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Multiplexing eMBB and URLLC in Wireless

Powered Communication Networks: A Deep

Reinforcement Learning-based Approach
Xiaotian Jiang, Kai Liang, Xiaoli Chu, Senior Member, Cheng Li and George K. Karagiannidis, Fellow, IEEE

Abstract—This paper investigates the multiplexing of enhanced
mobile broadband (eMBB) and ultra-reliable low-latency commu-
nications (URLLC) services in a wireless powered communication
network, where a hybrid access point coordinates the wireless
energy transfer to users and receives information from them.
The preemptive puncturing is adopted to multiplex URLLC
traffic onto eMBB transmission. Apart from the energy used for
uplink information transmission, the rest energy in user’s battery
is reserved to avoid insufficient energy for future information
transmission. The problem is formulated to jointly allocate
subcarriers, time, and energy to maximize the uplink eMBB sum
rate under the constraints of URLLC latency, radio frequency
to direct current (RF/DC) sensitivity, user’s battery capacity,
and subcarriers availability. We propose a deep reinforcement
learning-based approach named mixed deep deterministic policy
gradient (Mixed-DDPG), which decomposes the optimization
problem into a discrete subproblem for subcarriers allocation
and a continuous subproblem for time and energy allocation and
solves them alternately. Numerical results show that the proposed
algorithm achieves a higher eMBB sum rate than the existing
schemes.

Index Terms—eMBB, URLLC, wireless powered communica-
tion, preemptive puncturing, RF/DC sensitivity.

I. INTRODUCTION

W ITH wireless devices becoming ubiquitous and carry-

ing out various applications, wireless powered com-

munication network (WPCN) has emerged as a solution to the

problem of powering of energy constrained devices [1]. The

user association and time allocation in a WPCN were jointly

optimized by adopting the α-fair utility to maximize the sum,

max-min, and proportional fairness rate in [2]. In [3], the total

effective throughput was maximized by optimizing the trade-

off between the transmission time and packet error rate of

a WPCN while meeting the effective-amount-of-information

requirements. The authors in [4] considered a point-to-point

energy harvesting system with finite blocklength, where an

achievable channel coding rate and a mean delay of the system

were investigated.
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In addition, how to efficiently multiplex enhanced mobile

broadband (eMBB) and ultra-reliable low-latency communica-

tions (URLLC) on a shared channel has become a major chal-

lenge faced by 5G wireless networks [5]. Due to their different

requirements, eMBB and URLLC transmit at different time

scales [6]. Specifically, the time domain is divided into equal

slots and each slot is further divided into multiple minislots,

eMBB transmissions are performed on slots to achieve a high

data rate and URLLC packets are transmitted on minislots

to reduce latency. To solve the problem of optimal allocation

of radio resources when eMBB and URLLC are multiplexed,

[7] adopts a preemptive puncturing method, i.e. an arriving

URLLC packet is scheduled to transmit in the next minislot

by preempting subcarriers already allocated to eMBB users,

which is shown to achieve higher expected rates than static or

semi-static allocation of spectrum resources. The authors in [5]

maximized the eMBB throughput under URLLC constraints

by jointly optimizing the traffic scheduling for eMBB and the

preemptive puncturing for URLLC. In [6], a simplified model-

free deep reinforcement learning-based approach was proposed

to minimize the loss of eMBB transmission rate due to URLLC

packet puncturing under the assumption of advanced allocation

of radio resources for eMBB users and each URLLC packet

can preempt radio resources from multiple eMBB users.

However, the authors in [4] assumed an infinite battery

capacity for the user, which is infeasible in practice. In [1]- [4],

uplink wireless information transmission (WIT) in each slot

relies on the energy harvested only in the current slot without

any energy reservation, hence some slots may see the harvested

energy insufficient for uplink WIT due to channel variations

[8]. For example, a deep fading channel will result in reduced

energy harvested by the user while requiring more energy for

uplink WIT. Moreover, we note that the multiplexing of eMBB

and URLLC services has not been studied for wireless energy

transfer (WET) based WPCNs yet. As a result, the existing

system models may not be readily applicable in WPCN

scenarios where multiple services of different requirements,

such as URLLC and eMBB, share the same spectrum.

