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Abstract

There is a strong desire to increase the penetration of renewable energy sources in

the UK electricity market. Offshore wind energy could be a method to achieve this.

However, there are still issues, both technical and economical, that hinder the devel-

opment and exploitation of this energy source.

A condition based maintenance plan that relies on fully integrating the input from

condition monitoring and structural health monitoring systems could be the method

to solve many of these issues. Improved maintenance scheduling has the potential to

reduce maintenance costs, increase energy production and reduce the overall cost

of energy. While condition monitoring systems for gearboxes, generators and main

bearings have become common place over the last few years, the deployment of other

monitoring systems has been slower. This could be due to the expense and complica-

tion of monitoring an entire wind farm. Wind park operators, correctly, would like to

see proof that their investment will be prudent.

To assist wind park operators and owners with this decision, an offshore wind op-

erations and maintenance model that attempts to model the impacts of using mon-

itoring systems has been developed. The development of the model is shown in this

analysis: multiple methodologies are used to capture deterioration and the abilities

of monitoring systems. At each stage benchmarks are shown against other models

and available data. This analysis has a breadth and scope not currently addressed in

literature and attempts to give insight to industry that was previously unavailable.
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CHAPTER 1

Introduction

The seas that surround Great Britain have a vast wind resource. This is shown clearly

in Figure 1.1 from WindAtlas [1.1]. The colours in this figure indicate the mean av-

erage wind speed. Purple shows areas of greater than 10 m/s and light blue shows

areas of greater than 6 m/s at heights of 100 m above sea level. However, these seas

are a harsh and hostile environment to operate in. Dangerously strong winds and vi-

olent sea states are common. Ship reports off the west coast of Scotland in January

1894 showed “30 ft (significant) [9 m] waves during a storm with some reaching 43 ft

[13 m].” [1.2]. Things have not changed much in the 21st Century. In December 2013,

the maximum average wind speed was recorded at over 30 m/s with a maximum sig-

nificant wave height of 13 m in the North Sea [1.3].

This fierce environment effects how any asset in the British seas must be designed,

operated and maintained.

1.1. Designing for Offshore Wind

Designers must consider not just aerodynamic loads but hydrodynamic loads too.

These often interact to produce non-linear dynamic effects. The structure must with-

stand constant fatigue loading and some of the extreme weather conditions outlined
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Figure 1.1.: Wind Resource in Europe Offshore [1.1]

above. The designers must not hinder the primary goal of maximising wind power

production. They must protect their operational components and the people who are

located on them at all costs. A disturbing conclusion from Goldman [1.2] in 1975 was

that designers of offshore assets could still have been underestimating the sheer

power of the sea.

However, it is no longer 1975 and there have been a wealth of improvements in

design techniques and standards to assess fatigue, corrosion and wear inherited by

offshore wind designers from the oil and gas industries [1.4]. New models and design

techniques are being developed specifically for offshore wind structures with added

criteria - one of the most important being minimising the substantial cost of an off-

shore foundation [1.5].
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1.2. Operating and Maintaining Offshore Wind

Offshore wind turbines have particular attributes that separate them from other forms

of power generation including onshore wind in terms of operations and maintenance

(O&M). Tavner describes offshore wind as “unmanned, robotic power units operating

24/7, controlled from remote onshore control rooms” [1.6]. The large transient and

complex loads they experience have lead to higher failure rates, and lower availability,

for offshore wind turbines than their onshore equivalents. Early offshore wind farms

have been affected by serial defects leading to the need for improvements with the

replacement and redesign of key components [1.7].

It is here that maintenance can play a key role. The maintenance options that are

available to operators are explained in Chapter 2. Onshore wind farms have most

often used time based maintenance strategies to obtain high availabilities [1.8]. This

works well when access is relatively straightforward. Servicing can be carried out

reliably and sudden failures can be rectified with little logistics time.

This changes offshore. This is illustrated by three images from Siemens Wind Power

A/S in Figure 1.2. There are inherent dangers in transferring personnel, components

and equipment offshore between a moving ship and stationary turbine seen in 1.2(d).

Wind turbine blades are a particularly good example of a component that is difficult

to transport (1.2(a)(b)) and install (1.2(c)) - large, heavy and designed to be easily

influenced by the wind. These require expensive specialist equipment that can only

operate within certain weather conditions. Lead times are longer and catastrophic

failures can lead to months of non-operation. The downtime can be extended further

by other factors including the distance from port, water depth and port facilities.

1.3. Lowering the Cost of Energy

Offshore wind farms in the UK had a capacity of 1.3 GW in 2011 and currently have a

capacity of over 4 GW [1.9]. It is estimated that this will increase with scenarios from

2011 suggesting that between 10 to 26 GW will be possible in 2020 with a potential to

achieve 40 GW in 2030 [1.10]. The same source identifies that unless there “is clear

evidence of cost reduction, the UK ambition for offshore wind should be limited to 13
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(a) Transporting (b) Preparing to Ship

(c) Installing (d) Offshore Access

Figure 1.2.: Installing an Offshore Wind Turbine Blade - Photo credits: Siemens Wind
Power A/S from www.siemens.com/press

GW by 2020”. In 2015, it appears that these savings have yet to be made as it is now

predicted that the UK will achieve around 10 GW of offshore wind for 2020 with an

estimated potential investment of £16 - £21 billion until then [1.11].

The Cost of Energy (CoE) of offshore wind farms is a major concern to utilities and

governments looking to increase the volume of wind in the energy generation mix.

CoE is defined in Equation 1.1 and is often quoted in price per Megawatt hour (MWh).

There are a range of CoE estimates for offshore wind in the UK and in the EU of be-

tween £69/MWh and £104/MWh for subsidised costs respectively [1.6]. An alterna-

tive study gives an unsubsidised range of £149/MWh to £191/MWh [1.10]. The long

term goal in the UK is to achieve an offshore CoE of less than £100/MWh [1.10].

CoE =
(Captial Cost× Fixed Rate) +O&M Costs

Annual Energy Production
(1.1)
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The majority of a wind park’s costs are the capital expenditure (CAPEX) costs re-

quired to buy, build and commission the wind park. However, the costs involved in

completing O&M actions are not insignificant especially over a 20 year lifetime. The

Scottish Government and GL Garrad Hassan estimate that the operating expenditure

(OPEX) is £430,000 per annum per turbine averaged over 20 years for a 6 MW turbine

or around £72,000 per MW. This appears to be an extreme value with other reports

and actual data suggesting between £22,000 [1.12] and £25,000 [1.13] per MW. This

represents 25% of the estimated total CoE shown in Figure 1.3 (a) [1.14].

The major factors affecting offshore wind O&M costs are vessel hire costs with

crane vessel hire and other logistics operations equating to around 36% of OPEX. The

other factors contributing to direct OPEX costs are shown in Figure 1.3 (b). An indirect

OPEX that has been identified as important but is not considered in these numbers is

lost revenue - energy not produced from a wind turbine while it is not operating. These

contribute more to the overall CoE than staffing or repair costs [1.15]. The availability

of suitable vessels to complete maintenance work and appropriate weather windows

are also major concerns.

Operators can have an impact on almost all of these variables with their O&M strat-

egy. The CAPEX of the wind park is fixed and out of an operator’s control as is the

installation. If an O&M strategy improves energy production, reduces replacement

costs and its implementation costs little then the CoE goes down. Improving energy

production is synonymous with maximising wind turbine run time or minimising down-

time.

The Fixed Rate referred to in Equation 1.1 is the cost of capital used in the project.

Banks or organisations often use the internal rate of return (IRR) when deciding upon

investment opportunities. The IRR is the discount rate at which the present value

of the cash flow generated over the project lifetime equals the cost of initial capi-

tal investment [1.16]. The discount rate represents interest rates and the effects of

inflation on the capital. Typically the higher the value of IRR the more promising a

project seems to investors. It represents a higher chance of making a profit and that

the project has less risk involved. Projects with higher IRR will have access to lower

interest rates and have lower fixed rates as a result.
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Whilst the demands of offshore wind O&M are undoubtedly challenging, the sector provides attractive 
growth opportunities particularly relevant to those businesses already used to operating in harsh 
offshore environments that can bring their expertise to bear.

Expenditure on O&M will vary from project to project, depending on wind farm design (e.g number 
and size of turbines) and choice of O&M strategy. Based on GL Garrad Hassan’s analysis of a 
‘representative’ offshore wind farm, Capital Expenditure (CapEx) makes up ~70% of the overall cost 
of energy and the Operational Expenditure (OpEx) is ~30%4. 

In the OpEx category, around 5% is accounted for by ongoing expenditures such as grid usage fees, 
leases, back-offi ce support and other items. The remaining ~25% is apportioned to the operations and 
maintenance (O&M) activities. These activities are the focus of this report.

Breakdown of cost of energy for representative offshore wind farm

5	 THE	OPPORTUNITY

4  Assumptions: Turbine capacity of 6MW. Wind farm capacity of ~500MW. Long-term mean signifi cant wave height (Hs) of 1.6m. 
Distance from O&M port of 55km (30 nautical miles). O&M strategy of work boats with helicopter support. 
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(a) Breakdown of cost of energy for representative offshore wind farm

O&M	Component	Breakdown
The diagram below presents an estimate of the breakdown of the total Operational Expenditure (OpEx) 
for the representative offshore wind farm.

O&M costs broadly scale with the number of turbines, as this governs the number of offshore transfers 
required per year and the number of parts used. The total OpEx as seen by the wind farm owner is 
estimated to be around £430,000 per turbine per year, averaged over a 20 year design life5. However, 
considering just the practical categories relevant to business opportunities, the average annual spend 
per turbine on O&M is around £290,000 per year.

Estimated breakdown of total OpEx

Overview of O&M business opportunities

Crane barge (25%) Charter of specialised jack-up vessels for occasional repair or replacement of 
large components, plus related berthing and consumables

Parts & 
consumables (15%)

Replacement parts and spares for the turbines plus lubricants, paints, parts for 
emergency equipment etc

Vessels & logistics 
(11%)

Charter, berthing, servicing, fuel and other consumables for work boats, 
helicopters, motherships etc, depending on strategy 

Technician workforce 
(8%)

Technician employment; provision of accommodation; training and certifi cation; 
subcontract employment eg oil exchange, blade inspection

Balance of plant 
maintenance (3%)

Contracting for inspection and maintenance of subsea cables and support 
structures (landings, ladders, paintwork, davit cranes), and onshore electrical 
installations. 

Onshore base and 
staff (2%)

Employment for operations: turbine monitoring and power trading, logistics of 
vessels, crews and stores, Health & Safety. Staff for running the base.

Other Opex (17%) Eg Post-construction environmental surveys (birds, sea mammals etc)

5  Based on a 6MW turbine, this estimate takes into account direct expenditures not only on the operation, servicing and repair of the offshore plant but also the related onshore 
plant (substations etc) and the onshore base as well as a nominal annual insurance premium. Note that this total is at 2012 prices and includes no discounting or infl ation 
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(b) Estimated breakdown of total OPEX

Figure 1.3.: CAPEX and OPEX Breakdowns [1.14]

Generally, the fixed rate value is out of the control of an operator but there is an

argument to be made that showing a high standard of operator experience - achieving

high levels of reliability and availability - will increase IRR and lower fixed rates.

1.4. Goal of Thesis

There are many O&M strategies available to an operator. The goal of this thesis is

to investigate the optimum maintenance strategy - that is one that maximises yield

while minimising operating costs. This is explored in Figure 1.4. In this simple exam-

ple, increasing the availability, or the time available for operation, reduces the cost

of lost production but requires increased maintenance actions at an increased cost.

There is an optimal point, which is marked by the dotted line in the Figure, where the

combined costs of the lost production and the maintenance policy are minimised.

This thesis strives to analyse the effects of condition monitoring (CM) and struc-
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Figure 1.4.: Balancing Maintenance Policy and Lost Production

tural health monitoring (SHM) systems on the shape of the “Cost of Maintenance Pol-

icy” line. The line could be adjusted by encompassing additional monitoring benefits,

or utilising more monitoring systems than are currently being exploited or considered

by operators.

There is published work from both academia [1.17] and industry that CM systems

can save operators money when integrated into the O&M strategy. The return on

investment report from Gram & Juhl [1.18], a Danish condition monitoring system

manufacturer, states that a CM system can reduce operating costs by:

• Reducing downtime.

• Reducing repair costs.

• Reducing insurance costs.

• Reducing insurance maintenance costs - Gram & Juhl state that most insurers

request those without CM systems to change all bearings every 5 years.

These benefits have also been suggested by other CM system manufacturers [1.19],

insurers [1.20] and CM certification bodies [1.21].
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1.5. Summary of Thesis

An introduction to reliability of wind turbines and overview of maintenance strategies

is detailed in Chapter 2. In Chapter 3 the techniques used to model deterioration for

rotating and structural assemblies are explored. The other focus of the chapter is to

establish a method of capturing the deterioration process like a CM system.

Chapter 4 begins with an analysis of existing cost model literature for both wind

turbine O&M strategies involving condition monitoring and O&M strategies used in

other industries. It then details what data is required in order to quantify the eco-

nomic benefit of using a CM system in the maintenance strategy.

The output and results of the model are investigated, benchmarked and compared

to alternative O&M models in Chapter 5. Finally, conclusions are presented in Chapter

6.

1.6. Novelty of Thesis

A novel methodology has been developed that allows for the assessment of the cost

benefit of utilising CM and SHM equipment for offshore wind farms. The methodology

has been built on a strong foundation after analysis of existing literature and consid-

eration of the strengths and weaknesses of this research. Its main areas of novelty

are outlined below.

Adaptable Independent application of CM and SHM systems with different properties

and profiles to individual assemblies.

Flexible Application of multiple CM systems to individual assemblies - each CM sys-

tem can have its own profile and abilities used to show its benefits.

Comprehensive Production of comprehensive annual costs for period based main-

tenance (PBM) and condition based maintenance (CBM) strategies for offshore

wind - risk, vessel hire, labour, components, lost production and Structural In-

tegrity Management (SIM) strategy.

Smaller but also key areas of novelty include:
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• The completion of a survey of existing and near production CM technologies

with estimations of their CAPEX and OPEX.

• Several techniques were used to allow CM systems to observe developing faults

several months in advance and as a result reduce vessel costs.

• The formulation and integration of a SIM plan with mechanical component an-

nual inspections to reduce overall operating costs.

1.6.1. Benefits for Interested Parties in Offshore Wind

The possible benefits for different interested parties in offshore wind are outlined be-

low:

Operators and Owners This flexible and comprehensive overview of OPEX costs of-

fers a means to aid both wind park operators and owners with their decisions

as to whether to deploy additional CM/SHM hardware or not. They can view

the implications of their actions in achieving their goals of minimising risk and

operating costs. Various situations can be explored, including when to deploy

CM systems and to what extent, at the planning phase of the wind farm. It may

be useful to do so immediately, in tandem with a manufacturer monitoring pro-

gram, or several years after the commissioning of the wind park.

Regulators Regulators are also aiming to decrease the CoE to increase the amount

of wind in the energy mix, either by improving knowledge or informing policy.

This work could be used to examine how the implementation of CM and SHM

systems effects CoE and how changes in policy at a national or possibly interna-

tional level can be utilised best. Regulators are also concerned with the safety

of systems and workers. This tool can be used to monitor the effects of different

safety levels on the operating costs.

OEMs and OEM Suppliers In a similar way to how operators and owners can get an

overview of expected OPEX costs, original equipment manufacturers (OEM) can

possibly use the work in this thesis to assess risk when offering extended war-

ranties. They could choose to deploy further CM equipment to minimise this
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risk. If an OEM or OEM supplier complete a retrofit, upgrade or install new com-

ponents then additional CM might be essential to monitor these changes. This

work can be used to assess the results and implications on future OPEX.

1.7. Research Dissemination

1.7.1. Journal Publication

The author has contributed to the following published article:

A. May, D. McMillan, and S. Thöns. “Economic analysis of condition monitoring sys-

tems for offshore wind turbine sub-systems”. English. In: IET Renewable Power Gen-

eration 9 (8 Nov. 2015), 900–907(7). issn: 1752-1416

1.7.2. Conference Publication

The author was the main contributor for the following conference paper publications

and gave an invited talk about the work:

A. May and D. McMillan. “Condition Based Maintenance for Offshore Wind Turbines:

The Effects of False Alarms from Condition Monitoring Systems”. In: ESREL 2013.
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A. May, D. McMillan, and S. Thöns. “Integrating Structural Health and Condition

Monitoring: A Cost Benefit for Offshore Wind Energy”. In: 34th International Confer-

ence on Ocean, Offshore and Arctic Engineering. St John’s, Canada, 2015

The author was the main contributor for the following conference paper publica-

tion:

A. May, D. McMillan, and S. Thöns. “Economic analysis of condition monitoring sys-

tems for offshore wind turbine sub-systems”. In: European Wind Energy Association

Annual Conference. Barcelona, Spain, 2014

The author has contributed to the following conference paper publications

D. McMillan et al. “Asset Modelling Challenges in the Wind Energy Sector”. In: Cigre

Session 45. Paris, France, 2014

J. Carroll et al. “Availability Improvements from Condition Monitoring Systems and

Performance Based Maintenance Contracts”. In: European Wind Energy Association
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CHAPTER 2

Offshore Wind Park Reliability and Operation

The aim of this chapter is to give an overview of the theory and prerequisite back-

ground information for any discussion on the reliability and operating strategies of

an offshore wind farm. It begins with the introduction of the essential reliability termi-

nology used, how faults are classified and an overview of existing failure databases

for both onshore and offshore wind farms. It ends with a discussion of the various

operating strategies and what is required to conduct them efficiently.

It should be noted that the terms “Wind park” and “Wind farm” are used inter-

changeably in this document. Wind park is typically used by continental European

organisations and wind farm by UK and USA organisations.

2.1. Wind Turbine Component Taxonomy

The first action to investigate the reliability of offshore wind farms is to analyse the

functions of an individual wind turbine and the purpose of its various components.

This allows an engineer to understand the effects of any component failures on both

the component itself and on other components. One of the most efficient means of

capturing this information is to develop a classification system or taxonomy. There

are also additional benefits of using a taxonomy which are explored later in this doc-
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ument [2.1].

This process involves dividing the turbine into coherent system blocks sharing a

common mechanical function or multiple components affected by similar failure m-

odes. Reliability block diagrams or fault tree analyses are useful analytical tech-

niques to use in this work. NASA has produced a working document to guide users

through the process of creating these diagrams and analyses [2.2]. Fault trees are

deductive processes that begin with a fault condition and work backwards to estab-

lish the reasons for failure. Reliability block diagrams are built using an inductive

process where system success pathways are developed - that is series of parts that

must operate to allow the system to complete its actions. This process highlights

groups of components that are essential for success and for ascertaining where re-

dundancy is useful. A template for a possible hierarchy to place the components in is

shown below from Arabian-Hoseynabadi, Oraee, and Tavner [2.3].

⇒ Turbine

⇒ Assembly

⇒ Sub-assembly

⇒ Part

2.1.1. Failure Methods and Effect Analysis

Once a taxonomy has been developed there are further benefits as follows [2.1]:

• The major failure modes, that is those causing the largest asset downtimes due

to a single event, can be identified.

• The critical failure modes, that is those causing the largest accruing asset down-

time with multiple events, can be identified.

• Operational data can easily be captured and quickly analysed.

These first two points can be observed with a reliability study known as a Failure

Mode and Effect Analysis (FMEA). The process of how to complete an FMEA is shown

in Kahrobaee and Asgarpoor [2.4]. The weaknesses and strengths of these processes

are explored in Kmenta and Ishii [2.5].
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FMEA is a proven process to identify major and critical failure modes in systems. It is

a qualitative approach which involves the calculation of a risk priority number using

factors that are determined by experts and operators of the system or equipment.

The risk priority number makes clear those components and assemblies that are most

at risk of failure and allows engineers to focus on solutions to minimise their impact.

As the factors used to calculate the risk priority number are different for each system,

a single number is not informative by itself - it is only in comparison to other numbers

that it has meaning. Typically the main calculation consists of three steps [2.4]:

1. Determination and categorisation of the probabilities of failure modes occur-

ring.

2. A severity rating for failure modes is assigned.

3. A detection rating indicating the likelihood of detection is assigned.

Each of these ratings and categorisations is a number which is scaled according to

expert opinion. A higher number indicates an increased probability of failure, a higher

failure consequence or a lower chance of detection. It is these three numbers when

multiplied together that forms the risk priority number.

FMEAs can be completed for individual components and then assembled to create

a system wide FMEA or a scenario based FMEA can be used that begins with system

failures and highlights root causes before assigning a priority number.

2.1.2. Wind Turbine Configuration and Taxonomy

At its most basic, the primary function of a wind power system can be described as

transforming kinetic energy from wind into electrical energy. The rotor uses aerody-

namics to translate the wind energy into mechanical rotational energy. This mechan-

ical energy is fed into a generator to produce electrical energy. The styles, designs

and sizes of wind turbines have evolved over the last 25 years. 60% of newly in-

stalled onshore turbines in 1990 were of the “Danish Concept” style or based on this

design. This increased to nearly 100% of those newly installed in 2004 [2.6]. The

“Danish Concept” that has become so dominant is a 3 bladed upwind turbine with a
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horizontal rotor axis. This typically has an extra stage in the electrical energy gen-

eration process, using a gearbox to increase the rotational speed from the rotor into

the generator.

The possible configurations of the turbine are explained in the work of Pinar Pérez

et al. [2.7]. Older style turbines that have the rotor rotating at a fixed speed use an

asynchronous squirrel cage generator. Early semi-variable speed wind turbines used

asynchronous squirrel cage generators with pole-changing capability (and so could

operate at two different fixed speeds) or wound rotors with variable rotor resistance.

Modern variable rotor speed turbines use doubly fed induction generators or else

use squirrel cage induction or synchronous generators with a fully rated power con-

verter. These synchronous machines are either wound rotor machines (as used by

Enercon) or permanent magnet generators. Although these synchronous machines

can be used with a gearbox and operate at medium or high rotational speeds, they

are often used in direct drive wind turbines. To avoid the inclusion of a gearbox, the

low rotational speed necessarily means a high torque rating and so the generators

often have a large diameter with multiple poles.

A useful taxonomy that is still widely used was originally developed for the WMEP,

part of the “250 MW Wind” project, a German survey of operating wind turbines col-

lecting data between 1989 and 2006. The incident report template was shown as an

appendix including the full taxonomy breakdown of assemblies and sub-assemblies

in a work by Faulstich, Hahn and Tavner [2.8] and the descriptions based on Bharatb-

hai [2.9]. This is shown below with a corresponding numbered figure in Figure 2.1.2.1

excluding items number 5 and 6. The WMEP programme incident reports were filed

for intervention actions on turbines: the reason for repair, cost of spares, hours of

downtime and components causing fault. These 64,000 reports from 1,500 onshore

turbines were compiled and analysed in annual reports by the ISET [2.10].

There are other taxonomies that are in use or that have been used for classifying

failures. Many of these are specific to individual operators or survey schemes. A good

overview of these taxonomies is given in the work of Richardon [2.11]. These include

the taxonomy developed for use by maintenance engineers for Clipper Wind Turbines,

the taxonomy used in IEC 61400 standards and the RDS-PP. The Reference Designa-
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tion System for Power Plants (RDS-PP) is a widely used taxonomy due to its flexibility

and it can be used across a range of power plants which appeals to operators with

different electrical generating plant. Sandia National Laboratory developed its own

taxonomy for its “Wind Plant Reliability Database” [2.12].

The WMEP taxonomy was selected as it is well documented, widely used and freely

available. This is not the same for all the other taxonomies mentioned above. In

particular, the RDS-PP is a commercial offering and expensive to obtain. An overview

of the taxonomy is given below.

2.1.2.1. WMEP Taxonomy

1. Hub

The hub is where the rotor blades

join the nacelle and contains the

pitch mechanism to allow the

blades to rotate. It is designed to al-

low access from within the nacelle.

• Hub Body

• Pitch Mechanism

• Pitch Bearings

2. Rotor Blades

The rotor consists of 3 blades

normally formed from glass re-

inforced plastic around structural

spars. They contain lightning pro-

tection systems.

• Blade Bolts

• Blade Shell

• Aerodynamic Brakes

3. Generator

The generator can be any of the

types listed above. It is fed from

a shaft from the gearbox and con-

nects to the electrical converter

system.

• Windings

• Brushes

• Bearings

4. Electric

The electrical assembly has multi-

ple roles. It is used to start the tur-

bine with an external power source

before the turbine is operating. The

converter and transformers con-

dition the output of the genera-

tor ready for transmission into the

electrical grid. Fuses and switches

protect the entire system and iso-
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late it when necessary.

• Converter

• Fuses

• Switches

• Cables and Connectors

5. Sensors

There are a number of sensors that

are employed to monitor perfor-

mance, condition and operation of

a turbine. A simple set of the ma-

jor sensors incorporated into the

SCADA data feed are shown below.

If a CM or SHM system is included on

a turbine then these will be added

here.

• Anemometer or Wind Vane

• Vibration Switch

• Temperature

• Oil Pressure Switch

• Power Sensor

• Revolution Counter

6. Control System

The controller electronically over-

sees the operation of the turbine,

ensuring that the turbine remains

within safe operating parameters

regardless of the conditions.

• Electronic Control Unit

• Relay

• Measurement Cables and Con-

nections

7. Gearbox

The gearbox connects the hub to

the generator. The type of tur-

bine dictates the type of gear-

box. Commonly, gearboxes have 3

stages, transforming from low ro-

tational speed through an interme-

diate speed stage to a high speed

shaft.

• Bearings

• Wheels

• Gear Shaft

• Sealings

8. Mechanical Brake

Braking a wind turbine is nor-

mally achieved by pitching the ro-

tor blades. A mechanical brake is

attached to the gearbox to assist

for emergency and for parking. The

brake is a disk and is acted upon

by a hydraulic shoe. An additional

rotor lock using a “peg in hole” ar-

rangement is used to keep the rotor

stationary in an emergency.
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• Disc

• Pads

• Shoe

9. Drive Train

The drive train supports the weight

of the rotor. It takes the energy from

the rotor and hub assembly and, us-

ing a large shaft retained by bear-

ings, transfers it through a coupling

to the gearbox.

• Rotor Bearings

• Drive Shafts

• Couplings

10. Hydraulic System

Hydraulics are used in many of the

other assemblies. They require ded-

icated equipment to provide pres-

sure and fluid.

• Hydraulic Pump

• Pump Motor

• Valves

• Pipes or Hoses

11. Yaw System

The yaw drive rotates the nacelle

into the wind. The nacelle is located

on a large bearing. The system can

use a gliding yaw bearing with a hy-

draulic oil to create a low friction

surface to rotate on or a roller bear-

ing. It can be rotated with either hy-

draulic or electric motors.

• Bearings

• Motor

• Wheels and Pinions

12. Structural Parts or Housing

All the structural components, in-

cluding the foundation, that are re-

sponsible for supporting the tur-

bine. Another important role in-

cludes giving access to the nacelle

for maintenance.

• Foundation

• Tower or Tower Bolts

• Nacelle Frame

• Nacelle Cover

• Ladder
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Figure 2.1.: Numbered Schematic Diagram of an Offshore Wind Turbine

2.2. Reliability Terminology and Metrics

The major key performance indicator used in operational contracts is availability.

Technical availability is the time that the turbine is available for operation compared

to the theoretical maximum available - the time period often used is a year. Commer-

cial availability has a reduced theoretical maximum time by excluding some down-

time for pre-agreed reasons for aspects out with the control of the wind farm owners

or operators [2.13]. These include annual servicing, loss of grid connection or wait-

ing on weather. The majority of the work in this document will use availability, A, to

refer to technical availability. These are far from the only types of availability used

for contracting service agreements. Hawker and McMillan [2.14] gives an overview of

many types of availability including those used here and the impact of maintenance

contract on the yield.
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Time is a useful metric to base turbine reliability terms on:

MTTF Mean time to failure - the average time from a system going online until it fails

- referred to as ’uptime’.

MTTR Mean time to repair - the average time taken to repair a failure event - referred

to as ’downtime’.

MTBF Mean time between failure - the time between each system failure event. A

combination of MTTF and MTTR.

Availability can now also be described using these definitions from the WMEP pro-

gramme [2.8], shown in Equation 2.1.

A =
MTBF −MTTR

MTBF
or

MTTF
MTBF

(2.1)

Capacity factor, CF, is an alternative means of establishing the utilisation of a wind

turbine or wind park. It looks at the amount of the energy produced annually, Operat-

ing Hours, in MWh compared to the annual total possible yield. This is shown below in

Equation 2.2 with the power of the turbine, P . The 8760 refers to the number of hours

in a year. This allows both the weather (wind speed) and reliability to be examined in

one figure.

CF =
P ×Operating Hours

P × 8760
(2.2)

2.2.1. Failure Rates

The inverse of MTBF is the useful and commonly used failure rate, λ. This is shown

in Equation 2.3. The failure rate can also be determined by examining the number of

failures of identical components over a set time period, where Nf is the number of

failures for a set time period and No is the number of components monitored.

The inverse of the MTTR is the repair rate, µ. This is shown in Equation 2.4.
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λ =
1

MTBF
=
Nf
No

(2.3)

µ =
1

MTTR
(2.4)

The failure rate is useful as it allows quick comparison and is easy to understand.

If the annual failure rate is used then a value of 1 represents on average one failure

per year.

2.2.2. Hazard Function

The metrics discussed above do not deviate with respect to time. The failure rates

of components will vary depending on a large amount of variables including manu-

facturing defects, wear rates and usage. The stationary metrics are updated to show

this change over time.

The survivor function, S(t), is the number of surviving components at time t, Ns,

compared to the total number of identical components. Likewise, the unreliability

function, Q(t), examines the number of failed components at time t compared to No.

These are displayed in Equations 2.5 and 2.6. The relationship between survivor and

unreliability is shown in Equation 2.7.

S(t) =
Ns(t)
No

(2.5)

Q(t) =
Nf (t)

No
(2.6)

S(t) = 1−Q(t) (2.7)

f (t) =
dQ(t)
dt

(2.8)

h(t) =
f (t)
S(t)

(2.9)

One particularly useful metric is the hazard function, h(t), which is built from the

failure density function, f (t), (probability density function) and the survivor function,

see Equation 2.9.
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Again, NASA have produced guidance as to the 6 most likely forms the hazard func-

tions will take and the types of components they will represent [2.15]. One of the most

famous hazard function profiles is the “Bathtub Curve”. This shows increased failure

rates at the beginning and end of components’ lives, referred to respectively as infant

mortality and wear out. A diagram from NASA [2.15] showing these different types is

shown in Figure 2.2 with the Bathtub Curve highlighted as Type A.

Figure 2.2.: Hazard Rate Profiles [2.15]

However, work by Smith [2.16] shows that when analysing aircraft fleets the major-

ity of components follow different hazard rate profiles: showing only infant mortality

with very limited or non-existent burn out (Profiles B, D & C). This was especially ap-

plicable to electronic components. Smith states that, in all, nearly 90% of all compo-

nents show no significant burn out characteristics. NASA suggest that non-complex
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single use items such as brake pads or compressor blades show significant burn out

while other more complex items do not.

Remaining useful life (RUL) is the expected life remaining of the component given

existing knowledge of the failure profile of the component [2.17]. RUL is a function

of the current age, t, and the likely failure time, T , which is based on both survivor

function and the past operation profile, Z(t).

RUL = T − t,Z(t) (2.10)

2.3. Wind Park Reliability

2.3.1. Overall Reliability

Harman [2.18] gave the mean system availability in 2008 for the Garrad Hassan

database of over 1,000 onshore turbines as 96.4% and stated that the industry was

heading to beat a standard of 97.0%. The system availability allows for exceptions

for annual services and shutdowns caused by normal operating events - cable unwind

or high winds - and is the same as commercial availability. As mentioned in Section 1,

availabilities now regularly exceed 98% [2.19]. The American database CREW showed

an improvement in operational availability from 94.8% in 2011 to 97% in 2012 [2.20].

Tavner [2.21] gave an overview of some early offshore wind turbines in their first

years of deployment. These all showed much lower technical availability levels across

all wind speeds. Two British wind farms were at the extremes of this data. Barrow

wind farm was one of the worst affected with an availability of less than 40% at wind

speeds over 12 m/s and North Hoyle averaged between 80 and 90% across a range of

6 to 14 m/s. In the same document, a general increase in capacity factor is observed

as the operational experience of the farm increases.

2.3.2. Reliability Databases

Various institutions have been working to collect and analyse the operation of on-

shore wind turbines in numerous studies with vastly different scales and scopes.

