
This is a repository copy of Parameterized inapproximability of independent set in H-free
graphs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200948/

Version: Accepted Version

Proceedings Paper:
Dvořák, P., Feldmann, A.E. orcid.org/0000-0001-6229-5332, Rai, A. et al. (1 more author)
(2020) Parameterized inapproximability of independent set in H-free graphs. In: Adler, I.
and Müller, H., (eds.) Graph-Theoretic Concepts in Computer Science: 46th International
Workshop, WG 2020, Leeds, UK, June 24–26, 2020, Revised Selected Papers. 46th
International Workshop, WG 2020, 24-26 Jun 2020, Leeds, UK. Lecture Notes in
Computer Science, LNCS 12301 . Springer International Publishing , pp. 40-53. ISBN
9783030604394

https://doi.org/10.1007/978-3-030-60440-0_4

This version of the contribution has been accepted for publication, after peer review (when
applicable) but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/978-3-030-60440-0_4. Use of this Accepted Version is subject to
the publisher's Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Parameterized Inapproximability

of Independent Set in H-Free Graphs⋆

Pavel Dvořák1⋆⋆, Andreas Emil Feldmann1⋆⋆, Ashutosh Rai1⋆ ⋆ ⋆, and
Paweł Rzążewski2,3†

1 Faculty of Mathematics and Physics, Charles University, Prague, Czechia
koblich@iuuk.mff.cuni.cz, feldmann.a.e@gmail.com, ashu.rai87@gmail.com

2 Faculty of Mathematics and Information Science,
Warsaw University of Technology, Warsaw, Poland

pawel.rzazewski@pw.edu.pl
3 University of Warsaw, Institute of Informatics, Warsaw, Poland

Abstract. We study the Independent Set problem in H-free graphs, i.e., graphs excluding some fixed
graph H as an induced subgraph. We prove several inapproximability results both for polynomial-time
and parameterized algorithms.
Halldórsson [SODA 1995] showed that for every δ > 0 the Independent Set problem has a polynomial-
time (d−1

2
+ δ)-approximation algorithm in K1,d-free graphs. We extend this result by showing that

Ka,b-free graphs admit a polynomial-time O(α(G)1−1/a)-approximation, where α(G) is the size of a
maximum independent set in G. Furthermore, we complement the result of Halldórsson by showing
that for some γ = Θ(d/ log d), there is no polynomial-time γ-approximation algorithm for these graphs,
unless NP = ZPP.
Bonnet et al. [Algorithmica 2020] showed that Independent Set parameterized by the size k of the
independent set is W[1]-hard on graphs which do not contain (1) a cycle of constant length at least 4,
(2) the star K1,4, and (3) any tree with two vertices of degree at least 3 at constant distance. We
strengthen this result by proving three inapproximability results under different complexity assumptions
for almost the same class of graphs (we weaken conditions (1) and (2) that G does not contain a cycle
of constant length at least 5 or K1,5). First, under the ETH, there is no f(k) · no(k/ log k) algorithm for
any computable function f . Then, under the deterministic Gap-ETH, there is a constant δ > 0 such
that no δ-approximation can be computed in f(k) · nO(1) time. Also, under the stronger randomized
Gap-ETH there is no such approximation algorithm with runtime f(k) · no(

√
k).

Finally, we consider the parameterization by the excluded graph H, and show that under the ETH,
Independent Set has no no(α(H)) algorithm in H-free graphs. Also, we prove that there is no
d/ko(1)-approximation algorithm for K1,d-free graphs with runtime f(d, k) · nO(1), under the deter-
ministic Gap-ETH.

1 Introduction

The Independent Set problem, which asks for a maximum sized set of pairwise non-adjacent vertices
in a graph, is one of the most well-studied problems in algorithmic graph theory. It was among the first
21 problems that were proven to be NP-hard by Karp [30], and is also known to be hopelessly difficult
to approximate in polynomial time: Håstad [29] proved that under standard assumptions from classical
complexity theory the problem admits no (n1−ε)-approximation, for any ε > 0 (by n we always denote the
number of vertices in the input graph). This was later strengthened by Khot and Ponnuswami [31], who
were able to exclude any algorithm with approximation ratio n/(log n)3/4+ε, for any ε > 0. Let us point

⋆ An extended abstract of this paper was presented at WG 2020 [19].
⋆⋆ Supported by Czech Science Foundation GAČR (grant #19-27871X).

⋆ ⋆ ⋆ Supported by Center for Foundations of Modern Computer Science (Charles Univ. project UNCE/SCI/004).
† Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.

ar
X

iv
:2

00
6.

10
44

4v
2

 [
cs

.C
C

]
 1

5
D

ec
 2

02
2

out that the currently best polynomial-time approximation algorithm for Independent Set achieves the

approximation ratio O(n (log logn)2

(logn)3) [21].

There are many possible ways of approaching such a difficult problem, in order to obtain some positive
results. One could give up on generality, and ask for the complexity of the problem on restricted instances. For
example, while the Independent Set problem remains NP-hard in subcubic graphs [24], a straightforward
greedy algorithm gives a 3-approximation.

H-free graphs. A large family of restricted instances, for which the Independent Set problem has been
well-studied, comes from forbidding certain induced subgraphs. For a (possibly infinite) family H of graphs,
a graph G is H-free if it does not contain any graph of H as an induced subgraph. If H consists of just one
graph, say H = {H}, then we say that G is H-free. The investigation of the complexity of Independent
Set in H-free graphs dates back to Alekseev, who observed that the so-called “Poljak construction” [44]
yields the following.

Theorem 1 (Alekseev [2], Poljak [44]). Let s ≥ 3 be a constant. The Independent Set problem is
NP-hard in graphs that do not contain any of the following induced subgraphs:

1. a cycle on at most s vertices,
2. the star K1,4, and
3. any tree with two vertices of degree at least 3 at distance at most s.

We can restate Theorem 1 as follows: the Independent Set problem is NP-hard in H-free graphs, unless
H is a subgraph of a subdivided claw (i.e., three paths which meet at one of their endpoints). The reduction
also implies that for each such H the problem is APX-hard and cannot be solved in subexponential time, unless
the Exponential Time Hypothesis (ETH) fails. On the other hand, polynomial-time algorithms are known
only for very few cases. First let us consider the case when H = Pt, i.e., we forbid a path on t vertices. Note
that the case of t = 3 is trivial, as every P3-free graph is a disjoint union of cliques. Already in 1981 Corneil,
Lerchs, and Burlingham [14] showed that Independent Set is tractable for P4-free graphs. For many years
there was no improvement, until the breakthrough algorithm of Lokshtanov, Vatshelle, and Villanger [34] for
P5-free graphs. Their approach later recently extended to P6-free graphs by Grzesik, Klimošova, Pilipczuk,
and Pilipczuk [27]. The general belief that the problem should be polynomial-time solvable for Pt-free graphs,
for any fixed t, is suppotred by recent quasipolynomial-time algorithm by Gartland and Lokshtanov [25]; see
also a simplified version of Pilipczuk, Pilipczuk, and Rzążewski [43].

Even less is known for the case if H is a subdivided claw. The problem can be solved in polynomial time
in claw-free (i.e., K1,3-free) graphs, see Sbihi [45] and Minty [42]. This was later extended to H-free graphs,
where H is a claw with one edge once subdivided (see Alekseev [1] for the unweighted version and Lozin,
Milanič [36] for the weighted one). We also know that for any subdivided claw H, the problem can be solved
in subexponential time in H-free graphs [13,37].

When it comes to approximations, Halldórsson [28] gave an elegant local search algorithm that finds a
(d−1

2 +δ)-approximation of a maximum independent set in K1,d-free graphs for any constant δ > 0 in polyno-
mial time. Chudnovsky, Thomassé, Pilipczuk, and Pilipczuk [13] designed a QPTAS (quasi-polynomial-time
approximation scheme) that works for subdivided claw H; see also the improved version of Majewski et
al. [37]. Recall that if H is not (a subgraph of) a subdivided claw, then the problem is APX-hard. The
existence of algorithms for MIS in H-free graph with approximation guararantee n1−δ for constant δ was
studied recently by Bonnet et al. [8] in the connection to the famous Erdős-Hajnal conjecture.

Parameterized complexity. Another approach that one could take is to look at the problem from the param-
eterized perspective: we no longer insist on finding a maximum independent set, but want to verify whether
some independent set of size at least k exists. To be more precise, we are interested in knowing how the
complexity of the problem depends on k. The best type of behavior we are hoping for is fixed-parameter
tractability (FPT), i.e., the existence of an algorithm with running time f(k) · nO(1), for some function f
(note that since the problem is NP-hard, we expect f to be super-polynomial).

2

It is known [15] that on general graphs the Independent Set problem is W[1]-hard parameterized by k,
which is a strong indication that it does not admit an FPT algorithm. Furthermore, it is even unlikely to admit
any non-trivial fixed-parameter approximation (FPA): a β-FPA algorithm (for β > 1) for the Independent
Set problem is an algorithm that takes as input a graph G and an integer k, and in time f(k) · nO(1) either
correctly concludes that G has no independent set of size at least k, or outputs an independent set of size
at least k/β (note that β does not have to be a constant). It was shown in [9] that on general graphs no
o(k)-FPA exists for Independent Set, unless the deterministic4 Gap-ETH fails.

Parameterized complexity in H-free graphs. As we pointed out, none of the discussed approaches, i.e., consid-
ering H-free graphs or considering parameterized algorithms, seems to make the Independent Set problem
more tractable. However, some positive results can be obtained by combining these two settings, i.e., con-
sidering the parameterized complexity of Independent Set in H-free graphs. For example, the Ramsey
theorem implies that any graph with Ω(4p) vertices contains a clique or an independent set of size Ω(p).
Since the proof actually tells us how to construct a clique or an independent set in polynomial time [20], we
immediately obtain a very simple FPT algorithm for Kp-free graphs. Dabrowski [16] provided some positive
and negative results for the complexity of the Independent Set problem in H-free graphs, for various H.
The systematic study of the problem was initiated by Bonnet, Bousquet, Charbit, Thomassé, and Watrig-
ant [6] and continued by Bonnet, Bousquet, Thomassé, and Watrigant [7]. Among other results, Bonnet et
al. [6] obtained the following analog of Theorem 1.

Theorem 2 (Bonnet et al. [6]). Let s ≥ 4 be a constant. The Independent Set problem is W[1]-hard
in graphs that do not contain any of the following induced subgraphs:
1. a cycle on at least 4 and at most s vertices,
2. the star K1,4, and
3. any tree with two vertices of degree at least 3 at distance at most s.

Note that, unlike in Theorem 1, we are not able to show hardness for C3-free graphs: as already mentioned,
the Ramsey theorem implies that Independent Set is FPT in C3-free graphs. Thus, graphs H for which
there is hope for FPT algorithms in H-free graphs are essentially obtained from paths and subdivided claws
(or their subgraphs) by replacing each vertex with a clique.

