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Abstract

High area-to-mass-ratio spacecraft experience a significant perturbation due to surface forces, such

as solar radiation pressure and aerodynamic drag. Hence, their orbits do not evolve in the manner

of traditional satellites. They undergo strong changes in eccentricity and argument of pericentre

due to solar radiation pressure, and in semi-major axis due to aerodynamic drag. These effects

can be exploited for a number of applications, providing solutions to existing problems for space

mission design.

In this thesis an analytical Hamiltonian model of the orbital evolution of high area-to-mass-

ratio objects is used to identify potential mission applications on decreasing length-scale. These

applications are then investigated using numerical methods and validated against high-precision

orbit propagations.

On the metre-scale, applications for small satellites, of 100 kg mass or less, are developed.

Firstly, a passive orbit manœuvre from geostationary transfer orbit to low Earth orbit is inves-

tigated. This method has the potential to enable a new range of piggy-back launches for small

satellites. Using the same insights, the strategy of solar radiation pressure augmented deorbiting

is presented. The deorbiting method can enable passive end-of-life removal from very high altitude

orbits.

On the millimetre-scale, an orbit control method for so-called SpaceChips is developed. The

method uses electrochromic coatings to allow the SpaceChip to alter its optical properties and

thus modulate the perturbation due to solar radiation pressure. Different control algorithms are

discussed and evaluated.

Finally, on the micrometre-scale, a dispersion strategy for a planetary dust ring extracted

from a captured asteroid is presented. The long-lived dust ring is designed to reduce the solar input

to the global climate system and mitigate global warming. Heliotropic orbits are used as a means

of passively controlling the ring.



“
”

Space is big. You just won’t believe how vastly, hugely, mind-

bogglingly big it is. I mean, you may think it’s a long way down

the road to the chemist’s, but that’s just peanuts to space.

Douglas Adams
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Chapter 1

Introduction

This thesis originated from the question: how does orbital dynamics change as spacecraft length-

scale shrinks? As an object gets smaller at constant density, its area-to-mass-ratio, σ, increases.

It can be seen that σ is inversely proportional to length-scale, as surface area is proportional to

the square of length-scale and the mass or volume is proportional to length-scale cubed. Thus, the

length-scale affects all surface forces, e.g. solar radiation pressure, aerodynamic drag, solar wind,

particle collisions, and thermal emission. Also the Lorentz-force is dependent on length-scale, as

the charge-to-mass-ratio depends on surface area and geometry.

The orbital dynamics of high area-to-mass-ratio objects have been studied for a number

of applications, most notably planetary and interplanetary dust dynamics, space debris and solar

sailing. Two of these applications, dust dynamics and space debris analysis, aim to predict the

evolution of passive high area-to-mass-ratio objects under the effect of orbital perturbations. Solar

sailing instead actively exploits these effects to achieve low thrust orbit transfers or non-Keplerian

orbits.

The approach pursued in this thesis is to find new applications for the perturbed dynamics of

high area-to-mass-ratio spacecraft. The thesis is split into three parts, each dealing with a different

length-scale regime: from small-satellites to so-called SpaceChips, millimetre-scale satellites on a

silicon chip, down to micrometre-scale asteroid dust. Each part contains a number of distinct, novel

applications of high area-to-mass-ratio orbital dynamics and answers the following questions:

• How can spacecraft without a propulsion system transfer between orbits or perform an

end-of-life manœuvre from high altitude orbits?
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1. INTRODUCTION

• How can SpaceChips control their orbits and perform active manœuves?

• How can dust from a captured asteroid be distributed in an Earth ring to maximise solar

shading for climate engineering?

1.1 Orbital dynamics of high area-to-mass-ratio objects

The orbits of high area-to-mass-ratio spacecraft are affected strongly by surface force perturbations.

Atchison and Peck [1] analyse the impact of perturbations on objects of different length-scale in

different altitude Earth orbits. They identify three regions of length-scale over altitude. For most

objects the Earth’s oblateness is the most dominant perturbation. However, at small length-scales

solar radiation pressure and aerodynamic drag are more dominant. In particular, drag dominates in

low Low Earth Orbit while solar radiation pressure dominates above. The orbital dynamics of high

area-to-mass-ratio objects have also been studied by the observation of planetary and interplanetary

dust. Rings or clouds of dust particles display highly non-Keplerian behaviour due to the influence

of orbital perturbations such as solar radiation pressure, aerodynamic drag, Poynting-Robertson

drag, and electrostatic forces [2]. The range of forces acting on dust particles has so far not allowed

a universal analytical model of their dynamics to be formulated. However, many reduced order

models have been published, allowing an analytical investigation of certain aspects of the problem.

For example, the dynamics of dust particles in the interplanetary medium are investigated

analytically by Gor’kavyi et al. [3] through the means of the continuity equation written in terms

of semi-major axis and eccentricity. Howard et al. [4] analyse the phase space of the motion of

positively charged particles in planetary magnetospheres. Grotta-Ragazzo et al. [5] analyse periodic

orbits of charged dust grains in planetary rings. The long term effects of solar radiation pressure

and planetary oblateness on Mars-orbiting dust particles was investigated by Krivov et al. [6]

and expressed in the form of non-singular elements. Hamilton and Krivov [7] then introduced a

Hamiltonian that for planar orbits combines solar radiation pressure and the J2 effect to provide,

analytically, the long-term evolution of the orbits of planetary dust grains in the eccentricity and

Sun-perigee angle phase space. Krivov and Getino [8] also apply these equations to Earth orbiting

balloon satellites and analyse their behaviour with respect to equilibria and bifurcations. This

work provides the basis of much of the research presented in this thesis. The work of Hamilton and

Krivov [7] and Krivov and Getino [8] is discussed in detail later in Sec. 2.1.1.

Aside from dust dynamics, although there have been investigations directly into the dynam-

ics of high area-to-mass-ratio spacecraft, these remained sparse until recent interest fuelled by the
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concept of solar sailing and the problem of space debris. Before this growing interest, work on

high area-to-mass-ratio spacecraft stemmed from project Echo, an early experiment with reflective

balloon satellites for passive terrestrial communications. Echo-1A (1960) and Echo-2 (1964) were

large passive aluminium spheres with area-to-mass-ratios of 9.6 m2 kg−1 and 5.2 m2 kg−1 respec-

tively [9]. They were intended to passively reflect communication signals. It was discovered that a

periodic change in their orbital eccentricity occurred that could only be explained with the effects

of solar radiation pressure [10]. A further early space mission which accidentally served as a study

for high area-to-mass-ratio orbital dynamics was Project West Ford [11]. In order to enhance the

reflective properties of the ionosphere, and thus to improve long wave radio communications, the

Lincoln Laboratory of the Massachusetts Institute of Technology (MIT) launched approximately

half a billion copper needles into an Earth orbit on behalf of the US military. The needles had

a diameter of tens of micrometres and a length of approximately 2 cm. Their small length-scale

caused the needles to be strongly perturbed by solar radiation pressure and drag and thus made

a fascinating subject of study for contemporary astrodynamicists [12]. It was expected that the

needles would re-enter the atmosphere after a few months. However, as of today there are still

clusters of needles in orbit [13].

The study of these dynamics are the foundation of the work presented in this thesis. The

Echo Balloons, the West Ford needles, planetary dust and debris collision fragments are strongly

perturbed by solar radiation pressure and drag. However, since none of these objects are capable

of active control, the utilisation of these dynamics has not been investigated in detail. Solar sailing

is the exception. It exploits solar radiation pressure by controlling the attitude of a high area-to-

mass-ratio sail with respect to the direction of the Sun [14]. However, in this thesis, other novel

ways of utilising high area-to-mass-ratio orbital dynamics are investigated. In the first part of the

thesis they are exploited semi-passively, simply by increasing the spacecraft area-to-mass-ratio at

some optimum time. In the second part, the control of the optical properties is investigated, as

a means of orbit stabilisation and transfer. Finally, for orbital dust, the orbit of dust release is

studied, to achieve evenly distributed, long-lived Earth rings. The applications have been sorted

by descending length-scale and the thesis is accordingly divided into three parts:

• Metre-scale conventional spacecraft with augmented area-to-mass-ratio: This can be achieved

by deploying a large light-weight structure, for example a solar sail or deployable bal-

loon. Possible applications discussed in this thesis are passive orbit transfers and deorbiting

manœuvres.

• Millimetre-scale SpaceChips, are micro-electromechanical systems (MEMS) devices which

have a high area-to-mass-ratio due to their small size: In this thesis a method of orbit control

using electrochromic coatings to change their optical properties is investigated.
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• Micrometre-scale planetary dust: the dust grains are perturbed by surface forces due

to their naturally high area-to-mass-ratio. They can be extracted from Asteroids or the

Moon. In this thesis a method of utilising Asteroid dust for Earth climate engineering is

investigated.

In the following sections the three size regimes and the domain of application of high area-

to-mass-ratio orbital dynamics are discussed in more detail. The specific contributions of this thesis

are then summarised in Sec. 1.5.

1.2 Orbit transfers for small satellites

Small satellites are defined as spacecraft with a mass of less than 1000 kg and further divided

into mass categories of mini-, micro-, nano-, pico- and femtosatellites. While the first artificial

satellites were by this definition small satellites – Sputnik-1 had a mass of 84 kg [15] – they have

been ignored as a useful platform until the 1980s. Currently they are creating significant interest by

space agencies, industry and academia [16]. Their capabilities are ever expanding and the number of

small satellite launches are increasing year to year. Kramer and Cracknell [17] provide an overview

of the history of remote sensing small satellites and the milestones in their development to ever

smaller, cheaper and more capable systems.

Table 1.1 lists the small satellite classes with their mass range as given by Kramer and

Cracknell [17]. Additionally, some notable examples of small satellites of different classes are given.

Galileo is the European global navigation satellite system (GNSS). A constellation of 30 Galileo

spacecraft will make up this system, each satellite having a mass of 675 kg [18, Chap. 10]. This

makes them minisatellites. Another example for a minisatellite is SMART-1 (370 kg), a European

low-thrust Moon orbiter [19].

Femtosatellites, on the other end of the small satellite spectrum, have a mass of less than

100 g and include so-called satellite-on-a-chip systems or SpaceChips. These spacecraft will be

discussed in Sec. 1.3.

The most prominent type of very small satellite is the CubeSat. Depending on its structure,

it is classed as either a nano- or a picosatellite. CubeSats consist of so-called units or Us, which

measure 10 cm cubed and have a mass of approximately 1 kg. The standardisation of CubeSats

makes them especially attractive as a template for a very small satellite mission. Their compo-

nents can be bought cheaply off-the-shelf and compatibility is easily ensured. Furthermore, regular

CubeSat launch opportunities are offered by space agencies for educational or scientific missions.
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The CubeSat standerd was developed by teams at Stanford University [20] and California Poly-

technical State University [21] in the late 1990s. Since then the platform has been steadily gaining

popularity.

Both CubeSats and larger minisatellites have been gaining acceptance in the last decades,

not as a replacement for conventional large-scale space missions, but as a complement. Verhoeven

et al. [25] discuss this under the name of satellite ecosystems. The core idea is that, while large

satellites have the power and size to deliver data of a high spectral and spatial resolution, small

satellites can be used in large numbers and thus supply high temporal resolution. Using both

systems together allows the user to track changes in an area which can be imaged more accurately

by the large spacecraft and then kept up-to-date by the smaller spacecraft. The low image quality

of the latter can be improved using the high resolution data and applying image post-processing

with this information. Furthermore, specific niche applications have been identified as more suited

to a small satellite constellation than a large space mission. Typically these applications focus on

just one payload instrument, which has moderate power, mass, volume and pointing requirements,

and profit greatly from increased revisit times. In these cases a small satellite mission would fulfil

the payload requirements and is still affordable in a multi-satellite constellation. A good example

for this type of application is a maritime surveillance system receiving automatic identification

system (AIS) messages from transatlantic ships [26]. Shipping vessels are required to send out AIS

signals on an RF frequency that can be received in orbit using a standard VHF antenna.

In general, the main advantages of small satellites are their low cost and short development

time. The low cost is partly due to the extensive use of commercial-of-the-shelf (COTS) components

which are orders of magnitude cheaper than built-to-purpose parts in exchange for being less

reliable. The capability of small satellite COTS components are constantly increasing because of

the immense progress that has been made in the field of technology miniaturisation fuelled by the

terrestrial market of mobile computing devices. These technologies have then been adapted for use

in space allowing powerful computation and communications in a small and low-cost system.

Table 1.1: Small satellite classification by mass as defined by Kramer and Cracknell [17]

Satellite class Mass range Notable examples

Minisatellite 100− 1000 kg Galileo (675 kg) [18], SMART-1 (370 kg) [19]

Microsatellite 10− 100 kg Sputnik (84 kg) [15]

Nanosatellite 1− 10 kg Multi-U CubeSats: e.g. UKUBE-1 (4 kg) [22]

Picosatellite 0.1− 1 kg 1U CubeSat (1 kg) [20]

Femtosatellite < 0.1 kg Satellite-on-a-chip (0.015 kg ∼ 0.055 kg) [23],

Sprite (8× 10−6 kg) [24]
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Figure 1.1: Artist’s impression of a CubeSat with inflatable balloon (Image material: ESA, Clyde

Space)

Another factor reducing the cost of small satellites is the availability of piggy-back launches.

This is a type of shared launch in which the main payload has full choice over insertion orbit while

the small satellite is launched for less than its relative mass share of the total launch cost. For Cube-

Sats the standardised launcher interface and dispenser, P-POD, can be used [21]. Space Agencies

occasionally even offer free CubeSat launches to public educational or research institutions. The

very low cost of small satellite missions make them feasible for small companies, universities and

research institutes, for which the cost of a conventional spacecraft mission is likely prohibitive. In

the past decades a number of small satellite start-ups and university spin-off companies have been

founded, fuelling the growing market with innovative new technology and applications.

Two problems facing these systems are approached in this thesis: the transfer to Low Earth

Orbit (LEO) for spacecraft launched to geostationary transfer orbit (GTO) and end-of-life deor-

biting from high altitude orbits. It is shown that by artificially increasing the area-to-mass-ratio

using an inflatable balloon (see Fig. 1.1) or deployable sail, the effects of solar radiation pressure,

J2 and aerodynamic drag can be exploited passively to perform these orbit transfers. The use of

solar radiation pressure for deorbiting has previously been studied as an active technique in which

the attitude of the spacecraft with respect to the Sun is changed twice per orbit to maximise the

altitude loss [27]. The method presented in this thesis differs significantly from this approach as
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it is entirely passive and designed to increase the orbit eccentricity instead of decreasing the orbit

semi-major axis.

1.2.1 GTO to LEO transfer

The main operational regime for CubeSats is LEO. This is due to their limited communications

capability, caused by low transmitter power and low-gain antennae, and also their deorbit require-

ments forcing them into naturally decaying orbits [28]. With the increasing interest in CubeSat

missions, demand for piggy-back launches to LEO is exceeding availability [29]. In order to tap into

the many GTO launches, a strategy is therefore needed to transfer CubeSats from GTO to LEO.

The transfer needs to be passive due to the absence of a propulsion subsystem. Instead, orbital

perturbations will be exploited which do not require active manœuvring.

Fleeter et al. [30] have suggested transfers from GTO to LEO using aerodynamic drag and a

final propulsive manœuvre. In their design a spacecraft would deploy a drag brake to lower the orbit

apogee. Once the apogee is at the desired orbital altitude, a propulsive perigee raising manœuvre is

performed to insert into a circular LEO. The perigee raising manœuvre is necessary, as without it

the final altitude would be too low for normal operations (below 300 km). This is disadvantageous

for CubeSats which would otherwise not need a propulsion subsystem. A propulsion subsystem is

complex and costly, while small satellites tend to be low-cost and simple [31].

The new method used in this thesis is a solar radiation pressure augmented, passive GTO

to LEO transfer, initially discussed by Colombo and McInnes [32]. It exploits the effect of solar

radiation pressure to raise the orbit perigee while simultaneously using aerodynamic drag for apogee

lowering. This novel concept is investigated in Chapter 3.

1.2.2 Deorbiting of small satellites

Space debris consists of in-operational satellites, disused rocket upper stages and in-orbit colli-

sion fragments. Collisions between debris objects creates more fragments, potentially causing a

collisional cascade. This is known as the Kessler Syndrome after Donald J. Kessler who investi-

gated this phenomenon in the 1970s [33]. In order to reduce the amount of new debris created,

the Inter-agency space debris coordination committee (IADC) issued guidelines which require a

spacecraft to be removed from its orbit within 25 years after the end of operations [34]. In 2007

the International Organization for Standardization (ISO) started adapting these guidelines into an

ISO standard which was issued in 2010 [35]. As common with ISO standards, the requirements
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are not mandatory, however, they do provide a baseline for the adaptation of stricter control by

different national space agencies.

Larger spacecraft usually employ propulsion for the end-of-life manœuvres [36]. This is not

an attractive option for small spacecraft for two reasons. Firstly, it requires active orbit and attitude

control which is not usually integrated into very small satellites. Secondly, deorbiting has inherently

high reliability demands. The ISO standard requires a 90 % chance of successful deorbit within the

given time frame [35]. For propulsive manœuvres, the reliability of the deorbiting system depends

on the integrity of many other subsystems at the end-of-life. Both issues will increase the costs of

the system and go against the small satellite philosophy of low-cost spacecraft. Therefore, a simple

fail-safe passive deorbiting system is needed which initiates the deorbit manœuvre automatically

when the satellite fails, thus guaranteeing a deorbit in every failure mode.

Passive deorbiting technologies which have previously been investigated make use of either

aerodynamic or electrodynamic drag forces. They are generally considered a useful alternative for

small satellites for the reasons stated before, but are not deemed attractive for larger systems.

This is because they cause an uncontrolled deorbit which is not appropriate for large spacecraft,

where satellite components can survive the re-entry and impact on the ground [37]. Small satellites

will deorbit passively within a reasonable time frame if they are operating at altitudes below

approximately 400 km.

Drag augmented deorbiting (DAD) can increase the use of passive deorbiting to altitudes of

approximately 800 km. This is achieved by increasing the spacecraft area-to-mass-ratio and thus

enhancing the rate of loss of orbital energy due to atmospheric drag. Different DAD devices are

being developed or have been proposed. Lappas et al. [38] are currently developing the Gossamer

Deorbiter, based on CubeSail, which uses mechanically deployable booms unfolding a flat surface

similar to a solar sail. A similar design is used by AEOLDOS, a CubeSat deorbiting device de-

veloped by the University of Glasgow and Clyde Space [39]. Instead Roberts and Harkness [40]

proposed a conical device to exploit the shuttle-cock effect for attitude stabilisation, which oc-

curs when an offset of centre-of-pressure and centre-of-mass create a stable equilibrium attitude.

Maessen et al. [41] proposed a system which exploits the same effect, but consists of a an inflat-

able pyramid. Nock et al. [42] have developed the GOLD system, an inflatable balloon which has

the advantage of being effective in any attitude. Andrews et al. [43] have investigated CubeSat

re-entry and presented a tension-cone design which also acts as a heat shield to allow recovery of

the CubeSat on ground.

Electrodynamic Tethers (EDT) are an alternative method for propellant-less deorbit. The

movement of the EDT through the Earth’s magnetic field induces a current in the tether. The
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current results in a Lorentz force, which then alters the orbital energy over time. Both effects

decrease rapidly with increasing distance from the Earth. A detailed study of the method was

performed by Iess et al. [44, 45]. Since EDTs are dependent on the Earth’s magnetic field, they are

sensitive to initial orbital inclination. They work best in equatorial orbits and decrease in efficiency

with increasing inclination and are inefficient for high altitude orbits above 74° inclination, as

shown by Pardini et al. [46]. The Terminator Tether is a commercial product developed by Tethers

Unlimited to make use of these principles [47].

While either of these methods, DAD or EDT, are applicable for lower altitudes they both

rapidly lose efficiency as altitude is increased. This is due to the fact that both the atmospheric

density and the magnetic field strength decrease dramatically with altitude. In this thesis two

orbital regimes are investigated in which, as of today, no universal deorbiting solution exists for

small satellites: medium Earth Orbit (MEO) in Chapter 4 and high altitude Sun-synchronous

orbits (SSO) in Chapter 5. These regimes have an area of intersection but are treated individually.

Medium Earth Orbit

Medium Earth Orbit (MEO) is defined as a regime of orbits with altitudes between Low Earth

Orbit (LEO) and the geostationary ring. This means the regime between 2000 km and 35 586 km

altitude. In this section only orbits which lie entirely in the MEO region are considered, i.e. all orbits

with a perigee altitude above 2000 km and an apogee altitude of less than 35 586 km, the upper

boundary of LEO and lower boundary of GEO respectively. There are 546 NORAD tracked objects

in the CelesTrak database which fulfil these requirements [48]. Just 12 of them have meanwhile

decayed. All others are still in their orbits, although only 56 are categorised as operational. In the

population of MEO six distinctive groups of spacecraft can be identified which make up 85 % of

the total MEO spacecraft population:

• GLONASS, the Russian satellite navigation system can be found in circular orbits just below

20 000 km altitude [49].

• NavStar, the American GPS satellites occupy circular orbits with altitudes just above

20 000 km [50, 49].

• The Initial Defence Satellite Communications System (IDSCS) was the precursor constella-

tion to the American Defence Satellite Communications System (DSCS). Twenty-six space-

craft were launched into circular orbits below GEO from 1966 to 1968 [51].
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• Oko is the Russian defence constellation for early warning. It was launched over forty years

ago into Molniya orbits with 600 km perigee altitude and 63.7° inclination. The Oko space-

craft appearing in this survey have drifted from their orbit, increasing in perigee altitude to

now lie entirely within MEO [52].

• Future GNSS constellations: Galileo is the European satellite navigation system and is likely

to make up a large part of total MEO launches in future. As of today, only two precursor

satellites, GIOVE A and B, and four in-orbit verification (IOV) satellites have been launched.

They occupy future Galileo orbits which are circular and inclined at an altitude of 23 222 km.

Beidou is the future Chinese satellite navigation constellation in MEO and GEO. One MEO

satellite has been launched so far in 2007. Beidou will occupy circular, inclined orbits at

21 500 km altitude [18, Chap. 11].

• The West Ford needle experiment is not strictly a satellite constellation. In the 1960s thou-

sands of small metal needles were launched into high altitude polar orbits in a bid to improve

long-range radio communications. Although some of these needles have meanwhile re-entered

the atmosphere, large numbers still remain in their orbits as space debris [11, 12].

Figure 1.2 shows the number and type of catalogued launches into MEO per half decade. It

can be seen that most of the MEO constellations have been stocked over long periods of time with

Galileo and Beidou only just beginning. There was significant interest in MEO in the late 1960s,

but satellite navigation constellations have made up the largest part of MEO launches in the last

thirty years. The largest number of orbiting objects originated from Project West Ford needles in

MEO, in the order of tens of thousands. However, they are not individually tracked. Instead cloud

segments consisting of a large number of objects are tracked and appear in the diagram as a single

object.

Figure 1.3 shows the inclination and altitude of different object groups with tracked space

debris and rocket bodies shown in light grey in the background. The perigee and apogee altitudes

of the spacecraft are marked with a filled circle. The eccentricity of a spacecraft’s orbit can be

seen by the distance between perigee and apogee. While circular orbits appear as just one point,

eccentric orbits are long lines connecting the perigee and apogee. It can be seen that the main

orbits of interest are circular GNSS-like orbits with altitudes of order 20 000 km and inclinations

between 50° and 70° and highly eccentric Molniya-type orbits with high inclinations of 60° to 70°

and semi-major axes of order 30 000 km.
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Sun-synchronous Orbits

The second regime investigated in this thesis for passive deorbiting are high altitude Sun-synchronous

orbits (SSOs). SSOs are retrograde orbits of a fixed inclination (i > 90°) which depend on the orbit

semi-major axis at which the J2 effect causes the line of nodes to precess at the same rate as

the Earth’s orbital motion about the Sun [53]. Thus, the orbit plane always has the same aspect

angle with respect to the Sun. This is useful for many Earth observation missions and makes SSOs

the most popular of Low Earth Orbits (LEOs). One key advantage SSOs grant is even illumina-

tion conditions on the ground, providing a better comparison between image sets. Furthermore,

dawn/dusk orbits require a less complex spacecraft architecture and thermal control system due

to the almost constant configuration of Sun and the ground in the spacecraft’s frame of reference.

The popularity of Sun-synchronous orbits means that they are at a particular risk of space debris

collisions and so end-of-life disposal is essential for spacecraft in these orbits.

Although current SSO missions favour 800 km orbits, high altitude SSOs have been used

in the past as can be seen in Fig. 1.4, which shows the number of spacecraft in the CelesTrak

database [48] which are in a Sun-synchronous orbit by their altitude. SRP-augmented deorbiting

as an efficient passive deorbiting strategy can make these higher altitudes accessible for small

spacecraft and enable new types of missions, as will be discussed in Chapter 5.
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Figure 1.5: Photo of a breadboard model of a SpaceChip device (Credits: Cornell University)

1.3 Orbit control for SpaceChips

Moving down in length-scale, the orbital dynamics of so-called SpaceChips are investigated next in

Chapter 6 and 7. Recent advances in miniaturisation make the prospect of these micro-electromechanical

system (MEMS)-scale satellite missions realistic, employing system devices of length-scale 0.1 -

10 mm (see Fig. 1.5). These spacecraft offer cheap manufacture and launch, and can thus be de-

ployed in large numbers providing multiple perspectives and real-time global information. The

orbits of such satellites are influenced significantly by surface force perturbations such as solar

radiation pressure and aerodynamic drag due to their high area-to-mass-ratio.

1.3.1 SpaceChip technology

Recently, a number of concepts for SpaceChip devices have emerged. Warneke et al. [54, 55] inves-

tigate the concept of “smart dust”, multiple sensor nodes which have the ability to communicate

with each other, while Sailor and Link [56] propose dust-grain-sized devices. SpaceChip devices

function as independent agents in orbit but are contained on a single computer chip. They can

generate power, gather and process information and communicate with other SpaceChips and a

larger satellite or possibly the ground. Barnhart et al. [57, 58] propose small “femto-satellites” for

space networks. They investigate the concepts both for a satellite on a printed circuit board and

true SpaceChips.

The disadvantage of SpaceChips is their low survivability. The lack of any shielding from ra-

diation will lead to quick deterioration of the on-board memory, with current technology. However,
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their very low production and launch cost can see them deployed in large numbers as disposable

detector networks [59]. Their very short production time make their use in rapid response sce-

narios attractive, and their short orbit lifetime in LEO prevents the creation of additional space

debris. Some possible mission scenarios include space weather detectors or atmospheric sensors. It

is, for example, envisaged, that a cloud of SpaceChips is deployed in LEO above the Earth’s meso-

sphere sending out beacon signals, while slowly spiralling through the atmosphere until radiation

events render them unresponsive [60]. The signal loss is then mapped and used to draw conclusions

concerning radiation intensity in the upper atmosphere.

The SpaceChip used in this thesis is the Cornell University SpaceChip, Sprite, under de-

velopment by Atchison and Peck [61]. It measures 1 cm2 by 20 µm thickness. This results in an

area-to-mass-ratio of 17.8 m2 kg−1 for the bulk density of Silicon.

1.3.2 Attitude and orbit control

MEMS spacecraft pose a challenge for orbit control since they are highly perturbed by surface

forces such as SRP and drag, and are not suitable for conventional orbit control methods due to

their small length-scale. They also present a risk of becoming a space debris hazard and endanger-

ing other satellites because of their lack of deorbiting capability and probable future deployment

in large swarms. As the development of MEMS spacecraft advances, the need for a simple and

effective orbit control method grows. Atchison and Peck [61] propose passive SRP control by etch-

ing patterns in the SpaceChip surface. Passive Lorentz-force propulsion is inspired by the motion

of charged dust grains and uses natural charging of the SpaceChips to propel it to Earth escape

[59]. Alternatively, methods to actively controlling the Lorentz force have been devised [62]. Bell

et al. [63, 64] investigate the use of electrodynamic tethers for orbit control, while Schaub et al.

[65] proposes to organise the spacecraft locally by exploiting Coulomb forces.

For attitude control, a range of passive techniques has been suggested. A structured surface

can create an equilibrium attitude with respect to the Sun, while a thin wire or fin at the back of

the spacecraft could produce the “shuttlecock effect” [61]. Alternatively permanent magnets could

be used to exploit the Earth’s magnetic field in a way similar to conventional LEO spacecraft.

1.3.3 Electrochromic control

The concept proposed in this thesis is to alter the coefficient of reflectivity of a SpaceChip device

by using an electrochromic coating to control the spacecraft’s orbit through modulation of the
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Figure 1.6: Impression of a dust ring around the Earth (image material: ESA)

SRP perturbation. This is advantageous for SpaceChip-scale devices since no moving parts are

required. Electrochromic materials change their optical properties when an electrical current is

applied. They are widely used in terrestrial applications, such as intelligent sunshades, tinting

windows and flexible thin film displays, and have been used in space applications, albeit not for

orbit control. The IKAROS solar sail demonstrator used electrochromic surfaces on the sail to

adjust its attitude [66] and electrochromic radiators have been developed for thermal control [67].

A recent proposal by Ovelar et al. [68] to design the orbits of micro-particles by engineering their

lightness number, the ratio between acceleration due to SRP and acceleration due to solar gravity,

highlights current interest in the exploitation of orbital perturbations as a means of trajectory

manipulation of micro-scale objects using simple control methods.

1.4 Geo-engineering using dust clouds

Finally, on a micrometre-scale the natural orbital evolution of dust is utilised to create, distribute

and maintain a ring of dust around the Earth for solar radiation management (see Fig. 1.6). Solar

radiation management (SRM) is one of the two main branches of geoengineering, the deliberate

modification of the Earth’s climate to mitigate anthropogenic climate change.

The consensus of the scientific community is that the Earth is currently experiencing human-

driven climate change [69]. As concluded by the Intergovernmental Panel on Climate Change

(IPCC), it is predicted to have serious impacts ranging from extreme weather events to the chang-
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ing of coast lines threatening communities and biological diversity [70]. An increase in average

temperature of between 1.1° and 6.4° is expected in this century [70].

In 2009 the Royal Society working group on geoengineering issued a survey of proposed

strategies of geoengineering, ranking them in effectiveness, safety, affordability and timeliness [71].

In the report two main branches of geoengineering were distinguished: carbon capture and SRM.

Carbon capture aims to reduce the amount of CO2 in the atmosphere, while the goal of SRM is

to lower the solar radiation input into the Earth’s climate system. A reduction of 1.7 % would

reduced the global rise in temperatures by an estimated 2 °C. SRM can be conducted on Earth via

methods such as using reflective surfaces on roads and buildings to increase the Earth’s Albedo

[72] or cloud seeding [73]. While the former solution is not deemed to be effective, cloud seeding is

considered to be risky as it may have unforeseen consequences on the environment. Most Earth-

based geoengineering solutions are received with scepticism because of the complexity of the Earth’s

environmental system which makes precise prediction of the effects of any large-scale manipulation

difficult or even impossible.

Space-based geoengineering (SBGE) is a form of SRM, describing strategies in which large-

scale structures or clouds of particles are placed in strategic positions outside the Earth’s atmo-

sphere to filter out part of the incoming solar radiation and thus reduce the overall thermal input

into the Earth’s climate system [74]. It is argued that such a method, although costly and cur-

rently at a very low Technology Readiness Level (TRL), would be effective while minimising the

side effects on the Earth’s environment [71]. By moving geoengineering outside the atmosphere it

can be conducted in a more controlled fashion.

Two key means of SBGE are proposed, either using large terrestrially manufactured reflector

such as suggested by Angel [79] and McInnes [78] or using dust clouds sourced from the Moon or a

Table 1.2: Key properties of the different space-based geoengineering methods proposed in

literature [75]

Position Method Insolation Red. Req. Mass [kg] Reference

Earth Ring Dust ring 1.6 % 2.3× 1012 Pearson et al. [76]

Earth Ring Solar reflector 1.6 % 5.0× 109 Pearson et al. [76]

Earth-Moon L4/L5 Dust Cloud 1.4 % 2.1× 1014 Struck [77]

Sun-Earth L1 Solar Reflector 1.8 % 2.6× 1011 McInnes [78]

Sun-Earth L1 Solar Refractor 1.8 % 2.0× 1010 Angel [79]

Sun-Earth L1 Dust Cloud 1.7 % 1.9× 1010 /yr Bewick et al. [80]
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captured asteroid [77]. While the former method allows some degree of orbit control, which means

that the system can be sustained in an advantageous position, it has the clear drawback with

respect to the dust cloud method that all the material needs to be launched from Earth. Dust

clouds are considered to require more mass than reflectors but this mass is more easily accessible

in space. The material could be extracted from a captured asteroid, milled in order to achieve the

required grain size and then expelled using a mass driver [81]. Otherwise the material could be

ablated using lasers [82] or orbiting solar collectors [83].

Struck [77] proposed to place the dust clouds at the L4 and L5 points in the Earth-Moon

system, while Bewick et al. [80] suggest the L1 point of the Earth-Sun system. The former has

the advantage of being a stable equilibrium, while the latter will decay over time. However, the L1

position benefits from being fixed between the Earth and the Sun and thus allowing a continual

reduction in insolation. This means that significantly less mass is required over time.