These databases have been widely studied and analysed in academic fields and a
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short overview is given below. An interesting point highlighted by Lange, Wilkinson,

and van Delft [2.22] is that the majority of these studies are European even though

there are mature wind industries around the world:

LWK A German database concerning wind farms installed in the Schleswig-Holstein

region between 1993 and 2006. A maximum of 643 turbines were observed.

These were mostly small wind turbines of under 400 kW.

WindStats Germany A German database updated quarterly between 1996 and 2008.

4924 turbines were tracked at its peak.

WindStats Denmark A Danish database updated monthly between 1994 and 2003.

WMEP A long running German study that has been the framework for other studies.

1500 turbines were tracked between 1989 and 2006 with an average rating of

167 kW.

Vinstat A Swedish database running between 1997 and 2004. The maximum number

of turbines recorded was 1050. The turbines tracked tended to be small in size

and were 430 kW on average.

VTT A smaller Finnish study recording at most 118 turbines. Running between 1999

and 2009 turbines ranged from between 0.5 MW and 1.0 MW.

ReliaWind A European wind study that built on some of the previous studies and

expanded further. 283 medium turbines of 1.2 MW were tracked in this study.

CREW A recent American study attempting to benchmark the onshore fleet. The

study covers between 800 and 900 turbines of on average 1.3 MW.

The way of reporting downtime, failures, repairs and the taxonomy of the wind tur-

bine varied significantly between these studies. However, once collated the data

shows some notable assemblies and sub-assemblies that fail frequently and cause

considerable downtime and these are explored below.
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Study Assemblies with Highest Failures

Assembly Sub-Assembly
Contribution
to Failure
Rate [%]

ReliaWind Hub Pitch System 21.29
Electric Frequency Converter 12.96

Yaw - 11.28
Vinstat, VTT & WMEP Electric - 17.5

Sensors Sensors & Comms 14.1
Rotor Blades & Pitch System 13.4

WMEP Electric - 231

Control Controllers 181

Sensors - 101

CREW Rotor - 12.92

Generator - 7.22

Control - 4.92

1 Contribution to repair rate. 2 Contribution to unavailability.

Table 2.1.: Unreliable Assemblies

2.3.3. Assembly Reliability

The top 3 assemblies (and sub-assemblies where appropriate) with the largest con-

tribution of failure from 4 studies are shown in Table 2.1. This includes the ReliaWind

study as presented by Wilkinson and Hendriks [2.23], work from Ribrant and Bertling

[2.24] analysing the Vinstat, VTT & WMEP, the WMEP data alone from Durstewitz et

al. [2.10] and the CREW database from Bond, Peters, and Ogilvie [2.20]. The CREW

database excludes a generic fault class containing unknown SCADA alarms contribut-

ing 63.7% of all alarms.

Some of the most consistent component failures of the assemblies are broken down

further by Tavner [2.21]. These are shown in Table 2.2. As the pitch system is a major

contributor to downtime and consists of both electrical and hydraulic systems then

these faults are displayed in different categories.

Failure rates and number of failures alone are not significant by themselves. Down-

time is a metric that can show the severity of a failure. For example, as mentioned

above, the largest source of failures in the CREW study was unattributed system

alarms that were quickly solved.

Figure 2.3 shows the failure rates of wind turbine systems and the resulting down-
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Assembly Sub-assembly
Failure

Mode 1

Failure

Mode 2

Failure

Mode 3

Hub Pitch System (Electri-
cal)

Battery
Failure

Pitch Motor
Failure

Motor
converter

failure

Hub Pitch System (Hy-
draulic)

Hydraulic

Internal
leakage of

propor-
tional
valve

Internal
leakage of
solenoid

valve

Electric Frequency Converter Inverter
failure

Loss of
generator

signal
speed

Crowbar
failure

Yaw System Yaw System

Yaw
gearbox

and pinion
lubrication
out of spec-

ification

Degraded
wind

direction
signal

Degraded
guiding
element
function

Control Control Systems

Temperature
sensor
module

malfunction

PLC
analogue

input
malfunction

PLC
analogue

output
malfunction

Table 2.2.: Failing Components

time caused based on WMEP data taken from Faulstich, Hahn, and Tavner [2.8]. In

this diagram, the failures have been classified into “Major” and “Minor” failures - with

the distinguishing feature of a major failure being that the downtime exceeded 24

hours. The summary of the work is that minor failures account for 75% of the faults

but only 5% of the downtime while major failures account for 25% causing 95% of

the downtime.

The mean annual downtime - the annual failure rate multiplied by the downtime per

failure - is also shown. The mean annual downtime highlights that the major faults of

the electrical system, control, hub, gearbox and generator are large contributors to

downtime. There is another simple division that can be made: control, electrics and

hub assemblies have higher annual failure rates (>0.06) and lower downtimes while

the gearbox and generator have lower failure rates and higher downtimes.
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Figure 2.3.: Wind Turbine Failure Rate and Caused Downtime [2.21]

The average annual downtime for a turbine is 6.01 days. This downtime equates to

in excess of AC13,000 in lost revenue for a 2.3 MW turbine at AC0.04 per kW h.

An alternative examination of this data was completed by Pinar Pérez et al. [2.7]

and is shown in 2.4. In the Figure, “SWE” refers to Vinstat values, “FIN” is the VTT

study, “DEU” is the German WindStats and “DEU_LKW” is data from LWK. The top line

is the boundary of an envelope indicating assemblies that cause mean downtime per

turbine per year in excess of 25 hours. The gearbox, generator, blades and electric

assemblies all feature from multiple different studies.

2.3.4. Offshore Reliability Data

The amount of reliability data available for offshore wind parks is limited. However,

availability data is available for the first few operating years of several British wind

farms that received a UK Government grant - including Kentish Flats operated by

Vattenfall and Scroby Sands operated by E.ON. This can be used as a non-exact esti-

mation or proxy for reliability.

The DOWEC consortium estimated offshore turbine failure rates in 2003 using ex-

pert knowledge based on existing onshore data [2.25]. They predicted a reduction in
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Figure 2.4.: Rate of Failure vs Hours Lost per Failure [2.7]

overall failure rate for offshore turbines to 1.55 from an onshore value of 2.31.

One of the most complete sources of offshore data is operation reports from Egm-

ond aan Zee. The farm consists of 36 Vestas V90 3 MW turbines which have the

number of turbine stops (regardless of whether on site intervention was required or

not) and downtime per subsystem reported. The farm is located between 10 and 18

km from the coast of the Netherlands in the North Sea. Failure rates can be derived

from this data in multiple ways and this is discussed in Chapter 3 and Appendix A.

2.4. Detecting Developing Faults

Many faults can be detected as they develop and before they cause the loss of oper-

ating function. The simplest way of searching for developing faults is during servicing

and while conducting other repairs. For more advanced monitoring, SCADA (Supervi-

sory Control and Data Acquisition) data and CM systems can be used. The following

section introduces the most common methods for collecting this data for both the

rotating machinery and the structure as well as some more experimental techniques.
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2.4.1. SCADA

A SCADA record is sent from the turbine every 10 minutes. It is time stamped and can

consist of up to 200 channels. Additionally, fault alarms are instantly recorded and

reported to the administrator. The control room can comment on how these alarms

are attributed or cleared and store this information in the report log. The amount

and type of data recorded in SCADA data is dependent on the turbine manufacturer.

However, some channels are key and always reported:

Wind Speed Average for 10 minutes and the 10 minute minimum and maximum.

Wind Direction Absolute wind direction, average yaw direction and relative direction

averaged over 10 minutes.

Generator Power Power output (both actual and reactive) averaged over 10 minutes,

maximum, minimum and standard deviation values.

Rotor Rotational Speed Average revolutions per minute (RPM), maximum, minimum

and standard deviation.

Generator Rotation Speed Average RPM, maximum, minimum and standard devia-

tion.

Temperature information Including average bearing, cooling water and phase tem-

peratures for the generator and drive train.

The actual recorded power output allows the wind turbine’s performance to be plot-

ted against the manufacturer’s power curve. Anecdotally, monitoring deviations from

the power curve is still one of the most important forms of turbine diagnostic.

The other channels of SCADA, depending on the manufacturer, may contain addi-

tional data. The below are example channels from a Siemens SCADA system:

Grid Information Average frequency, power factors and production voltages aver-

aged for each phase.

Temperature Information Average, maximum and minimum temperatures for the

controllers, nacelle, gear oil and inverters.
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Power Quality In depth power information from the electronics, such as reactive and

actual power.

2.4.2. Structural Health Monitoring Technology

A great amount of technology for SHM of wind parks has been adopted from the oil

and gas offshore industry. Many of these technologies are presented in a report from

the Health and Safety Executive [2.26] and compare well to those in a review of wind

turbine SHM technologies [2.27].

Offshore wind turbine foundation structures can consist of tubular members that

are nominally internally dry for normal operation even though they are located un-

derwater. Flooded member detection involves placing a sensor inside or outside the

component that is activated when the member cracks and floods. After the sensor is

activated there are techniques that can be used to assess the time left until a critical

crack size on the member is achieved [2.28]. A flooded member detection system can

have water activated batteries and use the structure itself to transmit an alarm to a

dedicated receiver [2.29]. Various sensors can use different frequencies so that the

location of the flooded member can also be obtained.

Strain measurement is one of the most widely deployed methods for measuring

damage to structural components with strain sensors and fibre optics [2.30]. Forces

applied to structures cause small changes in length. These deformations in length

can be measured by a variety of sensors – electrical resistance, capacitance and in-

ductance – which are well established and relatively inexpensive [2.31]. Studies have

followed the development of a strain measurement system for smaller wind turbine

systems [2.32].

Another technique for monitoring strain and displacement is with fibre optic sen-

sors. Fibre Bragg Gratings (FBG) are etched optical fibres that can be retrofitted

into blades and structures or embedded during manufacture. These etched gratings

change shape when strain is applied, changing the properties of the reflected light.

Instead of gratings, fibres can also be corrugated to affect the properties of light in a

process known as microbending. Impregnating blades with optical fibres during their

construction is expensive but offers further advantages. The fibres can be used while
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blades are curing and observe when the cure process is complete [2.31]. Rotor moni-

toring systems in general are particularly useful for ice detection and improving safe

operation.

Vibration data obtained using accelerometers can be used to measure changes

in the responses of structural components. Once the modal parameters of a struc-

ture have been obtained, such as resonant frequencies or damping values, observing

changes in these values can indicate damage [2.27]. Strain data can also be used to

calculate and monitor these parameters.

In wind turbines, the major structural excitation frequencies to be avoided are ω

and 3ω. These refer to the rotational frequency of the rotor and the rotational fre-

quency of the blades, respectively. Foundation and support structures are categorised

depending on how these are avoided. Stiff-stiff foundations have a natural frequency

higher than 3ω, soft-stiff between ω and 3ω and soft-soft lower than ω. DNV GL stip-

ulate that the frequencies must be separated by at least 5% [2.33].

Acoustic Emission (AE) is mentioned in several of the above studies as a possible

alternative or addition to vibration. Piezoelectric transducers capture high frequency

stress waves (> 50 kHz) released by deformations that have altered the internal struc-

ture of materials such as cracks. The sensors record sound directly. AE systems can

achieve higher signal to noise ratios than vibration systems but have a relatively nar-

row detection band [2.34] and can be useful in determining fault locations in struc-

tural systems such as blades [2.27].

In normal static loading tests, an object has a load applied in excess of the highest

expected service load for a period of around 10 minutes. When the load is first ap-

plied, AE cracks will be observed but unless the structure is fundamentally damaged

the AE crack hits will cease. Constant observation of hits is a sign of damage.

The descriptions of other technologies used in SHM systems have been developed

from the work of Ciang, Lee, and Bang [2.27].

Ultrasound scanning has been commonly used in aerospace and other infrastruc-

ture applications to detect cracks and structural weaknesses. However, ultrasound

does not have the resolution to observe individual fibre damage in fibre reinforced

plastics. Only when multiple fibres are damaged in the same location of a blade will
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ultrasound show a defect. Ultrasound for SHM can now be installed and used re-

motely where the transmitter and receiver are located in the same device.

Thermography can be used to produce an image that can be completed quickly

with little expertise required to read the output. Thermography is often used for con-

dition monitoring of mechanical and electrical equipment. Heat produced from poorly

meshing or misaligned rotating equipment can be captured by a viewing device. It can

also be used for the structural assessment of blades. This method of SHM can cap-

ture a lot of information quickly and is non-intrusive. Systems have been deployed

for boats and helicopters for the evaluation of blades. Rumsey and Paquette [2.35]

use thermography cameras to obtain pictures of stress hot spots and the resulting

damage. A range of other studies using thermography for SHM are highlighted in the

work of Bagavathiappan et al. [2.36].

A Laser Doppler machine measures the vibration of a surface without making phys-

ical contact. It collects an image of a wind turbine structure, similar to that of an ul-

trasound for diagnosis. A laser is reflected onto the surface and the change in phase

of the beam is calculated. Different machines have different options - most can be set

to examine single points and some can be set to a scan an area.

The electrical output of the generator is a useful parameter to monitor. It will need

to be compared to other concurrent parameters as the operating state will effect the

output. As the drive train ages and accrues damage, the electrical output of the WTG

will exhibit different trends over time.

X-rays can be used to penetrate many materials and detect damage. Images are

obtained in parallel and the spatial resolution exceeds that of ultrasound. X-ray ma-

chines for damage detection are small and can be placed and used remotely to limit

exposure to technicians.

The focus of all the technologies mentioned so far has been to monitor damage

and fatigue occurring on structural components. However, there have been several

products developed to understand corrosion or scour. The level of the seabed around

the piles of a tripod or the base of a monopile can be observed with acoustic echo

systems. Probes are available that can be suspended from a wind turbine deck into

the monopile to monitor corrosion. Further information about these systems including
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Figure 2.5.: Wind Turbine CM Sensor Schematic

some commercial suppliers can be found in the work of Carroll et al. [2.37].

2.4.3. Condition Monitoring Technology

A vibrational measurement system for CM normally consists of 5 to 8 accelerometers

on the drive train and 1 rotational speed sensor located on the high speed shaft.

Optionally, a current meter for power output may be installed if it cannot be obtained

from the turbine controller.

These accelerometers send signals representing shock peak readings which are

measured in ’g’. From this a large amount of information can be created including

frequency spectrum for individual parts of the drive train. Common points for mount-

ing vibration sensors are noted below and in Figure 2.5. This summary is based on a

review of technical documents from certification bodies [2.38] and insurers [2.39] for

a Danish concept wind turbine with a 3 stage gearbox.

1 Upwind main bearing

2 Downwind main bearing

3 Planetary stage of the gearbox

4 Intermediate stage of the gearbox

5 High speed stage of the gearbox

6 Inboard side of the generator

7 Outboard side of the generator
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Using the techniques described below, information on the state of the system can

be observed. Vibration analysis is a widely deployed form of condition monitoring with

most large turbines being fitted with it and turbine manufacturers including it as stan-

dard on many models. It has the largest number of commercially available systems

compared to other CM systems. In the study by Crabtree [2.40], there are 14 sys-

tems mentioned based primarily on drive train vibration most of which use frequency

domain analysis to ascertain the condition of components.

Vibration systems have a high frequency sampling rate and create a large amount

of data when used for diagnosis. Normally, they operate at a lower frequency un-

til an alarm activates a diagnostic mode. The different system types have different

sampling frequencies as follows:

• Vibration systems for diagnosis: > 10 kHz.

• Vibration systems for continuous monitoring: < 50 Hz.

• Rotor health monitoring: > 100 Hz.

• Structural health monitoring: < 5 Hz.

• SCADA: < 0.002 Hz.

There have been many examples of AE monitoring systems being implemented for

conventional rotating machinery [2.41]. One manufacturer integrates an AE sensor

with a more conventional vibration system for wind turbine drive trains and uses the

two systems to complement one another [2.42].

Both the condition and particle content of oil are useful for establishing the con-

dition of components such as gearboxes and bearings [2.43]. Often, the majority of

oil testing is still done off-line in a laboratory from collected samples and basic oil

information is provided from SCADA. Sample collection frequencies were not found in

documentation. In-line oil particle sensors can send updates on a large array of oil

parameters including [2.44]:

• Ferrous and non-ferrous particles

• Acid content
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• Viscosity

• Water content

• Oxidation level

• Temperature

Particle sensors are the most common type of in-line sensors. These sensors use

either a magnetic induction counter or an optical sensor to analyse the contents of

the oil. An induction sensor observes the change in magnetic field as particles pass

through it. Using this method, both non-ferrous and ferrous particles can be sized and

counted. Optical counters can identify the size and shape of particles from electrical

pulses produced as they pass a photo-diode.

Radioactive tagging is another method under investigation. The internal surfaces

of the drive trains would be irradiated. When wear occurs radioactive particles will be

liberated and detected on a radiation detector. Oil monitoring techniques are exam-

ined in detail in Hamilton and Quail [2.44]. Particle monitoring is typically significantly

less expensive than wear debris analysis sensors [2.45].

The Shock Pulse Method (SPM) is used by the manufacturer SPM Technologies and

has been endorsed by insurer Allianz for monitoring the drive train [2.46]. Mechanical

shock pulses - ultrasonic frequency pulses - in these components are generated and

propagate through the component, for example, when a bearing roller strikes debris

or a pit on the raceway. It is this shock amplitude level and the frequency of high

amplitude shocks that is used as an indicator of condition. As the impacts develop it

becomes a lower frequency vibration.

Displacement sensors are useful for measuring the relative movements of rotating

components such as bearings and shafts. This can aid in the determination of loads,

degradation and misalignment. Sensors typically use eddy currents or induction to

determine distance [2.47].

Electrical monitoring of generator and other electrical components can be mon-

itored using machine current analysis and other electrical effects to detect issues

[2.48, 2.49, 2.50]. Other techniques are available for power electronic equipment

such as transformers or switchgear. These include discharge measurements [2.51].
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Figure 2.6.: Frequency Plot Example [2.52]

One of the data points commonly recorded is temperature. Temperature can be

used to monitor the condition of bearings, oil and generator [2.51]. In rotating equip-

ment, an increase in temperature can be an indication of increased wear or misalign-

ment. Poor electrical contacts can also increase the temperature of components

[2.30].

2.4.4. Signal Processing

Time domain analysis uses information about the operating state of the turbine, such

as load, rotational speed and vibration, to generate condition indicators (CI). The sig-

nals can be unfiltered, filtered or indexed against the rotation of the shaft. A fre-

quency plot is shown in Figure 2.6 from Bechhoefer and Kingsley [2.52].

Further signal processing techniques in the frequency domain, especially Fast Fourier

Transforms (FFT), have allowed for the development of further efficient CIs. Analy-

sis techniques using FFTs include spectral Kurtosis and envelope analysis. If healthy

operating frequency characteristics of components are known in advance then de-

viation from these can be interpreted as deterioration [2.53]. However, due to the

complex and varied nature of operating conditions for wind turbines it is not always
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easy to ascertain if the turbine is producing healthy frequency characteristics from

the SCADA data [2.54].

More advanced signal processing techniques used for wind turbines are explored

in reviews by Nie and Wang [2.43] and Antoniadou et al. [2.55]. Time-frequency, time-

scale techniques or empirical mode decomposition are some of the techniques men-

tioned. Wavelet transforms are an example of time-scale methods that have now

been used to detect faults in various wind turbine components [2.56].

2.4.5. Condition Indicator Development

The majority of CIs for wind turbines are based on observing changes in signal pro-

cessing trends. CIs have advanced by automating this process and developing new

CIs that combine multiple sources of information.

A recent approach has used a frequency domain algorithm to process accelerom-

eter data before automating the selection of modal parameters and deviation from

these values [2.57]. Strain measurement data has also been used to develop a CI for

residual fatigue life estimation [2.58].

Artificial intelligence has been used to search for relationships and patterns of fail-

ure between multiple data sources. Genetic algorithms, artificial neural networks and

fuzzy logic have all been applied to wind turbine CM [2.59, 2.60]. SCADA data is a good

candidate for these techniques [2.61]. Other studies have focused on using multiple

sources of data to increase the reliability of results [2.54] or using some of these

techniques to reduce sensor numbers [2.62].

The majority of systems use non-volatile memory buffer to store signal information

and CIs temporarily. This aids data transfer and protects from data loss during a

power outage to the CM system.

2.4.6. Overview

Table 2.3 provides an overview of what assemblies CM systems can be used on.
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Table 2.3.: Types of CM system and their applicable subsystems
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Gearbox X X X X X
Generator X X X X
Bearings and Shafts X X X X
Blades X X X
Tower X X X X
Foundation X X X X

2.5. Detection System Certification Standards

As documented in the previous section, certification for CM systems comes from two

major bodies in the industry - Germanischer Lloyd Renewables (or GL Renewables now

a part of DNV GL) and Allianz Verischerungs-AG. Additionally, TÜV Nord and several

other organisations offer turbine certification services (some of these providers have

been certified by DNV GL).

The qualifications for Allianz certification could not be ascertained and compiled

for this document.

2.5.1. IEC Standard 61400

The majority of the certification standards offered by these companies, including

DNV GL, reference the International Electrotechnical Commission standard IEC 61400

[2.63]. This document contains, among other things, the standards for:

• Design basis evaluation

• Design evaluation

• Manufacturing evaluation

• Type testing

• Foundation design and testing

• Type characteristics measurement
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• Final evaluation

Summaries of this document can be found in documents by GL Group [2.64] and

TÜV Nord [2.65] that explain the certification process.

The part of the standard dealing with requirements for real time communication de-

vices (i.e. CM and SCADA) is 61400-25 - ’Communications for monitoring and control

of wind power plants’. The document is broken down in to sub-sections regarding data

management, information exchange and wind turbine modelling. This is displayed in

Figure 2.7 from the British Standards Institute [2.63].

The standard is split into operational and management functions and all of these

relate to client-server based data exchange. These different functions are shown in

Table 2.4 from the British Standards Institute [2.66].

Table 2.4.: Communication Functions

Operational Management

Monitoring User management

Control Time synchronisation

Data retrieval Diagnostics

Logging System setup

Reporting

Figure 2.7.: Conceptual communication model of the IEC 61400-25 series [2.63]
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A technical committee was established in 1964 by the International Organization

for Standardization to investigate the “fields of mechanical vibration and shock and

. . . the condition monitoring of machines and structures, using multidisciplinary ap-

proaches”. ISO/TC 108 now has 5 sub-committees investigating and standardizing,

among others, the measurement and evaluation of vibration [2.67]. However, until

recently, most of their standards had ignored or specifically excluded wind turbines.

“Evaluation of machine vibration by measurements on non-rotating parts”, the title

of ISO 10816, specifically excluded wind in ISO 10816-3. 2015 saw the introduction

of ISO 10816-21 for horizontal axis wind turbines with a gearbox and ISO 10816-22

is under development for wind turbines without gearboxes [2.68]. ISO/CD 16079 are

guidelines also now under development for “Condition monitoring and diagnostics of

wind turbines” (where CD indicates a Committee Draft version).

2.5.2. GL Renewables Certification

The GL Renewables master document - ’Rules and Guidelines - Industrial Services - 4

- Guidelines for the Certification of Condition Monitoring Systems for Wind Turbines’

- was updated in 2013 [2.64]. DNV GL release a list of CM system vendors that have

been approved [2.69].

There are many conditions to be met to achieve this status and some are detailed

below. The document is broken down into parts for data collection, processing, re-

porting and diagnosis. It is fundamentally designed for vibration drive train analysis

but special criteria can be applied to different CM systems, for example the Bosch

Rexroth BLADEcontrol system is approved as a rotor blade sensor system.

2.5.3. Measured Components and Sensors

Components to be monitored as a minimum are detailed below and the minimum

measuring points are illustrated in Table 2.5.

• For measuring planet-helical gears, vibration sensors must be installed on the

ring gears, sun pinion shaft and output gear.

• The CM system needs to collect operating parameters either from the control
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system, an additional SCADA or dedicated system. These parameters include:

wind direction, wind speed, air temperature, temperatures of generator wind-

ings and messages about the interventions of turbine control.

• Monitoring of the difference between rotation angle between the gearbox output

shaft and the generator input shaft is recommended. It allows conclusions to

be drawn about the load variations in the gearbox.

• Oil particle sensors are recommend by GL Renewables but are not mandatory.

Table 2.5.: Necessary Measuring Points

Component Minimum Sensors

Per Component

Direction of

Measurement

Frequency Range

Rotor Bearing 1 Radial 0.1 Hz to ≥ 10 kHz
Gearbox 3 Radial 0.1 Hz to ≥ 10 kHz

Generator Bearing 2 Radial 10 Hz to ≥ 10 kHz
Tower with Nacelle 2 Axial and

Transversal
0.1 Hz to ≥ 100 Hz

2.5.4. Data Processing and Storage

The regulations specify that the signals must be processed, enhanced and correlated

against operational parameters which may affect them. After the signals have been

processed the system must then conduct relevant and accurate analysis on the data.

DNV GL suggest several different forms of analysis depending on the type of vibra-

tion analysis. Envelope spectra are necessary for most types of rotating components.

Resultant characteristics from the envelope spectra, broadband characteristics and

high-resolution amplitude spectra are also suggested. The document stresses that

speed fluctuations must be accounted for and an appropriate analysis tool must be

selected.

CM systems are required to be able to average, limit and apply trending to the data.

DNV GL acknowledge that large amounts of data will be generated by the systems

but state that this must be stored including calculated values. Data reduction may

occur but only post processing. Constraints must be stored with the data to give it

meaning. To protect data, system information must be stored externally once a day.
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A storage concept and plan must be shown to DNV GL and account for data transfer

over limited connection speeds.

2.5.5. Reporting and Diagnosis

Alarms should be immediate, concise, stored in the database and transmitted through

several different means of communication. DNV GL are concerned about how alarms

are reported to users. A maximum number of alarms must be set, each with a maxi-

mum number of allowed clearances. This should stop repeated alarm messages be-

ing ignored or overlooked.

After an alarm has been set a specialist must be able to analyse the data indepen-

dently and diagnose particular faults. To do this the CM system and its data must be

accessible both on and off site.

2.5.6. Future Extension of Certification Standards

In a report published by the Allianz Centre for Technology [2.47] it was stated that

implementing a minimum CM system specification had aided risk management. The

report states that these requirements have proven results in assessing the health of

the overall system.

The report recommends extending the CM system minimum requirements for off-

shore turbines. Some of the extensions include:

• Independent vibration monitoring of the rotor, tower and foundation;

• Rotor and direct driven generator bearings to have displacement monitoring;

• Distributed temperature measurements of the rotor bearing and, in a directly

driven machine, the generator bearings and windings;

• The rotor bearing and gearbox to have oil particle counting instrumentation

installed;

• The electric parameters of the generator windings should be monitored.
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2.6. Wind Park Maintenance Strategies

2.6.1. Maintenance Strategy Taxonomy

Maintenance strategies can be broadly categorised in to two groups. A diagram dis-

playing the taxonomy of maintenance types is shown in Figure 2.8 based on [2.70].

Using a Corrective Maintenance Strategy, the asset is run for as long as possible

with minimal intervention until an event occurs that causes operation to cease. At this

point, components will need to be replaced and downtime will occur until repair steps

have taken place. This strategy is also known as “Run to Failure” and colloquially as

“fix it when it breaks”.

Corrective maintenance can be Planned or Unplanned. If a component failure

does not cause immediate system shut down and maintenance actions can be sched-

uled then it is planned corrective maintenance. If intervention is required immediately

due to safety concerns or operational losses then it is unplanned corrective mainte-

nance.

The strategy is low cost, easy to implement and extracts maximum RUL from com-

ponents. It works well in systems with high levels of redundancy, very low failure rates

or difficult access. Offshore wind parks have limited redundancy, relatively high fail-

ure rates and the costs accrued in operational losses mean that this strategy is not

suitable. Repair costs are generally more expensive then other strategies as damage

is more severe in components run to failure [2.71].

A Preventive Maintenance Strategy attempts to schedule interventions before

a failure event that would interrupt operation occurs. Work actions happen more

frequently than with a corrective strategy but generally the amount of stoppages

reduce significantly.

Preventive maintenance strategies can be divided further into Period Based and

Predictive.

2.6.2. Period Based Maintenance

Period based maintenance (PBM) (also known as time based maintenance (TBM) or

calendar based maintenance) relies on the scheduling of regular maintenance. It oc-
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curs at intervals short enough to statistically minimise the risk of failure. This period

can be based on elapsed time or number of cycles - say rotations completed or op-

erating hours - being achieved. An additional age related criterion can be added to

defer the onset of periodic maintenance. The regular changing of components such

as oil filters or lubrication allow for equipment to run at full performance, high effi-

ciency and increase the lifetime of assemblies. The planning of maintenance actions

allows for labour costs to be minimised with limited emergency responses. In sum-

mary, periodic maintenance is an effective strategy to reduce downtime and improve

system reliability. Some studies place the value of periodic maintenance over a cor-

rective strategy at 12 to 18% [2.71].

Unfortunately, periodic maintenance does not remove the possibility that catas-

trophic failures will occur. There are many more hours of labour that are required to

perform this strategy and higher overheads in management and training. Consum-

ables and components will be replaced with a higher RUL than in other strategies - in

theory less value is extracted from them.

A lesser problem that still needs to be addressed is imperfect maintenance. As with

all procedures that involve humans, there is a chance that the technician or engineer

completing the maintenance accidentally causes additional damage to the system

or does not fully complete the repair. The more frequently maintenance occurs, the

larger the chance of this occurring.

2.6.3. Predictive Maintenance

Predictive maintenance requires the condition of components to be monitored reg-

ularly. This allows maintenance to be conducted only when it is necessary, before

failure occurs and, if the condition of the assemblies is observed at appropriate inter-

vals, the possibility of catastrophic failures is removed.

The RUL of components approaches zero as they are fully utilised. Alternative oper-

ation strategies can be used to ensure this - for example slightly reducing the perfor-

mance of an asset could significantly increase the life of a component. This reduces

the hours of labour needed to maintain assemblies and the scheduling of mainte-

nance reduces costs. Spares levels can be reduced.
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Figure 2.8.: Graphical overview of maintenance types

The effectiveness of this strategy relies entirely on the monitoring equipment being

accurate and the correct monitoring intervals being selected. These two items can in-

cur significant costs as can training staff to incorporate it into the maintenance plan.

If there are failure modes not detected by the monitoring system or if it does not have

a 100% detection rate then catastrophic failures may still occur but the possibility

may be reduced. If the system produces an alarm that needs to be investigated when

no action was required - a false alarm - then this may incur unnecessary costs in

labour or downtime.

Reliability centred maintenance is a holistic maintenance strategy. CBM techniques

are used in conjunction with analytical design tools to minimise downtime of the cur-

rent components and to reduce this further over time [2.72]. Components can be

redesigned to remove unseen issues or serial defects. The number of assembly over-

hauls can be reduced over the lifetime of the asset.

The Department of Energy in the US compared these strategies for pumps and as-

signed the O&M costs as: period based - $13/hp/year; condition based - $9/hp/year;

and reliability based - $6/hp/year. [2.71]
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2.6.4. Performance Based Maintenance Contracts

Turbine manufacturers - often referred to as Original Equipment Manufacturers (OEMs)

- can offer Performance Based Maintenance Contracts (PBMCs) for their turbines.

These are contracts offering various levels of support and guarantee for the turbines

often with the manufacturers conducting maintenance for the beginning of the tur-

bine’s life.

The information below regards the offerings available from Siemens Wind Power

[2.73], Vestas A/S [2.74] and General Electric Company [2.75]. This list is not exhaus-

tive but is chosen for the amount of information publicly available about the products.

Other manufacturers have indicated that they will offer similar contracts such as Al-

stom Power [2.76] and MHI Vestas Offshore Wind [2.77]. While this literature shows

the main goals of these contracts, they are often negotiated on an individual basis.

2.6.4.1. Time or Energy Availability

Siemens Wind Power’s most basic PBMC that includes an availability clause is the

SWPS-200A. This includes remote diagnostic services and servicing. The most ad-

vanced PBMC also includes individual component warranties and the inclusion of off-

shore logistic costs where – in certain situations – Siemens will utilise their own fleet

of helicopters and service vessels.

GE’s EPSA (Extended Parts and Services Agreement) and FSA (Full Service Agree-

ment) PBMC include availability guarantees and coverage for completing manual re-

sets. The more advanced FSA further covers unplanned maintenance actions and

turbine performance review with an aim for turbine life extension.

Finally, the AOM (Active Output Management) 5000 is the most advanced PBMC

offered by Vestas. This offers an “energy-based availability guarantee that maximises

output”. This agreement and some of their lower level PMBCs include a 97% energy-

based availability.