Let us point out that, even though it is not stated there explicitly, the reduction of Bonnet et al. [6] also

excludes any algorithm solving the problem in time f(k) · no(
√
k), unless the ETH fails.

Our results. We study the approximation of the Independent Set problem in H-free graphs, mostly
focusing on approximation hardness. Our first two results are related to Halldórsson’s [28] polynomial-time
(d−1

2 + δ)-approximation algorithm for K1,d-free graphs. First, in Section 3 we extend this result to Ka,b-free
graphs, for any constants a, b, showing the following theorem.

Theorem 3. Given a Ka,b-free graph G, an O
(
(a + b)1/a · α(G)1−1/a

)
-approximation can be computed in

nO(a) time.

Then, in Section 4 we show that the approximation ratio of the algorithm of Halldórsson [28] is optimal,
up to logarithmic factors.

Theorem 4. There is a constant d⋆ and a function β = Θ(d/ log d) such that for any d ≥ d⋆ the Indepen-
dent Set problem does not admit a polynomial time β-approximation algorithm in K1,d-free graphs, unless
ZPP = NP.

We remark that for graphs of maximum degree d, which are also K1,d-free, Independent Set admits

a polynomial time Õ(d/ log2 d)-approximation [4] (where the Õ-notation hides poly(log log d) factors) and
this is tight [3] (up to poly(log log d) factors) under the Unique Games Conjecture. Also, assuming P 6= NP

4 While this is stated under the randomized Gap-ETH in [9], a derandomization exists; see [9, Section 4.2.1].

3

no O(d/ log4 d)-approximation exists [10]. This means that the hardness of Theorem 4 together with the
algorithm in [4] give a separation between graphs of maximum degree d and K1,d-free graphs in terms of
approximation.

Then in Section 5 we study the existence of fixed-parameter approximation algorithms (cf. [23]) for the
Independent Set problem in H-free graphs. We show the following strengthening of Theorem 2, which
also gives (almost) tight runtime lower bounds assuming the ETH or the randomized Gap-ETH (for more
information about complexity assumptions used in the following theorems see Section 2).

Theorem 5. Let s ≥ 5 be a constant, and let G be the class of graphs that do not contain any of the following
induced subgraphs:
1. a cycle on at least 5 and at most s vertices,
2. the star K1,5, and
3. (i) the star K1,4, or

(ii) a cycle on 4 vertices and any tree with two vertices of degree at least 3 at distance at most s.
The Independent Set problem on G does not admit the following:
(a) an exact algorithm with runtime f(k) · no(k/ log k), for any computable function f , under the ETH,
(b) a β-approximation algorithm with runtime f(k) · nO(1) for some constant β > 1 and any computable

function f , under the deterministic Gap-ETH,

(c) a β-approximation algorithm with runtime f(k) · no(
√
k) for some constant β > 1 and any computable

function f , under the randomized Gap-ETH.5

By gap amplification using the lexicographical graph product, we are able to strengthen statement (b)
of Theorem 5, but we need to consider a larger class of graphs to obtain the lower bound. We say two
vertices u, v are twins if, apart from the adjacency between them, their neighborhoods are the same, i.e.,
N(u) \ {v} = N(v) \ {u}.
Theorem 6. Let s ≥ 5 be a constant, and let G′ be the class of graphs that do not contain any of the
following induced subgraphs:
1. a cycle on at least 5 and at most s vertices, and
2. any tree without twins and with two vertices of degree at least 3 at distance at most s.

Then for any constant β > 1, the Independent Set problem on G′ does not admit a β-approximation
algorithm with runtime f(k) · nO(1) for any computable function f , under the deterministic Gap-ETH.

In contrast with statement (b) of Theorem 5, Theorem 6 refuses any constant-factor FPT approximation
for the Independent Set problem on the class G′. However, the gap amplification works only for forbidden
graphs without twins. Thus, the class G′ is larger than the class G defined in Theorem 5, and the family
of forbidden subgraphs of G′ is exactly the family of forbidden subgraphs of G restricted to graphs without
twins. We prove Theorem 6 in Section 5.3.

Finally, in Section 6 we study a slightly different setting, where the graph H is not considered to be
fixed. As mentioned before, Independent Set is known to be polynomial-time solvable in Pt-free graphs
for t ≤ 6. The algorithms for increasing values of t get significantly more complicated and their complexity
increases. Thus it is natural to ask whether this is an inherent property of the problem and can be formalized
by a runtime lower bound when parameterized by t.

We give an affirmative answer to this question, even if the forbidden family is not a family of paths: note
that the independent set number α(Pt) of a path on t vertices is ⌈t/2⌉.
Proposition 1. For any integer d, let Hd be a class of graphs so that α(H) > d for every H ∈ Hd, and let ζ
be any function in ω(1). Consider an instance (G, k) of Independent Set and let d be the minimum value
for which G is Hd-free. The Independent Set problem is W[1]-hard parameterized by d and cannot be solved
in no(d) time, unless the ETH fails. Furthermore, no do(1)-approximation can be computed in f(d)nO(1) time
under ETH, and no independent set of size ζ(d) can be computed in f(d)nζ(d) time under the deterministic
Gap-ETH.

5 In the conference version of this paper [19] we mistakenly claimed our reduction excludes an algorithm with running
time f(k) · no(k).

4

We also study the special case when H = K1,d and consider the inapproximability of the problem
parameterized by both α(K1,d) = d and k. Unfortunately, for the parameterized version we do not obtain a
clear-cut statement as in Theorem 4, since in the following theorem d cannot be chosen independently of k
in order to obtain an inapproximability gap.

Proposition 2. Let ε > 0 be any constant, ξ(k) = 2(log k)1/2+ε

, and ζ be any function in ω(1). The In-
dependent Set problem in K1,d-free graphs has no d/ξ(k)- and no d/ζ(k)-approximation algorithm with
runtime f(d, k) · nO(1) for any computable function f , unless the deterministic Gap-ETH or the Strongish
Planted Clique Hypothesis fails, respectively.

Note that this in particular shows that if we allow d to grow as a polynomial kε for any constant 0 <
ε < 1/2, then no kδ-approximation is possible for any δ < ε (since ξ(k) = ko(1)), under the deterministic
Gap-ETH. Under the Strongish Planted Clique Hypothesis, we can even allow d to grow arbitrarily slowly in
k and still get an approximation lower bound. This indicates that the (d−1

2 + δ)-approximation for K1,d-free
graphs [28] is likely to be best possible (up to sub-polynomial factors), even when parameterizing by k and d.
The proofs of Proposition 1 and Proposition 2 can be found in Section 6.

2 Preliminaries

All our hardness results for Independent Set are obtained by reductions from some variant of the Max-
imum Colored Subgraph Isomorphism (MCSI) problem. This optimization problem has been widely
studied in the literature, both to obtain polynomial-time and parameterized inapproximability results, but
also in its decision version to obtain parameterized runtime lower bounds. We note that by applying standard
transformations, MCSI contains the well-known problems Label Cover [32] and Binary CSP [35]: for
Binary CSP the graph J is a complete graph, while for Label Cover J is usually bipartite.

Maximum Colored Subgraph Isomorphism (MCSI)
Input: A graph G, whose vertex set is partitioned into subsets V1, . . . , Vℓ, and a graph J on vertex set

{1, . . . , ℓ}.
Goal: Find an assignment φ : V (J) → V (G), where φ(i) ∈ Vi for every i ∈ [ℓ], that maximizes the number

S(φ) of satisfied edges, i.e.,
S(φ) :=

∣
∣
{
ij ∈ E(J) | φ(i)φ(j) ∈ E(G)

}∣
∣.

Given an instance Γ = (G, V1, . . . , Vℓ, J) of MCSI, we refer to the number of vertices of G as the size
of Γ . Any assignment φ : V (J) → V (G), such that for every i it holds that φ(i) ∈ Vi, is called a solution
of Γ . The value of a solution φ is val(φ) := S(φ)/|E(J)|, i.e., the fraction of satisfied edges. The value of the
instance Γ , denoted by val(Γ), is the maximum value of any solution of Γ .

When considering the decision version of MCSI, i.e., determining whether val(Γ) = 1 or val(Γ) < 1,
a classic hardness result for Multicolored Clique (i.e., if J is a complete graph) implies that that
under the Exponential Time Hypothesis (ETH) the problem cannot be solved in f(ℓ) · no(ℓ) time for any
computable function f . For the optimization version of MCSI, an α-approximation is a solution φ with
val(φ) ≥ 1/α. When J is a complete graph, a result by Dinur and Manurangsi [17,18] states that there is

no ℓ/ξ(ℓ)-approximation algorithm, where ξ(ℓ) = 2(log ℓ)1/2+ε

= ℓo(1) for any constant ε > 0, with runtime
f(ℓ) · nO(1) for any computable function f , unless the deterministic Gap-ETH fails (see Theorem 13). This
hypothesis assumes that there exists some constant δ > 0 such that no deterministic 2o(n) time algorithm
for 3-SAT can decide whether all or at most a (1− δ)-fraction of the clauses can be satisfied. A recent result
by Manurangsi [38] uses an even stronger assumption, which also rules out randomized algorithms, and in
turn obtains a better runtime lower bound at the expense of a worse approximation lower bound:6 when

6 The result is implicit from [38, Theorem 2.1] by setting t = 2 and using a straight-forward reduction from Label

Cover to MCSI, where each of the ℓ vertices of U is expanded into a colour class and an edge exists if the
respective projected labels are the same for the unique (as t = 2) shared neighbor in V .

5

J is a complete graph, there is no β-approximation algorithm for MCSI with runtime f(ℓ) · no(ℓ) for any
computable function f and any constant β, under the randomized Gap-ETH. This assumes that there exists
some constant δ > 0 such that no randomized 2o(n) time algorithm for 3-SAT can decide whether all or at
most a (1− δ)-fraction of the clauses can be satisfied. Another related conjecture that was recently used to
obtain lower bounds for MCSI where J is a clique, is the Strongish Planted Clique Hypothesis. It states that
no randomized algorithm with runtime no(logn) can find a planted clique of size nδ for some 0 < δ < 1/2 in
a random graph on n vertices. Manurangsi et al. [39] prove that under this conjecture, no f(ℓ) · nO(1) time
algorithm can compute a o(ℓ)-approximation to MCSI (see Theorem 13).

For our results we will often need the special case of MCSI when the graph J has bounded degree. We
define this problem in the following.