Pearson et al. [76] propose to place either reflectors or dust particles in Earth orbit rather

than a Lagrange point. They estimate the masses required for such a scheme. In the positioning

of the dust ring, aerodynamic drag is considered and the altitude is chosen so that the ring will

not decay within a short time. However, solar radiation pressure was not considered and the ring

deployment scenario was discussed only briefly. In this thesis the orbital dynamics of such a dust

ring are investigated using a Hamiltonian dynamics approach in Chapter 8 and novel heliotropic

orbits developed by Colombo et al. [84]. The resulting required mass is compared to the other

schemes referenced in Table 1.2.

1.5 Contribution of the thesis

In this thesis the Hamiltonian model of the orbital dynamics of high area-to-mass-ratio objects

investigated by Hamilton and Krivov [7] and Krivov and Getino [8] is exploited. In the first step, the

analytical model is used to identify characteristic behaviour of high area-to-mass-ratio spacecraft

which is then used to achieve specific mission goals. Next, the applications are assessed using a

numerical model based on semi-analytical equations for the orbit evolution to account for the

simplifications in the analytical model. Finally, test cases are run using a high precision orbit

propagator. The methodology is explained in detail Chapter 2 in which the equations used in this

thesis are developed and the analytical model is discussed.

The key contribution of this thesis is the investigation of novel applications of high area-to-

mass-ratio orbital dynamics which are organised by the order of the governing length-scale, starting
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at metre-scale with small satellites and CubeSats and going down to SpaceChips and then asteroid

dust at a micro-metre scale. The unifying physics is the increase in area-to-mass-ratio, and hence

surface forces, with decreasing length-scale.

1.5.1 Applications for small satellites

In part one of this thesis applications for small satellites such as nano- and picosatellites that

can modulate their area-to-mass-ratio are discussed. The first application is a passive GTO-to-

LEO transfer using solar radiation pressure and aerodynamic drag. The method was developed

from the initial work discussed by Colombo and McInnes [32] for a specific scenario. Here it was

proposed that a spacecraft could be launched into GTO where it remains until the orientation of

the orbit with respect to the Sun is optimal for the passive manœuvre. Then the spacecraft deploys

a structure to enhance its surface area and uses solar radiation pressure and drag to circularise into

LEO while raising the orbit perigee. In this thesis the method is analysed in detail using a high

precision orbit propagator and taking into account the variation of the orbital elements during the

waiting time in GTO. It will be shown that these have a strong impact on the eventual success of

the transfer.

In the Chapter 3 there is a discussion of the design of an area-to-mass-ratio increasing device

for small spacecraft. Calculation of the effective coefficient of reflectivity is discussed with respect to

device shapes and different deployment and rigidisation methods are evaluated. A recommendation

is made for an inflatable balloon which is hardened using cold-curing resin.

Chapters 4 and 5 discuss the use of solar radiation pressure for deorbiting high altitude

orbits, which is a fully original contribution in this thesis. The principle is the reverse of the

GTO-to-LEO transfer. In the former the effects of SRP and the J2 effect are used to decrease

the orbit eccentricity and thus raise its perigee. For deorbiting, the perigee of initially circular

orbits is lowered by using SRP to increase the orbit eccentricity. The method is first developed

analytically and then analysed numerically for inclined orbits to identify areas in which the method

is particularly effective and those where it cannot feasibly be applied. In Chapter 4 the deorbiting

of medium Earth orbits (MEO) is investigated and in Chapter 5 high altitude Sun-synchronous

orbits are discussed.
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1.5.2 Applications for SpaceChips

In part two a different application of the perturbed dynamics, the orbit control of SpaceChips

is presented. These are millimetre-scale satellites on a silicon chip with sensing, computing and

communication capabilities. Different research teams are currently developing these smart dust

devices. Although they cannot gather, process or send data comparable in quality or quantity

to that of conventional spacecraft, their extremely low mass and fabrication costs allow them to

be deployed in large numbers. This may enable distributed in-situ sensing with a high spacial

resolution.

Due to their small size they lack an effective orbit control method. In this thesis elec-

trochromic control is proposed, which again makes use of the naturally occurring orbital pertur-

bations due to solar radiation pressure. Using electrochromic coatings the spacecraft can change

their optical properties and thus gain control over their orbital evolution due to their large area-

to-mass-ratio.

In Chapter 6 a general control algorithm based on an artificial potential field in the orbital

element phase space is used to stabilise and navigate SpaceChips. The orbits which can be stabilised

using this method are identified and an eccentricity and orientation changing manœuvre and an

orbit raising manœuvre are investigated. In Chapter 7 the Hamiltonian model is applied to a

specific type of manœuvre in the orbital element phase space and a control algorithm based on

the Hamiltonian is developed. This algorithm is then applied to an eccentricity and orientation

changing manœuvre and is shown to be more time-efficient for this type of manœuvre than the

artificial potential field approach.

1.5.3 Applications for planetary dust

On a micrometre-scale, the natural evolution of dust grains was utilised to devise a deployment

scheme for asteroid mined material to create a stable Earth-ring with Sun-pointing apogee for solar

radiation management. Space-based geoengineering aims to mitigate climate change by reducing

the amount of Sunlight reaching the Earth. In the proposed method a dust ring mined from a

captured asteroid is used to filter out the required fraction of Sunlight. This research was conducted

in collaboration with other researchers investigating macro-scale space systems. It is based on

research on heliotropic orbits which use SRP and the J2 effect to achieve a Sun-synchronous state.

These orbits were discovered during an investigation of the Hamiltonian dynamics of the problem

[84].
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The contribution presented in this thesis is the analytical development of the dispersion

scheme for the dust grains. The grains are produced on the asteroid which is in a given Earth

orbit. The different sized dust grains are then expelled from the asteroid with a given ∆v using

a rail gun or mass driver. The insertion orbit is chosen in such a way to avoid rapid deorbiting

due to the orbital evolution of the dust grains and, at the same time, to guarantee a best possible

distribution of the grains to maximise the reduction of Sunlight. This is achieved by using heliotropic

and approximately heliotropic orbits, so that the apogee of the grain orbits remains close to Sun-

pointing.
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Chapter 2

Methodology

In this chapter the general methodology used for identifying and validating the applications for

high area-to-mass-ratio (HAMR) orbital dynamics presented in this thesis is explained. A particular

focus is laid on the basic dynamics governing HAMR objects and, more specifically, the Hamiltonian

analytical model developed by Hamilton and Krivov [7] and Krivov and Getino [8] for natural dust

grains and balloon satellites.

The new orbits and applications presented in this thesis were developed using a three-step

approach:

• Firstly, the new orbits and applications were identified using the analytical Hamiltonian

model discussed in Sec. 2.1. This model allows the identification of global behaviour in the

evolution of HAMR objects and can be exploited to find analytical solutions for specific

applications.

• Secondly, the orbits and applications identified were validated using numerical propagation

of a set of equations for the secular orbital evolution. Two different models were used in the

applications. These models are discussed in Sec. 2.2.

• Thirdly, a verification either using a propagation of the Gauss’ equations in 3D introduced in

Sec. 2.3.1, or an analysis with a high precision orbit propagator was performed for a sample

of cases to confirm the results of the previous step as dicussed in Sec. 2.3.2.

The only exception is the geoengineering application presented in Chapter 8. In this work

only the analytical analysis (step one) was performed as part of this thesis.
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2.1 Orbital Dynamics with SRP and J2

The dynamics presented in this section build the basis for the new orbits and applications presented

in this thesis. They were developed by Hamilton and Krivov [7] and Krivov and Getino [8], and are

particularly suitable for the analysis and design of high-area-to-mass-ratio applications in an Earth

orbit. This is because they focus on the two most dominant perturbing effects for such spacecraft,

solar radiation pressure and the J2 effect, while neglecting other perturbations to arrive at an

elegant Hamiltonian equation which can be adapted and transformed to investigate numerous

applications as shall be shown in the later chapters of this thesis.

The model considers only the perturbations of solar radiation pressure and J2. This is

appropriate as Atchison and Peck [1] show that SRP and the Earth’s oblateness are the dominant

effects for high area-to-mass-ratio spacecraft in circular orbits above LEO (a > 2000 km), with the

next strongest perturbing force, the third body effects of the Moon and the Sun, which are orders

of magnitude smaller. This is shown in Fig. 2.1, in which the relative accelerations experienced by

a typical SpaceChip due to different perturbations are shown as a function of altitude. It can also

be seen that the effect of aerodynamic drag, which is dominant over solar radiation pressure below

approximately 600 km, is insignificant for altitudes above LEO.

Anselmo and Pardini [99] show in their work on the orbital evolution of high area-to-mass-

ratio objects at GPS altitudes (a ≈ 27 000 km, see Sec. 1.2.2) that short periodic variations of

eccentricity due to solar radiation pressure occurs superimposed on the long periodic variation due

to third body effects and higher order gravitational harmonics. Therefore, it is clear that SRP

represents the key perturbing force. First the basic Hamiltonian model will be described and then

an investigation into out-of-plane dynamics is presented.

2.1.1 Hamiltonian analytical model

This section will begin with the governing equations describing the Hamiltonian dynamics of

HAMR objects. Next the resulting phase spaces are discussed, and finally out-of-plane behaviour

is analysed.

Hamiltonian definition

An orbit which lies in the ecliptic plane can be described with three orbital parameters, the semi-

major axis, a, the eccentricity, e, and the angle, φ, between the Sun-line and the orbit perigee, also
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Figure 2.1: Relative acceleration of orbital perturbations on a typical SpaceChip as a function of

altitude [1]

defined as the Sun-perigee angle, as shown in Fig. 2.2. Therefore, φ can be expressed as:

φ = Ω + ω − (λ� − π) (2.1)

where Ω is the right ascension of the ascending node and ω the argument of perigee. For orbits

in planes that are inclined with respect to the ecliptic, Eq.(2.1) is an approximation which loses

accuracy with increasing inclination. When considering the J2 Earth oblateness perturbation, it

is necessary to reduce the geometry to a two dimensional planar model, neglecting the tilt of the

Earth’s rotational axis, to allow an analytical development of the problem.

The analytical model of the orbital dynamics developed by Hamilton and Krivov [7] and

Krivov and Getino [8] uses an approximate Hamiltonian for planar orbits under the effects of solar

radiation pressure and the Earth’s oblateness. This analytical model does not consider eclipses

and the tilt of the Earth’s rotational axis with respect to the ecliptic plane. As a consequence,

the semi-major axis remains constant and the evolution of the orbit can be described only by its

eccentricity, e, defining the changing shape of the orbit, and Sun-perigee angle, φ, defining the orbit

orientation with respect to the Sun. From Hamilton and Krivov [7], the change of orbital elements

due to solar radiation pressure and J2 with respect to the progression of the angle between the true

longitude of the Sun on the ecliptic plane with respect to the first point of Aries, λ� (see Fig. 2.2), is:
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ϕ

ϓ

λ


Perigee

Ω + ω

Figure 2.2: In-plane orbit geometry - à denotes the direction of the first point of Aries

de

dλ�
= −α

√
1− e2 sinφ (2.2)

dφ

dλ�
= −α

√
1− e2

e
cosφ+

κ

(1− e2)2
− 1 (2.3)

where α is the radiation pressure parameter and κ the J2 effect parameter, defined by:

α =
3

2n�
aSRP

√
a

µ
(2.4)

κ =
3

2n�
J2RE

2

√
µ

a7
(2.5)

with n� = 2π rad yr−1, the orbital rate of the Earth around the Sun, J2 ≈ −1.08× 10−3, the second

gravitational harmonic parameter of the Earth, RE ≈ 6378 km, the mean radius of the Earth, and

aSRP , the acceleration the spacecraft experiences due to solar radiation pressure. The term aSRP

can be calculated from the solar energy flux at 1 AU distance from the Sun, F� ≈ 1370 W m−2,

and the speed of light, c ≈ 3× 108 m s−1, as follows [53]:

aSRP =
F�
c
σ (2.6)
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The key spacecraft characteristic is the effective area-to-mass-ratio, σ = cR
A
m , the product

of cR, the coefficient of reflectivity, and A
m , the area-to-mass-ratio with respect to the Sun, which

is assumed to be constant.

Hamilton and Krivov [7] show that Eqs. (2.2) and (2.3) can be written in a quasi-canonical

form:

de

dλ�
=

√
1− e2

e

∂H

∂φ
(2.7)

dφ

dλ�
= −
√

1− e2

e

∂H

∂e
(2.8)

with the Hamiltonian H(φ, e), defined as:

H(φ, e) = αe cosφ− κ

3
√

1− e2
3 −

√
1− e2 (2.9)

H is not dependent on λ�, which acts as a time variable in this model. Hence, the evolution of any

orbit with initial eccentricity, e0, and Sun-perigee angle, φ0, is given by the set of orbits, (e, φ), with:

H(φ, e) = H(φ0, e0) = const . (2.10)

Any orbit will evolve along phase lines of the same Hamiltonian value, either periodically returning

to the initial orbit or, in special cases, converging towards an equilibrium orbit. The different phase

space behaviours and equilibria that can occur are discussed in the following subsection.

Phase space behaviour and equilibria

A selection of phase space diagrams resulting from the Hamiltonian in Eq. (2.9) are shown in Fig.

2.3 for three different semi-major axes and three different area-to-mass-ratios in the range that

is relevant for the applications discussed in this thesis. The diagrams were computed numerically.

The shaded areas represent orbits where the radius of the perigee is smaller than the radius of the

Earth. The values were chosen so that the most interesting behaviours could be shown. A reflectivity

coefficient of cR = 1.8 was chosen in an approximation of an imperfectly reflecting surface. The

equilibrium eccentricities were found numerically and are marked with coloured circles, while the

bold phase lines indicate the separatrices between rotational and librational behaviour. One of

these is always a line passing through e = 0. Rotational behaviour describes an evolution in which
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the angle φ performs a full rotation before returning to the original value. Librational behaviour

occurs when an orbit librates around an equilibrium in the phase space.

Equilibria can only occur at φ = 0 and φ = π. This follows from Eq. (2.2) which clearly

shows that the change in eccentricity for a non-zero SRP-parameter, α, can be only zero if φ = 0 or

φ = π. Two types of equilibria can occur: stable centre equilibria and unstable hyperbolic equilibria.

For low semi-major axes only one stable equilibrium exists at φ = 0 (see Fig. 2.3(a-c)). At high

semi-major axes a maximum of three equilibria exist for the given area-to-mass-ratios: the stable

equilibrium at φ = 0, an additional stable equilibrium at φ = π and, at a higher eccentricity, an

unstable equilibrium also at φ = π (see Fig. 2.3(g-i)). The stable equilibrium at φ = π also exists

when J2 is neglected and only SRP is considered. It is the proposed orbit for the GEOSAIL mission

[100]. This is a valid simplification for very high altitudes for which the Hamiltonian dynamics were

investigated by Oyama et al. [101].

For semi-major axes in between these two regimes interesting behaviours can occur. Figure

2.3(d) shows a phase space in which all three equilibria occur. However, the two separatrices con-

taining the librational zones around the two stable equilibria coincide. This way, for eccentricities

below the eccentricity of the hyperbolic equilibrium no rotational behaviour exists. A spacecraft

on a circular orbit would move towards the hyperbolic equilibrium on a stable manifold. This

phase space behaviour is important for the solar radiation pressure augmented deorbiting method

presented in Chapter 4 and 5.

A further behaviour of note can be observed in Fig. 2.3(e) where the stable and unstable

equilibrium points coincide resulting in an unstable Bogdanov-Takens point [102]. For any semi-

major axis there is an area-to-mass-ratio above which all equilibria at φ = π disappear. This is the

case in Fig. 2.3(f).

In Fig. 2.4 the eccentricities of the equilibrium orbits are shown as a function of semi-major

axis. The area-to-mass-ratios and reflectivity are selected in accordance with those in Fig. 2.3 and

the three semi-major axes investigated there are marked by vertical black lines.

It can clearly be seen that for a = 11 000 km there only exists the stable equilibrium at

φ = 0, regardless of how large the area-to-mass-ratio is chosen. At a = 12 350 km the other two

equilibria appear. First for small semi-major axes, and consequently at low eccentricities, but with

increasing semi-major axes for higher area-to-mass-ratios as well. This effect could be seen in Fig.

2.3 where for low semi-major axes (a-c) just a single equilibrium appears and for high semi-major

axes (g-i) all equilibria occur. Furthermore, the special case of Fig. 2.3 (e) where the hyperbolic
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(a) a = 11 000 km
σ = 6.8 m2kg-1

(d) a = 14 864 km
σ = 6.8 m2kg-1

(g) a = 18 000 km
σ = 6.8 m2kg-1

(b) a = 11 000 km
σ = 10 m2kg-1

(e) a = 14 864 km
σ = 10 m2kg-1

(h) a = 18 000 km
σ = 10 m2kg-1

(c) a = 11 000 km
σ = 20 m2kg-1

(f) a = 14 864 km
σ = 20 m2kg-1

(i) a = 18 000 km
σ = 20 m2kg-1

Figure 2.3: Hamiltonian phase space diagrams for three different semi-major axes a and three

different area-to-mass-ratios σ (cR = 1.8)
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Figure 2.4: Eccentricity of equilibrium orbits in the Hamiltonian phase space as a function of

semi-major axes a and for four different area-to-mass-ratios σ (cR = 1.8)
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and stable equilibrium coincided can be distinguished here as the position where the vertical line

indicating a = 14 864 km touches the lines for both equilibria at φ = π in the same position.

In Fig. 2.4 the critical eccentricity, ecrit, is also marked. This is the eccentricity for which an

orbit perigee will intersect the Earth and is a function of semi-major axis and radius of the Earth,

RE , such that:

ecrit = 1− RE
a

(2.11)

Any equilibria above this line can thus not be used. Equilibria close below the line may not

be feasible either as the drag at the perigee of these orbits could be too high. Because of this, for

high semi-major axes only the stable equilibrium at φ = π is accessible.

Finally, it is interesting to note that equilibria also exist for σ = 0 m2 kg−1, i.e. without SRP.

This is due to the fact that for a ≥ 12 350 km, for high eccentricities the positive change of φ due

to the J2 effect is larger than the converse effect due to the progression of the Earth around the

Sun, while for lower eccentricities it is the other way around. This means for each semi-major axis

there exists an eccentricity for which the change in φ is zero, and the orientation of the orbit with

respect to the Sun is thus constant. As SRP is neglected in this case, the orientation of the orbit

with respect to the Sun is irrelevant.

2.1.2 Influence of obliquity and inclination

The Hamiltonian dynamics presented in the previous subsection are valid for zero inclination in-

plane orbits. In-plane here means that the Earth’s equatorial plane is assumed to lie in the ecliptic

plane, i.e. the Earth obliquity is assumed to be zero rather than the actual 23.44°. That way the

rotation of the orbit due to the J2 effect and due to SRP and the progression of the Earth around

the Sun share a common rotational axis. Thus a zero inclination orbit will never experience any

out-of-plane forces due to SRP through-out its evolution. In this section the analysis by Colombo

et al. [84] is summarised, which deals with the effects of non-zero obliquity and inclination on the

evolution according to the Hamiltonian model by Hamilton and Krivov [7] and Krivov and Getino

[8]. For the propagation of the orbits the expressions for the secular variation of orbital parameters

due to SRP and J2 found by Colombo and McInnes [103] and discussed later in 2.2 were used.

Figure 2.5 shows the change of the (e, φ) phase space as the obliquity is increased. It can

be seen that the general shape of the phase space is retained. Despite the small divergences from
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Figure 2.5: Orbital evolution due to SRP and J2 of equatorial HAMR orbits in the (e, φ) phase

space for different obliquity angles: a = 18 000 km, σ = 10 m2 kg−1 and cR = 1.8 [84]

the analytical case, the equilibria still exist as quasi-frozen orbits. This means that the angle φ as

defined in Eq. (2.1) remains close to constant while the angles Ω, ω and λ� vary.

Next, the occurrence and position of the equilibria is analysed for inclined orbits. Colombo

et al. [84] use a numerical approach and apply a multi-objective minimisation to find the points in

the phase space which vary the least in eccentricity, inclination and φ.

Figure 2.6 shows the eccentricity of the three types of frozen orbit corresponding to the

equilibria discussed in Sec. 2.1.1 for a Sprite SpaceChip (σ = 17.4 m2 kg−1), as introduced in

Chapter 1, at a = 18 000 km. It can be seen that the stable equilibrium at φ = π (blue) decreases

in eccentricity for increasing inclination, while the other two types of frozen orbit experience an

increase in inclination. Furthermore, it can be seen that the frozen orbits begin to disappear at

higher inclinations.

2.2 Secular orbital evolution

In this section two sets of expressions for the secular variation of the orbital elements due to

SRP and J2 are described, which are used later in this thesis to verify any orbit families and
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Figure 2.6: Quasi-frozen orbits in the (e, φ) phase space with frozen inclination for different inclined

orbital planes: a = 18 000 km, σ = 17.4 m2 kg−1 and cR = 1.8 [84]

applications developed using the analytical Hamiltonian model in Sec. 2.1.1. The first set uses

Keplerian parameters and only applies to planar orbits. However, as opposed to the analytical

model in Sec. 2.1.1, eclipses and aerodynamic drag are taken into account.

The second model takes into account inclination and the obliquity angle of the ecliptic with

respect to the Earth’s equator, εE = 23.44°. It is formulated in non-singular orbital elements to

allow for the propagation of circular orbits. However, any perturbations apart from SRP and J2 are

not considered to minimise the computation time and thus allow the analysis of large sets of initial

conditions. Additionally, both methods consider secular variations only. Secular variations are long

term variations of the orbital elements averaged over one orbit disregarding the oscillations of the

elements within one orbit. This vastly reduces the computational effort. However, it also means

that any solutions are only approximate. To obtain high fidelity results a further verification step

is needed as described later in Sec. 2.3.2.

2.2.1 Secular orbital in-plane evolution due to SRP, J2 and drag

In this section the expressions found by Colombo and McInnes [103] for the orbit averaged variation

of semi-major axis, eccentricity and Sun-perigee angle, φ, due to solar radiation pressure, the J2

effect and drag are shown. These are a combination of an approximate integral of the Gauss’
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equations of the perturbed Keplerian elements [53], the secular J2 effect and the drag equations

by King-Hele [104].

The orbit averaged change of the orbital elements due to solar radiation pressure found by

Colombo and McInnes [103] was calculated by integrating the Gauss’ equations. Then, the start

and end angles of the integration interval [f1, f2] are chosen as the exit and entrance angle of the

eclipse. Therefore SRP only has an effect when the spacecraft is in Sunlight. The functions are

applied as follows:

da

dt SRP
≈ 1

2π

√
µ

a3

f2∫
f1

da

df SRP

(a, e, φ)df =
1

2π

√
µ

a3
(funa(a, e, φ, f2)− funa(a, e, φ, f1))

de

dt SRP
≈ 1

2π

√
µ

a3

f2∫
f1

de

df SRP

(a, e, φ)df =
1

2π

√
µ

a3
(fune(a, e, φ, f2)− fune(a, e, φ, f1))

dφ

dt SRP
≈ 1

2π

√
µ

a3

f2∫
f1

dφ

df SRP

(a, e, φ)df =
1

2π

√
µ

a3
(funφ(a, e, φ, f2)− funφ(a, e, φ, f1))

(2.12)

with

funa(a, e, φ, f) =− aSRP
2a3(1− e2)

µ

(
cosφ+ e sinφ sin f

e(1 + e cos f)

)
(2.13)

fune(a, e, φ, f) = aSRP
a2(1− e2)2

µe

(
sinφ

(
− 3
√

1− e2
3 arctan

(√
1− e
1 + e

tan
f

2

)

+
sin f(cos f(−8e4 + 10e2 − 2) + 6e(1− e2))

4(1− e2)2(1 + e cos f)2

)
− cosφ

1 + 2e cos f

2e2(1 + e cos f)2 + e2

)
(2.14)

funφ(a, e, φ, f) =− aSRP
a2(1− e2)2

µe

(
cosφ

(
3

√
1− e2

3 arctan

(√
1− e
1 + e

tan
f

2

)

− e sin f

(1− e2)(1 + e cos f)
− 1

2

(e+ cos f) sin f

(1− e2)(1 + e cos f)2

)
+ sinφ

1 + 2e cos f

2e2(1 + e cos f)2

)
(2.15)

where µ ≈ 3.986× 105 km3 s−2 is the gravitational parameter of the Earth.

The oblateness of the Earth and the Earth’s motion around the Sun have a further effect

on the progression of φ, such that:
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dφ

dt J2
=

3J2R
2
E

2(1− e2)2

√
µ

a7
− n� (2.16)

This term is later added to the Sun-perigee angle term in Eq. (2.12) to obtain the rate of change

of the Sun-perigee angle. The semi-major axis and the eccentricity are not affected by the J2 ef-

fect. However, they are perturbed by aerodynamic drag. Therefore, a term describing this effect

has to be added to the semi-major axis and eccentricity terms in Eq. (2.12). The decay due to

aerodynamic drag for a static atmosphere can be calculated using the modified Bessel functions

according to King-Hele [104]:

dhp
dt Drag

≈ −
√

µ

a3
cDσa

2ρp exp

[
− ae
Hp

](
I0 + 2eI1 + 3

e2

4
(I0 + I2) +

e3

4
(3I1 + I3)

)

de

dtDrag
≈ −

√
µ

a3
cDσaρp exp

[
− ae
Hp

](
I1
e

2
(I0 + I2)− e2

8
(5I1 − I3)− e3

16
(5I0 + 4I2 − I4)

)
(2.17)

with

dhp
dt Drag

=

dhp
dt Drag

+ ade
dtDrag

1− e (2.18)

cD is the drag coefficient, ρp is the atmospheric density at perigee and Hp is the scale height for

the exponential model of the atmosphere at perigee. Furthermore, Ik are modified Bessel functions

of the first kind of order k and argument ae
Hp

. For planar orbits and neglecting the rotation of the

atmospheric drag has no effect on φ.

To obtain the approximate secular change in planar orbital elements due to SRP, J2 and

drag, Eqs. (2.12), (2.16) and (2.17) can be added to yield:

da

dt
=

da

dt SRP
+

da

dt Drag

de

dt
=

de

dt SRP
+

de

dtDrag

dφ

dt
=

dφ

dt SRP
+

dφ

dt J2

(2.19)

This set of equations is used later in this thesis for determining the secular in-plane orbit evolution

of high area-to-mass-ratio spacecraft with perigee altitudes in the drag regime.
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2.2.2 Secular orbital evolution due to SRP and J2 in non-singular ele-

ments

In this section a further set of expressions for the secular orbital evolution due to SRP and J2 are

introduced. The model presented here was developed by Krivov et al. [6] and includes a full 3D

evolution of the orbit. However, as opposed to the planar model introduced in the previous section

it does not include the effect of aerodynamic drag and does not consider eclipses. The orbital dy-

namics are propagated by numerically integrating the averaged Gauss’ equations in non-singular

Lagrangian elements:

h = e cos (ω + Ω)

k = e sin (ω + Ω)

p = sin i cos Ω

q = sin i sin Ω

(2.20)

where the fifth element is the semi-major axis a.

The differential equations for the secular change due to the J2 effect and solar radiation

pressure were derived by Krivov et al. [6] and revised by Colombo et al. [84] as:

dh

dλ�
= − kκ5I2 − 2I − 1

2E4
− α

E(1 + I)

((
E2 (1 + I)− p (p−Hh)

)
cos εE sinλ�

−
(
E2 (1 + I) p− IKk

)
sin εE sinλ� − (p−Hh)q cosλ�

)

dk

dλ�
= hκ

5I2 − 2I − 1

2E4
+

α

E(1 + I)

((
E2 (1 + I)− q (q −Hk)

)
cosλ�

−
(
E2 (1 + I) q + IKh

)
sin εE sinλ� + (q −Hk) p cos εE sinλ�

)

dp

dλ�
= qκ

1

E4
+

α

E (1 + I)
(Hp− (1 + I)k) ((p cos εE − I sin εE) sinλ� − q cosλ�)

dq

dλ�
= − pκ 1

E4
+

α

E (1 + I)
(Hq − (1 + I)k) ((p cos ε− I sin εE) sinλ� − q cosλ�)

(2.21)
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where

E =
√

1− h2 − k2

I =
√

1− p2 − q2

H = hp+ kq

K = hq − kp

(2.22)

and α and κ are the solar radiation pressure parameter and the J2 effect parameter defined in Eqs.

(2.4) and (2.5). The orbit averaged secular change of the semi-major axis is zero as aerodynamic

drag is not considered and the J2 effect has no influence on the semi-major axis and eclipses are

neglected. Krivov et al. [6] have shown that at high semi-major axes the effect of eclipses is small.

These equations are used later in this thesis to calculate the secular evolution of inclined

high altitude orbits of high area-to-mass-ratio spacecraft.

2.3 Verification

As discussed earlier, the secular equations presented in the previous section offer very fast numerical

propagation but lack some precision. This is because they only consider the secular change in orbital

elements and because of the exclusion of perturbations other than SRP, aerodynamic drag and the

J2 effect. Furthermore, the expressions given in Eq. (2.19) are considering only a planar 2D model

of the orbital geometry, while the expressions given in Eq. (2.21) do not consider aerodynamic

drag. Therefore, a further verification step is necessary. This was performed for sample test cases

in either of two ways. One option is the propagation of the orbit using the Gauss’ equations of the

variation of parameters in three dimensions, the other is a high precision propagation using the

Analytical Graphics, Inc. STK HPOP tool. Both methods are described in this section.

2.3.1 Verification using Gaussian VOP equations

The Gaussian variation-of-parameters (VOP) equations are used for the verification of the elec-

trochromic orbit control algorithm developed in Chapters 6 and 7. The expressions are used to

calculate the rate of change of the osculating orbital parameters over time. This means that, as

opposed to the orbit averaged models introduced in Sec. 2.2, they evaluate the changing parame-

ters at each step of the orbit and are thus a more accurate model of the spacecraft dynamics. The
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Gauss’ equations were taken from Vallado [53] as:

da

dt
=

2a2

√
µp

(
e sin (f) ar +

p

r
aθ

)
(2.23)

de

dt
=
p sin far + ((p+ r) cos f + er) aθ√

µp
(2.24)

di

dt
=
r cosω + f√

µp
an (2.25)

dΩ

dt
=
r sinω + f√
µp sin i

an (2.26)

dω

dt
=
−p cos far + (p+ r) sin faθ

e
√
µp

− r sinω + f√
µp tan i

an (2.27)

df

dt
=

√
µp

r2
− p cos far − (p+ r) sin faθ

e
√
µp

(2.28)

where p is the semilatus rectum, p = a
(
1− e2

)
, and ar, aθ and an are the accelerations experienced

by the spacecraft in the radial, transversal and normal directions respectively.

2.3.2 High fidelity verification using STK

The other method of verification used in Chapters 3, 4 and 5 is the point-wise verification of the

behaviour using a high precision orbit propagator. In this thesis the Analytical Graphics, Inc.

STK HPOP tool was used for this purpose [105]. This propagator calculates the trajectory at

each time step using a Runge-Kutta-Fehlberg algorithm [106]. It takes into account solar radiation

pressure, aerodynamic drag, the Earth gravitational harmonics up to 21st order, and third body

perturbations due to the Sun and the Moon in addition to SRP. The atmospheric density model

used is the Jacchia-Roberts model which accounts for seasonal and divisional variations of the

density [107].
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Chapter 3

Passive GTO to LEO Transfer

In the first part of this thesis the dynamics introduced in Sec. 2.1 are applied to passive orbit

transfer for small satellites. In particular, a passive geostationary transfer orbit (GTO) to low

Earth orbit (LEO) transfer and later a passive deorbiting method are considered. In this chapter

a passive orbit transfer for CubeSats from a GTO to LEO using solar radiation pressure and

aerodynamic drag is investigated, and a surface area increasing device sized.

As discussed in Sec. 1.2, the need for a passive transfer method from GTO to LEO arises

due to the limited availability of piggyback launches to LEO, the main operational regime for

small satellite missions, and the typical lack of propulsion capabilities for CubeSats. The work in

this chapter investigates further the method of solar radiation pressure augmented passive GTO

to LEO transfer initially discussed by Colombo and McInnes [32]. It exploits the effect of solar

radiation pressure to raise the orbit perigee while at the same time lowering the apogee using

aerodynamic drag. Both effects are dependent on the area-to-mass-ratio of the spacecraft. By

artificially increasing this ratio through the deployment of a large gossamer structure these effects

can be enhanced. In the original work [32] an analysis of the sensitivity of the transfer time and final

altitude of an SRP-augmented GTO to LEO transfer with respect to initial perigee angle of the

GTO, and reflectivity and area-to-mass-ratio of the spacecraft was performed. The work presented

in this chapter builds on and extends this research. In particular, the method is investigated using

a high precision orbit propagator including secondary perturbations. It is shown that the time of

the initial launch is important for the success of the manoeuvre, due to third body gravitational

effects experienced by the CubeSat in GTO. These effects were not considered in the initial work

by Colombo and McInnes [32].
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The orbit transfer method uses a spacecraft fitted with an area-to-mass-ratio enhancing

device. The design options for this device are discussed in Sec. 3.2.1, but an inflatable balloon is

chosen as the baseline in this chapter. Any results will also work on a different shaped device as

long as it is deployable at the start of the manœuvre, ejectable or retractable at the end, and its

area-to-mass-ratio with respect to the Sun is fixed. As discussed in Sec. 1.2.1, once in GTO the

spacecraft will wait until the correct time to start the manœvre. It will then deploy its transfer

device. When the desired goal orbit is reached the device is ejected or retracted to avoid rapid

deorbiting.

In Sec. 3.1 the basic orbital dynamics governing the scenario are discussed and the ef-

fectiveness of the method analysed. A test scenario is computed and the radiation environment

investigated. Finally, in Sec. 3.2 possible design options for the area-to-mass-ratio enhancing device

are discussed.

