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Abstract

The Unruh effect states that a uniformly linearly accelerated observer with
proper acceleration a experiences the Minkowski vacuum as a thermal state at
temperature Ty = a/(27). An observer in uniform circular motion experiences
a similar effective temperature, operationally defined in terms of excitation
and de-excitation rates, and physically interpretable in terms of synchrotron
radiation, but this effective temperature depends not just on the acceleration but
also on the orbital speed and the excitation energy. In this paper we consider an
observer in uniform circular motion when the Minkowski vacuum is replaced
by an ambient thermal bath, and we address the interplay of ambient tem-
perature, Doppler effect, acceleration, and excitation energy. Specifically, we
consider a massless scalar field in 2 4 1 spacetime dimensions, probed by an
Unruh—DeWitt detector, in a Minkowski (rather than proper) time formulation:
this setting describes proposed analogue spacetime systems in which the effect
may become experimentally testable, and in which an ambient temperature will
necessarily be present. We establish analytic results for the observer’s effective
temperature in several asymptotic regions of the parameter space and provide
numerical results in the interpolating regions, finding that an acceleration effect
can be identified even when the Doppler effect dominates the overall magnitude
of the response. We also identify parameter regimes where the observer sees a
temperature lower than the ambient temperature, experiencing a cooling Unruh
effect.

" Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
BY 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1361-6382/23/155001+27$33.00 © 2023 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1


https://doi.org/10.1088/1361-6382/acde3b
https://orcid.org/0000-0003-3998-4716
https://orcid.org/0000-0001-8417-7679
mailto:cameron.bunney@nottingham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/acde3b&domain=pdf&date_stamp=2023-6-28
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Class. Quantum Grav. 40 (2023) 155001 C R D Bunney and J Louko

Keywords: circular motion Unruh effect, Unruh effect, acceleration radiation,
Unruh effect in thermal bath

(Some figures may appear in colour only in the online journal)
1. Introduction

The Unruh effect [1-4] is a remarkable result in quantum field theory, stating that a uniformly
linearly accelerated observer with proper acceleration a in Minkowski spacetime reacts to a
quantum field in its Minkowski vacuum through excitations and de-excitations with the char-
acteristics of a thermal state, at the Unruh temperature Ty = ah/ (2w ckg ), proportional to the
acceleration. Direct experimental verification is still, however, unconfirmed. A large hurdle
to overcome is the sheer magnitude of acceleration required to reach a detectable increase in
temperature. Experimental confirmation retains broad interest in its relation to the Hawking
effect [5], and the connections to the early Universe quantum effects, which may originate the
present-day structure of the Universe [6, 7].

Phenomena similar to the Unruh effect exist also for non-linear uniform motion [8-10],
including uniform circular motion [11-15]. Experimental interest in the circular motion Unruh
effect has a long standing [16-22], in which a new angle was opened by recent proposals
[23-26] to utilise the analogue spacetime that occurs in nonrelativistic laboratory systems
[27-29].

In analogue spacetime, circular motion enjoys two main advantages over linear accelera-
tion. First, the experiment can remain within a finite-size laboratory for an arbitrarily long
interaction time. Second, the time dilation Lorentz factor between the laboratory and the
accelerated worldline remains constant in time: this allows the inclusion of the time dilation
gamma-factor by appropriately scaling the energies in the theoretical analysis of the exper-
iment, without the need to engineer a time-dependent energy scaling in a condensed matter
system. Notwithstanding these advantages, a complication in circular motion is that the lin-
ear acceleration Unruh temperature formula is no longer directly applicable, and the effective
temperature, operationally defined in terms of excitation and de-excitation probabilities in the
accelerating system, involves also dependency on the orbital speed and the excitation energy.
The underlying reason for this is that the circular motion effect does not admit a description in
terms of a genuine thermal equilibrium state adapted to the motion, but has instead a physical
interpretation in terms of synchrotron radiation, as reviewed in [4]. A detailed comparison of
the linear and circular acceleration Unruh temperatures in 2 4 1 and 3 + 1 spacetime dimen-
sions is given in [30]. Related earlier analyses are given in [10, 12, 18, 19, 21, 31, 32].

In the conventional setting of the Unruh effect, the ambient quantum field is prepared in its
Minkowski vacuum, with zero temperature—an idealisation that no experimental test of the
effect would be able to completely mimic. The purpose of this paper is to address the circular
motion Unruh effect when the ambient quantum field is prepared in a thermal state, with a
positive ambient temperature. Related earlier analyses are given in [18, 19, 32, 33].

We assume the circular motion to have no drift in the rest frame of the ambient heat bath. The
total system is then invariant under time translations along the trajectory, and the Unruh effect
will be time independent. We further specialise to a massless scalar field in 2 4 1 dimensions,
and we probe the field with a pointlike Unruh—DeWitt (UDW) detector [3, 34]. Finally, whereas
UDW detectors normally have their transition energies defined with respect to the relativistic
proper time along the detector’s trajectory [3, 34], we define the transition energies with respect
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to the Minkowski time in the heat bath’s rest frame. This setting describes proposed analogue
spacetime systems in which the effect may become experimentally testable, and in which an
ambient temperature will necessarily be present [25, 26].

We work in linear perturbation theory in the coupling between the detector and the field, in
the limit of long interaction time but negligible back-action. We do not address finite interaction
time effects [35] or the back-action of the detector on the field [36].

A positive ambient temperature however brings up one new technical issue that needs to be
addressed. The thermal Wightman function for a massless scalar field is well defined in space-
time dimensions 3 4 1 [32] and higher, but in 2 4 1 dimensions it is infrared divergent [12].
We sidestep this divergence by considering an UDW detector that couples linearly to the time
derivative of the scalar field along the trajectory, rather than to the value of the field. The
derivative-coupled detector is often employed to sidestep a similar infrared divergence that
occurs for a massless field in 1 4 1 spacetime dimensions already in zero temperature [37—42].

We first obtain a mode sum expression for the response function of the UDW detector,
allowing the field to have any dispersion relation subject to mild monotonicity assumptions.
In the analogue spacetime setting, this allows field frequencies that go beyond the phononic
regime [23, 28]; in a fundamental relativistic spacetime setting, this allows dispersion relations
that might arise from Planck scale physics [43].

We then specialise to the massless Klein—Gordon field. We establish analytically the asymp-
totic behaviour of the response function in several regimes, including the low and high ambient
temperature regimes, and the corresponding asymptotic behaviour of the effective temperature,
defined operationally via the detailed balance relation between excitations and de-excitations.
We present numerical results for the interpolating regimes, chosen for their potential relevance
for prospective experiments [25, 26]. As a highlight, we show that an acceleration effect can
be identified even when the Doppler effect dominates the overall magnitude of the detector’s
response, as is expected to be the case in the Helium analogue spacetime system considered
in [26]. We also identify regimes in which the detector experiences an effective temperature
that is lower than the ambient temperature, so that the Unruh effect induces cooling rather
than heating. Criteria by which the Unruh effect may be argued to induce cooling have been
discussed in a variety of relativistic spacetime settings [44—56].

As a mathematical side outcome, we evaluate in closed form an infinite series (3.8)
involving squared Bessel functions. We have not encountered this identity in the existing
literature.

We begin in section 2 by establishing the preliminaries for an UDW detector in uniform
circular motion in (2 + 1)-dimensional Minkowski spacetime, coupled to the time derivative
of a quantised real scalar field that is prepared in a thermal state. We obtain a mode sum
expression for the detector’s response function, recall the detailed balance definition of an
effective temperature, reviewing its motivations and limitations, and we investigate general
conditions under which the detailed balance temperature could be expected to be lower than
the ambient temperature. We also present a corresponding discussion for an inertial detector
at a constant velocity with respect to the heat bath.