Degree-t Maximum Colored Subgraph Isomorphism (MCSI(t))
Input: A graph G, whose vertex set is partitioned into subsets V1, . . . , Vℓ, and a graph J on vertex set

{1, . . . , ℓ} and maximum degree t.
Goal: Find an assignment φ : V (J) → V (G), where φ(i) ∈ Vi for every i ∈ [ℓ], that maximizes the number

S(φ) of satisfied edges, i.e.,
S(φ) :=

∣
∣
{
ij ∈ E(J) | φ(i)φ(j) ∈ E(G)

}∣
∣.

The bounded degree case has been considered before, and we harness some of the known hardness results
for MCSI(t) in our proofs. First, a reduction of Marx [40] implies that assuming the ETH, MCSI(3)
cannot be solved in time f(ℓ) · no(ℓ/ log ℓ), for any computable function f (see also Marx and Pilipczuk [41,
Theorem 5.5]). We also use a polynomial-time approximation lower bound given by Laekhanukit [32], where t
can be set to any constant and the approximation gap depends on t (see Theorem 7). The complexity
assumption of this reduction is that NP-hard problems do not have polynomial time Las Vegas algorithms,
i.e., NP 6= ZPP. For parameterized approximations, we use a result by Lokshtanov et al. [35], who obtain
a constant approximation gap for the case when t = 3 (see Theorem 9). It seems that this result for
parameterized algorithms is not easily generalizable to arbitrary constants t so that the approximation gap
would depend only on t, as in the result for polynomial-time algorithms provided by Laekhanukit [32]: neither
the techniques found in [32] nor those of [35] seem to be usable to obtain an approximation gap that depends
only on t but not the parameter ℓ. However, we develop a weaker parameterized inapproximability result
for the case when t ≥ ξ(ℓ) = ℓo(1) or t ≥ ζ(ℓ) = ω(1) (see Theorem 11 in Section 6), and use it to prove
Proposition 2.

3 Approximation for Ka,b-free Graphs

In this section we give a polynomial-time O
(
(a+b)1/a·α(G)1−1/a

)
-approximation algorithm for Independent Set

on Ka,b-free graphs, where α(G) is the size of a maximum independent set in the input graph G. The al-
gorithm is a generalization of a known local search procedure. Note that it asymptotically matches the
approximation factor of the (d−1

2 + δ)-approximation algorithm for K1,d-free graphs of Halldórsson [28] by
setting a = 1 and b = d. We note here that the following theorem was independently discovered by Bonnet,
Thomassé, Tran, and Watrigant [8].

Theorem 3. Given a Ka,b-free graph G, an O
(
(a + b)1/a · α(G)1−1/a

)
-approximation can be computed in

nO(a) time.

Proof. The algorithm first computes a maximal independent set I ⊆ V (G) in the given graph G, which can
be done in linear time using a simple greedy approach. Since I is maximal, every vertex in V (G) \ I has at
least one neighbor in I. Now, we consider the vertices in V (G)\I that are neighbors to at most a−1 vertices
of I, and call this set V1. Let C ⊆ I be a set of size c ∈ [a − 1], and let VC := {v ∈ V1 | N(v) ∩ I = C}.
If the graph induced by VC ∪ C contains an independent set I ′ of size |C| + 1, then we can find it in time
nO(|C|+1) = nO(a). Furthermore, (I \ C) ∪ I ′ is an independent set, since no vertex of VC ∪ C is adjacent to

6

any vertex of I \ C, and (I \ C) ∪ I ′ is larger by one than I. Thus the algorithm replaces I \ C by I ′ in I.
The algorithm repeats this procedure until the largest independent set in each subgraph induced by a set
VC ∪ C (defined for the current I) is of size at most |C|. At this point the algorithm outputs I.

Let k = |I| be the size of the output at the end of the algorithm. We claim that α(G) ≤ (a − 1)ka−1 +

(b − 1)ka = O
(
(a + b)ka

)
and this would prove the theorem, since then k = Ω

(
(α(G)
a+b)

1/a
)
, which implies

that I is an O
(
(a+ b)1/a · α(G)1−1/a

)
-approximation.

To show the claim, first note that the family
{
VC | C ⊆ I and |C| ∈ [a− 1]

}
is a partition of V1 into at

most
∑a−1

c=1

(
k
c

)
many sets. For each relevant C, no subgraph induced by a set VC∪C contains an independent

set larger than |C|, and thus if I∗ denotes a maximum independent set of G, then
∣
∣(VC ∪ C) ∩ I∗

∣
∣ ≤ |C|.

Thus,

∣
∣(V1 ∪ I) ∩ I∗

∣
∣ ≤

a−1∑

c=1

c

(
k

c

)

=

a−1∑

c=1

k

(
k − 1

c− 1

)

≤
a−1∑

c=1

kc ≤ (a− 1)ka−1.

Now consider the remaining set V2 := V (G) \ (V1 ∪ I), and observe that every v ∈ V2 has at least a
neighbors in I due to the definition of V1. For each D ⊆ I with |D| = a, we construct a set VD by fixing
an arbitrary subset S(v) ⊆ (N(v) ∩ I) of size a for every v ∈ V2, and putting v into VD if and only if
S(v) = D. Observe that these sets VD form a partition of V2 of size at most

(
k
a

)
. We claim that each VD

induces a subgraph of G for which every independent set has size less than b. Assume not, and let I ′ be an
independent set in VD of size b. But then D∪I ′ induces a Ka,b in G, since every vertex of I ′ ⊆ VD is adjacent
to every vertex of D ⊆ I. As this contradicts the fact that G is Ka,b-free, we have |VD ∩ I∗| ≤ b − 1, and

consequently |V2 ∩ I∗| ≤ (b − 1)
(
k
a

)
≤ (b − 1)ka. Together with the above bound on the number of vertices

of I∗ in V1 ∪ I we get
α(G) = |I∗| ≤ (a− 1)ka−1 + (b− 1)ka,

which concludes the proof.

4 Polynomial Time Inapproximability in K1,d-free Graphs

In this section, we show polynomial time approximation lower bounds for Independent Set on K1,d-free
graphs.

Theorem 4. There is a constant d⋆ and a function β = Θ(d/ log d) such that for any d ≥ d⋆ the Indepen-
dent Set problem does not admit a polynomial time β-approximation algorithm in K1,d-free graphs, unless
ZPP = NP.

For that, we reduce from the MCSI(t) problem, and leverage the lower bound by Laekhanukit [32,
Theorem 6]. Let us point out that the original statement of the lower bound by Laekhanukit [32] is in terms
of the Label Cover problem, but, as we already mentioned, this is a special case of MCSI.

Theorem 7 (Laekhanukit [32]). Let Γ = (G, V1, . . . , Vℓ, J) be an instance of MCSI(t) where J is a
bipartite graph. Assuming ZPP 6= NP, there exist constants t⋆ and c such that for any constant ε > 0 and
any t ≥ t⋆, there is no polynomial time algorithm that can distinguish between the two cases:
1. (YES-case) val(Γ) ≥ 1− ε, and
2. (NO-case) val(Γ) ≤ c log(t)/t+ ε.

We use a standard reduction from MCSI to Independent Set, which can be seen as a variant of the
so-called FGLSS-graph [22]. For instances of MCSI(t) with bounded degree t gives the following lemma.

Lemma 1. Let Γ = (G, V1, . . . , Vℓ, J) be an instance of MCSI(t). Given Γ , in polynomial time we can
construct an instance G′ of Independent Set such that
1. G′ does not have K1,d as an induced subgraph for any d ≥ 2t+ 2,
2. if val(Γ) ≥ µ then G′ has an independent set of size at least µ|E(J)|, and

7

3. if val(Γ) ≤ ν then every independent set of G′ has size at most ν|E(J)|.

Proof. We first describe the construction of G′ given Γ = (G, V1, . . . , Vℓ, J), where we denote by Eij the
edge set between Vi and Vj for each edge ij ∈ E(J). The graph G′ has a vertex ve for each edge e of G,
an edge between ve and vf if e, f ∈ Eij for some ij ∈ E(J), and an edge between ve and vf if e ∈ Eij and
f ∈ Eij′ and e and f do not share a vertex in G for some three vertices i, j, j′ ∈ [ℓ] of J such that ij ∈ E(J)
and ij′ ∈ E(J). Note that the vertex set V ′

ij = {ve ∈ V (G′) | e ∈ Eij} induces a clique in G′. This finishes
the construction of G′. See Figure 1 for better understanding of the construction.

G G′

Vi VjVj′

a

b

c

d

va

vb

vc

vd

Fig. 1. Example of the construction of the graph G′ from G for J being a path on 3 vertices.

To see the first part of the lemma, for the sake of contradiction, let us suppose G′ has a K1,d as an induced
subgraph for d ≥ 2t+ 2. We know that for any e ∈ E(J) the vertices in V ′

e form a clique in G′, so the star
K1,d can intersect with a fixed V ′

e in at most two vertices of which one must be the center vertex of K1,d with
degree d. As K1,d has d + 1 vertices, this means there are (at least) d distinct vertex sets V ′

e1 , V
′
e2 , . . . , V

′
ed

of G that intersect the K1,d for some edges e1, e2, . . . , ed ∈ E(J). Without loss of generality, let the center
vertex of the K1,d come from V ′

e1 . Note that the K1,d has an edge between a vertex from V ′
e1 and a vertex

from V ′
ez for each z ∈ {2, . . . , d}. Hence if e1 = jj′, we have that either j ∈ ez or j′ ∈ ez for every z ∈ [d]

by the construction of G′. This means that either j or j′ has at least (d− 1)/2 neighbours in J . That is, the
maximum degree of J is at least (d− 1)/2. As d ≥ 2t+ 2, we obtain that the maximum degree of J is more
than t, which is a contradiction with the definition of MCSI(t).

Now, to see the second claim of the lemma, first we need to show that if val(Γ) ≥ µ, then G′ has an
independent set of size at least µ|E(J)|. To see that, let φ : V (J) → V (G) be a mapping that satisfies at
least a µ-fraction of the edges of E(J). We claim that S = {vuw ∈ V ′

ij | ij ∈ E(J), φ(i) = u, φ(j) = w} is an
independent set of size at least µ|E(J)| in G′. Since φ satisfies at least µ-fraction of edges, S has size at least
µ|E(J)|. So all we need to show is that S is indeed an independent set. Suppose it was not the case, i.e.,
there exist ve, vf ∈ S that are adjacent in G′. By construction of G′ there can be an edge between ve and vf
only if e ∈ Eij and f ∈ Eij′ where possibly j = j′. Note that φ(i) = u ∈ Vi is a common endpoint of both
e and f . If indeed j = j′, then φ(j) = w ∈ Vj is also a common endpoint of both e and f , so that e = f ,
i.e., ve and vf are not distinct. Hence it must be that j 6= j′. But in this case, the construction of G′ implies
that e and f do not share a vertex, which contradicts the fact that they have u as a common endpoint.