3.1 Orbital transfer

In this section the orbital dynamics of the passive GTO to LEO transfer are discussed in detail.

Then, a mission scenario is designed using an arbitrarily chosen launch date. Finally, a radia-

tion analysis for the manœuvre is performed and the consequences for the spacecraft design are

discussed.

3.1.1 Orbital dynamics

The transfer method investigated in this chapter is based on the Hamiltonian dynamics discussed

in Sec. 2.1.1, where it can be seen that the orbit of a high area-to-mass-ratio spacecraft perturbed

by SRP will experience an increase or a decrease in eccentricity depending on φ, the angle between

its perigee and the direction of the Sunlight, where φ is defined as is Eq. (2.1) in chapter 2. The

angles for planar orbits can be seen in Fig. 2.2 in Sec. 2.1. This passive effect will be used for the

transfer.

It can be seen in Eq. (2.2) that for −π < φ < 0 the average change of eccentricity over one

orbit is always positive and for 0 < φ < π it is negative. The change in φ depends on the orbit

and the area-to-mass-ratio of the spacecraft (see Eq. (2.3)). Without the effect of solar radiation

pressure and the Earth’s oblateness, φ, will always have an average rate of change of dφ
dλ� rot

= −1

due to the Earth’s motion around the Sun. The average rate of change of φ due to the J2 effect
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is always positive and dependent on the semi-major axis and eccentricity. For GTO the rate of

change due to J2 is 0 < dφ
dλ� J2

< 1. Therefore, the total rate of change dφ
dλ�

= dφ
dλ� rot

+ dφ
dλ� J2

is negative and
∣∣∣ dφ

dλ�

∣∣∣ < 1, so that one full rotation of the Sun-perigee angle takes more than a

year. The effect of solar radiation pressure on the average rate of change depends mainly on the

semi-major axis and area-to-mass-ratio. Its sign however is dependent on φ. For −π2 ≤ φ ≤ π
2 it is

negative, otherwise it is positive.

It can be seen that the value of φ at the deployment of the area-to-mass-ratio enhancing

device has a significant effect on the success of the manœuvre. Firstly, the transfer needs to be

initiated when 0 < φ < π, so that the eccentricity decreases and the perigee is raised [32]. Secondly,

the manœuvre needs to be performed in such a way that the perigee is within the drag region long

enough to lower the apogee sufficiently. Therefore, a sharp increase in perigee altitude is not

desirable. An analysis of a range of starting conditions performed by Colombo and McInnes [32]

shows the achievable perigee altitude as a function of the initial Sun-perigee angle, φ0, and the

area-to-mass-ratio for GTOs with perigee altitude hp = 250 km. In this analysis the simulation is

performed by propagating the expressions for the secular variation of the orbital elements due to

solar radiation pressure, the J2 effect and aerodynamic drag in a planar 2D model introduced in

Sec. 2.2.1. It is shown that the GTO to LEO transfer works best for 0 < φ0 <
π
4 .

It is common for spacecraft to be launched into a midnight GTO. In this case the final

insertion burn will be performed at midnight which means that the orbit perigee is on the opposite

side of the Earth from the Sun, i.e. φ = 0. This is disadvantageous for the GTO to LEO transfer

because for it to be successful φ needs to be between 0° and 45°, while the change in φ is negative as

shown before. Consequently, the spacecraft must remain waiting in GTO for almost a full rotation

of φ which takes approximately 620 days. Although occasionally GTO launches have different

initial orientations towards the Sun, the midnight launch is the most common and also a worst

case scenario for the GTO to LEO transfer. Therefore, this type of launch is assumed here. In the

next subsection an example mission scenario is defined for an arbitrarily selected launch date of

the 1st of October 2014.

3.1.2 Test scenario

The mission analysis on a test scenario is performed using two different orbit propagators. Analyt-

ical Graphics Inc. Satellite Tool Kit (STK) is used for high precision orbit propagation (HPOP)

including an extensive set of orbital perturbations as detailed in Sec. 2.3.2. The propagation us-

ing this algorithm has a high fidelity but also a long computational run-time. It is used for the

determination of the evolution of single scenarios. For the analysis of a large range of scenarios

43



3. PASSIVE GTO TO LEO TRANSFER

MATLAB is utilised which uses the analytical equations for the secular variations of the 2D planar

orbital elements under the effect of SRP, J2 and aerodynamic drag, introduced in Sec. 2.2.1. This

method of propagation is less accurate than STK but can be performed significantly faster.

Three steps are needed for the mission design. After choosing a launch date, the GTO is

propagated in STK to reach the initial conditions for 0 < φ0 < π
4 . This is because luni-solar

perturbations are assumed to have a significant effect on the orbit during the waiting time causing

its perigee altitude to librate. In this propagation a 3U CubeSat is assumed with an area-to-mass-

ratio of 0.01 m2 kg−1, a drag coefficient of 2.2 and a coefficient of reflectivity of 1.5, representative

of a CubeSat with a stowed device. From the results of this simulation a table of starting conditions

for the orbit transfer is extracted. These conditions are then imported into MATLAB and the 2D

propagation is used to calculate the resulting final perigee altitude as a function of waiting time.

From this, the best waiting time is chosen and the end-to-end scenario is run in STK. After the

balloon ejection, the simulation is run for another year to ensure the spacecraft can maintain its

operational orbit for such a period of time.

Waiting in GTO

Figure 3.1 shows the progression of φ from GTO insertion. The evolution is steady and it can be

seen that after 540 to 620 days of waiting (grey band) φ will be in the appropriate zone for the

manœuvre. In Fig. 3.2 the evolution of the semi-major axis, a, and the altitude of the perigee, hp are

shown. It can be seen that the orbit loses some energy during the waiting time due to aerodynamic

drag at perigee causing the semi-major axis to decrease. The eccentricity and consequently the

perigee altitude oscillate due to third body gravitational effects. This means that at the time of

the start of the manœuvre the altitude of the perigee is different than at GTO insertion and

measures between 220 km and 270 km.

Choosing the manœuvre starting time

The different initial parameters for the manœuvre are then propagated in MATLAB to find an

approximation of the final perigee altitude after the orbit transfer with the device deployed to

achieve an area-to-mass-ratio of 3 m2 kg−1. For this, the orbital parameters of the GTO after

different waiting times are propagated until the eccentricity is lower than 0.05 and the orbit is

thus quasi-circular. The results of this analysis are shown in Fig. 3.3. It can be seen that the final

perigee is higher than the initial perigee for waiting times between 575 and 600 days. As a trade-off

44



3. PASSIVE GTO TO LEO TRANSFER

0 100 200 300 400 500 600 700
−180

−135

−90

−45

0

45

90

135

180

t [days]

φ
[d
eg
]

Figure 3.1: Evolution of the Sun-perigee angle of the GTO after launch - the grey band represents

the waiting time corresponding to the manœuvre start window

between trying to maximise the final perigee altitude and choosing a time in the middle of the

interval, a waiting time of 585 days is chosen.

It should be noted that the date at which the spacecraft is first inserted into GTO does

have a significant impact on whether or not the manœuvre can be performed. A second analysis of

the oscillations in waiting time and evaluation for the final perigee altitude of a different starting

date has revealed that the intial perigee altitude at the start of the manœuvre is important for its

success. This analysis is performed for a launch on the 1st of January 2015. Because of the different

geometry of the Sun and the Moon at orbit insertion the eccentricity oscillates in a different phase

to the previous simulation. The result is a higher perigee altitude in the manœuvre critical region

of 0 < φ < π
4 . While the October 2014 launch saw the perigee in the range of 220 to 270 km, it

is now between 270 and 310 km for the January launch. This higher initial perigee altitude would

suggest that the achievable final perigee altitude is higher than that of the October launch as well.

However, it was shown that this is not the case.

Figure 3.4 shows the initial and resulting final perigee altitudes for different effective area-

to-mass-ratios for the January launch. Counter-intuitively the higher initial perigee altitudes with

respect to the October launch presented in Fig. 3.3 resulted in lower final perigees. The reason for

this is the fact that the orbit does not receive a large semi-major axis reduction due to drag initially.
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Figure 3.2: Evolution of the semi-major axis and perigee altitude of the GTO after launch on

01/10/2014 - the grey band represents the waiting time identified in Fig. 3.1
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Figure 3.3: Initial perigee altitude and approximation of the final perigee altitude as a function of

waiting time (launch on 01/10/2014)
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Figure 3.4: Initial perigee altitude and approximation of the final perigee altitude as a function of

waiting time (launch on 01/01/2015)
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It then experiences the increase in perigee altitude due to solar radiation pressure without having

reached the correct semi-major axis. After initially decreasing the eccentricity, solar radiation

pressure next causes it to increase again. When drag starts to take effect again it decreases the

apogee while SRP continues to decrease the perigee resulting in a very low final orbit. Only high

area-to-mass-ratios (σ = 7 m2 kg−1) manage to gain a small increase in perigee altitude by reducing

the semi-major axis fast in the first phase.

Complete manœuvre

Finally, the full manœuvre is simulated in STK (see Sec. 2.3.2). The initial parameters are those

of a midnight launch GTO from Kourou on the 1st of October 2014. The initial semi-major axis

is 24 474 km and the initial perigee altitude 250 km. The inclination is 6°, the argument of perigee

178° and φ = 0°. The orbit is propagated with a stowed area-to-mass-ratio of 0.01 m2 kg−1 and

cR = 1.5 for 585 days. After that time the area-to-mass-ratio is increased to 3 m2 kg−1 and cR is

changed to 1 to model a balloon shape. The device shape and resulting reflectivity will be discussed

in detail in Sec. 3.2.1.

When the eccentricity reaches 0.05 the area-to-mass-ratio and coefficient of reflectivity are

changed back to the original values to model the balloon jettisoning and the propagation is con-

tinued for another year.

Figure 3.5 shows the evolution of the semi-major axis and the perigee altitude during the

manœuvre. It can be seen that the semi-major axis remains quasi-constant during the waiting

time. When the area-to-mass-ratio changes it decreases rapidly, and finally in LEO the semi-major

axis is stable again. The perigee altitude oscillates during the waiting time. When the balloon is

deployed the effect of solar radiation pressure causes the perigee to rise before it decreases again

slightly. At the end of the orbit transfer the perigee is 100 km above where it started.

The evolution of the eccentricity and Sun-perigee angle are shown in Fig. 3.6. It can be

seen that whenever the area-to-mass-ratio is low the eccentricity, similar to the semi-major axis, is

relatively stable. It can also be noted that the direction of the progression of φ changes when the

device is deployed. This is due to the effect of solar radiation pressure on the rate of change of the

Sun-perigee angle. In the final LEO the direction of change is still positive even after ejection of

the device. This is due to the stronger influence of the J2 effect on orbits with lower semi-major

axis.

48



3. PASSIVE GTO TO LEO TRANSFER

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5
x 10

4

t [yr]

a
[k
m
]

 

 

A
m ≈ 0.01
A
m = 3

0 0.5 1 1.5 2 2.5 3
200

250

300

350

400

450

t [yr]

h
p
[k
m
]

 

 
A
m ≈ 0.01
A
m = 3

Figure 3.5: Evolution of the semi-major axis and perigee altitude during the mission (launch on

01/10/2014)
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Figure 3.6: Evolution of the eccentricity and Sun-perigee angle during the mission (launch on

01/10/2014)
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3.1.3 Radiation analysis

The long waiting time in GTO and the subsequent manœuvre mean that the spacecraft will spend

approximately two years passing through the Van Allen belts. A radiation analysis is performed

in ESA’s space environment information tool (SPENVIS) [108]. A file with sampled coordinates

throughout the mission lifetime is input into the tool, which then calculates the electron and proton

fluxes on the spacecraft. The results are shown in Fig. 3.7 as a function of mission time (compare

with Fig. 3.5). It can be seen that the fluxes are highest in GTO, during the transfer they decrease

and are between two (electrons) and five (protons) magnitudes lower in LEO.

The fluxes are then used to calculate the total ionising dose on a Silicon component as a

function of Aluminium shielding thickness dS . Figure 3.8 shows the results. It can be seen that while

the ionising dose due to trapped electrons decreases almost log-linearly with thickness the ionising

dose due to Bremsstrahlung and trapped protons stagnates after an initial fast decrease. 7.5 mm

spot shielding of sensitive vital components such as the flight computer and the flash memory

reduces the total ionising dose to 1× 10−4 rad. According to Wertz and Larson [109] common

commercial of the shelf (COTS) components can withstand this dose of radiation.

3.2 Design of the transfer device

In this section design options for the orbital transfer device are discussed. The requirements for

the module are defined. Then the main design choices are investigated and the baseline design

introduced and analysed. The purpose of this design exercise is to gain an understanding of different

design options and an idea of the achievable area-to-mass-ratios. The design presented here is very

conceptual in nature. A more detailed design and a study of the technical feasibilty and maturity

is future work.

The orbit transfer device consists of a deployable structure for enhancing the spacecraft’s

area-to-mass-ratio to increase the effect of solar radiation pressure and aerodynamic drag. The

structure needs to be stowed completely within the spacecraft during launch and the waiting time

in GTO. After deployment the structure needs to rigidise to ensure survival against micro-meteorite

and debris impacts during the transfer. The structure also needs to be ejectable or retractable after

the transfer is complete to avoid rapid deorbiting. If ejected, the device shall deorbit within a short

time to avoid collision with other spacecraft. Three main design choices have to be made for the

deployable structure: which shape should it have, how is it deployed and how is it rigidised and

finally ejected. These choices are discussed in the following subsections.
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Figure 3.7: Electron and proton fluxes above 0.1 MeV as a function of mission time
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Figure 3.8: Ionising dose on silicon spacecraft component as a function of the thickness of the

aluminium shielding

3.2.1 Device shape

The main options for the shape of the device are a balloon, a cone/pyramid or a flat sail. The

cone and the sail need to be directed to face the Sun in order to experience the desired effect on

the orbit evolution. Without a damping moment, of these three options only the balloon can be

considered truly passive, however the balloon would also need eight-times more surface material

than the flat sail. This is due to the ratio of surface area of a sphere to its cross-sectional area and

because of the different reflection characteristics of the geometrical shapes.

The coefficient of reflectivity cR determines the momentum an object gains from incident

radiation. It is dependent on the optical properties of the surface material and on the geometri-

cal shape of the object. It is assumed that the material is not transmissive. The incoming solar

radiation is partly absorbed and partly reflected. The reflection is part specular and part diffuse.

Specular reflection is directional and leaves the surface at an angle which depends on the angle of

incidence of the radiation. Diffuse reflection is multi-directional. In this discussion both reflections

are considered together as a reflectivity η ∈ [0, 1], where η = 0 means fully absorptive and η = 1

is a perfect mirror. The material is assumed to be highly specular, which means that η is high
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Figure 3.9: (a) Effective reflectivity of an inclined surface, (b) surface inclination of a sphere

and the vectors of the incoming and reflected radiation are symmetrical with respect to the local

surface normal.

The effective coefficient of reflectivity of any sphere is one, as can be proven geometrically.

First the impulse transmitted to a non-transmissive surface which is tilted by angle γ ∈ [0, π2 ]

with respect to the radiation normal is determined. The incoming radiation is partly absorbed and

partly reflected at an angle of 2γ. Figure 3.9a shows the geometry of this problem. It can be seen

that the total impulse along the direction of the incoming radiation is proportional to 1 + η cos 2γ.

The other part of the resulting force lies in the plane normal to the incoming radiation. This force

can be neglected as it will be cancelled out in an axisymmetric shape. Next, the tilt dependent

effective coefficient of reflectivity can be defined as a function of the in-plane radius from the cen-

tre of pressure of the sphere. Figure 3.9b shows that, for a sphere of radius 1, the tilting angle

γ = arcsin r. Therefore, the local coefficient of reflectivity is 1 + η cos(2 arcsin r). This can be in-

tegrated to find the total resulting coefficient of reflectivity cR,sphere. The term for the local cR

is multiplied by the circumference at that position and integrated over r ∈ [0, 1]. The integral is

then divided by the full cross-sectional area. The resulting value is not dependent on η and always

equals one:

cR,sphere =
1

π

1∫
0

2πr (1 + η cos(2 arcsin r)) dr

= 1

(3.1)
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In the case of a cone or pyramid the tilt angle determines the effective coefficient of reflec-

tivity as shown in Fig. 3.9a. For the sphere the orthogonal forces cancel each other out, and for a

symmetrical cone or pyramid when the main axis is parallel to the direction of the radiation. The

effective coefficient of reflectivity can be written as:

cR,cone = 1 + η cos 2γ (3.2)

It is interesting to note that cR,cone = 1 for γ = π
4 , while 1 ≤ cR,cone ≤ 1 + η for γ < π

4

and 1 − η ≤ cR,cone ≤ 1 for γ > π
4 . The cone or pyramid is a flat sail if γ = 0. In that case the

coefficient of reflectivity is cR,flat = 1 + η.

To summarise, while a fully reflective, flat sail oriented normal to the incident Sunlight will

have an effective coefficient of reflectivity of 2, a sphere will only have an effective coefficient of

reflectivity of 1, and thus needs twice the cross-sectional area. The clear advantage of a sphere

is that it has the same cross-sectional area from any aspect angle. Thus, after deployment and

rigidisation no further control is needed until the device is ejected. The manœuvre will therefore

occur completely passively. A flat sail would need to be controlled in order to constantly face the

Sun, similar to solar sailing. However, a simple control algorithm can be implemented because no

active orbit propagation needs to be performed on-board, and the only requirement is to keep the

sail Sun-pointing. Another advantage over conventional solar sailing is that fast attitude changes

do not need to be performed.

A cone or pyramid is a compromise between the balloon and the sail. They both require less

surface material than the balloon and due to their conic shape experience a shuttlecock-type effect

which creates an oscillation around a stable equilibrium attitude (when the centre of pressure is

behind the centre of mass with respect to the acting force). These designs would, however, need

a mechanism to dampen this oscillation. Then, a constant Sun-pointing attitude could be assured

for altitudes outside the region of aerodynamic drag. A problem for the sail and the cone arises

however when the spacecraft enters the drag region. In this region the force of drag and the force of

SRP can act from different directions. The cone would naturally face the direction of the combined

torque-inducing forces acting on the device.

As a baseline design for the structure the balloon shape is chosen and in further analysis it

is assumed that the spacecraft to be transferred is a 3U CubeSat (10 cm× 10 cm× 30 cm) with 1U

dedicated to the orbit transfer device. Again, a balloon is the most promising shape for a simple,

low-cost orbit transfer device, as it requires no active attitude control or passive stabilisation during

the transfer and can be deployed through internal pressure.
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Figure 3.10: Achievable area-to-mass-ratio of the 3U CubeSat as a function of material thickness

for a balloon shaped device

In order to gauge the possible area-to-mass-ratio supplied by a balloon, it is assumed that the

surface material of the balloon is UV-proofed Mylar of thickness dm. The balloon is stowed within

82 % of the volume of a 1U CubeSat module with a packaging efficiency of 50 %. This packaging

efficiency is taken from physical tests at the University of Strathclyde [110]. The resulting area-

to-mass-ratio as a function of material thickness can be seen in Fig. 3.10. State-of-the-art solar

sail concepts use 2 µm thick Mylar [111], while 12 µm thick metallised PET rescue foil is easily

available commercially. It is assumed that a material with a final thickness of 8 µm is plausible.

Therefore, an area-to-mass-ratio of 3 m2 kg−1 for the whole system is used. Although the stowed

balloon takes up 82 % of a 1U module, it weighs less than 200 g.

3.2.2 Inflation

Possible options for deployment of the balloon include mechanical methods and gas-based inflation.

Mechanical methods extend strut elements using tensile forces by exploiting material properties or

using micro-motors. However, they are not well suited for curved shapes such as a sphere. Inflation

is the preferred method for the deployment of spherical shapes as the internal pressure can ensure

an even deployment. The gas for the deployment can either be stored in compressed form or be

generated in a cold gas generator. The former option is disadvantageous as the gas would need

to be stored for a significant time without leaking, while pressurised containers can be a hazard

during launch.
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Therefore, a nitrogen gas generator is optimum for inflation of the balloon. This mechanism

satisfies the key drivers since it can be manufactured cheaply, is very reliable and mass and volume

efficient. For 0.5 g of nitrogen one micro gas generator is required which measures 15 cm3 and

weighs of order 8 g [112]. An inflation pressure of 1 Pa is assumed which leads to one generator

per 43.5 m3 of balloon volume using the ideal gas equation and assuming the nitrogen is at room

temperature at inflation. This means that with a volume of order 31 m3 only one generator is

needed for inflation.

3.2.3 Rigidisation and ejection

Several alternative methods of rigidisation exist. Mechanical rigidisation was used by the Echo

balloons, where an aluminium coating on the balloon surface was stretched beyond its yield point

through inflation [113]. The advantage of this method is that it works regardless of storage time

and under most environmental conditions. The disadvantage is the large mass it requires for the

aluminium coating and the extra gas for high internal pressure. This disqualifies the method for

use in the orbit transfer device.

Low mass methods of rigidisation use resin with which the surface material is impregnated

and which hardens under given circumstances. Resins for use in rigidisation are not considered

a mature technology. For the purposes of this thesis, however, we are neglecting the possible

complications arising from low availability and technological maturity. A popular method is UV

curing resin, which hardens when exposed to ultraviolet radiation [113]. This method, however,

has a short shelf-life and is thus not applicable for this mission in which a long waiting time in

GTO comes before inflation. Other resins will harden when they either heat up or cool down. The

former is an irreversible chemical process which cannot be tested before launch. A cold curing resin

is therefore seen as the best option. These resins are typically elastomers which harden when they

cool below their glass transition temperature [114]. This is advantageous as the balloon will cool

down passively after deployment due to its reflective surface material and low mass.

In order to be able to inflate the balloon, it needs to be heated prior to deployment using solar

radiation. This is achieved by turning the spacecraft to face the Sun with the orbit transfer module

(OTM). The lid of the OTM is coated with Nickel Oxide, which has a large solar absorptivity α a

low infrared (IR) emissivity, ε: (αNiO = 0.9, εNiO = 0.1), and so will quickly heat up in the Sun. The

heat is then transported via a copper casing around the stowed balloon. Copper has excellent heat

conduction and low infrared emissivity, εCu = 0.03. To minimise the radiative heat transfer to the

rest of the spacecraft, the structure is lined with Mylar which has a very low infrared absorptivity
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of εMylar = 0.03 and for bodies in thermal equilibrium the emissivity is the same as the absorptivity

at a given wavelength [115]. Figure 3.11 shows an exploded view of the orbit transfer module.

Tensioned wires holding the lid to the module are cut using pyro-cutters and the balloon

is forced out of the smooth casing through the pressure of the inflation gas. Upon reaching LEO

another tension wire is cut which holds the frame and copper case to the spacecraft. The aerody-

namic forces immediately separate the balloon from the spacecraft and the unit deorbits within

9 hr as can be seen in Fig. 3.12.

3.2.4 Thermal analysis

Thermal analysis is now performed on the system before and after inflation to ensure that the

balloon can be sufficiently heated for deployment and then will cool enough for rigidisation.

Transient thermal analysis of heating process

A transient thermal analysis is performed in Matlab to determine the required time for the pre-

deployment heating process. The lid, the copper casing, the Mylar lining and the stowed balloon are

partitioned into nodes. The differential equations defining conductive and radiative heat exchanges

between different nodes and the solar radiation input and infrared output are now given. ∼ symbol

denotes a thermal node, where the spacecraft structure S̃ acts as a constant temperature heat sink.

The set-up is visualised in Fig. 3.13.

The rate of change of thermal energy in node Ã due to heat conduction with another node

B̃ can be expressed as:

(
dEÃ
dt

)
B̃

= k(Ã,B̃)(TB̃ − TÃ) (3.3)

where k(Ã,B̃) is the conductive heat exchange factor between the two nodes which is dependent on

the material properties, the cross-sectional area of the link and the distance between the nodes. TÃ

and TB̃ are the temperatures of nodes Ã and B̃ and a function of the heat capacity cÃ and cB̃ of

the nodes and their stored thermal energy EÃ and EB̃ . For example, for node Ã the temperature

is expressed as [116]:

EÃ =
TÃ
cÃ

(3.4)
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Figure 3.11: Exploded view of a possible orbit transfer module for CubeSats
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Figure 3.12: Perigee altitude, hp, of the balloon over time after ejection for the scenario shown in

Fig. 3.5. Simulated in STK with atmospheric model for January 2017.

Using these relations a system of differential equations is set up to express the conductive

heat exchange within the whole system, the size and form of which depends on the number nodes

and types of input.

All nodes in the system are conductively linked to their neighbouring nodes and all expe-

rience conductive heat exchange during the simulation. However, only specific nodes experience

radiative heat exchange. The nodes of the copper casing and the nodes of the lid both radiate heat

away, and only the nodes of the lid receive radiative heat from the Sun. The received solar thermal

energy per node in the lid L̃ is:

(
dEL̃
dt

)
�

= αNiOF�AL̃ (3.5)

where F� is the solar flux, αNiO = 0.9 is the solar absorptivity of the Nickel Oxide coating and AL̃

is the area of the node exposed to the Sunlight. As the lid is assumed to face the Sun directly no

tilt angle needs to be considered.

Both the copper case and the lid radiate heat away externally in the IR spectrum. For the

lid, the resulting flux can be calculated as:
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Figure 3.13: Thermal model of the pre-deployment heating process
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Figure 3.14: Temperatures during the pre-deployment heating process

(
dEL̃
dt

)
IR

= σSBεNiOAL̃T
4
L̃

(3.6)

where σSB ≈ 5.67× 10−8 W m−2 K−4 is the Stefan-Boltzmann-constant, εNiO = 0.1 is the emissiv-

ity of the Nickel Oxide coating and AL̃ the outward facing area of lid node L̃.

The thermal energy radiated away from the copper case will be partially reflected back by

the Mylar lining of the spacecraft structure. This reflection will then again only be partly absorbed

by the copper. Additionally the spacecraft structure will also radiate heat towards the copper case.

The resulting exchange can be calculated as follows for a case node C̃ and the spacecraft structure

S̃ [116]:

(
dEC̃,H̃

dt

)
IR

=
σ

1
εCu

+ 1
εMylar

− 1
(T 4
C̃
− T 4

H̃
) (3.7)

These equations are then integrated using the ordinary differential equation solver ODE45

in MATLAB with an initial temperature of 0 ◦C. The results are shown in Fig. 3.14. It can be seen

that after approximately three hours the whole balloon is predicted to be at a temperature above

60 ◦C. At this temperature the resin is very soft and pliable and the system is ready for inflation.
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Figure 3.15: Percentage of the total thermal energy received from the Sun which is transmitted to

the spacecraft structure

Figure 3.15 shows the percentage of the received solar radiation which is transmitted to

the spacecraft structure. As the difference in temperatures between the internal components of

the orbit transfer module and the rest of the spacecraft increases, so does the thermal flux to

the spacecraft structure. The figure also shows the radiative and conductive parts of the heat

transfer. It can be seen that the radiative exchange is dominant. This is because there is only a

very small conductive interface between the spacecraft structure and lid which is also insulated

with Mylar. Within the simulation time the transfer ratio never reaches 100%, which is when the

steady state has been reached. If the link to the spacecraft were stronger, for example if there were

more conductive interfaces or the low absorptivity Mylar were not used, the steady state would

be reached sooner and at a lower internal temperature. In that case the balloon might not have

reached the correct temperature for deployment.

Steady state thermal analysis after cooling

The temperatures after inflation can be determined to ensure that the device fully rigidises. To

achieve this a worst case scenario is implemented in which the balloon’s attitude is fixed with

respect to the Sun and the thermal gradient highest. The balloon is assumed to be reflective Mylar

on the outside and coated in nickel oxide on the inside to maximise the radiative heat exchange
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Figure 3.16: Steady state temperatures of the inflated balloon

between the Sun facing hot and the cold side. The scenario is computed using the ESATAN thermal

modelling suite [117]. The results are shown in Fig. 3.16 where it can be seen that even in the worst

case the maximum temperature is at −20 ◦C, cold enough for full rigidisation.

3.3 Conclusions

A novel mission and system design for a 3U CubeSat GTO to LEO transfer has been presented.

This is seen as an alternative to LEO piggyback launches. The spacecraft increases its area-to-mass-

ratio to use solar radiation pressure and the J2 effect to simultaneously decrease apogee altitude

and raise the perigee to passively reach a LEO orbit without the use of propulsion, exploiting the

phase space dynamics discussed in Chapter 2. The detailed mission scenario is investigated using

a high precision orbit propagator and a radiation analysis is performed.

An orbit transfer module for CubeSats has been designed, which contains a deployable Mylar

balloon which when inflated increases the spacecraft area-to-mass-ratio to 3 m2 kg−1. The balloon

rigidises after inflation using a cold hardening resin and can be ejected when the final orbit is

reached. This design task was performed to gain an insight into the mass required for auch a

device, into its reflective properties and into the different technologies required for its realisation.
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Different shapes for a deorbiting device were discussed and a spherical shape was chosen

(akin to the GOLD device developed by the Aerospace Corporation [42]). This shape offers the

same reflective properties and surface area from any aspect angle and thus requires no further

attitude control. A disadvantage is its low mass efficiency: compared to a flat solar sail, about eight

times the surface material is needed. Furthermore, will a balloon shape pose a greater challenge at

construction than any flat shape.

An inflation system was proposed for the deployment which is the intuitive and most effective

way of deploying a sphere. However, this also makes the device less scalable as a doubling in surface

area would require four times the gas volume. For rigidisation a cold hardening resin was chosen.

The technological draw-backs of such a resin were discussed in section 3.2.3. Additionally, while the

hardening will protect the device from full collapse due to micrometeorite punctures, such impacts

can create a thrust through the evacuating gas. This effect has not been analysed as part of this

body of work.

In addition to delivery of payloads from GTO to LEO, the concept presented in this chapter

also offers opportunities to fly payloads in the Van Allen belts to investigate the radiation environ-

ment. It is also a promising low-cost mission concept for a CubeSat technology precursor mission

to demonstrate passive orbit transfers using area-to-mass-ratio enhancing technologies. In order

to study the radiation belts the spacecraft would remain in an operational state throughout the

transfer. However, due to its passive nature the transfer method will also work when the spacecraft

is powered down during the manœuvre.
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Chapter 4

SRP-Augmented Deorbiting from

Medium Earth Orbits

In this chapter a new concept of solar radiation pressure augmented deorbiting is introduced and

applied to medium Earth orbits (MEO). Passive deorbiting is another manœuvre which can be

performed by exploiting the effects of solar radiation pressure and the Earth’s oblateness discussed

in Chapter 2. As opposed to other passive methods discussed in Sec. 1.2.2, it can be applied to

high altitude orbits in the MEO regime, thus enabling new types of missions for small satellites.

SRP-augmented deorbiting exploits the effect of solar radiation pressure (SRP) and Earth’s

oblateness in combination with aerodynamic drag to passively deorbit a satellite within a given

time after its end-of-life without any further control requirements. This is achieved by making

use of the interaction between SRP and the J2 effect to increase the orbit eccentricity of any

initially circular orbit until the perigee reaches an altitude at which aerodynamic drag causes the

spacecraft to deorbit. The orbital evolution can be divided into two phases, as visualised in Fig. 4.1

for an initial orbit altitude of 7000 km and an area-to-mass-ratio of 3 m2 kg−1. In phase one, solar

radiation pressure is dominant over drag and is used to increase the orbit eccentricity until drag

becomes the dominant force. The first phase requires approximately 90 % of the total manœuvre

time. Then phase two begins in which aerodynamic drag decreases the orbital energy and thus the

semi-major axis of the spacecraft orbit, and the eccentricity at the same time, so that the perigee

altitude is kept almost constant. In the final phase of the manœuvre the orbit is quasi-circular and

at an altitude where drag decreases the orbit altitude rapidly. At this stage, the sail or balloon acts

in the same manner as other drag devices, since at this stage solar radiation pressure is negligible

compared to the drag force.
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Figure 4.1: The two phases of the deorbiting manœuvre
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In the first section of this chapter the method is analysed using the Hamiltonian, Eq. (2.9),

introduced in Sec. 2.1. The analytical results are then verified numerically in Sec. 4.2. Next, the

method is applied to inclined Medium Earth Orbits (MEO) in Sec. 4.3. In the next chapter the

SRP-augmented deorbiting of high altitude Sun-synchronous orbits is investigated separately.

4.1 Analytical in-plane model

In this section the method of solar radiation pressure induced eccentricity increase is investigated

analytically. This is done to obtain an initial guess for the required effective area-to-mass ratio

to deorbit. The problem is first investigated using the analytical Hamiltonian model introduced

in Sec. 2.1.1 in a reduced planar geometry. Then, the expression for the analytical first guess is

derived from the Hamiltonian dynamics.

The Hamiltonian is used to approximate the global evolution in eccentricity and Sun-perigee

angle of a high area-to-mass-ratio spacecraft. It contains information on the path in the orbital

element phase space but not the time history of the orbit evolution. Krivov and Getino [8] present

some examples for the orbit evolution. Again, in this section the Hamiltonian is used to obtain

a first guess at the required area-to-mass-ratio to deorbit. This value is then refined numerically

with a restriction on the manœuvre duration in Sec. 4.2.