In contrast to the above works, this paper investigates the

multiplexing of eMBB and URLLC transmissions on a shared

channel in a WPCN, where a hybrid access point (HAP)

powers multiple users by WET with the consideration of

energy reservation and the preemptive puncturing.

The contributions of this paper are summarized as follows:

(i) Unlike the existing works, we study the problem of how

to multiplex eMBB and URLLC transmissions in the uplink
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of a WPCN while considering finite battery capacity at each

user, radio frequency to direct current (RF/DC) sensitivity of

the energy harvesting circuit, and energy reservation for each

user’s battery to ensure power supply for uplink transmission.

(ii) We formulate an optimization problem to maximize the

uplink eMBB sum rate by jointly optimizing the allocation

of subcarriers, time for WET, and energy reservation of each

user’s battery under the constraints of URLLC latency, RF/DC

sensitivity, user’s battery capacity, and subcarriers availability.

(iii) To solve this non-convex optimization problem that fea-

tures mixed allocation of discrete subcarriers and continuous

time and energy, we propose a deep reinforcement learning-

based approach named mixed deep deterministic policy gradi-

ent (Mixed-DDPG) to decompose it into a discrete subproblem

and a continuous subproblem and solve them alternately.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a WPCN that includes a HAP and a set U of

U users with eMBB and URLLC transmission requirements.

Each user has a rechargeable battery. For analytical tractability,

it is assumed that the HAP and each user are equipped

with a single antenna [9]. Let B = {1, 2, . . . , B} denote

the set of available subcarriers each with a bandwidth of

fb Hz. Thus, the total bandwidth is
∑

b∈B fb Hz. A long

time period is considered and is divided into T equal slots,

denoted by T = {1, 2, . . . , T}. Each slot has a duration t0.

On each subcarrier, we assume channel reciprocity and that the

channel fading coefficient stays constant within a slot but may

change across adjacent slots. The subcarriers are reclaimed and

rescheduled to eMBB users at the beginning of each slot based

on the channel state information (CSI) [5]. Due to the stringent

latency requirement of URLLC transmissions, we adopt the

“URLLC preemption” scheme [10], where each slot is further

divided into minislots represented by M = {1, 2, . . . ,M},
and an arriving URLLC packet is scheduled immediately for

transmission in the next minislot by preempting the subcarriers

already allocated to the same user for eMBB transmissions,

without waiting for the eMBB transmissions on those subcar-

riers to finish [6]. Without loss of generality, we assume that

each user has URLLC packets arriving at each minislot.

All users adopt the harvest-then-transmit protocol in each

slot, where the users first harvest energy from the energy signal

broadcast by the HAP and then transmit information to the

HAP using the harvested energy. For instance, if the uth user

is scheduled to transmit in the tth slot, then the tth slot is

divided into a downlink WET phase of duration τu,tt0 and an

uplink WIT phase of duration (1−τu,t)t0, where τu,t ∈ (0, 1).
The HAP’s downlink transmission power is assumed to be the

same on each subcarrier and is denoted by PDL. The received

power P r
u,t of the uth user in the tth slot is given by

P r
u,t = ηcP

DLd−α
u

∑

b∈B

|hu,b,t|
2
∑

m∈M

xu,b,t,m, (1)

where ηc is the energy conversion efficiency of the RF/DC

circuit, du is the distance between the uth user and the HAP,

α is the path loss exponent, hu,b,t ∈ CN (0, 1) denotes the

Rayleigh fading coefficient between the HAP and the uth user

on subcarrier b in the tth slot, and xu,b,t,m ∈ {0, 1} is a binary

indicator of subcarrier allocation, where xu,b,t,m = 1 means

that subcarrier b is allocated to the uth user in minislot m of

slot t for eMBB transmission, otherwise xu,b,t,m = 0.

Since a user cannot harvest energy if its received power is

less than the RF/DC circuit sensitivity φ, the received energy

at the uth user in the tth slot is given by

Eu,t = P r
u,tτu,tt01

(

P r
u,t ≥ φ

)

, (2)

where 1 (·) is the binary indicator function.