For the third part of the lemma, we prove the contrapositive: we claim that if G′ has an independent set
S of size k ≥ ν|E(J)|, then there exists an assignment φ : V (J) → V (G) satisfying at least k edges in Γ . To
see that, first observe that the set S can contain at most one vertex from V ′

e as any two vertices in V ′
e are

adjacent. Let ES := {e ∈ E(J) | S ∩V ′
e 6= ∅}, for which we then have |ES | = |S|. We claim that all the edges

in ES can be satisfied by an assignment φ defined as follows. For ij ∈ ES , let S ∩ V ′
ij = {vuw}. Then we set

φ(i) = u and φ(j) = w. We need to show that the function φ is well-defined. Suppose some vertex i ∈ V (J)
gets mapped to more than one vertex of V (G) by φ. This must mean that there exist two edges in G that
contain one endpoint in Vi and are in ES . But this would mean that the two vertices in S corresponding
to these two edges in ES are adjacent due to the construction of G′. This is a contradiction to S being an
independent set. Also, φ(i)φ(j) ∈ E(G) for all ij ∈ ES , since for each vuw we have uw ∈ E(G), and we have
set φ(i) = u and φ(j) = w. This concludes the proof.

8

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Assume there was a polynomial time algorithm A to approximate the Independent
Set problem within a factor 1−ε

c log(t)/t+ε for some ε > 0 in K1,d-free graphs, where t = ⌊d
2 − 1⌋ ≥ t⋆, and

c is the constant given by Theorem 7. Given an instance Γ = (G, V1, . . . , Vℓ, J) of MCSI(t) and ε, we can
reduce it to an instance of Independent Set in K1,d-free graphs in polynomial time by using the reduction
of Lemma 1. Now, setting µ = 1 − ε and ν = (c log(t)/t) + ε in the statement of Lemma 1, this gives that
given an instance Γ of MCSI(t) and ε, we can now use A to differentiate between the YES- and NO-cases
of Theorem 7 in polynomial time, which would mean that ZPP = NP. As 1−ε

c log(t)/t+ε = O(d/ log d), this

implies Theorem 4, where d⋆ is the constant for which ⌊d⋆

2 − 1⌋ = t⋆.

5 Parameterized Approximation for Fixed H

In this section we prove Theorem 5 and Theorem 6, that follows from Theorem 5 using a gap amplification.
Thus, we first prove Theorem 5. Let us define an auxiliary family of classes of graphs: for integers 4 ≤ a ≤ b
and c ≥ 3, let H([a, b], c) be a family of graph consists of K1,c and cycles Cp for all p ∈ [a, b]. Further, let
C([a, b], c) be a class of H([a, b], c)-free graphs. Let T (b′) be the class of trees with two vertices of degree at
least 3 at distance at most b′. Let C∗([a, b], c) ⊆ C([a, b], c) be the set of those G ∈ C([a, b], c), which are are
also T (⌈ b−1

2 ⌉)-free, i.e., C∗([a, b], c) consists of H([a, b], c)∪T (⌈ b−1
2 ⌉)-free graphs. Actually, we will prove the

following theorem, which implies Theorem 5.

Theorem 8. Let z ≥ 5 be a constant. The following lower bounds hold for the Independent Set problem
on graphs G ∈ C∗([4, z], 5) ∪ C([5, z], 4) with n vertices.
1. For any computable function f , there is no f(k) ·no(k/ log k)-time algorithm that determines if α(G) ≥ k,

unless the ETH fails.
2. There exists a constant γ > 0, such that for any computable function f , there is no f(k) · nO(1)-time

algorithm that can distinguish between the two cases: α(G) ≥ k, or α(G) < (1 − γ) · k, unless the
deterministic Gap-ETH fails.

3. There exists a constant γ > 0, such that for any computable function f , there is no f(k) · no(
√
k)-time

algorithm that can distinguish between the two cases: α(G) ≥ k, or α(G) < (1 − γ) · k, unless the
randomized Gap-ETH fails.

The proof of Theorem 8 consists of two steps: first we will prove it for graphs in C∗([4, z], 5), and then for
graphs in C([5, z], 4). In both proofs we will reduce from the MCSI(3) problem. Let Γ = (G, V1, . . . , Vℓ, J)
be an instance of MCSI(3). For ij ∈ E(J), by Eij = Eji we denote the set of edges between Vi and Vj . Note
that we may assume that J has no isolated vertices, each Vi is an independent set, and Eij 6= ∅ if and only
if ij ∈ E(J).

Lokshtanov et al. [35] gave the following hardness result (the first statement actually follows from
Marx [40] and Marx, Pilipczuk [41]). We note that Lokshtanov et al. [35] conditioned their result on the
Parameterized Inapproximability Hypothesis (PIH) and W[1] 6= FPT. Here we use stronger assumptions, i.e.,
the deterministic and randomized Gap-ETH, which are more standard in the area of parameterized approx-
imation. The reduction in [35] yields the following theorem, when starting from [17,18] and [38], respectively
(see also [11, Corollary 7.9]).

Theorem 9 (Lokshtanov et al. [35]). Consider an arbitrary instance Γ = (G, V1, . . . , Vℓ, J) of MCSI(3)
with size n.
1. Assuming the ETH, for any computable function f , there is no f(ℓ) ·no(ℓ/ log ℓ) time algorithm that solves

Γ .
2. Assuming the deterministic Gap-ETH there exists a constant γ > 0, such that for any computable

function f , there is no f(ℓ) ·nO(1) time algorithm that can distinguish between the two cases: (YES-case)
val(Γ) = 1, and (NO-case) val(Γ) < 1− γ.

9

3. Assuming the randomized Gap-ETH there exists a constant γ > 0, such that for any computable function

f , there is no f(ℓ)·no(
√
ℓ) time algorithm that can distinguish between the two cases: (YES-case) val(Γ) =

1, and (NO-case) val(Γ) < 1− γ.

5.1 Hardness for (C4, C5 . . . , Cz,K1,5,T (⌈z−1

2
⌉))-free Graphs

First, let us show Theorem 8 for C∗([4, z], 5), i.e., for (C4, C5 . . . , Cz,K1,5, T (s))-free graphs for s = ⌈ z−1
2 ⌉.

Let Γ = (G, V1, . . . , Vℓ, J) be an instance of MCSI(3). We aim to build an instance (G′, k) of Independent
Set, such that the graph G′ ∈ C∗([4, z], 5).

For each ij ∈ E(J), we introduce a clique Cij of size |Eij |, whose every vertex represents a different
edge from Eij . The cliques constructed at this step will be called primary cliques, note that their number is
|E(J)|. Choosing a vertex v from Cij to an independent set of G′ will correspond to mapping i and j to the
appropriate endvertices of the edge from Eij , corresponding to v.

Now we need to ensure that the choices in primary cliques corresponding to edges of G are consistent.
Consider i ∈ V (J) and suppose it has three neighbors j1, j2, j3 (the cases if i has fewer neighbors are dealt
with analogously). We will connect the cliques Cij1 , Cij2 , Cij3 using a gadget called a vertex-cycle, whose
construction we describe below. For each a ∈ {1, 2, 3}, we introduce s copies of Cija and denote them by
D1

ija
, D2

ija
, . . . , Ds

ija
, respectively. Let us call these copies secondary cliques. The vertices of secondary cliques

represent the edges from Eija analogously as the ones of Cija . We call primary and secondary cliques as base
cliques. We connect the base cliques corresponding to the vertex i ∈ V (J) into vertex-cycle Ci. Imagine that
secondary cliques, along with primary cliques Cij1 , Cij2 , Cij3 , are arranged in a cycle-like fashion, as follows:

Cij1 , D
1
ij1 , D

2
ij1 , . . . , D

s
ij1 , Cij2 , D

1
ij2 , D

2
ij2 , . . . , D

s
ij2 , Cij3 , D

1
ij3 , D

2
ij3 , . . . , D

s
ij3 , Cij1 .

This cyclic ordering of cliques constitutes the vertex-cycle, let us point out that we treat this cycle as a
directed one. As we describe below we put some edges between two base cliques B1 and B2 only if they
belong to some vertex-cycle Ci. See Figure 2 for an example of how we connect base cliques.

Now, we describe how we connect the consecutive cliques in Ci. Recall that each vertex v of each clique
represents exactly one edge uw of G, whose exactly one vertex, say u, is in Vi. We extend the notion of
representing and say that v represents u, and denote it by ri(v) = u.

Let us fix an arbitrary ordering ≺i on Vi. Now, consider two consecutive cliques of the vertex-cycle. Let
v be a vertex of the first clique and v′ be a vertex from the second clique, and let u and u′ be the vertices of
Vi represented by v and v′, respectively. The edge vv′ exists in G′ if and only if u ≺i u

′. See Figure 3 how
we connect two consecutive base cliques in a vertex-cycle. This finishes the construction of Ci.

We introduce a vertex-cycle Ci for every vertex i of J , note that each primary clique Cij is in exactly two
vertex-cycles: Ci and Cj . The number of all base cliques is

k := |E(J)|
︸ ︷︷ ︸

primary
cliques

+
∑

i∈V (J)
degJ(i) · s

︸ ︷︷ ︸

secondary cliques

= |E(J)| ·
(

1 +
s

2

)

≤ 3ℓ

2
·
(

1 +
s

2

)

= O(ℓ).

Cij

Cij1

D1

ij

D2

ij

D2

ji1

D1

ji1

Cji1

Cij2

D2

ij2

D1

ij2

D1

ji

Cji2

D2

ji

D1

ij1

D2

ij1

D2

ji2

D1

ji2

Ci Cj

G′J

i j

i1

i2

j1

j2

Fig. 2. A part of the construction of G′ for s = 2. Cliques Cab representing edge sets Eab ⊆ E(G) are connected
through secondary cliques Dp

ab.

10

This concludes the construction of (G′, k). Since V (G′) is partitioned into k base cliques, k is an upper bound
on the size of any independent set in G′, and a solution of size k contains exactly one vertex from each base
clique.

We claim that the graph G′ is in the class C∗([4, z], 5). Moreover, if val(Γ) = 1, then the graph G′ has an
independent set of size k and if the graph G′ has an independent set of size at least (1−γ′) ·k for γ′ = γ

6+3s ,
then val(Γ) ≥ 1− γ. By Theorem 9, we conclude Theorem 8 holds for the class C∗([4, z], 5).

Now, we will prove our claims about G′. For two distinct base cliques B1, B2, by E(B1, B2) we denote the
set of edges with one endvertex in B1 and another in B2. We say that B1, B2 are adjacent if E(B1, B2) 6= ∅.

Claim 5.1. Let B1, B2 be two distinct base cliques in G′. Then the size of a maximum induced matching in
the graph induced by E(B1, B2) is at most 1.

