large

stores of pictures can be accessed in such a way as to be

useful to the architect as designer and provider of build-

ing form. I think that a classificationist expert system

and an optical disc of information can be brought together

in a way that is useful to the architect when functioning

in his central role as the designer of buildings and ci-'
ties.

page 249

Chapter 15. CONCLUSION

(

I

-3

In Chapter I of this text I attributed a predominant role
to the leap of the imagination that is a necessary part of
the creation of the design of a building. It is a point
that has to be made because so many authors on design and
computing assert otherwise, and attempt to show that design

can sooner or later be represented by an algorithm.

"Once we get used to the idea of applying rules
to manipulate representations, it is easy to
imagine designs and their descriptions generat-
ed in computations. The procedures followed to
carry out these computations def ine and inter-
pret languages of designs. " (Stiny, 1985)

Similar notions have gained expression in Australia.

"Meta-languages have been discussed as a way of
formalising the complex mappings between mean-
ing and artifact in design, such that designs
can be generated that exhibit desired at-
tributes. The rules of a grammar that operate
on a vocabulary are considered as actions. We
have considered how other grammars might oper-
ate on those actions. The assumption is made
that designers are readily able to articulate
such grammars and that they constitute a type
of knowledge about design. " (Coyne & Gero,
1986)

These two quotations are based upon the same assumption as
that which underlay Wittgenstein's Tractatus, which is that

meaning is a consequence of correct formal representation.
They are similar to the claim that Wittgenstein makes for

logic as the glue of semantics.

"If we turn the constituent of a proposition
into a variable, there is a class of proposi-
tions all Of which are values of the resulting
variable proposition. In general, this class
too will be dependent on the meaning that our
arbitrary conventions have given to parts of
the original proposition. But if all the signs
in it that have arbitrarily determined meanings
are turned into variables, we shall still get a
class of this kind. This one, however, is not

page 250

I

I

dependent upon any convention, but solely on
the nature of the proposition. It corresponds
to a logical form -a logical prototype. " (TLP
3.315)

I argue in Chapter 7 that the search for an effective
procedure to represent the processes of thought must be

abandoned for the same reason that Wittgenstein came to

reject his notion, put forward in the Tractatus, that

meaning is founded upon logic. The early assumptions of
Herbert Simon, Allen Newell and Roger Schank about the

algorithmic nature of thinking were too lightly entered
into. Similarly, I think that any effort to underpin design

with rules or meta-languages is vain. These ideas too,

although many of the papers in which they appear date from

the mid-1980's, belong to the infancy of artificial intel-

ligence.

Graph Theory

The pictorial nature of graphs, using the term in its

general sense of a diagram made up of points and lines,

seems to place graph theory in close relationship to the

graphic arts. There are indeed areas of overlap between the

two. A map, for instance, may be regarded both as a terres-

trial graph and as a work of graphic art. Furthermore, the

words graph and graphic both derive from the Greek 1graphi-

kos", meaning drawing or writing, which itself is ambiguous

when translated into English. This intertwining of notions
has lead commentators to sometimes confuse graph theory

with graphical design. For example, an influential 27-page

paper by Archer (1970) contains 59 graphs in support of an

attempt to 'form the basis of a science of design. ' It is

necessary to disentangle the matted threads of this line of

argument.

A graph can illuminate a logical argument. The puzzle of
the bridges of Konigsberg proved to be amenable to graph
theory analysis in Chapter 9 because the rules of the

puzzle are fixed and the bridges across the Pregel do not

page 251

move. Consequently the solution to the puzzle can be de-
duced in a strictly logical manner from the premises. Graph
theory is used to solve very large scale problems of this
kind in electronic design, hydraulic systems and the con-
struction of industrial plant. Success in these areas of
activity make it superficially attractive to apply graph
theory to conceptual activities such as design. Are not all
graphs fundamentally the same? But argument by analogy is

notoriously unreliable, because it is based upon a supposi-
tion that since the two terms of a comparison are alike in

some respects they will be similar in others. But to do

this begs the question, and inference by analogy is logi-

cally unsound. Much design theory rests upon this weak

conceptual foundation.

The analogy breaks down when the logical character of graph
theory is compared with the non-monotonic nature of design.

The most conspicuous feature of the graph of the design

process is the presence of a feedback loop leading from

every vertex to every preceding vertex. Two things are

achieved by this representation of feedback and repetition
in design. Firstly, the true nature of the problem, which
initially defied description, is elucidated. Second, a

solution to that problem is revealed. That is the sense in

which Dennis Lasdun observed that;

3
"Handbooks will tell you that the job of an
architect is to give the client what he wants.
That is not your job or mine. Our job is to
give the client, on time and on cost, not what
he wants but what he never dreamed he wanted
and, when he gets it, he recognises it as some
thing he wanted all the time. " (Lasdun, 1965)

That is to say, it is only when a design is completed that

one is able to see what the problem was. This essential

point, central to the enterprise of design, is generally
ignored in design studies texts. It is often asserted, for

example, that design is in some sense goal-directed or

concerned with problem-solving.

page 252

I

"The activity of designing is thus a goal-
directed activity and normally a goal-directed
problem-solving activity. The properties which
are required to be exhibited by the proposed
artifact are defined by the objectives of the
problem. The details of the design are the
designer's conclusions as to the means by which
those properties may be provided. " (Archer,
1970)

Graph theory could no doubt elucidate the activity of
design if design were logical and goal-directed. However,

design is in reality non-monotonic, iterative and explora-
tory. I think that the kind of misunderstanding of design

which is exhibited by Bruce Archer in this quotation is the

main reason why design studies have yet to exert any influ-

ence on the way that designers actually work.

A special type of self-adjusting graph derived from Emil

Post's work on combinatorics has proved to be useful in

artificial intelligence. Rule-based expert systems make use

of the formalism of a production system to trace a path
from a description of the problem environment to a solu-

tion. But production systems too are deductive, and they

are therefore a poor representation of the process of

design.

The Cortex Shell

In this thesis I have drawn a distinction between the

necessarily logical functioning of computer hardware and
the ability of a computer program to work in a non-monoton-
ic fashion. It is possible to distinguish between the two

aspects of computing because the workings of the machine
itself cannot be altered by the user -a decision statement

will always make a specified comparison, for example -

whereas the output of the computer is susceptible to inter-

pretation by a human mind. A logical result, such as an

arithmetical solution, is no more or less valuable than a
descriptive, diagnostic or exploratory program output. The

type of output likely to be useful depends upon the needs

page 253

4
and viewpoint of the user of the system. Different minds
will interpret the output symbols according to different

criteria.

The principle upon which the expert system shell Cortex is
based is that of classification. A method or system is

required if a classification is to be made, but the method
may or may not be logical in character. Hierarchical clas-

sifications are logical, in that items are reached by

progression through sub-classes, sub-sub-classes and so on

until the required fineness of definition is achieved. A

small part of the Library of Congress catalogue reads;

Architectural design
Design, Architectural
Design
Structural design
Architectural drawing
Architecture

Composition, proportion, etc
Details

communication in architectural design
crime prevention and architectural design
Decoration and ornament, Architectural
Data processing

Architecture, computers in

Other classifications, such as the set of flowers growing
in an herbaceous border, for example, or the constellations
by which the fixed stars are identified, are based upon

pictorial or associational rather than logically related
ideas. The same could be said of the contents of the front

page of a daily newspaper, the program of an orchestral

concert, and not less important, the influences that shape
the design of a building. Ideas and notions are associated
in these cultural spheres in accordance with a real or

possible human point of view rather than the abstract
definitions of meaning which feature in logical systems

such as library indexes.

In Cortex the classification of one item with respect to

another is made when the classifiers are set up. The ele-

page 254

ments of a classifier are binary bits, and the information

which can be conveyed by each bit is strictly Boolean. The
fact, concept or assertion represented by a bit in a clas-
sifier is labelled true of false, but nothing is said about
its relation with any other bit in its own or any other
classifier. The classification which is achieved in any
implementation of Cortex may therefore be deductive or not

according to the circumstances of the case. In an implemen-

tation concerned perhaps with one of the technical aspects

of architecture the domain could be represented in a

strictly logical manner. However, in the implementation of
the Dublin optical disc described in chapter 14 the non-

monotonic properties of Cortex are exploited. This feature

of the implementation corresponds to the non-monotonic

nature of architectural design.

Further Research

In Chapter 81 concluded the section on intelligent tutor-

ing systems with a brief note about the line of research

undertaken in recent years by the authors of SOPHIE. The

qualitative physics that they have evolved is intended to

provide a bridge between the external physical world and
the inner mental world of meaning. But I believe that no
formal system can bridge that gap. The proposal made by de

Kleer that general terms such as equilibrium, oscillation

or feedback can provided the bridge is vain, for qualita-
tive physics only pushes the gulf between things and
thought backwards by one step in the argument. When quali-
tative physics is in place, the question remains as to what
do its general terms mean. This, like all such questions,

can only be answered with reference to a point of view, or
in terms of what Wittgenstein calls a language game. For

the lack of an observing consciousness, the regress of

meaning in qualitative physics becomes infinite.

I believe that a more promising line of research would be

to implement the method of control that I have used in

Cortex in the design of an ITS. In Cortex only a single

page 255

classification of solutions is necessary and it can be
compared directly to the pattern of the userts answers. An
ITS would necessitate an intermediate stage, in which
selection is made from a set of mental models of the stu-
dent and from operational models of the domain. These
procedures would use the same selection algorithm as is

employed in Cortex. A bit string recording the result of
these selections would then be compared with a classifier
representing the available advice in order to choose the
next screen display. An ITS designed in this way would have
the advantages that I claim for Cortex, of being very fast
in operation and being applicable to any domain.

Blackboards were invented at Carnegie-Mellon University in

the 1970ts as part of an effort to program a computer to

understand speech. The idea was that a central management

procedure, or blackboard, would select from a number of

software tools, or knowledge sources, according to their

usefulness and applicability in solving part of a complex

problem. Acting in unison under the direction of the black-

board, the knowledge sources would in combination find a

complete solution to the whole problem. The blackboard of
Hearsay-II, for example, could call on knowledge sources
developed for;

"extracting acoustic parameters, classifying
acoustic segments into phonetic classes, recog-
nising words, parsing phrases, and generating
and evaluating predictions for undetected words
of syllables. " (Erman et al, 1980)

The problem of control in blackboard systems is similar to

that which is encountered in the design of expert systems

and intelligent tutoring systems.

"The knowledge sources respond opportunistical-
ly to changes on the blackboard. There is a set
of control modules that monitor the changes on
the blackboard and decide what actions to take
next. Various kinds of information are made
globally available to the control modules. The
information can be on the blackboard or kept

page 256

separately. The control information is used by
the control modules to determine the focus of
attention. " (Englemore, Morgan & Nii, 1988)

No one method of control has been found to be superior to

all others in blackboard programs. However, all make use of
information and thus are domain specific.

The most general control method for blackboard systems that

has been devised so far is that proposed by Hayes-Roth

(1985). The core of her program is a scheduling mechanism
that maintains a rating for each knowledge source, and

calculates a score according to the state of the system.
When a score and a rating coincide the particular knowledge

source is triggered. When the action of the knowledge

source is finished the cycle is repeated.

This procedure is a more developed versions of the scoring

system devised by Frey for his House-Bas program. An ac-

count of the Frey algorithm is given in Chapter 11. In both

the Hayes-Roth and the Frey programs an action is taken as

a result of a score accumulating to exceed a threshold

value. But as in House. Bas, the scoring Hayes-Roth algo-

rithm is arithmetical and, at root, arbitrary. In the

example given in her paper, for example, one knowledge

source is assigned a credibility of 1.0, and another of

0.8. No explanation of these figures is supplied, for the

reason that they are the result of judgements about the

usefulness of the, particular tool in the domain under

consideration.

In recent years the notion of a blackboard has been expand-

ed to include any program whose purpose is to utilise

several different sub-programs in a co-ordinated way so as

to find the answer to large problems. I think that the

Cortex algorithm, in which control is logical rather than

arithmetic in character, could be developed to manage a
blackboard system in a more efficient and consistent way

than is possible with present methods.

page 257

The version of the Cortex shell that is presented in this

thesis is developed only to the stage of a prototype. The

prototype demonstrates that the algorithm is functional,

that the capacity of the system is large and that it works

very fast. Furthermore, it is an example of a department of

artificial intelligence that can be of use to the archi-
tect. The system contains 512 questions, only 47 of which

are linked to question files, and it can accept an effec-
tively unlimited number of solutions. Processing takes

place so quickly that no pause is visible to the eye.

However, the input and output routines are underdeveloped,

and the screen displays are graphically-poor. Cortex can

readily accommodate windows and icons, and the system would
be much more convenient to use with a mouse than it is with

a keyboard. Cortex in the form of a developed product would
be a convenient as well as a powerful system, and appropri-

ate implementations of Cortex would be fast and responsive

assistants to architects and other designers.

page 258

Appendix 1. TEXT OF THE QUESTIONS

In the optical disk implementation of Cortex the following

questions are sent to the screen for answering by the user.
The questions are presented to the user in quotation marks,
but without title or attribution.

Question 1.

Truth
"In architecture there are two necessary ways of
being true. It must be true according to the
programme and true according to the methods of con
struction. To be true according to the program is to
fulfil exactly and simply the conditions imposed by
need: to be true according to the methods of con-
struction is to employ the materials according to
their qualities and properties.... purely artistic
questions of symmetry and apparent form are only
secondary conditions in the presence of our dominant
principles. " (Viollet-le-Duc, 1863)

Question 2.

Arts & Crafts
"architectural beauty is the result of the harmoni-
ous and intelligent co-operation of the whole body
of people engaged in producing the work of the
workman. " (Morris, 1893)

Question 3.

Nationalism
"To a casual observer, the interest we feel in the
subject may appear to be the result of local preju-
dice or local choice, and our national style may
seem to have no greater claim upon us than the style
of a hundred other periods or countries. The fact,
however, is the reverse - that the style is marked
out from that of other countries in the most signal
and remarkable manner... The character of a style of
art does not depend upon the mere material from
which it has been fabricated, but upon the senti-
ments and conditions under which it has been de-
veloped. " (Mackintosh, 1893)

page 259

Question

Ornamentation
"I have made the following discovery and I pass it
on to the world: The evolution of culture is synony-
mous with the removal of ornament from utilitarian
objects. I believed that with this discovery I was
bringing joy to the world; it has not thanked me.
People were sad and hung their heads. What depressed
them was the realisation that they could produce no
new ornaments. " (Loos, 1908)

Question

Puturisin
"The tremendous antithesis between the modern and
the ancient world is the outcome of all those things
that exist now and did not exist then. Elements have
entered into our life of whose very possibility the
ancients did not even dream. Material possibilities
and attitudes of mind have come into being that have
had a thousand repercussions, first and foremost of
which is the creation of a new ideal of beauty,
still obscure and embryonic, but whose fascination
is already being f elt by the masses. We have lost
the sense of the monumental, of the heavy, of the
static; we have enriched our sensibility by a 'taste
for the light, the practical, the ephemeral and the
swift'. We feel that we are no longer the men of the
cathedrals, the palaces, the assembly halls; but of
big hotels, railway stations, immense roads, colos-
sal ports, covered markets, brilliantly lit galler-
ies, freeways, demolition and rebuilding schemes. "
(Sant'Elia, 1914)

Question 6.

Humanisin
"by the same excellent - because unconscious -
testimony of speech, arches 'spring', vistas
'stretch, domes 'swell', Greek temples are Icaln'
and baroque facades 'restless'. The whole of archi-
tecture is, in fact, unconsciously invested by us
with human movement and human moods. Here, then, is
a principle complementary to the one just stated. We
transcribe architecture into terms of ourselves. "
(Scott, 1914)

page 260

Question

Standardisation
"Standard i sati on, to be understood as the result of
beneficial concentration, will alone make possible
the development of a universally valid, unfailing
good taste. " (Muthesius & Van de Velde, 1914)

Question 8.

Glass Architecture
"The surface of the earth would change greatly if
brick architecture were everywhere displaced by
glass architecture. It would be as though the Earth
clad itself in jewellry of brilliants and enamel.
The splendour is absolutely unimaginable. And we
should have on the Earth more exquisite things than
the gardens of the Arabian Nights. Then we should
have a paradise on Earth and would not need to gaze
longingly at the paradise in the sky-" (Scheerbart,
1914)

Question 9.

Moral Determinism
"No one can doubt the educative value of visible
beauty; therefore it would revolutionise our lives,
if in all we produced and made we recognised the
necessity of conveying some common moral
sentiments. " (Voysey, 1915)

Question 10.

Stripped Classicism
"if our structure remains simple, unadorned, without
moulding, bare, we are then best able to arrange the
decorative arts so that each object of art will
retain its purest and clearest expression because it
will be totally independent of the construction.
Besides, who would not see that the use of such
materials results in the obtaining of the horizon-
tals and verticals that are proper to give to the
construction that calm and equilibrium that will
harmonise with the lines of nature? " (Garnier,
1917)

page 261

Question 11.

Rxpressionism
"Tell me what love is, what faith, and the iron will
of hope - and I will tell you what it means to
build: to bring the seventh day of creation one wave
further in the tidal chain that lovingly toys with
eternity. There is no greater Affirmer than the true
builder. Everything about him is expansion, pressing
outwards - the more rhythmical, harmonious and
healthy the pulse of his soul, the more perfect and
inimitable will be the superstructure he sets upon
the world's countenance, like a victorious seal upon
his existence. " (Finsterlin, 1920)

Question 12.

Purism
"Architecture is the masterly, correct and magnif i-
cent display of masses brought together in light.
Our eyes are made to see forms in light; light and
shade reveal those forms; primary forms which light
reveals to advantage; the image of these is distinct
and tangible within us and without ambiguity. It is
for that reason that these are beautiful forms, the
most beautiful forms. Everybody is agreed as to
that, the child, the savage and the metaphysician.
It is of the very nature of the plastic arts. " (le
Corbusier, 1920)

Question 13.

Ville Radieuse
"Their outlines softened by distance, the skyscrap-
ers raise immense geometrical facades all of glass,
and in them is reflected the blue glory of the sky.
An overwhelming sensation. Immense but radiant
prisms. This is no dangerous futurism, a sort of
literary dynamite flung violently at the spectator.
It is a spectacle organised by an Architecture which
has plastic resources for the modulation of forms
seen in light. " (le Corbusier, 1924)

Question 14.

Form Follows Function
"This meant in his courageous mind that he would put
to the test a formula he had evolved, through long
contemplation of living things, namely that form
follows function, which would mean, in practice,
that architecture might again become a living art,
if this formula were but adhered to. " (Sullivan,
1924)

page 262

Question 15.

Constructivism
"the machine naturally gives rise to a conception of
entirely new and modern organisms possessing the
distinctly expressed characteristics of movement - its tensions and intensity, as well as keenly ex-
pressed direction. Both of these characteristics
give rise to concepts of new forms, whereby the
tension and concentration inherent in this movement
will unwittingly - irrespective of the author's own
desires - become one of the fundamental moments of
artistic conception. " (Ginzberg, 1924)

Question 16.

The Bauhaus
"It is only through contact with newly evolving tech-
niques, with the discovery of new materials and with
new ways of putting things together, that the crea-
tive individual can learn to bring the design of
objects into a living relationship with tradition
and f rom that point to develop a new attitude to-
wards design, which is:

a resolute affirmation of the living environment of
machines and vehicles;
the organic design of things based on their own
present-day laws, without gloss and wasteful fri-
volity;
the limitation to characteristic, primary forms and
colours, readily accessible to everyone;
simplicity in multiplicity, economical use of
space, material, time and money.
The creation of standard types for all practical
commodities of everyday use is a social necessity. "

(Gropius, 1926)

Question 17.

Functionalism
"Architecture as 'an emotional act of the artist'
has no justification. Architecture as 'a continua-
tion of the traditions of building' means being
carried along by the history of architecture. This
functional, biological interpretation of architec-
ture as giving shape to the functions of life,
logically leads to pure construction: this world of
constructive forms knows no native country. It is
the expression of an international attitude in
architecture. Internationality is a privilege of the
period. Pure construction is the basis and charac-
teristic of the new world of forms. " (Meyer, 1928)

page 263

Question 18.

Zeitgeist
"building is an elementary activity of man intimate-
ly linked with evolution and the development of
human life. The destiny of architecture is to ex-
press the orientation of the age. Works of architec-
ture can spring only from the present time. " (CIAM,
1928)

Question 19.

Vitalisit
"Consider well that a house is a machine in which to
live but architecture begins where that concept of
the house ends. All life is machinery in a rudimen-
tary sense, and yet machinery is the life of noth-
ing. Machinery is machinery only because of life. It
is better for you to proceed f rom, the generals to
the particulars. So do not rationalise from machin-
ery to life. Why not think from life to machines?
The utensil, the weapon, the automaton - all are
appliances. The song, the masterpiece, the edifice
are a warm outpouring of the heart of man - human
delight in life triumphant: we glimpse the
infinite. " (Wright, 1931)

Question 20.

organic Architecture
"There remains an essential difference between the
architect and the engineer. The work of the engineer
has as its goal merely the performance of material
work within the limits or in the domain of economic
effects. That the result frequently contains other
expressive values as well is a side-effect, a sub-
sidiary phenomenon of his work. The architect, on
the other hand, creates a Gestalt, a total form of
work of spiritual vitality and fulfilment, an object
that belongs to and serves an idea, a higher cul-
ture. This work begins where the engineer, the
technologist leaves off: it begins when the work is
given life. Life is not given to the work by fash-
ioning the object, the building, according to a
viewpoint alien to it, but by awakening, fostering,
and cultivating the essential form enclosed within
it. " (Haring, 1932)

page 264

Question 21.

