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Advanced Multimodal Fusion Method for Very Short-Term Solar
Irradiance Forecasting using Sky Images and Meteorological Data: A

Gate and Transformer Mechanism Approach

Liwenbo Zhang∗, Robin Wilson, Mark Sumner, Yupeng Wu∗

Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, the United Kingdom

Abstract

Cloud dynamics are the main factor influencing the intermittent variability of short-term solar
irradiance, therefore affect the solar farm output. Sky images have been widely used for short-term
solar irradiance prediction with encouraging results due to the spatial information they contain. At
present, there is little discussion on the most promising deep learning methods to integrate images
with quantitative measures of solar irradiation. To address this gap, we optimise the current
mainstream framework using gate architecture and propose a new transformer-based framework in
an attempt to achieve better prediction results. It was found that compared to the classical CNN
model based on late feature-level fusion, the transformer framework model based on early feature-
level prediction improves the balanced accuracy of Ramp Event by 9.43% and 3.91% on the 2-minute
and 6-minute scales, respectively. However, based on the results, it can be concluded that for the
single picture-digital bimodal model, the spatial information validity of a single picture is difficult
to achieve beyond 10 minutes. This work has the potential to contribute to the interpretability and
iterability of deep learning models based on sky images.

Keywords: Solar energy, Forecasting, Computer vision, Deep learning, Vision Transformer, Sky
images

1. Introduction

As solar power generation grows, its inherent variability presents the grid with issues related to
reserve costs, dispatchability and ancillary generation, and grid reliability in general [1]. Accurate
forecasting of solar irradiance at different time scales is a prerequisite for effective utilisation of solar
energy and a critical step in the grid integration and management of solar farms [2, 3]. Reliable solar
forecasting tools improve the economics of PV power generation and reduce the negative impact of
PV uncertainty on grid stability [4].

Changes in cloud cover are the leading cause of rapid changes in solar irradiance. Since the
prediction models based on statistical numerical regression used in very short-term forecast models
does not include information on fast moving clouds, alternative or additional data inputs that
account for these rapidly changing meteorological phenomena are required if accuracy at this time
scale is to be improved.

Ground-based sky imagery represents one such exogenous data source and plays a crucial role in
solar energy forecasting due to its ability to provide information on cloud distribution and motion.
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Solar irradiation models informed by cloud motion data offer the potential to deliver accurate
forecasts of very short-term solar irradiation, and thus provide valuable supporting information for
grid management and informing the market around power supply and demand [5].

Currently, sky images taken by fish-eye cameras contain rich spatio-temporal features and thus
are widely accepted by the academic community as exogenous data for intra-hourly level sky mod-
elling [6, 7, 8]. The main methods for predicting solar irradiance based on sky images can be
divided into two categories. The first is a sky modelling approach based on classical image anal-
ysis. To determine spatial features, methods such as red-blue ratio (RBR) or red-blue difference
(RBD) [9, 10, 11], 3D cross correlation [12], or image feature correlation [13] are used to iden-
tify cloud pixels in the sky image. To determine temporal features, the most common approach
is to use the cross correlation method [10], which calculates the cloud motion vector by compar-
ing two consecutive cloud maps. In addition to cross correlation, other methods include optical
flow [6, 14] and ray tracing [15]. The optical flow method determines the velocity of feature pixels
based on the intensity of two consecutive images and uses this to calculate the position of the cloud
in relation to the ground projection of the cloud at the approaching time point. The ray-tracing
approach uses multiple images of the sky taken simultaneously from different positions, combined
with ground shadow maps to model clouds in 3D. The advantage of this approach is that the 3D
model solves the problem of individual site images not being able to determine the height of the
cloud base [12], while both the cross correlation and optical flow methods require additional instru-
mentation to measure the height of the cloud base to determine the correct ground projection of the
cloud [16]. Image-based forecasts determine the impact on solar irradiance estimates by combining
the estimates of cloud position with estimates of cloud transmittance, and general methods used to
determine the latter include fixed transmittance [6, 10], cloud density-based transmittance [17, 7]
and cloud height-based transmittance approaches [18]. However, these modelling approaches to
image analysis are still limited by the complex physical properties of clouds. For example, cloud
motion is assumed to involve shifting only and does not account for cloud generation and dissi-
pation. Additionally, cloud transmittance depends on the transparency of the cloud, but it is not
currently feasible to measure the transmittance of all cloud types directly. Therefore, this approach
remains of limited use in improving the accuracy of future irradiance forecasts [19]. At present this
approach is based on decision-level fusion, i.e. solar irradiation forecasts and RAMP forecasts are
made independently of each other and only influence each other when combined in the final stage
as shown in Figure 1 (a).

The second approach uses deep learning methods [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. This
usually employs a combination of convolutional neuron networks (CNN) [30] and recurrent neural
networks [31] (RNN) based methods to predict solar irradiance information for future time periods.
The widely used CNN-based computer vision models, such as ResNet [32] and VGGNet [33], can
extract feature information from a dataset containing many sky images using deep convolutional
neuron networks to obtain spatial dimensional perception capability. After extracting the spatial
information of the images, various methods can be used to obtain time-series based information.
These include, pre-processing by stacking a time series of images [21], convolution processes using
3D-CNN with an extra temporal dimension [23], convolution-based long and short-term memory
(LSTM) network [20], convolution followed by feature-based LSTM networks [22, 28], directly using
regression algorithms for continuous results [21, 23], or combine feature engineering techniques with
LSTM techniques [26]. By combining the architecture of two networks and fitting them using a
large amount of data, a network model with both spatial and temporal feature perception can be
obtained. This stitching model can be used to map the relationship between specific features in
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continuous input image data and forecast targets. This type of model has been applied to short-
term forecast intervals for different forecast resolutions. In contrast to models based on image
analysis, current deep learning models can be mainly categorised as late feature fusion models,
where the image and numerical values respectively abstract features as a high-dimensional vector
in their respective models and concatenate the two vectors at the end of their respective operations,
as shown in Figure 1(b). The tandem high-dimensional vector can be thought of as a joint feature
extract based on the two modalities, and the final prediction is based on the extraction of available
information from that vector.

While deep learning networks have been shown to deliver predictions with greater accuracy than
those based on feature engineering in the field of ground-based sky picture solar prediction, due
to its black box nature, researchers cannot assess the relationships between variables that affect
performance. For example, using sky images as exogenous data to aid solar prediction has been
shown to improve model performance at time scales ranging from 2 minutes ahead [34] to 1 hour
ahead [35]. It is obvious that the images play a different role at these two different time scales but
the features it identifies are not understood.

The research carried out by Paletta et al [20]. highlighted that prevailing image- and numerical-
based forecasting models show a propensity towards reactive, rather than anticipatory, predictions.
This predilection represents a significant challenge in current prediction models. More specifically,
these models did not anticipate the timing of imminent solar ramp events from sky images as
anticipated by the researchers.

