
This is a repository copy of The complexity landscape of fixed-parameter Directed Steiner
Network problems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200936/

Version: Accepted Version

Article:

Feldmann, A.E. orcid.org/0000-0001-6229-5332 and Marx, D. (2023) The complexity
landscape of fixed-parameter Directed Steiner Network problems. ACM Transactions on
Computation Theory. ISSN 1942-3454

https://doi.org/10.1145/3580376

© owner/author(s) 2023. This is the author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in ACM
Transactions on Computation Theory, http://dx.doi.org/10.1145/3580376

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

The Complexity Landscape of

Fixed-Parameter Directed Steiner Network Problems∗

Andreas Emil Feldmann
1
and Dániel Marx

2

1Department of Applied Mathematics, Charles University, Prague, Czechia. feldmann.a.e@gmail.com
2CISPA Helmholtz Center for Information Security, Saarbrücken, Germany, marx@cispa.saarland

Abstract

Given a directed graph G and a list (s1, t1), . . . , (sd, td) of terminal pairs, the Directed
Steiner Network problem asks for a minimum-cost subgraph ofG that contains a directed
si → ti path for every 1 ≤ i ≤ d. The special case Directed Steiner Tree (when we ask
for paths from a root r to terminals t1, . . . , td) is known to be fixed-parameter tractable
parameterized by the number of terminals, while the special case Strongly Connected
Steiner Subgraph (when we ask for a path from every ti to every other tj) is known
to be W[1]-hard parameterized by the number of terminals. We systematically explore the
complexity landscape of directed Steiner problems to fully understand which other special
cases are FPT or W[1]-hard. Formally, if H is a class of directed graphs, then we look
at the special case of Directed Steiner Network where the list (s1, t1), . . . , (sd, td)
of demands form a directed graph that is a member of H. Our main result is a complete
characterization of the classesH resulting in fixed-parameter tractable special cases: we show
that if every pattern in H has the combinatorial property of being “transitively equivalent
to a bounded-length caterpillar with a bounded number of extra edges,” then the problem
is FPT, and it is W[1]-hard for every recursively enumerable H not having this property.
This complete dichotomy unifies and generalizes the known results showing that Directed
Steiner Tree is FPT [Dreyfus and Wagner, Networks 1971], q-Root Steiner Tree is
FPT for constant q [Suchý, WG 2016], Strongly Connected Steiner Subgraph is
W[1]-hard [Guo et al., SIAM J. Discrete Math. 2011], and Directed Steiner Network
is solvable in polynomial-time for constant number of terminals [Feldman and Ruhl, SIAM
J. Comput. 2006], and moreover reveals a large continent of tractable cases that were not
known before.

1 Introduction

Steiner Tree is a basic and well-studied problem of combinatorial optimization: given an
edge-weighted undirected graph G and a set R ⊆ V (G) of terminals, it asks for a minimum-cost
tree connecting the terminals. The problem is well known to be NP-hard, in fact, it was one
of the 21 NP-hard problems identified by Karp’s seminal paper [29]. There is a large liter-
ature on approximation algorithms for Steiner Tree and its variants, resulting for example
in constant-factor approximation algorithms for general graphs and approximation schemes for
planar graphs [see 1–5, 7–9, 17, 20, 30, 32, 33]. From the viewpoint of parameterized algorithms,
the first result is the classic dynamic-programming algorithm of Dreyfus and Wagner [20] from
1971, which solves the problem with k = |R| terminals in time 3k · nO(1). This shows that the

∗This work was supported by ERC Starting Grant PARAMTIGHT (No. 280152), ERC Consolidator Grant
SYSTEMATICGRAPH (No. 725978), the Czech Science Foundation GAČR (grant #19-27871X). A preliminary
version of this paper [23] appeared in the proceedings of the 43nd International Colloquium on Automata,
Languages, and Programming (ICALP), 2016.

1

ar
X

iv
:1

70
7.

06
80

8v
5

 [
cs

.D
S]

 1
0

N
ov

 2
02

2

problem is fixed-parameter tractable [16, 19] (FPT) parameterized by the number of termin-
als, i.e., there is an algorithm to solve the problem in time f(k) · nO(1) for some computable
function f . In this paper we will only be concerned with this well-studied parameter k = |R|.
A more recent algorithm by Fuchs et al. [26] obtains runtime (2 + δ)k · nO(1) for any constant
δ > 0. For graphs with polynomial edge weights the running time was improved to 2k · nO(1)

by Nederlof [31] using the technique of fast subset convolution. Steiner Forest is the gen-
eralization where the input contains an edge-weighted graph G and a list (s1, t1), . . . , (sd, td) of
pairs of terminals and the task is to find a minimum-cost subgraph containing an si–ti path for
every 1 ≤ i ≤ d. The observation that the connected components of the solution to Steiner
Forest induces a partition on the set R = {s1, . . . , sd, t1, . . . , td} of terminals such that each
class of the partition forms a tree, implies the fixed-parameter tractability of Steiner Forest
parameterized by k = |R|: we can solve the problem by for example trying every partition of R
and invoking a Steiner Tree algorithm for each class of the partition.

On directed graphs, Steiner problems can become significantly harder, and while there is a
richer landscape of variants, only few results are known [10, 11, 13–15, 21, 22, 28, 35]. A natural
and well-studied generalization of Steiner Tree to directed graphs is Directed Steiner
Tree (DST), where an arc-weighted directed graph G and terminals r, t1, . . . , td are given and
the task is to find a minimum-cost subgraph containing an r → ti path for every 1 ≤ i ≤ d.
Using essentially the same techniques as in the undirected case [20, 26, 31], one can show that
this problem is also FPT parameterized by the number of terminals k = d + 1. An equally
natural generalization of Steiner Tree to directed graphs is the Strongly Connected
Steiner Subgraph (SCSS) problem, where an arc-weighted directed graph G with terminals
t1, . . . , tk is given, and the task is to find a minimum-cost subgraph containing a ti → tj path for
any 1 ≤ i, j ≤ k with i 6= j. Guo et al. [28] showed that, unlike DST, the SCSS problem is W[1]-
hard parameterized by k (see also [15]), and is thus unlikely to be FPT for this parameter (for
more background on parameterized complexity theory see [25]). A common generalization of
DST and SCSS is the Directed Steiner Network (DSN) problem (also called Directed
Steiner Forest1 or Point-to-Point Connection), where an arc-weighted directed graph
G and a list (s1, t1), . . . , (sd, td) of terminal pairs are given and the task is to find a minimum-
cost subgraph containing an si → ti path for every 1 ≤ i ≤ d. Being a generalization of SCSS,
the Directed Steiner Network problem is also W[1]-hard for the number of terminals k
in the set R = {s1, . . . , sd, t1, . . . , td}, but Feldman2 and Ruhl [22] showed that the problem is
solvable in time nO(d), that is, in polynomial time for every constant d = O(k2).

Besides Directed Steiner Tree, what other special cases of Directed Steiner Net-
work are fixed-parameter tractable? Our main result gives a complete map of the complexity
landscape of directed Steiner problems on general input graphs, precisely describing all the
FPT/W[1]-hard variants and revealing highly non-trivial generalizations of Directed Steiner
Tree that are still tractable. Our results are expressed in the following formal framework. The
pairs (s1, t1), . . . , (sd, td) in the input of DSN can be interpreted as a directed (unweighted)
pattern graph on a set R of terminals. If this pattern graph is an out-star, then the problem is
precisely DST; if it is a bidirected clique, then the problem is precisely SCSS. More generally,
if H is any class of graphs, then we define the Directed Steiner H-Network (H-DSN)
problem as the restriction of DSN where the pattern graph is a member of H. That is, the
input of H-DSN is an arc-weighted directed graph G, a set R ⊆ V (G) of terminals, and an
unweighted directed graph H ∈ H on R; the task is to find a minimum-cost subgraph N ⊆ G
(“network”) such that N contains an s→ t path for every st ∈ E(H).

We give a complete characterization of the classes H for which H-DSN is FPT or W[1]-hard.

1Note however that unlike Steiner Forest, the solution to DSN is not necessarily a forest, which justifies
the use of the alternative name used here.

2We note that Jon Feldman (co-author of [22]) is not the same person as Andreas Emil Feldmann (co-author
of this paper).

2

Figure 1: Two 4-caterpillars: an out-caterpillar (on the left) and an in-caterpillar (on the right).

We need the following definition of “almost-caterpillar graphs” to describe the borderline
between the easy and hard cases (see Figure 1).

Definition 1.1. A λ0-caterpillar graph is constructed as follows. Take a directed path (v1, . . . , vλ0)
from v1 to vλ0 , and let W1, . . . ,Wλ0 be pairwise disjoint vertex sets such that vi ∈ Wi for each
i ∈ {1, . . . , λ0}. Now add edges such that either everyWi forms an out-star with root vi, or every
Wi forms an in-star with root vi. In the former case we also refer to the resulting λ0-caterpillar
as an out-caterpillar, and in the latter as an in-caterpillar. A 0-caterpillar is the empty graph.
The class Cλ,δ contains all directed graphs H such that there is a set of edges F ⊆ E(H) of size
at most δ for which the remaining edges E(H) \ F span a λ0-caterpillar for some λ0 ≤ λ.

If there is an s→ t path in the pattern graph H for two terminals s, t ∈ R, then adding the
edge st to H does not change the problem: connectivity from s to t is already implied by H,
hence adding this edge does not change the feasible solutions. That is, adding a transitive edge
does not change the solution space and hence it is really only the transitive closure of the pattern
H that matters. We say that two pattern graphs are transitively equivalent if their transitive
closures are isomorphic. We denote the class of patterns that are transitively equivalent to
some pattern of Cλ,δ by C∗

λ,δ. Our main result is a sharp dichotomy saying that H-DSN is FPT
if every pattern of H is transitively equivalent to an almost-caterpillar graph and it is W[1]-
hard otherwise. In order to provide reductions for the hardness results we need the technical
condition that the class of patterns is recursively enumerable, i.e., there is some algorithm, which
enumerates all members of the class. In the FPT cases, we make the algorithmic result more
precise by stating a running time that is expressed as a function of λ, δ, and the vertex cover
number τ of the input pattern H, i.e., τ is the size of the smallest vertex subset W of H such
that every edge of H is incident to a vertex of W .

Theorem 1.2. Let H be a recursively enumerable class of patterns.
1. If there are constants λ and δ such that H ⊆ C∗

λ,δ, then H-DSN with parameter k = |R|
is FPT and can be solved in 2O(k+τω logω)nO(ω) time, where ω = (1 + λ)(λ + δ) and τ is
the vertex cover number of the given input pattern H ∈ H.

2. Otherwise, if there are no such constants λ and δ, then the problem is W[1]-hard for
parameter k.

In Theorem 1.2(1), the reason for the slightly complicated runtime is that the algorithm
was optimized to match the runtime of some previous algorithms in special cases. In particular,
invoking Theorem 1.2 with specific classes H, we can obtain algorithmic or hardness results for
specific problems. For example, we may easily recover the following facts:

• If HDST is the class of all out-stars, then HDST-DSN is precisely the DST problem. As
HDST ⊆ C∗

1,0 holds, Theorem 1.2(1) recovers the fact that DST can be solved in time

2O(k)nO(1) and is hence FPT parameterized by the number k of terminals [20, 26, 31].
• If HSCSS is the class of all bidirected cliques (or equivalently the class of all directed
cycles), then HSCSS-DSN is precisely the SCSS problem. One can observe that HSCSS

is not contained in C∗
λ,δ for any constants λ, δ (for example, because every graph in Cλ,δ

has at most λ+2δ vertices with both positive in-degree and positive out-degree, and this
remains true also for the graphs in C∗

λ,δ). Hence Theorem 1.2(2) recovers the fact that
SCSS is W[1]-hard [28]. Note that any pattern of HSCSS is transitively equivalent to a

3

bidirected star with less than 2k edges, so that HSCSS ⊆ C∗
0,2k. Since a star has vertex

cover number τ = 1, for SCSS our algorithm in Theorem 1.2(1) recovers the running time
of 2O(k log k)nO(k) = nO(k) given by Feldman and Ruhl [22]. We note however, that the
constants in the degree of the polynomial are larger in our case compared to [22].

• Let Hd be the class of directed graphs with at most d edges. As Hd ⊆ C∗
0,d holds,

Theorem 1.2(1) recovers the fact that Directed Steiner Network with at most d
demands is polynomial-time solvable for every constant d [22].

• Recently, Suchý [34] studied the following generalization of DST and SCSS: in the q-
Root Steiner Tree (q-RST) problem, a set of q roots and a set of leaves are given,
and the task is to find a minimum-cost network where the roots are in the same strongly
connected component and every leaf can be reached from every root. Building on the
work of Feldman and Ruhl [22], Suchý [34] presented an algorithm with running time
2O(k) · nO(q) for this problem, which shows that it is FPT for every constant q. Let
Hq-RST be the class of directed graphs that are obtained from an out-star by making q−1
of the edges bidirected. Observe that Hq-RST is a subset of C1,q−1, that q-RST can be
expressed by an instance of Hq-RST-DSN, and that any pattern of Hq-RST has vertex
cover number τ = 1. Thus Theorem 1.2(1) implies that q-RST can be solved in time
2O(k+q log q) · nO(q) = 2O(k) · nO(q), recovering the fact that it is FPT for every constant q.