Energy-based contracts such as the AOM 5000 are becoming more common. In-

stead of time based availability being the sole metric used to evaluate the contract,

the amount of energy lost is used as well. This encourages service providers to en-
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sure work is done in periods of calm weather, and that the turbines are operational

for high wind periods. This maximises the energy captured by the turbine. A good

discussion of energy vs time based availability is given in the work of Conroy, Deane,

and Gallachóir [2.78].

2.6.4.2. Options After Expiry of Warranty

GL Garrad Hassan [2.79] state that the OEMs have an effective monopoly on tur-

bine maintenance during the warranty period for the first few years of operation. It

is during the post-warranty period that operators can decide how much risk to take.

The authors go on to state that due to the intellectual property issues and specialist

knowledge associated with wind turbines the majority of OEMs tend to remain con-

tracted in some role.

There is a separation in many of these plans between offshore logistics and main-

tenance or repair actions. Risk associated with weather interruptions is an important

factor and whoever is responsible for managing this risk should be responsible for

offshore logistics. Larger owners or operators that assume this risk may even pur-

chase vessels rather than contracting them. The optimisation of purchasing vessels

compared to contracting them is explored in the work of Dalgic et al. [2.80].

The contracts noted above appear to be designed to remove large amounts of per-

ceived risk of offshore maintenance from the operator/owner at a fixed premium.

Some contracts focus on the lifetime operation or extension of turbine life while oth-

ers look to remove the unpredictable costs of service vehicle fleet management. The

production based guarantees offered from several manufacturers stand out as par-

ticularly interesting as they are of benefit to operators by forcing maintenance ac-

tions to be moved to low-wind periods, thereby maximising energy capture.

2.7. Conclusions

In this chapter, the basics of system reliability, including the necessary terminology,

and the different maintenance strategies that are deployed to improve reliability have

been explored. Important aspects of this are the wind turbine taxonomy and existing
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reliability databases.

The technologies that are currently being deployed to monitor turbines and how

this captured data is converted into condition indicators have been shown. The stan-

dards that dictate the requirements of these systems have also been listed.

Finally, one of the most important aspects addressed in this chapter are the view-

points and goals of different parties in the wind industry. OEMs, wind park operators

and owners each have different goals and view risks differently. This is highlighted

in the PMBCs. OEMs are willing to offer generous service contracts at a premium to

reduce their risk which may appeal to operators and owners. Operators, however,

may be willing to reduce operating costs further by completing maintenance actions

themselves. Owners’ goals are to ensure long term profits and they may be more

willing to pay higher premiums to OEMs for guaranteed results.
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CHAPTER 3

Modelling Wind Turbine Deterioration

This chapter contains information about the different methods used to model compo-

nent deterioration and about how to model the capturing of this deterioration using

condition monitoring systems. Due to the differences in the design and operation

of structural and rotating components the modelling of each is handled in different

sections.

3.1. Rotating Machinery Components

Deterioration modelling often requires stochastic processes that accrue over time.

The wind itself is a stochastic process, leading to turbines having complex loading and

failure patterns [3.1]. The modelling of the failure and deterioration process is helpful

for producing effective maintenance plans. Markov chains are one of the commonly

used methods to represent such processes accurately [3.2].

3.1.1. Markov Processes

The Markov process allows random variables to be modelled. If a random variable

has a finite number of mutually exclusive discrete states, exists in discrete time and

has a conditional probability distribution for each of these states then it is known as a
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Markov chain (MC). The state of the variable can evolve over time and each state can

have a different probability distribution for the remaining states. This evolution pro-

cess is memoryless - the result of the next time step depends only on the current state

and not on any previous information. The probability distributions can be combined

into a transition probability matrix. A complete set of the mathematical definitions for

Markov chains are provided by Janssen and Manca [3.3].

If the variable X is the discrete range of states x1, ...,xn then the marginal proba-

bility of the state of X, P (X), can be calculated from the probability distribution of

P (x1, ...,xn). Conversely, the probability of a particular state of X can also be defined,

P (xn). The probability distribution can be different for each existing state. These

distributions are contained within an array, PT , and are shown in Equation 3.1. The

probability across each row must total 1.

PT =



x11 ... ... x1n

x21 ... ... x2n

... ... ... ...

xn1 ... ... xnn


(3.1)

This variable can easily be made to represent a non-repairing component with two

states and its transition matrix is shown below in Equation 3.2 and in Figure 3.1. The

two states are ’operating’ and ’failed’ which are denoted by ’1’ and ’2’ respectively.

The arrows indicate dependence. The probability of transition, U , is obtained from

knowledge of the failure rate and the survivor function of the failure.

11−U

U

2 1

Figure 3.1.: Simple Two State Markov Chain for variable X

PT =

 1−U U

0 1

 (3.2)

As it is impossible using this matrix to leave the failed state, it is known as an ab-
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11−U

U

M

2 1−M

Figure 3.2.: Simple Two State Markov Chain for Variable X with Repair

sorbing Markov chain. Physical systems generally cannot move back to an operating

state without external intervention. By adding the repair rate, µ, to the model, the

probability of transitioning to the original state,M, can be obtained with the probabil-

ity distribution of repair. This is shown in Figure 3.2.

The Markov chain is said to be ergodic if an independent probability distribution can

be estimated for a particular time, t. If the transition matrix probabilities are constant

over time then this can be calculated based on the equation shown in Equation 3.3.

PT =

 1−U U

M 1−M


t

(3.3)

Deterioration processes are normally not directly observable but produce some

events and criteria that are. Graubner, Schmidt, and Proske [3.4] states that with

inspections and CM systems it is the additional discrete random variable X ′ that is

directly observed instead of the direct degradation process occurring in variable X.

Hidden Markov Models (HMM) are an extension of MCs and a good definition is given

by Eddy [3.5]. These additional variables, X ′ , are used with their own states and prob-

ability distributions that are observable. This information can also be represented in a

matrix form, known as the emissions matrix, PE , with each row being a probability dis-

tribution depending on the state of X. A simple emissions matrix is shown in Equation

3.4 for the repairable example above when the emission itself only has two states.

These are again operating and failed and for clarity are denoted as O and F. The

updated HMM is shown graphically in Figure 3.3 with emission probabilities shown in
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11−U

U

M

2 1−M

O F

E1

1−E1 1−E2

E2

Figure 3.3.: Hidden Markov Model with Emission States

the ellipses.

PE =

 E1 1−E1

1−E2 E2

 (3.4)

3.1.2. Survivor Functions

It is appropriate now to revisit survivor or reliability functions, S(t), as described in

Chapter 2. The probabilities that are used in the transition matrices are converted

from the failure and repair rates. These probability values depend on the probability

density function used of the survivor function. Four major survivor functions are out-

lined below in Equations 3.5, 3.6, 3.7 and 3.8 based on those contained within the work

of Jardine [3.6]. These are shown in Figure 3.4 with the same illustrative constants as

the source material with additional variables used to show the different possibilities

with the Weibull distribution.

Hyper-exponential: S(t) = k exp(−2kλ t) + (1− k)exp(−2(1− k)λ t) (3.5)

Exponential: S(t) = exp(−λ t) (3.6)

Normal: S(t) = 1
σ
√
2π

∫∞
t

exp
(
−(t−µ)2
2σ2

)
(3.7)

Weibull: S(t) = exp
[
−
(
t
η

)β]
(3.8)
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Figure 3.4.: Survivor Functions

Billinton and Allan [3.7] states that exponential decay is one of the most commonly

used survivor functions. However, for this survivor function to be applicable the haz-

ard rate should remain constant throughout the life of the component. The equivalent

hazard functions for the survivor functions given in Figure 3.4 are shown in Figure 3.5.

The hazard function profiles shown in Figure 2.2 can be recreated with combina-

tions of these four functions. The hyper-exponential function is used when equip-

ment has very long or very short failure times. The Weibull distribution can be made

to represent different components, along with Gamma and Rayleigh distributions, us-

ing various parameters [3.7]. If the β value of the Weibull distribution is less than 1

then it will produce a decaying hazard function and if it is greater than 2 then it will

show non-linear growth.

Jardine [3.6] also gives examples of components that follow these functions. Much

electrical equipment is subject to constant random failures throughout its life. Some

electrical equipment has a period of "burn-in" with a reduction in the hazard rate over
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the first few years of life. This means that electrical equipment can be represented by

hyper-exponential, exponential and Weibull functions (where the β value is less than

1). Exponential functions can be used to represent pieces of industrial equipment with

the possibility of sudden excess loading. Incandescent light bulbs are often cited as

an example where the hazard rate can be described by a normal function.

Examples of fitting hazard functions to real data can be seen in the work of Wang,

Hsu, and Liu [3.8]. In several case studies, the authors take different component pop-

ulations and model the hazard rate function. Automotive components are shown to

have an increasing hazard function over their lifetimes and modelled as a normal or

Weibull function (where the β value is greater than 1). Electrical modules in an air-

borne system follow the hazard functions described above for electrical equipment.

The last case studies in the paper deal with simple mechanical components that ex-

hibit the bathtub curve. A work from Wong and Lindstrom [3.9] also shows a much

more complex hazard function for some electrical equipment that it refers to as a

“roller coaster”.

These varying hazard rates require that the Markov chain become time-inhomo-

geneous. The transition matrix must now be updated depending on the age of the

component. This can be achieved by using a Markov - Switching model. These were

originally developed for modelling in economics. They have the capability to analyse

the effects of large structural changes in financial institutions [3.10, 3.11].

Mixed Markov methods are an alternative explored by Singh et al. [3.12]. This pa-

per updates the transition matrix with a Weibull distribution to represent the bathtub

curve. The mixed Markov process is defined in the work of Murphy [3.13] where a

switching variable, referred to as the “guard condition”, is updated from a previous

time step and this selects the transition matrix parameters.

These processes have been applied to model components in wind turbines. One of

the most notable examples is from the work of Neate et al. [3.14]. The authors use

a 6 state Markov chain to represent the possible states of components within a wind

turbine. A diagram of the states and transitions are shown in Figure 3.6.

State ’UP’ is a healthy state while state ’MiF’ indicates that a maintenance or repair

action will seed the next failure. The states ’PO’ and ’POds’ indicate that a CM system
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Figure 3.5.: Hazard Functions

has an alarm and there is an increased likelihood of failure but in ’POds’ the turbine

has been de-rated to minimise damage. The turbine is required to stop in the state

’FO’ with the following letter indicating the severity of the failure. The final state is

’Maint’ where the component is undergoing maintenance.

3.1.3. Dynamic Bayesian Networks

Bayesian Networks (BN) and their time based equivalents, Dynamic Bayesian Net-

works (DBN), also handle the requirements for modelling reliability [3.15] and deteri-

oration [3.16].

These include [3.17]:

• Robust probabilistic model describing random variables

• Parameters specified from statistical data or expert judgement

• Reasoning with uncertainty and inference
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Figure 3.6.: Six State Markov Chain Representing a Wind Turbine [3.14]

• Updating of uncertainty by incorporating observations

• Mathematically sound and efficient

3.1.3.1. Bayesian Networks

Bayesian Networks are defined in Nielsen and Jensen [3.18] as follows:

• A collection of variables with directed causal links between variables.

• Each of the variables defined in the network has a finite set of exclusive states

(either discrete or continuous).

• The causal links between variables must not be acyclic.

• Each variable with parents has conditional probability.

• BNs can therefore be referred to as directed acyclic graphs (DAGs).

BNs have been applied to different aspects of reliability. Mahadevan, Zhang, and

Smith [3.19] and Langseth and Portinale [3.20] use BNs to assess system reliability

using BN fault tree equivalents. The work completed by Langseth and Portinale gives
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an overview of how to build and analyse BNs of systems. It also explains how to un-

derstand the output of, and conduct the mathematics involved in, solving BN models.

Similarly, Torres-Toledano and Sucar Succar [3.15] uses BNs to solve reliability block

diagrams.

X1 X2

X3

X4 X5

Figure 3.7.: An Example Bayesian Network with 5 Nodes

U is a universe of random variables where U = {X1,X2, ...,Xn}. The probability dis-

tribution for each variable can be discrete or continuous.

An example BN is taken from Langseth and Portinale [3.20] and shown in Figure 3.7

with 5 nodes. The arrows in the diagram indicate causal links. The links represent

P (U ), the joint probability mass function of the nodes in U . If the variables exist in

discrete time and space then the joint probability mass function can be expressed as

a conditional probability table (CPT).

The nodeX3 is said to be a descendant ofX1 andX2 and likewiseX4 is a descendant

of X3. The nodes X1 and X2 can be referred to as the parents of X3. This is written as

pa(X3) = {X1,X2}.

The conditional probability of a specific outcome of node X3, occurring given a par-

ticular state of X1, can be shown as P (X3|X1). This can then be defined in Equation

3.9.

P (X3 | X1) =
P (X3,X1)
P (X1)

(3.9)

In a more general sense Xn can be thought of as a descendant of variable Yn. This

67



can now be extended into Baye’s Theorem:

P (Xn|Yn) =
P (Yn|Xn)P (Xn)

P (Yn)
(3.10)

The variable Yn could be set with evidence, e, and then P (Xn|e) would represent

the probability of Xn occurring based on e. The joint probability distribution for a BN

with a universe of variables, U , can then be calculated by using the chain rule on the

rearranged Equation 3.10.

P (U ) = P (Xn|X1, ...,Xn−1)P (X1, ...,Xn−1) (3.11)

The chain rule can be extended for BN and the joint probability given by the product

of all conditional probability tables to show the probability of X given its parents,

pa(X) [3.21, 3.22].

P (U ) =
n∏
i=1

P (Xi |pa(Xi)) (3.12)

3.1.3.2. Dynamic Bayesian Networks

The following definitions are based on the work of Murphy [3.13].

Dynamic Bayesian Networks are a special class of BN that incorporate a temporal

dimension. A BN is produced to represent the system at each time step or ’time slice’.

DBNs are typically defined as a two slice network for time t and time t + 1. This is

shown in Figure 3.8 where dashed lines represent connections through time slices for

3 times slices: t, t +1 and t +2.

The chain rule can be extended to DBNs for all t > 1. The variables in the first time

slice, t, have no real direct temporal arcs as inputs but those in the second slice, t+1,

may. The nodes at time t may require initialising. Separate initialising nodes can exist

either in the current time slice or in t − 1 for this purpose. If the model requires more

non-real time slices then these can be defined. This allows initialising parent nodes

to exist in other time slices such as t − 2.

Figure 3.8 with variable S as the parent ofX could represent a HMM [3.23]. Variable

S would be the actual system state with the deterioration handled by the CPT link to
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Xt

St+1

Xt+1

St+2

Xt+2

Figure 3.8.: Dynamic Bayesian Network Over 3 Time Steps

St+1 and the equivalent of the two states 1 and 2 in Figure 3.3. The observable nodes,

X, would be updated based on the hidden nodes and the distribution within the nodes

would take the form of the emissions matrix of a HMM to determine the conditional

probability of its output.

Finding the exact solution to a DBN is a nonlinear computational problem [3.24].

It can be solved using stochastic simulation. The process involves computing proba-

bility distributions for nodes without evidence and taking a random sample from that

distribution.

3.1.3.3. DBNs in Literature Used to Model Deterioration

DBNs are flexible and adaptable. Different types of HMM - mixed mode, coupled and

abstract HMMs - as well as Kalman filters can all be represented in a DBN format

[3.13]. Nielsen and Sørensen [3.25] state that for risk based planning Bayesian meth-

ods are ideal as evidence from inspections or CM systems can be used to update the

state of knowledge of deterioration. Nielsen and Sørensen in the same work extend a

DBN deterioration framework to create an influence diagram representing a decision

tree. This allows for decision analysis for inspection and repair actions.

Straub [3.26] uses a DBN to model stochastic deterioration and to include obser-

vations to update the probabilities of failure. This is used in two example applica-

tions: modelling crack growth using time invariant random variables and using crack

growth as a truly stochastic process. Both examples show that the use of DBNs is

accurate, reliable and efficient. The author claims that their DBN framework has

’a huge potential for applications in monitoring, inspection, maintenance and repair

planning’.
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Wang et al. [3.27, 3.28] use common DBN software tools such as GeNie and Hugin

to model the deterioration of bridge elements. The authors use DBNs to simultane-

ously monitor several different failure modes and update the possible condition of

elements based on inspection over 100 years.

Further examples of work focussing on deterioration processes utilising DBNs in-

clude [3.29, 3.30, 3.16].

3.1.3.4. Modelling Technique Selection

Both HMMs and DBNs are useful for and applicable to modelling deterioration in com-

ponents. Initially, due to their simplicity, functionality and ease of use, HMMs were se-

lected for use in the O&M models. However, as the models became more complex and

interdependent DBNs became a more efficient means to solve the simulations. The

greater flexibility of DBNs, as mentioned in Murphy [3.13], allows for possible future

integration with other models and can be updated with observations from inspections.

3.1.4. Capturing Deterioration of Non-Structural Assemblies

A full overview of work completed in modelling the quantification of CBM is under-

taken in Chapter 4. An overview of the techniques used in these studies to model the

capture of deterioration by CM systems is given in this section. These techniques do

not need to be used exclusively and can be combined.

In this work, it is assumed that there are four states that a CM system can oper-

ate in for non-structural assemblies. The first two would be regarded as operating

normally: (1) when the system is healthy, the CM system indicates that it is healthy,

and (2) when the system is deteriorating towards failure, the CM system indicates

an issue. The other two possibilities are that (1) the CM system fails to observe an

unhealthy system, and (2) the CM system indicates an unhealthy system when there

are no issues with the assembly. For example, if a CM system is advertised as being

able to observe bearing failures and the bearing in a wind turbine gearbox fails with-

out warning then this is known as a false negative. Another example would be when

the CM system indicates an issue with the gearbox and upon investigation no issue

is found, known as a false positive. Together these two states are known as false
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alarms.

There is an important distinction to be drawn between a false negative and a non-

detectable failure. In the example given above, the CM system was believed to detect

bearing failures in a gearbox and it did not. If, however, it was a gear tooth that failed

and the CM system offered no detection capability for that failure mode then this is a

non-detectable failure.

Finally, the difference between when the CM system alerts the user of a deteriorat-

ing assembly and when the system fails is important for maintenance. The larger the

time between the two the more options are available to the operator. Damage to the

assembly and downtime can possibly be minimised.

3.1.4.1. Effectiveness

One of the most common methods of modelling CM systems is to use an effectiveness

metric. This value is applied to appropriate assemblies and shows the percentage of

failures that are observed in advance of failure of the total number of failures occur-

ring.

This metric has been given many names: McMillan [3.31] refers to it as a failure

capture probability and Wiggelinkhuizen et al. [3.32] refers to the inverse as non-

detected failures.

This value is useful as it allows multiple non-perfections of the CM system to be

captured simultaneously. These are failure modes that cannot be detected using the

CM system installed. The effectiveness value could also include the likelihood of ran-

dom incredibly quickly developing failures or those from attached auxiliary systems

without CM. However, by utilising an FMEA fully and an integrated, appropriate CM

system then the number of undetected failures can be very small.

A case study undertaken for a NASA space launch vehicle, Ares I, by Maul et al.

[3.33] showed only 28 undetectable failure modes from a total of 567 active failure

modes meaning 95% of failures were detectable for equipment in the operational

phase. This was achieved using a multitude of monitoring sensors, technologies and

inspections. Another interesting result of this case study was that “124 of the 189

ambiguity groups are isolatable [sic]”. This suggests that the vast majority of assem-
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blies had only one major failure mode.

Due to the high levels of funding, complexity and safety concerns of space travel,

other industries are unlikely to achieve the same high level of CM effectiveness.

Once a value of this metric has been decided upon it can be inserted into the emis-

sions matrix of a HMM in place of the E2 value in Figure 3.3 and Equation 3.4. This

would mean that when the underlying system has transitioned to state 2, it is the

effectiveness metric that defines whether or not the CM system observes the failure.

Very few CM manufacturers state what they believe to be the effectiveness of their

systems. In a presentation on behalf of GE Bentley Nevada, Weiss [3.34] gives pos-

sible effectiveness values - recorded as “Detection Rate” - for their ADAPT wind plat-

form. These are shown in Table 3.1. The author also gives some of the failure modes

that are detectable and states that these faults can usually be located.

Table 3.1.: CM System Effectiveness

Assembly Effectiveness

Gearbox 50%

Generator 80%

Drive Train (incl. Main Bearing and Coupling) 40%

The effectiveness is also a rather blunt metric: it does not give an indication of

how much damage has occurred or how much time is available before an assembly

fails. The CM system might be better at detecting some failures than others - multiple

failure modes may be required to be modelled with their own CM effectiveness value.

3.1.4.2. Multiple CM Systems

Multiple CM systems that observe different properties can be added to the same as-

sembly. A common example is the combination of an oil particle sensor and vibra-

tion CM system on the gearbox assembly. This should increase the number of failure

modes that can be detected or improve the probability of fault detection and hence

increase the CM effectiveness value.

To model the effect of using multiple CM systems reliability theory is used. In a

reliability block diagram, systems with redundancy can be expressed with subsystem
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System A

System B

System State Failure Detection

Figure 3.9.: Diagram of Parallel CM Systems

blocks in parallel like those in Figure 3.9. This implies that both subsystem A and B

would need to fail in order for the overall system to fail and increases the reliability

of the system [3.35].

When applying this analogy to CM systems it is not the risk of failure being calcu-

lated but the risk of non-detection. This is shown in Equation 3.13. In this equation,

Rp is the overall chance of detection and Ri is the individual system detection rate.

Rp = 1−ΠRi (3.13)

3.1.4.3. P-F Curves

The work of Moubray [3.36] introduces deterioration in the form of P-F curves for use

with Reliability Centred Maintenance. An example curve is shown in Figure 3.10 from

Van Horenbeek et al. [3.37]. This figure shows a failure mode initiating at time t′ . The

component’s condition, on the y axis, deteriorates to point P which is the first point

at which the impending failure can be detected. The deterioration continues until the

component fails at point F.

The definitions of both P and F are important. These terms can have different

meanings to different people in different situations. The point P could refer to the

point in time where it is theoretically possible to detect a fault or is mechanically

possible with current CM technology. In this work it will refer to the latter. Detection

is when a CM system triggers an alarm. Failure for an engineer could mean that a

component has failed but that component has no effect on the operation of the as-

set. Likewise, a failure for an asset manager could only be when the turbine has an

unscheduled stop that affects energy production. In this work, a failure is when a
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component has failed that requires an intervention.

Moubray states that the P-F curve can take many forms including being linear and

gives examples for bearings, gearboxes and generator windings among others.

Terms to measure the effectiveness of the CM systems using the P-F curve are intro-

duced by Van Horenbeek et al. [3.37]. The difference between the time from detection

until failure, tD , and the time until failure at point P , tP , indicates the efficiency of the

CM system, η, explained mathematically in Equation 3.14. Therefore if the failure is

detected immediately at point P then η is 100% and if it is not detected before failure

then η equals 0%.

η =
tD
tP

(3.14)

A related detection metric is detectability, γ . This shows the probability of detection

at a particular point on the P-F curve. An example with a linear detectability profile

is shown in Figure 3.11. Point P in this example is 6 months before failure. Efficiency

would be 100% if detected at 6 months until failure but the probability of detection

is very small. Conversely, η would be 0% at 0 months to failure but the probability of

detection is 100%.

The detectability at F does not need to equal 100%, nor does γ at P need to start

at 0% and the detection profile does not need to be linear. Some random failures will

never be detectable before failure. Some failure modes will have a large possibility

of detection as soon as a defect becomes seeded and may remain fairly constant.

An alternative profile is shown in Nielsen and Sørensen [3.38]. Expert opinion on de-

tectability and effectiveness profiles has been obtained for several components and

some of this information is shown in Table 3.2. Different deterioration processes are

captured using CM systems in Wiggelinkhuizen et al. [3.32]. This information of dete-

rioration and relating CM signals could be converted into further detectability profiles.

Finally, there are three zones highlighted in Figure 3.10 - A, B, and C - which are de-

lineated by efficiency values - Threshold 1 (TH1) and Threshold 2 (TH2). These three

zones represent the different stages of deterioration. An example given in Moubray

[3.36] refers to a bearing which will eventually fail due to seizing through wear and
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Figure 3.10.: Example of a P-F Curve [3.37]

Table 3.2.: Sample Expert Component Detection Rates

Assembly Sub-Assembly
Months Until Failure

γ = 0% γ = 100%

Blades Blades 12 6
Drive train Main Shaft 9 1
Gearbox Lubrication 12 6
Gearbox Lower Stage Planet Bearings 1 0

tear. For this component, the earliest stages of wear change the vibration character-

istics which is observable with vibration analysis. This is shortly followed by particles

of a size which is detectable by oil analysis. These two modes are in zone A where the

component damage is limited and small adjustments can stop further deterioration.

This will allow the component to have a full life. The damage is significant in zone B

but still most likely confined to only the single component. The bearing is now produc-

ing audible signs of failure. In zone C the bearing is now producing heat. Damage to

the component is severe and likely to affect others in the assembly. Failure will occur

soon.

3.1.4.4. False Alarms

False alarms from CM systems have been a problem within the wind industry with Tak-

outsing et al. [3.39] stating that erroneous warnings and alarms occur on a regular

basis. The same authors state that the number is reducing with improved smart al-
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Figure 3.11.: Example of a Linear Detectability Profile

gorithm management of CM data. The exact number of false alarms has proved hard

to obtain. Anecdotally, the number of false alarms is around 10% of total alarms.

The majority of false alarms are of minimal inconvenience to operators. Investi-

gation of the alarm, such as further manual analysis of the operational data, takes

place in the control room. They are quickly understood to be false and dismissed. If

the alarm is for a slowly developing failure, an additional work order is added to the

next serviced inspection.

There are a minority of false alarms that cannot be dismissed easily and show sig-

nificant imminent faults. These require an immediate intervention from the operator.

The turbine could need to be shut down. An expensive investigation may be required

- such as a boroscope of the main bearing - to allow the turbine to be reinstated. In

LEANWIND [3.40], the challenges with false alarms are described and it is stated that

“the margin between false alarms and late detections is narrow”. The implications of

false alarms on the operation of turbines is investigated in Chapter 4.

Rademakers et al. [3.41], as part of the CONMOW project, model false alarms by

adding additional false alarms. The total number of simulated failures was taken and

10%, 30% and 50% of this number were added as false alarms. Van Horenbeek et al.
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[3.37] added up to 10 false alarms per year for the gearbox.

In the work of May and McMillan [3.42] a reliability metric was used to model false

alarms. This value was used to estimate the percentage of time that the CM system

spent observing the system as operational while it is operating normally. This work

used HMMs where the CM reliability value was E1 in Equation 3.4. The implications of

the value of CM reliability is explored in Chapter 5.

3.1.4.5. Conclusions

If CM systems are to be modelled as accurately as possible then a large number of

parameters need to be captured. Unfortunately, many of the techniques mentioned

above fail to capture all of this information or require multiple uses per component

to be accurate. For example, 6 failure modes are modelled by Van Horenbeek et al.

[3.37] for the generator alone with 4 requiring P-F curve variables. To achieve the goal

of modelling a wide array of CM operating situations as efficiently as possible, many

of the techniques above will be required to be used together.

3.2. Structural Components

3.2.1. Fatigue

The Leonardo da Vinci Pilot Project [3.43] in the 2nd Handbook for the “Implementa-

tions of Eurocodes” provides insight into the difficulties of designing structural com-

ponents to minimise the probability of failure. The handbook gives 6 different defini-

tions of uncertainty that must be accounted for.

The structure has to deal with these uncertainties and sustain an appropriate de-

gree of reliability throughout its design life. When designing for reliability it must

include a definition of failure, a required service life, a probability of failure and limit-

ing operation windows. There may be other requirements for design including for fire

safety and access.

There are many different ways in which a structure can fail. These are outlined

in the work of Collins and Daniewicz [3.44] and wind tower and foundation specific

failure modes are given by Luengo and Kolios [3.45]. Failure modes such as yielding,
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buckling, fatigue crack propagation and corrosion can all contribute to an increase in

the probability of failure and are explored in Dasgupta and Pecht [3.46].

Of all the failure modes mentioned above it is fatigue that is often cited as a major

design concern for offshore wind turbine structures [3.47, 3.48]. This is based on a

background of fatigue based failures for offshore structures, including notably the

collapse of the Alexander L Kielland offshore platform in 1980 [3.49, 3.50].

Yielding is an overstress failure and can normally be discounted as it does not often

have significant probabilities of failure for wind support structures [3.51]. However,

if the actual operational loadings differ significantly from those predicted then this

failure mode must be considered.

It is for these reasons that in this thesis the focus of structural failure is fatigue.

3.2.1.1. S-N Curves

S-N curves are often used to estimate the damage that has been accrued on struc-

tural parts. This process is a combination of S-N curves and partial safety factors

that are the basis for fatigue design in the IEC standards [3.52]. Samples of material

are tested to high cycle fatigue to produce the S-N curves. The number of cycles until

failure at a particular stress level are recorded.

The damage estimation equation that is based on S-N curves and Miner-Palmgren’s

hypothesis is shown in Equation 3.15. In this equation, D is the accrued damage, ni

is the number of cycles and Ni is the number of cycles until failure for an expected

nominal stress level.

D =
∑
i

ni
Ni

(3.15)

3.2.1.2. Limit State Function

The limit state function, g(X), is used to define the probability of failure, where X is a

set of basic variables defining the properties of the structure. The limit state function

is defined so that the component is still in a favourable state when it is positive and in

a failed state when it is negative. The definition of failure is an important factor in the

limit state [3.50]. If the ultimate limit state of a structure is exceeded then it is likely
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that the structure will become unsafe and lead to collapse. If the serviceability limit

state is exceeded then the structure is unsafe to continue operation but will not be at

risk of collapse. Situations that may lead to unsafe operation may include excessive

vibration, heat or deformation that may impact on critical non-structural components

or human comfort.

Pf = P {g(X) < 0} (3.16)

If the variables stored within X can be described by a time independent joint prob-

ability density then the probability of failure can be shown in an alternative form de-

scribed below:

Pf =
∫

g(X)<0

ϕ(x)dx (3.17)

This can be transformed into the reliability index, β, by taking the negative value of

a standardized normal distribution of the probability of failure. The reliability index

is an alternative form that is used commonly for bridge safety and other civil assets

that can be updated from several variables [3.53].

β = −Φ−1(Pf ) (3.18)

These two variables, β and Pf , allow for the deterioration of a structure to be simu-

lated over time.

3.2.2. Offshore Structure Design

There are well defined procedures to design an offshore structure to minimise the

chance of fatigue failures. Offshore wind turbine structure design is covered by DNV-

OS-J101 [3.54]. These combine both limit state and damage modelling.

The fatigue limit state shows a resistance of the structure, ∆, and a damage ac-

cumulation term, D. The damage is accumulated according to the stress ranges ap-

plied and the number of cycles to failure obtained from S-N curves where X is a set of

random variables and the model uncertainties are given byM. The damage accumu-
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lation term is approximated in Thöns and Faber [3.55] where v is the number of stress

cycles per year of service, t is the number of years in service, K represents a material

property from the S-N curve from DNV-OS-J101, and E [∆σm] is the expected fatigue

stress range. The terms in this equation take account of the operating conditions of

the structure - sea, humidity, weld and plate thickness among others.

g(X,M) = ∆−D (3.19)

g(X,M) = ∆− vtE [∆σ
m]

K
(3.20)

3.2.2.1. Structural System Modelling

Fatigue failure is expected to occur in locations where stress concentrations are high.

These locations are often referred to as “hot spots” [3.56]. A hot spot could be where

structural braces join or along welds. The limit state equation is used to calculate

the probability of failure for a component. These component probabilities must be

combined to give an overall probability of failure for the structure.

The theory of structural systems reliability is used to calculate the system or over-

all probability of failure for a structure. The structural system can be modelled as

a logical system. This allows for a block diagram to be built of the structure’s com-

ponents. The different ways that a structure can be represented are (a) series, (b)

parallel, or (c) mixed. Possible examples of these layouts are shown in Figure 3.12.

(a) Series System (b) Parallel System

(c) Mixed System

Figure 3.12.: Structural System Logical Representations
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The probability of failure for a series system is expressed using Equation 3.21. The

probability of failure for a parallel system is expressed using Equation 3.22 [3.7].

Pf = 1−
n∏
i=1

(
1− Pf (i)

)
(3.21)

(a) Series System

Pf =
n∏
i=1

Pf (i) (3.22)

(b) Parallel System

It is the dependencies between components that define how the system is repre-

sented. Thöns, Faber, and Rücker [3.51] define both the tower and the foundation as

non-redundant structures and are therefore modelled as a series system.