4.1.1 Discussion of the Hamiltonian model

For increased area-to-mass-ratios the orbital element phase space of φ and e exhibits interesting

behaviour, particularly in the region with a semi-major axis of 2 - 3 Earth radii [8, 84], with three

possible behaviour patterns as shown in Fig. 4.2. In these figures the orbital evolution due to the

effects of solar radiation pressure and J2 according to the Hamiltonian is shown for orbits with

a semi-major axis of 15 000 km for three different effective area-to-mass-ratios. In particular, the

phase line corresponding to an orbit evolution passing through e = 0 is highlighted with a bold

coloured line. Orange represents 5 m2 kg−1, purple for 20 m2 kg−1 and red for the bifurcation area-

to-mass-ratio of approximately 12.9 m2 kg−1. These colour codes are used again in later figures.

For SRP-augmented deorbiting, the evolution of the orbit eccentricity is the most important

information in these figures. The maximum eccentricity an initially circular orbit will reach for a

given area-to-mass-ratio decides whether this area-to-mass-ratio is sufficient to cause the spacecraft

to re-enter the atmosphere or not. In all three cases the initially circular orbit will start to become

68



4. SRP-AUGMENTED DEORBITING FROM MEDIUM EARTH ORBITS

eccentric at φ = 3π
2 and reach maximum eccentricity at either φ = 0 (perigee Sun-pointing) or

φ = π (apogee Sun-pointing), before returning to the circular state at φ = π
2 if its perigee is not low

enough for deorbiting. For lower area-to-mass-ratios, the maximum eccentricity in the evolution

of an initially circular orbit can be found at (0, e1,max) (Fig. 4.2a). At the critical effective area-

to-mass-ratio, σB , which is dependent on semi-major axis, the evolution of the initially circular

orbit bifurcates and passes through a hyperbolic equilibrium point at (π, eB) (Fig. 4.2b) to reach

its maximum at (0, eB,max). For high effective area-to-mass-ratios the maximum eccentricity emax

in the evolution of an initially circular orbit can be found at φ = 0 (Fig. 4.2c).

In the first case (Fig. 4.2a), a second line appears at high eccentricities with the same value

of the Hamiltonian for the initially circular orbit. This line, however, does not pass through e = 0.

It has a minimum eccentricity at (π, e2,min) and a maximum eccentricity at (0, e2,max). This double

occurrence of equivalent yet unconnected phase lines requires some extra consideration when finding

an analytical solution for the required area-to-mass-ratio to deorbit. This issue is dealt with in Sec.

4.1.2.

Figure 4.3 shows the three different types of behaviour introduced in Fig. 4.2 and where

they occur depending on semi-major axis and effective area-to-mass-ratio σ. For a semi-major axis

of lower than approximately 12 350 km the phase space will always follow behaviour (c). Above

this semi-major axis the phase space can display any of the three behaviours depending on the

area-to-mass-ratio. The thick black line dividing the regions of behaviour (a) in grey and behaviour

(c) in white corresponds to the case in which the bifurcation of the initially circular orbit phase line

occurs (b). The bifurcating behaviour allows spacecraft to deorbit with a particularly low area-to-

mass-ratio as will be seen in the following section. This is because the evolution of the Sun-perigee

angle φ causes the orbit to remain longer in a position with respect to the Sun where solar radiation

pressure will cause an increase of eccentricity. Above a semi-major axis of approximately 20 000 km

an area-to-mass-ratio of more than 40 m2 kg−1 is required to achieve the bifurcated behaviour. This

cannot be feasibly achieved by a spacecraft with current deployable structures technology.

4.1.2 Required area-to-mass-ratio for deorbiting

An expression for the minimum required area-to-mass-ratio to deorbit a spacecraft on an initially

circular orbit can be obtained by solving Eq. (2.9) for e = 0, which results in:

Hcirc = − 1− κ

3
(4.1)
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Figure 4.2: Phase plane diagram for a spacecraft with a semi-major axis of 15 000 km and three

different values of effective area-to-mass-ratio σ: (a) 5 m2 kg−1, (b) 12.9 m2 kg−1 and (c) 20 m2 kg−1
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Figure 4.3: Behaviour of the phase space depending on area-to-mass-ratio and semi-major axis

By inserting Eq. (4.1) into Eq. (2.9) and considering that the maximum eccentricity from a

circular orbit can be reached at φ = 0 or φ = π (see Fig. 4.2), the resulting equation can be solved

to give the required SRP-parameter α (Eq. (2.4)) needed to reach a certain eccentricity, e∗, from

an initially circular orbit as a function of the semi-major axis:

α0 =
1−
√

1− e∗2
e∗

+

(
1

3e∗
− 1

3e∗1− e∗2
3
2

)
κ

απ = −
(

1−
√

1− e∗2
e∗

+

(
1

3e∗
− 1

3e∗1− e∗2
3
2

)
κ

) (4.2)

The term α0 corresponds to φ = 0 and απ to φ = π, the two perigee angles for which the

eccentricity can reach its maximum starting from e = 0. Since the orbit semi-major axis is defined

by the spacecraft’s circular operational orbit, the required effective area-to-mass-ratio σ can thus

be calculated using Eqs. (2.4 - 2.6) and (4.2). As the required effective area-to-mass-ratio cannot

be negative it can be written as:

σ(e∗, a) =
2n�c
3F�

√
µ

a

∣∣∣∣∣1−
√

1− e∗2
e∗

+

(
1

3e∗
− 1

3e∗
√

1− e∗23

)
κ(a)

∣∣∣∣∣ (4.3)
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Figure 4.4: Area-to-mass-ratio computed through Eq. (4.3) for a semi-major axis of 15 000 km

The eccentricity needed to deorbit a spacecraft is defined as the critical eccentricity ecrit.

This is the eccentricity at which the perigee of an orbit would lie on the surface of the Earth and

is a function of the semi-major axis, as defined in Eq. (2.11). Figure 4.4 shows the solutions of Eq.

(4.3) for a semi-major axis of 15 000 km. The solutions in which the maximum eccentricity e∗ is

reached at φ = 0 are shown in green and for φ = π in blue.

The noteworthy eccentricities highlighted in Fig. 4.2 are marked in Fig. 4.4. The horizontal

lines mark three different area-to-mass-ratios and their colours correspond to the colours of the

bold phase lines in Fig. 4.2. The orange line indicates σ = 5 m2 kg−1 and the purple line indicates

σ = 20 m2 kg−1. The red line is where the phase line for initially circular orbits bifurcates with

the critical area-to-mass-ratio σB , which depends on the semi-major axis. A problem arises when

solving for a maximum eccentricity e∗ between eB and eB,max (see Fig. 4.2(b)). In this case Eq. (4.3)

delivers values lower than σB . These correspond to the second phase line which never passes through

e = 0 (see Fig. 4.2(a)). Thus, to reach values of eccentricity between the hyperbolic equilibrium

point (eB in Fig. 4.2(b)) and the maximum eccentricity reachable through the bifurcated zero-

eccentricity phase line (eB,max in Fig. 4.2(b)), the minimum area-to-mass-ratio solution corresponds

to that for the bifurcated phase space.
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Figure 4.5: Deorbiting from 12 000 km: (a) Results of Eq. (4.3) with critical eccentricity ecrit, (b)

(e, φ) phase space of the manœuvre

Figure 4.5a shows the results of Eq. (4.3) as a function of eccentricity for a semi-major axis

of 12 000 km. The critical eccentricity ecrit at this semi-major axis is marked in red. The required

area-to-mass-ratio to deorbit can be found where the ecrit line crosses the σ line, at 19 m2 kg−1.

Figure 4.5(b) shows the evolution of orbits at a = 12 000 km with σ ≈ 19 m2 kg−1 in the (e, φ)

phase space. The thick line represents the evolution of an initially circular orbit. It can be seen

that the maximum is reached when φ = 0°. As can be seen in Fig. 4.3, there is only one type of

phase space behaviour at 12 000 km.

Figure 4.6a shows the results of Eq. (4.3) as a function of eccentricity for a semi-major axis

of 25 000 km. The results where the maximum is reached at φ = 180° are marked in blue and those

for φ = 0° are marked in green. The required area-to-mass-ratio to deorbit can be found where the

ecrit line crosses the σ line at σ ≈ 41 m2 kg−1. In this case it crosses the blue part of the line. This

means that the maximum eccentricity is reached when the perigee is Sun-pointing at φ = 180°.

Figure 4.6b shows the orbital evolution during this manœuvre.

At semi-major axes between approximately 13 000 km and 18 000 km the double occurrence

of the e = 0 phase line prevents Eq. (4.3) from delivering the real required area-to-mass-ratio

to deorbit. This can be seen in Fig. 4.7. Figure 4.7(a) shows the values of Eq. (4.3) for a semi-

major axis of 15 000 km. It can be seen that the area-to-mass-ratio given by Eq. (4.3) to reach the

critical eccentricity is lower than that for some lower eccentricities. This is unreasonable. Figure

4.7(b) explains this result. The orbit does not actually reach the critical eccentricity for the given

area-to-mass-ratio, but instead the double occurrence of the e = 0 line crosses ecrit at φ = 180°.
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Figure 4.6: Deorbiting from 25 000 km: (a) Results of Eq. (4.3) with critical eccentricity ecrit, (b)

(e, φ) phase space of the manœuvre

In order to account for the false results produced by the second identity of the circular

orbit phase line, an analytical expression for the effective area-to-mass-ratio at which a circular

orbit would pass through the bifurcation point needs to be found. This formula for σB(a) is found

through the bifurcating eccentricity eB which is determined by locating the local extremum in Eq.

(4.3):

∂σ (eB , a)

∂eB
= 0 (4.4)

Solving for eB ∈ [0, 1] yields:

eB =

[
5

4
− 9

4(3 + κ)2
− B(κ)

4

−
(−4κ2(3 + κ)4(648 + 441κ+ 77κ2)B − 2(3 + κ)4A(κ)2B(κ)

24(3 + κ)6A(κ)B(κ)

+
κA(κ)

(
17496κ+ 29160κ2 + 17064κ3 + 4194κ4 + 369κ5

)
24(3 + κ)6A(κ)B(κ)

+
κA(κ)

(
11664 + 15876κ+ 7884κ2 + 1647κ3 + 102κ4 − 5κ5

)
B(κ)

24(3 + κ)6A(κ)B(κ)

) 1
2


1
2

(4.5)
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Figure 4.7: Failed deorbiting from 15 000 km: (a) Results of Eq. (4.3) with critical eccentricity ecrit,

(b) (e, φ) phase space of the failed manœuvre

where κ is the J2 effect parameter in Equation (2.5) and a function of the semi-major axis a. A

and B are auxiliary parameters defined as follows:

A(κ) =
(
46656κ3 + 57469.5κ4 + 22707κ5 + 2903.5κ6

+ 40.5
√

3κ7(3 + κ)2 (20736 + 22779κ+ 8218κ2 + 971κ3)
) 1

3

B(κ) =

√
(36 + 30κ+ 5κ2)

2

(3 + κ)4
+

8κ2 (648 + 441κ+ 77κ2)

3(3 + κ)2A(κ)
+

4A(κ)− 16 (27 + 18κ+ 5κ2)

3(3 + κ)2

(4.6)

σB(a) is found by using Eq. (4.3), such that:

σB(a) = σ (a, eB) (4.7)

The following expression for the minimum required area-to-mass-ratio σ̂(e∗, a) to deorbit

can now be defined:

σ̂(a) =


σ(ecrit(a), a) if ecrit(a) ≤ eB(a)

σB(a) if (ecrit(a) > eB(a)) ∧ (σ(ecrit(a), a) < σB(a))

σ(ecrit(a), a) if (ecrit(a) > eB(a)) ∧ (σ(ecrit(a), a) ≥ σB(a))

(4.8)
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Figure 4.8: Deorbiting from 15 000 km: (a) Results of Eq. (4.8) with critical eccentricity ecrit, (b)

(e, φ) phase space of the manœuvre

Figure 4.8 shows the result for a semi-major axis of 15 000 km. It can be seen that the revised

area-to-mass-ratio is the value at which the e = 0 line passes through the bifurcation.

It must be noted that this analytical method does not take into consideration the duration

for deorbit. It has already been established that at some semi-major axes the spacecraft orbit

would move on a phase plane line which passes through a hyperbolic equilibrium point where it

would slow down asymptotically (see Fig. 4.2b). In this case the time required for transferring the

spacecraft from e = 0 to e = ecrit becomes infinite. In the next Section numerical methods are used

to limit the manœuvre time.

4.2 Numerical verification of the analytical model

In this section the analytical theory presented in Sec. 4.1 will be verified numerically for equatorial

orbits in a three-dimensional reference frame using the expressions introduced in Sec. 2.2.2. The

numerical propagation considers only the perturbations of solar radiation pressure and the J2 effect.

As drag is not considered in this model, a successful deorbiting is defined as reaching a perigee

altitude of 0 km. The required area-to-mass-ratio can be increased by a margin to account for any

unconsidered factors such as third body gravitational effects, drag, eclipses and higher order Earth

gravitational harmonics.
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Figure 4.9: Analytical results for the required area-to-mass-ratio to deorbit as a function of semi-

major axis

In three dimensions an equivalent Sun-perigee angle φ is defined in Eq. (2.1) as φ = Ω +ω−
(λ� − π) where Ω is the right ascension of the ascending node, ω is the argument of perigee and

λ� defines the position of Sun on the ecliptic with respect to the vernal equinox, as also shown in

Fig. 2.2 [84] (see section.

When deorbiting spacecraft from circular equatorial orbits, the initial right ascension of

the ascending node Ω0 and the initial argument of perigee ω0 are irrelevant. However, the initial

position of the Sun λ�,0 influences the orbital evolution. To account for this, the required effective

area-to-mass-ratios are found for a range of λ�,0 for each semi-major axis. To determine the

required effective area-to-mass-ratios to deorbit within a certain time limit, a stepwise search is

performed. Starting with the analytical result obtained from Eq. (4.8) the orbit is propagated for

a given amount of time or until the criterion for deorbiting is fulfilled (i.e., perigee altitude reaches

0 km). Depending on the result of the propagation a new value for the effective area-to-mass-ratio is

chosen. If the searched value lies between the last two steps the step size is halved. This is continued

until a minimum step size of 0.01 m2 kg−1 is reached and thus the effective area-to-mass-ratio can

be determined with a given accuracy. The maximum deorbiting time is set as five years instead of

the 25 years outlined by the IADC guidelines [34]. This is because the difference in area-to-mass-

ratio required for the five year deorbit time as opposed to 25 years is small, while Lewis et al. [118]
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Figure 4.10: Relative error between analytical results for required area-to-mass-ratio to deorbiting

calculated in 2D and numerical results in 3D limited to a five year deorbiting manœuvre

show that reducing the deorbit time to five years would be a necessary step towards stopping the

growth of the space debris population.

Figure 4.10 shows the maximum, minimum and mean relative error between the numerical

and the analytical results for different values of Ω0 and λ�,0. The mean required effective area-to-

mass-ratio is approximately 5 % higher than previously estimated. The maximum overall relative

error is 15 % and occurs at geostationary altitude. The maximum error increases with altitude

because the effects of solar radiation pressure dominate over the Earth’s oblateness for higher

orbits. In addition, while in the analytical model the orbit is considered equatorial with respect

to the J2 effect, it is considered to be in the ecliptic with respect to solar radiation pressure. The

peak at approximately 7500 km altitude occurs because of the five year maximum manœuvre time.

For most altitudes the manœuvre time with the minimum required effective area-to-mass-ratio is

below five years. However, for orbital manœuvres approaching the hyperbolic equilibrium in the

orbital element phase space the manœuvre time will tend towards infinity. Therefore, in this region

the required area-to-mass-ratio needs to be significantly increased over the analytical prediction to

complete the manœuvre in the given maximum time.
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4.3 Deorbiting inclined MEOs

In this subsection the results for the required effective area-to-mass-ratios to deorbit circular orbits

of a range of inclinations and semi-major axes and the sensitivity towards initial orbit orientation

(Ω0, λ�,0) are presented and discussed.

4.3.1 Geometry of inclined orbit planes

For circular inclined orbits, apart from the initial position of the Sun λ�,0, the initial right ascension

of the ascending node Ω0 is of importance. The initial argument of perigee ω0 is irrelevant as the

initial eccentricity e is zero. To determine the range of different initial conditions the orbit is

visualised in a rotational reference frame shown in Fig. 4.11. The centre of the coordinate system

lies at the centre of the Earth. The z-axis is fixed as the rotational axis of the Earth. The x − y
plane is consequently the Earth’s equatorial plane. The x-direction is the fixed projection of the

Sun-Earth line onto the ecliptic. This means that as time progresses the vernal equinox rotates

around the centre of the coordinate system on the equatorial plane (not shown in the Figure).

Meanwhile, the vector pointing towards the true position of the Sun librates in the x − z-plane.

The angle between this vector and the x-axis is the declination of the Sun with respect to the

equator δ� which librates between −εE and εE .

Figure 4.11 shows the position of the Sun and the geometry of the orbital plane with respect

to the equatorial plane in an inertial reference frame. It can be seen that for a given inclination

the orbit plane with respect to the direction of the Sun can be described by the declination of the

Sun over the equator δ�, the right ascension of the Sun α� and the right ascension of the orbit’s

ascending node Ω. Both α� and δ� are functions of λ� and the obliquity of the Earth’s equator

εE . The expressions can be derived geometrically as:

tanα� = tanλ� cos εE (4.9)

sin δ� = sinλ� sin εE (4.10)

Geometrically the result is the same for any λ� and π − λ�. Therefore, only half of the λ�

parameter space needs to be investigated.
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Figure 4.11: Diagram showing the orientation of the plane of an inclined orbit with respect to the

incident Sunlight depending on |α� − Ω| and δ�

4.3.2 Numerical results for deorbiting inclined orbits

In this section the results of the numerical simulation are presented and discussed. The results have

been obtained using the semi-analytical formulations of the orbit evolution under the effect of SRP

and J2 presented in Sec. 2.2.2. First the results for four selected semi-major axes are investigated

to determine the dependence of the required effective area-to-mass-ratio to deorbit σ on the initial

orientation of the orbital, equatorial and ecliptic plane. Then a full range of initial semi-major axes

from LEO to GEO is investigated.

Dependence on plane configuration

First, the variation of the required area-to-mass-ratio with respect to the initial values of λ� and

|α� − Ω| is investigated. For this, the method described in Sec. 4.2 is used with an accuracy

of 1 m2 kg−1. The simulation is initially run for four different initial altitudes: 2000 km, 5000 km,

10 000 km and 36 000 km. At each of these altitudes the required area-to-mass-ratio is calculated for
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an array of initial inclinations, four different initial λ� and eight different initial values of |α�−Ω|.
Again, a maximum manœuvre time restriction of five years is imposed.

Figure 4.12 shows the required maximum area-to-mass-ratio for different initial values of

λ�,0, i.e. time of year. The values for λ�,0 range only from [0, π] as both halves of the solution

space are symmetrical, as shown in Sec. 4.3.1. It can be seen that the required area-to-mass-ratio

depends strongly on the orbit inclination. There is not a clearly identifiably best time of year

for deorbiting. It depends on the orbit semi-major axis and inclination. At 2000 km altitude the

results stay within 10 % margin of each other. For 5000 km and 10 000 km there is more variation,

particularly in the higher inclinations, and at 36 000 km strong variations can be seen at any

inclination.

Figure 4.13 shows the required effective area-to-mass-ratio plotted over inclination for eight

different initial values of |α� − Ω|. It can be seen that for most orbits the required area-to-mass-

ratio is lowest for |α� − Ω| = 90° or 270° and highest for |α� − Ω| = 0° or 180°. This effect is

particularly strong for the higher inclined orbits at the altitudes of 5000 km and 10 000 km. Again

it can be seen that variations at h0 = 5000 km are smaller than at higher altitudes and distinct

minima are identifiable, while at 36 000 km, i.e. near geostationary altitude, the average required

effective area-to-mass-ratio shows only weak correlation to inclination and strong variations in the

required area-to-mass-ratio.

Numerical results for inclined MEOs

Next the mean required area-to-mass-ratio is calculated for a range of initial altitudes and inclina-

tions. The resolution is 500 km and 2° respectively.

Figure 4.14 shows the mean required effective area-to-mass-ratio to deorbit a spacecraft

from a circular orbit as a contour plot of initial semi-major axis and inclination. While many of the

values are very high and not feasible for near-term missions, two main regions can be identified in

which the required area-to-mass-ratios are lower than 20 m2 kg−1. One of these regions is at very

high inclination (i > 70°) low MEO orbits (h0 < 5000 km). The other is shaped like an arch in

the (a, i) plane spanning from h = 2000 km and i ≈ 40 degrees of inclination to h ≈ 7500 km and

i = 0°.

Both regions are investigated at a higher resolution. The results for the arch-shaped region

can be seen in Fig. 4.15. The parameter space has a resolution of of 100 km and 1°. In this figure

the downwards shift of the minimum in inclination with increasing altitude becomes even more
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Figure 4.12: Numerical results for the maximum required area-to-mass-ratio to deorbit inclined

circular MEO orbits as a function of inclination for four different initial altitudes and different

values of λ�
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Figure 4.13: Numerical results for the maximum required area-to-mass-ratio to deorbit inclined

circular MEO orbits as a function of inclination for four different initial altitudes and different

initial values of |λ� − Ω|
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Figure 4.14: Mean results for the required area-to-mass-ratio to deorbit inclined MEOs obtained

by numerical propagation

obvious. An explanation for the shifting minimum in this region can be found in Sec. 2.1.2 where

the extension of the stationary points in the (e, φ) phase space is shown for non-zero obliquity

of the ecliptic over the equator and non-zero inclinations. In the three dimensional SRP and J2

dynamics problem an exact solution for equilibrium points does not exist; however, conditions

for inclined quasi-frozen orbit can be found [84]. The eccentricity of the quasi-frozen point at

φ = 0, around which the lower altitude orbits librate, increases when the inclination is greater

than zero (see Fig. 2.4). This is the reason why in Figs. 4.12a, 4.12b, 4.13a and 4.13b the required

area-to-mass-ratio initially decreases with altitude. However, as shown by Colombo et al. [84] any

quasi-frozen orbits are only true equilibria in the planar case (zero obliquity and zero inclination).

They become increasingly unstable with higher inclination and eventually disappear completely.

This is the reason for the increase of the required effective area-to-mass-ratio after the initial drop.

The eccentricity of the quasi-frozen point at φ = π, around which higher altitude orbits librate,

decreases with increasing inclination. This explains why higher altitude orbits require an increasing

effective area-to-mass-ratio for larger inclinations.

The results for the high-inclination region can be seen in Fig. 4.16. The area-to-mass-ratio

requirements to deorbit near-polar low MEO orbits are small. Figure 4.17 show the minimum and

maximum results for the required area-to-mass-ratio calculated over a range of initial λ� and Ω. A

large discrepancy between the minimum and maximum signifies a strong sensitivity towards these
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Figure 4.15: Mean results for the required area-to-mass-ratio to deorbit inclined MEOs obtained by

numerical propagation: close-up of the low MEO regime with high effectiveness for SRP-augmented

deorbiting
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Figure 4.16: Mean results for the required area-to-mass-ratio to deorbit inclined MEOs obtained

by numerical propagation: close-up of the polar orbit regime with high effectiveness for SRP-

augmented deorbiting
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MEOs obtained by numerical propagation
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two parameters which determine the initial orientation with respect to the Sun. It can be seen that

orbits in the GNSS regime are very sensitive to the initial planar configuration. The GNSS regime

spans from a ≈ 25 000 km to a ≈ 30 000 km with 50° < i < 70° (see Sec. 1.2.2). In the left graph

it can be seen that GNSS satellites can be deorbited with σ ≈ 30 m2 kg−1 in the minimum case.

This means that at a certain time of the year for a certain right ascension of the orbit’s ascending

node a deorbiting manœuvre can be performed with a far lower area-to-mass-ratio than at other

times. Thus, SRP-augmented deorbiting may still be an option for spacecraft in the GNSS regime

if the date of the manœuvre initialisation can be freely chosen.

Figure 4.18 shows the standard deviation of the results for different initial planar configu-

rations. This is a different way to express the sensitivity with respect to initial λ� and Ω. It can

be seen that the areas in which deorbiting is most feasible are also the least sensitive to the initial

planar configuration. This is advantageous when designing a fail-safe deorbiting system which de-

ploys automatically when the spacecraft becomes unresponsive. It can be seen that the sensitivity

is highest at high inclinations and in a region around 10 000 km < a < 15 000 km, 50° < i < 70°.

This region is located in the fork between the two regions of high effectiveness identified before.

4.4 Comparison with propulsive end-of-life manœuvre

In order to assess the effectiveness of SRP-augmented deorbiting it is necessary to compare it to

propulsive end-of-life manœuvres which are the main alternative. An approximate mass comparison

is made to compare the two methods quantitatively. For the propulsive method the fuel mass

fraction mf is considered and compared to the ratio of mass of the SRP-augmented deorbiting

device to the total spacecraft mass mb for SRP-augmented deorbiting. A simple analytical approach

is used.

4.4.1 Fuel mass fraction for propulsive deorbiting

Six different propulsion systems are considered, two high-thrust systems and three low-thrust

systems (see Table 4.1). The higher the specific impulse Isp of a system the more fuel-efficient it

becomes. The values of specific impulse in this table are estimates and are taken from Wertz and

Larson [109] and Mueller et al. [31]. Mono-propellant and bi-propellant are high-thrust systems

which are both used on larger spacecraft. Bi-propellant systems are more effective but also more

complex. Both tend to have a high dry mass due to the complexity of the system. Resistojets

offer the lowest Isp of the chosen high-thrust systems but are low in cost and complexity. They
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Propulsion System Specific Impulse Propulsion Type

Mono-propellant 200 s high-thrust

Bi-propellant 300 s high-thrust

Resistojet 500 s low-thrust

Hall effect thruster 1200 s low-thrust

Xenon ion thruster 2500 s low-thrust

Table 4.1: Different propulsion systems considered in comparison with specific impulse and propul-

sion type

work by heating a fluid with electric resistors which is then expelled through a nozzle. Hall effect

and Xenon ion thrusters both work by accelerating ions through an electric and/or magnetic field.

Efforts are made to make miniaturised versions of these systems affordable to the smalls satellite

market. There are additional types of thrusters available which have not been considered in this

study as the aim is to estimate the fuel mass required with very different systems.

Although low-thrust systems have higher specific impulses and are thus more fuel efficient,

high-thrust systems can perform more effective impulsive manœuvres. Here it is assumed that a

high-thrust spacecraft would perform a single impulse manœuvre to transfer from a circular orbit

with semi-major axis a onto an elliptical orbit with a perigee altitude of zero. The required ∆v

can be found with the following expression:

∆v =

√
µ

a
−
√
µ

(
2

a
− 2

a+RE

)
(4.11)

A low-thrust spacecraft on the other hand would thrust continuously and thus spiral down

from its initial orbit until it reaches zero altitude. The ∆v for this manœuvre can be estimated as

follows [53]:

∆v =

√
µ

RE
−
√
µ

a
(4.12)

Atmospheric drag is not considered in either formulation. If added it would reduce the ∆v

requirements as the spacecraft would not need to reach zero altitude to deorbit. The higher the

initial altitude, the smaller will be the difference between the drag-free case and the case considering

drag.

With the ∆v determined, next the ratio mf of required fuel mass over the initial wet mass

of the satellite can be calculated using the rocket equation [119]:
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mf = 1− exp(− ∆v

Ispg0
) (4.13)

Figure 4.19 shows the results of these calculations. It can be seen that the Xenon ion thrusters

is always the most effective of all methods followed by the Hall effect thruster and the bi-propellant

system. In LEO (Fig. 4.19(a)) the Resistojet is more efficient than the mono-propellant system.

However, in MEO (Fig. 4.19(b)) it is overtaken by mono-propellant at approximately 19 000 km

semi-major axis.

4.4.2 Mass fraction of the passive deorbiting system

For the passive deorbiting system a design similar to the baseline design for the GTO to LEO

transfer is used (see Sec. 3.2). In this investigation the mass of the surface material of an inflatable

balloon is calculated. The material is assumed to have a thickness db = 5 µm and the density of

polyethylene terephthalate (PET) ρ = 1400 kg m−3. PET film is commonly known as Mylar and is

one of the main choices for solar sail material. The other main choice is Kapton which has a very

similar density. The mass fraction mb of the balloon subsystem over the total spacecraft mass for

a reflectivity coefficient of cR = 1 can then by calculated for a given effective area-to-mass-ratio σ

as follows:

mb = 4dbρσ (4.14)

With this expression the balloon mass fraction as a function of σ can be calculated. The

results for three different values of balloon material thickness can be seen in Fig. 4.20. As discussed

in Sec.3.2.1, 2 µm Mylar is the state-of-the-art for solar sailing while 10 µm is in the range of the

thickness of common rescue foil.

With Eq. (4.14) the results from Sec. 4.3.2 can then be converted into the balloon mass

fraction. It is assumed that the spacecraft can initiate the manœuvre at the optimum time of year

so that the minimum results with respect to λ� are used.

Figure 4.21 shows the converted plot. It can be seen that in large orbital regions SRP-

augmented deorbiting is impossible with the given specifications. It could become more feasible

for thinner material or a different deorbiting subsystem design, such as a flat sail granting higher

geometric efficiency (see Sec. 3.2.1).
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vre as a function of altitude for different propulsion systems
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Figure 4.20: Mass of balloon material over total spacecraft mass as a function of effective area-to-

mass-ratios for different values for balloon material thickness db

The mass fractions calculated for both the balloon and the fuel mass are approximate guide-

lines. For a real system, extra mass would have to be added for the propulsion subsystem on one

hand and the balloon deployment system on the other. However, the results can provide an esti-

mate of the mass advantages of SRP-augmented deorbiting over propulsive deorbiting in the most

effective regions identified in Sec. 4.3.2. In these regions the balloon mass fraction is below 20 %

and can thus only be matched by the ion engines, which are complex and expensive.

Other than mass advantages the balloons also offer low cost of components and operations,

as after the signal for deployment no further control is required since the device is spherically

symmetric and does not require either active or passive attitude control. Small satellite systems

can profit from these significant advantages.

4.5 Verification of test scenarios

The results presented in the previous section are now verified for three test scenarios. The verifi-

cation is performed using the high precision orbit propagator STK HPOP as introduced in Sec.

2.3.2. Three different MEO orbits are chosen.
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Figure 4.21: Mass of balloon material over total spacecraft mass of an SRP augmented deorbiting

manœuvre initiated at the optimum time of year with db = 5 µm
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Figure 4.22: Evolution of the perigee altitude and semi-major axis of a 7000 km equatorial orbit

for a spacecraft with an effective area-to-mass-ratio of 2 m2 kg−1
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Figure 4.23: Evolution of the perigee altitude and semi-major axis of a 2000 km orbit with 40°

inclination for a spacecraft with an effective area-to-mass-ratio of 5 m2 kg−1

The first orbit is an equatorial orbit at 7000 km altitude. A comparison with Fig. 4.15 shows

that SRP-augmented deorbiting is highly effective for this initial orbit. In the numerical model in

Sec. 4.3.2 the required area-to-mass-ratio is 2 m2 kg−1 for a deorbit within five years. Figure 4.5

shows the resulting evolution of the semi-major axis and perigee altitude. It can be seen that the

numerical model is accurate in this case as the total manœuvre duration is just under four years.

The two phases of the manœuvre are easily distinguishable. In the first phase the semi-major axis

only decreases slowly and then drops sharply in the second phase. All the while the perigee altitude

decreases quasi-linearly. This is because initially the eccentricity is increased while in the second

phase the semi-major axis decreases. Both parameters affect the perigee altitude.

For the next case an orbit at 2000 km altitude is chosen. Figure 4.15 shows that this altitude

orbit with i ≈ 40° requires the least area-to-mass-ratio. At i = 40° the numerical model predicts

that an effective area-to-mass-ratio of 5 m2 kg−1 is needed to deorbit the satellite within five years.

The propagation of a spacecraft with these properties is shown in Fig. 4.5. Again the numerical

prediction is accurate, as the spacecraft deorbits within just under five years time. The evolution of

semi-major axis and perigee altitude is similar to the 7000 km case presented in Fig. 4.5, however,
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Figure 4.24: Evolution of the perigee altitude and semi-major axis of a 4000 km polar orbit for a

spacecraft with an effective area-to-mass-ratio of 6 m2 kg−1

the transition between the two phases is not as clear at 2000 km. This is likely due to the closer

initial distance of the perigee to the Earth which means that drag will set in less suddenly if the

perigee is decreased over a similar time span as in the previous case.

Finally, a polar orbit (i = 90°) is investigated. From Fig. 4.16 a 4000 km altitude orbit is

selected with a predicted required area-to-mass-ratio of 6 m2 kg−1. For a polar orbit the analytical

model developed in Sec. 4.1.1 is not applicable any more. This is because the J2 effect does not

work as formulated in this model. It will rotate the orbit perigee in a plane normal to the ecliptic,

while this plane will rotate with respect to the Sun mainly due to the Earth’s motion around the

Sun. The method of SRP-augmented deorbiting can still be effectively applied as the perigee is

rotated due to SRP as well as the J2 effect. If the rate of this rotation is close to the rate of

the Earth’s motion around the Sun, then as a result the spacecraft will experience an eccentricity

increasing effect from solar radiation pressure when SRP acts in the orbit plane.

Figure 4.5 shows the resulting trajectory for this test case. It can be seen that the perigee

altitude has phases of strong decrease and phases of quasi-stagnation which alternate approximately
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twice per year. This is the effect described above. Furthermore, as the perigee enters the regime of

atmospheric drag, the semi-major axis decreases and the rate of change of the argument of perigee

is no longer the same as the rotation of the Earth around the Sun. This means that the decrease

becomes less pronounced while there are even small increases in altitude discernible. The period

of the oscillations becomes shorter towards the end of the manœuvre, which is completed within

the required five years time.