Thus the algorithmic side of Theorem 1.2 unifies and generalizes three algorithmic results:
the fixed-parameter tractability of DST (which is based on dynamic programming on the tree
structure of the solution), q-RST (which is based on simulating a “pebble game”), but also
the polynomial-time solvability of DSN with constant number of demands (which also is based
on simulating a “pebble game”). Let us point out that our algorithmic results are significantly
more general than just the unification of these three results: the generalization from stars to
bounded-length caterpillars is already a significant extension and very different from earlier
results. We consider it a major success of the systematic investigation that, besides finding
the unifying algorithmic ideas generalizing all previous results, we were able to find tractable
special cases in an unexpected new direction.

There is a surprising non-monotonicity in the classification result of Theorem 1.2. As DST
is FPT and SCSS is W[1]-hard, one could perhaps expect that H-DSN becomes harder as the
pattern become denser. However, it is possible that the addition of further demands makes
the problem easier. For example, if H contains every graph that is the vertex-disjoint union
of two out-stars, then H-DSN is classified to be W[1]-hard by Theorem 1.2(2). However,
if we consider those graphs where there is also a directed edge from the center of one star
to the other star, then these graphs are 2-caterpillars (i.e., contained in C2,0) and hence H-
DSN becomes FPT by Theorem 1.2(1). This unexpected non-monotonicity further underlines
the importance of completely mapping the complexity landscape of the problem area: without
complete classification, it would be very hard to predict what other tractable/intractable special
cases exist.

We mention that one can also study the vertex-weighted version of the problem, where the
input graph has weights on the vertices and the goal is to minimize the total vertex-weight of
the solution. In general, vertex-weighted problems can be more challenging than edge-weighted
variants [5, 12, 17, 30]. However, for general directed graphs, there are easy transformations
between the two variants. Thus the results of this paper can be interpreted for the vertex-
weighted version as well.

1.1 Our techniques

We prove Theorem 1.2 the following way. In Section 2, we first establish the combinatorial bound
that there is a solution whose cutwidth, and hence also (undirected) treewidth,3 is bounded by

3Throughout this paper we use only the undirected treewidth, as formally defined in Section 1.3.

4

the number of demands.

Theorem 1.3. A minimal solution M to a pattern H has cutwidth at most 7d if d = |E(H)|.

This serves as the first step, which we exploit in Section 3 to prove that if the pattern is
an almost-caterpillar in C∗

λ,δ, then the (undirected) treewidth of the optimum solution can be
bounded by a function of λ and δ.

Theorem 1.4. The treewidth of a minimal solution to any pattern graph in C∗
λ,δ is at most

7(1 + λ)(λ+ δ).

To prove the above two theorems we thoroughly analyze the combinatorial structure of
minimal solutions, by untangling the intricate interplay between the s → t paths in a given
solution for demands st of a pattern graph H. The resulting bounds can then be exploited in
an algorithm that restricts the search for a bounded-treewidth solution (Section 4). To obtain
this algorithm we generalize dynamic programming techniques for other settings to the DSN
case, by introducing novel tools to tackle the intricacies of this problem.

Theorem 1.5. Let an instance of H-DSN be given by a graph G with n vertices, and a pattern H
on k terminals with vertex cover number τ . If the optimum solution to H in G has treewidth ω,
then the optimum can be computed in 2O(k+τω logω)nO(ω) time.

Combining Theorem 1.4 and Theorem 1.5 proves the algorithmic side of Theorem 1.2. We
remark that the proof is completely self-contained (with the exception of some basic facts on
treewidth) and in particular we do not build on the algorithms of Feldman and Ruhl [22]. As
combining Theorem 1.3 and Theorem 1.5 already proves that DSN with a constant number of
demands can be solved in polynomial time, as a by-product this gives an independent proof for
the result of Feldman and Ruhl [22]. One can argue which algorithm is simpler, but perhaps our
proof (with a clean split of a combinatorial and an algorithmic statement) is more methodological
and better reveals the underlying reason why the problem is tractable.

Finally, in Section 5 we show that whenever the patterns in H are not transitively equivalent
to almost-caterpillars, the problem is W[1]-hard. Our proof follows a novel, non-standard route.
We first show that there is only a small number of obstacles for not being transitively equivalent
to almost-caterpillars: the graph class contains (possibly after identification of vertices) arbit-
rarily large strongly connected graphs, pure diamonds, or flawed diamonds (see Lemma 5.8 for
the precise statement). Showing the existence of these obstacles needs a non-trivial combinat-
orial argument. We then provide a separate W[1]-hardness proof for each of these obstacles,
completing the proof of the hardness side of Theorem 1.2.

1.2 Subsequent related work

Since the publication of the conference version [23] of this paper several results have appeared
that build on our work. Especially the algorithm of Theorem 1.5 has been used as a subroutine
to solve several special cases of DSN. We survey some of these results here.

Parameterizing by the number k of terminals. As mentioned above, the algorithm for
DSN based on simulating a “pebble game” by Feldman and Ruhl [22] has a faster runtime
of nO(d) than implied by Theorem 1.5, where d is the number of demands. Measured in the
stronger parameter k (which can be smaller than d up to a quadratic factor) the Feldman
and Ruhl [22] algorithm runs in nO(k2) time. Interestingly, Eiben et al. [21] show that this is
essentially best possible, as no f(k)no(k

2/ log k) time algorithm exists forDSN for any computable
function f , under the Exponential Time Hypothesis (ETH). However, as summarized below, in
special cases it is possible to beat this lower bound.

5

Planar and bounded genus graphs. A directed graph is considered planar if its underlying
undirected graph is. For such inputs Chitnis et al. [15] show that under ETH no f(k)no(k)

time algorithm can solve DSN. Eiben et al. [21] show that an optimum solution of genus g
has treewidth 2O(g)k and thus Theorem 1.5 implies an algorithm with runtime 2O(k2 log k)nO(k)

for graphs of constant genus, matching the previous runtime lower bound for planar graphs.
However, for the special case of the SCSS problem, Chitnis et al. [15] prove that in planar

graphs there exists a faster algorithm with runtime 2O(k)nO(
√
k). To obtain such an algorithm,

in the conference version of [15] the authors devise a generalization of the “pebble games” of
Feldman and Ruhl [22] for SCSS in planar graphs. However, in the journal version [15] the
authors use Theorem 1.5 to get a much cleaner and simpler proof, by showing that any optimum

solution has treewidth O(
√
k). They also obtain a matching runtime lower bound of f(k)no(

√
k)

for SCSS on planar graphs.

Bidirected graphs. An interesting application of Theorem 1.5 is the SCSS problem on
bidirected graphs, i.e., directed graphs for which an edge uv exists if and only if its reverse
edge vu also exists and has the same weight. While this problem remains NP-hard, Chitnis et
al. [13] show that it is FPT parameterized by k, which is in contrast to general input graphs
where the problem is W[1]-hard (as also implied by Theorem 1.2). To show this result, it is
not enough to bound the treewidth of a solution and then apply Theorem 1.5 directly, as is
done for the above mentioned problems on planar graphs. In fact, there are examples [13] in
which the optimum solution to SCSS on bidirected graphs has treewidth Θ(k). Nevertheless, as
shown in [13] it is possible to decompose the optimum solution to this problem into poly-trees,
i.e., directed graphs of (undirected) treewidth 1. As a consequence, an FPT algorithm can
guess the decomposition of the optimum, and apply Theorem 1.5 repeatedly (with ω = 1) to
compute all poly-tree solutions. This algorithm can be made to run in 2k

2+O(k)nO(1) time. In
contrast, for the more general DSN problem on bidirected graphs, Chitnis et al. [13] show that
no f(k)no(k/ log k) time algorithm exists, under ETH.

Planar bidirected graphs. If the input graph is both planar and bidirected, then Chitnis
et al. [13] show that the treewidth of any optimum solution to DSN is O(

√
k). Theorem 1.5

then implies an algorithm with runtime 2O(k3/2 log k)nO(
√
k), which is faster than possible in

planar graphs but also in bidirected graphs, as mentioned above. Furthermore, they show that
Theorem 1.5 can be used to obtain a parameterized approximation scheme for DSN on planar
bidirected graphs, i.e., a (1+ ε)-approximation can be computed in 2O(k2)n2

O(1/ε)
time. For this

they prove that the optimum solution to DSN in planar bidirected graphs can be covered by
a set of DSN solutions, each of which only contains 2O(1/ε) terminals, and such that the sum
of the costs of all these solutions is only a (1 + ε)-fraction more than the optimum. Similar to
SCSS on bidirected graphs, the idea now is to guess how these solutions cover the terminal set,

and then compute all of them using the above mentioned 2O(k3/2 log k)nO(
√
k) time algorithm for

DSN on planar bidirected graphs (which follows from Theorem 1.5). Since each of the solutions
only contains 2O(1/ε) terminals, the degree of the polynomial depends only on ε every time the
algorithm of Theorem 1.5 is executed.

1.3 Preliminaries

In this paper, we are mainly concerned with directed graphs, i.e., graphs for which every edge is
an ordered pair of vertices. For convenience, we will also give definitions, such as the treewidth,
for directed graphs, even if they are usually defined for undirected graphs. For any graph G
we denote its vertex set by V (G) and its edge set by E(G). We denote a directed edge from
u to v by uv, so that u is its tail and v is its head. We say that both u and v are incident
to the edge uv, and u and v are adjacent if the edge uv or the edge vu exists. We refer to u

6

and v as the endpoints of uv. For a vertex v the in-degree (out-degree) is the number of edges
that have v as their head (tail). A source (target) is a vertex of in-degree 0 (out-degree 0).
An in-arborescence (out-arborescence) is a connected graph with a unique target (source), also
called its root, such that every vertex except the root has out-degree 1 (in-degree 1). The
leaves of an in-arborescence (out-arborescence) are its sources (targets). A u → v path is an
out-arborescence with root u and a single leaf v, and its length is its number of edges. A star
S with root u is a graph in which every edge is incident to u. All vertices in a star different
from the root are called its leaves. An in-star (out-star) is a star which is an in-arborescence
(out-arborescence). A strongly connected component (SCC) H of a directed graph G is an
inclusion-wise maximal sub-graph of G for which there is both a u→ v path and a v → u path
for every pair of vertices u, v ∈ V (H). A directed acyclic graph (DAG) is a graph in which every
SCC is a singleton, i.e., it contains no cycles.

The following observation is implicit in previous work (cf. [22]) and will be used throughout
this paper. Here we consider a minimal solution M to an instance of DSN, in which no edge
can be removed without making the solution infeasible.

Lemma 1.6. Consider an instance of DSN where the pattern H is an out-star (resp., in-
star) with root t ∈ R. Then any minimal solution M to H is an out-arborescence (resp.,
in-arborescence) rooted at t for which every leaf is a terminal.

Proof. We only prove the case when H is an out-star, as the other case follows by symmetry.
Suppose for contradiction thatM is not an out-arborescence. As it is clear thatM is connected
and t is the unique source in a minimal solution, M not being an out-arborescence implies that
there is a vertex v ∈ V (M) with in-degree at least 2, i.e., there are two distinct edges e and f
of M that have v as their head. Since M is a minimal solution, removing e disconnects some
terminal ℓ from t, which in particular means that there is a t → ℓ path P going through e.
Clearly, this path cannot go through f , as both e and f have the same head v. Thus if we
remove f , then any terminal ℓ′ will remain being reachable from t: we may reroute any t → ℓ
path Q that passed through f via a path through e instead by following P from t to v, the head
of f , and then following Q from v to ℓ′. This however contradicts the minimality of M .

A tree decomposition D of a graph G is an undirected tree for which every node w ∈ V (D) is
associated with a set bw ⊆ V (G) called a bag. Additionally it satisfies the following properties:
(a) for every edge uv ∈ E(G) there is a bag bw for some w ∈ V (D) containing it, i.e., u, v ∈ bw,

and
(b) for every vertex v ∈ V (G) the nodes of D associated with the bags containing v induce a

non-empty and connected subgraph of D.
The width of the tree decomposition is max{|bw| − 1 | w ∈ V (D)}. The treewidth of a graph G
is the minimum width of any tree decomposition for G. It is known (by an easy folklore proof)
that for any graph G of treewidth ω there is a smooth tree decomposition D of G, which means
that |bw| = ω + 1 for all nodes w of D and |bw ∩ bw′ | = ω for all adjacent nodes w,w′ of D.

2 The cutwidth of minimal solutions for bounded-size patterns

The goal of this section is to prove Theorem 1.3: we bound the cutwidth of a minimal solutionM
to a pattern H in terms of d = |E(H)|. A layout of a graph G is an injective function ψ :
V (G) → N inducing a total order on the vertices of G. Given a layout, we define the set
Vi = {v ∈ V (G) | ψ(v) ≤ i} and say that an edge crosses the cut (Vi, V i) if it has one endpoint
in Vi and one endpoint in V i := V (G) \Vi. The cutwidth of the layout is the maximum number
of edges crossing any cut (Vi, V i) for any i ∈ N. The cutwidth of a graph is the minimum
cutwidth over all its layouts.

7

Like Feldman and Ruhl [22], we consider the two extreme cases of directed acyclic graphs
(DAGs) and strongly connected components (SCCs) in our proof. Contracting all SCCs of a min-
imal solution M without removing parallel edges sharing the same head and tail, but removing
the resulting self-loops, produces a directed acyclic multi-graph D, the so-called condensation
graph of M . We bound the cutwidth of D and the SCCs of M separately, and then put to-
gether these two bounds to obtain a bound for the cutwidth of M . As we will see, bounding
the cutwidth of the acyclic multi-graph D and putting together the bounds are fairly simple.
The main technical part is bounding the cutwidth of the SCCs.

We will need two simple facts about cutwidth. First, the cutwidth of an acyclic multi-graph
can be bounded using the existence of a topological ordering of the vertices. That is, for any
acyclic graph G there is an injective function ϕ : V (G) → N such that ϕ(u) < ϕ(v) if uv ∈ E(G).
Note that such a function in particular is a layout.