The uplink transmission power of the uth user during the

WIT phase in slot t is given by

PUL
u,t =

(1− ρu,t)Qu,t

(1− τu,t) t0
, (3)

where ρu,t ∈ [0, 1] is the percentage of energy reserved by the

uth user in the tth slot for the next WIT of slot t+1 and Qu,t

is the battery energy level of the uth user at the end of WET

in slot t, which is updated as

Qu,t = min {ρu,t−1Qu,t−1 + Eu,t, Qmax} , (4)

where Qu,t−1 is the battery energy level of the uth user at

the end of the WET in slot t − 1, and Qmax is the battery

capacity. The uplink received signal to noise ratio (SNR) of

the uth user on subcarrier b in slot t is given as follows

γu,b,t =
PUL
u,t |hu,b,t|

2d−α
u

σ2fb
, (5)

where σ2 is the power spectral density of additive noise.

Based on the Shannon capacity [9], the eMBB transmission

rate of the uth user in minislot m of slot t is given by

Rmbb
u,t,m =

∑

b∈B

fb (xu,b,t,m − yu,b,t,m) log2 (1 + γu,b,t) , (6)

where yu,b,t,m ∈ {0, 1} is the binary indicator of subcarrier

preemption by URLLC packets. Specifically, yu,b,t,m = 1
indicates that subcarrier b is preemted by the uth user in

minislot m of slot t for URLLC transmission, otherwise

yu,b,t,m = 0. To ensure that the URLLC packets of the uth

user can only preempt the subcarriers that have been allocated

to the uth user for eMBB transmissions, it is necessary to

specify that 0 ≤ xu,b,t,m − yu,b,t,m ≤ 1, ∀u, b, t,m.

Since the packet length of URLLC is typically much

shorter than that of eMBB, using the Shannon capacity may

significantly overestimate the delay of URLLC transmissions

[7]. Instead, the URLLC transmission rate of the uth user in

minislot m of slot t can be calculated based on the finite block

length theorem [10]:

Rllc
u,t,m =

∑

b∈B

yu,b,t,mfb

(

log2 (1 + γu,b,t)

−

√

Cu,b,t

nu

Q−1 (ε)

)

,

(7)

where nu is the length (in symbols) of the codeword block for

the uth user, ε is the decoding error probability, Q−1 (ε) is the

inverse of the Gaussian cumulative distribution function, and

Cu,b,t = 1− 1
(1+γu,b,t)

2 is the channel dispersion.
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To maximize the eMBB sum rate of all the users, we

formulate the following optimization problem:

(P ) : max
X,Y ,τ ,ρ

∑

t∈T

∑

u∈U

∑

m∈M

Rmbb
u,t,m (8)

s.t.
∑

u∈U

xu,b,t,m ≤ 1, ∀b, t,m, (8a)

xu,b,t,m, yu,b,t,m ∈ {0, 1} , ∀u, b, t,m, (8b)

0 ≤ xu,b,t,m − yu,b,t,m ≤ 1, ∀u, b, t,m,
(8c)

ρu,t−1Qu,t−1 + Eu,t ≤ Qmax, ∀u, t, (8d)

Rmbb
u,t,m ≥ ωu, ∀u, t,m, (8e)

Fu

Rllc
u,t,m

≤ ψ, ∀u, t,m, (8f)

0<τu,t<1, ∀u, t, (8g)

0 ≤ ρu,t ≤ 1, ∀u, t, (8h)

where X = {xu,b,t,m}u∈U,b∈B,t∈T ,m∈M, Y =
{yu,b,t,m}u∈U ,b∈B,t∈T ,m∈M, τ = {τu,t}u∈U ,t∈T ,

ρ = {ρu,t}u∈U,t∈T , ωu is the minimum data rate requirement

for eMBB transmission of the uth user, Fu is the URLLC

packet length (in bits) of the uth user, and ψ is the maximum

tolerable delay of URLLC packets. Constraints (8a) and

(8b) ensure that each subcarrier is allocated to at most one

user at any time, while (8c) is the subcarriers preemption

availability constraint. Constraint (8d) is introduced to avoid

energy overflow due to the battery capacity [11]. Constraint

(8e) imposes the eMBB minimum data rate requirement.

Constraint (8f) is the latency requirement for the URLLC

transmission.