The equations presented above assume no correlation between failures. However,

there is likely to be some correlation for component failures - similar material proper-

ties and loading across the structure. The actual probability of failure for the system

will fall between uncorrelated failure events and fully correlated failure events. These

two values form the simple bounds of system reliability. If the system is fully corre-

lated then the system probability of failure becomes the component with the maxi-

mum probability of failure for a series system [3.57]. The simple bounds of probability

of failure for a series system are shown in Equation 3.23.

n
max
i=1

{
Pf (i)

}
≤ Pf ≤ 1−

n∏
i=1

(
1− Pf (i)

)
(3.23)

Full correlation Uncorrelated

3.2.2.2. Constant Threshold Approach

In Straub [3.50] it is the annual probability of failure that is used to determine when

inspections will occur. The annual probability of failure for the year ti , ∆pF(ti), is
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defined in Equation 3.24 where there is no repair in the period.

∆ pF(ti) =
Pf (ti)− Pf (ti−1)
1− Pf (ti−1)

(3.24)

Figure 3.13.: Annual Probability of Failure for a Structure Over Time Undergoing In-
spections for Two Different Safety Thresholds [3.50]

A constant threshold approach is shown in Figure 3.13 for two different thresholds,

∆pTF , of 10−4 and 10−3. Inspection times are chosen so that they occur before the

threshold is exceeded.

The failure probabilities for the component or structure can be updated depend-

ing on the outcome of the inspection. In Moan [3.49] the fatigue failure probability

of a structural joint, j, is updated based on the outcome events of an inspection, IE,

shown in Equation 3.25. The inspection events could be crack depth or thickness mea-

surements. An example is given in Moan using the results from multiple inspections -

each with their own probability of detection. The results show increased reliability in-

dex values over time when the inspections indicated no crack was detected and that

the coating protection had not failed.

Pf ,UP j = P [(X(t) ≤ 0)|IEj ] (3.25)

In the figure, the lower annual probability of failure threshold results in much more

82



frequent inspections. The information from the inspection updates the probability of

failure and the resulting annual probability of failure.

3.2.3. Modelling the Impacts of SHM Systems

The use of a SHM system reduces the probability of failure as it allows for lower model

uncertainties. However, it introduces its own additional measurement uncertainty.

This is based on the method shown in Thöns and Faber [3.55].

The expected value of the fatigue stress, E[∆σm], is shown in Equation 3.26. This

equation is valid when using a single slope S-N curve with constant m and assumes

that the long term stress ranges are Weibull distributed with scale parameter λ and

location parameter k. Bσ refers to the model uncertainties which can contain infor-

mation on the stress calculations, material and weld quality uncertainties.

E[∆σm] = (Bσ k)
m
Γ

(
1+

m
λ
;
(s0
k

)λ)
(3.26)

Adding a SHM system to the structure allows for the actual loading to be measured.

Other parameters can also be observed: modal analysis could confirm the resistance

of the structure. The expected value of the fatigue stress is updated based on the

realised model parameters, B̂, and this is shown in Equation 3.27. There is still uncer-

tainty in the measurement values and the model uncertainty regarding the relation-

ship between hot spot stress ranges and the strain measurements recorded by the

SHM system. These are incorporated in the model with UHS and MU,HS respectively.

E[∆σm|B̂] =
(
B̂σ MU,HSUHSk

)m
Γ

(
1+

m
λ
;
(s0
k

)λ)
(3.27)

3.3. Offshore Support Structure

3.3.1. Foundation Types

There are multiple types of foundation that are used for the deployment of offshore

wind turbines and these are explored in the design codes from Det Norske Veritas

[3.54]. The support structures and the methods used for attaching them to the seabed
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are shown below.

Fixing Method

• Piled

• Gravity-based

• Skirt & Bucket

• Moored floating

Structure Configuration

• Monopile

• Tripod

• Lattice

• Gravity

• Floating

The majority of offshore wind farms have used monopiles while those in shallower

water have used concrete gravity bases. It is at water depths of 30m or greater that

jackets begin to outperform monopiles and in even deeper waters floating tension leg

structures will be required [3.58].

3.3.2. AREVA Wind M5000 Tripod Structure

The AREVA Wind M5000 was one of the first 5MW wind turbines deployed offshore.

The M5000 is now known as the AD 5-135 and is produced by Adwen - a 50:50 joint

venture between AREVA and Gamesa.

The support structure that the turbine uses is site specific. Alpha Ventus, a German

offshore wind park, deployed 6 M5000 turbines using “three-legged foundation struc-

tures or tripods, fastened to the bed of the North Sea using piles” [3.59]. These were

recommended because of the water depth at the site of around 30 metres. Figure

3.14 shows a diagram of the tripod foundation taken from Thöns, Faber, and Rücker.

3.3.2.1. Probabilities of Failure

A selection of the components with the highest probability of failure in the fatigue limit

state for a 20 year life are shown in Table 3.3 taken from Thöns, Faber, and Rücker

[3.51] and use the same segment designations in Figure 3.14. The same source gives

the system failure probability 5.38 × 10−7 for uncorrelated failure events and 1.46 ×

10−6 for correlated failure events with tower segment III contributing the most to the
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Figure 3.14.: Diagram of the Foundation of the M5000 [3.51]

probability of failure.

The change in probability of failure over time can be reconstructed from this data

and using the information in the previous section. The different parameters required

for Equations 3.26 and 3.19 are shown in Table 3.4. The k value is adjusted for each

hotspot to produce the probability of failure value shown above for fatigue after 20

years. The k values are then kept constant and Equations 3.27 and 3.19 are used to

produce the probabilities of failure for a system using SHM.

Table 3.3.: Major Component Probabilities of Failure, Pf , in the Fatigue Limit State

Segment Component Location Pf

Tower I 2 Top weld, inside 1.66E-03

Tower III

8 Top weld, outside 2.47E-04
9 Top weld, outside 1.33E-04

10 Bottom weld, inside 1.25E-03
11 Top weld, outside 2.40E-04

Tripod
Leg 1 Upper brace, upper kink 3.05E-04
Leg 2 Upper brace, pile guide 3.15E-04
Leg 3 Upper brace, pile guide 3.15E-04
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Table 3.4.: Probabilistic Model of Parameters

Variable Dim. Distribution Expected Value Standard Deviation

∆ - LogNormal 1.0 0.3
lnK - Normal 28.995 0.572
m - Deterministic 3.0
k MPa LogNormal variable 0.2× µk
1/λ - Deterministic 1.2
s0 MPa Deterministic 0.0
v yr−1 Deterministic 6.0× 10−6
Bσ LogNormal 1.01 0.12
UHS Normal 1.00 0.10
MU,HS LogNormal 1.00 0.05

3.4. Conclusions

In this chapter, methods for modelling the deterioration of wind turbine components

and offshore structures have been investigated. Markov chains and Dynamic Bayesian

Networks when used with information from reliability modelling have been used fre-

quently to model mechanical components. It has been shown that structural compo-

nents can be modelled using limit state equations to approximate the resistance and

loading which can then be used to estimate the probability of failure.

How this deterioration can be captured by CM and SHM systems has also been

investigated. There are an array of options that can be used to model CM systems to

ensure that all the various operating states are captured. Modelling methods such

as CM effectiveness or P-F curves can be used to model different information such as

the time between failure and detection. SHM systems can be used to decrease the

uncertainty in structural modelling.
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CHAPTER 4

Modelling Wind Park Costs

In this chapter an examination of existing work on quantifying the cost benefit of con-

dition monitoring equipment is conducted. This is initially analysed generally fol-

lowed by a closer focus on the wind industry. The analysis of these works is used as a

basis to then define a cost model that is presented in the second part of this chapter

and used in this thesis.

4.1. Overview of Existing Cost Benefit Analysis on Condition

Monitoring

In this document, the terms “wind farm operator” and “wind farm owner” have been

used interchangeably. This is because often they are both and are known as “owner-

operators”. A wind farm operator is the organisation responsible for the management

of the wind farm - they are responsible for the energy yield, O&M and administration.

They may outsource the O&M to a third party. An owner owns the assets and is fo-

cussed on the long term yield, asset safety and ensuring a return on investment. A

service provider is a third party organisation that may provide a range of services to

either the owner or operator such as O&M services.
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The ultimate aim of wind farm operators is to maximise profits. Profit is derived

from the obtained revenue after OPEX has been deducted. Therefore the operator

seeks to maximise revenue and to minimise the operation costs. The initial capital

costs that are incurred when using condition monitoring equipment threaten these

two goals unless they can be proven to offer lifetime reductions in operation costs.

A wind farm owner may wish to use an offshore turbine where a CM system is in-

cluded as standard by an OEM or make the purchasing decision to add additional

CM/SHM systems. However, it is how the operator integrates these systems into their

maintenance plan that will determine how OPEX can be minimised. For example, if a

service provider has no liability for poor weather days - days where turbines cannot

be accessed due to high sea states or winds - then there is no incentive to use the out-

put from the CM system to take maintenance actions in periods of calm weather other

than annual services. This can be addressed with appropriate contractual obligations

such as energy based PBMCs discussed in Chapter 2.

The following section examines the existing literature associated with quantifying

benefits for condition based maintenance plans. It is displayed graphically in Ap-

pendix B.

4.1.1. Generic Condition Based Maintenance Plan

Grall et al. authored two papers [4.1, 4.2] examining maintenance plans using gamma

processes for a large range of mechanical equipment and civil structures. Gamma

processes are stochastic deterioration accumulating processes where events occur

randomly, independently of each other and are non-negative - examples could be

emails arriving in an inbox or in this case damage accruing on a component. The time

or distance interval between events (sometimes referred to as arrival time) is a con-

tinuous random variable defined by a gamma distribution. Gamma processes them-

selves and their applications to deterioration are surveyed by van Noortwijk [4.3].

This work states that gamma processes are suitable for a wide range of deterioration

processes with gradual increments - “wear, fatigue, corrosion, crack growth, erosion,

consumption, creep, swell, degrading health index” among others.

In Grall et al. [4.1] inspections are used to determine the current state of a 1-
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dimensional system. The paper offers a methodology to establish appropriate inspec-

tion windows and warning thresholds for taking corrective action. A lifetime cycle

costs (LCC) model is used to obtain the total maintenance costs using the possible

physical deterioration parameters of the system, the relative costs of maintenance

and inspection costs. In the paper, repair, inspection and preventative actions are all

assumed to take negligible time to complete. This makes it unsuitable for the high

periods of downtime associated with offshore wind turbines.

This is addressed in Grall et al. [4.2] which investigates a generic continuously mon-

itored system. A term for delay time until a maintenance action occurs is introduced.

An additional gamma process is used to represent the stochastic delay and the new

failure rate is calculated. The study shows that increasing the alarm threshold in-

creases the overall failure rate for the components.

Van der Weide, Pandey, and van Noortwijk [4.4] simulate components in a safety

critical situation for the nuclear industry. Both homogeneous and non-homogeneous

Poisson processes are used to simulate shock or transient loading which, similar to

gamma processes, are accumulating stochastic processes where the arrival time is

often described using an exponential distribution. Homogeneous Poisson processes

have a constant mean value of damage over time. Non-homogeneous Poisson pro-

cesses have a variable mean value over time [4.5]. The shocks produce a random

amount of damage and these are summed until a damage threshold is exceeded that

triggers preventative maintenance.

The authors examined the effects of varying an alarm threshold for an inspection

plan and a maximum allowable age. The plans were then optimised to minimise main-

tenance costs. The results showed that the maintenance costs can be reduced with

the use of CBM. The maximum savings occur when removing the upper age limit on

the component. Components in a nuclear environment are replaced when reaching a

maximum allowable age, regardless of condition. As wind turbines are not regarded

as safety critical as nuclear systems so upper age limits are not normally considered

for components. However, parts such as bearings and valves may be changed during

services.

Gamma processes and Poisson processes are well used by both civil and mechani-
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cal engineers. Straub describes the Poisson process as “arguably the most important

process in risk analysis” [4.5]. Poisson processes have been used to model failure oc-

currences in many fields including wind in the work of Byon et al. [4.6] and Tavner, Xi-

ang, and Spinato [4.7]. This relates to the survivor functions as discussed in Chapter

2. Poisson processes have been used to represent loadings, shocks, and transients

on systems - van Noortwijk et al. [4.8] uses Poisson process to simulate loading only

when the loads are larger than a threshold value as the “Poisson assumption is ...

better justified”. The loading is used as an input to a gamma process to represent the

deterioration of a structural system. The work of Pandey, Yuan, and Noortwijk [4.9]

compares a gamma process to a random variable process for the replacement and

ageing of structural components. The authors find that the gamma process is more

versatile and more conservative over a long term horizon.

Bouvard et al. [4.10] uses a gamma process to deteriorate components in a heavy

commercial vehicle. A maintenance profile is developed with the aim of obtaining

an availability goal. Individual components are scheduled for replacement and these

actions are grouped into sets to ensure that vehicle services are a minimum time

apart. The condition of other major components are inspected during other services.

A penalty cost function was introduced to account for servicing costs and to assess

the value lost in removing components before their remaining useful life has been

reached. An updating algorithm shuffles maintenance groups to minimise the cost.

The results of the study showed a decreasing penalty cost with increasing service in-

terval until an optimal inspection window is reached. After this point a rapid increase

in costs is seen. The framework presented in this paper is of great use in setting up

servicing plans for a fleet of assets. However, downtime costs are accounted for in

the model not in time but are associated with the value of components. Importantly

in a wind turbine context, the monitoring/inspection cost is not included in the model.

Van Horenbeek, Pintelon, and Muchiri [4.11] perform a wide study of the literature

on maintenance optimisation models. The authors found that most focused on a

small number of optimisation factors - such as availability, costs or spares levels. The

authors consider all of those factors and highlight what they believe to be the most

important ones for business maintenance optimisation for those developing further
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models.

Van Horenbeek and Pintelon [4.12] build on this knowledge to develop a dynamic

predictive maintenance policy for complex systems. A gamma process is used to sim-

ulate the degradation of components. A long term static maintenance plan is updated

based on the different goals including: grouped maintenance actions, calendar, in-

spection and continuous condition based plans. The study found that group and age

based maintenance policies outperformed condition based maintenance when there

were high dependencies between components - that is the health of one component

is related to the health of others. However, the inverse was true for systems with low

interdependencies between components. If possible it would be helpful to integrate

this knowledge into the modelling of wind assets. The paper states that knowledge

about dependencies will be gained throughout the life of the system and suggests

future work might investigate system dependencies.

These generic maintenance plans show methods for: component deterioration;

how to model system failures; detection or inspection thresholds; repair actions; and

how these can be combined together with costs. There are many parts of these mod-

els that are applicable to the wind industry. However, in the majority of these other

cases access for maintenance is not as limited as it is for wind. Nuclear industries

have dedicated on site maintenance teams and commercial vehicles can attend a

service depot whenever necessary. This hindrance to the maintenance of wind tur-

bines will need to be modelled with specific plans.

4.1.2. Wind Specific Condition Based Maintenance Plans

One of the initial studies into the benefits of switching from either a failure based

maintenance plan or a service interval plan to a reliability centred plan using CM

systems is the work by Andrawus et al. [4.13]. An FMEA is performed on the turbine

to ascertain the major failure modes and its effects. Failure data is obtained from

analysing failure logs and work orders from 26 onshore turbines that are 600 kW in

size. Two lifetime cycle cost analyses are performed - for PBM and for CBM. Mechan-

ical failures with observable long term trends indicating the onset of failure are as-

sumed to be captured by applicable CM hardware. Monte Carlo simulations are used
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to assess variables and risks. The results showed that levelised CBM offers savings

of £180,152 compared to TBM over 18 years, comprised of savings in labour, access

and materials. CM systems rarely capture all failure events in advance with enough

confidence in order for decisive maintenance actions to be modelled in accordance

with this study. Additionally, the systems produce false alarms that are not accounted

for in this work.

A similar approach is taken by Besnard, Nilsson, and Bertling [4.14]. A life cycle cost

model determined that by integrating a CM system into a maintenance plan produced

a levelised saving of e 190,000 for one 3 MW turbine. The savings were observed for

lost production, maintenance costs, and repair costs. Failure rates in the model are

determined from using Weibull distributions and vary over the lifetime of the turbine.

Discrete values are chosen during a Monte Carlo simulation. The ability of the CM

system to identify faults is given as an ’efficiency’ which reduces the amount of cor-

rective action by increasing the preventative maintenance actions. Consequential

(secondary) damage is also reduced. This methodology uses many efficiency param-

eter assumptions, does not include false alarms and assumes that the CM system

detects all faults equally.

The work in [4.14] is built upon previous work from Nilsson and Bertling [4.15] and

case studies in the thesis of Ribrant [4.16]. Ribrant builds a failure database from

surveying available statistics and work orders for wind farms in northern Europe. The

author also highlights the importance of the wind turbine gearbox and the capabilities

of condition monitoring systems for wind turbines of detecting faults (this final point

is explored more thoroughly in Walford and Roberts [4.17]).

Nilsson and Bertling uses a LCC model to compare several maintenance strategies

to assess the level of reduction in repair actions or increases in availability necessary

to obtain return on investment from adding CM systems. A 4.5% reduction in unnec-

essary scheduled maintenance would be required to cover the cost of CMS for a wind

farm. If corrective maintenance actions are included then this number drops to 3.5%.

In one strategy, major components from turbines are replaced simultaneously due to

predictions from CMS. This leads to a reduction in logistics costs of e230,000 over

the 20 year lifetime of a 30 turbine wind farm.
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McMillan and Ault [4.18] use a Monte Carlo simulation to generate a wind time

series, a related turbine energy yield and simulate component failures. The downtime

of a turbine due to failure or maintenance will cause a reduction in yield. The turbine’s

systems are represented by either a two or three state Markov chain.

Risk is used to create a condition based maintenance strategy. A priority list for

components is constructed giving wait times, in days, which are set based on impact

and probability. This was used to create a LCC compared to a periodic maintenance

strategy.

The condition of the components was taken from the simulated Markov state. An

LCC was produced to compare between the CBM and periodic maintenance for one

5 MW offshore turbine. An effectiveness coefficient was added to the state condition

output so that the number of faults detected by CM systems were reduced. The re-

sults of the paper showed an increase in availability and revenue and a decrease in

failure rates. The costs of operations and maintenance actions were estimated as

£30,000 per year which equates to an annual benefit of £75,000 for using a CBM plan

when the CM system is 100% effective. The benefit ceases to exist when the sys-

tem effectiveness reduces to 60% - therefore the more expensive a CM system is, the

more effective it must be.

Wiggelinkhuizen et al. [4.19] at the ECN in the Netherlands produced the CONMOW

study investigating whether integral condition monitoring could be cost effective.

Several monitoring systems were added to five N80 wind turbines and high frequency

and SCADA data was taken and analysed. They showed that this data and oil parti-

cle monitoring can be used for prognostic purposes for major failure classes found

during an FMEA.

This information is used in ECN’s simulation tools produced by Braam et al. [4.20].

The tool generates Monte Carlo years for three types of failure - random, calen-

dar and condition. When a failure occurs a repair is scheduled and the turbine re-

mains non-operational until the full repair is completed. A suitable weather window

is searched for and selected then an appropriate vessel chosen to conduct the repair

and the availability of the resources checked.

In the Wiggelinkhuizen et al. study, the failure modes that can be detected using CM
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systems are given percentages of non-detected failures that are classed as ’random’

and detected failures that are classed as ’condition’. The quality of the system is

also quantified with the addition of false alarms as a percentage of overall failures.

The results showed a reduction in revenue losses for 20% non-detected failures with

10% false alarms of 14.5%. This decreased to around 0.5% with 60% non-detected

failures and 50% false alarms.

Sørensen [4.21] shows a framework for developing O&M plans for the maintenance

of offshore wind turbines using a range of inspection techniques including CM sys-

tems. Bayesian decision analysis is used to complete optimisation of the plans that

utilise a risk and probability of failure method to obtain costs. The large uncertainties

in the probability of failure for fatigue, corrosion, wear and erosion are reduced with

the use of inspections.

Two examples are given showing the possible applications of the model. In the first,

a gearbox has several damage modes with different deterioration methods and var-

ious inspection techniques - each of which give the condition of the gearbox to a

certain reliability. Examples of how the decision model could be set to optimise the

maintenance plan depending on the level of information available about the system

are given. In the second example, limit states are used in a fatigue critical structural

system to determine the optimum inspection model. The design criteria of offshore

structures are used and the uncertainties reduced with inspections over time to give

the probability of failure in the structure. A crack model is introduced for the inspec-

tion plan.

Van Horenbeek et al. [4.22] examine the value of a CMS for a wind turbine gear-

box that is imperfectly performing in an influential work for this thesis. A P-F curve,

based on the work of Moubray, is used as a method to quantify the effectiveness of

CM systems. The efficiency of a CMS is defined as the difference in time between a

fault being observable and it being observed. It is assumed that as a fault progresses

towards failure, it becomes easier to detect. Expert opinions are used to estimate

these values.

An FMEA is performed that identifies key failure modes for the gearbox and the ease

with which they are detected as they develop. This allows consequential damage to
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be accounted for. From this an LCC was conducted to ascertain any value added. One

of the interesting components of this LCC is that it includes the value of the metal

used in the turbine at the end of the turbine’s life. False alarms for different failure

modes are added to the LCC as a set number per year. The simulations consist of

Monte Carlo sampling of failure rates and access costs.

The results of the study shows a mean added value ofe46,114 per turbine over the

lifetime of 20 years and added value in approximately 60% of cases. The CMS adds

value at 19.5% detectability and until more than 5 false alarms are triggered each

year.

More recently this field has been investigated in the work of Netland et al. [4.23]

and Williams, Crabtree, and Hogg [4.24].

The work of Netland et al. uses not only a standard vibration CM system but also

a robotic remote inspection system consisting of a camera and microphone to work

alongside.

The wind farm is modelled to the turbine level and there are four failure categories

for the turbine - minor, medium, major (repair) and major (replacement). All failures

that fall within the category of medium or greater require inspections beforehand

lasting three hours.

Three different maintenance strategies are investigated - corrective, condition based

and condition based with remote inspection capabilities. Adding the CM system was

assumed to reduce work duration and the equipment needed for each failure cate-

gory. There is a 70% chance that the CM system will provide a 10 day warning for the

lower failure classes and 20 days for the major. False alarms and sensor failures are

included.

The model is solved by simulation. The results show an improvement of around 6%

in the CM case over a corrective maintenance plan and an 8% improvement using

remote inspection as well. The authors conclude that there are economic benefits of

using remote inspection as well as CM systems.

The modelling of the CM system is quite simple in this case but appropriate and

effective for the authors’ goal.

Williams, Crabtree, and Hogg is one of the few deterministic solutions examined.
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Onshore failure data is used for assemblies in the WMEP taxonomy and there are

3 failure modes specified - minor, major and catastrophic. CM systems are used to

decrease the severity of the failures. 75% of catastrophic faults are assumed to be

reduced to major and 25% of the major faults are reduced to minor when a CM sys-

tem is used. Additionally, there are variables to account for access and incorrect

detection. False alarms are assumed to occur at 10% of the minor fault rate for the

assembly.

The results of the study show the cost of energy to be £95 per MWh using a cor-

rective based maintenance strategy and £91 per MWh with a condition based main-

tenance strategy. However, the authors highlight that the model predicts an O&M

contribution to CoE of 11% but the authors would expect it to be a minimum of 15%.

The model incorporates many important factors in ascertaining the cost of a mainte-

nance strategy but the CM system has again been modelled with simple variables and

uniformity across all assemblies. The cost model used in this paper is quite similar to

the one described below.

Applicable studies have been combined below in Table 4.1 for comparison - showing

the stated CBM savings and a lifetime savings per installed MW. Most of the costs

displayed are levelised costs and this makes it difficult to produce an average annual

saving. The study with the first author Wiggelinkhuizen only includes lost production

values and the Van Horenbeek study only examines a gear box.

4.1.3. Structural Integrity Maintenance Plans

There is much work dedicated to structural integrity maintenance plans and some

of these plans are included in the generic condition based maintenance plans. How-

ever, often these plans use manual inspections and do not include data from condi-

tion monitoring or structural health monitoring systems. The previous wind specific

condition based plans did include information from CM systems but these were ex-

clusively used on the mechanical or energy generating components. This section

examines the works available for structural integrity plans involving SHM systems.

Inaudi [4.25] uses commercial experience to identify several situations where struc-

tural health monitoring (SHM) systems can offer ’immediate, near-term and long-
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Table 4.1.: Overview of Cost Benefit Literature
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Andrawus [4.13] N 26 0.6 18 £180,152 £11,548
Besnard [4.14] N 1 3 25 £148,181 £49,393
McMillan [4.18] Y 1 5 1 £76,784 £15,356
Wiggelinkhuizen [4.19] Y 100 2.5 1 £791,598 £3,166
Van Horenbeek [4.22] N 1 3 20 £35,987 £11,996
Williams [4.24] Y 100 3 20 £2,750,000 £9,167

Y = Offshore, N = Onshore

term’ cost benefits. The author neatly describes the different benefits that can be

created by integrating SHM into a structure and gives a potential qualitative pro-

cedure for developing a cost benefit optimisation. The examples given are mostly

from building construction or bridge management but the procedures discussed are

generic.

The same principles are used in Smarsly, Law, and Hartmann [4.26] to examine the

benefits of integrating SHM into ’life-cycle maintenance’ (LCM). These are found to be

mostly positive - including increased knowledge of operation and reduced uncertain-

ties of loads and resistance - for a 500 kW turbine but no exact costs are given.

One of the few articles explicitly dealing with the quantification of cost benefit with

the use of SHM is provided by Thöns and Faber [4.27]. In the authors’ simulations,

SHM systems are placed on key hot spots with the highest probability of failure on an

offshore wind structure. The knowledge of the stress values that are gained through

the SHM is used to update the design equations and recalculate the probability of

failure for the hot spot. This value is used to determine an appropriate inspection and

maintenance plan.

Different SHM strategies were implemented with strain gauges placed in various

amounts on and around the 3 hot spots. The results showed that SHM can deliver

return on investment when the hot spots are measured directly. This value is max-
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imised when the allowable probability of failure threshold was increased compared to

the original design value. Limited benefit was seen when the structure had properties

that allowed it to perform exactly as designed. A poorly designed SHM strategy which

saw sensors placed far from the active hotspots incurred increased costs.

This work relies on utility and decision theory to derive the ’value of information’

(VoI) that SHM has. The VoI is obtained from comparing the life cycle costs for dif-

ferent strategies - often described as in Equation 4.1 where B0 is the lifetime cost

benefits when deciding not to implement SHM and B1 is the lifetime cost benefits ex-

pected when deciding to implement SHM. Interestingly, B1 varies depending on the

choice of SHM strategy and each strategy has uncertainty associated with it. This

allows for the expected lifetime benefits to be realised and the optimal solution for

Equation 4.1 is one where B1 is maximised.

V oI = B1 −B0 (4.1)

The work of Thöns in quantifying the value of SHM has continued using this inte-

gration of deterioration modelling and the value of information. In the work of Thöns,

Schneider, and Faber [4.28], the authors present an approach for assessing the VoI

for steel structures experiencing fatigue deterioration. A case study for a Daniels

system is completed and shows that the approach allows for the optimisation of SHM

strategies and the majority of the benefits come from reduction in system risk. A

Daniels system is a theoretical system where a member is suspended from indepen-

dent, identical fibres. Faber, Val, and Thöns are currently expanding and developing

a theoretical framework that allows for the VoI to be determined for a wide range of

structural systems [4.29].

4.1.4. Conclusions

Much work has been conducted into condition based maintenance and optimising op-

eration and maintenance plans. Different processes - gamma [4.10], Poisson [4.4]

and Markov chains [4.18] - have been used to simulate deterioration in components

and structures. These are combined with lifetime cost models that investigate differ-
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ent aspects of assigning value to actions and assets - including such techniques as

risk, expected benefit and remaining useful life.

The frequency of updating condition indicators varies widely across the work. In

some studies - notably for structures - inspections are carried out on a greater than

biennial schedule with the intention that corrective actions be carried out even less

frequently. In other work, the condition indicators are constantly monitored thereby

significantly reducing the physical inspection activities.

The methods for evaluating how much maintenance can be saved with real time

condition monitoring systems also varies across the works. Many use an ’effective-

ness’ value [4.18, 4.30], in effect a percentage of the total faults that were captured

by the condition monitoring system. Others use reduction in probability of failure

[4.21, 4.31] to achieve this. One of the most complex solutions is the P-F curve [4.22].

This method of modelling can be used to show an increasing likelihood of detection

as a fault progresses, similar to real systems. However, the information required to

accurately use this technique is based on expert judgement which is hard to obtain.

The different values used to represent the capabilities of the CM systems are shown

in Table 4.2.

Structural components are modelled in a different way to that of rotating or en-

ergy generating components due to the different natures of the components. The

major work in this area [4.27] uses a risk based method to generate the possible cost

benefits and a limit state approach to assess the accruing damage.

Likewise little work has been done to quantify the benefit of using or developing a

holistic wind turbine monitoring system. While work has shown that individual sys-

tems for components offer reductions in and of themselves - this is documented well

in Thöns and McMillan [4.31] - there has been little work exploring the benefits of a

combined system. This could offer the possibility of reducing O&M costs further and

increasing revenue with complete management of spare parts, grouping of mainte-

nance actions or inspections. A model documenting any of these possible benefits

would be complex but demonstrate any advantages or disadvantages to wind park

operators.
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Table 4.2.: CM Parameters Used in Literature

First Author
CM

Type
Detection

False

Alarms
Notes

McMillan [4.18] E
40% to
100%

-
False alarms may be analysed
de facto in varying operating
costs.

Wiggelinkhuizen
[4.30]

E
40% to

80%
10% to

30%
False alarms added as a per-
centage of total alarms.

Sørensen [4.21] I - -

A deterioration model is cou-
pled with an inspection model
to reduce probability and the
uncertainty in that value.

Van Horenbeek
[4.22]

P-F
100%,

70% and
0%

0 to 10

6 failure modes analysed for
gearbox only with P-F curve.
100% detection for 3 failure
modes and 70% for 1. False
alarms added per year.

Netland [4.23] E 70% 50%

70% refers to probability of de-
tection 10 days before a mi-
nor or medium failure and 20
days before a major. 50% of all
alarms are false.

Williams [4.24] E
0 to

100%
10%

A range of values representing
the reduction of fault classifi-
cation. Two different indepen-
dent percentages for Catas-
trophic to Major and Major to
Minor. 10% of minor fault
alarms.

Thöns [4.27] I - -

SHM reduces uncertainty and
different aspects are modelled
- SHM strategies, uncertainty,
and decision rules.

E = CM Effectiveness, P-F = P-F Curve, I = Improvements in Modelling
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4.2. O&M Model Requirements

The previous sections have examined the components necessary to develop cost

models for assessing different maintenance models. The following section shows and

explains the cost models that have been selected for use in this work.

4.2.1. Component Replacement

When a failure occurs in an assembly there will be a cost to replace the damaged and

failed components. This cost depends on the magnitude of the failure and conse-

quential damage caused by the failure on surrounding components and sub-assemblies,

Cf . The cost of replacement parts, CRP , are summed for each subsystem, k, as seen

in Equation 4.2.

If the failure is detected in advance by the CM system then in some cases the re-

placement costs, Cf C , can be lowered if the damage is less severe. This alternate

cost, CRPC , is shown in Equation 4.3.

CRP =
k∑
i=1

C(i)f (4.2)

CRPC =
k∑
i=1

(C(i)f +C(i)f C) (4.3)

4.2.1.1. Secondary Damage

If a component is allowed to reach the final zones of failure with a P-F curve as de-

scribed in Chapter 3 without intervention from the operator then there is a chance

that the surrounding components, sub-assemblies and assemblies will get damaged.

This phenomenon is often referred to as consequential or secondary damage [4.22,

4.32]. A good explanation of secondary damage is given below.

“A new gearbox may cost upwards of £60,000 whilst recondi-

tioning the same gearbox, should a defect be found in time, may

cost just £15,000. Aside from the generator, all other major compo-

nents have significantly smaller cost implications, typically at least
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an order of magnitude less.”