Priority of Space
"The effect of mass, of static solidity, hitherto
the prime quality of architecture, has all but
disappeared: in its place there is an effect of
volume, or more accurately, of plane surfaces
bounding a volume. The prime architectural symbol is
no longer the dense brick, but the open box. Indeed,
the great majority of buildings are in reality, as
well as effect, mere planes surrounding a volume.
With skeleton construction enveloped only by a
protective screen, the architect can hardly avoid
achieving this effect of surface, of volume, unless
in deference to traditional design in terms of mass
he goes out of his way to achieve the contrary
effect. " (Hitchcock & Johnson, 1932)

Question 22.

Broadacre City
"This tract of four miles square, by way of such
liberal general allotment determined by acreage and
type of ground, including apartment buildings and
hotel facilities, provides for about 1400 families
at, say, an average of five or more persons to the
family. To reiterate: the basis of the whole is a
general decentralization as an applied principle and
architectural reintegration of all units into one
f abric; f ree use of the ground held only by use and
improvements; public utilities and government itself
owned by the people of Broadacre City; privacy on
one's own ground for all and a fair means of sub-
sistence for all by way of their own work on their
own ground or in their own laboratory or in common
offices serving the life of the whole. " (Wright,
1935)

Question 23.

Humanised Modernism
"The term 'rationalism' appears in connection with
Modern architecture about as often as does 'func-
tionalism'. Modern architecture has been rationa-
lised mainly from the technical point of view, in
the same way as the technical functions have been
emphasised. Although the purely rational period of
Modern architecture has created constructions where
rationalised technique has been exaggerated and the
human functions have not been emphasised enough,
this is not a reason to fight rationalism in archi-
tecture. It is not the rationalisation itself which
was wrong in the first and now past period of Modern
architecture. The wrongness lies in the fact that
the rationalisation has not gone deep enough. In-

page 265

stead of fighting rational mentality, the newest
phase of Modern architecture tries to project ra-
tional methods from the technical field out to human
and psychological fields. " (Aalto, 1940)

Question 24.

Biological Analogy
"It has become imperative that in designing our
physical environment we should consciously raise the
fundamental question of survival, in the broadest
sense of this term. Any design that impairs and
imposes excessive strain on the natural human equip-
ment should be eliminated, or modified in accordance
with the requirements of our nervous and, more
generally, our total physiological functioning. This
principle is our only operational criterion in
judging design or any detail of man-made environ-
ment, regardless of how difficult it may seem to
apply the principle in specific cases. " (Neutra,
1954)

Question 25.

Anarchism
"No inhibitions should be placed upon the individu-
al's desire to build! Everyone ought to be able and
compelled to build, so that he bears real responsi-
bility for the four walls in which he lives. We must
face the risk that a crazy structure of this kind
may later collapse, and we should not and must not
shrink from the loss of life which this new way of
building will, or at least may, exact. A stop must
finally be put to the situation in which people move
into their living quarters like hens and rabbits
into their coops. " (Hundertwasser, 1958)

Question 26.

Monumentalisation of Technique
"I believe that in building you must deal with con
struction directly. You must, therefore, understand
construction. When you refine the structure and when
it becomes an expression of our time, it will then
and only then become architecture. " (van der Rohe,
1960)

page 266

Question 27.

Order
"Design is form-making in order
Form emerges out of a system of construction
Growth is a construction
In order is creative force
In design is the means - where with what when with
how much
The nature of space reflects what it wants to be

Is the auditorium a Stradivarius
or an ear

Is the auditorium a creative instrument
keyed to Bach or Bartok
played by the conductor
or is it a conventional hall

In the nature of space is the spirit and the will to
exist in a certain way. "
(Kahn, 1960)

Question 28.

Scientisin
"Man has been blindly flying into his future on
scientific instruments and formulas. The great news
on the artist-scientist-intellectual frontier is
that as the fog-and-black shadow of ignorance and
misconception recedes, there looms a sublimely
comprehensible conceptual patterning, which charac-
terizes all mathematical principles heretofore only
formulatively employed by the scientist, yet intui-
tively pursued by the artist as potentially modela-
ble. Experimental science has validated the artist's
intuitions but not his disciplines. " (Puller, 1960)

Question 29.

Place
"Man may readily identify himself with his own
hearth, but not easily with the town within which it
is placed. 'Belonging, is a basic human need - its
associations are of the simplest order. From 'be-
longing' - identity - comes the enriching sense of
neighbourliness. The short narrow street of the slum
succeeds where spacious redevelopment frequently
fails. " (Newman, 1961)

Question 30.

Industrialism
"There can be no doubt that the first prerequisite
for a good building has always been the best tools
and the best methods, and it is in industrialisation
that this condition is best fulfilled. For industri-

page 267

alisation brings within our reach a level of techni-
cal accuracy, quality and precision never before
attained in the history of building. Industry, not
the individual and nor craftsmanship, determines
what can be achieved and thus establishes the bound-
aries of the possible. " (Wachsmann, 1961)

Question 31.

Contextualism
"The main justification for honky-tonk elements in
architectural order is their very existence. They
are what we have. Architects can bemoan or try to
ignore them or even try to abolish them, but they
will not go away. or they will not go away for a
long time, because architects do not have the power
to replace them (nor do they know what to replace
them with)., and because these commonplace elements
accommodate existing needs for variety and communi-
cation. The old cliches involving both banality and
mess will still be the context of our new architec-
ture, and our new architecture will significantly
will be the context for them. " (Venturi, 1966)

Question 32.

Archigras
"Architecture will become infinite and transient. At
last the dividing line between the things which we
carry round in the palm of the hand and the whole
city will merge together as parts of the hierarchy
of designed, phased, chosen objects; to suit the
condition and requirements of the time they will be
able to be changed for something better. " (Cook,
1967)

Question 33.

Visionary Architecture
"As architecture grows into a phenomenon of human
ecology, the cities will become organisms reflecting
in their structural complexity the complexity of the
life they contain. Upgrading from aggregation to
organisation signals the end of present-day archi-
tecture and the concept of individual structures...
Life itself will be the servant of a rational proto-
human world. If aesthetic man measures the weight of
his burden, disassociates himself from the whimsical
and the fashionable, he will conceive the cradles
of future cultures and be responsible for the advent
of the ultrarational world. " (Soleri, 1971)

page 268

Question 34.

Conservation
"The architectural heritage is a capital of irre-
placeable spiritual, cultural, social and economic
value ... This capital has been built up over the cen
turies: the destruction of any part of it leaves us
poorer, since nothing new that we create, however
fine, will make good the loss. " (Committee of
Ministers, 1975)

Question 35.

Urbanism
"The debate is that of urban morphology as
against the zoning of planners. The restoration of
precise forms of urban space as against the waste-
land which is created by zoning. The design of urban
spaces, both traffic and pedestrian, linear and
focal is, on the one hand, a method which is general
enough to allow flexibility and change and, on the
other, precise enough to create both spatial and
built continuity within the city. " (Krier, 1975)

Question 36.

Typology
"The design process is a way of bringing the ele-
ments of a typology - the idea of a formal structure
- into the precise state that characterises the
single work. "
(Moneo, 1976)

Question 37.

Eclecticism
"All of us every day face the onslaught of experi-
ences which require varied, complex, and agile
responses. This is to say that we inhabit a plural-
ist world, and that we ourselves are many-faceted
creatures. Thus no single orthodoxy - including the
single-minded return to copying buildings from the
past - will do, no single set of forms and images to
shape the environment we build for ourselves. The
meaning of buildings like those around Rockefeller
Plaza and the new ones along the Avenue of the
Americas is that architecture can have many potent
likenesses. The choice is altogether ours, and the
task is to learn to cast our nets backwards in time
- and outwards - to find what feels right for a
given design problem, and what among the many op-
tions seems really worthwhile. " (Moore & Allen,
1976)

page 269

Question 38.

Small is Beautiful
"Town planning needs to shift emphasis towards
encouraging and managing the kinds of small scale
change likely to be most relevant, the detailed
planning of small sites and of such local environ-
mental schemes. In other words, there needs to be a
new and more sensitive style of working geared to
the management of small scale urban change. "
(Shankland et al, 1977)

Question 39.

Zen of Architecture
"Architects sometimes say that in order to design a
building, you must have 'an image' to start with, so
as to give coherence and order to the whole. But you
can never create a natural thing in this state of
mind. If you have an idea - and try to add the
patterns to it, the idea controls, distorts, makes
artificial, the work which the patterns are trying
to do in your mind. Instead you must start with
nothing in your mind. " (Alexander, 1979)

Question 40.

Seniotics
"Every human society communicates architectonically.
The component units of an architectonic code or
system consist of contrastively-opposed formations
in media addressed to visual perception. Distinc-
tions or disjunctions in material formation are
intended to cue culture-specific difference in
meaning in a manner precisely analogous to other
semiotic systems such as verbal language or bodily
gesturing. In the broadest sense, communication
consists of the transmission of information regard-
ing the perception of similarities and differences.
The system of the built environment, like any semi-
otic code, is a complexly-ordered device for the
cuing of such perceptions. " (Preziosi, 1979)

Question 41.

Nostalgia
"For nostalgia is a strange and enigmatic longing
for that which escapes reasoning but survives pro-
foundly and forcefully in the feelings of the citi-
zens. They themselves have never lost their taste
for classical architecture and, despite all the
efforts of the media to convince them of the con-
trary, they have never longed for the Bauhaus boxes

page 270

or other experiments of the building industry. "
(Krier, 1981)

Question 42.

Ritual
"Today if I were to talk about architecture, I would
say that it is a ritual rather than a creative
process. I say this fully understanding the bitter-
ness and the comfort of the ritual. " (Rossi, 1981)

Question 43.

Post Nodernisis
"architecture is doubly-coded, one half Modern and
one half something else (usually traditional build-
ing) in its attempt to communicate with the public
and a concerned minority, usually other
architects ... treating the city as an historical
artifact, in stressing metaphor, complexity, symbol-
ism, irony and a host of rhetorical means. "
(Jencks, 1983)

Question 44.

classicism
"There are practically no ugly Georgian houses. I
live in a Georgian house myself and I notice that
most architects choose to live in them too. The
estate agent will attach the word 'Georgian, or
'Queen Anne' to a house he is trying to sell because
he knows it is very near everyone's dream. And why
is this? It is because these houses have the right
balance of window to wall, they give permanent
protection from wind and weather, they are comfort-
able and beautiful, and they seem perfectly suited
to man. And whether one is elderly and poor in a
terraced almshouse, or noble and great in a mansion,
the needs and aspirations of humanity are expressed
in classical terms through bricks and stone. "
(Terry, 1983)

Question 45.

The Skyscraper
"the skyscraper - in terms of size, structure, and
function, scale and symbolism, and, above all, human
and urban impact - remains the single most challeng-
ing design problem of our time ... The twentieth
century architect's most telling and lasting re-
sponse to his age is the topless tower of trade.
(Huxtable, 1984)

page 271

Question 46.

Behavioural Deterninisin
"we can deduce that the various forms of social
breakdown tend to occur in a set order as design
features worsen to the successive degrees of deprav-
ity needed to undermine each social taboo in turn.
The effect is a general one ... and it is not a
question of different designs being responsible for
different kinds of behavioural lapse. Design varia-
bles appear to exert the same kind of demoralising
influence, and the values within each variable
affect the degree of demoralisation. 11 (Coleman,
1985)

Question 47.

Coimercialism
"Any client, whether his building is a museum or a
hotel, surely wants to employ a designer who will
provide high quality and efficient design fused into
a building which is completed to budget and to
programme. In short, he wants a friendly commercial
service provided quickly and effectively, not patro-
nising arrogance, selectively dispensed. " (Wheat-
ley, 1990)

page 272

Appendix 2. LISTING OF CORTEX

I
(Cononl. Typ)
i Common types for use with CORTEX.)

CONST XaxNuW*rOfQuestions = 512;
MaxNumberOfIntegers = 16; Prospero integers are 32 bit (1602 = 512)

TYPE bitstring a ARRAY [l.. XaxNuaberOfIntegers] OF integer; I type of Message and
MessageNask)

classifiertype = RECORD
kepumber: integer; type of Classifier in SetUpSolutionList
essentialvask: bitstring;
usualmask: bitstring;
classifier: bitstring;
totalusual: integer
END;

solutionpointer - I'solutiontype; t type of Classif disk file)

solutiontype z RECORD
keynuiber: integer;
essentialmask: bitstring;
usualmask: bitstring;
totalusual: real;
usualtrue: real;
probability: real;
classifier: bitstring;
next: solutionpointer
END;

(type of elements of solution list)

questiontype = RECORD
questionnuW*r: integer;
countofoccurrance: integer
END;

(type of MostFrequentQuestion)

page 273

PROGRAM Cortex;
(Main progam.

($I Comnonl. Typ)
PROCEDURE Signon (vAR countofQuestions, CountOfSolutions: integer); EXTERNAL;
PROCEDURE ImpleventationMessage (CoutOfQuestions, CountOfSolutions: integer); EXTERNAL;
PROCEDURE FirstMenu (CoutOfQuestions, Count0fSolutions: integer); EXTERNAL;

VkR CountOfQuestions: integer;
CountOfSolutions: integer;

BEGIN

siqnon (countofQuestions, Coutofsolutions);
ImplementationNessage (CountofQuestions, CountOfSolutions);
FirstMenu (CountOfQuestions, CountOfSolutions);

END.

page 274

I
SEGMENT Sign0n;

($I \PROPAS\PASPC)
($1 \PROPAS\PASDOS)
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE PressKey (margin: integer); EXTERNAL;
PROCEDURE Initialise (VAR CountOfQuestions, CountOfSolutions: integer); EXTERNAL;

PROCME Signon (Va CountofQuestions, CountOfSolutions: integer);
VkR Greeting: text;

Gate: char;

BEGIN

InitScreen;
Paper (7);
Ink (1);
ClrScr;
TextFrame (true);
ScreenFile (Greeting);
CursorOff, *
GoToXY (31,6);
writeln (Greeting, $*****************');
GoToXY (31,7);
writeln (Greeting, 'Welcome to CORTEX');
GoToXY (31, B);
writeln (Greethg, #****************V);
writeln;
Ink (9);
GoToXY (23,10);
writeln (Greeting, 'The thinking man"s expert system. ');
ýMXY (7,22);
writeln (Greeting, 'Please wait while the solutions and questions on file are couted. 1);
Initialise (CoutOfQuestions, CountOfSolutions);
CoToXY (7,22);
PutChattr (1 1,7,9,66);
GoToXY (23,22);
writeln (Greeting, 'Press any key to continue. ');
Gate: = ConSilent;
CursorOn;
InitScreen

END;

BEGIN M.

page 275

I
SEGMENT Initial;

(Count questions and solutions on file.

($I Commonl. Typ)
J$I \PROPAS\PASPC)
($I \PROPAS\PASDOS)
PROCEDURE FordileNare (filenumber: integer; title: string; VAR FileNaine: string); EXTERNAL;
PROCEDURE ZeroiseBitString (VAR Bits: bitstring); EXTERNAL;

PROCEDURE Initialise (VAR CountOfQuestions, CountOfSolutions: integer);
VAR FileXame: string;

QuestionOnFile, SolutionOnFile: string;

BEGIN

MkDir ('\shell\question');
ChDir('\shell\question');
countofQuestions: c 0;
FindFile (Iquestll, QuestionOnFile);

(calculate countofQuestions)

(Is there a questl?)

WHILE QuestionOnFile (> 11 DO BEGIN If so, cout through the questions)
CountOfQuestions: z CountOfQuestions + 1;
FormFileName ((CountOfQuestions + 1), Iquestion', FileRate); (Is the next question on file?)
FindFile (FileName, QuestionOnFile); Returns Questiononfile empty if no question found)

END; (of WHILE)

Wir ('\sbell\solution');
ChDir ('\sbell\solution');
countofsolutions: = 0;
FindFile (Isolutll, SolutionOnFile);

(Calculate CountOfSolutions)

(Is there a solutl?)

WHILE SolutiorftFile <> 11 DO BEGIN If so, count through the solutions
Coutofsolutions: c Coutofsolutions + 1;
ForzFileName ((CountOfSolutions + 1), Isolution', FileXame), * (Is the next solution on file?
FindFile (FileName, SolutionOnFile); { Returns SolutionOnFile as empty if no solution found

END; (of WHILE)

ChDir ('\shell');

END;

BEGIN END.

page 276

SEGMENT Impment;
(Display Implementation information.

($1 \PROPAS\PASPQ
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE PressKey (margin: integer); EXTERNAL;

PROCEDURE ImplementationMessage (CountOfQuestions, CountOfSolutions: integer);
VAR Disk: text;

Line: string[100];
Counter: integer;

BEGIN

ClrScr;
IF fstat ('\Shell\Ipplent\Messagel) a true THEN BEGIN

Blankln (2);
writeln (I 1: 21,11oplementation Information');
writeln (I
Blankln (3);
assign (Disk, l\Shell\Implemnt\Messagel);
reset (Disk);
Counter: = 8;

WHILE NOT eof(Dis) DO BEGIN
readln (Disk, Line); (Copy a line froz Disk to Line
GoToXY (10, Counter); (Move cursor to starting position of text
writeln (Line); j Send contents of Line to screen
Counter: = Counter +1 Move to next screen line

END; { of WHILE)

close (Disk, true);
Blankln (3);
writeln (I 1: 10, 'There are 1, CountOfQuestions: 311 questions and 1, CountOfsolutions: 3,1

solutions on file. $);
END (of IF
USE BEGIN

Blankln (9);
writeln (I 1: 12, 'No implementation file has been written. ');

END; { of ELSE)

Blankln (2);
PressKey (10);

END;

BEGIN END.

page 277

SEGMENT FrstMenu;
(Chooses between work on the knowledge base or use of the implemented system.

f$I \PROPAS\PASPC)
PROCEDURE Blankln (nuriber: integer); EXTERNAL;
PROCEDURE MenuError (range: integer); EXTERNAL;
PROCEDURE KnowledgeBaseMenu (VAR CountOfQuestions, CountOfSolutions: integer); EXTERNAL;
PROCEDURE FindResult (CountOfQuestions, CountOfSolutions: integer); EXTERNAL;

PROCEDURE FirstMenu (CountOfQuestions, CountofSolutions: integer);
VAR Flag: boolean;

Selector: integer;

BEGIN

Flag: = tne;

WHILE Flag = true DO BEGIN
CIrScr;
Blankln (6);
writeln (I 1: 10, 'Do you want to; ');
writeln;
writeln (1 1: 13,11. Use CORTEXV);
writeln (1 1: 13,12. Work on the knowledge base? ');
writeln (1 1: 13,13. Exit from Cortex? ');
writeln;
writeln (I 1: 10, 'Make your selection by typing a key nurber. 1);
writeln (I 1: 10, 'Then press RETURN. ');
blankln (4);
read (Selector);

CASE Selector OF
1: FindResult (CountOfQuestions, CountOfSolutions);
2: KnowledgeBaseMenu (CountOfQuestions, CountOfSolutions);
3: Flag: = false;
OTHERWISE BEGIN

ClrScr;
Blankln (8);
MenuError (3)

END; (of OTHERWISE
END; (of CASE)

END; (of WHILE

END;

BEGIN END.

t

page 278

SEGMENT KBMenu;
(Knowledge engineering main menu. I

($I Coasonl. Typ)
($I \PROPAS\PASPC)
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE MenuError (range: integer); EXTERNAL;
PROCEDURE QuestionMenu (VAR CountOfQuestions: integer); EXTERNAL;
PROCEDURE SolutionKenu (VAR CounOfSolutions: integer); EXTERNAL;
PROCEDURE ClassifierMenu (CountOfQuestions: integer); EXTERNAL;
PROCEDURE WriteImplementationText; EXTERNAL;

PROCEDURE KnowledgeBaseMenu (VAR CountofQuestions, Countofsolutions: integer);
VkR Flag: boolean;

Selector: integer;

BEGIN
Flag: = true;
WHILE Flag z true DO BEGIN

ClrScr;
Selector: = 0;
Blankln (3);
writeln (I 1: 18, 'Knowledge Engineering Menu. ');
writeln (I
blankln (2);
writeln (I 1: 7, 'Do you want to; ');
writeln;
writeln (1 1: 10,11. Write, edit, delete or print the text of a question? ');
writeln (1 1: 10,12. Write, edit, delete or print the text of a solution? ');
writeln (1 1: 10,13. Set up, edit or delete a classifier? ');
writeln (1 1: 10,14. Write the text of the implementation screen? ');
writeln (1 1: 10,15. Return to the main Cortex renu? ');
Blankln (2);
writeln (I 1: 7, 'Make your choice by typing a key nuzter. ');
writeln (I 1: 7, 'Then press RETURN. ');
Blankln (4);
writeln (I 1: 7, 'The Cortex shell can accept up to a maximum of 1, MaxNumberOfQuestions: 3,1

questions. ');
uriteln (I 1: 7, 'There is effectively no limit upon the number of solutions. ');
read (Selector);
CASE Selector OF

1: QuestionMenu (CountOfQuestions);
2: SolutionMenu (CountOfSolutions);
3: ClassifierKenu (CountOfQuestions);
4: WritelaplementationText;
5: Flag: = false;
OTHERWISE BEGIN ClrScr; Blankln (8); MenuError (5) END;

END; I of CASE
END; (of WHILE
END;

BEGIN END.

page 279

I
SEGMENT WritImpl;

t Create text of implementation message.