Lemma 2.1. If D is an acyclic directed multi-graph D that is the union of d paths and ϕD is
an arbitrary topological ordering of D, then the layout given by ϕD has cutwidth at most d.

Proof. To bound the cutwidth, we argue that a path P crosses any cut (Vi, V i) at most once.
Note that no edge can have a head v and tail u with ϕD(v) ≤ ϕD(u), since ϕD is a topological
ordering. In particular, for the first edge uv of P crossing (Vi, V i) we get ϕD(u) ≤ i < ϕD(v).
For any vertex w reachable from v on the path, the transitivity of the topological order implies
i < ϕD(w) so that w cannot be the tail of an edge crossing the cut. Thus no second edge of the
path P crosses (Vi, V i). As D is the union of d paths, each cut is crossed by at most d edges
of D.

The next lemma shows that bounding the cutwidth of each SCC and the condensation graph
of G, bounds the cutwidth of G.

Lemma 2.2. Let G be a directed graph and D be its condensation multi-graph. If the cutwidth
of D is x and the cutwidth of every SCC of G is at most y, then the cutwidth of G is at
most x+ y.

Proof. Let SCC(u) ⊆ G be the SCC of G that was contracted into the vertex u in D. If a
vertex u of G was not contracted, then SCC(u) is the singleton u. For each u ∈ V (D), there
exists a layout ϕu of SCC(u) with cutwidth at most y, while for D there exists a layout ϕD

with cutwidth at most x. Let µ = max{ϕu(v) | u ∈ V (D) ∧ v ∈ SCC(u)} be the maximum
value taken by any layout of an SCC. We define a layout ψ of G as ψ(v) = µ · ϕD(u) + ϕu(v),
where v ∈ SCC(u). Since the topological orderings are injective, ψ is injective, and the intervals
[µ ·ϕD(u)+1, µ ·ϕD(u)+µ] of values that ψ can take for vertices of different SCCs are disjoint.
Hence for any i ∈ N, there is at most one SCC of G whose edges cross the cut (Vi, V i), and so
the cutwidth of ψ is at most the cutwidth of any ϕu plus the cutwidth of ϕD.

Let us now bound the cutwidth of the SCCs.

Lemma 2.3. Any SCC U of a minimal solution M to a pattern H with at most d edges has
cutwidth at most 6d.

Proof. First we establish that U is a minimal solution to a certain pattern.

Claim 2.4. U is a minimal solution to a pattern HU with at most d edges.

Proof. Consider a path Pst in M from s to t for some edge st ∈ E(H). Let v be the first vertex
of U on the path Pst, and let w be the last. Note that all vertices on Pst between v and w
must be contained in U since otherwise U would not be an SCC. Hence we can construct a
pattern graph HU for U with an edge vw for the first and last vertex of each such path Pst in
M that contains vertices of U . The SCC must be a minimal solution to the resulting pattern

8

since a superfluous edge would also be removable from the minimal solution M : any edge e of
U needed in M by some edge st ∈ E(H) also has a corresponding edge vw in the pattern HU

that needs it, i.e., all paths from v to w in U pass through e. Since HU has at most one edge
for each path Pst in M with st ∈ E(H), the pattern HU has at most d = |E(H)| edges. y

Let RU be the terminals in the pattern HU given by Claim 2.4 and let us select an arbitrary
root t ∈ RU . Note that HU has at most d edges and hence |RU | ≤ 2d. Let Sin (resp., Sout) be an
in-star (resp., out-star) connecting t with every other vertex of RU . As U is a strongly connected
graph containing every vertex of RU , it is also a solution to the pattern Sin on RU . Let us select
an Ain ⊆ U that is a minimal solution to Sin; by Lemma 1.6, Ain is an in-arborescence with
at most 2d leaves. Similarly, let Aout ⊆ U be an out-arborescence that is a minimal solution to
Sout. Observe that U has to be exactly Ain ∪ Aout: if there is an edge e ∈ E(U) that is not in
Ain ∪Aout, then U \ e still contains a path from every vertex of RU to every other vertex of RU

through t, contradicting the fact that U is a minimal solution to pattern HU .
Let Z be the set of edges obtained by reversing the edges in E(Ain) \E(Aout). As reversing

edges does not change the cutwidth, bounding the cutwidth of Aout∪Z will also imply a bound
on the cutwidth of U = Ain ∪Aout.

Claim 2.5. The union Aout ∪ Z is a directed acyclic graph.

Proof. Assume that Aout ∪ Z has a cycle O. We will identify a superfluous edge in U , which
contradicts its minimality. Note that Z is a forest of out-arborescences, and thus O must
contain edges from both Aout and Z. Among the vertices of O that are incident to edges of the
in-arborescence Ain, pick one that is closest to the root t in Ain. Let P be the path from this
vertex v to t in Ain. From v we follow the edges of the cycle O in their reverse direction, to find
a path Q ⊆ O ∩ Aout of maximal length leading to v and consisting of edges not in Z. Let u
be the first vertex of Q (where possibly u = v). The edge wu on O that has u as its head must
be an edge of Z, since Q is of maximal length. Note also that this edge exists since O contains
edges from both Aout and Z.

Now consider the in-arborescence Ain, which contains the reverse edge uw ∈ E(Ain)\E(Aout)
and the path P from v to t. Since v is a closest vertex from O to t in Ain, the path P cannot
contain uw (otherwise w would be closer to t than v). However, this means that removing uw
from M will still leave a solution to H: any path connecting through uw to t can be rerouted
through Q and then P , while no connection from t to a terminal needed uw as it is not in Aout.
Hence for every edge in the pattern H, there is still a path connecting the respective terminals
through t. Thus U was not minimal, which is a contradiction. y

Claim 2.5 implies a topological ordering on the vertices of Aout ∪Z. This order can be used
as a layout for U . Using some more structural insights, the number of edges crossing a given
cut can be bounded by a function of the number of edges of the pattern graph, as the following
claim shows.

Claim 2.6. Any topological ordering ϕ of the graph Aout ∪ Z has cutwidth at most 6d.

Proof. To bound the number of edges crossing a cut given by the layout ϕ, we will consider
edges of Aout and Z separately, starting with the former. Obviously ϕ also implies a topological
ordering of the subgraph Aout. As the out-arborescence Aout has at most 2d leaves, it is the
union of at most 2d paths, each starting in t and ending at a terminal. By Lemma 2.1, the
cutwidth of ϕ for edges of Aout is at most 2d.

Recall that Vi = {v ∈ V (G) | ψ(v) ≤ i}. To bound the number of edges of Z crossing
a cut (Vi, V i), recall that uv ∈ Z if and only if the reverse edge vu is in E(Ain) \ E(Aout).
Consider the set B = E(Aout) ∩E(Ain) of edges that are shared by both arborescences. These
are the only edges that are not reversed in Ain to give Aout ∪ Z. Let B∗ consist of the edges of
B that cross the cut (Vi, V i). As B ⊆ E(Aout) and the cutwidth of ϕ for the edges of Aout is

9

at most 2d, we have that |B∗| ≤ 2d. Consider the graph obtained by removing B∗ from Ain,
so that Ain falls into a forest of in-arborescences. Each leaf of this forest is either a leaf of Ain

or incident to the head of an edge of B∗. Since Ain has at most 2d leaves and |B∗| ≤ 2d, the
number of leaves of the forest is at most 4d. This means that the forest is the union of at most
4d paths, each starting in a leaf and ending in a root of an in-arborescence. Let P denote the
set of all these paths.

Consider a path P of P, which is a directed path of Ain. We show that P can cross the
cut (Vi, V i) at most once. Recall that every edge of P is either an edge of Aout or an edge
of Z reversed. Whenever an edge of P crosses the cut (Vi, V i), then it has to be an edge of Z
reversed: otherwise, it would be an edge of E(Ain) ∩E(Aout), and such edges are in B∗, which
cannot be in P by definition. Thus if uv is an edge of P crossing (Vi, V i), then vu ∈ Z, and the
topological ordering ϕ implies that ϕ(v) ≤ i < ϕ(u). In other words, every edge of P is crossing
the cut from the right to the left, so clearly at most one such edge can be in P . This gives an
upper bound of |P| ≤ 4d on the number of edges of Z crossing the cut, completing the required
6d upper bound. y

As the underlying undirected graph of U and Aout ∪Z are the same, Claim 2.6 implies that
the cutwidth of U is at most 6d. This completes the proof of Lemma 2.3.

The proof of Theorem 1.3 follows easily from putting together the ingredients.

Proof (of Theorem 1.3). Consider a minimal solution M and let D be its condensation graph.
The minimum solutionM is the union of d directed paths and this is true also for the contracted
condensation graph D. Hence Lemma 2.1 shows that D has cutwidth at most d. By Lemma 2.3,
each SCC of M has cutwidth at most 6d. Thus Lemma 2.2 implies that the cutwidth of M is
at most 7d.

We remark that the bound on the cutwidth in Theorem 1.3 is tight up to a constant factor:
Take a constant degree expander on d vertices. It has treewidth Ω(d) [27], and so its cutwidth
is at least as large. Now bi-direct each (undirected) edge {u, v} by replacing it with the directed
edges uv and vu. Next subdivide every edge uv to obtain edges ut and tv for a new vertex t, and
make t a terminal of R. This yields a strongly connected instance G. The pattern graph H for
this instance is a cycle on R, which has Θ(d) edges, since the terminals are subdivision points
of bi-directed edges of a constant degree graph with d vertices. As H is strongly connected,
every minimal solution to H contains the edges ut and tv incident to each terminal t. Thus a
minimal solution contains all of G and has cutwidth Ω(d).

3 The treewidth of minimal solutions to almost-caterpillar

patterns

In this section, we prove that any minimal solution M to a pattern H ∈ C∗
λ,δ has the following

structure.

Theorem 3.1. A minimal solution M to a pattern H ∈ C∗
λ,δ is the union of

• a subgraph M c (“core”) that is a minimal solution to a sub-pattern Hc of H, where the
latter has at most (1 + λ)(λ+ δ) edges, and

• a forest M − E(M c) of either out- or in-arborescences, each of which intersects M c only
at its root.

According to Theorem 1.3, the cutwidth of the core M c is therefore at most 7(1+λ)(λ+ δ).
It is well known [6] that the cutwidth is an upper bound on the treewidth of a graph, and so
also the treewidth of M c is at most 7(1+λ)(λ+ δ). It is easy to see that attaching any number
of arborescences to M c does not increase the treewidth. Thus we obtain Theorem 1.4, which is

10

the basis for our algorithm to solve H-DSN in case every pattern of H is transitively equivalent
to an almost-caterpillar.

In particular, when adding δ edges to the pattern of the DST problem, which is a single
out-star, i.e., a 1-caterpillar, then the pattern becomes a member of C1,δ and hence our result
implies a linear treewidth bound of O(δ). The example given at the end of Section 2 also shows
that there are patterns H ∈ Cλ,δ for which every minimal solution has treewidth Ω(λ+ δ): just
consider the case when H is a cycle of length λ+ δ (i.e., it contains a trivial caterpillar graph).
One interesting question is whether the treewidth bound of 7(1 + λ)(λ + δ) in Theorem 1.4 is
tight. We conjecture that the treewidth of any minimal solution to a pattern graph H ∈ C∗

λ,δ is
actually O(λ+ δ).

Proof (of Theorem 3.1). Let M be a minimal solution to a pattern H ∈ C∗
λ,δ. Since every

pattern in C∗
λ,δ has a transitively equivalent pattern in Cλ,δ and replacing a pattern with a

transitively equivalent pattern does not change the space of feasible solutions, we may assume
that H is actually in Cλ,δ, i.e., H consists of a caterpillar of length at most λ and δ additional
edges.

The statement is trivial if |E(H)| ≤ δ ≤ (1+λ)(λ+δ). Otherwise, according to Definition 1.1,
H contains a λ0-caterpillar for some 1 ≤ λ0 ≤ λ and at most δ additional edges. Hence let us
fix a set F of at most δ edges of H such that the remaining edges of H form a λ0-caterpillar C
for some 1 ≤ λ0 ≤ λ with a path (v1, . . . , vλ0) on the roots of the stars Si. We only consider the
case when C is an out-caterpillar as the other case is symmetric, i.e., every Si is an out-star.
Define I to be the subgraph of H spanned by all edges of H except the edges of the stars,
i.e., E(I) = E(H) \⋃λ0

i=1E(Si). Note that |E(I)| ≤ λ0 + δ. We fix a subgraph MI of M that
is a minimal solution to the sub-pattern I, and for every st ∈ E(I) we fix a path Pst in MI .
Note that MI is the union of these at most λ + δ paths, since MI is a minimal solution. For
each star Si, let us consider a minimal solution MSi ⊆ M to Si; note that MSi has to be an
out-arborescence by Lemma 1.6.

For some i ∈ {1, . . . , λ0}, let ℓ be a leaf of Si, and let e be an edge of M . If M \ e has no
path from vi to ℓ, then we say that e is ℓ-necessary. More generally, we say that e is i-necessary
if e is ℓ-necessary for some leaf ℓ of Si.

Claim 3.2. Let P be a path in M , and for some i ∈ {1, . . . , λ0} let Wi ⊆ E(M) contain all
i-necessary edges f for which f /∈ E(P), but the head of f is a vertex of P . Then there exists
one leaf ℓ of Si such that every f ∈Wi is ℓ-necessary.