- Sinclair Knight Merz [4.33]

Table 4.3.: Risk Based Reduction in Component Costs from CM System

Replacement Action
CM

Savings

Failure

Rate

CM Effec-
tiveness

Total

Savings

Gearbox $80,000 3% 50% $1,200
Gearbox Refurbishment $80,000 38% 50% $15,200
Generator $30,000 5% 80% $1,200
Main Bearing $20,000 18% 40% $1,440
Generator Refurbishment $30,000 10% 80% $2,400
Gearbox Stage Replacement $10,000 35% 50% $1,750

Total $23,190

It is the commercial literature rather than the academic that contains more exam-

ples of secondary damage. Weiss [4.34] uses the information contained in Table 4.3

to arrive at an average risk based figure of $23,190 for a 2.3 MW GE turbine from

using a CM system. The savings from the CM system are multiplied by the failure rate

and effectiveness value to give a total saving. These savings are added together. It is

not stated in the source but it is believed that this a lifetime risk figure per turbine.

Morton [4.35] gives two scenarios where CM systems lead to reduced secondary

damage in an onshore 1.5 MW turbine. These are displayed in Table 4.4 and show

that stopping secondary damage can have significant financial implications. Finally,

LeBlanc and Graves [4.36] states that a full gearbox replacement for an onshore 2.3

MW machine costs between $250,000 and $350,000. If the secondary damage can be

reduced using CM systems then the gearbox can be refurbished instead of replaced

for a cost of between $150,000 to $200,000. The lowest repair costs come from

reducing the damage to a single stage of the gearbox which costs between $50,000

to $90,000.

4.2.1.2. Deriving Costs

To understand the components affected by different levels of damage an FMEA of

the wind turbine must be examined. This will highlight the key failure modes and

those that can be detected by CM systems. Usefully in this situation it can be used

108



to estimate what damage will occur if some components are allowed to be operated

at the different degraded states. The commercial sensitivity of this data has ensured

that there are not many widely available FMEAs for wind turbines. One of the most

complete FMEAs available was completed by General Electric Company [4.37] in 1979

for NASA’s MOD-1 wind turbine - the first wind turbine to produce 2 MW. A much more

recent study was completed by Bharatbhai [4.38] for the REpower 5M 5MW turbine

(REpower Systems SE has since become Senvion SE).

The costs for turbine spare parts are compiled from Poore and Walford [4.39] as

part of a NREL study. This study obtained new onshore component costs in 2004

for different turbine power ratings based on book costs, receipts and metal prices. A

rebuild cost factor is used to create a component cost per event depending on how

much of the component can be recovered and rebuilt. Finally a relationship between

costs and size is developed. This can be used to estimate component costs for much

larger turbines of 5 MW size.

Martin-Tretton et al. working for DNV and NREL released a review of manufacturer

component costs in 2012 [4.40] based on book costs alone for 2010 prices grouped

in two power bands - 1.5 to 2 MW and 2.1 to 3 MW.

The two different sources are compared. The component costs from 2004 were

adjusted to account for inflation to 2010. There were significant differences between

the 2010 study costs and the 2004 adjusted costs.

The gearbox, generator and rotor components were slightly smaller using the 2004

data and an inflation rate of 2.2% - the EU and UK average inflation rate since 2000

Table 4.4.: Examples of Possible Secondary Damage

Corrective Maintenance Condition Based Maintenance

Fault Type Gearbox: High Speed Bearing Failure

Details Damage to other stages.
Refurbishment required.

Bearing replaced in-situ.

Costs $154,000 $44,000

Fault Type Generator: Rotor Bearing Failure

Details Rotor contacts stator. Windings
and bearings replaced

Bearing replaced in-situ

Costs $53,000 $3,500
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taken from CIA [4.41] and Triami Media BV [4.42] - compared to the 2010 data. Brake,

yaw system and hydraulic costs were significantly under-predicted by the 2004 data.

However, control system and electrical component costs were significantly over-predicted.

The combined FMEAs of General Electric Company and Bharatbhai and how this

is mapped to the replacement component costs in Poore and Walford are shown in

Appendix C.

Almost all of these costs are based on their use in land based turbines. The assem-

blies require special preparation - undergoing a process known as marinisation - be-

fore they can be used offshore. This can involve adding further coatings and improved

seals to items such as the gearbox and electrical components. Fingersh, Hand, and

Laxson [4.43] suggests that an additional factor be added to all component prices to

account for this. The authors suggest a factor of between 10% and 15%. This value

is from 2006 - a year before a report to the DTI from Offshore Design Engineering

(ODE) Ltd. [4.44] highlighted issues with the use of marinised components. Failures

due to poor marinisation resulted in the development of offshore specific components

and increased quality assurance.

In 2012, it was suggested that the average of the previous factors be doubled to

account for this [4.45]. A factor of 1.27 was selected to account for marinisation and

has been used by other authors [4.46].

A grouting issue, described in more detail in Appendix A, that affected the foun-

dations of certain offshore turbines with monopile foundations has been discussed

at length in print but not in academic work. Retrofitting work to repair the turbines’

foundations would cost as much as e 120,000 per turbine (for 2 MW Vestas V80s)

[4.47]. Scottish & Southern Energy were quoted as suggesting that repairing all the

turbines at Greater Gabbard offshore wind park would cost £ 4-5 million or £ 35,000

per turbine (for 3.6 MW Siemens SWT-3.6-10) [4.48]. However, it is not expected that

all turbines’ foundations would need to be retrofitted and the majority of wind parks

that use a monopile design have installed monitoring systems to ensure the ongoing

safety of their systems.
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4.2.2. Lost Production

A turbine cannot produce energy while it is not operational or offline during mainte-

nance. The longer the downtime (DT) associated with a failure then the greater the

lost production (LP). In a cost benefit analysis this number is used to represent income

that could have otherwise been earned.

The cost of lost production,CLP , is the sum of the DT from all subsystem failures,Tf ,

multiplied by the energy production cost, CP , shown in Equation 4.4. This is the cost

of energy in the market, CEP , and obligation tariffs prices per unit, CROC , multiplied

by the capacity factor, CF, and the power output rating of the turbine’s generator, G.

This is shown in Equation 4.5.

If a CM system can detect a failure in advance then the DT will be reduced. Logistic

operations can be started before the failure occurs, Tf C . However, when using a CM

system the possibility of a false alarm occurs. A critical subsystem alarm will result

in a turbine shut down until a trained technician can inspect the component. This

time for false alarms, Tf a, is added to the DT in Equation 4.6. No average downtime

associated with false alarms was available so therefore 24 hours is used to represent

the DT in the model as an approximation.

CP = CF × G × (CROC +CEP ) (4.4)

CLP = CP ×
k∑
i=1

T (i)f (4.5)

CLPC = CP ×
k∑
i=1

(T (i)f + T (i)f C + T (i)f a) (4.6)

4.2.2.1. Lost Production Values

Capacity factors have been discussed in Chapter 2 and the capacity factors of off-

shore farms are also discussed in Appendix A. The capacity factor can represent the

utilisation of the wind turbines if they were operational. A capacity factor can rep-

resent both average wind conditions at the site and the overall health of the wind

turbines at the wind park.
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More modern offshore wind farms are achieving capacity factors in excess of 40%.

The majority of the older wind parks have not reached this level. The models in this

thesis use the capacity factor from Egmond aan Zee [4.49] in its early years of oper-

ation of 33.3% unless otherwise stated.

The other important components for modelling from Equation 4.4 are the market

cost of energy, CEP , and the additional subsidies added used to make the generation

of renewable energy more attractive for investors, CROC .

The spot market price of energy is taken from trading on the UK market. In the UK,

electricity can be traded for a long period of time up to an hour before that energy

is due to be delivered (known as the gate closure). The majority of these deals are

conducted as over-the-counter deals - direct transactions between two parties buying

and selling energy. More details about trading energy in the UK can be found in the

work of Elexon [4.50]. However, energy exchanges exist to allow more short term

trading such as day ahead auctions. Examples of these include the Nordpool Spot

N2EX and the APX Auction. The shortest term trading is referred to as the spot market

and is final hours trading up until gate closure. APX have an additional spot market

exchange.

The UK’s electricity regulatory body, the Office of Gas and Electricity Markets, OF-

GEM, provides data and pricing for the day ahead contracts including over the counter

deals and exchange trading [4.51]. APX provide daily average data and pricing for

their spot market [4.52].

The Renewable Obligation Certificates, ROCs, is the program used to encourage

the production of renewable energy in the UK market. For every Megawatt-hour of

renewable energy generated a ROC is earned by the energy generator. The energy is

then sold to an energy supplier. ROCs can be sold with the energy from the generators

to the suppliers or traded separately.

At the end of a tax year, an energy supplier is required to present the ROCs owned

by the company to OFGEM. The energy supplier must present certificates to account

for a proportion of its total generation or pay the difference to OFGEM at a fixed buy

out price. In the tax year 2014/2015, the buy out price was £43.30 per ROC with

suppliers having to show 0.244 ROCs/MWh [4.53].
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Table 4.5.: Example of Energy Costs

Cost Type [pMwh] Cost

Spot Price £41.15
ROC Price £43.30
ROC Multiplier 2
LEC Price (pre-2015) £5.54

Total £133.29

The ROC market traders such as e-Power publish the average ROC trade price from

their monthly auctions. The average trade price in September 2015 was £42.94 per

ROC compared to £47.12 in October 2002 with highs of £53.27 and lows of £38.42

[4.54].

The UK government can alter the rate that generators accrue ROCs to give more

or less aid to particular technologies. To increase the attractiveness of offshore wind

for investors they generate 2 ROCs per MWh. This is for new parks or those gaining

additional capacity up until the end of the financial year 2014/2015. The level of

support will reduce for following financial years to 1.8 ROCs per MWh in 2016/2017

[4.55].

The UK government has also used a Climate Change Levy that has been applied

to electricity generated for non-domestic users. Originally, energy generated from

renewable sources gained a levy exception certificate equating to about £5.54 per

MWh in 2015. The exemption was recently removed with immediate effect in July

2015 [4.56].

All these above prices are summarised using an example in Table 4.5.

4.2.2.2. Downtime

The hours of downtime for each failure situation are derived from the failure data

from Egmond aan Zee and the calculated downtimes for major and minor failures are

shown in Table A.3. This information is shown below after it has been transcribed into

the standard taxonomy used for this thesis in Table 4.6 from Appendix A.

The detected faults have various reductions applied to them from the non-detected

faults. When using only a CM effectiveness value when modelling operations the fol-
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Table 4.6.: Major and Minor Downtimes for Egmond aan Zee

Assembly Major Downtime

[h]

Minor Downtime

[h]

Gearbox 5416 24
Generator 3465 24
Drivetrain 370 24
Rotor Hub 264 24
Rotor Blades 2977 24
Yaw 37 6
Mechanical Brake 1130 24
Electrical System 1692 24
Electrical Control 292 24
Sensors 37 6
Hydraulics 334 24
Support & Housing 725 24
Foundation 725 24

lowing occurs:

• Faults that cause in excess of 1,000 hours of downtime have their downtime

reduced by a 30 day month.

• Faults causing more than 240 hours have been reduced by a 7 day week.

• Reductions only apply where a CM system exists that can detect faults with

these particular assemblies.

• There are no downtime reductions for minor failures so only one number is pre-

sented.

There are special cases modelled where the downtime can be reduced further -

for example when detection occurs very early in the development of a defect or a

vessel has been kept on standby. The conditions and amount of downtime reduction

will be stated explicitly in Chapter 5. In the above situation where very early detection

allows for good planning and execution of maintenance actions the 30 days reduction

in downtime is extended to 45 days.

When a P-F curve is used, for major failures, variable detection periods are capable

of being modelled. The downtime for failures is reduced by the time period between

detection and failure.
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One of the major benefits of using the downtimes from Egmond aan Zee is that

these values incorporate many different factors associated with the logistics issues

noted below. These include the effects of weather windows, vessel mobilisation and

vessel availability.

4.2.3. Logistics Costs

To complete resets and to replace spare parts, technicians and appropriate vessels

need to be used. Each failure mode including false alarms is assigned a failure cate-

gory. This category relates to the severity of the failure.

A high category failure indicates that large parts will need to be replaced requiring

a crew access vessel and a crane vessel. It also requires a large logistics time and a

crew in excess of 7. Conversely, an alarm that is uncertain and cannot be discounted

due to further data observation and analysis will have to be investigated by inspec-

tion before being classed as a false alarm. Therefore a false alarm is classed as low

category failure. This inspection can be organised quickly by utilising only a crew

access vessel and a small crew.

The installation costs, CI , are given in Equation 4.7 where the costs of vessel hire,

CE and the costs of labour, CL, are included.

CI =
k∑
i=1

(C(i)E +C(i)L) (4.7)

4.2.3.1. Fault Classification and Vessel Requirements

Each failure mode of the turbine will require certain assets to complete a mainte-

nance action.

A crew transfer vessel (CTV) is, in general, a small, fast vessel used for accessing

the wind park. The main goals of a CTV is to transfer personnel, small tools and parts

to the wind park. These vessels are used for inspections and small repairs but will

require support from additional vessels if larger components (or a large number of

small components) need to be repaired. Those used at Egmond aan Zee are typically

catamarans that hold up to 15 personnel and travel at a speed of up to 30 knots (∼55

kph). They can operate in a wide range of sea states but can only transfer personnel
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to turbines in seas with less than 1.5m significant wave height [4.49]. This allows

them to respond quickly to incidents with minimal mobilisation times.

A field support vessel (FSV) is used for transporting large components to and from

the wind farm. They typically have large flat bed areas for transporting a large variety

of goods. They also generally have their own internal cranes capable of moving items

both on and off the vessel. These are used to transfer larger components to the wind

turbine which are too large to carry but small enough to fit in the turbine’s internal

lift and can be fitted without further external help. These vessels are in demand due

to their flexibility and they often compete for work with the oil industry. They require

moderate mobilisation times.

A jacking crane vessel, often referred to as just a jack-up, is a larger support vessel

and is similar to the FSV in that it can transport larger components to and from the

wind park. It also is capable of lowering legs into the sea and raising itself to create

a stable platform from which to conduct external operations on a wind turbine. It

normally has a high rated crane and is used for major repairs where external work is

required - for example blade replacement or to hold the rotor while a main bearing

or main shaft is replaced. These are specialist vessels and in high demand requiring

high mobilisation times.

Finally, another specialist vehicle is required to conduct underwater surveys of the

foundation. In private conversations with industry, remote operated vehicles (ROVs)

are preferable to deep sea divers to conduct these due to safety concerns and longer

operating times. These remote inspection vehicles are commonly used for offshore

cable laying and examining offshore oil production elements such as Christmas trees

and valves. While there is a high demand for these vessels there is also a large reg-

ular supply. One of the larger companies providing this service is Oceaneering Inter-

national Inc. which providse information on the capabilities of its fleets and prices

[4.57].

The vessels required for different failure classifications are shown in Table 4.7.
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Table 4.7.: Failure Classification and Vessel Requirements

Class Type Vessel

CTV FSV Crane ROV

1 Inspection X
2 Inspection Outdoor X X
3 Small Repair X
4 Small Parts Replacement X
5 Large Internal Parts Replacement X X
6 Large External Parks Replacement X X

4.2.3.2. Logistics and Labour Costs

Each time an intervention action is required the vessel or vessels must be mobilised

before they can be dispatched. For small vessels such as CTVs this will include small

logistics work such as preparing the crew and vessel. The necessary permits and

work orders must also be completed. Larger vessels will require longer mobilisation

times due to availability and preparing the vessel for sea - typically these vessels are

at sea for a much longer time than CTVs.

Each class of failure has a different requirement for crew and time to complete

work. Labour costs are charged per hour, per crew member. Crew are paid from the

time they leave dock so travel to and from the site is included. This is calculated by

taking the average distance from shore of the wind park and dividing it by the speed

of the vessel.

A commercial report has been made available containing estimates of many of

these values including:

• The total number of work hours per job.

• The total number of hours required to mobilise.

• The crew required to complete the maintenance action.

There are multiple sources for estimating the costs of vessel hire and day rates, as

well as labour. These include some of the work noted in the previous section such

as the work of Williams, Crabtree, and Hogg [4.24], McMillan [4.58], Bjerkseter and

Ågotnes [4.59], Dalgic, Lazakis, and Turan [4.60] and private communications with

those in industry.
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The mobilisation time for each failure classification is included in the downtime

figures above in Table 4.6. However, the costs in mobilising are not. The mobilisation

time is multiplied by a lower rate of labour. This accounts for the costs of making

ready the vessel, diesel and onshore staff completing permits and work orders.

4.2.4. Monitoring Systems

The majority of condition monitoring systems incur costs for the procurement and in-

stallation of the CM system and annual costs associated with maintenance, analysis

and software.

4.2.4.1. Monitoring System Costs

Generic costs have been anonymised from an array of vendors and academic sources

have been averaged to produce the values shown in Tables 4.8 and 4.9. 15 systems

have been used to produce this table. Some of this information was collected in the

knowledge that individual costs of each system will not be published. The majority

of the capital costs include prices for the system, sensors and cabling. Installation

costs have not been considered. In this work the CM or SHM systems are present in

each turbine from being commissioned and not retrofitted during the turbine life.

The data for the foundation is taken from the work of Thöns and McMillan [4.31]

where it is the size of the turbine that determines the cost of the SHM system. In this

case the turbine is 5 MW. The work of Sørensen et al. [4.61] gives a predicted cost for

each blade monitoring system technology.

Table 4.8.: Generic Costs of Commercially Available CM Systems

Subsystem Drive Train

CM Type Vibration Oil Acoustic

Capital Costs [£] 6,550 9,210 8,146

Annual Costs [£] 570 0 0

There are several limitations to this table including that not all of the vendors con-

tacted were willing to provide any or full details of their costs such as the omission
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Table 4.9.: Generic Costs of Commercially Available SHM Systems

Subsystem Blades Tower Foundation

CM Type Vibration Acoustic Optical Vibration Vibration

Capital Costs [£] 10,880 28,390 12,280 4,346 14,040

Annual Costs [£] 770 0 0 80 4,070

of installation or cabling costs and annual running costs. However, several manufac-

turers stated that their systems had no annual costs at all.

The sample sizes of some of the technology types are very limited and in the sur-

vey there was sometimes limited distinction placed on whether the prices were for

optimistic bulk purchases or single systems. In discussion with industry, they appear

to favour the use of significantly cheaper oil quality sensors that offer fewer features

than the ones quoted in the table. This appears to be backed by research that is

attempting to build ultra low cost oil sensors (using components costing < £4) [4.62].

4.2.4.2. Data Costs

Data processing is an important factor in obtaining the information from CM systems.

The data that is captured from CM systems must then be processed, transmitted,

possibly subjected to further processing and analysed. The importance of data man-

agement and fault reporting is shown in the standards regarding CM systems. This is

recorded in Chapter 2.

This data management requires its own dedicated equipment and personnel. Data

can be transmitted using modems, stored on servers and processed and reported by

engineers. One source that examines the cost of this data management is a work

completed by Juhl [4.63] for the CM system manufacturer Gram & Juhl. This docu-

ment uses the output of an online ROI calculator from the same authors [4.64]. Anal-

ysis of this source showed that these data services for an onshore windfarm could be

estimated at approximately £15,000 per year per farm.

In the tables above some costs for communication software are included. The an-

nual running costs are mostly estimates from manufacturers and in some cases in-

clude annual system services, data collection and data processing.
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A final point to note is that the lifetime of these systems are not considered. It is

assumed that once deployed, the system will last for the lifetime of the turbine with

minimal intervention. This seems improbable especially for some of the SHM sys-

tems which will be exposed to harsh environments. Higher operating costs could be

attributed to the systems to cover the expense of replacing CM and SHM components.

This information can be used when examining the cost benefit of these systems by

varying their prices and annual costs.

4.2.5. Annual Servicing

The procedures and actions that are completed during an annual service or sched-

uled service are not widely known. The literature made available from OEMs is lim-

ited. This is partially because, as noted by Broehl [4.65], there is no standard wind

turbine. The requirements for gearbox oil changes or re-greasing or re-lubing bear-

ings and gears are different. Many modern turbines now have auto-greasing systems

and these require topping up. Siemens Wind Power [4.66], when describing annual

servicing, suggest the majority of the service is spent investigating the different as-

semblies’ conditions and addressing minor issues such as bolt torquing. The other

major part of the service is replacing and changing consumables such as oil and hy-

draulic fluids. The following list showing the actions taken in an annual service are

based on those from Broehl [4.65].

Transformer No regular service but visually inspected or scanned with a thermo-

graph.

Gearbox Oil filters are often replaced annually and the oil is replaced every few

years. If observed in advance, smaller gears and bearings can be replaced dur-

ing the annual service.

Generator Bearings and brushes can wear out or move out of alignment. These are

often easily replaced up tower and done as part of the annual service.

Brake The service life of brake pads varies massively depending on the operating

conditions. They are often replaced annually.
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Table 4.10.: Annual Generic Consumable Costs for Onshore Wind

Turbine Size 2.0 MW [£] 2.5 MW [£]

Gear oil filter 185 230
Hydraulic filter 70 70

Offline filter 70 70
Hydraulic oil 15 15

Gear oil 260 320
Yaw gear grease 110 140
Bearing grease 85 105

Oil testing 85 85
Electricity 1215 1520

Total 2095 2555

Main Bearing Small repairs can be completed during the service depending on the

design of the bearing.

Pitch and Yaw Motors If an auto-greaser is not installed, gears should be inspected,

cleaned and re-greased.

Blades Annual visual inspection with binoculars. Inspected more frequently if struck

by lightning or severe icing. Actual repairs can not be completed during the

service.

Poore and Walford [4.39] gave some annual generic costs of consumables for on-

shore turbines with different power ratings. Some of these are shown in Table 4.10

accounting for inflation and converted into Pound Sterling. Electricity costs are the

largest of these costs and used for turbine ancillary equipment such as heaters, inter-

nal lift and lights. A figure of £5,000 could be used to represent the annual offshore

service cost for components and consumables for a 2.5 or possible 3.0 MW machine.

This includes the marinisation factor of 1.27 and the small additional component re-

placements that are completed during a service - such as brushes.

There are additional logistics costs that are incurred in an annual service. This

would be a Class 3 logistics operation.
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4.3. Levelised Costs

The operating cost for the year is shown by COP which is a combination of the above

defined parameters from Section 4.2.2 and this is defined in Equation 4.8 and the

comparative operating costs using a condition based maintenance policy is COPC .

The costs of the condition monitoring system are added to COPC in the first year and

the annual running costs of the CM systems are added each year.

COP = CRP +CLP +CI (4.8)

The costs for each year are discounted - or levelised - to represent the Net Present

Value (NPV) of each future operating cost. That is the amount of money that should

be deposited into a bank account today to cover the lifetime operating costs [4.14].

NPV is shown in Equation 4.9 where a discount rate, r, is used and cost of the year i.

NPV =
y∑
i=1

C(i)OP
(1 + r)i

(4.9)

The discount rate - or alternatively, the rate of return - shows the value of risk

aversion and represents the cost of capital. The value most commonly used in this

thesis is 4% as suggested in van Noortwijk and Frangopol [4.67]. However, higher

rates are commonly used to cover uncertainty, such as 5% [4.68], 8.2% [4.59] or

10% [4.22, 4.69].

4.4. Conclusions

In this chapter a cost model has been presented that can be used to assess the differ-

ent costs involved in operating and maintaining a wind park. Literature sources have

been explored that have attempted to quantify the lifetime operating costs of plant

and the effects of using condition based maintenance. This was completed both for

generic systems and specifically for wind parks.

Although the framework of the cost model is not novel in its own right, when it

is combined with novel CM operation modelling techniques and allows modelling to

a higher resolution that previously seen (i.e. individual assemblies have individual
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CM specifications and capabilities) a novel and valuable quantification model can be

presented.

A large array of possible cost inputs and sources have also been introduced and

discussed that could be integrated into the model. One of the most important aspects

explored in this chapter are the costs of the CM and SHM systems where limited data

is available publicly.
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CHAPTER 5

Advanced Operation & Maintenance Models

An operation and maintenance simulation model has been developed during the cou-

rse of this PhD, with emphasis placed on different goals during different periods of

this project. This chapter contains the development of the model, benchmarking of

the output against similar models and results of the model at these stages. This

process is presented in this chapter as shown in Figure 5.1.

The first part of each section begins with a description of the model in its current

form. The output from the model is then evaluated. This is done using a reference

case and available industrial data. This reference case is a simulated offshore wind

farm that has been used to assess several other O&M models.

Next, an offshore wind farm is simulated which is designed to be similar to Egmond

aan Zee. Other wind farms may be simulated if required to investigate particular

criteria. For each wind farm two maintenance cases are simulated - one using period

based maintenance and the other using condition based maintenance. The difference

between these two situations is presented. The model’s state is then reviewed and

its current strengths are highlighted as are its weaknesses. Where possible these

weaknesses are addressed in the next iteration of the model.

The different components that are available at each model stage are shown in Ta-
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Model: Describe the built O&M model, including
major improvements

Benchmark: Examine the output of the model by
comparing it to a standard reference case and
other metrics

Case Study: Generate output for a standard off-
shore wind farm and investigate possible CM or
SHM savings

Review: Highlight strengths, issues and drawbacks
of the model and feedback this into the model

Figure 5.1.: Diagram of the modelling process used in this chapter

ble 5.1. All of the components mentioned in the table have been described in the

previous two chapters. In the table, the term ’partially’ identifies components that

have been modelled with basic techniques or are not fully considered.

5.1. Prototype Markov Model

The focus of this work was to create a simple probabilistic operations model and val-

idate this model against other literature and real operational figures. This would al-

low for further development. The other goals of this model were to create a suitable

framework for exploring different modes of modelling CM systems and investigate CM

effectiveness and false alarms. The majority of the work presented in this section was

presented in a peer reviewed paper for a conference in 2013 [5.1].

The turbine was modelled as 12 separate assemblies as per the WMEP taxonomy.

Taxonomies are discussed at length in Chapter 2. Each assembly was represented by

2 hidden Markov chains - for major and minor failures - each with 2 states - operating

and failed. The hidden output is the actual unknown condition of the assembly with

the CM output being the observed state related to the hidden state by the CM effec-
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Table 5.1.: Components Considered in Each Model
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Prototype MC X X ◦ X X ◦ ◦
Improved MC X X X X X • ◦
Initial DBN X X X ◦ ◦ X •
Final DBN X X X X X X X

Yes = X, Partially = •, No = ◦

Figure 5.2.: Example assembly hidden Markov chain used in the model

tiveness and CM reliability. The diagram used to represent the system in this thesis is

shown in Figure 5.2.

The deterioration model used the unmodified failure data as shown in Appendix A

in Table A.3 for major and minor failures and a time resolution of one year per time

step. The distinction between the failure modes are that minor failures take 24 hours

or less to repair or clear. The failure rates are converted into failure percentages for

Markov chains using exponential decay - the inverse of the survivor function in Equa-

tion 3.6 from Chapter 3. Labour and logistic costs are not included in this simulation

but repair costs with secondary damage and lost production costs are included.

5.1.1. Monte Carlo Simulation and Convergence

When working with Monte Carlo models convergence is an important aspect to con-

sider. Both Markov chain and Bayesian models can be solved by Monte Carlo simula-

133



tions. This involves drawing random samples of the variables - for example, condition

level at failure or structural resistance.

A simple example is used to explain how the output of Monte Carlo simulations

improves when the sample size is increased. This is taken from Lapeyre [5.2] where a

function, f (x), utilises a uniformly distributed random variable, U , shown in Equation

5.1. The average of the output, x̄, then converges towards the expected value of f (U ),

E[f (U )], as the number of samples, N , tends towards infinity as shown in Equation

5.2. This is based on the strong law of large numbers.

∫
[0,1]

f (U )dU (5.1)

x̄ =
1
N

N∑
i=1

f (Ui) (5.2)

Obviously infinite numbers of samples are not available so the user must specify

when the value of x̄ is acceptably close to E[f (U )] - often without knowing the value

of E[f (U )]. When the number of samples is large enough so that the output values

are close enough to the expected value then the simulation is said to have converged.

To optimise simulations the value of N should be kept as low as possible while still

allowing convergence to occur.

Gelman and Rubin suggested a technique to monitor convergence of a simulation

[5.3, 5.4]. This is done by examining some basic statistical information for individual

parameters and across developing multiple parameters. If, for example, there are M

parameters of length N (where M ≥ 2) then these values could be represented by a

single variable s. Any value could then be defined in θ by its parameter value, j, and

sample position, i.

The variance within a parameter, σ2, is averaged across all parameters to produce

a value ofW as shown in Equation 5.3. In Equation 5.4 the variance of the parameters’

means are multiplied by N to produce B.
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W =
1
M

M∑
j=1

σ2
j (5.3)

B =
N

M − 1

M∑
i=1

(θ̄j − ¯̄θ) (5.4)

ˆV ar(θ) = (1− 1
N
)W +

1
N
B (5.5)

R̂ =

√
ˆV ar(θ)
W

(5.6)

Once W and B have been calculated then a weighted average of the two is used

to estimate the total variance, shown in Equation 5.5, and then a potential scale

reduction factor, R̂, is produced as seen in Equation 5.6. If R̂ is large then further

simulations should be conducted to improve the results. If R̂ is close to 1 then the

observations from the simulation are said to have converged.

This information is used to analyse an example turbine simulation. The output

streams contain repair costs with CM, repair costs without CM, lost production with

CM and lost production without CM for one 2 MW turbine. The results have been nor-

malised against the mean for that stream and are shown in Figure 5.3. The Gelman

- Rubin criteria has also been produced for these streams and is shown in Figure 5.4

for the first 2,000 simulation years.

The simulation may converge rather quickly but there is still some uncertainty as-

sociated with the output. The coefficient of variation (CoV) can be used to examine

the relative standard deviation by comparing the mean and standard deviation - as-

suming a normal distribution of results. The relationship between the two is shown in

Equation 5.7. Faber [5.5] contains a good explanation of the relationship between the

number of samples and the uncertainty in the output including CoV.

CoV =
σ
x̄

(5.7)

The CoV of the repair costs with CM is 1.8% across the 1,000 to 1,500 simulated

years with a mean of £78,851 and standard deviation of £1,415. This variable re-

duces to 1.5% across the 1,500 to 2,000 simulation years. If this extended to examine
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Figure 5.3.: Following the Convergence of Various Streams

the output across 90,000 to 100,000 simulation years then the percentage becomes

0.3%. This pattern is repeated across all streams.

This information has led to the selection of 2,000 simulation years per turbine for

this model. As it is the entire wind farm being simulated and turbines are duplicates

of each other then the effective number of Monte Carlo simulation years is multiplied

by the number of turbines in the wind farm. A 20 turbine wind farm would therefore

have 40,000 simulation years per operational year giving CoV values well below 1%.

5.1.2. Benchmarking

5.1.2.1. Metrics and Sources

There are several metrics available that can be examined to assess the model’s out-

put. These are both O&M costs obtained from offshore wind farms and other similar

O&M logistic models.

Two metrics that can be used to compare actual wind farm costs to each other and

simulations are the annual O&M cost per installed Megawatt and the annual O&M

cost per produced Megawatt Hour.
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Figure 5.4.: Example of Simulation Convergence Using the Gelman-Rubin Criteria

Table 5.2.: Annual O&M Costs for Offshore Wind Farms

Year Scroby Sands Kentish Flats North Hoyle Barrow

1 £1,484,135 £1,300,000 - £1,558,000
2 £1,649,728 £1,375,000 £2,500,000 £2,656,000
3 £1,642,736 £1,100,000 £2,800,000 -

Per MW £26,536 £13,981 £44,167 £23,411
Per MWh £10.23 £5.59 £14.56 £8.70

The Capital Grants annual reports for early years of UK Round 1 are an incomplete

source of this information. The O&M costs for Scroby Sands, Kentish Flats, North

Hoyle and Barrow are shown in Table 5.2. Unfortunately, confidentiality issues ob-

scure the true value of these figures - some operators are not allowed to disclose the

true value of their O&M contracts or the full breakdown of costs.

Where possible the values in the table show the direct O&M costs, which gener-

ally arise from the O&M service contract with the original equipment manufacturer.

These contracts do not specify the cover levels. Some of the details about the differ-

ences in the levels of PBMCs coverage are discussed in Chapter 2. Some of the Capital

Grants reports break the O&M costs down further to include insurance, surveys and
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environmental management amongst others.

Tavner, Long, and Feng [5.6] states that offshore O&M costs account for around

18% of the total LCoE for UK and EU sites. This is compared to 12% for onshore

O&M costs. The authors discuss discrepancies in reported offshore O&M costs and

the inclusion of lost production figures in some but not all of the numbers. The paper

gives an offshore LCoE value of £105 per MWh. This compares to a range of e135 -

e175 per MWh in 2013 given by Bjerkseter and Ågotnes [5.7] which is approximately

£113 - £146 per MWh at 2013 exchange rates [5.8]. This gives an O&M cost of around

£18.90 - £26.28 per MWh.