{$I \PROPkS\PkSPC)
PROCEDURE Blankln (nuxiber: integer); EXTERNAL;
PROCEDURE Pushpen (directory, FileNave: string); EXTERNAL;

PROCENRE WriteImplementationText;

BEGIN

ClrScr:
Blankln (2);
writeln (I ': 12, 'Please write the text for the implementation message. ');
Pushpen ('Implentl, 'Messagel)

END;

BEGIN END.

page 280

SEGMENT FormFile;
(Set up the name of a file to be accessed on disk.

PROCEDURE FormFileName (index: integer; title: string; VAR FileXame: string);
VAR Key: string;

BEGIN

str (index, Key); (Form the string Key from the integer index
IF title = 'question' THEN BEGIN

FileName: z 'quest'; (Write the stem of a question filename I
insert (Key, FileNave, 6); Append the key nuWxr to complete the filenave

END (of IF)
ELSE IF title a 'solution' THEN BEGIN

FileName: = Isolut'; Write the stein of a solution filename
insert (KeyjileName, fl; Append the key number to complete the filename

END (of ELSE IF)
ELSE IF title z 'explanation' THEN BEGIN

FileName: z lexplan'; t Write the stem of an explanation filename)
insert (Key, MeName, 7) { Append the key number to complete the filename

END; (of ELSE IF)

END;

BEGIN END.

page 281

SEGMENT PushPen;
(Calls Writer to compose text, then stores it onto disk in specified sub-directory.

($1 \PROPAS\PASDOS)
PROCEDURE Writer; EXTERKIL;

PROCEDURE PushPen (directory, FileNave: string);
VAR Disk, DiskText: text;

Line: string[100];

BEGIN

Writer; Writer stores text as DiskText on diskFile TempFile.
assign (DiskText, 'TempFile'); { TempFile is on \SHELL, not \FORMAT.
reset (DiskText); (Open DiskText for input.
ChDir (directory);
assign (Disk, FileName);
rewrite (Disk); { Open Disk for output.

WHILE NOT eof(DiskText) DO BEGIN
readln (DiskText, Line); Read TempFile to FileName line by line.
writeln (Disk, Line)

END; (of WHILE)

close (Disk, true);
erase (DiskText)

END;

BEGIN END.

page 282

f
SEGMENT ZeroBit;

(Initiallse bit strings.

($I Cononl. Typ)
PROCEDURE ZeroiseBitString (VkR Bits: bitstring);

VhR Index: integer;

BEGIN

FOR Index: = 1 TO MaxNumberOfIntegers DO
Bits[Index]: z 0;

END;

BEGIN END.

page 283

SEGMENT Question;
(Selects the operations to be performed on the question files.

{$I \PROPAS\PkSPC)
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE QuestionSelection (Selector: integer; VAR CoutOfQuestion: integer; VAR Flag:
boolean); EXTERNAL;

PROCEDURE Question)(enu (VAR CountOfOuestions: integer);
VAR Flag: boolean;

Selector: integer;

BEGIN

ClrScr;
Flag: = tne;

WHILE Flag = true DO BEGIN
writeln;
writeln (I 1: 18, 'Questions Text Menu. ');
writeln (I
Blankln (2);
writeln (I 1: 7, 'Do you want to; ');
writeln;
writeln (1 1: 10,11. Write the text of a question? ');
writeln (1 1: 10,12. Write the explanation of a question? ');
writeln (1 1: 10,13. Edit the text of a question? ');
writeln (1 1: 10,14. Edit the explanation of a question? ');
writeln (1 1: 10,15. Delete a question from the questions file?,);
writeln (1 1: 10,16. Delete the explanation of a question from the file? ');
writeln (1 1: 10,17. Display the text of a question? ');
writeln (1 1: 10,18. Display the explanation of a question? ');
writeln (1 1: 10,19. Print the text of a question? ');
writeln (1 1: 10,110. Print the explanation of a question? ');
writeln (1 1: 10,111. Return to the knowledge base menu?,);
Blankln (2);
writeln C 1: 7, 'Make your choice by entering a key nuiber. 1);
writeln (I 1: 7, 'Then press RETURV);
read (Selector);
QuestionSelection (Selector, CoutOfQuestions, Flag);

END; (of WHILE)

END;

BEGIN END.

page 284

SEGMENT QstSelec;
(Manage the calling of procedures by the question menu.

($I \PROPAS\PASPC)
PROCEDURE WriteQuestionText (VAR CountOfQuestions: integer); EXTERNAL;
PROCEDURE WriteQuestionExplanation; EXTERNAL;
PROCEDURE EditQuestion; EXTERNAL;
PROCEDURE EditQuestionExplanation; EXTERNAL;
PROCEDURE DeleteQuestion (VAR CountOfQuestions: integer); EXTERNAL;
PROCEDURE DeleteExplanation (title: string); EXTERNAL;
PROCEDURE DisplayQuestion; EXTERNAL;
PROCEDURE DisplayExplanation (title: string); EXTERNAL;
PROCEDURE PrintAll; EXTERNAL;
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE NenuError (range: integer); EXTERNAL;

PROCEDURE QuestionSelection (Selector: integer; VAR CountOfQuestions: integer;
VAR Flag: boolean);

BEGIN

CASE Selector OF
1: WriteQuestionText (CountOfQuestions);
2: WriteQuestionExplanation;
3: EditQuestion;
4: Ed! tQuestionExplanation;
5: DeleteQuestion (CountOfQuestions);
6: DeleteExplanation ('question');
7: DisplayQuestion;
8: DisplayExplanation ('question');
9: PrintAll;
10: PrintAll;
11: Flag: = false;
OTHERWISE BEGIN

ClrScr;
Blankln (9);
MenuError (11)

END; { of OTHERWISE
END; (of CASE)

END;

BEGIN END.

page 285

SEGMENT WritQust;
(Write the text of a question and store it on disk.

($1 \PROPAS\PASPC)
{$I \PROPAS\PASDOS)
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE ForzFileNave (index: integer; title: string; VAR FileName: string); EXTERNAL;
PROCEDURE PushPen (title, FileName: string); EXTERNAL;

PROCEDURE WriteQuestionText (VAR CountOfQuestions: integer);
VAR FileName: string[30];

QuestionOnFile: string[30];
Counter: integer;

BEGIN

ClrScr;
ChDir (I\shell\question');
Couter: = 0;

(Questions are filed on question sub-directory)

REPEAT
Couter: z Couter + 1;
FormFileNave (Counter, lquestion', FileName);
FindFile (FileNate, QuestionOnFile);

UNTIL QuestionOnFile - 10; (Until QuestiononFile returns empty)

Blankln (2);
writeln (I ': 7, 'Enter the text of the question. ');
writeln;
writeln ('Question no 1, Counter: 3);
PushPen ('question', FileName); t Write question , and store in 'question' sub-directory
CountOfQuestions: = CoutOfQuestions + 1;
ChDir ('\shell')

END;

BEGIN END.

page 286

SEGMENT WrtQexpl, *
(Write the text of the explanation of a question. I

($1 \PROPAS\PASPC)
($I \PROPAS\PASDOS)
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE PressKey (margin: integer); EXTERNAL;
FUNCTION YesNo: boolean; EXTERNAL;
PROCEDURE FormFileName (indevinteger; title: string; VAR FileXame: string); EXTERNAL;
PROCEDURE PushPen (title, FileName: string); EXTERNAL;

PROCEDURE WriteQuestionExplanation;
VAR QuestionName, FileNaze: string;

Index: integer;
OK: booleav

BEGIN
ClrScr;
Blankln (3);
ChDir ('question');
writeln (I 1: 7, 'Enter the number of the question');
, orriteln (I 1: 7,1whose explanation you want to write. ');
writeln;
writeln (I 1: 7, 'Tben press RETURN. ');
GoToXY (8,8);
read (Index);
FormFileName (Index, lquestion', QuestionName);
FonFileName (Index, lexplanation', FileNate);
OK: = true;
IF fstat (QuestionName) z false THEN BEGIN

Blankln (2);
writeln (I 1: 7, 'No question with this key number is on file. ');
PressKey (7);
ClrScr

END; (of IF
IF (fstat(QuestionName) = true) AND (fstat(FileName) = true) THEN BEGIN

Blankln (2);
writeln (I 1: 7, 'There is already an explanation for this question on file.,);
writeln (I 1: 7, 'Do you want to overwrite it? If so, press Ily" or "Y". 1);
GoToXY (8,13);
OK: = YesNo;
ClrScr

END; f of IF
IF (fstat(QuestionName) = true) AND (OK z true) THEN BEGIN

ClrScr;
Blankln (2);
writeln (I 1: 7, 'Enter the text of the explanation. ');
writeln;
writeln ('Explanation no 1, Index: 3);
PushPen (Iquestion', FileNate); Write explanation and store in Question sub-directory
ClrScr

END; (of IF
ChDir ('\shell');
END;

BEGIN END.

page 287

SEGMENT EditQust;
(Edit the text of an existing question.

($I \PROPAS\PASPC)
PROCEDURE PressKey (margin: integer); EXTERNAL;
PROCEDURE Blankln (number: integer); EXTERNAL;

PROCEDURE EditQuestiono

BEGIN

ClrScr;
Blankln (8);
writeln (I 1: 7, 'The procedure EditQuestion has not yet been written.,);
Blankln (15);
PressKey (7);
ClrScr

END;

BEGIN END.

page 288

I
SEGMENT EdtQExpl;

(Edit the explanation of a question. j

[$1 \PROPAS\PASPQ
PROCEDURE PressKey (isargin: integer); EXTERNAL;
PROCEDURE Blankln (nusber: integer); EXTERNAL;

PROCEIXJRE EditQuestionExplanation;

BEGIN

ClrScr;
Blankln (8);
writeln (I 1: 7, 'The procedure EditQuestionExplanantion has not yet been written. ');
Blankln (15);
PressKey (7);
ClrScr

END;

BEGIN
END.

page 289

SEGMENT DelQust;

strings.)(
Delete question file together with any explanation file, and reset classifier bit

($1 Commonl. Typ)
($1 \PROPAS\PASPC)
($I \PROPAS\PASDOS)
PROCEDURE ForiFileName (index: integer; title: string; VAR FileName: string); EXTERNAL;
PROCEDURE ReNaberFiles (Flag, CountOfQuestions: integer; title: string); EXTERNAL;
PROCEDURE Blankln (nuiber: integer); EXTERNAL;

PROMXJRE DeleteQuestion (VAR CountOfQuestions: integer);
VAR TextFile: text;

TexpFile: FILE OF classifiertype;
FileXame: string;
Duny: boolean;
Flag, Index: integer;

BEGIN
ClrScr;
Blankln (5);
writeln (I 1: 7,1Wbat is the number of the question to be deleted? ');
GoToXY (8,8);
read (Flag);
FormFileName (Flag, lquestion', FileNate); Form question file name
ChDir ('question');
IF fstat (FileName) = true THEN BEGIN

assign (TextFile, FileNate); (Connect variable to question disk file)
erase (TextFile); (Delete the selected question disk file)
ReNumberFiles (Flag, CountOfQuestions, lquestion'); { Close up succeeding question files
FormFileXame (Flag, lexplanation', FileName); (Form explanation file name I
IF fstat (FileName) = true THEN BEGIN

assign (TextFile, FileName); Connect variable to explanation disk file
erase (Textfile); Delete corresponding explanation disk file)
ReNuiberFiles (Flag, CountOfQuestions, lexplanationl), * j Close up succeeding explan files)

END; (of IF
END; (of IF)
CountOfQuestions: z CountOfQuestions - 1;
ChDir ('\class');
IF fstat ('Classifl) = true THEN BEGIN

assign (TePpFile, 'Classifl); Connect variable to classifier disk file
reset (TezpFile); Go to first file element
WHILE NOT eof(TempFile) DO BEGIN

FOR Index: = Flag TO CountOfQuestions DO BEGIN
WHILE (Index+l) <= MaxNumberOfQuestions DO BEGIN Check against over-run

IF testbit(Tempfile A essentialmask, lndex) <> testbit(TempFileA. essentialmask, Index+l) THEN
Davy: = flipbit(TempFile A essentialmask, Index); (Flip bit to value of next bit)

IF testbit(TempFile A usualmask, Index) <> testbit(TempFileA. usualzask, lndex+l) THEN
Dummy: z flipbit(TempFile A usualmask, Index); (Flip bit to value of next bit)

IF testbit(TeapF! le A classifier, Index) <> testbit(TempFile A classifier, Index+1) THEN
Dummy: z flipbit(TempFile A classifier, Index); Flip bit to value of next bit)

END; (of WHILE
END; (of FOR

get (TempFile) Go to next file element
END; (of WHILE

END; (of IF)
ClrScr; END; BEGIN END.

page 290

SEGMENT Renum:
(Re-number a series of disk files.

PROCEDURE FomFileName (Index: integer; title: string; VkR FileNave: string); EXTERML;

PROCEDURE ReNuiberFiles (Flag, CountOfQuestions: integer; title: string);
VAR TextFile: text;

FileNaze, ThisFileName, NextFileName: string;
Index: integer;

BEGIN

ForiaFileXame (Flag, title, FileNate); Form name of deleted file I
ThisFileXame: z FileName; Set variable to value of deleted file

FOR Index: = (Flag+l) TO CountOfQuestions, DO BEGIN
FormFileName (Index, title, FileNate); Form name of next disk file
NextFileName: = FileName; (Set variable NextFileName to name of next disk file

IF fstat (NextFileName) = true THEN BEGIN
assign (TextFile, NextFileXame); Connect file variable with the next disk file
rename (TextFile, ThisFileNate); Rename disk file with the name of the previous file
close (TextFile, true);

END; (of IF)

ThisFileXame: z NextFileName Update ThisFileName to the name of the next disk file
END; (of FOR)

END;

BEGIN END.

page 291

SEGMENT DelExpl, *
(Delete the explanation of a question or solution.

0I \PROPAS\PASPC)
($I \PROPAS\PASDOS)
PROCEDURE Blankln (nuiber: integer); EXTERNAL;
PROCEDURE PressKey (margin: integer); EXTERNAL;
PROCEDURE ForioFileName (index: integer; title: string; VAR FileName: string); EXTERNAL;

PROCEDURE DeleteExplanation (title: string);
VAR TextFile: text;

FileName: string;
Flag: integer;

BEGIN

ClrScr;
Blankln (5);
writeln (I 1: 7, 'What is the number of the ', title);
writeln (I 1: 7,1whose explanation you want to delete? ');
GoToXY (8,9);
read (Flag);
FormFileName (Flag, lexplanation', FileName);
ChDir (title);
IF fstat (FileName) = true THEN BEGIN

assign (TextFile, FileName);
erase (Textfile);

END (of IF
ELSE BEGIN

writeln (I 1: 7, 'No explanation for this ', title, ' is on file.,);
PressKey (7);

END; (of ELSE

ChDir ('\shell');
CIrScr;

END;

BEGIN END.

page 292

SEGMENT DispQust;
(Display the text of a question on screen.

($1 \PROPkS\pkSpq
PROCEDURE PressKey (margin: integer); EXTERNAL;
PROCEDURE Blankln (number: Integer); EXTERNAL;
PROCEDURE FormFileName (filenuWxr: integer; title: string; VAR FileNave: string); EXTERNAL;
PROCEDURE DisplayTextFile (FileNave, directory, heading: string; Index, displayline: integer);
EXTERNAL;

PROCEDURE DisplayQuestion;
VkR FileNave: string[301;

Index: Integer;

BEGIN

ClrScr;
Blankln (6);
writeln (I 1: 7, 'Enter the number of the question');
writeln (I 1: 7,1that you want to display. ');
writeln, *
writeln (I 1: 7, 'Then press RETURN. ');
GoToXY (8,11);
read (Index);
FormFileName (Index, lquestion', FileNate);
FileNaRe: z concat (1\SHELL\QUESTION\1, F1leName);

IF fstat (MeNave) c false THEN BEGIN
Blankln (2);
writeln (I 1: 7, 'No question with this key number is on file-');
PressKey (7);
ClrScr, e

END (of IF
ELSE BEGIN

ClrScr;
Blankln (6);
DisplayTextFile (FileName, 'question', 'Question', Index, 7);
Blankln (12);
PressKey (5);
ClrScr

END; (of ELSE

END;

BEGIN END.

page 293

SEGMENT DispFile;
(Display disk file on screen

($1 \PROPAS\PASPC)
($I \PROPAS\PASDOS)
PROCEDURE DisplayTextFlle (DiskFile, directory, heading: string; Index, displayline: integer);
VkR TevpFile: text;

Line: string[1001;

BEGIN

assign (TempFile, DiskFile);
ChDir (directory);
reset (TetpFile);
GoToXY (l, displayline);
writeln (heading, ' no 1, Index: 3,1.1);

(Change to subdirectory containing the file.)

WHILE NOT eof(TempF! le) DO BEGIN
readln (TempFile, Line); Read a line of text from TempFile to Line.
GOTOXY (24, displayline); Position cursor.)
writeln (Line); output line of text to screen.
displayline: - displayline +1 move cursor position down one line.

END; { of WHILE)

close (TempFile, true);
ChDir ('\shell'); Return to SHELL directory.

M;

BEGIN END.

page 294

SEGXENT DispExpl, -
J Display the text of the explanation of a question or a solution.

($1 \PROPAS\PASPQ
PROCEDURE PressKey (margin: integer); EXTERNAL;
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE FormFileName (index: integer; title: string; VAR FileName: string); EXTERNAL;
PROCEDURE DisplayTextFile (filenase, directory, heading: string; index, firstline: integer);
EXTERNAL;

PROCEDURE DisplayExplanation (title: string);
VkR FileName: string[301;

Index: integer;

BEGIN

ClrScr;
Blankln (6);
writeln (I 1: 7, 'Enter the number of the ', title);
writeln (I 1: 7,1whose explanation you want to display. ');
writeln;
writeln (I 1: 7, 'Then press RETURN. ');
GoToXY (8,11);
read (Index);
FormFileName (Index, lexplanation'JileName);
FileXame: x concat (1\shell\1, title, 1\1, F1leName);

IF fstat (FileNave) z false THEN BEGIN
Blankln (2);
writeln (I 1: 7, 'No explanation for this ', title, ' is on file. ');
PressKey (7);
ClrScr;

M(of IF
ELSE BEGIN

ClrScr, e
Blankln (6);
DisplayTextF! le (FileNave, 'question', 'Explanation', Index, 7);
Blankln (12);
PressKey (5);
ClrScr

END; (of ELSE

END;

BEGIN END.

page 295

SEGXENT PrintAll;
(Print the text of a question, solution or explanation.

(si \PROPAS\PASPCJ
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE PressKey (margin: integer); EXTERNAL;

PROCEDURE PrintAll;

BEGIN

ClrScr;
Blankln (8);
writeln (I 1: 7, 'The procedure PrintAll has not yet been written. ');
Blankln (15);
PressKey (7);
ClrScr

END;

BEGIN END.

}

page 296

SEGMENT Solution;
(Selects the operations to be performed on the solution files.

($I \PROPks\PkSPC)
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE SolutionSelection (Selector: integer; VAR Flag: boolean); EXTERNAL;

PROCEDURE SolutionMenu;
VAR Flag: boolean;

Selector: integer;

BEGIN

ClrScr;
Flag: z true;

4ILE Flag - true DO BEGIN
writeln:
writeln (I 1: 18, 'Solutions Text Menu-');
writeln (I
Blankln (2);
writeln (I 1: 7, 'Do, you want to; ');
writeln;
writeln 1: 10,11. write the text of a solution? ');
writeln 1: 10,12. Write the explanation of a solution? ');
writeln (1 1: 10,13. Edit the text of a solution? ');
writeln (1 1: 10,14. Edit the explanation of a solution? ');
writeln (1 1: 10,15. Delete a solution from the solutions file? ');
writeln (1 1: 10,16. Delete the explanation of a solution from the file? ');
writeln (1 1: 10,17. Display the text of a solution? ');
writeln (1 1: 10,18. Display the explanation of a solution? ');
writeln (1 1: 10,19. Print the text of a solution? ');
writeln (1 1: 10,110. Print the explanation of a solution? ');
writeln (1 1: 101,11. Return to the knowledge base inenu? ');
Blankln (2);
writeln ('Make your choice by entering a key number. ');
writeln ('Then press RETURN. ');
read (Selector);
SolutionSelection (Selector, Flag);

END; [of WHILE)

END;

BEGIN END.

page 297

SEGMENT SolSelec;
(Manages the calling of procedures by the solutions renu.

(sl \PROPAS\PISPC)
PROCEDURE WriteSolutionText; EXTERNAL;
PROCEDURE WriteSolutionExplanation; EXTERNAL;
PROCEDURE EdItSolution; EXTERNAL;
PROCEDURE EdItSolutionExplanation; EXTERNAL;
PROCEDURE DeleteSolution; EXTERNAL;
PROCEDURE DeleteExplanation (title: string); EXTERNAL;
PROCEDURE DisplaySolution; EXTERNAL;
PROCEDURE DisplayExplanation (title: string); EXTERNAL;
PROCEDURE PrintAll (title: string); EXTERNAL;
PROCEDURE Blankln (nusber: integer); EXTERNAL;
PROCEDURE MenuError (range: Integer); EXTERNAL;

PROCEDURE SolutionSelection (Selector: Integer; VkR Flag: boolean), *

BEGIN

CASE Selector OF
1: WriteSolutionText;
2: WriteSolutionExplanation;
3: EditSolution;
4: EfitSolutionExplanation;
5: DeleteSolution;
6: DeleteExplanation ('solution');
7: DisplaySolution;
8: DisplayExplanation ('solution');
9: PrintAll, ('solution');
10: PrintAll, ('solution');
11: Flag: z false;
OTHERWISE BEGIN

ClrScr;
Blankln (8);
MenuError (11)

END; (of OTHERWISE
END; (of CASE)

END;

BEGIN END.

page 298

SEGXENT WritSoln;
(write the text of a solution and store it on disk.