Proof. If E(B1, B2) is empty, then the lemma holds trivially. Consider two disjoint edges e = v1v2 and
e′ = v′1v

′
2 in E(B1, B2), where v1, v

′
1 ∈ B1 and v2, v

′
2 ∈ B2. We prove that there is an edge f ∈ E(B1, B2)

such that f intersect both e and e′.
By construction, B1 and B2 are consecutive cliques in a vertex-cycle Ci for some i ∈ V (J). Assume that

B2 is the successor of B1 on this cycle. Recall that each v ∈ {v1, v′1, v2, v′2} represents some vertex ri(v) ∈ Vi.
Since v1v2, v

′
1v

′
2 ∈ E(G′), we observe that ri(v1) ≺i ri(v2) and ri(v

′
1) ≺i ri(v

′
2). Thus, at least one of the

following holds ri(v1) ≺i ri(v
′
2) or ri(v

′
1) ≺i ri(v2). Therefore, at least one of the edges v1v

′
2 or v′1v2 exists

in G′.

Claim 5.2. The graph G′ is (C4, . . . , Cz)-free.

Proof. For contradiction, suppose that there exists an induced cycle K in G′ with consecutive vertices
(v1, v2, . . . , vp), where p ∈ [4, z]. Note that two consecutive vertices of K might be in the same base clique,
or two adjacent base cliques. Furthermore, no non-consecutive vertices of K may be in one base clique.

Note that each vertex-cycle in G′ has at least 2s + 2 > z base cliques. Moreover, if K contains vertices
of more than on vertex-cycle, then it has to contains a vertices of at least 4 primary cliques. Thus, the the
length of K would be larger than 4s + 4 > z. Therefore, we conclude that K cannot intersect more than
two base cliques. It cannot intersect one base clique, as p > 3, so suppose that K intersects exactly two base
cliques B1 and B2. Observe that this means that p = 4 and v1, v2 ∈ B1, while v3, v4 ∈ B2. However, by
Claim 5.1, we observe that either v1 and v3, or v2 and v4, are adjacent in G′, so K is not induced.

Claim 5.3. The graph G′ is K1,5-free.

Proof. By contradiction suppose that the set {v, v1, v2, v3, v4, v5} ⊆ V (G′) induces a copy of K1,5 in G′ with
v being the central vertex. Let B be the base clique containing v. Since each of v1, v2, v3, v4, v5 must be in
a different base clique and B is adjacent to at most four other base cliques, we conclude that one of va’s,
say v5, belongs to B. For a ∈ [4], let Bi be the base clique containing ua. Furthermore, note that B must
be a primary clique, say B = Cij , since only those ones are adjacent to four base cliques. Therefore two

u1

u2

u3

u4

u5

u1

u2

u3

u4

u5

D1 D2

Fig. 3. Example of edges between two consecutive cliques B1 and B2 in a vertex-cycle Ci, where Vi = {u1, . . . , u5}.
Each region marked with ub in B1 and B2 contains vertices corresponding to edges of Eij ⊆ E(G) incident to ub.
Thus, the vertices from the region ub in B1 are connected to the vertices of regions ub′ in B2 for all b′ > b. For
simplicity, we depicted only edges incident to regions b2 and b4 in B1 .

11

of Ba’s, say B1 and B2, must belong to the vertex-cycle Ci. Let B1 precede B, and B2 succeed B on this
cycle. Consider the vertices ri(v), ri(v1), ri(v2), ri(v5) and recall that since v is adjacent to v1, v2, we have
ri(v1) ≺i ri(v) ≺i ri(v2). However, v5 is non-adjacent to v1, v2, which means that ri(v2) ≺i ri(v5) ≺i ri(v1),
which is a contradiction, since ≺i is transitive.

Claim 5.4. Let T ∈ T (s). Then, the graph G′ is T -free.

Proof. Suppose that G′ contains T as an induced subgraph. Let v, v′ ∈ V (T) such that degT (v), degT (v
′) ≥ 3

and distT (v, v
′) ≤ s. Note that any two primary cliques are at distance at least s+1. Thus, v and v′ can not

be both in primary cliques. Without loss of generality, let v be in a secondary clique D of a vertex-cycle Ci.
There are only two base cliques B1 and B2 adjacent to the secondary clique D. Let v1, v2 and v3 be distinct
neighbors of v in T . Since v1, v2, and v3 form an independent set in T , they have to be in distinct base cliques
in G. Thus, we can suppose v1 ∈ V (B1), v2 ∈ V (B2) and v3 ∈ V (D). However, by the same argument as in
proof of Claim 5.3 these four vertices v, v1, v2, and v3 cannot exist.

Claim 5.5. If val(Γ) = 1, then the graph G′ has an independent set of size k.

Proof. Let φ be a solution of Γ of value 1, i.e., for each ij ∈ E(J) holds that φ(i)φ(j) is an edge of G. We
will find an independent set I in G′ of size k. For each ij ∈ E(J) we add to the set I the vertex from the
primary clique Cij which represents the edge φ(i)φ(j). Thus, we pick one vertex from each primary clique.
Recall that each secondary clique D is a copy of some primary clique C. If we pick a vertex v from C, then
we add to I also a copy of v from D. Thus, we add one vertex from each base clique to the set I and therefore
|I| = k.

We claim that I is independent. Suppose there exist v, v′ ∈ I such that vv′ ∈ E(G′). Let v ∈ V (B1)
and v′ ∈ V (B2) for some base cliques B1 and B2. First, suppose that B1 and B2 are copies of the same
primary clique Cij (or one of them is the primary clique itself and the second one is the copy)7. Thus, the
vertices v and v′ represent the same edge in Eij and by construction, vertices in primary and secondary
cliques representing the same edge in Eij are not adjacent.

Therefore B1 = Ds
ij1

and B2 = Cij2 (or vice versa) for some edges ij1 and ij2 in E(J). Edges between B1

and B2 were added according to the ordering ≺i of vertices in Vi. Note that the vertices v and v′ represent
edges φ(i)φ(j1) and φ(i)φ(j2). Thus, ri(v) = φ(i) = ri(w). Since v and v′ are adjacent in G′, it holds that
ri(v) ≺i ri(v

′) by construction, which is a contradiction with ri(v) = ri(v
′). Therefore, I is an independent

set.

Claim 5.6. Let γ > 0. If the graph G′ has an independent set of size at least (1− γ′) · k for γ′ = γ
6+3s , then

val(Γ) ≥ 1− γ.

Proof. Let
– I be a maximum independent set of G′ of size at least (1− γ′) · k,
– i be a vertex of J , and suppose its degree is 3 (the case of vertices of smaller degree is treated analogously),
– j1, j2, j3 be the neighbors of i in J ,
– Ii be an intersection of I and vertices of cliques in Ci.

Suppose that |Ii| = 3s + 3, i.e., I intersects each clique in Ci. Let v1, v2, v3 be vertices of intersections of I
and Cij1 , Cij2 , and Cij3 , respectively. We claim that ri(v1) = ri(v2) = ri(v3).

Denote the consecutive cliques of Ci by B1, B2, . . . , B3s+3. Recall that two cliques in Ci are adjacent if
and only if they are consecutive. For p ∈ [3s+3] let v′p be the unique vertex in I∩V (Bp). Define a relation �i

on Vi, such that v �i v
′ iff v 6≺i v

′. Since ≺i is a total order on Vi, we have that v �i v
′ iff v′ ≺i v or v = v′.

Since v′1, . . . , v
′
3s+3 are pairwise nonadjacent, it holds that ri(v

′
1) �i ri(v

′
2) �i · · · �i ri(v

′
3s+3) �i ri(v

′
1)

by construction. This implies that all vertices v′p represent the same vertex u ∈ Vi, in particular, ri(v1) =
ri(v2) = ri(v3) = u.

Now, if |Ii| = 3s + 3, we define φ(i) = u (where u is as in the previous paragraph). If |Ii| < 3s + 3
we define φ(i) arbitrarily. Vertices i′ ∈ V (J) of degree 2 are processed similarly, however the size of Ii′ is

7 The possibilities for {B1, B2} are: {Cij , D
1
ij} or {Dp

ij , D
p+1
ij } for p < s.

12

compared to value 2s+ 2. We say that the set Ii is complete if |Ii| = (s+ 1) · deg(i). Thus, if Ii and Ij are
complete, then φ(i)φ(j) is an edge of G.

Let Q ⊆ V (J) be a set of vertices i of J such that Ii is not complete. Note that a primary clique Cij is in
two vertex-cycles of base cliques Ci and Cj and each secondary clique is in exactly one vertex-cycle of base
cliques. Since there are fewer than γ′ · k base cliques B such that I ∩ B = ∅, the set Q has size less than
2γ′ · k. The vertices in Q are incident to at most 6γ′ · k edges in J , and all remaining edges of J are satisfied
by φ. Therefore,

val(Γ) ≥ |E(J)| − 6γ′ · k
|E(J)| = 1− 6γ′ ·

(

1 +
s

2

)

= 1− γ.

This completes the proof of Theorem 8 in this case.

5.2 Hardness for (C5 . . . , Cz,K1,4)-free Graphs

In this section we show Theorem 8 for C([5, z], 4), i.e., for (C5 . . . , Cz,K1,4)-free graphs. The proof is similar
to the case of C∗([4, z], 5). Let Γ = (G, V1, . . . , Vℓ, J) be an instance of MCSI(3), we will create an instance
(G′, k) of Independent Set, where G′ ∈ C(5, z, 4). Consider an edge ij of J . We introduce four primary
cliques C1

ij , C
2
ij , C

3
ij , C

4
ij , each of size |Eij |. For each q ∈ [4], each vertex v of Cq

ij represents one edge in Eij ,
denote this edge by r′(v).

For each q ∈ [4], we create s := ⌈(z − 3)/4⌉ copies of Cq
ij , denoted by Dq,1

ij , . . . , Dq,s
ij . Each vertex of a

copy represents the same edge as the corresponding vertex in Cq
ij . The cliques created in this step will be

called cycle cliques. Again, we imagine that the primary and cycle cliques are arranged in a cyclic way and
constitute the edge-cycle corresponding to ij:

C1
ij , D

1,1
ij , . . . , D1,s

ij , C2
ij , D

2,1
ij , . . . , D2,s

ij , C3
ij , D

3,1
ij , . . . , D3,s

ij , C4
ij , D

4,1
ij , . . . , D4,s

ij , C1
ij .

Note that all cliques in the edge-cycle are identical. We fix some arbitrary ordering ≺ij on Eij , For each two
consecutive cliques B1 and B2 of the edge-cycle, where B1 precedes B2, and for any vertex v1 from B1 and
any vertex v2 from B2, we make v1v2 adjacent in G′ if and only if r′(v1) ≺ij r

′(v2).
After repeating the previous step for every edge ij of J , we arrive at the point that G′ consists of separate

edge-cycles, one for each edge of J . Since J has maximum degree 3, each edge of J intersects at most 4 other
edges. So for each pair of intersecting edges ij and ij′ we can assign a pair of primary cliques, one in the
edge-cycle corresponding to ij, and the other one in the edge-cycle corresponding to ij′, so that no primary
clique is assigned twice.