Section 3 investigates analytically the detailed balance temperature in several limiting
regimes of the parameter space, both for circular motion and for inertial motion. Interpolating
numerical results are provided in section 4. Separating the acceleration contribution from the
Doppler contribution in the detector’s response is addressed in section 5, by a combination
of analytics and numerics. Section 6 presents a summary and concluding remarks. Proofs of
technical results are deferred to two appendices.
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We use units in which ¢ = A = kg = 1, where c is the speed of light in the relativistic space-
time interpretation and the speed of sound in the analogue spacetime interpretation. Sans serif
letters (X) denote spacetime points and boldface Italic letters (k) denote spatial vectors. In
asymptotic formulae, f(x) = O(g(x)) denotes that f(x)/g(x) remains bounded in the limit con-
sidered, and f(x) = o(g(x)) denotes that f(x) /g(x) tends to zero in the limit considered.

2. Field and detector preliminaries

In this section we review the relevant background for an UDW detector on a circular trajectory
in (2 + 1)-dimensional Minkowski spacetime, coupled to a real scalar field in a thermal state.
We work in the limit of weak coupling and long interaction time, with negligible back-action
of the detector on the field. We recall how the detailed balance condition, relating the detector’s
excitation and de-excitation rates, provides a notion of an effective temperature experienced
by the detector, in general, dependent on the energy scale of the transitions. We also give an
initial discussion about identifying regimes where the effective temperature might be lower
than the ambient temperature. Finally, we present the response of a detector in inertial motion,
in preparation for distinguishing effects due to acceleration from those due to speed.

2.1. Field and detector

We work in (2 + 1)-dimensional Minkowski spacetime, with a standard set of Minkowski
coordinates (¢,x,y) and the metric ds?> = —d¢*> + dx*> + dy?. In this spacetime we consider a
quantised real scalar field ¢, with a dispersion relation that is isotropic in (x,y) and subject to
the mild monotonicity conditions specified in section 2.2, but otherwise arbitrary; in particular,
we do not assume the dispersion relation to be Lorentz invariant. We denote by H 4 the standard
Fock space in which the positive frequencies are defined with respect to the timelike Killing
vector 9.

We assume that the field has been prepared in a thermal state in inverse temperature 5 > 0,
where the notion of thermality is with respect to the time evolution generated by 0. We assume
that the thermal state has a Wightman two-point function, denoted by

Ws(x',x"") = (¢(x")b(x"")) 5, 2.1)

possibly modulo infrared subtleties that we shall describe shortly. Wg is not invariant under
Lorentz boosts, not even when the dispersion relation is Lorentz invariant, because of the role
of 0, in the construction of the state: a heat bath has a distinguished rest frame.

We probe the field by a pointlike detector in uniform circular motion, on the worldline

X(t) = (t,Rcos(),Rsin()) , (2.2)

where R > 0 1is the orbital radius and €2 > 0 is the angular velocity. The orbital speed is v = R{).
We assume that the worldline is timelike, v < 1. We have parametrised the worldline by the
Minkowski time ¢ because this will give us a detector response that is appropriate for describ-
ing an analogue spacetime system, where 7 is the ‘lab time’ with respect to which any frequen-
cies will be measured [25, 26, 30]. For a genuinely relativistic detector, whose microphysics
operates according to the relativistic proper time, the worldline should be parametrised by the
relativistic proper time.

The detector’s Hilbert space is Hp ~ C2, spanned by the orthonormal basis {|0),[1) }. The
detector’s Hamiltonian Hp, generating dynamics with respect to the Minkowski time ¢, acts
on Hp as Hp|0) = 0 and Hp|1) = E|1), where E € R\ {0}. The detector is hence a two-level

4
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system, with energy gap |E|: for E > 0, |0) is the ground state and |1) is the excited state; for
E < 0, the roles are reversed. We have included in the symbol E the overline to emphasise that
this energy is defined with respect to the Minkowski time, and the notation is thus adapted to
the analogue spacetime system, where ¢ is the distinguished ‘lab time’. The conversion to a
relativistic detector is by E = vE, where E is the energy with respect to the detector’s proper
time and vy = (1 — vz)_l/ ? and, for transition rates, by including the overall factor 1/+.

The total Hilbert space is Hy @ Hp.

In the interaction picture, and continuing to define time evolution with respect to the
Minkowski time, we take the interaction Hamiltonian to be

Hy = Ax(1) (iaﬁ(x(r))) @ u(r) (2.3)

where p is the detector’s monopole moment operator, X is a real-valued switching function
that specifies how the interaction is turned on and off, and ) is a real-valued coupling constant.
Working to first order in perturbation theory in A, the probability for the detector to transition
from |0) to |1), regardless of the final state of the field, is [3, 57]

P = N[(1]u(0)|0)]* Fy (E, ), 2.4)
where F, is the response function, given by
F(E,B) = / dr' / e’ x(e)x (e e BT DI W (1 1), (2.5)
and
11 d !/ d 17
Wes(t',t') = Fqﬁ(x(r )= o(x(") ) . (2.6)
t dr 3

As the factors in front of 7, in (2.4) are constants, independent of 3, E and the trajectory, we
may, with a traditional abuse of terminology, refer to F,, as the probability.

We refer to Wp (2.6) as the derivative correlation function. Had H; (2.3) not included
the time derivative, Ws(t',1’’) in F,, (2.5) would have been replaced by the pullback of the

Wightman function Wg (2.1) to the detector’s worldline,
W (x(t'),x(1"")) = ((x(1")) #(x(t""))) 5. 2.7)

For a massless Klein—Gordon field, Wﬂ(x’ ,X'") is however infrared divergent [12]. We shall
see that including the time derivative in H; makes the detector’s response well defined even
for the massless Klein—-Gordon field.

As the thermal state is stationary with respect to the Killing vector 9, and isotropic in (x,y),
the Wightman function is invariant under time translations along the detector’s trajectory, so
that Wg(t',t"") = Ws (1’ —t"’,0). Dividing by the total duration of the interaction, and letting
the duration tend to infinity, /, reduces to the stationary response function,

oo
F(E,B) = / dre = EWs(1,0), (2.8)
—00

which is interpreted as the transition probability per unit time. The subtleties in the infinite

duration limit are discussed in [35]; in particular, the limit assumes the coupling to tend to

zero sufficiently fast for the first order perturbative treatment to remain valid in the limit.
From now on we work with the stationary response function F (2.8), and we refer to it as

the response function.
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2.2. Response function mode sum

As the field’s dispersion relation is by assumption spatially isotropic, the field mode frequency
with respect to d; can be written as w(|k|), where k is the spatial momentum and w(K) is

function of a non-negative argument, positive everywhere except possibly at K = 0. We write
w’(K) = s£w(K), and we assume that w’(K) > 0 for K > 0. Finally, if w(0) = 0, we assume

that w’(0) > 0.
We show in appendix A that the response function has the mode sum expression

E E K., VY 22 (RRF
m>(E+w(0))/92
K N -
DI A 29)
m>(—E+w(0))/Q
where
n(x) = ﬁ (2.10)

J.n are the Bessel functions of the first kind [58], and K3: is defined for m > (£E +w(0))/<,
as the unique solution to

w(K) —mQ+E=0. @2.11)

The uniqueness of K- follows from the positivity of w’(K), and the notation suppresses the
E-dependence of K,j,f Note that n (2.10) is the Planckian factor characteristic of a thermal
distribution in a bosonic field.