We argue in this paper that solar irradiance forecasting using ground-based images from which
numerical features are extracted that describe the solar field can be categorised as a general multi-
modal learning domain, rather than a purely computer vision domain. That is, the model is fore-
casting through use of a deep learning network based on two or more heterogeneous data sources
with complementary information.

As shown in Figure 1, for the broad field of image-informed multi-modal learning, besides the two
aforementioned architectures, i.e. decision-level and late feature-level fusion of image information,
the fusion methods also include: data-level fusion (not shown in Figure) and early feature-level
fusion. Of these, early feature-level fusion and late feature-level fusion both extract feature fusion
within the model, with early fusion focusing on modal interactions and late fusion focusing on
feature extraction [36]. In deep learning models used for solar forecasting, two architectures are
currently applied, namely late feature-level fusion [20, 37, 22, 38] and decision-level fusion [39, 21].
In the work of Paletta et al. [20], the use of numerical data as additional inputs fused with a
computer vision model improved the 2-minute forecast skill (FS), which rose from -3.4% to 12.9%
and the 10-minute FS, which rose from 18.8% to 23.9%.

However, the literature suggests that the interest of researchers is currently focused on the
image feature side to improve overall forecasting power through a more robust image network. This
approach neglects both the role that the numerical component plays in the model and whether it
interacts effectively with the image component. For example, the numerical regression-based fully
connected Multi-Layer neural network module (MLP) has been added to forecasting models by
default due to the use of PV logarithms as an additional numerical input in the work of Sun et.
al. [37] and significantly improved the performance of the model.

Another potential area of research responds to the fact that the image-numerical bimodal model
currently in use is not modal interaction friendly. The prevailing image feature framework is the
convolutional neuron network (CNN), where specific features of an image are extracted by sliding
convolutional modules through the image and gradually constructing a high-dimensional vector
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(a) Decision-level fusion (b) Late feature-level fusion (c) Early feature-level fusion

Figure 1: Schematic diagram of the model architecture for the different stages of fusion.

representation of the image by multi-layer superposition. This architecture means that it is not
possible to extract features present in the 3D image and use these directly with complementary data
held in a 1D array. Therefore, if data features of different dimensions are extracted simultaneously
by convolutional computation, i.e. early feature-level fusion, this must be done by projecting the
1D data to a higher dimension and concatenating it with another, a process that may lead to
distortion of the low-dimensional data. Venugopal et al. [39] compared CNN networks against PV
output-based regression predictions with different fusion methods. Their results showed that late
feature-level fusion and decision-level fusion achieved better prediction performance, but data-level
fusion and early feature-level fusion failed to effectively interact information across modalities to
achieve results beyond the baseline.

Multimodal learning, adopts a unique feature extraction approach, where its transformer archi-
tecture enables data from different modalities to be fed into the encoder in parallel to achieve early
feature-level fusion, as shown in Figure 1(c). It can effectively address the challenges of inherent
data misalignment arising from the variable sampling rate and establishing cross-modal element cor-
relations of each modality’s sequence [36]. Thus, the transformer-based model is widely used in the
multimodal learning fields of image-language interpretation [40], image-sentiment recognition [41],
the joint expression of video-audio-text [42, 43], etc. These applications share commonality with
the mixed-mode data feeds available for irradiation forecasting. The original contributions of this
study are:

1. To present two new approaches for picture-numerical bimodal model interaction. Namely, an
improvement of the later feature-level fusion method by means of a gate architecture and a
new early feature-level fusion method based on the Transformer architecture.

2. To assess the performance of the model 2, 6, and 10 minute forecasting horizons by scoring
its quantitative statistical performance using the Smart Persistence Model (SPM)-based FS
metric and the qualitative performance of the model using the Ramp Events (RE)-based
Balanced Precision (BP) metric.

3. To show contradictions in the quantitative and qualitative performance of late feature-level
fusion models in terms of single image and numerical fusion. In particular, the widely used
CNN model based on late feature-level fusion obtained higher FS while resulting in lower BP.

4
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From which we speculate on, and attempt to demonstrate, a link between this and the poor
sensitivity of its architecture to images.

4. To demonstrate that for the end-to-end single picture-numerical bimodal model, the main
variability of the model, both architecturally and algorithmically, was most pronounced for
the 2 minutes ahead forecast. This variability fades with longer forecasting horizons. At 10-
minutes ahead forecast, the validity of the image information is extremely low and all models
have degenerated into a mean reversion model that relies primarily on irradiance and clear
sky irradiance.

The remainder of the paper is structured as follows: Section 2 presents the overall experimental
approach, including Data pre-processing, model architecture, and evaluation methods; Section 3
presents results that show quantitative and qualitative evaluation results for all models and discusses
the results; and Section 4 presents our conclusions and recommendations for future work.

2. Methodology

Figure 2 illustrates the methodology adopted in this study. The approach to building a deep
learning solar forecasting model based on image-numerical fusion comprised three stages. The first
was a data pre-processing stage, which aligned, filtered, sampled, and grouped the raw data into
a format suitable for training a deep learning model. The second was a training stage, where
the training dataset was fed into the model and the weights within the model were fixed by back
propagation. Following this, the model was evaluated on a validation set to assess the performance
trained in training dataset. Through continuous iteration, the model that achieves the optimal
result on the validation set, i.e. the model with the least loss, is saved to end the training process.
The final stage involved use of a test dataset to obtain a forecast for comparison with ground truth
data, in order to quantify the final performance of the different models studied in this paper.

Clear sky index (CSI), i.e. the solar irradiance as a percentage of the clear sky irradiance,
was chosen as the target for forecasts rather than the GHI, reflecting consensus within the solar
forecasting community around its ability to improve the accuracy of solar irradiance forecasts made
using numerical regression algorithms [44], including those that involve image-numerical multi-
modality approaches. Additionally, use of CSI as a forecast target has a beneficial inductive bias
compared to the direct forecast of irradiance, i.e., the model assumes a priori knowledge of the clear
sky background. Forecasts generate an atmospheric transmission rate (or attenuation rate) based
on the clear sky background, which is also consistent with traditional image analysis methods when
harnessed for use in irradiance forecasting.

The reach of the forecast target was informed by the approach of Kong et al. [45]. A forecast
resolution of 4 minutes and forecast span of 10 minutes were selected, and the input data set
was used in three different models to generate independent solar irradiance forecasts, each over
2-, 6-, and 10-minute time horizons. Results were compared to quantify the relative forecasting
performance of the models under 3 different forecast horizons.

As shown in Figure 2, Section 2.1 the data pre-processing explains the process of going from raw
data to trainable data. Section 2.2 describes the process of the five main supervised image-numerical
multimodality models in this paper along with other standard model architectures. Section 2.3
evaluation matrix introduces the two main criteria for model prediction performance evaluation.

5
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Figure 2: Overview of the solar forecasting framework.

2.1. Data pre-processing

Data for the experiments were obtained from the Folsom, California [46] public database, sup-
plemented by clear sky irradiance values from the McClear [47] clear sky irradiance model. Output
from the latter was generated using the timestamps of corresponding Folsom data points.