III. MIXED-DDPG BASED RESOURCE ALLOCATION

To tackle the non-convex optimization problem (P ) with

mixed allocation of discrete subcarriers and continuous time

and energy, we propose a novel alternate approach called

Mixed-DDPG in this section. Specifically, we decompose

the problem (P ) into discrete and continuous subproblems,

where the discrete subproblem optimises the allocation of

subcarriers while the continuous subproblem optimises the

time allocation for WET and energy reservation for WIT. The

two subproblems are then solved alternately until convergence.

A. Discrete Subproblem

By fixing the continuous time allocation {τu,t}u∈U for WET

and energy reservation {ρu,t}u∈U for WIT of slot t in problem

(P ), we obtain a discrete subproblem that optimizes the binary

indicators of subcarrier allocation to eMBB transmission at

the beginning of slot t + 1 and subcarrier preemption by

URLLC packets in each minislot m ∈ M of slot t + 1,

∀t ∈ T . Moreover, based on (1)-(6), for fixed {τu,t}u∈U and

{ρu,t}u∈U , Rmbb
u,t,m becomes independent for different slot t,

and the eMBB sum rate of all the users can be maximized

separately in each slot. Hense, for slot t, under the given

time allocation {τu,t}u∈U for WET and energy reservation

{ρu,}u∈U for WIT, problem (P ) reduces to the following

discrete subproblem,

(P1) : max
Xt+1,Yt+1

∑

u∈U

∑

m∈M

Rmbb
u,t,m, ∀t ∈ T , (9)

s.t. (8a), (8b), (8c), (8e), (8f),

where Xt = {xu,b,t,m}u∈U ,b∈B,m∈M and Yt =
{yu,b,t,m}u∈U,b∈B,m∈M. We can show that subproblem

(P1) is convex and can be solved by using existing convex

optimization tools.

B. Continuous Subproblem

For given binary indicators X , Y of subcarrier allocation

to eMBB transmission and subcarrier preemption by URLLC

packets, problem (P ) reduces to the following continuous

subproblem:

(P2) : max
τ ,ρ

∑

t∈T

∑

u∈U

∑

m∈M

Rmbb
u,t,m (10)

s.t. (8d), (8e), (8f), (8g), (8h).

We note that (P2) has large state spaces, including X ,

Y , CSI, and battery status of all users in different slots, and

hence will be difficult to solve using conventional optimization

methods, but can leverage deep reinforcement learning (DRL)

[6]. Since the variables τ and ρ are continuous, we adopt

a model-free DRL, i.e., DDPG that has a continuous action

space [10], to solve subproblem (P2). The DDPG state, action,

and reward are defined as follows.

• State: st = {Ht, Qt, Xt, Yt}, where Ht =
{hu,b,t}u∈U,b∈B contains the CSI and Qt = {Qu,t}u∈U
denotes the battery status.

• Action: at = {τt, ρt}, where τt = {τu,t}u∈U denotes the

time allocation for WET and ρt = {ρu,t}u∈U denotes the

energy reservation proportion.

• Reward: if action at is chosen, the reward rt is given by

rt =
∑

u∈U

(

∑

m∈M

Rmbb
u,t,m − δ

∑

m∈M

R̂mbb
u,t,m

)

, (11)

where δ>0 is the penalty factor and R̂mbb
u,t,m =

1
t−1

∑t−1
i=1 R

mbb
u,i,m. The penalty δ

∑

m∈M R̂mbb
u,t,m will be

imposed by the system on the agent when any constraint

of (P2) is violated, thereby avoiding overfitting.

DDPG consists of an actor network and a critic network

for generating and evaluating policies, respectively [12]. Based

on the input state st, the actor network µ (st|θ
µ) selects the

deterministic action as follows [10]

at = µ (st|θ
µ) +Nt,Nt ∼ N(µ1, σ

2
1), (12)

where θµ is the actor network parameter and Nt is an

additional noise that follows a normal distribution with a mean

of µ1 and variance of σ2
1 due to action exploration.

For given st, at and reward rt, after randomly selecting

a minibatch of N tuples {(sj , aj , rj , sj+1)}j=1,...,N from the

replay buffer D, which is introduced to reduce the correlation

among training samples, the critic network generates a Q value
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Q
(

sj , aj |θ
Q
)

[6] to assess the selected action at and updates

its parameter θQ by minimizing the loss:

L =
1

N

N
∑

j=1

(

yj −Q
(

sj , aj |θ
Q
))2

, (13)

where yj = rj + γQ
′

(

sj+1, µ
′

(

sj+1|θ
µ
′
)

|θQ
′
)

, γ is the

discount rate, θµ
′

and θQ
′

are the parameters of target actor

network µ
′

(

s|θµ
′
)

and target critic network Q
′

(

s, a|θQ
′
)

,

respectively, which are introduced to ensure the stability of

the DDPG learning process.