If w(0) =0, the factors n(Bw(K%))/w(K) have singularities, but, by the assumption
w’(0) > 0, these singularities are more than outweighed by the factors K+ J2 (RK::) for m # 0,
whereas the m = 0 term is not singular because E # 0 by assumption; F(E, 3) is hence con-
tinuous in E, but it is not smooth. We shall comment on this in more explicitly with the massless

Klein—Gordon field below.

2.3. Massless Klein—-Gordon field

We now specialise to the massless Klein—Gordon field, for which w(K) = K, w’(K) =1 and
Kt =mQ F E. The response function (2.9) then simplifies to

F(E,B) = Fo(E) + AFs(E), (2.12a)
_F R _
Jfo(E)z7 > L(mQ-E)R), (2.12b)
m>E/Q
_F s _
AFs(E) = — > n((mQ—[E|)B)J;,((m — |E|)R)
m>|E\/Q
+ Y n((mQ+[E)B) L ((mQ+|EDR) |, (2.120)

m>—|E|/Q
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where F is the vacuum contribution, independent of /3, while A3 is the additional contri-
bution due to the ambient temperature. Note that AFg(E) is even in E, and we have writ-
ten (2.12¢) in a way that makes this manifest. Note also that both F and AF are manifestly
positive.

Recall that by assumption E # 0 and 0 < v < 1, where v = R(). It follows from the uni-
form asymptotic expansion 10.20.4 in [58] that the sums in (2.12b) and (2.12¢) converge, and
F(E, B) is hence well defined. F(E, 3) is however not smooth in E at integer values of E/(2,
where new terms enter the sums: at |E|/Q =n € {1,2,...}, AF3(E) has a discontinuity in its
(2n — 1)th derivative and Fy(E) has a discontinuity in its (2r)th derivative.

Fo has the integral representation

— =~y 1 [ sin(2(E/Q)z)
Fo(EV=E | - — — dz——————= |, 2.13
o(E) <4 ), & e (2.13)

—1/2 . . .
where v = (1 —1?) / , as follows by translating (4.3) in [30] to our analogue spacetime con-
ventions and to our derivative-coupled interaction. This representation will be useful for dis-
cussing some of the limits in section 3.

2.4. Detailed balance temperature

We now describe the detailed balance temperature, an effective, energy-dependent notion of
temperature, which we use to quantify the detector’s response.

2.4.1. Context. To set the context, recall that in a local system in equilibrium with a thermal
bath, the excitation and de-excitation probabilities satisfy Einstein’s detailed balance condition
(59, 601,

P (A
| ):eA/T, (2.14)
Py(A)
where P+ (A) is the excitation probability, P (A) is the de-excitation probability, A > 0 is the

energy difference between the two states under consideration, and 7 is the temperature of the
thermal bath. Solving (2.14) for T gives

r— 8 (2.15)

In <P¢ (A) )
P(A)
which gives an operational way to determine the bath’s temperature in terms of the probab-
ilities P4+(A) and P (A) that are observable in the local system. Note that while both P4(A)
and P (A) depend on A, the temperature 7 in (2.14) and (2.15) does not: the temperature T
sets the ratio of the excitation and de-excitation probabilities for all energy gaps. This is the
characteristic feature of a local system in equilibrium with a thermal bath.

In the linear acceleration Unruh effect, the excitation and de-excitation probabilities of a
localised detector obey the detailed balance condition (2.14) in the triple limit of weak coup-
ling, long interaction time and sharp spatial localisation [3, 34]: A is the energy gap defined
with respect to the relativistic proper time, and 7 given by (2.15) is the Unruh temperature,
a/(2m), where a is the relativistic proper acceleration. The reason behind this phenomenon is
that the Minkowski vacuum is a genuine thermal state in the Fock space adapted to the boost
Killing vector whose one orbit the linearly-accelerated observer follows [3], and the detector
consequently responds to this thermality by excitations and de-excitations that obey detailed

7
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balance. Subtleties in the sense of the triple limit of weak coupling, long interaction time and
sharp spatial localisation are discussed in [35, 36, 61, 62].

For non-linear uniform accelerations, by contrast, Minkowski vacuum does not have a sim-
ilar description as a genuine thermal state in a Fock space adapted to the accelerated motion.
While the excitation and de-excitation probabilities are affected by the acceleration, the ratio
of these probabilities depends on the energy gap in a way that does not follow the detailed
balance exponential law (2.14), describable by the single parameter 7. The non-linear uni-
formly accelerated motions therefore do not have a conventional notion of temperature, and
the physical phenomenon behind the acceleration effect may be described as a combination of
synchrotron radiation and the conventional Unruh effect, as reviewed in [4]. In particular, the
quantity T given by (2.15) depends on the gap A.

The probabilities P4(A) and P| (A) are however observable quantities in the local quantum
system, affected by the acceleration, even when the acceleration is not linear. For a given value
of A, the excitation and de-excitation probabilities in the local system are related as if the
system were in equilibrium with a thermal bath in the temperature given by (2.15). The A-
dependent quantity given by (2.15) provides thus a useful quantifier of the system’s response
to the acceleration at energy gap A, and hence an operational notion of an effective temperature
at a given energy scale. We call this quantity the detailed balance temperature.

To summarise: for the non-linear uniform accelerations the detailed balance temperature
does not arise from an underlying thermal bath, but it is a useful quantifier of the response of
the local quantum system at a given energy scale. This is the sense in which we employ the
detailed balance temperature in this paper.

2.4.2. Uniform circular motion.  Returning to our uniform circular motion setting, we define
the detailed balance temperature by

Ton = — e

where we recall that E is the transition energy with respect to the Minkowski time (rather
than the relativistic proper time), and the notation suppresses that Tpg may a priori depend
on all the parameters of the problem, including E. While E can have either sign, the right-
hand side of (2.16) is invariant under E — —E, so that Tpg depends on E only through the
gap magnitude |E|. As positive (respectively negative) E corresponds to an excitation (a de-
excitation), we see that Tpg (2.16) agrees with (2.15), but with respect to Minkowski time
rather than relativistic proper time.

We thus adopt the detailed balance temperature Tpg (2.16) as an effective temperature at
the energy scale |E|. The notions of heating and cooling used below will compare Tpg with
the ambient temperature 1/0.

(2.16)

2.5. Cooling inequality

We shall find in sections 3.1 and 4 that there are regimes where the circular motion detailed bal-
ance temperature T'pg is lower than the ambient temperature 3~!. Here we make preliminary
observations as to where such parameter regimes might be found.

The Tpp definition (2.16) may be rearranged as

F(E,B)et/™ = F(~E,B). (2.17)
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Whilst (2.17) holds for either sign of E, let us assume here E > 0, for simplicity of the notation.
As F is by construction positive, (2.17) then shows that the condition for Tpg to be lower than
B 1is

F(E,B)e’F < F(~E,B). (2.18)
Using (2.12a), and the evenness of AFj(E), this becomes

Fo(E)e’ + AF4(E)(e’F —1) < Fo(—E). (2.19)

In the low temperature limit, 8 — oo, with the other parameters fixed, the leftmost term
in (2.19) shows that (2.19) cannot hold.

In the high temperature limit, 8 — 01, with the other parameters fixed, we shall see in
section 3.1 that the left-hand side of (2.19) has a finite limit, and the possibility of satisfy-
ing (2.19) arises. We shall return to this analytically in section 3.1 and numerically in section 4.