Proof. Since all edges ofWi are contained in the out-arborescenceMSi , no two of them have the
same head. Hence we can identify the first edge e ∈Wi for the path P , i.e., the edge for which
the head of every other edge in Wi can be reached from e’s head on P . Since e is i-necessary,
it is ℓ-necessary for some leaf ℓ of Si. We claim that every other edge of Wi is also ℓ-necessary.
Assume the opposite, which means that there is a path Q in M from vi to ℓ that does not
contain some f ∈Wi. On the other hand, every path (including Q) from vi to ℓ in M contains
the ℓ-necessary edge e. This means that there is a path from vi through e and P that reaches
the head of f , and this path does not pass through f . Hence for any path that goes from vi to
some leaf of Si via f , there is an alternative route that avoids f . This however contradicts the
fact that f is i-necessary. y

Using this observation, we identify the core M c of M using the at most λ + δ paths Pst

that make up MI , and then selecting an additional at most λ0 paths for each Pst, one for each
star of the caterpillar. To construct M c together with its pattern graph Hc, we initially let
M c = MI and Hc = I and repeat the following step for every st ∈ E(I) and 1 ≤ i ≤ λ0. For
a given st and i, let us check if there are i-necessary edges f /∈ E(Pst) that have their heads
on the path Pst ⊆ MI . If so, then by Claim 3.2 all these edges are ℓ-necessary for some leaf
ℓ of Si. We add an arbitrary path of M from vi to ℓ (which contains all these edges) to M c

11

and add the edge viℓ to Hc. After repeating this step for every st ∈ E(H) and i, we remove
superfluous edges from M c: as long as there is an edge e ∈ E(M c), which can be removed while
maintaining feasibility for the pattern Hc, i.e., for every vw ∈ E(Hc) there is a v → w path in
M c not containing e, we remove e. Finally, we remove any isolated vertices from M c.

Note that the resulting network M c is a minimal solution to Hc by construction. Also note
that Hc contains at most λ+ δ edges from I and at most λ0 ≤ λ additional edges for each edge
of I, so that |E(Hc)| ≤ (1+λ)(λ+ δ). We prove that the remaining graph M c−E(M) consists
of out-arborescences, each of which intersects M c only at the root. For this, we rely on the
following key observation.

Claim 3.3. If a vertex u has at least two incoming edges in M , then every such edge is in the
core M c.

Proof. First we show that there is an st ∈ E(I) such that every s→ t path inM goes through u.
Suppose for contradiction that for every st ∈ E(I) there is a path from s to t in M avoiding u.
Since M is a minimal solution, the edges entering u must then be needed for some stars Si of
the pattern H instead. Let e and f be two edges entering u. As e and f have the same head,
they cannot be part of the same out-arborescence MSi . Therefore, there are indices i < j such
that (w.l.o.g.) e is i-necessary and f is j-necessary.

There is a path inM from the root vi of Si to the root vj of Sj , due to the path (v1, . . . , vλ0)
in the caterpillar C ⊆ H. Since path (v1, . . . , vλ0) is part of I, our assumption on e and f
implies that there is a path P in M from vi to vj that avoids both e and f . As f ∈ E(MSj),
there is a path Q in M starting in vj and passing through f . This path cannot contain e, as e
and f have the same head u. The existence of P and Q implies that u can be reached from vi
by a path through vj and f , avoiding the edge e. Thus for any edge viℓ ∈ E(Si), if there is a
vi → ℓ path going through e (and hence vertex u), then it can be rerouted to avoid e and use
edge f instead. This however contradicts the fact that e is i-necessary.

We now know that there is an st ∈ E(I) such that every s → t path in M goes through u.
Suppose that there is an edge e 6∈ E(M c) entering u. If e is needed for some s′t′ ∈ E(I) in M ,
then e is also present in M c, and we are done. Otherwise, as M is a minimal solution, edge e
is i-necessary for some i ∈ {1, . . . , λ0}. Consider now the step in the construction of M c when
we considered st ∈ E(I) and integer i. As we have shown, the s → t path Pst goes through u.
Thus e is an i-necessary edge not in E(Pst) such that its head is on Pst. This means that we
identified a leaf ℓ of Si such that e is ℓ-necessary, introduced viℓ into H

c, and added a vi → ℓ
path to Hc, which had to contain e. Moreover, since all paths from vi to ℓ in M pass through
e, edge e then remains in M c when removing superfluous edges. y

We are now ready to show that every component of the remaining part is an out-arborescence
and intersects the core only at the root.

Claim 3.4. The remaining graph M+ := M − E(M c) is a forest of out-arborescences, each of
which intersects M c only at the root.

Proof. IfM+ is not a forest of out-arborescences, then there must be two edges inM+ with the
same head or there must be a directed cycle in M+. The former is excluded by Claim 3.3. For
the latter, first note that if an edge e ∈ E(M) is not i-necessary for any i ∈ {1, . . . , λ0}, then it
is needed for I, since M is a minimal solution. Hence e was added to M c as a part of MI , and
remained in M c even after removing superfluous edges, as E(I) ⊆ E(Hc). In particular, this
means that every edge of M+ is part of some MSi . Furthermore, any directed cycle O in M+

must contain edges from at least two out-arborescences MSi and MSj with i < j. If one of the
roots vi or vj of MSi and MSj , respectively, is not part of O, then there is a path from vi or vj
leading to O. In case both vi and vj are part of O, we also get such a path, since MI contains a
path from vi to vj , but MI contains no edges of O. Hence there must be a vertex u on O that

12

is the head of two edges of which one belongs to O ⊆ M+. However this is again excluded by
Claim 3.3, and so M+ contains no cycle.

For the second part of the claim, assume that an out-arborescence of M+ intersects M c

at a vertex u that is not its root. As noted above, any edge that is not i-necessary for any
i ∈ {1, . . . , λ0} is part of the core M c. Hence there is an edge e ∈ E(M+) that has u as its head
and is i-necessary for some i ∈ {1, . . . , λ0}. There must be at least one edge of M c incident
to u, since u ∈ V (M c) and we removed all isolated vertices from M c. The in-degree of u is
0 in M c, since Claim 3.3 and e /∈ E(M c) implies that the in-degree of u is exactly 1 in M .
Because M c is a minimal solution to Hc and u has in-degree 0 in M c, there is at least one edge
of Hc whose tail is u: the (at least 1) edges going out from u can be used only by paths starting
at u. Suppose first that there is an edge uw ∈ E(Hc) and that it is from E(I). Consider the
step of the construction of M c and Hc when we considered the edge uw and the integer i. The
path Puw is starting at u, and edge e is an i-necessary edge with e 6∈ E(Puw) whose head is on
Puw. Thus we have identified a leaf ℓ of Si such that e is ℓ-necessary, introduced viℓ into H

c,
and added a vi → ℓ path to Hc, which had to contain e. As e is ℓ-necessary, it would have
remained in M c even after removing superfluous edges, contradicting e 6∈ E(M c). Thus we can
conclude that there is no edge of I with u as its tail. This means that if uw ∈ E(Hc), then it
is only possible that u is the root vλ0 of the last star Sλ0 , as every other root vj with j < λ0
is incident to the edge vjvj+1 of I. Moreover, if λ0 > 1, then vλ0−1vλ0 ∈ E(I), which leads to
a contradiction, since then M c would contain a path from vλ0−1 to u = vλ0 , but the only edge
entering u is e and we have e /∈ E(M c). Thus i = λ0 = 1 is the only possibility. This however
would mean that the arborescence MSi contains a cycle, as e ∈ E(MSi) and the head of e is the
root vi of MSi . This leads to a contradiction, and so we can conclude that no out-arborescence
of M+ intersects M c at a vertex different from its root. y

Since we have already established that M c is a minimal solution to Hc with |E(Hc)| ≤
(1 + λ)(λ+ δ), Claim 3.4 completes the proof of Theorem 3.1.

4 An algorithm to find optimal solutions of bounded

treewidth: proof of Theorem 1.5

This section is devoted to proving Theorem 1.5. That is, we present an algorithm based on
dynamic programming that computes the optimum solution to a given pattern H, given that
the treewidth of the optimum is bounded by ω, and given that the vertex cover number of H
is τ . Roughly speaking, we will exploit the first property by guessing the bags of the tree
decomposition of the optimum solution, which can be done in nO(ω) time as the size of a bag is at
most ω+1. Since each bag forms a separator of the optimum, we are able to precompute partial
solutions connecting a subset of the terminals to a separator. We need to also guess the subset of
the terminals for which there are 2k choices. These partial solutions are then put together at the
separators to form larger partial solutions containing more vertices. The algorithm presented
in this section is not the most obvious one: it was optimized to exploit that the vertex cover
number of H is τ . While this optimization requires the implementation of additional ideas and
makes the algorithm more complicated, it allows us to replace a factor of 2O(kω) in the running
time with the potentially much smaller 2O(k+τω logω) (i.e., if τ = o(k/ logω)).

Defining the dynamic programming table. Our algorithm maintains a table T , where in
each entry we aim at storing a partial solution of minimum cost that provides partial connectivity
of certain type between the terminals contained in the network and a separator U of the solution.
The entries are computed by recursively putting together partial solutions. In order to do this,
we also need to keep track of how vertices of a separator U of a partial solution are connected to

13

each other. For this we need the following formal definitions encoding the internal connectivity
of U and the types of connectivity between terminals and U .

A minimal solution M ⊆ G (and therefore also any optimum solution) to a pattern H is
the union of d = |E(H)| paths Pst, one for each edge st ∈ E(H). Throughout this section,
given a minimal solution M we fix such a path Pst for each demand st, and we let P denote
the set of all these paths. Let now N ⊆ M be a partial solution of a minimal solution M .
For a separator U ⊆ V (G) the U -projection of N encodes the connectivity that N provides
between the vertices of U by short-cutting each path Pst ∈ P to its restriction on U . Formally,
it is a set of edges containing uv ∈ U2 if and only if there is an edge st ∈ E(H) and a u → v
subpath P of some Pst ∈ P such that P is contained in N and the internal vertices of P do not
belong to U . Note that the path P can also be an edge uv ∈ E(N [U]) induced by U in N , and
the U -projection will in fact contain any such edge, since the edge must be part of some path
Pst ∈ P of the minimal solutionM . On the other hand, observe that even if N contains a u→ v
path with internal vertices not in U , it is not necessarily true that uv is in the U -projection: we
put uv into the U -projection only if there is a path in P that has a u → v subpath. Thus this
definition is more restrictive than just expressing the connectivity provided by N , as it encodes
only the connectivity essential for the paths in P. The exact significance of this subtle difference
will be apparent later: for example, this more restrictive definition implies fewer edges in the
U -projection, which makes the total number of possibilities smaller.

The property that H has vertex cover number τ implies that H is the union of c ≤ 2τ in-
and out-stars S1, . . . , Sc. We denote the root of Sj by rj and its leaf set by Lj . Let also Rin

and Rout contain the roots rj of all in- and out-stars, respectively. By Lemma 1.6, a minimal
solutionM to H is the union of c arborescences, each with at most |V (M)|−1 edges. Note that
any path Pst ∈ P implies the existence of a set of edges in a U -projection of M forming a path
in the U -projection. It is not difficult to see that if we take any arborescence that is the union
of paths in P, then its U -projection is a forest of arborescences with at most |U |−1 edges in the
U -projection: for example, in case of an out-arborescence, it is not possible that two distinct
edges enter the same vertex of U in the projection. Therefore, if we have |U | ≤ ω + 1, then
the fact that P is the union of c arborescences implies that the U -projection of every partial
solution N ⊆M contains at most cω edges. Note that here it becomes essential how we defined
the U -projection: even if N consists of only a single path Pst going through every vertex of U ,
it is possible that there are

(|U |
2

)
pairs uv ∈ U2 such that N has a u → v path; however, with

our definition, only |U | − 1 edges would appear in the U -projection.
We now describe the type of connectivity provided by a partial solution N by a tuple

(Q, I,B,A), which is defined in the following way. First, Q is the set of terminals appear-
ing in N , and I is the subgraph of the partial solution induced by U , i.e., I = N [U]. The
set B ⊆ (U × Rin) ∪ (Rout × U) ∪ (U × U) describes how N provides connectivity between
the vertices of the separator U , and between the separator U and the roots, as follows. First,
an edge uv ∈ U × U appears in B if uv is in the U -projection of N . Moreover, an edge
uv ∈ (U × Rin) ∪ (Rout × U) is in B if there is a path Pst ∈ P that has a u → v subpath in N
(regardless of what internal vertices this subpath has).

The last item A requires more explanation. Consider an out-star Sj rooted at rj ∈ Rout

outside of N and let ℓ ∈ Lj be one of its leaves for which ℓ ∈ V (N). Intuitively, to classify the
type of connectivity provided by N to the leaf ℓ, we should describe the subset Uℓ ⊆ U of vertices
from which ℓ is reachable in N . Then we know that in order to extend N into a full solution
where ℓ is reachable from rj , we need to ensure that an rj → v path exists for some v ∈ Uℓ.
However, describing these sets Uℓ for every leaf ℓ ∈ Lj may result in an unacceptably high
number of different types (of order 2O(kω)), which we cannot afford to handle in the claimed
running time. Thus we handle the leaves in a different way. For every root rj ∈ Rout, we define
a set Aj ⊆ U as follows. Initially we set Aj = ∅ and then we consider every leaf ℓ ∈ Lj ∩ V (N)
one by one. Let P be the rj → ℓ path in P. If P ⊆ N , then there is nothing to be done for this

14

leaf ℓ and we can proceed with the next leaf. Otherwise, suppose that the maximal suffix of P
in N starts at vertex w, that is, w is the first vertex of P such that the w → ℓ subpath of P
is a subgraph of N . If w 6∈ U , then we declare the type of N as invalid. Otherwise, we extend
Aj with w and proceed with the next leaf in Lj ∩ V (N). This way, we define a set Aj for every
root rj ∈ Rout and in a similar manner, we can define a set Aj for every root rj ∈ Rin as well
(then w is defined to be the last vertex of the ℓ→ rj path P such that the ℓ→ w subpath is in
N). The family A = (A1, . . . , Ac) in the tuple (Q, I,B,A) is the collection of these sets Aj .