Inputs to each of the models comprised a set of time synchronised data that included clear sky
irradiance (GHI, DNI, and DHI), measured irradiance (GHI, DNI, DHI), weather data (dry bulb air
temperature, humidity, relative air pressure, wind speed, and wind direction) measured at ground
base stations, and solar geometry (solar zenith and solar azimuth angles).

Data alignment and Quality control The initial stage of data pre-processing involved
image compression, alignment of images to numerical data, quality control, and data normalisation.
The Folsom dataset provides raw image data (1536 pixels × 1536 pixels), solar irradiance data, and
weather data. These data first went through a process of temporal alignment using timestamps
and the corresponding clear sky irradiance was then sourced from the McClear clear sky model
Following this, quality control filters were applied to screen each piece of data.

For numerical data, a quality control strategy following Yang‘s [48] work was used to reject data
outliers, with decisions being made on the basis of identifying extremely-rare limits [49], a diffuse
ratio test [49], and other filters [5].

Images were down-sampled to 128 pixels × 128 pixels, a resolution considered to be the smallest
resolution that can be maintained for sky information, using the bilinear method to match the
input format of the ANN. In addition, the image dataset showed occasional time shifts possibility
due to cumulative errors resulting from continuous shooting. Data points that showed significant
offsets (more than 15 seconds from the timestamps) were removed. Finally, to balance the weights
of all inputs, all RGB channels and numerical data of the images were normalized to the interval

6
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[0, 1], except for the solar altitude angle which was normalized to [−1, 1] after a trigonometric
transformation.

Segmentation and resampling of dataset The Folsom dataset provides numerical and
image data for three years from 2014-2016. In this study, the 2014 data was used as the training
set, the 2015 data as the validation set, and the 2016 data as the test set. Following the data
alignment and quality control stage these contained 195k, 233k, 228k data points respectively.
Within these datasets, the sample size for sunny periods was much larger than that for non-sunny
days, the former accounting for approximately 60% of the entire dataset. As may be inferred from
the cumulative distribution of CSI on left side of Figure 3, the dataset is unbalanced, with a
clustering of CSI values between approximately 0.9 and 1.05. Recent research [50] suggests that
unbalanced datasets can generate models biased towards non-critical conditions – in the case of the
Folsom dataset, the sunny periods. To guard against potential bias, simple algorithm was used to
filter out consecutive data points within sunny period. Specifically, a data point was excluded if the
preceding 5 and following 10 points where ’sunny’ as defined by the limits of the data clustering, i.e.,
a CSI greater than 0.9 and less than 1.05. The right side of Figure 3 shows the data distribution
after resampling, suggesting it is better balanced. The remaining datasets contains 86K, 100K and
94K data points respectively.

Figure 3: Data before (left) and after (right) resampling CSI distribution

Due to computer memory and training time constraints, it was verified that a quarter of the
data was randomly sampled(in Appendix A, Figure A.14). The final training, validation and test
datasets used for analysis contained approximately 21k, 25k and 23k data points respectively. The
detailed monthly distribution of the final data is shown in Appendix A, Figure A.15

Due to the computer memory and training time constraints, only a quarter of the training
data were used, these being randomly sampled from the training dataset. The final training,
validation, and test datasets used in the analysis contained approximately 21k, 25k, and 23k data
points respectively. A specific data sampling test and validation of sample rate are presented in
Figure B.6

2.2. Development of deep-learning based irradiance forecast model

We propose or utilise models and architectural methods aimed at enhancing or optimising the in-
teraction or fusion between patterns, balancing the predictive role of image patterns in multimodal

7
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models. In this section, we introduce the mainstream architecture of the current image-to-text
multimodal prediction model, namely the late fusion architecture at the feature level, and pro-
pose a balancing mechanism using gate mechanisms to dynamically balance the outputs between
modalities. Next, we present our novel model, which is based on an attention-based Transformer
architecture, enabling early fusion at the feature level.

(a) (b)

Figure 4: Schematic diagram of the numerical-image bimodality model. (a) Late Feature-level fusion [37]. (b) Early
Feature-level fusion.

2.2.1. Bimodal model based on late feature-level fusion

Currently, mainstream deep learning-based image-numerical bimodal models are based on late-
stage feature-level fusion architectures [23, 22, 20, 37, 45], as illustrated in Figure 4(a). The archi-
tecture consists of three main components: an image embedding process that extracts the input
image features as high-dimensional vectors; a numerical embedding process that extracts the input
numerical features as high-dimensional vectors; and a modal interaction module that extracts the
joint features from the two vectors after a process of concatenation, which ultimately derives the
forecasting results.

CNN - Current Image embedding Among the sky image-based PV forecast models, CNN
and other variants based on convolutional computation, are currently the dominant image feature
extractors due to their excellent image resolution performance [45, 23, 20]. These extract features
from images in a continuous convolutional scan, building a weighting system from detailed to
macroscopic images by sequentially expanding the receptive field size of the model through a multi-
layer repetitive architecture. In this study, the most widely accepted ResNet-18 model [32] was
used as a baseline model for CNN image extractors.

8
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ViT - Proposed Image embedding As mentioned above, methods based on Transformer
architecture are emerging as a widely used backbone network for a variety of tasks, and amongst
these, the Vision Transformer (ViT) has been developed to undertake image feature extraction [51].
Unlike the convolution-based scanning adopted by CNN models, ViT-based vision models build a
weighted system by extracting interconnections between patches within images. As a result, such
models can establish relationships between pixels at different areas within the image. This paper
postulates that since the main feature of the sky image in short-term solar forecasts is primarily
the relative relationship between regions occupied by cloud, clear sky and the sun, the relative
importance of fine-grain texture and detail in the image is lower and ViT models, based on multiple
self-attention, are able to extract the more important larger-scale features in sky images more
efficiently.

(a) ViT architecture (b) Transformer Encoder

Figure 5: Schematic diagram of Vision Transformer (ViT) image embedding.

For a module that acts only as an image feature extractor, based on the work [32], the compu-
tational process can be expressed as

zi0 =
[
xclass ;x

1
pE; · · · ;xN

p E
]
+Epos E ∈ R(P 2·C)×D,Epos ∈ R(N+1)×D (1)

zi
′
l = MSA(LN (zil−1)) + zil−1, l = 1 . . . L (2)

zil = MLP (LN (zi
′
l)) + zi

′
l, l = 1 . . . L (3)

ẑi = LN
(
z0i L

)
(4)

As shown in Figure 5(a), the image input x ∈ RH×W×C is divided into N patches of side length

P and stitched into a 2D sequence xp ∈ RN×(P 2·C). Following this, the pixels of each patch
are projected linearly onto D dimensions via transfor embedding, a learnable latent vector E ∈
R(P 2·C)×D. Following the process described by Devlin et al. [52], the input after reshaping is stitched

9
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with an additional learnable class token, xclass, and embedded with a learnable position component
Epos ∈ R(N+1)×D, which describes the spatial relationships between patches. Eventually, the
image part of the input is represented as zi0 ∈ R(N+1)×D. This input is added to a standard
Transformer module, shown in Figure 5(b), i.e., a module based on a Multiheaded Self-Attentive
(MSA) process [53] and a Multi-Layer Perceptron (MLP) process, iterated L times. Ultimately,
the learnable class token, xclass, is extracted, and after Layer Normalisation (LN), is output as a
high-dimensional vector ẑi, representing the image feature.