2.6. Inertial motion response function

In this subsection we record the response function of a detector that is in inertial motion but
with a nonvanishing velocity with respect to the heath bath. We shall use this in the later
sections to distinguish the acceleration contribution from the velocity contribution in the cir-
cular motion response.

Specialising to the massless Klein—Gordon field, the inertial motion response function may
be obtained from (2.8) with (A.1) and (A.2) in a straightforward way, using identities 6.671.1
and 6.671.2 in [63]. The outcome is

E s dx
Frin(E,B) = 5 YO(—E) + — /E = | (2.20)
T (e 1)y () — (x— )

where v is the detector’s velocity in the heat bath’s rest frame, satisfying 0 <v < 1, and v =
(1 —1?)"1/2 is the Lorentz factor. The subscript ‘Lin’ stands for ‘linear’, emphasising that
the inertial motion may be viewed as the R — oo limit of the circular motion (2.2) with fixed
orbital speed v = R(2; as a consistency check, we have verified that (2.20) may be obtained
from (2.12a) in this limit, viewing the sum as the Riemann sum of an integral and using the
asymptotic expansions of the Bessel functions [58]. The integrand in (2.20) is singular at the
upper and lower limits, but these singularities are integrable and the integral is well defined.

An alternative expression for F;,(E, 3) is

™

iz ™
Frin(E,B) = Ezi (@(—E) + l/ do ) , (2.21)

7 J_x eBIEIV?(14vsing) _ 1
2

obtained from (2.20) by the substitution x = 7?|E|(1 + vsin#). (2.21) is more convenient for
extracting some asymptotic limits and for numerical evaluation, as the integrand is nonsingular
over the whole integration range.

3. Asymptotic regimes

In this section we find analytic expressions for the response and the detailed balance temperat-
ure for circular motion in the asymptotic regimes of high and low ambient temperature, small
energy gap, small orbital radius with fixed speed, and near-sonic speed. We also give the cor-
responding results for inertial motion, including there also the regime of large energy gap. We

9
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demonstrate that for both circular motion and inertial motion there are regimes in which the
detailed balance temperature is lower than the ambient temperature.

3.1. High ambient temperature

Consider the high ambient temperature limit, 3 — 0T, with , R and E fixed.
By 24.2.1 in [58], the Planckian factor n(x) (2.10) has the small argument Laurent expansion

= B oy _1 1, x
_ _1 1 3.1
n(x) 223 Y 2ttt G-

convergent for 0 < x < 27, where By, are the Bernoulli numbers. The Bessel function factors
in (2.12¢) have exponential decay at large m, by 10.20.4 in [58]. It follows, by a dominated
convergence argument, that the asymptotic expansion of AF3(E, 8) at 8 — 0T may be found
from (2.12¢) by using (3.1) under the sum over m and reversing the order of the sums. The

expansion proceeds in powers 87 with p = —1,0,1,3,5,..., and to the leading order we have
_F P ((mQ — [E)R) 2 ((mQ + |E|)R)
s(E) 23 Z mQ — |E| Z mQ + |E| ). G2
m>|E|/Q m>—|E|/Q
For the detailed balance temperature, (2.12a), (2.16), and (3.2) give
1 _
TDB = BQ(Va |E|/Q) +O(l)7 (33)
where
B ((m+k)v B ((m—k)v
S B +8) |~ T (=)
m>—k m+k m>k m—k (3 4)
Q(v.k) = ; :
> nl(mtkw) =D ((m k)
m>—k m>k

k is assumed positive, and we recall that 0 < v < 1.

The function Q(v,k) (3.4) is well defined. The sums over m converge, by the exponential
falloff seen from 10.20.4 in [58], and the denominator is positive, as is seen by writing the
denominator as

2 dz sin(2kz) ’

™ Jo V22 —v2sin’z
using (2.12b) and (2.13). The positivity of (3.5) follows by breaking the integral into a sum
of integrals over the intervals 5F < z < z 22'1) ,p=0,1,2,..., combining each even p interval
with the next odd p interval, noting that the combined integrand in each term is then positive
because the denominator in (3.5) is a strictly increasing function of z, and finally observing
that these rearrangements are justified by the convergence of (3.5) as an improper Riemann
integral.

At small v with fixed k, Q(v,k) has the asymptotic behaviour

(3.5)

%f%v2+0(v4) forO<k<1l,
Ov,k) = 1 (3.6)
H(1+O(V4)) for 1 <k,

10
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as can be verified by expanding the sums in (3.4) in v term by term; interchanging the sum and
the expansion is justified because the falloff 10.20.4 in [58] allows differentiating the sums
with respect to v term by term for 0 < v < 1. It follows that for fixed k > 1, Q(v,k) < 1 for
sufficiently small v.

Atv — 1 with fixed k, Q(v,k) tends to zero, decaying proportionally to 1/In-y. To see this,
we note that the numerator in (3.4) remains bounded as v — 1, by 10.20.4 in [58], while the
denominator diverges, with the leading term %k In~y, as is seen using the integral represent-
ation (3.5) and the asymptotic expansion in appendix E of [30].

Collecting these observations about Q(v, k), we see that for sufficiently high ambient tem-
peratures, Tpp is lower than the ambient temperature for any fixed |E| and sufficiently large v,
and also for any fixed |E| > Q and sufficiently small v. We shall return to Q(v, k) numerically
in section 4.

We note in passing that while the sums stemming from AF3 do not appear to have ele-
mentary analytic expressions, AFz(E) admits an elementary analytic bound at the special
value E = £, at the demarcation between the two asymptotic behaviours shown in (3.6):
from (2.12c) we have

AFg(£02) < —n (vB/R) i (J2 1 (my Y+ 1 (mv))

m=1

_ 2 n(B/R) o

2 Vi-2’
and the bound is sharper at lower values of /3. The inequality in (3.7) follows by renaming the
summation index and replacing the Planckian factor by its value at the lowest summand, and
the equality follows from the identity

ST mv) + Py (mv)) =

m=1

1
V1=’

which we verify in appendix B. We have not found this identity in the existing literature.

(3.8)

3.2. Low ambient temperature

Consider the low ambient temperature limit, 3 — oo, with €2, R and E fixed.
The Planckian factor n(x) (2.10) has the large argument expansion

=3 e, (3.9)
k=1

convergent for x > 0. By the exponential decay of the Bessel function factors in (2.12c¢), it
follows by a dominated convergence argument that the asymptotic expansion of AFj(E, 3)
as 3 — oo may be found from (2.12¢) by using (3.9) and rearranging the sums. We find

AF5(E) = ‘f (7P O=lED 2. (o2 = [EDR) +e~ 70 HED 2 (m™ Q.+ E|)R) )
n 0(e—zﬁmi“WQ—lfW9+IFI)) , (3.10)
where
m* =1+ |£[E|/Q], (3.11)

1
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| - | is the floor function, and the notation suppresses the E-dependence of m*. Note that since

0<m*QF|E|<Q, (3.12)

(3.10) shows that AF3(E) has an exponential decay in j3.
The dominant term of the exponential decay can be determined by analysing how the expo-
nents in (3.10) depend on E. There are three qualitatively different cases:

(i) For 0 < ||E| —nQ| < 52, n€{0,1,2,...}:
AF4(E) = 1B PIE=9L 2 (B - nQ)R) + O(e~AmmnClE-la-liEi=na)) 313
(i) For |E| = (n+1)Q,n€{0,1,2,...}:
AFs((n+H9) = Ln+ 1’02 PU2(2, (QR/2) + A(OR/2)) + O(eP2). (3.14)
(iii) For |E| =nQ, n € {1,2,3,...}:
AF5(nQ) = 1n?Q2e P (2 (QR) + J2_(QR)) + O(e ).  (3.15)

The coefficient in the exponent of the large 3 falloff is hence discontinuous in |E| at integer
values of |E|/€, by (3.15). At half-integer values of |E|/(, the coefficient in the exponent is
continuous in |E|, but the overall magnitude is discontinuous, by (3.14).