5.1.2.2. Model Output and Comparison

The output of the model was adjusted to produce costs for 2012 and results in dollars

using historical conversion rates [5.8]. For ease, the results will be presented in this

document in Pounds Sterling.

The wind farm that was first simulated had 30 turbines of 2 MW in order to be sim-

ilar to Scroby Sands or North Hoyle. The simulation produced an average base case

scenario with a component replacement cost of £2,290,000: £150,000 for annual ser-

vicing (assuming an average of £5,000 of components are used during the service)

and lost production cost of £3,139,000 which total £5,579,000 per annum for the

farm. These numbers are shown in Table 5.3 with the commercial availability. Each

turbine was down for an average of 1,443 hours per year giving a technical avail-

ability value of 83.5%. This equates to £40,666 per MW installed or between £13.26

and £16.82 per MWh assuming that the wind farm would produce 145,000 MWh at

27.6% capacity factor or 184,000 MWh at 35% capacity factor. These are the ca-

pacity factor values of Scroby Sands and North Hoyle respectively in their 3rd year of

operation.

For the same time period, North Hoyle had a commercial availability of 88% (or

87.4% including subsea cabling and grid faults). Unfortunately, the technical avail-

ability is not presented. Scroby Sands had a technical availability of 83.8% and a

commercial availability of 87.0%. In Williams, Crabtree, and Hogg [5.9] a figure of

40% is used to represent the percentage of the time that the wind park is inacces-
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Table 5.3.: Simulation Output Breakdown

Simulation Output Model Output

Component Costs £2,290,000
Annual Service £150,000
Lost Production £3,139,000

Total £5,579,000

Table 5.4.: Simulation Outputs of Early Model and Comparison

Simulation Output Model Output Scroby Sands North Hoyle

Component & Service £2,440,000 £1,591,000 £2,650,000
Per MW £40,666 £26,536 £44,167
Commercial Availability 88.5% 87.0% 88.0%

sible due to weather. At 40% the turbine is inaccessible for 146 days. Using values

of 30% and 40% to adjust the simulation’s technical availability to commercial avail-

ability gives 88.5% and 90.1%. These numbers are presented for comparison in Table

5.4.

Since this work was published a reference case for O&M simulation has been devel-

oped by Dinwoodie et al. [5.10]. This base case uses 80 Vestas V90 3 MW machines

located 50km from a support base (although distance from shore is not included) and

a price of £90 per MWh. In the work, five separate O&M models all simulate the base

case and present their outputs. The outputs for all models are averaged and shown

in Table 5.5 under ’Reference Case Average’. The repair costs include consumables

used in annual servicing and replacement components.

A comparative simulation was completed on the current model and this is also

shown in Table 5.5. The large distance to the maintenance base suggests that the

wind farm is further from shore than the 10 - 16 km of Egmond aan Zee. The Danish

wind farms that are further from shore have higher capacity factors. Horns Rev II and

Anholt have some of the highest capacity factors of Danish offshore wind farms and

are some of the furthest from shore at approximately 33km and 22km from shore

[5.11] so a capacity factor of 45% is used. The German wind farm Alpha Ventus is

located some 45 km from shore and it has regularly achieved capacity factors of

around 50% [5.12].
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Table 5.5.: Comparison of Output with Published Reference Model

Simulation Output Reference Case

Average

Early Presented

Model

Availability - time 83.16% 83.52%
Annual Lost Production £17.01m £13.99m
Annual Repair Cost £3.76m £10.72m

The average output for the reference simulation gives £15,600 per MW installed

compared to £44,700 per MW from this simulation.

5.1.3. CM System Efficacy

To examine the effect of CM systems on the O&M costs, simulations were completed

with CM systems installed on certain assemblies. The assemblies and the effective-

ness values of the CM systems are those given in Table 3.1 with gearbox (50%), gen-

erator (80%) and drive train (40%).

Now the model is able to produce both a base simulation - where a period based

maintenance (PBM) strategy is utilised - and a simulation using a condition based

maintenance (CBM) strategy relying on condition monitoring systems. The failure

rates and downtimes used in the PBM that come from Egmond aan Zee include sched-

uled service and the use of SCADA data for maintenance actions. It is the difference

in cost between implementing these two strategies that will show the benefit of one

strategy over the other.

In the CBM strategy there is an additional cost associated with installing and oper-

ating the CM systems. Operating the CM system in this situation refers to the data

processing and alarm management. Estimations of the costs of CM systems in this

model are taken from investment data from CM manufacturer data [5.13]. The costs

of CM systems are added for every year of operation. These equate to around £3,150

per turbine with an additional £15,000 for data services.

A wind farm scenario similar to Scroby Sands or North Hoyle is simulated with CBM

where the wind park consists of 20 3 MW turbines. The output of the model gave

average costs of £1,913,000 with an additional £150,000 in annual servicing and

£2,132,000 in lost production totalling £4,195,000. Availability increased to 88.8%
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from 83.5%. This represents a reduction in average turbine downtime per year from

1443 to 980 hours.

When using a discount rate of 4% this gives a levelised total operating cost includ-

ing both lost production and component costs over 20 years as £58.44 million. This

compares to a levelised cost of £77.81 million for only the PBM strategy. This is a

reduction of around 25%.

The CM costs stated above were originally used because more detailed information

about CM systems was not available at that time. From the costs above, for 20 tur-

bines, the capital cost for the CM equipment is £63,000 and £15,000 per year which

over 20 years give a levelised total of approximately £265,000. When the alternative

CM numbers are used from Table 4.8 this becomes £131,000 in CAPEX and a levelised

total of approximately £280,000. This is a lifetime difference of £15,000 between the

two sets of costs in this situation.

5.1.3.1. Extending CM Systems to Other Assemblies

A theoretical CM system is then added to every turbine so that all assemblies can

have their condition monitored and their failure modes give warning before failure.

This theoretical CM system does not incur any further costs.

The CM effectiveness rate for the drivetrain, gearbox and generator are still as

detailed above. The CM systems of all other assemblies has a CM effectiveness set

to 20%. The CM reliability rate to estimate the simulation of false alarms is set at

99.99%.

Component costs are reduced further to £1.85 million per year excluding annual

services and lost production costs become £2.08 million. The average downtime per

turbine becomes 913 hours and the wind farm availability becomes 89.56%.

5.1.3.2. Variations in CM Effectiveness

To investigate the implications of CM effectiveness on the overall operating costs, the

CM effectiveness rate is varied from 20% to 90% for all of the other assemblies not

noted above. This range of effectiveness values is within those used in other literature

and shown in Table 4.2. The difference between the PBM and the CBM strategies
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are shown as a percentage of the PBM strategy for different CM effectiveness rates.

These rates are shown in Figure 5.5.
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Figure 5.5.: Percentage Saving between PBM and CBM Strategies Varying CM
Effectiveness

The values ranged from a 29% reduction in lifetime strategy costs at 20% CM ef-

fectiveness to a 42% reduction at 90%. In real terms this is a change in lifetime

operating costs of £55.5 million at 20% effectiveness with a CBM strategy to £45.0

million at £90.0 million.

5.1.3.3. Examination of False Alarms

CM reliability is the metric used to examine the implications of false alarms which

is discussed in Chapter 3. The CM reliability rate was varied from 70% to 100% in

10% increments with additional points to ascertain what happens as the reliability

approaches 100%. This is done both for a turbine with only the 3 drive train as-

semblies monitored, the results presented in Figure 5.6, and also with all assemblies

monitored at 20% effectiveness and the results shown in Figure 5.7.

In Figure 5.6 at 70% reliability there is a 23.4% difference between the PBM and
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Figure 5.6.: Percentage Saving between PBM and CBM Strategies Varying CM Reliabil-
ity for Gearbox, Generator and Drivetrain CM Systems

CBM strategies. This is a saving of around £18.2 million. This increases to a 25%

difference and a saving of £19.5 million at 100% reliability. The savings increase

linearly as CM reliability increases.

The same pattern is visible but more pronounced in Figure 5.7 where CM systems

have been installed over the whole turbine at 20% effectiveness. The difference be-

tween the CBM and PBM strategies increases from 23.2% to 28.8% when the reliabil-

ity increases from 70% to 100%.

Originally, it had been expected the CM reliability would have a greater cost dif-

ference at the higher percentage reliability numbers (>90%). This was investigated

by borrowing techniques from the telecommunications and computing industries re-

garding high availability. Common availability levels are set according to the theory

of "nines" [5.14]. Three nines refers to an availability of 99.9% and six nines refers to

an availability of 99.9999%.

The models were simulated with reliability values of one through five nines - i.e.

90%, 99%, 99.9%, 99.99%, and 99.999%. However, the results with reliability values
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Figure 5.7.: Percentage Saving between PBM and CBM Strategies Varying CM Reliabil-
ity for All CM Systems

greater than three nines are all within the margin of error of the simulation. These

numbers are presented in Figure 5.8. The three-sigma value of the values shown,

that is three standard deviations from the mean values and accounting for 99.7% of

simulation output, is approximately 0.1%. At 99.9% CM reliability, the mean differ-

ence between maintenance strategies is 24.98% giving a range between 24.88% and

25.08%. No value of CM reliability greater than 99.9% falls outside that range.

5.1.4. Discussion of Prototype Model

The benchmarking that the model has completed shows that the output far exceeds

those of a developed reference case for replacement costs and probably also slightly

exceeds component costs of early offshore wind parks. Unfortunately due to confi-

dentiality restrictions the true cost outputs for the real wind farms cannot be known.

The early wind farms are important for the model - the data from Egmond aan Zee

has similar features to these farms - and would be useful in assessing the success of

the model.
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Figure 5.8.: Availability Varying CM Reliability for All CM Systems

However, the model does predict similar levels of availability both for the reference

cases and for early offshore wind farms which suggests similar levels of wind farm

downtime. It also predicts smaller amounts of lost production costs due to a simpler

cost and yield deriving mechanism.

Due to how the simulation operates, the hidden Markov chains are generated for

each assembly independently for each turbine and for a whole wind farm. To give an

example, it is possible for the gearbox to fail and, while the turbine is being repaired,

the generator simultaneously fails even though the turbine is not operating.

This deviation in costs could be because the predicted costs of repairs are too high

or the failure rates are too high. As noted in Appendix A, the major failure rates are

already quite high compared to a regular modern offshore wind farm and modifying

these rates heavily will change the availability figures.

To investigate the contributions from major and minor failures to component costs,

further simulations were completed. The minor costs were reduced by a factor of 4

for the reference case chosen to ensure all minor repairs now cost less then £10,000

and on average cost just over £1,000. This factor was selected as it is assumed that
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repair costs that are significantly less than an annual service of £2,555 could easily

be actioned by a maintenance manager. Repairs costing more than this would likely

need to be approved by more senior management.

These new annual repair costs became £7.8 million, a reduction of £2.92 million.

When this factor for minor failures was kept and the same factor was used to reduce

the major costs of 4 assemblies with high annual major failure rates then the annual

repair cost became £5.9 million, a further reduction of £1.9 million.

This shows that while improving the reliability of major unreliable assemblies - an

often quoted goal of OEMs and operators - is important for reducing operating costs,

there are substantial benefits in decreasing the costs of all subsystems including mi-

nor, short term faults. This may be useful for operators and owners in driving down

lost production costs.

This model has shown that it can used to produce credible outputs in multiple situ-

ations. These simulations can be repeated and produce similar results. It is the differ-

ence between the maintenance strategies that is important to see if a cost benefit of

condition monitoring systems can be achieved. The information in the model such as

failure rates and component costs can be adapted and changed quickly (such as the

component cost tweaks as shown above) as more information about the operating

conditions of offshore wind farms and component costs become known.

The lack of modelling for logistic operations is a major restriction in this model.

This does not allow for a complete picture of maintenance activities and costs to be

made for comparison. The structural components of the tower and foundation have

been modelled simply. These have been treated as mechanical components in this

model rather than structural. There is no assessment of the risk of collapse of these

assemblies. Additional and specialist equipment required for completing structural

operations is not included.

Finally, the model also uses generic, theoretical CM systems that are either ap-

plied to all systems equally whether they exist or not. The time between detection

and failure is also important - the further in advance a failure is observed the more

planning can be done to mitigate this failure. This model does not take this fact into

account. All failures are detected equally - with one value of effectiveness. A better
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model would allow for different detection times for the same fault and with varying

repercussions.

5.2. Improved Detection Modelling

The conclusions from the previous section are used to build on and improve the

model.

The simulations in this section use a wind farm consisting of 20 turbines of 3 MW

size for an operational life of 20 years. The model changes from an annual time step

to a monthly time step and the failure rates are adjusted accordingly using exponen-

tial deterioration. The capacity factor used is still 33.3% and is based on the value

from Egmond aan Zee as is the average distance to shore – 13 km [5.15].

The FMEA has undergone minor revisions to the component cost model and some

of the most extreme major downtimes have been reduced after better understanding

of the data is achieved. This was partially based on industrial insight. The model it-

self operates in the same manner as the previous section. The model has additional

features added to it to deal with some of the issues raised in the previous section: a

logistics cost model, with the ability to observe failures 6 months in advance; mod-

elling of the foundation and tower as separate systems; and additional CM system

modelling capabilities including price and ability [5.16].

All of the required data for the model and the flow of information is now presented

in Figure 5.9.

5.2.1. Modifications

5.2.1.1. CM Ability and Cost

In the previous model, the modelling of the cost and operation of CM systems was

limited. Theoretical CM systems were added to wind turbine assemblies regardless

of the feasibility of technology. This is addressed by completing a survey of existing

monitoring equipment and collecting generic costs. This is done for technologies with

a high technology readiness or that have functioning experimental systems.

Costs are produced for the ’Drive Train’ which is a term that is used to represent the
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Figure 5.9.: Required Data and Information for O&M Model

the gearbox, generator and drivetrain assemblies and ’SHM’ which is a term used to

represent the blades, tower and foundation assemblies. Different technologies incur

different costs for the same assembly.

Tables 5.6 and 5.7 show the generic costs used which are reproductions of Ta-

bles 4.8 and 4.9. These are both initial capital costs and annual operating costs.

The full description of how these costs were arrived at is in Chapter 4.

Subsystem Drive Train

CM Type Vibration Oil Acoustic

Capital Costs [£] 6,550 9,210 8,146

Annual Costs [£] 570 0 0

Table 5.6.: Generic Costs of Commercially Available CM Systems

Multiple condition monitoring systems can be incorporated onto the same assem-

bly or assemblies. This will improve the detection rate or the CM effectiveness value

and this is modelled as a parallel system. This is explained further in Chapter 3. Some

systems are offered incorporating multiple CM technologies - Mistras Group [5.17]
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Subsystem Blades Tower Foundation

CM Type Vibration Acoustic Optical Vibration Vibration

Capital Costs [£] 10,880 28,390 12,280 4,346 14,040

Annual Costs [£] 770 0 0 80 4,070

Table 5.7.: Generic Costs of Commercially Available SHM Systems

use “dual-function technology” of both vibration and acoustic emission. If oil sensors

are added to a vibration CM system then further failure modes can be detected and

the CM effectiveness will increase. However, this method relies on the accuracy of

the effectiveness values of the CM systems. Assuming high values of effectiveness

in a parallel system it is easy to achieve very high effectiveness levels - two systems

each with a CM effectiveness level of 70% give an overall level of 91%. This may not

be realistic.

5.2.1.2. Logistics Modelling

The logistics failure classification system developed in Chapter 4 and shown in Table

4.7 is used as the basis to ascertain the logistics costs.

Major and minor faults are assigned a classification. The classification of major

and minor faults can be different when detected by a CM system in advance. To

continue an example from Morton [5.18] given in Chapter 4, when a major fault of

a generator bearing that would cause significant secondary damage is detected far

enough in advance only the bearing itself needs to be replaced. In certain types of

gearbox this can be done in-situ. This means that a crane vessel is no longer re-

quired to complete the repair - reducing it from a logistics failure Class 6 operation to

a Class 4 or 5 depending on the size of the bearing.

As discussed above, some failures are capable of being detected several months

in advance. Procuring large vessels significantly in advance or for long periods of

time can reduce effective day rate costs [5.19]. A percentage of the failures detected

by the CM system are assigned to have been detected over 6 months in advance

for applicable subsystems where it is probable that this may occur and that would

require crane or large service vessels. These use a lower vessel cost, CEC , to give
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an alternative operations costs, CIC , shown in Equation 5.8. The lower vessel cost is

taken from the spread of values shown in Bjerkseter and Ågotnes [5.7].

CIC =
k∑
i=1

(C(i)E +C(i)EC +C(i)L) (5.8)

5.2.1.3. Age-related Failures

Poisson processes have been mentioned previously in Chapter 4 as way to model de-

terioration over time. The Power Law process is an example of a Non-Homogeneous

Poisson process often used in reliability modelling [5.20]. It is used to produce a haz-

ard rate and can represent multiple stages of a Bath-tub curve. The equation for the

Power Law process is shown in Equation 5.9. In this equation it is the value of β, of-

ten referred to as the shape function, that defines the type of hazard rate. If β < 1

the hazard rate is decreasing over time and represents infant mortality. If β = 1 the

hazard rate is constant and represents working useful life. Finally, if β > 1 the hazard

rate is increasing and represents the wear out phase of a mechanical component. ρ

is a scale parameter.

u(t) = ρβ t(β−1) (5.9)

The failure rates are adapted in this work to represent the learning, infant mortal-

ity and the alleviated serial defects (or inappropriately designed assemblies) that will

occur over the years of operation. As the failure rates are derived from 3 years with

issues occurring over them it would not be appropriate to adapt these average failure

rate figures. A value of 0.8 was selected for β. This value was chosen based on the

work of Guo et al. [5.21] after their analysis of the reliability of German and Danish

onshore turbines from the WindStats database. A Power Law process and a further

Power Law process with three variables were fitted to the data. The estimated β val-

ues given for the German and Danish farms were 0.7984 and 0.8468, respectively.

A graph showing the failure rate over time for selected components is shown in

Figure 5.10. Learning is shown in this figure for 10 years. However, in the work, it

is limited to 5 years before becoming constant. This value is based on observing
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capacity factors of operational offshore wind farms shown in Figure A.5. Wear out

failures with an increasing hazard function are not used for reasons given in Chapter

3 and Appendix A.
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Figure 5.10.: Changing Failure Rate of Two Components with Learning

5.2.2. Outputs

5.2.2.1. Benchmarking

This updated model was again benchmarked according to the reference case in Din-

woodie et al. [5.10]. The component costs of the annual service are still £5,000 per

turbine. The labour and logistics costs sum to a further amount of approximately

£3,300.

The model produced annual component costs of £9.66 million with a further ser-

vicing cost of £400,000, lost production of £11.17 million, logistics costs of £11.93

million and £264,000 for servicing logistics. These values are presented against the

maximum, minimum and average output from the reference case models are pre-

sented in Table 5.8.

The minor alterations of the FMEA and downtimes have led to increases in predicted

availability and reductions in lost production. The inclusion of logistics costs allow for
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Table 5.8.: Comparison of Output with Published Reference Model

Simulation Output Reference Case Improved

HMM

Min Average Max Model

Availability - time 80.82% 83.16% 84.40% 86.92%
Annual Lost Production £15.48m £17.01m £18.64m £11.17m
Annual Repair Cost £3.00m £3.76m £4.39m £10.06m
Logistics Cost £10.9m £16.24m £20.78m £12.19m

Total £29.38m £37.01m £43.81m £33.42m

a full comparison with the reference case. The model still appears to over-predict re-

pair costs and under predict lost production. The logistics costs are within the range

of the reference case and, when combined, the model output is well within the spread

of the reference case outputs.

The base case with PBM strategy shows the annual outputs for one 3 MW turbine

are approximately £120,000, £146,000 and £146,000 for component, lost produc-

tion and logistics costs respectively. When this is scaled to represent a 20 turbine

wind farm, and annual servicing costs are included, the operating and maintenance

costs become £7.75m. A breakdown of costs per turbine is shown in Figure 5.11. The

component costs attribute to 30% in this model while in the average reference case

component costs are around 10%. The lost production and logistics costs contribute

around 45% each in the average reference case while in this model each contribute

35%.

Unless otherwise stated, every CM system has a detection rate of 80%, excluding

the systems for the vibration drive train which are as noted in Table 3.1. Likewise,

the percentage of faults that are detected more than 6 months in advance to access

lower vessel costs is set at 10% of all detected faults unless otherwise noted. In

Tavner [5.20] the ability to diagnose gearbox faults using SCADA temperature data

is discussed. This shows that there is a significant chance of capturing some faults

at least 6 months in advance. Other techniques are also discussed for long term

detection. The base value of 10% was chosen to be a conservative value as this is

applied only to effective diagnosis by a CM system.
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Figure 5.11.: Breakdown of Annual Operating Costs per Turbine inc Annual Service

Table 5.9.: Lifetime Savings Over PBM with Various CM Systems

Drive Train CMS Lifetime Saving

Over PBM

Percentage

Saving

Vibration £12,000,000 17.7%
Vibration & Oil Sensor £19,100,000 28.8%
Vibration & AE £18,900,000 28.7%
Vibration, Oil & AE £20,300,000 30.6%

5.2.2.2. Drivetrain CM Systems

As discussed in the previous chapter, most studies find that vibration based CM sys-

tems for the drive train offer return on investment (ROI) - if CM effectiveness values

are too low and access is reliable then the CM system might not be viable. A ‘Drive

Train CMS’ is defined as one that detects failures on the gearbox, generator, main

bearing and output shafts. Other CM methods that can be used in the same way as a

Drive Train CMS include oil sensors and Acoustic Emission (AE) systems. The effects

of these systems on the operating costs are examined in Table 5.9.

An example simulation year from the improved HMM model for the first 3 years

of O&M costs for the CBM strategy for the entire farm is £6.6 million, consisting of

£1.97m in spare parts (30%), £2.47m in lost production (37%) and £2.19m for lo-

gistics costs (33%) including CM annual operating fees. The simulation was for an
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Table 5.10.: Lifetime Savings Over PBM with Various SHM Systems

SHM System & Drive Train Vib

CM

Lifetime Saving Over PBM Percentage

Saving

Blades (Optical) £13,000,000 19.5%
Blades (Vib) £12,900,000 19.4%
Blades (AE) £12,600,000 18.9%
Tower £11,800,000 17.9%
Tower & Foundation £11,700,000 17.6%
Tower, Foundation & Blades (Vib) £12,500,000 18.6%
Foundation £11,800,000 17.6%

Egmond aan Zee type wind farm as described at the start of this section. This com-

pares to £8.3 million for the PBM strategy for the same year where all components of

the model show higher costs.

In the model, a vibration CM system offers potential lifetime savings of approxi-

mately £6m over a PBM strategy. If either an oil sensor system or an AE system is

used in addition to the vibration CM system the lifetime savings increase. This indi-

cates that the additional O&M costs reduction found from adding CM systems are

larger than the costs of the CM systems themselves.

However, this statement is dependent on the AE or oil sensor increasing the failure

modes that can be detected by a large amount. The probability of detection increases

from 50% for the gearbox system with only a vibration CM system to 98% for one

with all three drive train systems. This results in an increase of capital costs for a

20 turbine wind farm from £131,000 to £478,000. However, the improved detection

rates allow for an approximate reduction in replacement part costs of 17% per an-

num. While overall lost production values remained similar, the smaller repairs also

allowed for significantly smaller logistics costs. More information is required before

the levels of effectiveness can be assessed.

5.2.2.3. Structural Monitoring

Blade, tower and foundation SHM systems were added to a standard vibration based

drive train CM system. The effects of these systems on operating costs are shown in

Table 5.10.
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Blade SHM systems offer further savings over a Drive Train CMS alone. The largest

saving over a PBM strategy was seen when using an optical blade SHM system. The

optical SHM system that is envisioned for the blades is similar to that described by

Rademakers [5.22]. Those fiber Bragg grating strain and temperature sensors get

installed in the root of each blade with a communications unit in the hub. Processing

and further communications are done in a secondary unit in the tower. This gave

savings of £13 million, which is an increase of 7% over the drive train CMS. If a SHM

system to monitor the tower is added this increases lifetime costs over using only a

Drive Train CM by 1.6%. In a scenario where a CM system is utilised on the tower,

foundation, blade and Drive Train an increase of 4% in savings is observed compared

to PBM.

17.80%

18.00%

18.20%

18.40%

18.60%

18.80%

19.00%

19.20%

0% 20% 40% 60% 80% 100%

D
if

fe
re

n
ce

 B
et

w
e

e
n

 O
p

e
ra

ti
n

g 
St

ra
te

gi
e

s 

Detection Rate 

Figure 5.12.: Difference in Lifetime Costs Between PBM and CBM Strategies Against
CM Effectiveness

The ability of the CM and SHM systems to detect failures has a direct influence

on the ROI of the monitoring system. This is investigated in Figure 5.12. A vibration

based monitoring system is placed on the drive train, blades, tower and foundation.

The detection rates for all the SHM systems is set at 60% and increased in incre-

ments to 99% and the resulting levelised lifetime savings recorded. The drive train

effectiveness values remain unchanged.
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At 60% the lifetime O&M saving was £12,300,000. This increased to £12,800,000,

an increase of 4%, when the fault detection rate was set at 99% and followed a linear

pattern for detection rates in between. The higher the effectiveness of a CM or SHM

system, that is one with a high detection rate, the more likely it is to reduce the O&M

costs of a wind farm.

5.2.2.4. Advanced Failure Warning

All of the previous simulations assume that 10% of the total detected faults by CM

and SHM systems were detected with greater than 6 months warning. The assemblies

that have the possibility of greater than 6 month detection are those that require a

jack up vessel to repair a major failure. These include the drivetrain and rotor blades.

This assumption is examined in Figure 5.13. The number of faults detected in ad-

vance is increased from 10% to 50%. This gives an increase in savings of £250,000

from £11.91m to £12.16m over the lifetime of the wind park - an increase of 2% for a

scenario where only a Drive Train CMS is used.

It is difficult to estimate the number of failures that can be detected more than 6

months in advance. If the ability for a CM system to detect these faults improves then

it is more likely that it will require a smaller intervention and it could possibly even be

categorised as minor fault. However, if it is possible to charter a vessel substantially

in advance then these simulations show the benefits.

5.2.2.5. Failure Data Modification

A report from GL Garrad Hassan, The Crown Estate and Scottish Enterprise gives

more recent offshore availability figures as between 90% and 95% [5.23]. The defi-

nition of availability used in this work is given as a “measure of how little electricity

is lost due to equipment downtime” but it is not clear if servicing and out of environ-

mental specification time are excluded. Carroll et al. [5.24] also shows real offshore

availabilities of between 92% to 96%. This is much higher than the average figures

reported from Egmond aan Zee of 80% for the 3 years up to 2009. The simulation

with the modified Egmond aan Zee data with assumed learning rates gives a figure of

87%. This suggests that the failure rates used are too high for wider conclusions to
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Figure 5.13.: Difference in Lifetime Costs Between PBM and CBM Strategies Against 6
Month Fault Detection Rate

be drawn.

In this simulation, a new wind park uses the reduced failure rates, after learning, as

its initial failure rate. These new failure rates also suffer from infant mortality rates

for 5 years in the same pattern as used previously. The annual availability figures for

each year of learning are shown in Table 5.11. For the first 3 years (learning year 3 in

the table) the availability is 91% with a PBM strategy and 92% with a CBM strategy.

This increases to approximately 92% and 93% respectively for the CBM strategies

with a reduced failure rate profile with a further two years of learning (learning years

4 and 5 in the table). In this last scenario, savings when a vibration drive train CM

system is used become £8.6 million.

As the costs for both the PBM and CBM strategies have changed in this scenario

the savings between strategies are compared to the total levelised cost of each PBM

strategy. The reduced failure rate case gives savings of 16%. In the similar scenario

listed in Table 5.9, £12.0 million of savings is 18% of the PBM strategy cost.

Increasing the capacity factor of the wind farm to 50% increases the cost of LP. This

increases savings to £13.7 million (17.5% of the PBM strategy cost) for a vibration

only drive train CM system. Conversely, by reducing all the vessel hire costs to 80%
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Table 5.11.: Offshore Availability vs Learning and Infant Mortality

Learning Year Gearbox Major Failure Rate
Annual Availability

CBM PBM

1 0.155 88.95% 86.95%

2 0.124 91.77% 90.33%

3 0.108 92.32% 90.99%

4 0.099 92.66% 91.39%

5 0.094 92.94% 91.72%

of the standard day charter prices the savings reduce to £10.7 million (17%).

5.2.3. Discussion

This model has solved many issues raised with its predecessor. Although logistics

costs are included the model appears to under-evaluate their contribution to O&M

costs. The modelling of CM and its effects has been greatly enhanced and allowed for

different types of CM systems to be deployed independently on all assemblies. Detec-

tion modelling is identified as an area for improvement of the model. The CM failures

are no longer modelled as binary choices - there are options for long term detec-

tion but this only offers limited improvement. A more continuous detection technique

rather than the discrete methods employed so far would offer further improvements.

A more effective energy yield model would improve the figures for lost production.

Failures are more likely to occur at higher wind speeds and this is when wind turbines

are able to generate the most energy [5.20]. This issue could be solved by revising

the capacity factor upwards but how this revised figure would relate to the annual

capacity factors of operating wind parks is unknown.

Two other important issues are simultaneous failures and a better understanding

of the costs incurred while operating an offshore structure are yet to be fully ad-

dressed.
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5.3. Developed DBN Model

The use of Dynamic Bayesian Networks was identified as having potential benefits

over HMMs. DBNs had been shown to model reliability in mechanical and civil struc-

tures. These flexible modelling tools allow for updating the probability of failure for

assemblies based on inspections and are efficient in reducing the amount of states

that need to be generated [5.25]. This Bayesian approach could then further be used

with Bayesian decision analysis to formally solve for the VoI as discussed in Chapter

4.

5.3.1. Modifications

The model has been redesigned using DBNs for deterioration modelling. The wind

park is modelled with monthly time steps. The structure of the DBN is shown in Figure

5.14 which is a reproduction of Figure 3.8. In this figure, S refers to the state of an

assembly that deteriorates from t, to t + 1 and t + 2, while X is the CM output at that

particular value of t.

St

Xt

St+1

Xt+1

St+2

Xt+2

Figure 5.14.: Dynamic Bayesian Network over 3 time steps

A random number is generated from a uniform distribution to represent the con-

dition level of the component at failure. The component condition level is set at 1

and deteriorates over time. When the component condition is lower than the random

number a failure is triggered. A partial output from the model is shown in Figure 5.15.

The component in this figure deteriorates without failure for 3.5 simulated years. The

repaired component survives for a further 2 years without the need for intervention.

After this, the component is able to survive for 35 simulated years. Over the sample

period shown the component fails 5 times over 650 simulated months.

The way the simulation operates has also been adapted. Each time step is eval-
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Figure 5.15.: Simulating Component Deterioration in DBN Model

uated across all turbines and assemblies in the wind farm. This is instead of sim-

ulations occurring for each assembly separately. When a failure has occurred that

causes the turbine to shut down, the other assemblies will not continue to deterio-

rate. Structural assemblies are excluded from this as the wind and waves continue to

load and deteriorate these parts.

5.3.1.1. CM Modelling

Once a failure has occurred the simulation stops and uses a P-F curve as introduced in

Chapter 3. The performance of the CM system is based on the ‘detectability window’

as used in Van Horenbeek et al. [5.26].

A CM system is assumed to have a period of time where it is possible to detect the

fault before it fails. The probability of detection increases as the failure grows nearer.

A linear relationship is used as demonstrated in Van Horenbeek et al. as shown in

Figure 3.11 and is reproduced in Figure 5.16. There is a 100% chance of detection

when it fails. A secondary random number is generated and when the probability

of detection exceeds this value the failure has been detected. The month that this

160



Table 5.12.: Generic Costs of Monitoring Systems Used

Type Capital Cost Annual Operating Cost

CM System £ 6,700 £ 590
SHM System £ 10,080 £ 4,200

occurs before failure gives a reduction in downtime for that failure instance.
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Figure 5.16.: Example of a Linear Detectability Profile

Due to the increased complexity of the CM modelling a reduced set of CM systems

was used. They covered only structural health monitoring (SHM) systems and a Drive

Train CM system as defined for the previous model. The costs of the SHM system is

for a combined tower and foundation SHM.

5.3.1.2. Structural Integrity Management Plan

A basic Structural Integrity Management (SIM) plan was developed following the met-

hodology outlined in Chapter 3.