ANN - Current Modality interaction embedding Currently, multilayer feedforward Ar-
tificial Neural Networks (ANN), also known as MLP, are widely used as one-dimensional vector
feature extractors in models with numerical inputs [54]. ANNs are also used widely in the modal
fusion phase of image-numerical bi-modal solar forecasting models [37, 23, 22, 20]. As mentioned
above, when ANNs are used as a cross-modal feature extractor, as shown in Figure 6(a), the direct
concatenation that takes place before feature extraction fails to make effective connections between
the input parameters, and the interaction of the inter-model outputs is completely dependent on
the subsequent adaptive of the network architecture to such outputs. Also, due to the heterogeneity
of the different data, models based on ANNs face multiple challenges when performing mapping
(converting image information into irradiance data) and fusion forecasting (combining information
from two modalities to predict ramp events). These challenges include instances where information
from different modalities have different predictive power and noise topology, or instances where
models are unable to capture features from one of the modalities.

(a) (b)

Figure 6: Schematic diagram of modality interaction in late feature-level fusion models. (a) ANN feature extractor
(b) Gated-ANN feature extractor.

ANN with gate architecture - Proposed Modality interaction embedding In order
to improve the attention given to target features in the both modality processed by the MLP and
to suppress feature activation in irrelevant regions, this paper proposes that addition of a layer
based on attention gate architecture, as shown in Figure 6(b). It is implemented by a mechanism
similar to the gated recurrent unit in the LSTM [31], by controlling the weighting of the parameters

10



Journal Pre-proof

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320
 Jo
ur

na
l P

re
-p

ro
of

through the layers. The gate architecture generates a gating coefficient for each node in ANN with
the same dimensionality as the input feature and then converts this into an attention weight map
multiplied by the original feature. The attention gate performs the task of focussing the model’s
attention on essential regions of the input data and neglecting irrelevant regions. The simplicity
of this approach makes it possible to improve feature extraction without significant an increase in
computing cost.

2.2.2. Transformer-based early feature-level fusion

As mentioned above, the MSA-based ViT model finds application beyond image processing.
Because the MSA module inputs are a series of 1D multidimensional vectors or tensors, it is possible
to input image and numerical data in parallel. As an alternative to CNNs, such backbone networks
have been shown to offer outstanding capabilities in several fields dealing with multi-modality
tasks, such as image and text [55], video and text [56], etc. However, there is, as yet, no such
work applied to the field of solar energy forecasting. Therefore, inspired by Kim et al. [57], this
paper speculates that multi-modality input short-term irradiance forecast models that combine sky
images and measurement logs can also be constructed using the Transformer module as the backbone
network to replace both the CNN visual layer and the MLP numerical regression computational
layer to construct input data with early feature-level fusion.

Figure 7: Schematic diagram of image/text bimodal transformer architecture.

The proposed early feature and fusion model is based on the Transformer architecture shown
in Figure 7. The main inputs to the model comprise image data and numerical data. For the
image data, input follows the patching process illustrated in Fig 5(a). For the numerical data, a
standard unbiased MLP for numeric features is used to up dimension the numeric information to
D, MLP(y) ∈ R1×D, and provide a learnable class token. The numerical data are divided into
five groups based on type: solar irradiance, clear sky solar irradiance, sun angle, ground wind
conditions, and weather parameters (dry bulb air temperature, humidity and relative air pressure).
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As with image processing similar to the ViT process, the image part of the inpus is represented
as zi0. Meanwhile, the learnable class token for numerical data, yclass, combined with learnable
position embedding Eseq ∈ R(M+1)×D is used to describe the position relationships within the
data sequence. The numerical part of the input is represented as zn0 ∈ R(M+1)×D. Finally, zi0
and zn0 are embedded separately in the model type embedding process as ztypei and ztypen , before
the process of concatenation to generate z0 ∈ R(M+N+2)×D. The vector z0 is iteratively updated
through L-depth transformer layers up until the final sequence zl. The final ẑ representing the
forecast vector is generated by a linear projection of the two learnable vectors z0i L and z0nL in series
with hyperbolic tangent activation.

The overall data processing can be described as

zi0 =
[
xclass;x

1
pE; · · · ;xN

p E
]
+Epos E ∈ R(P 2·C)×D,Epos ∈ R(N+1)×D (5)

zn0 =
[
yclass ;MLP(y1); · · · ;MLP(yM )

]
+Eseq Eseq ∈ R(M+1)×D (6)

z0 =
[
zi0 + ztypei ; zn0 + ztypen

]
(7)

z′l = MSA(LN (zl−1)) + zl−1, l = 1 . . . L (8)

zl = MLP (LN (z′l)) + z′l, l = 1 . . . L (9)

ẑ = LN
(
[z0i L; z

0
nL

]
) (10)

For all experiments presented in this paper, hidden size D of 192, later depth L of 12, patch
size P of 8, MLP size of 192, and number of attention heads of 12 are used.

2.2.3. Smart Persistent Model

This paper uses the Smart Persistent Model (SPM) as the benchmark for evaluating the per-
formance of alternative modelling approaches. In contrast to the Persistent Model (PM), which
assumes that solar irradiance remains constant throughout the forecast interval, the SPM assumes
instead that the clear sky index remains constant. This offers the advantage that potential seasonal
and temporal factors are added to the model as default preconditions and can be expressed as
follows:

ẑSPM(T +∆T ) =
z(T )

zclear(T )
· zclear(T +∆T )

Implicit in the use of a SPM is the requirement for a clear sky model as a reference for clear
sky irradiance. In this paper, the McClear model [47] is used for clear sky irradiance generation.

2.2.4. AutoML - Additional Machine Learning Benchmarks

As part of the process of evaluating the performance of image-numerical multi-modal learning an
additional predictive regression model based on only the numerical input data was created to serve
as an additional benchmark. This made use of the AutoGluon [58] tool, which was used to train
a forecast model and is based on the idea of automated machine learning (AutoML). AutoGluon
can automate model selection, hyper-parameter tuning and model integration. The final model was
generated by integrating one or more of neural networks: LightGBM boosting trees [59], CatBoost
boosting trees [60], random forests, extreme randomization trees, and kNearest Neighbours, and
based on multilayer stack resembling and repeated k-fold bagging strategy to increase the final
accuracy [58]. In the presentation and discussion of the results, this model is referred to using the
abbreviation NUM.
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2.2.5. Summary of models and criteria for evaluating performance

A summary of the models used in this paper is provided in Table 1. The SPM, NUM, and CNN-
L models represent benchmarks for persistence, numerical-based machine learning, and combined
image-numerical based deep approaches, respectively. ViT represents the image backbone network
based on Transformer architecture proposed here as the alternative to the use of a CNN. The terms
appended to CNN and ViT define the approach taken to fusion where -L represents late feature-level
fusion architecture, -LG represents extra gate architecture, and -E represents feature-level fusion
architecture. More detailed models architecture is presented in Appendix B.