The table T used in the dynamic programming algorithm has entries T [i, Q, U, I, B,A],
where i ≤ |V (G)| is an integer, Q ⊆ R is a subset of terminals, U is a subset of at most ω + 1
vertices, I is a subgraph of G[U] with at most cω edges, B is a subset of (U × Rin) ∪ (Rout ×
U) ∪ (U × U) with |B ∩ (U × U)| ≤ cω, and A = (A1, . . . , Ac) with every Aj being a subset of
U . We say that a network N ⊆ G satisfies such an entry if the following properties hold:
(P1) N has at most i vertices, which include U and has V (N) ∩R = Q,
(P2) I is the graph induced by U in N , i.e., I = N [U],
(P3) for every edge uv ∈ B there is a u→ v path in N , and
(P4) for any out-star (resp., in-star) Sj with root rj and any ℓ ∈ Lj ∩ V (N), there is a w → ℓ

path (resp., ℓ→ w path) in N for some w ∈ Aj ∪ {rj}.
Let N ⊆M be an induced subgraph of the minimal solutionM . We say that N is U -attached

in M if U ⊆ V (N) and the neighbourhood of each vertex in V (N) \ U is fully contained in
V (N). The following statement is straightforward from the definition.

Lemma 4.1. If N ⊆ M is a U -attached induced subgraph of M with i vertices, then it has a
valid type (Q, I,B,A) and N satisfies the entry T [i, Q, U, I, B,A].

The algorithm. For each entry T [i, Q, U, I, B,A] the following simple algorithm computes
some network satisfying properties (P1) to (P4), for increasing values of i. It first computes
entries for which i ≤ ω + 1 by simply checking whether the graph I satisfies properties (P1)
to (P4). If it does then I is stored in the entry, and otherwise the entry remains empty. For
values i > ω+1, the entries are computed recursively by combining precomputed networks with
a smaller number of vertices. The algorithm sets the entry T [i, Q, U, I, B,A] to the minimum
cost network N that has properties (P1) to (P4) and for which N = T [i1, Q1, U1, I1, B1,A1] ∪
T [i2, Q2, U2, I2, B2,A2] for some i1, i2 < i. Again, if no such network exists, we leave the entry
empty.

Correctness of the algorithm. According to this algorithm any non-empty entry of the
table stores some network that has properties (P1) to (P4). The following lemma shows that
for certain entries of the table our algorithm computes an optimum partial solution. Recall
from Section 1.3 that we may assume that a given tree decomposition is smooth, i.e., if the
treewidth is ω then |bw| = ω + 1 and |bw ∩ bw′ | = ω for any two adjacent nodes w,w′ of the
decomposition tree. If D′ is a subtree of a tree decomposition D and bw a bag of D′, we say
that D′ is attached via bw in D if w is the only node of D′ adjacent to nodes of D not in D′.

Lemma 4.2. Let DM be a smooth tree decomposition of M , where the treewidth of M is ω.
Let D be a subtree of DM attached via a bag U in DM and let N ⊆M be the sub-network of M
induced by all vertices contained in the bags of D. Then N has a valid type (Q, I,B,A) and
satisfies the entry T [i, Q, U, I, B,A] for i = |V (N)|. Moreover, at the end of the algorithm the
entry T [i, Q, U, I, B,A] contains a network satisfying the entry and with cost at most that of N .

Proof. The first statement follows from Lemma 4.1. The proof of the second statement is
by induction on the number of nodes in tree decomposition D of N . If D contains only one
node, which is associated with the bag U , then the statement is trivial, since in this case
i = |V (N)| = |U | = ω + 1 and N = N [U] = I by Lemma 4.1, so that the algorithm stores

15

N in the entry. If D contains at least two nodes, let w1 be the node corresponding to U ,
and let w2 be an adjacent node to w1 in D. The edge w1w2 separates the tree D into two
subtrees. For h ∈ {1, 2}, let Dh be the corresponding subtree of D containing wh, i.e., their
disjoint union is D minus the edge w1w2. If N1 and N2 are the sub-networks of N induced
by the bags of D1 and D2, respectively, then N = N1 ∪ N2. Let Uh be the set of vertices
in the bag corresponding to the node wh (in particular U1 = U) and let ih = |V (Nh)|. It is
easy to see that Nh is a Uh-attached induced subgraph of M for h = 1, 2. Hence Lemma 4.1
implies that Nh has a valid type (Qh, Ih, Bh,Ah) with Ah = {Ah

1 , . . . , A
h
c } and satisfies the

entry T [ih, Qh, Uh, Ih, Bh,Ah] for h ∈ {1, 2}. As D is attached via U in DM , clearly also Dh is
attached via Uh in DM . Moreover, since D is smooth we have U1 \ U2 6= ∅ and U2 \ U1 6= ∅. In
particular, for each h ∈ {1, 2}, there is some vertex v of N , which is not contained in Nh, as
the bags containing v must form a connected subtree of D. Thus ih < i and i > |U | = ω + 1.
Furthermore, by induction we may assume that the entry T [ih, Qh, Uh, Ih, Bh,Ah] contains a
network N ′

h satisfying the entry and with cost at most that of Nh. Thus by the following
claim, the union of the two networks N ′

1 and N ′
2 stored in the entries T [ih, Qh, Uh, Ih, Bh,Ah]

for h ∈ {1, 2}, respectively, is considered by the algorithm as a candidate to store in the entry
T [i, Q, U, I, B,A].

Claim 4.3. The solutions N ′
1 and N

′
2 that are stored in the respective entries T [i1, Q1, U1, I1, B1,A1]

and T [i2, Q2, U2, I1, B1,A2] can be combined to a solution N ′ = N ′
1∪N ′

2 satisfying T [i, Q, U, I, B,A].

Proof. By induction, N ′
1 and N ′

2 have property (P1), and so the solutions N ′
1 and N ′

2 have at
most i1 and i2 vertices, respectively, and N

′
1 contains U1 and Q1, while U2 and Q2 are contained

in N ′
2. Since U1 ∩ U2 separates N1 and N2, we have that V (N1) ∩ V (N2) = U1 ∩ U2, and

so i = i1 + i2 − |U1 ∩ U2|, as i = |V (N)| and ih = |V (Nh)| for i ∈ {1, 2}. Hence the union N ′

of N ′
1 and N ′

2 contains U = U1 and Q = Q1 ∪ Q2, and has at most i vertices, so that we
obtain property (P1) for N ′. For property (P2), by induction N ′

1 has property (P2), so that
I1 = N ′

1[U1]. We also have I = N [U] = N1[U1] = I1, since N has property (P2), U = U1, and
by definition of N1 and I1. Hence I = N ′

1[U1] = N ′[U], and so we obtain property (P2) for N ′.
For property (P3), consider an edge uv ∈ B, for which by definition of B there is a Pst ∈ P

and a u → v subpath P of Pst fully contained in N . The path P may use the edges of
both N1 and N2. By definition of B, at least one of u and v is in U = U1, while U1 ∩ U2

separates N1 and N2. This means that we can partition P into subpaths such that for each
subpath P ′ there is an h ∈ {1, 2} for which P ′ uses only the edges of Nh, has endpoints in
(Uh × Uh) ∪ (Uh × Rin) ∪ (Rout × Uh), and internal vertices outside of Uh. If both endpoints
u′, v′ of P ′ are in Uh, then the Uh-projection of N will contain a corresponding edge u′v′, which
is also contained in Bh. Similarly, Bh will contain u′v′ if one of u′ and v′ lies in Rin or Rout.
Thus in any of these cases, property (P3) for N ′

h implies that N ′
h contains a u′ → v′ path. By

replacing each subpath P ′ of P with a path of N ′
1 or N ′

2 having the same endpoints, we obtain
that N ′ also contains a u→ v path, and thus N ′ has property (P3).

Finally, let us verify that N ′ satisfies property (P4). Consider an out-star Sj with a leaf
ℓ ∈ Lj ∩ Q and let h ∈ {1, 2} such that ℓ ∈ Qh. We have to show that N ′ contains an
Aj ∪{rj} → ℓ path. As N ′

h satisfies the entry T [ih, Qh, Uh,Ah, Bh, Ih], we know that N ′
h has an

Ah
j ∪ {rj} → ℓ path P ′

h. If P ′
h starts in rj , then we are done: then the path P ′

h shows that the
supergraph N ′ of N ′

h contains a path from Aj ∪{rj} to ℓ. Suppose therefore that P ′
h starts in a

vertex v ∈ Ah
j . When defining the type of Nh, vertex v was added to the set Ah

j because there
is a leaf ℓ∗ ∈ Lj ∩Qh such that the maximal suffix of the path Prjℓ∗ ∈ P starts in v. Suppose
that the maximal suffix of Prjℓ∗ in N starts in some vertex w ∈ Aj ∪ {rj}, and let Q be the
w → v subpath of Prjℓ∗ . We claim that, with an argument similar to the previous paragraph,
the w → v subpath of Q can be turned into a path Q′ of N ′. Indeed, Q can be partitioned into
subpaths such that for each subpath there is an h∗ ∈ {1, 2} for which the subpath uses only
the edges of Nh∗ , has endpoints in (Uh∗ × Uh∗) ∪ (Rout × Uh∗), and internal vertices outside of

16

Uh. Property (P3) for N ′
h∗ implies that each such subpath can be replaced by a path of N ′

h∗ ,
which proves the existence of the required w → v subpath Q′ of N ′. Then the concatenation of
Q′ and P ′

h gives an Aj ∪ {rj} → ℓ walk in N ′, what we had to show. The case when Sj is an
in-star is symmetric.

In conclusion, N ′ has properties (P1) to (P4) and satisfies T [i, Q, U, I, B,A]. y

To conclude the proof, we need to show that the algorithm stores a network with cost at
most that of N in the entry T [i, Q, U, I, B,A]. Let γ(E(Ñ)) denote the total cost of all edges
of a network Ñ . As Claim 4.3 shows, the algorithm considers at some point N ′ = N ′

1 ∪N ′
2 as a

potential candidate for the entry T [i, Q, U, I, B,A], hence in the end the algorithm stores in this
entry a partial solution with cost not more than γ(E(N ′)). Thus the only thing we need to show
is that γ(E(N ′)) ≤ γ(E(N)). As U1 ∩ U2 separates N1 and N2, the only edges that N1 and N2

can share are the edges in U1∩U2, that is, γ(E(N)) = γ(E(N1))+γ(E(N2))−γ(E(N [U1∩U2])).
By property (P2), every edge of N [U1∩U2] appears in both N ′

1 and N
′
2. This means that N ′

1 and
N ′

2 share at least this set of edges (they can potentially share more edges outside of U1 ∩ U2).
Therefore, we have γ(E(N ′)) ≤ γ(E(N ′

1))+γ(E(N ′
2))−γ(E(N [U1∩U2])) = γ(E(N)), what we

had to show.

Since an optimum solution is minimal, we may set M to an optimum solution to H in
Lemma 4.2. If we also set D = DM and Q = R in the lemma we get that Aj = ∅ for each
j ∈ {1, . . . , c}. Any entry of the table for which Q = R and Aj = ∅ for each Aj ∈ A contains
a feasible solution to pattern H or is empty, due to property (P4). Hence if M has treewidth
ω and H is the union of c in- and out-stars, by Lemma 4.2 there is an i such that entry
T [i, Q, U, I, B,A] will contain a feasible network with cost at most that of M , i.e., an optimum
solution to H. By searching all entries of the table for which Q = R and Aj = ∅ for each Aj ∈ A
we can thus find the optimum solution to H.

Bounding the runtime. The number of entries of the table T is bounded by the number
of possible values for i, sets Q, U , A1, . . ., Ac, B, and graphs I. For i there are at most n
possible values. As Q ⊆ R and |R| = k, there are 2k possible sets Q, and since U ⊆ V (G)
with |U | ≤ ω + 1 and |V (G)| = n, there are nO(ω) subsets U . For each Aj ∈ A we choose a
subset of U and thus there are 2ω+1 such sets. The total number of sets A is thus 2c(ω+1), given
a set U . The set B contains at most ω + 1 edges for each of the c star centers in Rin ∪ Rout

(i.e., a total of 2c(w+1) possibilities) and at most cω edges induced by U . As there are at most
2
(
ω+1
2

)
< (ω + 1)2 possible edges induced by U , the number of possibilities for B to contain at

most cω such edges is at most
∑cω

l=0

((ω+1)2

l

)
≤ (ω + 1)2cω. Thus the total number of possible

sets B, given a fixed U , is 2O(cω logω). The graph I has at most cω edges incident to the vertices
of U , and thus as before there are at most 2O(cω logω) possible such graphs. Therefore the
number of entries in the table T is 2O(k+cω logω)nO(ω).

In case i ≤ ω+1, the algorithm just checks whether I has properties (P1) to (P4), and each
of these checks can be done in time polynomial in ω. In case i > ω + 1, every pair of entries
with i1, i2 < i needs to be considered in order to form the union of the stored partial solutions.
For the union, properties (P1) to (P4) can be checked in polynomial time. Thus the time to
compute an entry is 2O(k+cω logω)nO(ω), from which the total running time follows as c ≤ 2τ .
This completes the proof of Theorem 1.5.