4.6 Conclusions

This chapter introduced a new concept for SRP-augmented deorbiting and investigates its applica-

bility to MEO spacecraft. SRP-augmented deorbiting is a passive deorbiting technique which can

be applied to small spacecraft in high altitude orbits. Its main advantage, apart from the appli-

cability to high altitude, is the fully passive nature of the manœuvre, which allows the spacecraft

to remain switched off for the entire duration of the deorbit. This means that the method could

be used in a fail-safe device which deploys when a spacecraft is unresponsive for a given time.

This is particularly beneficial for small satellites, which, as discussed in Sec. 1.2, are typically built

with a low-cost and low reliability philosophy and thus cannot claim with sufficient certainty that

they will be able to perform an active deorbit manœuvre. It is less likely to be adapted by larger

spacecraft such as Galileo and other GNSS satellites, as the size of the sail or balloon required is

not feasible by the current state of technology.

The Hamiltonian dynamics of the orbit evolution were used to provide an analytical analysis

of the method. An expression for the required area-to-mass-ratio was derived for planar orbits. This

expression was then verified numerically for equatorial orbits. Next, numerical propagation was

used to determine the required area-to-mass-ratio for inclined orbits. The results were dependent on

inclination. The sensitivity of the method with respect to initial time of year and planar orientation

with respect to the Sun was investigated. Two regions in the inclination and semi-major axis

parameter space were identified in which the requirements and the sensitivity are low. Finally,

three test cases were analysed in a high precision orbit propagator. It was shown that for all three

the numerical results are accurate and the spacecraft deorbited within the required five years time.

Considering the survey of current MEO objects presented in Sec. 1.2.2, the important regions

identified in this section can be assessed for deorbiting with the method presented in this chapter.

GNSS satellites in high inclination orbits of approximately 20 000 km altitude and sub-GEO orbits

with low inclination and approximately 34 000 km altitude are not suitable for deorbiting with solar

radiation pressure and the J2 effect only, as the required effective area-to-mass-ratios would be in
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the region of 50 m2 kg−1. This is larger than realistically achievable with current solar sail materials.

However, the effectiveness in the identified low MEO regions enable small satellite missions in that

region which meet deorbiting standards, leading to new applications for the small satellite industry.

In order to be able to use this method in the regimes identified as effective, the technology

readiness of ultra-lightweight inflatable or deployable structures needs to be increased. The device

needs to be light enough to not contribute greatly to the overall the system mass. It also needs to

be fully functional after the mission is completed. The mechanism therefore require a long shelf-life.
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Chapter 5

SRP-Augmented Deorbiting from

High Sun-synchronous Orbits

In this chapter the SRP-augmented deorbiting method introduced in the Chapter 4 is applied

to high altitude Sun-synchronous orbits (SSO). SSOs are typically retrograde orbits of a fixed

inclination which depends on the semi-major axis for which the J2 effect causes the line of nodes to

precess at the same rate as the Earth’s orbital motion about the Sun. Thus the orbit plane always

has the same aspect angle with respect to the Sun (see Sec. 1.2.2). This is useful for many Earth

observation missions and makes SSOs the most popular of low Earth orbits (LEO). This popularity

means that SSOs are at a particular risk of space debris collisions and so end-of-life disposal is

essential for spacecraft in these orbits. However, as discussed in Sec. 1.2.2, drag augmentation is

infeasible at high altitudes and electrodynamic tethers cannot be used at high inclinations. This

arguably makes SRP-augmented deorbiting the only feasible passive deorbiting method for these

critical orbits.

In the first section the Hamiltonian model of the orbital dynamics is modified for Sun-

synchronous orbits. In Sec. 5.2 a numerical propagation is used to find an estimate for the required

area-to-mass-ratio to deorbit. These results are also compared to the analytical results. Finally, in

Sec. 5.3 the results from the previous section are verified for three cases with a high precision orbit

propagator.
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noon/midnight dawn/dusk

Figure 5.1: Sun-synchronous orbits: noon/midnight orbit and dawn/dusk orbit as seen from the

direction of the Sun

5.1 Modified Hamiltonian model

In order to assess the problem analytically some assumptions and simplifications have to be made.

As already assumed in Eq. (2.9), the tilt of the Earth’s axis and the effect of eclipses are neglected.

Furthermore, out-of-plane effects are not considered in the analytical SRP model. Therefore, the

predicted behaviour will be most accurate for a noon/midnight orbit, as this orbit predominantly

faces the Sun edge-on and thus experiences only small SRP forces along the normal of the orbit

plane. Dawn/dusk orbits however experience mainly out-of-plane forces. This is illustrated in Fig.

5.1.

The first step in the creation of a modified analytical model is to consider the components

of the Hamiltonian for planar orbits in Eq. (2.9) in Sec. 2.1.1:

H(φ, e) = αe cosφ− κ

3
√

1− e2
3 −

√
1− e2

The first term represents for the effect of solar radiation pressure and is dependent on the

SRP parameter α. The second term represents the effect of the Earth’s oblateness and is dependent

on the J2 effect parameter κ. The final term represents the orbital motion of the Earth around the

Sun. For Sun-synchronous orbits the SRP term remains the same because out-of-plane forces are

neglected.
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When orbits are inclined out of the plane, the Sun-perigee angle is redefined as φ =

Ω + ω − λ� − π (Eq. (2.1)). Sun-synchronous orbits are designed such that Ω − λ� is constant.

The rate of change in right ascension of the ascending node and the the rate of change in true

longitude of the position of the Sun are equal and opposite. Thus, the last term of Eq. (2.9) can

be removed so that the second term only needs to consider the change in the argument of perigee.

The modified Hamiltonian can be written as:

Hsync(e, ω) = αe cosω − κsync

3
√

1− e2
(5.1)

with

κsync =
dω

dt

(
1− e2

)2
n�

=
3

2n�
J2RE

2

√
µ

a7

(
2− 5

2
sin isync

)
(5.2)

The Sun-synchronous inclination isync for circular orbits can be calculated for a given semi-

major axis using the following expression:

cos isync = − 2n�
3J2RE

2

√
a7

µ
(5.3)

With this term the following expression for κsync can then be found:

κsync(a) = 3

√
J2

2RE
4µ

n�2a7
− 15

4

√
J2

2RE
4µ

n�2a7
− 4

9
(5.4)

Next, the required area-to-mass-ratio for deorbiting is derived in a way analogous to Eqs.

(4.1) and (4.2). The value of the Hamiltonian for a circular orbit is calculated by setting the ec-

centricity to zero in Eq. (5.1), so that:

Hsync,circ =
κsync

3
(5.5)

The Hamiltonian in Eq. (5.1) is then set equal to Eq. (5.5) in order to isolate the phase

line in the orbital element phase space of eccentricity e and argument of perigee ω which passes

through e = 0. As shown in Sec. 4.1.1, the maximum eccentricity can only be reached at either

φ = 0 or φ = π. Thus, using Eqs. (2.4) and (2.6) the following expression for the required effective

area-to-mass-ratio σ can be found:

σsync(a) =
2n�c
F�

√
µ

a

∣∣∣∣∣∣
1−

(
1−

(
1− RE

a

)2
)− 3

2

 κsync(a)(
1− RE

a

)
∣∣∣∣∣∣ (5.6)
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Figure 5.2: The analytical results for the required effective area-to-mass-ratio σ to deorbit a Sun-

synchronous orbit

The results of the analytical approach are represented in Fig. 5.2. They are similar to those

for planar orbits presented in the previous section, but the location of the minimum is at 4300 km

rather than 7500 km as in the planar case.

In the next section the analytical results are compared to a numerical solution. In this case,

it is not expected that the analytical prediction is very accurate as several simplifications and

assumptions had to be made. In particular, the out-of-plane forces due to SRP are neglected. This

assumption is most accurate for noon/midnight orbits although not even then is the orbit normal

permanently orthogonal to the solar radiation. Due to the tilt of the Earth’s axis, the aspect angle

with respect to the Sun also oscillates over the year. Neither is the assumption that the orbits

remain Sun-synchronous throughout the deorbit accurate. As soon as the eccentricity begins to

increase the Sun-synchronous inclination changes and a progression of the line of nodes begins.

However, the analytic approximation does provide an initial estimate.

5.2 Numerical analysis

In this model, the orbital dynamics are propagated numerically by integrating the semi-analytical

equations for the secular orbit evolution in non-singular elements, which are introduced in Sec.2.2.2.
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Figure 5.3: Analytical and maximum numerical results for the required effective area-to-mass-ratio

to deorbit a Sun-synchronous noon/midnight and dawn/dusk orbit with respect to initial true

longitude of the Sun

Initially, the numerical propagation considers only the perturbations of solar radiation pressure and

the J2 effect. The effect of drag and eclipses are neglected to save computational time and to allow

a comparison with the analytical model. The criterion for a successful deorbit is a perigee altitude

of zero and the maximum propagation time is set to five years, as in chapter 4.

In order to find the required effective area-to-mass-ratio, a numerical search is implemented.

The scenario is simulated starting from the analytical best guess for σ from Eq. (5.6) and, depending

on whether the deorbit is successful or not, a higher or lower σ is chosen for the next run. This is

continued until the required σ is determined within an accuracy of 1 m2 kg−1. Using this method

the required effective area-to-mass-ratio for deorbit is calculated for a range of initial altitudes and

local times of the ascending node. For each case the result is found for eight different starting dates

equally spread throughout the year starting from the spring equinox. The maximum required area-

to-mass ratio for noon/midnight and dawn/dusk orbits are shown in Fig. 5.3 and compared to the

analytical prediction. It can be seen that, as expected, the analytical model is not very accurate.

However, the general magnitude of the results for noon/midnight orbits is shown and also the v-

shaped trend. The minimum required area-to-mass-ratio occurs at an altitude 600 km, lower than

predicted by the simple analytical model. As expected the method is less effective for dawn/dusk

orbits than for noon/midnight orbits at lower altitudes because out-of-plane forces are higher for
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dawn/dusk orbits. However, this difference in area-to-mass-ratio shrinks for increasing altitude.

This is due to fact that the Sun-synchronous inclination increases with larger altitudes, and thus

the orbital plane becomes more aligned with the equator. This means that even dawn/dusk orbits

will experience stronger in-plane SRP effects.

Figure 5.4 shows the required effective area-to-mass-ratio for all Sun-synchronous orbit alti-

tudes between 1000 km and 5000 km. The result shown is the maximum for the different manœuvre

starting times throughout the year. The greatest difference between starting at different times is

experienced by dawn/dusk orbits of altitudes between 1000 km and about 1500 km. In this region

the deviation of the results with respect to the initial true longitude of the Sun is high (see Fig.

5.5). This means that the effectiveness of the manœuvre is highly dependent on the time of year

when it is initiated. The required effective area-to-mass-ratio is lowest for 6:00 h orbits when the

manœuvre starts in autumn and, symmetrically, lowest for 18:00 h orbits when the manœuvre

starts in spring.

It can be seen from both figures that SRP-augmented deorbiting is most effective and reliable

for Sun-synchronous orbits with semi-major axes between approximately 2000 km and 4500 km. In

this region the maximum required effective area-to-mass-ratio is predominantly below 20 m2 kg−1

and always below 40 m2 kg−1. The sensitivity to the starting date of the manœuvre is also low. This

is an advantage when a fail-safe deorbiting mechanism is applied for a system which automatically

deploys when the satellite fails. With systems which are deployed on command from ground this

characteristic is irrelevant as the operator can simply wait until the best time to start the deorbiting

manœuvre.

5.3 Verification

In this section the numerical results presented in the previous section are verified using Satellite

Tool Kit (STK v9.2.2). This is necessary to test the assumption that perturbations other than

SRP and the J2 effect (such as luni-solar perturbation) and the effect of eclipses can be neglected

when performing an approximate analysis of SRP-augmented deorbiting. The propagation in STK

is performed with the HPOP propagator as described in Sec. 2.3.2. Three different scenarios are

tested as shown in Fig. 5.6. In all cases the Spring equinox is chosen as the manœuvre start date,

i.e. λ�,0 = 0.

The selected test cases are all high altitude Sun-synchronous orbits starting at 1000 km.

This is because for lower SSOs the effect of solar radiation pressure is insignificant to the effect of
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Figure 5.4: Contour plot of the numerical results for the maximum required effective area-to-mass-

ratio to deorbit for Sun-synchronous orbits
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Figure 5.5: Contour plot of the standard deviation of the required effective area-to-mass-ratio to

deorbit Sun-synchronous orbits with respect to initial true longitude of the Sun
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Figure 5.6: The three test case Sun-synchronous orbits with different initial altitudes and local

times of the ascending node (STK)
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Figure 5.7: Evolution of the perigee altitude and semi-major axis of a 1000 km noon/midnight

Sun-synchronous orbit for a spacecraft with an effective area-to-mass-ratio of 35 m2 kg−1

aerodynamic drag. At 1000 km both effects are important and above this altitude SRP becomes

the single most important perturbation.

5.3.1 Low altitude SSO test case

For the first test case a noon/midnight Sun-synchronous orbit with an altitude of 1000 km is chosen.

The results of the numerical model predicted a required effective area-to-mass-ratio of 35 m2 kg−1

for this orbit. When a spacecraft with these characteristics is propagated in STK it deorbits within

just 28 days as shown in Fig. 5.7. This is due to the strong effect of drag which is neglected in

the numerical model but which affects a spacecraft of a very large area-to-mass-ratio even at an

altitude of 1000 km. To verify, the same simulation is run without the effect of SRP and a similar

deorbit time is recorded.

To assess by how much the area-to-mass-ratio can be decreased owing to aerodynamic drag

the scenario is run again repeatedly within STK with different area-to-mass-ratios until the re-

quirements are found with an accuracy of 1 m2 kg−1. The deorbiting is successful within 3.5 years

for a 2 m2 kg−1 spacecraft. Figure 5.8a shows the results for the perigee altitude and the semi-major
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axis throughout the manœuvre for this case. The effect of SRP which causes the eccentricity to

librate can be seen in the periodic variation in perigee altitude while the decline in semi-major axis

is more uniform. The evolution of the orbit altitude as seen in Fig. 5.8a does not bring the perigee

down into the lower atmosphere or even to a zero altitude as required in the MATLAB simulation

in Section 5.2, but it is enough to periodically increase the effect of drag and thus speed up the

final decay. The same simulation is then run again, neglecting solar radiation pressure. In this case

the spacecraft did not deorbit within the same time span, as can be seen in Fig. 5.8(b). In this case

the spacecraft still experiences librations in eccentricity but not as strongly as the SRP case. These

librations occur due to the diurnal and seasonal variations in atmospheric density. This means that

for the lower altitudes the numerical model overestimates the required effective area-to-mass-ratio.

In this simulation a coefficient of reflectivity of one is assumed. For a device providing a higher

reflectivity the enhancing effects of SRP will be further increased.

5.3.2 Medium altitude SSO test case

For the next test case a 2300 km dawn/dusk orbit is chosen. At this altitude the required area-to-

mass-ratio shows a local minimum for dawn/dusk orbits. The predicted required effective area-to-

mass-ratio is 10 m2 kg−1. Propagating this scenario with STK shows that as predicted a successful

deorbiting manœuvre is completed within 3.5 years (see Fig. 5.9a).

Again this result is compared to a simulation in which solar radiation pressure is neglected.

In this case drag has a minimal effect on the orbit evolution as shown in Fig. 5.9(b). In this

figure the slight oscillations in perigee altitude are due to third body effects. For this scenario

the numerical prediction is accurate and the effect of solar radiation pressure is essential to the

eventual re-entry.

5.3.3 High altitude SSO test case

For the final test case a 4000 km noon/midnight orbit is chosen. The predicted required effective

area-to-mass-ratio for this scenario is 15 m2 kg−1 maximum. The simulation in STK shows that

this prediction is justified. The manœuvre is completed within one year as shown in Fig. 5.10(a). A

comparison to the simulation without SRP shows again that the effect of solar radiation pressure

is instrumental in the manœuvre as the semi-major axis and eccentricity hardly vary at all in the

latter case as shown in Fig. 5.10(b).
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Figure 5.8: Evolution of the perigee altitude and semi-major axis of a 1000 km noon/midnight Sun-

synchronous orbit for a spacecraft with an effective area-to-mass-ratio of 2 m2 kg−1 (a) including

the effect of SRP and (b) excluding the effect of SRP
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Figure 5.9: Evolution of the perigee altitude and semi-major axis of a 2000 km dawn/dusk Sun-

synchronous orbit for a spacecraft with an effective area-to-mass-ratio of 10 m2 kg−1 (a) including

the effect of SRP and (b) excluding the effect of SRP
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Figure 5.10: Evolution of the perigee altitude and semi-major axis of a 4000 km noon/midnight

Sun-synchronous orbit for a spacecraft with an effective area-to-mass-ratio of 15 m2 kg−1 including

the effect of SRP (a) and excluding the effect of SRP (b)
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5.4 Conclusions

Solar radiation pressure-augmented deorbiting was introduced in Chapter 4 with an analytical

Hamiltonian model for planar orbits, which is then adapted for Sun-synchronous orbits. The an-

alytical results were compared to numerical results and three test cases are investigated using a

high precision orbit propagator. Solar radiation pressure augmented deorbiting was shown to be

an effective method to passively deorbit spacecraft from high altitude orbits. The effectiveness is

dependent on altitude and inclination. For orbits with altitudes of order 1000 km it will accelerate

orbital decay due to aerodynamic drag by causing the orbit eccentricity to oscillate. For higher

altitudes solar radiation pressure is the dominating factor in the deorbiting manœuvre. Solar ra-

diation pressure-augmented deorbiting is most effective for Sun-synchronous orbits of altitudes

between 2000 km and 4500 km. Simulations run which neglected solar radiation pressure effects

showed only very minor variations in semi-major axis and eccentricity. Moreover, the deorbiting

simulation performed through Satellite Tool Kit allowed a validation of the analytical model which

considered only solar radiation pressure and the J2 effect.

Again, solar radiation pressure-augmented deorbiting has the potential to unlock new small

satellite missions as it may allow small systems without propulsion subsystems to access high

altitude orbits while still complying to the Inter-agency Space Debris Coordination Committee

deorbiting guidelines. A further advantage of the method is that it is entirely passive. This would

allow the method to be applied to a fail-safe deorbiting system which automatically removes space-

craft from orbit when they fail. This is possible as solar radiation pressure-augmented deorbiting

does not require any active control.

The application of SRP-augmented deorbiting to high altitude SSOs is particularly relevant

to the current international efforts to reduce space debris, as Sun-synchronous orbits are the most

popular LEO orbits and thus the most populated. The SSOs with altitudes below 2000 km fall

under the protected regions as defined in the space debris mitigation standards [35]. This means

that deorbiting is mandatory in these orbits. Small satellite missions carrying an SRP-augmentation

subsystem would thus be conforming to international guidelines if launched to one of these orbits.
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PART II

Millimetre-scale:

Orbit Control for SpaceChips



Chapter 6

Electrochromic Orbit Control

using a Potential Controller

In the second part of this thesis, applications of HAMR orbital dynamics for the control of

SpaceChips are investigated. SpaceChips, as introduced in Sec. 1.3, are millimetre-scale space-

craft which can be deployed in large numbers, but typically lack orbit control systems. A new

control method is proposed which exploits the dynamics of orbital evolution due to solar radiation

pressure. This effect is modulated using electrochromic coatings to alter the optical properties of

the SpaceChip. Electrochromic materials (EM) change their optical properties when a voltage or

current is applied, thus modulating the fraction of light which is transmitted, absorbed and re-

flected, effectively changing the coefficient of reflectivity cR of the body. The effect remains until

a voltage or current in the opposite sense reverses it [120].

This chapter proposes to use electrochromic coatings to exploit the perturbing effect of solar

radiation pressure for orbit stabilisation and manœuvres of SpaceChips. A spacecraft thus coated

can change its coefficient of reflectivity between two set values. For a SpaceChip the ideal value

for minimum reflectance is one, completely absorptive, because a lower value would mean that it

were partially transmissive, and an ideal value for maximum reflectance is two. In this thesis only

orbits in the region of 30 000 km to geosynchronous altitude are investigated for illustration. It

is noted that possible SpaceChip missions have been proposed in the LEO regime [59] and very

high elliptical Sun-pointing orbits. The latter are used in the GEOSAIL mission [100] to monitor

the Earth’s magnetic tail and can be utilised by a swarm of SpaceChip devices. The orbit control

developed in this part of the thesis is applicable to these very high altitude orbits but not to

114



6. ELECTROCHROMIC ORBIT CONTROL USING A POTENTIAL CONTROLLER

the LEO orbits, as the latter are strongly affected by aerodynamic drag and thus unstable in the

long-term. Two different applications are discussed: orbit stabilisation and orbit manœuvres.

6.1 Analysis of the control potential

A spacecraft on a high Earth-centred orbit lying in the ecliptic plane is considered, subject to

solar radiation pressure. The effects of other perturbations are neglected, as, according to Atchison

and Peck [1], SRP is the dominant force in this scenario. In particular, the orbit is chosen with a

perigee above LEO, so as to avoid aerodynamic drag. The orbit geometry, represented in Fig. 6.1,

can be expressed through three in-plane orbital elements, semi-major axis a, eccentricity e, and the

angular displacement between the orbit pericentre and the direction of the solar radiation through

the centre of the Earth φ. The acceleration an object receives from solar radiation pressure (SRP)

is given by:

aSRP = cR
F�
c

A

m
cos2 γ (6.1)

where cR is the coefficient of reflectivity, F� the solar flux, c the speed of light, A the surface area

receiving solar radiation, m the mass of the object and γ the incident angle of the Sunlight. It

can be seen that the value of aSRP in Eq. (6.1) depends on the area-to-mass-ratio of the object.

Conventional spacecraft experience SRP only as a perturbing force, whereas the effect on micro-

scale satellites becomes dominant. Solar sail technology exploits the acceleration due to solar

radiation pressure by attaching a large light-weight reflective film to the satellite bus and controlling

the thrust vector by varying the sail attitude (i.e. the angle γ). Electrochromic orbit control (EOC)

instead modifies the reflectivity coefficient cR, with the advantage that mechanical attitude control

actuators and complex sail deployment mechanisms are not necessary. A constant attitude of the

SpaceChip with respect to the Sun is assumed, which can be achieved with one of the methods

discussed in Sec. 1.3.2. The SpaceChip’s surface is therefore assumed to be normal to the incident

solar radiation. In this case, γ = 0 and the area-to-mass-ratio with respect to the Sun is constant.

Because of the discrete nature of the reflectivity change, the orbit control has the charac-

teristics of a bang-bang controller with the lower reflectivity state (cR,off) of the electrochromic

thin-film defined as the off-state and the higher reflectivity state (cR,on) as the on-state. The two

values of reflectivity used here are cR,off = 1 (completely absorptive) and cR,on = 2 (completely

reflective). It is assumed that during each orbit the reflectivity is be switched twice. The true

anomalies at which these changes take place are used as control parameters (fon and foff in Fig.

6.1 ).
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foff
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Perigee

ϕ

cR,off

cR,on

SRP

SRP

Figure 6.1: Diagram of an electrochromic orbit control controlled orbit: The control parameters,

the switching angles fon and foff are marked. The shadow of the Earth indicated the direction of

Sunlight.
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6.1.1 SpaceChip model

The spacecraft model considered here is based on the Cornell University Sprite SpaceChip [61].

The spacecraft is a Silicon microchip (density of 2330 kg m−3) of 1 cm2 area by 25 µm thickness and

resulting area-to-mass-ratio 17.4 m2 kg−1. Because of its passively Sun-pointing design a constant

area-to-mass-ratio is assumed, as discussed earlier.

Orbits with a semi-major axis of 30 000 km in the ecliptic plane are considered for illustration.

A large semi-major axis is preferable because at a greater distance from the main gravitational

body the ratio between the acceleration due to SRP and the acceleration due to gravity is greater

and thus the effectiveness of the control method is higher. This is appropriate, as for orbits with

a ≥ 30 000 km SRP has an influence significantly larger than all other perturbations for the size of

spacecraft considered here [1]. The secular effect of SRP on the orbit is approximated using a set of

2D analytical equations neglecting any out-of-plane forces, as introduced in Sec. 2.2.1. For orbits

in the ecliptic plane which neglect the Earth’s gravitational harmonics this is a valid reduction of

the problem.

The simulation later in Sec. 6.2.3 on the other hand uses a 3D model of the orbital geometry

and includes the J2 perturbation as well as SRP, while the control algorithm is still based on the

planar analytical model without J2. This is to demonstrate the robustness of the algorithm for

stabilisation and the validity of the assumption of SRP as the dominant perturbation.

6.1.2 Control potential of in-plane orbital elements

To analyse the usefulness of electrochromic orbit control (EOC) for orbit stabilisation, firstly

its control potential has to be assessed. This requires the maximum and minimum change in

the Keplerian elements (∆a, ∆e, ∆φ) achievable for any initial set of elements (a0, e0, φ0) and

spacecraft parameters (Am , cR,on, cR,off) to be determined.

The first step is to determine for each position (in true anomaly f) on an orbit whether

the change in the Keplerian elements (da
dt , de

dt ,
dφ
dt ) is positive, negative or whether the space-

craft is in eclipse (and the orbital elements consequently remain constant since only SRP induced

perturbations are considered).

Next, the maximum change in orbital elements for a certain orbit can be determined by using

cR,on when the change is positive to achieve the largest possible effect, and using cR,off when the

change is negative to minimise the negative effect. The minimum change can be obtained with the
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opposite strategy, using cR,on when the change is negative and cR,off when the change is positive.

The maximum and minimum change in orbital elements is computed through Eq. (6.2) where K

represents any orbital element.

∆Kmax =

∫
[ dK
df <0]

dK(cR,off)

dt

(
df

dt

)−1

df +

∫
[ dK
df >0]

dK(cR,on)

dt

(
df

dt

)−1

df

∆Kmin =

∫
[ dK
df <0]

dK(cR,on)

dt

(
df

dt

)−1

df +

∫
[ dK
df >0]

dK(cR,off)

dt

(
df

dt

)−1

df

(6.2)

The term dK
dt is the variation of Keplerian elements, given by the Gauss’ equations in Sec.

2.3.1 [53]. In particular, df
dt is given by Eq. (2.28). The disturbing acceleration due to solar radi-

ation pressure is given by Eq. (6.1). The radial and transversal accelerations, ar and aθ, are the

components of the SRP acceleration in the radial and transversal directions in the orbital plane:

ar = aSRP cos (f + φ)

aθ = −aSRP sin (f + φ)
(6.3)

The integrals in Eq. (6.2) are evaluated over the arc of a single orbit revolution 0 < f < 2π

where dK
df is greater or smaller than zero. The resulting map allows an assessment of possible points

for stabilisation. These can only be orbits for which, for all three in-plane elements, the minimum

change is negative and the maximum change is positive so that a net change of zero is possible.

This can be seen as a necessary criterion for stabilisation.

Semi-major axis

The semi-major axis is directly related to the energy of an orbit ε. This relationship is described

as for elliptical orbits:

ε = − µ

2a
(6.4)

where µ is the gravitational parameter of the central body, in this case the Earth.

It can be seen that the specific orbital energy increases and decreases with semi-major axis.

When solar radiation pressure is acting against a component of the spacecraft velocity vector the

spacecraft’s orbital energy is decreased. This means that the specific orbital energy is decreased
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and thus the change in semi-major axis is negative. The opposite is true when SRP is acting in

the direction of the spacecraft’s velocity vector and the spacecraft is accelerated. The spacecraft

orbital energy then increases and the change in semi-major axis is positive. Without the effect of

eclipses the total change of semi-major axis due to SRP after one orbital period is zero. However,

when eclipses are considered, they will block out Sunlight on part of the spacecraft’s orbit. If the

orbit is not symmetrical with respect to the Sun-line, i.e. if the eccentricity is larger than zero

and φ /∈ {0, π}, this will result in an overall change in semi-major axis, which can be positive or

negative depending on φ. The rate of change of the semi-major axis at any point in the orbit is

given by Eq. (2.23) in Sec. 2.3.1 as:

da

dt
=

2a2

√
µp

(
e sin (f) ar +

p

r
aθ

)

Figure 6.2 shows the sign of da
dt as a function of the true anomaly along an orbit and the

initial value of φ, for an initial semi-major axis of 30 000 km. Note that the sign of da
dt along a

single orbit can be determined from a vertical section in Fig. 6.2, for a fixed value of φ. Figure

6.2a shows the result for a nearly circular orbit, Fig. 6.2b corresponds to a highly elliptical orbit

with eccentricity 0.78 (the eccentricity at which the perigee lies in the Earth’s lower atmosphere,

without considering drag). For all orbits, positive and negative da
dt values exist. Figure 6.3 shows

the maximum and minimum change in semi-major axis achievable for all orbits with a semi-major

axis of 30 000 km and an eccentricity between 0.01 and 0.78 calculated with Eqs. (6.2) and (2.23).

The semi-transparent dark plane indicates a zero change of semi-major axis. It can be seen that

at every point in the (e, φ)-phase space the minimum change is negative and the maximum change

positive. Thus, it is possible for any orbit to achieve a constant semi-major axis by electrochromic

orbit control.

Eccentricity

The variation of eccentricity is given by Gauss’ equation Eq. (2.24) in Sec. 2.3.1 as:

de

dt
=
p sin far + ((p+ r) cos f + er) aθ√

µp

Figure 6.4 shows the sign of de
dt for a nearly circular and a highly-eccentric orbit. It can be

seen that only small areas exist in which negative and positive change is experienced during one

orbit (i.e. a vertical line in Figure 6.4 with a fixed value of φ) around φ = 0° and φ = 180°. These

are consequently the only areas in which a positive ∆emax and a negative ∆emin can be found

to stabilise the spacecraft. Figure 6.5 shows the minimum and maximum ∆e achievable for the
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Figure 6.2: Zones of positive (red), negative (blue) and zero (black) da
dt due to SRP as a function

of true anomaly f for orbits of different initial φ with eccentricities e = 0.01 (a) and e = 0.78 (b)

and 30 000 km semi-major axis. Zero da
dt zones are due to eclipses.
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Figure 6.3: Maximum (red) and minimum (blue) change in semi-major axis over one orbit for

different initial orbits in the (e, φ) phase space portraying the floor and the ceiling of possible

control options, for a semi-major axis of 30 000 km
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spacecraft considered; the narrow gap between the two layers around zero at φ = 0° and φ = 180°

reflects the control potential in eccentricity limited to these regions.

Sun-perigee angle

The determination of the areas of positive or negative dφ
dt is also not trivial and using Eq. (2.1)

in Sec. 2.1.1 it is described by the sum of the rate of change of argument of perigee, right ascen-

sion of the ascending node and the progression rate of the position of the Sun, dλ�
dt = −n�. The

rate of change of the argument of perigee is given by the Gauss’ equation Eq. (2.27) in Sec. 2.3.1 as:

dω

dt
=
−p cos far + (p+ r) sin faθ

e
√
µp

− r sinω + f√
µp tan i

an

While the rate of change of right ascension of the ascending node is given by Eq. (2.26) as:

dΩ

dt
=
r sinω + f√
µp sin i

an

It can be seen that the change in right ascension is only dependent on the out-of-plane component

of the perturbing force, an, and thus equals zero here, as only an in-plane model is considered.

The out-of plane term in the rate of change of argument of perigee is also neglected, while the

inclination is set equal to zero in this model to derive the following term for dφ
dt :

dφ

dt
=

dΩ

dt
+

dω

dt
− n� =

−p cos far + (p+ r) sin faθ

e
√
µa(1− e2)

− n� (6.5)

It can be noted that the singularity at i = 0 in Eqs. (2.27) and (2.26) is not found in Eq.

(6.5), as the force normal to the orbit plane, an, is assumed to be zero. Figure 6.6 shows the sign

of dφ
dt for a quasi-circular and a highly-eccentric orbit as a function of the Sun-perigee angle. It

appears similar to the results for the eccentricity, albeit phase shifted. The significant difference is

the fact that there is also a fixed rate of change in φ due to the Earth’s motion around the Sun,

n�. In order to fix the orbit geometry, the SRP needs to counteract this natural progression of φ.

This leads to a zone where a stabilisation in φ is possible that is not only found around φ = 90°

and φ = 270° but also in a semi-circular shape around φ = 180°. Figure 6.7 shows the ceiling and

floor of possible ∆φ values for different positions in the phase space.