Table 1: Irradiance Forecasting models explored through this paper

Models
Inputs Encoder architecture

Fusion Reference
Numerical Images Numerical Images

SPM ✓ Persistence / /
NUM ✓ AutoGluon / / [58]
CNN-L ✓ ✓ ANN Res-18 Late [37, 20, 45]
CNN-LG ✓ ✓ ANN Res-18 Late, Gated [31]
ViT-L ✓ ✓ ANN ViT-Base-patch8-128 Late [51]
ViT-LG ✓ ✓ ANN ViT-Base-patch8-128 Late, Gated [51, 31]
ViT-E ✓ ✓ Transformer ViT-Base-patch8-128 Early

2.3. Evaluation Matrix

Two evaluation criteria were used to evaluate the performance these models. The first involved
quantifying the error between the predicted irradiance ẑ and the ground truth data z∗. Standard
metrics widely used by the solar forecasting community, and adopted in this paper, include FS
based on metrics such as RMSE, MAE or MSE to measure the running accuracy of the forecast.
The second criterion was based on BP, which quantifies forecasting ability in the presence of a
Ramp Event, i.e., a sudden rise or fall in irradiance due to sudden changes in cloud cover.

Forecast Skill As statistical indicators such as RMSE, MAE or MSE tend to behave in a
homo-trending manner in solar forecasting. The Forecast Skill (FS), adopted in this paper used
the Smart Persistent Model (SPM) clear-sky model to represent the baseline performance and only
RMSE to quantify error, as follows:

Forecast Skill = (1− RMSEModel

RMSEBaseline
)× 100%

Balanced precision Although FS can quantify the general error between model forecasts
and ground truth, it does not demonstrate the ability of models to forecast ramp events. These
qualitative behaviours are of particular importance in PV generation as the rapid power fluctuations
that result, increase the system frequency stabilisation cost. Balanced precision (BP) is a metric
developed for ramp events [61], which defines a ramp as a rapid solar irradiance event with a rate
of change exceeding 10% of the maximum installed capacity. This paper uses a modified version of
the metric where periods exhibiting a rate of change in GHI exceeding 100 W/m2/min are defined
as ramp events – this is to reflect the fact that for the database used, there is not a grid to as a
reference., Following the suggestions of Kong et al. [45], this paper also defines the ramp direction.
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For each forecast, data can be classified into three categories based on the magnitude and direction
of change in solar irradiance, i.e., positive ramp events where cloud cover diminishes, negative ramp
events where cloud cover grows, and periods of relatively consistent irradiation, implying an absence
of ramp events. After categorising the forecast data to identify ramp events, BP may be defined as:

Balanced Precision =
1

2

∑

c∈C

Tc

Nc

Where Tc represents successfully forecast events in the positive or negative ramp category and
Nc represents the total sample in the positive or negative ramp category.

3. Results and Discussion

Modelling was undertaken using a PC with a 3.8 GHz AMD Ryzen 9 3900X CPU and a GeForce
RTX 2080 SUPER GPU on the Tensorflow 2.5 [62] platform with Keras [63] built in. To reduce
errors introduced by random nature in modelling, including the randomness in observation order
and the randomness in random number generator in training, five replicate trials were carried out
for each image model.

3.1. Results

3.1.1. Quantitative solar irradiance forecasting

Results for the criteria used to evaluate the quantitative capabilities of the five image-numerical
models (CNN-L, CNN-LG, ViT-L, ViT-LG, ViT-E) and two numerical models (SPM and NUM)
are summarised in Table 2.

Table 2: GHI forecast results. The errors are expressed as mean ± standard deviation. Forecast skill was calculated
relative to the SPM model.

Models
2 min 6 min 10 min

RMSE (W/m2) ↓ FS (%) ↑ RMSE (W/m2) ↓ FS (%) ↑ RMSE (W/m2) ↓ FS (%) ↑
SPM 85.62 N/A 117.57 N/A 129.67 N/A
NUM 77.31 9.70 98.69 16.06 113.14 12.75
CNN-L 79.37±0.55 7.29±0.64 98.68±0.45 16.07±0.38 105.15±0.49 18.9±0.37
CNN-LG 79.89±0.66 6.68±0.76 98.54±0.64 16.18±0.54 104.15±0.37 19.68±0.29
ViT-L 82.77±0.82 3.32±0.96 99.97±0.65 14.97±0.55 105.28±1.27 18.81±0.98
ViT-LG 85.16±1.34 0.53±1.56 101.29±0.8 13.84±0.67 105.26±0.45 18.82±0.34
ViT-E 81.45±0.68 4.87±0.79 98.68±0.72 16.06±0.61 104.91±0.7 19.09±0.53

It may be seen that all models outperformed the SPM model which was used as the FS baseline
predictive power. The AutoML-based NUM model achieved the best forecast results at the 2-
minute horizon; the CNN model with a gate architecture achieved the best results for the 6-minute
and 10-minute forecasts. Overall, there was a large difference in model FS levels at the 2-minute
horizon, and this difference diminished as the forecast horizon was extended. In particular, the
models based on ViT as the graphical feature extractor were all inferior to the CNN-based models
in FS.

It is worth noting that for the late feature level fusion models, the effect of gate architecture is
not significant, with the difference in FS being less than 1% across all models, with the exception of
the ViT-LG model, which delivers significantly lower FS at the 2-minute time horizon. The ViT-E
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model, where the numerical and image inputs share a single encoder, outperforms both the ViT-L
and ViT-LG models, where features are extracted separately and then fused, at all forecast time
horizons. As shown by the linear regression curves in Figure 8, the errors in all models manifest as
an overestimation of irradiance at lower irradiance and an underestimation at higher irradiance.

Figure 8: Forecasts using the image-numerical bimodal models over three time horizons. The blue dashed line is the
predicted linear regression and the black dashed line is the expected regression (predicted value = actual value)
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3.1.2. Qualitative solar irradiation (Ramp Event) forecasting

Table 3 presents the qualitative results for all models in terms of how often Ramp Events were
accurately predicted, and Figure 9 illustrates performance as a confusion matrix. It may be seen
that models based on the ViT framework achieve the best performance across all time horizons.
It may also be seen that the qualitative results exhibit a similar trend to the quantitative results,
i.e., the variability between models decreases as the forecast time horizon increases. In the case
of qualitative results, however, the variability is more pronounced. At all horizons, the BP of
the ViT-based models was greater than or equal to that of the CNN-based models. Additionally,
the performance of the models with gate architectures exceeded or equalled that of the non-gated
models. Interestingly, the BP of the widely used CNN-L fusion framework was even lower than that
of the purely numerical forecast-based model NUM for 2-minute forecast. Even after the addition
of the gate architecture enhanced the model’s BP ability, its performance was still lower than that
of NUM. Finally, it may be seen that models successfully captured falling RE more frequently than
rising RE, the exception being the ViT frame model over the 2-minute horizon.