The actor policy is updated using the deterministic sampled

gradient policy as follows,

∇θµJ ≈
1

N

N
∑

j=1

∇aQ
(

s, a|θQ
)

|s=sj ,a=µ(sj |θµ)

×∇θµµ (s|θµ) |s=sj .

(14)

The parameters θµ
′

of the target actor network and θQ
′

of

the target critic network are soft updated as follows,

θµ
′

← ζθµ + (1− ζ) θµ
′

, (15)

θQ
′

← ζθQ + (1− ζ) θQ
′

, (16)

where 0<ζ ≪ 1 is the soft updating rate [12].

C. The Mixed-DDPG Algorithm

Based on the aforementioned solutions to subproblems (P1)
and (P2), we propose a Mixed-DDPG algorithm to solve

problem (P ) as shown in Algorithm 1. Specifically, we first

initialize Qt, D, Xt and Yt in line 2, then obtain the optimal

τt and ρt by solving subproblem (P2) using the DDPG-based

approach in lines 4-7 and 9-11. Next, based on the obtained

τt and ρt, we get Xt+1 and Yt+1 for the next slot by solving

subproblem (P1) in line 8. The above steps repeat alternately

and iteratively until the maximum number of slots per episode

and the maximum number of episodes are reached.

We analyze the computational complexity of the proposed

Mixed-DDPG as follows. Since the convex subproblem (P1)
has 2UBTM variables and can be solved by existing convex

optimization tools, the computational complexity of solving

(P1) is O
(

(2UBTM)
3
)

. For subproblem (P2), let ji and

ki denote the sizes of the input and the output of the layer

i of the DDPG, respectively, where i ∈ I, then the com-

plexity of solving (P2) is O
(
∑

i∈I jiki
)

. Therefore, the total

computational complexity of the proposed Mixed-DDPG is

O
(

FeFs

(

(2UBTM)
3
+
∑

i∈I jiki

))

, where Fe and Fs are

the maximum number of episodes and the maximum number

of slots per episode for Algorithm 1, respectively.

IV. NUMERICAL RESULTS

The simulation scenario consists of U = 10 users and

B = 20 subcarriers each with bandwidth fb = 1 MHz. σ2 is

set as −174 dBm/Hz and t0 is normalized to 1. For each user,

we set ηc = 0.5, Fu = 20 bytes, and the disance du is uni-

formly distributed within the range (10m, 15m). Each battery

Algorithm 1 Mixed-DDPG for eMBB sum-rate maximization

Initialization: U , B, {fb}b∈B, ηc, PDL, {du}u∈U , σ2, ψ, ε,

φ, {ωu}u∈U , Qmax.

1: for all episodes do

2: Set t = 0. Randomly initialize Qt, Xt, Yt and D.

3: for all slots of an episode do

4: t = t + 1, observe CSI Ht and obtain Qt based on

(4), obtain state st = {Ht, Qt, Xt, Yt}.
5: Select action at based on (12).

6: Get the reward rt based on (11).

7: Obtain new battery energy level Qt+1 based on (4).

8: Observe new state st+1 by solving subproblem (P1).
9: Store (st, at, rt, st+1) in replay memory buffer D.

10: Randomly sample N tuples from D as training data.

11: Update θQ, θµ, θµ
′

and θQ
′

based on (13), (14), (15)

and (16), respectively.

12: end for

13: end for

has the maximum capacity of Qmax ∈ {5, 10, 15, 20, 25, 30}
µJ, and the circuit sensitivity and maximum tolerable delay

of URLLC packets are set as φ ∈ {3, 9, 15, 21, 27} µW

and ψ ∈ {0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1} ms, respectively. In

addition, we assume α = 3, ε = 0.01, ωu = 10 Mbps,

γ = 0.9, M = 8 [5], µ1 = 0.5 and σ1 = 0.5. The critic

and actor networks have three hidden layers with 128 neurons

for each layer. We use Adam optimizer training the network

with an initial learning rate λa = 0.001 and λc = 0.002 for

actor and critic networks, respectively, setting the batch size

to 128, Fe = 200 and Fs = 200.