122



6. ELECTROCHROMIC ORBIT CONTROL USING A POTENTIAL CONTROLLER

0 90 180 270 360
0

90

180

270

360
 e  = 0.01

 φ  [deg]

 f
  
[d

eg
]

0 90 180 270 360
0

90

180

270

360
 e  = 0.78

 φ  [deg]

 f
  
[d

eg
]

Figure 6.4: Zones of positive (red), negative (blue) and zero (black) de
dt due to SRP as a function

of true anomaly f for orbits of different initial φ with eccentricities e = 0.01 (a) and e = 0.78 (b)

and 30 000 km semi-major axis. Zero de
dt zones are due to eclipses.
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Figure 6.5: Maximum (red) and minimum (blue) change in eccentricity over one orbit for different

initial orbits in the (e, φ) phase space portraying the floor and the ceiling of possible control option,

for a semi-major axis of 30 000 km

124



6. ELECTROCHROMIC ORBIT CONTROL USING A POTENTIAL CONTROLLER

0 90 180 270 360
0

90

180

270

360
 e  = 0.01

 φ  [deg]

 f
  
[d

eg
]

0 90 180 270 360
0

90

180

270

360
 e  = 0.78

 φ  [deg]

 f
  
[d

eg
]

Figure 6.6: Zones of positive (red), negative (blue) and zero (black) dφ
dt due to SRP as a function of

true anomaly f for orbits of different initial φ with eccentricities e = 0.01 (a) and e = 0.78 (b) and

30 000 km semi-major axis. Zero dφ
dt zones are due to eclipses. The change due to the progression

of the Earth around the Sun is not included.
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Figure 6.7: Maximum (red) and minimum (blue) change in eccentricity over one orbit for different

initial orbits in the (e, φ) phase space portraying the floor and the ceiling of possible control options,

for a semi-major axis of 30 000 km

126



6. ELECTROCHROMIC ORBIT CONTROL USING A POTENTIAL CONTROLLER

6.1.3 The potentially stabilisable zone

The results in Sec. 6.1.2 can be combined to find possible points in the (e, φ) phase space where

stabilisation is possible. To assess an orbit’s usefulness for stabilisation of the three orbital ele-

ments considered, a new parameter is introduced. SK is the lower value of the positive ∆Kmax

and the negative ∆Kmax, if this term is positive. If the term is negative the point is not useful for

stabilisation because zero change is not within the range of possible control options. If this is the

case, the control potential parameter SK becomes zero to indicate that stabilisation of the orbital

element K is not possible.

SK =

min {∆Kmax,−∆Kmin} , if min {∆Kmax,−∆Kmin} > 0

0 , if min {∆Kmax,−∆Kmin} ≤ 0
(6.6)

with ∆Kmax and ∆Kmin defined by Eq. (6.2).

Figure 6.8 contains the results for all possible in-plane orbits with a semi-major axis of

30 000 km. The thick red line indicates the eccentricity above which the radius of the perigee is

smaller than the radius of the Earth, RE . Only orbits below this line are possible. Sa is portrayed

in red contour lines. Since the semi-major axis can always be kept constant using EOC (see Sec.

6.1.2) all positions in the phase space are acceptable for stabilisation when only considering this

parameter. The regions in which Se > 0, and thus the eccentricity can be kept constant, are high-

lighted in blue. In addition, unmarked darker blue contour lines trace the Se values. As expected,

these areas are thin stripes around φ = 0° and φ = 180° (see Sec. 6.1.2). The region in which Sφ > 0

is highlighted in green. In addition, unmarked darker green contour lines trace the Sφ values. The

resulting shape resembles a semi-circle with the highest Sφ values towards the centre of the region.

Complete stabilisation is only possible in regions where all SK values are larger than zero.

This is possible in a near rectangular shape with approximately 175° < φ < 185° and 0.15 < e < 0.3,

defined by the potentially stabilisable zone (PSZ). This area is highlighted in bright cyan with a

thick black border.

Figure 6.9 shows the range in eccentricity of the PSZ for the spacecraft parameters given in

6.1.1 and varying semi-major axes. The rise in eccentricity and the extension of the range of the

stable zone can be seen.

Finally, the maximum values for the control potential parameter SK can be seen in Fig. 6.10

and Fig. 6.11. All three grow with increasing semi-major axis. The maximum Sa is at e ≈ 0, the
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Figure 6.8: Sa (red) Se (blue) and Sφ (green) for a = 30 000 km orbits in the (e, φ) phase space: The

thick red line indicates the critical eccentricity ecrit, where rp = RE . The potentially stabilisable

zone (PSZ) where the necessary criterion for stabilisation is fulfilled is marked in cyan with thick

black border. The contour values on the red thin lines indicate the maximum positive or negative

change achievable in semi-major axis in kilometres using electrochromic control.

maximum Se can be found at e ≈ 0 and φ = 0° or 180° and the maximum Sφ at φ = 180° and e

between the boundaries shown in Fig. 6.9.

6.2 Orbit stabilisation using an artificial potential field con-

troller

The potentially stabilisable zone identified in the previous section includes all in-plane orbits of a

given semi-major axis for which stabilisation using electrochromic coatings is not impossible due

to the initial assessment presented in Sec. 6.1.2. However, this assessment considers each of the

three in-plane orbital elements separately. Next, the possibility of controlling all three elements is

analysed. This is necessary to truly stabilise the orbit. In this section an artificial potential field in

the orbital element phase space is introduced which is then used to control the orbit of a SpaceChip

with an electrochromic coating on orbits of the PSZ.
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Figure 6.9: The eccentricity value of the lower (blue) and upper (green) boundary of the PSZ at

φ = 180° as a function of semi-major axis.
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Figure 6.10: Maximum values of semi-major axis control potential parameter Sa as a function of

semi-major axis.
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Figure 6.11: Maximum values of control potential parameters Sφ (blue) and Se (green) as a function

of semi-major axis.

6.2.1 Controller design

In Sec. 6.1.3 the area in the phase space that fulfils the necessary criterion for stabilisation (PSZ)

has been identified. The next step is to determine which of these orbits can be stabilised using an

artificial potential field based electrochromic orbit controller. Figure 6.12 shows the principle of

the controller. The control loop operates in discrete time steps of one orbit. First, the initial orbit

state is defined. Then, the optimum control parameters (fon and foff) are determined. Finally, the

next orbit state is determined exactly using the numerical integration of the 3D Gauss’ equations,

as introduced in Sec. 2.3.1, and the loop repeats itself.

The different steps of the control algorithm are now explained in detail: initially the orbital

elements at the end of a single orbit revolution for different sets of (fon, foff) are estimated using

the set of analytical equations introduced in Sec. 2.2.1, which describe the secular variation of

orbital elements due to SRP. The analytical approach is quicker than the numerical integration of

the full dynamical model, and thus preferable for the search for the optimum control parameters.

Next, the values of a control function U (fon, foff) are calculated. A search for the local min-

imum of U (fon, foff) delivers the required control parameters fon and foff . The control function is

based on an artificial potential field approach in the orbital element space. The desired position

[a0, e0, φ0] is at the bottom of a parabolic artificial potential well:
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Initial State

Kn = [an , en , ϕn, Ωn, ωn, λ�,n]

Find optimum control param-

eters fon and foff for this orbit 

by minimising function

U(fon , foff) using analytical 

approximation equation for Δ

Numerically integrate the 

Gauss’ equations over the 

different control intervals 

defined by fon and foff to 

obtain new state vector Kn+1.

Kn

Kn Kn+1

(fon , foff)

a = Kn(1)

e = Kn(2)

ϕ = Kn(4) + Kn(5) - Kn(6) + π

(a, e, ϕ)

Figure 6.12: Diagram of the closed control loop for the artificial potential field controller.
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Figure 6.13: The artificial potential field control function in a two dimensional orbital element

phase space for K = (K1,K2).
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U (fon, foff) =k2
a (a (fon, foff)− a0)

2

+k2
e (e (fon, foff)− e0)

2

+k2
φ (φ (fon, foff)− φ0)

2

(6.7)

where the term K(fon, foff) decribes the the value of the Keplerian element K after one orbit,

if the control parameters fon and foff were applied. As only in-plane parameters are considered,

K stands for a, e, and φ, while ka, ke and kφ are weight parameters, whose values are expressed

as function of the control potential parameter defined. Figures 6.10 and 6.11 show the maximum

values for SK as an indicator of the magnitude of the maximum step size in orbital elements over

one orbit within the PSZ. The parameters kK are defined as:

kK =
1

max (SK)
2 (6.8)

so that kK (K(fon, foff)−K0)
2

= 1, if the distance between the actual and desired position

|K(fon, foff)−K0| is of order one step size.

After the required set of control parameters has been determined, the orbit is then propa-

gated through the numerical integration of the 3D Gauss’ equations as introduced in Sec. 2.3.1,

including the perturbations of solar radiation pressure and the J2 effect [84]. The consideration of

the J2 effect in the stability simulation, despite neglecting it in the controller design, is done to

test the robustness of the controller to unpredicted influences and perturbations.

The simulation employs the electrochromic orbit control by switching reflectivity at the

chosen positions. Because the analytical expressions used to predict the variation of Keplerian

elements only consider the secular rate of change, neglecting the periodic variations and ignoring

the J2 effect and any out-of-plane effects [103], the predicted variation of elements is not exactly

equal to the variation computed through numerical integration of the full model. This new state

vector is then input into the beginning of the control loop again leading to a closed loop system

which is robust towards errors in orbit prediction, as will be shown in Sec. 6.2.3.

6.2.2 Stability conditions

A measure of stability is the destabilisation time, the time until a simulated spacecraft exits a

pre-defined sphere around its starting position in the orbital element space. If this simulation is

performed at a multitude of points in the potentially stabilisable zone (PSZ) for controlled and

133



6. ELECTROCHROMIC ORBIT CONTROL USING A POTENTIAL CONTROLLER

uncontrolled cases, profiles of the actual stability domain can be constructed. The controlled and

uncontrolled profiles can be compared to assess the usefulness of the method for orbit stabilisation

described in this section.

The dimensions of the sphere around the position to be tested for stability are directly

related to the control function. As defined in the previous subsection, the part of the control

function corresponding to any orbital element is equal to one when the distance between the

actual position and the required position equals max (SK). It is reasonable to size the sphere as

a multiple of this distance by a size factor of the stability sphere. This factor can in principle be

chosen almost arbitrarily because if the position is unstable then the spacecraft will eventually exit

the sphere, however large it is, as long as it is not big enough to distort the result by enclosing a

different position that is indeed stable. Likewise, if the position is stable, the spacecraft will stay

within the sphere as long as it is not small enough to exclude positions around the initial state that

the spacecraft may jump to and from while staying close to the desired position. It is, however,

desirable to have a sphere as small as possible to reduce the simulation time until a conclusion

about stability can be drawn. Stability is assumed if the spacecraft does not exit the sphere for

at least fifty orbits (approximately one month) for a semi-major axis of 30 000 km. The resulting

dimensions of the stability sphere can be seen in Fig. 6.14.

Figure 6.15 shows the percentage of points in the PSZ that destabilise according to these

criteria within certain times (measured as the number of orbits) for controlled and uncontrolled

spacecraft. It can be seen that the vast majority of uncontrolled points destabilise within ten

orbits (≈ 99%). The other regimes have far smaller percentages but there are at least some points

that last for longer than fifty orbits. For the uncontrolled spacecraft approximately one third of

points are stable. The unstable ones destabilise mostly within ten orbits. The sharp drop in points

when looking at larger destabilising times suggest that the one-third defined as stable would not

destabilise within just over one hundres orbits, but remain within the stability sphere indefinitely.

Thus, both the size of the sphere and the maximum time of propagation are shown to be adequate.

6.2.3 Stability simulation results

The results of the simulation highlight the significant difference between the destabilising times

of controlled and uncontrolled SpaceChips. Figure 6.16 visualises the results for both cases at a

semi-major axis of 30 000 km. The uncontrolled SpaceChip destabilises typically within ten orbits

apart from an equilibrium point at φ = 180° and e ≈ 0.22. Around this point the destabilising

times become longer but the rise is very steep as can also be seen in Fig. 6.15. This is the stable

point for the GEOSAIL mission [100].
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Figure 6.14: Dimensions of the stability sphere at a = 30 000 km
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Figure 6.15: Percentage of orbits in potentially stabilisable zone with given destabilising times at

a = 30 000 km for Sprite SpaceChips with area-to-mass-ratio 17.4 m2 kg−1.
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Figure 6.16: Stability profile of controlled (a) and uncontrolled (b) orbits in potentially stabilis-

able zone at a = 30 000 km for SpaceChips with area-to-mass-ratio 17.2 m2 kg−1. The area shade

indicates the number of orbits before destabilising to a maximum of 50.
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In contrast, the controlled SpaceChips have a large area (approximately one third of the

PSZ) in which the orbital lifetime exceeds one hundred orbits. Around the edges of this shape

the destabilising time decreases rapidly so that half of the PSZ destabilises within ten orbits.

It is interesting to note that the semi-major axis rarely exceeds more than 10 % of its allowed

deviation in both the controlled and uncontrolled case. If an orbit is unstable it is always due to

high deviations in e, φ or both.

Figure 6.17 visualises the relation between ∆e and ∆φ with respect to the initial orbit when

the SpaceChip exits the stability sphere. Blue areas indicate orbits for which the eccentricity ex-

ceeded the bounds, while orange indicates orbits for which the Sun-perigee angle exceeded the

bounds. Intermediate colours indicate orbits in which both violate the stability sphere in combi-

nation, with the colour shade showing the ratio of ∆e and ∆φ when exiting the stability sphere,

as can be seen in the colour bars to the right of the figures. The pattern for the uncontrolled

SpaceChip is very regular. Along φ = 180°, φ is the unstable parameter, and horizontally along

the eccentricity of the equilibrium point e is the unstable parameter. Between these two directions

the transition between the parameters is smooth resulting in a circular domain. The controlled

spacecraft’s pattern appears less smooth. In the upper and lower quarter of the diagram it ap-

pears similar to the uncontrolled case. In the middle, however, it results in a chaotic pattern. This

can be explained with the randomness in the position of the spacecraft when leaving the sphere.

During the orbits until destabilisation, the controller will fight against a drift in eccentricity and

Sun-perigee angle. When one is corrected, the other one will decay. Thus the spacecraft’s orbit

will jump back and forth between positions in the phase space, either favouring the eccentricity or

favouring φ, thus moving in a zig-zag path from the starting point within the stability sphere. The

moment the SpaceChip leaves the sphere can be at either position.

The results of the simulation show that using electrochromic orbit control a SpaceChip may

be stabilised in a variety of different orbits within a certain area of the (e, φ) phase space, as

opposed to the uncontrolled case that only offers one equilibrium orbit for a given semi-major axis

corresponding to the equilibrium point in the (e, φ) phase space discussed in Sec. 2.1.1, and used

for the GEOSAIL mission [100]. This is an advantage for formation flying SpaceChips to account

for insertion inaccuracies or to allow a spread in stable orbits. It is also shown that the algorithm is

robust with respect to other perturbations, such as the J2 effect, and orbit prediction uncertainties

as the algorithm for selection of the control variables is based on simplified analytical expressions,

while the simulation is conducted using a numerical propagation of the 3D Gauss’ equations, as

discussed in Sec. 6.2.1.
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Figure 6.17: Colour interpretation of the relation of e and φ when the SpaceChips exceeded the

stability boundaries.
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6.3 Orbit manœuvres using an artificial potential field con-

troller

Electrochromic Orbit Control using the artificial potential field controller as described in the pre-

vious section can also be used for orbit manœuvres. In this section two types of manœuvres are

investigated: (e, φ) translations and an orbit raising manœuvre. In all simulations the controller

design described Sec. 6.2.1 is used, including the propagation of the full set of Keplerian elements.

The results are displayed in the three planar elements a, e and φ.

6.3.1 Electrochromic (e, φ) translation using an artificial potential field

controller

An (e, φ) translation is a manœuvre between two orbits of the same semi-major axis but with

different eccentricities and Sun-perigee angles. To investigate the effectiveness of the artificial po-

tential field electrochromic orbit control method described in the previous section two test case

are simulated. In each case a formation of four passively Sun-pointing SpaceChips with area-to-

mass-ratio 15 m2 kg−1 occupy four different near geo-synchronous orbits (a = 42 000 km) differing

in e and φ so that they are located on the corners of a rectangle in the (e, φ) phase space around

the desired goal orbit. The goal orbit is stabilisable. Their relative spacing within the final orbit is

not considered. The SpaceChips have the ability to switch their coefficients of reflectivity between

cR,on = 2 and cR,off = 1 using electrochromic coating.

In both cases the goal orbit is at φ = 180° and e = 0.25. However, in the second case, the far

case, the starting orbits are tenfold further away from the goal orbit than in the first case, the close

case. A manœuvre is considered successful when the spacecraft enters a sphere around the desired

goal position in the orbital element phase space of the following dimensions: athresh = 50 km,

ethresh = 1× 10−4 and φthresh = 0.1°. This is similar to the stability conditions defined in Sec.

6.2.2.

6.3.1.1 The close case

In this case the starting distances from the goal orbits are: ∆φ = ±0.5° ≈ 2Sφ and ∆e =

±8.7× 10−3 ≈ 2Se. Figure 6.18 shows the evolution of the orbital elements over time and Fig.

6.19 the evolution of the spacecraft in the (e, φ) phase space. It can be seen that within 70 days all

four SpaceChips are assembled in the stable goal orbit. The controller first moves the spacecraft
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towards φ = π and then adjusts the eccentricity while allowing the semi-major axis to librate.

From Sec. 6.1.2 it is known that the possible changes in eccentricity over one orbit are smallest at

φ = 0 and φ = 180°. Therefore the control path is not time optimal.

6.3.1.2 The far case

In this case the starting distances from the goal orbits are: ∆φ = ±5° and ∆e = ±8.7× 10−2.

Figure 6.20 shows the evolution of the orbital elements over time and Fig. 6.21 the evolution of the

spacecraft in the (e, φ) phase space. It can be seen that within 700 days all four SpaceChips are

assembled in the stable goal orbit. In the first part of the manœuvre the controller again moves

the SpaceChips to orbits with φ = 180°. However, in the far case the path is not a direct one. The

spacecraft’s orbits circle the goal orbit in the phase space. The final part of all four manœuvres

again consists in correcting the eccentricity only. During the first part of the manœuvre the semi-

major axis is allowed to deviate up to 700 km from the required value. This is because of the

laxer threshold of this parameter compared to eccentricity and Sun-perigee angle (see Sec. 6.3.1 ).

The behaviour of the SpaceChips in the phase space follows the natural phase flow which can be

understood using the Hamiltonian orbital dynamics introduced in Sec. 2.1.1. These dynamics are

exploited later in Sec. 7.2 for a more efficient electrochromic orbit control manœuvre algorithm.

6.3.2 Electrochromic orbit raising using an artificial potential field con-

troller

As seen in the previous subsection, the artificial potential field controller is not ideally suited for

orbital manœuvres in the (e, φ) phase space. In this subsection it is instead applied to an orbit

raising manœuvre. A passively Sun-pointing SpaceChip with area-to-mass-ratio of 15 m2 kg−1 is

considered which has the ability to switch its coefficient of reflectivity between cR,on = 2 and

cR,off = 1 using an electrochromic coating. The SpaceChip starts in a stabilisable orbit with a

semi-major axis of 30 000 km. The goal orbit has a semi-major axis of 50 000 km. Both initial and

goal orbits are set at φ = 180° and e = 0.25. The threshold values for eccentricity and Sun-

perigee angle are relaxed to allow the controller to affect the orbit raising manœuvres instead. The

thresholds are set at athresh = 100 km, ethresh = 0.05 and φthresh = 5°.

Figure 6.22 shows the evolution of the semi-major axis over time. It can be seen that the

manœuvre could be completed in 450 days. The ascent is almost linear. Figure 6.23 shows the

evolution of the orbit in the (e, φ) phase space during this manœuvre. The spacecraft first drifts
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Figure 6.18: Evolution of the spacecraft’s in-plane orbital elements over time for the close case –

the different line colours indicate the four different spacecraft and are consistent with the colours

used in Fig. 6.19
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Figure 6.19: Evolution of the spacecraft’s orbits in the (e, φ) phase space for the close case – the

different line colours indicate the four different spacecraft and are consistent with the colours used

in Fig. 6.18

out of the goal circle and librates in the phase space, and finally is corrected in the last 10 days

after the SpaceChip reaches the desired semi-major axis.

The artificial potential field controller works well for this type of manœuvre. However, there

are no built-in constraints to prevent the SpaceChip from reaching the critical eccentricity and

impinging on the Earth’s atmosphere. The potential field will steer the SpaceChip away from high

eccentricities but it cannot prevent the spacecraft from manœuvring towards undesired regions of

the phase space. For this reason it is important to understand the dynamics of the phase space

better and to build the knowledge of the dynamics into the control algorithm. Chapter 7 will

apply the Hamiltonian dynamics described in Sec. 2.1.1 to the electrochromic control problem to

formulate an intelligent stabilisation controller and an algorithm for time efficient navigation in

the (e, φ) phase space.

6.4 Conclusions

In this chapter the concept of controlling the orbit of a SpaceChip using electrochromic coatings was

introduced. The control potential in the orbital element phase space was analysed and it was shown
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Figure 6.20: Evolution of the spacecraft’s in-plane orbital elements over time for the far case – the

different line colours indicate the four different spacecraft and are consistent with the colours used

in Fig. 6.21.
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Figure 6.21: Evolution of the spacecraft’s orbits in the (e, φ) phase space for the far case – the

different line colours indicate the four different spacecraft
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Figure 6.22: Evolution of the spacecraft’s semi-major axis over time during the electrochromic orbit

raising manœuvre.
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Figure 6.23: Evolution of the spacecraft’s orbits in the (e, φ) phase space during the electrochromic

orbit raising manœuvre: The large circle indicates the threshold zone in e and φ.

that there is a region of orbits in the (e, φ) phase space in which high area-to-mass-ratio spacecraft

can be stabilised using electrochromic coating. This region includes the passive equilibrium orbits

of the spacecraft in the (e, φ) phase space with either reflectivity state.

An artificial potential field in the orbital element phase space was formulated and applied

to orbit stabilisation. It was shown that using this control method, a range of orbits around the

natural equilibria can be stabilised. Next, the artificial potential field controller was applied to

orbit control. A scenario of six spacecraft in orbits with the same semi-major axis but differing in

eccentricity and Sun-perigee angle was devised. These spacecraft then used electrochromic orbit

control to attain the same goal orbit and stabilise in this orbit. The control algorithm was successful

in performing this task. Finally, the artificial potential field controller was used for orbit raising.

A SpaceChip in an initially stable orbit at 30 000 km semimajor axis employs electrochromic orbit

control to reach 50 000 km. This was achieved in less than 450 days.

This Chapter showed that electrochromic orbit control is a viable, efficient method for orbit

manœuvres of SpaceChips with large semi-major axes. It can be implemented using an artificial

potential field controller in orbital elements. However, this control algorithm requires the reflectivity

to be changed twice every orbit which could lead to a deterioration of the coating. Furthermore, it

is not time-efficient. In the following chapter knowledge of the Hamiltonian phase space dynamics

is applied to the problem to derive a more effective control algorithm.
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Chapter 7

Electrochromic Orbit Control

using a Hamiltonian Controller

In this chapter a control algorithm for SpaceChips with electrochromic coating is proposed, which is

based on the Hamiltonian dynamics of high area-to-mass-ratio spacecraft introduced in Sec. 2.1.1.

This method uses knowledge of the phase space to perform the manoeuvres in a more time-efficient

and less computationally expensive way than the artificial potential field approach presented in

Chap. 6. This approach uses knowledge the Hamiltonian equation provides about the dynamics

in the phase space to navigate it elegantly and efficiently. In the first section of this chapter the

Hamiltonian control is applied to orbit stabilisation as an alternative to the algorithm discussed

in Sec. 6.2. In Sec. 7.2 a control algorithm for translations in the (e, φ) phase space is developed

and tested.

7.1 Orbit stabilisation using a Hamiltonian dynamics ap-

proach

Instead of the full Hamiltonian, Eq. (2.9), given in Sec. 2.1.1, a reduced model is considered for

the control algorithm which neglects the J2 effect and only considers solar radiation pressure. This

simplification is necessary, so that the problem can be reduced to a linear oscillator in the phase

space and equivalent control laws can be defined. In the next subsection the validity of neglecting

the J2 effect is investigated.
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7.1.1 Orbital dynamics with and without J2

The behaviour of spacecraft with the area-to-mass-ratios investigated in this thesis (less than

20 m2 kg−1) follow the behaviour shown in Fig. 2.3(g-i) in Sec. 2.1.1 for high-altitude orbits

(a > 30 000 km). This behaviour is dominated by solar radiation pressure with the Earth’s oblate-

ness only having a small effect on the orbit evolution. This means that for the orbits and spacecraft

investigated here the J2 perturbation can initially be neglected when devising the control strategy

and the Hamiltonian (Eq. (2.9) in Sec. 2.1.1) can be reduced to:

HSRP(e, φ) = −
√

1− e2 + αe cosφ (7.1)

where α is the solar radiation pressure parameter defined in Eq. (2.4) in Sec. 2.1.1 and is a function

of the area-to-mass-ratio and semi-major axis.

Equation (7.1) is used by Oyama et al. [101] to describe solar sail orbits for geomagnetic

tail exploration at apogee distances of 30 Earth radii. The resulting phase space diagram can be

divided into three regions. For HSRP ≤ −1 it can be shown that the behaviour is librational. This

means that the orbital eccentricity and perigee angle librate between two values in the form of a

loop in the phase space. These orbits have a perigee within 90° of the direction of the Sun, while

the perigee angle φ and eccentricity e librate around the stable equilibrium at φ = π, as discussed

in Sec. 2.1.1. For −1 < HSRP ≤ −α it can be shown that the behaviour is rotational. This means

the perigee angle will continually regress while the eccentricity periodically librates. These orbits

are most eccentric when the perigee is Sun-pointing and least eccentric when the apogee is Sun-

pointing. The last region is for orbits with HSRP > −α. These will eventually reach e = 1 and

decay as the orbit perigee intersects the surface of the Earth.

To test the premise that for large semi-major axes the J2 perturbation can be neglected

a comparison between Eq. (2.9) and Eq. (7.1) is performed. The normalised distance between

the positions in the phase space can be calculated with the two different equations averaged over

one loop. Since the time for the completion of a full loop varies for the SRP and J2 case, the

positions are not compared at the same time step but rather the same fraction of loop completion.

First, the evolution of orbits with an initially Sun-facing perigee (φ = 180°) and different starting

eccentricities is reported in Fig. 7.1 for four different semi-major axes. In this figure the inaccessible

regions are shaded in grey with the critical eccentricity ecrit marked in a dark grey, which represents

the eccentricity at which the perigee equals the Earth’s radius RE , as defined in Eq. (2.11) in Sec.

2.2.2, defined as ecrit = 1− RE
a .
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Figure 7.1: Evolution of the orbit of a 20 m2 kg−1 spacecraft with cR = 1.5 in the (e, φ) space with

SRP and J2 Hamiltonian and SRP only Hamiltonian for four different semi-major axes.

149



7. ELECTROCHROMIC ORBIT CONTROL USING A HAMILTONIAN CONTROLLER

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−2

10
−1

10
0

semi-major axis [km]

a
v
er
a
g
e
n
o
rm

a
li
ze
d
d
is
ta
n
ce

Figure 7.2: Average normalized distance (logarithmic) between points in the Hamiltonian phase

space with and without J2 effect over one period loop in the phase space as a function of semi-major

axis.

It is clear that the two evolutions differ significantly for the 10 000 km orbits but become

more similar with increasing semi-major axis. This can also be seen in Fig. 7.2 which shows the

average normalised distance in the phase space between the two orbit evolutions, i.e. the relative

error, as a function of semi-major axis. For high semi-major axis orbits this is small enough to be

neglected.

7.1.2 Stabilisation algorithm

In this subsection the areas in the orbital element phase space in which a spacecraft can be stabilised

are identified. This is necessary in order to define a goal orbit for orbital control manœuvres. Such

manœuvres seek to navigate SpaceChips towards a long-term stable position.

Hamilton and Krivov [7] and Krivov and Getino [8] show that the secular rate of change of

the eccentricity and Sun-perigee angle with respect to the true longitude of the Sun, λ�, as defined

in Fig. 2.2 in Sec. 2.1.1, in the solar radiation pressure only case are:
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de

dλ�
= −α

√
1− e2 sinφ

dφ

dλ�
= −α

√
1− e2

e
cosφ− 1

(7.2)

This is the rate of change of the spacecraft’s orbital parameters averaged over one orbital

revolution around the Earth. It can be seen that the eccentricity has a stable point at φ ∈ {0, π}
whereas the change in Sun-perigee angle can only be zero for π

2 < φ < 3π
2 . Therefore, a phase space

equilibrium point can only exist at φ0 = π and a fixed equilibrium eccentricity e0. This equilibrium

position is previously identified as stable for the GEOSAIL solar sail mission [100]:

e0 =
α√

1 + α2
(7.3)

The Hamiltonian then has its lowest value of
√

1 + α2 at this phase space equilibrium point.

When considering electrochromic control, instead of a single point, a line of possible stable

points emerge which span the two equilibria resulting from different reflectivity values provided

by the spacecraft coating. Here two different solar radiation pressure parameters are selected, αoff

and αon, corresponding to two different reflectivity states with αoff < αon. The condition on the

orbit eccentricity for a stable controlled equilibrium is then

αoff√
1 + α2

off

< eS <
αon√

1 + α2
on

(7.4)

At these points only the change in eccentricity is zero while the change in Sun-perigee angle

with one reflectivity has the opposite sign to that with the other, as illustrated in Fig. 7.3. The

stabilisation at the point PS = (π, eS) with eS defined in Eq. (7.4) can be achieved with a very

simple switching control law for cR,off < cR,on:

cR,off when φ ≤ π

cR,on when φ > π
(7.5)

Using this strategy a SpaceChip experiences a controlled equilibrium as the derivative of φ

is positive for φ < 0 and negative for φ > 0. This causes the Sun-perigee angle to oscillate closely

around π and thus the eccentricity to remain constant. The orbital parameters are evaluated once

per orbital revolution to avoid a jittering control response. Alternatively a dead-band could be

introduced.
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Figure 7.3: Phase space for a 20 m2 kg−1 spacecraft at a = 42 000 km with two different reflectivity

coefficients cR,on = 2 and cR,off = 1 highlighting the region in which the orbit can be stabilised

using the simple switching control law.
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In Sec 6.2 an artificial potential field control algorithm in the orbital element phase space

was used to stabilise spacecraft at a greater range of points. It allows a reflectivity change twice

per orbit and uses the angles of true anomaly where the switch takes place as control parameters.

The resulting area in the phase space in which stabilisation is possible includes the range described

in Eq. (7.4). However, the control algorithm is more complex and requires the solution of a two-

dimensional optimisation problem. This is computationally far more expensive than the algorithm

described in Eq. 7.5 and possibly not suited for SpaceChips with limited computing capabilities.

7.1.3 Stabilisation simulation results

In this subsection the long-term orbit stability of a spacecraft stabilised using the control algorithm

introduced in the previous section is investigated. A SpaceChip with area-to-mass-ratio 15 m2 kg−1

and cR,on = 2 and cR,off = 1 is placed in near geosynchronous orbit (a = 42 000 km) at φ = π and

e = 0.25. The starting orbit is chosen in accordance with the stability criteria identified in Sec.

7.1.2, so that the eccentricity is between the stable eccentricities with cR,on and cR,off respectively.

The orbit is then propagated for fifty years using a numerical integration of the Gauss’ equations,

as introduced in Sec. 2.3.1, and taking into account solar radiation pressure and the J2 effect, while

the control algorithm described in Eq. (7.5) is applied.

The results of this simulation can be seen in Fig. 7.4. It can be seen that the controlled pa-

rameters e and φ remain close to their initial value while the other uncontrolled orbital parameters

oscillate within bounds.In particular, the semi-major axis varies despite φ remaining close to π

because of the definition of the angle in three dimensions: φ = Ω +ω− (λ�−π) (Eq. (2.1)). As the

inclination is not zero, the projection of the perigee onto the ecliptic is not directly between the

Sun and the Earth. This means that for long durations the orbit will be asymmetrical with respect

to the direction of the Sunlight. Therefore, eclipses will cause a long-term change in the semi-major

axis which is periodic and synchronised with the variations of Ω and ω. It can be concluded that a

SpaceChip orbit at geosynchronous altitude can be stabilised in eccentricity and φ in the long-term

using the proposed control algorithm, for the orbits identified as suitable in the previous section.

7.2 Orbital manœuvres using a Hamiltonian dynamics ap-

proach

In this section the Hamiltonian orbital dynamics introduced in Sec. 7.1.1 are used to formulate a

control law for manœuvres in the (e, φ) phase space.
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Figure 7.4: Long-term evolution of a controlled SpaceChip at an artificial stable orbit.
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7.2.1 Orbit Control Law

The simple switching control defined in Eq. (7.5) can stabilise at a point in the orbital element

phase space. A control law for navigation through the phase space is now sought, which can be

applied to transfer a spacecraft from any orbit onto a stabilisable orbit, as defined in Sec. 7.1.2.

In this section it will be shown that a bang-bang control, similar to the time-optimal control of a

linear oscillator, can be applied to the problem. The control of a linear oscillator is discussed in

detail by King et al. [121].

The application of this controller to the orbital manœuvre problem is possible because the

Hamiltonian for solar radiation pressure and J2 in a polar plot, with coordinates e sinφ and e cosφ

(Fig. 7.5 ), can be isomorphically projected onto the classical pendulum phase space which consists

of concentric circles around the stable equilibrium position. The superposed phase flow field lines

of the orbital evolution with two different values for α correspond to the phase space of a linear

oscillator with two different centres of oscillation. In both cases the two equilibria lie on an axis

around which all phase lines are symmetrical. No phase line can cross another and there are no

other equilibria.

To navigate a spacecraft to any stable point PS identified in Eq. (7.4), the values of the

Hamiltonian at the point with αoff and αon need to be identified:

HS,on = −
√

1− e2
S − αoneS

HS,off = −
√

1− e2
S − αoffeS

(7.6)

With these values the control law can then be formulated. The desired position can be

reached by using cR,off when φ ≥ π, unless the current orbit is within the loop described by HS,off ,

and by using cR,on when φ < π, unless the correct orbit is within the loop described by HS,on.