Table 3: Ramp Event forecasting results. For image-numerical models, results are expressed as the mean ± standard
deviation of the results of five replicate trials.

Horizon Models Increase RE ↑ Decrease RE ↑ BP (%) ↑

2 min

SPM 0/1131 4/1071 0.19
NUM 135/1131 214/1071 15.96
CNN-L 62.6±62/1131 171.8±34.9/1071 10.78±3.41
CNN-LG 96.2±58.2/1131 188.6±29.7/1071 13.05±1.94
ViT-L 226.8±52.5/1131 180.8±55/1071 18.46±1.02
ViT-LG 241±29.6/1131 185.4±34.9/1071 19.31±1.1
ViT-E 239.4±18.8/1131 206.2±28.6/1071 20.21±2.01

6 min

SPM 0/1979 23/2028 0.57
NUM 421/1979 697/2028 27.82
CNN-L 518±84.7/1979 659.8±95.3/2028 29.35±2.26
CNN-LG 537.4±91.5/1979 759.4±59.7/2028 32.3±1.03
ViT-L 548.8±63.3/1979 752.6±33.2/2028 32.42±1.35
ViT-LG 609.2±25.8/1979 752.2±55.6/2028 33.93±1.78
ViT-E 671.8±28.7/1979 660.6±27.8/2028 33.26±0.9

10 min

SPM 0/2483 42/2603 0.81
NUM 212/2483 426/2603 12.45
CNN-L 808±61.7/2483 1101±74.9/2603 37.42±1.52
CNN-LG 819.8±33.5/2483 1072.8±85.6/2603 37.11±1.52
ViT-L 788±76.4/2483 1133.8±123.1/2603 37.64±1.58
ViT-LG 852.4±93.5/2483 1050±93.2/2603 37.33±2.55
ViT-E 819.6±140.4/2483 1060.6±148.6/2603 36.87±2.55

3.1.3. Comparison of model variability

Figure 10 shows the combined FS and BP performance for all models. As the SPM model
has little RE predictive power, it can be approximated as being at the origin of the coordinate
system and is not plotted in the figure. As observed in the work of Paletta et al., [34], the effect
of architecture used in different models fed by the same inputs gradually decreases as the size of
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Figure 9: Confusion matrix of Ramp predictive power for 5 different image-numerical models on 3 time horizon

Figure 10: FS and BP results for all models over different time horizons.

the forecast horizon grows. For the bimodal frameworks studied here, it is difficult to identify any
significant variability in the models at the 10 minute time horizon.

In reflecting upon performance, it is worth distinguishing between the relative importance of
quantitative verses qualitative measures. In the field of solar forecasting, the merit of a model is
usually determined using quantitative error, i.e., FS. The optimal strategy for such models fitted by

17



Journal Pre-proof

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451
 Jo
ur

na
l P

re
-p

ro
of

statistical errors for rapidly changing cloudy weather is often based on mean reversion. However,
for very short-term solar forecasting (10 minutes or less), the ability to capture Ramp events is
more important as the information may be used to inform grid operability.

Such ramp forecasts require the model to predict the occurrence of sudden and large changes in
irradiance, as opposed to consistent predictions of absolute irradiance, and metrics that quantify
performance in terms of statistical error, e.g., RMSE, tend to penalise the former qualities. The 2-
and 6-minute results from Figure 10 show that the models with high BP performance, i.e., ViT-
L and ViT-LG, perform poorly when performance is expressed as FS, while the opposite is true
for CNN models. The early feature-level fusion model, ViT-E, maintained relatively strong BP
performance in the 2- and 6-minute predictions compared to the late model, and both delivered the
best FS. It is posited here that there are two main reasons for this, namely the ability of the model
to abstract image features, and the dual-modality strategy the model adopts to accommodate the
visual and numerical inputs.

3.1.4. Impact of images in bimodal models

Figure 11: Image sensitivity testing for a 2-minute time horizon. Image 1 is the original image input and Image 2 to
Image 6 are replacement inputs. The upper panel shows the 2-minute ahead prediction from the 5 image-numerical
bimodal models. The blue dashed line represents the output from the SPM model.

To explore the sensitivity of different models to the image input, randomly selected images were
used as inputs to the models on 17 June at 18:35, while keeping the numerical input unchanged.
The condition of the sky at this time is shown in Image 1 of Figure 11, as are the replacement
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images used in the analysis - Images 2 to 5, are taken from the same day but with different sky
conditions and Image 6, which is fabricated and comprises only black pixels. The output from this
analysis is plotted in Figure 11 and shows that model based on ViT as an image feature extractor
are more significantly affected by the image input than those based on CNN under complex sky
conditions. In addition, most of the models with gate architecture (light blue in the figure) are
more sensitive to images than those based on late fusion (light brown in the figure). Furthermore,
the ViT-E model is always the most sensitive to images. Interestingly, when fed a picture without
any information, the output of CNN-L is almost unaffected, while ViT-E deviates significantly from
the refence GHI value. These results suggest that the widely used CNN-L architecture is relatively
insensitive to image inputs. In particular, the model is extremely insensitive to the incorrect
input. This may be explained by the findings of Paletta et al., [20] who suggest, after evaluating
multiple graphical models, that fusion models always behave like a smarter SPM. i.e., the model
lacks interaction between image and numerical inputs, including alignment, translation, and co-
representation. This makes the model dependent on the numerical inputs and relatively insensitive
to the image-based output. To address this shortcoming, methods that use an image feature
extractor that is more effective at of parsing images, such as ViT, or enhancing the interaction
between image and numerical data, such as a gate architecture, can be considered as more effective
approaches.

3.1.5. Interaction of image and numerical data in ViT-E

Figure 12: ViT-E model visualisation indicating relative attention weights. The colour of the heat map within each
patch reveals its relative value in terms of average attention across all heads.

To understand how the Self-Attention mechanism processes image-numerical information across
modalities, the attention layer of the ViT-E model was abstracted and overlaid with the input for
visualisation, as shown in Figure 12. The visualised heat map consists of two main parts: on the
left side are the relative attention weights corresponding to the 256 patches in the image input,
and on the right side are the relative attention weights corresponding to five sets of numerical
inputs, in order from top to bottom: irradiance, ambient environment, clear sky irradiance, wind
condition, and solar angle. Figure 13(a) shows the GHI prediction from the ViT-E model for three
different forecast horizons for the 17 June. A sample of five images, including that used in Figure 12,
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representing a range of sky conditions were extracted and processed to visualise the model attention
weights as described above, and are shown in Figure 13(b).