Consider two edges of J , that share a vertex, say edges ij and ij′, and suppose the primary cliques chosen
in the last step are Cp

ij and Cq
ij′ . We need to provide some connection between these cliques, to make the

choices for edges ij and ij′ consistent. Let us arbitrarily choose one of cliques Cp
ij and Cq

ij′ , say Cp
ij , and

create s copies of it, denote these cliques by F 1
ijj′ , F

2
ijj′ , . . . , F

s
ijj′ (again, the represented edges are inherited

from the primary clique). We call these cliques equality cliques. We build an equality gadget by arranging
these cliques in a sequence as follows:

Cp
ij , F

1
ijj′ , F

2
ijj′ , . . . , F

s
ijj′ , C

q
ij′ .

Consider two consecutive cliques B1 and B2 of this sequence, except for the last pair. These cliques are
identical. Between them we add edges that form an antimatching, i.e., for a vertex v1 of B1 and a vertex v2
of B2, we add an edge v1v2 if and only if r′(v1) 6= r′(v2). Finally, for a vertex v1 of F s

ijj′ and a vertex v2 of
Cq

ij , we add an edge v1v2 if and only if r′(v1) ∩ r′(v2) 6= ∅, i.e., edges represented by these vertices contain
different vertices from Vi.

This completes the construction of G′. By base cliques we mean primary cliques, cycle cliques, and
equality cliques. Let k be the number of all base cliques, i.e.,

k := 4|E(J)|
︸ ︷︷ ︸

primary
cliques

+4s|E(J)|
︸ ︷︷ ︸

cycle
cliques

+
∑

i∈V (J)

(
degJ(i)

2

)

· s

︸ ︷︷ ︸

equality cliques

= O(ℓ).

13

Let us upper-bound k. If ℓ2 and ℓ3 are, respectively, the numbers of vertices of J with degree 2 and 3, then
we obtain

k = 4|E(J)|(s+ 1) + s(ℓ2 + 3ℓ3) ≤
9s

2
· |E(J)|+ 4 ≤ 5s · |E(J)|. (1)

The following claim is proven in an analogous way to Claim 5.2, note that this time we might obtain
induced copies of C4, where two vertices are in an equality clique, and the other two are in a different base
clique in the same equality gadget (either an equality clique or a primary clique).

Claim 5.7. The graph G′ is (C5, . . . , Cz)-free.

The next claim is in turn analogous to Claim 5.3.

Claim 5.8. The graph G′ is K1,4-free.

Proof. Observe that each clique is adjacent to at most three other cliques, and the only cliques adjacent to
three other cliques are primary cliques. So if we hope to find an induced K1,4, the center and one leaf must
be in a primary clique, say Cq

ij , and other three leaves are in distinct base cliques adjacent to Cq
ij . However,

two of cliques adjacent to Cq
ij must belong to the same edge-cycle (and the third one is an equality clique).

Similarly as in the proof of Claim 5.3, we observe that the leaf that belongs to Cq
ij must be adjacent to at

least one of the remaining leaves.

The following claims are analogous to the corresponding claims in Section 5.1. Therefore we provide only
sketches of proofs.

Claim 5.9. If val(Γ) = 1, then the graph G′ has an independent set of size k.

Proof. Consider a solution φ of Γ of value 1. Therefore, for each ij ∈ E(J), the pair φ(i)φ(j) is an edge of G.
Note that this edge is represented by some v in each primary clique Cq

ij . We select those vertices to the set
I. Recall that each remaining clique B (i.e., a cycle clique or an equality clique), is a copy of some primary
clique C. For each such clique B we include to I the vertex, which is a copy of the selected vertex in C.

By an argument analogous to the one in the proof of Claim 5.5 we observe that the selected vertices
belonging to one edge-cycle are pairwise non-adjacent. Furthermore, note that the edges between adjacent
cliques in an equality gadget are defined in a way, so that all selected vertices from cliques in this gadget are
pairwise non-adjacent. Thus, the I is an independent set of size k.

Claim 5.10. Let γ > 0. If the graph G′ has an independent set of size at least (1− γ′) · k for γ′ = γ
45s , then

val(Γ) ≥ 1− γ.

Proof. Consider an independent set I in G of size at least (1− γ′) · k, and a vertex i ∈ V (J). Suppose that
deg(i) = 3 and the neighbors of i in J are j1, j2, j3 (if the degree of i is smaller, the reasoning is analogous).

Let Si be the union of all base cliques corresponding to i, i.e.,

1. belonging to edge-cycles corresponding to ij1, ij2, ij3, and
2. belonging to equality gadgets between these edge-cycles.

Note that the number of cliques in Si is 3 · 4(s+1)+3 · s = 15s+12, and let Ii be the intersection of I with
the vertices of Si. Suppose that the size of Ii is 15s+ 12, i.e., we selected a vertex from each base clique in
Si – we call such Ii complete. By the reasoning analogous to Claim 5.6, we observe that for each of three
edge-cycles in Si, the selected vertices correspond to the same edge of G, denote these edges by e1, e2, e3,
respectively. Furthermore, as in the proof of Claim 5.9, we observe that the edges e1, e2, e3 share a vertex
v ∈ Vi. If Ii is complete, we set φ(i) = v. Otherwise, we set φ(i) arbitrarily.

Let Q be the set of those i, for which Ii is not complete. We observe that each base clique B is in at most
three sets Si. Consider a base clique B. If B is a primary clique or a cycle clique, then it corresponds to
some Eij , and B belongs Si and Sj . In the last case, if B is an equality clique in the equality gadget joining
edge-cycles corresponding to, say, ij1 and ij2, then C belongs to Si,Sj1 ,Sj2 . Summing up, each base clique
belongs to at most three sets Si. Since there are fewer than γ′ · k base cliques B, such that B ∩ I = ∅, we

14

observe that the size of Q is at most 3γ′ · k. The vertices in Q are incident to at most 9γ′ · k edges in J , and
all remaining edges are satisfied by φ. So, using (1), we obtain

val(Γ) ≥ |E(J)| − 9γ′ · k
|E(J)| ≥ 1− 45s · γ′ = 1− γ.

5.3 Refuting Constant-Factor FPT Approximation

In this section we prove Theorem 6. However, as mentioned in Section 1, we need to consider a larger class
than C∗([4, z], 5) to obtain the lower bound. Let P(a, b) be a graph family consisting of cycles Cp for all
p ∈ [a, b] and all trees without twins in T (⌈ b−1

2 ⌉) and let D(a, b) be the class of P(a, b)-free graphs. Note that

C∗([a, b], c) ⊆ D(a, b) as P(a, b) ⊆ H([a, b], c) ∪ T (⌈ b−1
2 ⌉). We will prove the following theorem that implies

Theorem 6.

Theorem 10. Let z ≥ 5 be a constant. Let γ > 0 be a constant and let f : N → N be a computable function.
Unless the deterministic Gap-ETH fails, there is no algorithm, given an n-vertex instance G ∈ D(5, z) and an
integer k, runs in time f(k)·nO(1) and can distinguish between the two cases: α(G) ≥ k, and α(G) < (1−γ)·k.

The idea of the proof is to use the lexicographic product to amplify the approximation factor given by
statement (2) of Theorem 8. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. The lexicographic product
G1 ×ℓ G2 is the graph G = (V,E) such that V = V1 × V2 and (u1, v1)(u2, v2) ∈ E if u1u2 ∈ E1 or u1 = u2

and v1v2 ∈ E2. In other words, the graph G consist of copies Gu
2 of G2, one for each u ∈ V1, and a vertex v1

from Gu1

2 and a vertex v2 from Gu2

2 (for u1 6= u2) are adjacent if and only if u1u2 ∈ E1. We use the following
two properties of the lexicographic product to obtain our result.

Proposition 3 (Geller and Stahl [26]). For graphs G1, G2, it holds that α(G1 ×ℓ G2) = α(G1) · α(G2).

Unfortunately, the lexicographic product does not preserve “H-freeness” for all graphs H ∈ H([a, b], c) ∪
T (b′). Indeed, it might contain a copy of H even if the original graphs were H-free. However, this might
happen only if H has some specific structure, as shown in the next proposition. Note that no graph in
H([a, b], c) and T (b′) contains a triangle and they are all connected.

Proposition 4. Let H be connected, triangle-free graph without twins. Let G1 and G2 be H-free graphs.
Then, G1 ×ℓ G2 is also H-free.

Proof. Suppose for a contradiction that G = G1×ℓG2 contains H as an induced subgraph. As we mentioned
above, G consists of copies Gu

2 of G2 for each u ∈ V1. First, the copy of H cannot be completely contained in
one copy Gu

2 as G2 is H-free. Supose that each copy Gu
2 contains at most one vertex of H. Then, the graph

G1 would contain H as an induced subgraph. Thus, there is a copy Gu1

2 that contains at least two vertices
of H, say w1 = (u1, v2) and w2 = (u1, v2).

The graph H has no twins and the neighbors of w1 and w2 outside of Gu1

2 are the same. Thus, there is
another vertex w3 = (u1, v3) of H in Gu1

2 such that w3 is adjacent to one of the vertices w1 and w2, without
loss of generality say w1. Since the graph H is connected and is not entirely contained in Gu1

2 , there is a
vertex w4 = (u2, v

′) of H in Gu2

2 such that w4 is adjacent to at least one vertex of w1, w2, w3. However, since
at least one edge is present between Gu1

2 and Gu2

2 , there is an edge u1u2 ∈ E(G2) and therefore, there is a
complete bipartite graph between Gu1

2 and Gu2

2 . Thus, w4 is connected to all w1, w2, and w3. Since H is an
induced subgraph of G, the graph H would contain a triangle w1, w3, w4, which is a contradiction.

When we restrict the family C([4, b], c) to the graphs without twins we get exactly a family consisting of
cycles of length at least 5 and at most b, as cycles of length at least 5 do not contain twins and on the other
hand the stars and C4 contain twins. Hence, by restricting the family C∗([4, z], 5) (as used in Theorem 8) to
the graphs without twins we obtain exactly the family P(5, z). Note that graphs in C([5, z], 4) without twins
are in P(5, z) as well.

15

Proof of Theorem 10. Suppose for a contradiction there is a constant γ0 > 0 and an algorithm A with
runtime f(k) · nc for a computable function f and a constant c that for an input graph G ∈ D(5, z) can
distinguish between two cases whether α(G) ≥ k or α(G) < (1 − γ0) · k. Let γ be a constant given by
statement (2) of Theorem 8. Recall that C∗([4, z], 5) ⊆ D(5, z). Thus in particular, there is no algorithm with
runtime f(k) · nO(1) that can distinguish between the cases whether α(G) ≥ k or α(G) < (1− γ) · k (under
the deterministic Gap-ETH).