5 Characterizing the hard cases

We now turn to proving the second part of Theorem 1.2, i.e., that H-DSN is W[1]-hard for every
class H where the patterns are not transitively equivalent to almost-caterpillars. As we will see

17

Figure 2: A schematic representation of the reduction in Lemma 5.2.

later, we need the minor technical requirement that the class H is recursively enumerable, in
order to prove the following hardness result via reductions.

Theorem 5.1. Let H be a recursively enumerable class of patterns for which there are no
constants λ and δ such that H ⊆ C∗

λ,δ. Then the problem H-DSN is W[1]-hard for parameter k.

A major technical simplification is to assume that the class H is closed under identifying
terminals and transitive equivalence. As we show in Section 5.1, this assumption is not really
restrictive: it is sufficient to prove hardness for the closure of H under identification and trans-
itive equivalence, since any W[1]-hardness result for the closure can be transferred to H. For
classes closed under these operations, it is possible to give an elegant characterization of the
classes that are not almost-caterpillars. There are only a few very specific reasons why a class H
is not in C∗

λ,δ for any λ and δ: either H contains every directed cycle, or H contains every “pure
diamond,” or H contains every “flawed diamond” (see Section 5.2 for the precise definitions).
Then in Section 5.3, we provide a W[1]-hardness proof for each of these cases, completing the
hardness part of Theorem 1.2.

5.1 Closed classes

We define the operation of identifying terminals in the following way: given a partition V of
the vertex set V (H) of a pattern graph H, each set W ∈ V is identified with a single vertex of
W , after which any resulting isolated vertices and self-loops are removed, while parallel edges
having the same head and tail are replaced by only one of these copies. A class of patterns is
closed under this operation if for any pattern H in the class, all patterns that can be obtained
by identifying terminals are also in the class. Similarly, we say that a class H is closed under
transitive equivalence if whenever H and H ′ are two transitively equivalent patterns such that
H ∈ H, then H ′ is also in H. The closure of the class H under identifying terminals and
transitive equivalence is the smallest closed class H′ ⊇ H. It is not difficult to see that any
member of the closure can be obtained by a single application of identifying terminals and a
subsequent replacement with a transitively equivalent pattern.

The following lemma shows that if we want to prove W[1]-hardness for a class, then it is
sufficient to prove hardness for its closure. More precisely, due to a slight technicality, the actual
statement we prove is that it is sufficient to prove W[1]-hardness for a decidable subclass of the
closure.

Lemma 5.2. Let H be a recursively enumerable class of patterns, let H′ be the closure of H
under identifying terminals and transitive equivalence, and let H′′ be a decidable subclass of H′.
There is a parameterized reduction from H′′-DSN to H-DSN with parameter k.

Proof. Let us fix an enumeration of the graphs in H, and consider the function g : H′ → N that
maps any graph H ′ ∈ H′ to the number of vertices of the first graph H ∈ H in the enumeration
such that H ′ can be obtained from H by identifying terminals and transitive equivalence. We
define f(k) = max{g(H ′′) | H ′′ ∈ H′′ and |V (H ′′)| = k} to be the largest size of such an H ∈ H
for any graph of H′′ ⊆ H′ with k vertices. Note that f only depends on the parameter k and
the classes H and H′′. Furthermore, f is a computable function: as H′′ is decidable, there is an
algorithm that first computes every H ′′ ∈ H′′ with k vertices, and then starts enumerating H
to determine g(H ′′) for each such H ′′.

18

a) b) c) d) e)

Figure 3: The obstruction appearing in Lemma 5.4: a) a directed cycle of length 4, b) a pure 4-out-
diamond, c) a flawed 4-out-diamond, d) a pure 4-in-diamond, e) a flawed 4-in-diamond.

For the reduction (see Figure 2), let an instance of H′′-DSN be given by an edge-weighted
directed graph G′′ and a pattern H ′′ ∈ H′′. We first enumerate patterns H ∈ H until finding
one from which H ′′ can be obtained by identifying terminals and transitive equivalence. The
size of H is at most f(k) if k = |V (H ′′)|, and checking whether a given pattern of H′′ can be
obtained from H by identifying terminals can be done by brute force. Thus the time needed to
compute H depends only on the parameter k.

Let Wt ⊆ V (H) denote the set of vertices that are identified with t ∈ V (H ′) to obtain H ′′.
In G′′ we add a strongly connected graph on Wt with edge weights 0 for every t ∈ V (H ′′), by
first adding the vertices Wt \{t} to G′′ and then forming a cycle of the vertices of Wt. It is easy
to see that we obtain a graph G for which any solution N ⊆ G to H corresponds to a solution
N ′′ ⊆ G′′ to H ′′ of the same cost, and vice versa. Since the new parameter |V (H)| is at most
f(k) and the size of G is larger than the size of G′′ by a factor bounded in terms of f(k), this
is a proper parametrized reduction from H′′-DSN to H-DSN.

5.2 Obstructions: SCCs and diamonds

To show the hardness for a closed class that is not the subset of C∗
λ,δ for any λ and δ, we will

characterize such a class in terms of the occurrence of arbitrarily large cycles, and another class
of patterns called “diamonds” (cf. Figure 3).

Definition 5.3. A pure α-diamond graph is constructed as follows. Take a vertex set L of
size α ≥ 1, and two additional vertices r1 and r2. Now add edges such that L is the leaf set
of either two in-stars or two out-stars S1 and S2 with roots r1 and r2, respectively. If we add
an additional vertex x with edges r1x and r2x if S1 and S2 are in-stars, and edges xr1 and
xr2 otherwise, the resulting graph is a flawed α-diamond. We refer to both pure α-diamonds
and flawed α-diamonds as α-diamonds. If S1 and S2 are in-stars we also refer to the resulting
α-diamonds as in-diamonds, and otherwise as out-diamonds.

The goal of this section is to prove the following useful characterization precisely describing
classes that are not almost-caterpillars.

Lemma 5.4. Let H be a class of pattern graphs that is closed under identifying terminals and
transitive closure. Exactly one of the following statements is true:

• H ⊆ C∗
λ,δ for some constants λ and δ.

• H contains every directed cycle, or every pure in-diamond, or every pure out-diamond, or
every flawed in-diamond, or every flawed out-diamond.

For the proof of Theorem 5.1, we only need the fact that at least one of these two statements
hold: if the class H is not in C∗

λ,δ, then we can prove hardness by observing that H contains one
of the hard classes. For the sake of completeness, we give a simple proof that the two state-
ments cannot hold simultaneously (note that it is sufficient to require closure under transitive
equivalence for this statement to hold).

Lemma 5.5. Let H be a class of pattern graphs that is closed under transitive equivalence.
If there are constants λ and δ such that H ⊆ C∗

λ,δ, then H cannot contain a pure or flawed
α-diamond or a cycle of length α for any α > 2δ + λ.

19

Proof. Suppose first that there is a pattern H ∈ C∗
λ,δ that is a cycle of length α. There is a

pattern H ′ ∈ Cλ,δ that is transitively equivalent to H. Clearly, any graph that is transitively
equivalent to a directed cycle is strongly connected, which then also applies to H ′. Recall that
according to Definition 1.1 there is a set of edges F ⊆ E(H ′) of size at most δ for which the
remaining edges E(H ′) \ F span a λ0-caterpillar C for some λ0 ≤ λ. That is, C consists of λ0
vertex-disjoint stars for which their roots are joined by a path. Since every vertex of a strongly
connected graph must have in- and out-degree at least 1, any leaf of a star of C can only be
part of an SCC if it is incident to some edge of F . Hence if H was strongly connected, then
for every leaf of C there would be an additional edge in F . This however would mean that H
contained at most 2δ + λ vertices: for each edge of F the two incident vertices, which include
the leaves of the caterpillar, and λ0 ≤ λ roots of stars. Hence α ≤ 2δ + λ.

Suppose now that there is a pattern H ∈ C∗
λ,δ that is an α-diamond, and a pattern H ′ ∈ Cλ,δ,

which is transitively equivalent to H. Let r1 and r2 be the two roots of the diamond H, and
let us denote by r1 and r2 the corresponding two vertices in H ′ as well. It is easy to see from
Definition 5.3 that H ′ contains an α-diamond as a subgraph, possibly in addition to some edges
that connect the vertex x with some of the leaves in L, in case of a flawed α-diamond. This
means that r1 and r2 have degree at least α in H ′ as well. Let F be a set of at most δ edges
such that E(H ′) \ F span a λ0-caterpillar C for some λ0 ≤ λ. It is not possible that both r1
and r2 are on the spine of the caterpillar: then there would be a directed path from one to the
other, which is not the case in the diamond H. Assume without loss of generality that r1 is not
on the spine of the caterpillar. Then r1 has degree at most 1 in E(H ′) \ F and hence degree
at most |F | + 1 ≤ δ + 1 in H ′. As we observed, r1 has degree at least α in H ′, it follows that
α ≤ δ + 1.

Showing that at least one of the two statements of Lemma 5.4 hold is not as easy to prove.
First, the following two lemmas show how a large cycle or a large diamond can be identified if
certain structures appear in a pattern. The main part of the proof is to show that if H contains
patterns that are arbitrarily far from being a caterpillar, then one of these two lemmas can be
invoked (see Lemma 5.8). For the next lemma we define a matching of a graph as a subset M
of its edges such that no two edges of M share a vertex.

Lemma 5.6. Let H be a class of pattern graphs that is closed under identifying terminals and
transitive closure. If some H ∈ H contains a matching of size α, then H contains a directed
cycle of length α.

Proof. A matching e1, . . . , eα of α edges can be transformed into a cycle of length α by
identifying the head of ei and tail of ei+1 (and the head of eα with the tail of e1). All remaining
vertices of H that do not belong to the cycle can then be identified with any vertex of the cycle,
so that the resulting graph consists of the cycle and some additional edges. Since H is closed
under identifying terminals, this graph is contained in H if H is. As this graph is strongly
connected and H is closed also under transitive equivalence, we can conclude that H contains
a cycle of length α.

Next we give a sufficient condition for the existence of large diamonds. We say that an edge
uv of a graph H is transitively non-redundant if there is no u→ v path in H \ uv.

Lemma 5.7. Let H be a class of pattern graphs that is closed under identifying terminals and
transitive equivalence. Let H ∈ H be a pattern graph that contains two out-stars (or two in-stars)
S1 and S2 as induced subgraphs, with at least α edges each and roots r1 and r2, respectively,
such that r1 6= r2. If

1. H contains neither a path from r1 to r2, nor from r2 to r1,
2. the leaves of S1 and S2 have out-degree 0 (if S1 and S2 are out-stars) or in-degree 0 (if

S1 and S2 are in-stars), and

20

3. the edges of the stars are transitively non-redundant,
then H contains an α-diamond.

Proof. We only consider the case when S1 and S2 are out-stars, as the other case is symmetric.
Let T1 ⊆ S1 and T2 ⊆ S2 be two out-stars with exactly α edges and roots r1 and r2, respectively.
We construct an α-diamond starting from T1 and T2, and using the following partition of V (H).
Let {s1, . . . , sα} and {t1, . . . , tα} denote the leaf sets of T1 and T2. These sets may intersect, but
we may order them in a way that i = j holds whenever si = tj . Define Y1 ⊆ V (H) \ V (T1 ∪ T2)
and Y2 ⊆ V (H) \ V (T1 ∪ T2) to be the reachability sets of r1 and r2, i.e., they consist of those
vertices w that do not belong to T1 or T2, and for which there is a path in H to w from r1
or r2, respectively. We partition all vertices of H outside of the two stars T1 and T2 into the
set W1 = Y1 \ Y2 reachable from only r1, the set W2 = Y2 \ Y1 reachable from only r2, the set
W = Y1 ∩ Y2 reachable from both r1 and r2, and the set U = V (H) \ (Y1 ∪ Y2) reachable from
neither r1 nor r2.

To obtain an α-diamond, we identify for each i ∈ {1, . . . , α} the leaves si and ti, and call
the resulting vertex ℓi. We also identify every vertex of W1 with r1, every vertex of W2 with r2,
and all vertices in W with the vertex ℓ1. If there is a vertex x in U for which in H there is
a path to some vertex in W1 ∪ {r1}, and there is a vertex x′ in U (which may be equal to x)
with a path to a vertex in W2 ∪ {r2}, then we identify each vertex in U with x. If there is no
path from any vertex of U to a vertex of W2 ∪ {r2}, but for some vertex in U there is a path
to W1 ∪ {r1}, we identify every vertex of U with r1. Otherwise, all vertices of U are identified
with r2. We claim that the resulting graph D is a pure α-diamond if the pair x, x′ does not
exist, and transitively equivalent to a flawed α-diamond otherwise.

The graph D clearly contains a pure α-diamond as a subgraph, due to the stars T1 and T2.
If the pair x, x′ ∈ U exists it also contains a flawed α-diamond, since the two paths from x to
W1 ∪ {r1} and from x′ to W2 ∪ {r2} result in edges xr1 and xr2 after identifying W1 with r1,
W2 with r2, and U with x. There may be edges xℓi in D for some i ∈ {1, . . . , α}, but these are
transitively implied by the path consisting of the edges xr1 and r1ℓi. Hence if no other edges
exist in D, it is transitively equivalent to a (pure or flawed) α-diamond.