The detailed balance temperature differs from the zero ambient temperature value by a cor-
rection that is exponentially decaying in 3, with the same leading exponent as in (3.13)—(3.15).

3.3. Small gap

Consider the limit E — 0, with fixed 2, R and S3.
In AF3(E, ) (2.12¢), for |E| < Q we have

AFH(E) = E;{n(IEIB)J%(IEIR)

+ 3 [n((me2 = E1)8) (m©2 = [ENR) +n((m2+ [E))8) 2 (mS2+ [EDR) | }

m=1

=23 24 48

using (3.1), and expanding in |E| under the sum, justified by the falloff seen from 10.20.4
in [58].
For Fy(E), we have

fo(E):E?_Ezsin(E)_l_f;/ooosz—m)—#@(ﬁ% (3.17)

obtained by applying to (2.13) the method of appendix B of [30] and proceeding to one order
higher to verify that the error term is as shown in (3.17).

_ 00 2
=i+ (3 nmae o) ) B + (5 - 35 ) BF + O(E) . 616

m=1

12
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For the detailed balance temperature, (2.12a), (2.16), (3.16) and (3.17) give

1 -1 m - E
. o=t QB2 (mOR) + —— de| 1= ————-]|IE
DB—5+ 2 + § n(mQB)J,,( )+ Qﬁ Z( z2—v2siHZZ>]| |
o). (3.18)

which reduces to the ambient temperature 1/ as E — 0.

3.4. Large gap

Consider the limit E — 400, with fixed €, R and 3.

For Fo(E), using the integral representation (2.13) and adapting the analysis of [30] to our
conventions shows that Fo(E) consists of the inertial motion contribution and a piece that is
exponentially suppressed in |E|.

Estimating A F(E) (2.12¢) at |[E| — oo would require new techniques. We shall not pursue
this estimate here.

3.5. Small radius with fixed speed

Consider the limit R — 0 with fixed v, 8 and E.
In AF3(E, ) (2.12¢), writing Q =

AFH(E) = f{numw%um)
+3 [n(mv /R — |E|B)J*(mv — |E|R) 4 n(mv/R + |E|B3)J2,(mv + |F|R)} }

_En(Ep) |

2
> O(RY). (3.19)

For Fo(E), we have

— — — =3

. Ey Esm(E) ER/°° z X
Fo(E) = —L =22V =7 - R 2
0(B) == R i dz —aan +O(R?), (3.20)

obtained from (2.13) by writing 2 = v/R and proceeding as with (3.17).
For the detailed balance temperature, (2.12a), (2.16), (3.19) and (3.20) give
1n(7+ 1 +2n(E5)>
v —1+2n(|E|B)

+O(R). (3.21)

Note that both F(E) and Tpg remain finite as R — 0, despite the diverging acceleration.

3.6. Large radius with fixed speed

Consider the limit R — oo with fixed v, 8 and E. This is the limit of inertial motion with
speed v, as discussed in section 2.6. The leading term in F is Fpi, (2.20). We have not pursued
the subleading corrections.
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3.7 Machian limit

Consider the limit R — 1/€, with fixed €2, 5 and E. In terms of v = QR, this is the limit v — 1
with fixed €2, 3 and E. In the analogue spacetime interpretation, this is the Machian, or near-
sonic, limit.

In AF3(E, ) (2.12¢), the n-factors have an exponential large m falloff, while the falloff
of the Bessel function factors is exponential for 0 < v < 1 and m~2/3 for v = 1, as seen from
10.20.4 in [58]. It follows that AF(E, 3) has a finite limit as v — 1,

E

AFS(EB) == | D n(BmQ—[ED)J,(m—|E|/Q)
m>|E|/Q
+ Y n(BmQ+[E)) S (m+ [E[/Q) | +o(1). (3.22)
m>—|E|/Q

For Fy(E), the integral representation (2.13) and the formulas in appendix E of [30] show
that

Fo(E) =F [” + gEm(ﬁe%_lE) ~LaeE)| +o1), 323

4 ~Q 27

where g is the Euler—Mascheroni constant and

h(x) = /0 g S0 ! _V3) (3.24)

¢ 1—(sin’g) /22 ©

For the detailed balance temperature, (2.12a), (2.16), (3.22) and (3.23) give
Q[ 5 1 V3eE| Q — ( 1 )
Tpp=——+|— )¢ 1+—|In — —h(2lE|/Q)| +o| — ,
o m(m){ m[ ( - s /)| +ol

(3.25)
where all the terms shown come from Fj: the ambient temperature enters only beyond the
terms shown.

3.8. Inertial motion

In this subsection we record the corresponding asymptotic regime results for inertial motion.

For large/small 3 and large/small |E|, we use (2.21) and note that the expansions depend on
3 and |E| only through the combination 3|E|. At high ambient temperature and/or small gap,
B|E| — 0, we find

o F B _voE

Fin(E,B) = <51E - ng;(E) +2 162|E| + 0(5252)) 7 (3.26a)
i L[ = DPFE

=51+ Ty +O(E) | (3.26b)

14
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using (3.1). At low ambient temperature and/or large gap, 3|E| — oo, we find

E E gy, oA )3/ 2e—BIEI/ (14v)
Fun(E.B) = = 7@(—E)+W +O((6|E|) e + ) : (3.27a)
n_ (1+V) (1+v)In(B|E]) 1
o5 =5 {” 201E] *O(mmﬂ’ G:276)

using (3.9) and the properties 10.32.1 and 10.40.1 from [58] of the modified Bessel function /.

For the Machian limit, v — 1, we start from (2.20), change variables by w =
|E| (1+2z%) /(1 +v), use a dominated convergence argument to take the v — 1 limit under
the integral, and use 25.12.11 in [58]. We find

Fin(E, B) = E;<v®(—E) + \/%leLi;(e—iﬁE) +o(1)> . (3.28q)

. L3\
E 1 (Lij(em2#H) 1
TLm _ | 1+ In 277 +o0 <> R (328b)
PPy | Iny 27 BIE| In~y

where Li is the polylogarithm [58].

In the low ambient temperature and/or large gap regime, the detailed balance temperature
is always higher than the ambient temperature, by (3.26b). However, in the high ambient tem-
perature and/or small gap regime, the detailed balance temperature is always lower than the
ambient temperature, by (3.27b), and similarly in the Machian limit, by (3.28b).

4. Numerical results

In this section we present numerical evidence about the detailed balance temperature in iner-
tial motion and circular motion, interpolating between the asymptotic regimes considered in
section 3.

4.1 Detailed balance temperature in inertial motion

Consider first the inertial motion.

All the independent information in T is obtained by expressing 3751 as a function of v
and B|E| by (2.16) and (2.21). A plot is shown in figure 1. The plot displays the interpolation
between the large 3|E| heating effect (3.27b), the small §|E| cooling effect (3.26b) and the
large v cooling effect (3.28b).

4.2. Detailed balance temperature in circular motion

Consider now the circular motion.