Let d be the smallest integer such that (1−γ)d ≤ (1−γ0). Now, let Gd be a d-fold lexicographic product
of G with itself, i.e.,

Gd = G×ℓ · · · ×ℓ G
︸ ︷︷ ︸

d

.

Recall that each graph in P(5, z) is connected, triangle-free and without twins, thus by Proposition 4,
Gd ∈ D(5, z) as well. Further by Proposition 3, α(Gd) = α(G)d. Now consider the two cases listed in the
statement. If α(G) ≥ k, then α(Gd) ≥ kd. On the other hand, if α(G) < (1−γ)·k, then α(Gd) < (1−γ)d ·kd ≤
(1− γ0) · kd by the definition of d. Thus, the algorithm A would distinguish the cases whether α(Gd) ≥ kd

or α(Gd) < (1 − γ0) · kd in time f(kd) · nc. Subsequently, we can distinguish between the cases whether
α(G) ≥ k or α(G) ≤ (1− γ) · k in time f(kd) · (nd)c = f ′(k) · nO(1) for a computable function f ′, which is a
contradiction with statement (2) of Theorem 8.

6 Parameterized Approximation with H as a Parameter

In this section we still consider the Independent Set problem in H-free graphs, but now our parameter
is related to the graph H. First, we show Proposition 1. We point out that a similar argument was also
observed by Bonnet [5].

Proposition 1. For any integer d, let Hd be a class of graphs so that α(H) > d for every H ∈ Hd, and let ζ
be any function in ω(1). Consider an instance (G, k) of Independent Set and let d be the minimum value
for which G is Hd-free. The Independent Set problem is W[1]-hard parameterized by d and cannot be solved
in no(d) time, unless the ETH fails. Furthermore, no do(1)-approximation can be computed in f(d)nO(1) time
under ETH, and no independent set of size ζ(d) can be computed in f(d)nζ(d) time under the deterministic
Gap-ETH.

Proof. We will reduce from Multicolored Independent Set, for which the vertices of the input graph
are partitioned into k disjoint sets V1, V2 . . . , Vk, each of which forms a clique. Note that any independent
set can contain at most one vertex from each set Vi where i ∈ {1, . . . , k}. Let Hd be a class of graphs as in
the statement. Set k = d and let G be an instance of Multicolored Independent Set. Let us observe
that the vertex set of G is partitioned into k = d cliques, so G is clearly H-free for every H ∈ Hd.

By simply taking the complement of the input graph, we can easily establish that Multicolored
Independent Set is as hard as MCSI where J is a clique, i.e., the Multicolored Clique problem.
Thus Multicolored Independent Set is W[1]-hard and has no no(k) algorithm, unless the ETH fails [15,
Theorem 13.25 and Corollary 14.23]. Furthermore, by a result of Lin et al. [33] the Multicolored Clique
problem has no ko(1)-approximation in f(k)nO(1) time under ETH, and by Chalermsook et al. [9] no clique
of size ζ(k) can be computed in f(k)nζ(k) time under the deterministic Gap-ETH. From these results the
statement follows.

Now let us consider the Independent Set problem in K1,d-free graphs, parameterized by both k and d. In
this case we are able to give parameterized approximation lower bounds based on the following sparsification
of MCSI.

Theorem 11. Consider an instance Γ = (G, V1, . . . , Vℓ, J) of MCSI(t) with size n. Let ξ(ℓ) = 2(log ℓ)1/2+ε

for any constant 0 < ε < 1/2, and let ζ be any function in ω(1). Given that t > ξ(ℓ) or t > ζ(ℓ), respectively,
for any computable function f , there is no f(ℓ) · nO(1) time algorithm that can distinguish between the two
cases:

16

1. (YES-case) val(Γ) = 1, and
2. (NO-case)

– val(Γ) ≤ ξ(ℓ)/t assuming the deterministic Gap-ETH, and
– val(Γ) ≤ ζ(ℓ)/t assuming the Strongish Planted Clique Hypothesis.

To prove Theorem 11 we need two facts. The first is the Erdős-Gallai theorem on degree sequences, which
are sequences of non-negative integers d1, . . . , dn, for each of which there exists a simple graph on n vertices
such that vertex i ∈ [n] has degree di. We use the following constructive formulation due to Choudum [12].

Theorem 12 (Erdős-Gallai theorem [12]). A sequence of non-negative integers d1 ≥ · · · ≥ dn is a
degree sequence of a simple graph on n vertices if d1 + · · ·+ dn is even and for every 1 ≤ k ≤ n the following
inequality holds:
∑k

i=1 di ≤ k(k− 1) +
∑n

i=k+1 min(di, k). Moreover, given such a degree sequence, a corresponding graph can
be constructed in polynomial time.

We also need parameterized approximation lower bounds for MCSI, as given by Dinur and Manu-
rangsi [17] and Manurangsi et al. [39].

Theorem 13 (Dinur and Manurangsi [17], Manurangsi et al. [39]). Consider an instance Γ =

(G, V1, . . . , Vℓ, J) of MCSI with size n and J a complete graph. Let ξ(ℓ) = 2(log ℓ)1/2+ε

for any constant
0 < ε < 1/2, and let ζ be any function in ω(1). There is no f(ℓ) · nO(1) time algorithm for any computable
function f that can distinguish between the following two cases:
1. (YES-case) val(Γ) = 1, and
2. (NO-case)

– val(Γ) ≤ ξ(ℓ)/ℓ under the deterministic Gap-ETH, and
– val(Γ) ≤ ζ(ℓ)/ℓ under the Strongish Planted Clique Hypothesis.

Proof of Theorem 11. Let Γ = (G, V1, . . . , Vℓ, J) be an instance of MCSI where J is a complete graph. To
find an instance of MCSI(t) given Γ , we first need to construct a graph J ′ with maximum degree t, for
which we use the Erdős-Gallai theorem. For this, let ℓ′ = ℓ if ℓ is even and ℓ′ = ℓ − 1 if ℓ is odd. Now, by
Theorem 12 it is easy to verify that a t-regular graph on ℓ′ vertices exists as tℓ′ is even. Moreover, the proof
of Theorem 12 by Choudum [12] is constructive, so that we can compute J ′ on ℓ vertices in polynomial time
by setting it to the constructed t-regular graph if ℓ′ = ℓ, or by adding one more isolated vertex if ℓ′ = ℓ− 1.
Note that V (J ′) = V (J) = {1, . . . , ℓ}, E(J ′) ⊆ E(J) as J is a complete graph, and |E(J ′)| = tℓ′/2.

We create a graph G′ by removing edges from G according to J ′. That is, for any 1 ≤ i, j ≤ ℓ, if ij 6∈ E(J ′)
then we remove all edges between sets Vi and Vj . The resulting subgraph of G is called G′, and we get an
instance Γ ′ = (G′, V1, . . . , Vℓ, J

′) of MCSI(t).
It is easy to see that if val(Γ) = 1, then val(Γ ′) = 1 as well: we just use the optimal solution for Γ

and remove any edges non-existent in G′. Now suppose that val(Γ) ≤ ν, which means that every solution φ
satisfies at most a ν-fraction of edges of J . Let φ be an arbitrary solution of Γ ′, which is also a solution for Γ
as G′ ⊆ G and J ′ ⊆ J . By our assumption we know that it satisfies at most ν · |E(J)| edges of J . Thus, the
solution φ satisfies at most ν · |E(J)| edges of J ′ as well, and we obtain

val(Γ ′) ≤ ν · |E(J)|
|E(J ′)| = ν · ℓ(ℓ− 1)/2

tℓ′/2
≤ ν · ℓ(ℓ− 1)

t(ℓ− 1)
= ν · ℓ

t
.

By the first part of Theorem 13, no f(ℓ) · nO(1) time algorithm can distinguish between val(Γ) = 1 and

val(Γ) ≤ ξ(ℓ)/ℓ given Γ , where ξ(ℓ) = 2(log k)1/2+ε

for any constant 0 < ε < 1/2, under the deterministic
Gap-ETH. By the above calculations, for Γ ′ we obtain that no such algorithm can distinguish between
val(Γ ′) = 1 and val(Γ ′) ≤ ξ(ℓ)/t by setting ν = ξ(ℓ)/ℓ, and so we obtain the first part of Theorem 11.

When using the second part of Theorem 13 instead, under the Strongish Planted Clique Hypothesis,
given Γ and any function ζ ∈ ω(1), no f(ℓ) · nO(1) time algorithm can distinguish between val(Γ) = 1 and
val(Γ) ≤ ζ(ℓ)/ℓ. Analogous to before, we obtain the second part of Theorem 11 by setting ν = ζ(ℓ)/ℓ.

17

Based on Theorem 11 we can prove Proposition 2 using the reduction of Lemma 1.

Proposition 2. Let ε > 0 be any constant, ξ(k) = 2(log k)1/2+ε

, and ζ be any function in ω(1). The In-
dependent Set problem in K1,d-free graphs has no d/ξ(k)- and no d/ζ(k)-approximation algorithm with
runtime f(d, k) · nO(1) for any computable function f , unless the deterministic Gap-ETH or the Strongish
Planted Clique Hypothesis fails, respectively.

Proof. We reduce via Lemma 1 from MCSI(t) to Independent Set, which given an instance Γ of MCSI(t)
results in a K1,2t+2-free graph G for Independent Set. We thus set d = 2t+ 2. If val(Γ) = 1, then G has

an independent set of size k =
(
ℓ
2

)
. If val(Γ) ≤ ξ(ℓ)/t or val(Γ) ≤ ζ(ℓ)/t, then every independent set of G

has size at most ξ(ℓ)
(
ℓ
2

)
/t ≤ ξ(k)k

d/2−1 or ζ(ℓ)
(
ℓ
2

)
/t ≤ ζ(k)k

d/2−1 , respectively, assuming w.l.o.g. that k ≥ 4 so that

ℓ ≤ 2
√
k ≤ k. In the first case, given a constant ε′ > 0 we may choose ε small enough in Theorem 11 so that

ξ(k)k
d/2−1 ≤ 2(log k)1/2+ε′

k/d. Thus, for ξ′(k) = 2(log k)1/2+ε′

, a d/ξ′(k)-approximation algorithm for Independent

Set would be able to distinguish between the YES- and NO-case of Γ . In the second case, given any function

ζ ′ ∈ ω(1), we may choose an appropriate function ζ ∈ ω(1) in Theorem 11 for which ζ(k)k
d/2−1 ≤ ζ ′(k)k/d. Thus

a d/ζ ′(k)-approximation algorithm for Independent Set would be able to distinguish between the YES-
and NO-case of Γ .