By assumption the out-degree of each leaf of the out-stars T1 and T2 is 0. Hence for i ≥ 2,
none of the above identifications can add an edge with a vertex ℓi as its tail. For ℓ1 it could
possibly happen that an edge with ℓ1 as its tail was introduced when identifying W with this
vertex. The head of such an edge in D would be either some ℓi with i ≥ 2, r1, r2, or x if it
exists. This would mean that in H there is an edge yz with y ∈ W and z ∈ {si, ti, r1, r2} ∪ U .
By definition of W , in H there is both a path from r1 and from r2 to y, and furthermore none
of these paths contains si or ti, as these vertices have out-degree 0. Assume first that z = si, in
which case the r1 → y path together with the edge ysi form a path not containing the edge r1si.
However this contradicts the assumption that r1si is transitively non-redundant. Similarly, it
cannot be that z = ti, since otherwise r2ti would be transitively redundant. If z = r1, then
there is a path from r2 to r1 through y, which is excluded by our assumption that no such path
exists. Symmetrically it can also not be that z = r2. The only remaining option is that z ∈ U .
However this is also excluded by definition of U , as otherwise there would be a path from r1 to
U through y. Consequently, the out-degree of ℓi in D is 0 for every i ∈ {1, . . . , α}.

In case the pair x, x′ exists in H, it is not hard to see that there is no edge in D with x
as its head: by definition of U there is no edge yz in H with y /∈ U and z ∈ U , as in H there
are no paths from r1 or r2 to any vertex of U , while every vertex outside of U is reachable
from r1 or r2. Thus it remains to argue that there is no edge between r1 and r2 in D. If the
pair x, x′ does not exist, U is identified with either r1 or r2. The former only happens if there
is no vertex in U with a path to r2, while the latter only happens if no such vertex with a path
to r1 exists. Hence identifying U with either r1 or r2 does not add an edge between r1 and r2.
Note that in H there cannot be an edge yz with y ∈ W1 and z ∈ W2, since otherwise z ∈ Y1,
which contradicts the definition of W2. Analogously, no edge yz with y ∈W2 and z ∈W1 exists

21

either. Consequently, identifying W2 with r2 and W1 with r1 does not add any edge between r1
and r2 to D. This concludes the proof since no additional edges exist in D.

To show that at least one of the two statements of Lemma 5.4 hold, we prove that if the
second statement is false, then the first statement is true. Observe that if a class closed under
identifications contain an α-cycle or α-diamond, then it contains every cycle or diamond of
smaller size. Thus what we need to show is that if H does not contain all cycles (i.e., there is an
α1 such that H contains no cycle larger than α1), H does not contain all pure out-diamonds (i.e.,
there is an α2 such that H contains no pure out-diamond larger than α2), etc., then H ⊆ C∗

λ,δ

for some constants λ and δ. In other words, if we let α to be the maximum of α1, α2, etc.,
then we may assume that H contains no pure or flawed α-diamond or cycle of length α, and we
need to prove H ⊆ C∗

λ,δ under this assumption. Thus the following lemma completes the proof
of Lemma 5.4.

Lemma 5.8. Let H be a class of pattern graphs that is closed under identifying terminals and
transitive equivalence. If for some integer α the class H contains neither a pure α-diamond,
flawed α-diamond, nor a cycle of length α, then there exist constants λ and δ (depending on α)
such that H ⊆ C∗

λ,δ.

Proof. Suppose that there is such an integer α. Let λ := 2α and δ := 4α3 + 6α2. Given any
H ′ ∈ H, we show how a transitively equivalent pattern H ∈ Cλ,δ can be constructed, implying
that H ′ belongs to C∗

λ,δ. A vertex cover of a graph is a subset X of its vertices such that every
edge is incident to a vertex of X. By Lemma 5.6, H ′ cannot contain a matching of size α. It is
well-known that if a graph has no matching of size α, then it has a vertex cover of size at most
2α (take the endpoints of any maximal matching). Let us fix a vertex cover X of H ′ having
size at most 2α.

To obtain H from H ′, we start with a graph H on V (H ′) having no edges and perform the
following three steps.

1. Let us take the transitive closure on the vertex set X in H ′, i.e., let us introduce into H
every edge uv with u, v ∈ X such that there is a u→ v path in H ′.

2. Let us add all edges uv of H ′ to H for which u /∈ X or v /∈ X.
3. Fixing an ordering of the edges introduced in step 2, we remove transitively redundant

edges: following this order, we subsequently remove those edges uv for which there is a
path from u to v in the remaining graph H that is not the edge uv itself (we emphasize
that the edges with both endpoint in X are not touched in this step).

It is clear that H is transitively equivalent to H ′, hence H ∈ H. Note that X is a vertex cover
of H as well, and hence its complement I = V (H)\X is an independent set, i.e., no two vertices
of I are adjacent. Let EI ⊆ E(H) be the set of edges between X and I. In the rest of the proof,
we argue that the resulting pattern H belongs to Cλ,δ. We show that H can be decomposed
into a path P = (v1, . . . , vλ0) in X, a star Svi centered at each vi using the edges in EI , and a
small set of additional edges. This small set of additional edges is constructed in three steps,
by considering a sequence of larger and larger sets F1 ⊆ F2 ⊆ F3.

As EI consists of edges between X and I, it can be partitioned into a set of stars with roots
in X. The following claim shows that almost all of these edges are directed towards X or almost
all of them are directed away from X.

Claim 5.9. Either there are less than 2α2 edges uv in EI with head in X, or less than 2α2

edges uv in EI with tail in X.

Proof. Assume H contains an in-star Sin and an out-star Sout as subgraphs, each with α − 1
edges from EI and roots in X. Let {s1, . . . , sα−1} and {t1, . . . , tα−1} denote the leaf sets of Sin
and Sout, respectively. These sets may intersect, but we may order them in a way that i = j
holds whenever si = tj . First identifying the roots of Sin and Sout, and then si and ti for each

22

i ∈ {1, . . . , α− 1}, we obtain a strongly connected subgraph on α vertices. Further identifying
any other vertex of H with an arbitrary vertex of this subgraph yields a strongly connected
graph on α vertices. This graph is transitively equivalent to a cycle of length α, a contradiction
to our assumption that H does not contain any such graph. Consequently, either all in-stars
spanned by subsets of EI with roots in X have size less than α − 1, or all such out-stars have
size less than α− 1. Assume the former is the case, which means that every edge uv ∈ EI with
v ∈ X is part of an in-star of size less than α− 1. Since X contains less than 2α vertices, there
are less than 2α2 such edges. The other case is analogous. y

Assume that the former case of Claim 5.9 is true, so that the number of edges in EI with
heads in X is bounded by 2α2; the other case can be handled symmetrically. We will use the
out-stars spanned by EI for the caterpillar, which means that we obtain an out-caterpillar.
We use the set F1 to account for the edges in EI with heads in X. Additionally, we will also
introduce into F1 those edges in EI with tails in X that are adjacent to an edge of the former
type. Formally, for any edge uv ∈ EI with v ∈ X, we introduce into F1 every edge of EI

incident to u. After this step, F1 contains less than 4α3 edges, since there are less than 2α2

edges uv ∈ EI with v ∈ X and u can only be adjacent to vertices in X, which has size less than
2α.

For any vertex v ∈ X, let Sv denote the out-star formed by the edges of EI \ F1 incident to
v. Let X ′ ⊆ X contain those vertices v ∈ X for which Sv has at least α leaves.

Claim 5.10. For any two distinct u, v ∈ X ′, at least one of uv and vu is in H, and the stars
Su and Sv are vertex disjoint.

Proof. Suppose that there is no edge between u and v. In step 1 of the construction of H,
we introduced any edge between vertices of X that appears in the transitive closure, so it also
follows that there is no directed u→ v or v → u path in H ′ and hence in H. By definition, the
star Sv and F1 are edge disjoint, which implies that the out-degree of any leaf of the out-star
Sv is 0 in H. By step 3 of the construction of H, the edges of Su and Sv are transitively
non-redundant. Thus we can invoke Lemma 5.7 to conclude that H contains an α-diamond, a
contradiction.

Assume therefore that, say, edge uv is in H. To prove that Su and Sv are disjoint, suppose
for a contradiction that they share a leaf ℓ. But then the edges uv and vℓ show that the edge uℓ is
transitively redundant. However, in step 3 of the construction of H, we removed all transitively
redundant edges incident to vertices not in X to obtain H, and ℓ /∈ X, a contradiction. y

We extend F1 to F2 by adding all edges of stars Sv with v ∈ X \X ′ to F2. Since X contains
less than 2α vertices and we extend F1 only by stars with less than α edges, this step adds less
than 2α2 edges, i.e., |F2| ≤ |F1|+ 2α2 = 4α3 + 2α2.

By Claim 5.10, X ′ induces a semi-complete directed graph in H, i.e., at least one of the
edges uv and vu exists for every pair u, v ∈ X ′. It is well-known that every semi-complete
directed graph contains a Hamiltonian path (e.g., [18, Chapter 10, Exercise 1]), and so there is
a path P = (v1, . . . , vλ0) with λ0 = |X ′| ≤ 2α = λ in H on the vertices of X ′. We extend F2 to
F3 by including any edge induced by vertices of X that is not part of P . There are less than
4α2 such edges, and hence we have |F3| ≤ |F2|+4α2 ≤ 4α3+6α2 = δ. The edges of H not in F3

span the path P and disjoint out-stars Svi with i ∈ {1, . . . , λ0}, i.e., they form a λ0-caterpillar.
This proves that H ∈ Cλ,δ and hence H ′ ∈ C∗

λ,δ, what we had to show.

5.3 Reductions

Lemma 5.4 implies that in order to prove Theorem 5.1, we need W[1]-hardness proofs for the
class of all directed cycles, the class of all pure in-diamonds, the class of all pure out-diamonds,
etc. We provide these hardness proofs and then formally show that they imply Theorem 5.1.

23

Let us first consider the case when H is the class of all directed cycles. Recall that, given an
arc-weighted directed graph G and a set R ⊆ V (G) of terminals, the Strongly Connected
Steiner Subgraph (SCSS) problem asks for a minimum-cost subgraph that is strongly con-
nected and contains every terminal in R. This problem is known to be W[1]-hard parameterized
by the number k := |R| of terminals [28]. We can reduce SCSS to an instance of DSN where
the pattern H is a directed cycle on R, which expresses the requirement that all the terminals
are in the same strongly connected component of the solution. Thus the W[1]-hardness of SCSS
immediately implies the W[1]-hardness of H-DSN if H contains all directed cycles.

Lemma 5.11 (follows from [28]). If H is the class of directed cycles, then H-DSN is W[1]-hard
parameterized by the number of terminals.

Next we turn our attention to classes containing all diamonds. The following reductions
are from the W[1]-hard Multicoloured Clique problem [24], in which an undirected graph
together with a partition {V1, . . . , Vk} of its vertices into k sets is given, such that for any
i ∈ {1, . . . , k} no two vertices of Vi are adjacent. The aim is to find a clique of size k, i.e., a set
of pairwise adjacent vertices {w1, . . . , wk} with wi ∈ Vi for each i ∈ {1, . . . , k}.

Lemma 5.12. If H is the class of all pure out-diamonds, then H-DSN is W[1]-hard paramet-
erized by the number of terminals. The same holds if H is the class of all pure in-diamonds.

Proof. We prove the statement only for out-diamonds, the other case is symmetric by reversing
all directions of the edges in the description below.

Construction. Consider an instance of Multicoloured Clique with partition {V1, . . . , Vk}.
For all indices 1 ≤ i < j ≤ k, we let Eij be the set of all edges connecting Vi and Vj . We con-
struct an instance of DSN where the pattern H is a pure k(k − 1)-diamond. Let r1 and r2 be
the roots of the diamond and let L = {ℓij | 1 ≤ i, j ≤ k ∧ i 6= j} be the leaf set (so we have
|L| = k(k − 1)). The constructed input graph G is the following (see Figure 4).

• The terminals of G are the terminals of H, i.e., r1, r2, and the vertices in L.
• For every i ∈ {1, . . . , k}, we introduce into G a vertex yi representing Vi, and k copies
of each vertex w ∈ Vi, which we denote by wj for j ∈ {0, 1, . . . , k} and j 6= i. Also for
all 1 ≤ i < j ≤ k, we introduce a vertex zij representing Eij , and a vertex ze for every
edge e ∈ Eij .

• For every i ∈ {1, . . . , k}, we add the edge r1yi, and for all 1 ≤ i < j ≤ k the edge r2zij .
• For every i ∈ {1, . . . , k} and w ∈ Vi, we add the edge yiw0, and for all 1 ≤ i < j ≤ k and
e ∈ Eij , we add the edge zijze.

• For every i, j ∈ {1, . . . , k} with i 6= j and w ∈ Vi, we add the edge w0wj and the edge wjℓij .
• For all 1 ≤ i < j ≤ k and e ∈ Eij , for the vertex w ∈ Vi incident to e, we add the
edge zewj , and for the vertex w ∈ Vj incident to e we add the edge zewi.

• Every edge of G has cost 1.
We prove that the instance to Multicoloured Clique has a clique K of size k, if and only

if there is a solution N to the pure α-diamond H in G with cost at most 4k2 − 2k. Intuitively,
such a solution N will determine one vertex w ofK for each Vi, since it can only afford to include
the k corresponding copies wj when connecting r1 to L through the vertex yi representing Vi.
At the same time N will determine one edge e of K for each Eij by connecting r2 to L through
one vertex ze for each vertex zij representing Eij . These vertices ze are connected to the k − 1
copies wj with j > 0 of a vertex w ∈ ⋃

i Vi in such a way that e must be incident to w in order
for the paths from r2 in N to reach L.

Clique ⇒ network. We first show that a solution N in G of cost 4k2 − 2k exists if the
clique K exists. For every i ∈ {1, . . . , k} the solution contains the edges r1yi and yiw0, where w
is the vertex of K in Vi. These edges add a cost of 2k to N . We also add all edges w0wj for the
k− 1 additional copies wj with j > 0 of each vertex w of K, which adds a cost of k(k− 1). For
each such copy wj we then connect to the terminal set L by adding the respective edge wjℓij .