(sl \PROPAS\PASPC)
($I \PROPAS\PASDOS)
PROCEDURE Blankln (nurber: integer); EXTERNAL;
PROCEDURE ForzFileNave (index: integer; title: string; VAR FileNave: string); EXTERNAL;
PROCEDURE PushPen (title, FileName: string); EXTERNAL;

PROCEDURE WriteSolutionText (VAR CountOfSolutions: integer);
VAR FileName: string[30];

SolutionOnFile: string[30];
Counter: integer;

BEGIN

CIrScr;
ChDir (I\shell\solution');
Counter: = 0;

REPEAT
Counter: m Counter + 1;
FortFileName (Counter, lsolution', FileNaine);
FindFile (FileMaine, SolutionOnFile);

UNTIL SolutionOnFile z 11;

Blankln (2);
writeln (I 1: 7, 'Enter the text of the solution. ');
writeln;
writeln ('Solution no 1, Counter: 3);
PushPen ('solution', FileXame); Write solution
Countofsolutions: = Countofsolutions + 1;
qhDir ('\shell')

(Solutions are filed on solution sub-directory)

(until solutiononFile returns empty)

END;

BEGIN END.

I and store in 'solution' sub-directory)

page 299

SEGMENT EditSoln;
(Edit the text of an existing solution.

($I \PROPAS\Pkspc)
PROCME PressKey (margiminteger); EXTERNR;
PROCME Blankln (nuidnrinteger); EXTERNK;

PROCEDURE EditSolutiono

BEGIN

CIrScr;
Blankln (8);
writeln (I 1: 7, 'The procedure EditSolution has not yet been written. ');
Blankln (15);
PressKey (7);
CIrScr;

END;

BEGIN END.

page 300

SEGMENT DelSoln;
(Delete solution file.

($I \PROPAS\Pkspc)
PROCEDURE PressKey (margiminteger); EXTERNAL;
PROCEDURE Blankln (number: integer); EXTERNAL;

PROCEDURE Deletegolution;

BEGIN

ClrScr;
Blankln (9);
writeln (I 1: 7, 'The procedure DeleteSolution has not yet been written.,);
Blankln (15);
PressKey (7);
ClrScr;

END;

BEGIN END.

page 301

SEGNENT DispSoln;
(Display the text of a question on screen.

($1 \PROPAS\PASPC)
PROCEDURE PressKey (zargin: integer); EXTERNAL;
PROCEDURE Blankln (nuaber: integer); EXTERNAL;
PROCEDURE FormFileName (filenumber: integer; title: string; VAR FileName: string); EXTERNAL;
PROCEDURE DisplayTextFile (FileNave, directory, heading: string; Index, displayline: integer);
EXTERNAL;

PROCEDURE DisplaySolution, *
VAR FileXame: string[301;

Index: integer;

BEGIN

ClrScr;
Blankln (6);
writeln (I ': 7, 'Enter the number of the solution');
writeln (I 1: 7,1that you want to display. ');
vriteln,,
vriteln (I 1: 7, 'Then press RETURN. ');
GoToXY (8,11);
read (Index);
FormFileName (Index, lsolution', FileName);
FileName: z concat (1\shell\solut1on\1, FileName);

IF fstat (FileName) = false THEN BEGIN
Blankln (2);
writeln (I 1: 7, 'No solution with this key number is on file. ');
PressKey (7);
ClrScr;

END { of IF
ELSE BEGIN

ClrScr;
Blankln (6);
DisplayTextFile (MeName, 'solution', 'Solution', Index, 7);
Blankln (12);
PressKey (5);
ClrScr

END; { of ELSE

END;

BEGIN END.

page 302

t
SEGMENT WrtSexpl;

(Write the text of the explanation of a solution.

($1 Cononl. Typ)
($1 \PROPAS\Pkspc)
($I \PROPAS\PASDOS)
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE PressKey (margin: integer); EXTERNAL;
FUNCTION YesNo: boolean; EXTERNAL;
PROCEDURE FormFileName (index: integer; title: string, *VAR FileName: string); EXTERNAL;
PROCEDURE PushPen (title, FileNate: string); EXTERNAL;

PROCEDURE WriteSolutionExplanation;
VkR SolutionNave, MeNave: string;

Index: integer;
OK: boolean;

BEGIN
ClrScr;
Blankln (3);
ChDir ('solution');
ýriteln (I 1: 7, 'Enter the number of the solution');
writeln (I 1: 7,1whose explanation you want to write. ');
,, I*riteln;
writeln (I 1: 7, 'Then press RETURN. ');
GoToXY (8,8);
read (Index);
FormFileName (Index, lsolution', SolutionName);
ForzFileName (Index, lexplanation', FileName);
OK: z true;
IF fstat (SolutionName) = false THEN BEGIN

Blankln (2);
writeln (I 1: 7, 'No solution with this key number is on file. ');
PressKey (7);
ClrScr

END; (of IF
IF (fstat(SolutionName) - true) M (fstat(FileNate) = true) THEN BEGIN

Blankln (2);
writeln (I 1: 7, 'There is already an explanation for this solution on file.,);
writeln (I 1: 7, 'Do you want to overwrite it? If so, press Ily" or "Y". 1;
GoToXY (8,13);
OK: = YesNo;
ClrScr

END; (of IF
IF (fstat(SolutionNaine) = true) AM (OK = true) THEN BEGIN

ClrScr;
Blankln (2);
writeln (I 1: 7, 'Enter the text of the explanation. ');
writeln;
writeln ('Explanation no 1, Index: 3);
PushPen (Isolution'JileName); Write explanation and store in Solution sub-directory
ClrScr

END; (of IF
ChDir ('\shell');
END;
BEGIN END.

page 303

SEGMENT EdtSExpl;
(Edit the explanation Of a SOlUtiOn-

($1 \PROpAs\PASPC)
PROCEDURE PressKey (margin: integer); EXTERNAL;
PROCEDURE Blankln (nuaberinteger); EXTERNAL;

PROCEDURE EdItSolutionExplanation;

BEGIN

ClrScr, *
Blankln (9);
writeln (I 1: 7, 'The procedure EditSolutionExplanation has not yet been written. ');
Blankln (15);
PressKey (7);
ClrScr, *

END;

BEGIN END.

page 304

SEGMENT Classify;
(Select the operations to be performed on the classifier file.

Or \PROPAS\PASPC)

PROCEDURE Blankln (nuaber: integer); EXTERNAL;
PROCEDURE MenuError (range: integer); EXTERNAL;
PROCEDURE SetUpClassiffer (CountOfQuestions: integer); EXTERNAL;
PROCEDURE EditClassifier; EXTERNAL;
PROCEDURE DeleteClassifier (CountOfQuestions: integer); EXTERNAL;

PROCURE ClassifierMenu (CountOfQuestions: integer);
V&R Flag: boolean;

Selector: Integer;

BEGIN

ClrScr;
Flag: = true;

WHILE Flag a true DO BEGIN
Blankln (5);
writeln (I 1: 20, 'Classifier Menu. ');
writeln (I
Blankln (2);
writeln (I 1: 11, 'Do you want to; ');
writeln;
writeln 1: 14,11. Set up a classifier? ');
writeln 1: 14,12. Edit a classifier? ');
writeln (1 1: 14,13. Delete a classifier? ');
writeln (1 1: 14,14. Return to the Knowledge Engineering Menu? ');
writeln, e
writeln (I 1: 7,1Make your choice by typing a keynumber. 1);
writeln (I 1: 7, 'Then press RETURN. ');
read (Selector);

CASE Selector OF
1: SetUpClassifier (CoutOfQuestions);
2: EditClassifier;
3: DeleteClassifier (CountOfOuestions);
4: Flag: = false;
OTHERWISE BEGIN

ClrScr;
Blankln (8);
MenuError (4)

END; (of OTHERWISE
END; (of CASE)

END; (of WHILE

END;

BEGIN END.

page 305

SEGMENT StUpClas;
(Write the classifier, essential mask and usual task for a solution.

($I Comionl. Typ)
($1 \PROPAS\PASPC)
($1 \PROPAS\PASDOS)
PROCEDURE Blankln (nuiber: Integer); EXTERNAL;
PROCEDURE FonFileXame (filenuakr: integer; title: string; VAR FileName: string); EXTERNAL;
PROCEDURE DisplayTextFile (FileNaine, directory, heading: string, -

filenuW*r, firstline: integer); EXTERNAL;
PROCEDURE InitialiseClassifferRecord (SolutionNumber: integer; VAR Temp: solutiontype), * EXTERNAL;
PROCEDURE SetClassiflerBits (CountOfQuestions: integer; VAR Temp: solutiontype, -

VAR Flag: boolean); EXTERNAL;
FUNCTION Ask (leftsargin: integer; question: string): boolean; EXTERNAL;
FUNCTION YesNo: boolean; EXTERNAL;

PROCEDURE SetUpClassifier (CoutOfQuestions: integer), *
VAR TempFile: FILE OF solutiontype;

Temp: solutiontype;
FileName: string;
SolutionNuber: integer;
Answer, Flag: boolean;

BEGIN
CursorOff;
Flag: - true;
WHILE Flag - true DO BEGIN

ClrScr; Blankln (5);
writeln (I 1: 7, 'What is the number of the solution');
writeln (I 1: 7,1for which you want to write a classifier? ');
GoToXT (8,8);
read (SolutionNuid*r);
InitialiseClassifierRecord (SolutionNumber, Temp); Initialise the fields of Temp
ClrScr;
FormFileNaze (SolutionNumber, lsolution', FlleNate);
FileName: z concat (1\shell\solution\1, FileName);
IF fstat (FileXame) - false THEN

writeln (I 1: 7, 'No solution with this key number is on file. ')
ELSE BEGIN

TextWindow (1,2,90,9);
TextFrave (false);
DisplayTextFile (filenatellsolutionl, 'Solution', SolutionNumber, 2); (Disp solution text
SetClassifierBits (CountOfQuestions, Teip, Flag);
assign (TempFile, 'Classifl); Connect file variable TempFile to disk file Classif
append (Tempfile); (Move pointer to end of file
write (TezpFilejemp); t Add Temp to end of Tempfile
Close (TezpFile, true);

END; (of ELSE)
TextWindow (1,1,80,25);
ClrScr; GoToXY (8,3);
Answer: = Ask (1, 'Do you want to write another classifier. Y/N7,);
IF Answer r- true THEN BEGIN

Flag: z true; ClrScr; END
ELSE BEGIN

Flag: z false; ClrScr; END;
END; (of WHILE)
ClrScr; END; BEGIN END.

page 306

SEGMENT Initclas;
(Initialise the fields of the record Temp.

J$l Cononl. Typ)
PROCEDURE ZeroiseBitString (VAR Bits: bitstring); EXTERNAL;

PROCEDURE InitialiseClassifierRecord (SolutionNutber: integer; VAR Teip: solutiontype);

BEGIN

Temp. keynuaber: m SolutionNunber;
ZeroiseBitString (Teip. essentialaask);
ZeroiseBitString (Temp. usualaask);
Temp. totalusual: 2 0;
Temp. usualtrue: z 0;
Temp. probabillty: m 0;
ZeroiseB! tString (Temp. classifier);

END;

BEGIN END.

page 307

SEGMENT ClasBits;
(Set the bits of the classifier and its masks.

($I Cononl. Typl
($I \PROPAS\PASPC)
($1 \PROPAS\PASDOS)
PROCEDURE ForaffleXame (filenumber: integer; title: string; VkR FileName: string); EXTERNAL;
PROCEDURE DisplayTextfile (FileName, directory, heading: string;

filenumber, firstline: integer); EXTERNAL;
PROCEDURE SetUsualBlts (Index: integer; VAR Temp: solutiontype); EXTERNAL;
FUNCTION Ask (leftmargin: integer; question: string): boolean; EXTERNAL;
FUNCTION YesNo: boolean; EXTERNAL;

PROCEDURE SetClassiflerBits (CoutOfQuestions: integer; VkR Temp: solutiontype; VkR Flag: boolean);
VkR TempFile: FILE OF solutiontype;

FileName: string;
Index: integer;
knswer, Duzzy: boolean;

BEGIN

CursorOff;

FOR Index: = 1 TO CountOfQuestions DO BEGIN Loop through all the questions
TextWindow (1,10,80,25);
FormFileXame (Index, lquestion', FileName);
FileName: - concat (I\shell\question\', FileName);
CIrScr;
DisplayTextFile (FileName, lquestionl, 'Question', Index, 2); Display question text
GoToXY (8,7);
Answer: = Ask (1,, Is it essential that this question receives a correct answer. Y/N? ');

IF Answer - true THEN BEGIN
Duny: - setbit (Temp. essentialmask, Index); Set essential task bit to true
GoToXY (8,9);
writeln ('Is the answer that is always needed');

00noillf writeln (I 1: 7,1to this question "yes" or
knswer: z YesNo;
IF Answer = true THEN

Dummy: z setbit (Temp. classifier, Index); Set classifier bit to true
END (of IF
ELSE

SetUsualBits (Index, Temp);
ClrScr; Clear only the lower part of the screen

END; (of FOR

END;

BEGIN END.

page 308

SEGMENT Usulbits;
(Set the usual bits In a classifier.

($1 Comnl. Typ)
($I \PROPAS\PASPC)
($1 \PROPAS\PASDOS)

FUNCTION YesNo: boolean; EXTERNAL;
FUNCTION Ask (leftnargin: integer; question: string): boolean; EXTERNAL;

PROCEDURE SetUsualBlts (Index: integer; VAR Teiap: solutiontype);
VAR Answer, Duamy: boolean;

BEGIN

TextWindov (1,12,80,25);
ClrScr;
GoToXY (8,5);
writeln (Toes the solution usually require');
writeln (I 1: 7,1a correct answer to this question. Y/N7');
Answer: z YesNo;

IF Answer - true THEN BEGIN
Dummy: - setbit (Teap. usualmask, Index); Set usual mask bit to true
Temp. totalusual: z Temp. totalusual + 1;
ClrScr:
GoToXY (9,5);
writeln ('Is the answer that is usually needed');
writeln (I 1: 7,1to this question "yes" or "no". Y/0);
knswer: z YesNo;

IF Answer r- true THEN
Dumpa setbit (Temp. classifier, Index); Set classifier bit to true

END; (of IF)

END;

BEGIN END.

page 309

SEGMENT EdItClas;
t Edit a classifier.

($1 Comnl. Typ)
t$I \PROPAS\PASPC)
($1 \PROPAS\PASDOS)
PROCEDURE Blankln (nuRber: integer); EXTERNAL;
PROCEDURE FoniffleNave (filenusber: integer; title: string; VAR FileXame: string); EXTERNAL;
FUNCTION Ask (leftiargin: integer; question: string): boolean; EXTERNAL;

PROCEWRE EditClassifier;
VAR TempFile: FILE OF solutiontype;

Solutionfile, Questionfile: text;
TempRecord: solutiontype;
FileXame: string[301;
Line: string[1001;
SolutionNumber, QuestionNumber, Counter: integer;
Answer, ClassifierSetting, Duny: boolean;

BEGIN
ClrScr;
CursorOff;
Blankln (8);
writeln (I 1: 7, 'Enter the nuiber of the solution whose classifier you want to edit. ');
read (SolutionNumber);
ClrScr;
Blankln (5);
writeln (I 1: 7, 'The text of the solution whose classifier you are editing is;,);
ForzFileName (SolutionNusber, lsolutionl, fileName);
MeName: m concat (1\shell\solution\1, F1leName);
assign (SolutionFile, FileName);
reset (SolutionFile);
Counter: - 8;
WHILE NOT eof(SolutionFfle) DO BEGIN

readln (SolutionFile, Line);
GoToXY (15, Counter), *
writeln (Line);
Counter: = Counter + 1;

END: (of WHILE
writeln, -
vriteln (I 1: 7, 'Enter the nurber of the question that you want to change. ');
read (QuestionNumber);
writeln;
writeln (I 1: 7, 'The question whose bit you are editing is;,);
FormFileXame (QuestionNumber, lquestionl, fileNaiie);
FileName: - concat (1\shell\question\1, FileXaze);
assign (QuestionFile, FileNate);
reset (QuestionFile);
Counter: = 16;
WHILE NOT eof(QuestionFile) Do BEGIN

readln (QuestionFile, Line);
GoToXY (15, Counter);
writeln (Line);
Counter: m Counter +1

END; (of WHILE)
assign (TempFile, 'Classifl);

page 310

update (TempFile);
seek (TevpFile, (SolutionNuiber - 1));
read (Temphle, TempRecord);
writeln;
ClassifierSetting: - testbit(TempRecord. classifier, QuestionNuiaber);
writeln (I 1: 7, 'Tbe setting of this question bit is 1, ClassifierSetting);
Answer: = Ask (7, 'Do you want to change its setting. Y/N71);
IF Answer - true THEN BEGIN

Duzzy: x flipbit(TespRecord. classifier, QuestionNumber);
seek (TempFile, (SolutionNumber - 1));
write (TempFile, TempRecord);
close (TempFile, true)

END; (of IF
ClrScr
END;
BEGIN END.

page 311

SEGMENT DelClass;
(Delete a specified classifier and close up the succeeding file elements.

($I Cononl. Typ)
($I \PROPAS\PASPC)
($I \PROPAS\PASDDS)

PROCEDURE DeleteClassifler (CountOfQuestions: integer);
VAR TempFile: FILE OF classifiertype;

Temp: classifiertype;
Selector, Counter, Index: integer;

BEGIN
CIrScr;
writeln (I 1: 7, 'What is the number of the solution');
writeln (I 1: 7,1whose classifier you want to delete? ');
read (Selector);
assign (TezpFile, 'Classifl);
reset (TempFile);
WHILE NOT eof (TempFfle) DO BEGIN

IF Tempffle A keynumber (> Selector THEN File pointer not at selected element
get (TempFile); (Go to next element

IF eof (TempFile) z true THEN
writeln (I 1: 7, 'No classifier has been written for this solution. ') (Selected classifier

not found
ELSE BEGIN File pointer is at selected element

Counter: x Selector;
FOR Index: z Selector To CountofQuestions DO BEGIN

seek (TempFile, (Counter+l)); Go to next file element
Temp. keynuzber: = TempFileA. keynumber; Set Temp's fields to this element's values
Temp. essentialmask: z TempFile A essentialmask;
Temp. usualmask: = TempFile, ". usualmask;
Temp. classifier: z TempFile A classifier;
Temp. totalusual: z TempFilell. totalusual;
Counter: z Counter - 1; Go back to selected file element
write (TempFile, Temp); Overwrite element with values of next element
seek (TempFile, (Counter+l))

END; { of FOR
END; of ELSE
END; of WHILE
close (TempFile, true)
END;
BEGIN M.

page 312

SEGMENT FindRslt;
(Main procedure for writing the message and obtaining the result.

($1 Cownl. Typ)
PROCEDURE ZeroiseBitString (VAR Bit: Bitstring); EXTERNAL;
PROCEDURE SetUpSolutionList (CountOfSolut1ons: integer; VkR Bead: solutionpointer); EXTERNAL;
PROCEDURE SetMessageAndMask (LiveQuestion: integer; VAR Message, XessageMask: bitstring); EXTERNAL;
PROCEDURE lemoveContradictedSolutions (Xessage, MessageMask: bitstring; NFQ: integer;

VAR Head: solutionpointer); EXTERNAL;
PROCEDURE CalculateProbability (Message, MessageXask: bitstring; CountOfQuestions: integer, *

Head: solutionpointer); EXTERNAL;
PROCEDURE DisplayResult (Head: solutionpointer),, EXTERNAL;
PROCEDURE ClearHeap (Read: solutionpointer), * EXTERNAL;
FUNCTION FindMostFrequentQuestion (MessageMask: bitstring; CountOfQuestions: integer;

Bead: solutionpointer): integer; EXTERNAL;
FUNCTION FindUsualQuestion (MessageMask: bitstring; CountOfQuestions: integer;

Head: solutionpointer): integer; EXTERNAL;

PROCURE FindResult (CoutOfQuestions, CountOfSolutions: integer);
VAR Message, MessageMask: bitstring;

Head: solutionpointer;
UQ, XFQ: integer;

BEGIN

ZeroiseBitString (Message); Set Message and Mask to zero
ZerolseBitString (MessageMask):
SetUpSolutionList (CountOfSolutions, Head); Create solutions list
MFQ: = FindMostFrequentQuestion (MessageMask, CountOfQuestions, Head); { Find number of MFQ

WHILE MFQ (> 0 DO BEGIN (Search essential masks & prue solutions list
SetMessageAndMask (MFQ, Message, MessageMask); (Set Message and MessageMask for MFQ)
RemoveContradictedSolutions (Message, MessageMask, MFQ, Head); (Remove contradicted solution I
MFQ: x FindMostFrequentQuestion (MessageMask, CountOfQuestions, Head); (Find no KFQ remaining)

END; (of WHILE)

UQ: x FindUsualQuestion (MessageMask, CountOfQuestions, Head); (Find number of UQ)

WHILE UQ (> 0 Do BEGIN
SetMessageAndMask (UQ, Message, MessageMask); Set Message and

MessageMask for UQ)
UQ: x FindUsualQuestion (MessageMask, CountOfQuestions, Head); Find nuiber of next UQ

END; (of WHILE)

CalculateProbability (Message, MessageMask, CountOfQuestions, Head);
DisplayResult (Head);
ClearHeap (Head);

END;

BEGIN END.

page 313

SEGMENT SetUpSol;
(Set up a linked list of solutions and return the Head pointer.