In this model, 5 hotspots in the tower and 3 stress hotspots on the foundation

are examined for a tripod foundation as used with the M5000 turbines in Alpha Ven-

tus. The final probability of failure values for fatigue after a 20 year period for these

hotspots were taken from Thöns, Faber, and Rücker [5.27] and variables (notably the k
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parameter) were adjusted in the limit state equation until these values were achieved.

This was repeated with a SHM system using measurement realisations to produce an

alternative probability of failure curve.

The annual probability of failure was taken from these curves and multiplied by the

costs of failure to produce an expected benefit. In this situation the cost of the failure

is £3.78 million based on the generic costs of £1.26 million per MW as suggested by

European Wind Energy Association [5.28] (converted from Euros). This risk based cost

is presented separately from other costs as it is different from an incurred operating

cost in the same way that an inspection visit is. However, when the annual probability

of failure exceeds a threshold value of 1×10−4 an inspection and a repair is triggered

that does incur a cost.

An example repair may be cleaning, painting, or replacement of cathodic protec-

tion. The cost for an inspection is added to the logistics cost. The costs for completing

this repair are added to component repair costs.

5.3.2. Outputs

5.3.2.1. Benchmarking

The annual outputs when the model is benchmarked against the reference case are

£1.94 million for the component costs including annual services, £12.99 million for

lost production and £7.87 million in logistics costs which total £21.86 million. The

technical availability is 84.74%.

Table 5.13.: Comparison of Output with Published Reference Model

Simulation Output Reference Case Initial DBN

Min Average Max Model

Availability - time 80.82% 83.16% 84.40% 84.74%

Annual Lost Production £15.48m £17.01m £18.64m £12.99m

Annual Repair Cost £3.00m £3.76m £4.39m £3.02m

Logistics Cost £10.9m £16.24m £20.78m £7.87m

Total £29.38m £37.01m £43.81m £23.88m

The most striking change using this model is a significant reduction in component
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costs which are now below the range of the reference case. However, if the cost of an

annual service is increased to that used in the reference case, from £5,000 to £18,500

per turbine, the component costs become £3.02 million - well within the range. It is

these values that are presented in Table 5.13.

The lost production values are still below the reference case while the availability

is slightly higher than predicted. The reasons for the lower lost production costs have

been explained in a previous section. If the capacity factor is increased to 54% then

the lost production values reach the lower indicated value of the reference case.

The cost of completing logistics is £3.0 million lower than the lowest predicted val-

ues.

5.3.2.2. Results

A simulation has been performed to represent a 20 turbine offshore wind farm with

turbines of size 3 MW for 20 years. The results of the simulation showed that for an

average year of operation there was a reduction in all costs associated with compo-

nent replacement, logistics work and lost production.

The largest percentage reduction of approximately 18% was in component costs -

reducing from around £363,000 per annum to £295,000.

There was also a reduction of around 11% in logistics costs - dropping from approx-

imately £1.87 million to £1.67 million. Lost production saw the smallest reduction in

cost of £82,000 and 3%. This can be seen in Figure 5.17.

An average annual breakdown of costs for the wind farm is presented both with and

without the utilisation of CM systems and SHM in Figures 5.18 and 5.19 respectively.

The amount proportionally spent on component replacement reduces from 7% to 6%

as does the logistics costs from 35% to 33% when CM systems are used. This gives

a 3% change in the value attributed to lost production.

The total levelised costs for all actions during the 20 years of operation saw a re-

duction of 6.3% from £73.00 million to £68.50 million. An analysis across multiple

simulations produced a three-sigma value of approximately £150,000. This puts the

saving between maintenance strategies in a range of £4.35 million and £4.65 million.

The expected benefit from the reduction in risk from using an SHM system, E[B],
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Figure 5.17.: Comparison of Average Annual Costs with and without CM and SHM
Utilisation

was found to be around 50% from £187,000 to £92,000 for both the uncorrelated

tower and foundation failure events. For the correlated failure events, the values

change to a 46% reduction with the expected benefit reducing from £78,000 to around

£42,000.

The annual O&M costs per MW can be calculated by taking the logistics costs and

component replacement costs for the wind farm and dividing by the size of the farm

in MW. For the simulated wind farm without CM or SHM systems the O&M price per

MW is approximately £40,000. When utilising CM and SHM this drops to £33,000, a

reduction of 18%.

The approximate values from Scroby Sands and Kentish Flats are £26,500 and

£14,000 respectively. However, the values from Table 5.2 do not include SIM costs.

5.3.3. Discussion

This model offers several reasonable improvements to the model and has allowed the

output of the model to become closer to the reference case. The two major improve-
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ments being the inclusion of a SIM plan and improved CM modelling.

The production of actual and risk based costs for structural components have al-

lowed for an improved understanding of the benefits of SHM systems.

The improved P-F curves are rather bluntly deployed with simple detection profiles

and limited deployment across assemblies. In their implementation on this model

there has been a loss of some CM parameters used previously in other models. These

include effectiveness and reliability. Another lost feature of the previous Markov

model is a variable hazard rate.

While the SIM plan is an improvement over previous models and a good basis for

understanding the cost benefit of the implementation of SHM, it is far from an accu-

rate representation of an actual SIM plan.

5.4. Final Presented Model

The final model presented in this thesis is an improved version of the previous DBN

based O&M model.
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5.4.1. Code Development and Modifications

Discussions with industrial partners have suggested that there are some general de-

tection profiles with major failures. When the large main bearing develops a fault,

this is normally easily detectable several months before failure. However, a develop-

ing tooth failure of a gear in a gearbox is harder to detect until the final few months

before failure where it rapidly develops. These detection profiles have been estimated

and that estimation has been used in this model. It is presented in Figure 5.20.

Parameters that have been used in previous models have been added again. When

an assembly is operating normally with a CM system, there is a 99% chance that

it will show no developing faults. False alarms will occur 1% of the time and incur

the same penalties as discussed earlier. The CM effectiveness values have also been

added again. This will check whether the fault can be detected at failure but before

the model generates a CM detection profile for the particular failure instance.

The hazard rate modifications, to show learning and burn-in used in the final Markov

model, have been reintroduced using the same parameters. Convergence has been

observed throughout the development process of each model. A sample of this con-

vergence for the final DBN model has been produced and is shown in Figure 5.21. The

CoV for the streams for 100 simulated year intervals starting at 1,900, 3,900 and
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Figure 5.20.: Probability of Detection Profiles for Various Assemblies

4,900 was 1.6%, 1% and 0.57% respectively. A value of 2,000 Monte Carlo years was

selected again for simulations.

Further insight was gained in how minor faults are dealt with in industry leading to

an increase in downtime for minor failures from 24 hours to 48 hours for all assem-

blies. This highlighted an issue with how the DBN model dealt with minor downtime

and was corrected which resulted in a large increase in availability.

5.4.1.1. Structural Integrity Management Plan

The SIM modelling has been entirely removed from the model simulation and is han-

dled separately. A lifetime probability of failure for fatigue is still produced for both the

tower and foundation with the resulting annual probability of failure used to calculate

the expected benefit using the methods described in Chapter 3. A sample tower prob-

ability of failure per year of service is shown in Figure 5.22 for both correlated and

un-correlated failures. This is generated from the same 8 structural hotspots

The annual probability of failure is used to determine when an inspection needs

to occur. In the design codes for offshore wind turbine structures - as long as per-

sonnel are not expected to be present in severe loading cases - the threshold annual
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Figure 5.21.: DBN Model Convergence Using the Gelman-Rubin Criteria

probability of failure is 1× 10−4 [5.29]. When this threshold is due to be exceeded an

inspection occurs and the information from the inspection updates the overall prob-

ability of failure.

A short review of SIM plans for offshore wind parks in the public domain was con-

ducted. These yielded sources for Egmond aan Zee [5.30, 5.31] and Kentish Flats

[5.32]. Both these sites carried out annual surveys to examine the structures for

corrosion, damage, growth and the surrounding waters for scour. Scour surveys are

occasionally done by specially contracted bathymetry companies which is useful for

monitoring seabed changes over time. Often, however, scour is performed as a visual

inspection by Remotely Operated Vehicle (ROV) or using a sonar device on vessels

when the rest of the foundation is being assessed. Egmond aan Zee aim to check

each turbine every 3 years [5.30].

Divers have been used for most of the initial subsea work regarding offshore wind

foundations but, due to speed and safety concerns, they appear to be being replaced

with ROVs. Oceaneering International Inc. is a company that regularly provides ROV

inspection services to the oil and gas industry and have published day rates for their
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Figure 5.22.: Tower Lifetime Probability of Failure

equipment and crew [5.33]. For cost modelling purposes, an inspection action requir-

ing an ROV is added to the hire costs of an FSV. This means that an inspection event

is classified as a type 2 maintenance action as described in Table 4.7.

It is assumed that every foundation must be examined with an ROV every three

years. It is also assumed that an ROV can examine 2 turbines per 24 hours and a

less extensive survey can be completed when using the improved knowledge of the

structure from an SHM system allowing for 2.5 turbines to be examined a day. All the

necessary inspections of the tower and foundation are completed during these ROV

visits or during the annual turbine service.

5.4.2. Outputs

5.4.2.1. Benchmarking

This model produces an average PBM cost of approximately £19,800, £222,100 and

£120,200 per turbine (excluding SIM and annual service) for component costs, lost

production and logistic costs respectively. This becomes £1.98 million, £17.77 million

and £9.88 million respectively for an 80 turbine wind farm with annual inspections.

Using the reference case, annual service costs of £18,600 the component costs be-

169



come £3.07 million. The availability is 84.3%. These numbers are presented in Table

5.14.

Table 5.14.: Comparison of Output with Published Reference Model

Simulation Output Reference Case Final DBN

Min Average Max Model

Availability - time 80.82% 83.16% 84.30% 93.91%

Annual Lost Production £15.48m £17.01m £18.64m £10.32m

Annual Repair Cost £3.00m £3.76m £4.39m £3.07m

Logistics Cost £10.9m £16.24m £20.78m £9.88m

Total £29.38m £37.01m £43.81m £23.27m

The correction of the minor downtime handling in the code has led to a large in-

crease in availability and a resulting reduction in lost production costs. This means

that earlier versions of this DBN model over-stated the availability of wind parks and

gave pessimistic results. However, the costs for logistics and component costs are

close to the reference.

5.4.2.2. Results

The annual CBM costs for a wind farm consisting of 20 turbines of 3 MW in size

and using SHM and a Drive Train CM system are approximately £470,000 for com-

ponent costs, £1.20 million for lost production costs, £2.50 million in logistics costs

and £215,000 for SIM costs for the first 3 years including annual servicing. These

numbers are shown for comparison in Figure 5.23 and a breakdown of annual costs

for the CBM strategy is shown in Figure 5.23. The SIM costs without using an SHM

system have been calculated as £255,000.

The change in lost production costs relate to an increase in availability of 0.28%

for the first few years of operation. Similar gains in availability are shown over the

other operating years.

Over the lifetime of the wind farm the levelised cost becomes £37.80 million com-

pared to £39.74 million - a difference of 5% when using a discount rate of 8.2%.

The expected benefit of the SHM system is approximately 35.5% and 37.5% for

correlated and uncorrelated failure respectively. The risk was reduced from £141,000
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Figure 5.23.: Comparison of Annual Operating Costs with and without CM and SHM
systems

per turbine to £91,000 for correlated failures and likewise from £92,000 to £58,000

for uncorrelated failures.

Adding a vibration based blade monitoring system to the blades and hub increases

this saving to 5.7% over the lifetime of the wind park.

5.4.2.3. Additional Simulation Scenarios

This section contains additional scenarios that have been simulated using the model

described above. Each scenario is outlined below and the simulation output is shown

in Table 5.15.

The failure data of Egmond aan Zee - both failure rates and downtime - were ad-

justed to remove the apparent serial defects as detailed in Appendix A. Otherwise the

simulation remains the same as the previous section with a SHM system for the tower

and foundation. The simulation was run both with and without a blade monitoring

system.

An offshore wind farm was simulated to investigate the implications of CM and SHM

on larger wind turbines that are further from shore in a scenario that more closely

relates to some of the large offshore wind parks. This simulated wind park used 30
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larger 5 MW turbines around 50 km from shore. A higher capacity factor of 45% was

used.

The implications of a variable financial market was also investigated. The ROCs

that have been commonly used have been ’grandfathered’ and replaced by Contracts

for Difference (CFDs). This is a ’pot’ of money that will be used to top up the mar-

ket price of electricity to the agreed upon ’strike’ price. If the market price exceeds

the strike price then the generator pays back the difference to the government. In

the first round of CFD auctions in 2015 two bids were awarded at £119.89/MWh and

£114.39/MWh. If there is less competition for the ’pot’ then the strike price reverts to

an administrative price of £140/MWh [5.34].

In the previous simulations, the price of energy has been calculated as £119.33

/MWh. Simulations were run with a low CFD strike price of £110/MWh - a figure cho-

sen to possibly represent the next CFD auction round and increased competition - and

the administrative strike price of £140/MWh. The results are referred to as ’Low CFD

Price’ and ’High CFD Price’ in the table.

There are a range of vessel charter rates discussed in Chapter 4. A lower set of

logistics costs were chosen from Bjerkseter and Ågotnes [5.7].
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Table 5.15.: Overview of Additional Simulation Scenarios

Scenario Lifetime Costs [£million] Savings

PBM CBM Absolute Percentage

New FR 33.43 31.88 1.55 4.64%
New FR + Blade System 33.43 28.59 4.84 5.33%
5 MW Wind Farm 76.45 73.81 2.64 3.45%
Low CFD Price 34.42 32.78 1.64 4.76%
High CFD Price 37.09 35.34 1.75 4.72%
Lower Vessel Costs 31.58 30.48 1.10 3.48%

5.4.3. Discussion

The model presented above has improved on the previous iteration and removed

many of the outstanding issues.

The improved detection profiles have added a more realistic interpretation of CM

capabilities. However, these are only estimations of detection profiles based on con-

versations on developing failures. Further research is required to validate the shapes

of these profiles. The reintroduction of several key parameters used to evaluate how

a CM system work is also an important addition. The model now has the capability to

define the likelihood of false alarms, failures that cannot be detected and the period

of time between detection and failure.

The SIM plan is an important and useful addition to the model, showing how SHM

can both directly effect the operating and the risk based costs. These costs will be of

interest to different users - operators will be interested in minimising operating costs

while insurers or owners will be interested in minimising risk.

The model does well when benchmarked against both real operating cost data and

a standard reference case. It also shows that in the majority of cases tested further

integration of CM and SHM is warranted.

The model is weakest at matching availability levels and the resulting lost produc-

tion levels. As a result these costs should be taken only as indicative of possible

savings. As there is limited benefit in the model for CM systems for minor failures this

is likely to make little difference in the comparison of two maintenance strategies.

It is likely that while previously the model was over-estimating minor downtime it is
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now under-predicting minor downtime. As the model does not allow for simultaneous

failures per turbine, the downtime of major failures reduces the time available for mi-

nor failures to occur. If minor failures accounted for a further reduction in availability

of 4% - a value chosen to bring availability under 90% - then this would equate to an

additional average 7.3 visits per turbine per year. The results for comparison to the

reference case would then be 89.91% availability, with an additional £2,100,000 in

logistics costs, £7,500,000 in lost production costs and minimal impact on the repair

cost. These values, when added to those already in Table 5.14, are all closer to the

reference case ranges.

5.5. Overall Conclusions and Discussion

A model has been developed that is technically novel and allows for the exploration of

factors associated with the deployment of condition monitoring and structural health

monitoring systems. The development of the model has been shown in this chapter.

Table 5.16.: Comparison of Benchmarking Output at Each Stage of Development

Simulation Output Prototype

HMM

Improved

HMM

Initial DBN

Model

Final DBN

Model

Availability - time 83.52% 86.92% 84.74% 93.91%

Annual Lost Production £13.99m £11.17m £12.99m £10.32m

Annual Repair Cost £10.72m £10.06m £3.02m £3.07m

Logistics Cost - £12.19m £7.87m £9.88m

Total £27.71m £33.42m £23.88m £23.27m

The benchmarking data for each model is shown in Table 5.16. Each stage of the

development has built on the strengths of the previous, eliminating multiple issues

and weaknesses culminating in a model that is both flexible and efficient. The model

can be quickly updated for different farms - different failure rates and corresponding

downtimes can be used.

There are several outstanding areas of the model that could be improved. The most

basic would be an improved energy yield model. This would make the lost production

figures more realistic. However, both the PBM and CBM lost production values would
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be improved so it is unlikely to have a significant impact on the cost benefit analysis.

More significant improvements would include the modelling of a logistics fleet, op-

timisation of maintenance actions and seasonality or the modelling of weather and

sea state.

If a dedicated logistics fleet was modelled then maintenance actions could be as-

signed to a particular vessel and real constraints could be realised. This approach

could also be used to optimise maintenance actions. The larger, more expensive ves-

sels could prioritise work as suggested from CM and SHM output. If weather modelling

was added then this would minimise the chance of failure during winter months where

yield is likely to be higher.

However, the addition of these concepts would invalidate one of the major benefits

of the model in its current state. The provision of site specific data from operators -

failure rates and average downtimes for components - allow for realistic prediction

of CM and SHM benefits. The average downtimes from real sources already include

some of the factors mentioned above such as weather, logistics fleet constraints and

others such as supply chain delay times.

It can be argued that the model in its current form is efficient and practical for

addressing issues - most notably the spending of CAPEX and OPEX on CM and SHM

systems - that both owners and operators face in selecting appropriate levels of con-

dition monitoring.

5.6. Chapter 5 References

[5.1] A. May and D. McMillan. “Condition Based Maintenance for Offshore Wind

Turbines: The Effects of False Alarms from Condition Monitoring Systems”. In:

ESREL 2013. Amsterdam, 2013.

[5.2] B. Lapeyre. “Introduction to Monte-Carlo Methods”. Paris, France, 2007.

[5.3] S. P. B. Brooks and A. G. Gelman. “General methods for monitoring conver-

gence of iterative simulations”. In: Journal of Computational and Graphical

Statistics 7 (4 1998), pp. 434–455.

[5.4] P. Lam. Convergence Diagnostics. 2008.

175



[5.5] M. H. Faber. Statistics and Probability Theory. Ed. by A. V. Gheorghe. Springer,

2012, p. 198. isbn: 9789400740556.

[5.6] P. J. Tavner, H. Long, and Y. Feng. “Early experiences with UK round 1 offshore

wind farms”. In: Proceedings of the ICE - Energy 163.4 (Nov. 2010), pp. 167–

181. issn: 1751-4223.

[5.7] C. Bjerkseter and A. Ågotnes. “Levelised cost of energy for offshore floating

wind turbine concepts”. MA thesis. NTNU, 2013.

[5.8] X-Rates. Current and Historical Rate Tables. 2015. url: http://www.xe.com/

currencytables/.

[5.9] R. Williams, C. Crabtree, and S. Hogg. “Quantifying the economic benefits

of wind turbine condition monitoring”. In: Proceedings of ASME Turbo Expo

2014: Turbine Technical Conference and Exposition. Dusseldorf, Germany,

2014.

[5.10] I. Dinwoodie, O.-E. V. Endrerud, M. Hofmann, R. Martin, and I. B. Sperstad.

“Reference Cases for Verification of Operation and Maintenance Simulation

Models for Offshore Wind Farms”. In: Wind Engineering 39.1 (2015), pp. 1–14.

issn: 0309-524X.

[5.11] A. Smith. Capacity factors at Danish offshore wind farms. 2015. url: http:

//energynumbers.info/capacity-factors-at-danish-offshore-wind-

farms (visited on 10/08/2015).

[5.12] R. Lema, J. Nordensvärd, F. Urban, and W. Lütkenhorst. Innovation Path in

Wind Power - Insights from Denmark and Germany. Tech. rep. Deutches In-

stitut fur Entwicklungspolitik, 2014.

[5.13] A. Juhl. TCM ROI - Return On Investment. Manufacturer’s Study. 2010.

[5.14] D. Hatcher and J. Kirsten. “Considerations for Implementing a Highly Avail-

able or Disaster Recovery Environment”. In: SAS Global Forum 2011. Las Vega,

NV, USA, 2011.

[5.15] Noordzee Wind CV. Operations Report 2007. Tech. rep. OWEZ_R_000_20081023.

NoordzeeWind, 2008.

176

http://www.xe.com/currencytables/
http://www.xe.com/currencytables/
http://energynumbers.info/capacity-factors-at-danish-offshore-wind-farms
http://energynumbers.info/capacity-factors-at-danish-offshore-wind-farms
http://energynumbers.info/capacity-factors-at-danish-offshore-wind-farms


[5.16] A. May, D. McMillan, and S. Thöns. “Economic analysis of condition monitoring

systems for offshore wind turbine sub-systems”. English. In: IET Renewable

Power Generation 9 (8 Nov. 2015), 900–907(7). issn: 1752-1416.

[5.17] Mistras Group. One Source for Wind. 410B-14102-01. 2014.

[5.18] B. Morton. “The Value of Early Detection”. In: Wind Tech International (2013),

pp. 27–29.

[5.19] I. Dinwoodie, D. McMillan, M. Revie, I. Lazakis, and Y. Dalgic. “Development of

a Combined Operational and Strategic Decision Support Model for Offshore

Wind”. In: Energy Procedia 35 (2013), pp. 157–166. issn: 18766102.

[5.20] P. J. Tavner. Offshore Wind Turbines - Reliability, availability and maintenance.

1st. The Institute of Engineering and Technology, 2012. isbn: 978-1-84919-

229-3.

[5.21] H. Guo, S. Watson, P. Tavner, and J. Xiang. “Reliability analysis for wind tur-

bines with incomplete failure data collected from after the date of initial in-

stallation”. In: Reliability Engineering & System Safety 94.6 (June 2009), pp. 1057–

1063. issn: 09518320.

[5.22] L. Rademakers. Fibre Optic Load Monitoring of Wind Turbines. Tech. rep. ECN,

2012.

[5.23] GL Garrad Hassan. A Guide to UK Offshore Wind Operations and Mainte-

nance. Tech. rep. Scottish Enterprise and The Crown Estate, 2013.

[5.24] J. Carroll, A. May, A. McDonald, and D. McMillan. “Availability Improvements

from Condition Monitoring Systems and Performance Based Maintenance Con-

tracts”. In: European Wind Energy Association Offshore Annual Conference.

Copenhagen, Denmark, 2015.

[5.25] H. Boudali and J. Dugan. “A discrete-time Bayesian network reliability model-

ing and analysis framework”. In: Reliability Engineering & System Safety 87.3

(Mar. 2005), pp. 337–349. issn: 09518320.

177



[5.26] A. Van Horenbeek, J. Van Ostaeyen, J. R. Duflou, and L. Pintelon. “Quantifying

the added value of an imperfectly performing condition monitoring system:

Application to a wind turbine gearbox”. In: Reliability Engineering & System

Safety 111 (Mar. 2013), pp. 45–57. issn: 09518320.

[5.27] S. Thöns, M. H. Faber, and W. Rücker. “Support Structure Reliability Of Off-

shore Wind Turbines Utilizing an Adaptive Response Surface Method”. In: 29th

International Conference on Ocean, Offshore and Arctic Engineering. Shang-

hai, China: ASME, 2010.

[5.28] European Wind Energy Association. The Economics of Wind Energy. Tech. rep.

EWEA, 2009.

[5.29] Det Norske Veritas. DNV-OS-J101 Design of Offshore Wind Turbine Struc-

tures. 2011.

[5.30] E. Delnooz. “Offshore Windfarm Egmond aan Zee 4 years of Operation”. In:

CUEN Offshore Wind Energy Conference. June. Cambridge, UK, 2011.

[5.31] M. P. de Jong. Results of corrosion inspections offshore wind farm Egmond

ann Zee, 2007 - 2009. Tech. rep. 50863231-TOS/NRI 10-2242. Kema, 2010.

[5.32] Vattenfall Wind Power. Kentish Flats Offshore Wind Farm FEPA Monitoring

Summary Report. Tech. rep. 2009.

[5.33] Oceaneering International Inc. ROV Services Rate Schedule UK & Europe.

Tech. rep. Aberdeen, UK, 2010.

[5.34] Department of Energy & Climate Change. CFD Auction Allocation Round One.

2015.

178



CHAPTER 6

Conclusions

There are many issues involved in operating and maintaining a wind park offshore.

These include offshore weather access issues, obtaining specialist logistics vessels

and the costs of major assembly failures offset against regular and sometimes un-

necessary calendar based maintenance. A methodology for developing a cost ben-

efit analysis for the inclusion of condition monitoring equipment on offshore wind

turbines and using its prediction of assembly condition to aid with maintenance deci-

sions has been presented.

This concluding chapter examines the contents of this thesis including a summary

of all the key conclusions, the explored themes, the major contributions to knowledge

and possible areas that the work can be expanded to either improve it or extend its

use to other parts of the maintenance equation.

6.1. Key Contributions to Knowledge

A novel methodology has been developed that allows for the assessment of the cost

benefit of utilising CM and SHM equipment for offshore wind farms. The methodology

has been built on a strong foundation after analysis of existing literature and consid-

eration of the strengths and weaknesses of this research. Its main areas of novelty
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are as follows:

Adaptable Independent application of CM and SHM systems with different properties

and profiles to individual assemblies.

Flexible Application of multiple CM systems to individual assemblies - each CM sys-

tem can have its own profile and abilities used to show its benefits.

Comprehensive Production of comprehensive annual costs for PBM and CBM strate-

gies for offshore wind - risk, vessel hire, labour, components, lost production

and SIM strategy.

Smaller but also key areas of novelty include:

• The completion of a survey of existing and near production CM technologies

with estimations of their CAPEX and OPEX.

• Several techniques were used to allow CM systems to observe developing faults

several months in advance and as a result reduce vessel costs.

• The formulation and integration of a SIM plan with mechanical component an-

nual inspections to reduce overall operating costs.

The key benefits of the model are shown in Figure 6.1. The model produces a break-

down of costs that can be used to compare maintenance strategies. The model re-

quires simple wind farm data and information about the desired CM and SHM system.

If information is not known estimates can be used. The result is a tool that can show

the possible benefits of CM and SHM integration.

6.1.1. Benefits for Operators and Owners

This flexible and comprehensive overview of OPEX costs offers a means to help both

wind park operators and owners assess their decisions throughout an operating wind

park’s lifetime.

An operator can use this model to assess the value of service contracts that are

offered from OEMs. If choosing to deploy additional CM/SHM hardware, the effects
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Basic Failure Data: Downtime and failure rate per
assembly are required

Maintence Strategy: The current maintenance
strategy and the alternative strategy are described

CM and SHM The CM and SHM systems to be
used are described in detail

Possible Savings: Simulations are used to calcu-
late possible savings, with a breakdown of costs
for lost production, replacement parts, logisitics
and SIM plan

Figure 6.1.: Summary Diagram of the Model Benefits

on key operating parameters could be estimated and service providers can be held

accountable for deviations in performance.

Various situations can be explored for modifying maintenance strategy, including

when and to what extent to deploy CM systems. If an owner decides to deploy CM im-

mediately, in tandem with a manufacturer monitoring program and service contract,

then operating experience can be gained. The performance of the turbine can be

benchmarked for several years and used to ascertain when components are operat-

ing in an unusual manner. This information could show that it is worthwhile assuming

the risk of managing maintenance in-house.

CM/SHM systems could be deployed later in the life of the wind park. This could be

used to aid in the extension of the life of assets or to help reduce risk as they come

out of warranty.

6.2. Themes Explored

The key theme explored in this thesis is how one can define and analyse the capacity

and capabilities of CM and SHM systems.
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There are few forms of analysis that have been completed that allow for a full de-

scription of CM equipment to be developed for offshore wind. The information avail-

able in respect of the capabilities of CM equipment is normally restricted to particular

failure modes rather than the total number of failures occurring.

In the final presented model, a P-F curve has been used to allow for times between

a fault being detected and that fault causing a failure to be simulated. An effective-

ness value allows for the number of detectable failures with a CM system to be ob-

served and a reliability value allows for false alarms to be generated in simulations in

a natural way. This approach benefits from being flexible and easy to update as new

information becomes available.

The field of SHM analysis and simulation is slightly more advanced and one can

model the reduction in uncertainty. However, a conclusion that has clearly emerged

from this thesis is the difficulty in aligning maintenance strategies of structural and

mechanical assemblies. This may be due to the difference in timescales of the operat-

ing lives of the components and the different goals of asset operators and owners. For

example, an operator may not be interested in expensive monitoring campaigns that

will only really begin to show value late in the life of the asset - their focus is much

more short term and on ensuring the asset is available for generation. There are

many opportunities that could be taken advantage of to harmonise the regular me-

chanical component access to the turbine and the more infrequent access required

to complete structural assessments. The major benefit in this thesis shown for SHM

is risk reduction which is of particular interest to an asset owner. It is through knowl-

edge gained from SHM systems, with integration and feedback to operators, owners

and insurers, that further cost of energy savings for offshore wind can be made.

Analysis completed on existing wind parks across the North Sea has shown that,

overall, the expected increase in failure rate towards the end of life has not been

observed. This simplifies the modelling process and appears to confirm research in

other fields that suggests the typically used ’bath-tub curve’ is useful for individual

components but not the complicated combined electrical, mechanical and structural

system that is a wind turbine.
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6.3. Summary of Thesis

The major issues facing operators and owners in maximising their return on invest-

ment for offshore wind deployment are introduced in Chapter 1 with a focus on the

difficulties in completing maintenance actions. This sets out the scope and definition

of the project that formed the basis of this thesis.

Chapter 2 defined key indicators of reliability and showed the importance of taxon-

omy in understanding these key indicators between different wind parks and turbines.

Chapter 3 gave an overview of the key methods of modelling the deterioration of

mechanical and structural components as used in this thesis. It also expanded upon

these deterioration methods to show how monitoring equipment could be integrated

for use in simulations. These methods of CM integration were documented previously

but the combination of several methods is theoretically novel.

Chapter 4 developed a cost benefit analysis that can be used to assess an offshore

wind farm utilising CM and SHM equipment. It begins by showing how this has been

achieved by examining other maintenance literature both generically and specifically

for wind. It shows the 4 major cost components associated with annual operating

costs and the different ways that these costs could be reduced by using said monitor-

ing systems.

Chapter 5 details a suitable methodology for combining the analysis from the 3

previous chapters into a probabilistic simulation model to give an output that sug-

gests the possible benefits and disadvantages of implementing CM and SHM with the

output as annual operation figures. The outputs are investigated, compared to the

results of similar models in a reference case and the implications suggested. The

imperfections of the model are shown and improvements are suggested and applied.

The evolution of the model is shown and the effects on the output are analysed.
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6.4. Key Results

6.4.1. Markov Models

Initial results from a prototype model using Markov models to deteriorate assemblies

showed the possible benefits of having CM and SHM systems. This model suggested

that by applying effective theoretical CM and SHM systems across all of the turbine’s

systems large savings in excess of 40% of the lifetime levelised costs could be ob-

served compared to using a preventative based maintenance approach with limited

CM applied. Smaller but significant savings are still possible even with a much lower

effectiveness rate.

The same model was used to examine the effect of false alarms. Increases in false

alarm rates have notable impacts on availability and costs. In this thesis, decreasing

CM reliability values have been used to represent this increasing rate. A decrease

from 99% to 70% in CM reliability shows a decrease in wind farm availability of ap-

proximately 0.5% from ∼88.8% to ∼88.3%. However, these impacts were far out-

stripped by the benefits from the CM systems (>1%).

These suggested savings were worth investigating further by improving the model

so that it gave more detailed cost breakdowns and more accurately represented off-

shore maintenance actions. The focus of this model was accurate representation of

commercially available and near-market CM systems with improved logistics mod-

elling costs. Additional CM systems were added in order to improve detection capa-

bilities and the hazard function was allowed to change over time.

The improved model showed similar trends to the prototype model but significantly

smaller overall savings - 15% compared to 25% with a CM system used on the gear-

box, drivetrain and generator - and was closer to other offshore wind O&M simula-

tion reference cases. Increasing the effectiveness of the CM system monitoring the

3 drive train assemblies by adding additional CM systems increased the lifetime sav-

ings to approximately 30%. The addition of blade monitoring systems also showed

increased savings. The more faults that a CM system was able to detect substantially

in advance of failure created minor increases in savings.

For comparison, in the work of Williams, Crabtree, and Hogg [6.1], the authors pre-
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dict a relative saving of 34% using a theoretical CMS over the lifetime of the wind park

across all assemblies. This is when the CM system can reduce catastrophic failures

to major by 75% and reduce major failures to minor by 25%. If the capabilities of the

CM system are lowered so that they can only provide a 25% reduction of catastrophic

failures to major failures then this becomes a 4% saving.