Note that d = 2t + 2 ≤ 2ℓ as the maximum degree of the graph J is ℓ − 1. Thus if the runtime of this
algorithm is f(d, k)·nO(1), then for some function f ′ this would be a f ′(ℓ)·nO(1) time algorithm for MCSI(t).
However, according to Theorem 11 this would be a contradiction, unless the deterministic Gap-ETH or the
Strongish Planted Clique Hypothesis fails, respectively. We may rename ξ′(k) to ξ(k) or ζ ′(k) to ζ(k) to
obtain Proposition 2.

7 Conclusion and Open Problems

Our parameterized inapproximability results of Theorem 5 suggest that the Independent Set problem is
hard to approximate to within some constant, whenever it is W[1]-hard to solve on H-free graphs, according
to Theorem 2. In most cases it is unclear though whether any approximation can be computed (either in
polynomial time or by exploiting the parameter k), which beats the strong lower bounds for polynomial-time
algorithms for general graphs. The only known exceptions to this are the K1,d-free case, where a polynomial-
time (d−1

2 + δ)-approximation algorithm was shown by Halldórsson [28], and the Ka,b-free case, for which we

showed a polynomial-time O
(
(a + b)1/a · α(G)1−1/a

)
-approximation algorithm in Theorem 3. For K1,d-free

graphs, we were also able to show an almost asymptotically tight lower bound for polynomial-time algorithms
in Theorem 4. For parameterized algorithms, our lower bound of Proposition 2 for K1,d-free graphs does not
give a tight bound, but seems to suggest that parameterizing by k does not help to obtain an improvement.

Settling the question whether H-free graphs admit better approximations to Independent Set than
general graphs, remains a challenging open problem, both for polynomial-time algorithms and algorithms
exploiting the parameter k.

Let us point out one more, concrete open question. Recall from Theorem 2 Bonnet et al. [6] were able to
show W[1]-hardness for graphs which simultanously exclude K1,4 and all induced cycles of length in [4, z], for
any constant z ≥ 5. On the other hand, we presented two separate reductions, one for (K1,5, C4, . . . , Cz)-free
graphs, and another one for (K1,4, C5, . . . , Cz)-free graphs. It would be nice to provide a uniform reduction,
i.e., prove hardness for parameterized approximation in (K1,4, C4, . . . , Cz)-free graphs.

Finally, note that the statement (3) of Theorem 9 only excludes algorithms with running time f(k)·no(
√
k).

However, a straightforward algorithm has running time f(k) ·nO(k). Is is possible to obtain a matching lower
bound (at least up to polylogarithmic factors in the exponent)?

18

8 Acknowledgement

We would like to thank to the anonymous reviewer, who suggested using gap amplification to obtain Theo-
rem 6. We are also grateful to the other reviewer for pointing out the mistake in Theorem 5 in the conference
version of our paper [19].

References

1. V. Alekseev. Polynomial algorithm for finding the largest independent sets in graphs without forks. Discrete
Applied Mathematics, 135(1):3 – 16, 2004. Russian Translations II.

2. V. E. Alekseev. The effect of local constraints on the complexity of determination of the graph independence
number. Combinatorial-algebraic methods in applied mathematics, pages 3–13, 1982.

3. P. Austrin, S. Khot, and M. Safra. Inapproximability of vertex cover and independent set in bounded degree
graphs. Theory of Computing, 7(1):27–43, 2011.

4. N. Bansal, A. Gupta, and G. Guruganesh. On the Lovász theta function for independent sets in sparse graphs.
SIAM Journal on Computing, 47(3):1039–1055, 2018.

5. É. Bonnet. private communication.
6. É. Bonnet, N. Bousquet, P. Charbit, S. Thomassé, and R. Watrigant. Parameterized complexity of independent

set in h-free graphs. Algorithmica, 82(8):2360–2394, 2020.
7. É. Bonnet, N. Bousquet, S. Thomassé, and R. Watrigant. When maximum stable set can be solved in FPT time.

In 30th International Symposium on Algorithms and Computation, ISAAC 2019, December 8-11, 2019, Shanghai
University of Finance and Economics, Shanghai, China, pages 49:1–49:22, 2019.

8. É. Bonnet, S. Thomassé, X. T. Tran, and R. Watrigant. An algorithmic weakening of the erdős-hajnal conjecture.
In F. Grandoni, G. Herman, and P. Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020,
September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

9. P. Chalermsook, M. Cygan, G. Kortsarz, B. Laekhanukit, P. Manurangsi, D. Nanongkai, and L. Trevisan. From
gap-exponential time hypothesis to fixed parameter tractable inapproximability: Clique, dominating set, and
more. SIAM Journal on Computing, 49(4):772–810, 2020.

10. S. O. Chan. Approximation resistance from pairwise-independent subgroups. Journal of the ACM (JACM),
63(3):1–32, 2016.

11. R. Chitnis, A. E. Feldmann, and P. Manurangsi. Parameterized approximation algorithms for bidirected Steiner
Network problems, 2017.

12. S. Choudum. A simple proof of the Erdős-Gallai theorem on graph sequences. Bulletin of the Australian
Mathematical Society, 33(1):67–70, 1986.

13. M. Chudnovsky, M. Pilipczuk, M. Pilipczuk, and S. Thomassé. Quasi-polynomial time approximation schemes
for the maximum weight independent set problem in H -free graphs. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2260–2278,
2020.

14. D. Corneil, H. Lerchs, and L. Burlingham. Complement reducible graphs. Discrete Applied Mathematics, 3(3):163
– 174, 1981.

15. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.
Parameterized Algorithms. Springer, 2015.

16. K. Dabrowski, V. V. Lozin, H. Müller, and D. Rautenbach. Parameterized algorithms for the independent set
problem in some hereditary graph classes. In Combinatorial Algorithms - 21st International Workshop, IWOCA
2010, London, UK, July 26-28, 2010, Revised Selected Papers, pages 1–9, 2010.

17. I. Dinur and P. Manurangsi. ETH-hardness of approximating 2-CSPs and Directed Steiner Network. In 9th
Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA,
USA, pages 36:1–36:20, 2018.

18. I. Dinur and P. Manurangsi. ETH-hardness of approximating 2-CSPs and Directed Steiner Network. CoRR,
abs/1805.03867, 2018.

19. P. Dvořák, A. E. Feldmann, A. Rai, and P. Rzążewski. Parameterized inapproximability of independent set
in h-free graphs. In I. Adler and H. Müller, editors, Graph-Theoretic Concepts in Computer Science - 46th
International Workshop, WG 2020, Leeds, UK, June 24-26, 2020, Revised Selected Papers, volume 12301 of
Lecture Notes in Computer Science, pages 40–53. Springer, 2020.

19

20. P. Erdős and G. Szekeres. A Combinatorial Problem in Geometry, pages 49–56. Birkhäuser Boston, Boston, MA,
1987.

21. U. Feige. Approximating maximum clique by removing subgraphs. SIAM J. Discrete Math., 18(2):219–225, 2004.
22. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the hardness of approximating

cliques. J. ACM, 43(2):268–292, 1996.
23. A. E. Feldmann, Karthik C. S., E. Lee, and P. Manurangsi. A survey on approximation in parameterized

complexity: Hardness and algorithms. Algorithms, 13(6):146, 2020.
24. M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoretical Computer

Science, 1(3):237 – 267, 1976.
25. P. Gartland and D. Lokshtanov. Independent set on Pk-free graphs in quasi-polynomial time. In IEEE 61st

Annual Symposium on Foundations of Computer Science (FOCS), pages 613–624, 2020.
26. D. Geller and S. Stahl. The chromatic number and other functions of the lexicographic product. Journal of

Combinatorial Theory, Series B, 19(1):87–95, 1975.
27. A. Grzesik, T. Klimošová, M. Pilipczuk, and M. Pilipczuk. Polynomial-time algorithm for maximum weight

independent set on P6-free graphs. ACM Trans. Algorithms, 18(1):4:1–4:57, 2022.
28. M. M. Halldórsson. Approximating discrete collections via local improvements. In Proceedings of the Sixth

Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1995. San Francisco, California, USA,
pages 160–169, 1995.

29. J. Håstad. Clique is hard to approximate within n(1−ε). In Acta Mathematica, pages 627–636, 1996.
30. R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages

85–103. Springer US, 1972.
31. S. Khot and A. K. Ponnuswami. Better inapproximability results for Max Clique, Chromatic Number and

Min-3Lin-Deletion. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, Automata, Languages and
Programming, pages 226–237, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

32. B. Laekhanukit. Parameters of two-prover-one-round game and the hardness of connectivity problems. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 1626–1643.
SIAM, 2014.

33. B. Lin, X. Ren, Y. Sun, and X. Wang. On Lower Bounds of Approximating Parameterized k-Clique. In 49th
International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229, pages 90:1–
90:18, 2022.

34. D. Lokshantov, M. Vatshelle, and Y. Villanger. Independent set in P5-free graphs in polynomial time. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 570–581, 2014.

35. D. Lokshtanov, M. S. Ramanujan, S. Saurabh, and M. Zehavi. Parameterized complexity and approximability
of directed odd cycle transversal. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’20, page 2181–2200, USA, 2020. Society for Industrial and Applied Mathematics.

36. V. V. Lozin and M. Milanič. A polynomial algorithm to find an independent set of maximum weight in a fork-free
graph. J. Discrete Algorithms, 6(4):595–604, 2008.

37. K. Majewski, T. Masařík, J. Novotná, K. Okrasa, M. Pilipczuk, P. Rzążewski, and M. Sokołowski. Max weight
independent set in graphs with no long claws: An analog of the gyárfás’ path argument. In M. Bojanczyk,
E. Merelli, and D. P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 93:1–93:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

38. P. Manurangsi. Tight running time lower bounds for strong inapproximability of maximum k -coverage, unique
set cover and related problems (via t-wise agreement testing theorem). In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 62–81,
2020.

39. P. Manurangsi, A. Rubinstein, and T. Schramm. The Strongish Planted Clique Hypothesis and Its Consequences.
In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021), volume 185 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 10:1–10:21, 2021.

40. D. Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010.
41. D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar facility location problems using voronoi

diagrams. ACM Trans. Algorithms, 18(2):13:1–13:64, 2022.
42. G. J. Minty. On maximal independent sets of vertices in claw-free graphs. Journal of Combinatorial Theory,

Series B, 28(3):284 – 304, 1980.
43. M. Pilipczuk, M. Pilipczuk, and P. Rzążewski. Quasi-polynomial-time algorithm for independent set in Pt-free

graphs via shrinking the space of induced paths. In H. V. Le and V. King, editors, 4th Symposium on Simplicity
in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 204–209. SIAM, 2021.

20

44. S. Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae,
15:307–309, 1974.

45. N. Sbihi. Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile. Discrete
Mathematics, 29(1):53 – 76, 1980.

21

	Parameterized Inapproximability of Independent Set in H-Free Graphs