Fig. 1. DDPG reward versus the number of episodes.

For performance comparison with the proposed Mixed-

DDPG algorithm, we include in the simulations the following

three benchmark algorithms: zero energy reservation DDPG

(ZER-DDPG), which differs from the Mixed-DDPG only in

ρ = 0; fixed energy reservation proportional DDPG (FERP-

DDPG), which differs from the Mixed-DDPG only in ρ =
0.5; and fixed transmission time proportional DDPG (FTTP-

DDPG), which differs from the Mixed-DDPG only in τ = 0.5.

Fig. 1 shows the rewards versus the number of episodes

of the four algorithms for two different maximum tolerable

URLLC delays, ψ = 1 ms and ψ = 0.1 ms, respectively,

where φ = 20 µW, Qmax = 25 µJ. The proposed algorithm
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Fig. 2. eMBB sum rate versus the maximum
battery capacity Qmax.

Fig. 3. eMBB sum rate versus RF/DC sensitiv-
ity φ.

Fig. 4. eMBB sum rate versus the maximum
tolerable delay ψ of URLLC packets.

significantly outperforms the other three algorithms for both

ψ = 1 ms and ψ = 0.1 ms because it can dynamically adjust

the WET time allocation τ and the proportion ρ of energy

for reservation according to the users’ battery level and CSI.

Besides, each considered algorithm achieves a smaller reward

for a smaller ψ, because the delay constraint will be violated

more often during the algorithm execution.

In Fig. 2, we plot the eMBB sum rate versus the battery

capacity Qmax of the four algorithms within an episode after

convergence, where φ = 20 µW and ψ = 1 ms. We can

see that the performance of all these algorithms increases as

Qmax grows and eventually stabilizes. This is because the

larger battery capacity can store more energy for higher data

rates, but when the battery capacity is larger than the energy

received, the battery capacity no longer affects the data rate.

Fig. 3 depicts the eMBB sum rate versus RF/DC sensitivity

φ of the four algorithms within an episode after convergence,

where Qmax = 25 µJ and ψ = 1 ms. It shows that the

proposed algorithm remains the highest eMBB sum rate and

that all these four algorithms decrease as φ increases because

a higher φ leads to less harvested energy and increases the

change of energy shortage. We can also find that ZER-DDPG

outperforms FERP-DDPG because flexibly changing τ affects

both the amount of energy received in WET and the uplink

transmission power in WIT, thereby affecting the system rate.

Fig. 4 depicts the eMBB sum rate versus the maximum

tolerable delay ψ of URLLC packets, where φ = 20 µW and

Qmax = 25 µJ. The figure shows that the proposed Mixed-

DDPG algorithm outperforms the benchmark algorithms in

terms of the eMBB sum rate. Moreover, for each consid-

ered algorithm apart from FTTP-DDPG, the eMBB sum rate

increases as ψ increases because a larger ψ leads to fewer

violations of the constraint in the DDPG-based algorithm,

which will result in a larger reward and therefore a higher

eMBB sum rate. The eMBB sum rate of FTTP-DDPG is

limited by its fixed WET time allocation of τ = 0.5, which

leaves insufficient time for uplink WIT.

V. CONCLUSION

This paper studies the multiplexing of eMBB and URLLC

in the uplink WIT powered by downlink WET via preemption-

based resource allocation in a WPCN, where the finite battery

capacity and the RF/DC sensitivity of the energy-harvesting

circuit are considered. The optimization of resource allocation

is formulated as a problem that maximizes the eMBB sum

rate of all users under all necessary constraints. To tackle

this problem, we decompose it into two subproblems and

propose a Mixed-DDPG algorithm to solve them alternately.

The numerical results reveal that the proposed Mixed-DDPG

algorithm can quickly converge to a stable state and achieve

a higher eMBB sum rate than the existing schemes, but the

performance is sensitive to the transmission time. In our future

work, we will extend the proposed model and algorithm to

more complex scenarios, such as multi-cell and reconfigurable

intelligent surface-aided (RIS-aided) networks.
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