($1 Cononl. Typ)
($1 \PROPAS\PASPC)

PROCEDURE SetUpSolutionList (CountOfSolutions: integer; VAR Head: solutionpointer);
VAR Classifier: FILE OF solutiontype;

TempRecord: solutiontype;
Teap, Ourrent: solutionpointer;
Index: integer;

BEGIN

new (Current); { Make space in beap for last element in the list)
Current'l. keynuaber: z CountOfSolutions; [Number of last element := total number of solutions
Current%next: z NIL; (get pointer field of last element to NIL)

FOR Index: z (CountOfSolutions - 1) DOWNTO 1 DO BEGIN (Work backward from last element in list
new (Temp); (Make space in heap for a new element in the list
Temp, ',. keynuW)er: - Index; (Set keynuiber to loop index I
TempA. next: z Current; (Set pointer to current element in the list
Current: z Temp; (Make the current element the new element

END; (of FOR)

Head: = Current; (Move head pointer to first solution - current pointer - on exiting FOR loop
assign (Classifier, 'Classifl); Connect Classifier to disk file 'Classifl
reset (Classifier);
Temp: z Read; Position Temp at beginning of solutions list

FOR Index: - 1 TO CountOfSolutions DO BEGIN
read (Classifier, Templecord);
TempA. essentialmask: z Te%pRecord. essentialmask;
TeMpA. usualmask: z TempRecord. usualmask;
TempA. classifier: z TespRecord. classifier;
TeMpA. totalUSUal: z TempRecord. totalusual;
TempA. usualtrue: z 0;
TeEpA probability: = 0;
ClrScr;
Temp: z TempA. next; Move pointer to next record

END; (of FOR)

W;

BEGIN END.

page 314

SEGMENT MFrqQust;

($I Commonl. Typ)
($1 ', PROPAS\PASDOS)

FUNCTION FindMostFrequentQuestion (MessageMask: bitstring; CountOfQuestions: integer;
Head: solutionpointer): integer;

VkR Current: solutionpointer;
TopQuestion, QuestionCounter: questiontype;
Index: integer;
AllFalseFlaq, kllTrueFlag: boolean;

BEGIN

TopQuestion. questionnumber: m 0;
TopQuestion. countofoccurrance: = 0;

FOR Index: = 1 TO CountOfQuestions DO BEGIN
AllFalseFlag: x false;
AliTrueFlag: = false;
QuestionCounter. questionnumber: z Index;
QuestionCounter. countofoccurrance: = 0;
Current: = Head;

4

RILE Current <> NIL DO BEGIN
IF (testbit(Current". essentialmask, Index) = true) AND (testbit(MessageMask, Index) = false) THEN BEGIN

QuestionCounter. countofoccurrance: = (QuestionCounter. countofoccurrance + 1);
IF testbit(CurrentA. classifier, Index) = true THEN

AllTrueFlaq: x true
ELSE

AllFalseFlag: = true;
END; (of IF)

Current: = Current". next
END; (of WHILE)

IF AllFalseFlag W AllTrueFlag = true THEN
IF QuestionCounter. countofoccurrance > TopQuestion. countofoccurrance THEN

.
TopQuestion: = QuestionCounter

END; t of FOR)

FindMostFrequentQuestion: = TopQuestion. questionnumber;

END;

BEGIN END.

page 315

SEGXENT XessXask;
(Display the most frequently occurring question and obtain the user's answer to it.

($1 Conwnl. Typ)
($1 \PROPAS\PASPC)
($1 \PROPAS\PASDOS)
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE PressKey (vargin: integer); EXTERNAL;
PROCEDURE ForaFileName (filenumber: integer; title: string; VAR FileName: string); EXTERNAL;
PROCEDURE DisplayTextFile (DiskFile, directory, beading: string; filenuaber, firstline: integer);
EXTERNAL;

PROCEDURE SetHessageAndMask (LiveQuestion: integer, *VAR Message, MessageMask: bitstring);
VAR FileNave: string[301;

Gate: char;
Answer, Duny: boolean;

BEGIN
CursorOff;
TextWindow (1,1,80,7);
TextFrave (true);
ClrScr, s
FormFileName (LiveQuestion, lquestion', FileName);
DisplayTextFlle (FileNave, lquestionl, 'Question', L! YeQuestion, 2); Display question text
TextWindow (1,1,80,25);
GoToXY (1,10);
writeln (I 1: 7, 'Please answer the question "Yes" or "No". #);
TextWindov (1,23,80,25);
TextFrame (false);
GoToXY (1,23); Position display at bottom of screen
writeln (I 1: 3, 'Press 11W11 for "Why" if you want to see an explanation of this question. ');
Gate: * ConSilent; (Wait for Y, N or W keyboard input
IF (Gate a IWI) OR (Gate a 'w') THEN BEGIN

TextWindow (1,11,80,25); (Set text window to lower part of screen
ForaffleName (LiveQuestion, lexplanation', FileMate);
FileName: - concat('\shell\question\', FileNate);
IF fstat (FileName) - false THEN BEGIN

Blankln (3);
writeln (I 1: 7, 'No explanation for this question is on ffle.,);
PressKey (7);
ClrScr;

END (of IF
ELSE BEGIN

TextWindov (1,18,80,22);
TextFrave (False);
DisplayTextFile (FileNate, lquestionl, 'Explanation', LiveQuestion, l); Display explan text)

END; (of ELSE)
Gate: z ConSilent; Wait for new Y or N keyboard input)
ClrScr;

END; (of IF
IF (Gate - IYI) OR (Gate a ly') THEN

D=y: - setbit (Message, LiveQuestion); Set Message to true if answer is 'yes')
Duny: - setbit (Messagemask, LiveQuestioii); (Set MessageMask to true if answer is 'yes' or 'no'
TextWindow (1,1,80,25); Restore window to whole screen
ClrScr, *
END; BEGIN END.

page 316

SEGMENT RezSoln,,
(Remove from list of solutions any whose essential masks is contradicted by an answer to a ques-
tion.)

($1 Commonl. Typ)

PROCEDURE lemoveContradictedSolutions (Message, MessageMask: bitstring; NFQ: integer;
VAR Read: solutionpointer);

VkR Current, Previous; solutionpointer;
InteriediateResultl, IntervediateResult2: boolean;

BEGIN

Current: - Head; (Current set to first element of solutions list)

WHILE Current 0 NIL DO BEGIN
IntersediateResultl: z NOT (testbit(Message, XFQ) XOR testbit(Currentl. classifier, MFQ));
IntersediateResult2: z testbit(Current,,. essentialmask, XFQ);
IF IntermediateResultl AND IntermediateResult2 z false THEN (If the result is false,

delete no-longer-possible solution element.
IF Current - Head THEN BEGIN To delete first solution record)

Head: - HeadA. next; (Move Head pointer to next element
dispose (Current); { Delete first element)
Current: - Head; Set current pointer to what is now the first element

END (of IF)
ELSE BEGIN Delete if non-head element

PrevioUSA next: = Current',. next; By-pass current element
dispose (Current); Delete by-passed element
Current: x PreviousA. Dext; Set current pointer equal to next element

END (of ELSE)

ELSE BEGIN Not deleting element because still possible solution
Previous: = Current; Move previous pointer to current element
Current: = CurrentA next Move current pointer to next element)

END; (of ELSE) IF CurrentA next is NIL, WHILE loop is exited

END; (of WHILE

END;

BEGIN END.

page 317

SEGMENT UsulQust;
(Return the number of next unanswered usual question for all the possible solutions.

f$I Comnl. Typ)

FUNCTION FindUsualQuestion (MessageMask: bitstring; CountofQuestions: integer;
Head: solutionpointer): integer;

VAR Current: solutionpointer;
Found: boolean;
Index, questionnuid)er: integer;

BEGIN

Current: z Head: Go to beginning of solutions list
Found: x false;

WHILE (Current (> NIL) AND (Food = false) DO BEGIN
Index: x 1:

WHILE (Index (a CountofQuestions) AND (Found - false) DO
IF (testbit(Currentl. usualiask, Index) = true) M (testbit(MessageMask, Index) = false) THEN

BEGIN
Found: - true;
QuestionnuW*r: - Index;

END (of If
ELSE

Index: = Index + 1;

Current: - Ozrent",. next;
END; (of WHILE)

IF Found a true THEN
FindUsualQuestion: z QuestionNumber

ELSE
FindUsualQuestion: - 0;

END;

BEGIN END.

page 318

SEGMENT Probable;
(Calculate the probability of the possible solutions being correct.

($1 Covwnl. Typ)
PROCEDURE PressKey (margiminteger); EXTERNAL;

PROCEDURE CalculateProbability
(Message, MessageMask: bitstring; CountOfQuestions: integer; Head: solutionpointer);

VAR Current: solutionpointer;
IntervediateResultl, IntervediateResult2, UsualResult: boolean;
Index: integer;

BEGIN

Current: - Head;

WHILE oirrent o NIL DO BEGIN

(Go to beginning of solutions list)

FOR Index: m I TO CountOf'Questions DO BEGIN
TntermediateResultl: = NOT (testbit(Message, Index) XOR testbit(CurrentA classifier, Index));
IntenediateResult2: x testbit(NessageMask, lndez) W testbit(CurrentA. usuallask, lndex);
UsualResult: = IntermediateResultl AND IntermediateResult2;
IF UsualResult a true THEN (True when the answer to the usual question is correct

Current, ". usualtrue: z (CurrentA. usualtrue + 1);
END; (of FOR)

WrentA probability: x (CurentA. usualtrue / CurrentA. totalusual) * 100;
Current: x CurrentA. neXt (Go to next solutions list element

END; (of WHILE

M;

BEGIN END.

page 319

SEGMENT DiSpRSlt;
(Display the most likely solution with its probability on screen.

($1 Coimonl. Typ)
($I \PR0PAS\PkSPC)
($I \PROPkS\PLSDOS)
PROCEDURE Blankln (number: integer); EXTERNAL;
PROCEDURE PressKey (sargin: integer); EXTERNAL;
PROCEDURE FormFileName (filenumber: integer; title: string; VkR FileXame: string); EXTERNAL;
PROCEDURE DisplayTextFile (DiskFile, directory, heading: string;

filenumber, firstline: integer); EXTERNAL;
FUNCTION YesNo (margiminteger): boolean; EXTERNAL;

PROCEDURE DisplayResult (Head: solutionpointer);
VkR Disk: text;

Carrent: solutionpointer;
Line: string[100];
FileName: string[30];
Cate: char;
FrontRunner, Counter: integer;
Probability: real;

BEGIN
ClrScr;
IF Head - NIL THEN BEGIN

Blankln (8);
writeln (1 1: 7,11 know of no solution that matches these answers. ');
PressKey (7);

END (of IF
ELSE BEGIN

Current: = Head; Go to first solution list element
FrontRunner: =Olrrent'l. keynumber;
Probability: = CurrentA probability;
WHILE Current <> NIL DO BEGIN

IF Currentl. probability > Probability THEN BEGIN Next element is the more probable
FrontRunner: z CurrentA keynumber; (Update FrontRunner
Probability: x CurrentA. probability; (Update Probability

END; (of IF)
Current: - CurrentA next;

END; (of WHILE)
FormFileName (FrontRunner, lsolution', FileNave);
assign (Disk, fileName); Connect Disk with FrontRunner on disk file
ChDir ('solution');
reset (Disk);
Blankln (3);
writeln (I 1: 7, 'Tbe most likely solution is; ');
Counter: z 6;
WHILE NOT eof(Disk) DO BEGIN Write solution text into screen box

readln (Disk, Line);
GoToXY (8, Counter);
writeln (Line);
Counter: z Counter +1

END; (of WHILE)
close (Disk, true);
ChDir ('\shell');
GoToXY (7,13);

page 320

writeln (I 1: 1, 'The probability that the solution is correct is ', tnnc(Probability): 3, ' per-
cent. 9;

TextWindov (1,1,90,15); TextFrame (true); Emphasise displayed solution text
TextWindow (1,1,80,25);
GoToXY (5,23);
writeln ('Press "W" for "Why" if you want to see an explanation of this solution.,);
GoToXY (5,24);
writeln ('Press any other key to clear the screen and begin another session. ');
TextWindow (1,22,90,25);
TextFrame (false);
Gate: x ConSilent;
IF (Gate a W) 01 (Gate - Y) THEN BEGIN

TextWindov (1,17,80,21);
TextFrame (false);
FormMeName (FrontRunner, lexplanation', FileName);
FileNane: z concat('\shell\solution\', FileName);
IF fstat (FileName) - false THEN BEGIN

GoToXY (7,2);
vriteln ('No explanation for this solution is on file. ');
PressKey (7);
ClrScr;

END (of IF
ELSE BEGIN

DisplayTextFile (FileNate, lquestionl, 'Explanation', FrontRunner, l);
END; (of ELSE

Gate: = ConSilent;
END; (of IF)

TextWindow (1,1,80,25); Restore text window to whole screen
ClrScr
END; (of ELSE
END;

BEGIN END.

page 321

SEGMENT ClrHeap;
(Removes the solutions linked list from memory.

($1 Comnl. Typ)

PROCEDURE ClearHeap (VAR Head: solutionpointer);
VAR Current, Succeeding: solutionpointer;

BEGIN

Current: - Head;
WHILE Current <> NIL DO BEGIN

Succeeding: m Currentl. next;
dispose (Current);
Current: x Succeeding

END; (of WHILE
Head: = NIL

END;
BEGIN END.

page 322

Appendix 3. LISTING OF HOUSE. BAS

REM HOUSE ARCHITECTURE WITH CLASSIFIERS
REX LIST OF VARIABLES ***
REM C Array of Integers representing classifiers
REX first index z classifier number
REM second index = 16 bit field within each classifier
REM CR Array of integers indicating relevant bits in classifier
REX first index = type A or B or C
REX second index z classifier number
REX third index z 16 bit field within each classifier
REX Q$ Array of diagnostic questions (string variables)
REX NQ Number of questions (integer variable)
REX H$ Array of house architectual types (string variables)
REM FG Boolean array for presence of graphic info for each feature
REM FP Integer array with bits set for features which are present
REM FT Integer array with bits set for features tested
REX CT Integer array of threshold value for each classifier
REX MK Integer array of words used as bit tasks
REX CV Integer array of values for each classifier
REX NC Number of classifiers
REM NE Number of houses for which all features are known

REX *** INITIALIZATION
DEFINT B-Z: OPTION USE 1
WINDOW CLOSE 1
DIN C(60,10), CR(3,60,10), CT(60), CV(60)
DIN FP(lO)j FT(10), KK(16), FG(160)
DIN Q$(160)lH$(60)
FG(23)zl: FG(24)=l: FG(25)xl
T$(l)="A": T$(2)z"B": T$(3)="C"
FOR Jc1 TO 10

FP(J) = O: FT(J)=O
NEXT J
FOR I=1 TO 59

CV(I) a0
NEXT I
NE=O: BS=60: CV(BS)=-500
Ba MOUSE(O)

REM *** READ 16 BIT-MASKS
FOR J=1 TO 16: REkD MK(J): NEXT J

REM *** DISPLAY INFORMATION
WINDOW 1,, (40170)-(472,280)12
PRINT: PRINT TAB(12); "EXPERT SYSTEM FOR HOUSE ARCHITECTURE"
PRINT: PRINT TAB(3); "This program is designed to help you identify the architectural"
PRINT "style of family homes. The computer will ask you questions about"
PRINT "specific attributes of the house you are examining. Respond to these"
PRINT "questions by clicking the mouse on the appropriate answer. If you"
PRINT "are not sure about the proper response, choose the alternative which"
PRINT "is most nearly correct. "

REM READ LIST OF QUESTIONS
Ll: READ X: IF X= 999 THEN L2
READ Q$(N): NQ=N: GOTO Ll

page 323

REM IUD CLAMIFIERS & RELEVANCE KASKS
L2: READ N: IF Na 999 THEN L3
READ H$(N), CT(N): NC zN
FOR HI TO 3
Cl: READ N: IF N=999 THEN C2

NA ABS(N)
Ja INT((NA-I)/16) +I
Ka ((NA-1) MOD 16) +1
CR(H, NC, J) a CR(B, NCiJ) OR MK(K)
IF N>0 THEN C(NC, J) - C(NC, J) OR KK(K)
GOTO Cl

C2: NEXT H
COTO L2

ki*

L3: PIINT: PRINT TA. B(18); "CLICK THE MOUSE TO BEGIN"
DZ: IF HOUSE(O) a0 THEN DZ
WINDOW CLOSE I

REX *** CREATE MENUS
MENU 6,0,1, "Debug"
MENU 6,1j, "Nessage"
MENU 6,2,1, "Cl us iflers"
MENU 7,0,1, "Crosstabs"
MENU 7,1,1, "House Types"
MENU 7,2,1, wFeatures"
ON MENU GOSUB PME
MENU ON

REM W DETERMINE DATE OF CONSTRUCTION
Q$ - "When was the house built ?"
WINDOW I, Q$, (120,60)-(390,310), l

BUTTON 1,1, wbefore 1820", (90,20)-(190,40)
BUTTON 2,1, "1820 to 1980", (80,65)-(180,85)
BUTTON 3,1, "1890 to 1940"8(80,110)-(1801130)
BUTTON 4,1, "after 1940", (80,155)-(180,175)
BUTTON 5,1, "un]mown", (8O, 2OO)-(l8O, 220)
GOSUB QUERY
IF B, a5 THEN L4
J31: K=B: FP(J) a FP(J) OR MK(K)
FOR K-1 TO 16: FT(J) - FT(J) OR XK(K): NEXT K

WINDOW CLOSE I
FOR Ka1 TO 4: GOSUB AAJ: NEXT K

i**

REM GET SLOPE OF THE ROOF ***
L4: Q$ - "What Is the slope of the roof ?"
WINDOW I, Q$, (90,60)-(420,290)

BUTTON 1, l, "flatw, (60,20)-(330,45), 2
BUTTON 2,1, "less than 30 degrees", (60,60)-(330,95), 2
BUTTON 3,1, "30 to 45 degrees", (60,100)-(330,125), 2
BUTTON 4,1, "more than 45 degrees", (60,140)-(330,165), 2
BUTTON 5,1, "combination of the above", (60,180)-(330,200), 2
COSUB QUERY
Jxl: KxB+4: FP(J) z FP(J) OR MK(K)

WINDOW CLOSE 1
FOR Kz5 TO 9: GOSUB ADJ: NEXT K

page 324

REX *** COMPOSITION OF EXTERIOR WALLS
Q$ a *The exterior walls are vade of
WINDOW 1, Q$, (90,60)-(420,300)

BUTTON l, l, "wood", (6O, 20)-(26O, 45), 2
BUTTON 2, I, "stone*, (6O, 55)-(26O, $O), 2
Km 3,1, lbrick", (60,90)-(260,115), 2
BUTTON 4,1, "stucco or adobe", (60,125)-(260,150), 2
BU TTO K 5j, "codination of the above", (60,160)-(260,185), 2
BU TTO M 6,1, "other", (60,195)-(260,220), 2
GOSUB QUERY
Jzl: KzB+9: FP(J) z FP(J) OR MK(K)

WINDOW CLOSE I
FOR K-10 TO 15: GOSUB ADJ: XEXT K

REX *** ROOF-WALL JUNCTION ***
0z "Junction between roof and exterior wall
WINDOW 1, Q$, (40,55)-(465,315)

BUTTON 1,1, "little or no overhang (no eaves)", (50,30)-(380,50), 2
BUTTON 2,1, Oexterior wall extends above roof (parapet)", (50,60)-(390,80), 2
BU MN3,1, "slight overhang with exposed rafters", (50,90)-(380,110), 2
BU MN4,1, Oslight overhang with boxed eaves", (50,120)-(380,140), 2
BUTTON 5,1, "wide overhang with exposed rafters", (50,150)-(380,170), 2
BUTTON 6,1, ftwide overhang with boxed eavesw, (50,180)-(380,200), 2
BUTTON 7,1, "otherw, (50,210)-(380,230), 2
GOSUB QUERY: BIT -B+ 15
Ja INT((BIT-1)/16) +1
Ka ((BIT-1) MOD 16) +1
FP(J) z FP(J) OR MK(K)
J-2: FOR K -1 TO 6: FT(J) - FT(J) OR MK(K): NEXT K

WINDOW CLOSE I
J*I: Kzl6: GOSUB AW
Jz2: FOR Kz1 TO 6: GOSUB ADJ: NEXT K
GOSUB UP

REX MIN LOOP ***
REX GET NEXT QUESTION
L9: IF CV(Kl)) CT(Xl) THEN L40
IF CV(BS)+470 CV(Kl) THEN Xl=BS: GOTO L40
H-0
L10: H+1: IF H)3 THEN L20
j-1
Lll: JJ+1: IF J) 10 THEN L10

Q=CR(H, Nl, J): IF Q=O THEN Lll
Ka0

L12: K-K+1: IF K> 16 THEN Lll
T-QW MK(K) MM NOT FT(J)
If Tc0 THEN L12
Na 16*(J-J) +K
0a QVX)
GOSUB YN
FT(J) = FT(J) OR MK(K)
IF B--l THEN FP(J) z FP(J) OR XK(K)
GOSUB ADJ
GOSUB TAP
GOTO L9

page 325

L20: CV(Ml) a CV(xl)-500
IF CV(Ml)) CV(BS) THEN BS=Ml
NE a NE + l: IF KEA THEN L30
WINDOW 3, "BEST SO FkR", (320,170)-(500,220)
MOVETO 20,20: PRINT H$(BS); SPC(2); CV(BS)+5OO;
GOSUB UP
GOTO L9