As a preliminary, recall from (3.3) that the high ambient temperature asymptotics of Tpg
is determined by the function Q(v,k) (3.4), with k = |E| /2. It was found in section 3.1 that in
this limit, there is a cooling effect for any fixed |E|/€) and sufficiently large v, and also for any
fixed |[E|/€2 > 1 and sufficiently small v. The plot of Q(v,k) in figure 2 confirms numerically
these analytic findings, and indicates that there is a cooling effect when |E|/$2 > 1 for any v,
assuming the patterns in the plotted range continue outside the plotted range.

15
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Figure 1. Inertial motion detailed balance temperature Tss, plotted from (2.16)
and (2.21). The graph shows ST5Y as a function of v and B|E|, which contains all the
independent information. The horizontal (blue) curve is at ﬂTlﬁil‘;‘ = 1, at the boundary
between a heating effect and a cooling effect. The large §|E| heating effect (3.27b), the
small 3|E| cooling effect (3.26b) and the large v cooling effect (3.28b) are evident in
the plot; note in particular the abrupt 1/In-y cooling effect (3.28b) as v — 1. The inter-
polation between the large 3|E| heating effect and the large v cooling effect is showing
in the region where both of these quantities are large, with the horizontal (blue) curve
BTEY = 1 receding into the distance.

(b) 0.091
= 0077
2
9 .05
0.03
) 5
0.8 k 70.900 0935  0.970
k"6 90 02 04 06 :

v

Figure 2. Plots of the function Q(v,k) (3.4), which determines the high ambient tem-
perature asymptotics of Tpg by (3.3). Part (a) has 0.45 <k < 7and 0 < v < 0.9, and the
horizontal (blue) curve is at Q(v,k) = 1, at the boundary between a heating effect and a
cooling effect at high ambient temperature. Part (b) has 5 < k<7 and 0.9 <v <0.97,
showing incipient evidence of the 1/1n~y falloff at v — 1; closer to v = 1 the numerics
becomes slow because of the sums in the denominator in (3.4). If the pattern shown in
the plots continues beyond the plotted range, there is a high ambient temperature cooling
effect for all |E| /2 > 1, regardless of v.

Returning to finite ambient temperature, we address the interpolation between the asymp-
totic regimes analysed in section 3 by plotting in Figure 3(a) the detailed balance temperature
as a function of the ambient temperature and the energy gap, for fixed v = 0.6 and a fixed
orbital radius, and in figure 3(b) the difference of the detailed balance temperature and the

16
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Figure 3. (a) Circular motion detailed balance temperature as a function of the ambient
temperature and the energy gap, at fixed v = 0.6. The orbital radius R enters only in that
it sets the scale of the axes: the vertical axis is TppR, the ambient temperature horizontal
axis is TR where T = 1/(3, and the energy gap horizontal gap is |E|R. The white curve
marks the discontinuity in the first derivative at |E|R = v, coming from the discontinuity
in the first derivative of F(E, 8) (2.12a) at |E| = Q = v/R. (b) As in (a), but showing the
difference of the detailed balance temperature and the ambient temperature: the vertical
axisis TpR, where Tp = Tpp — T. Note that the horizontal 7R axes in (a) and (b) increase
in opposite directions, for the benefit of the visual perspective. The horizontal (blue)
curve is at TpR = 0, at the boundary between a heating effect and a cooling effect, and
the white curve at |[E|R = v is at the discontinuity in the first derivative, as in (a). A
cooling effect near |E|R = v sets in at moderate ambient temperature, from where it
extends to high ambient temperature for |E|R > v.

ambient temperature. The orbital radius R enters the plots only in that it sets the scales of the
axes, and the range of the variables is chosen to cover the main transitional region of interest
and to indicate the onset of asymptotics as numerical efficacy allows.

The most prominent overall feature in figure 3(a) is that the ambient temperature dominates
when the ambient temperature is high, as was to be expected, and as is consistent with the
analytic estimates of section 3. The key information in figure 3 is how the interpolation between
the heating and cooling effects due to motion occurs: while we know from section 3 and figure 2
that a high ambient temperature cooling occurs for |E| > €2, Figure 3 shows that this cooling
effect occurs already for moderate ambient temperature if [E| &~ (2.

5. Acceleration versus speed in circular motion

In this section we ask how much of the circular motion effect on the detector’s response can
be attributed to the detector’s speed and how much to the acceleration.

5.1. Acceleration quantifiers

A primary quantity indicating the significance of acceleration is the difference of the circular
motion and inertial motion transition rates at the same speed. We quantify this difference by
the ratio

F(Eaﬂ) _-FLin(E,B)
-/T"Lin(Eyﬁ) ,

17
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where the notation on the right-hand side suppresses that v in F;, is taken equal to RS in F,
and the notation on the left-hand side makes explicit that A, depends on the parameters only
through the dimensionless triple (v, E3,R//3), as seen from (2.12a) and (2.21). In words, N,
is the relative excess transition rate due to the acceleration at a given speed. Note that AV, may
a priori be positive or negative. The acceleration contribution is insignificant iff |V, | < 1.

A secondary quantity indicating the significance of acceleration is the ratio of the circu-
lar motion detailed balance temperature to the inertial motion detailed balance temperature,
Tpg/THD, at the same speed. Like NV,, Tpg/T58 depends on the parameters only through the
dimensionless triple (v,EB,R/3). Where is Tpg/Tk approximately unity, and where is it
significantly different from unity?

5.2. Asymptotic regimes

We consider analytically four asymptotic regimes, using the results of section 3.

First, in the limit R — oo with fixed v, 3 and E, the trajectory becomes inertial, and the
effects due to acceleration become insignificant by construction, as discussed in section 3.6:
we have AV, — 0 and Tpg /758 — 1.

Second, consider the limit E — 0 with fixed v, R and 3. From sections 3.3 and 3.8 we obtain

N.(EB.R/B) = BIE] (w ~1)6(E) +22n(mv6/R)an(mV>> +OE), (520

m=1

Tps

in
Tk

=~v+O(E). (5.2b)

The acceleration effect in the transition rate hence tends to zero linearly in E, but with
different coefficients for excitations and de-excitations. The acceleration effect in the detailed
balance temperature however remains nontrivial in this limit, increasing the temperature from
TK® by the factor 7.

Third, consider the limit R — 0 with fixed v, E and /3. From sections 3.5 and 3.8 we find that
both N, and Tpg /T5I have finite limits as R — 0, despite the diverging acceleration. The limits
depend on the remaining variables only through the pair (v, E3), but in a fairly complicated
way: we find

) (v —sen(E) + 2n([ElB)
NoAEBR/B) - (4/E") Fuin(E. B) |

(v—1DEB+ 0(@5)2) for EG — 01,
-1 — 13 — B
_T(Eﬁ) +O((EB)") forEB — 0,

= — = 5.3
WTI /ZWVEBeEﬁ/(1+v><1+O<;6>> for Ef — o0, -3
1<1 1> O<e|Eﬁ/(l+V)> for ES
5 =+ = or — —0Q,
2\ VIEIB
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IH(FLin(_|E|,ﬁ)>

Tos Frin(|E], B)
Th R0 1n(7+1+2n(|Elﬂ)>
v —142n(|E|B)
v+ O(|E|B) for |[E|3 — 0,
= |E|B (5.3b)

———————+0O(In(|E|B)) for [E|3 — o0,
(I+v) ln(z—ﬂ)

using the large and small |E|S results from section 3.8. The R — 0 limit of V, takes hence a
wide range of values, from much less than unity to much larger than unity, depending on ES3.
The R — 0 limit of Tpg /751, by contrast, is larger than unity for both small and large |E|3,
and much larger than unity for large |E|S.