Figure 7.6 illustrates this control law as formulated below:

if (φ < π) ∧ (Hoff ≥ HS,on)→ cR,on

if (φ < π) ∧ (Hoff < HS,on)→ cR,off

if (φ ≥ π) ∧ (Hoff ≥ HS,off)→ cR,off

if (φ ≥ π) ∧ (Hoff < HS,off)→ cR,on

(7.7)

where Hoff is the value of the Hamiltonian with αoff at the current position and Hon is

the value of the Hamiltonian with αon at the current position. Hoff and Hon change during the
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Figure 7.5: Phase space plot (above) and polar plot (below) for a 20 m2 kg−1 spacecraft on a

geosynchronous orbit.
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manœuvre as they depend on the current position, while HS,off and HS,on remain constant as they

depend on the desired goal position. Figure 7.6 displays the phase space dynamics when applying

the control law formulated above. It can be seen that the desired final position can be reached

from all initial positions in the phase space excluding those which would inevitably lead to the

eccentricity exceeding unity.

7.2.2 Comparison with a linear oscillator

The proposed switching control algorithm with two fixed reflectivity parameters is equivalent to

the optimal control of a linear oscillator. In this subsection the two are compared to estimate how

close the proposed control algorithm comes to be being time optimal.

The orbit evolution is considered in eccentricity and orientation alone, which occurs naturally

when eclipses are neglected and reflectivity switches do not occur more than once over several

orbits. In this case the algorithm is time-optimal in most of the phase space as it represents the

only viable control path. There are two regions in the phase space in which time-optimality is

non-trivial. These are the areas in which two possible paths exist to connect two points within the

respective region. These regions are highlighted in Fig. 7.7. In the case of a linear oscillator the

switching solution is always time-optimal even within the highlighted areas because the period of

one oscillation is constant and equal for both control options, and the speed along each control

path is constant. Therefore, in the linear oscillator problem the shortest path connecting two points

is always the fastest [121]. These conditions do not universally apply to the phase space control

which is considered here. In this section it will be investigated how close the phase space control

comes to fulfilling the two conditions:

(1) How far from equal are the phase space periods with two different reflectivity coefficients?

(2) How far from constant is the speed along a phase curve?

These two conditions will be addressed in the following subsections. The term ‘phase space

period’ is used to describe the period in which one complete loop in the phase space is covered;

this is far longer than the period for completing one single orbit around the Earth.
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7.2.2.1 Duration of the period in the phase space

First the condition on the period of the phase space evolution is investigated. For time-optimality

it is required that the period is the same for both values of reflectivity and regardless of the starting

position. Oyama et al. [101] find an expression for the period of time T to follow a closed phase

path in the case of SRP only:

T =
2π

n�
√

1 + α2
(7.8)

This means that for a given area-to-mass-ratio, semi-major axis and reflectivity the period

to complete one phase space period is constant and not dependent on the starting orbit. However,

higher α SpaceChips complete one period around a closed phase curve faster. The difference is

small: a 10 m2 kg−1 geosynchronous spacecraft would only be 1.8 % faster with cR = 2 than with

cR = 1. A 20 m2 kg−1 spacecraft could increase its libration period by just 6.8 %.

7.2.2.2 Rate of orbit evolution

The second condition to investigate is how the rate of orbit evolution in the polar plot deviates from

the average. In order to find an analytical expression for the speed of orbital evolution in polar co-

ordinates for a given initial condition, a coordinate transformation has to be performed from (e, φ)

to (ε, ϕ)α. The latter point is a polar coordinate system with the centre at the equilibrium point for

a given α, as shown in Fig. 7.8. The following expressions are found which define the transformation:

e(ε, ϕ)α =

√
ε2 +

α2

1 + α2
− 2ε

α√
1 + α2

cosϕ

φ(ε, ϕ)α = arccos
ε cosϕ− α√

1+α2

e(ε, ϕ)α

(7.9)

with

e cosφ = ε cosφ− e0 (7.10)

An expression for ε as a function of α, H and ϕ is found by inserting Eq. (7.9) and Eq.

(7.10) into Eq. (7.1) and then solving for ε so that

160



7. ELECTROCHROMIC ORBIT CONTROL USING A HAMILTONIAN CONTROLLER

φ
e

e0π

e cosφ

e 
si

nφ

ε cosφ

ε 
si

nφ

Equilibrium
Point
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ε (α,H,ϕ) =
α√

1 + α2

(
1 + α2 +H

√
1 + α2

)
cosϕ

1 + α2cos2ϕ

+

√
1−

(
1 + α√

1+α2

)
H2 + α2

(
1 + H√

1+α2

)
cos 2ϕ

1 + α2cos2ϕ

(7.11)

Defining επ = (e− e0)φ=π as the difference between the eccentricity at φ = π and the equi-

librium eccentricity gives the value of the Hamiltonian as a function of επ:

H (α, επ) = −
√

1−
(

α√
1 + α2

+ επ

)2

− α
(

α√
1 + α2

+ επ

)
(7.12)

Next the speed of progression along the phase curves in the polar plot (x, y) = (e cosφ, e sinφ)

is derived using:

v =
√
ẋ2 + ẏ2 =

√(
ė cosφ− eφ̇ sinφ

)2

+
(
ė sinφ+ eφ̇ cosφ

)2

(7.13)

and using Eq. (7.2) this reduces to:

v (e, φ) =

√
(e sinφ)

2
+
(
−
√

1− e2α− e cosφ
)2

(7.14)
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From Eq. (7.9) the following equation can be derived in the transformed polar coordinates

system:

v(επ, ϕ)α =

√
(1− α2) e(επ, ϕ)α

2
+ α2 + 2αe(επ, ϕ)α

√
1− e(επ, ϕ)α

2
cosφ(επ, ϕ)α (7.15)

This equation can be numerically evaluated to find the average, the minimum and the

maximum speed over one evolution period (i.e. one loop in the phase space) for a given initial

orbit and spacecraft characteristics. Using this information the maximum relative divergence from

the average speed can be found as a function of area-to-mass-ratio and reflectivity. Figure 7.9

shows the results of this analysis. It depicts the maximum relative difference,
max|v−vavg|

vavg
, between

the actual and average speed of progression calculated using Eq. (7.15) along any phase curve for

different area-to-mass-ratio spacecraft with coefficients of reflectivity of 1 or 2. It can be seen that

a 10 m2 kg−1 spacecraft will never diverge more than 1.5% from the average progression speed and

a 20 m2 kg−1 spacecraft stays within ±5 %.

It can be seen that for both conditions of the linear controller optimality, as presented in

Sec. 7.2.3, the deviation from time optimality is limited with the parameters used. It can therefore

be assumed that the resulting manœuvre times are approaching the optimum.

7.2.3 Modifications to the Hamiltonian model

In this section the original Hamiltonian model of the orbit evolution described with Eq. (7.1) is

modified to account for the effect of eclipses.

Effect of eclipses on the orbital evolution

There are several effects which have not been taken into account in the Hamiltonian model. The

most dominant of these effects is eclipses, which will occur each orbit since the orbit is assumed

to lie in the ecliptic plane. Eclipses have two main effects on the Hamiltonian dynamics. They

compress the phase space in the direction of eccentricity, so that the equilibrium eccentricity is

lower and it adds a periodic change of the semi-major axis. The change of the semi-major axis is

positive for 0 < φ < π, negative for π < φ < 2π and zero if φ ∈ {0, π}. The effect is such that

a spacecraft will return to the semi-major axis it started from after the completion of a full loop

in the phase space during which the semi-major axis varies, as shown by Colombo and McInnes

[103]. Both effects are small at the distances considered in this thesis but are still problematic.

The change in semi-major axis during the period further shifts the equilibrium point as e0 is a
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Figure 7.9: Maximum divergence from average progression speed normalised relative to the average

along polar phase lines for geosynchronous spacecraft with reflectivity of 1 (grey) and 2 (black).
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function of α which in turn is dependent on the semi-major axis. With decreasing semi-major axis

the eccentricity of the equilibrium point will also decrease. Furthermore, additional perturbations

act on the spacecraft. Atchison and Peck show that in the case of SpaceChips with area-to-mass-

ratios in the order of 10 m2 kg−1 and in high altitude orbits the strongest of these effects is the J2

precession [1], as discussed in Sec. 7.1.1.

Although small, the effects of neglecting eclipses and additional perturbations can increase

the transfer time considerably because they can lead to the spacecraft missing its target equilibrium

point and having to complete another phase space loop until it reaches the goal. Since the period

of evolution along a closed phase curve is the same regardless of the size of the loop when only

SRP is considered, as shown in Eq. (7.8), this can lead to a doubling of the transfer time. One

solution is to add a margin to the control algorithm that is linearly proportional to the difference

between actual and desired eccentricity. This way, a spacecraft would switch its reflectivity earlier

rather than later.

Linearised Phase Space Equations to Account for Eclipses

In this and the following subsection, approaches are discussed to account for the effects of eclipses.

The phase space perturbed by the effect of eclipses can be approximated by a linearisation process.

The original Hamiltonian is linearised around the equilibrium condition in a Cartesian coordinate

system based on the polar plot, as shown in Fig. 7.5. The linearised equations are then modified

to account for a shift in the centre of rotation away from the equilibrium point. The expression for

the rotational centre is a function of position and the true equilibrium point location. The effect of

eclipses can then be approximated by substituting the analytical equilibrium eccentricity e0 with

the real equilibrium which is found numerically taking into account eclipses.

First, the polar coordinates (e, φ) are again transformed into a set of auxiliary Cartesian

coordinates (x, y).

x = e cosφ

y = e sinφ
(7.16)

e =
√
x2 + y2

φ = arctan
y

x

(7.17)
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The derivatives of the Cartesian coordinates are (with Eq. (7.2)):

ẋ = e sinφ

ẏ = −α
√

1− e2 − e cosφ
(7.18)

Inserting Eq. (7.17) yields:

ẋ = y

ẏ = −α
√

1− x2 − y2 − x
(7.19)

Linearising Eq. (7.19) around the equilibrium point (e0, φ) then defines Cartesian coordi-

nates (x̂, ŷ) for any initial radial distance r along the x-direction (φ = 0 ∨ φ = π):

x̂(ϕ) = −e0 + r cosϕ

ŷ(ϕ) = −r
√

1 + α2 sinϕ
(7.20)

It can be seen that the radial distance in the y-direction is r
√

1 + α2. The linearisation de-

fined by Eq. (7.20) assumes a static centre of rotation, e0. A hypothetical point is then introduced

with φ = π and e = ec, the central eccentricity which has equal distance to the maximum and

minimum eccentricity within one loop in the phase space. Note that ec is equal to the equilibrium

eccentricity e0 at the equilibrium point, but decreases with distance from e0 in the polar plot.

Figure 7.10 shows the position of ec and r in the polar plot for two different phase lines. The

central eccentricity ec can be found as a function of an initial set of orbital parameters (e, φ) by

solving Eq. (7.1) for e with φ = π:

ec,i(e, φ) = −HSRP(e, φ)√
1 + αi2

e0 (i = off, on) (7.21)

where the index i indicates the control mode, such that i = off corresponds to cR,off and

i = on to cR,on. Next the radius of rotation in the x-direction can be calculated:

ri(e, φ) =

√
(e cosφ+ ec,i(e, φ))

2
+
e2sin2φ

1 + αi2
(7.22)
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When using two different coefficients of reflectivity any set of orbital coordinates can be

transformed into radial coordinates which are unique within one half of the phase space (φ ∈
(0, π) ∨ φ ∈ (π, 2π)). The coordinates are (roff , ron) and correspond to the radial distance in the

x-direction with cR,off and cR,on. Using Eqs. (7.21) and (7.22), Eq. (7.20) can be revised to:

x̂i(ϕ) = −ec,i + ri cosϕ

ŷi(ϕ) = −ri
√

1 + αi2 sinϕ
(7.23)

By substituting the analytical result for the equilibrium point e0 with a numerical solution

e0,ecl which takes into account the eclipses when computing ec,i in Eq. (7.21), the linearisation

Eq. (7.23) becomes an accurate approximation of the perturbed phase space resulting from the

compensation for eclipses. Although the real equilibrium e0,ecl is close to the analytical equilibrium

e0, this step is necessary because manœuvres in the vicinity of the equilibrium point are sensitive

to exact position. If an incorrect value for the equilibrium eccentricity is assumed the control

algorithm could in certain cases fail to complete the manœuvre. To find e0,ecl, φ is set equal to π

in the expression for dφ
dt in Eq. 2.12 in Sec. 2.2.1, which calculates the secular change in φ. Then

the eccentricity e0,ecl can be found numerically by setting the equation equal zero and solving for

e.

Figure 7.11 shows the results of the linearisation superimposed on those of a numerical

simulation with eclipses. The model used in this simulation is the model introduced in Sec. 2.2.1

neglecting the effects of J2 and aerodynamic drag but considering eclipses. It can be seen that the

linearised phase lines in Fig. 7.11(b) match the numerical results far better than the Hamiltonian

phase lines in Fig. 7.11(a).

Using this approach the control algorithm in Eq. (7.7) can be revised to:

if(φ < π) ∧ (ron ≥ rS,on)→ cR,on

if(φ < π) ∧ (ron < rS,on)→ cR,off

if(φ ≥ π) ∧ (roff ≥ rS,off)→ cR,off

if(φ ≥ π) ∧ (roff < rS,off)→ cR,on

(7.24)

where (roff , ron) are the radial coordinates of the current orbit as described above and (rS,off , rS,on)

are the radial coordinates of the desired stable goal point.
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Figure 7.11: Comparison of the numerically computed phase space with eclipses with Hamiltonian

phase space (a) and with the phase space resulting from the approximating linearisation (b) for a

spacecraft with area-to-mass-ratio 20 m2 kg−1 and cR = 1
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Control algorithm for constant semi-major axis

The method described in the previous subsection can account for the inaccuracies caused by the

effect of eclipses to allow more precision in the selection of the control path. However, it does not

remove all effects of eclipses and the spacecraft arrives at the correct position in the (e, φ) phase

space, but with a different semi-major axis. In this subsection it is shown how the electrochromic

properties of the spacecraft can be used to keep the semi-major axis constant as well as efficiently

navigating the spacecraft through the (e, φ) phase space. To achieve this, the reflectivity has to

be switched twice per orbit. That way there are always two possible control modes. One in which

the reflectivity is predominantly high, control mode ‘on’, and one in which the reflectivity is pre-

dominantly low, control mode ‘off’. In both modes a short interval of the orbit will be spent with

the other respective reflectivity to offset the change in semi-major axis caused by the eclipses.

The switching angles, foff and fon have to fulfil the following expression in which fe,in and fe,in

represent the angles of true anomaly at which the eclipse is entered and exited:

control mode ‘off’:

foff∫
fon

da

df
(cR,on) df −

foff∫
fon

da

df
(cR,off) df = −

fe,in∫
fe,in

da

df
(cR,off) df

control mode ‘on’:

fon∫
foff

da

df
(cR,on) df −

fon∫
foff

da

df
(cR,off) df = −

fe,in∫
fe,in

da

df
(cR,on) df

(7.25)

where da
df (cR) is the derivative of the semi-major axis with respect to the true anomaly due to solar

radiation pressure for the given reflectivity.

The interval of the eclipses and the switching interval, the orbit arc in which the non-

dominant reflectivity is used ([fon, foff ] for control mode ‘off’, and [foff , fon] for control mode ‘on’),

may not overlap. To find close to optimal switching angles with as little computational expense as

possible the problem is reduced from two to one dimensions. Instead of searching for both switching

angles as proposed in Sec. 6.3.1, the switching interval is redefined as [fc − ∆f, fc + ∆f ] where

fc is the angle in the centre of the interval and ∆f = |foff − fc| = |fon − fc| determines the size

of the interval. Of these two variables only fc needs to be found numerically, since ∆f is found

analytically by a linear approximation.

First fc is determined. For the manœuvre to be most effective means the interval is to be

as small as possible so that the orbit evolution will follow closely the behaviour predicted by the

Hamiltonian. To achieve this, fc is chosen as the angle at which the positive or negative change

of semi-major axis over true anomaly is greatest. Whether the direction of the change is negative

or positive depends on the control mode and the change in semi-major axis which would occur
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without control, ∆a. Using this definition, fc can be found using:

control mode ‘off’:

0 < φ < π ⇒ fc = fmin da
df

π < φ < 2π ⇒ fc = fmax da
df

control mode ‘on’:

0 < φ < π ⇒ fc = fmax da
df

π < φ < 2π ⇒ fc = fmin da
df

(7.26)

where fmax da
df

is the true anomaly where the greatest positive rate of change of semi-major axis

over true anomaly occurs, and fmin da
df

is the angle of true anomaly where the greatest negative

change occurs. The change of semi-major axis is positive when the velocity vector of the spacecraft

is pointing away from the Sun and negative if it is pointing towards it. The angles at which the

largest positive and negative change occur can be found by maximising or minimising the following

equation which has been derived by combining Gauss’ equation for variation of semi-major axis in

Eq. (2.23) in Sec. 2.3.1 with the in-plane force components of solar radiation pressure as shown in

Eq. (6.3) in Sec. 6.1.2, so that the rate of change of semi-major axis scales as:

da

df
∝ e sin(2f + φ) + sin(f + φ) (7.27)

Next ∆f , the size of the interval in true anomaly on each side of the central angle fc, is

determined. It is found by linear approximation:

control mode ‘off’: 2∆f

(
da(fc)

df
(cR,on)− da(fc)

df
(cR,off)

)
= −

fe,in∫
fe,in

da(cR,off)

df
df

control mode ‘on’: 2∆f

(
da(fc)

df
(cR,on)− da(fc)

df
(cR,off)

)
= −

fe,in∫
fe,in

da(cR,on)

df
df

(7.28)

where the right hand term is the change in semi-major axis which would occur due to eclipses over

one orbit if the reflectivity is constant. The integral does not have to be calculated numerically.

Instead the analytical expressions by Colombo and McInnes [103], introduced in Sec. 2.2.1, are

used. The left term corresponds to the difference in change of semi-major axis caused by using the

other reflectivity. This is assuming a constant rate of change of semi-major axis over that interval.

This assumption can be made because the interval is small. A comparison with the exact results
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for the required ∆f obtained using a numerical simulation has been conducted and it is found that

at geosynchronous semi-major axis and eccentricities below 0.5 this simplification is appropriate.

At higher eccentricities a numerical approach can be used to find ∆f using the value calculated in

Eq. (7.28) as an initial guess.

Using this method, eclipses can be accounted for with low computational expense, as all but

one step in the control algorithm are analytical and the numerical step is a simple one-dimensional

optimisation. Since a linear approximation is used to determine ∆f , and because any out-of-plane

dynamics are neglected, there will still be a change in semi-major axis. However, this change is

small in comparison to the change occurring when using the method in which the reflectivity is

switched only depending on the position in the phase space, as described in the Sec. 7.2.1. Figure

7.12 shows the results for the two control modes for a geosynchronous orbit with an eccentricity

of 0.3 and two different initial perigee angles. For eccentricities below 0.5 at geosynchronous semi-

major axis it is found that ∆f ≤ 2.5°. The arc of the orbit with cR,off is drawn in blue and cR,on

in red. The positions at which the reflectivity is switched are marked with crosses. Figures 7.12(a)

and (b) show the control strategy when the change in semi-major axis over one orbit would be

positive and (c) and (d) show the control strategy when the change in semi-major axis would be

negative. The left column of figures shows the control strategy with mainly reflectivity cR,off and

the right column shows the control strategy with mainly reflectivity cR,on. This control method

forces the evolution of the orbital elements to follow closely the evolution with eclipses and the

linearised approach to the control algorithm described in the previous section.

7.2.4 Test case manœuvre

To show the effectiveness of the proposed control method a test case is devised and simulated. The

mission scenario consists of six SpaceChips with an area-to-mass-ratio of 15 m2 kg−1 which are

initially in six different orbits with a semi-major axis of 42 000 km, with eccentricity ranging from

close to circular to under 0.5 and perigee angle between 90° and 270°. They are to be collected

into a stable goal orbit with eS = 0.25 and φ = 180°. The manœuvre is performed using the

linearised phase space with and without the constant semi-major axis control derived in Sec. 7.2.3.

The orbit is propagated numerically taking solar radiation pressure and the Earth oblateness into

account, while the control algorithms use the linearised phase space introduced in Sec. 7.2.3. The

numerical propagation is performed using the Gauss’ equations as introduced in Sec. 2.3.1, while

taking out-of-plane dynamics into account. When using a full set of Keplerian orbital parameters,

the angle φ can is calculated according to Eq. (2.1) in Sec. 2.1.1.
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fmax da/df
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∆a > 0

φ φ

Control Mode ‘on’Control Mode ‘off’

φ
φ
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fmax da/df

cR,off
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Figure 7.12: Switching law in control mode ‘off’ and ‘on’ for two example orbits. The arc of the orbit

with cR,off is drawn in blue and cR,on in red. The positions at which the reflectivity is switched are

marked with crosses. Figures (a) and (b) show the control strategy when the change in semi-major

axis over one orbit would be positive and (c) and (d) show the control strategy when the change

in semi-major axis would be negative. The left column of figures shows the control strategy with

mainly reflectivity cR,off and the right column shows the control strategy with mainly reflectivity

cR,on.
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The control algorithm uses the linearised phase space model. It is assumed that the spacecraft

receive accurate information about their current eccentricity and φ once every orbit and then decide

on the control mode using the algorithm detailed in this chapter. This way it can be shown that

the control method is also robust towards perturbations which have not been taken into account

in the control algorithm such as eclipses, the J2 effect and out-of plane dynamics.

The control algorithm accomplished the objective to assemble all six spacecraft at the desired

eccentricity and orbit orientation. This is achieved in less than 1.3 years. However, the SpaceChips

which do not use the constant semi-major axis control ended up at different semi-major axes of

between 41 000 km and 43 000 km. This can be avoided using the computationally more expensive

(i.e., the reflectivity coefficient is changed twice per orbit) constant semi-major axis control. The

evolution in the phase space in the latter case is shown in Fig. 7.13. The evolution of all orbital

parameters over the course of the manœuvre is shown in Fig. 7.14. In this case the semi-major axis

only varies on the order of 100 km. The cause for this small variation is the change in inclination

which changes the actual eclipse angles from the ones calculated analytically in the plane within

the control loop. For the eclipse calculation in the control algorithm an analytical solution found

by Colombo and McInnes [103] was used, as it is the least computationally expensive. Figure 7.15

visualises the evolution of the orbits during the manœuvre.

7.2.5 Manœuvre time

Figure 7.16 shows the time until the completion of a manœuvre using the linearised phase space

control algorithm without controlling the semi-major axis starting from different points in the

phase space. The hatched areas indicate the position from which a manœuvre is impossible because

impact with the Earth is inevitable (e < ecrit). The stable eccentricity can be reached from any

position within three years.

7.3 Conclusions

In this chapter a deeper understanding of the orbital dynamics of high area-to-mass-ratio spacecraft

gained through the study of the Hamiltonian dynamics was used to design an alternative control

algorithm to the potential controller discussed in Chap. 6. The Hamiltonian dynamics were first

applied to an alternative stabilisation algorithm. This algorithm has the advantage of being a very

simple bang-bang switch law only dependent on the orientation of the orbit with respect to the
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Figure 7.13: Manœuvres of six SpaceChips with area-to-mass-ratio 15 m2 kg−1 toward the same

orbit in the phase space using the control algorithm described in Sec. 7.2.3: the different line

colours indicate the four different spacecraft and are consistent with the colours used in Figs. 7.14

and 7.15.
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Figure 7.14: Evolution of orbital parameters during the manœuvres of six SpaceChips with area-

to-mass-ratio 15 m2 kg−1 toward the same orbit in the phase space using the linearised control

algorithm
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Final state after 465 days

Initial state After 155 days

After 310 days

Figure 7.15: Evolution of the orbits of the six spacecraft during the manœuvre as a projection onto

the ecliptic plane in a Sun-following reference frame. The arrow indicates the direction of the solar

radiation: : the different line colours indicate the four different spacecraft and are consistent with

the colours used in Figs. 7.13 and 7.14.
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Figure 7.16: Time until reaching goal orbit marked with x from different positions in the phase space

(a = 42 000 km) using the linearised phase space control for a SpaceChips with area-to-mass-ratio

15 m2 kg−1.
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Sun. However, the range of orbits which can be stabilised is smaller than for the artificial potential

field controller.

Two models of a Hamiltonian-based electrochromic (e, φ) translation control strategy were

also proposed, one based on linearised phase space dynamics, while the other also takes into ac-

count the effect of eclipses. The first control algorithm is purely analytical and requires a change

in reflectivity approximately twice per year. The latter control algorithm requires the spacecraft

to switch reflectivity twice per orbit and uses a numerical search of the control parameter in

a one-dimensional search space. Both control algorithms were tested in a simulated scenario in

which a group of SpaceChips with different initial orbits are gathered into the same goal or-

bit. All SpaceChips reached the desired position within a reasonable time. In the simulation, the

SpaceChips are propagated using Gauss’ equations in three dimensions with a differential equation

solver considering solar radiation pressure and the Earth’s oblateness. The scenario results showed

that the control algorithm can cope with other minor perturbing effects at high semi-major axis.

The Hamiltonian control algorithm is better suited to (e, φ) translations than the artificial poten-

tial field controller as it has a shorter manoeuvre time and works reliably from almost all points

in the phase space.

The two methods for electrochromic orbit control presented in this thesis are fundamen-

tally different. While the artificial potential field controller discussed in chapter 6 requires no prior

knowledge about the underlying dynamics, it is more computationally expensive and less time effi-

cient that the Hamiltonian controller introduced in this chapter. The two methods were compared

using the same test cases.
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PART III

Micrometre-scale:

Orbital Dust for Geo-engineering



Chapter 8

Asteroid Dust in Heliotropic

Orbits for Climate Engineering

In this final part of this thesis a novel problem of orbital dynamics on the micrometre-scale is

investigated. The smaller the length-scale, the more futuristic the applications discussed in this

thesis. While an orbit control device making use of solar radiation pressure (chapters 3 to 5) may

be developed within this decade, SpaceChips with electrochromic orbit control (chapters 6 and

7) lie further from our grasp. The application discussed in this part shall be even further in the

future. A truly ‘visionary space system’ as the project under which this PhD was conducted is

titled. This chapter discusses the use of dust, mined from a captured asteroid, to offset terrestrial

climate change by reducing the inbound solar radiation.

The use of asteroid dust for geoengineering has been proposed previously as discussed in

Sec. 1.4. The dust can be extracted from a captured asteroid or obtained from the Moon, which

has a lower gravity well than the Earth. Previous proposals have suggested placing a dust cloud

at the Sun-Earth L1 point [80], the Earth-Moon L4,5 points [77] or in an Earth orbit [76]. The

last option has the advantage of providing constant shade and being potentially long-term stable.

However, in the proposal by Pearson et al. [76] the effect of solar radiation pressure on the dust ring

stability was not considered. Furthermore, a deployment strategy was not elaborated on. In this

chapter the concept of an a dust ring around the Earth for climate engineering is investigated from

an orbital dynamics perspective and a novel scheme for maintenance and deployment is developed

using heliotropic orbits.
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8.1 In-plane orbital evolution of dust

For a certain range of semi-major axis and area-to-mass-ratios, the Hamiltonian in Eq. (2.9) allows,

among all its stationary points, a stable equilibrium (i.e., de
dλ�

= 0 and dφ
dλ�

= 0), at φ = 0 with

eccentricity e0 as shown in Sec. 1.1. This equilibrium point represents frozen orbits with their

apogee pointing in the direction of the Sun. These orbits are therefore termed heliotropic orbits.

If the solar radiation pressure parameter is zero, α = 0 (i.e. without the effect of SRP), the

equilibrium at e0,J2 corresponds to an orbit with a frozen orientation with respect to the Sun

solely due to the J2 effect. Such an orbit would have its apse-line precessing at the same rate as

the Earth’s motion around the Sun. While the SRP parameter is zero, the equilibrium exists for

any orbit orientation. However, as soon as the SRP parameter is non-zero the equilibrium can only

be found for Sun-pointing apogees. For increasing values of the SRP parameter, the equilibrium

eccentricity e0 increases, with the J2-only equilibrium eccentricity e0,J2 (i.e., α = 0) being the

minimum boundary value at a given semi-major axis.

Figure 8.1 shows e0 as a function of semi-major axis for different dust grain radii. This

corresponds to Fig. 2.4 in Sec. 2.1.1, showing equilibria in the phase space. It also shows e0,J2 ,

the minimum possible equilibrium eccentricity. The background shading indicates perigee altitude.

Dark grey marks orbits with hp ≤ 0 km and light grey marks orbit with hp ≤ 2000 km. An altitude

of 2000 km is approximately the altitude below which the effect of drag on the orbital evolution is

not negligible [96]. A ring of dust at or beyond this distance from the Earth will remain in place

indefinitely regardless of the sizes of dust grains, as long as other perturbations do not cause the

perigee altitude to decrease.

It can be seen from the Fig. 8.1 that heliotropic orbits do not exist for any grain size

above approximately 16 000 km semi-major axis. Above c. 13 500 km semi-major axis they become

unstable due to drag. It can also be seen that e0,J2 = 0 for a ≤ 12 300 km. This means that for these

semi-major axes the heliotropic orbit does not exist without the effect of solar radiation pressure.

From the required e0 with solar radiation pressure it can be seen that the equilibrium

eccentricity increases with decreasing grain size. For rg = 5 µm there exists no semi-major axis at

which the perigee altitude of the equilibrium is above 2000 km. This means that dust grains of this

size or smaller will always decay due to drag, regardless of their initial orbit.

In the following section this phenomenon is investigated further and the minimum stable

dust grain size as a function of semi-major axis is determined. This is important as smaller dust

grains offer a higher mass efficiency for climate engineering as their cross-sectional area is larger

in relation to their mass.
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Figure 8.1: Eccentricity of the heliotropic equilibrium orbit as a function of semi-major axis without

SRP and with SRP for different grain sizes – the background shading indicates the perigee altitude
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8.1.1 Circular versus eccentric release orbit

If a grain with a specific area-to-mass ratio is released in any orbit, its orbit will then evolve

by librating or rotating around its equilibrium eccentricity (see Sec. 1.1). The greater the initial

distance from the libration point in the phase space the larger the maximum eccentricity reachable.

Therefore, it is more efficient to release the dust grains (with different area-to-mass-ratios) at a

higher initial eccentricity to prevent them from deorbiting due to drag (see Chapters 4 and 5).

Figure 8.2 compares the orbital evolution of grains with different radii when they are released

in a circular and elliptical orbit with the same semi-major axis. A grey colour marks the area in

which the orbits will experience drag, and grains which pass through this area are considered as

“lost”. It can be seen that while for an initially circular orbit all grains with a radius smaller than

13 µm will be lost (see Fig. 8.2a), in the elliptical case grains as small as 6.5 µm survive (see Fig.

8.2b). It follows that release at the critical eccentricity yields the best results and that the smallest

possible grain radius at any semi-major axis is the one which has its equilibrium point at the

critical eccentricity.

8.2 Geoengineering scenario

In this section the general scenario of the proposed scheme is explained and a suitable semi-major

axis for the ring chosen.

8.2.1 Baseline concept

Previous space-based geoengineering (SBGE) concepts have suggested the use of dust sourced from

the Earth, Moon, asteroids and comets [80, 76, 77]. It has been shown that the amount of asteroid

material that can be captured into a weakly bound Earth orbit with a threshold velocity lower

than that of lunar escape velocity, 2.37 km s−1, is 6× 1013 kg [122]. For the material required in

this SBGE scenario an extra velocity increment of 2.7 km s−1 would be required to lower the orbit

to the position of the feeder orbit, therefore doubling the velocity requirement.

Despite the additional costs of transporting asteroid material to a medium Earth orbit, the

use of captured asteroid resources would still be more efficient than lifting material from the surface

of the Earth. This also applies for schemes that require solid reflectors to block solar radiation where

large devices must be manufactured and then launched into the correct position. Lifting such large
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Figure 8.2: Evolution due to SRP and J2 of the orbits of dust grains of different grain radii in

the (e, φ)-phase space with (a) release in a circular orbit and (b) release in an eccentric orbit with

Sun-facing apogee. The semi-major axis is 9300 km and the shaded area represents the orbits with

a perigee lower the 2000 km.
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masses (of the order of 1× 1010 kg) is beyond current launch capabilities. Using asteroid material

rather than lunar dust has the added benefit that the material can be sourced and ground to

finer grain sizes, if required, whilst in the feeder orbit before being released, thus removing the

requirement to transport material from the Moon.

The asteroid is envisaged to be captured into a circular, equatorial generator orbit with semi-

major axis aG (see Fig. 8.3). Since the area-to-mass ratio of an asteroid is clearly small, the effect

of solar radiation pressure is negligible. The generator orbit is thus assumed to be unperturbed. In

order to continually release dust in a Sun-pointing elliptical feeder orbit, the dust must be ejected

into this orbit with a specific ∆v from an initially circular orbit with an altitude of either the feeder

orbit’s perigee or apogee altitude. The apogee is chosen for two reasons: It allows the manœuvre

to always be performed in Sunlight thus guaranteeing power generation during the ejection. It also

means that the asteroid which is used as the source of the dust can be kept further away from the

Earth. It follows that aG is also the radius of the apogee for the feeder orbit with semi-major axis

aF and perigee at RE + 2000 km to avoid decay due to drag.