L30: IF CV(11)+500 > 15 THEN Nl=Rl: GOTO L40
WINDOW CLOSE 2: WINDOW CLOSE 3
WINDOW 1,, (80,120)-(430,220), 2
XOVETO 30,50: PRINT "This bouse does not fit any of my categories"
GOTO TRAP

L40: WINDOW CLOSE 2: WIXDOW CLOSE 3
WINDOW 111(80,120)-(430,220), 2
XOVETO 30,50: PRINT "The architectural style is "; H$(Nl);

TRAP: GOTO TRAP

REX *** AWUST CLASSIFIER VALUES
AM FOR IxI TO NC

IF CV(I) a -99 THEN A3
TR z NOT(C(10J) XOR FP(J))
Hal: RB - CR(H, I, J) AND KK(K)
IF RB a0 THEN Al
TB a TR AND RB
IF TB a0 THEN CV(I)z-99 ELSE CV(I)=CV(I)+5
GOTO A3

AD H-2: RB - CR(H, I, J) AND MK(K)
IF RB a0 THEN A2
TB a TR AND RB
IF TB a0 THEN CV(I)=CV(I)-5 ELSE CV(I)=CV(I)+5
COTO A3

A2: Hc3: RB m CR(H, I, J) AND MK(K)
IF RB z0 THEN A3
TB a TR W RB
IF TB 20 THEN CV(I)=CV(I)-l ELSE CV(I)=CV(I)+5

A3: NEXT I
RETURN

REM SUBROUTINE TO CHECK DESKTOP ***
QUERY: Du DIALOG(O): IF Do1 THEN QUERY
Ba DIALOG(l): BUTTON B, 2
RETURN

REM SUB TO ASK YES-NO QUESTION
YN: IF FG(N) -0 THEN Yl
WINDOW 4,1(70,135)-(260,235), 3
TQ - N-22: ON TQ GOSUB Gl, G2, G3, G4, G5
Yl: WINDOW l, "Does the house have", (30,50)-(490,130), l
Y2: NT=O: NL - LEN(Q$): LB z 200 - NL*3

MOVETO LB, 20: PRINT Q$; " ? ";
BUTTON 1,1, "Yes", (150,40)-(190,60)
BUTTON 2,1, "No", (230,40)-(270,60)

page 326

Y3: D a DIALOG(O): NT z XT + l: IF NT > 600 THEN Y2
IF D01 THEN Y3
8a DIM(l): BUMN B, 2

WINDOW CLOSE l: WTNDOW CLOSE 4
RETURN

REX PROCESS MENU SELECTION ***
PME: Mx MENU(O): IF Mz7 THEN CRT
IF X06 THEN RETURN
MENU 6, S, I: S a MENU(l)
MENU 6, S, 2: XENU
ON S GOSUB MESSr CLAS
RETURN

REX DISPLAY MESSAGE
MESS: WINDOW CLOSE 2
WINDOW 4, ""j(20,35)-(490,305), 2
PRIMT: PRINT TkB(22); "CUlREMT MESSAGE"
PRINT TkB(13); NBITS TESTED"; SPC(14); "BITS SET"
FOR J2 a1 TO 10: PRINT TkB(10);

FOR K2 aI TO 161 a FT(J2) AND MK(K2)
IF To0 THEN PRINT 111"; ELSE PRINT "011;

NEXT K2: PRINT SPC(6);
FOR K2 aI TO 161 a FP(J2) AND MK(K2)

IF T00 THEN PRINT "?; ELSE PRINT V;
NEXT K2: PRINT

NEXT J2
PRINT: PlINT TAB(20); "HIT ANY KEY TO CONTINUE";
Mz: R$zINKEY$: IF R$ a "" THEN XZ
WINDOW CLOSE 4
RETURN

CLkS: WINDOW CLOSE 2
WINDOW 4, "", (10,35)-(500,320)12
PRINT: PRINT TAB(20); "LUDING ACTIVE CANDIDATE"
PRINT TkB(22); H$(Ml)
PRINT TAB(7); "Classifier"; SPC(14); "Mask A"; SPC(13); "Masks B C"
FOR J3 z1 TO 10

PRINT TAB(3);
FOR K3 aI TO 16

Tz C(MI, J3) AND MK(K3)
IF To0 THEN PRINT 01"; ELSE PRINT "0";

NEXT K3: PRINT SPC(4);
FOR K3 aI TO 16

Ta CR(1, MI, J3) M MK(K3)
IF To0 THEN PRINT Nl"; ELSE PRINT V;

NEXT K3: PRINT SPC(4);
FOR K3 -1 TO 16

Tz (CR(2, Ml, J3) OR CR(3, Ml, J3)) AND MK(K3)
IF To0 THEN PRINT "I"; ELSE PRINT V;

NEXT K3: PRINT
NEXT J3
PRINT: PRINT TAB(21); "HIT ANY KEY TO CONTINUE";
CZ: R$zINKEY$: IF R$ THEN CZ
WINDOW CLOSE 4
RETURN

page 327

TAP: Mlx60: X2z60: X3=60: CV(Xl) a -500
FOR IaI TO NC

IF cv(r)) CV(Xl) THEN X3zM2: M2=Xl: Xlxl: GOTO Tl
IF CV(I) > CV(X2) THEN X3zX2: K2-1: GDTO Tj
IF CV(I)) CV(M3) THEN M3xI

TI: NEXT r
WINDOW 2, "ACTIVE CANDIDATES", (20,260)-(480,330), l
XOVETO 40,15
PRINT CV(Ml); "/"; CT(Xl); SPC(3); H$(Xl);
MOMPO 40,35
PRINT CV(X2); "/"; CT(M2), *SPC(3); H$(X2),,
MOVM 40,55
PRINT CV(M3); "/"; CT(K3); SPC(3); H$(M3);
RETURN

REX PROCESS MENU INTERRUPT
CRT: WINDOW CLOSE 2
MENU: NX=O: IF MENU(I) a2 THEN PM5
IF MENU(l) 01 THEN RETURN
PKI: WINDOW 3, "WHICH HOUSE TYPE ? ",, l
MXlzl2: IF XXI)NC-NX THEN XXIzNC-NX
FOR lIsl TO XXI

BUTTON 11,1, H$(II+NX), (40,20*11-5)-(240,20*II+10), 2
NEXT II: IF NC-KX(13 THEN PM2
MXIx24: IF MXI)NC-NX THEN XXIzNC-NX
FOR II a 13 TO XXI

BUTTON 11,1, H$(II+NX), (260,20*11-245)-(470,20*II-230), 2
NEXT 11
PM2: IF NX+24(NC THEN BUTTON 25,11"MORE", (80,260)-(200,280), 3
BUTTON 26, lt"EXIT"1(300,260)-(420,280), 3
PM3: IF DIALOG(O) 01 THEN PM3
KCH=DIMA(l): BUTTON KCH, 2
IF KCHz25 THEN NX--NX+24: GOTO PM1
IF KCHx26 THEN PM9
HC=KCH+NX: R$, "RELEVANT FEATURES FOR "+H$(HC)
WINDOW 3, R$,, l
NFcO
FOR HH zI TO 3

FOR JJ aI TO 10
FOR KK -I TO 16

TCB, a CR(HH, HC, JJ) AND MK(KK)
IF TCB a0 THEN PM4
XFtNF+I: NN=(JJ-I)*16 +M
PRINT SPC(l); T$(HH); SPC(3); Q$(NN)
IF NF - 16 THEN GOSUB, PAU

PM4: NEXT KK
NEXT JJ

NEXT UH
BUTTON 1,1, "EXIT", (430,270)-(490,290), 3
PM4A: IF DIALOG(O) 01 THEN PX4A
KCHzDIALOG(l): IF KCHOI THEN PM4A
BUTTON 1,2: GOTO PM9

page 328

PMS: WINWW 3, "WHICH FEATURE ? "oil
MXIxl2: IF MIT)NQ-Nl THEN XXIxNQ-NI
FOR IIxI TO KII

, BUTTON 11,1, Q$(II+NX), (10,20ilI-5)-(480,20*II+10), 2
NEIT 11
If NX+12(NQ THEN BU MN 13ol, "MORE", (80#260)-(200,280), 3
BU MN 14,1, 'EXIT", (300,260)-(420,280), 3

PX6: IF DIM(O) 01 THEN PM6
KCH a DIMX(l): BUTTON KCH, 2
IF KCH*13 THEN NI-tNX+12: GOTO PX5
IF KCHxl4 THEN PM9
FC-KCH+XX: WIM 3#Q$(FC)#, l
BU MN1,1, "EIIT", (430,270)-(490,290), 3
JJ a INT((FC-I)/16) +I
KK a ((FC-1) NOD 16) +1
FOR KH aI TO 3

FOR Il a1 TO NC
TBC a CR(B, 11, JJ) W XK(KK)
IF TBC a0 THEN PM6A
IF HVII) aM THEN PM6A
PRINT SPC(l); T$(HH); SPC(l); H$(II)
PH$ - Hs(II)

px6A:
NEXT HE

NEXT II

PK7: IF DIALOG(O) 01 THEN PM7
KCHzDIALOG(l): IF KCHM THEN PK7
BUTTON 1,2
PN9: WINDOW CLOSE 3
RETURN

PAU: BUTTON 1,1, "XORE", (430,270)-(490,290), 3
PAI: IF DIALOG(0)01 THEN PAl
KCH=DIALOG(l): IF KCHol THEN PAI
BUTTON 1,2: BUTTON CLOSE I: RETURN

REX GRAPHICS FOR BOARD-AND-BATTEN FRONT DOOR
Gl: LINE (75,13)-(117,87),, B
FOR IzI TO 6

LINE (75+1*6,13)-(75+1*6,87)
NEXT I
RETURN

REM GRAPHICS FOR RECESSED PANELS IN FRONT DOOR
G2: LIKE (75,12)-(117s88)l, B
FOR I-I TO 4

LIKE (84,6+16*I)-(92,16+16*I),, B
LINE (98,6+16*I)-(106,16+16*1),, B

NEXT I
RETURN

k

page 329

REX PILASTERS ON EACH SIDE OF FRONT DOOR
G3: LIKE (80,20)-(112,80),, B
LIKE (69,20)-(74,80),, B
LIKE (118,20)-(123,80),, B
LINE (67,80)-(76,83),, B
LINE (116,80)-(125,83),, B
LINE (78,80)-(114,83),, B
LINE (67,17)-(76,20),, B
LINE (116,17)-(125,20),, B
RETURN

REX *** XASKS FOR BIT WIPULATION
DATA 08000,04000,02000,01000
DATA 0800,0400JH200,0100
DATA 080,040,020,210
DATA 08,04,02,01

REX LIST OF ARCHITECTURAL FEATURES
REM DATE OF CONSTRUCTION
DATA 1,11before 1820"
DATA 2, "1820 to 1880"
DATA 3, "1880 to 1940"
DATA 4, "after 1940"
REX *** ROOF SLOPE
DATA 5, "flat roof"
DATA 6, "Iow slope roof"
DATA 7, "moderate slope roof"
DATA 8,11steep slope roof"
DATA 9, "several different roof slopes"
REX *** COMPOSITION OF EXTERIOR WALLS
DATA 10, "wood exteriorn
DATA ll, "stone exterior"
DATA 12, "brick exterior"
DATA 13, "stucco or adobe exterior"
DATA 14, "coabination of wood and masonry or stucco"
DATA 15, "unconventional exterior cladding"
REX *** JUNCTION OF ROOF AND EXTERIOR WALL
DATA 16, "no roof overhang"
DATA 17, "parapet at roof-line"
DATA 18, "slight overhang with exposed rafters"
DATA 19, "slight overhang with boxed eaves"
DATA 20, "wide overhang with exposed rafters"
DATA 21, "wide overhang with boxed eaves"
DATA 22, "uusual roof-wall junction"
REX *** ENTRYWAY ***
DATA 23, "a board-and-batten front door"
DATA 24, wslx or eight recessed panels in the front door"
DATA 25, "pilasters on each side of the front door"
DATA 26, "a pediment (crown) above the front door"
DATA 27, "a front door split into upper and lower halves"
DATA 28, "more than one external front door"
DATA 29, "paired entry doors"
DATA 30, "a semi-circular or elliptical fanlight over the front door"
DATA 31, "slender columns supporting a forward-extending pediment"
DATA 32, "siall rectangular windows on either side of the front door"
DATA 33, "a round-arched front doorway"

page 330

DATA 34, "onate decorations on or around the front door"
DATA 35, "a recessed or obscurred main entrance"
DATA 36, "a row of small, rectangular glass panes above the front door"
DATA 37, "an entryway dominated by a large, formal portico (entry porch)" DATA 38, "a fancy metal canopy extending forward above the front door"
DATA 39, wcantilevered (unsupported) section of house, roof, or balcony"
REX *** FRONT PORCH ***
DATA 40, "a full-height (ground to roof-line) entry porch"
DATA 41, "a large, one-story front porch"
DATA 42, wa porch wrapping around more than one side of the house"
DATA 43, "classical (Roman) columns"
DATA 44, "porch roof supported by heavy, squared columns"
DATA 45, "porch roof supported by delicate, turned columns"
DATA 46, Ospindled porch railings"
DATA 47, "porch roof supports which look like bundles of sticks flared at the top"
DATA 48, "a second-story porch (balcony) with balustrade"
DATA 49, "lacy spandrels (gingerbread) along porch roof-line"
DATA 50, "no front porch"
DATA 51, "porch roof supported by plain, slender, wooden columns"
DATA 52, "a porch which covers the entire front facade"
DATA 53, "rough-bewn porch supports, roof bears, and window lintels"
DATA 54, "visor-shaped, horizontal extension along front of house"
REM *** WIMS ***
DATA 55, "one or tore palladian windows"
DATA 56, "one or tore oriel. windows"
DATA 57, "one or sore bay windows"
DATA 59, "a large, rectangular picture window"
DATA 59, "metal casement windows set flush with exterior wall"
DATA 60, "a window with a large pane bounded by many smaller panes"
DATA 61, "double-hung windows with vulti-pane glazing"
DATA 62, "windows grouped in side-by-side pairs"
DATA 63, "tall, narrow windows with sulti-pane glazing"
DATA 64, "three or tore contiguous windows"
DATA 65, "upper-story windows less elaborate than first-story ones"
DATA 66, "horizontal window openings with many rectangular panes"
DATA 67, "windows constructed of glass blocks"
DATA 68, "windows with many, small, diamond-shaped panes"
DATA 69, "windows with blank lower panes and patterned upper panes"
DATA 70, "segmental arches above windows"
DATA 71, "rounded arches above windows"
DATA 72, "pointed arches above vindowsn
DATA 73, "label molding above windows"
DATA 74, "hood molding above windows"
DATA 75, "bracketed awnings above windows"
DATA 76, "pedivented windows"
DATA 77, Osmall iron balconies at the base of window openings"
DATA 78, "flat lintels above window openings"
DATA 79, "round or elliptical windows"
REM *** GENERAL ARCHITECTURAL FEATURES
DATA 80, "an irregular roof shape"
DATA 81, "a second story which partially overhangs the first story"
DATA 82, " a round or polygonal tower at one corner of the facade"
DATA 83, "symmetrically placed windows about a centered front door"
DATA 84, "two or more front-facing gables"
DATA 85, "a prominent gable on the front facade"
DATA 86, "upper and lower stories with different exteriors"

page 331

DATA 87, wone or more pedimented dormers"
DATA $$, "a sculptured (fancy shape) dormer"
DATA 99, "ground to roof-line pilasters"
DATA 90, "cross gables (90 degree angle from each other)"
DATA 91, wa gambrel roof (dual pitched gables)"
DATA 92, "a mansard roof (hipped with differing upper and lower slopes)"
DATA 93, "a hipped roof"
DATA 94,1flared eaves"
DATA 95, "rounded ceramic roof tiles"
DATA 96, "flat ceramic roof tiles"
DATA 97, wwooden roof shingles"
DATA 99, "a thatched or false-thatched roof"
DATA 99, "exterior walls arranged in an octagonal shape"
DATA 100, wwooden shingles covering a curved or rounded exterior wall"
DATA 101, "a prominent round tower with a conical roof"
DATA 102, "a prominent square, hexagonal, or octagonal tower"
DATA 103, "a long, sprawling floor plan (ranch style)"
DATA 104, "an attached garage"
DATA 105, wwide masonry columns supporting the house"
DATA 106, "a simple rectangular floor plan and a side-gabled roof"
DATA 107, "a multi-directional shed roofu
DATA 108, "three different floor levels in a two-story house (split level)"
DATA 109, "a central wing projecting forward from the front facade"
DATA 110, "two stall wings at either end with a recessed central entryway"
DATA lll, wtwo or more stories"
DATA 112, "wall cladding which extends up into the gable without a break"
DATA 113, wgradually curved vertical corners"
DATA 114, "a long horizontal ribbon of connecting windows"
REX *** ROOF-LINE ORNAMENTATION ***
DATA 115, "ornamental brackets under the eaves"
DATA 116, "zodillions or dentils under the eaves"
DATA 117, wdecorated verge boards"
DATA 118, "trusses in the gables"
DATA 119, "false beams at the end of the gables"
DATA 120, Nspindlework detailing (gingerbread) in the gables"
DATA 121, "decorative terra cotta panels on the face of the gables"
DATA 122, "decorative half-timbering in the gables"
DATA 123, "a roof-line balustrade"
DATA 124, "a wide band of trim under the eaves"
DATA 125, "a small, horizontal ledge (coping) at the roof line"
DATA 126, "parapeted gables without half-timbering"
DATA 127, "fancy, ornate decorative detailing along the roof-line"
DATA 128, "horizontal rectangular openings just below the roof-linen
DATA 129, "an eyebrow dormer"
REK *** EXTERIOR WALL DEOORATIONS
DATA 130, "decorative half-timbering on upper-stories"
DATA 131, wexterior details which avoid a smooth-walled appearance"
DATA 132, "patches of patterned or textured shingles"
DATA 133, "masonry walls with patterned brickwork or stonework"
DATA 134,11brackets accentuating simulated upper-story overhangn
DATA 135, "wood shingle wall cladding"
DATA 136, "quoins decorating corners of masonry exterior"
DATA 137, "a belt course on masonry exterior"
DATA 138, "garlands or other floral decorations on exterior"
DATA 139, "rectanqular shutters along side the windows"
DATA 140, "patterned stickwork decorations on exterior walls"

page 332

DATA 141,11wooden roof beams projecting from top of exterior wall"
DATA 142, "zigzag, chevron, or lozenge decorations on exterior"
DATA 143, "conice and facade detailing emphasizing horizontal lines"
DATA 144, "dorner windows on the steep lower slope of a mansard roof"
DATA 145, "hipped dormer"
DATA 146, "shed dormer"
DATA 147, "exterior detailing with a vertical emphasis"
DATA 148, "small towers and other vertical projections on the roof"
DATA 149, "floor-to-ceiling windows"
REX ROOF-TOP DECORATIONS
DATA 150, "a roof-top cupola"
DATA 151, "a pinnacle on the roof"
DATA 152, "castellations on the roof"
DATA 153, "metal roof cresting"
DATA 154, "spires projecting above one or more gables"
DATA 155, "a large onion-shaped (Turkish) dome on the roof"
DATA 156, "decorative chimney pots"
DATA 157, "a prominent, tall, decorative chimney"
DATA 158, "a wide, flat, plain chimney"
DATA 159, "a roof-top balustrade"
DATA 160, "large chimneys at both ends of the house"
DATA 999