Fourth, consider the Machian limit, v — 1, with fixed R, |E| and 3. From sections 3.7 and 3.8
we find

V27 EB

v+o(y) forE>0,

N (EB.R/B) = 2Lli%(e_ﬁf) (5.40)
——i—(?(m) forE <O,
2 o
TDB ™y 1
— = 1+ 0O — 5.4b
Thp mm[ * (m)]’ 640)

showing a significant acceleration effect in Tpg/ T%ig, and in the excess excitation rate, but
only a moderate suppression of the de-excitation rate.

5.3. Numerical results

We present numerical results for v = 0.6, plotting NV, and Tpg /75 as a function of the inde-
pendent dimensionless variables E/3 and R/ 3.

Figure 4 shows a plot of N, both for E > 0, corresponding to excitations, and for E < 0,
corresponding to de-excitations. In both cases, the plot indicates that [N, | < 1 for |E|R > v,
but significant deviations start near |E|R & v, and there are regions of positive /N, and regions
of negative V,. We emphasise that the behaviour near |E|R ~ v is independent of the ambient
temperature, and this behaviour hence occurs even when the ambient temperature is so high
that the ambient temperature dominates the overall magnitude of the detector’s response. At
|E|R < v, the behaviour in the plots is consistent with the asymptotic formulas given above.

Figure 5 shows a plot of Tpg /Thg, with the same parameter range as in figure 4. Tpg /T
is close to unity for |[E|R >> v, as had to happen by figure 4, but it starts to deviate signific-
antly from unity near |E|R ~ v, where in some regions Tpg/T52 >> 1 but in some regions
Tpp/T5Y < 1. The behaviour at |[E|R < v is consistent with the asymptotic formulas given
above.

In summary, the combination of numerical an analytic evidence indicates that the acceler-
ation has a negligible effect on the transition rate and on the detailed balance temperature for
|E|R > v, but nontrivial behaviour due to the acceleration occurs at [E|R < v.
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—1
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E/T ~40.00

Figure 4. Relative excess transition rate N, (5.1) due to acceleration, as a function of
the circular trajectory radius R and the excitation energy E, at fixed v = 0.6. The ambient
temperature 7 = 1//3 enters only in that it sets the scale of the horizontal axes, as shown.
Part (a) for excitations, E > 0, and part (b) for de-excitations, E < 0. The viewpoints are
chosen for the benefit of the visual perspective. The white curve is at ER = v, marking
the discontinuity of the first derivative, as in figure 3. At |[E|R > v we have |\, | < 1, but
N, starts to show nontrivial behaviour near |E|R ~ v, and the behaviour at |E|R < v is
consistent with the asymptotic estimates (5.2a) and (5.3a). In particular, as E/T — 0, NV,
decays to zero linearly, by (5.2a); in part (b) of the figure, this decay is mostly obscured
by the hill in the plotted surface.
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Figure 5. Ratio of the circular motion detailed balance temperature 7 pg and the inertial
motion detailed balance temperature THD as a function of the circular trajectory radius R
and the excitation energy |E|, at fixed v = 0.6. The ambient temperature 7 = 1/ again
enters only in the scales of the horizontal axes, and the white curve is at |E|R = v, at
the discontinuity of the first derivative. Tpg/T5y is close to unity at [E|R >> v, but it
starts to deviate significantly from unity near |E|R =~ v. The horizontal (green) curve is
at Tpp/Ths = 1. The behaviour at |[E|R < v is consistent with the asymptotic estim-

ates (5.2b) and (5.3b); in particular, at E/T — 0, TDB/T%%’ — v =15/4,by (5.2b).
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6. Conclusions

Motivated by proposals to observe the analogue spacetime circular motion Unruh effect in
condensed matter systems [23-26], we have analysed finite ambient temperature effects on
a pointlike quantum system in uniform circular motion in (2 + 1)-dimensional Minkowski
spacetime. We modelled the ambient quantum field by a massless Klein—-Gordon field, pre-
pared in a thermal state, and we modelled the pointlike quantum system by an UDW detector,
coupled linearly to the time derivative of the field, where the time derivative is introduced to
regularise an infrared divergence in the field’s thermal Wightman function. We specified the
detector’s internal dynamics in terms of Minkowski time, instead of the detector’s relativistic
proper time, as this is expected to be more closely connected to quantities measured in an ana-
logue spacetime experiment. We worked in the limit of weak interaction and long interaction
time and neglected the detector’s back-action on the field.

We quantified the detector’s response by an effective detailed balance temperature Tpg,
computed from the detector’s excitation and de-excitation rates by the detailed balance for-
mula (2.16), and interpretable as an effective temperature within a limited energy band. We
obtained analytic results in several asymptotic regimes and numerical results in the interpol-
ating regimes.

We found parameter regimes where Tpp is higher than the ambient temperature, so that the
detector’s motion causes a heating effect, and parameter regimes where Tpg is lower than the
ambient temperature, so that the detector’s motion causes a cooling effect. Comparing with an
inertial detector, we found regimes where the heating/cooling is dominated by the detector’s
speed with respect to the heat bath, due to the Doppler effect, and the acceleration has only
a minor role; conversely, we found regimes where the acceleration in the detector’s motion is
significant.

While the interplay of the various regimes is subtle, one general feature is that a cooling
effect is more likely to occur when the ambient temperature is high, as one might have expected
on qualitative grounds. Another feature is that the detector’s acceleration, rather than just the
speed, is significant at energy gaps smaller than the orbital angular velocity, even when the
ambient temperature is so high that the overall magnitude of the detector’s transition rate is
dominated by the ambient temperature.

As a mathematical side product, we found an elementary expression for an infinite
series (3.8) involving squared Bessel functions. We have not encountered this identity in the
existing literature.

We recap that our motivation to consider a finite ambient temperature came from proposals
to simulate an UDW detector on a circular orbit in a relativistic spacetime by a condensed mat-
ter system, such as a phonons in a Bose-Einstein condensate or third sound waves in superfluid
Helium, with a laser beam playing the role of the detector [25, 26]. These condensed matter
systems simulate a Klein—Gordon field in a relativistic spacetime when probed at sufficiently
low frequencies, but they can never simulate a field state with a strictly zero temperature,
and controlling finite ambient temperature effects is crucial. Our results chart the parameter
space for these ambient temperature effects. As mentioned above, a specific upshot is that even
when the ambient temperature is so high that the overall magnitude of the detector’s response
is dominated by the ambient temperature, as is likely be the case in superfluid Helium [26],
the acceleration effect can be distinguished from a Doppler shift effect by focusing on detector
energy gaps smaller than the orbital angular velocity. This will inform the design of prospect-
ive experiments as analysed in [26].
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To summarise, an ambient temperature equips the circular motion Unruh effect with the
characteristic of Robin Hood [64]: Where there is little, the Unruh effect gives; and where
there is plenty, the Unruh effect takes.
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Appendix A. Response function mode sum

In this appendix we find the mode sum expression (2.9) for the response function. The notation
and the assumptions are as in section 2.2.
The positive Minkowski frequency mode functions of the massless Klein—Gordon field are

1 —iwt+ik-x
= ¢ , (A.1)
271\ 2w
where k is the spatial momentum and the dispersion relation (suppressed in the notation) spe-
cifies w as a function of |k|. The normalisation is (ug,ux’) = O, where (-,-) is the Klein—
Gordon inner product and ¢ is the Dirac delta. It follows as in [12] that the derivative correlation
function W3 (2.6) has the mode sum expression