6.4.2. DBN Models

Two points from the previous work were highlighted for further investigation: (1) to

capture the benefits of SHM, it had to be modelled in an alternative fashion and (2)

the time from detection until failure was not being modelled in a realistic fashion.

The reduction in risk is a benefit of using SHM that was not captured in the model

and the initial expense of SHM made it appear as a disadvantage. A new risk based

model and a SIM plan were developed to try and observe the changes in risk.

Instead of a CM effectiveness value, a P-F curve with linear detection profiles was

used that more naturally captures the combination of effectiveness and the time be-

tween the CM system alert and the failure occurring. The opportunity was taken to

adapt the model to use DBNs and to limit the deterioration of other assemblies on a

particular turbine when it is not operating.

The final evolution of the model improved the SIM plan based on reviews of com-

mercially available SIM plans. This version also saw full integration of parts that had

not been previously transferred from the Markov model to the DBN model including

CM capabilities and an age specific hazard function.

This model gave outputs that fell within the simulation reference case for most

values. The levelised lifetime costs for this model showed savings of around 4.7%

without a SHM system and using a basic SIM plan. This increased to 5% with the SHM

system and utilising an advanced SIM plan. This increased to 5.7% when a blade CM

system is added to the farm.

In Wiggelinkhuizen et al. [6.2], repair costs are reduced by between 17% and 9%

at 80% CM effectiveness for a range of false alarms per year. The lost production

values reduce by between 15% and 7% for the same values. The final presented

model suggests an 8% reduction for the repair costs and 4.6% reduction for lost
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production per annum.

6.5. Future Possibilities and Work

Ways in which the model could be altered to offer improvements or used to explore

different areas have been highlighted in Chapter 5. In this section these alterations

are revisited and expanded. It also highlights areas in which greater knowledge about

various elements of the model could greatly improve either its accuracy or flexibility.

6.5.1. Advanced Financial Modelling

As has been discussed previously, the financial market that wind generators operate

in is fluid and subject to market and governmental changes. Currently, the model

assumes stationary conditions. Allowing greater flexibility in simulations to adapt

electricity price and ROC levels would allow operators and owners to factor in this

fluidity.

6.5.2. Additional Failure Modes

If further information becomes available about the capabilities of CM systems and the

detection profiles then this could easily be incorporated into the model. One assembly

could have multiple failure modes with different detection profiles. The failure mode

for the assembly could be selected at failure by using the rate of occurrence of the

failure modes.

6.5.3. Varying Maintenance Strategies

One of the major assumptions of the model is that minimal CM and SHM equipment

are installed on the wind farm that the failure data is obtained from. However, the

model could also be used to see where further CM and SHM would be useful. The

model is built to compare two strategies regardless of which two these are. In this

thesis, the base strategy has always been a PBM - utilising SCADA - but this can be

adapted to represent a wind park with CM installed and the second strategy could

have additional CM systems installed for comparison.
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In highlighting this option, there is further opportunity to explore the Egmond aan

Zee data. Egmond aan Zee have and use SCADA data and like all Vestas V90 turbines

have a Vestas CM system installed. It was assumed that the long downtimes associ-

ated with gearbox and generators had rendered the CM system of limited use in the

3 years of operation. It was suggested in 2009 that the data from early offshore CM

systems, including Egmond aan Zee, could be improved and allow for better integra-

tion of this data into maintenance [6.3]. If the model is adapted to deal with different

maintenance strategies then this assumption could be examined.

6.5.4. CM and SHM Optimisation and Decision Support

The next step that could be achieved after completing the previous step would be

to create an optimisation algorithm. This algorithm would analyse all possible CM

and SHM options before suggesting the optimum solution. This optimisation should

be based on the Value of Information as described in Thöns and Faber [6.4]. Taken

further, different levels of CM could be implemented at different stages of the life of

the wind park. This would allow operators to plan for different scenarios, such as

when wind farms go out of warranty, to allow them to assess the different levels of

risk they will take on.

6.5.5. Fleet Leader Concept

“Fleet leader” is a concept that is often discussed as a way to gain condition informa-

tion for a wind park using an expensive and extensive instrumentation on only a few

wind turbines in the wind park [6.5]. All turbines would still have SCADA and some CM

systems - such as a vibration system on drive train, gearbox and generator - installed

on them. Fleet leaders could have extended CM systems such as AE, blade monitoring

systems and a wide deployment of SHM. How the additional information from a fleet

leader is used to manage the condition of all assets would need to be determined but

this concept could easily be applied to the model to reduce CAPEX and the impacts

on on-going maintenance.
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6.5.6. Integration with Logistics Modelling

A major alteration that would allow for more accurate and interesting results would

be to model a dedicated logistics fleet. This would allow for realistic vessel con-

straints to be observed as well as additional modelling of weather windows at a site.

However, there has been much work conducted in this field already by those such as

Dinwoodie et al. [6.6] and Braam et al. [6.7] and in optimising vessel fleet type and

size by Dalgic et al. [6.8]. In this situation it might be more valuable to find a way

to integrate the condition monitoring modelling components presented in this thesis

into these models.
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APPENDIX A

Egmond aan Zee Failure Data

The aim of this section is to show the techniques used to derive failure rates from the

operational reports provided from Noordzee Wind CV for the years 2007 [A.1], 2008

[A.2] and 2009 [A.3] and how this compares to other available sources of operational

data from different wind parks. It does this both for the early operational years and

for the changes over the life of the wind park. The method described is based on the

work of Dinwoodie, McMillan, and Quail [A.4].

A.1. Report Information

The reports give an overview of the performance of the wind park including availabil-

ity and production. Importantly the total number of stops, downtime, and lost pro-

duction is displayed per subsystem. This is shown in Table A.1. The type of stop is not

recorded. Stops can include those that require significant physical intervention by an

operator or are reset by the control room and cause almost no downtime. There are

estimates on the number of visits to wind turbines and the resulting offshore person-

nel transfers to turbines. The last part of interest to a reliability engineer is work and

construction notes, highlighting major ongoing projects to improve the wind park.

The taxonomy of turbines in these reports is different from the one detailed in Chap-
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ter 2 and before use with the model the failure rates are transcribed into the thesis

standard taxonomy.

Table A.1.: The Combined Performance Statistics of Egmond aan Zee for 2007-2009
per Assembly

Category

Lost

Production

[MWh]

No. of Stops Downtime [h]

Ambient 4,489 1,204 1,788
Blade system 3,714 180 3,228
Brake system 567 40 320
Control system 23,357 8,788 17,912
Converter 14,279 644 6,869
Electrical 3,796 615 3,840
Gearbox 134,998 1,607 104,367
Generator 42,404 682 28,333
Pitch system 15,762 2,145 9,303
Scheduled service 6,918 3,522 10,015
Yaw system 3,437 4,810 1,645
Structure 448 173 823
Grid 95 68 750

Total 254,264 24,478 189,192

There are approximately 800 vessel visits to the wind farm over the three years with

the vessels visiting 1.5 turbines on average per trip. According to the reports, crews

were “performing inspections, scheduled service, unscheduled service and punch list

activities”. Punch list activities are described as on-going construction items - such

as laying concrete slabs to protect sub-sea cables. Inspections, punch list activities

and some scheduled maintenance do not require there to have been a failure nor

would they cause downtime. As a result it has been assumed that on average vessels

makes a corrective action for a turbine once per visit. This gives an average of 7.4

visits per turbine per year.

The average number of failures per turbine per year are shown in Table A.2. The

ratio of the number of stops per assembly is also shown - “Failure Ratio”. It is this

number that is multiplied by the average number of visits per turbine to give the in-

tervention failure rate, λ. The downtime per turbine per year is also presented in

the same table. The downtime per turbine per year figure is then divided by the in-

tervention failure rate to give a scaled downtime. Alternatively, some of this data is
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presented in Figure A.1 which compares the failure rates to the hours of downtime per

failure.

Table A.2.: Adjusted Failure Rates for Egmond aan Zee for 2007-2009

Category Failures/

Turbine/

Yr

Failure

Ratio

Inter-

vention

λ

Downtime/

Turbine/

Yr [h]

Scaled

Down-

time

[h]

Ambient 11.15 0.05 0.36 16.6 45.52
Blade system 1.67 0.01 0.05 29.9 549.44
Brake system 0.37 0.00 0.01 3.0 245.05
Control system 81.37 0.36 2.66 165.8 62.42
Converter 5.96 0.03 0.19 63.6 326.82
Electrical 5.69 0.03 0.19 35.6 191.33
Gearbox 15.21 0.07 0.50 966.4 1946.47
Generator 6.31 0.03 0.21 262.3 1273.03
Pitch system 19.86 0.09 0.65 86.1 132.89
Scheduled service 32.61 0.14 1.06 92.7 87.41
Yaw system 44.54 0.20 1.46 15.2 10.48
Structure 1.60 0.01 0.05 7.6 145.75
Grid 0.63 0.00 0.02 6.9 337.92

Total 226.98 1.00 7.41 1751.8 -

The final stage is to generate ’Major’ and ’Minor’ failure rates. The defining char-

acteristic of a minor failure is that it takes less than 24 hours to clear. The expected

downtime for a minor yaw fault was significantly less than 24 hours and so was set at

6 hours [A.4]. The distribution of Minor and Major failures and their downtime is given

in Faulstich, Hahn, and Tavner [A.5] and is shown in Figure 2.3. The ratio between

Major and Minor failures is used to create the information shown in Table A.3.

A.2. Early Operational Issues at Egmond aan Zee

There are several important operational issues that occurred at Egmond aan Zee over

the three years of this data that should be discussed. These issues mean that the

data from this time period will not reflect on new wind parks without these defects

or for the remainder of the Egmond aan Zee’s operational life. Understanding these

issues can allow for failure data to be produced that does not have these failures and

can be used to represent new wind parks or parks that are not Egmond aan Zee.
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Figure A.1.: Rate of Failure vs. Hours Lost per Failure

One of the most interesting (from a maintenance model designer’s point of view) is

the very high gearbox and generator downtimes. The below is a quote from the 2007

report regarding gearbox wear:

“During July, the remote control system on one of the turbines

showed a so-called “swarf” alert, implying that there was a higher

than expected metal content in the lubrication oil of the gearbox....

During the following months, thirteen more wind turbines followed

the same pattern.”

- Noordzee Wind CV [A.1]

Analysis of the faults showed that unexpected wear was occurring across the gear-

box. The operators decided to replace all the gearboxes that showed this warning

with a different type and began a replacement program in mid October. They were

able to exchange 10 gearboxes and get 5 wind turbines operational again before the

end of the year. During 2008 it became clear that the “swarf” alert would affect all

gearboxes and they would all need to be replaced but poor vessel availability did not

allow this to be completed in 2008. The replacement of all gearboxes was finished by
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Table A.3.: Major and Minor Failure Rates for Egmond aan Zee for 2007-2009

Category Modified Failure Rate Modified Downtime [h]

Minor Major Minor Major

Ambient 0.000 0.364 - 43
Blade system 0.045 0.010 24.00 2977
Brake system 0.009 0.003 24.00 1130
Control system 2.100 0.556 24.00 292
Converter 0.154 0.041 24.00 1397
Electrical 0.147 0.039 24.00 886
Gearbox 0.331 0.165 24.00 5786
Generator 0.131 0.075 24.00 3465
Pitch system 0.519 0.130 24.00 598
Scheduled service 0.000 1.064 - 87
Yaw system 1.050 0.404 6.00 37
Structure 0.042 0.010 24.00 725
Grid 0.016 0.004 24.00 1673

the 3rd quarter of 2009.

Generators also started to have major failure modes. There were 2 in 2008 and 8

in 2009 all with significant downtime - partially caused by the same jack up vessel

constraints.

As detailed in Det Norske Veritas [A.6] in mid 2009 the industry became aware of

a design issue with the grouted connection between the turbine transition piece and

monopile foundations. A schematic of the grouted connection is shown in Figure A.2

[A.6]. The grout had been seen to fail causing the turbine to slip and rest on the

jacking brackets - which had been designed only for temporary support during instal-

lation. There were no immediate concerns regarding the safety of the assets but sev-

eral operators, including those at Egmond aan Zee, ordered repairs [A.3] and some

installed monitoring systems [A.7]. There were repairs made to the transition piece in

2009 of 3 turbines and the remaining 33 turbines were scheduled to be completed in

2010 with “minimal impact on downtime”.
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Figure A.2.: Grouted Connection in Monopile Structure [A.6]

A.3. Comparison to Other Offshore Wind Parks

A.3.1. Downtime

While Egmond aan Zee is one of the most useful data sets available for offshore wind,

there are other less complete data sources from other farms. This data can be used

to verify how representative the data from Egmond aan Zee is.

The percent downtime caused per subsystem for both Egmond aan Zee and Horns

Rev in Denmark is shown in Table A.4. The 3 or 4 highest values are highlighted. The

information for Horns Rev is from the work of Besnard [A.8]. Horns Rev 1 is 15-20km

off the west coast of Jutland and consists of 80 2 MW Vestas V80 turbines and the

data is from 2009-2010. The numbers were estimated by the author based on the

best information available and has been converted as much as possible to match the

Egmond aan Zee category taxonomy.

It is the gearbox and electrical issues that are most prominent for Horns Rev. The

converter, generator, control system and blade system are also significant contrib-

utors to the downtime. The V80s suffered severe electrical transformer issues as a

result of using “dry-type“ transformers which suffered seismic vibration fretting. Vi-

bration damage also effected the generators and there was damage seen on gears

and bearings [A.9].
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Table A.4.: Egmond aan Zee vs Horns Rev - Proportion Downtime per Subsystem

Category Proportion of downtime Ratio

Egmond aan
Zee

Horns Rev

Blade system 1.82% 8.00% 4.40
Brake system 0.18% 1.00% 5.56
Control system 10.10% 8.00% 0.79
Converter 3.87% 9.00% 2.33
Electrical 2.16% 23.00% 10.65
Gearbox 58.84% 33.00% 0.56
Generator 15.97% 9.00% 0.56
Pitch system 5.24% 6.00% 1.14
Yaw system 0.93% 2.00% 2.15
Structure 0.46% 0.00% 0.00
Grid 0.42% 1.00% 2.38

The table highlights the dominance of the gearbox and generator issues mentioned

above in the total downtime for Egmond aan Zee. The only other assembly with more

than 6% of the downtime is the control system.

If the gearbox and generator downtimes are reduced by 50% then their ratios com-

pared to Horns Rev increase to 0.67 (49.11%) and 0.68 (13.33%) respectively.

A.3.2. Availability and Capacity Factor

The most freely available information for offshore wind is the availability and capacity

factor. The Round 1 offshore wind farms in the UK - Scroby Sands [A.10, A.11, A.12],

Kentish Flats [A.13, A.14, A.15], North Hoyle [A.16, A.17] and Barrow [A.18, A.19] -

produced annual reports for the first few years of operation each stating capacity

factor and availability. Further capacity factor data for the UK sites is available from

other sources such as the Renewable Energy Foundation [A.20] and is reviewed by

Crabtree, Zappala, and Hogg [A.21]. Annual capacity factor data for four Round 1 UK

sites is shown in Figure A.3.

The Danish Energy Agency (Energistyrelsen) keeps a register of all grid connected

wind turbines and their output. If this is combined with information from the Danish

transmission owner (Energinet.dk) then the capacity factor can be obtained [A.22].

Four of the older Danish wind parks’ annual capacity factors are shown in Figure A.4.
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Figure A.3.: Capacity Factor Over Time for UK Round 1 Wind Parks

There appears to have been significant learning from the early Danish and British

wind farms. Anholt I is a Danish wind park that produced significantly higher capacity

factors in its first years - beginning operation in 2013 - than the others and has had

far fewer technical issues than the earlier wind farms as detailed in Feng et al. [A.23].

Horns Rev is now 13 years old and had a capacity factor over 45% last year and it is

the Horns Rev extension - Horns Rev II - that has the highest annual capacity factor

of 51.2% in its 7th year of operation.

Figure A.5 shows the averaged annual capacity factor for the 8 UK and Danish

wind parks. These values have been normalised against the lifetime average capacity

factor for each wind park. It shows an increase of 30% in annual capacity factor over

the first 5 years of operation. The capacity factors remain fairly consistent for the

next 15 years.

The figure shows a marked increase in capacity factors for the first few years and

this level remains constant for most of the life. As highlighted in Crabtree, Zappala,

and Hogg [A.21] the Round 2 UK wind parks have immediately had higher capacity

factors than their Round 1 equivalents. The same seems true for Danish farms. An-
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Figure A.4.: Capacity Factor Over Time for Selected Danish Wind Parks

holt I, as a relatively recent commission, has only seen slight increases in capacity

factor in its early life and a lifetime capacity factor of 48.2%.

Vindeby is the earliest offshore wind farm from Denmark. It has the lowest recorded

capacity factor over the last 12 months of 20% in its 25th year of operation. However,

its lifetime capacity factor is 23% and it has never produced greater than 30% annual

capacity factor [A.22].

The availability data for the Dutch and early British wind farms is shown in Table

A.5. Here the myriad of issues mentioned above can be seen. Availability has been

defined previously in Chapter 2. Technical availability is the proportion of time that

the turbine is available out of the theoretical maximum and commercial availability

allows for reduction in the maximum due for agreed reasons - weather, servicing etc.

Availability in almost all cases reduces in the second year of operation but by the

third operating year is higher than the first. In the table, all the availability rates are

commercial availability excluding Barrow which is noted as technical.
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Figure A.5.: Capacity Factor Normalised Against Lifetime Average for Selected North
Sea Wind Parks

Table A.5.: Availability Figures for Early Offshore Deployment

Operating Year 1 2 3

Egmond aan Zee 81.40% 76.30% 83.50%
Scroby Sands 84.18% 81.00% 87.00%
Kentish Flats 88.00% 73.50% 89.20%
North Hoyle - 89.10% 87.40%
Barrow 67.00% 78.00% -

A.4. Modifying Existing Data to Generic Data

Assuming that it took visits every day for 25 days to replace 10 gearboxes and get 5

of these replacements fully operational (based on the first round of replacements in

2007) then this could represent, 1 visit to prepare the old gearbox for removal, 1 visit

to exchange gearboxes and 1 additional visit to commission the new gearbox. If the

same work is required to replace a generator then this would mean 138 visits to the

wind farm would be removed.

Reducing the downtime and number of stops is harder to estimate.

Generators caused a combined 3,090 hours of downtime in 2007 and increased
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to 14,000 in 2008 and 11,000 in 2009. If all generators operate normally then a

downtime of 3,090 hours a year is assumed. The total number of generator stops

was reduced by 30 - assuming that 3 stops were registered regarding this failure for

the 10 replaced generators.

Gearbox issues effected each operational year for Egmond aan Zee. The lowest

value recorded was 29,000 hours and the highest 44,500. An estimation of what a

good operational year looks like is taken as 20,000 hours for the farm. The number

of stops are also reduced by 108 for the reasons given above.

Structural downtime is assumed not to change - even with the issues noted above

- as it forms such a small part of the total downtime.

The Table A.2 is repeated below in Table A.6 taking into account this modified data.

The failures per turbine per year are reduced from 7.41 to 6.13. Additionally, down-

time per turbine per year is also reduced from 1751.8 hours to 1164.5. These are

significant reductions of 18% and 34% respectively.

Table A.6.: Reduced Failure Rates for Modified Egmond aan Zee Data

Category Failures/

Turbine/

Yr

Failure

Ratio

Inter-

vention

λ

Downtime/

Turbine/

Yr [h]

Scaled

Down-

time

[h]

Ambient 11.15 0.05 0.30 16.6 54.49
Blade system 1.67 0.01 0.05 29.9 657.74
Brake system 0.37 0.00 0.01 3.0 293.36
Control system 81.37 0.36 2.22 165.8 74.77
Converter 5.96 0.03 0.16 63.6 391.25
Electrical 5.69 0.03 0.16 35.6 229.05
Gearbox 13.55 0.06 0.37 555.6 1504.42
Generator 5.85 0.03 0.16 85.8 538.05
Pitch system 19.86 0.09 0.54 86.1 159.09
Scheduled service 32.61 0.15 0.89 92.7 104.31
Yaw system 44.54 0.20 1.21 15.2 12.54
Structure 1.60 0.01 0.04 7.6 174.48
Grid 0.63 0.00 0.02 6.9 404.54

Total 224.85 1.00 6.13 1164.5 -
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A.5. Conclusions

The operational data used in this thesis from Egmond aan Zee does appear to be in

line with other offshore wind farms in the first few years of deployment for the middle

to late 2000s and is relevant for simulating these types of wind parks. It also makes

it seem logical that after the early defects presented in the data that failure rates

would decrease and the capacity factor would increase. This is reinforced with longer

operational evidence presented in this Appendix.

If actions are taken to remove the impact of the gearbox and generator replace-

ment and then show some overall learning, it may be possible to estimate the failure

rates for more recent periods of operation. These values, and some learning, could

be used as the starting point for a new wind farm to be deployed in the coming years.

This has been presented in Table A.6.
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APPENDIX B

Literature Categorisation

The following appendix contains a visualisation of the categorisation of the literature

presented at the start of Chapter 4.
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APPENDIX C

FMEA

This appendix shows how costs are estimated for various failures and failure types in

the model. Two FMEAs of wind turbines are used from General Electric Company and

Bharatbhai. These are mapped to the WMEP taxonomy as detailed in Faulstich, Hahn,

and Tavner and are as described in Chapter 2. They show the FMEA unit, its failure

mode and the effects of the failure, if any, on the operation of the turbine. It is noted

if the failure can be detected by either SCADA or CM/SHM systems.

Finally, the four categories of failure are shown for use with the model - these are

major failures detected in advance by a CM system and without a CM system and

minor failures detected in advance by a CM system and without a CM system - with

the components that fail in each assembly based on the parts list outlined in Poore

and Walford.

Reading the Table

The components that have been identified as likely to require replacement depending

on the failure type are shown in the appropriate column for each assembly. The jus-

tification for the highlighted components is based on the FMEA which is shown on the

right half of each table.
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For example, if the drive train in a turbine suffers a major failure (Table C.3.) then

the components that will need to be replaced are the main bearing and high speed

coupling. If the major failure is detected in advance by a CM system then only the

high speed coupling will need to be replaced.
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C.1. Gearbox

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Gears Gearbox Tooth Failure Vibration
damage

Vibration

Bearings - high
speed only

Bearings all Bearing Failure Vibration
damage

Vibration and
Oil

Lube pumps Lube pumps Lube pumps Lube pumps Lubrication Oil Loss Bearing life Oil & SCADA
Oil Overheat Bearing life Oil
Oil under
temperature

Oil damage Oil

C.2. Generator

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Rotor Generator Overheat Decreased
insulation life

Temp

Bearings Bearings Fault Fire damage Temp
Bearing jam Bearing life Vibration

Coolant Coolant Coolant Coolant Excitator No/Reduced
output

Overheating Temp

Contactor Stabiliser
circuit

No signal Loss of syn-
chronisation

Damage to
drivetrain

2
0

9



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Soft starter Protection
relays

No operation Breaker fails &
Shutdown

Electronics Electronics Electronics Electronics Synchroniser No output Can’t start
Motor control No output No startup
Battery back
up

Loss of DC
voltage

Trip power

C.3. Drive Train

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Main bearing Main bearing Fails Vibration Oil & Vibration

Drive Shaft Fracture Shutdown Vibration

LS Coupling Slip Fracture Drive
Shaft

Vibration

Bolt failure None Inspection

Slip Clutch Fails Shaft/LS
Coupling
Failure

SCADA

Slips a lot Overheating SCADA

HS Coupling HS Coupling HS Coupling HS Coupling HS Shaft
Assembly

Fracture Gearbox
damage

SCADA

2
1

0



C.4. Rotor Hub

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Blade bearing Blade bearing Blade Bearing Surface break
up

Roughness None

Structural Fail Less blade
restraint

Rotor
Vibration

Hub Hub Hub Assembly Structural Fail Blades
separate

Rotor
Vibration

Bolt failure None Inspection
Oil Seals Cut and wear Hydraulic loss Low oil
Torque Plate Structural Fail Less hub

restraint
Rotor
Vibration

Loss of torque None Inspection
Rod End
Bearing

Linear Wear Shock in Pitch Inspection

Structural Fail Loss of pitch
control

Rotor
Vibration

Pitch drive Rod Structural Fail Loss of pitch
control

Rotor
Vibration

Adjusting Nut Adjusted Wrong pitch Inspection
Stud Loose preload None Inspection
Link Structural Fail Wrong pitch Rotor

Vibration
Jam Nut Loose preload Fretting Inspection
Support Beam Structural Fail Wrong pitch Rotor

Vibration

2
1

1



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Pitch cylinder
& linkage

Actuator
Sleeve

Structural Fail
of link

Wrong pitch Rotor
Vibration

Pitch position Pitch position Pitch position Pitch position Structural Fail
of pitch rod

Uncontrolled
pitch (1 blade)

Rotor
Vibration

Structural Fail
of sleeve

Uncontrolled
pitch (All
blades)

Rotor
Overspeed

Pitch Change
Bearing

Breakup of
Rollers

Roughness None

Pitch gear Pitch gear Thrust Ring Structural Fail
of link

Wrong pitch Rotor
Vibration

Pitch motor Pitch motor Structural fail
of actuator

Lower
actuator fail

Rotor
Vibration

C.5. Rotor Blades

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Retention
Bolts/Studs

Fails None Inspection

Blade
Structural

Blade
Structural

Spar Crack Blades
separate

Rotor
Vibration

Blade Non-
Structural

Blade Non-
Structural

Spar ring Crack Blades
separate

Rotor
Vibration

2
1

2



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Spar tie Fails Blade
unbalance

Rotor
Vibration

Tip weight Fails Blade
unbalance

Rotor
Vibration

Spar valve Fails ON Blade damage Inspection
Fails OFF Blade damage Inspection

Lightning
Protection

Fails Blade may
become
damaged

Inspection

C.6. Yaw System

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Yaw gear Yaw bearing Bearing failure Increased
power
consumption

Yaw error
SCADA

Yaw calliper Yaw calliper Yaw calliper Yaw drive
motor

No torque No yaw Yaw error
SCADA

Sliding pads Sliding pads Sliding pads Pinion Fails No yaw Yaw error
SCADA

Bearing Bearing Coupling Fails No yaw Yaw error
SCADA

2
1

3



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Pinion
bearings

Fails Increased
power
consumption
& Damage to
whole
structure

Brake calipers Damage /
inclusion

Slow yaw Yaw error
SCADA

Ice Reduced
braking torque
and Increased
excitement -
structural
loads

Vibration

Yaw brake
release

Fail OFF Park brake
remains off

Yaw drive
pressure

Fail ON No yaw Brake status
Leakage None None Pressure

switch
Motor control
valve

Fails OFF No power

Fails ON Always
attempts to
yaw & Damage
to hydraulic
system

Yaw error

C.7. Mechanical Brake

2
1

4



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Brake calliper Brake calliper HS shaft brake Low torque None None
Brake pads Brake pads High torque Larger torque

& Increased
excitement -
structural
loads

Yaw error
SCADA

HS Shaft brake
control

Fail ON Brakes locked
& Emergency
shutdown

Fail OFF No breaking &
No shutdown

C.8. Electrical System

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Main
contactor

Main
contactor

Main
contactor

Main
contactor

Utility No voltage /
loss of phase

No power
exchange

Shutdown

Circuit breaker Circuit breaker Utility recloser Out of sync Current &
torque surge
& Fatigue
increase on
generator

Step up
transformer

Overheat Decreased
insulation life

Oil Temp

2
1

5



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Loss of phase Motors
overheat &
Shutdown

Aux Supply Overheat Decreased
insulation life
& Shutdown

Loss of phase Overheat &
Shutdown

Main breaker No close Can’t start or
Shutdown

No open Slip coupling
overheats &
Shutdown

Close or open
at wrong time

Generator
damage &
Shutdown

Slip ring Jammed Higher torque None
Fault / noisy
signal

Breaker opens
& Shutdown

C.9. Electrical Control

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Module Module Module Module Primary blade
control system

Fails Blade damage Rotor
Vibration

2
1

6



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Boards all Boards all Nacelle
Control

Fails Shutdown /
Damage

C.10. Sensors

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Static sensor Static sensor Static sensor Static sensor Low oil temp
switch

Fails ON No power &
Can’t start

Dynamic
sensor

Dynamic
sensor

Fails OFF Pump damage
& Slow
response

Low oil level
switch

Fails ON No power &
Can’t start

Fails OFF None None
Inadvertent
close

No power &
Can’t start

LP alarm
switch

Fails OFF No power &
Can’t start

Fails ON None None
Inadvertent
close

False
indication &
Shutdown

Pump failed
alarm switch

Fails OFF Shutdown

Fails ON None None

2
1

7



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Emergency
feather
accumulator
pressure
switch

Fails ON None Inspection

Fails OFF Can’t start
Inadvertent
close

Shutdown

C.11. Hydraulic System

(including yaw hydraulics)

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Accumulator Accumulator Accumulator
Charging
Pump

Lack of Flow Inability to
pitch

LP Alarm

Hydraulic
pump

Hydraulic
pump

Hydraulic
pump

Hydraulic
pump

Charge pump
unloading
valve

Fail ON Hydraulics
down

Oil temp

Hydraulic
valve

Hydraulic
valve

Fail OFF Accumulator
discharge &
Shutdown

SCADA

Slew Pump Lack of Flow Slewing
disabled

SCADA

2
1

8



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Excessive
Pressure

High power
consumption
& Wrong pitch

Oil temp

Unloading
valve control
switch

Fail ON Main
accumulator
depleted

SCADA

Fail OFF Relief valve
opens

Oil temp

Emergency
Feather
Accumulator

Air leak Loss of
feathering
pressure

LP Alarm

Piston seal
leak

Air entering
fluid

Reduction of
stiffness

Hydraulic Fluid
Heater

Open circuit Pump failure
below -17.7 C

Low temp

Main
accumulator
flow pressure
regulator

Stuck open Higher slew
rates

SCADA

Stuck closed Slewing
limited & Pitch
slow

SCADA

Body leakage Fluid depletion
& Shutdown

SCADA alarm

PCM Servo
valve

Fails Uncontrolled
movement &
Shutdown

2
1

9



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Slews to one
side

Uncontrolled
movement &
Shutdown

PCM Main
accumulator

Loss of
pressure

Slewing
limited

SCADA

Feathering
flow control
valve

Flow doesn’t
vary

Slewing
constant

Rotor
Vibration

Feather valve Fail OFF Feather issues None
Fail ON Feather issues

& Shutdown
Inadvertent
open

Feather issues
& Shutdown

SCADA

Feather
solenoid valve

Fail ON None None

Fail OFF Shutdown SCADA
Pitch change
actuator

Internal leak None None

External leak Fluid depletion
& Shutdown

SCADA

Binding of
piston

None None

Feather dump
valve

Fails OFF High pressure SCADA

Fails ON Stuck blade &
Can’t start

Inadvertent
open

Loss of
pressure &
Shutdown

2
2

0



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Filters Leakage Loss of oil Low oil alarm
Yaw brake
accumulator

Loss of
pressure

Loss of all
brake pressure
& Shutdown

Brake system
charging valve

Fails ON None None

Fails OFF & No
pressure

Shutdown LP Alarm

Yaw hydraulic
supply

No pressure No yaw Low oil alarm /
Pump alarm

Pump fails on Shutdown Oil temp

C.12. Support and Housing

(including yaw structure)

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Brace/ Joint
repair

Brace/ Joint
repair

Mostly lift
faults

Mostly lift
faults

Upper yaw
structure

Fatigue crack Loss of
stiffness /
Distortion

Vibration

Larger repair Lower yaw
structure

Fatigue crack Loss of
stiffness

Vibration

Lift Fails No
maintenance

2
2

1



Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Brace Buckling Distortion Tower
vibration

Joint Fatigue crack Reduced
stiffness

Tower
vibration

Yielding Distortion &
Vibration
damage

Tower
vibration

Joint for
Bedplate

Fatigue crack Reduced
stiffness

Tower
vibration

Yielding Distortion of
gearbox
mounting

Tower
vibration

Nacelle Nacelle Nacelle panels Structural
failure

Loss of
sensors

Temp

Exhaust fan Fan/Louvre
failure

Hydraulic /
Electrical
shutdown

Temp

C.13. Foundation

Major Minor FMEA Unit Failure Mode Effects CMS Detect

CMS No CMS CMS No CMS

Reduced risk Whole turbine Not included

2
2

2
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