(a)

(b)

Figure 13: (a) GHI predictions from 17 June, based on ViT-E 2-, 6-, and 10-minute forecasts. (b) Attention map of
the ViT-E model based on five representative GHI conditions from Figure 13 (a).
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It may be seen from Figure 13(b), that the longer the forecasting horizon, the lower the attention
weight of the model to the image-side input and the higher the attention weight to the numerical
input. In the 2-minute ahead prediction, different levels of cloud cover and sun position significantly
affect the attention of the model. For scenarios with low cloud-sun correlation, such as those with
significant areas of clear sky in region around the sun, or those where the sun is totally obscured
by cloud, the model assigns weights to both numerical and image models in a balanced manner.
For scenarios with high cloud-sun correlation, such as cloud approaching or cloud blocking part of
the sun, the model assigns more attention to the images. In the 6-minute ahead model, although
the distribution of attention weights for the images reflects that of the 2-minute ahead model, the
weighting of the numerical data is the most important part of the model. This trend of assigning a
gradually decreasing weighting to images continues in the 10-minute ahead model, where the model
becomes primarily dependent on irradiance and clear sky irradiance numerical inputs rather than
the images.

This pattern of behaviour offers an explanation for the variability in model performance observed
in Figure 10 where accuracy of the forecast declines as the prediction window is lengthened. That
is, the impact of the details in the pictures on the prediction decreases as the prediction scale is
lengthened. Although other potentially valuable information visible in the images (e.g., air mass)
might still benefit the predictive capabilities of the model and thus outperform models without
an image input, enhancing the feature extraction capability for the images for these longer time
horizon forecasts is unlikely to deliver better model performance. This observation is matches that
made in relation to models based on the classical image analysis method for forecasting GHI [64],
i.e., the gain offered by including image data in predictions is more pronounced for time horizons
below five minutes, and gradually decreases for those beyond five minutes.

We believe that the trend is a good explanation for the reason for model performance variability
in Fig. 10 declines as the prediction window is lengthened. That is, the impact of the details
in the pictures on the prediction is gradually decreasing as the prediction scale is lengthened.
Although other potentially visible information in the images (e.g., air mass) can still enable the
model to benefit in prediction and thus outperform the model without image input, enhancing
the model’s feature extraction capability for the images at this point no longer leads to better
model performance. This is similar to the model based on the classical image analysis method
for forecasting GHI [64], i.e., the gain of image data on prediction is more pronounced within five
minutes, while it starts to gradually decrease after five minutes.

The results from this study suggest that there are advantages to using the transformer framework
for combined image-numerical ultra-short-term solar forecasting. Specifically, the model extracts
features based on the association between each of each input elements, i.e., image patches and
numerical features, and dynamically assigns the impact of each element on the final prediction
based on these features. This functional advantage is not conferred by ANN-based architectures as
model fusion feature extractors.

In addition, as shown in Figure 13 (b), the 10-minute forecast irradiance has a similar weighting
to the clear irradiance. In other words, clear sky irradiance is of equal importance to prevailing
irradiance for solar irradiance prediction. The advantages of using CSI, i.e. the ratio of GHI to
clear GHI, rather than using GHI directly as a prediction target [44], are intuitively demonstrated.
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4. Discussion

Despite deep learning methods having demonstrated superior effectiveness over other approaches
in terms of results, this study illustrates that the currently implemented intra-hour solar power
forecasting deep model architectures can still yield diametrically opposing performances. It has
been evidenced that different architectures and modal fusion methods can significantly influence
the predictive capability of the model. As seen in Figure 10, the quantitative and qualitative
performance of different models are not uniform. Models leveraging Convolutional Neural Networks
(CNNs) as the image feature extraction algorithm show insensitivity to changes in the image modal
input, whereas architectures based on attention mechanisms lack precision in quantitative results.

On the one hand, algorithmically, as we proposed in Section 2.2, we speculate that this disparity
might be determined by the underlying algorithms of the network backbone architectures. Attention
mechanisms excel in inferring through relative relationships among image pixels, thus they are more
sensitive than convolutional computations that extract image details in sky image analysis. On the
other hand, from the evaluation perspective, we believe that the intrinsic contradiction between
qualitative and quantitative analyses results in models exhibiting markedly different patterns.

In quantitative analyses, models are expected to achieve larger FS, in other words, smaller
RMSE. This constraint makes the model more sensitive to numerical data, showing a trend for
mean prediction [20]. Under such circumstances, the model tends to be conservative when dealing
with rapid extreme changes, like ramp events, as observed in Figure 11. In qualitative analyses,
models are expected to capture more REs and further predict their trends. In this process, mean
prediction sensitive to numerical values causes the model to miss most REs. However, the ViT-L
series architecture, which is more sensitive to image analysis, tends to over-predict REs and loses
quantitative performance. In addition, the attention model ViT-E, which is based on early fusion
and accepts inputs from different modals, can achieve a more balanced quantitative and qualitative
result.

Furthermore, in Section 3.1.5, the manifestation of weights within the model indicates that the
importance of ground-based sky image information for solar power deep networks gradually de-
creases with the extension of the forecast horizon. Particularly for ramp event prediction, which is
of great interest for intra-hour forecasting, a longer forecast horizon tends to homogenise different
models, eventually displaying similar performances. We speculate that this phenomenon may be
associated with the limited presence time of low-level rapid clouds in sky images, which are respon-
sible for rapid RE changes. This conclusion aligns with cloud observation findings based on image
analysis methods [65].

5. Conclusions

Accurate short-term forecasting is essential for predicting solar power output, and thus for
effective grid management. This study found that the modal interaction component has been
under-appreciated in previous studies of deep learning models for solar forecasting that combine
images with numerical inputs. Also, there is ambivalence between the quantitative and qualitative
performance of late feature-level fusion models for single image and numerical fusion in such models.
Therefore, this project proposed the ViT-E model as being complementarity in quantitative and
qualitative forecast performance by varying the modal interactions to achieve relatively superior
performance. In addition, the study explored the weighting of image inputs in this class of model.
The results show that the longer the forecast duration in a single image forecast, the less importance
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the image accounts for, and at forecasts of up to 10-minute horizons, the features that can be
extracted from the image input by current vision models are minimal. As mentioned in [66], the
accuracy of the model is as important as its interpretability in advancing its understanding and
development. This study reveals a potential shortcoming in current multimodal solar prediction:
model validation relies only on performance improvements for the results, and there is a lack of
interaction studies between the actual performance of the different modes of the model, such as
ablation experiments. Transformer-like models have full potential in hybrid modelling for solar
energy prediction due to the intuitive interpretability of their framework. Furthermore, in future
work, we propose to use the RNN framework in combination with the Transformer framework for
Seq2sqe models with dynamic picture data streams as a framework to drive the current prediction
framework.
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Appendix

Appendix A. Random sampling

Figure A.14: Sampling rate validation experiments. The training set was used to train five different models with
sampling rates of 0.05, 0.1, 0.15, 0.25, 0.5, 0.75 and 1.0. The models were then validated under the same validation
set. The model loss tends to flatten out above 0.25 sample ratio.
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Figure A.15: Monthly CSI distribution of raw data, compared to Clear sky filtered data and 25% randomly sampled
filtered data.