24

Figure 4: The constructed graph in the reduction of Lemma 5.12 for an instance with k = 4, |V1| = 2,
|V2| = 1, |V3| = 3, and |V4| = 2. Squares are terminals, and circles are Steiner vertices. The thick edges
indicate a solution encoding a clique. For better visibility, only the edges zewi of the solution are shown
for any edge e and incident vertex w.

Note that this will add an edge incident to each terminal of L to N and so r1 is connected to
every terminal of L. At the same time the last step adds a cost of 1 for every terminal of L to
N , which sums up to k(k − 1). For all 1 ≤ i < j ≤ k we connect r2 to zij in the solution N via

the edge r2zij at a cost of
(
k
2

)
. The clique K contains one edge e from every set Eij , and we

add the corresponding edges zijze to N at an additional cost of
(
k
2

)
. For any such edge e the

graph G contains an edge zewj for the incident vertex w ∈ Vi and an edge zewi for the other

incident vertex w ∈ Vj . We also add these respective edges to the solution at a cost of 2
(
k
2

)
.

Since such an incident vertex w ∈ Vi is part of the clique K, the respective copy wj is connected
to the terminal ℓij ∈ L in N . Moreover, every copy wj that is part of N can be reached from
the vertex ze in N for the corresponding incident edge e to w in K. Hence r2 is connected to
every terminal of L in N , which means that N is a solution to H in G with a total cost of
2k + 2k(k − 1) + 4

(
k
2

)
= 4k2 − 2k.

Network ⇒ clique. It remains to prove that any solution N to H in G of cost at most
4k2 − 2k corresponds to a clique K of size k in the input instance. If a solution to the pure
α-diamond H exists in G, then all terminals of L are reachable from r1 and from r2 in G. We
define the reachability set Yv of a vertex v ∈ V (G) as the set of vertices reachable from v by a
path in G. For each i ∈ {1, . . . , k} the set Yyi consists of yi, and, for j ∈ {0, . . . , k} with j 6= i,
each wj with w ∈ Vi and the terminals ℓij ∈ L. In particular, the sets Yyi are disjoint and also
partition the terminal set L. The set Yr1 consists of r1 and the union

⋃
i Yyi . Hence in order

for r1 to be connected to every terminal of L in N , for each i ∈ {1, . . . , k} the solution needs
to include the edge r1yi and at least one edge yiw0 for some w ∈ Vi. Since a terminal ℓij is
adjacent to the j-th copy wj of every vertex w ∈ Vi, for each j 6= i at least one edge w0wj (for
various w ∈ Vi) and a corresponding edge wjℓij must be included in N . These edges contribute
a cost of 2k + 2k(k − 1) to N .

Now consider the reachability set Yzij for some 1 ≤ i < j ≤ k. It consists of zij , all ze
with e ∈ Eij , the j-th copy wj of every vertex w ∈ Vi incident to edges of Eij , the i-th copy wi

25

of all vertices w ∈ Vj incident to edges of Eij , and corresponding terminals ℓij and ℓji. Since
all terminals of L are reachable from r2 and the sets Yzij are disjoint, the sets Yzij partition L.
The set Yr2 consists of r2 and the union

⋃
i<j Yzij , and so for every 1 ≤ i < j ≤ k the solution

N must contain the edge r2zij and at least one edge zijze for some e ∈ Eij . In order for r2 to
connect to ℓij in N , the solution must also contain the edge zewj for some w ∈ Vi incident to
e ∈ Eij . Analogously, the solution must also contain the edge zewi for r2 to reach ℓji in N for

some w ∈ Vj incident to some e ∈ Eij . These edges contribute a cost of 4
(
k
2

)
to N .

Since all these necessary edges in N sum up to a cost 2k + 2k(k − 1) + 4
(
k
2

)
= 4k2 − 2k,

they are also the only edges present in N . In particular, for each i ∈ {1, . . . , k} the solution
contains exactly one edge yiw0 for some w ∈ Vi, and therefore also must contain the 2(k − 1)
corresponding edges w0wj and wjℓij for j 6= i. On the other hand, for every 1 ≤ i < j ≤ k the
solution contains exactly one edge zijze for some e ∈ Eij , and therefore also must contain the
corresponding edge zewj for the incident vertex w ∈ Vi to e and the corresponding edge zewi

for the incident vertex w ∈ Vj to e. Hence the solution N corresponds to a subgraph of the
instance of Multicoloured Clique with k pairwise adjacent vertices, i.e., it is a clique K of
size k.

The reduction for the case when the pattern is a flawed α-diamond is essentially the same
as the one for pure α-diamonds, as we show next.

Lemma 5.13. If H is the class of all flawed out-diamonds, then H-DSN is W[1]-hard paramet-
erized by the number of terminals. The same holds if H is the class of all flawed in-diamonds.

Proof. We only describe the case when H is an out-diamond, as the other case is symmetric.
The reduction builds on the one given in Lemma 5.12: we simply add the additional terminal
x of H to G, and connect it to r1 and r2 in G by edges xr1 and xr2 with cost 1 each. Given
a clique of size k in an instance to Multicoloured Clique, consider the network N in G of
cost 4k2 − 2k suggested in Lemma 5.12. We add the edges xr1 and xr2 to N , which results in
a solution of cost 4k2 − 2k + 2 for the flawed α-diamond H. On the other hand, any solution
to H must contain a path from x to r1 and from x to r2. Since there is no path from r1 to r2,
nor from r2 to r1 in the constructed graph G, any solution to H must contain both the edge
xr1 and the edge xr2. Thus the minimal cost solution to H in G has cost 4k2 − 2k + 2 and
corresponds to a clique of size k in the Multicoloured Clique instance, as argued in the
proof of Lemma 5.12.

Given the three reductions above, we can now prove Theorem 5.1, based on the additional
reduction given in Lemma 5.2.

Proof (of Theorem 5.1). Let H′ be the closure of H under identifying vertices and transitive
equivalence. By assumption, H is not in C∗

λ,δ for any λ and δ, and this is also true for the
superset H′ of H. Thus Lemma 5.4 implies that H′ fully contains one of five classes: the class
of all directed cycles, pure in-diamonds, pure out-diamonds, etc. Suppose for example that H′

contains the class of all directed cycles, which we will denote by H′′. By Lemma 5.11, we know
that H′′-DSN is W[1]-hard and H′′ is obviously decidable. Thus we can invoke Lemma 5.2
to obtain that there is a parameterized reduction from H′′-DSN to H-DSN, and hence we can
conclude that the latter problem is also W[1]-hard. The proof is similar in the other cases, when
H′ contains, e.g., every pure in-diamond or every flawed in-diamond: then we use Lemma 5.12
or Lemma 5.13 instead of Lemma 5.11.

26

References

[1] A. Agrawal, P. N. Klein and R. Ravi. ‘When Trees Collide: An Approximation Algorithm
for the Generalized Steiner Problem on Networks’. In: SIAM J. Comput. 24.3 (1995),
pp. 440–456.

[2] A. Archer, M. Bateni, M. Hajiaghayi and H. J. Karloff. ‘Improved Approximation Al-
gorithms for Prize-Collecting Steiner Tree and TSP’. In: SIAM J. Comput. 40.2 (2011),
pp. 309–332.

[3] M. Bateni, M. T. Hajiaghayi and D. Marx. ‘Approximation Schemes for Steiner Forest on
Planar Graphs and Graphs of Bounded Treewidth’. In: J. ACM 58.5 (2011), p. 21.

[4] M. Bateni and M. Hajiaghayi. ‘Euclidean Prize-Collecting Steiner Forest’. In: Algorithmica
62.3-4 (2012), pp. 906–929.

[5] M. Bateni, M. Hajiaghayi and V. Liaghat. ‘Improved Approximation Algorithms for
(Budgeted) Node-Weighted Steiner Problems’. In: 40th International Colloquium on Auto-
mata, Languages, and Programming. 2013, pp. 81–92.

[6] H. L. Bodlaender. ‘Some Classes of Graphs with Bounded Treewidth’. In: Bulletin of the
EATCS 36 (1988), pp. 116–125.

[7] G. Borradaile, P. N. Klein and C. Mathieu. ‘A Polynomial-Time Approximation Scheme
for Euclidean Steiner Forest’. In: ACM Transactions on Algorithms 11.3 (2015), 19:1–
19:20.

[8] G. Borradaile, P. N. Klein and C. Mathieu. ‘An O(n log n) approximation scheme for
Steiner tree in planar graphs’. In: ACM Transactions on Algorithms 5.3 (2009).

[9] J. Byrka, F. Grandoni, T. Rothvoß and L. Sanità. ‘Steiner Tree Approximation via Iter-
ative Randomized Rounding’. In: J. ACM 60.1 (2013), p. 6.

[10] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha and M. Li. ‘Approximation
Algorithms for Directed Steiner Problems’. In: J. Algorithms 33.1 (1999), pp. 73–91.

[11] C. Chekuri, G. Even, A. Gupta and D. Segev. ‘Set connectivity problems in undirected
graphs and the directed steiner network problem’. In: ACM Transactions on Algorithms
7.2 (2011), p. 18.

[12] C. Chekuri, M. T. Hajiaghayi, G. Kortsarz and M. R. Salavatipour. ‘Approximation al-
gorithms for node-weighted buy-at-bulk network design’. In: Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. 2007, pp. 1265–1274.

[13] R. Chitnis, A. E. Feldmann and P. Manurangsi. ‘Parameterized Approximation Algorithms
for Bidirected Steiner Network Problems’. In: 26th Annual European Symposium on Al-
gorithms, ESA. 2018, 20:1–20:16.

[14] R. H. Chitnis, H. Esfandiari, M. Hajiaghayi, R. Khandekar, G. Kortsarz and S. Seddighin.
‘A Tight Algorithm for Strongly Connected Steiner Subgraph on Two Terminals with
Demands (Extended Abstract)’. In: 9th International Symposium on Parameterized and
Exact Computation. 2014, pp. 159–171.

[15] R. H. Chitnis, A. E. Feldmann, M. T. Hajiaghayi and D. Marx. ‘Tight Bounds for Planar
Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions)’.
In: SIAM J. Comput. 49.2 (2020), pp. 318–364.

[16] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[17] E. D. Demaine, M. T. Hajiaghayi and P. N. Klein. ‘Node-Weighted Steiner Tree and
Group Steiner Tree in Planar Graphs’. In: ACM Transactions on Algorithms 10.3 (2014),
13:1–13:20.

27

[18] R. Diestel. Graph theory. Third. Vol. 173. Graduate Texts in Mathematics. Springer-
Verlag, Berlin, 2005, pp. xvi+411.

[19] R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity. Vol. 4.
Springer, 2013.

[20] S. E. Dreyfus and R. A. Wagner. ‘The Steiner problem in graphs’. In: Networks 1.3 (1971),
pp. 195–207.

[21] E. Eiben, D. Knop, F. Panolan and O. Suchý. ‘Complexity of the Steiner Network Problem
with Respect to the Number of Terminals’. In: STACS. 2019, 25:1–25:17.

[22] J. Feldman and M. Ruhl. ‘The Directed Steiner Network Problem is Tractable for a
Constant Number of Terminals’. In: SIAM J. Comput. 36.2 (2006), pp. 543–561.

[23] A. E. Feldmann and D. Marx. ‘The Complexity Landscape of Fixed-Parameter Directed
Steiner Network Problems’. In: 43rd International Colloquium on Automata, Languages,
and Programming, (ICALP). 2016, 27:1–27:14.

[24] M. R. Fellows, D. Hermelin, F. A. Rosamond and S. Vialette. ‘On the parameterized
complexity of multiple-interval graph problems’. In: Theor. Comput. Sci. 410.1 (2009),
pp. 53–61.

[25] J. Flum and M. Grohe. Parameterized complexity theory. Springer, 2006.

[26] B. Fuchs, W. Kern, D. Molle, S. Richter, P. Rossmanith and X. Wang. ‘Dynamic program-
ming for minimum Steiner trees’. In: Theory of Computing Systems 41.3 (2007), pp. 493–
500.

[27] M. Grohe and D. Marx. ‘On tree width, bramble size, and expansion’. In: J. Comb. Theory,
Ser. B 99.1 (2009), pp. 218–228.

[28] J. Guo, R. Niedermeier and O. Suchý. ‘Parameterized Complexity of Arc-Weighted Dir-
ected Steiner Problems’. In: SIAM J. Discrete Math. 25.2 (2011), pp. 583–599.

[29] R. M. Karp. ‘Reducibility among combinatorial problems’. In: Complexity of computer
computations. Plenum, 1972, pp. 85–103.

[30] P. N. Klein and R. Ravi. ‘A Nearly Best-Possible Approximation Algorithm for Node-
Weighted Steiner Trees’. In: J. Algorithms 19.1 (1995), pp. 104–115.

[31] J. Nederlof. ‘Fast Polynomial-Space Algorithms Using Inclusion-Exclusion’. In: Algorith-
mica 65.4 (2013), pp. 868–884.

[32] S. Rajagopalan and V. V. Vazirani. ‘On the Bidirected Cut Relaxation for the Metric
Steiner Tree Problem’. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms. 1999, pp. 742–751.

[33] G. Robins and A. Zelikovsky. ‘Tighter Bounds for Graph Steiner Tree Approximation’.
In: SIAM J. Discrete Math. 19.1 (2005), pp. 122–134.

[34] O. Suchý. ‘On directed steiner trees with multiple roots’. In: International Workshop on
Graph-Theoretic Concepts in Computer Science (WG). 2016, pp. 257–268.

[35] A. Zelikovsky. ‘A Series of Approximation Algorithms for the Acyclic Directed Steiner
Tree Problem’. In: Algorithmica 18.1 (1997), pp. 99–110.

28