Uy (X)

Wilt) = [ e | (1 n(50) G (X(0) g0 () + () i (X0) o (K0
t dr dt dr
(A2)
where X(¢) is the circular motion worldline (2.2), n is the Planckian factor (2.10) and the aster-
isk denotes complex conjugation.
We substitute in (A.2) the mode functions (A.1) and the trajectory (2.2), perform the dif-

ferentiations, and change the integration variables from (ky,k,) to (k,[) by a suitable (time-
dependent) rotation in the k plane, obtaining
1 dkdl
Ws(t,t') = 52 / — [(w - Qchos(Qs/Z))2 — O’R*P sinz(ﬂs/2)]
™ w
« [(1 + n(ﬁw))e—iws—i—ZiRksin(Qx/Z) + n(ﬁw)eiws—ZiRksin(Qx/Z)] ,

(A.3)
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where s =t — ¢’ and w is now a function of |k| = v/k? 4+ I?. An equivalent expression is

Ws(t,t') = 1 /dl;dl{(l +n(Bw)) {(w - Qchos(Qs/Z))2 + %inRksin(Qs/2)}

"~ 82

% efiws+2iRk sin(§2s/2)

+ n(Bw) [(w — Qchos(Qs/Z))2 - %inRksin(Qs/Z)} ei“‘Y_ZiRkSi"(Q‘Y/Z)} ,
(A4)

as can be seen by considering the difference of (A.3) and (A.4) and noting that the integral over
the angle in the (k, ) plane produces a sum of Jy, Jj and J§’ that vanishes by Bessel’s differential
equation [58]. Note that the integrals in (A.3) and (A.4) are free of infrared divergences: when
w(0) = 0, this follows from the assumption w’(0) > 0.

We next use in (A.4) the identity

o 2iRksin(925/2) _ Z et B/2), (2Rk), (A.5)
neZ

which follows from 10.12.1 in [58], and we regroup the sum so that all the s-dependence is
in factors of the form e Fiws+25/2 ‘multiplied by Bessel functions of order n, n =+ 1 and n + 2.
We then convert the integral over k and [ to polar coordinates by (k,/) = (Ksinf,Kcos#), so
that dkd/ = KdKdf. The odd n terms are odd in # and vanish on integration over §. We relabel
the even n terms by n = 2m with m € Z, substitute in (2.8), and perform the integral over ¢ in
terms of delta-functions, which collapse the integral over K, with the outcome

— 1 [ K
f(Eﬁ):@o d9{ > m(l+”(ﬂw(lf+)))

> (E+w(0))/2
X {((M(K;))%;QZRZ(K;)Zsinzo)JZm(zRK; sinf)
— QRK;} (w(K;h) + 1) sin0J5,41 (2RK}) sin)

m

— QRK;} (w(K;}) — 1) sin6J5,—1 (2RK; sin6)

m m

+ 1OPR*(K,})? sin®0 (Jom42(2RK,) sin6) + Jo—2(2RK}) sin6))

Y A )

(K )w(Knm
m>(—f+w(0))/ﬂw ( )w( )
X {((W(K,;))2+;QZR2(K;)2sinzﬁ)JZm(ZRK,; sinf)

— QRK,, (w(K,,) + 1) sin0J241(2RK,, sinf)

m m

— QRK,, (w(K;,) — 1) sin0J>,_1 (2RK,, sin6)

m

+ 1OPR*(K,,)? sin®0 (Jom+2(2RK,, sin6) + Jo,—»(2RK,, sin 9))] } , (A.6)

where K- are as defined in section 2.2, and the notation suppresses their E-dependence.
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The integrals in (A.6) can be evaluated using the identities

2T
/ Jom(2asinf)dd = 27 2 (a), (A.7a)
0

27

/ Sin 0oyt (2a5in0) 0 = 27 Jys1 (a)(a) (A.7h)
0
27

/ sin* 02, (2asin®) df = 7 (13, (a) + Jp—1(a)Jmi1(a)), (A7)

0

where m € Z; these identities follow from 6.681.1 in [63] by setting respectively u =0, u =
% and p = 1. Further use of Bessel function identities 10.6.1 and 10.6.2 in [58] then gives
formula (2.9) in the main text.
We end this appendix with two comments on the role of the time derivatives in (2.9).
First, when w(0) > 0, the result (2.9) can be obtained more shortly in the following way.

The property w(0) > 0 implies that the non-derivative correlation function Wz (2.7) is well
defined, and (2.6) and (2.7) give Wg(t',1"") = 8,8, W (X(t'),x(¢"")). Using the time trans-

lation invariance of Vg and Wg, we then have
FEB) =F / dre W (x(1),x(0)) (A.8)

where the E factor has come from integration by parts. The right-hand side of (A.8) is recog-

nised as E- times the response function of a detector without a derivative in the coupling. We
can now apply the methods of this appendix directly to the right-hand side of (A.8), arriving
at (2.9) through significantly fewer steps: the overall E factor in (2.9) is exactly the overall E
factor in (A.8). .

Second, when w(0) = 0, Wg is infrared divergent, and (A.8) as it stands is not well defined.
However, if we ignore the infrared divergence in the mode sum expression for Wﬁ, and inform-
ally apply to (A.8) the integral interchange manipulations of this appendix, we arrive again
at (2.9): the informal integral interchanges can be interpreted as a regularisation of the infrared
divergence in the transition rate. This regularisation of the transition rate can be applied even
when the detector’s coupling does not involve a time derivative [33].

Appendix B. Bessel function identity

In this appendix we verify the identity

o0

S (B mv) + Py (mv)) =

m=1

1
V1=’

(B.1)

where 0 <v < 1.

Proof. The case v =0 is trivial as the only nonvanishing term on the left-hand side is
J3(0) = 1. We henceforth assume 0 < v < 1.
Using the integral representation 10.9.26 in [58],

jus
2

2
F(z) = ;/ Jon(2zcos0)do, (B.2)
0
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Z(J,zn L (mv) + 72 (mv)) Z/ (Jam—2(2mvcos @) + Jopy2(2mvcosd)) df

S
I}

2 7
- 7/ d@Z(JZm_z(vacos 0) + Jomi2(2mvcosh)),  (B.3)
iy

™ Jo

where the interchange of the sum and the integral is justified because the summands fall off
exponentially in m, uniformly in 6, as seen from 10.20.4 in [58], recalling that 0 < vcosf <
v <1.

For 0 < 6 < 7/2, we use Bessel function identities to rewrite the summands in (B.3) as

Jom—2(2mvcos0) + Jopi2(2mvcos ) = Jp, (2mvcos ) (4 — 2)

v2cos? 6
4 J (2
3 J5,,(2mvcos ) 7 (B.4)
vcosf 2m
and we then evaluate the sum over m by the identities
2
Zsz @mn) = 35—y (B.5a)
ZJZm(th) 1 ifzi(kf) Jli(kt)(_l)k—l
2m 2 k k
m=1 k=1 k=1
UL (1
212 4 2 4
t
=_ B.5h
7’ (B.5b)

valid for 0 < ¢ < 1, using 8.517.3, 8.518.1 and 8.518.2 in [63]. Hence

™

= 2 (= 4 v cos? 6 4  vcosh
2 2
= — —2 —
;(Jm_](mv)+Jm+,(mv)) 7r/0 [(v200529 ) 2(1—v*cos?f) vcosf 4 a0

By
7w )y 1—1v2cos?0
1
= , (B.6)
V1—v?
where the last integral is elementary. O
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