REX *** LIST OF CLASSIFIERS
DATA 1, "Queen Anne Victorian", 35
DATA 3,8,80, -83,999
DATA 41,131,999
DATA 14,42,43,45,48,49,55,57,60,69,82,84,116,117,157
DATA 118,120,121,122,132,133,134,153,999
DATA 2, "Tudor", 30
DATA 3,8, -41,999
DATA 90,157,112,999
DATA 12,23,33,63,64,98,126,130,156,999
DATA 3, "Italian Renaissance", 30
DATA 3,21,93,999
DATA 6, -10,115,999
DATA 25,26,65,71,76,109,110,136,137,999
DATA 4, "Italian Renaissance", 30
DATA 3,5,11,999
DATA 93,116,123,999
DATA 25,26,43,44,65,71,76,136,137,999
DATA 5, "Northern Postmedieval English", 25
DATA 1,8,16,999
DATA 10,23,68,106,111,999
DATA 81,135,157,999
DATA 6, "Southern Postmedieval English", 25
DATA 1,8,16,999
DATA 23,68,106,999
DATA 12,111,160,999
DATA 7, "Urban Dutch Colonial", 30
DATA 1,999
DATA 8,12,17,106, -111,146,999
DATA 27,61,91,160,999
DATA 8, "Rural Dutch Colonial", 30
DATA 1,999
DATA -10,106,999

page 333

DATA 27,61,91,94, -111,146,999
DATA 9, "Urban French Colonial", 35
DATA 50,999
DATA 1,8,13,106, -111,999
DATA 17,28,29,30,63,94,999
DATA 10, "Rural French Colonial", 30
DATA 1,999
DATA 8,13,41,999
DATA 29,51,63,92,105,999
DATA 11, "Spanish Colonial", 25
DATA 6, -10,999
DATA 1,28, -34,95,999
DATA 23,48,999
DATA 12, "Spanish Colonial", 30
DATA 5, -10,17,999
DATA 1,28, -34, -111,999
DATA 23,41,141,999
DATA 13, "Georgian", 40
DATA 1, -30, -62,111,999
DATA 7,19,61,83,999
DATA 24,25,26,36,54,76,85,87,89,91,106,116,136,137,159,999
DATA 14, "Adain, 40
DATA 1, -62,999
DATA 7,19,30,61,999
DATA 24,25,31,32,55,77,78,83,85,116,123,127,137,138,139,999
DATA 15, "Early Classical Revival", 35
DATA 37,43,83,999
DATA 1,7,19,30,40,999
DATA 24,25,48,79,116,123,999
DATA 16, "Greek Revival", 35
DATA 2, -30,124,999
DATA 6,19,32,43,999
DATA 25,36,40,49,52,128,999
DATA 17, "Gothic Revival", 40
DATA 2,8,999
DATA 10,18,41,72,90,112,999
DATA 56,57,73,84,95,102,117,118,999
DATA 18, "Gothic Revival", 30
DATA 2, -10, -13,999
DATA 102,152,999
DATA 32,72,73,151,999
DATA 19, "Italianate", 35
DATA 2,999
DATA 6,111,115,999
DATA 25,29,32,41,43,62,72,74,75,85,102,128,150,999
DATA 20, "Egyptian Revival", 25
DATA 2, -10,47,999
DATA 6,111,999
DATA 25,62,78,115,116,999
DATA 21, "Oriental Revival", 25
DATA -10,93,155,999
DATA 2,72,133,999
DATA 115,999
DATA 22, "Swiss Chalet Revival", 25
DATA 6,10,20,999
DATA 2,127,999

page 334

DATA 48,140,999
DATA 23, "Octagon", 25
DATA 2,99,999
DATA 6,21,93,999
DATA 41,42,115,150,999
DATA 24, "Second Empire Victorian", 35
DATA 2,144,999
DATA 9,92,115,999
DATA 25,29,41,57,62,71,74,75,79,102,109,136,137,150,999
DATA 25, "Stick Victorian", 35
DATA 10,140,999
DATA 2,8,18,90,999
DATA 41,57,75,94,102,118,999
DATA 26, "Shingle Victorian", 35
DATA 3,135,999
DATA 7,41,80, -83,999
DATA 55,57,64,82,100,129,145,999
DATA 27, "Ricbardsonian Romanesque", 30
DATA 3,11,999
DATA 71, -83,101,999
DATA 43,64,126,129,151,999
DATA 28, "Folk Victorian", 30
DATA 3,10,999
DATA 7,41,49,999
DATA 19,45,46,93,115,999
DATA 29, "Colonial Revival", 33
DATA 61,999
DATA 3,7,19,999
DATA 25,26,31,32,54,57,62,71,81,83,87,91,109,116,135,136,146,999
DATA 30, "Neoclassical", 33
DATA 40,43,999
DATA 3,7,19,61,83,999
DATA 25,26,32,116,123,999
DATA 31, "Chateauesque", 35
DATA 3,8, -10,999
DATA 157,999
DATA 11,33,71,74,101,126,151,154,999
DATA 32, "Beaux Arts", 25
DATA 3,92,138,999
DATA 11,83,87,999
DATA 38,76,77,136,999
DATA 33, "Beaux Arts", 20
DATA 3,5,138,999
DATA 11,43,83,123,999
DATA 71,136,999
DATA 34, "Beaux Arts", 20
DATA 3,6,93,138,999
DATA 11,83,999
DATA 71,136,999
DATA 35, "French Eclectic", 30
DATA 3,8, -10,999
DATA 19, -90,93,999
DATA 33,77,83,94,145,157,999
DATA 36, "French Eclectic", 35
DATA 3,8, -10,101,999
DATA 19, -90,93,999

page 335

DATA 33,64,81,94,130,157,999
DATA 37, "Mission", 25
DATA 3,999
DATA 7,13,95,999
DATA 17,20,33,41,44,54,88,102,999
DATA 38, "Spanish Eclectic", 25
DATA 3,999
DATA 6,13,16, -83,95,999
DATA 23,33,34,71,77,999
DATA 39, "Monterey", 25
DATA 6, -93,111,999
DATA 3,48,999
DATA 51,86,97,999
DATA 40, "Pueblo Revival", 25
DATA 3,5,999
DATA 13,17,141,999
DATA 23,53, -83,999
DATA 41, "Pueblo Revival", 25
DATA 4,5,999
DATA 13,17,141,999
DATA 23,53, -83,999
DATA 42, "Prairie", 35
DATA 3,6,999
DATA 21,111,143,999
DATA 34,41,44,64,93,95,119,145,158,999
DATA 43, "Craftsman", 30
DATA 3,6,999
DATA 20,999
DATA 41,44,64, -93,94,115,118,119,130,146,999
DATA 44, "Art Moderne", 30
DATA 3,5,999
DATA 13, -83,125,143,999
DATA 67,79,113,999
DATA 45, "Art Deco", 20
DATA 3,51142,999
DATA 13,999
DATA 127,147,148,999
DATA 46, "International", 35
DATA -1, -2,5, -83,999
DATA -17,59, -125,999
DATA 13,35,39,51,114,149,999
DATA 47, "Minimal Traditional", 25
DATA 4, -5, -8,999
DATA 16,85,999
DATA -111,157,999
DATA 48, "Ranch", 20
DATA 4,103,999
DATA 6, -16, -83, -111,999
DATA 58,104,139,999
DATA 49, "Split-Level", 15
DATA 4,108,999
DATA 6, -16,999
DATA 14,104,999
DATA 50, "Contemporary", 20
DATA 4,999
DATA 6,20,999

page 336

DATA 14,147,149,999
DATA 51, "Sbed", 15
DATA 4,107,999
DATA 16,999
DATA 10,35t999
DATA 52, "Neoeclectic Mansard", 25
DATA 4,9,92,999
DATA -10,63,71,999
DATA 29,30,50,999
DATA 53, "Neocolonial", 25
DATA 4, -5,999
DATA 7,61,111,999
DATA 81,83,139,999
DATA 54, nNeo-French", 25
DATA 418,93,999
DATA -10,63,999
DATA 71, -83, -104,999
DATA 55, "Neo-Tudor", 30
DATA 4,8,999
DATA -10,63, -83190,999
DATA 64,80,84,130,157,999
DATA 56, "Neo-Kediterranean", 25
DATA 4,6, -10,999
DATA 71,999
DATA 12,13,20,21,29,95, -104,999
DATA 57, "Neoclassical Revival", 25
DATA 4,40,999
DATA 37,43,83, -104,999
DATA 49,124,136,999
DATA 58, "Neo-Victorian", 35
DATA 4,10, -50,111,999
DATA 45,46, -83,131,999
DATA 42,49,61,999
DATA 999
END

(Frey, 1986b)

page 337

REFERENCES

Items are listed and referenced according to the Harvard

convention. However, in the case of the three works by

Wittgenstein, I have followed the custom of referencing the

item by means of its intials. In text references page

numbers appear after the date and separated from it by a

colon.

Aalto, A. (1940) The Humanizing of Architecture, in THE
TECHNOLOGY REVIEW. Vol 36.

Akin, 0. (1978) How Do Architects Design in Latombe, J. C.
(Ed.) Artificial Intelligence and Pattern Recognition in
Computer Aided Design, North Holland, New York.

Akin, 0. (1986) Psychology of Architectural Design, Pion
Ltd, London.

Akman, V., ten Hagen, P. J. W. and Tomiyama T. (1990) A
Fundamental and Theoretical Framework for an Intelligent
CAD System in COMPUTER AIDED DESIGN. Vol 22, No 6.

Alexander, C. (1964) Notes on the Synthesis of Form, McGraw
Hill, New York.

Alexander, C. (1979) The Timeless Way of Building, Oxford
University Press, New York.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M.,
Fiksdahl-King, I. and Angel, S. (1977) A Pattern Language:
Towns, Buildingst Construction, Oxford University Press,
New York.

Alty, J. L. and Coombs, M. J. (1984) ExPert Systems, National
Computing Centre Publications, Manchester.

Archer, L. B. (1969) The Structure of the Design Process in
Broadbent, G., and Ward, A. (Eds.) Design Methods in
Architecture, Lund Humphries Publishers Ltd, London.

Archer, L. B. (1970) An Overview of the Structure of the
Design Process in Moore, G. T. (Ed.) Emerging Methods in
Environmental Design and Planning, MIT Press, Cambridge,
MA.

page 338

Arnold, M. (1865) Functions of criticism at the Present
Time, Macmillan, London.

Asimow, M. (1962) Introduction to Design, Prentice Hall,
Englewood Cliffs, NJ.

Austin, D. (1968) 2001: A Space Odyssey, in FILMS AND
FILMING. Vol 14, No 10.

Barr, A. and Feigenbaum, E. A. (Eds.) (1981) The Handbook of
Artificial Intelligence, Pitman Books Ltd, London.

Bennett, J., Buchanan, B. G., Cohen, P. and Fisher, F.
(1982) Applications Oriented AI Research: Science in Barr,
A., and Feigenbaum, E. A. (Eds.) Handbook of Artificial
Intelligence. Vol II., W. Kaufman Inc, Los Altos, CA.

Bijl, A. (1986) Designing vith Words and Pictures in a
Logic Modelling Environment in Pipes, A. (Ed.) Computer-
Aided Architectural Design Futures, Butterworths, London.

Block, 1. (1987) Wittgenstein in Turner, R. (Ed.) Thinkers
of the Twentieth Century, St James Press, Chicago, IL.

Bobrow, D. G., and Hayes, P. J. (1985) Artificial Intelli-
gence: Where are We?, in ARTIFICIAL INTELLIGENCE. Vol 25.

Boden, M. A. (1977) Artificial Intelligence and Natural man,
MIT Press, London.

Booker, L. B., Holland, J. H., and Goldberg, D. E. (1989)
Classifier Systems and Genetic Algorithms, in ARTIFICIAL
INTELLIGENCE. Vol 40, No 1-3.

Boole, G. (1854) An Investigation of the Laws of Thought,
Walton & Maberly, London.

Born, R. P. (1987) Split Semantics: Provocations Concerning
Theories of Meaning and Philosophy in General in Born, R.
(Ed.) Artificial Intelligence: The Case Against, Croom Helm
Ltd, Beckenham, Kent.

Brown, J. S., Burton, R. R., and de Kleer, J. (1982) Pedagog-
ical, Natural Language and Knowledge Engineering Techniques
in SOPHIE 1,11 and III in Sleeman, D., and Brown, J. S.
(Eds.) Intelligent Tutoring Systems, Academic Press, New
York.

Buchanan, B. G., Sutherland, G. L., and Feigenbaum, E. A.
(1969) Rediscovering Some Problems of Artificial intelli-
gence in the Context of Organic Chemistry in Metzler, B.,
and Michie, D. (Eds.) Machine Intelligence 5, Edinburgh
University Press, Edinburgh.

page 339

CIAM, (1928) La Sarraz Declaration, in DAS NEUE FRANKFURT.
Translated by M. Bullock in 'Programmes and Manifestoes on
20th-Century Architecture' by U. Conrads published by Lund
Humphries Ltd, London, 1970.

Carbonell, J. R. (1970) Al in CAI: An Artificial Intelli-
gence Approach to Computer-Assisted Instruction, in IEEE
TRANSACTIONS ON MAN-MACHINE SYSTEMS. Vol 11, No 4.

Charniak, E. and McDermott, D. V. (1985) Introduction to
Artificial Intelligence, Addison-Wesley, New York.

Coleman, A. (1985) Utopia on Trial, Hilary Shipman, London.

Committee of Ministers, (1975) European Charter of the
Architectural Heritage, Council of Europe, Strasbourg.

Cook, P. (1967) Architecture; Action and Plan., Studio
Vista Ltd, London.

Cooper, D. and Clancy, M. (1985) Ohl Pascal!, W. W. Norton &
Company, New York.

Coyne, R. D., and Gero, J. S. (1986) Semantics and the Organ-
isation of Knowledge in Design, in DESIGN COMPUTING. Vol
1, No 1.

Coyne, R. D., Rosenman, M. A., Radford, A. D. and Balachan-
dran, M. (1990) Knowledge-Based Design Systems, Addison-
Wesley Publishing company, Reading, MA.

Cross, N., Naughton, J., and Walker, D. (1981) Design
Method and Scientific Method in Jaques, R., and Powell,
J. A. (Eds.) Design: Science: Method, Westbury House Ltd,
Guildford.

Danto, A. C. (1980) The Use and Mention of Terms and the
Simulation of Linguistic Understanding in THE BEHAVIORAL
AND BRAIN SCIENCES. Vol 3, No 3.

Darby, J. (1988) The IBM Humanities Project at Oxford
University in Proceedings of The Fifth International Con-
ference on Technology and Education, Edinburgh.

Darke, J. (1979) The Primary Generator in the Design Proc-
ess, in DESIGN STUDIES. Vol 1, No 1.

Davis, R. H., and Lyall, J. (1986) Recognition of Handwrit-
ten Characters -A Review, in IMAGE AND VISION COMPUTING.
Vol 4, No 4.

page 340

Dennett, D. C. (1980) The Milk of Human Intentionality, in
THE BEHAVIORAL AND BRAIN SCIENCES. Vol 3, No 3.

Dijkstra, E. W. (1959) A Note on Two Problems in Connection
vith Graphs, in NUMERISCHE MATEMATIK. Vol 1.1959.

Dowsing, R. D., Rayward-Smith, V. J. and Walter, C. D. (1986)
A First Course in Formal IA39ic and it Applications in
Computer Science, Blackwell Scientific PubItions, Oxford.

Dreyfus, H. L. (1965) Alchemy and Artificial Intelligence:
Rand Memorandum P-3244., Rand Corporation, Santa Monica,
CA.

Dreyfus, H. L. (1979) What Computers Ca-nIt Do, Harper Colo-
phon Books, New York. Second Edition.

Dreyfus, H. L. and Dreyfus, S. E. (1986) Mind over Machine,,
Blackwell, Oxford.

Duda, R. O., and Gaschnig, J. G. (1981) Knowledge-Based
Systems Come of Age, in BYTE. Vol 6, No 2.

Eccles, J. C. (1980) A Duallist-Interactionist Perspective,
in THE BEHAVIORAL AND BRAIN SCIENCES. Vol 3, No 3.

Eden, M. (1968) Handwriting Recognition and Generation in
Kolers, P. A., and Eden, M. (Eds.) Recognising Patterns, MIT
Press, Cambridge, MA.

Englemore, R. S., Morgan, A. J., and Nii, H. P. (1988) Intro-
duction in Englemore, R., and Morgan, T. (Eds.) Blackboard
Systems, Addison-Wesley Publishing Company, Wokingham.

Ernst, G. W. and Newell, A. (1969) GPS: A Case Study in
Generality and Random Problem Solving, Academic Press, New
York.

Feigenbaum, E. A. and McCorduck, P. (1983) The Fifth Genera-
tion, Addison Wesley Publishing Company, Reading, MA.

Finin, T., Joshi, A. K. and Webber, B. L. (1986) Natural
Language with Artificial Experts, Univ. of Pennsylvania,
Philadelphia, PA.

Fodor, J-A. (1980) Searle on what Only Brains can Do, in
THE BEHAVIORAL AND BRAIN SCIENCES. Vol 3, No 3.

Frege, G. (1884) Dei Grunlagen der Arithmetik, Koebner,
Breslau. Translated by J. L. Austin as 'The Foundations of
Arithmetic: A Logico-Mathematical Enquiry into the Concept
of Number' published by Basil Blackwell, oxford, 1953.

page 341

Frey, P. W. (1986) A Bit-Mapped Classifier, in BYTE. Vol 11,
No 12.

Frey, P. W. (1986) Listing of House. Bas, in BYTE. Vol
No 12.

Fuller, R. B. (1960) Prime Design, in Bennington College
Bulletin. Printed in 'The Buckminster Fuller Reader' edited
by J. Meller and published by Jonathan Cape Ltd, London,
1970.

Garnier, T. (1925) Une Cite Industrielle, etudes pour la
construction des villes, Vincent, Paris. Partially trans-
lated by D. Wiebenson as 'Tony Garnier: The Cite Indus-
triellef and published by George Baziller, New York, 1969.

Genesereth, M. R. and Nilsson, N. J. (1987) Logical Founda-
tions of Artificial Intelligence, Morgan Kaufman Publishers
Inc, Palo Alto, CA.

Ginzburg, M. I. (1924) Stilli epokha, Gosuastvenoe Izatel-
estvo, Moscow. Translated by A. Senkevitch as 'Style and
Epoch' and published by The MIT Press, Cambridge, MA, 1982.

Gove, H. E. (1987) Mass Spectroscope in Parker, S. P. (Ed.)
McGraw-Hill Encyclopedia of Science and Technology, McGraw-
Hill Book Company, New York.

Greenblatt, R. D., Eastlake, D. E., and Crocker, S. D. (1967)
The Greenblatt Chess Program, in Proceedings of the Fall
Joint Computer Conference.

Gropius, W. (1926) Grundsatz der Bauhaus-Produktion, in
VIVOS VOCO. Vol V. Translated by W. Jabs and B. Gilbert as
'Bauhaus Dessau - Principles of Production' in 'The Bau-
haus' by H. M. Wingler published by The MIT Press, Cam-
bridge, MA, 1969.

Halliday, M. A. K. and Hasan, R. (1976) Cohesion in English,
Lownes, London.

Haring, H. (1932) Form der Leistungs-Erfulling, in INNEN-
DEKORATION. Vol 43. Translated by M. Bullock as 'The
House as organic Structure' in 'Programmes and Manifestoes
on 20th-Century Architecture' by U. Conrads published by
Lund Humphries Publishers Ltd, London, 1970.

Harris, L. R. (1977) ROBOT: A High Performance Natural
Language Data Base Query System, in Proceedings of the
Fifth International Joint Conference on Artificial Intelli-
gence. Cambridge, MA.

page 342

Hastings, A. (1986) Interactive Videodisc Project at Uni-
versity College Dublin, in ART LIBRARIES JOURNAL. Vol 11,
No 4.

Hayes, J. E. and Levy, D. N. L. (1976) The World Computer
Chess Championship, Edinburgh University Press, Edinburgh.

Hayes-Roth, B. (1985) Blackboard Architecture for Control,
in ARTIFICIAL INTELLIGENCE. Vol 26, No 3.

Hearst, E. (1967) Psychology Across the Chess Board, in
PSYCHOLOGY TODAY. Vol 1, No 2.

Heidegger, M. (1927) Sein und Zeit, Max Neimeyer Verlag,
Tubingen. Translated by J. Macquarrie and E. Robinson as
'Being and Time' and published by Basil Blackwell, Oxford,
1962.

Herrick, R. (1648) Hesperides, J. Williams & F. Eglesfield,
London.

Hillier, W., Musgrove, J., and O'Sullivan, P. (1972) Knowl-
edge and Design in Michell, W. J. (Ed.) Proceedings of
Educational Design Research and Practice Conference 1972,
Regents of the University of California, .

Hitchcock, H. R. and Johnson, P. (1932) The International
Style: Architecture Since 1922, W. W. Norton & Co Inc, New
York.

Hockey, S. M. and Scott, F. A. (1981) The Kurzveil Data Entry
Machine: Report to the Computer Board, Oxford University
Computing Service, Oxford.

Hofstadter, D. R. (1980) Reductionism and Religion, in THE
BEHAVIORAL AND BRAIN SCIENCES. Vol 3, No 3.

Holland ' J. H. (1986) Escaping Brittleness: The Possibility
of General-Purpose Learning Algorithms Applied to Parallel
Itule-Based Systems in Michalski, R. S., Carbonell, J. G. and
Mitchell, T. M. (Eds.) Machine Learning. An Artificial
Intelligence Approach. Vol II, Morgan Kaufmann Publishers
Inc, Los Altos, CA.

Hooper, R. (1977) The National Development Programme in
Computer-Assisted Learning: Final Report to the Director,
Council for Educational Technology, London.

page 343

Hundertwasser. (1958) Schrift der Galerie Renate Boukes,
Reinhard Kaufman, Weisbaden. Translated by M. Bullock as
'Mould Manifesto Against Rationalism in Architecture' in
'Programmes and Manifestoes on Modern Architecture' by U.
Conrads published by Lund Humphries Publishers Ltd, London,
1970.

Husserl, E. G. A. (1913) Ideen zu einer reinen Phanomenologie
und phanomenologischen Philosophie in Neimeyer, (Ed.)
Jahrbuch fur Philosophie und phanomenologische Forschung,
Halle. Translated by W. R. B. Gibson as 'Ideas' and published
by George Allen & Unwin, London, 1931

Huxtable, A. L. (1984) The Tall Building Artistically
Reconsidered, Pantheon Books, New York.

Hyatt, R. M., Gower, A. E., and Nelson, H. L. (1986) Cray
Blitz in Beal, D. F. (Ed.) Advances in Computer Chess 4,
Pergamon Press, Oxford.

Illingworth, V., Glaser, E. L. and Pyle, I. C. (1986) Dic-
tionary of Computing, Oxford University Press, Oxford.

Israel, D. J. (1987) What's Wrong With Non-Monotonic Logic?
in Ginsberg, M. L. (Ed.) Readings in Non-Monotonic Logic,
Morgan Kaufman, Los Altos, CA.

Jencks, C. (1983) Post-Modernism: The True Inheritor of
modernism in Murray, P. (Ed.) RIBA Transactions 3. Vol 2,
No 1. RIBA Magazines, London.