The dust grains will be continuously extracted from the asteroid, milled to achieve a certain

radii distribution and collected during one orbit. Whenever the generator passes the apogee of the

feeder orbit, i.e. when θ = π, it ejects the collected dust with the correct ∆v to inject it into the

feeder orbit using a mass driver [81]. From this feeder orbit the grains will then evolve and spread

due to their different area-to-mass ratios and thus form the dust ring. Because the period of the

generator orbit and the feeder orbit are different, grains will be distributed at all positions in the

orbit. After approximately one year all positions on the libration curves in the phase space will be

filled as this is the period of one evolution in the phase space. Figure 8.3 shows a scale illustration

of the concept.

In the following subsections the choice of altitude for the feeder orbit is justified. For this a

trade-off is made between the minimum stable grain size and the geometric efficiency of the orbit.

8.2.2 Minimum grain size

The smallest possible grain radius can be determined as a function of semi-major axis by finding

the particle radius for which the equilibrium eccentricity e0 is equal to ep, the eccentricity corre-

sponding to the smallest allowable perigee height hp:

ep(a) = 1− RE + hp
a

(8.1)
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Figure 8.3: Ring generation baseline concept: The asteroid is “parked” in a circular equatorial

generator orbit. Mined dust is expelled with a given ∆v each time the asteroid is exactly between

the Earth and the Sun. From this feeder orbit the dust ring evolves naturally until a steady state

is reached.
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To find the minimum particle radius which for a given semi-major axis can be inserted in an

orbit such that its perigee altitude will never dip below a given rp, Eq. 2.3 is used which describes

the secular variation of the Sun-perigee-angle over time:

dφ

dλ�
= −α

√
1− e2

e
cosφ+

κ

(1− e2)2
− 1

An orbit orientation of φ = 0 is inserted to obtain only orbits with an apogee pointing in

the direction of the Sun. Eq. (2.3)is then set equal to zero to find the orbit which is fixed in this

orientation, as from Equation 2.2 it is already known that for φ = 0 the change in eccentricity is

zero. Finally e is substituted with ep in Eq. 8.1, solved for α and combined with Eqs. 2.4 and 2.6

to obtain:

rmin(a) =
2F�
cn�δg

√
a

µ

(
√

1− ep(a)2)
5
2

ep(a)(κ(a)− (1− ep(a)2)
2 (8.2)

where δg is the density of the asteroid grains. In this chapter δg = 3500 kg m−3 is used as in the

study by Wilck and Mann [123]. This expression is later used for a trade-off to find the most

appropriate semi-major axis for the dust ring. The other trade-off parameter is the geometrical

efficiency which shall be discussed in the following subsection.

8.2.3 Geometrical efficiency

Another measure of the efficiency of a ring for geoengineering is how much of its orbital period

a grain spends blocking solar radiation. This is dependent on the orbit geometry and takes into

account that the velocity at which the grain travels, vg, is lower at apogee than at perigee. Figure

8.4 shows the useful region of an orbit for geoengineering.

The ratio of the time a grain spends in the useful part of the orbit over the total orbital

period is termed geometrical efficiency. To determine it, first the entry and exit angles into the

useful zone fu,1 and fu,2 need to be calculated. For an orbit with Sun-pointing apogee the angles

can be found geometrically from the relation of radial distance from the centre of the Earth r and

the radius of the Earth RE :

RE
r

= sin fu (8.3)
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Figure 8.4: Useful region (green) of an orbit for geoengineering – the geometrical efficiency is the

proportion of one orbit a grain spends in the useful region

Together with the expression for the radial distance:

r =
a(1− e2)

1 + e cos fu
(8.4)

the following expression for the angle can be derived:

cos fu = −eR
2
E + a(1− e2)

√
a2(1− e2)2 −R2

E(1− e2)

a2(1− e2)2 + e2R2
E

(8.5)

with fu,1 < π and fu,2 > π. This is the same equation used to compute the eclipse angles in

Sec. 2.2.1. The true anomaly can then be transformed into mean anomaly, M , from which the ge-

ometric efficiency εG, the proportion of time spent between the two angles, can easily be calculated:

εG =
Mu,2 −Mu,1

2π
(8.6)

with

M = E − e sinE (8.7)

and

E = 2 arctan

√
1− e
1 + e

tan
f

2
(8.8)
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Figure 8.5: Geometric efficiency as a function of eccentricity and perigee altitude

Figure 8.5 shows the geometric efficiency of orbits with Sun-pointing apogee as a function of perigee

altitude hp and eccentricity e. It can be seen that small circular orbits are the most efficient with

decreasing efficiency for higher eccentricity and perigee altitudes. For a fixed semi-major axis

the efficiency would increase with eccentricity. However, it is not the semi-major-axis but the

perigee altitude which limits the lifetime of a dust grain orbit. Therefore, smaller eccentricities are

preferable.

8.2.4 Selection of semi-major axis

Using the minimum grain size and the geometric efficiency as the two figures of merit, a trade-off

can be performed to choose the semi-major axis likely to be most efficient for geoengineering.

Figure 8.6 shows the dust grain minimum radius and the geometrical efficiency of a circular orbit

and an orbit with e = ep with hp = 2000 km as a function of semi-major axis. These two orbits were

chosen as they describe the maximum and minimum eccentricity of the future dust ring because

the grains shall be released with a distribution of radii and not all of them have an equilibrium
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Figure 8.6: Minimum grain radius and geometric efficiency of circular and maximum stable eccen-

tricity ep orbits over semi-major axis

condition at the critical eccentricity. Thus, some grains will librate in eccentricity between e ≥ 0

and e = e0. A good compromise between low minimum grain size and high geometrical efficiency

is desired. Considering the results in Figure 8.6, it can be seen that above a semi-major axis of

order 9800 km the total efficiency goes down because the minimum grain size increases while the

geometrical efficiency decreases. Below that value the minimum grain size is close to the absolute

minimum before rising sharply for semi-major axes below 8000 km. From this graph a qualitative

choice of semi-major axis of 9300 km is made with ep = 0.1. This orbit is referred thereafter as the

feeder orbit. It has a Sun-pointing apogee with a radius of approximately 10 250 km. The feeder

semi-major axis is not further optimised as this chapter aims to assess the order of magnitude of

mass required for geoengineering using a dust ring and the feasibility of the method proposed.
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Table 8.1: Dust distributions

Distribution µg σg

D1 -11.5 0.1

D2 -11.35 0.15

D3 -11.2 0.25

8.3 Ring Model

In this section an attenuation model of the ring resulting from the scenario derived in Sec. 8.2 is

obtained. For this the distribution of the grain sizes after milling and their dispersion along the

ring are combined to derive an attenuation map.

8.3.1 Dust grain size distributions

As discussed in Bewick et al. [75], the milled dust is assumed to be distributed log-normally in

grain radius r:

fµg,σg (r) =
1

rσg
√

2π
e
− (ln r−µg)2

2σg2 (8.9)

where µg is the natural logarithm of the mean grain size and σg the natural logarithm of the

standard deviation of the distribution.

Three possible distributions have been chosen. D1 is an optimistic estimate with small mean

and low standard deviation. D2 is a realistic distribution and achievable with existing terrestrial

particle size reduction machinery [124]. D3 is a pessimistic estimate with high mean and large

standard deviation. Table 8.1 shows the chosen values for mean and standard deviation and Fig.

8.7 shows the three distributions as probability density functions.

The probability of any grain having a radius within the interval [rg,1, rg,2] can be found with

the cumulative probability density function:

P (rg ∈ [rg,1, rg,2]) = Fµg,σg (rg,1)− Fµg,σg (rg,2) (8.10)

with

Fµg,σg (rg) =
1√
2π
e
− (ln rg−µg)2

2σg2 (8.11)
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Figure 8.7: Probability density function of three different grain size distributions

8.3.2 Solar attenuation due to dust

In order to offset the effects of global warming caused by the current concentration of CO2 in the

atmosphere an average insolation reduction of 1.7 % is necessary [125]. To derive the mass of dust

required to achieve this, the Beer-Lambert law is applied [126, Chap. 4]:

I = I0e
−Λl (8.12)

where I0 is the solar constant before passing through the ring, Λ is the attenuation coefficient and

l is the path length. The attenuation coefficient at any given point is calculated from:

Λ =

rg,2∫
rg,1

πrg
2ρ(rg)drg (8.13)

where ρ(rg) is the number density of grains as a function of grain radius rg. Since the attenuation

coefficient is likely to change through the ring, it must be integrated over the path length and

hence Eq. (8.13) becomes

I = I0e
−

∫ l
0

Λ(l)dl (8.14)
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To determine the attenuation coefficient for the different distributions a phase space density

model must to be built. To achieve this, a two dimensional model of the ring will be constructed,

using the in-plane dynamics discussed before. The attenuation coefficient is then calculated for

this in-plane evolution of the dust. Then, the orbital plane is tilted with respect to the ecliptic

plane and the inclination change added. Thus, a third dimension is added by approximating the

out-of-plane evolution with a change of plane.

8.3.3 In-plane model

In this subsection a density model of the ring is derived. To achieve this, firstly two different phase

space densities as a function of eccentricity e and Sun-perigee-angle φ need to be found. The grain

size density expresses the likelihood of any grain passing through a point in the phase space during

its orbit evolution. The specific phase space density is then an expression of the probability that a

grain is at a given point in its orbital evolution at any given time.

Grain Size Phase Space Density

An expression is needed to find the radius of a grain passing through any point (φ, e) in the phase

space. This can be derived by setting the Hamiltonian Eq. (2.9) with (φ, e) equal to the Hamilto-

nian of the feeder orbit with (0, eF ) and solving for α:

α(e, φ) =
eF − e cosφ

3
(√

1− eF 2 −
√

1− e2
)

+ κ

(
1

(1−eF 2)
3
2
− 1

(1−e2)
3
2

) (8.15)

The solar radiation pressure parameter α is a function of the acceleration due to SRP, aSRP, as

expressed in Eq. (2.6). This acceleration is inversely proportional to the grain radius rg and can

be expressed as follows for circular dust grains:

aSRP =
F�
c

4

3ρgrg
(8.16)

where ρg is the material density of the dust grain approximated as 3500 kg m−3. It is important to

note the difference between the material density ρg and the density of dust grains in the ring ρ.

With Eqs. (2.6) and (8.16), Eq. (8.15) can be rewritten as:

rg(φ, e) =

6F�
cn�δ

√
a
µ (eF − e cosφ)

3
(√

1− eF 2 −
√

1− e2
)

+ κ

(
1

(1−eF 2)
3
2
− 1

(1−e2)
3
2

) (8.17)
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The probability of finding any grain in a differential element around a given (φ, e) in the phase space

can then be determined. This is achieved by finding the range of grain radii which pass through

the differential element using Eq. (8.17). This results in a middle value rg,0 and a differential

corresponding to the phase space element of ±drg The probability of any grain having the calcu-

lated differential radius can be found with the cumulative probability density function in Eq. (8.10):

P (rg ∈ [rg,0 − drg, rg,0 + drg]) = Fµ,σ(rg,0 + drg)− Fµ,σ(rg,0 − drg) (8.18)

This expression gives the fraction of all grains whose evolution passes through the considered

differential phase space element.

Specific phase space density

Next the specific phase space density at the differential phase space element is calculated. This

is the fraction of grains passing through the differential box in the phase space. Combining the

orbital evolution density at the location in the phase space with the grain size density derived in

Sec. 8.3.3 will later deliver the total fraction of grains in this element of the phase space.

The orbital evolution density is found numerically by first calculating the libration period,

in the phase space, with a grain of a given size. This is then compared with the time derivative

of the orbital parameters in the phase space at the given position calculated using Eqs. (2.2) and

(2.3). The time a grain spends in the differencial box in the phase space can be calculated from

the velocity in the phase space at the given point and the size of the differential box. This is then

divided by the total phase space libration period to obtain the likelihood of a grain of the given size

being in the required orbit at any time during its orbital evolution. This information is necessary

to calculate the global phase space density.

In-plane number density

The grain size density and specific phase space density can now be multiplied to find the global

phase space density. This figure does not depend on the total number of grains in the ring. Instead

it is normalised over the full grain population.

Figure 8.8 shows the resulting global phase space density for the three distributions of grain

radii introduced in the previous section. It is shown relative to the average number density in the

phase space. As expected the highest density can be found in the release position, the feeder orbit,
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at (0, eF ). The narrowest distribution, D1, shows high density in higher eccentricity orbits with the

apogee facing within 45° of the Sun. The wider the grain size distribution the more dispersed the

dust cloud is in the phase space. It can be assumed that the narrowest distribution has the highest

proportion of grains blocking sunlight. To ascertain this assumption the dust density around the

Earth in polar coordinates is calculated next.

The polar coordinate system chosen is a rotational reference frame with fixed orientation

towards the Sun. Any position in the orbital plane is determined by R, the distance to the centre

of the Earth, and θ, the angle with respect to the direction of solar radiation as shown in Figure

8.9.

Figure 8.10 shows the deviation of accumulated in-plane number density from the orbit

average as a function of θ for the three different initial distributions. The values are accumulated

over radius R for each angle θ to visualise the advantage a heliotropic ring has over a circular ring

of the same semi-major axis. It can be seen that the narrowest distribution D1 indeed has the

largest number of particles on the Sun-side of the Earth, about 15 % more than the orbit average.

But even the widest distribution still has 12 % more grains than average on the Sun-side of the

Earth. The difference is because of the wider spread in the phase space as shown in Fig. 8.8 which

is caused by larger deviations in grain size from the minimum grain size which has its equilibrium

in the feeder orbit.

In-plane attenuation coefficient

Finally the in-plane number density is used to calculate the in-plane attenuation coefficient. Again,

the coefficient is not an absolute value as it is independent of the total mass of material ejected

and the extension of the ring out of the feeder orbit plane. This figure is then used to size the

ring in a such a way as to cause a 1.7 % reduction in insolation and to assess the mass of material

required to do so.

The in-plane number density, which is the probability of finding a grain in a given area

of the orbital plane, can then be used to calculate Λ0, the in-plane attenuation coefficient, using

Eq. (8.13). The in-plane coefficient differs from the final value to be used as here the number

density is in terms of area not volume and hence there is an intermediate step to calculate the true

attenuation coefficient.

Figure 8.11 shows the in-plane attenuation coefficient relative to the maximum attenuation

for the three different distributions. The maximum attenuation occurs predictably at the intersec-
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Figure 8.8: Global phase space density of dust grain orbits for the three different grain size distri-
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Figure 8.10: Deviation of the accumulated in-plane number density of dust grains from the orbit

average for the three different distributions of grain radii

tion with the generator orbit at θ = π and R = aF (1 + eF ). The feeder orbit itself can also be seen

in all three figures. Apart from the feeder orbit, a wider dust ring is discernible in all three figures

with attenuation values of order 10 % of the maximum. The narrowest distribution D1 has the

narrowest ring measuring approximately 600 km. The ring of the widest distribution D3 is about

twice as wide at approximately 1200 km. Although distribution D1 is favourable because of its

small average grain radius and its higher geometrical efficiency, D3 could have an advantage with

the wider ring allowing the burden of the reduced insolation to be stretched over a larger area of

the Earth, thus making the shadowing effect less pronounced.

An investigation into the 3D dynamics of the ring was conducted by Bewick et al. [75]. It

was shown that the three-dimensional evolution of the dust closely follows the two-dimensional

assessment presented in this Chapter. The maximum deviation of the inclination can be seen for

the smallest dust grains and is less than ±0.2°.

With these results Bewick et al. [75] calculated the attenuation over the Earth’s surface [75]

for the different distributions and the amount of mass required to achieve the desired 1.7 % average

reduction of incident Sunlight on the Earth. It was found that the total attenuation of the incident

Sunlight on Earth varies over the time of one year, as can be seen in Fig. 8.12. It is lowest in spring

and autumn, when the Sun is in the equatorial plane and the ring thus faces the Sun edge-on.
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Figure 8.12: Average attenuation coefficient over time [75]

In this time only a small band at the equator is shadowed, while in summer and winter a larger

portion of the winter hemisphere is shadowed.

The total mass for the different distributions was found to be 5.9× 1011 kg (D1), 6.6× 1011 kg

(D2) and 9.1× 1011 kg (D3). These values are lower the those estimated by Pearson et al. [76].

8.4 Conclusions

In this chapter the new concept of a heliotropic dust ring for climate engineering was introduced.

The proposed method is to deploy and disperse asteroid dust in such a way that it blocks part of

the Sunlight incident on Earth. The aim is to reduce the insolation by 1.7 % at as a low a total

mass as possible.

The concept of a dust ring for geoengineering, which was first proposed by Pearson et al.

[76], is enhanced by taking into account solar radiation pressure. Its effect on the orbital evolution

and lifetime on dust particles is significant and increases with decreasing dust grain radius. In this

chapter it was proposed to make use of this effect to create a new, stable Sun-pointing ring of

dust. The orbital dynamics were investigated, a semi-major axis selected and from this an in-plane

attenuation model calculated.
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The results presented in this chapter were then used to find the required mass for such a

dust ring depending on dust grain size distribution. The results were presented by Bewick et al. [75]

and lie between 5.9× 1011 kg and 9.1× 1011 kg. This is less than the results obtained by Pearson

but more than solar reflector methods proposed by McInnes [74] and Angel [79] among others.
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Chapter 9

Conclusions

In this chapter an overview of the thesis is provided, the main results of which are summarised and

commented and their limitations discussed. On the basis of the findings of this thesis, an outline

of future work and some recommendations are given.

This thesis detailed novel orbital dynamics and applications for high area-to-mass-ratio

spacecraft. To identify these applications a multi-step approach was used to model the underly-

ing orbital dynamics. Each step increases the problem’s complexity but reduces the size of the

parameter space examined.

The first step in most of the applications is the analytical approach based on the Hamiltonian

model of orbital dynamics due to solar radiation pressure and the J2 effect, introduced by Hamilton

and Krivov [7]. In this model a number of influences are neglected, most notably the orbit’s

inclination and all out-of-plane forces, but also the effect of eclipses. Hence, this model cannot

accurately predict the orbital evolution but only grant an insight into the global behaviour. It

is thus used to identify applications and analytically derive first guesses for the required area-to-

mass-ratio and starting conditions or to formulate control laws.

In a second step semi-analytical equations are used to verify the new orbits and applica-

tions and to further investigate their behaviour. Two different models are used. One developed by

Colombo and McInnes [103] expresses the in-plane secular change of Keplerian elements due to

solar radiation pressure, the J2 effect and aerodynamic drag while also taking account of the effect

of eclipses. The other model developed by Krivov et al. [6] is formulated in non-singular elements

and considers the effect of SRP and J2 only on an inclined orbit, taking also into account the

obliquity of the Earth’s rotational axis with respect to the ecliptic.
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The semi-analytical equations are computationally efficient to integrate as both neglect the

periodic changes during the orbit evolution. This allows the investigation of a large parameter

space to gain an overview of the evolution for different area-to-mass-ratios, starting orbits and

starting dates depending on the application investigated. The equations were also used to enhance

the effectiveness of the control algorithm for SpaceChips by accounting for the effect of eclipses on

the orbital evolution.

Finally, applications are verified for a number of test case scenarios using a model with

higher precision. For the small satellite applications, Analytical Graphics, Inc.’s high precision orbit

propagator (HPOP) was used which takes into account a large number of orbital perturbations

and also seasonal variations of the atmospheric density. For the SpaceChip application, a Gauss’

equation model in Keplerian elements was used which was propagated in true anomaly in MATLAB.

Finally, the planetary dust scenario is not validated in this way within the scope of the thesis, as

only the initial analytical analysis is provided.

9.1 Summary of findings

In the following sections the different novel orbits and applications are discussed separately. For

each application, the results presented in this thesis are summarised and evaluated and their

implications on future space missions is discussed.

9.1.1 Passive orbit transfers for small satellites

Small satellites are spacecraft with masses of 1000 kg or less. Due to advances in miniaturisation

and the commercialisation of space there has recently been a surge in small satellite activities.

These systems have the advantage of being orders of magnitude lower cost and having significantly

shorter development time than conventional spacecraft. They can usually be launched at low cost

as a secondary payload with a larger satellite. However, they also have draw-backs. Apart from the

limitations caused by lower power, restricted dimensions and satellite payload mass, they typically

have limited influence over the orbit in which they are inserted as they have to accept orbit of

the prime payload of the launcher. Furthermore, they often lack propulsion systems and cannot

perform orbital manœuvres. This is due to their small size and simple design which are hard to

combine with the complexity of an active propulsion subsystem. This is particularly the case for

CubeSats which have a mass in the order of 1 kg to 10 kg.
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The main orbital region of interest for CubeSat operators is low Earth orbit (LEO). This

is due to several reasons. The limited power available for communications and the lack of high

performance antennae require a short path length to the receiving ground station to transfer data

at acceptable data rates. A further reason are the deorbiting requirements in LEO, which mean

that small satellites are usually restricted to an altitude where orbit decay due to atmospheric

drag can be guaranteed. In addition, the future growth of the CubeSat market is restricted by the

number of launch opportunities to low LEO. Two solutions to this problem have been developed

in this thesis. A passive GTO-to-LEO transfer has the potential to expand the piggy-back launch

opportunities to include geostationary transfer launches. Furthermore, SRP-augmented deorbiting

can expand the range of operational orbits for CubeSats to include higher altitudes. This because

it offers a fail-safe deorbiting method for propellantless re-entry from orbits above the aerodynamic

drag regime.

GTO to LEO transfer

In Chapter 3, the passive GTO-to-LEO transfer was discussed. The concept initially discussed

by Colombo and McInnes [32] is to deploy a large light-weight structure in GTO to increase the

spacecraft area-to-mass-ratio. The enhanced effect of aerodynamic drag will then cause the apogee

to decrease, while solar radiation pressure is exploited to raise the perigee. When the desired quas-

circular orbit in LEO is achieved, the device is ejected. The original work does not consider other

orbit perturbations apart from solar radiation pressure, the J2 effect and aerodynamic drag. It

found that the manœuvre can only be successfully performed for a specific orientation of the orbit

with respect to the Sun. This has the consequence that the spacecraft is forced to wait in GTO for

up to 600 days until the correct orientation is reached.

In this thesis the concept was analysed in detail using a high performance orbit propagator

including a full set of orbital perturbations. It was found that the the strongest secondary pertur-

bation was the third body effect of the Sun. It causes the orbit eccentricity to librate during the

waiting time in GTO. This means that the manœuvre success depends on the initial launch date.

It was found that a lower perigee at the beginning of the manœuvre yields a higher final perigee

altitude. This is due to the relative strength of the effects of drag and SRP. Colombo and McInnes

[32] noted that the manœuvre is best performed for a reflectivity below 1, i.e. when the device is

partially transparent. This is due to SRP affecting the spacecraft stronger than drag in the initial

phase of the manœuvre, and causing the perigee altitude to rise to quickly.

In this thesis two different launch dates were considered: the 1st of October 2014 and the

1stof January 2015. It was found that the transfer can be performed successfully for the October
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launch, but is less effective for the January launch. For the October launch the waiting time and

the orbit transfer were simulated in STK, with a final perigee altitude of approximately 330 km.

In the second part of the chapter design options for the deorbiting device and the orbit

transfer module were discussed. The effect that different device shapes have on the coefficient

of reflectivity were calculated. It was concluded that a spherical device was best suited to passive

orbit transfers, as it has the same area-to-mass-ratio regardless of aspect angle. However, it requires

more material than a flat sail of the same effective area-to-mass-ratio, due to the larger surface

area and lower coefficient of reflectivity. Different methods of rigidisation were introduced and cold

curing resin was chosen for the design. It has the advantage of a long shelf-life and offers reversable

rigidisation which is advantageous for pre-flight testing. A thermal analysis of the heating process

and a steady state thermal analysis of the deployed balloon were performed. It has been shown

that a device capable of transporting a 3U CubeSat from GTO to LEO using the proposed method,

can be accomodated in 1U volume of the CubeSat.

SRP-augmented deorbiting

In Chapters 4 and 5, a novel method for propellantless deorbit for small satellites was presented.

SRP-augmented deorbiting is a type of area-to-mass-ratio augmented deorbiting that can be ap-

plied to high altitude missions. As opposed to drag-augmented deorbiting, it also uses the effect

of solar radiation pressure to perform the re-entry. The manœuvre has two phases. In phase one,

solar radaition pressure is exploited to increase the orbit eccentricity until the perigee is affected

by drag. In phase two drag then rapidly reduces the orbit apogee until the spacecraft re-enters the

Earth’s atmosphere.

In Chapter 4, the method was initially developed analytically using equations derived from

the Hamiltonian dynamics of the problem. An expression for the required area-to-mass-ratio to

deorbit from any given altitude was found for planar orbits. This expression was then verified using

a numerical propagator. Next, the required area-to-mass-ratio was calculated for inclined orbits

in the three dimensional model of the orbital dynamics. It was found that in three dimensions

the effectiveness of the method also depends on the right ascension of the ascending node and the

initial time of the manœuvre. Regions of inclination and semi-major axis were identified in which

the method is particularly effective. Three scenarios were devised and evaluated in STK to verify

the numerical results.

In Chapter 5, deorbiting from high altitude Sun-synchronous orbits was investigated. The

analytical model developed in the previous chapter was modified to take into account the orbital
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dynamics of Sun-synchronous orbits. In the next step the orbits were investigated using a three

dimensional numerical propagation. It was shown that the effectiveness of the deorbiting manœuvre

depends on the local time of ascending node as well as on the orbit altitude. Noon/midnight orbits

are more suitable for SRP-augmented deorbiting than terminator orbits, due to the orientation of

the orbit plane with respect to the Sun.

It was shown that for a range of high altitude orbits SRP-augmented deorbiting is a viable

option for end-of-life disposal. Due to the passive nature of the method it can be used as part of a

fail-safe system which activates automatically when the spacecraft becomes unresponsive. However,

it is not applicable to large spacecraft with mass above approximately 1 tonne, as the re-entry point

is not controllable and spacecraft which have parts that can survive re-entry which could then pose

a risk to human life should the satellite re-enter above populated areas.

9.1.2 Orbit control for SpaceChips

In Chapters 6 and 7, a new orbit control strategy for SpaceChips was developed. SpaceChips are

millimetre-scale satellites on a silicon chip. Due to their small length-scale they have very high

area-to-mass-ratios and are thus strongly affected by surface force perturbations. Furthermore,

they lack the ability to accommodate traditional orbit control actuators which means they need

to utilise natural forces to stabilise and control their orbits. The method proposed in this thesis is

termed Electrochromic Orbit Control and works by fitting the SpaceChip with an electrochromic

coating. These coatings have the ability to change their optical properties when a voltage or current

is applied. This would allow them to modulate the solar radiation pressure perturbation on their

orbit. In the method proposed in this thesis a SpaceChip has the ability to switch its coefficient of

reflectivity between two discrete values, ‘off’ and ‘on’.

In Chapter 6, the control potential of the method was analysed and an artificial potential field

control algorithm presented which can be applied to orbit stabilisation and manœuvres. The control

potential was assessed by evaluating the extremes of change for the individual in-plane orbital

elements that can be achieved by changing the reflectivity twice per orbit. This was calculated for

different orbits in the (e, φ) phase space, where e is the eccentricity and φ the Sun-perigee angle.

The regions in which a zero change was possible were highlighted and combined for all three in-

plane elements to identify the potentially stabilisable zone (PSZ). The PSZ is a rectangular region

in the phase space centred around φ = 0. It includes both natural equilibria in the Hamiltonian

phase space for the two reflectivity values. Next, the artificial potential field controller was applied

to stabilise the spacecraft within the PSZ. It was found that a region exists in which the SpaceChips

can use electrochromic orbit control to maintain their orbits. The controller was then applied to
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manœuvres in the (e, φ) phase space and for orbit raising. It was shown that a SpaceChip is able

to perform the desired manœuvres in equatorial orbits using electrochromic orbit control.

In Chapter 7, a control algorithm based on the Hamiltonian orbital dynamics was developed.

It is used to navigate SpaceChips to orbits with Sun-pointing apogee and stabilise them there. The

model of the dynamics used by the control algorithm are based on the simplified in-plane dynamics,

while the propagation was performed using the Gauss’ equations in three dimensions. It was shown

that the algorithm is able to compensate the difference in predicted and actual evolution in a closed-

loop feedback control with an update time interval of one orbit. In order to further improve the

performance of the controller the Hamiltonian phase space was linearised and adapted to account

for the effect of eclipses. The advantage of this control algorithm is that it is closed to the actual

orbit evolution. However, it requires a switch of reflectivity twice per orbit, whereas the pure

Hamiltonian controller only needs to change approximately twice per year during orbit transfer.

Electrochromic orbit control is a promising method of performing orbit manœuvres with

SpaceChips. However, there are a number of limitations. The control was analysed only for high

altitude equatorial orbits. It cannot be applied in its current form to inclined orbits or orbits

with lower semi-major axes. As semi-major axis decreases, the effect of J2 increases, which was

neglected in the design of the controller. Furthermore, there are a number of technical issues in

practice which would need to be overcome. An electrochromic coating needs to be developed which

offers a reflectivity change as large as possible and which is long-term resistant to radiation damage.

A reliable passive Sun-pointing attitude control method needs to be developed. Some concepts for

this are discussed in Sec. 1.3.2. A balance between power generation with solar cells and the

electrochromic coating needs to be found. One possible solution would be to use an electrochromic

coating which can switch between mirrored and transmissive, and layer it over the solar cells. That

way, however, the SpaceChip generates energy only when in the ‘off’ state.

9.1.3 Climate engineering using dust grains

Finally, a geoengineering application of the Hamiltonian orbital dynamics is presented in Chapter

8. An artificial dust ring was proposed as a method of solar radiation management to combat

climate change. The ring is designed to reduce the incident Sunlight on Earth to mitigate rising

average temperatures on Earth. It is envisaged that the dust is extracted from an asteroid captured

in an equatorial circular generator orbit. The dust is milled to a micrometre-scale grain size and

then ejected into an eccentric feeder orbit with Sun-pointing apogee. The injection orbit is chosen

such as to create an artificial ring, which is quasi-heliotropic through the effects of SRP and J2.

This way the average attenuation can be maximised. The work was conducted in collaboration
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with other researchers. The contribution in this thesis is the development of the dispersal strategy,

the novel heliotropic ring, and the computation of the in-plane density and attenuation coefficient.

First the generator and feeder orbits were chosen as a compromise between the minimum

grain size and the geometric efficiency of a dust ring. The mass efficiency of the ring improves

with decreasing grain size. However, the higher area-to-mass-ratio of smaller grains affects their

orbital evolution. An area-to-mass-ratio which is too large leads to rapid orbit decay. After a

mission scenario was selected the density of the ring was calculated for three log-normal grain size

distributions. Initially the density in the (e, φ) phase space was calculated, and from this the in-

plane attenuation coefficient was computed. Further analysis by Bewick et al. [75] yield a required

mass of approximately 6× 1011 kg for the finest grain size distribution. This value is better than

the estimate by Pearson et al. [76].

One common concern about a dust ring strategy is that it will affect everyday space oper-

ations. It is feared that the dust could collide operational spacecraft and cause damage to these

systems. However, the altitude of the ring is above the LEO regime. Should grains sink lower they

will quickly deorbit due to their very high area-to-mass-ration.

9.2 Future Work

In this section a collection of ideas for future work is outlined, which will help to better understand

the concepts and applications developed in this thesis.

GTO to LEO transfer

The next step for the GTO-to-LEO transfer is to analyse in detail the effect that launch date has

on the mission success. The launch date affects the perigee altitude and solar activity at the start

of manœuvre. As discussed earlier, the correct ratio of the effects of aerodynamic drag and solar

radiation pressure is vital to the effectiveness of the manœuvre. Both perigee altitude and solar

activity influence the effect of drag on the spacecraft orbit. An in-depth study into the applicability

of the passive GTO-to-LEO transfer will be useful to future CubeSat mission designers.
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SRP-augmented deorbiting

Solar radiation pressure augmented deorbiting is a type of area-to-mass-ratio augmentation. These

deorbiting methods often draw criticism for the fact that a larger surface area sweeps out a greater

volume of space and could thus have a larger on-orbit collision probability over its lifetime than

the un-augmented spacecraft. This poses more questions: As area-to-mass-ratio increases, deorbit

time decreases. Is there an optimum area-to-mass-ratio for a minimum collision probability? What

is the optimum deorbiting time in this case and how does it change for different spacecraft masses

and initial altitudes? A study into this topic is currently in progress. First results were presented

in April 2013 [127].

Electrochromic orbit control

The next step in the development of electrochromic orbit control for SpaceChips is the extension to

inclined and low altitude orbits. This is particularly relevant, as SpaceChips are mainly envisaged

for LEO applications. One particularly exciting prospect form an astrodynamics perspective is

the use of SpaceChips in orbit regimes in which a change of reflectivity causes a bifurcation of

the phase space with the appearance of new equilibria due to J2. One possible application would

be the controlled dispersal of SpaceChips from a common injection orbit. While the SpaceChips’

orbit evolves at regular time intervals, SpaceChips could change their reflectivity to enter different

phase lines. This could provide a method of creating a network of dispersed SpaceChips without

using several launches. Finally, SpaceChips could be used for solar system exploration. An analysis

into the use of electrochromic control in Sun-centred orbits could yield new ways of interplanetary

travel for high area-to-mass-ratio spacecraft.

Climate engineering using dust grains

The simulations performed for the dust ring application do not consider any perturbations apart

from solar radiation pressure and the J2 effect. Therefore the next step would be to analyse the

long-term stability of the ring under the influence of other forces. In particular, it is assumed that

the third body effect of the Sun will affect the orbit due to its quasi-Sun-synchronous orienta-

tion. Furthermore, the mass of this scheme could likely be further reduced by applying a global

optimisation algorithm.
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