Appendix B. Model details
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Hyperparameters CNN-L CNN-LG ViT-L ViT-LG ViT-E
Learning rate 0.01 0.1 0.0008 0.0008 0.0008
Optimizer SGD SGD SGD SGD SGD
Optimizer momentum 0.9 0.9 0.9 0.9 0.9
Loss MSE MSE MSE MSE MSE
Weight decay 0.0001 0.0001 0.0001 0.0001 0.0001
Batch size 64 64 8 8 8
Training epochs 80 80 80 80 80
Warm up percentage 25% 25% 0 0 0
Learning rate decay Cosine Cosine Cosine Cosine Cosine
Early stop True True True True True
Early stop tolerance 20 20 20 20 20

Table B.5: The details of ViT-E model
Block Layer Resolution Channels
Image Inputs - 128 × 128 × 3 1
Image Patch Embedding Conv 8 × 8 128 × 128 × 3 → 8 × 8 × 3 1 → 256

Image Class Token
Transfer Embedding Projection 8 × 8 × 3 → 192 256 → 256
Class Token Concat 192 256 → 257

Position Embedding Position Embedding 192 257
Numerical Imputs - 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Class Token
Numerical Projection (MLP) 14 → 192 5
Class Token Concat 192 5 → 6

Sequence Embedding Sequence Embedding 192 6
Concatenation Concat 192 263 (257 + 6)

Attention Block × 12

LayerNorm 192 263
Multi-Head Attention × 12 192 263
Add (residual connection) 192 263
LayerNorm 192 263
Multi-Head Attention × 12 192 263
Add (residual connection) 192 263

Layer Normalization LayerNorm 192 263

Regression Head

Extract Class Token 384 1
MLP 768 1
MLP 512 1
MLP 64 1
MLP 1 1
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Table B.6: The details of ViT-LG model.
Block Layer Resolution Channels
Image Inputs - 128 × 128 × 3 1
Image Patch Embedding Conv8 × 8 128 × 128 × 3 → 8 × 8 × 3 1 → 256

Image Class Token
Transfoer Embedding Projection 8 × 8 × 3 256 → 256
Class Token Concat 8 × 8 × 3 256 → 257

Position Embedding Position Embedding 8 × 8 × 3 257

Image Attention Block × 12

LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add (residual connection) 192 257
LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add (residual connection) 192 257

Image Feature Vectorization Extract Class Token 192 1
MLP 768 1
MLP 64 1

Numerical Inputs - 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Vectorization
MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
Gate MLP 80 1
Gate Multiply 80 1
MLP 64 1
MLP 16 1
MLP 1 1

Table B.7: The details of ViT-L model.
Block Layer Resolution Channels
Image Inputs - 128 × 128 × 3 1
Image Patch Embedding Conv 8 × 8 128 × 128 × 3 → 8 × 8 × 3 1 → 256

Image Class Token
Transfer Embedding Projection 8 × 8 × 3 256 → 256
Class Token Concat 8 × 8 × 3 256 → 257

Position Embedding Position Embedding 8 × 8 × 3 257

Image Attention Block × 12

LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add (residual connection) 192 257
LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add(residual connection) 192 257

Image Feature Vectorization Extract Class Token 192 1
MLP 768 1
MLP 64 1

Numerical Inputs - 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Vectorization
MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
MLP 64 1
MLP 16 1
MLP 1 1
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Table B.8: The details of CNN-LG model.
Block Layer Resolution Channels
Image Inputs - 128 × 128 × 3 1

ResNet Block Conv 1
Conv 7 × 7 128 × 128 × 3 → 64 × 64 × 3 1 → 64
Max Pooling 3 × 3 64 × 64 × 3 → 32 × 32 × 3 64

ResNet Block Conv 2 × 2

Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Add (residual connection) 32 × 32 × 3 64

ResNet Block Conv 3 × 2

Conv 3 × 3 32 × 32 × 3 → 16 × 16 × 3 64 → 128
BatchNormal 16 × 16 × 3 128
Conv 3 × 3 16 × 16 × 3 128
BatchNormal 16 × 16 × 3 128
Add(residual connection) 16 × 16 × 3 128

ResNet Block Conv 4 × 2

Conv 3 × 3 16 × 16 × 3 → 8 × 8 × 3 128 → 256
BatchNormal 8 × 8 × 3 256
Conv 3 × 3 8 × 8 × 3 256
BatchNormal 8 × 8 × 3 256
Add (residual connection) 8 × 8 × 3 256

ResNet Block Conv 5 × 2

Conv 3 × 3 8 × 8 × 3 → 4 × 4 × 3 256 → 512
BatchNormal 4 × 4 × 3 512
Conv 3 × 3 4 × 4 × 3 512
BatchNormal 4 × 4 × 3 512
Add(residual connection) 4 × 4 × 3 512

Image Feature Transformation Global Average Pooling 512 1
MLP 64 1

Numerical Inputs - 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Transformation
MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
Gate MLP 80 1
Gate Multiply 80 1
MLP 64 1
MLP 16 1
MLP 1 1
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Table B.9: The details of CNN-L model.
Block Layer Resolution Channels
Image Inputs - 128 × 128 × 3 1

ResNet Block Conv 1
Conv 7 × 7 128 × 128 × 3 → 64 × 64 × 3 1 → 64
Max Pooling 3 × 3 64 × 64 × 3 → 32 × 32 × 3 64

ResNet Block Conv 2 × 2

Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Add (residual connection) 32 × 32 × 3 64

ResNet Block Conv 3 × 2

Conv 3 × 3 32 × 32 × 3 → 16 × 16 × 3 64 → 128
BatchNormal 16 × 16 × 3 128
Conv 3 × 3 16 × 16 × 3 128
BatchNormal 16 × 16 × 3 128
Add (residual connection) 16 × 16 × 3 128

ResNet Block Conv 4 × 2

Conv 3 × 3 16 × 16 × 3 → 8 × 8 × 3 128 → 256
BatchNormal 8 × 8 × 3 256
Conv 3 × 3 8 × 8 × 3 256
BatchNormal 8 × 8 × 3 256
Add (residual connection) 8 × 8 × 3 256

ResNet Block Conv 5 × 2

Conv 3 × 3 8 × 8 × 3 → 4 × 4 × 3 256 → 512
BatchNormal 4 × 4 × 3 512
Conv 3 × 3 4 × 4 × 3 512
BatchNormal 4 × 4 × 3 512
Add (residual connection) 4 × 4 × 3 512

Image Feature Transformation Global Average Pooling 512 1
MLP 64 1

Numerical Inputs - 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Transformation
MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
MLP 64 1
MLP 16 1
MLP 1 1
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Highlights 

• A novel deep learning framework for solar irradiance forecasting. 

• The model is better able to forecast upcoming critical events. 

• Model creates cross-modal ties between images and meteorological attributes. 

• Visualizing the model inference process through intra-model weights 
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