Johnson, L., and Keravnou, E. T. (1988) What Does Sophie
Teach?, in INTERNATIONAL JOURNAL OF SYSTEMS RESEARCH AND
INFORMATION SCIENCE. Vol 2.

Jones, J. C. (1970) Design Methods, John Wiley & Sons Ltd,
London.

Kahn, L. I. (1955) Order Is, in PERSPECTA, No 3.

de Kleer, J. (1987) Qualitative Physics in Shapiro, s. c.
(Ed.) Encyclopedia of Artificial Intelligence, John Wiley &
Sons, New York.

Krier, R. (1975) Stadraum in Theorie und Praxis, Karl
Kramer Verlag, Stuttgart. Translated by C. Czeckowiski and
G. Blaci as 'Urban Space' and published by Acadamy Edi-
tions, London, 1979.

Krier, R. (1981) Vorwarts, Kaxeraden, Wir Hussen Zuruck.
Lecture at Oppositions 18 Forum. Translated by C. Hubert as
'Forward, Comrades, We Must Go Back' in OPPOSITIONS, No 24.

page 344

Krishnamurti, R. (1985) Representing Design Knovledge,
EdCAAD, Edinburgh.

Lasdun, D. (1965) An Architect's Approach to Architecture,
in RIBA JOURNAL. Vol 72, No 4.

Layzer, D. (1984) Constructing the Universe, scientific
American Books Inc, New York.

Le Corbusier. (1920) Trois Rappels a MN les Architects, in
WESPRIT NOUVEAU. Translated by F. Etchells as 'Three
Reminders to Architects' in 'Towards a New Architecture'
published by The Architectural Press, London, 1927.

Le Corbusier. (1924) Urbanism, Editions Cres, Paris. Trans-
lated by F. Etchells as 'The City of Tomorrow* and pub-
lished by The Architectural Press, London, 1929.

Le Corbusier. (undated) Texte et Dessins pour Ronchamp in
Pauly, D. (Ed.) The Chapel at Ronchamps as an Example of le
Corbusier's Creative Process, unpublished.

Lederberg, J. (1964) A System for Computer Construction,
Enumeration and Notation of Organic Molecules as Tree
Structures and Cyclic Graphs. Parts I-V, in Interim Report
to the National Aeronautics and Space Administration.

Libet, B. (1980) Mental Phenomena and Behavior, in THE
BEHAVIORAL AND BRAIN SCIENCES. Vol 3, No 3.

Logan, B. S. (1987) The Structure of Design Problems, Unpub-
lished PhD Thesis, Strathclyde University.

Loos, A. (1908) Ornament und Verbrechen, in DER STURM.
Translated by H. Meek as 'ornament and Crime' in 'Adolf
Loos: Pioneer of Modern Architecture' by L. Munz and G.
Kunstler published by Thames and Hudson, London, 1966.

Mackintosh, C. R. (1893) Scotch Baronial Architecture,
unpublished typescript in the library of the Mackintosh
School of Art, Glasgow.

Markus, T. A. (1969) The Role of Building Performance Meas-
urement and Appraisal in Design Method in Broadbent, G.,
and Ward, A. (Eds.) Design Methods in Architecture, Lund
Humphries Publishers Ltd, London.

Maver, T. W. (1970) Appraisal in the Building Design Process
in Moore, G. T. (Ed.) Emerging Methods in Environmental
Design and Planning, MIT Press, Cambridge, MA.

Maxwell, G. (1980) Intentionality: Hardware, not Software,
in THE BEHAVIORAL AND BRAIN SCIENCES. Vol 3, No 3.

page 345

McCarthy, J. (1979) Ascribing Mental Qualities to Machines
in Ringle, M. (Ed.) Philosophical Perspectives in Artifi-
cial Intelligence, Harvester Press, Brighton.

McCarthy, J. (1980) Circumscription -A Form of Non-Hono-
tonic Reasoning, in ARTIFICIAL INTELLIGENCE. Vol 13, No 1
& 2.

McDermott, D., and Doyle, J. (1980) Non-Nonotonic Logic, in
ARTIFICIAL INTELLIGENCE. Vol 13, No I&2.

Merleau-Ponty, M. (1945) Phenomenologie de Perception,
Gallimard, Paris. Translated by C. Smith as 'Phenomenology
of Perception' and published by Routledge & Kegan Paul,
London, 1965.

Meyer, H. (1928) Bauen, in BAUHAUS. Vol 2, No 4. Translat-
ed by W. Jabs and B. Gilbert as 'Building' in 'The Bauhaus'
by H. M. Wingler published by the MIT Press, Cambridge, MA,
1969.

Michie, D. (1968) Memo Functions and Machine Ioearning, in
NATURE. Vol 218.

Michie, D. and Johnson, R. (1984) The Creative Computer,
Viking Books, London.

Miller, G. A. & Chomsky, A. N. (1963) Finitary Models of
Language Users in Luce, R. D., Bush, R. and Galanter, E.
(Eds.) Handbook of Mathematical Psychology, John Wiley &
Sons, New York.

Minsky, M. L. (1961) Steps Tovard Artificial Intelligence
in PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS. Vol 49.

Minsky, M. L. (1966) Artificial intelligence in Flannagan,
D. and Belto, E. (Eds-) Information, Scientific American
Inc, New York.

Minsky, M. L. (1967) Computation: Finite and Infinite Ma-
chines, Prentice-Hall Inc, Englewood Cliffs, NJ.

Minsky,, M. L. (1968) Introduction in Minsky, M. L. (Ed.)
Semantic Information Processing, MIT Press, Cambridge, MA.

Minsky, M. (1975) A Framework for Representing Knowledge in
Winston, P. (Ed.) The Psychology of Computer Vision,
McGraw-Hill Book Company, New York.

Minsky, M. (1980) Decentralised Kinds, in THE BEHAVIORAL
AND BRAIN SCIENCES. Vol 31 No 3.

page 346

Moneo, R. (1978) On Typology, in OPPOSITIONS, No 13.

Moor, J. H. (1988) The Pseudorealisation Fallacy and the
Chinese Room Argument in Fetzer, J. H. (Ed.) Aspects of
Artificial Intelligence, Kluwer Academic Publishers, Dor-
drecht.

Moore, C. and Allen, G. (1976) Dimensions, Architectural
Record Books, New York.

Morris, W. (1893) Gothic Architecture, Kelinscott Press,
Hammersmith.

Mounce, H. O. (1981) Wittgenstein's Tractatus, Basil Black-
wood, Oxford.

Muthesius, H. & Van de Velde H. (1914) Werklxmd Theses and
Antitheses, in BAUWELT, No 27. Translated by M. Bullock in
'Programmes and Manifestoes on 20th-Century Architecture'
by U. Conrads published by Lund Humphries Publishers Ltd,
London, 1970.

Natsoulas, T. (1980) The Primary Sources of Intentionality,
in THE BEHAVIORAL AND BRAIN SCIENCES. Vol 3, No 3.

Neutra, R. (1954) Survival Through Design, Oxford Universi-
ty Press, Oxford.

Newell, A. (1966a) On the Analysis of Human Problem Solving
Protocols, in Proceedings of the International Symposium on
Mathematical and Computational Methods in the Social
Sciences, Rome.

Newell, A. (1966b) On the Representation of Problems,
Carnegie Institute of Technology, Pittsburg.

Newell, A. (1973) Artificial Intelligence and the Concept
of Mind in Schank, R. C., and Colby, K. M. (Eds.) Computer
Models of Thought and Language, W. H. Freeman & Company, San
Francisco.

Newell, A. and Simon, H. A. (1972) Human Problem Solving,
Prentice-Hall Inc, Englewood Cliffs, NJ.

Newman, 0. (1961) A Short Review of CIAN Activity in Joe-
dicke, J. (Ed.) Documents of Modern Architecture, Alec
Tiranti. Ltd, London.

Nilsson, N. J. (1980) Principles of Artificial Intelligence,
Springer-Verlag, Berlin.

page 347

NLP (1984) Tutorial Number 3 on Natural Language Process-
ing, in Proceedings of the AAAI National Conference on
Artificial Intelligence, Austin, TX.

Norman, R. B. (1987) Intuitive Design and computation in
Kalay, Y. E. (Ed.) Computability of Design, John Wiley &
Sons, New York.

O"Brien, F. (1967) The Third Policemm, McGibbon & Kee Ltd,
, London.

Obermeier, K. K. (1983) Wittgenstein on Language and Artifi-
cial Intelligence: The Chinese-Room Thought EkWriment
Revisited, in SYNTHESE. Vol 56.

Oettinger, A. G. (1955) The Design of an Autonatic Russian-
English Technical Dictionary in Locke, W. N., and Booth,
A. D. (Eds.) Machine Translation of Languages, MIT Press,
Cambridge MA.

Page, J. K. (1963) A-Review of the Papers Presented at the
Conference in Jones, J. C., and Thornley, D. G. (Eds.) Con-
ference on Design Methods, Pergamon Press, Oxford.

Page, J. K. (1964) Envirorunental Research Using Models, in
'ARCHITECTS JOURNAL. Vol 139, No 11.

Passmore, J. (1957) A Hundred Years of Philosophy, Gerald
Duckworth & Company, London.

Peirce, C. S. (1901) Application of the Method in Burks, A.
(Ed.) Collected Papers of C. S. Peirce, Harvard University
Press, Cambridge, MA, 1957.

Peirce, C. S. (1903) The Three Cotary Propositions in Burks,
A. (Ed.) Collected Papers of C. S. Peirce, Harvard Universi-
ty Press, Cambridge,. MA, 1957.

Piaget, J. (1936) La Naissance de l"Intelligence Chez
VEnfant, Delachaux & Neistle, Paris. Translated by M. Cook
as 'The origin of Intelligence in the Child' and published
by Routledge & Kegan Paul, London, 1953.

Popper, K. R. (1934) Logic der Forschung in Frank, P., and
Schlick, M. (Eds.) Schriften zur wissenschaftlichen Wel-
tauffassunig, Verlag von Julius Springer, Vienna. Translat-
ed by K. R. Popper, J. Freed and L. Freed as 'The Logic of
Scientific Discovery' and published by Hutchinson-and Co
Ltd, London, 1959.

Popper, K. R.. (1972) Conjectures and Refutations, Routledge
and Kegan Paul, London.

page 348

Popper, K. (1974) Replies to My Critics: The Problem of
Demarcation in Schlipp, P. A. (Ed.) The Philosophy of Karl
Popper, The Open Court Publishing Co, La Salle, IL.

Post, E. L. (1943) Formal Reductions of the General Combina-
torial Decision Problem, in AMERICAN JOURNAL OF MATHEMAT-
ICS. Vol 65.

Preziosi, D. (1979) The Sexiotics. of the Built Environment,
Indiana University Press, Bloomington.

Puccetti, R. (1980) The Chess Room: Further Demythologising
of Strong AI, in THE BEHAVIORAL AND BRAIN SCIENCES. Vol 3,
No 3.

Pylyshyn, Z. W. (1974) Mind, Machines and Phenomenology.
Some Reflections on Dreyfus" "What Computers Canrt DoJ, in
COGNITION. Vol 3, No 1.

Quillian, M. R. (1968) Semantic Memory in Minsky, M. (Ed.)
Semantic Information Processing, The MIT Press, Cambridge,
MA.

Rankin, T. L. (1988) When is Reasoning Noninontonic? in
Fetzer, J. H. (Ed.) Aspects of Artificial Intelligence,
Kluwer Academic Publishers, Dordrecht.

Reiter, R. (1980) A Logic for Default Reasoning, in ARTIFI-
CIAL INTELLIGENCE. Vol 13, No .

Rich, E. (1983) Artificial Intelligence, McGraw-Hill Inc.,
Singapore.

Ringle, M. (1980) Mysticism as a Philosophy of Artificial
intelligence, in THE BEHAVIORAL AND BRAIN SCIENCES. Vol 3,
No 3.

Rittel, H. W. J. (1972) Son of Rittelthink, in Design Methods
Group Occasional Paper No 1.

van der Rohe, M. (1960) Letter to Douglass V. Freret,, 13
February 1960. Printed in 'Mies van der Rohe: Architect as
Educator' edited by R. Achilles, K. Harrington and C.
Myhrum and published by the University of Chicago Press,
Chicago, IL, 1986.

Rosch, E. (1977) Hujum Categorisation in Warren, N. (Ed.)
Studies in Cross-cultural Psychology, Academic Press,
London.

Rossi, A. (1981) A Scientific Autobiography, MIT Press,
Cambridge, MA.

page 349

Russell, B. and Whitehead, A. N. (1913) Principia Hatheinati-
ca, Cambridge University Press, Cambridge.

Russell, B. (1918) The Philosophy of Logical Atoxism, in
THE MONIST. Vol 28 & 29.

Russell, B. (1944) MY Mental Develolmsent in Schilpp, P. A.
(Ed.) The Philosophy of Bertrand Russell, Harper & Row, New
York.

Russell, P. J. (1986) Genetics, Little, Brown & Co, Boston.

Ryle, G. (1949) The Concept of Mind, Hutchinson, London.

Sandars, N. K. (1968) Prehistoric Art in Western Europe,
Penguin Books Ltd, Harmondsworth.

Sant**Elia, A. (1914) L'Architettura Puturista: Manifesto,
in LACERBA. Vol 2, No 15. Translated by R. W. Flint as
'Manifesto of Futurist Architecture' in 'Futurist Manifes-
toes' edited by U. Apollonio published by Thames and Hud-
son, London, 1973.

Schank, R. C. (1973) Identification of Conceptualizations
Underlying Natural Language in Schank, R. C. and Colby, K. M.
(Eds.) Computer Models of Language and Thought, W. H. Free-
man & Company, San Francisco.

Schank, R. C. (1975) Conceptual Information Processing,
North Holland Publishing Co, Amsterdam.

Schank, R. C. (1979) Natural Language, Philosophy and Arti-
ficial intelligence in Ringle, M. (Ed.) Philosophical
Perspectives in Artificial Intelligence, Harvester Press,
Brighton.

Schank, R. and Abelson, R. (1977) Scripts, Plans, Goals and
Understanding, Lawrence Erlbaum Assoc., Hillsdale, NJ.

Scheerbart, P. (1914) Glasarchitektur, Verlag Der Sturm ,
Berlin. Translated by M. Bullock as 'Glass Architecture" in
'Programs and Manifestoes on Modern Architecture' by U.
Conrads published by Lund Humphries Publishers Ltd, London,
1970.

Schlick, M. (1928) Preface to Mogic, Sprache, Philosophie.
Kritik der Philosophie. 1 by Freidrich Waismann. in Mulder,
H. L., and Van de Velde-Schlick, B. F. B. (Eds.) Moritz
Schlick, Philosophical Papers. Vol 11 (1925-1936), D.
Reidel Publishing Company, Dordrecht, 1979.

page 350

Schrodinger, E. (1935) Die gegenvartige Situation in der
Quantermechanik, in DIE NATURWISSENSCHAFTEN. Vol 23.
Translated by J. D. Trimmer as 'The Present Situation in
Quantum Mechanics' in Proceedings of the American Philo-
sophical Society, Vol 124,1980.

Scott, G. (1914) The Architecture of Humanism, Constable &
Co Ltd, London.

Searle, J. R. (1979) What is an Intentional State?, in MIND.
Vol 88.

Searle, J. R. (1980a) Kinds, Brains and Programs, in THE
BEHAVIORAL AND BRAIN SCIENCES. Vol 3, No 3.

Searle, J. (1980b) Author's Response, in THE BRAIN AND
BEHAVIORAL SCIENCES. Vol 3, No 3.

Searle, J. R. (1984) Kinds, Brains and Science: The Reith
Lectures, in THE LISTENER. Vol 112, No 2883,2884,2885,
2886,2887,2888.

Sell, P. S. (1985) Expert Systems -A Practical Introduc-
tion, Macmillan Publishers Ltd, London.

Shankland, G., Willmott, P. and Jordan, D. (1977) Inner
London: Policies for Dispersal and Balance, H. M. S. O.,
London.

Shannon, C. E. (1950) Progranxing a Digital Computer for
Playing Chess, in PHILOSOPHICAL MAGAZINE. Vol 41, No 314.

Shapiro, S. C., Eckroth, D. and Vallasi, G. A. (1987) EnCY
clopedia of Artificial Intelligence, John Wiley & Sons, New
York.

Sheffer, H. M. (1913) A Set of Five Independent Postulates
for Boolean Algebras, vith Application to Logical Con-
stants, in TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIE-
TY. Vol 14.

Shortliffe, E. H. and Fagan, L. M. (1972) Expert Systems
Research: Modelling of Medical Decision making Processes,
Stanford University, Stanford, CA.

Simon, H. (1977) Artificial Intelligence Systems that
Understand, in 5th International Joint Conference on Arti-
ficial Intelligence. Vol II.

Smith, B. C. (1986) Varieties of Self-Reference in Halpern,
J. Y. (Ed.) Theoretical Aspects of Reasoning About Knowl-
edge. Proceedings of the 1986 Conference, Morgan-Kaufman,
Los Altos, CA.

page 351

Soleri, P. (1971) The, Sketchbooks of Paolo Soleri, MIT
Press, Cambridge, M. A.

Sommerville, 1 (1985) Software Engineering, Addison-Wesley
Publishing Co, Wokingham.

Stiny, G. N. (1985) computing vith Form and Meaning in
Architecture, in JOURNAL OF ARCHITECTURAL EDUCATION.

Sullivan, L. (1924) Autobiography of an Idea, AIA Press,
New York.

Szanser, A. J. (1967) Machine Translation - The Evaluation
of an Experiment, THE INCORPORATED LINGUIST. Vol 6, No 4.

Terry, Q. (1983) Genuine Classicism in Murray, P. (Ed.)
RIBA Transactions 3. Vol 2, No 1. RIBA Magazines, London.

Thines, G. (1987) Husserl in Gregory, R. L. (Ed.) The Oxford
Companion to the Mind, Oxford University Press, Oxford.

Vaux, J. (1988) Kinds and Machines, in NEW SCIENTIST. Vol
117, No 1600.

Venturi ' R. (1966) Complexity and Contradiction in Archi-
tecture, Museum of Modern Art, New York.

Viollet-le-Duc, E. E. (1863) Sur l'Architecture au Dix-
Neuviene Siecle - Sur la Nethode in Viollet-le-Duc, E. E.
(Ed.) Entretiens sur l'Architecture, A. Morel & Cie, Paris.
Translated by B. Backnell as 'Architecture in the Mine-
teenth Century - Importance of Method' in 'Discources on
Architecture', Vol I, published by Ticknor & Co, Boston,
MA, 1889. Republished by Allen & Unwin, London, 1959.

Voysey, C. F. A. (1915) Individuality, Chapman & Hall Ltd,
London.

Wachsmann, K. (1961) The Turning Point of Architecture,
Reinhold Publishing Corp, New York.

Waismann, F. (1967) Ludwig Wittgenstein und der Weiner
Kreis, Basil Blackwell, Oxford. Translated by J. Schultz
and B. McGuiness as 'Wittgenstein and the Vienna Circle,
and published by Basil Blackwell, Oxford, 1979.

Waltz, D. (1975) Understanding Line Drawings of Scenes with
Shadows in Winston, P. H. (Ed.) The Psychology of Computer
Vision, McGraw-Hill Book Company, New York.

page 352

Waterman, D. A. (1970) Generalized Learning Techniques for
Automating the Learning of Heuristics,. in ARTIFICIAL
INTELLIGENCE. Vol 1, NO 1.

Wheatley, J. (1990) Commercial Propositions, in BUILDING
DESIGN. No 983.

Whitehead, A. N. (1933) Adventures of Ideas, Cambridge
University Press, Cambridge.

Winograd, T. (1975) Frame Representations and the Procedur-
al/Declarative Controversy in Bobrow, D. G., and Collins, A.
(Eds.) Representation and Understanding, Studies in Cogni-
tive Science, Academic Press, New York.

Winograd, T. (1980) Extended Inference Modes of Reasoning
by Computer Systems, in ARTIFICIAL INTELLIGENCE. Vol 13,
No 1&2.

Winston, P. H. (1980) Learning and Reasoning by Analogy, in
Communications of the Association for Computing Machinery.
Vol 23, No 12.

Winston, P. H. and Horn, B. K. P. (1981) LISP, Addison-Wesley
Publishing Co, Reading, MA.

Winston, P. H. (1984) Artificial Intelligence, Addison-
Wesley Publishing Co., Reading, MA.

Wittgenstein, L. (1922) Tractatus Logico-Philosophicus,
Routledge & Kegan Paul Ltd, London. Translated by D. Pears
and B. McGuiness and published by Routledge & Kegan Paul,
London, 1961.

Wittgenstein, L. (1953) Philosophical Investigations, Basil
Blackwell, Oxford. Edited and translated by G. E. M. An-
scombe.

Wittgenstein, L. (1961) Notebooks, Basil Blackwell, Oxford.
Edited by G. H. von Wright and G. E. M. Anscombe and translat-
ed by G. E. M. Anscombe.

Wright, F. L. (1931) To the Young Man in Architecture, in
Chicago Art Institute Lectures, Chicago Art Institute,
Chicago, IL.

Wright, F. L. (1935) Broadacre City: A New Commmnity Plan,
in ARCHITECTURAL RECORD. Vol 104.

Zucker, S. W. (1987) Early Vision in Shapiro, S. C., Eckroth,
D. and Vallasi, G. A. (Eds.) Encyclopedia of Artificial
Intelligence, John Wiley & Sons, New York.

page 353

